
Technische Universität München
TUM School of Engineering and Design

Structural reliability analysis accounting
for spatial variability and measurements

Sebastian Karl Geyer

Vollständiger Abdruck der von der TUM School of Engineering and Design der
Technischen Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz: Prof. Dr.-Ing. Oliver Fischer

Prüfer*innen der Dissertation:

1. Prof. Dr. sc. techn. Daniel Straub

2. Prof. Lori Graham-Brady, Ph.D.

3. Prof. Dr.-Ing. habil. Emilio Bastidas-Arteaga

Die Dissertation wurde am 13.04.2023 bei der Technischen Universität München einge-
reicht und durch die TUM School of Engineering and Design am 12.09.2023 angenommen.





To the memory of my father
Thomas Karl Geyer

i





Abstract
Calculating the probability of failure is an essential step in structural reliability analysis. This
task involves the selection of a mechanical model of the structural performance and the stochastic
modeling of the uncertain input parameters. In the presence of spatial variability, random
variables may not suffice to accurately represent the uncertainty in the input parameters. The
spatially variable parameters need to be modeled as random fields, which are defined as an
infinite collection of random variables indexed by a spatial coordinate. Numerical treatment of
random fields requires a discretization method, which approximates a random field through a
finite number of random variables. Site-specific data from measurements can be used to improve
the stochastic model and to reduce the uncertainty of the input parameters. In addition to the
stochastic and mechanical model, structural reliability analysis requires the choice of a reliability
method to estimate the probability of failure. The computational effort and numerical accuracy
of the analysis are determined by these choices.

This thesis presents methods to efficiently estimate the structural reliability in presence
of spatial variation and measurement data, with focus on the stochastic modeling of spatially
variable material properties. To this end, a hierarchical Bayesian model for spatially variable
Gaussian quantities is developed, which allows the combination of prior information with spatial
data. The conjugacy of the selected prior distribution and likelihood function enable derivation
of closed-form expressions for the predictive point-in-space distribution of the random field. The
model is extended for the application to the class of non-Gaussian translation random fields. In
addition, an approach for learning the spatial correlation function from data is presented and
further refined for the specific application to the spatial modeling of concrete strength. The
performance is evaluated with case studies of ship lock chamber walls made of tamped concrete,
for which strength measurements are available from core samples.

The spatial averaging method is suggested as random field discretization method. This
method approximates a random field through a set of random variables representing the average
behavior of the random field over a corresponding set of elemental spatial domains. Coupling
the discretized random field model with a finite element model for structural analysis is then
straightforward and in compliance with the underlying theory of finite element modeling. The
required expressions for the application to non-homogeneous Gaussian random fields are derived
and the extension to non-Gaussian translation random fields is described. This extension allows
using the spatial averaging method for the random fields originating from the hierarchical
Bayesian update.

The choice of an adequate reliability method depends on the problem at hand. Approximation
methods and several Monte Carlo-based simulation methods are briefly described, highlighting
the respective advantages and disadvantages. Using a set of typical problem characteristics, the
presented reliability methods are compared with one another. In addition, the effects of spatial
variability on structural reliability are discussed regarding the random field discretization and
increased complexity of the problem to be solved.
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Titel in deutscher Sprache
Zuverlässigkeitsanalyse von Bauwerken unter Berücksichtigung von räumlicher Variabilität und
Messdaten

Zusammenfasung
Zuverlässigkeitsberechnungen für Bauwerke sind im Bereich der Quantifizierung von Unsi-
cherheiten zu verorten und beinhalten neben der stochastischen Modellierung der unsicheren
Eingangsparameter die Auswertung eines mechanischen Modells, welches das Bauwerksverhalten
beschreibt. In Fällen mit räumlicher Variabilität kann es sein, dass Zufallsvariablen nicht ausrei-
chen, um die Unsicherheiten ausreichend zu repräsentieren, weshalb räumlich variable Parameter
gegebenenfalls mit Zufallsfeldern modelliert werden müssen. Zufallsfelder sind definiert als An-
sammlung einer unendlichen Zahl von Zufallsvariablen, die mit einer räumlichen Koordinate
versehen sind. Für die numerische Behandlung von Zufallsfeldern bedarf es deswegen einer
Diskretisierungsmethode, die ein Zufallsfeld über eine begrenzte Anzahl von Zufallsvariablen
approximiert. Das stochastische Modell kann mithilfe standortspezifischer Daten verbessert wer-
den, wodurch die Unsicherheiten in den Eingangsparametern reduziert werden. Zusätzlich zum
mechanischen und stochastischen Modell ist die Wahl einer Zuverlässigkeitsmethode erforderlich,
mit welcher die Bauwerkszuverlässigkeit abgeschätzt werden kann. Der Rechenaufwand und
die numerische Genauigkeit der Zuverlässigkeitsanalyse werden von diesen vorab getroffenen
Entscheidungen bestimmt.

Diese Arbeit präsentiert Methoden für die effiziente Abschätzung der Bauwerkszuverlässigkeit
unter Berücksichtigung von räumlicher Variabilität und Messdaten, wobei der Fokus auf der
stochastischen Modellierung räumlich variabler Materialeigenschaften liegt. Zu diesem Zweck
wird ein hierarchisches Bayes’sches Modell für räumlich variable und normalverteilte Größen
entwickelt, welches die Kombination von Vorwissen und räumlichen Daten erlaubt. Durch
die Konjugation der ausgewählten A-priori-Verteilung mit der Likelihood-Funktion können
die Ausdrücke für die räumlichen Funktionen der Momente des prädiktiven Studentschen t-
Zufallsfelds in geschlossener Form hergeleitet werden. Das Modell wird um die Anwendbarkeit auf
die Klasse der Translation Random Fields erweitert. Zusätzlich wird eine Vorgehensweise für das
Erlernen der räumlichen Korrelationsfunktion aus den Daten präsentiert und die Vorgehensweise
für die spezifische Anwendung auf die Betonfestigkeit weiter verfeinert. Mithilfe von Fallstudien
an Schleusenkammerwänden, für welche Daten der Betonfestigkeit aus Bohrkernen vorliegen,
wird die Leistungsfähigkeit der Methodik beurteilt.

Für die Zufallsfelddiskretisierung wird die Spatial-Averaging-Methode vorgeschlagen. Diese
Methode approximiert ein Zufallsfeld über ein Set von Zufallsvariablen, welche das gemittelte
Verhalten des Zufallsfelds über ein zugehöriges Set von räumlichen Bereichen darstellen. Dadurch
ist die Kopplung des diskretisierten Zufallsfelds mit einem Finite-Elemente-Modell unkompliziert
und in Übereinstimmung mit der Theorie der Finite-Elemente-Methode möglich. Die erforderli-
chen Ausdrücke zur Anwendung auf nichthomogene Gauß’sche Zufallsfelder werden hergeleitet
und die Erweiterung auf Translation Random Fields ist beschrieben. Diese Erweiterung erlaubt
es, die Spatial-Averaging-Methode auf Zufallsfelder, die aus dem hierarchischen Bayes’schen
Update resultieren, anzuwenden.

Die Wahl einer angemessenen Zuverlässigkeitsmethode ist abhängig von der spezifischen Pro-
blemstellung. Approximationsmethoden sowie einige Monte-Carlo-basierte Simulationsmethoden
werden in dieser Arbeit kurz vorgestellt, wobei die jeweiligen Vor- und Nachteile herausgestellt
werden. Mithilfe typischer Charakteristika von Problemen der Zuverlässigkeitsanalyse werden
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die vorgestellten Zuverlässigkeitsmethoden untereinander verglichen. Zusätzlich werden die
Auswirkungen räumlicher Variabilität auf die Bauwerkszuverlässigkeit diskutiert, wobei sowohl
auf die Zufallsfelddiskretisierung als auch auf die erhöhte Komplexität des zu lösenden Problems
eingegangen wird.
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Chapter 1

Introduction

We are surrounded by engineering structures. No matter where we go or what we do, it is
almost impossible to spend a day without utilizing an engineering structure of some kind. Such
engineering structure may be the house we live in, a bridge that we cross in a car or by train or
simply an interesting building we pass by. Although all of these structures are assigned different
tasks for our everyday life, most of them have one thing in common: they are considered reliable
structures and their safe use is taken for granted. It is the main task of the field of structural
reliability to ensure this by quantifying the probability of failure of structures and designing them
in a way that this probability lies below an acceptable threshold. Structural failure can never
be avoided completely, which raises the question of an acceptable failure probability. Choosing
a pragmatic approach by counting the total number of structures in service and the number
of failures per year, a seemingly accepted value for the failure probability of a structure can
be estimated and lies in the order of 10−4 for a 50-year service life [4, 110]. Obviously, this
approach neglects many factors in the calculation (besides, the quoted number is exclusively
based on structures in Canada) but, nevertheless, it can serve as indicator for the risk that
is accepted in a society. In fact, that value from Canada and the target levels for structural
reliability of standard buildings in the European design codes for buildings and structures lie
not too far apart [47].

Structural reliability analysis is a task of uncertainty quantification, i.e., the quantity of
interest (in this case the probability of failure of a structure or a structural member) depends
on parameters that are subject to uncertainty [69]. In engineering practice, these uncertainties
are rarely explicitly accounted for, one mostly relies on application-specific rules to implicitly
include uncertainty in the analysis, which saves time and effort, and allows for generalization.
These rules form the framework of structural verification, in Europe nowadays standardized
through the Eurocode series, e.g., for load effects [48], concrete structures [49], steel structures
[50], timber structures [51] or geotechnical design [52], each of which in combination with the
respective parts for specific applications. In addition to defining a way to include uncertainties,
they also provide guidelines for determining the stress in structural members through simple
mechanical models. For more complex problems though, the mechanical model typically involves
a numerical model to determine the forces and stresses, such as a finite element model [e.g.,
122, 123]. One of the key components of this standardized procedure is the independence of
stochastic model and mechanical model, as illustrated in panel a of Figure 1.1. This allows the
mechanical part of the verification to stay completely deterministic and thus, understanding the
underlying theory of random variables and their effect on structural reliability is not required,
which simplifies the application significantly.

However, there are cases where the standard procedures are not sufficient for ensuring the
reliability of a structure, which is caused by various reasons, such as non-standardized material
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1 Introduction

Verification

Mechanical
model

Stochastic
model

Reliability
analysis

Mechanical
model

Stochastic
model

Reliability
method

a) Structural verification b) Structural reliability analysis

Figure 1.1: Components of structural verification (panel a) and reliability analysis (panel b). The arrows
indicate dependence between the respective components.

due to the age of an existing structure, unprecedented loads on a structure, or simply the desire
for an economic design, among others. In these cases, a reliability analysis of the structure
needs to be conducted, where the uncertainties are explicitly accounted for by modeling them as
random variables or, in the presence of spatial (temporal) variability, as random fields (random
processes) [161]. The choice of an appropriate method to evaluate the reliability is an important
part of reliability analysis and depends on both the stochastic and the mechanical model [e.g.,
110]. In addition, modeling uncertainties in the input parameters as random quantities can lead
to interactions between the mechanical and stochastic model, thus increasing the complexity
of the problem. Panel b of Figure 1.1 illustrates the key components of structural reliability
analysis and their potential interactions. This thesis focuses on stochastic modeling and, to
some extent, reliability methods, while mechanical modeling is not investigated in detail.

1.1 Outline

This thesis is split into two parts. Part I provides a summary over the developed methods and
integrates them into the framework of reliability analysis in Chapter 2. To this end, Section 2.1
gives a short introduction into the basics of probability theory, Bayesian analysis and random
fields. Subsequently, Section 2.2 formulates the problem of structural reliability and presents
an overview of selected reliability methods including an assessment for different problem types,
before concluding with a short insight into the effects of spatial variability on structural reliability.
Afterwards, approaches for learning the stochastic model for material parameters are presented in
Section 2.3, where two established methods for non-spatial learning are presented first, followed
by a hierarchical approach for learning a random field model. A brief summary of the results
and an outlook to potential future research are given in Chapter 3. Part II consists of four
journal articles, where the conducted research is described in detail. Chapter 4 uses the available
literature on spatial modeling of concrete properties with data and conducts the reliability
analysis of a ship lock wall. Chapter 5 derives a framework for spatial modeling of material
properties with data, which is further specified for application to concrete strength in Chapter 6,
including two case studies of concrete ship lock walls. Thereafter, a random field discretization
method is presented in chapter 7, which is particular useful to couple the resulting random field
models from the previous chapters with a numerical model for reliability analysis.

4
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1.2 Contribution

1.2 Contribution

This thesis is mainly based on four journal articles, where each article forms one chapter of
Part II. Sebastian Geyer is main author of these published or submitted journal articles, as
listed in the following:

• Chapter 4 (original publication [64]): S. Geyer, I. Papaioannou, C. Kunz, and D. Straub.
“Reliability assessment of large hydraulic structures with spatially distributed measure-
ments”. In: Structure and Infrastructure Engineering 16 (4 2020), pp. 599 – 612. doi:
10.1080/15732479.2019.1652331.

• Chapter 5 (original publication [65]): S. Geyer, I. Papaioannou, and D. Straub. “Bayesian
analysis of hierarchical random fields for material modeling”. In: Probabilistic Engineering
Mechanics 66 (2021), p. 103167. doi: 10.1016/j.probengmech.2021.103167.

• Chapter 6 (original publication [68]): S. Geyer, I. Papaioannou, and D. Straub. “Spatial
modeling of concrete strength based on data”. In: Structural Safety 103 (2023), p. 102345.
doi: 10.1016/j.strusafe.2023.102345.

• Chapter 7 (original publication [63]): S. Geyer, I. Papaioannou, L. Graham-Brady, and
D. Straub. “The spatial averaging method for non-homogeneous random fields with
application to reliability analysis”. In: Engineering Structures 235 (2022), p. 113761. doi:
10.1016/j.engstruct.2021.113761.

In addition, developing efficient structural reliability methods and advertising their use in
engineering practice have been part of the doctoral research, reflected in the (co-)authorship of
three additional journal articles:

• Original publication [66]: S. Geyer, I. Papaioannou, and D. Straub. “Cross entropy-based
importance sampling using Gaussian densities revisited”. In: Structural Safety 76 (2019),
pp. 15–27. doi: 10.1016/j.strusafe.2018.07.001.

• Original publication [126]: I. Papaioannou, S. Geyer, and D. Straub. “Improved cross
entropy-based importance sampling with a flexible mixture model”. In: Reliability Engi-
neering & System Safety 191 (2019), p. 106564. doi: 10.1016/j.ress.2019.106564.

• Original publication [67]: S. Geyer, I. Papaioannou, and D. Straub. “Problemorientierte
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Chapter 2

Reliability analysis with spatially distributed
measurements

2.1 Stochastic framework

The methods in the subsequent chapters are embedded into a stochastic framework, which
requires basic concepts of probability theory, Bayesian statistics and random field theory. In
addition, some important probability distributions are provided as a reference for the reader.

2.1.1 Basics of probability theory

This section introduces some important concepts of probability theory, which are required for
understanding the subsequent chapters. However, it is not a general introduction to probability
theory, for which the reader is referred to standard textbooks, such as [e.g., 93, 5].

2.1.1.1 Sample space and events

Consider the sample space S, which is defined as collection of all possible outcomes of a random
experiment. Any subset A ⊆ S is defined as an event corresponding to a set of points in the
sample space S. Given two events A1 and A2, the set of points belonging to at least one of the
two sets is called the union of A1 and A2, denoted A1 ∪ A2, and the set of points belonging
to both sets is termed the intersection of A1 and A2, denoted A1 ∩ A2. A1 and A2 are called
mutually exclusive or disjoint, if A1 ∪A2 = ∅, where ∅ is the empty set. Further, A1 and A2 are
termed collectively exhaustive, if A1 ∪A2 = S. These basic operations and properties can be
extended to the general case of n events A1, . . . , An.

The probability P (A) ∈ [0, 1] defines the likelihood of occurrence of an event A that belongs
to S and follows the Kolmogorov axioms [93]. Particularly, the conditional probability of A1
given A2 is given as

P (A1|A2) = P (A1 ∩A2)
P (A2) . (2.1)

A1 and A2 are said to be statistically independent if

P (A1|A2) = P (A1), (2.2)

in which case P (A1 ∩A2) = P (A1)P (A2).
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2 Reliability analysis with spatially distributed measurements

2.1.1.2 Random variables

A random variable (RV) is defined as a function that maps from S to the real numbers R. For
the remainder of this thesis, the standard notation for an RV is X and a random realization
of X is denoted x. Depending on the definition, an RV can be either discrete, i.e., the set of
possible outcomes is finite or countably infinite, or continuous. The focus of this thesis lies on
continuous RVs and hence, the following definitions aim at continuous RVs without explicitly
reflecting the discrete case.

RVs are characterized by their cumulative distribution function (CDF), which is defined for
X as

FX(x) = P (X ≤ x), (2.3)

which suffices to completely define X. FX(x) is a non-decreasing function such that

lim
x→−∞

FX(x) = 0, (2.4a)

lim
x→∞

FX(x) = 1. (2.4b)

If FX(x) is continuous, the probability density function (PDF) can be derived as

fX(x) = dFX(x)
dx . (2.5)

Similarly to the CDF, the PDF is sufficient to completely specify an RV. Consequently, the CDF
is obtained through integrating the PDF:

FX(x) =
� x

−∞
fX(x)dx. (2.6)

An important operation is the mathematical expectation of any function g(X) of the RV X,
given as

E[g(X)] =
� ∞

−∞
g(X)fX(x)dx. (2.7)

Using Equation (2.7), the mean value of X, µX , and its variance, V[X], are defined as follows:

µX = E[X] =
� ∞

−∞
xfX(x)dx, (2.8a)

V[X] = E
[
(X − µX)2

]
=

� ∞

−∞
(X − µX)2fX(x)dx. (2.8b)

In addition, σX =
√
V[X] denotes the standard deviation of X. δX = σX

|µX | is called the coefficient
of variation (CoV) of X. µX is the first moment of X and V[X] is its second central moment.
Higher-order moments can be calculated accordingly [e.g., 108].
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2.1.2 Random vectors

A d-dimensional random vector X = [X1, . . . , Xd] is defined as function that maps from the
sample space S to Rd. The d components of X are single RVs.

2.1.2.1 The joint distribution

In analogy to the univariate case of a single RV, a random vector X is defined by its joint CDF:

FX(x) = P (X1 ≤ x1 ∩ · · · ∩Xd ≤ xd), (2.9)

for which the following properties hold:

lim
xi→−∞

FX(x) = 0, i = 1, . . . , d, (2.10a)

lim
x1→∞,...,xd→∞

FX(x) = 1. (2.10b)

The corresponding joint PDF is obtained through differentiation of FX(x):

fX(x) = ∂dFX(x)
∂x1 . . . ∂xd

. (2.11)

From the joint PDF, the marginal PDF of a single component of X is obtained through
marginalization:

fXi(xi) =
� ∞

−∞
. . .

� ∞

−∞
fX(x)dx1 . . . dxi−1dxi+1 . . . dxd. (2.12)

The joint PDF of any subset of the components in X can be calculated accordingly.

2.1.2.2 Dependent and independent random variables

The conditional PDF of X1 given X2 = x2 is defined as

fX1|X2(x1|x2) = fX1,X2(x1, x2)
fX2(x2) . (2.13)

Two RVs X1 and X2 are said to be statistically independent, if

fX1|X2(x1|x2) = fX1(x1), (2.14)

in which case the joint PDF is given as the product of the marginal PDFs:

fX1,X2(x1, x2) = fX1(x1)fX2(x2). (2.15)

Analogously, the joint PDF of d statistically independent RVs can be expressed as the product
of the marginal PDFs.

By extending Equation (2.7) to the 2-dimensional case, the covariance of X1 and X2 can be
calculated as the mathematical expectation of the function g(X1, X2) = (X1 − µX1)(X2 − µX2):

Cov [X1, X2] = E[(X1 − µX1)(X2 − µX2)] =
� ∞

−∞

� ∞

−∞
(X1−µX1)(X2−µX2)fX1,X2(x1, x2)dx1dx2.

(2.16)

9



2 Reliability analysis with spatially distributed measurements

Normalizing the covariance with the individual standard deviations yields the correlation
coefficient:

ρX1,X2 = Cov [X1, X2]
σX1σX2

, ρX1,X2 ∈ [−1, 1]. (2.17)

ρX1,X2 is a measure for the linear dependency between two RVs. If ρX1,X2 = 0, X1 and X2 are
uncorrelated RVs. Note that uncorrelated RVs are not necessarily independent, but correlated
RVs are never independent. For X1 = X2, Equation (2.16) reduces to Equation (2.8b) and, as a
direct consequence, ρX1,X1 = 1.

2.1.2.3 Transformation of random vectors

Consider a random vector X and an injective set of functions g1, . . . , gd, such that

Yi = g(X), i = 1, . . . , d. (2.18)

Then, the joint PDF of the vector of transformed RVs Y = [Y1, . . . , Yd] is given by [e.g., 58, 113]

fY (y) = fX(x) |det(J)x,y| , (2.19)

where J is the d× d Jacobian matrix of the transformation with entry J(i, j) defined as follows:

J(i, j) = ∂xi

∂yi
. (2.20)

If at least one of the d functions is not injective, one has to account for all possible combinations
of roots of Equation (2.18), which will not be further discussed.

2.1.3 Important probability distributions

Some important probability distributions that are used in this thesis are briefly described in
this section. A detailed overview of a large number of continuous probability distributions can
be found in [86] and [87].

2.1.3.1 Normal distribution

The normal or Gaussian distribution is one of the most important, if not the most important,
probability distributions in statistics and engineering. A Gaussian RV X is completely defined
by two parameters, the mean µ = E[X] and the standard deviation σ =

√
V[X], and is denoted

X ∼ N (µ, σ). The corresponding PDF of X is as follows [e.g., 5]:

fX(x) = 1
σ

√
2π

exp
(

−(x− µ)2

2σ2

)
, x ∈ (−∞,∞). (2.21)

The special case of µ = 0 and σ = 1 results in the standard normal distribution. The PDF of a
standard normal distributed RV U is

fU (u) = φ(u) = 1√
2π

exp
(

−u2

2

)
, u ∈ (−∞,∞). (2.22)

Through the linear transformation U = X−µ
σ , the PDF of any Gaussian RV can be expressed in

terms of φ(u).
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The CDF of X is given by
FX(x) = Φ

(
X − µ

σ

)
, (2.23)

where Φ(·) is the CDF of the standard normal distribution:

Φ(u) =
� u

−∞
φ(z)dz. (2.24)

The function Φ(·) cannot be found analytically and needs to be evaluated numerically; standard-
ized tables thereof can be found in almost every statistical textbook [e.g., 5, 15, 113]. The PDF
and CDF of the standard normal distribution are illustrated in Figure 2.1.
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Figure 2.1: PDF φ(u) (panel a) and CDF Φ(u) (panel b) of the standard normal distribution.

The normal distribution is often used to model uncertain quantities. One of the reasons
why it is a good fit for many quantities is the central limit theorem, which states that an RV
X that is defined as the sum of a large number of RVs is approximately normal distributed
under certain conditions on the joint distribution of the RVs entering the sum (the conditions
are fulfilled if the RVs are independent and identically distributed) [108].

2.1.3.2 Multivariate normal distribution

The joint distribution of d Gaussian RVs is the multivariate Gaussian distribution. A d-
dimensional Gaussian random vector X = [X1, . . . , Xd], denoted X ∼ N (µ,Σ), has the
following joint PDF [e.g., 153]:

fX(x) = 1
(2π) d

2 det(Σ) 1
2

exp
(

−1
2(x− µ)Σ−1(x− µ)T

)
, (2.25)

where µ = [µ1, . . . , µd] is the mean vector and Σ is the d × d covariance matrix with entry
Σ(i, j) defined as σXiσXjρXi,Xj . There, σXi and σXj are the standard deviations of the ith
and jth Gaussian RV, respectively, and ρXi,Xj is their correlation coefficient. The entries on
the main diagonal of Σ are the individual variances of the RVs. If ρXi,Xj = 0, Xi and Xj are
not only uncorrelated but also independent, since the multivariate normal distribution can
only capture linear dependency. The joint distribution of any subset of X is a multivariate
Gaussian distribution [e.g., 18]. The multivariate normal distribution remains closed under linear
transformations, i.e., any linear mapping of a Gaussian random vector results in a Gaussian
random vector [102].

If the random vector U = [U1, . . . , Ud] is jointly Gaussian with µ = 0d, i.e., a d-dimensional
vector of zeros and Σ = I, i.e., the d × d identity matrix, the random variables in U are

11



2 Reliability analysis with spatially distributed measurements

independent standard normal random variables with joint PDF φd(u):

φd(u) = 1
(2π) d

2
exp

(
−1

2uu
T
)
. (2.26)

The corresponding d-dimensional probability space is denoted U -space. Figure 2.2 shows φ2(u)
from a diagonal view (panel a) and from a top view (panel b) to show the rotational symmetry
with respect to its mean, which in this case is the origin.
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Figure 2.2: PDF of the bivariate independent standard Gaussian distribution φ2(u) from a diagonal view
(panel a) and a top view (panel b).

2.1.3.3 Lognormal distribution

Consider an RV X, where X ∼ N (µX , σX). Then, Y = exp (X) follows the lognormal distribu-
tion with parameters µlnY = µX and σlnY = σX , i.e., Y is parameterized in terms of the mean
and standard deviation of the underlying normal distribution. The PDF of Y is

fY (y) = 1
yσlnY

√
2π

exp
(

−(ln (y) − µlnY )2

2σ2
lnY

)
, y ∈ (0,∞). (2.27)

The CDF of Y is given in terms of the standard normal CDF:

FY (y) = Φ
( ln (y) − µlnY

σlnY

)
. (2.28)

The mean and variance of Y are given as [e.g., 15]

E[Y ] = exp
(
µlnY + σ2

lnY

2

)
, (2.29a)

V[Y ] = exp
(
2µlnY + σ2

lnY

) (
exp

(
σ2

lnY

)
− 1

)
. (2.29b)

The PDF and CDF of the lognormal distribution with parameters µlnY = 0 and σlnY = 1 are
illustrated in Figure 2.3.

The lognormal distribution is often used for modeling non-negative quantities, such as
physical parameters (e.g., material properties).
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Figure 2.3: PDF fY (y) (panel a) and CDF FY (y) (panel b) of the lognormal distribution with parameters
µlnY = 0 and σlnY = 1.

2.1.3.4 Student’s t-distribution

The Student’s t-distribution was developed by William Sealy Gosset, an English statistician
and chemist who worked for the Guinness brewery in Dublin, Ireland, where he was confronted
with the problem of estimating the mean of a population from a small sample size [156]. The
distribution’s name stems from the fact that Gosset had to publish under a pseudonym to hide
his identity and he chose the name “Student” [166].

If X follows the Student’s t-distribution with parameters µt, λt and νt (denoted X ∼
T (µt, λt, νt)), its PDF is defined as [e.g., 18]

ft(x) =
Γ
(

νt
2 + 1

2

)
Γ
(νt

2
) (

λt

πνt

) 1
2
(

1 + λt(x− µt)2

νt

)− νt
2 − 1

2

, (2.30)

where Γ(·) denotes the gamma function, µt and λt are the location and scale parameter,
respectively, and νt are the degrees of freedom. The corresponding CDF is

Ft(x) = FUt

(
(x− µt)λ

1
2
t

)
, (2.31)

where FUt(·) is the CDF of the standard Student’s t-distribution, i.e., the Student’s t-distribution
with µt = 0, λt = 1 and νt degrees of freedom, given by [87]

FUt (ut) = 1 − 1
2I νt

u2
t

+νt

(
νt

2 ,
1
2

)
, u ∈ (0,∞). (2.32)

I νt
u2

t
+νt

(
νt
2 ,

1
2

)
denotes the CDF of the beta distribution with parameters νt

2 and 1
2 evaluated at

νt

u2
t +νt

, also known as the regularized incomplete beta function [87, 135].
The mean and variance of X following the Student’s t-distribution are given as [e.g., 18]

E[X] = µt, for νt > 1, (2.33a)

V[X] = 1
λt

νt

νt − 2 , for νt > 2. (2.33b)

Note that the kth moment (and all higher-order moments) of the Student’s t-distribution is
infinite, if k ≥ νt [87]. The special case of νt = 1 is known as the Cauchy distribution [86], and
for νt → ∞, the Student’s t-distribution converges to the normal distribution with mean µt and
variance λ−1

t [87].
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Figure 2.4 shows the PDF and CDF of the standard Student’s t-distribution with varying
degrees of freedom νt, illustrating the convergence to the standard normal distribution with
increasing νt.

-5 0 1 2 43 5-2-4 -1-30

0.4

0.1

0.2

0.3

u
t

-5 0 1 2 43 5-2-4 -1-30

0.8

0.2

0.4

0.6

u
t

1
a) PDF b) CDF

f U
 (u

t)
t

ν
t 
=

 
1

ν
t 
=

 
5

ν
t 
=

 
20

ϕ(u)

ν
t 
=

 
1

ν
t 
=

 
5

ν
t 
=

 
20

Φ(u)

F
U

 (u
t)

t

Figure 2.4: PDF fUt(ut) (panel a) and CDF FUt(ut) (panel b) of the standard Student’s t-distribution
with νt = 1 (blue lines), νt = 5 (green lines) and νt = 20 (red lines) degrees of freedom
compared to the PDF and CDF, respectively of the standard normal distribution (dashed
black lines).

The Student’s t-distribution can be used, for example, to estimate confidence intervals for
the mean of a Gaussian distribution [87], or in Bayesian statistics, where it arises as predictive
distribution for Gaussian RVs with unknown parameters [61].

2.1.3.5 Log-Student’s t-distribution

The relation between the log-Student’s t-distribution and the Student’s t-distribution is similar
to the relation between the lognormal and the Gaussian distribution, i.e., if X ∼ T (µt, λt, νt),
Y = exp (X) follows a log-Student’s t-distribution with parameters µlnt = µt, λlnt = λt and
νlnt = νt, i.e., the parameterization is done in terms of the underlying Student’s t-distribution.
The corresponding PDF of Y is [65]

flnt(y) = 1
y

Γ
(

νlnt
2 + 1

2

)
Γ
(νlnt

2
) (

λlnt

πνlnt

) 1
2
(

1 + λlnt(ln (y) − µlnt)2

νlnt

)− νlnt
2 − 1

2

, y ∈ (0,∞), (2.34)

where Γ(·) is the gamma function. The CDF of Y is given in terms of the CDF of the underlying
Student’s t-distribution [160, 65]:

Flnt(y) = Ft (ln (y)) . (2.35)

For a finite value of νlnt, the log-Student’s t-distribution does not have mean and variance, as it
does not possess finite moments of any order [65]. For νlnt → ∞, the log-Student’s t-distribution
converges to the lognormal distribution with finite mean and variance.

Figure 2.5 shows the PDF and CDF of the log-Student’s t-distribution with parameters
µlnt = 0, λlnt = 1 and varying degrees of freedom νt, and compares it to the lognormal distribution
(νt → ∞) with parameters µlnY = 0 and σlnY = 1.

Applications of the log-Student’s t-distribution can be found in the field of finance for the
pricing of options [28, 27], or in Bayesian statistics as predictive distribution for lognormal
random fields with unknown parameters [65].
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Figure 2.5: PDF flnt(y) (panel a) and CDF Flnt(y) (panel b) of the log-Student’s t-distribution with
parameters µlnt = 0, λlnt = 1 and νt = 1 (blue lines), νt = 5 (green lines), νt = 20 (red lines)
degrees of freedom compared to the PDF and CDF, respectively of the lognormal distribution
with parameters µlnY = 0 and σlnY = 1 (dashed black lines).

2.1.3.6 Normal-gamma distribution

The normal-gamma (N G) distribution is a bivariate distribution used to model uncertainty on
the parameters of a Gaussian RV X in the context of a Bayesian analysis [61]. More specifically,
it is assumed that the mean µX is a Gaussian RV itself and the precision λX = σ−2

X follows the
gamma distribution. The joint PDF of µX and λX is given as [e.g., 140]

f(µX , λX) = Cλα− 1
2

X exp
(

−λX

(
κ

2 (µX − µ)2 + β

))
, µX ∈ (−∞,∞), λX ∈ (0,∞). (2.36)

α and β are the shape and rate parameter of the Gamma distribution, respectively. µ and κλX

are the mean and precision of the normal distribution, respectively, where the coefficient κ is a
concentration parameter. Γ (·) is the gamma function and C is a normalizing constant:

C = βακ
1
2

Γ(α)(2π) 1
2
. (2.37)

The joint PDF in Equation (2.36) implies a dependency between µX and λX , since µX is defined
conditional on λX (µX ∼ N (µ, (κλX)− 1

2 ).

2.1.3.7 χ2-distribution

A random variable X that follows the χ2-distribution has the following PDF [86]:

fχ2(x) = 1
2

νχ
2 Γ

(νχ

2
)x νχ

2 −1exp
(

−x

2

)
, x ∈ (0,∞) (2.38)

where νχ are the degrees of freedom of the χ2-distribution. The corresponding CDF is defined as

Fχ2(x) = 1
Γ
(νχ

2
)γ (νχ

2 ,
x

2

)
, (2.39)

where γ(·, ·) denotes the incomplete gamma function [135]. The mean and variance of the
χ2-distribution are given as follows [86]:

E[X] = νχ, (2.40a)
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V[X] = 2νχ. (2.40b)

2.1.3.8 Uniform distribution

The uniform distribution is characterized by a constant PDF over an interval of certain length
[5]:

fX(x) =


1

b−a , for x ∈ [a, b],

0, else,
(2.41)

where a and b denote the lower and upper bound of the interval of definition of X. The CDF of
the uniform distribution is

FX(x) =


0, for x < a,

x−a
b−a , for x ∈ [a, b),

1, for x ≥ b,

(2.42)

The corresponding mean and variance are

E[X] = a+ b

2 , (2.43a)

V[X] = (b− a)2

12 . (2.43b)

2.1.4 Transformation to U -space

Any RV X with strictly monotonous increasing CDF FX(x) can be transformed to a standard
normal random variable U by means of the following isoprobabilistic transformation [e.g., 79]:

U = Φ−1(FX(x)), (2.44)

where Φ−1(·) is the inverse standard normal CDF. Equation (2.44) is invertible, i.e., X =
F−1

X (Φ(u)).
When using random vectors, it is often beneficial to transform the random vector X

to a vector of uncorrelated standard normal random variables U . Such procedure is called
transformation from the original space to U -space or simply from X to U in the following. It
can be defined by means of the Nataf joint distribution model, which requires the marginal
distributions FXi(xi), i = 1, . . . , d and the d× d correlation matrix RX with entry Ri,j given as
ρXi,Xj [119]. It has been shown that the Nataf model is equivalent to the choice of a Gaussian
copula for modeling the joint distribution of X [100]. The procedure is described in the following.

Consider the random vector Z = [Z1, . . . , Zd], obtained from X through the following set of
marginal isoprobabilistic transformations:

Zi = Φ−1(FXi(xi)), i = 1, . . . , d. (2.45)

The Nataf model assumes that Z is jointly normal with mean vector µZ = 0 and covariance
matrix ΣZ = RZ , where RZ is the correlation matrix, i.e., Z is a vector of dependent standard
normal RVs [104]. Using Equations (2.19) and (2.44), the Nataf joint PDF of X can be calculated
from the joint PDF of Z. The elements in RZ , ρZi,Zj , are related to the corresponding element
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in RX through the following integral equation [104]:

ρXi,Xj =
� ∞

−∞

� ∞

−∞

(
xi − µXi

σXi

)(
xj − µXj

σXj

)
φ2,ρZi,Zj

(zi, zj), (2.46)

where φ2,ρZi,Zj
(·, ·) denotes the bivariate standard normal PDF with correlation coefficient ρZi,Zj .

The relation in Equation (2.46) is implicit in ρZi,Zj and can thus be solved iteratively to find
ρZi,Zj .

The random vector Z is transformed to a vector U of independent standard normal random
variables through

U = A−1Z, (2.47)

where A is the lower triangular matrix obtained from the Cholesky decomposition of RZ ,
i.e., RZ = AAT. The transformation is invertible and thus, once RZ is determined, the
transformation from X to U and vice versa is straightforward to apply.

The Nataf model is only applicable if RZ is a positive definite matrix, which is not always
the case, even if RX fulfills this criterion [104].

An alternative approach for the transformation to U -space is given by the Rosenblatt
transformation, in which the joint PDF of X is constructed using the conditional PDFs of the
entries in X [143, 79].

2.1.5 Bayesian analysis

Bayesian analysis summarizes a methodological framework to combine data of some sort (e.g.,
observations, measurements) with a probabilistic model in a way that the output is again a
probabilistic model. The basic principle of all methods in Bayesian analysis is the application of
Bayes’ rule [e.g., 61]:

f(θ|M) = f(θ)L(θ|M)
f(M) , (2.48)

where θ is a realization of the parameter vector Θ of uncertain parameters and M accounts
for the data. In the context of Bayesian analysis, f(θ) is called the prior PDF of Θ, i.e., the
PDF corresponding to the probability distribution of Θ before M is included in the model.
L(θ|M) is the likelihood function, which summarizes the information from the data M. It is
defined as the joint PDF of M conditional on θ, i.e., L(θ|M) = f(M|θ). Moreover, f(θ|M)
is called the posterior PDF of Θ, i.e., the PDF of Θ conditional on the information from M.
f(M) is called evidence and forms the normalization constant of f(θ|M). It is defined as
f(M) =

�
Θ f(θ)L(θ|M)dθ. Since the denominator in Equation (2.48) is independent of Θ, the

following yields the unnormalized posterior density [61]:

f(θ|M) ∝ f(θ)L(θ|M). (2.49)

At this point, only some basic Bayesian concepts are introduced, the reader is referred to [142]
or [61] for a more detailed introduction.

2.1.5.1 Predictive distribution

Consider an uncertain but observable quantity X with PDF f(x), where Θ are the unknown
parameters of f(x) with prior distribution f(θ). In addition, information on X is available in the
data set M, e.g., in form of n direct measurements of X, i.e., M = [x1, . . . , xn]. Then, f(θ|M)
can be determined by means of Equation (2.48) and, consequently, the posterior predictive
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2 Reliability analysis with spatially distributed measurements

distribution of X can be calculated as [61]

f(x|M) =
�

Θ
f(x|θ)f(θ|M)dθ. (2.50)

Hence, f(x|M) can be used for predicting X accounting for the uncertainty in the parameters of
f(x) and using the information from M. Equation (2.50) can be interpreted as marginalization
of the joint PDF of X and Θ conditional on M. Following the same logic, X can be predicted
without accounting for M, by defining the prior predictive distribution:

f(x) =
�

Θ
f(x|θ)f(θ)dθ. (2.51)

2.1.5.2 Conjugate priors

In the general case, Equation (2.48) needs to be solved numerically, e.g., by means of Markov
chain Monte Carlo (MCMC) methods [e.g., 23]. However, analytical expressions are available
for the class of conjugate priors [140]. If the posterior distribution has the same parametric
form as the prior distribution, the prior distribution is called conjugate prior for the given
likelihood function and the solution of Equation (2.48) reduces to an update of the parameter
vector Θ. Conjugate priors can be found for distributions that belong to the exponential
family of distributions [11]. Examples for conjugate priors are a Gamma prior distribution in
conjunction with a Poisson likelihood and the self-conjugate Gaussian distribution, where both
prior distribution and likelihood are Gaussian, among others [e.g., 142].

2.1.5.3 Conditional Gaussian distribution

Consider a d-dimensional Gaussian random vector X = [X1, . . . , Xd] with mean vector µX and
covariance matrix ΣX :

X ∼ N (µX ,ΣX). (2.52)

X can be partitioned into two random vectors X1 and X2, such that

X = [X1 X2] , (2.53)

where X1 = [X1,1, . . . , X1,d1 ], X2 = [X2,1, . . . , X2,d2 ], and d1 + d2 = d. The corresponding
partitions of µX and ΣX are given by

µX = [µX1 µX2 ] , (2.54a)

ΣX =

 ΣX11 ΣX12

ΣX21 ΣX22

 . (2.54b)

It holds that X1 ∼ N (µX1 ,ΣX11), X2 ∼ N (µX2 ,ΣX22) (cf. Section 2.1.3.2) and, due to the
symmetry of the covariance matrix, ΣT

X12
= ΣX21 .

Using Bayes’ rule, this partitioning of X can be used to derive updating rules for the
distribution of X1 conditional on X2. The resulting parameters of the conditional Gaussian
distribution are given by [e.g., 18]

µX1|X2 = µX1 + ΣX12Σ−1
X22

(x2 − µX2)T, (2.55a)

ΣX1|X2 = ΣX11 − ΣX12Σ−1
X22

ΣX21 , (2.55b)
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where x2 is a realization of X2.
These updating rules for the conditional Gaussian distribution are widely used in practice,

e.g., in the field of geostatistics [154, 10], Gaussian process regression [141] or random field
updating [e.g., 129, 158, 64], among others.

2.1.6 Random fields

Modeling uncertainties with RVs can be insufficient in applications where the uncertain parame-
ters vary randomly in time or space. Such uncertainties can be accounted for by modeling them
as random processes or random fields, where the first one refers to the one-dimensional case and
the latter one to the general d-dimensional case. A temporally variable stochastic process is a
one-dimensional random field defined on an unbounded parameter space. Hence, the definitions,
concepts and methods described in the following for random fields are directly applicable for
spatial and temporal variability. For a detailed introduction to spatial variability and random
fields, the reader is referred to [112] or [161].

2.1.6.1 Basic definitions

A random field (RF) X(z) is defined as a collection of RVs indexed by a spatial coordinate z ∈ Ω,
where Ω ⊂ Rd is a d-dimensional spatial domain of definition [161]. For typical engineering
applications, d = 1, 2 or 3, but the concept of RFs can be extended to the general d-dimensional
case. For any z ∈ Ω, the RF reduces to an RV, i.e., the RF represents an RV at every
spatial location in the domain of definition. Panel a of Figure 2.6 illustrates three independent
realizations x1(z), x2(z) and x3(z) of a one-dimensional RF X(z). The realizations at locations
z1 and z2 and the marginal distributions of the RVs corresponding to these locations (in this
case Gaussian distributions) are illustrated in panel b and c of Figure 2.6. Two independent
realizations x1(z) and x2(z) of a two-dimensional RF X (z) are illustrated as surface plots in
panel a of Figure 2.7, together with the corresponding projections to the plane. Two locations
z1 = [z1,1 z2,1] and z2 = [z1,2 z2,2] are chosen and the corresponding realizations (green and
blue dots) are extracted and plotted with the respective marginal distributions (Gaussian
distributions) in panel b and c.

If the k-variate joint PDF fX(z1),...,X(zk)(x1, . . . , xk; z1, . . . ,zk) is a multivariate Gaussian
distribution for any collection of points z1, . . . ,zk ∈ Ω, an RF X (z) is said to be Gaussian. In
that case, X (z) is fully defined by spatial functions for the mean value µX (z) and standard
deviation σX (z), and the autocorrelation function ρ(z, z′) defining the spatial correlation of
any two locations z, z ∈ Ω [1, 161]. In this manuscript, only Gaussian RFs or RFs that can
be expressed as function of Gaussian RFs are considered. It is worth noting that any linear
mapping of a Gaussian RF gives a Gaussian RF [102].

Strictly homogeneous RFs are those, for which the k-variate joint PDF is invariant to a shift
in z, i.e.,

fX(z1),...,X(zk)(x1, . . . , xk; z1, . . . ,zk) = fX(z1+ξz),...,X(zk+ξz)(x1, . . . , xk; z1 + ξz, . . . ,zk + ξz),
(2.56)

for any collection of points z1, . . . ,zk ∈ Ω and any ξz ∈ Ω. Equation (2.56) implies that, in a
strictly homogeneous RF, µX (z) and σX (z) are space-invariant, i.e., µX (z) = µX ∀ z ∈ Ω and
σX (z) = σX ∀ z ∈ Ω, and ρ(z, z′) is a function of the difference in location of z and z′ only,
i.e., ρ(z, z′) = ρ(∆z,z′) ∀ z, z′ ∈ Ω, where ∆z,z′ = z − z′ [72]. An RF is weakly homogeneous if
Equation (2.56) is only valid for k = 1 and 2, which suffices to ensure space-invariance of the
first- and second-moment functions, as stated above. Since Gaussian RFs are completely defined
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Figure 2.6: Three independent realizations of a one-dimensional RF (red, green and blue line in panel a).
At locations z1 and z2, the values of x(z) of the three realizations are extracted and assigned
to the respective marginal distributions (panel b and c) in the corresponding colors.

by their first- and second moment functions, any weakly homogeneous Gaussian RF is strictly
homogeneous and, thus, for the remainder of this work homogeneity implies strict homogeneity.

The spatial variability of a homogeneous RF is governed by ρ(z, z′) and can be modeled with
various types of correlation functions. All correlation functions are positive definite functions for
which ρ(z, z) = 1 and, as a consequence, they are bounded [1]:∣∣ρ(z, z′)

∣∣ ≤ 1 ∀ z, z′ ∈ Ω, (2.57)

Classical choices for ρ(z, z′) of homogeneous RFs are the exponential correlation model ρexp(z, z′)
and the square-exponential model ρexp2(z, z′), which are defined as follows [e.g., 161]:

ρexp(∆z,z′) = exp
(

−
∥∥∆z,z′

∥∥
Lc

)
, (2.58a)

ρexp2(∆z,z′) = exp

−
(∥∥∆z,z′

∥∥
Lc

)2
 , (2.58b)

where Lc denotes the correlation length, which is a measure for the decay of the spatial correlation,
and ∥·∥ is the Euclidean distance. Equation (2.58a) and (2.58b) represent the two extreme cases
of the more flexible Matérn correlation model, defined as [112, 154]

ρν
(
∆z,z′

)
= 21−ν

Γ(ν)

(√
2ν ∆z,z′

Lc

)ν

Kν

(√
2ν∆z,z′

Lc

)
, (2.59)

where Γ(·) is the gamma function and Kν(·) is the modified Bessel function of the second kind
and order ν [2]. ν > 0 is the smoothness parameter of the Matérn correlation model, where large
values of ν imply a smooth decay of ρν

(
∆z,z′

)
. For half-integer values of ν, ρν

(
∆z,z′

)
reduces

to the product of an exponential term and a polynomial term [112]. ρexp(∆z,z′) is obtained by
setting ν = 1

2 , while ν = ∞ results in ρexp2(∆z,z′).
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Figure 2.7: Two independent realizations of a two-dimensional RF (panel a). At locations z1 = [z1,1 z2,1]
and z2 = [z1,2 z2,2], the values of x(z) of the realizations are extracted and assigned to the
respective marginal distributions (panel b and c) in the corresponding colors.

For strictly monotonous correlation functions (such as the Matérn correlation model), a
small Lc results in fast reduction of ρ(∆z,z′) with increasing ∆z,z′ , while a large Lc means
slow reduction of ρ(∆z,z′) with increasing ∆z,z′ . This implies large spatial variability for small
correlation lengths and small spatial variability for large ones. In the extreme case of Lc = 0,
ρ(∆z,z′) reduces to

ρ(∆z,z′) = δz,z′ , (2.60)

where δz,z′ denotes the Dirac delta function giving 1 if z = z′ and 0 else. The resulting RF
represents a white noise field without any spatial correlation [1]. For the opposite extreme of
Lc = ∞, ρ(∆z,z′) = 1, ∀ z, z′ ∈ Ω, i.e., the resulting RF can be expressed through a single RV
and does not feature any spatial variability [1].

Figure 2.8 illustrates the effect of the correlation function on the spatial variability. Panel a
shows the exponential (red), square-exponential (blue) and Matérn correlation function with
ν = 2.5 (green) for two different correlation lengths (Lc(dashed lines) = 5Lc(solid lines)). Panel
b shows six RF realizations, each of which originating from a homogeneous Gaussian RF with
identical point statistics but varying correlation function as indicated by the respective line color
and type in panel a.

An RF is said to have an isotropic correlation structure if all spatial directions are weighed
equally for the calculation of ρ(∆z,z′). In contrast, an anisotropic correlation function can be
defined, if one wants to account for different contributions of the spatial directions [e.g., 161,
168].

The effect of Lc on the decay of ρ(∆z,z′) depends on the choice of the parametric correlation
model and, hence, Lc is not an appropriate measure for comparing different correlation models.
To this end, the scale of fluctuation ϑ can be calculated, which is independent of the chosen
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Figure 2.8: Effect of the correlation function on the spatial variability. Panel a shows six different
correlation functions, where Lc is five times larger for the dashed lines than for the solid
lines. The red lines denote the exponential correlation model, the green lines show the Matérn
correlation model with ν = 2.5 and the blue lines show the square-exponential correlation
model. Panel b illustrates random realizations of homogeneous Gaussian RFs with identical
point statistics and correlation function as indicated by the respective color and line type
(solid/dashed) in Panel a.

correlation model and is defined as d-fold spatial integral of the correlation function [161]:

ϑ =
� ∞

−∞
. . .

� ∞

−∞
ρ(∆z,z′)dz1 . . . dzd. (2.61)

2.1.6.2 Translation random fields

The class of translation RFs defines RFs that can be expressed as function of Gaussian RFs
through a transformation of the following form [71, 102]:

Y (z) = T (U (z)) , (2.62)

where U (z) is a zero-mean and unit-variance Gaussian RF. If the marginal CDF of Y (z) is known
and strictly increasing, Eq. (2.62) can be used to find the following marginal transformation
[104] (cf. Section 2.1.1.2):

Y (z) = T (U (z)) = F−1
Y ;z (Φ (U (z))) , (2.63)

where F−1
Y ;z(·) is the inverse marginal CDF of Y (z). By modeling the k-variate joint PDF of the

RF by the Nataf joint distribution model (cf. Section 2.1.4), the transformation can be extended
for any collection of random variables corresponding to the points z1, . . . ,zk ∈ Ω. The resulting
transformation of the autocorrelation model can be approximated by empirical relations [41, 104].
Alternatively, the spatial correlation of Y (z) can be defined in terms of the underlying Gaussian
RF U (z), in which case only the marginal transformation of Equation (2.63) is required. Some
special cases of translation RFs, for which T (·) reduces to a simple algebraic operation, are given
in the following:

• Lognormal RF: A lognormal RF Y (z), i.e., an RF where the marginal distribution at any
z ∈ Ω is the lognormal distribution, can be obtained by applying the following marginal
transformation:

Y (z) = exp (µX(z) + σX(z)U(z)) = exp (X (z)) , (2.64)

where X(z) is a Gaussian RF with mean function µX(z), standard deviation function σX(z)
and autocorrelation function ρ(∆z,z′). Lognormal RFs are especially useful when modeling
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mechanical properties, since the lognormal distribution is restricted to non-negative values.

• Student’s t-RF: In a Student’s t-RF Y (z), the marginal distribution at any z ∈ Ω is the
Student’s t-distribution [18]. It is related to a Gaussian RF as follows [94, 65]:

Y (z) =
√
νY

χ
(σX(z)U(z)) + µY (z) =

√
νY

χ
X (z) + µY (z) , (2.65)

where νY are the degrees of freedom of the Student’s t-RF Y (z) and χ is an RV that follows
the χ2-distribution with νY degrees of freedom (cf. Section 2.1.3.7). X (z) is a zero-mean
Gaussian RF with standard deviation function σX(z) and autocorrelation function ρ(∆z,z′)
and µY (z) is the mean function of Y (z). Student’s t-RFs arise, e.g., when modeling
spatially variable Gaussian properties with unknown marginal RF parameters. A Bayesian
approach to account for this uncertainty is described in Section 2.3.2.2 and in detail in
Chapter 5 (original publication [65]).

• Log-Student’s t-RF: A log-Student’s t-RF V (z) combines the Student’s t-RF and
the exponential transformation of Equation (2.64) for the lognormal RF. The marginal
distribution at any z ∈ Ω is the log-Student’s t-distribution (cf. Section 2.1.3.5). The
following marginal transformation can be defined:

V (z) = exp
(√

νV

χ
(σX(z)U(z)) + µlnV (z)

)
= exp

(√
νV

χ
X (z) + µlnV (z)

)
. (2.66)

X (z) is a zero-mean Gaussian RF with standard deviation function σX(z) and auto-
correlation function ρ(∆z,z′), and χ is an RV that follows the χ2 distribution with νY

degrees of freedom (cf. Section 2.1.3.7). µlnV (z) is the mean function of the underlying
Student’s t-RF. A log-Student’s t-RF has the same advantages as a lognormal RF and
arises when spatially variable lognormally distributed properties with unknown marginal
RF parameters are modeled. The Bayesian approach in Section 2.3.2.2 and in Chapter 5
(original publication [65]) also covers log-Student’s t-RFs.

2.1.6.3 Random field discretization

By definition, an RF consists of an infinite number of RVs and, thus, direct simulation of RFs is
numerically infeasible. To this end, discretization methods have been developed to approximate
an RF X(z) as follows:

X (z) ≈ X̂ (z) , (2.67)

where X̂ (z) includes a finite number of RVs [X1, . . . , Xn]. Since X̂ (z) is an approximation of
X (z), it yields an approximation error ε (z) = X (z) − X̂ (z). This error can be quantified by
introducing error measures assessing the accuracy of X̂ (z). As Gaussian RFs are fully defined
by their first- and second-moment functions, we restrict to the bias and the error variance which
evaluate the error in the mean and variance, respectively, of the RF discretization [e.g., 102,
157]. Here, local error measures are defined as the relative point-wise bias and error variance:

εµ (z) =
E
[
X (z) − X̂ (z)

]
E[X (z)] , (2.68a)

εV (z) =
V
[
X (z) − X̂ (z)

]
V[X (z)] . (2.68b)
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The corresponding global error measures are given by the weighted integral of the absolute value
of the point-wise error [157, 16]:

ε̄µ = 1
VΩ

�
Ω

|εµ (z)| dz, (2.69a)

ε̄V = 1
VΩ

�
Ω

|εV (z)| dz, (2.69b)

where VΩ is the volume of the spatial domain Ω. Alternative global error measures can be
obtained by using the supremum norm of Equations (2.68a) and (2.68b) [e.g., 102].

Above error measures may be misleading if E[X (z)] → 0 or V[X (z)] → 0. In such
case the point-wise bias and error variance defined by the numerator of Equation (2.68a) and
Equation (2.68b), respectively, and corresponding global error measures can be employed.

Discretization methods can be divided into point discretization methods, average discretiza-
tion methods and series expansion methods. An overview of existing approaches can be found in
[157] or, more recently, in [106]. In the following, one selected method of each of the three classes
is shortly described followed by a comparison of the methods in terms of the approximation
error.

• Point discretization methods: In point discretization methods, the RVs [X1, . . . , Xn]
represent the values of X(z) at specific points [z1, . . . ,zn] within the domain of definition,
which are selected based on a discretization of Ω into n sub-domains Ω1, . . . ,Ωn, the
elements of the so-called stochastic finite element mesh. The marginal distributions of the
n RVs are then given as the marginal distribution of the RF at the corresponding locations,
and, as an immediate consequence, the marginal moments of [X1, . . . , Xn] are given as
the respective marginal moments of the RF. The correlation of the n RVs is calculated by
means of the correlation function of X(z):

ρXi,Xj = ρ (zi, zj) . (2.70)

The midpoint (MP) method uses the midpoints (center of gravity if d > 1) of the stochastic
finite elements as discretization points [40]. The value of X̂ (z) is then constant within the
respective element, i.e., X̂ (z) = Xi ∀ z ∈ Ω1, i = 1, . . . , n. This element-wise uniformity
results in discontinuities of the RF realizations at the boundaries of the sub-domains. The
point-wise error variance and a RF realization with the MP method are illustrated in
Figure 2.9 (red lines). Other point discretization methods are, e.g., the shape function
method [105] or the optimal linear estimation method [102].

• Average discretization methods: Average discretization methods approximate X(z) by
a set of RVs [X1, . . . , Xn] representing weighted integrals of X(z) over the corresponding
elements Ω1, . . . ,Ωn of the stochastic finite element mesh. The spatial averaging (SA)
method is shortly described in the following and in detail in Chapter 7 (original publication
[63]).
The SA method discretizes X(z) through a set of averaging RVs, where each RV is defined
as the local average of X(z) over the corresponding stochastic finite element [162, 161]:

X̂i = 1
VΩi

�
Ωi

X(z)dz, i = 1, . . . , n, (2.71)

where VΩi is the volume of the spatial domain Ωi. If X(z) is a Gaussian RF, the n
resulting averaging RVs are multivariate Gaussian through the linearity of the integral
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operator in Equation (2.71) [102]. Since the joint distribution of the averaging RVs is
almost impossible to obtain for non-Gaussian RFs, applicability of the SA method is
restricted to Gaussian and translation RFs [40]. The marginal first- and second-order
moments of the n resulting averaging RVs are obtained by integrating the spatial functions
for the mean and covariance [161, 62, 63]. If X(z) is homogeneous, the mean is not affected
by the spatial averaging, i.e., µX̂i

= µX , i = 1, . . . , n, and the variance is simply scaled
by the variance function, which accounts for the reduction of the variance through the
averaging and is calculated by spatial integration of the autocorrelation function [161].
The covariance Cov

[
X̂i, X̂j

]
, i = 1, . . . , n, j = 1, . . . , n is evaluated by calculating the

variances of several auxiliary spatial domains accounting for the size and relative position
of Ωi and Ωj [161, 63]. Figure 2.9 shows the point-wise error variance and a RF realization
with the SA method (green lines). Other average discretization methods are the weighted
integral method [37, 38] and the local average subdivison [55].

• Series discretization methods: Series discretization methods represent X(z) by a
truncated sum of products of RVs and deterministic spatial functions. Unlike point and
average discretization methods, these RVs are not assigned a certain spatial location or
domain but a term in the series. Thus, by combination with the corresponding spatial
function, each RV contributes globally to the spatial variability of X̂(z).

The Karhunen–Loève (KL) expansion uses a spectral decomposition of the spatial covariance
function Cov [X(z), X(z′)] , z, z′ ∈ Ω to represent X(z) by the following series expansion
[e.g., 107, 90, 70]:

X(z) = µX(z) +
∞∑

i=1

√
λiϕi(z)Xi, (2.72)

where the Xi, i = 1, . . . ,∞ are zero-mean and uncorrelated RVs and the eigenvalues λi and
corresponding eigenfunctions ϕi(z) form the so-called eigenpairs of the spatial covariance
function. The eigenfunctions are orthogonal and form a complete set due to the symmetry
and the positive definiteness of the covariance function [108]. The eigenpairs can be found
through solving the following Fredholm integral equation [70]:

�
Ω
Cov

[
X(z), X(z′)

]
ϕi(z′)dz′ = λiϕi(z), i = 1, . . . ,∞. (2.73)

In most cases, Equation (2.73) needs to be solved numerically, e.g., by means of the
Nyström method [121, 6]. By truncating the series expansion of Equation (2.72) after a
finite number of terms, the KL expansion approximates X(z) as [70]

X̂(z) = µX(z) +
m∑

i=1

√
λiϕi(z)Xi, (2.74)

where λi, i = 1, . . . ,m are the m largest eigenvalues of the spatial covariance function, in
descending order. If X(z) is a Gaussian RF, the Xi, i = 1, . . . ,m are a set of independent
standard Gaussian RVs. Note that Equation (2.74) minimizes the mean-square error in the
series representation of X(z) with orthogonal functions [70]. The point-wise error variance
and a RF realization with the KL expansion are illustrated by blue lines in Figure 2.9.
Other series discretization methods are, e.g., the expansion optimal linear estimation
method [102] or the spectral representation method [152].

Figure 2.9 illustrates the discretization of a one-dimensional, homogeneous, zero-mean and
unit-variance Gaussian RF with the Matérn correlation model (ν = 2.5, Lc = 0.5) with the
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three presented discretization methods (MP method, SA method, KL expansion). Panels a and
b illustrate the point-wise error variance εV (z), calculated by means of Equation (2.68b) for
d = 4 RVs (panel a) and d = 10 RVs (panel b). Panels c and d show a RF realization with the
respective number of RVs and compare it to the reference realization of the RF (dashed black
line). The values at the midpoints of the elements are additionally highlighted by red dots for
the realization with MP, as those values are the ones valid for the whole corresponding element.
Obviously, increasing the number of elements leads to a reduction of the error and, thus, to a
more accurate representation of the spatial variability. Note that the bias εµ (z) is 0 for all three
illustrated methods for the chosen RF parameters.
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Figure 2.9: Point-wise error variance and random realization for the discretization of a one-dimensional,
homogeneous, zero-mean and unit-variance Gaussian RF with the Matérn correlation model
(ν = 2.5, Lc = 0.5) with MP method, SA method and KL expansion in the domain z ∈ Ω =
[0, 10]. Panels a and b show the point-wise error variance with d = 4 (panel a) and d = 10
(panel b) RVs using MP method (red), SA method (green) and KL expansion (blue). Panels
c and d illustrate the realization of the RF discretized with MP method (red), SA method
(green) and KL expansion (blue) with d = 4 (panel c) and d = 10 (panel d) RVs. The dashed
black lines in panel c and d illustrate the corresponding reference realization of the RF.

2.2 Structural reliability analysis

Structural design is always a trade-off between structural safety and economic efficiency, as
one needs to find a solution which combines an economic design with an acceptable level of
reliability. The reliability of a structure is the result of an interaction of the structural resistance
R and the demand acting on the structure S. Both are typically subject to uncertainty and,
thus, reliability analysis is a task of uncertainty quantification.

Uncertainty in the input parameters of a structural system can have various sources. Material
parameters, for example, are inherently uncertain and, thus, the resistance of a structural member
is an uncertain quantity. The same holds for the structural demand, which is uncertain due
to the unpredictability of future events leading to load on the structure. Further sources of
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uncertainty in structural systems include environmental conditions, human workmanship, limited
amount of data, or modeling errors, among others [113, 92]. Spatial variability forms a special
type of uncertainty that can be accounted for through random field modeling (cf. Section 2.1.6).

When performing reliability analysis for a system, the quantity of interest is the system’s
probability of failure PF , i.e., the probability of occurrence of the failure event F given uncertainty
in the input parameters. This section gives an introduction into the problem setting of structural
reliability and presents different solution strategies to solve the problem.

2.2.1 The reliability problem

The failure event F generally describes an unsatisfactory performance of the system for the
given input. Its specific definition depends on the application at hand and is not discussed in
detail at this point. For now, it is assumed that the system’s performance depends on the two
uncertain and statistically independent parameters R and S, modeled by RVs with prescribed
marginal PDFs. In the setting of the basic structural reliability problem, failure occurs if the
demand equals or exceeds the structural resistance [113]:

F = {S ≥ R} . (2.75)

The so-called limit state function g(·) can be used to classify the system response. It is common
practice to define g(·) such that non-positive values correspond to failure. That is, the limit
state function and the corresponding failure event for the basic structural reliability problem
read [e.g., 110, 113]

g (r, s) = r − s, (2.76a)

F = {g (r, s) ≤ 0} . (2.76b)

If the demand equals or exceeds the structural resistance, g (r, s) gives a non-positive value,
indicating system failure. Following Equation (2.76a), PF is defined as follows:

PF = P (R− S ≤ 0) . (2.77)

2.2.1.1 Implicit reliability analysis

For most applications, it is not required to explicitly calculate PF , as structural design codes
provide an efficient means to ensure an acceptable level of reliability by following a standardized
verification concept. The aim of such concepts is to validate a given design with respect to a
prescribed measure of the structural safety or safety factor.

The simplest way to define such a safety factor is achieved by the following equation [113]:

Snom ≤ Rnom
γglob

, (2.78)

where γglob ≥ 1 denotes a global safety factor which can be found empirically, e.g., based on
experimental observations or practical experience. Snom and Rnom are the nominal values of
the demand and resistance, respectively. Although the uncertainty in R and S plays a role for
the choice of γglob, it is not explicitly taken into account. Given γglob, the design criterion of
Equation (2.78) is fully deterministic. The principle of the global safety concept is illustrated in
Figure 2.10, where the case of an acceptable design is shown.

Nowadays, a common approach in structural design is the partial safety concept, which
forms the basis of the European design codes for buildings and structures [47]. It was originally
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R,SRnomSnom
Rnom/°glob

Figure 2.10: Structural design with the global safety approach, where the nominal value for the resistance
R is divided by a global safety factor γglob. This figure shows an acceptable design, since
S < R

γglob
.

developed for reinforced concrete structures in the 1970s, as the design codes valid at that time
did not account for various levels of uncertainty in different load types and not all potential
failure modes were covered [109]. For the simple case of an R− S reliability problem given in
Equation (2.76a), the partial safety concept requires the following design equation to be fulfilled
[109, 47, 113]:

Sk · γS ≤ Rk
γR
, (2.79)

where γR ≥ 1 and γS ≥ 1 denote partial safety factors for the structural resistance and load,
respectively, and Rk and Sk are so-called characteristic values for R and S. Rd = Rk

γR
and

Sd = Sk · γS are the design values for R and S.
Characteristic values are defined as representative values for the respective parameter of

interest (in this case resistance and load). Typically, they are given as p-quantile values of the
underlying probability distribution of the uncertain parameter, i.e., the characteristic value for
random variable X is given by

Xk = F−1
X (p) , (2.80)

where F−1
X (·) is the inverse CDF of X. For most applications, Rk is given by a value from the

left side of the distribution (p ≤ 0.5), while Sk is chosen from the right side of the distribution
(p ≥ 0.5) to ensure a conservative estimate of the reliability.

The characteristic values and the partial safety factors depend on the specific application,
i.e., the investigated limit state function. One can generally distinguish between two different
types of limit states: (i) ultimate limit states (ULS) and (ii) serviceability limit states (SLS) [47].
ULS define situations that are concerned with the safety of people or the structure itself, e.g.,
failure of a steel canopy construction due to an exceedance of the yield stress at the fixed end
[50]. By contrast, SLS are concerned with the functioning of the structure and the structural
appearance, e.g., the maximum allowable deformation of a concrete ceiling or crack width control
in concrete basement walls [49]. For more complex verification cases including various types
of loads, the partial safety concept offers the use of combination values which account for the
probability of several extreme loads occurring at the same time and the frequency of different
load types [47].

Hence, in contrast to the global safety concept, the partial safety concept accounts for
the uncertainty in the input variables and potential interaction between them. The resulting
framework for the verification is calibrated to fulfill a predefined reliability level, i.e., to not
exceed an acceptable PF . In practice, it is often assumed that the safety level of existing design
codes is acceptable and, thus, newly developed approaches should not fall below [113].

Figure 2.11 illustrates the partial safety concept by means of an acceptable design case.
Although the uncertainty in R and S is accounted for using a stochastic model (illustrated by
the PDFs of the underlying probability distributions), it is only used to determine the respective
characteristic values and to calibrate the partial safety factors. All further calculations (e.g.,
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determination of the resulting stress at a specific location) remain deterministic, the partial
safety concept is therefore called a semi-probabilistic concept.

R,S

f
R
(r),

f
S
(s)

Sk Sd RkRdγ
S 1/γ

R

Figure 2.11: Structural design with the partial safety concept. Partial safety factors (γR, γS) are applied
to the characteristic values of the resistance (Rk) and the load (Sk) to determine the design
values (Rd, Sd). Here, Sd is smaller than Rd, resulting in an acceptable design. The gray
lines indicate the PDFs of the underlying probability distributions.

2.2.1.2 Explicit reliability analysis

Explicit reliability analysis means calculating or (in most practical cases) estimating PF . The
result can then be compared to the required level of reliability, i.e., a maximum acceptable
failure probability PF ,acc. Accordingly, the design criterion to be fulfilled is

PF ≤ PF ,acc. (2.81)

There is no need for safety factors, as R and S are explicitly modeled as uncertain input
parameters instead of reducing them to a single representative value, which is illustrated in
Figure 2.12.

R,S

f
R
(r),

f
S
(s)

f
S
(s)

f
R
(r)

Figure 2.12: Explicit reliability analysis to determine PF . The uncertain parameters R and S are
modeled as random variables with their respective PDFs. PF is then calculated as PF =
P (R− S ≤ 0).

For the simple R−S limit state function of Equation (2.76a), PF calculates by the following

29



2 Reliability analysis with spatially distributed measurements

convolution integral (under the assumption of independence of R and S) [113]:

PF =
�

S
FR(s) · fS(s)ds. (2.82)

However, Equation (2.82) is not applicable in the general case, i.e., when R and S are not
independent, when the limit state function is not of the R−S type or simply when more than two
uncertain input parameters enter the limit state function. The remainder of this thesis focuses
on the calculation of PF for general reliability problems with d-dimensional input random vector
x and corresponding limit state function g(x), mapping from the d-dimensional stochastic input
space of X to the real numbers. While in some cases, g(x) may be given by a simple algebraic
expression, it can also include solution of a complex numerical model (e.g., a finite element
model). As before, F is indicated by non-positive values of g(x), i.e., F = {X ∈ Rd : g(x) ≤ 0}.
For convenience, the following binary indicator function is defined:

1(g (x)) =

 0, g (x) > 0,
1, g (x) ≤ 0.

(2.83)

PF is defined as the probability that 1(g (x)) takes the value 1, mathematically given in general
form by the following d-dimensional integral:

PF =
�

Ω
1(g(x))fX (x) dx = E[1(g(x))] , (2.84)

where fX(·) denotes the joint PDF of X and Ω ∈ Rd denotes the corresponding d-dimensional
outcome space. Figure 2.13 illustrates a simple reliability problem of two dependent input RVs
X1 and X2. The linear limit state function g(x1, x2) divides the outcome space into the failure
domain (g(x1, x2) < 0, red area) and the safe domain (g(x1, x2) > 0, green area) by the limit
state surface (g(x1, x2) = 0, red line).

g(x1,x2) = 0F

X1

X2

Figure 2.13: Reliability problem of two dependent RVs X1 and X2 and a linear limit state function
g(x1, x2). The red area denotes the failure domain and the green area indicates the safe
domain, which are separated by the limit state surface, indicated by the red line. The black
lines are the isolines of fX1,X2(x1, x2).

Typically, Equation (2.84) cannot be solved in closed form and, therefore, needs to be
approximated numerically. A large variety of methods used for approximating PF have been
developed over the past decades, collected under the term structural reliability methods. The
choice of an appropriate method depends on the problem type and the objective of the analysis,
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and cannot be generalized. However, most reliability problems can be classified in advance
according to some general characteristics, which may reduce the number of suitable methods
for the approximation of PF . An overview of a number of such characteristics is given in
Section 2.2.1.5.

2.2.1.3 The reliability index

Reliability indices are an alternative measure for reliability. They are a geometric interpretation
of the minimum distance from the mean to the failure domain in the outcome space of the
RVs, where a large distance corresponds to a large reliability index suggesting a high level of
reliability. Initially defined in the 1940s as a characteristic for safety [147], various alternative
formulations were proposed in the course of the subsequent decades [e.g., 60, 33, 144], before
Hasofer and Lind came up with a formulation of the reliability index independent of the limit
state formulation [76]. The Hasofer-Lind reliability index is discussed in detail in Section 2.2.2.1.
All reliability indices have in common that an estimate of PF can be directly obtained once the
reliability index has been calculated.

Ditlevsen suggested a generalized reliability index as a direct function of PF , given by the
following expression [44]:

β = −Φ−1 (PF ) , (2.85)

where Φ−1(·) denotes the inverse CDF of the standard normal distribution. Note that the direct
geometric interpretation of β as a measure for the distance to the failure domain gets lost when
using the expression of Equation (2.85) and that its direct calculation is not possible for complex
reliability problems. Thus, β serves more as a tangible measure for the reliability than as a tool
for estimating PF . For example, the European design codes for buildings and structures define
the required reliability level in terms of a target reliability index [47]. Figure 2.14 illustrates PF
as function of the generalized reliability index β.
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Figure 2.14: Failure probability PF as function of the reliability index β.

2.2.1.4 Component reliability vs. system reliability

Reliability problems are not restricted to a single failure mechanism, as they can consist of
several elements (e.g., structural members) with different potential failure mechanisms (e.g.,
exceeding a material’s yield strength or its compressive strength) that need to be accounted
for in order to assess the overall condition of the system. Each of these m potential failure
modes corresponds to a component in the system for which an individual limit state function
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gi(x), i = 1, . . . ,m needs to be defined. Component reliability describes the case of a single
failure mechanism, i.e., the reliability problem is stated in terms of a single limit state function
(m = 1). By contrast, system reliability deals with the reliability analysis of multi-component
systems, where several limit state functions have to be defined (m > 1). Note that this does
not necessarily require several elements in the system, since a single element can have multiple
failure modes and, thus, represent multiple components of the reliability problem.

Despite the large variety of possible component failure mechanisms, most effects on the
system reliability can be captured by introducing two main categories of systems [e.g., 113, 45]:

• Series system: All m components of the system need to be in working condition in order
for the system to be functioning. The system fails if any of the system’s components fails.
Accordingly, system failure of a series system Fser is given as follows [59]:

Fser = F1 ∪ F2 ∪ · · · ∪ Fm =
m⋃

i=1
Fi (2.86)

Since any component failure leads to system failure, the minimum value of the component
limit state function values is decisive for identifying Fser. That is, the indicator function
of Equation (2.83) can be adjusted for series system problems as follows:

1ser(g (x)) =

 0, min {gi (x) , i = 1, . . . ,m} > 0,
1, min {gi (x) , i = 1, . . . ,m} ≤ 0.

(2.87)

An example for a series system in structural reliability is a statically determinate truss
structure, which fails as soon as a single strut or tie fails. Series systems are non-redundant
systems. A two-component series system problem of two RVs is illustrated in panel a
of Figure 2.15. The red area denotes Fsys, which is defined as the union of the two
component failure events F1 = {g1(x1, x2) ≤ 0} and F2 = {g2(x1, x2) ≤ 0}. The dashed
(g1(x1, x2) = 0) and dotted (g2(x1, x2) = 0) black lines indicate the limit state surfaces of
the components and the solid red line shows the series system’s limit state surface.

• Parallel system: Only one component of the system needs to be working in order for the
system to be functioning. The system fails only if all m components fail. For a parallel
system, the failure event Fpar is given as follows:

Fpar = F1 ∩ F2 ∩ · · · ∩ Fm =
m⋂

i=1
Fi (2.88)

Since any working component suffices to avoid system failure, the maximum value of
the component limit state function values is decisive for identifying Fpar, leading to the
following indicator function for parallel systems:

1par(g (x)) =

 0, max {gi (x) , i = 1, . . . ,m} > 0,
1, max {gi (x) , i = 1, . . . ,m} ≤ 0.

(2.89)

An example for a parallel system from the field of structural engineering is a concrete
column with compression reinforcement, which only fails due to compression if both
the concrete’s and the reinforcement’s resistance are exceeded (neglecting other failure
modes, e.g., stability failure). Hence, parallel systems are redundant systems. Panel
b of Figure 2.15 shows a two-component parallel system problem of two RVs. Fsys is
defined by the intersection of the two component failure events F1 = {g1(x1, x2) ≤ 0} and
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F2 = {g2(x1, x2) ≤ 0 =}. The limit state surface of the parallel system is indicated by the
solid red line, the dashed (g1(x1, x2) = 0) and dotted (g2(x1, x2) = 0) black lines denote
the limit state surfaces of the components.

g1(x1,x2) = 0

X1

X2

g2(x1,x2) = 0g1(x1,x2) = 0Fsys

X1

X2

g2(x1,x2) = 0

b) Parallel systema) Series system

Fsys

Figure 2.15: Failure domain of a series system (panel a) and a parallel system (panel b) with two
components and two input RVs X1 and X2. For the series system, the system failure domain
is given by the union of the two component failure domains, for the parallel system it is
given by their intersection. The solid red line marks the limit state surface of the system,
the dotted and dashed black lines mark the limit state surface of the components.

Obviously, the structure of systems does not restrict to the two elementary cases, it can be
any combination of components, parallel and/or series (sub-)systems. More detailed investigation
of general system reliability includes further special cases, such as the k-out-of-n system [e.g.,
110] and active/passive redundancy [e.g., 101], among others.

2.2.1.5 Characteristics of reliability problems

In addition to the number of components in a system and the way the components interact
regarding system failure, there are several characteristics of reliability problems that can help
to identify an appropriate method for estimating PF . Although some of the characteristics
require information that is typically available after solving the reliability problem, it is often
possible to provide some information by taking a careful look at the specific problem setting
or by performing a preliminary analysis. Without claiming to be exhaustive, the following list
collects some important characteristics of reliability problems:

• Number of failure regions: A structural system can fail for different reasons. The
resulting failure regions can cover different regions of Ω (multimodal failure) including
intersections, subsets and disjunctions of multiple failure domains. On the contrary,
unimodal failure describes the case where g(x) features a single failure domain. The
number of failure regions is not necessarily related to the number of components in
a structural system, since a component can have several causes of failure and several
components can fail for the same reason.

• Dimensionality of X: Equation (2.84) is a problem in the d-dimensional probability
space, where d is the number of RVs in X. Unfortunately, the complexity of finding a
good approximation for PF increases rapidly with an increase in the input dimensions, a
phenomenon known as the curse of dimensionality [14].
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• (Expected) range of PF : Typically, F is a rare event and the corresponding probability
PF is a small probability (in structural reliability PF ≤ O(10−3) [113]). Although PF
is not known prior to performing the reliability analysis, the type of problem may allow
to specify (expected) upper and/or lower bounds on PF . For example, the European
design codes for buildings and structures defines consequence classes for different types of
buildings and recommends minimum values for the reliability index [47].

• Computational cost for evaluating g(x): Solving the reliability problem typically
requires repeatedly evaluating the limit state function. While this does not pose a significant
problem in simple cases, it can dominate the computational cost of a reliability analysis if
g(x) includes a costly numerical model, e.g., a finite element model.

• Numerical instability: This characteristic is especially relevant when a complex numeri-
cal model needs to be evaluated. Such models often require a numerical solver which can
lead to numerical noise, i.e., the model in g(x) cannot be solved exactly but needs to be
approximated.

• Nonlinearity of g(x): Nonlinear limit state functions can have discontinuities or local
extrema, which may lead to premature convergence of an optimization algorithm. In
addition, the nonlinearity of g(x) can result in several failure domains, which need to be
accounted for when estimating PF .

• Required additional information: Although calculating PF is the main goal of a
reliability analysis, there are other types of information one can be interested in, e.g.,
the sensitivity of PF with respect to the input parameters. Furthermore, not only the
estimated value of PF but also an estimate of the confidence in that value can be of
interest.

With the above characteristics in mind, a reliability problem can be assessed before actually
performing the reliability analysis. Some of the mentioned characteristics directly exclude certain
types of reliability methods and can help to identify critical factors of the analysis. Such a
pre-analysis is especially helpful when the computational budget is limited, i.e., in cases where
one cannot afford repeated runs with different reliability methods.

2.2.2 Reliability methods

Reliability methods are developed for an efficient approximation of Equation (2.84). Most of
these methods are designed to work efficiently (or even exclusively) in the independent standard
normal space (U -space). To achieve this, Equation (2.84) is written in the following way:

PF =
�
Rd

1(G(u))φd (u) du = E[1(G(u))] , (2.90)

where G(u) = g
(
T−1(u)

)
is the transformed limit state function in the equivalent U -space, i.e.,

it is a function of the vector U of independent standard normal random variables. T−1(·) is
the inverse of an isoprobabilistic transformation T (·), mapping from Ω to the d-dimensional
U -space, e.g., by application of the Nataf joint distribution model (cf. Section 2.1.4). φd (·) is
the PDF of the d-dimensional independent standard normal distribution.

Reliability methods can be generally divided into approximation methods and simulation
methods. These two classes represent different approaches to estimate PF , which are described
as part of the following presentation of selected reliability methods. The selection is by no
means exhaustive but rather tries to give an insight into different working principles of reliability
methods and the corresponding advantages/disadvantages.
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2.2.2.1 First order reliability method

The first order reliability method (FORM) is an approximation method, in which the limit
state surface is approximated by a first-order Taylor series expansion around the most likely
failure point. Early versions of linear approximations of the limit state surface have shown
to be ambiguous with respect to the limit state formulation, which made their standardized
application impossible [43]. To obtain a result that is independent of the limit state formulation,
the problem needs to be solved in U -space [76, 79]. The most likely failure point in U -space is
the so-called design point u∗ and, due to the properties of the U -space, it is the point on the limit
state surface that is closest to the origin. Integration of the probability mass contained in the
d-dimensional half-hyperplane defined by the d− 1-dimensional hyperplane perpendicular to the
line segment 0u∗ results in the FORM estimate for the failure probability. The transformation
to U -space allows reducing the problem to a simple one-dimensional expression by introducing
the Hasofer-Lind reliability index as the Euclidean distance from the origin to the design point,
i.e., the Euclidean norm of the vector u∗ [76]:

βHL = ∥u∗∥ . (2.91)

The FORM estimate for PF can then directly be calculated as

PF ,FORM = Φ (−βHL) . (2.92)

Figure 2.16 illustrates the FORM approximation of a two-dimensional reliability problem. One
can see the difference between the approximated failure domain through the linearization of
G(u) around u∗ (red hatched area) and the actual failure domain of G(u) (red area). In this
case, PF ,FORM overestimates the true probability of failure, which is a typical behavior for
convex failure domains. On the contrary, FORM underestimates PF for concave failure domains.
PF ,FORM = PF and, accordingly, βHL = β, only if the limit state function is a linear function in
U -space. Note that, in the general case, a linear limit state function in the original space does
not correspond to a linear function in U -space.

G(u)=0

u*

u2

u10

®2
®1

¯HL

Figure 2.16: FORM approximation of a reliability problem in two-dimensional U -space. βHL marks the
Euclidean distance from the origin to the design point u∗. The red hatched area indicates
the approximated failure domain obtained by the linear approximation of the limit state
surface (dashed red line) while the red area shows the actual failure domain separated from
the safe domain by the limit state surface (solid red line). The black concentric circles
illustrate the isolines of φ2 (u). α1 and α2 are the FORM sensitivity factors for G(u) at u∗

to a change in U1 and U2, respectively.

Since PF ,FORM is easily calculable by means of Equations (2.91) and (2.92), the challenge
when using FORM lies in finding u∗, for which efficient algorithms have been developed. The most
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prominent ones are the Hasofer-Lind-Rackwitz-Fiessler (HL-RF) algorithm and the improved
HL-RF algorithm, which are based on numerical evaluation of the limit state function gradient
[76, 139, 103, 167]. The computational effort of the gradient evaluation increases with the
number of RVs d entering the problem. Many modern optimization algorithms are also able to
solve the problem in an efficient way.

In addition to the shape of the failure region, the accuracy of the FORM estimate depends
on the problem’s dimensionality and decreases with increasing d [138, 159]. This is due to the
geometric properties of the probability space. In low dimensions the design point is typically
located in a region where most of the probability mass is concentrated. However, this does not
hold for high-dimensional problems, where the probability mass in the d-dimensional U -space is
concentrated around a so-called important ring with distance

√
d− 1

2 from the origin [91]. In
that case, not only the vicinity of u∗ but also regions far away can have significant contributions
to the failure domain, leading to an inaccurate estimate for PF [159]. Hence, the application of
FORM is not recommended for high-dimensional reliability problems.

A by-product of FORM are the sensitivity factors collected in the vector α of unit length
[78, 19]:

α = u∗

βHL
, (2.93)

where αi, i = 1, . . . d represents the sensitivity of G(u) at u∗ to a change in Ui. Small absolute
values of the components in α indicate minor sensitivity with respect to the corresponding RVs.
If the sign of αi is positive (negative), an increase of Ui decreases (increases) the reliability.
Figure 2.16 shows the sensitivity factors α1 and α2 for the two-dimensional reliability problem
solved with FORM.

The European design codes for buildings and structures suggest to use FORM for calcu-
lating the structural reliability, since its estimate is sufficiently accurate for most structural
applications and its application is easier/less costly than that of many other reliability methods
[47]. Furthermore, FORM is used for the calibration of partial safety factors in the partial safety
concept (cf. Section 2.2.1.1).

The accuracy of FORM can be improved by including higher-order terms in the approximation
of the limit state surface. The second order reliability method (SORM), as the name suggests,
approximates it by a quadratic function, i.e., it employs a Taylor series expansion of the second
order around u∗ [56, 22]. This method not only requires numerical evaluation of the limit state
function gradient but also of its Hessian, which significantly increases the computational effort
for increasing d. Albeit to a smaller extent, SORM suffers from the same problems as FORM in
high dimensions i.e., the approximation of the failure region around the design point becomes
inaccurate [138]. SORM and other approximation methods are not discussed in detail in this
thesis.

2.2.2.2 Monte Carlo simulation

Monte Carlo simulation (MCS) forms the foundation for all simulation reliability methods.
It can be used for various types of problems involving uncertainty and is not restricted to
the field of reliability analysis. The general aim is to approximate the solution of a problem
numerically by repeatedly drawing samples from the joint distribution of the uncertain input
parameters and evaluating the numerical model for these samples to obtain samples from the
output quantity/quantities of interest, whose probability distribution can be estimated using
statistical methods [115, 146]. The term Monte Carlo was coined in the 1940s, when it was used
as a code word for secret work related to the atomic bomb [114]. In applications for reliability
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analysis, MCS approximates PF by the following estimate:

PF ,MCS = 1
nMCS

nMCS∑
i=1

1(g (xi)), (2.94)

where xi, i = 1, . . . , nMCS are a set of independent samples from fX(x). PF ,MCS is an unbiased
estimator for PF , i.e., E[PF ,MCS] = PF , and converges to PF with probability 1 for nMCS → ∞
by the law of large numbers [146]. The variance of PF ,MCS is

V[PF ,MCS] = 1
nMCS

PF (1 − PF ) , (2.95)

and the corresponding CoV is given by

δPF,MCS =

√
V[PF ,MCS]
E[PF ,MCS] =

√
1 − PF
nMCSPF

. (2.96)

Hence, the accuracy of MCS is a function of the target quantity PF and the number of samples
used to build the MCS estimator. As mentioned earlier, PF is typically a rare event (PF ≪ 1),
which allows approximating δPF,MCS as [146]

δPF,MCS ≈
√

1
nMCSPF

. (2.97)

From this, the required sample size to achieve a certain level of accuracy δt can be calculated:

nreq = 1
δ2

tPF
. (2.98)

Obviously, MCS is not efficient for estimating rare event probabilities, as this would require a very
large number of samples, for which a potentially costly numerical model needs to be evaluated.
Figure 2.17 shows two independent runs of MCS to solve a two-dimensional reliability problem.
The number of samples is chosen as nMCS = 103, resulting in estimates of PF ,MCS = 1 × 10−3

(panel a) and 6 × 10−3 (panel b), which underlines the large uncertainty of PF ,MCS. In both runs,
the vast majority of samples falls into the safe domain (white circles in green area) and, thus,
are completely neglected in the calculation of the MCS estimate by means of Equation (2.94).
The reference failure probability of the shown problem is PF = 4.0 × 10−3, i.e., δPF,MCS = 0.5
with the chosen sample size. For comparison, a target CoV of the estimate of δt = 0.1 would
require a sample size of nreq = 25000.

A large variety of simulation methods have been developed to overcome the inefficiency
of MCS by reducing the variance of the MCS estimator, some of which are discussed in the
following.

2.2.2.3 Importance sampling

Importance sampling (IS) tries to reduce the variance of the MCS estimate by increasing the
portion of samples located in the failure domain. This is achieved by drawing samples not from
the nominal distribution of the input RVs but from an alternative distribution, the so-called IS
density h(u) [88]. For IS, Equation (2.90) is rewritten as follows [e.g., 97, 146, 113]:

PF =
�
Rd

1(G(u))φd (u)
h(u) h(u)du. (2.99)
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G(u)=0G(u)=0

u2

u1

u2

u1

b) Second run MCSa) First run MCS

Figure 2.17: Two independent MCS runs to estimate PF for a reliability problem in two-dimensional
U -space with nMCS = 103 in each run. In the first run (panel a), only a single failure sample
(red dots) can be observed, while six samples fall into the failure domain in the second run
(panel b). The white circles indicate the samples that fall into the safe domain.

Under the condition that the failure domain is included in the support of h(u), this modification
does not alter the value of the integral. The IS estimate of PF is given as

PF ,IS = 1
nIS

nIS∑
i=1
1(G (ui))

φd (ui)
h(ui)

= 1
nIS

nIS∑
i=1
1(G (ui))w(ui), (2.100)

where the set of samples ui, i = 1, . . . , nIS are distributed according to h(u). Their corresponding
IS weights w(ui) = φd(ui)

h(ui) , i = 1, . . . , nIS account for the fact that the samples are drawn from
an alternative density. Equation (2.100) yields an unbiased estimate of PF with variance given
as

V[PF ,IS] = 1
nIS
Vh[1(G(u))w(u)] , (2.101)

where Vh[·] denotes the variance with respect to h(u). An estimator for the CoV of the IS
estimate can be constructed using a set of nIS samples from h(u):

δ̂PF,IS = 1
PF ,IS

√√√√ 1
nIS(nIS − 1)

nIS∑
i=1

(1(G(ui))w(ui) − PF ,IS)2. (2.102)

Obviously, the choice of h(u) is crucial for the quality of the IS estimate. There is a
theoretically optimal IS density h∗(u), for which the variance of the IS estimate is zero. For
solving the problem of Equation (2.100), it is defined as [17, 146]

h∗(u) = 1(G(u))φd (u)�
Rd 1(G(u))φd (u) du . (2.103)

The expression in the denominator of Equation (2.103) equals PF . In fact, h∗(u) is the nominal
density censored at the failure domain and the denominator is merely a normalization constant
ensuring

�
Rd h

∗(u)du = 1. Hence, application of h∗(u) would require knowledge of PF , i.e., the
very quantity one is interested in estimating, which makes its direct application impossible. In
practice, the goal is to find a density which sufficiently reduces V[PF ,IS]. Early versions of IS
simply shifted the mean value of φd (u) towards the failure domain and/or modified the variance
[e.g., 75, 150, 81, 54, 113]. Figure 2.18 illustrates an IS run with h(u) chosen as φ(u − µIS),
where µIS = u∗, i.e., the most likely failure point/design point. The sample size is nIS = 1000
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u2

u10

µIS

G(u)=0

Figure 2.18: Solution of a reliability problem in two-dimensional U -space with IS based on nIS = 103

samples. h(u) is chosen as φ(u−µIS), i.e., a shifted independent standard normal distribution.
The blue lines show the isolines of h(u) and the black lines show the isolines of the nominal
density φ(u). The samples that fall into the failure domain are indicated by red dots, while
the samples in the safe domain are illustrated by white circles.

and the estimated failure probability is PF ,IS = 3.7 × 10−3, i.e., close to the reference failure
probability of PF = 4.0 × 10−3, with corresponding CoV estimate of δ̂PF,IS = 0.06.

Sequential IS techniques have become more popular in the recent years, as they are more
flexible and generally applicable. These methods employ the knowledge about the existence of
h∗(u) to find a near-optimal density by repeatedly generating samples u and evaluating G(u).
In each step of the sequence, the resulting outcomes of the limit state function are used to select
an elite set of samples or to weight the samples, such that samples closer to the failure domain
are selected/assigned a larger weight. The samples for the next step are then generated based
on these elite samples/weights, either by fitting a parametric density with the selected/weighted
samples, or by use of a conditional sampling algorithm accounting for the selection/weights.
This procedure attempts to approach the failure domain in a step-wise manner until a sufficiently
large portion of the samples fall into the failure domain, which are then used to estimate PF
by means of Equation (2.100). Although various sequential approaches exist [e.g., 25, 117, 13,
127], we restrict the presentation to cross entropy-based methods that aim at minimizing the
Kullback-Leibler divergence between a chosen parametric density and h∗(u) [145, 96].

The Kullback-Leibler divergence or relative cross entropy (CE) is a measure for the difference
between two PDFs [96]. Assuming a parametric density h(u,θ), where θ ∈ Θ denotes the vector
of distribution parameters, a near-optimal IS density can be found by minimizing the Kullback-
Leibler divergence between h∗(u) and h(u,θ) with respect to θ. Making use of Equation (2.103),
this is equivalent to solving the following optimization problem [96]:

arg min
θ∈Θ

DKL (h∗(u), h(u,θ)) = arg max
θ∈Θ

�
Rd

1(G(u))φd(u)ln (h(u,θ)) du. (2.104)

Starting from an initial sampling density h(u,θ0), CE-based importance sampling approxi-
mates a near-optimal IS density by repeatedly estimating a set of parameters θ that minimize
DKL (h∗(u), h(u,θ)) based on a set of samples. These parameters are then used to generate
the samples for the next iteration. To guide the algorithm towards the failure domain, a set
of intermediate domains is introduced. In the standard CE method, the intermediate domain
of the current step is defined in a way that a certain percentage of the samples are located in
that domain (the samples with the lowest limit state function values, typically 5% to 20% of the
samples), in which case only these elite samples are used for updating the parameters [96, 66,
98, 165]. Recently, we proposed the improved cross entropy (iCE) method, which accounts for
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all samples in the parameter update [126]. It does so by introducing a smooth approximation of
the indicator function 1(G(u)) that has been used for sequential importance sampling [13, 127,
125].

The parametric form of h(u,θ) is an important factor in CE-based (and other sequential) IS
approaches. Critical factors are the number of input random variables d and the number of failure
domains. The standard choice for problems in U -space is the multivariate Gaussian distribution,
which shows good performance in low dimensions for both unimodal and multimodal failure [66].
A Gaussian mixture distribution, i.e., a weighted sum of multivariate Gaussian distributions
has been proposed to efficiently cover multimodal failure domains, but the superiority over
the single Gaussian distribution largely depends on prior knowledge about the number and
location of the failure domains [98, 66]. With an increase in d, the quality of performance of
Gaussian distributions decreases rapidly, which can be attributed to the increasing number of
parameters to be estimated (O(d2)) and the degeneracy of the IS weights w(u) [e.g., 8, 146, 126].
If d is sufficiently large, the probability mass of the standard normal distribution concentrates
around a so-called important ring with distance

√
d− 1

2 from the origin [91, 87]. Then, the
von Mises-Fisher (vMF) distribution or a mixture of several vMF distributions can be used
as IS density, since it allows to sample from the surface of a d-dimensional hypersphere [111,
165]. That model can be extended by introducing a Nakagami distribution to sample the radius
from. The resulting von Mises-Fisher-Nakagami (vMFN) distribution or a mixture of vMFN
distributions can be used as a flexible parametric IS density for problems in low to moderately
high dimensions (d ≤ O(102)) with unimodal and multimodal failure domains [126].

If h(u,θ) is a member of the exponential family of distributions, the parameter update
in each step of CE-based IS is available in closed form [146]. However, this does not hold for
the general case or when using mixture distributions, in which case the parameters can only
be found approximately or via an iterative procedure. An elegant solution to this updating
problem for mixture distributions is provided by the expectation-maximization (EM) algorithm,
where the assignment of the samples to the mixture components is treated as missing data and
the problem is solved by alternatively calculating the expected log-likelihood and finding the
parameters that maximize the expected log-likelihood [36, 29]. By extending the procedure for
the use of weighted samples, the EM algorithm can be directly applied for the parameter update
in the CE and iCE method if h(u,θ) is a mixture distribution, e.g., a Gaussian mixture [66] or
a vMFN mixture [126].

Figure 2.19 illustrates the principle of the CE method. Panel a shows the first level of the
CE method, where nIS = 500 samples are drawn from h(u,θ0), in this case from φ2(u). Based
on the resulting limit state function values, the intermediate domain (red area) is defined such
that 10% of the samples are located in that domain (red dots). The mean vector and covariance
matrix of the multivariate Gaussian distribution are then updated based on these elite samples
only. Panel b shows the final (here fourth) level of the CE method, where most of the samples
are located in the failure domain. The dashed red lines show the boundaries of the intermediate
domains of the previous levels. The resulting failure probability estimate is PF ,IS = 3.6 × 10−3

and the CoV of the estimate is δ̂PF,IS = 0.07, achieved with 4 · nIS = 2000 samples in total.

2.2.2.4 Subset simulation

Subset simulation (SuS) has been developed for efficiently estimating PF in problems with many
input RVs [7, 9]. In SuS, F is expressed by an intersection of l nested events Fj , j = 1, . . . , l,
such that the following holds:

F0 ⊃ F1 ⊃ · · · ⊃ Fl = F , (2.105)
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u2

u1

u2

u1

G(u)=0

b) Final level of CE methoda) First level of CE method

Figure 2.19: Solution of a reliability problem in two-dimensional U -space with the CE method and the
multivariate Gaussian distribution as parametric IS density. Panel a shows the first level,
where samples are generated from the nominal density φ(u). 10% of the samples are selected
as elite samples (those that fall into the intermediate domain indicated by the red area) and
used for the parameter update. The final level of the CE method is illustrated in panel b,
where a large portion of the samples falls into the failure domain (red dots). The dashed red
lines illustrate the limits of the intermediate domains, the black lines show the isolines of
φ2(u) and the blue lines show the isolines of h(u,θ) in the final step.

where each Fj is defined as

Fj = {U ∈ Rd : G(u) ≤ ξj}, with ∞ = ξ0 > ξ1 > · · · > ξl = 0. (2.106)

Hence, starting from the certain event F0, SuS defines a series of conditional events with
decreasing probability, which sequentially approach F . The SuS estimator for PF is then
constructed as the product of the conditional probabilities of the series of nested events [7]:

PF ,SuS =
l∏

j=1
PFj |Fj−1,SuS. (2.107)

In each step j, PFj |Fj−1,SuS is estimated through an MCS estimate:

PFj |Fj−1,SuS = 1
nSuS

nSuS∑
i=1

1j(G (ui)), (2.108)

where the indicator function 1j(G (ui)) gives 1 if g(ui) ≤ ξj and 0 else. The ui, i = 1, . . . nSuS
are samples distributed according to φd(u|Fj−1), i.e., samples from the nominal density censored
at the intermediate domain of the previous step. The ξj are chosen such that a certain percentage
p0 of the samples are located in the respective intermediate domain. Effective values of p0 are
typically in the order of p0 ∈ [0.1, 0.3] [170]. These elite samples are then used as basis for
the generation of a new set of nSuS independent samples for the next step, all of which need
to be located inside the intermediate domain of the current step. This can be done efficiently
by means of MCMC algorithms [e.g., 23, 124, 169, 170]. When the failure domain is reached,
i.e., a minimum of p0nSuS samples are located in the failure domain, PF is estimated by means
of Equation (2.107). For finite nSuS, PF ,SuS is a biased estimate, since the samples to estimate
the sequence of nested events are not completely independent and the intermediate thresholds
are chosen adaptively [7, 20]. Assuming independence of the estimates for the conditional
probabilities, the CoV of PF ,SuS can be approximated by a first-order Taylor series expansion
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through the CoVs of the probability estimates for the nested sequence of events [7].
Figure 2.20 shows the final level of a SuS run resulting in an estimated failure probability

of PF ,SuS = 3.9 × 10−3, slightly below the reference value of PF = 4.0 × 10−3. The red dashed
lines show the thresholds ξj , j = 1, 2 defining the intermediate events Fj , j = 1, 2 on the way
to reaching the failure domain F bounded by the limit state surface indicated by the solid red
line.

G(u)=0

u2

u10

Figure 2.20: Solution of a reliability problem in two-dimensional U -space with SuS using a sample size of
nSuS = 500 per level and p0 = 0.1 (cf. panel a of Figure 2.19 for the initial MCS level and
the corresponding selection of the p0nSuS elite samples). A large portion of the samples falls
into the failure domain (red dots) in the final level of SuS. The dashed red lines illustrate
the limits of the intermediate domains and the black lines show the isolines of φ2(u).

2.2.2.5 Line sampling

Line sampling (LS) approximates PF by identifying an important direction αLS in U -space that
points towards the failure domain and reducing the reliability problem to a set of one-dimensional
root finding problems along the important direction. The initial formulation of LS aims at
improving the accuracy of FORM estimates by choosing u∗

βHL
as important direction and, thus,

requires running a FORM analysis before applying LS [80]. The generalization of LS to a
stand-alone simulation method allows to drop this requirement and use any reasonably chosen
direction as important direction αLS [95].

The LS algorithm is based on solving Equation (2.90) in a rotated coordinate space. Although
the following approach provides an elegant solution to this problem, it is not the only way to
solve the problem. Assume a d− 1-dimensional hyperplane through the origin and perpendicular
to αLS, onto which a d-dimensional standard normal random vector U is projected, e.g., by
applying the following projection:

U⊥
αLS = U − (U •αLS)αT

LS, (2.109)

where • denotes the dot product. nLS samples are generated from φd (u) and projected
onto the hyperplane by application of Equation (2.109). Starting from the projected samples
u⊥
αLS,i, i = 1, . . . , nLS, a line search in direction αLS is conducted for each sample to find the

limit state surface G
(
u⊥
αLS,i + diαLS

)
= 0. The unbiased LS estimator for PF reads as follows

[80, 95]:

PF ,LS = 1
nLS

nLS∑
i=1

Φ (−di) , (2.110)

where di, i = 1, . . . nLS denotes the distance from the respective projected sample u⊥
αLS,i to the
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limit state surface in direction αLS. It can be shown that the variance of PF ,LS is bounded by the
variance of the MCS estimator, i.e., V[PF ,LS] ≤ V[PF ,MCS] for nLS = nMCS [95]. However, this
inequality does not account for the fact that the line search algorithm to determine di typically
requires more than a single limit state function evaluation leading to a larger computational cost.
Figure 2.21 shows an LS run with αLS obtained from a FORM analysis (cf. Section 2.2.2.1 and
Fig 2.16) resulting in PF ,LS = 4.2 × 10−3, i.e., slightly larger than the true probability of failure
of PF = 4.0 × 10−3. In panel a, the gray circles show the projected samples on the hyperplane,
from which the line search algorithm is initiated in direction αLS to find the corresponding point
on the limit state surface (black dots). Panel b shows the individual contributions to PF ,LS
exemplarily for two of the ten samples.

G(u)=0

u2

u1

u2

u1

u
α   ,1LS

u
α   ,2LS

d2

d1

b) Individual sample contributionsa) LS line search

αLS αLS

Figure 2.21: Solution of a reliability problem in two-dimensional U -space with LS using a sample size
of nLS = 10. Panel a shows the projected samples (gray dots) located on the hyperplane
perpendicular to αLS (black dashed line). The blue dashed lines show the line search in
direction αLS from the projected samples to the corresponding points on the limit state
surface (black dots). The individual contributions to PF,LS are exemplarily shown for two
samples (u⊥

αLS,1 (yellow circle) and u⊥
αLS,2 (white circle)) in panel b. Therein, d1 and d2

indicate the distances to the limit state surface, the white and yellow hatched areas represent
the corresponding contributions to PF,LS.

The efficiency of LS largely depends on the choice of αLS. This choice can be based on, e.g.,
information on a design point [80, 95], sampling in the failure domain [95], exchange of potential
and kinetic energy in systems describing conservative inelastic structures [134], or evaluation of
the gradient of G(u) [133].

Advanced line sampling (ALS) further extends the LS approach by introducing an adaptive
choice of the important direction, thus, allowing for a poor initial choice of αLS [34]. In addition,
ALS reduces the computational cost of the line search by making use of information on the
distance to the failure domain of the sample closest to the current sample on the hyperplane [34].
The efficiency can be further improved by combination line sampling (CLS), which introduces
weights for the adaptively chosen important directions [128]. The weights represent the relative
importance of the direction in the contribution to the estimate for PF and can be calculated in a
heuristic manner. The resulting estimators for PF in ALS and CLS remain unbiased and, similar
to LS, their variance is bounded by the variance of the MCS estimator [128]. LS and its adaptive
variants are especially useful for problems with unimodal failure domains, but can be extended
to multimodal failure domains by accounting for several important directions separately [149].
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2.2.2.6 Comparison of methods

Several classes of reliability methods have been presented in the previous sections, each of which
is more suitable for specific problem types. In this section, the characteristics presented in
Section 2.2.1.5 are employed for a short comparison of the presented methods in tabulated
form in Table 2.1. The rating of the methods is based on a three-stage scale, where “+” refers
to good suitability for problems of the respective category, “O” to limited suitability and “−”
indicates that the method should not be used for problems of that category. In addition to
the presented characteristics, two further criteria are considered in the comparison, namely
the computational budget B and the required accuracy G. The methods are split into the two
categories “approximation methods” and “simulation methods”.

The computational budget is an important criterion when G (u) includes a complex numerical
model. The presented methods have been categorized into three classes according to the available
computational budget as follows:

• B1: Only a small number of samples can be evaluated (N = O(102)).

• B2: An intermediate to moderately large number of samples can be evaluated (N =
O(102) − O(105)).

• B3: A very large number of samples can be evaluated.

Depending on the type of analysis, the required degree of accuracy can vary, which is accounted
for by a two-stage categorization:

• G1: Information on the magnitude or an upper bound of PF is sufficient (e.g., PF ≤ 10−4).

• G2: PF needs to be evaluated to the highest possible degree of accuracy.

Table 2.1: Comparison of the presented reliability methods for different problem types. The symbols
represent the following suitability: “+” good suitability, “O” limited suitability, “−” No/severely
limited suitability. The superscripts indicate additional information provided in the text.

Characteristic of problem setting Approximation Simulation
FORM SORM MCS IS SuS LS

Computational budget B1
(1) B1

(1) B3
(2) B2 B2 B1

Required accuracy G1
(3) G2 G2 G2 G2 G2

Multimodal failure − (4) − (4) + O (5) + O (6)

High-dimensional input random vector − − + O (7) + (8) O (9)

Very small failure probability + + − + + +
Black box analysis O O + + + +
Numerical instability − − + + + +
Nonlinearity of limit state function O + + + + +
Availability of gradient information + + − − − O
Information on accuracy of the estimate − − + + O O

As this simplification cannot account for all possible variants of the compared methods, some
additional information is provided in the following list, referring to the superscript in the
respective cell of Table 2.1.
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(1) The computational cost of FORM and SORM strongly depends on the number of input
random variables d and increases with increasing d. However, as they are not recommended
for solving high-dimensional problems in general (cf. line “High-dimensional input random
vector” in Table 2.1), they are categorized as B1 for low-dimensional problems.

(2) Apart from the complexity of G(u), the computational cost of MCS only depends on PF .
Since we are interested in evaluating the probability of a rare event, MCS requires a large
number of samples and, thus, is categorized as B3.

(3) The accuracy of FORM depends on the nonlinearity of G(u) with decreasing accuracy
for increasing nonlinearity. If G(u) is a linear function of U , FORM results in the exact
solution.

(4) Approximation methods can be used for multimodal failure domains by additional runs
to find all design points [39]. In system reliability problems, the failure event can be
approximated through the minimal cut set of the component failure events [77]. However,
some of the presented simulation methods are more suitable for this type of problems.

(5) The suitability of IS for multimodal failure domains depends on the choice of the IS density
h(u). Using mixture distributions and/or prior information on the number of failure
domains can be helpful in that case.

(6) LS can be used for multimodal failure domains by accounting for several important
directions.

(7) For efficiently solving high-dimensional problems, h(u) needs to be chosen accordingly.

(8) SuS is the classic choice for reliability analysis in high dimensions. However, the performance
depends on the choice of the algorithm for the generation of the conditional samples in
the series of nested events. If the MCMC algorithm performs well in high dimensions, SuS
can solve high-dimensional problems.

(9) Finding an important direction becomes difficult in high dimensions. If an adequate choice
of the important direction can be made, LS is able to perform well in high dimensions.

2.2.3 Structural reliability with random fields

The focus in Section 2.2.2 is put on the description and illustration of reliability methods,
where the origin of the d RVs entering the input vector U is not part of the discussion. In the
following, we consider the special case in which a subset of U are RVs used to discretize one
or several RFs, i.e., U = [URF,URV], where URF = [URF,1, . . . , URF,d1 ] are the d1 RVs used to
discretize the RF(s), URV = [URV,1, . . . , URV,d2 ] are the d2 remaining uncertain input variables,
and d = d1 + d2. URV can include RVs that are directly connected to the spatial variability (e.g.,
when using a Student’s t-RF that is expressed as function of a Gaussian RF and one additional
RV, cf. Section 2.1.6.2), but does not depend on the chosen RF discretization. In contrast, the
dimensionality of URF is determined by the RF discretization method and the chosen number of
elements/terms (cf. Section 2.1.6.3).

2.2.3.1 Effects of spatial variability on structural reliability

Modeling an uncertain quantity X as spatially variable RF X(z) instead of an RV requires a
change of perspective on the mechanical model in the reliability analysis. Typically, X represents
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a load on a structure or a material property of a structural member. If X is modeled space-
invariant, the mechanical model can often be evaluated for some carefully selected realizations of
X to determine critical regions or potential failure modes; this does no longer hold for spatially
variable inputs [42]. In that case, the location of potential failure strongly depends on the RF
parameters, the RF discretization and the specific RF realization. The number of potential
failure surfaces can further increase if several parameters are modeled as RFs. In some cases,
modeling spatial variability may even lead to completely new failure modes. However, modeling
spatial variability also enables accounting for effects that decrease the variability of the system
response, e.g., averaging processes or redistribution of loads/stresses within the mechanical
model.

Hence, the effects of spatial variability on structural reliability can only be correctly accounted
for by a spatial view on the mechanical model and the stochastic model throughout the analysis.
To avoid this additional effort, simplified approaches have been developed, e.g., replacing a
spatially variable load by an equivalent uniformly distributed load [110, 113, 83]. Another
approach aims at replacing the input RF(s) by an RV for the system response, however, suffering
from the limited applicability to complex structures [151, 24, 89]. Alternatively, one can model
the spatially variable property with a single RV by accounting for the spatial variability through
the spatial averaging approach (cf. Section 2.1.6.3), which has proven to be especially useful for
geotechnical applications [e.g., 136, 31, 129].

2.2.3.2 One-dimensional beam example

A simple one-dimensional beam example is chosen to illustrate the effect of spatially variable
load and/or resistance variables, and the type and degree of accuracy of the RF discretization.
The system response is evaluated using Euler-Bernoulli beam theory [e.g., 12]. A statically
indeterminate two-span steel beam is investigated, with a length of L = 6 m per span and
subject to uniform vertical load q, as illustrated in Figure 2.22. The cross section has a height
of H = 140 mm and a moment of inertia of Iy = 1050 cm4 with a load from self-weight of
g = 0.25 kNm−1. Initially, the steel yield strength fy is modeled as lognormal RV with mean
µfy = 280 MPa and CoV δfy = 0.07 [84], the vertical load is modeled as normal RV with mean
µq = 5 kNm−1 and CoV δq = 0.4, and the beam flexibility F is constant throughout the beam.
fy and q are assumed to be independent. Through the constant beam flexibility, the internal
forces are independent of F and can directly be calculated. The location of the maximum
absolute bending moment is at the support in the center and its value is My,max = |q+g|L2

8 [3].
The resulting yield stress is calculated as σy,max = My,max

Iy

H
2 .

q

 m  m

F, f
y,
 g

z

Figure 2.22: Statically indeterminate two-span steel beam under uniform vertical load q. The beam
flexibility F and yield strength fy are constant throughout the beam. q, F and fy are
independent RVs, the self-weight g is deterministic.
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The limit state function is defined as exceedance of the yield strength, i.e.,

g(fy, q) = fy − My,max(q)
Iy

H

2 = fy − |g + q|L2H

16Iy
. (2.111)

The transformed limit state function in U -space reads

G(u) = exp
(
µln,fy + σln,fyu1

)
− |g + µq + σqu2|L2H

16Iy
, (2.112)

where µln,fy = 5.632 and σln,fy = 0.070 are the parameters of the lognormal distribution of fy

(cf. Section 2.1.3.3), and σq = 2 kNm−1 is the standard deviation of q. Since Equation (2.111)
represents an R−S reliability problem, the failure probability can be obtained through numerical
integration by application of Equation (2.82), resulting in PF ,RV = 2.60 × 10−2. Using FORM
to estimate the failure probability, the design point is found at u∗ = [−0.5771, 1.8462] and the
corresponding estimate for the failure probability is calculated as PF ,FORM = 2.65 × 10−2, i.e.,
FORM slightly overestimates PF ,RV . Hence, the limit state surface is mildly convex in U -space.

Next, the load and the beam flexibility are modeled as one-dimensional RFs, instead of RVs.
q(z) is a Gaussian RF with parameters µq and δq as before, and the exponential correlation model
with Lc = 2 m. The beam flexibility F (z) is a Gaussian RF with mean µF = 0.5 MN−1m−2,
CoV δF = 0.05 and the exponential correlation model with Lc = 4 m. fy, q(z) and F (z) are
assumed to be independent [84]. The situation is illustrated in Figure 2.23.

q(z)

 m  m

z

F(z)
f

y,
 g

Figure 2.23: Statically indeterminate two-span steel beam under spatially variable vertical load q(z) and
with spatially variable beam flexibility F (z) (each illustrated by a random realization of the
RF). The random yield strength fy is constant throughout the beam. q(z), F (z) and fy are
independent, the self-weight g is deterministic.

The MP method and SA method are used for the RF discretization and the results are
compared. The RFs are discretized with d1

2 RVs per RF, i.e., the total number of RVs entering
the problem is d1 + 1. The system response is evaluated with the linear finite element method
based on the Euler-Bernoulli beam theory with 100 equisized finite elements [122, 123], and
the failure probability is estimated with MCS using NMCS = 1 × 106 samples. The reference
failure probability is calculated as PF ,RF = 4.27 × 10−4. It is obtained using the MP method
with d1

2 = 100 RVs per RF, which equals the number of finite elements used to evaluate
the system response. PF ,RF is approximately 60 times smaller than PF ,RV , because for each
random realization of the spatially variable input variables (q(z) and F (z)) large parts of the
variability average out over the beam length. Thus, the effective variability of the random fields
entering the mechanical model is smaller than the variability of their marginal distributions.
Consequently, the variability of the system response (maximum bending moment) is significantly
lower compared to the case without accounting for spatial variability, where the full variability
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2 Reliability analysis with spatially distributed measurements

of the marginal distributions directly transfers to the mechanical model and propagates to the
system response.

For d1
2 = 1, the MP method neglects the spatial variability and the problem reduces to the

space-invariant problem, as illustrated in Figure 2.22 with the corresponding failure probability
estimate of PF ,MP,d1 = PF ,MP,2 = PF ,RV = 2.60 × 10−2. This behavior is typical for point
discretization methods, where the marginal distribution of the discretization is defined through
the marginal distribution of the RF (cf. Section 2.1.6.3). Conversely, the SA method with d1

2 = 1
underestimates the failure probability, as it results in an estimate of PF ,SA,d1 = PF ,SA,2 =
2.56 × 10−4. This is caused by the averaging of q(z) and F (z) over the whole beam length, which
leads to an underestimation of the spatial variability entering the problem. By increasing the
number of RVs in the RF discretization, both the MP method and the SA method converge
to the reference solution with increasing number of RVs. The convergence of the estimates to
the reference failure probability as a function of the number of RVs to discretize the RFs d1 is
illustrated in Figure 2.24.

Accounting for the spatial variability introduces uncertainty in the location of failure, as two
additional potential failure locations within the two beam spans (close to z = 2.45 m and close
to z = 9.55 m) can be identified. However, PF ,RF is dominated by failure at the support in the
center of the beam, the other two failure modes only play a minor role. They require either a
strongly asymmetric realization of q(z), for which the bending moment becomes significantly
larger in one field than in the other or, alternatively, a realization of F (z) which gives the beam
a significantly higher flexibility at the support than within the beam spans.

Additionally, the exact location of failure becomes uncertain due to the non-constant beam
flexibility, meaning that failure does not have to occur, e.g., exactly at the support in the center,
but can also occur a little to the right/left side of the support, depending on the realization of
the RFs. Hence, with the RF approach, the beam shows three potential failure regions compared
to one distinct failure location with the RV approach.

10-3

10-1

10-2

10-4

PF

1

0 10 20 30 40 50 60 70 80 90 100

PF,RF

PF,MP,d

1
PF,SA,d

d1

Figure 2.24: Convergence of the failure probability estimate evaluated with the MP method (PF,MP,d1 ,
blue line) and SA method (PF,SA,d1 , red line) to the reference solution PF,RF (black line)
with increasing number of RVs to discretize the two RFs. The number of RVs d1 for evaluating
PF,MP,d1 (blue dots), PF,SA,d1 (red dots), respectively, are chosen such that d1

2 equals an
integer.

Although the results of this simple beam example are not surprising (the locations of
the maximum span moment of a two-span beam with constant flexibility lie within the two
additional failure regions), they illustrate the potential effect of accounting for spatial variability
on structural reliability. Neglecting the spatial variability or approximating it with a coarse
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RF discretization can lead to wrong estimates for PF . Conservative estimates can lead to
an uneconomic design of structures or unnecessary repair/replacement measures, but non-
conservative estimates may pose a safety risk. In addition, potential failure domains can remain
undetected if spatial variability is not accounted for, which, even if those failure regions may
not be dominating PF , is undesirable with respect to structural safety. This can be avoided by
modeling spatially variable properties with RFs using a sufficiently fine discretization. In that
case, however, the model complexity increases and estimating PF becomes more difficult. In
the present beam example, the computational cost of evaluating the model increases drastically
when using RFs because the standardized solutions for beam structures are only applicable
for (piece-wise) constant beam flexibility and simple geometric load cases [3] and, thus, the
limit state function involves evaluating a finite element model instead of the simple algebraic
expression of Equation (2.112). Furthermore, the dimensionality of U increases from d = 3
without spatial variability to d ≥ 21 (d1 = 20) with the MP method and d ≥ 11 (d1 = 10) with
the SA method for achieving an acceptable level of accuracy in this case, which limits application
of some of the reliability methods described in Section 2.2.2.

It is also important to be aware of the accuracy of the numerical model, e.g., for this example,
a finer discretization with the MP method than for the reference solution would not lead to
more accurate results, since the stochastic discretization would then exceed the mechanical
discretization, leading to nothing but a waste of computational resources. In order to achieve a
more accurate solution, both the stochastic and the mechanical model need to be refined.

The observed effects are magnified by extending the problem setting from a simple linear
beam to more complex structures, where potential failure modes may be less obvious than in
this case and the effects of neglecting spatial variability can be both uneconomic or unsafe.
The interaction of various structural elements and different uncertain input parameters further
complicate an assessment of the adequacy of the chosen stochastic model.

2.3 Learning the stochastic material model from data

Performing reliability analysis requires a stochastic model of the uncertain input quantities. If
data is available, e.g., from measurements or data bases, this information can be used to learn a
tailor-made stochastic model for the problem at hand. Since the focus of this thesis lies on the
spatial variability of material properties, the following sections aim at concepts that are used for
learning stochastic models of material properties. Nevertheless, the underlying theory can be
adjusted for general use in structural reliability or other engineering applications.

2.3.1 Random variable approach

Modeling the uncertain quantity of interest as RV means neglecting potential spatial variability
and spatial correlation of the data. Since most approaches in engineering practice are restricted
to modeling RVs, they are briefly introduced in this section.

2.3.1.1 Frequentist vs. Bayesian perspective

Two main approaches can be distinguished in statistical inference, corresponding to two different
ways to interpret probabilities: (i) frequentist approaches and (ii) Bayesian approaches. The
frequentist perspective treats probability as long-run averages of occurrence of events, i.e., the
probability of an event is defined as the relative frequency of an event given a large number of
repeated trials [e.g., 82]. The Bayesian perspective on the other hand views probability as a
degree of belief, depending on the available information and, thus, is far more subjective than
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the frequentist perspective [e.g., 142]. Further interpretations of probability exist, but are not
discussed this this point, an overview can be found in [73]. Answering the question whether
Bayesian or frequentist statistics are preferable in statistical inference would go far beyond
the scope of this thesis. Depending on the application, the one or the other may yield certain
(dis)advantages over the other one. However, it is worth noting that many frequentist results can
be derived in a Bayesian way or form special cases of Bayesian results. For example, maximum
likelihood estimation, a popular approach to estimate parameters in a frequentist way, yields the
same results as the Bayesian maximum a-posteriori estimation with uniform prior distribution
(although their interpretation differs) [118]. Various applications of learning a stochastic model
from data in a frequentist or Bayesian way can be found in the literature and are not listed here,
the interested reader is referred to [15] for applications related to civil engineering or to [61] for
Bayesian approaches to statistical inference.

2.3.1.2 Established methods to include measurements

The partial safety concept is built upon the use of quantile values as characteristic values of
material properties (cf. Section 2.2.1.1). Two different approaches to estimate quantile values of
an uncertain material property X from measurement data xm = [xm,1, . . . , xm,n] are described
in the following. The first one uses Bayesian statistics and is included in EN 1990 in Annex D.7
as well as in EN 13791 [47, 46]. It is described in detail in Chapter 4 (original publication [64])
and Chapter 5 (original publication [65]). The second one is based on a frequentist approach
and is included in a guideline of the Bundesanstalt für Wasserbau (BAW, Federal Waterways
Engineering and Research Institute, Germany), where it is used for estimating characteristic
values of concrete compressive strength in existing hydraulic structures [26]. Both require only
the number of measurements n, the sample mean µ̄X and the sample CoV δ̄X = σ̄X

µ̄X
, where σ̄2

X

is the sample variance, and assumptions on the distribution of X. µ̄X and σ̄2
X are given as

µ̄X = 1
n

n∑
i=1

xm,i, (2.113a)

σ̄2
X = 1

n− 1

n∑
i=1

(xm,i − µ̄X)2 , (2.113b)

where xm,i, i = 1, . . . n are the measurement values.

• Bayesian approach: It is assumed that X follows a normal distribution with unknown
parameters µX and λX , which are the mean value and precision, respectively. The
uncertainty on µX and λX is accounted for by a normal-gamma (N G) distribution, i.e., µX

follows a normal distribution conditional on λX , and λX follows a gamma distribution (cf.
Section 2.1.3.6). The prior parameters of the N G distribution are chosen as [µ0, κ0, α0, β0] =
[/, 0,−1

2 , 0], resulting in a non-informative prior distribution [35]. The posterior predictive
distribution of X is available in closed form; it is the Student’s t-distribution with location
parameter µt = µ̄X , scale parameter λt = n(n−1)

(n+1) ·
(∑n

i=1 (xm,i − µ̄X)2
)−1

, and νt = n− 1
degrees of freedom (cf. Section 2.3.2.3).
The procedure is standardized by normalizing the posterior predictive distribution. Con-
sequently, the quantile values of the posterior predictive distribution are determined via
standardized coefficients kn,B:

kn,B = −F−1
t (p)

√
n+ 1
n

, (2.114)
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where F−1
t (·) is the inverse CDF of the standard Student’s t-distribution with n−1 degrees

of freedom (µt = 0, λt = 1) and p = 0.05, since the characteristic value in this approach
is defined as the 5% quantile value. Through the standardization, kn,B only depends on
n and can easily be tabulated. The characteristic value xk,B can then be determined as
follows:

xk,B = µ̄X(1 − kn,B · δ̄X). (2.115)

The method is also applicable in the case when the property Y is assumed to follow a
lognormal distribution and measurement data ym = [ym,1, . . . , ym,n] is available. The
characteristic value of Y can then be calculated as

yk,B = exp
(
µ̄X(1 − kn,B · δ̄X)

)
, (2.116)

where µ̄X and δ̄X are the sample mean and sample CoV calculated by means of Equa-
tions (2.113a) and (2.113b) with the logarithmic samples xm,i = ln (ym,i) , i = 1, . . . , n.

• Frequentist approach: It is assumed that X follows a normal distribution with unknown
parameters. The aim of the procedure is the estimation of the 5% quantile value with 95%
confidence. To this end, the normal distribution is replaced by a Student’s t-distribution
with νt = n − 1 degrees of freedom to account for the finite sample size [132]. The 5%
quantile value x0.05 itself follows a Student’s t-distribution with νt = n − 1 degrees of
freedom, location parameter µt,0.05 = x0.05 and unknown scale parameter [132]. The scale
parameter is approximated through a second-order Taylor series expansion around µt,0.05
[132, 57].
For application purpose, the method is brought to the same format as the Bayesian
approach presented above:

xk,F = µ̄X(1 − kn,F · δ̄X). (2.117)

The extension to a lognormal property Y with available measurement data ym = [ym,1, . . . , ym,n]
is performed in a similar manner as for the Bayesian approach, i.e.,

yk,F = exp
(
µ̄X(1 − kn,F · δ̄X)

)
, (2.118)

with the sample mean µ̄X and sample CoV δ̄X respectively, of the logarithmic samples
xm,i = ln (ym,i) , i = 1, . . . , n.

In practice, the only difference between the two approaches lies in the coefficients kn,B, kn,F
respectively. Thus, they are listed in Table 2.2 for different sample sizes n. While the Bayesian
approach directly aims at estimating the 5% quantile, the frequentist approach tries to estimate
the 5% quantile value with 95% confidence. This additional conservatism is reflected by larger
values of kn,F compared to kn,B for finite sample size n. Both approaches converge to a coefficient
of 1.64 for n → ∞ because the parameters of the normal distribution can (theoretically) be
determined exactly in that case and no uncertainty remains (1.64 = −Φ−1(0.05)). Figure 2.25
illustrates the behavior of the mean estimated characteristic value for the two approaches and
the corresponding two-sided 90% intervals. While for the Bayesian approach (panel a), the
mean value µxk,B converges to the true 5% quantile value with increasing sample size n, for
the more conservative frequentist approach (panel b), the 95% quantile value of the estimated
characteristic value almost equals the true 5% quantile value for sample size n ≥ 5.

It is important to note that both presented approaches are only applicable if a number of
requirements are fulfilled: the samples need to be statistically independent, they have to be
taken randomly in space and the sample size needs to be representative for the quantity of
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Table 2.2: Coefficients kn,B and kn,F for selected values of the sample size n.
n 3 4 5 6 8 10 20 30 50 100 ∞

kn,B 3.37 2.63 2.34 2.18 2.01 1.92 1.77 1.73 1.69 1.67 1.64
kn,F 6.36 4.65 3.94 3.54 3.10 2.86 2.38 2.21 2.06 1.92 1.64

0

-2

-4

-6

-8

-10

-12 10 20 30 40 50 60 70 80 90 100

-1.64

xk,B

n

¹
xk,B

0

-2

-4

-6

-8

-10

-12 10 20 30 40 50 60 70 80 90 100

xk,F

n

¹
xk,F

-1.64

a) Bayesian approach b) Frequentist approach

Figure 2.25: Behavior of the mean of the estimated characteristic value for the Bayesian (panel a, µxk,B)
and the frequentist (panel b, µxk,F) approach and the corresponding two-sided 90% intervals
(shaded areas) for increasing sample size n. The black horizontal line indicates the reference
solution for the 5% quantile value of a standard normal distribution (−1.64 = Φ−1(0.05)).

interest [137, 57]. The last condition is typically assumed to be fulfilled by requiring a minimum
sample size for the investigated structure [46], but only little attention is paid to the other two
conditions and they are often violated in practice.

2.3.2 Random field updating

Modeling spatially variable material properties requires an RF model, as introduced in Sec-
tion 2.1.6. The RF parameters can be learned from data, if available. Bayesian approaches are
well-suited for such applications, as they allow to combine prior information and site-specific
information to build a stochastic model and, thus, this study is limited to Bayesian methods to
learn RF models from data.

The spatial variability introduces an additional level of complexity to the stochastic model
and various approaches have been developed to tackle the problem of statistical inference in the
presence of spatial variability. In the civil engineering community, the potential of modeling
spatial variability has been especially recognized in the field of geotechnical engineering [131,
164]. Consequently, many of the available approaches have been developed and/or applied for
geotechnical purposes [e.g., 130, 32, 129, 85, 30, 163, 116]. Furthermore, Bayesian learning has
been used for solving inverse problems with spatial variability, using response measurements,
for example in mechanical engineering [e.g., 155, 158] or hydrological problem settings [99].
It has also been applied for identifying the spatial variability of material properties in the
microstructure [148].

Bayesian learning of RF parameters has been applied for many years in the field of geostatistics
to interpolate spatial data through kriging [154, 74, 10]. Other closely related applications can
be found in the field of machine learning, in the context of Gaussian process regression [e.g.,
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141].

2.3.2.1 Bayesian updating of Gaussian random fields

If the spatial variability is modeled with a Gaussian RF and the likelihood function of the data
is Gaussian, the RF can be updated in closed form. The reason for this is the self-conjugacy of
the Gaussian distribution (cf. Section 2.1.5.2), i.e., if the prior RF and the likelihood function
are both Gaussian, the posterior RF is also Gaussian.

Assume a Gaussian RF X(z) with prior parameters mean value µ′
X , standard deviation

σ′
X and correlation function ρ′(zi, zj). In addition, assume that n measurements of X and

the corresponding measurement locations are available, collected in xm = [xm,1, . . . , xm,n] and
zm = [zm,1, . . . ,zm,n], respectively. In that case, the following updating rules for the mean
function and covariance function of the RF X(z) can be derived [e.g., 154]:

µ′′
X(z) = µ′

X +Rzm(z) · R−1
zm,zm

·
(
xm − µ′

X

)T
, (2.119a)

Cov′′
X(zi, zj) =

(
σ′

X

)2 ·
(
ρ(zi, zj) −Rzm(zi) · R−1

zm,zm
·RT

zm
(zj)

)
. (2.119b)

Rzm(z) is a 1 × nm row vector function with element i equal to ρ′(z, zm,i) and Rzm,zm is an
nm × nm matrix with element (i, j) equal to ρ′(zm,i, zm,j). Figure 2.26 shows the Bayesian
update of a one-dimensional Gaussian RF X(z) by means of Equations (2.119a) and (2.119b).
The red dots show the measurements xm,i, i = 1, . . . , n at locations zm,i, i = 1, . . . , n. x′

0.025
and x′

0.975 are the lower and upper bound of the prior two-sided 95% interval, respectively. These
bounds and the prior mean value µ′

X are illustrated by dashed black lines. The posterior mean
µ′′

X(z) connects the measurements and reflects the information on X(z) in the regions around
the measurements. The lower and upper bound of the posterior two-sided 95% interval (x′′

0.025(z)
and x′′

0.975(z)) illustrate the reduction of the uncertainty in regions that are spatially correlated
with one or several of the measurement locations. No uncertainty remains at the measurement
locations, the interval bounds coincide with the posterior mean at these locations.

z

x(z)

µ
Xʹ

µʹʹ (z)
X

x0ʹ.975

x0ʹ.025

xʹʹ   (z)0.975

xʹʹ   (z)0.025

Figure 2.26: Bayesian updating of a one-dimensional Gaussian RF X(z) with spatial data (red dots). µ′
X ,

x′
0.025 and x′

0.975 are the prior mean value and the bounds of the prior two-sided 95% interval.
µ′′

X(z), x′′
0.025(z) and x′′

0.975(z) are the spatial posterior mean and the spatial bounds of the
posterior two-sided 95% interval (shaded area).

Equations (2.119a) and (2.119b) can be extended to the case where the measurements in
xm are associated with an additive zero-mean Gaussian measurement error ε, i.e., xm,i =
x(zm,i) + εi, i = 1, . . . , nm. Assuming independence of the measurement error at different
locations, the updating rules for the Gaussian RF are

µ′′
X(z) = µ′

X +Rzm(z) · R−1
zm,ε ·

(
xm − µ′

X

)T
, (2.120a)
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Cov′′
X(zi, zj) =

(
σ′

X

)2 ·
(
ρ(zi, zj) −Rzm(zi) · R−1

zm,ε ·RT
zm

(zj)
)
. (2.120b)

Rzm,ε = Rzm,zm + Rε, where Rε =
(

σε
σ′

X

)2
· I, where I is the nm × nm identity matrix and

σε is the standard deviation of the measurement error. Rzm(z) and Rzm,zm are defined as in
Equations (2.119a) and (2.119b). The extended Gaussian RF update including measurement error
is illustrated in Figure 2.27. Unlike Figure 2.26, some uncertainty remains at the measurement
locations. The additional uncertainty also affects the posterior mean µ′′

X(z), which does not
connect the measurements anymore, but bypasses them, as can be seen in the magnified area.
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Figure 2.27: Bayesian updating of a one-dimensional Gaussian RF X(z) with spatial data (red dots) and
zero-mean Gaussian measurement error. µ′

X , x′
0.025 and x′

0.975 are the prior mean value and
the bounds of the prior two-sided 95% interval. µ′′

X(z), x′′
0.025(z) and x′′

0.975(z) are the spatial
posterior mean and the spatial bounds of the posterior two-sided 95% interval (shaded area).

Equations (2.119a) and (2.119b) are directly applicable for translation RFs Y (z) by trans-
forming the data ym = [ym,1, . . . , ym,n] to the Gaussian space and performing the update for
the underlying Gaussian RF (cf. Section 2.1.6.2). Since the underlying posterior RF is also
Gaussian, the back-transformation to the original space can be performed analogously. If one
wants to account for a measurement error, this has to be included in the transformation and
the measurement error in the transformed space needs to be additive and Gaussian. Analytical
expressions exist for the special case of a lognormal RF and measurements associated with a
multiplicative lognormal measurement error [e.g., 65].

2.3.2.2 Hierarchical update for Gaussian random fields

The analytical update presented in Section 2.3.2.1 requires defining the prior parameters µ′
X and

σ′
X of the marginal RF distribution. If these parameters are unknown, a hierarchical Bayesian

approach can be used for learning the RF model. Hierarchical Bayesian approaches are used
in the context of Bayesian linear regression [e.g., 61] and hierarchical spatial modeling [e.g.,
21]. The methodology presented in the following employs existing results from these fields to
derive a comprehensive hierarchical RF model. The theoretical framework and mathematical
derivations are extensively described in Chapter 5 (original publication [65]) and, thus, are only
briefly summarized in the following.

Consider a Gaussian RF X(z) with unknown marginal parameters mean value µX and
precision λX = σ−2

X , and spatial correlation function ρ(z, z′). Note that only the prior point
statistics need to be space-invariant, while the hierarchical approach can handle arbitrary
correlation functions. A total of n spatially distributed measurements of X(z) are available and
collected in M = [M1, . . . ,Mn]T, whereby each Mi contains the measurement outcome xm,i and
the corresponding measurement location zm,i, i.e., Mi = [xm,i, zm,i]. The uncertainty in µX

and λX is modeled by an N G distribution f(µX , λX), where µX follows a normal distribution
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conditional on λX and λX follows a gamma distribution (cf. Section 2.1.3.6). In addition
to ρ(z, z′), the prior N G distribution parameters have to be chosen. Figure 2.28 illustrates
the structure of the hierarchical model in a graph, where the circular nodes denote uncertain
quantities and the rectangular node denotes a chosen correlation function. The gray boxes
show examples/possible realizations of the respective model components, i.e., two possible N G
distributions for the marginal RF parameters, a number of possible correlation models, several
random realizations of RFs with different correlation functions, and two potential data sets of
one-dimensional RFs.
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Figure 2.28: Hierarchical RF model to learn X(z) from data. µX and λX are the mean and precision of
the RF X(z) (jointly modeled by an N G distribution) and M represents the measurement
data. ρ(z, z′) denotes the chosen spatial autocorrelation function.

The Bayesian updating procedure consists of two steps. First, the posterior distribution of
µX and λX , f(µX , λX |M) is obtained through combining f(µX , λX) and the likelihood function
L(µX , λX |M), which includes the information of M. Since the xm,i in M are samples from
a Gaussian RF, a multivariate Gaussian likelihood is formulated. The N G distribution is a
conjugate prior for the Gaussian likelihood and, thus, f(µX , λX |M) is again an N G distribution.
In a second step, the posterior predictive RF is obtained, which has Student’s t-marginal
distribution. The expressions for the spatial moment functions are available in closed form and
given by (cf. Chapter 5)

µt(z) = µn +Rz,mR−1
m (xm − µn1n)T, (2.121a)

λt(z1, z2) = αn

βn

(
ρ(z1, z2) −Rz1,mR−1

m RT
z2,m +

(
1 −Rz1,mR−1

m 1T
n

)
κ−1

n

(
1 −Rz2,mR−1

m 1T
n

))−1
.

(2.121b)

Rz,m is a 1 × n row vector function with element i defined as ρ(z, zm,i). Rz1,m and Rz2,m are
defined accordingly. Rm is the n× n correlation matrix of the measurement locations, where
Rm(i, j) is defined as ρ(zm,i, zm,j). 1n is a 1 × n vector of ones. µn, κn, αn and βn are the
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2 Reliability analysis with spatially distributed measurements

parameters of f(µX , λX |M), given by the following set of Equations (cf. Chapter 5):

µn = κ0µ0 + 1nR−1
m xT

m

κ0 + 1nR−1
m 1T

n

, (2.122a)

κn = κ0 + 1nR−1
m 1T

n , (2.122b)

αn = α0 + n

2 , (2.122c)

βn = β0 + 1
2

(
xmR−1

m xT
m + κ0µ

2
01nR−1

m 1T
n − 2κ0µ01nR−1

m xT
m − (1nR−1

m xT
m)2

κ0 + 1nR−1
m 1T

n

)
, (2.122d)

where µ0, κ0, α0 and β0 are the chosen parameters of f(µX , λX). In addition to µt(z) and
λt(z1, z2), the degrees of freedom νt have to be calculated for the posterior predictive RF. νt is
space-invariant and given as

νt = 2αn. (2.123)

The posterior predictive RF is fully defined by the parameters specified by Equations (2.121a),
(2.121b) and (2.123) and belongs to the class of translation RFs, i.e., it can be expressed as
function of a Gaussian RF (cf. Section 2.1.6.2).

Figure 2.29 shows a one-dimensional posterior predictive Student’s t-RF with parameters
learned from the measurements illustrated by red dots. The spatial posterior predictive mean
value µt(z) is represented by the solid blue line and the shaded area denotes the 95% interval.
Comparing Figure 2.29 to Figure 2.26 (which is on the same scale and based on the same data
M and the same spatial correlation function) reveals the additional uncertainty in regions away
from the measurements, when the marginal RF parameters are modeled uncertain, as the 95%
intervals are wider than in the case with fixed prior parameters.

z

x(z)

µ
t
(z) x

t,0.975(z)

x
t,0.025(z)

Figure 2.29: Posterior predictive Student’s t-RF resulting from a hierarchical Bayesian updating of a
one-dimensional Gaussian RF with spatial data (red dots). µt(z), xt,0.025(z) and xt,0.975(z)
are the spatial posterior mean and the spatial bounds of the posterior two-sided 95% interval
(shaded area).

The hierarchical model can be extended to non-Gaussian prior RFs, if the prior RF belongs
to the class of translations RFs. In that case, the updating needs to be conducted for the
underlying Gaussian RF, resulting in an underlying Student’s t-RF. In the special case of a
lognormal prior RF, the posterior predictive RF has log-Student’s t-marginal distribution and,
thus, also belongs to the class of translation RFs (cf. Section 2.1.6.2).

The analytical update is conditional on the choice of the prior spatial correlation function
ρ(z, z′), which can be a challenging task in practical applications. In the context of Gaussian
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2.3 Learning the stochastic material model from data

process regression, maximum likelihood estimation and/or cross-validation is often used to
determine the parameters of the correlation function [e.g., 141]. Alternatively, the parameters
can be learned in a Bayesian way by modeling the parameters of the correlation function as
random variables with associated prior distribution. Employing the maximum a-posteriori
estimate yields a Bayesian point estimate of the correlation parameters, which can then be used
for the analytical update [118, 65]. If the full posterior distribution of the correlation parameters
is to be included in the Bayesian RF update, the posterior predictive RF parameters need to
be approximated numerically, for example through MCMC algorithms [e.g., 23]. However, the
analytical expressions for the posterior predictive RF can still be used in combination with
numerical approximation algorithms, for example when evaluating spatial quantile values of the
RF, as shown in Chapter 6 (original publication [68]).

Uncertainty in the measurements can be included in the hierarchical model and the analytical
update by slightly modifying the definition of λX to the overall precision of the Gaussian RF and
an additive Gaussian measurement error, i.e., λX =

(
λ−1

X,RF + σ2
ε

)−1
, leading to an adjustment

of the spatial correlation function [65]. In that case, the posterior predictive RF parameters
include a contribution from the measurement error and, consequently, predictions based on the
update are inherently noisy.

2.3.2.3 Connection to Bayesian approach of EN 1990 and EN 13791

The Bayesian approach for calculating characteristic values of material properties of EN 1990 and
EN 13791, as described in Section 2.3.1.2, is a special case of the presented hierarchical Bayesian
model [64, 65]. It is obtained by using a non-informative prior N G distribution ([µ0, κ0, α0, β0] =
[/, 0,−1

2 , 0], where the “/” indicates that µ0 can be chosen arbitrarily), assuming independence
of the random variables corresponding to the measurement locations (Rm = I), neglecting
measurement error (σε = 0) and neglecting the spatial correlation of the RF (ρ(z, z′) = δz,z′ , cf.
Equation (2.60)). In this case, Equations (2.122a) to (2.122d) simplify and the parameters of
the posterior N G distribution are given as [65]

µn = 1nx
T
m

n
(2.124a)

κn = n, (2.124b)

αn = n− 1
2 , (2.124c)

βn = 1
2

xmx
T
m −

(
1nx

T
m

)2

n

 . (2.124d)

Consequently, the space-invariant posterior predictive Student’s t-distribution can be derived.
Its location parameter µt and scale parameter λt are obtained through simplification of Equa-
tions (2.121a) and (2.121b). This results in the following set of parameters [137, 65]:

µt = µn, (2.125a)

λt = αn

βn

(
1 + κ−1

n

) , (2.125b)

νt = 2αn, (2.125c)
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2 Reliability analysis with spatially distributed measurements

where µn, κn, αn and βn are calculated by means of Equations (2.124a) to (2.124d).

2.3.2.4 Spatial variability of concrete strength

Application of the hierarchical Bayesian RF update to material properties requires an under-
standing of the type of variability in the investigated material and the way the data is extracted.
The spatial variability of concrete strength calls for particular attention since concrete is a
composite material that can be divided into the two phases of cement matrix and aggregate,
each with different mechanical properties [e.g., 120]. In the case of existing concrete structures,
measurements are often based on samples taken from the structure. In that case, the measure-
ment outcome is not defined as a point-in-space property but as the property of an element of
finite size [53]. An approach to dealing with the combination of these two effects (composite
material and finite sample size) in the context of Bayesian RF learning of concrete strength is
described in Chapter 6 (original publication [68]). An important part of the approach is the
division of the spatial variability of concrete strength into micro-scale and meso-scale variability,
which is accounted for by modifying the spatial correlation function ρ(z, z′) as follows:

ρ(z, z′) = γmicro · ρmicro(z, z′) + (1 − γmicro) · ρmeso(z, z′), (2.126)

where γmicro ∈ [0, 1] denotes the share of correlation associated with the micro-scale variability,
and ρmicro(z, z′) and ρmeso(z, z′) are the spatial correlation functions for the micro- and meso-
scale variability, respectively. If the parameters of ρ(z, z′) are part of the Bayesian updating, i.e.,
they are treated as uncertain, it is suggested to replace ρmicro(z, z′) by the Dirac delta function
δz,z′ (cf. Equation (2.60)), since the concrete sample size makes learning of the micro-scale
correlation function practically impossible.
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Chapter 3

Concluding remarks

Reconsider the key components of structural reliability analysis, as illustrated in Figure 1.1. The
chapters in Part II mainly focus on the stochastic model of spatially variable material properties
entering the analysis and, to a minor extent, their coupling with finite element models. In
addition, reliability analyses are conducted making use of the developed stochastic approaches
and their coupling with finite element models. Figure 3.1 summarizes the main contributions, a
more detailed summary is given in the following. Although not being part of the core articles
of this thesis, the choice of an appropriate reliability method has been investigated during the
doctoral research and is included in Section 2.2.

Stochastic model

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Spatial correlation model
for concrete strength

Hierarchical Bayesian
random field update

Case studies with data
from existing structures

Usage/comparison of
existing methodology

Random field
discretization

Mechanical model

Finite element modeling
with random fields

Chapter 7

Chapter 4

Reliability
method

Reliability analysis

Probability of failure

Chapter 7

Chapter 4

Sensitivity analysis 
w.r.t. spatial variability

Figure 3.1: Main contributions of the journal articles forming Part II of this thesis to the components of
reliability analysis.
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3 Concluding remarks

3.1 Summary

Chapter 4 presents a coherent methodology for reliability assessment of large hydraulic structures.
While the currently applied methods used for structural verification of such structures do not
account for spatial variability, we suggest to model the concrete compressive strength as random
field and use measurement data to obtain the random field parameters. To this end, an approach
for modeling spatially variable concrete strength from the literature is coupled with an analytical
Bayesian update of Gaussian random fields. The resulting non-homogeneous random fields
are discretized by means of the Karhunen–Loève expansion. The studied ship lock wall is
modeled with a two-dimensional nonlinear finite element model using the commercial software
SOFiSTiK. Subset simulation is employed for conducting the reliability analysis with prior
and posterior parameters, and for parameter studies regarding the correlation length and the
measurement error. In addition, the standardized approach in Annex D.7 of EN 1990 for
estimating characteristic values is described.

In Chapter 5, a comprehensive hierarchical Bayesian approach for modeling spatially variable
material properties with data is derived, since the results of Chapter 4 indicate that the available
literature on spatial modeling of concrete strength is not sufficient. The proposed methodology
makes use of the conjugacy of Gaussian likelihood and normal-gamma prior distribution to obtain
analytical expressions for the parameters of a global posterior distribution for the random field
parameters. Furthermore, analytical expressions for the posterior predictive non-homogeneous
random field, which has Student’s t-marginal distribution, are presented. The parameter choice
of the prior spatial correlation function is discussed and the maximum a-posteriori estimate is
suggested as point estimate of the parameters, including the required equations for numerical
treatment of the optimization problem. It is shown that the presented hierarchical Bayesian
approach is a generalization of the approach underlying the standardized procedure in Annex
D.7 of EN 1990. Extension to non-Gaussian prior random fields is discussed and the required
equations for a lognormal prior distribution are derived. In that case, the posterior predictive
random field has log-Student’s t-marginal distribution. The generation of samples from the
posterior predictive random field completes the theoretical part of the chapter, before the efficacy
of the methodology is illustrated by means of two numerical examples.

Chapter 6 refines the hierarchical approach of Chapter 5 for specific application to concrete
strength random fields for which spatial measurements are available. The composite nature
of concrete is reflected in a customized correlation function accounting for variability at the
micro-scale. The prior parameter choice of the random field marginal distribution is addressed
by providing their maximum-likelihood-estimates using past data. Besides, Bayesian learning of
the random field parameters without site-specific data is briefly described including analytical
expressions for the random field parameters. Two extensive case studies of ship lock walls with
spatial measurements of the concrete strength are carried out to test the ability of the framework
to identify the random field parameters. The results reveal that, although certain ranges of
high probability can be found, the uncertainty in the random field parameters is too high to be
learned from the data alone. Additional empirical studies are required, especially to formulate
informative prior distributions, which can have significant impact on the posterior estimates.

Last but not least, Chapter 7 deals with random field discretization with the spatial averaging
method. The method is extended for the application to non-homogeneous Gaussian random fields
and equations are provided for the one- and two-dimensional case. In addition, applicability of
the spatial averaging method to non-homogeneous and non-Gaussian random fields is described
and the required transformations are derived for random fields with lognormal, Student’s t- and
log-Student’s t-marginal distribution. That is, the spatial averaging method can be applied
to random fields originating from the hierarchical Bayesian update of Chapters 5 and 6. A
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3.2 Outlook

one-dimensional beam example with spatially variable beam flexibility shows the ability of the
method to capture the effects of a random field through discretization with a feasible number
of random variables and illustrates the straightforward combination with the mesh of a finite
element model. In a second numerical investigation, sliding of a ship lock wall is investigated,
where the friction coefficient is modeled as two-dimensional random field. The results show that
the failure mechanism is an important factor in the choice of the number of random variables in
the discretization, which leads to an interaction of mechanical model and stochastic model. It is
also shown that an intelligent mesh choice for the random field discretization can significantly
reduce the computational effort.

3.2 Outlook

The developments and investigations of this doctoral research constitute the groundwork for
reliability analysis of structures with spatially variable input parameters. On this basis, future
research can be conducted to increase the applicability of the methodology and to enable
simplifications and calibrations for practical application in structural verification. The proposed
hierarchical random field modeling approach assumes homogeneity of the prior random field
and is only discussed for the univariate case, i.e., only one spatially variable property is
modeled. Extension of the methodology to non-homogeneous prior random fields and multivariate
random fields could promote the application to other fields, such as geotechnical engineering
or meteorology, where often data of multiple parameters at the same location is available and
closely related concepts for spatial updating have already been established.

One of the most critical points in random field modeling is the choice of the spatial correlation
function and its parameters, as the spatial variability is dominated by that choice. When
modeling concrete strength random fields, the available recommendations and the additional
results from this doctoral research are not sufficient to make an educated choice of these
parameters. Additional empirical studies are inevitable for reducing the uncertainty in the
correlation parameters, on the basis of which one can reduce the parameter range and define
informative prior distributions. When investigating historic tamped concrete, it appears that
the spatial variability is dominated by the micro-scale variability of the concrete strength. If
additional studies confirm this initial result, the validity of the current definition of characteristic
values for structural verification needs to be re-evaluated, as they might be too conservative.

For practical application, concepts for the incorporation of spatial variability into standardized
structural verification formats need to be developed. The investigated spatial averaging method
in conjunction with the hierarchical Bayesian random field approach can be the entry point here,
since they allow to determine a random variable representing the average behavior of a material
property over a certain spatial domain taking into account the effect of spatial data. The critical
parameter in this procedure is the size of the averaging domain, which depends not only on
the random field, but also on the investigated failure mechanism. For example, local failure
modes are more sensitive to local extreme values of the spatially variable material property
than regional or even global failure modes. Once the averaging domain has been identified and
the corresponding random variable has been determined, calculation of characteristic values for
direct application in structural verification is straightforward. Hence, detailed studies on the
relevant failure mechanisms and the effects of spatial variability in the material parameters on
the system response are required, opening up a wide field of potential investigations.

Coupling random fields with commercial finite element software is not always straightforward
and often requires deep understanding of both random fields and finite element modeling. To this
end, using the spatial averaging method as discretization method yields two advantages: first,
the resulting random variables directly represent the random field average on a specific spatial
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3 Concluding remarks

domain, which, if the finite elements are chosen as the spatial averaging domains, simplifies
coupling the stochastic model with the mechanical model and supports the understanding of the
effects of spatial variability in practice. Secondly, the use of spatial averages is in accordance
with the general concept of finite element modeling, where a structure is represented by an
arrangement of spatial elements coupled through boundary conditions. The interactions between
adjacent elements are calculated based on the integrals of forces and stresses in combination
with the element stiffness within each individual element. The degree of accuracy is strongly
related to the coarseness of the finite element mesh, which is directly transferable to the spatial
averaging method. Making use of these advantages can help motivating the use of random fields
in practical applications and developing finite element software with built-in toolboxes for spatial
variability.
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Author’s contribution
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wrote the code underlying the numerical studies and carried out all numerical experiments.
Sebastian Geyer wrote the original draft of the manuscript, which was then edited and finalized
by himself, Iason Papaioannou, Claus Kunz, and Daniel Straub.

Abstract

Hydraulic structures, such as ship locks and weirs, form an essential part of waterway networks.
An efficient life-cycle management is necessary to manage these large concrete structures safely
and economically. Inspections and material testing form an important part of this process, as
they enable an improved assessment of the condition, materials and properties of the structure.
Traditionally, the limited data from tests is used to estimate probability distributions of material
parameters; characteristic values for the assessment are then obtained from these distributions.
Spatial correlation between measurement locations or different material layers is typically
neglected. In this contribution, the spatially variable material parameters are modelled with
random fields. The available data from local measurements is used to update the distribution
of the random fields using Bayesian analysis. For comparison, the approach of Eurocode 0
for obtaining characteristic values is also applied. The structural reliability is then calculated
applying subset simulation. It is shown that the employed random field modelling approach
provides a more detailed statement about the material parameters. The results of an application
to a ship lock wall demonstrate that modelling the spatial variability of concrete properties can

75

https://doi.org/10.1080/15732479.2019.1652331


4 Reliability assessment of large hydraulic structures with spatially distributed measurements

increase the reliability estimate of large hydraulic structures when measurement information is
included.

4.1 Introduction

Waterway networks are large infrastructure systems. For example, the German waterway network
measures ≈ 8000 km in length. The inland waterway is regulated through a large number of
hydraulic structures, including 310 ship locks and 320 weirs [33]. Large portions of these
structures have been in service for more than 70 years and about 25 % of them have an age of
more than 100 years, which is the design working life of these types of structures. Because of
thorough maintenance throughout the design working life, many of these aged structures are
still in a good condition. However, the structural verification concept of the current European
standards is intended for newly built structures and is based on conservative assumptions [9, 10,
11]. Hence, existing structures are seemingly unsafe because of changing verification concepts.

The approach proposed by [19] accounts for this by adapting the partial safety factors for
the structural analysis of aged hydraulic structures. This model takes into account that the
remaining lifetime of an existing structure is shorter than the intended design working life and
that no failure has occurred so far. This knowledge allows reducing the partial safety factors
while ensuring that the prescribed reliability throughout the design working life can be sustained.

The Bundesanstalt für Wasserbau (Federal Waterways Engineering and Research Institute,
Germany), has published a guideline for the verification of existing hydraulic structures [4].
Therein, a verification procedure is proposed, consisting of three stages (A, B and C) with
complexity and accuracy of model and input parameters increasing from stage A to stage C. If
a structure cannot be verified according to stages A and B, in stage C probabilistic methods can
be used to perform a structural reliability analysis considering the uncertainties in the input
variables.

The massive shape and size of typical hydraulic structures leads to varying material properties
within a structure. To consider this spatial variability explicitly, uncertainties need to be modelled
as random fields instead of random variables in a probabilistic approach [32]. An efficient life-cycle
management typically includes inspections during a hydraulic structure’s design working life to
assess the structural state. Such inspections involve taking samples of the built-in materials for
material tests. Data from material tests can be used to reduce uncertainties and update model
predictions. Detailed on-site inventory can be included in the approach proposed by [19].

If a fully probabilistic approach is used, available data can be used to estimate a probability
distribution model for use in the reliability analysis. Bayesian analysis offers a consistent means
of combining information from different sources to learn probabilistic models. Therein, the prior
knowledge of uncertain parameters is updated with measurement information employing Bayes’
rule (e.g. [2, 6, 24, 28]). This analysis is often performed without accounting for the measurement
locations in the probabilistic model building. However, this is of great relevance in the context
of large hydraulic structures, for which data is typically sparse. Bayesian analysis facilitates
spatial modelling, and thus enables learning the spatial variability of uncertain parameters using
spatially distributed measurements.

In this contribution, it is proposed to consider the spatial variability of material parameters
in the reliability assessment of hydraulic structures through a detailed random field modelling.
Measurement data is employed to learn the distribution of the random fields and update the
structural reliability. To demonstrate the added value of the proposed method, a comparison
with a standard approach for incorporating measurement data that does not account for the
spatial variability of the parameters is performed. This study is an extended version of the one
presented in [15].
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4.2 Methodology

The outline of the paper is as follows. In section 4.2, a coherent methodology for the
reliability assessment of hydraulic structures is presented. First, an introduction to spatial
variability and the random field model used to describe the spatial variation of concrete is
presented. Next, a classical distribution fitting approach for incorporating measurement data
is described. Then Bayesian updating is described for updating the random field model with
spatially distributed measurements. Afterwards, the basic ideas of structural reliability are
reviewed including a brief introduction to subset simulation, which is the method employed in
the reliability analysis. The presented methodology is used in Section 4.3 to perform a reliability
analysis for the chamber wall of a ship lock and results are compared for varying modelling
choices. The obtained results are discussed in Section 4.4 before the conclusions in Section 4.5.

4.2 Methodology

Reliability analysis of hydraulic structures including spatially variable measurements requires
probabilistic modelling, parameter updating, finite element modelling and the actual reliability
analysis. In this section, suitable methods are presented for these different steps, which are
targeted towards the application to large hydraulic structures.

4.2.1 Modelling spatial variability of concrete properties

Due to inherent variability in materials, different environmental conditions during the con-
struction process and throughout the service life, different levels of craftsmanship and other
influencing factors, material properties vary in space. Modelling these properties as random
variables implies perfect correlation between material parameters at different spatial locations.
This assumption may be adequate for certain materials and structures, but is inappropriate for
the modelling of large hydraulic structures. Neglecting the spatial variability in these structures
may result in an over-conservative estimate of the structural condition.

Spatially variable properties are probabilistically modelled as random fields. A random field
can be defined as a collection of random variables indexed by a spatial coordinate z ∈ Ω, where
Ω is a one-, two- or three-dimensional spatial domain. At each point in space, X(z) is a random
variable with probability density function (PDF) fX (x, z). This results in an infinite number of
random variables that define the random field and hence discretization approaches are needed
to represent random fields in practice. The spatial correlation of the random field at different
points is described by the autocorrelation function ρ (z, z′) [32].

If a random field is homogeneous, the marginal PDF fX (x, z) is the same for any z and thus
fX (x, z) = fX (x). Furthermore, the mean and standard deviation of a homogeneous random
field are space-invariant and the correlation ρ (z, z′) of two points z and z′ is a function of the
difference in location z − z′ only. If the joint distribution between any collection of points in Ω
is jointly Gaussian then the random field X is said to be Gaussian and is fully described by its
mean value µX , standard deviation σX and the autocorrelation function ρ (z, z′) [32]. In this
study, random fields that can be expressed as functions of Gaussian random fields are considered.

4.2.1.1 The Karhunen-Loève expansion

To represent a random field with a finite number of random variables, a discretization method
is required. The chosen method here is the truncated Karhunen-Loève (KL) expansion, which
approximates a random field X by a sum over m terms [26]:

X (z) ≈ X̂ (z) = µX (z) + σX (z) ·
m∑

i=1

√
λi · φi (z) · Ui, (4.1)
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where the Ui, i = 1, ...,m are uncorrelated random variables with zero mean and unit variance.
If X is a Gaussian random field, the variables Ui, i = 1, . . . ,m are independent standard
normal random variables. The λi and φi (·) , i = 1, . . . ,m are the m largest eigenvalues and
corresponding eigenfunctions (eigenpairs) found by solving the following integral eigenvalue
problem [16]: �

Ω
ρ
(
z, z′) · φi

(
z′) dz′ = λi · φi (z) . (4.2)

The required number of terms m in the KL expansion to obtain an accurate discrete representation
of the random field depends on the domain Ω and the autocorrelation function ρ (z, z′). A
measure to estimate the accuracy of the approximation is given by the relative variance error
[30]:

εV (z) =
Var

[
X (z) − X̂ (z)

]
Var [X (z)] . (4.3)

The normalized global variance error can be determined by integration of εV (z) over the domain
Ω and normalization with the volume of Ω. This global error measure is given as follows [3, 30]:

ε̄V = 1 − 1
|Ω|

m∑
i=1

λi

�
Ω

φ2
i (z)
σ2 (z)dz. (4.4)

If the variance of the random field is constant over the domain (as is the case for homogeneous
random fields), Equation (4.4) can be reduced to the following expression [3]:

ε̄V = 1 −
∑m

i=1 λi

|Ω| · σ2 . (4.5)

4.2.1.2 Probabilistic model of concrete properties

The Joint Committee on Structural Safety (JCSS) has published a probabilistic model code
(PMC) that includes recommendations for modelling concrete with spatially variable parameters
[18]. The PMC proposes to model concrete properties as functions of the basic compressive
strength fc0, which is defined by a random field with lognormal marginal distribution. fc0 (z) is
modelled by application of the KL expansion based on an underlying Gaussian random field:

fc0 (z) = exp (fc,ln (z)) , (4.6)

fc,ln (z) = µc,ln (z) + σc,ln (z) ·
m∑

i=1

√
λi · φi (z) · Ui, (4.7)

where µc,ln (z) and σc,ln (z) are the parameters of the lognormal random field fc0, that is, the mean
and standard deviation of the underlying Gaussian random field fc,ln. For the spatial correlation
of concrete, the PMC recommends the following autocorrelation function and corresponding
autocovariance function for the random field fc,ln (z) [18]:

ρc,ln
(
∆z,z′

)
= ρ0 + (1 − ρ0) · exp

(
−∆2

z,z′

ℓ2c

)
, (4.8)

Σc,ln
(
∆z,z′

)
= σ2

c,ln · ρc,ln
(
∆z,z′

)
, (4.9)

where ∆z,z′ = ∥z − z′∥ denotes the spatial distance of z and z′. ρ0 is the lower bound on the
correlation within one structure and ℓc denotes the correlation length. ρ0 reflects that σ2

c,ln is
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the variance associated with a concrete parameter in different structures. The variance in a
single structure is smaller, which is modelled by ρ0. Figure 4.1 illustrates this autocorrelation
function as function of the spatial distance of two points (left panel) and shows the correlation
in two dimensions as function of the canonical distances z1 − z′

1 and z2 − z′
2 (right panel). The
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Figure 4.1: Correlation model for modelling the random field fc,ln (z) with a correlation length of ℓc = 5 m
and a lower bound on the correlation of ρ0 = 0.5. The left panel illustrates the decrease of
the correlation as function of the spatial distance of two points while the right panel shows
the correlation in two dimensions as function of the canonical distances z1 − z′

1 and z2 − z′
2.

compressive strength fc (z), tensile strength fct (z) and Young’s modulus Ec (z) of concrete can
then be modelled based on fc0 (z) as follows [18]:

fc (z) = α · (fc0 (z))ϑ · Y1, (4.10)

fct (z) = 0.3 · fc (z)
2
3 · Y2, (4.11)

Ec (z) = 10.5 · fc (z)
1
3 · Y3

1 + β · ϕt
. (4.12)

The parameters α, ϑ, β and the creep coefficient ϕt are deterministic values that are selected
based on in situ environmental conditions, concrete age and loading conditions. The parameters
Y1, Y2 and Y3 are lognormal distributed random variables that account for additional variations
and whose recommended parameters are listed in Table 4.1.

Table 4.1: Additional random variables for concrete properties, defined by their mean value µ and
coefficient of variation CV [18].

Parameter Distribution µ CV

Y1 lognormal 1.00 0.06

Y2 lognormal 1.00 0.30

Y3 lognormal 1.00 0.15

4.2.2 Inclusion of data in the analysis

As part of the maintenance of hydraulic structures, samples of the built-in material are often
taken and tests are performed to obtain information on the material parameters. Let X denote
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the vector of random variables representing the uncertain structural parameters. Information
from material tests can be used to update the distribution of the model parameters X. The
updating procedure can be done with Bayesian analysis, through application of Bayes’ rule:

f ′′
X (x) ∝ L (x) · f ′

X (x) , (4.13)

where L (x) is the likelihood function, f ′
X (x) is the prior distribution of X, reflecting the

knowledge on X before the information becomes available, and f ′′
X (x) is the posterior distribution

of X. L (x) is proportional to the probability of the information given a parameter state x
[13]. In the general case, solution of Equation (4.13) needs to be done numerically, for example,
through sampling techniques, due to the intractability of the normalizing constant. Analytical
solutions for the posterior distribution are available in some special cases, when using conjugate
priors [13].

4.2.2.1 Traditional approaches to include measurement data

The limited data available from tests can be used to fit probability distributions of mate-
rial parameters through application of standard distribution fitting approaches [e.g., 12, 34].
Characteristic values for the design are then obtained from the fitted distributions.

The uncertainty in the fitted distribution arising from the limited amount of data can be
modelled through a Bayesian approach, as is done by the approach in Annex D.7 of Eurocode 0
[9]. This method determines the characteristic value of a normal or lognormal distribution with
either known or unknown coefficient of variation. Characteristic values can be estimated based
on the sample mean and the sample standard deviation of the (logarithmic) measurements and
an additional factor, which depends on the amount of data and accounts for the uncertainty in
the fitted distribution through the posterior predictive distribution of the parameter. A more
detailed description of the method and its underlying model can be found in Appendix 4.A.

Another way to determine characteristic values is the approach proposed in [8]. It only
requires the sample mean value and the minimum value of the measurements. These methods
are straightforward to apply and hence are widely used in practice. However, they do not
account for the locations of the measurements. Moreover, as the uncertainty in the underlying
distribution is comparatively high for a small amount of data, the resulting characteristic value
is often conservative.

4.2.2.2 Bayesian analysis of random fields

In this Section, an approach that accounts for the additional information available by assigning the
spatial locations to the measured values is introduced. Consider the case where the information is
available in the form of direct measurements of a continuous quantity Q. Usually, measurements
are associated with a measurement error. For the application on random fields in hydraulic
concrete structures, it is assumed that the measurement error ϵ is multiplicative and follows a
lognormal distribution with parameters µϵ,ln = 0 (i.e. with median of 1) and σϵ,ln. That is, a
measurement outcome qm is defined by

qm = q · ϵ. (4.14)

The available measurements for the application in this paper are measurements of the basic
compressive strength of the concrete fc0. Application of Equation (4.14) and taking the logarithm
results in the following:

ln (fc0,m) = fc,ln + ln (ϵ) . (4.15)
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As ϵ follows a lognormal distribution, ln (ϵ) follows a normal distribution with mean µϵ,ln = 0 and
standard deviation σϵ,ln. Statistical independence between the measurement errors is assumed.

The prior distribution of fc0 is modelled with a homogeneous lognormal random field.
Therefore, the prior distribution of fc,ln at any selection of points in the spatial domain is the
joint Gaussian distribution with moments evaluated from its mean µ′

c,ln and autocovariance
function Σ′

c,ln
(
∆z,z′

)
.

For this special case, an analytical solution of Equation (4.13) for the posterior distribution
of the random field fc,ln (z) exists. It is a Gaussian random field with mean function and
autocovariance function given by [e.g., 22, 27]

µ′′
c,ln (z) =µ′

c,ln + Σc,ln (z) · Σ−1
m,ϵ · ∆m, (4.16)

Σ′′
c,ln
(
z, z′) =Σ′

c,ln
(
∆z,z′

)
− Σc,ln (z) · Σ−1

m,ϵ · Σc,ln
(
z′)T . (4.17)

Σc,ln (z) is a 1 × nm row vector function with element i equal to Σ′
c,ln (∆z,zi), where zi, i =

1, . . . , nm denotes the measurement locations. Σm,ϵ is defined as Σm + Σϵ, where Σm is an
nm ×nm matrix with element (i, j) equal to Σ′

c,ln

(
∆zi,zj

)
and Σϵ is an nm ×nm diagonal matrix

with the log-error variance σ2
ϵ,ln on the diagonal. The off-diagonal terms of Σϵ are 0 because of

the assumption of statistical independence between the measurement errors. ∆m is a nm × 1
column vector containing the measurement data with element i equal to

(
ln (fc0,m (zi)) − µ′

c,ln

)
.

As f ′′
c,ln (z) is a Gaussian random field, f ′′

c0 (z) is a lognormal random field with parameters
µ′′

c,ln (z) and Σ′′
c,ln (z, z′). Having evaluated the posterior distribution, the reliability conditional

on the measurements can be estimated with any structural reliability method, for example,
subset simulation which is presented in Section 4.2.3.

4.2.3 Reliability analysis with subset simulation

The main task of a reliability analysis is to identify the probability of a failure event F of the
system of interest, defined as

F = {x ∈ Rn : g(x) ≤ 0}, (4.18)

where x denotes the outcome of an n-dimensional random vector X collecting all uncertain
input variables and g(x) is the limit state function, which evaluates the performance of the
system for a given realization x. Non-positive values of g(x) indicate failure of the system.

It is common to transform the problem to the outcome space of independent standard
Normal random variables U by an isoprobabilistic transformation U = T (X), for example, the
Rosenblatt transformation [17] or the Nataf transformation [5]. The failure probability is given
by the following n-fold integral in standard Normal space:

PF =
�
Rn

1(G(u) ≤ 0) · ϕ(u) du, (4.19)

where ϕ(·) is the PDF of the n-dimensional standard normal distribution, G(·) = g(T−1(·)) is
the transformed limit state function in standard Normal space and 1(G(u) ≤ 0) is an indicator
function which returns 1 if G(u) ≤ 0 and 0 otherwise. Typically, an analytical solution of
Equation (4.19) to obtain PF is not available and it needs to be solved numerically.

There exist a large number of approaches to estimate PF , that is, to approximate the solution
of Equation (4.19) [e.g., 20], amongst which the methods based on Monte Carlo simulation (MCS)
are the most robust ones when the limit state function depends on outcomes of a black-box
numerical model, for example, a finite element model. Because crude MCS is inefficient for
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4 Reliability assessment of large hydraulic structures with spatially distributed measurements

the estimation of rare event probabilities, several methods have been developed to increase its
efficiency. In the context of assessing large hydraulic structures, subset simulation (SuS) is
utilized, which can handle problems with a large number of random variables [1].

SuS expresses the event of interest (the failure event F ) as an intersection of l nested events
Fi, such that:

F0 ⊃ F1 ⊃ · · · ⊃ Fl = F. (4.20)

Each Fi is defined as

Fi = {u ∈ Rn : G(u) ≤ ξi}, with ∞ = ξ0 > ξ1 > · · · > ξl = 0. (4.21)

The probability of failure can then be expressed as a product of the conditional probabilities
of each subset Fi given that Fi−1 has occurred [1]. Starting with an initial Monte Carlo step
by generating ns samples from ϕ(u) and evaluating G(u) for these samples, the SuS algorithm
proceeds to the failure domain in the outcome space of U, that is, the set for which G(u) ≤ 0,
by repeatedly sampling from distributions conditional on each previous intermediate domain,
that is, the domain of event Fi−1 . This can be done by Markov chain Monte Carlo (MCMC)
algorithms [21]. In each step, the conditional intermediate failure probability is estimated based
on ns available samples by a Monte Carlo estimate as follows:

P̂Fi|Fi−1 = 1
ns

·
ns∑

j=1
1(G(uj) ≤ ξi). (4.22)

In the final level of the SuS algorithm, that is, when the number of samples that fall into the
failure domain is sufficiently large, PF can be estimated as

P̂F =
l∏

i=1
P̂Fi|Fi−1 . (4.23)

Figure 4.2 illustrates the sequential approach of SuS for a two-dimensional problem of uncorrelated
standard normal random variables with ns = 1000 samples per level. The failure domain is
the red area of the panels in Figure 4.2. The intermediate thresholds are chosen such that
P̂Fi|Fi−1 = 0.1. In the first level (left panel of Figure 4.2), the samples are generated from the
nominal density of U, that is, the two-dimensional standard normal PDF. Evaluation of the
limit state function results in the first intermediate event F1, the samples that fall into the
corresponding domain are marked red. The 1000 samples in level 2 (centre panel of Figure 4.2)
are generated conditional on F1 and are thus closer to the actual failure domain. The portion of
the samples falling in the second intermediate domain are marked red in the centre panel of
Figure 4.2. A new set of 1000 samples are generated conditional on F2 in level 3 (right panel of
Figure 4.2). In this case, P̂F3|F2 > 0.1 and thus the sampling procedure is terminated and the
failure probability can be estimated by application of Equation (4.23).

SuS estimates efficiently small failure probabilities through reducing the problem to the
estimation of a set of larger conditional probabilities. Moreover, tailored MCMC algorithms such
as the the dimension-independent conditional sampling algorithm [21] result in a performance
of SuS that is independent of the input dimension. This makes SuS a popular choice for
high dimensional reliability problems, for example, problems that involve discrete random field
representations. An estimate of the variability of P̂F can be calculated within the SuS algorithm
without additional model evaluations [1].
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Figure 4.2: Illustration of the sequential approach of SuS. Starting from an initial MCS level (left panel),
SuS advances to the failure domain (red area) by repeatedly sampling conditional on the
intermediate domains of the previous levels (gray lines).

4.3 Assessment of a ship lock wall

A structural assessment and a reliability analysis are performed for the chamber wall of a ship
lock. The proposed methodology is applied and results illustrate the influence of the spatial
variability and measurement information on the computed reliability. The mean estimates of
the failure probabilities are averaged from ten independent SuS runs for each parameter setup.
The uncertainty on the mean estimate is calculated based on the estimate in [1].

2 m

8 m

26.25 m 26.25 m 26.25 m 26.25 m

z1

z2

z3 C1 C2 C3

Figure 4.3: Finite element mesh of the investigated ship lock chamber wall consisting of 985 nodes and
837 quadrilateral elements. The location of the core samples C1, C2 and C3 are indicated by
the dashed black lines.

4.3.1 Structural model

The investigated ship lock is located at the German river Hunte and was built in the 1920s, that
is, it has been in service for almost 100 years. The height of its chamber wall is 10 m and its
length is 105 m. Several repair actions on the tamped concrete have been conducted throughout
the design working life. The most substantial repair action was done in 1983, when the upper
2 m of the chamber wall were rebuilt completely with reinforced concrete.

The wall is modelled with a two-dimensional nonlinear finite element model with 985 nodes
and 837 quadrilateral elements in the commercial software SOFiSTiK [25]. The material is
modelled with the elastoplastic Drucker-Prager model [7]. The wall thickness is modelled
constant as 2 m. The finite element mesh is illustrated in Figure 4.3. The mesh is refined in three
regions; these are the locations where core samples have been taken to measure the concrete
properties (core samples C1, C2 and C3 indicated by dashed black lines in Figure 4.3).

As the focus in this study lies on modelling the concrete parameters, the foundation and the
horizontal bedding are modelled very stiff, that is, the bottom edge and the two side edges are
assumed to be clamped. Furthermore, the effect of the reinforcement in the upper 2 m is not
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4 Reliability assessment of large hydraulic structures with spatially distributed measurements

taken into consideration. For a qualitative comparison of different probabilistic models for the
concrete properties this approximation is not substantial.

4.3.2 Concrete parameters

The structure consists of two parts of different concrete types. The basic compressive strength of
each part is modelled separately by a lognormal distribution assuming statistical independence
between the two parameters. The parameters µ′

c,ln,2 and σ′
c,ln,2 for the concrete of the upper

part are chosen as µ′
c,ln,2 = 3.85 and σ′

c,ln,2 = 0.123, which corresponds to concrete grade C35
[18]. As the PMC does not give values for tamped concrete from the 1920s, the parameters
for the bottom part are estimated conservatively with µ′

c,ln,1 = 2.80 and σ′
c,ln,1 = 0.411, based

on available measurement data of the structure from the 1960s and 1970s. Table 4.2 shows
the corresponding mean values and CVs of the basic compressive strengths f ′

c0,1 and f ′
c0,2. The

compressive strength, tensile strength and Young’s modulus of the concrete are modelled based
on the basic compressive strength by application of Equations (4.10) to (4.12). The deterministic
parameters α, ϑ and β are chosen globally as follows: α = 0.8, ϑ = 0.96, β = 0.8 [18]. The
creep coefficient for the concrete in the bottom part is chosen as ϕt,1 = 4 and for the one in the
upper part as ϕt,2 = 2.

Table 4.2: Basic compressive strengths of the concrete types, defined by their mean value µ and coefficient
of variation CV.

Parameter Distribution µ [N/mm2] CV

f ′
c0,1 lognormal 47.4 0.124

f ′
c0,2 lognormal 17.9 0.429

4.3.3 Loads and limit state function

A variety of loads act on this type of hydraulic structures. In addition to permanent loads from
self-weight and earth pressure, structures are also subjected to variable loads like water and ground
water pressure or traffic loads [10]. In order to assess the effect of different modelling approaches
for the material properties, the analysis is restricted to the self-weight and the horizontal earth
pressure from the backfill at normal ground water level, both modelled deterministically. The
resulting load situation without self-weight (upper part: 25 kN/m3, bottom part: 20 kN/m3) is
illustrated in Figure 4.4.

In a structural analysis, different serviceability and ultimate limit states have to be considered
[9]. The verification has to be done for each of these limit states separately. As the aim is a
qualitative estimate of the probability of failure, the analysis is restricted to a deformation-based
global failure criterion. Hence, the following limit state function is defined:

G(u) = wz3,lim − max(wz3,j(u), j = 1, . . . , 985), (4.24)

where wz3,lim is the maximum allowable out-of-plane displacement and wz3,j is the out-of-plane
displacement of node j. This limit state function does not consider local failure modes, which
might lead to a non-conservative estimate of the probability of failure. The failure criterion
wz3,lim is chosen as wz3,lim = 0.35 m.
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Figure 4.4: Acting load on the ship lock wall from horizontal earth pressure at normal ground water level.

4.3.4 Reliability analysis with prior parameters

The reliability is estimated with SuS. In the simulation, ns = 1000 samples are evaluated
per level and the intermediate failure probability is chosen as 0.1. In a first analysis, spatial
variability of the material parameters is not considered and the basic concrete compressive
strengths of the two layers are modelled as two independent lognormal random variables with
parameters µ′

c,ln,1, σ
′
c,ln,1 and µ′

c,ln,2, σ
′
c,ln,2. For each of the two concrete layers, the calculation

of the compressive strength fc (z), tensile strength fct (z) and Young’s modulus Ec (z) of the
concrete according to Equation (4.6) and Equations (4.10) to (4.12) requires three additional
random variables Y1, Y2 and Y3, as defined in Table 4.1. Thus, the total number of dimensions
is n′

RV = 8. SuS results in an estimate of P̂ ′
F,RV = 4.3 × 10−3 with coefficient of variation

ĈV P̂ ′
F,RV

= 0.06.
For the reliability analysis with spatially variable concrete parameters, the lower bound on

the correlation ρ0 and correlation length ℓc are chosen as ρ0 = 0.5 and ℓc = 5 m, which are the
default parameters proposed by [18]. The number of terms in the KL expansion is chosen such
that the average relative variance error over the domain, calculated by means of Equation (4.5),
is smaller than 10 %. With the chosen correlation length and autocorrelation function, the
required number of terms for the prior random field fc,ln (z) is m′

1 = 14 for the upper part
and m′

2 = 25 for the bottom part. As in the previous analysis, the calculation of fc (z), fct (z)
and Ec (z) requires three additional random variables Y1, Y2 and Y3 per concrete layer. Hence,
the resulting total number of dimensions in the prior reliability analysis with random fields is
n′

RF = 45.
Two possible realizations of the random fields f ′

c0,1 (z) and f ′
c0,2 (z) are shown in Figure 4.5.

The newer concrete in the upper part has a larger mean basic compressive strength than the
concrete in the bottom part. The spatial variability of both random fields is clearly visible and
it can also be seen that the locations of maximum or minimum values of the random fields vary
from one realization to another.

SuS estimates the failure probability as P̂ ′
F,RF = 2.0 × 10−3 with coefficient of variation

ĈV P̂ ′
F,RF

= 0.07. That is, the modelling of the concrete properties as random fields reduces the
estimated failure probability by approximately 50 %. Table 4.3 compares the estimates for the
different approaches. It is noted that the concrete parameters at each point of the random field
follow the same probability distributions as the corresponding random variables in the previous
approach. The difference in the failure probability only stems from the spatial modelling with
random fields.

The limit state function in Equation (4.24) is based on the maximum out-of-plane displace-
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Figure 4.5: Two independent realizations of the prior random fields f ′
c0,1 (z) and f ′

c0,2 (z) representing the
basic compressive strength of the old tamped concrete in the bottom part and the modern
concrete in the upper part.

Table 4.3: Estimates of the probability of failure P̂F and its coefficient of variation ĈV P̂F
for the different

modelling approaches obtained with subset simulation.

Modelling approach P̂F ĈV P̂F

Prior random variables 4.3 × 10−3 0.06

Posterior random variables 3.0 × 10−3 0.06

Prior random fields 1.9 × 10−3 0.07

Posterior random fields 1.9 × 10−4 0.08

ment of the ship lock wall. Typically, displacements of structures are mainly determined by the
global stiffness of the structure. In this case, the variance of the global average of the Young’s
modulus decreases when accounting for the spatial variability in the basic compressive strength
due to the spatial averaging effect of the random fields [32]. Without accounting for spatial
variability the variance of the global average is equal to the variance of the Young’s modulus
at each location as it is modelled by a single random variable. A decrease in the variance of
the global average of the basic compressive strength results in a decrease of the variance of the
displacement and thus in a decrease of the failure probability.

4.3.5 Reliability analysis including measurement information

During an extensive inspection on the ship lock in 2014, three vertical core samples were taken
from the chamber wall. The locations of the core samples are indicated in Figure 4.3. A total of
33 measurements of the concrete compressive strength are available from these samples, 9 from
the upper part and 24 from the bottom part. This information is used to learn the probabilistic
model of the concrete strength. Table 4.4 lists the measurement information and locations.

4.3.5.1 Traditional distribution fitting approach

An approach to include available data in the structural analysis following Eurocode 0 was
discussed in Section 4.2.2.1. Now the data of Table 4.4 is used to fit the underlying Student-t
distribution for the basic concrete compressive strength (cf. Appendix 4.A). For the concrete in
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Table 4.4: Measurements of the basic compressive strength of the concrete obtained from the three core
samples C1, C2 and C3. The measurement locations are also indicated in Figure 4.3.

Part of the wall
C1 (z1 = 26.25 m) C2 (z1 = 52.5 m) C3 (z1 = 78.75 m)

z2 fc0,m z2 fc0,m z2 fc0,m

[m] [N/mm2] [m] [N/mm2] [m] [N/mm2]

Top

0.32 61.1 0.43 79.0 0.43 58.1

1.00 59.4 1.15 76.2 1.13 70.4

1.45 35.9 1.65 71.8 1.81 71.2

Bottom

2.40 29.2 2.21 21.2 2.34 18.5

3.24 15.5 3.25 16.0 3.34 10.3

4.25 8.7 4.05 32.0 4.17 13.2

5.15 12.3 5.33 20.7 5.24 14.5

6.12 16.2 6.15 13.8 6.27 25.4

7.33 11.6 7.25 12.1 7.12 14.5

8.15 13.4 8.40 8.6 8.23 13.2

9.05 13.9 9.45 14.8 9.08 33.0

the top level of the ship lock wall, the following parameters of the Student-t distribution are
obtained:

āfc,ln,1 = µ̄fc,ln,1 = 4.149, (4.25)

b̄fc,ln,1 = σ̄fc,ln,1 ·
√
nm,1 + 1
nm,1

= 0.252, (4.26)

νfc,ln,1 = nm,1 − 1 = 8. (4.27)

The resulting parameters for the concrete in the bottom level are:

āfc,ln,2 = µ̄fc,ln,2 = 2.751, (4.28)

b̄fc,ln,2 = σ̄fc,ln,2 ·
√
nm,2 + 1
nm,2

= 0.375, (4.29)

νfc,ln,2 = nm,2 − 1 = 23. (4.30)

In correspondence to the approach in the PMC, the basic concrete compressive strength is
calculated from fc,ln,1 or fc,ln,2 by applying Equation (4.6).

87



4 Reliability assessment of large hydraulic structures with spatially distributed measurements

It is noted that the direct fitting of a lognormal distribution, that is, without accounting
for the uncertainty due to the finite number of measurements, would result in characteristic
values of 42.8 N/mm2 for the top level and 8.6 N/mm2 for the bottom level (if the 5 %-quantile
value is defined as the characteristic value). The characteristic value that is obtained by
means of the Eurocode 0 approach for the case of unknown coefficient of variation of the basic
compressive strength is 39.6 N/mm2 for the top level and 8.2 N/mm2 for the bottom level. These
values coincide with the 5 %-quantile values of the described fitted Student-t distributions in
combination with the transformation of Equation (4.6).

Running SuS with the fitted Student-t distributions results in an estimate for the failure
probability of P̂ ′′

F,RV = 3.0 × 10−3 with coefficient of variation ĈV P̂ ′′
F,RV

= 0.06. This probability
is smaller than the failure probability estimated with the prior random variable approach.
Table 4.3 compares the result to the other estimates.

4.3.5.2 Bayesian updating of random fields

The measurements are now used to update the random field model of the concrete strength
through application of Bayesian analysis. A multiplicative, lognormal distributed measurement
error with median 1 and standard deviation 0.1 is assumed for the Bayesian updating. The
corresponding mean and standard deviation of ln(ϵ) are µϵ,ln = 0 and σϵ,ln = 0.0993. The
updating of the random fields is done by evaluating Equations (4.16) and (4.17), resulting in
non-homogeneous random fields defined by their autocovariance function and mean function. The
mean and standard deviation of the updated random fields representing the basic compressive
strength of the concrete f ′′

c0,1 (z) and f ′′
c0,2 (z) are illustrated in Figure 4.6.
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Figure 4.6: Posterior mean (top) and posterior standard deviation (bottom) of the random fields fc0,1 (z)
and fc0,2 (z) representing the basic compressive strength of the old tamped concrete in the
bottom part and the modern concrete in the upper part. The prior and posterior marginal
distributions are illustrated in the middle for three selected points.

Obviously, the core samples have an impact on the parameters, especially in the direct
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4.3 Assessment of a ship lock wall

vicinity of the measurement locations.
The overall mean strength of the concrete of the upper part is higher than implied by the prior

model, as its mean value ranges from 47.2 N/mm2 to 72.1 N/mm2, whereas the prior assumption
is 47.4 N/mm2. In the regions far away from the measurements, the mean value is around
58.7 N/mm2. This effect illustrates the global effect of the updating procedure, which derives
from the fact that the minimum correlation between any two points of the ship lock wall is 0.5.
The mean value of the bottom part strength shows a large spatial variability, as it varies between
11.1 N/mm2 and 28.4 N/mm2. The extreme values are located at the measurement points. In
the regions far away from the measurements, the mean value converges to ≈ 22.0 N/mm2.

The standard deviation of the concrete of the upper part changes significantly in the regions
close to the core samples, where it is reduced by the Bayesian updating. With increasing distance
from the measurement locations, the standard deviation converges to 5.77 N/mm2, which is only
slightly smaller than the prior standard deviation. The standard deviation of the concrete of
the bottom part near the measurements is reduced by almost 95 %. However, at any point it
is reduced by a minimum of 7 %. Reasons for the larger global updating effect compared to
the standard deviation of the upper part are the larger number of measurement points in the
bottom part and the large variability in the prior model.

In addition to the parameters, the marginal prior and posterior distributions at three different
points of the ship lock wall are extracted and shown in Figure 4.6. The points A and B show a
large reduction of the variability of the marginal distribution while the change in the distribution
at point C is comparatively small. The large influence of the data at points A and B is due
to the small distance of the points to the measurement points. Point C is far away from any
measurement point and thus only the global updating effect of the Bayesian analysis remains.

As in the prior analysis, the number of terms in the KL expansion is chosen such that the
average relative variance error is smaller than 10 %. Evaluation of Equation (4.4) results in
a required number of terms of m′′

1 = 18 for the upper part and m′′
2 = 43 for the bottom part.

The increase in the required number of terms in the KL expansion is due to the fact that the
autocovariance functions of the posterior random fields are not isotropic anymore, they are
explicit functions of the spatial locations and thus more complex to approximate [31]. Including
the three additional lognormal random variables for each random field to model all concrete
parameters, the total number of dimensions in the posterior reliability analysis is n′′

RF = 67.
Two possible realizations of the posterior random fields f ′′

c0,1 (z) and f ′′
c0,2 (z) are shown

in Figure 4.7. It can be seen that the variability in the regions around the measurements is
decreased, the measurement values are clearly reflected by regions of high or low values in both
realizations.

SuS estimates the failure probability with the updated parameters as P̂ ′′
F,RF = 1.9 × 10−4

with coefficient of variation ĈV P̂ ′′
F,RF

= 0.08, which is a large reduction compared to the spatial
modelling without Bayesian updating and the random variable approach including measurement
information (cf. Table 4.3). That is, by including the measurement information in the random
field model, the calculated reliability of the ship lock wall increases significantly. The conservative
assumption of the prior model is corrected, as evident from the decrease of the standard deviation
of the tamped concrete. In the regions close to the core samples, the updated random fields
clearly reflect the measurement results, giving an indication about regions of low or high quality
concrete.
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Figure 4.7: Two independent realizations of the posterior random fields f ′′
c0,1 (z) and f ′′

c0,2 (z) representing
the basic compressive strength of the old tamped concrete in the bottom part and the modern
concrete in the upper part including the information from the measurements.

4.3.6 Parameter study on the correlation length

The autocorrelation model of a random field controls the spatial fluctuation of the field. In
addition, it determines the range of influence of the measurements in a Bayesian analysis. That
is, the correct choice of the autocorrelation model and its parameters are crucial for the accuracy
of the reliability analysis. In this study, the correlation model of the PMC by JCSS [18] is used,
as presented in Section 4.2.1.2. The sensitivity of the structural reliability on the correlation
length ℓc is investigated by performing a parameter study.

A change in the correlation length changes the solution of the KL eigenvalue problem of
Equation (4.2) and thus the average variance error of the truncated KL expansion of Equa-
tion (4.4). The required number of terms for approximating the random fields with the initial
correlation length of ℓc = 5 m in the prior analysis is m′

1 = 14 for the top layer and m′
2 = 25 for

the bottom layer. These numbers increased in the posterior analysis to m′′
1 = 18 for the top

layer and m′′
2 = 43 for the bottom layer. This results in a total number of random variables of

n′
RV = 45 and n′′

RV = 67 random variables to estimate the failure probability. Table 4.5 shows
the required number of KL terms and the resulting total number of random variables for varying
correlation length in the prior and posterior reliability analysis. The correlation length has a
strong influence on the required number of KL terms, a small correlation length results in a
large number of required KL terms to achieve the same level of accuracy in terms of the average
variance error. It is noted that the accuracy of the SuS estimate for the failure probability does
not depend on the number of random variables [1, 21].

Figure 4.8 illustrates the effect of a varying correlation length on the failure probability
for the prior and posterior analysis. It plots the estimated failure probability obtained with
SuS, P̂F , against the prior correlation length ℓc of the random fields. The blue shaded area
indicates P̂F ± σ̂P̂F

. In the prior analysis, P̂F appears to increase with increasing ℓc, while in
the posterior analysis P̂F increases first before eventually decreasing again. This results from
the two processes that are influenced by the correlation length.

On the one hand, the spatial fluctuation of the random fields decreases with increasing
correlation length, which increases the variance of the global average of the random fields. As
the spatial fluctuation decreases, the variance of the global average of the random field increases.
The limiting case of an infinite correlation length corresponds to a single random variable per
random field, as all points of the random field are fully correlated. As described in Section 4.3.4,
the limit state function is dominated by the global stiffness of the structure and an increased
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Table 4.5: Required number of terms in the truncated KL expansion to approximate the random fields
with an average variance error of ε̄V ≤ 10 % as function of the correlation length ℓc. m′

1 (m′′
1)

is the number of terms for the prior (posterior) top level random field, m′
1 (m′′

1) the number of
terms for the prior (posterior) bottom level random field. n′

RV (n′′
RV ) is the total number of

random variables in the prior (posterior) subset simulation.

Correlation length Prior analysis Posterior analysis
ℓc [m] m′

1 m′
2 n′

RV m′′
1 m′′

2 n′′
RV

3.33 21 49 76 28 77 111

5 14 25 45 18 43 67

7.5 9 13 28 12 25 43

10 7 8 21 10 19 35

15 5 5 16 7 13 26

20 4 4 14 5 11 22
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a) Prior failure probability b) Posterior failure probability 

Figure 4.8: Prior (left panel) and posterior (right panel) estimate of the failure probability P̂F ± σ̂P̂F

obtained with SuS as a function of the prior correlation length of the random fields to model
the basic compressive strength.

variance of the global average of the random fields results in a larger failure probability. This
effect can be observed in the prior and posterior analysis.

On the other hand, the influence range of the measurement values increases with an increasing
correlation length because the autocorrelation function decreases slower with increasing distance.
The Bayesian analysis reduces the variability of the underlying Gaussian random fields, as it
reduces the uncertainty about their outcome. The higher the correlation length, the stronger the
influence of the measurements on the variability of the random field, which leads to a reduction
of the failure probability for increasing correlation length.

The reduction in the variability of the underlying Gaussian random field by the Bayesian
analysis is independent of the measurement values, only the number of measurements and their
locations are relevant. However, the measurement values determine the posterior mean function
of the underlying Gaussian random field and thus the parameters of the posterior lognormal
random field. Hence, the results in the right panel of Figure 4.8 are also conditional on the
measurement outcome. The results of the posterior analysis suggest that for ℓc ≤ 15 m, the
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effect of the reduced spatial fluctuation on P̂F is dominant for a change in ℓc, whereas the global
effect of the Bayesian analysis dominates for ℓc > 15 m.

4.3.7 Parameter study on the standard deviation of the measurement error

Another parameter that influences the Bayesian updating of the random field model by means
of Equations (4.16) and (4.17) is the standard deviation of the measurement error. To illustrate
this, the reliability analysis is performed for varying values of the standard deviation of the
multiplicative, lognormal distributed measurement error.

The values are chosen as σϵ = 0.05, 0.075, 0.15, 0.2. The corresponding values of the standard
deviation of the logarithmic measurement error are σϵ,ln = 0.0499, 0.0747, 0.1476, 0.1944. The
results of the reliability analysis are compared to the ones obtained with the initial choice of
σϵ = 0.1. Figure 4.9 shows the resulting probability of failure as function of σϵ. Again, the blue
shaded area indicates P̂F ± σ̂P̂F

.
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Figure 4.9: Posterior estimate of the failure probability P̂F ± σ̂P̂F
obtained with SuS as a function of the

standard deviation of the multiplicative, lognormal distributed measurement error.

It is shown that an increasing standard deviation of the measurement error results in a larger
estimate of the probability of failure. The reason for this behavior is that a large value of σϵ

results in a reduced impact of the measurements and hence reduces the effect of the Bayesian
updating on the random field model. The resulting posterior random field parameters are closer
to the prior parameters. This is also reflected in the estimate of the posterior failure probability,
which is closer to the prior estimate for a large standard deviation of the measurement error.

The standard deviation of the measurement error can also be seen as the level of confidence
in the available data, where a small value expresses high confidence in the data. That is, the
standard deviation of the measurement error can be employed as a tool to combine measurement
data from different sources (e.g. data of different age or from various measurement techniques)
with different levels of significance or accuracy.

4.4 Discussion

The proposed methodology for Bayesian analysis and reliability updating with spatial data is
applied to the reliability assessment of a chamber wall of a ship lock in Germany. As several
assumptions and simplifications are made, the resulting estimates listed in Table 4.3 are to be
seen as qualitative assessments of the different investigated approaches. For instance, loads are
modelled deterministically. For a detailed reliability analysis of the structure, furthermore, local
and global failure modes based on stress (ultimate limit state) and deformation (serviceability
limit state) have to be taken into account. Furthermore, the reinforcement in the concrete of
the upper part and additional foundation parameters have to be modelled.
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Nevertheless, the results in Table 4.3 indicate that modelling the spatial variability with
random fields and Bayesian updating of the distribution parameters can increase the structural
reliability estimate. The effect of Bayesian updating is higher for the random field approach than
it is for the random variable approach. The reason for this is that the update of the random
variables following Eurocode 0 assumes no prior information on the distribution parameters in
contrast to the JCSS model which makes use of an informative prior for the concrete strength
[9, 18].

Further attention needs to be paid to the modelling of the measurement error, as this
significantly influences the effect of measurement data. Especially the variance of the error has
to be calibrated for the applied testing method and the assumption of statistical independence
of test errors needs to be verified.

The probabilistic modelling of aged tamped concrete in large hydraulic structures remains
to be investigated in further studies, as the prior model used in this study does not explicitly
address this concrete type. Due to the long construction periods at that time, the assumption
of an isotropic autocorrelation function might not hold as the structure consists of different
layers from subsequent steps in the construction process. Besides, additional studies need to be
performed to validate the applied autocorrelation model, as the random field modelling largely
depends on the choice of the autocorrelation function. Very little literature is available on the
choice of a correlation model for concrete structures. Especially the correlation length and a
potential minimum correlation ρ0 within a structure are parameters that need to be chosen
carefully. It should also be investigated if a hierarchical random field modelling is not better
suited to reflect the structure-to-structure variability than the minimum correlation ρ0.

Moreover, Bayesian updating is not always as straightforward as in this special case of
the lognormal random field with direct measurements. For advanced problem settings without
analytical solution, one needs to resort to numerical (e.g., sampling) techniques to derive the
posterior distribution. For example, one can make use of the Bayesian updating with structural
reliability methods environment, which reduces the reliability updating problem to solving one
parallel system and one component problem [28, 29].

In the case where functional expressions for the posterior random fields are available, the
spatial averaging method can be applied to reduce the dimensionality of the random field to
a feasible set of random variables [14, 32]. The advantage of this approach is that it can be
coupled easily with commercial finite element software, as the averaging domains can be chosen
in order to match the finite element mesh. This is not the case for series expansion methods,
such as the Karhunen-Loève expansion, where an additional interpolation on the Gauss points
of the finite element mesh is required, resulting in considerable implementation effort [23].

4.5 Conclusions

Reliability assessment of existing large hydraulic structures is an important task because of the
considerable age of many of these structures. Data of on-site investigations is often the basis
for modelling material properties in the structural analysis. This paper investigates the effect
of modelling spatial variability in large hydraulic structures. It is proposed to model concrete
properties as random fields thus including the inherent spatial variability of these parameters in
the reliability analysis. The probabilistic model used for the concrete is based on modelling the
basic compressive strength as a random field; the actual compressive strength, tensile strength
and Young’s modulus are defined as functions of this random field and additional random
variables.

Following Eurocode 0 it is proposed to use Bayesian analysis to include available information
from measurements in the random field model. A special case is described, where an analytical
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solution is available to update a lognormal random field. The updating rules are defined as
functions of the prior parameters, the available data and an error term to include uncertainty in
the measurement results.

The application of the methodology to the deformation analysis of a ship lock wall illustrates
the effect of modelling spatial variability and including measurement information on the calculated
reliability. The results show that the explicit modelling of spatial variability and the Bayesian
updating have a significant impact on the reliability estimate of large hydraulic structures and
can provide an improved assessment of the structural condition. In the presented case study,
the spatial modelling of concrete properties reduces the estimated failure probability by ≈ 50 %
compared to the failure probability estimate obtained when the concrete properties are modelled
as random variables with the prior parameters. Bayesian updating of the random fields also has a
strong impact on the reliability estimate, as the computed posterior failure probability decreases
by an order of magnitude compared to the random field approach without Bayesian updating.
Comparison of the results to the reliability obtained with the fitted Student-t distribution that
is the underlying model for obtaining characteristic values following Eurocode 0 shows that
modelling of spatial variability with random fields can improve the calculated reliability of
a structure, as the additional information available from the measurement locations can be
included in the model. In addition, the proposed method allows for including prior information,
which is available from the nominal concrete strength at the time of construction.
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4.A Characteristic values according to Eurocode 0

Underlying the method in Annex D.7 of Eurocode 0 [9] is the use of Bayesian statistics
to determine characteristic values of material properties that follow a normal or lognormal
distribution. It differentiates between two cases: (i) the coefficient of variation of the property
is known and hence only the mean has to be estimated, and (ii) the mean and the variance
are unknown. This appendix focuses on explaining the latter case, since it is employed in
Section 4.3.5.1.

In general, a characteristic value is defined as a specific quantile value of the underlying
probability distribution. That is, the characteristic value of a random variable X, defined as the
p-quantile value, can be obtained as follows:

xk,p = F−1
X (p), (4.31)

where F−1
X (·) is the inverse cumulative distribution function (CDF) of X. For material properties,

the characteristic value is typically defined as the 5 %-quantile value. The method in Annex
D.7 of Eurocode 0 defines the characteristic value as quantile value of the posterior predictive
distribution of X [13]. It assumes that no prior information on the distribution of X is available,
which is equivalent to assuming a diffuse (noninformative) prior distribution in the context of
Bayesian analysis. If X describes a quantity that follows a normal distribution with unknown
mean and variance, the predictive distribution is a Student-t distribution. The estimation of the
parameters of the posterior predictive distribution is based on nm test results xm,i, i = 1, . . . , nm.

Three parameters have to be estimated for the Student-t distribution: the number of degrees
of freedom ν, location parameter a and scale parameter b. The number of degrees of freedom is
directly determined by the amount of data, ν = nm − 1. The location parameter is estimated as

94



C
ha

pt
er

4

4.A Characteristic values according to Eurocode 0

the sample mean of the data:

ā = µ̄ = 1
nm

nm∑
i=1

xm,i. (4.32)

The estimated scale parameter is defined by

b̄ =

√√√√ 1
nm − 1

nm∑
i=1

(xm,i − ā)2 ·
√
nm + 1
nm

. (4.33)

The characteristic value of X can be obtained by applying Equation (4.31) using the inverse
CDF of the Student-t distribution with parameters nm − 1, ā and b̄. To generalize the approach,
the random variable X can be transformed to a standard Student-t distributed random variable
U (a = 0, b = 1) as follows:

U = X − ā

b̄
. (4.34)

It is noted that ν is not affected by this transformation. Therefore, the characteristic value of X
corresponding to the p-quantile value is defined as

xk,p = ā+ b̄ · uk,p, (4.35)

where uk,p is the p-quantile value of the standard Student-t distribution with nm − 1 degrees of
freedom, that is, the inverse CDF of the standard Student-t distribution with nm − 1 degrees
of freedom, evaluated at p. A modified but equivalent version of Equation (4.35) is used in
Eurocode 0 for p = 0.05:

xk,p = µ̄ ·
(
1 − knm · δ̄X

)
, (4.36)

where δ̄x = σ̄
µ̄ is the sample coefficient of variation of X. µ̄ is the sample mean (Equation (4.32))

and σ̄ is the sample standard deviation, given by

σ̄ =

√√√√ 1
nm − 1

nm∑
i=1

(xm,i − µ̄)2. (4.37)

knm is the factor that accounts for the limited amount of data:

knm = −uk,p ·
√
nm + 1
nm

, (4.38)

where uk,0.05 is the inverse CDF of the standard Student-t distribution with nm − 1 degrees of
freedom, evaluated at 0.05.

The method can also be applied if X follows a lognormal distribution. In this case, the
parameters of the predictive Student-t distribution are estimated for the distribution of ln(X).
Accordingly, the location and scale parameters are estimated as

āln = µ̄ln,m = 1
nm

nm∑
i=1

ln (xm,i) , (4.39)

b̄ln =

√√√√ 1
nm − 1

nm∑
i=1

(ln (xm,i) − āln)2 ·
√
nm + 1
nm

. (4.40)

Equations (4.34) and (4.35) can be used to determine the characteristic value for ln(X), from
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which the characteristic value for X can be calculated as follows:

xk,p = exp
(
āln − b̄ln · uk,p

)
. (4.41)

This equation also appears in a different, yet equivalent version in Eurocode 0:

xk,p = exp (µ̄ln − knm · σ̄ln) , (4.42)

where knm follows the definition in Equation (4.38), µ̄ln is the sample mean of the logarithmic
measurements (Equation (4.40)) and σ̄ln is the sample standard deviation of the logarithmic
measurements:

σ̄ln =

√√√√ 1
nm − 1

nm∑
i=1

(ln (xm,i) − µ̄ln)2. (4.43)

Eurocode 0 provides a table with values of knm for different nm. This enables direct calculation
of characteristic values based on µ̄ and σ̄ (µ̄ln and σ̄ln).

By replacing the normal (lognormal) distribution with the Student-t distribution, one
accounts for the uncertainty in the fitted distribution arising from the limited amount of
available data. By fitting a normal or lognormal distribution directly from the data, one typically
underestimates the variability of the property of interest (e.g., [2]). The Student-t distribution
compensates this error as its tails are heavier than these of a normal distribution. For nm → ∞,
the Student-t distribution converges to a normal distribution. It is pointed out that this approach
does not include measurement uncertainty and does not account for any prior information on
the material properties.
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Chapter 5

Bayesian analysis of hierarchical random
fields for material modeling
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Abstract

In probabilistic assessments, spatially variable material properties are modeled with random
fields. These random fields can be learned from spatial data by means of Bayesian analysis.
This paper presents analytical expressions for the Bayesian analysis of hierarchical Gaussian
random fields. We model the prior spatial distribution by a Gaussian random field with normal-
gamma distributed mean and precision and make use of the conjugacy of prior distribution
and likelihood function to find the posterior distribution of the random field parameters. We
present closed-form expressions for the spatial mean and precision function of the posterior
predictive Student’s t-random field. Furthermore, we discuss the application of the hierarchical
model to non-Gaussian random fields (translation random fields) and show the connection of
the methodology to the Bayesian approach of EN 1990 for estimating characteristic values for
material parameters. The method is illustrated on two spatial data sets of concrete and soil
strength parameters.
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5.1 Introduction

Setting up an engineering model requires definition of material properties. To correctly account
for their inherent randomness, such material properties are commonly modeled probabilistically.
A probabilistic representation with random variables is sufficient for modeling materials without
or with negligible spatial variability. However, in many applications the effects of the spatial
variability of materials should not be neglected in the modeling process. This is the case, e.g.,
with soil parameters in geotechnical assessments [39], and material parameters in assessments of
large concrete structures [e.g., 22].

Spatially variable uncertain quantities can be modeled by random fields (RFs). An RF
represents a random variable at each point of a spatial domain [51]. A complete definition of the
RF requires specification of the joint distribution of the variables corresponding to any collection
of points of the spatial domain. This is nontrivial in general with the exception of Gaussian
and a special case of non-Gaussian RFs, termed translation RFs. Translation RFs are RFs that
can be expressed as functions of Gaussian RFs [24], e.g., a lognormal RF can be expressed as
the exponential of a Gaussian RF. A Gaussian RF implies that the joint distribution for any
collection of points is multivariate Gaussian and can be completely defined by the first- and
second-moment functions [1]. Gaussian RFs have well established statistical properties and a
variety of methods are available for simulating them [e.g., 32].

RFs can be learned from data through Bayesian analysis [21]. In the general case, such an
update needs to be done numerically with methods usually based on Monte Carlo sampling,
including Markov chain Monte Carlo methods [8], sequential Monte Carlo methods [18, 12] and
subset simulation [48, 5, 49]. However, Gaussian RFs enable the use of conjugate priors to learn
the RF parameters via a closed-form update in a Bayesian analysis [38, 22].

RFs have been used for a long time in the field of geostatistics for the interpolation of spatial
data by means of kriging, which includes Bayesian inference of Gaussian RF parameters [e.g.,
47, 25]. A comprehensive review of hierarchical Bayesian analysis with spatial data from the
viewpoint of geostatistics can be found in [3]. More recently, these approaches have gained
importance in the field of machine learning. They are used for Gaussian process regression,
which is a versatile surrogate model for random functions with noisy observations [43]. In
the engineering community, the potential of accounting for spatial variability within Bayesian
analysis has been recognized especially in the field of geotechnical engineering [e.g., 19, 15, 54, 28].
Therein, it is often essential to identify site-specific trend functions of soil properties in addition
to the inherent spatial variability. Recently, attempts have been made to simultaneously learn
the trend function and autocovariance function with sparse measurements in a Bayesian analysis.
The approach of [14, 13, 16] applies sparse Bayesian learning to learn the trend function of the RF
and subsequently draws samples from the posterior distribution of the RF parameters through
Markov chain Monte Carlo methods. The authors of [53] applied Bayesian compressive sampling
to represent non-homogeneous RFs. This approach does not require the explicit choice of a
prior RF model. It expresses the RF as a superposition of a set of basis functions and evaluates
the posterior distribution of the coefficients of these functions using sparse measurements. The
method has been combined with the Karhunen-Loève expansion to obtain realizations of the RF
[56, 55, 35], and has been recently extended to treat multi-dimensional and cross-correlated RFs
[26, 58].

Bayesian approaches have also found their way into other engineering fields, e.g., for esti-
mating design values of structural material properties when samples are available [4, 41], which
is also included in the current European standards for constructions (EN 1990) [20].

The aim of this paper is to present a hierarchical Bayesian model for material properties
modeled with Gaussian or translation RFs. Hierarchical Gaussian Bayesian models have been well
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developed in the context of Bayesian linear regression [e.g., 21] and hierarchical spatial modeling
[e.g., 7]. This work applies existing results from these fields to derive a comprehensive hierarchical
RF model that can be used in the context of stochastic material modeling. We make use of the
fact that the normal-gamma distribution is the conjugate prior for the mean and precision of a
Gaussian RF to obtain the posterior distribution of the RF parameters. The posterior predictive
RF is a non-homogeneous RF with Student’s t-marginal distribution. Importantly, given a
prior distribution for the RF parameters and a chosen autocorrelation function, all steps of the
Bayesian analysis can be performed in closed form, providing marginal and multivariate solutions
for the posterior predictive RF model. This property should simplify application in practice,
especially in engineering domains where accounting for spatial variability is currently not common
practice. Moreover, we discuss how existing approaches for simulation of Gaussian RFs can be
applied to generate realizations of the derived RF model. The application to situations with
non-Gaussian translation prior RFs is investigated and for the specific case of lognormal prior
distribution, the equations for the required transformation are given. Furthermore, we discuss
the influence of the prior correlation function and a posterior point estimate of its parameters.
Finally, we show that the presented updating approach is a generalization of the Bayesian
approach for evaluation of characteristic values of EN 1990.

The structure of the paper is as follows. Section 5.2 presents the structure of the hierarchical
RF, followed by a short review of Bayesian analysis and a step-by-step presentation of the
proposed Bayesian updating procedure. Section 5.3 applies the method to two examples from
different engineering fields (geotechnical engineering and structural engineering). A summary
and main conclusions are given in Section 5.4. The analytical expressions for updating the RF
are derived in Appendices 5.A to 5.C and Appendix 5.D describes properties of the log-Student’s
t-distribution.

5.2 Methodology

In a Gaussian RF X(z), the joint distribution of {X(zi), i = 1, . . . , n} for any zi ∈ Ω ⊂ Rd

and n ∈ N is jointly Gaussian, with Ω denoting the domain of definition of the RF and d the
spatial dimension of Ω [1]. This RF is fully described by the spatial functions for the mean
value, the variance and the autocorrelation. Closed-form solutions are available for the posterior
distribution of the RF given data M of X [21, 6]. We consider a prior RF for X(z) with
homogeneous point statistics, i.e., a-priori the RF has constant mean and variance. The vector
of uncertain hyperparameters is θ = [µX , λX ]T, where µX is the mean value and λX is the
precision (inverse of the variance). The assumption of prior homogeneity is a simplification and
limits the application to cases without a spatial trend of the RF or cases where a homogeneous
RF X(z) can be obtained from the actual RF by a normalization operation [e.g., 51] or by
de-trending methods [e.g., 52, 40].

Figure 5.1 summarizes the investigated problem setting, where the nodes represent uncertain
quantities (the random variables and the RF) and the arrows denote the direct dependencies
among them [e.g., 27]. τ is the vector of correlation parameters, i.e., the parameters of the
autocorrelation function of the RF. These are initially considered as deterministic; the estimation
of τ from the data M is discussed in Section 5.2.7. It is worth noting that the method can
handle arbitrary autocorrelation functions, i.e., we do not require the autocorrelation function
to depend on the difference in location, although in most applications this is a standard choice.
The aim of the analysis is to learn X(z) conditional on M. The individual steps of the analysis
are derived in the following, preceded by a short introduction to the basics of Bayesian analysis.
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τ

X(z)

µ
X

λ
X

M

Figure 5.1: The hierarchical RF model to learn X(z) from M. µX and λX are the mean and precision
of the RF X(z) and M is the measurement data. τ is the vector of parameters of the
autocorrelation function.

5.2.1 Bayesian analysis

When performing a Bayesian analysis, the first step is setting up a prior joint probability density
function (PDF) of the parameters θ. The prior PDF f (θ) is then updated to the posterior PDF
f (θ|M) with data M, by application of Bayes’ rule [21]:

f (θ|M) ∝ f (θ) · L (θ|M) , (5.1)

where L (θ|M) is the likelihood function, summarizing the information from the data M. Note
that a single data point Mi may contain various types of information, including the measurement
outcome, the measurement location or time, the used measurement device and the environmental
conditions at the time of the measurement. In this paper, we focus on the case where M contains
spatially distributed measurements of an RF X(z). Hence, each Mi includes the measurement
outcome xm,i and the corresponding measurement location zm,i, i.e., Mi = [xm,i, zm,i]. Given a
set of n direct measurements of the RF X(z), M = [M1, M2, . . . , Mn]T, with measurement
outcomes xm = [xm,1, xm,2, . . . , xm,n]T ⊆ Rn and corresponding measurement locations Zm =
[zm,1, zm,2, . . . , zm,n]T ⊆ Rn×d, the joint likelihood is the PDF of X(z) at locations Zm

conditional on θ:
L (θ|M) = f (xm; Zm|θ) . (5.2)

5.2.2 Prior model

We consider a Gaussian RF X(z) whose parameter vector θ has a normal-gamma (N G) prior,
with PDF [e.g., 42, 41, 7]

f (θ) = N G (µX , λX |µ0, κ0, α0, β0) = N (µX |µ0, κ0λX) · G (λX |α0, β0)

= C0λ
α0− 1

2
X exp

(
−λX

(
κ0
2 (µX − µ0)2 + β0

))
. (5.3)

Γ (·) is the gamma function and C0 is a normalizing constant, given by

C0 = βα0
0 κ

1
2
0

Γ (α0) (2π)
1
2
. (5.4)
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The spatial variability of the prior RF is determined by its autocorrelation function ρ (z1, z2) [1,
51]. A classical choice for the autocorrelation function is the Matérn model, which includes the
exponential model and the square-exponential model [33, 1, 43].

5.2.3 Likelihood function

The likelihood function for learning the RF X(z) with spatially distributed measurements M is
given by Equation (5.2). For the Gaussian RF this translates to:

L (θ|M) = λ
n
2
X

(2π)
n
2 (det (Rm))

1
2

exp
(

−λX

2 (xm − µX1n) R−1
m (xm − µX1n)T

)
, (5.5)

where Rm is the correlation matrix of the measurement locations with entry Rm,i,j calculated
as ρ (zm,i, zm,j). 1n denotes a 1 × n-vector of ones.

Uncertainty in the measurement procedure can be accounted for by including a measurement
error εi. Assuming an additive measurement error yields the following relation between the
actual value x at location zm,i and the measured value xm,i:

xm,i = x (zm,i) + εi. (5.6)

The error εi is often modeled by a zero-mean Gaussian random variable with standard deviation
σε and statistical independence between the measurement errors at different locations is assumed.
In such case, the methodology presented in the following sections is applicable with a minor
modification: λX does not describe the precision of X(z) but the overall precision of X(z) + ε,
i.e.,

λX =
(
λ−1

X,RF + σ2
ε

)−1
, (5.7)

where λX,RF is the precision of X(z). Moreover, the autocorrelation function describing the
overall variability reads

ρ (zi, zj) = ρRF (zi, zj) · (1 − γε) + δ(i, j) · γε, (5.8)

where ρRF (zi, zj) denotes the spatial correlation function of X(z) and γε = σ2
ελX ∈ (0, 1) is

the portion of the overall variance attributed to the measurement error. δ(i, j) is the Dirac delta
function returning 1 if i = j and 0 otherwise.

5.2.4 Posterior distribution of the parameters

In the general case, Equation (5.1) needs to be solved numerically, e.g. through sampling
techniques, due to the intractability of the normalizing constant. However, analytical solutions
for the posterior distribution are available in some special cases, when using conjugate priors
[21, 42]. The chosen N G prior distribution and the multivariate Gaussian likelihood of Equation
(5.5) are conjugate. Hence, the posterior distribution of θ can be derived analytically and has
the same parametric form as the prior, i.e., it is a N G distribution. The Bayesian updating
simplifies to an update of the parameters of the N G distribution [17, 7]:

f (θ|M) = N G (µX , λX |µn, κn, αn, βn) = Cnλ
αn− 1

2
X exp

(
−λX

(
κn

2 (µX − µn)2 + βn

))
, (5.9)
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where the normalizing constant Cn is given by

Cn = βαn
n κ

1
2
n

Γ (αn) (2π)
1
2
. (5.10)

The parameters of the posterior distribution can be obtained with the following set of equations:

µn = κ0µ0 + 1nR−1
m xT

m

κ0 + 1nR−1
m 1T

n

, (5.11)

κn = κ0 + 1nR−1
m 1T

n , (5.12)

αn = α0 + n

2 , (5.13)

βn = β0 + 1
2

xmR−1
m xT

m +
κ0µ

2
01nR−1

m 1T
n − 2κ0µ01nR−1

m xT
m −

(
1nR−1

m xT
m

)2

κ0 + 1nR−1
m 1T

n

 . (5.14)

A derivation of the parameters in Equations (5.11) to (5.14) can be found in [21] in the context of
Bayesian linear regression. For easier accessibility, we provide the derivations in Appendix 5.A.

5.2.5 Marginal posterior predictive distribution

Typically, the goal is to make predictions about the quantity of interest X. To this end, one
needs the posterior predictive distribution of X, which is obtained by marginalization of the joint
PDF of X conditional on θ and the posterior distribution of θ given M. When X is modeled by
a single random variable and the measurement points are uncorrelated, the posterior predictive
distribution is given as [41, 19, 21]

f (x|xm) =
�

Θ
f (x|θ) f (θ|xm) dθ, (5.15)

where Θ denotes the domain of definition of θ. The conditional independence between X given
θ and M does no longer hold when X is modeled as an RF. Instead, the posterior and the
posterior predictive distribution of X will depend on the spatial location z. In RF theory, the
PDF of the RF X(z) at location z is termed marginal (or first order) PDF of X(z). The
marginal posterior predictive PDF of X(z), denoted f (x; z|M), is given as

f (x; z|M) =
�

Θ
f (x; z|θ,M) f (θ|M) dθ. (5.16)

Here, f (x; z|θ,M) is the marginal PDF of X(z) given θ and M, which requires an additional
updating step. In this step, the prior is the marginal PDF of X(z) given θ, f (x; z|θ), which
is a Gaussian PDF with parameters µX and λX . The posterior PDF f (x; z|θ,M) is again
a Gaussian PDF with parameters µ′′

z and λ′′
z, which can be calculated by application of the

following updating rules for the conditional Gaussian distribution [47, 6, 51]:

µ′′
z = µX +Rz,mR−1

m (xm − µX1n)T , (5.17)

λ′′
z = λX

(
1 −Rz,mR−1

m RT
z,m

)−1
, (5.18)
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where Rz,m : Rd → R1×n is a row vector function with element i defined as ρ (z, zm,i) with
n being the number of measurements and Rm is given by Equation (5.8). The integral in
Equation (5.16) can be written as follows:

f (x; z|M) =
� +∞

λX=0

� +∞

µX=−∞
N
(
x|µ′′

z, λ
′′
z

)
N (µX |µn, κnλX) G (λX |αn, βn) dµXdλX . (5.19)

Solution of the integral in Equation (5.19) results in the following marginal posterior predictive
PDF:

f (x; z|M) = ft (x|µz,t, λz,t, νt) =
Γ
(

νt
2 + 1

2

)
Γ
(νt

2
) (

λz,t

πνt

) 1
2
(

1 + λz,t (x− µz,t)2

νt

)− νt
2 − 1

2

, (5.20)

where ft (x|µt, λt, νt) denotes the PDF of the Student’s t-distribution with location parameter
µt, scale parameter λt and degrees of freedom νt [6].

The spatial functions for the parameters of the posterior predictive Student’s t-distribution
are given in closed form by the following expressions:

µz,t = µn +Rz,mR−1
m (xm − µn1n)T , (5.21)

λz,t = αn

βn

(
1 −Rz,mR−1

m RT
z,m +

(
1 −Rz,mR−1

m 1T
n

)2
κ−1

n

) , (5.22)

νt = 2αn. (5.23)

The parameters µn, κn, αn and βn are obtained following the updating rules in Equations (5.11)
to (5.14). A detailed derivation of the parameter update can be found in Appendix 5.B.

5.2.6 Posterior predictive random field

The approach presented in Section 5.2.5 enables predicting the marginal distribution of quantity
X at any location z ∈ Ω given spatial data M. This is useful in cases where the correlation
among values of X at different locations needs not be accounted for in further predictions [41].
However, in many cases the spatial dependence of X is required for predictions. In such cases,
the joint distribution of X at k different locations is given by the k-th order posterior predictive
PDF of X (z):

f (x; Z|M) =
�

Θ
f (x; Z|θ,M) f (θ|M) dθ. (5.24)

The posterior distribution for the parameter vector θ is the same as the one appearing in
Equation (5.16). The prior distribution of the RF X (z) given θ is Gaussian and, hence,
f (x; Z|θ) is k-variate Gaussian. Since the updating rules for a conditional Gaussian distribution
of Equations (5.17) and (5.18) can be extended to the multivariate case, f (x; Z|θ,M) is also
k-variate Gaussian with mean vector µ′′

Z and precision matrix ΛZ
′′, which can be calculated by

the following equations [6]:

µ′′
Z = µX1T

k + RZ,mR−1
m (xm − µX1n)T , (5.25)

ΛZ
′′ = λX

(
RZ − RZ,mR−1

m RT
Z,m

)−1
, (5.26)
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where RZ,m : Rk×d → Rk×n is a matrix function with element i, j defined as ρ (zi, zm,j).
RZ : Rk×d → Rk×k is a matrix function with element i, j defined as ρ (zi, zj). Rm is the matrix
containing the correlation of the measurement locations and a potential measurement error, as
introduced in Section 5.2.3. 1k is a 1 × k vector of ones.

Equation (5.24) takes the following form:

f (x; Z|M) =
� +∞

λX=0

� +∞

µX=−∞
N
(
xz|µ′′

Z,ΛZ
′′)N (µX |µn, κnλX) G (λX |αn, βn) dµXdλX . (5.27)

The integral in Equation (5.27) results in the following k-th order posterior predictive PDF

f (x; Z|M) = ft (x|µZ,t,ΛZ,t, νt) =
Γ
(

νt
2 + k

2

)
Γ
(νt

2
) (det (ΛZ,t))

1
2

(πνt)
k
2

(
1 + (x− µZ,t) ΛZ,t (x− µZ,t)T

νt

)− νt
2 − k

2

.

(5.28)

where ft (x|µZ,t,ΛZ,t, νt) is the k-variate Student’s t-distribution [29, 6]. As in the univariate
case, νt is a scalar parameter denoting the degrees of freedom. νt is given by Equation (5.23)
and the parameters µZ,t and ΛZ,t are given in closed form:

µZ,t = µn1T
k + RZ,mR−1

m (xm − µn1n)T , (5.29)

ΛZ,t = αn

βn

(
RZ − RZ,mR−1

m RT
Z,m +

(
1T

k − RZ,mR−1
m 1T

n

)
κ−1

n

(
1T

k − RZ,mR−1
m 1T

n

)T
)−1

,

(5.30)

RZ, RZ,m and Rm follow the definitions for Equations (5.25) and (5.26) and the parameters
µn, κn, αn and βn are obtained following the updating rules in Equations (5.11) to (5.14).
The analytical expressions for the parameters of the multivariate posterior predictive Student’s
t-distribution are derived in detail in Appendix 5.C.

The multivariate Student’s t-distribution as predictive distribution for the multivariate
Gaussian distribution also appears in Bayesian regression for the normal linear model [7, 21, 2].
In fact, the presented model forms a special case of weighted linear Bayesian regression with a
single explanatory variable.

Equation (5.28) can be used for multivariate predictions ofX accounting for the information in
M. It is noted that for k = 1, Equation (5.28) reduces to the expression for the marginal posterior
predictive Student’s t-distribution given in Equation (5.20), accordingly Equations (5.29) and
(5.30) reduce to Equations (5.21) and (5.22). Equations (5.29) and (5.30) can be directly
transformed to the spatial parameter functions of the posterior predictive RF, i.e., the mean
function µt(z) and the precision function λt (z1, z2):

µt(z) = µn +Rz,mR−1
m (xm − µn1n)T , (5.31)

λt (z1, z2) = αn

βn

(
ρ (z1, z2) −Rz1,mR−1

m RT
z2,m +

(
1 −Rz1,mR−1

m 1T
n

)
κ−1

n

(
1 −Rz2,mR−1

m 1T
n

))−1
,

(5.32)

where ρ (z1, z2) is the prior correlation of z1 and z2. Rz,m and Rm are utilized as in Equa-
tions (5.17) and (5.18). The posterior predictive RF is fully defined by the parameters specified
by Equations (5.23), (5.31) and (5.32).
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5.2.7 Choice of correlation parameters

The choice of the prior autocorrelation function ρ (z1, z2) has significant influence on the
predictive distribution of the proposed RF model; it controls the spatial variability of the
prior RF and the correlation of the measurement locations in Rm. Hence, the autocorrelation
function and its parameters need to be chosen carefully. Although literature is available on
different parametric correlation models, their advantages and disadvantages [e.g., 1, 33, 23],
the specific parameter choice for a problem at hand remains challenging if little information
about the modeled quantity is available. This problem can be addressed by treating the vector
τ of correlation parameters as a random vector with associated prior distribution f(τ ). The
dependency between τ and the multivariate posterior predictive distribution can be expressed
explicitly by extending Equation (5.24) as follows:

f (x; Z|M, τ ) =
�

Θ
f (x; Z|θ,M, τ ) f (θ|M, τ ) dθ. (5.33)

f (x; Z|M) can then be determined by marginalization of f (x; Z, τ |M):

f (x; Z|M) =
�

T
f (x; Z, τ |M) dτ =

�
T
f (x; Z|M, τ ) f (τ |M) dτ , (5.34)

with T denoting the domain of definition of τ . Figure 5.2 illustrates the adapted hierarchical
Bayesian model where τ is considered as additional uncertain parameter, in contrast to the
deterministic choice illustrated in Figure 5.1. The closed-form updating procedure for the
posterior predictive expressions can only be used to find f (x; Z|M, τ ). Direct evaluation of
Equation (5.34) can be cumbersome or even impossible, as it requires evaluation of f (τ |M),
which depends on the choice of the correlation model and most likely cannot be evaluated in
closed form.

X(z)

µ
X

λ
X τ

M

Figure 5.2: Adapted hierarchical Bayesian model to consider τ as uncertain parameter. The dependence
of the resulting RF model on τ can be integrated out when τ is modeled as random vector.

Through application of Bayes’ theorem, f (τ |M) is given by the following expression:

f (τ |M) ∝ f(τ ) · f (M|τ ) . (5.35)
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Including the dependency on τ in the definition of the likelihood function of Equation (5.2) gives

L (θ|M, τ ) = λ
n
2
X

(2π)
n
2 det (Rm (τ ))

exp
(

−λX

2 (xm − µX1n) (Rm (τ ))−1 (xm − µX1n)T
)
.

(5.36)

f (M|τ ) is the proportionality constant in f (θ|M, τ ) ∝ f (θ) · L (θ|M, τ ), hence

f (M|τ ) = f (θ) · L (θ|M, τ )
f (θ|M, τ ) . (5.37)

Note that θ and τ are independent and thus, f (θ|τ ) = f (θ). f (θ|M, τ ) is the posterior PDF
of θ for a given τ , which is a N G PDF with parameters given in Section 5.2.4. Splitting the
densities and their respective normalizing constants in Equation (5.37) gives

f (M|τ ) = C0
Cn (τ ) · (2π)− n

2 det (Rm (τ ))− 1
2
f̂ (θ) · L̂ (θ|M, τ )

f̂ (θ|M, τ )
, (5.38)

where C0 and Cn are defined in Equations (5.4) and (5.10). f̂ (θ) and f̂ (θ|M, τ ) are the
unnormalized prior and posterior N G distributions. L̂ (θ|M, τ ) is the exponential term of
the likelihood function and is equal to the ratio of f̂ (θ|M, τ ) and f̂ (θ) (cf. Appendix 5.A).
Thus, the fraction disappears in Equation (5.38). Inserting the expressions for C0 and Cn into
Equation (5.38) yields

f (M|τ ) =
(

κ0
κn (τ )

) 1
2 Γ (αn)βα0

0
Γ (α0) (βn (τ ))αn

(2π)− n
2 det (Rm (τ ))− 1

2 . (5.39)

Using Equation (5.39), sampling from f (τ |M) can be achieved, e.g. by using Markov chain
Monte Carlo methods [8]. These samples τi, i = 1, . . . , NMCMC can then be used to approximate
f (x; Z|M):

f (x; Z|M) ≈ 1
NMCMC

NMCMC∑
i=1

f (x; Z|M, τi) . (5.40)

Alternatively, the posterior distribution of τ can be approximated by its maximum a-
posteriori (MAP) estimate [36]. That is, Equation (5.34) is approximated by

f (x; Z|M) ≈ f (x; Z|M, τ ∗) , (5.41)

where τ ∗ is the MAP estimate of τ . It is found by maximizing Equation (5.35) with respect to
τ . Using Equation (5.39), this is equivalent to solving the following optimization problem:

arg maxτ∈T f (τ |M) = arg minτ∈T ln (κn (τ )) + 2αnln (βn (τ )) + ln (det (Rm (τ ))) − 2ln (f(τ )) ,
(5.42)

where κn, αn and βn follow the definitions in Section 5.2.4 conditional on τ .

The parametric form of the correlation model can be chosen among a set of models by means
of Bayesian model selection. To this end, the marginal likelihood, i.e., the normalizing constant
of Eq. (5.35), must be evaluated for the different parametric model choices and multiplied with
the prior beliefs in the models [46].
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5.2.8 Extension to non-Gaussian prior random fields

The presented Bayesian approach is applicable to Gaussian prior RFs and data assigned with
additive Gaussian measurement error. Its applicability can be extended to the class of so-called
translation RFs, defined as [24, 30]

Y (z) = T (U (z)) , (5.43)

where U (z) is a zero-mean and unit-variance Gaussian RF. If the marginal cumulative distribu-
tion function (CDF) of the non-Gaussian RF FY ;z(y(z)) is given and it is strictly increasing, one
can define the transformation of Equation (5.43) as T (·) = F−1

Y ;z(Φ(·)), with F−1
Y ;z(·) denoting

the inverse of FY ;z(·) and Φ(·) the standard normal CDF [31]. U (z) is obtained from Y (z) by
inversion of Equation (5.43):

U (z) = T−1 (Y (z)) . (5.44)

To apply the proposed hierarchical Bayesian approach to the non-Gaussian RF Y (z), each
measurement outcome ym,i transformed to the Gaussian space through Equation (5.44) should
be associated with an additive Gaussian error. This can be equivalently stated as follows:

ym,i = T (u (zm,i) + εi) , (5.45)

where εi is a zero-mean Gaussian measurement error. A special case is a lognormal RF
Y (z) with parameters µlnY and λlnY and a multiplicative lognormal measurement error, i.e.,
ym,i = y (zm,i) · εy,i. In such case, Equations (5.43) and (5.45) can be rewritten as functions of
a Gaussian RF X (z):

Y (z) = exp (X (z)) , (5.46)

ym,i = exp (x (zm,i) + εi) = exp (x (zm,i)) · exp (εi) = exp (x (zm,i)) · εy,i. (5.47)

µlnY and λlnY are the mean value and precision respectively of the underlying Gaussian RF X (z)
including the precision of the measurement error, i.e., µX = µlnY and λX = λlnY . As defined
in Section 5.2.3, λX is given as the overall precision of X (z) + ε. The error term εy,i follows a
lognormal distribution with median 1. Its parameters are µlnε = 0 and λlnε = λX

γε
, which are

mean value and precision respectively of the underlying Gaussian measurement error. γε has to
be chosen accordingly to reflect the contribution of ε to the overall variance of the underlying
Gaussian random field. That is, the hierarchical Bayesian approach is directly applicable by a
simple logarithmic transformation of the data and the measurement error. After the updating
procedure, the posterior predictive RF can be transformed back to the original space by applying
Equation (5.46). The transformed marginal distribution of the posterior predictive RF has the
form of a log-Student’s t-distribution. This distribution model is used in finance for the pricing
of options [11, 10] and belongs to the family of log-symmetric distributions [50]. The marginal
PDF of the posterior predictive RF is defined as follows:

f (y; z|M) = ft,ln (y|µz,t, λz,t, νt) = y−1
Γ
(

νt
2 + 1

2

)
Γ
(νt

2
) (

λz,t

πνt

) 1
2
(

1 + λz,t (ln (y) − µz,t)2

νt

)− νt
2 − 1

2

(5.48)

The finite-dimensional PDF can be derived in a similar manner. It is noted that the log-
Student’s t-distribution has divergent integer moments of any order. A short proof of this can
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be found in Appendix 5.D. The parametrization of Y (z) conditional on M is done by means of
µz,t, λz,t and νt, i.e., in terms of the parameters of the underlying Student’s t-RF X (z). For
νt → ∞, ft,ln (yz|M) converges to a lognormal distribution with location parameter µz,t and
scale parameter λ− 1

2
z,t .

5.2.9 Sampling the posterior predictive random field

The finite-dimensional distribution of the posterior predictive RF is the multivariate Student’s
t-distribution with parameters µZ,t,ΛZ,t and νt. The posterior predictive random vector X(Z)
corresponding to locations Z can be expressed as follows [29]:

X(Z) = U (Z)√
V
νt

+ µZ,t, (5.49)

where U(Z) is a zero-mean Gaussian random vector with precision matrix ΛZ,t. V is a random
variable that follows the chi-square distribution with νt degrees of freedom and is independent
of U(Z). Replacing U(Z) in Equation (5.49) by U(z), a zero-mean Gaussian RF with spatial
precision function λt (z1, z2) as given by Equation (5.32), and furthermore replacing µZ,t by
µt(z), the spatial function for the mean value defined in Equation (5.31), yields the corresponding
expression for the posterior predictive Student’s t-RF. Hence, the Student’s t-RF X(z) can be
expressed as a function of a Gaussian RF and one additional independent chi-square random
variable. In case of sampling from a translation RF Y (z), the transformation of Equation (5.43)
has to be adapted accordingly. Samples from U(z) can be generated by a variety of existing
methods [e.g., 32].

5.2.10 Connection to the Bayesian approach of EN 1990

Annex D.7 of EN 1990 (Eurocode 0) on the basis of structural design offers a method to
determine design values for material properties when samples are available [20]. The samples
are used to estimate a quantile value of the underlying probability distribution, the so-called
characteristic value. This approach distinguishes between the cases where (a) mean and variance
of the material property are unknown and (b) only its variance is unknown. In case (a), the
characteristic value can be estimated based on the sample mean, sample standard deviation and
the number of samples n. The underlying theory is a Bayesian approach and the calculated
value is the 5% quantile value of the posterior predictive distribution [41, 22]. We show in the
following that the hierarchical approach presented in this paper is a generalization of case (a) in
Annex D.7 of EN 1990.

We consider a material property X that follows a normal distribution with unknown
parameters θ and that a set of samples xm = [xm,1, xm,2, . . . , xm,n]T are available. If no prior
information about f (θ) is available, a non-informative choice can be made by choosing a N G
distribution with the following parameters [17]:

[µ0, κ0, α0, β0] =
[
/, 0,−1

2 , 0
]
, (5.50)

resulting in f (θ) = λ−1
X .

Furthermore, we assume independence of the random variables corresponding to the measure-
ment locations and neglect the measurement error, i.e., Rm = I. This leads to a simplification
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of Equations (5.11) to (5.14):

µn = 1nx
T
m

n
= 1
n

n∑
i=1

xm,i, (5.51)

κn = n, (5.52)

αn = n− 1
2 , (5.53)

βn = 1
2

xmx
T
m −

(
1nx

T
m

)2

n

 = 1
2

n∑
i=1

(xm,i − µn)2 . (5.54)

If one neglects the dependence between the measurements and the RF at the predictive
locations, the posterior predictive distribution f (x|xm) is obtained following Equation (5.15)
and is space-invariant. It is a Student’s t-distribution with the following parameters:

µt = µn = 1
n

n∑
i=1

xm,i, (5.55)

λt = αn

βn

(
1 + κ−1

n

) = n(n− 1)
(n+ 1)∑n

i=1 (xm,i − µn)2 , (5.56)

νt = 2αn = n− 1. (5.57)

The characteristic values in the method in EN 1990 are defined as 5% quantile values of
a Student’s t-distribution with parameters given by Equations (5.55) to (5.57). An additional
transformation step is added for ease of use, in which the Student’s t-distributed random variable
X is normalized:

Ut = (X − µt)λ
1
2 , (5.58)

where Ut follows the standard Student’s t-distribution with νt degrees of freedom, i.e., µt = 0
and λt = 1. This normalization allows the use of standardized coefficients (kn values), which
only depend on n:

kn = −F−1
Ut

(p)
√
n+ 1
n

, (5.59)

where F−1
Ut

(·) is the inverse CDF of Ut and p = 0.05, since the characteristic value xk is defined
as the 5% quantile value. Using the kn value, xk is obtained as follows:

xk = µ̄X

(
1 − knδ̄X

)
, (5.60)

where µ̄X = 1
n

∑n
i=1 xm,i is the sample mean and δ̄X = σ̄X

µ̄X
is the sample coefficient of variation

with σ̄2
X = 1

n−1
∑n

i=1 (xm,i − µ̄X)2. EN 1990 provides tabulated values of kn for varying n.
The method in EN 1990 also covers the case when the material property Y follows a

lognormal distribution and ym = [ym,1, ym,2, . . . , ym,n]T are the available samples. In this case,
the Bayesian analysis underlying the method is conducted as described above for the Gaussian
random variable X = ln(Y ) with the logarithmic samples xm,i = ln(ym,i), i = 1, . . . , n. The
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posterior predictive distribution f (y|ym) is a log-Student’s t-distribution parameterized in terms
of the parameters of the underlying Student’s t-distribution given by Equations (5.55) to (5.57).
The characteristic value yk is the 5% quantile value of f (y|ym), which is equivalent to the
exponential of the 5% quantile value of the underlying Student’s t-distribution. Thus, yk can be
calculated as

yk = exp
(
µ̄X

(
1 − knδ̄X

))
, (5.61)

where µ̄X and δ̄X are the sample mean and sample coefficient of variation of the logarithmic
samples and kn is given by Equation (5.59).

In a nutshell, the method in Annex D.7 of EN 1990 to determine characteristic values
for the design of structures is a special case of the presented RF analysis, which assumes a
non-informative prior distribution, independent measurements without measurement error and
independence between measurement locations and the material parameter at the predictive
locations.

5.3 Numerical examples

In this section, the proposed approach is applied to two numerical examples. The first one
involves a one-dimensional RF of a geotechnical material, while the second one models the
concrete compressive strength of a ship lock wall with a two-dimensional anisotropic RF.

5.3.1 Tip resistance of cohesive soil

Soil parameters are often determined based on measurements from cone penetration testing
(CPT). In CPT, the tip resistance qT measures the force required to push the cone through
the soil and can be used to infer further soil parameters. In this example, data from a CPT is
used, where the tip resistance of a cohesive soil layer was measured in depths from z = 3.900 m
to z = 10.275 m resulting in 256 equidistant measurements of the tip resistance. The data is
taken from [34] and was also used by Wang and Zhao to illustrate the performance of Bayesian
compressive sampling when sparse data is available [53]. The tip resistance is modeled by
the one-dimensional RF qT (z) in vertical direction with lognormal prior marginal distribution.
Hence, the transformation of Equation (5.46) is applied:

qT (z) = exp (X (z)) . (5.62)

The underlying prior RF X (z) is a homogeneous Gaussian RF with unknown mean value µX

and unknown precision λX . The prior autocorrelation function is modeled by the exponential
model with unknown correlation length lc:

ρ (zi, zj) = exp
(

−|zj − zi|
lc

)
(5.63)

Furthermore, no prior information on µX or λX are available and thus a non-informative prior
N G distribution is chosen with the parameters from Equation (5.50).

It is assumed that knowledge of the full data set is not available but only a subset of 13
measurement values taken at equidistant locations, as illustrated by the blue dots in panel a) of
Figure (5.3). It is assumed that the measurements are associated with a multiplicative lognormal
measurement error, where the portion of the total variance attributed to the transformed
Gaussian measurement error is given as γε = 0.01. In a first step, the MAP estimate for lc
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is obtained by solving the minimization problem of Equation (5.42), where the vector τ only
consists of lc. A uniform prior on the positive numbers is employed for lc and hence the term
ln (f(τ )) in the optimization problem can be dropped and the MAP estimate reduces to a
maximum likelihood estimate [44]. The resulting estimate for lc is obtained as l∗c = 0.74 m.
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Figure 5.3: Posterior predictive RF of the tip resistance qT. Panel a) shows the median (red line) and
the two-sided 90% credible interval, i.e., the area between the 5% and 95% quantile value
(orange area) of the marginal log-Student’s t-distributions. The 13 blue dots mark the used
measurement locations and values while the full data set is illustrated by the dotted black line.
Panel b) shows three independent realizations of the posterior predictive RF in comparison to
the two-sided 90% credible interval in gray.

Consequently, the posterior parameters of the N G distribution are obtained by application
of Equations (5.11) to (5.14) in combination with Equation (5.47) to account for the log-
transformation of the measurements. The spatial parameter functions of the posterior predictive
Student’s t-RF are calculated by means of Equations (5.31) and (5.32). From Equation (5.23)
the degrees of freedom are calculated as νt = 12. These are the parameters of the RF qT (z)
given M, which has log-Student’s t-marginal distribution with PDF given by Equation (5.48).
As the moments are not defined, the illustration in panel a) of Figure (5.3) shows the median of
the posterior predictive tip resistance and the corresponding 5% and 95% quantile values along
the depth of the soil layer. The increasing width of the orange area shows that the uncertainty
is very small close to the measurement locations and increases away from the measurements.
The full data set of 256 measurements is indicated by a black dotted line. Panel b) of Figure 5.3
shows three independent realizations of the posterior predictive RF. Comparison of the random
realizations with the full data set shows good accordance regarding the number and amplitude
of strong local deviations from the posterior predictive median. Hence, the proposed approach
can sufficiently approximate both the overall trend of the RF and the associated uncertainty.
To illustrate the influence of the number of measurements on the posterior prediction, the above
calculations are repeated for n = 6 and n = 64 equidistant measurements. Figure 5.4 illustrates
the measurement values and locations by blue dots in panel a) and panel c), respectively. For
n = 6, the MAP optimization results in l∗c,6 = 3.89 m and for n = 64 it gives l∗c,64 = 1.17 m. This
large difference in the MAP estimates is due to the assumed uninformative prior distribution
for the correlation length, in which case, the MAP estimate only depends on the data. Large
differences in the data can lead to significant variation in the estimated correlation length.
The median and corresponding 5% and 95% quantile values of qT (z) are illustrated in panel
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Figure 5.4: Posterior predictive RF of the tip resistance qT for n = 6 (panel a) and b)) and n = 64 (panel
c) and d)). Panel a) and c) show the median (red line) and the two-sided 90% credible intervals
of the marginal log-Student’s t-distributions. The blue dots mark the used measurement
locations and values while the full data set is illustrated by the dotted black line. Panel b)
and c) each show three independent realizations of the posterior predictive RF in comparison
to the two-sided 90% credible intervals in gray.

a) and c), respectively of Figure 5.4. Comparison to Figure 5.3 shows that with increasing
amount of data, the uncertainty, i.e., the variability of qT (z) is reduced. However, even with a
small amount of data (n = 6), the global trend of the tip resistance can be predicted and the
location-specific information can be used efficiently to set up an RF model. The large variability
in the areas between the measurements is illustrated by three independent realizations in panel
b) of Figure 5.4. When the amount of data is relatively large (n = 64), the remaining uncertainty
in the tip resistance becomes comparatively small and random realizations of the RF do not
differ significantly from the full data set, as can be seen in panel d) of Figure 5.4.

0 1 2 3 4 5l
c
 *

f(
l c|M

)

l
c
 

Figure 5.5: Posterior distribution of the correlation length f (lc|M) as function of the correlation length
lc and the corresponding MAP estimate l∗c .

Figure 5.5 plots f (lc|M) with the MAP estimate l∗c = 0.74 m located at the mode of f (lc|M).
It appears that, although the posterior distribution has a distinct mode, it covers a broad
range by remaining relatively flat for increasing values of lc. This is caused by the uniform
prior distribution for lc and shows that such a uniform prior can lead to an improper posterior
distribution of the correlation length. While this is not a problem when using MAP, it is an
issue when the full posterior distribution of lc is to be used. In such cases, a different prior
distribution should be chosen.
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5.3.2 Concrete compressive strength of a ship lock wall

In this example, we investigate the concrete compressive strength fc of a ship lock wall made
of tamped concrete in the 1920s. The length of the wall is 105 m and the height of the
tamped concrete layer is 8 m, the third dimension is not taken into account for this study.
24 measurements of fc are available from three vertical core samples taken at the quarter
points of the wall [22]. The situation is illustrated in Figure 5.6 and the measurement data and
corresponding locations are shown in Table 5.1. We assume that the measurements are associated
with a multiplicative lognormal measurement error with coefficient of variation CVε = 0.025.

26.25 m 26.25 m 26.25 m 26.25 m

8 
m

105 m

C1 C2 C3
z1

z2

Figure 5.6: Ship lock wall with a total length of 105 m and a total height of 8 m made of tamped concrete
from the 1920s. Three vertical core samples (C1, C2 and C3) were taken at the quarter points
of the wall indicated by the three dashed lines.

Table 5.1: Measurements of the concrete compressive strength fc and the corresponding measurement
locations of 24 specimens from 3 vertical core samples (C1, C2 and C3) in the quarter points
of the ship lock wall.

Core sample C1 Core sample C2 Core sample C3

z1 [m] z2 [m] fc,m [MPa] z1 [m] z2 [m] fc,m [MPa] z1 [m] z2 [m] fc,m [MPa]
0.40 29.2 0.21 21.2 0.34 18.5
1.24 15.5 1.25 16.0 1.34 10.3
2.25 8.7 2.05 32.0 2.17 13.2

26.25 3.15 12.3 52.5 3.33 20.7 78.75 3.24 14.5
4.12 16.2 4.15 13.8 4.27 25.4
5.33 11.6 5.25 12.1 5.12 14.5
6.15 13.4 6.40 8.6 6.23 13.2
7.05 13.9 7.45 14.8 7.08 33.0

Applying the transformation of Equation (5.46), the logarithm of fc is modeled with a
two-dimensional Gaussian RF with non-informative prior N G distribution (cf. Equation (5.50)).

Typically, massive concrete structures made of tamped concrete from that time have been
built in layers [57]. Hence, we employ a transverse anisotropic exponential correlation function,
where the correlation length lc,1 in direction z1 differs from the correlation length lc,2 in direction
z2 [59]:

ρ (zi, zj) = exp

−

√√√√(∆1 (zi, zj))2

l2c,1
+ (∆2 (zi, zj))2

l2c,2

 , (5.64)

where ∆1 (zi, zj) and ∆2 (zi, zj) denote the canonical distances of zi and zj in directions z1 and
z2 respectively. Assuming a uniform prior on lc,1 and lc,2 results in the following MAP estimate
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for the two correlation lengths:

l∗c =
[
l∗c,1, l

∗
c,2

]
= [1.54 m, 0.58 m] (5.65)

a) Median of the posterior predictive concrete compressive strength

b) 5% quantile value of the posterior predictive concrete compressive strength
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8 
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CA B
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Figure 5.7: Posterior predictive median (panel a)) and 5% quantile value (panel b)) of the concrete
compressive strength fc of a ship lock wall obtained with data from three vertical core samples
(n = 24 measurements of the concrete compressive strength). The median and 5% quantile
value at points A, B and C are listed in Table 5.2.

These values are used in the Bayesian updating to obtain the posterior predictive RF for fc.
As the marginal posterior predictive PDF is a log-Student’s t-distribution, the moments cannot
be evaluated and thus, Figure 5.7 illustrates the median (panel a)) and the corresponding 5%
quantile value (panel b)) of fc(z) given M across the ship lock wall. The measured values and
the information about their location are clearly reflected, as regions close to low measurement
values show low median and 5% quantile values, and regions close to high measurement values
show higher median and 5% quantile values. This is illustrated by the example of three points
(A, B and C) at different locations of the ship lock wall, where the median and 5% quantile
values have been extracted and listed in Table 5.2. Point A, located close to a low measurement

Table 5.2: Median (50% quantile value, fc,0.5) and 5% quantile value (fc,0.05) of the marginal posterior
predictive concrete compressive strength at three different locations (A, B and C) of the ship
lock wall.

z1 [m] z2 [m] fc,0.5 [MPa] fc,0.05 [MPa]
Point A 25.95 2.5 10.7 6.6
Point B 37.25 5.3 15.9 8.2
Point C 78.3 6.85 23.1 14.1

value, features a posterior median of 10.7 MPa and a 5% quantile value of 6.6 MPa, both of
which are significantly lower than those at point C with a median of 23.1 MPa and a 5% quantile
value of 14.1 MPa. Contrary to point A, point C is located close to a high measurement value (cf.
Table 5.1). The median of 15.9 MPa and 5% quantile of 8.2 MPa at point B are representative
values for all locations far away from the measurements, i.e., all points with negligible spatial
correlation to any measurement location.

Section 5.2.10 demonstrates the connection of the proposed RF approach and the established
Bayesian approach in EN 1990. Next, we compare this approach to the results of the proposed
hierarchical RF model using the data of Table 5.1. The mean and standard deviation of the
log-transformed measurement values are µ̄X = 2.75 and σ̄X = 0.37 with a corresponding kn

value of kn(nm = 24) = 1.75. Applying Equation (5.61) gives a characteristic value (5% quantile
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value) of fc,k = 8.2 MPa. This value matches the 5% quantile value at locations without spatial
correlation to the measurement points (cf. point C in Table 5.2). We note that this congruence
depends on the chosen prior parameters of the RF and, thus, is the exception, not the rule.

The correlation length is an important parameter in any RF model. To illustrate this, the
Bayesian analysis has been carried out for lc = 0.5l∗c and lc = 2l∗c . The resulting marginal
median of fc(z) in the area around the core sample C2 is illustrated in Figure 5.8. Obviously,
the larger the correlation length, the bigger the area that is influenced by the spatial correlation
to the measurements. For lc = 0.5l∗c the spatial effect of the measurements on the median is
restricted to a domain of length ≈ 2 m, wheres for lc = 2l∗c this effect spans over a length of
≈ 10 m. It is mentioned that this is the effect of the final step of the Bayesian approach, where
the posterior predictive distribution is obtained. The whole RF is influenced by the data and the
chosen correlation length by the global posterior parameters of the N G distribution, as can be
seen by the different median values of fc(z) at locations Da, Db and Dc indicated in Figure 5.8.
These locations are chosen exemplarily for all points with negligible spatial correlation to any
measurement location. For lc = 0.5l∗c the median is 15.7 MPa and for lc = 2l∗c it is 16.3 MPa,
compared to 15.9 MPa when lc = l∗c .
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Figure 5.8: Posterior predictive median of the concrete compressive strength of a ship lock wall in the
area around core sample C2 obtained with varying correlation lengths.

f(
l c|M

)

1 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10

l
c,1l

c,2

l
c,2
*

l
c,1
*

Figure 5.9: Two-dimensional posterior distribution of the correlation lengths in z1 (horizontal) and z2
(vertical) direction, f (lc|M). The maximum of f (lc|M) is located at lc,1 = 1.54 m and
lc,2 = 0.58 m, which is equivalent to the MAP estimate l∗c .

When employing the MAP procedure to approximate f (τ |M), it is important to be aware
of the sensitivity of the estimate and the amount of information provided by the data. In
this example, the vertical distance of the measurement locations is relatively small while the
horizontal distance is either 0 or very large. Hence, the MAP estimate for lc,1 is subject to larger
uncertainty than the MAP estimate for lc,2, which is illustrated in Figure 5.9. While f (τ |M)
has a distinct maximum in direction lc,2 at lc,2 = 0.58 m, it is relatively flat in direction lc,1. In
fact, any lc,1 smaller than 5 m is approximately equally likely given the data at hand. Only for
lc,1 > 5 m the measurements of different core samples are noticeably correlated. This behavior is
of special interest when no prior information on the correlation length is assumed, since in such
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case the MAP estimate is only controlled by the data. In general, learning the correlation length
from limited amount of data is not a trivial task, especially if no prior information on the RF
parameters is available. In a study on the correlation length of soil parameters, a minimum of 5
measurement values within one correlation length are recommended for learning the correlation
length of the exponential correlation model [37].

5.4 Conclusion

This paper presents a comprehensive hierarchical Bayesian approach to model random material
properties with spatially distributed data. It is based on modeling a Gaussian random field
assuming a normal-gamma prior distribution on its parameters. Closed-form expressions for
the posterior normal-gamma distribution of the parameters of the random field are derived by
making use of the conjugacy of the normal-gamma distribution and a multivariate Gaussian
likelihood function. Subsequently, closed-form expressions for the spatial parameter function
of the posterior predictive random field are derived, resulting in a non-homogeneous Student’s
t-random field. That is, the marginal distribution of the posterior predictive random field is a
Student’s t-distribution with location-specific parameters.

Sampling from such a random field can be achieved by expressing the Student’s t-random
field in terms of a Gaussian random field and one additional chi-squared random variable. For
estimating the correlation parameters, a maximum a-posteriori estimation approach is proposed
that accounts for the available data and potential prior information. In addition, an extension
of the approach to non-Gaussian translation prior random fields is discussed and closed-form
expressions for the case of a lognormal marginal prior distribution are derived.

The applicability of the presented approach to different engineering fields is illustrated
by two examples, one from the field of geotechnical engineering and one from structural
engineering. The derived posterior random field models reflect the location-specific information
from the measurements, whereas their uncertainty increases with increasing distance from the
measurement locations. Furthermore, it is demonstrated that the uncertainty can be reduced by
increasing the amount of data. The spatial fluctuation of the posterior random field is sensitive
to the choice of the correlation length parameter. When no information is available on the
prior autocorrelation function, the maximum a-posteriori estimate for the correlation length is
sensitive to the measurement data and should be handled with care, especially in the case where
limited data is available.

A measurement error can be included to account for uncertainty in the measurements, in
which case the variance contribution of the error to the total random field variance needs to be
specified. This contribution can be learned from the data in a similar way as the parameters of
the correlation model, which remains a topic of future investigations.

The presented modeling approach can be extended to account for a trend function in the
prior random field parameters. A trend in the prior mean can be included by employing a linear
basis function model, similar to the work of [14]. A parametric dependence can also be included
in the prior precision parameter, which leads to a model known as weighted Bayesian linear
regression [21]. Investigation of these models in the context of material modeling is left to future
studies.
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5.A The posterior normal-gamma distribution

The posterior parameters of the normal-gamma distribution for the parameter vector θ =
[µX , λX ]T, as specified in Equations (5.11) to (5.14) are derived in the following.

According to Bayes’ theorem, the posterior distribution f (θ|M) is proportional to the
product of prior distribution f (θ) and likelihood L (θ|M), which are defined in Equations (5.3)
and (5.5). Using the normal-gamma prior distribution and the multivariate Gaussian likelihood
gives the following expression:

f (θ|M) ∝ λ
α0+ n

2 − 1
2

X · exp
(

−κ0λX

2 (µX − µ0)2
)

· exp (−λXβ0) ·

· exp
(

−λX

2 (xm − µX1n) R−1
m (xm − µX1n)T

)
. (5.66)

With the definition of A = κ0 (µX − µ0)2 − 2µX1nR−1
m xT

m + µ2
X1nR−1

m 1T
n , Equation (5.66) can

be rearranged as

f (θ|M) ∝ λ
α0+ n

2 − 1
2

X · exp
(

−λX

(
β0 + 1

2xmR−1
m xT

m + 1
2A

))
. (5.67)

Initially, the focus lies on A which is expanded and modified as follows:

A =
(
κ0 + 1nR−1

m 1T
n

)(
µ2

X − 2µX
κ0µ0 + 1nR−1

m xT
m

κ0 + 1nR−1
m 1T

n

)
+ κ0µ

2
0. (5.68)

Next, the square of the expression inside the second parenthesis is completed:

A =
(
κ0 + 1nR−1

m 1T
n

)(
µX − κ0µ0 + 1nR−1

m xT
m

κ0 + 1nR−1
m 1T

n

)2

︸ ︷︷ ︸
B

+κ0µ
2
0 −

(
κ0µ0 + 1nR−1

m xT
m

)2

κ0 + 1nR−1
m 1T

n︸ ︷︷ ︸
C

. (5.69)

The terms of C in Equation (5.69) are expanded and converted to a common denominator:

C =
(
κ0µ

2
01nR−1

m 1T
n − 2κ0µ01nR−1

m xT
m −

(
1nR−1

m xT
m

)2
)(

κ0 + 1nR−1
m 1T

n

)−1
. (5.70)

Inserting the expression for B and C into Equation (5.67) gives:

f (θ|M) ∝ λ
α0+ n

2 − 1
2

X · exp
(

−λX

(
β0 + 1

2xmR−1
m xT

m + 1
2C
))

· exp
(

−λX

2 B
)
. (5.71)

The parametric form of the posterior normal-gamma distribution as defined in Section 5.2.4 is
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as follows:

N G (µX , λX |µn, κn, αn, βn) = Cnλ
αn− 1

2
X · exp

(
−κnλX

2 (µX − µn)2
)

· exp (−λXβn) . (5.72)

Writing out all the terms in Equation (5.71) and comparing it to (5.72) one can see that up to
the normalizing constant Cn, the resulting expression of Equation (5.71) is a normal-gamma
distribution with parameters as follows:

µn = κ0µ0 + 1nR−1
m xT

m

κ0 + 1nR−1
m 1T

n

, (5.73)

κn = κ0 + 1nR−1
m 1T

n , (5.74)

αn = α0 + n

2 , (5.75)

βn = β0 + 1
2

xmR−1
m xT

m +
κ0µ

2
01nR−1

m 1T
n − 2κ0µ01nR−1

m xT
m −

(
1nR−1

m xT
m

)2

κ0 + 1nR−1
m 1T

n

 . (5.76)

The normalizing constant is

Cn = βαn
n κ

1
2
n

Γ (αn) (2π)
1
2
. (5.77)

5.B The marginal posterior predictive Student’s t-distribution

In Section 5.2.5, the Student’s t-distribution is introduced as the marginal posterior predictive
distribution of the RF X(z) for the normal-gamma conjugate prior distribution of the RF
parameters. This appendix derives the analytical expressions for the parameters of the marginal
posterior predictive distribution as given in Equations (5.21) to (5.23).

The marginal posterior predictive PDF at any point z ∈ Ω is defined by

f (x; z|M) =
�

Θ
f (x; z|θ,M) f (θ|M) dθ. (5.78)

f (θ|M) is the posterior normal-gamma distribution as defined in Equation (5.9) and f (x; z|θ,M)
is a location-specific normal distribution with parameters µ′′

z and λ′′
z given by Equations (5.17)

and (5.18). Hence, Equation (5.78) can be expanded as follows:

f (x; z|M) =
� +∞

λX=0

� +∞

µX=−∞
N
(
x|µ′′

z, λ
′′
z

)
N (µX |µn, κnλX) dµXG (λX |αn, βn) dλX . (5.79)

The inner integral involves the convolution of two normal densities:
� +∞

µX=−∞
N
(
x|µ′′

z, λ
′′
z

)
N (µX |µn, κnλX) dµX = f (x; z|λX ,M) . (5.80)

For the solution of the integral, the expression for µ′′
z, given in Equation (5.17) is rewritten as
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follows:

µ′′
z = µX +Rz,mR−1

m (xm − µX1n)T = µX

(
1 −Rz,mR−1

m 1T
n

)
︸ ︷︷ ︸

ψ

+Rz,mR−1
m xT

m︸ ︷︷ ︸
ξ

. (5.81)

For this special case and noting that λ′′
z does not depend on µX , the marginalization in

Equation (5.80) can be solved analytically and results in a normal density f (x; z|λX ,M) =
N
(
x|µ̃z, λ̃z

)
, where µ̃z and λ̃z are given by the following equations [6]:

µ̃z = ψµn + ξ, (5.82)

λ̃z =
((
λ′′
z

)−1 + ψ2λ−1
X κ−1

n

)−1
= λX

(
1 −Rz,mR−1

m RT
z,m +

(
1 −Rz,mR−1

m 1T
n

)2
κ−1

n

)−1

︸ ︷︷ ︸
κ̃z

.

(5.83)

Inserting in Equation (5.79) results in

f (x; z|M) = βαn
n (κ̃z)

1
2

Γ (αn) (2π)
1
2

� +∞

λX=0
λ

αn− 1
2

X exp
(

−λX

(
βn + κ̃z

2 (xz − µ̃z)2
))

dλX . (5.84)

A solution of the integral in Equation (5.84) is readily available and the resulting expression is
as follows [6]:

f (x; z|M) = βαn
n (κ̃z)

1
2

Γ (αn) (2π)
1
2

(
βn + κ̃z

2 (xz − µ̃z)2
)− 1

2 −αn

Γ
(
αn + 1

2

)
. (5.85)

To bring f (x; z|M) into a standardized format, we define µz,t = µ̃z, λz,t = κ̃zαn
βn

and νt = 2αn

[6]. This gives

f (x; z|M) =
Γ
(

νt+1
2

)
Γ
(νt

2
) (

λz,t

πνt

) 1
2
(

1 + λz,t

νt
(xz − µz,t)2

)− νt
2 − 1

2
. (5.86)

Equation (5.86) describes the marginal posterior predictive distribution of the RF X(z) given
measurement data M, which is a Student’s t-distribution with location parameter µz,t, scale
parameter λz,t and degrees of freedom νt defined as follows:

µz,t = µn +Rz,mR−1
m (xm − µn1n)T , (5.87)

λz,t = αn

βn

(
1 −Rz,mR−1

m RT
z,m +

(
1 −Rz,mR−1

m 1T
n

)2
κ−1

n

) , (5.88)

νt = 2αn, (5.89)

where µn, κn, αn and βn are the posterior parameters of the normal-gamma distribution given
by Equations (5.11) to (5.14).
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5.C The multivariate posterior predictive Student’s
t-distribution

This section extends the derivation of Appendix 5.B to the multivariate case to derive the param-
eters for the k-th order posterior predictive Student’s t-distribution as given by Equations (5.23),
(5.29) and (5.30) in Section 5.2.6.

The PDF of the posterior predictive distribution of the RF X(z) is

f (x; Z|M) =
�

Θ
f (x; Z|θ,M) f (θ|M) dθ, (5.90)

with x ∈ Rk and Z = [z1, . . . ,zk] ∈ Rk×d denoting any set of spatial points in Ω. f (x; Z|θ,M)
is a k-variate normal density with mean vector µ′′

Z and precision matrix ΛZ
′′ given by Equa-

tions (5.25) and (5.26). f (θ|M) is a normal-gamma distribution as defined in Equation (5.9)
and is independent of the locations Z. Equation (5.90) is expanded as follows:

f (x; Z|M) =
� +∞

λX=0

� +∞

µX=−∞
N
(
x|µ′′

Z,ΛZ
′′) · N (µX |µn, λXκn) dµX · G (λX |αn, βn) dλX .

(5.91)

The inner integral can be solved by rewriting Equation (5.25) as follows:

µ′′
Z = µX1k + RZ,mR−1

m (xm − µX1n)T = µX

(
1k − RZ,mR−1

m 1T
n

)
︸ ︷︷ ︸

ψ

+ RZ,mR−1
m xT

m︸ ︷︷ ︸
ξ

. (5.92)

Using this expression, the integration over µX can be performed analytically and results in the
density of a multivariate normal distribution N

(
x|µ̃Z, Λ̃Z

)
with parameters given as [6]

µ̃Z = µnψ + ξ, (5.93)

Λ̃Z =
((

ΛZ
′′)−1 +ψT (λXκn)−1ψ

)−1
. (5.94)

Substituting Equations (5.26) and (5.92) into Equation (5.94), Λ̃Z can be expresssed as the
following linear function of λX :

Λ̃Z = λX

(
RZ − RZ,mR−1

m RT
Z,m +

(
1k − RZ,mR−1

m 1T
n

)T
κ−1

n

(
1k − RZ,mR−1

m 1T
n

))−1

︸ ︷︷ ︸
K̃Z

. (5.95)

Inserting N
(
x|µ̃Z, Λ̃Z

)
into Equation (5.91) gives

f (x; Z|M) =
� +∞

λX=0
N
(
x|µ̃Z, K̃ZλX

)
G (λX |αn, βn) dλX . (5.96)

Next, an alternative parametrization is introduced, defining νt = 2αn and η = λXβn

αn
. Inserted

into Equation (5.96), this gives the following [6]:

f (x; Z|M) =
� +∞

η=0
N
(
x

∣∣∣∣µ̃Z, K̃Z
ηαn

βn

)
G
(
η

∣∣∣∣νt

2 ,
νt

2

)
dη, (5.97)
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for which a solution is available [6]. The resulting expression is

f (x; Z|M) =
Γ
(

k+νt
2

)
Γ
(νt

2
) ∣∣∣K̃Z

∣∣∣ 1
2
(

αn

βnπνt

) k
2
(

1 + αn (x− µ̃Z) K̃Z (x− µ̃Z)T

βnνt

)− k+νt
2

, (5.98)

which is a k-variate Student’s t-distribution with parameters µ̃Z, αn

βn
K̃Z and νt. Defining

µZ,t = µ̃Z and ΛZ,t = αn

βn
K̃Z yields the expression of Equation (5.28) for the k-th order

posterior predictive distribution of X(z) given measurement data M. That is, f (x; Z|M) =
ft (x|µZ,t,ΛZ,t, νt) with parameters given as

µZ,t = µn1k + RZ,mR−1
m (xm − µn1n)T , (5.99)

ΛZ,t = αn

βn

(
RZ − RZ,mR−1

m RT
Z,m +

(
1k − RZ,mR−1

m 1T
n

)
κ−1

n

(
1k − RZ,mR−1

m 1T
n

)T
)−1

,

(5.100)

νt = 2αn, (5.101)

where µn, κn, αn and βn are the posterior parameters of the normal-gamma distribution given
by Equations (5.11) to (5.14).

5.D The log-Student’s t-distribution

In Section 5.2.8, the log-Student’s t-distribution is introduced as resulting marginal distribution
of the posterior predictive RF when the prior RF has lognormal marginal distribution. In this
appendix, the log-Student’s t-distribution and some of its properties are described.

When X follows a Student’s t-distribution, Y = exp (X) follows the log-Student’s t-
distribution [11, 50]. The PDF can be derived as follows:

ft,ln (y) =
∣∣∣∣dln (y)

dy

∣∣∣∣ ft (ln (y)) = 1
y
ft (ln (y)) , (5.102)

where ft (·) is the PDF of the Student’s t-distribution, which gives

ft,ln (y|µt, λt, νt) = y−1
Γ
(

νt
2 + 1

2

)
Γ
(νt

2
) (

λt

πνt

) 1
2
(

1 + λt (ln (y) − µt)2

νt

)− νt
2 − 1

2

, (5.103)

where µt, λt and νt are the parameters of the underlying Student’s t-distribution. The CDF of
Y is given by the CDF of the underlying Student’s t-distribution with argument ln (y):

Ft,ln (y|µt, λt, νt) = Ft (ln (y) |µt, λt, νt) . (5.104)

The log-Student’s t-distribution does not have finite moments of any order. A simple proof is
given in the following. The expected value of Y is defined as:

E [Y ] = E [exp (X)] , (5.105)

where X follows the Student’s t-distribution. The exponential function can be written in terms
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of the following power series [e.g., 45]:

exp (x) =
∞∑

k=0

xk

k! , (5.106)

which can be substituted into Equation (5.105) to give:

E [Y ] = E
[ ∞∑

k=0

Xk

k!

]
=

∞∑
k=0

E
[
Xk
]

k! . (5.107)

E
[
Xk
]

is the k-th raw moment of the Student’s t-distributed random variable X. However,
the moments of the Student’s t-distribution are only finite for orders k < νt [9] and thus, the
following holds for E [Y ] due to the sum in Equation (5.107):

E [Y ] → ∞ for νt < ∞. (5.108)

Since the first-order moment of Y is infinite, all higher-order integer moments of Y , as well
as joint moments for the multivariate case, will also be infinite. In the limiting case, when
νt → ∞, the log-Student’s t-distribution converges to the lognormal distribution, which has
finite moments of any order.
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Abstract

Structural verification of concrete structures relies on an underlying probabilistic model of the
concrete strength. This concrete strength exhibits a spatial variability, which is of particular
relevance in existing concrete structures, for which the strength is assessed based on samples. To
accurately account for the spatial variability of the concrete material, a random field modeling
approach can be adopted, which includes a spatial correlation function. Unfortunately, the
available literature on spatial variability of concrete strength is not sufficient to make an educated
choice of this correlation function. In this paper, we propose a hierarchical Bayesian random
field model, that enables learning the parameters of a selected correlation function with in-situ
spatially distributed measurements of the concrete strength. We propose a correlation function
that accounts for the composite nature of the material through distinguishing micro-scale and
meso-scale variability. The predictive spatial distribution of the proposed random field model
given the spatial data is then obtained through an analytical random field update, resulting in a
non-homogeneous random field model with log-Student’s t-marginal distribution. The proposed
approach provides an effective means to employ in-situ measurements for updating verification
predictions of concrete structures. We apply our approach to two case studies on chamber walls
of ship locks, where measurements of the concrete strength are available from core samples.
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6.1 Introduction

Structural analysis and verification requires the specification of material strength parameters.
These parameters are subject to uncertainty, which needs to be accounted for in the analysis. In
many instances, a conservative characteristic value of the strength parameter is employed to
account for this uncertainty [40, 43, 19]. For the design of new structures, such values are given
through the material classification, such as steel grade or concrete strength class [20, 21]. In
contrast, the assessment of existing concrete structures typically relies on samples taken from
the structure to estimate the characteristic value of the concrete strength [16, 18]. This is done
via standardized procedures, which are based on assumptions on the underlying probability
distribution model for the concrete strength [18, 19, 6]. These approaches do not account for a
potential correlation of the measurements as they assume the samples to be drawn independently
from a certain population (the structure of interest) [51, 23]. Neglecting such a correlation leads
to approximate results. The extent of the approximation error is case-specific; it is larger in
older concretes with higher variability in the concrete strength.

We focus on the assessment of existing structures where concrete strength exhibits higher
variability and is commonly assessed based on samples from the actual structure. The corre-
sponding measurement values and their locations provide the basis for a spatial analysis [33].
For these applications, we suggest to model concrete strength as a random field, whereby a
random variable is assigned to each position in the structure. The dependence among the
random variables at all locations is described by a spatial correlation function [60].

Learning the spatial distribution of material parameters from data has been addressed in
other engineering fields, e.g., in particular in geotechnical engineering, due to the comparatively
large spatial variability of soil parameters [e.g., 49]. Bayesian methods, such as Bayesian
compressive sampling [62, 61, 44] or sparse Bayesian learning [9, 8, 10] have been applied to learn
and simulate non-homogeneous random fields from sparse measurements of soil parameters.

An approach to model the concrete strength as a random field has been proposed in the
context of the JCSS probabilistic model code [34]. However, this model is not appropriately
reflecting the interplay between inter- and intra-site variability. Generally, the existing literature
on random field models for concrete strength is rather sparse and has mostly found application
in initial studies on structural reliability or response analysis [27, 7] or in investigations of its
microstructure [e.g., 30, 54]. An extensive study has been carried out in [41] to investigate the
variability of concrete strength within a structure in the context of seismic design of existing
structures. Several studies have investigated spatial variability of concrete in the context of
deterioration, especially chloride-induced corrosion [55, 48, 36, 38]. Measurements of non-
destructive and destructive tests have been used to study the spatial variability of concrete
parameters and for inferring the correlation of spatial measurements [47, 64].

Recently, an approach to model concrete strength on multiple hierarchical levels with focus on
the hierarchy originating from the construction process has been proposed, where it is suggested
to model the variability within a structural component with a random field [57]. In [29], the
authors apply a hierarchical random field model to obtain location-specific characteristic values
of the concrete strength. Therein, an assumption on the prior correlation function of the concrete
strength is made relying on the limited available literature.

The modeling approach in this paper uses Bayesian methods to learn the distribution of
the concrete strength through combining measurements with available prior information [25].
It employs the hierarchical modeling approach also used in [29], where not only the spatial
variability but also the uncertainty of the distribution parameters is explicitly modeled and
learned from the data [28, 51]. Hence, our model accounts for both the intra- and inter-site
variability, the latter reflected by the uncertain distribution parameters. To take into account
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the nature of concrete as a composite material, a novel spatial correlation model is developed,
whose parameters can also be included in the Bayesian learning, hence, circumventing the need
for an ad-hoc choice of the spatial correlation function. The resulting predictive random field
has log-Student’s t-marginal distribution and can be expressed as function of a Gaussian random
field through a simple transformation [28]. The derived distribution model can be used in further
uncertainty propagation and reliability analyses as well as to compute the spatial distribution of
the characteristic value of the concrete strength to be used in structural verification.

The remainder of the paper is structured as follows: Section 6.2 briefly reviews the definition
of the concrete compressive strength and its characteristic value, before introducing a hierarchical
spatial model and describing the Bayesian learning of its parameters. Section 6.3 applies the
methodology to two ship lock data sets, followed by a discussion and interpretation of the
obtained results. The analysis of these data sets provides empirical evidence on concrete strength
correlation in practice, but also highlights the challenges associated with the use of the spatial
model in practice. Section 6.4 gives a brief summary of the results and conclusions. Some
additional information on the log-Student’s t-distribution are collected in Appendix 6.A.

6.2 Statistical modeling of concrete compressive strength

The strength of concrete depends on different factors, e.g., the water-cement ratio, the size and
shape of the included aggregate, used admixtures or the quality of workmanship in the production
process [e.g., 24, 34, 3]. The dominating strength parameter of concrete is its compressive
strength fc, which is the focus of this paper. The parameter fc is used to classify concrete into
different concrete classes (grades). In the following, we propose a spatial probabilistic model for
fc, and in Section 6.2.4 we show how the distribution can be learned with measurement data.

6.2.1 Compressive strength of concrete

Concrete is a composite material made of water, cement, aggregate and potential admixtures.
After the hardening process, concrete can be divided into two phases, cement matrix and
aggregate. Due to the two-phase nature of the concrete material, defining fc as a point-in-space
continuous property is not meaningful. Instead, fc is defined as the compressive strength of a
volume of finite size [22]. fc depends not only on the compressive strengths of cement matrix
and aggregate alone, but also on the quality of the connection between the two phases, which
is determined by factors such as the surface of the aggregate and the type of cement [46].
Furthermore, fc depends on other factors that are not directly related to the material itself,
such as the direction of stress or the strain constraint due to size effects [2, 46, 40].

Due to the reasons above, the compressive strength of concrete is assessed in terms of the
breaking load on reference specimens that have the shape of a cylinder (fc,cyl) or a cube (fc,cube)
[22, 20, 34, 51]. Nowadays, typical cylinder specimen have a height-diameter ratio of 2 (e.g., a
height of 300 mm and a diameter of 150 mm) and cube specimen have an edge length of 150 mm
[22]. Cubical specimen are mostly used for verifications during the construction process as part
of the quality control process. In contrast, cylindrical specimen are typically used in verifications
of existing structures based on core samples taken from the structure. Classification of concrete
into different strength classes is done with respect to requirements for fc,cyl and fc,cube [20]. The
structural verification format of the Eurocode series is based on fc,cyl as the critical parameter
for all verifications regarding compression [20]. This paper focuses on modeling the concrete
strength of existing structures and thus we employ fc,cyl to denote the in-situ concrete strength.

Depending on the application at hand, the structural resistance R can differ from fc,cyl,
e.g., when accounting for size effects [e.g., 2, 40] or when fc,cyl is used to infer other concrete
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parameters. In these cases, R is a function of fc,cyl, which will introduce additional uncertainty
into the model. However, the focus of this paper lies on the probabilistic model of fc,cyl and
such uncertainty is not further investigated.

To improve readability, fc denotes the compressive strength of a cylindrical core sample for
the remainder of this paper.

6.2.2 Characteristic values of the concrete strength

Standardized verification formats rely on characteristic values fc,k of the concrete strength.
Characteristic values are generally defined as p−quantile values of an underlying probabilistic
model, where p depends on the property and the type of analysis. The 5%−quantile value is
typically chosen as characteristic value for the concrete compressive strength [19]:

fc,k = F−1
fc

(p) = F−1
fc

(0.05), (6.1)

where F−1
fc

(·) is the inverse cumulative distribution function (CDF) of the concrete compressive
strength.

When strength data from in-situ concrete samples are available, they can be used to estimate
the characteristic value fc,k. Different approaches have been developed and established in the
engineering community to estimate fc,k from data of in-situ concrete samples. The most common
ones are based on sample moment estimates, i.e., the mean and variance of the samples, which
are further used to obtain the characteristic value based on tabulated values [19, 18, 6]. While
the approach in [6] is based on a frequentist perspective [23], the method in [19] and [18] relies
on the Bayesian approach [51, 27, 28].

These approaches only require the number of measurements nm and the measurement
values and do not account for the spatial locations of the measurements. Moreover, they
do not differentiate between the concrete strength of a standardized cylinder and the in-situ
structural resistance. However, some prerequisites have to be fulfilled for their application: the
measurements must be statistically independent, they have to be taken randomly in space and
the sample size needs to be representative for the quantity of interest [51, 23]. While the last
condition is assumed to be fulfilled by requiring a minimum number of samples for a given
structure (depending on the size of the structure) [18], little attention is paid to the other
two conditions in practice and these conditions are commonly violated. For example, in many
instances multiple samples are taken from the same drilling core and sample locations are selected
based on the perceived criticality or importance of the material or location. Local clustering
of data in limited areas of the structure can lead to erroneous estimates of the variability of
the quantity of interest and, hence, an erroneous estimate of its characteristic value. In order
to obtain an accurate estimate, it is important to explicitly account for the locations of the
samples. To explicitly consider these locations, the spatial variability of the concrete material
should be modeled by a random field model.

6.2.3 Hierarchical random field model

Material parameters that vary randomly in space, such as the strength of concrete fc, can be
modeled by random fields. A random field (RF) represents a random variable at every point z in
the spatial domain Ω [60]. In practice, the probabilistic description of the RF is parameterized
in a way that enables its definition through a finite set of parameters Θ, the parameters of the
marginal RF distribution, and a spatial correlation function ρ(z, z′). In hierarchical random field
models, the parameters in Θ are modeled by random variables described by a probability density
function (PDF) f(θ). Such a modeling approach enables distinguishing two different types
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of uncertainty: (i) the uncertainty associated with the parameters of the spatial distribution
of the material property, and (ii) the spatial variability of the property for fixed parameters.
Uncertainty (i) is related to the inter-structure variability, i.e., the variability of the material
property when comparing different structures, whereas uncertainty (ii) represents the intra-
structure variability, i.e., the variability of the property when comparing different locations
within a specific structure. Examples of hierarchical random field models in the context of
probabilistic material modeling can be found in [34, 51, 35]. In the following, we describe the
two types of uncertainty in detail and set up a hierarchical RF model for fc.

6.2.3.1 Intra-structure variability

The intra-structure spatial variability is modeled by a random field, which is a collection of
random variables indexed by a continuous spatial coordinate z ∈ Ω [60]. To completely define
the RF fc(z), one needs to specify the joint distribution of the random variables corresponding
to any selection of points in Ω. If this joint distribution is the multivariate Gaussian distribution
for any collection of points, the corresponding RF is a Gaussian RF [1]. The use of a Gaussian
RF is beneficial in practice due to its simple definition and the numerous computational
advantages of the Gaussian distribution, which facilitate the numerical treatment of RFs, i.e.,
their representation in terms of a finite number of RVs [56, 39]. An RF is said to be homogeneous,
if the marginal distribution is space-invariant and the joint distribution is invariant to a shift in
z.

If the quantity of interest is non-Gaussian, it is a common practice to define the corresponding
RF as function of a zero-mean and unit-variance Gaussian RF U(z) to simplify its application
in practice. This type of non-Gaussian RF is termed translation RF and can be defined through
the following marginal transformation [31, 37]:

X(z) = F−1
X(z)|θ(Φ(U(z))), (6.2)

where F−1
X(z)|θ(·) is the inverse CDF of X(z) conditional on the realization θ of Θ and Φ(·) is

the CDF of the standard normal distribution.
The assumption that fc follows a normal or lognormal distribution has been accepted and

applied for many years [e.g., 53, 58, 43]. The lognormal distribution is more appropriate in
cases of low concrete strengths or/and large variability of the concrete strength, since it is only
defined for non-negative values and, thus, cannot result in a negative characteristic value. We
limit ourselves to the lognormal model, for which the transformation of Equation (6.2) in the
case of a homogeneous RF is

fc(z) = exp
(
µfc,ln + λ

− 1
2

fc,ln
U(z)

)
. (6.3)

The parameters Θ = [µfc,ln , λfc,ln ] are the mean value µfc,ln and precision λfc,ln of ln (fc), where
λfc,ln is the inverse of the variance. Using Equation (6.3), the spatial variability of fc(z) is
implicitly modeled through the spatial variability of the underlying RF U(z) and, thus, fc(z) is
fully defined by the parameters of its marginal distribution and U(z).

To model the spatial variability, one needs to account for spatial correlation of different
locations in a structure. The correlation between fc at two locations z and z′ is defined by the
spatial correlation function ρ(z, z′).

When modeling spatial variability of concrete, one can distinguish between two types of
spatial variability, related to two different spatial scales. The first type represents the spatial
variability at the meso-scale, where the two phases of the concrete are not explicitly considered.
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Reasons for this type of variability are different concrete batches, local clustering of aggregate
or admixtures, decomposition through the vibration procedure, voids and factors related to the
construction process. The second type is the micro-scale variability of concrete, which is caused
by the composite nature of concrete. The effect of this type of spatial variability is restricted
to a small area and wears off relatively fast. Figure 6.1 illustrates the two types of spatial
variability through a potential realization of fc in a one-dimensional concrete element of 10 m
length (e.g., a core sample). On the one hand, fc(z) shows fluctuations over short distances due
to the micro-scale variability. On the other hand, regions of rather large values of fc (e.g., on
the left side of the plot) and rather small values of fc (in the center of the plot) can be detected
due to the meso-scale variability.
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f c(
z)

 [M
P
a]

10
5

15
20
25
30

0

Figure 6.1: Illustration of the spatial behavior of fc, combining the effects from micro-scale and meso-scale
spatial variability.

As the spatial variability of fc is affected by micro-scale and meso-scale variability, the
correlation function ρ(z, z′) needs to consider both effects. This can be done by defining ρ(z, z′)
as combination of two correlation functions:

ρ(z, z′) = γmicro · ρmicro(z, z′) + (1 − γmicro) · ρmeso(z, z′), (6.4)

where γmicro ∈ [0, 1] is the share of correlation associated with the micro-scale variability,
ρmicro(z, z′) and ρmeso(z, z′) are the spatial correlation functions for the micro- and meso-scale
variability, respectively. An example of such a correlation model is given in Figure 6.2. The
rapid decrease of ρ(z, z′) from 1 to values close to 1 −γmicro for small distances ∆(z, z′) between
z and z′ shows the immediate effect of the micro-scale variability on the spatial correlation. The
effect of the meso-scale variability becomes apparent with increasing ∆(z, z′).

Δ(z,zʹ)

ρ
(z

,z
ʹ)

1

0
0

1-γmicro

γmicro

Figure 6.2: Spatial correlation function ρ(z, z′) combining the effect of micro-scale variability and meso-
scale variability as function of the spatial distance ∆(z, z′).

Different parametric models exist for the correlation function. We restrict the range of
possible correlation models for the meso-scale variability to the Matérn correlation model
ρν(z, z′), which is chosen due to its flexibility. It is defined as follows [42, 1]:

ρν(z, z′) = 21−ν

Γ(ν)
(√

2ν ∆w(z, z′)
)ν
Kν

(√
2ν ∆w(z, z′)

)
, (6.5)

where Γ(·) is the gamma function, Kν(·) is the modified Bessel function of the second kind
and order ν, and ∆w(z, z′) is the weighted distance of z and z′. In case of an isotropic spatial
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correlation structure, i.e., all directions are weighted equally, ∆w(z, z′) = ∆(z,z′)
Lc

, where ∆(z, z′)
is the Euclidean distance ||z − z′||2. Lc is the correlation length determining the decrease of the
correlation function. Large values of Lc correspond to a slow decay of ρν(z, z′) with increasing
∆(z, z′), whereas small values of Lc indicate a fast decay of ρν(z, z′) with increasing ∆(z, z′).
The smoothness of ρν(z, z′) is determined by the smoothness parameter ν. For half-integer
values of ν, ρν(z, z′) reduces to the product of an exponential term and a polynomial term [42].
It is noted that for ν = 1

2 , Equation (6.5) reduces to the exponential correlation model, whereas
for ν → ∞, it converges to the square-exponential correlation model:

ρ 1
2
(z, z′) = exp

(
−∆w(z, z′)

)
, (6.6)

ρ∞(z, z′) = exp
(

−1
2∆w(z, z′)2

)
. (6.7)

Concrete structures, especially massive structures, are typically built in blocks or layers.
Hence, a transverse anisotropic correlation function is employed to distinguish between spatial
directions [65]. This results in different correlation lengths Lc,i, i = 1, . . . d, where d is the
number of spatial dimensions (i.e., 1, 2 or 3). The vector Lc collects all correlation lengths. In
this case, ∆w(z, z′) in Equation (6.5) is calculated as follows:

∆w(z, z′) =

√√√√ d∑
i=1

(
∆i(z, z′)
Lc,i

)2

, (6.8)

where ∆i(z, z′) denotes the spatial distance of z and z′ in spatial direction i.
The spatial correlation function ρ(z, z′) defines the correlation of any two points {z, z′} ∈ Ω

and considers the effect of both the spatial variability on the meso-scale and on the micro-scale.
In Section 6.2.4, we discuss how to employ data in learning the parameters of ρ(z, z′). Due

Δ(z,zʹ)

1

0
0

ρmeso(z,zʹ)

ρ
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,z
ʹ)

1-γmicro

γmicro

Figure 6.3: Approximation of spatial correlation function, where the effect of micro-scale variability is
approximated by a Dirac function.

to the spatial dimension of the cylindrical specimen, it is impossible to learn the parameters
of the micro-scale correlation function ρmicro(z, z′) in practice. However, its exact shape is
also not important for predicting the resulting strength of a structure. We therefore propose
to approximate the micro-scale correlation by a Dirac delta function and Equation (6.4) thus
reduces to

ρ(z, z′) = γmicro · δz,z′ + (1 − γmicro) · ρmeso(z, z′), (6.9)

where δz,z′ is the Dirac delta function returning 1 if z = z′ and 0 else. Figure 6.3 illustrates the
approximated correlation function with a jump of ρ(z, z′) from 1 to 1 − γmicro when ∆z,z′ > 0 to
account for the effect of the micro-scale variability on the spatial correlation. Approximating the
micro-scale correlation by a Dirac function reduces the number of unknown model parameters
and only affects the micro-scale variability. The effect of this assumption on the resulting
estimate of the concrete strength is negligible.

135



6 Spatial modeling of concrete strength based on data

When using Equation (6.9) to model an RF, the RF can be expressed as superposition of two
random fields, one of which with correlation function ρmeso(z, z′) and an additional noise RF
without spatial correlation. Note that this leads to a discontinuous sample path when drawing
random realizations of the RF.

6.2.3.2 Inter-structure variability

Inter-structure variability leads to uncertainty of the overall material property at a specific
structure or site. This uncertainty is at the top level of the hierarchical RF model of the concrete
strength fc [34]. It is modeled by the marginal random field parameters Θ with joint PDF f(θ).
Θ are the mean and the precision of fc in a specific structure.

Figure 6.4 illustrates the hierarchical RF model for the concrete compressive strength
fc(z) including the macro-scale variability and the chosen spatial correlation function ρ(z, z′).
Four random realizations of fc(z) are plotted at the bottom of the figure. The corresponding
realizations of Θ and choices of ρ(z, z′) are indicated in the respective colors.
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Figure 6.4: Hierarchical model of the in-situ concrete compressive strength modeled as random field
fc(z) with spatial correlation function ρ(z, z′). The four colors correspond to four random
realizations of fc(z) and fc(z) and choices of ρ(z, z′).

6.2.4 Learning the random field model from data

Measurements of the in-situ concrete strength form an important part of structural verification
of existing structures. Although non-destructive test techniques can be used to get indirect
measurements of the concrete strength (e.g., testing with a rebound hammer [15] or measurements
of the ultrasonic pulse velocity [17]), the most accurate results are obtained by taking core
samples from the structure and directly testing the concrete strength of standardized cylindrical
specimen [16, 18]. Especially for the verification of existing massive concrete structures, taking
core samples is essential for getting detailed information on the concrete properties [63]. The
number of core samples as well as their orientation depends on the investigated structure and the
aim of the investigation [6, 18]. Standardized specimen are visually selected from the available
drilling cores before being extracted, prepared and tested to determine their concrete compressive
strength.
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6.2 Statistical modeling of concrete compressive strength

6.2.4.1 Data uncertainty

In-situ data is subject to uncertainty associated with the measured value (measurement uncer-
tainty) and - if the measurements are not properly documented - the location of the measurement
(position uncertainty).

There are different sources of measurement uncertainty; some are related to the measurement
procedure (e.g., the laboratory operator or the measurement device [33]), others stem from an
underlying transformation (e.g., when inferring the splitting tensile strength via the indirect
tensile strength test [14] or from the conversion of cylindrical core samples with small diameters
[18]). Contrary to the field of geotechnical engineering, where probabilistic models have been
developed to account for this measurement uncertainty [e.g., 49], only little attention is paid
to it in structural engineering applications. The measurement outcomes of concrete samples
from drilling cores are typically set equal to the in-situ concrete parameters, as long as the test
specimen fulfills certain requirements [18]. The only exception to this rule is the case of outliers,
which are eliminated using outlier tests [e.g., 32, 13].

The main reason for position uncertainty is the lack of documentation, since information
about the exact measurement location is not required in standard methods for estimating
characteristic values [19, 18, 6]. Position uncertainty can hinder the applicability of a spatial
analysis.

6.2.4.2 Bayesian random field update

The hierarchical RF model of Section 6.2.3 forms the basis for explicitly including the spatial
locations of the data in learning the distribution parameters and the predictive spatial distribution
of fc. In the following, we summarize a Bayesian approach to learn the RF and its parameters
based on [28]. The approach reduces to the Bayesian approach for calculating characteristic
values in [19] for specific parameter choices [28].

It is assumed that measurement data M is available from cylindrical specimen extracted from
core samples of an existing concrete structure. M = [xm,Zm], where xm = [xm,1, xm,2, . . . , xm,n]T
are the nm measurement outcomes and Zm = [zm,1, zm,2, . . . ,zm,n]T the corresponding locations.
Figure 6.5 extends the hierarchical RF model of Figure 6.4 by including the data M associated
with measurement uncertainty ε.

f
c
(z)

Θ ρ(z,zʹ)

M ε

Figure 6.5: Hierarchical random field model for learning the in-situ concrete compressive strength fc(z)
from data M of standardized cylindrical samples taken from the structure. The measurements
in M are associated with measurement uncertainty ε.
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6 Spatial modeling of concrete strength based on data

Due to the hierarchical modeling approach, the updating needs to be done in two steps. The
data M is included in a first step to update the distribution of Θ, by application of Bayes’ rule
[25]:

f(θ|M) ∝ f(θ) · L(θ|M), (6.10)

where f(θ) is the prior distribution of Θ and f(θ|M) is the posterior distribution of Θ given the
data M, which enters the model via the likelihood function L(θ|M). f(θ|M) can then be used
in a second updating step to find the spatial posterior predictive distribution of fc(z). In the
general case, the posterior distribution in Equation (6.10) needs to be approximated numerically,
e.g., through Markov chain Monte Carlo (MCMC) methods [e.g., 5]. For certain cases, however,
closed-form expressions can be found for updating the hierarchical RF model. The following
modeling choices are made in order to enable such a closed-form update [12, 51, 28]:

i) The marginal distribution of fc(z) is a lognormal distribution, which is the standard choice
for concrete strength in the literature [e.g., 43]. Then, fc,ln(z) = ln (fc(z)) follows a normal
distribution with mean function µfc,ln(z) and precision function λfc,ln(z). The hierarchical
modeling and updating process is done for the corresponding RF fc,ln(z), a Gaussian RF
completely defined by its spatial functions for the mean µfc,ln(z), the precision λfc,ln(z)
and the autocorrelation function ρ(z, z′) (cf. Section 6.2.3.1).

ii) Before including site-specific information, fc,ln(z) is assumed to be homogeneous, i.e.,
the spatial moments are space-invariant and the spatial correlation is a function of the
difference in location. That is, µfc,ln(z) = µfc,ln ∀ z ∈ Ω and λfc,ln(z) = λfc,ln ∀ z ∈ Ω.
ρ(z, z′) is defined according to Equation (6.9) with ρmeso(z, z′) given by the Matérn model
of Equation (6.5).

iii) The prior distribution of Θ = [µfc,ln , λfc,ln ]T, f(θ) is modeled with a normal-gamma
(N G) distribution, where λfc,ln follows a gamma distribution and µfc,ln follows a normal
distribution conditional on λfc,ln [51]. It covers a broad range of possible prior distributions,
including a non-informative prior distribution when no prior information is available [12].

iv) The measurement uncertainty is defined through a multiplicative error, i.e., the measure-
ment outcome fc,m,i at location zm,i is given as

fc,m,i = fc(zm,i) · εi. (6.11)

The εi are modeled as independent lognormal random variables with median 1. To retain
the analytical form of the update, it is necessary to account for the measurement error
in the correlation function. This results in a modified correlation function that takes an
identical form as Equation (6.9), i.e,

ρmod(z, z′) = γ · δz,z′ + (1 − γ) · ρmeso(z, z′), (6.12)

where γ ∈ [0, 1] lumps the contribution of both micro-scale variability and measurement
error into a single factor [28]. γ = γmicro +γε −γmicroγε, where γε ∈ [0, 1] is the contribution
of the measurement error. We work with the lumped factor γ because a distinction of the
contribution of the individual effects is not possible based on spatial data.

Note that assumptions i) and iii) are in line with the theory underlying the standardized approach
to estimate characteristic values from data in the Eurocode [19]. Assumption ii) is not strictly
required for the method but it is reasonable to assume homogeneity of the prior random field
and the assumption reduces the number of unknown model parameters.
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Using the assumptions above, the posterior predictive RF for fc(z) has log-Student’s t-
marginal distribution [59]. A log-Student’s t-RF is parameterized in terms of the spatial functions
for the parameters of the underlying Student’s t-RF given by the following equations [28]:

µt(z) = µn +Rz,mR−1
m (xm − µn1n)T, (6.13)

λt(z1, z2) = αn

βn

(
ρ(z1, z2) −Rz1,mR−1

m RT
z2,m + (1 −Rz1,mR−1

m 1T
n)κ−1

n (1 −Rz2,mR−1
m 1T

n)
)−1

,

(6.14)

νt = 2αn. (6.15)

Rz,m : Rd → R1×nm is a row vector function with element i defined as ρmod(z, zm,i) and the
parameters µn, κn, αn and βn are given as [28]

µn = κ0µ0 + 1nR−1
m xT

m

κ0 + 1nR−1
m 1T

n

, (6.16)

κn = κ0 + 1nR−1
m 1T

n , (6.17)

αn = α0 + nm

2 , (6.18)

βn = β0 + 1
2

(
xmR−1

m xT
m + κ0µ

2
01nR−1

m 1T
n − 2κ0µ01nR−1

m xT
m − (1nR−1

m xT
m)2

κ0 + 1nR−1
m 1T

n

)
. (6.19)

1n denotes a 1×nm-vector of ones and Rm is the nm ×nm correlation matrix of the measurement
locations, where element (i, j) is defined as ρmod(zm,i, zm,j). µ0, κ0, α0 and β0 are the parameters
of the prior N G distribution f(θ). Appendix 6.A gives the PDF and CDF of the log-Student’s
t-distribution. Random realizations of the posterior predictive RF with log-Student’s t-marginal
distribution can be obtained by expressing the RF as function of a Gaussian RF and one
additional random variable which follows the chi-square distribution [28]. A variety of methods
are available for sampling from the resulting Gaussian RF [e.g., 39].

6.2.4.3 Learning the correlation model

The closed-form update in Section 6.2.4.2 is valid for a fixed correlation function ρmod(z, z′).
However, ρmod(z, z′) is typically not known in practical applications and, hence, is treated
as uncertain model input with parameter vector T. T = [γ, ν,Lc] includes the meso-scale
(with the transverse anisotropic Matérn model) and micro-scale variability (approximated by a
Dirac function) for the hierarchical RF model (cf. Section 6.2.3.1) as well as the measurement
uncertainty ε, which is included in ρmod(z, z′) through γ. Figure 6.6 illustrates the extended
hierarchical RF model when the parameters of ρmod(z, z′) are treated as random vector.

Bayes’ theorem can be used to learn the posterior distribution of the correlation parameters
from the data:

f(τ |M) ∝ f(τ ) · f(M|τ ). (6.20)

The specific model choices of Section 6.2.4.2 lead to the following expression for f(M|τ ) [28]:

f(M|τ ) =
(

κ0
κn(τ )

) 1
2 Γ(αn)βα0

0
Γ(α0)(βn(τ ))αn

(2π)− n
2 det(Rm(τ ))− 1

2 , (6.21)
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f
c
(z)

Θ

ρmod(z,zʹ)

M

T

Figure 6.6: Hierarchical random field model for learning the in-situ concrete compressive strength fc(z)
from data M with uncertain correlation model ρmod(z, z′) with model parameters T.

where κn(τ ), αn, βn(τ ) and Rm(τ ) follow the definitions in Section 6.2.4.2 conditional on the
chosen correlation model parameters.

The maximum a-posteriori (MAP) estimate can be employed to learn a point estimate of
the correlation parameters from the data M [45]. That is, instead of inferring the full posterior
distribution f(τ |M), it is approximated by its mode, τ ∗. This is done by solving the following
optimization problem [28]:

τ ∗ = arg minτ∈T ln(κn(τ )) + 2αnln(βn(τ )) + ln(det(Rm(τ ))) − 2ln(f(τ )), (6.22)

where f(τ ) is the prior distribution of T. τ ∗ is equivalent to the maximum likelihood estimate
of T in the case of a uniform prior distribution f(τ ) [52]. After selecting the correlation model,
the RF model can be learned from M as described in Section 6.2.4.2.

Alternatively, the posterior mean µT|M can be used as an approximation for T given M.
Unlike the MAP estimate, the posterior mean is not dominated by local extrema of the posterior
distribution. Given nT unknown correlation parameters in the vector T, the marginal posterior
mean of Ti, i = 1, . . . , nT is given as

µTi|M = E [Ti|M] = 1
CT

�
T
τif(τ )f(M|τ )dτ , (6.23)

where CT is the following normalization constant:

CT =
�

T
f(τ )f(M|τ )dτ . (6.24)

If a point-estimate of T is not sufficient, the analytical update to learn the posterior predictive
model for the concrete strength is not sufficient. However, it can be approximated numerically,
e.g., by means of MCMC algorithms [5]. The analytical update is employed in generating samples
from f(τ |M), which are then used to approximate the posterior predictive distribution. The
point-wise marginal posterior predictive PDF f(fc,z|M), z ∈ Ω can be approximated as follows:

f(fc,z|M) ≈ 1
NMCMC

NMCMC∑
i=1

f(fc,z|M, τi), (6.25)

where NMCMC is the sample size in the MCMC algorithm and τi, i = 1, . . . , NMCMC are
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samples from f(τ |M). The posterior predictive CDF can be approximated accordingly:

F (fc,z|M) ≈ 1
NMCMC

NMCMC∑
i=1

F (fc,z|M, τi). (6.26)

The evaluation of F (fc,z|M) requires the analytical Bayesian update for each of the NMCMC

samples. Using the model assumptions of Section 6.2.4.2, F (fc,z|M, τi) is the CDF of the
log-Student’s t-distribution (cf. Appendix 6.A).

6.2.4.4 Choosing the prior normal-gamma distribution parameters from data

The parameters of the prior distribution should be chosen based on expertise and literature, or
selected as a non-informative prior. Alternatively, the prior parameters can be determined from
available data from similar structures, which are not part of the analysis at hand. We suggest to
employ maximum likelihood estimation (MLE) to estimate these prior parameters, specifically
the parameters µ0, κ0, α0 and β0 of the prior N G distribution f(θ). Here we consider data
sets from nMLE structures, each set consisting of ni measurements of fc at the specific structure
i. The following sample estimators are calculated for each data set:

µ̄i = 1
ni

ni∑
j=1

ln (fc,m,j) , (6.27)

λ̄i =

 1
ni − 1

ni∑
j=1

(ln (fc,m,j) − µ̄i)2

−1

. (6.28)

They are used to define the following:

µ̄ = [µ̄1, . . . , µ̄nMLE ] , (6.29)

λ̄ =
[
λ̄1, . . . , λ̄nMLE

]
, (6.30)

Λ̄ = diag
(
λ̄
)
. (6.31)

Λ̄ is a diagonal matrix with the entries of λ̄ on the main diagonal and zeros elsewhere.
The MLE estimators for the prior N G distribution are then given as [50, 51]:

µ̂0 = 1Λ̄µ̄T

1Λ̄1T , (6.32)

κ̂0 = nMLE

(µ̄− µ̂01)Λ̄(µ̄− µ̂01)T , (6.33)

α̂0 = Ψ−1
(

ln
(
β̂0
)

+ 1
nMLE

nMLE∑
i

ln
(
λ̄i

))
, (6.34)

β̂0 = nMLE · α̂0

1Λ̄1T . (6.35)

1 denotes a 1 ×nMLE-vector of ones and Ψ−1(·) is the inverse digamma function. α̂0 and β̂0 have
to be found iteratively, since both parameters appear in Equation (6.34) and in Equation (6.35).
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The MLE estimators in Equations (6.32) to (6.35) are only valid under the assumption
that fc conditional on Θ follows a lognormal distribution. They do not account for potential
correlation among the measurements in the available data sets and can only be applied if
nMLE > 1. The spatial update of Section 6.2.4.2 is directly applicable after replacing the prior
N G distribution parameters by the respective MLE estimates.

Sometimes, site-specific data (e.g., from previous investigations on the structure) is available
but the measurement locations are not documented, as this information is not needed in the
standard methods to learn the characteristic values of the concrete strength [19, 18, 6]. Such data
can be included in the above MLE procedure for learning the prior N G distribution parameters.

6.2.4.5 Bayesian learning of random field parameters without site-specific data

If no site-specific data is available, but data from similar structures (and site-specific data
without measurement locations) can be used, one can still set up an RF model. Based on the
MLE estimators in Equations (6.32) to (6.35), the predictive RF has log-Student’s t-marginal
distribution and is parameterized in terms of the parameters of the underlying Student’s t-RF.
Unlike the case where the spatial location of the measurements is available, the predictive RF is
a homogeneous RF with parameters given by

µt = µ̂0, (6.36)

λt(z1, z2) = α̂0

β̂0

(
ρmod(z1, z2) + κ̂−1

0

)−1
, (6.37)

νt = 2α̂0. (6.38)

The parameters obtained in this way define the prior predictive RF, since the model is learned
without site-specific information, and can be used for predictions about the spatially variable
quantity [25].

6.3 Data analysis

This section applies the proposed methodology to learn a spatial model for the compressive
strength of two ship lock chamber walls. The data analysis serves to investigate and demonstrate
the proposed model, shows possible correlation models for specific structures and highlights
challenges with the proposed approach encountered in practice.

The considered walls were built in layers of tamped concrete and, thus, show significant
anisotropic behavior [63, 28]. A transverse anisotropic correlation function, distinguishing
between horizontal (z1, z2) and vertical (z3) distances is employed to account for this behavior.
The resulting ∆w(z, z′) is given by

∆w(z, z′) =

√√√√(∆h(z, z′)
Lc,h

)2

+
(

∆v(z, z′)
Lc,v

)2

, (6.39)

where ∆h(z, z′) and ∆v(z, z′) denote the horizontal and vertical distance respectively between
z and z′. Lc,h and Lc,v denote the horizontal and vertical correlation lengths.

The vector T of correlation parameters is treated as random vector and learned from the
data. However, the prior information on the elements in T is vague, which makes the choice
of a prior distribution a challenging task. Hence, the multivariate uniform distribution on the
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domain of definition is chosen as prior distribution. The measurement uncertainty is accounted
for in the correlation function through the factor γ.

6.3.1 Ship lock Oldenburg

This case study investigates the ship lock at the river Hunte in Oldenburg, Germany. It was
built in the 1920s from unreinforced tamped concrete. The chamber has a length of 128 m and a
usable width of 12 m between the chamber walls. During an extensive repair in 1983, the upper
2 m of the chamber walls were replaced by reinforced concrete. The focus of this study is the
original concrete of one of the chamber walls, for which strength measurements are available at
three vertical core samples from an investigation in 2014. Figure 6.7 shows a front view and the
cross section of the chamber wall with the two concrete layers of different age and the position of
the core samples. Table 6.1 lists the 24 measurements of the concrete compressive strength and
their corresponding measurement location in z1 and z3 (z2 = −1.0 m for all 24 measurements).

Tamped
concrete

CS1 CS2 CS3

32 m 32 m 32 m 32 m
8 m
2 m

z2

z1

z3

z1

z2
z3

8 m

2 m

4.5 m

1 m

CS1,CS2,CS3

Figure 6.7: Front view (top) and cross section (bottom) of the ship lock wall in Oldenburg including the
locations of three vertical core samples (CS1, CS2 and CS3), from which 24 measurements of
the concrete compressive strength have been taken. Tamped concrete is indicated in light
gray, reinforced concrete is shown in dark gray.

The prior parameters for the N G distribution f(θ) are chosen as follows:

[µ0, κ0, α0, β0] =
[
/, 0,−1

2 , 0
]
, (6.40)

which gives the non-informative prior distribution f(θ) = λ−1
X [12, 28].

6.3.1.1 Learning the correlation model

The correlation model contains four unknown parameters, namely the two correlation lengths,
the parameter for the micro-scale variability and the smoothness parameter of the Matérn
corrrelation model. The 24 measurements are not sufficient to learn all parameters without the
support from an informative prior distribution. It has been reported in previous studies that
learning the smoothness parameter and the correlation length at the same time is a difficult
task in general [11]. Thus, the Matérn smoothness parameter is set to ν = 0.5, corresponding to
the exponential correlation model. In addition, the parameter for the micro-scale variability γ is
not learned from the data either. Instead, the analysis is carried out for different values of γ.
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6 Spatial modeling of concrete strength based on data

Table 6.1: Measurements of the concrete compressive strength obtained from three core samples in the
north wall of the ship lock Oldenburg. The locations of the core samples are indicated in
Figure 6.7.

CS1 CS2 CS3
(z1 = 32.00 m) (z1 = 64.00 m) (z1 = 96.00 m)

z3 fc,m z3 fc,m z3 fc,m

[m] [N mm−2] [m] [N mm−2] [m] [N mm−2]
2.40 29.2 2.21 21.2 2.34 18.5
3.24 15.5 3.25 16.0 3.34 10.3
4.25 8.7 4.05 32.0 4.17 13.2
5.15 12.3 5.33 20.7 5.24 14.5
6.12 16.2 6.15 13.8 6.27 25.4
7.33 11.6 7.25 12.1 7.12 14.5
8.15 13.4 8.40 8.6 8.23 13.2
9.05 13.9 9.45 14.8 9.08 33.0

The correlation length estimates are obtained via a solution of the optimization problem of
Equation (6.22) resulting in the following MAP estimates for Lc,h and Lc,v:

γ = 0.1 :
[
L∗

c,h, L
∗
c,v

]
= [2.08 m, 0.62 m] , (6.41)

γ = 0.3 :
[
L∗

c,h, L
∗
c,v

]
= [2.70 m, 0.71 m] , (6.42)

γ = 0.5 :
[
L∗

c,h, L
∗
c,v

]
= [3.75 m, 0.87 m] . (6.43)

From these values, it appears that an increase in the micro-scale variability leads to an increase
in the MAP estimates of the correlation lengths. Large correlation lengths correspond to RFs
with smooth spatial variability, while small correlation lengths indicate a highly fluctuating
RF. When γ is large, a large portion of the variability observed in the data is attributed to
the micro-scale variability (and the measurement uncertainty). In this case, a smaller part of
the data variability is attributed to spatial variability and the associated correlation length is
larger. To illustrate this, the posterior distribution of the two correlation lengths is plotted in
Figure 6.8 for varying γ. The respective MAP estimates of Lc are indicated by blue dots. In
panel a, the micro-scale variability only plays a minor role for the overall variability (γ = 0.1),
leading to a clear mode of the posterior distribution f(Lc|M, γ). Increasing the influence of
the micro-scale variability flattens the posterior distribution and shifts the mode towards larger
values for the correlation lengths, as can be seen in panels b (γ = 0.3) and c (γ = 0.5). All
three panels show an additional local maximum of f(Lc|M, γ) in the bottom right corner, i.e.,
in regions of large Lc,h and small Lc,v. This behavior is caused by the local horizontal clustering
of the measurements in three vertical core samples, whereas they are approximately evenly
distributed in vertical direction. Such an arrangement reduces the learning effect for Lc,h and
makes f(Lc|M, γ) more sensitive to changes in Lc,v.
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Figure 6.8: Posterior distribution of the correlation lengths in horizontal (Lc,h) and vertical (Lc,v) direction
for ν = 0.5 and varying values of γ. The blue dots indicate the MAP estimates at the respective
modes of the posterior distribution. f∗

0.1, f
∗
0.3 and f∗

0.5 are the values of f(Lc|M, γ) at the
respective distribution modes.

6.3.1.2 Spatial posterior predictive concrete compressive strength

The Bayesian RF update is used to learn the posterior predictive random field of the concrete
compressive strength. The following posterior N G distribution parameters are calculated from
Equations (6.16) to (6.19):

γ = 0.1 : [µn, κn, αn, βn] = [2.76, 17.27, 11.5, 1.61] , (6.44)

γ = 0.3 : [µn, κn, αn, βn] = [2.76, 17.30, 11.5, 1.59] , (6.45)

γ = 0.5 : [µn, κn, αn, βn] = [2.76, 17.33, 11.5, 1.59] . (6.46)

Since αn only depends on the number of measurements, it is constant for any choice of γ.
Although the other three N G distribution parameters depend on the spatial correlation of the
measurements, they differ only slightly for different choices of γ. This is due to the fact that an
increase in γ automatically decreases the spatial correlation of two locations in the random field
(cf. Equation (6.4)) and, thus, compensates the increased spatial correlation of the measurement
locations that comes with larger correlation lengths.

The random field parameters can be determined by application of Equations (6.13) to
(6.15). With these parameters, the spatial characteristic value fc,k(z) can be determined as the
5%−quantile value of the log-Student’s t-RF. It is illustrated in Figure 6.9 for the z1 −z3 plane in
which the core samples have been taken. While fc,k(z) is strongly influenced by the measurement
values in regions close to the measurement locations, one can see convergence to a global value in
regions away from the measurements. It is noted that the extreme values of fc,k(z) are located
in the illustrated z1 − z3 plane, the point-wise values tend towards the global value for a shift in
z2. The effect of a variation in γ on the global characteristic value is negligible, as it is 8.2 MPa
for all three cases. The global characteristic value appears in regions without spatial correlation
to the measurement locations and, thus, is determined by the posterior parameters of the N G
distribution. Those parameters are almost constant for all three choices of γ, leading to a similar
global characteristic value. Using the standardized Bayesian approach of EN 1990 with the 24
measurements from Table 6.1 leads to a space-invariant characteristic value of fc,k,EN = 8.4 MPa,
i.e., it is slightly higher than the global characteristic value obtained with the spatial model.

The effect of the different values of Lc can be seen in Figure 6.9 by comparing the regions
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of the wall where fc,k(z) differs from the global value. In panel a, the spatial effect of the
measurement locations is restricted to regions close to the core sample locations, while these
regions become larger in panels b and c, where Lc takes larger values.
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Figure 6.9: Spatial characteristic value fc,k(z) of the posterior predictive random field for different choices
of γ.

The correlation function of fc(z) contains the effect of micro- and of meso-scale variability
through the parameter γ. For each of the above choices of γ, Figure 6.10 illustrates two random
realizations of the corresponding posterior predictive RF at location z1 = 64 m, i.e., at the
location of core sample CS2. For γ = 0.1 (panel a of Figure 6.10), the realizations are dominated
by the meso-scale variability with a clear trend defined by the measurement values (indicated by
blue dots). With increasing distance to the measurement values, the uncertainty, and accordingly
the variability increases. This changes in panels b and especially panel c of Figure 6.10, where
the effect of the micro-scale correlation is stronger. This leads to sudden changes in the RF
realizations and larger uncertainty, even close to or directly at the measurement locations. This
is due to the fact that fc(z) can be seen as superposition of an RF with spatial correlation and
a noise RF (cf. Section 6.2.3.1), where the latter one dominates the overall variability of fc(z)
for large values of γ.

One of the key attributes of the proposed model is its flexibility regarding the amount of
available information. To illustrate this, the analysis is repeated for γ = 0.1 with the correlation
length taken as Lc,h = Lc,v = 5 m as suggested in the JCSS probabilistic model code [34]. The
resulting posterior parameters of the N G distribution are

[µn, κn, αn, βn] = [2.78, 8.01, 11.50, 2.09]. (6.47)

Comparison of the parameters with the ones in Equation (6.44) shows that fixing the correlation
lengths to 5 m mainly affects the parameter κn and βn in this case. Figure 6.11 illustrates the
spatial characteristic value fc,k(z) of the resulting posterior predictive RF. The comparison with
panel a of Figure 6.9 shows that a correlation length of 5 m leads to more conservative estimates
of the characteristic concrete compressive strength in regions far away from the measurements.
The reason for that is the increased spatial correlation of measurements caused by the larger
vertical correlation length of 5 m compared to 0.62 m when estimating the correlation length
from the data. Consequently, the posterior predictive random field is forced to be highly variable
in order to explain the data variability, which leads to a more conservative estimate of the global
characteristic value. This application shows that the suggested approach can be adjusted to
the degree of available prior information. However, problems can arise when information from
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Figure 6.10: Random realizations of the posterior predictive RF at z1 = 64 m for different choices of γ.

inconsistent sources are used, due to the interdependence of the model parameters (e.g., γ and
Lc,h). In addition, the approach can be used to verify recommendations from the literature and
compare them with results from an analysis based only on site-specific data.
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Figure 6.11: Spatial characteristic value fc,k(z) of the posterior predictive random field with fixed
correlation lengths Lc,h = Lc,v = 5 m and γ = 0.1.

6.3.1.3 Effect of an informative prior distribution

In addition to the 24 measurements of Table 6.1, three data sets are available, one from previous
investigations on the same ship lock and two from similar ship locks (one of which is analyzed
in Section 6.3.2). The following sample moments are used to obtain the MLE estimates of the
prior N G parameters (cf. Equations (6.27) to (6.30)):

µ̄ = [2.83, 2.12, 2.03], (6.48)

λ̄ = [3.50, 3.78, 2.53]. (6.49)

From these, the prior N G parameters are estimated:

[µ̂0, κ̂0, α̂0, β̂0] = [2.35, 2.37, 34.52, 10.56]. (6.50)
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Using an informative prior distribution reduces the uncertainty in the RF parameters and
therefore also affects the posterior estimates of the spatial correlation structure. Setting γ = 0.1,
the following MAP estimates for Lc,h and Lc,v are obtained:[

L∗
c,h, L

∗
c,v

]
= [33.33 m, 2.49 m]. (6.51)

Both correlation lengths are several times larger than in the case of an uninformative prior
distribution. Figure 6.12 shows the posterior distribution of Lc and the corresponding MAP
estimate at its mode. Although the uncertainty in Lc remains large, the informative prior
distribution has a strong effect on possible regions of Lc, as not much of the probability mass of
f(Lc|M, γ) remains in regions of extremely small or large correlation lengths (unlike panel a of
Figure 6.8). The local maxima in the bottom right corner remains unaffected by the informative
prior distribution.
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Figure 6.12: Posterior distribution of the correlation lengths in horizontal (Lc,h) and vertical (Lc,v)
direction for ν = 0.5 and γ = 0.1 with informative prior N G distribution parameters. The
blue dot indicates the MAP estimate at the mode of the posterior distribution. f∗

0.1 is the
value of f(Lc|M, γ) at the distribution mode.

The posterior N G parameters corresponding to the MAP estimate are calculated as

[µn, κn, αn, βn] = [2.67, 6.59, 46.52, 13.67]. (6.52)

While µn is close to the value obtained with the non-informative prior distribution, the other
parameters differ. The global characteristic value of the posterior predictive RF fc(z) is 5.5 MPa,
i.e., it is significantly smaller than when using the non-informative prior distribution (8.2 MPa).
Figure 6.13 shows the spatial characteristic value fc,k(z) for the z1 − z3 plane in which the core
samples have been taken. The larger correlation lengths lead to an increased area that is affected
by the measurement values, in this case spanning almost all over the chamber wall.
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Figure 6.13: Spatial characteristic value fc,k(z) of the posterior predictive random field with informative
prior and γ = 0.1.
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6.3.2 Ship lock Feudenheim

This ship lock is located at the river Neckar in Feudenheim, a district of Mannheim, Germany,
and was built in the 1920s. It consists of two chambers and three chamber walls, which are made
of unreinforced tamped concrete. The chamber walls have a length of 108 m, a height of 14.5 m
and are separated into six construction blocks of equal length. The amount of data in this study
is significantly larger than in the previous study, with a total of 369 measurement values of the
concrete compressive strength from 18 vertical core samples (6 core samples per chamber wall,
where one core sample has been extracted from each construction block). The three walls are
analyzed independently, since there is no knowledge about the construction process available.

As in Section 6.3.1, a smoothness parameter of ν = 0.5 is employed for the Matérn correlation
model. It is assumed that the concrete strength in different construction blocks is not spatially
correlated. Hence, the horizontal correlation length cannot be learned because only one vertical
core sample is available for each construction block.

As before, a non-informative N G prior distribution is chosen with parameters given in
Equation (6.40).

6.3.2.1 Learning the correlation model

To learn the free correlation parameters, namely γ and Lc,v, the optimization problem of
Equation (6.22) is solved for each wall, resulting in the following MAP estimates:

left chamber wall :
[
L∗

c,v, γ
∗
]

= [0.64 m, 0.70], (6.53)

middle chamber wall :
[
L∗

c,v, γ
∗
]

= [2.72 m, 0.86], (6.54)

right chamber wall :
[
L∗

c,v, γ
∗
]

= [2.32 m, 0.75]. (6.55)

According to the MAP estimates, the RF variability is dominated by the micro-scale variability
and the meso-scale variability only plays a minor role. The joint posterior distributions of γ and
Lc,v are illustrated in Figure 6.14. In the left chamber wall (panel a), most of the probability mass
of f(Lc,v, γ|M) concentrates in a region of small vertical correlation length, while it distributes
over a broad range of γ. The situation is different for the middle and right chamber wall, where
the probability mass is concentrated in a region of γ ≈ 0.6 − 0.8, while a broad range of Lc,v is
covered. It is noted, that the case γ = 1 is equivalent to a correlation length of 0 m, resulting in
a white noise random field without any spatial correlation. This equivalence is the reason for
the tail of f(Lc,v, γ|M) towards small values of Lc,v for small values of γ in Figure 6.14, i.e., the
model accounts for the micro-scale variability through Lc,v instead of γ in these regions.

To investigate the importance of the parameter γ, we compare the correlation model of
Equation (6.12) with a model where we set γ = 0 using the data from the three chamber
walls through Bayesian model comparison [25]. That is, we evaluate and compare the model
evidence (or marginal likelihood), i.e., the normalizing constant of the posterior distribution of
Equation (6.20), for the two cases. The results given in Table 6.2 demonstrate that neglecting the
micro-scale variability, i.e., setting γ = 0, leads to a model evidence that is orders of magnitude
smaller than including γ as a free parameter. This shows that the parameter γ has significant
influence on the obtained predictions and neglecting it could lead to an overestimation of the
spatial variability of concrete strength.
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Figure 6.14: Posterior distribution of the vertical correlation length Lc,v and the parameter γ for the left,
middle and right chamber wall of the Feudenheim ship lock. The blue dots indicate the MAP
estimates at the respective modes of the posterior distribution. f∗(Lc,v, γ|M) indicates the
value of f(Lc,v, γ|M) at the respective distribution modes.

Table 6.2: Model evidence of the posterior of Equation (6.20) for the three chamber walls of the ship lock
Feudenheim. We note that the evidence is evaluated up to a normalizing constant due to the
uninformative prior employed.
left wall middle wall right wall

γ = 0 γ uncertain γ = 0 γ uncertain γ = 0 γ uncertain
3.6 × 10−52 3.1 × 10−46 1.8 × 10−90 2.1 × 10−84 4.1 × 10−81 4.5 × 10−74

6.3.2.2 Spatial posterior predictive concrete compressive strength

A horizontal correlation length needs to be chosen for the Bayesian RF update, since it cannot
be learned from the data. The previous results show that the correlation length is a sensitive
choice with a strong influence on the posterior predictive RF. For illustration purposes, we
choose Lc,h = 5 m, as recommended in [34]. The following posterior parameters for the N G
distribution are calculated:

left chamber wall : [µn, κn, αn, βn] = [1.94, 72.51, 46.5, 11.79], (6.56)

middle chamber wall : [µn, κn, αn, βn] = [2.17, 70.47, 73.5, 16.06], (6.57)

right chamber wall : [µn, κn, αn, βn] = [2.21, 48.82, 62, 19.28]. (6.58)

Each chamber wall is split into 6 spatially independent RFs corresponding to the construction
blocks. These are only correlated through the inter-structure variability, i.e., they have the same
posterior N G distribution parameters. The posterior predictive RFs are determined and the
resulting 5%−quantile values in the z1 − z3 plane of the measurement locations are illustrated
in Figure 6.15. The left chamber wall (panel a) shows the largest variability in the spatial
characteristic value, since it has the smallest vertical correlation lengths. Regions of high (low)
characteristic values can be clearly identified and are located close to high (low) measurement
values. In the middle chamber wall (panel b), the spatial variability of the characteristic value is
small compared to panel a. This is due to the dominance of the micro-scale variability, which
reduces the impact of the spatial variability. In addition, the vertical correlation length is
significantly larger than in panel a, which leads to a smoother spatial behavior of the RF. The
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Figure 6.15: Spatial characteristic value fc,k(z) of the posterior predictive random fields for the three
chamber walls of the ship lock Feudenheim. Each wall is split into six blocks. The locations
of the core samples are indicated by the dashed lines.

correlation length of the right chamber wall (panel c) is in the same range as the one in panel b,
whereas the micro-scale variability is closer to the value of panel a. This leads to larger regions
of high (low) characteristic values (in vertical direction) than in panel a and a smooth spatial
variability. In general, γ is large in all three chamber walls, which leads to a relatively small
range of fc,k(z).

6.3.2.3 Influence of the smoothness parameter

So far, the smoothness parameter of the Matérn correlation model has been set to ν = 0.5. A
study on ν is carried out to investigate the effect of that choice. To this end, two additional
choices of ν are analyzed, namely ν = 2.5 and ν → ∞. The following MAP estimates are
obtained for the parameters of the correlation model of the left chamber wall:

ν = 2.5 :
[
L∗

c,v, γ
∗
]

= [0.66 m, 0.75], (6.59)

ν → ∞ :
[
L∗

c,v, γ
∗
]

= [0.62 m, 0.75], (6.60)

which are relatively close to the MAP estimates for ν = 0.5 ([L∗
c,v, γ

∗] = [0.64 m, 0.70]). The
same holds for the posterior N G distribution parameters, which result in

ν = 2.5 : [µn, κn, αn, βn] = [1.94, 71.84, 46.5, 11.79], (6.61)

ν → ∞ : [µn, κn, αn, βn] = [1.94, 72.31, 46.5, 11.78], (6.62)

compared to [µn, κn, αn, βn] = [1.94, 72.51, 46.5, 11.79] for ν = 0.5. We select a single
construction block of the left chamber wall (z1 ∈ [36 m, 54 m]) to perform the spatial update.
The resulting 5%−quantile values in the z1 −z3 plane of the measurement locations are illustrated
in Figure 6.16. The smoother correlation model leads to a smoother spatial characteristic value,
especially in regions with several measurements close to each other, as can be seen by the
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increasing smoothness of the contour lines in panel b and c compared to panel a. However, the
overall contribution of ν to fc,k(z) is minor in this case.

a) ν = 0.5

z1 [m]
40 50

8

4

0

z 3 
[m

]

12

z1 [m]
40 50

8

4

0

z 3 
[m

]
12

z1 [m]
40 50

8

4

0

z 3 
[m

]

12

b) ν = 2.5 c) ν → ∞

f
c,k(z) [MPa]

5.5 62.5 3 3.5 4 4.5 5

Figure 6.16: Spatial characteristic value fc,k(z) of the posterior predictive random field in a single block
of the left chamber wall (z1 ∈ [36 m, 54 m]) for different choices of the smoothness parameter
ν. The dashed line indicates the location of the core sample.

6.3.3 Interpretation of results

The two examples in Sections 6.3.1 and 6.3.2 demonstrate the ability of the proposed model
to learn the spatial distribution of the concrete strength. The two structures differ in the
construction process and the availability of data. The results show that the identification
of the parameters of the correlation model is a critical factor of the presented model that
significantly impacts the resulting predictions, e.g., the spatial distribution of the characteristic
value. Learning the parameters of the proposed correlation model from the data is a challenging
task, especially because only limited data is typically available. This is illustrated by the obtained
posterior distributions of the correlation parameters, which are rather flat. A prior reduction of
the uncertainty in the correlation parameters proves difficult, as the relevant literature is scarce.
The anisotropy of the concrete compressive strength RF, confirmed by the data in the first
example, results in an additional parameter of the spatial correlation function, adding further to
the problem. Significant differences are observed in the estimated correlation parameters, not
only for different structures but also for different structural elements, indicating the difficulty
in identifying an appropriate correlation function with limited data. However, the results also
indicate that the suggested correlation model is capable of representing the spatial variability
of concrete strength. Given an extensive set of spatial measurements that includes sufficiently
dense measurements, the parameter γ can be learned, which simplifies learning the remaining
parameters. In addition, the findings of such studies can be used to calibrate the parameters for
an informative prior distribution of the unknown model parameters in future studies.

The spatial behavior of the posterior predictive characteristic value, defined as the point-
wise 5%−quantile value of the resulting log-Student’s t-distribution, strongly depends on the
micro-scale component of the correlation function. A strong micro-scale variability reduces
the spatial correlation and the spatial influence of the measurements. In the latter case, the
characteristic value is dominated by the marginal distribution away from the measurements,
which is determined by the parameters of the marginal distribution of the RF. If the variability
is dominated by a strong micro-scale variability, the choice of the smoothness parameter for the
correlation function only plays a minor role.
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The unidentifiability of the correlation parameters with limited amount of data can partially
be attributed to the equivalence of limiting cases of the parameter values. If the variability
is completely defined by the micro-scale variability, the spatial correlation function and its
parameters are irrelevant, the resulting RF will have no spatial correlation, i.e., it is given by a
white noise field. The same result is obtained when the correlation lengths are zero, in which
case the meso-scale correlation function reduces to the Dirac function.

6.4 Concluding remarks

We propose a new spatial probabilistic model for the concrete strength, which is hierarchical
and distinguishes micro-scale and meso-scale variability. Our modeling approach enables the
use of spatially distributed measurements of the concrete strength to learn the parameters of
its spatial correlation function. The predictive distribution of the proposed random field given
the spatial measurements can be obtained in closed form and can be further used in structural
verification predictions. The proposed model enables a detailed probabilistic description of the
spatial distribution of the concrete strength in existing structures. This allows identification of
critical regions within the structure, which can be used for further investigation of the structural
condition.

The ability of the proposed model to quantify the uncertainty on the concrete strength in
regions far away from the measurements can be used to potentially avoid the use of destructive
testing techniques. One does not want to weaken the structure in the regions with the highest
mechanical demand on the material, but these are typically the regions where knowledge of the
concrete strength is of most interest. In addition, the regions of interest may not be accessible
for testing purposes in some cases. Using the suggested model allows estimating the concrete
strength in such regions including the remaining uncertainty.

The results show that additional empirical studies are required for effective learning of the
correlation function and prior parameters of the concrete compressive strength (prior parameters
of the N G distribution). Particularly, a reliable identification of the anisotropic behavior of the
concrete strength in the investigated structures requires additional studies based on horizontal
and vertical core samples. The proposed model can be used to study the influence of the
measurement spacing on the identifiability of the vertical and horizontal correlation lengths.
However, this goes beyond the scope of the present paper.

Although learning a random field model without spatial information is possible, much of
the potential information is lost when the measurement values are not assigned a location.
Hence, for effective application of the spatial modeling approach, detailed documentation of
the measurement location is inevitable, which is not always the case in practical applications.
Using additional studies with well-documented data, the model can be calibrated for practical
application.

The resulting predictive random field model offers opportunities for application in advanced
modeling approaches, e.g., in reliability analyses with finite element models accounting for the
spatial variability of the concrete material, which is not possible with the standard approaches
for learning concrete strength from data. When integrating the random field model in standard
structural analysis, spatial averaging of the random field over the areas associated with the
relevant failure modes ensures a consistent treatment of the spatial variability [26].

The proposed model can be used also to identify regions within the structure, where additional
measurements should be taken, e.g., in the context of inspection planning and maintenance
schemes. It can also help to validate potential outliers in the data set by comparing them
to measurements close-by and to avoid a selection bias originating from the fact that several
measurements are taken from a single core sample.
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6.A The log-Student’s t-distribution

The marginal distribution of the predictive RF for the concrete compressive strength fc is
the log-Student’s t-distribution. Thus, fc,ln = ln (fc) follows the Student’s t-distribution with
following PDF [4]:

ft(fc,ln) =
Γ
(

νt
2 + 1

2

)
Γ
(νt

2
) (

λt

πνt

) 1
2
(

1 + λt (fc,ln − µt)2

νt

)− νt
2 − 1

2

. (6.63)

Therein, Γ(·) is the gamma function, and µt, λt and νt are the location parameter, scale parameter
and degrees of freedom of the Student’s t-distribution. The PDF of fc can then be derived as
[59, 28]

ft,ln(fc) = 1
fc
ft (ln (fc)) . (6.64)

The CDF of fc is defined in terms of the CDF of fc,ln:

Ft,ln(fc) = Ft (ln (fc)) . (6.65)

Ft(ln (fc)) can be written in closed form in terms of the regularized incomplete beta function.
Alternatively, it can easily be evaluated numerically. We note that the log-Student’s t-distribution
has infinite moments of any order [28].
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Abstract

In probabilistic assessments, inputs with significant spatial variability should be modeled
with random fields. Random fields can be non-homogeneous with location-specific marginal
distributions, for example, due to site-specific information incorporated through Bayesian analysis
or due to spatial trends in the mean or variance of the uncertain quantity. This paper investigates
the spatial averaging method for the discretization of non-homogeneous random fields. In this
approach, the random field is reduced to a set of random variables representing its local averages
over a corresponding set of elemental domains. This is of particular benefit when coupling the
random field model with finite elements for structural analysis. We extend the application of
the method to non-homogeneous Gaussian and non-Gaussian translation random fields with
lognormal, Student’s t- and log-Student’s t-marginal distribution. The latter two distributions
are particularly relevant if spatial data is used in a hierarchical Bayesian random field modeling.
Two numerical investigations assess the ability of the method to efficiently represent the response
variability and probability of failure of structural systems with spatially variable inputs. The
investigations include the effect of different element sizes for the spatial averaging on the system
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response and applicability of the spatial averaging method to assessing local and global failure
modes.

7.1 Introduction

Many engineering applications require the consideration of physical quantities that vary randomly
in space. Common examples include material properties in large structures [15], soil properties in
geotechnical sites [30] and the apparent properties of composite materials [33]. Spatially variable
properties can be modeled by random fields (RF) [41]. By definition an RF consists of an infinite
number of random variables. Hence, numerical treatment of RFs requires their approximation in
terms of a finite number of random variables, a task known as RF discretization. An overview of
existing discretization methods can be found in [36] (with focus on the dimensionality reduction
aspect) and, more recently, in [26] (with focus on the simulation cost).

The spatial averaging (SA) method expresses the RF through a set of random variables
representing local averages of the field over a set of elements. The method was originally
proposed by Vanmarcke and Grigoriu [42] and is extensively described in [41]. SA has been
applied to homogeneous RFs in various applications and is commonly employed in the context
of geotechnical analyses to approximate spatially variable soil properties [31, 9, 11, 6, 37]. Such
problems have the advantage that geotechnical failure modes are typically dominated by average
behavior and not by local extrema of the soil properties. Thus, an RF can often be sufficiently
approximated by a small set of random variables or even a single random variable representing
the averaging behavior of the RF over a spatial domain (e.g., a failure surface). SA has also
been applied to problems in structural analysis to explicitly account for the spatial variability of
loads and material properties [42, 40, 7, 18, 43].

The theory of SA supports the application of the method to non-homogeneous RFs, although
it has been reported that it leads to increased numerical effort [44]. SA for non-homogeneous RFs
has recently been applied in the context of reliability analysis in [14] and [28]. Non-homogeneous
RFs occur, for example, when the spatial moment functions (mean and variance) follow a trend
[e.g., 10, 5], or when a homogeneous RF is updated with measurement data through a Bayesian
analysis [e.g., 13, 29, 15, 38, 35]. While in the first case it may be possible to express the
RF as function of a homogeneous RF by means of a transformation or standardization [41],
this does not hold for the latter case. This paper focuses on the second case, i.e., when the
non-homogeneous behavior of the RF results from a Bayesian updating of the RF parameters.
Such non-homogeneous RFs are characterized by local changes in the spatial mean function,
local reductions of the spatial standard deviation function and a complex location-specific
autocorrelation structure.

One of the advantages of SA over other RF discretization methods applicable to non-
homogeneous RFs is the compact form of the resulting set of averaging random variables. If the
RF is Gaussian, the averaging random variables are Gaussian random variables fully defined by
a mean vector and a covariance matrix evaluated through spatial integration of the RF moment
functions. Hence, it does not require the spectral decomposition of the covariance operator as
is the case, e.g., for the Karhunen-Loève expansion [34, 17]. Moreover, each of the random
variables directly represents the RF in a specific domain. That is, coupling of the method with
a finite element model is straightforward, which makes it ideally suited for use in engineering
applications [42, 40, 7]. In addition, the method can account for the fact that the response
of structural systems is often determined by regions of high or low values and not by local
extrema of random quantities. Last but not least, the illustrative character of the SA random
variables can significantly enhance understanding and acceptance of spatial variability and thus
increase the motivation in the engineering community for explicit modeling of RFs in engineering
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assessments. A closely related method, termed local average subdivision tackles the problem
by using a hierarchical approach from global to local averaging integrals of RFs to account
for spatial variability and the effect of averaging behavior of properties [12]. It was originally
developed for homogeneous RFs but can be extended to the general non-homogeneous case.

This paper presents the SA method for non-homogeneous Gaussian RFs following the theory
in [41]. In the homogeneous case, the mean is not affected by the averaging operation and,
thus, the mean of the spatially averaging random variables equals the mean of the random
field. The covariance of the spatially averaging random variables is obtained by integration over
the spatial autocorrelation function multiplied by the constant point-variance of the random
field [41]. This is not possible for non-homogeneous random fields, where the parameters of the
averaging random variables need to be calculated from the spatial mean function and the spatial
covariance function. We provide the required expressions for the non-homogeneous case of one-
and two-dimensional Gaussian random fields. Furthermore, we extend SA to a special class of
non-Gaussian RFs, so-called translation RFs [19], and present application for RF models with
lognormal, Student’s t- and log-Student’s t-marginal distribution. Student’s t- and log-Student’s
t-RFs appear as predictive RFs when learning is performed with spatial data [16]. RFs with
lognormal or log-Student’s t-marginal distribution are advantageous for modeling non-negative
quantities, such as strength parameter of materials, as the support of these distributions is
limited to the positive axis.

The focus of the paper is the applicability of the SA method to forward uncertainty
propagation and reliability analysis. We investigate the SA method by means of an application
to a one-dimensional elastic beam structure with spatially variable beam flexibility. Thereby,
we assess the effects of different mesh choices for the RF discretization with SA on the system
response and the structural reliability. In a second numerical investigation, the SA method is
applied for the reliability analysis of a ship lock chamber wall with spatial data on the concrete
friction coefficient. The effect of varying dimension in the SA approximation on the accuracy
in representing different failure mechanisms is investigated. On this basis, we conclude with
recommendations on the implementation of the SA method for structural reliability analysis.

The remainder of this paper is structured as follows. In Section 7.2, the spatial averaging
method is introduced and explained in detail for the case of one- and two-dimensional Gaussian
random fields. An extension to a special class of non-Gaussian random fields can be found
in Section 7.2.3. The presented methodology is illustrated with two numerical examples in
Section 7.3 followed by short conclusions in Section 7.4.

7.2 Random field discretization with the spatial averaging
method

An RF X(z) is defined as a collection of random variables indexed by a continuous spatial
coordinate z ∈ Z, where Z ⊂ Rd is the spatial domain of definition of the RF, i.e., d = 1, 2 or
3. An RF is said to be Gaussian if the n-th order joint distribution of the random variables
corresponding to any collection of points z = [z1, . . . ,zn] ∈ Z is a multivariate Gaussian
distribution. Gaussian RFs are completely defined by their spatial mean value µX(z), their
spatial standard deviation σX(z) and their autocorrelation function ρ(zi, zj), defining the
correlation at two locations zi and zj [1]. Any linear mapping of a Gaussian RF is also Gaussian
since the Gaussian distribution remains closed under linear transformations [24].

An RF is called homogeneous if its n-th order joint PDF is invariant for a shift in z, which
implies that the marginal PDF fX(z) of the RF and its moments are space-invariant [21]. For
Gaussian RFs, homogeneity is implied by homogeneity of the first two moment-functions, i.e., it
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suffices to know that µX(z) and σX(z) are constant in space, i.e., µX(z) = µX ∀ z ∈ Z and
σX(z) = σX ∀ z ∈ Z and that the autocorrelation function ρ(zi, zj) can be expressed as ρ(di,j),
where di,j = zi − zj is the difference in location of zi and zi.

The spatial averaging method approximates the RF X(z) by a set of random variables
X̂i, i = 1, . . . , nSA, where each random variable represents the local average of X(z) over the
domain Zi defined by the following integral [41]:

X̂i = Ii

Ωi
= 1

Ωi

�
Zi

X(ζ)dζ, (7.1)

where Ωi is the volume of the spatial domain Zi. Ii is the local integral of X(z) over the domain
Zi. All derivations in this study restrict to one- and two-dimensional RFs but the theoretical
approach can be extended to three-dimensional RFs and the general d-dimensional case [41].

z

x
(z

),
 x

i›

Z1 Z2 Z3 Z4

x1

› x2
›

x3

›

x4

›
Figure 7.1: Random realization of a one-dimensional RF x(z) (blue line) and its approximation with four

averaging elements of equal length (red lines, x̂i, i = 1, . . . , 4).

Figure 7.1 shows a random realization of a one-dimensional RF x(z) in blue and its corre-
sponding realization with an SA discretization of four averaging elements of equal length in
red (x̂i, i = 1, . . . , 4). Each x̂i, i = 1, . . . , 4 represents the average of the RF realization x(z)
over the corresponding interval Zi. Figure 7.2 shows a realization of a two-dimensional RF
(panel a) and its corresponding realization with an SA discretization of 16 square averaging
elements of equal size. Both figures show that local fluctuations of the RF average out and
thus disappear in the SA realization while on a larger scale the spatial variability of the RF
is identified and represented. An increasing number of averaging elements results in a more
accurate representation of the RF and thus in better representation of local fluctuations.

If X(z) is a Gaussian RF, the random variables X̂i, i = 1, . . . ,SA, for the discretization with
SA are also Gaussian because of the linearity of the integral operation in Equation (7.1). It is
possible to use SA for non-Gaussian RFs if the RF can be expressed as function of an underlying
Gaussian RF by an isoprobabilistic marginal transformation [19]. Examples of such translation
random fields where the transformation is available in closed form are presented in Section 7.2.3.

x
(z

),
 x

›

z2

a) 2D RF X(z) b) SA approximation

z2

z1 z1

max

min

Figure 7.2: Random realization of a two-dimensional RF X(z) (panel a) and its SA approximation with
16 square averaging elements of equal size (panel b).

The mean of the random variable X̂i can be found by integration of the spatial function for
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the mean µX(z) over the averaging domain Zi [41]:

µX̂i
= 1

Ωi

�
Zi

µX(ζ) dζ. (7.2)

By integration over the spatial autocovariance function CX(z1, z2) the variance of X̂i can
be found [41, 14]:

Var
(
X̂i

)
= 1

Ω2
i

�
Zi

�
Zi

CX(ζ1, ζ2) dζ1dζ2. (7.3)

The integration in Equation (7.2) is d-dimensional, where d is the spatial dimension of X(z).
Accordingly, the total dimension of the integration in Equation (7.3) is 2d. The covariance of
two random variables X̂i and X̂j cannot be obtained directly from the autocovariance function.
Its derivation is presented for the one- and two-dimensional case in the respective subsections.

If X(z) is a homogeneous RF, the mean and variance are constant over Z. In this case,
the mean is not affected by the averaging integration, i.e., µX̂i

= µX , i = 1, . . . , nSA and the
variance is given as linear function of the RF variance: Var

(
X̂i

)
= γiVar(X), i = 1, . . . , nSA,

where γi is the variance function representing the average of the autocorrelation function of the
field [40, 41]. γi expresses the reduction in the variance caused by the averaging operation and,
hence, decreases with increasing size of the averaging element. It holds that γi = 1 if Ωi = 0 and
γi → 0 for Ωi → ∞ [22, 41]. In the homogeneous case, SA underestimates the true variance of
the RF in each SA element for Ωi > 0 [7, 27]. This property cannot be directly transferred to
the non-homogeneous case on the element level due to a potentially strong fluctuation of the
spatial variance function, but remains true in a global view of the RF variability.

For homogeneous RFs, the SA method is extensively described in [41]. This paper focuses
on non-homogeneous RFs that have a complex autocorrelation structure and, hence, cannot be
transformed into homogeneous RFs.

7.2.1 Spatial averaging for one-dimensional Gaussian random fields

For the discretization of a one-dimensional RF X(z) with nSA spatially averaging domains,
Equations (7.2) and (7.3) can be rewritten for element i, i = 1, . . . , nSA as follows [41, 14]:

µX̂i
= 1
Li

� zi1

zi0

µX(z) dz, (7.4)

Var
(
X̂i

)
= 1
L2

i

� zi1

zi0

� zi1

zi0

CX(z, z′) dzdz′, (7.5)

where zi0 and zi1 denote beginning and end of the averaging domain Zi and Li is the length of
this domain, i.e., Li = zi1 − zi0 .

L0

Z
i

Z
j

L1

L2

L3

Figure 7.3: Lengths Lk, k = 0, . . . 3 of the auxiliary intervals for the calculation of the covariance of the
random variables X̂i and X̂j representing the average behavior of the RF X(z) in the local
intervals Zi and Zj .
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The calculation of the covariance of two averaging random variables X̂i and X̂j requires four
auxiliary lengths Lk, k = 0, . . . 3, which are illustrated in Figure 7.3 together with the averaging
domains Zi and Zj . The following algebraic identity can be defined using the local integrals
Ik =

�
Lk
X(ζ)dζ, (cf. Equation (7.1)) over the illustrated domains [41]:

2IiIj = I2
0 − I2

1 + I2
2 − I2

3 . (7.6)

Applying the expectation operator on both sides of Equation (7.6) gives

2E [IiIj ] = E
[
I2

0

]
− E

[
I2

1

]
+ E

[
I2

2

]
− E

[
I2

3

]
. (7.7)

Taking the expectation of the individual terms in Equation (7.6) results in [41]

2E [Ii] E [Ij ] = E2 [I0] − E2 [I1] + E2 [I2] − E2 [I3] . (7.8)

Subtracting Equation (7.8) from Equation (7.7) gives the following expression for the covariance
of Ii and Ij :

C (Ii, Ij) = 1
2
(
Var (I0) − Var (I1) + Var (I2) − Var (I3)

)
. (7.9)

The covariance of X̂i and X̂j can be calculated making use of their proportionality to Ii and Ij

defined in Equation (7.1):
C
(
X̂i, X̂j

)
= C (Ii, Ij)

LiLj
. (7.10)

Using Equation (7.9), one gets [41, 14]:

C
(
X̂i, X̂j

)
= 1

2LiLj

3∑
k=0

(−1)k ∆ (Zk) , (7.11)

where ∆ (Zk) is given by
∆ (Zk) = L2

kVar
(
X̂k

)
. (7.12)

When Zj = Zi, Equation (7.11) simplifies to L0 = L2 = Li and L1 = L3 = 0 (cf. Figure 7.3).
Accordingly, ∆ (Z0) = ∆ (Z2) = L2

i Var
(
X̂i

)
and ∆ (Z1) = ∆ (Z3) = 0 and hence Equation (7.11)

reduces to Equation (7.5). The random variables X̂i, i = 1, . . . nSA are Gaussian random
variables and thus the discretization of X(z) is fully defined by the mean vector µX̂ containing
the individual mean values µX̂i

, i = 1, . . . n and the covariance matrix CX̂ , where CX̂ (i, j) , i =
1, . . . nSA, j = 1, . . . nSA is given by the covariance of X̂i and X̂j .

7.2.2 Spatial averaging for two-dimensional Gaussian random fields

Let X(z) be a two-dimensional Gaussian RF, where z ∈ Z describes a position in the two-
dimensional domain Z. SA proceeds by dividing Z into nSA rectangular elements with edges
parallel to the coordinate axes z1 and z2. Expressions for the mean and variance of the random
variables X̂i, i = 1, . . . nSA representing the average of X(z) in the i-th element can be found
from Equations (7.2) and (7.3) [41]:

µX̂i
= 1
Ai

� z2,i1

z2,i0

� z1,i1

z1,i0

µX(z1, z2) dz1dz2, (7.13)
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Var
(
X̂i

)
= 1
A2

i

� z2,i1

z2,i0

� z2,i1

z2,i0

� z1,i1

z1,i0

� z1,i1

z1,i0

CX(z1, z2; z′
1, z

′
2) dz1dz′

1dz2dz′
2, (7.14)

where Ai = Z1,iZ2,i denotes the area of the averaging domain. Z1,i and Z2,i are the lengths of
the edges in z1, z2 respectively, i.e., Z1,i = z1,i1 − z1,i0 and Z2,i = z2,i1 − z2,i0 .

A
j
=Z1,j

Z2,j

L2,0

L2,1

L2,2

L2,3

A
i
=

Z1,i
Z2,i

Z
i

Z
j

L1,3

L1,2

L1,1

L1,0

Z2,j

Z2,i

z1Z1,i
Z1,j

z2

Figure 7.4: Edges L1,k and L2,l of the auxiliary domains Zkl, k = 0, . . . 3, l = 0, . . . 3 for calculating the
covariance of the random variables X̂i and X̂j representing the average behavior of the RF
X(z) in the rectangular domains Zi and Zj .

Equations (7.6) to (7.11) can be extended to the two-dimensional case (cf. Figure 7.4) to
obtain the following expression for the covariance of two averaging random variables X̂i and X̂j

[41]:

C
(
X̂i, X̂j

)
= 1

4AiAj

3∑
k=0

3∑
l=0

(−1)k (−1)l ∆ (Z1,k, Z2,l) , (7.15)

where Ai and Aj denote the areas of Zi and Zj , which are the averaging domains for X̂i and
X̂j . ∆ (Z1,k, Z2,l) is defined as

∆ (Z1,k, Z2,l) = A2
klVar

(
X̂kl

)
. (7.16)

Akl = L1,kL2,l is the area of the rectangular auxiliary domain Zkl, k = 0, . . . , 3, l = 0, . . . , 3.
Figure 7.4 shows the averaging domains Zi and Zj and the edges of the auxiliary domains.
The random variables X̂i, i = 1, . . . nSA are Gaussian random variables. Hence, similar to the
one-dimensional case, the mean vector µX̂ and covariance matrix CX̂ of the random variables
X̂i, i = 1, . . . nSA, are sufficient to discretize X(z).

Equations (7.13) to (7.15) are only applicable for rectangular averaging elements. If the
domain Z cannot be divided into rectangular averaging domains, it needs to be approximated
by such a domain [41]. An example is shown in Figure 7.5, where Z is approximated by the
enveloping domain Z̃. A prescribed degree of accuracy for the approximation can be achieved
by adjusting the size of the rectangular elements and, if necessary, introducing a rotation of the
coordinate system. The studies in this paper are restricted to the case where Z can be divided
into rectangular averaging elements.

7.2.3 Spatial averaging for non-Gaussian translation random fields

Although, in theory, the SA method is applicable to non-Gaussian RFs, in practice, the derived
equations for the parameters of the averaging random variables are only sufficient in the Gaussian
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z2

z1

Z Z̃

z2

z1

a) General 2D domain b) SA approximation

Figure 7.5: Approximation of a non-rectangular two-dimensional domain Z by an enveloping domain Z̃
consisting of rectangular elements of variable size.

case. For most other cases it is difficult or even impossible to find all required expressions for
obtaining a complete probabilistic description of the resulting RVs X̂i [7]. However, it is possible
to extend the applicability of the method to the class of so-called translation RFs, given by the
following marginal transformation [20, 24]:

X(z) = T (U(z)) . (7.17)

U(z) is a zero-mean and unit-variance Gaussian RF with autocorrelation coefficient function
ρU (z, z′). The mapping of Equation (7.17) is designed to preserve a given marginal cumulative
distribution function (CDF) FX(x) of the RF X(z). Given that FX(x) is strictly increasing, T (·)
can be defined as T (·) = F−1

X (Φ(·)), where F−1
X (·) denotes the inverse CDF of X(z) and Φ(·) is

the standard normal CDF [25]. U(z) can be obtained from X(z) by inversion of Equation (7.17),
i.e., U(z) = T−1 (X(z)). Note that, in order to approximate the RF with a set of Gaussian
random variables, the spatial correlation needs to be modeled for the underlying Gaussian RF.
Three special cases of translation RFs, for which T (·) is given by an analytic expression, are
presented in the following. The equations are given for a single averaging element over the entire
domain of definition but can be generalized by dividing Z into subdomains and applying the
Equations for mean and covariance derived for the Gaussian case.

7.2.3.1 Lognormal random field

In contrast to a Gaussian RF, a lognormal RF can be used to model non-negative quantities,
which makes it preferable, e.g., for modeling mechanical properties. Consider an RF Y (z) on
the domain Z defined by the following function of a zero-mean and unit-variance Gaussian RF
U(z):

Y (z) = exp
(
U(z) · σX(z) + µX(z)

)
= exp

(
X (z)

)
. (7.18)

X(z) is a Gaussian RF with mean function µX(z) and standard deviation function σX(z). FY at
any z ∈ Z is a lognormal distribution, with parameters µlnY (z) = µX(z) and σlnY (z) = σX(z):

Y (z) ∼ logN (µlnY (z), σlnY (z)) . (7.19)

Spatial averaging is then performed for X(z) resulting in a Gaussian random variable X̂Z
with parameters µX̂ and σX̂ =

√
Var

(
X̂Z

)
given by Equations (7.2) and (7.3). Applying the

transformation of Equation (7.18) gives

ŶZ = exp
( 1

ΩZ

�
Z
X(ζ)dζ

)
= exp

(
X̂Z

)
, (7.20)
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where ŶZ is a lognormal distributed random variable with parameters µlnŶ = µX̂ and σlnŶ = σX̂ .
Due to the non-linear transformation, ŶZ does not represent the arithmetic average but the
geometric average of Y (z) over z. It is noted that the geometric average is always smaller than or
equal to the arithmetic average. Hence, using the geometric average for the SA discretization of
a lognormal RF provides a lower bound on the spatial average of the RF. While this is reasonable
and conservative for some modeling cases (e.g., for low-strength dominated soil properties [e.g.,
9, 11]), it may provide a non-appropriate approximation of the true RF when the RF represents
a load/demand on the structure [e.g., 6].

7.2.3.2 Student’s t-random field

The Student’s t-distribution can be used to model a Gaussian quantity accounting for the
uncertainty in the parameters of the Gaussian distribution [e.g., 3]. Consider a Student’s t-RF
Y (z), in which FY at any z ∈ Z is a Student’s t-distribution, with location parameter µY (z),
scale parameter σY (z) and degrees of freedom νY [3, 23, 16]:

Y (z) ∼ T (µY (z), σY (z), νY ) . (7.21)

Note that νY is space-invariant. The transformation of Equation (7.17) is given as [23]:

Y (z) =
√
νY

χ

(
U(z) · σY (z)

)
+ µY (z) =

√
νY

χ
X(z) + µY (z), (7.22)

where X(z) is a zero-mean Gaussian RF with standard deviation σX(z) = σY (z) and χ is a
random variable that follows the χ2 distribution with νY degrees of freedom. As only X(z) and
the function for the mean value µY (z) are subject to spatial variability, the spatial average ŶZ
over the domain Z can be expressed by the following averaging integral:

ŶZ = 1
ΩZ

�
Z
Y (ζ)dζ = 1

ΩZ

�
Z

√
νY

χ
X(ζ) + µY (ζ)dζ =

=

√
νY
χ

ΩZ

�
Z
X(ζ)dζ + 1

ΩZ

�
Z
µY (ζ)dζ =

=
√
νY

χ
X̂Z + µŶ , (7.23)

where X̂Z is a zero-mean Gaussian random variable with variance calculated according to Equa-
tion (7.3) and µŶ is the mean of the spatial average of Y (z) over Z as defined in Equation (7.2).

7.2.3.3 Log-Student’s t-random field

The log-Student’s t-distribution combines the lognormal and the Student’s t-distribution and
thus, can be used to model non-negative quantities accounting for parameter uncertainty [16].
Consider a log-Student’s t-RF V (z), i.e., FV at any z ∈ Z is a log-Student’s t-distribution [16,
39]:

V (z) ∼ lnT (µlnV (z), σlnV (z), νV ) . (7.24)

The parametrization of FV is done by means of the parameters of the underlying Student’s t-
distribution. At any z ∈ Z it holds that Y (z) = ln(V (z)) follows a Student’s t-distribution with
location parameter µY (z) = µlnV (z), scale parameter σY (z) = σlnV (z) and degrees of freedom
νY = νV [16]. By combining Equation (7.18) and (7.22), the transformation of Equation (7.17)
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is given as follows:

V (z) = exp
(√

νV

χ
· (U(z) · σlnV (z)) + µlnV (z)

)
= exp

(√
νV

χ
X(z) + µlnV (z)

)
. (7.25)

X(z) is a zero-mean Gaussian RF with standard deviation σX(z) = σlnV (z) and χ is a random
variable that follows the χ2 distribution with νV degrees of freedom. The spatial average V̂Z
over the domain Z can be calculated as follows:

V̂Z = exp
( 1

ΩZ

�
Z
Y (ζ)dζ

)
= exp


√

νV
χ

ΩZ

�
Z
X(ζ)dζ + 1

ΩZ

�
Z
µlnV (ζ)dζ

 =

= exp
(√

νV

χ
X̂Z + µlnV̂

)
. (7.26)

X̂Z is a zero-mean Gaussian random variable with variance calculated according to Equation (7.3)
and µlnV̂ is the mean of the spatial average of ln(V (z)) = Y (z) over Z. Similar to the lognormal
RF in Section 7.2.3.1, V̂Z represents the geometric average of V (z) over Z instead of the
arithmetic average.

7.3 Numerical investigations

In this Section, the accuracy of the SA method for approximating non-homogeneous RFs is
investigated by means of two numerical investigations. The non-homogeneity of the RFs in both
cases stems from the combination of a homogeneous prior RF with measurement data. The
first investigation is a one-dimensional beam under uniform load with spatially variable beam
flexibility analyzed in a statically determinate setting with analytical solution and a statically
indeterminate setting where the system response is evaluated using a finite element model.
Different SA settings regarding element size and number are investigated for different output
quantities of the structural system. The second investigation is a sliding failure mechanism in
a ship lock chamber wall where the friction coefficient in a construction joint is modeled as
a two-dimensional RF. Two different failure mechanisms are considered and the effect of the
chosen SA discretization on the reliability estimates is analyzed.

7.3.1 Measures for the accuracy of the random field discretization

Discretizing an RF X(z) with a finite number of random variables X̂i, i = 1, . . . n, yields an
approximation error. If the X̂i, i = 1, . . . n, are used for uncertainty propagation through a
numerical model, this error typically propagates through the model and is reflected in the
model response. However, depending on the type of the quantity of interest, the error in the
model response may be larger or smaller than the error in the RF approximation [38]. The
point-wise approximation error is defined as the difference of the quantity of interest Q and its
approximation Q̂ at spatial location z, i.e., ε (z) = Q (z) − Q̂ (z). Based on ε (z), numerous
local and global error measures can be defined to assess the accuracy of a RF discretization.
e.g., the bias, error variance or mean-square error [e.g., 24, 36, 2]. The latter two, include the
covariance of Q (z) and Q̂ (z), which can require the numerical solution of a complex integral
equation. In addition, their interpretation is not always straightforward and hence they are not
further discussed here. Instead, we use the normalized bias εµ(z) and the normalized variance
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error εV(z) as point-wise error measures in this study. They are defined as [38]

εµ(z) =
E [Q(z)] − E

[
Q̂(z)

]
E [Q(z)] , (7.27)

εV(z) =
Var (Q(z)) − Var

(
Q̂(z)

)
Var (Q(z)) . (7.28)

Taking the weighted integral of Equations (7.27) and (7.28) over the domain Z yields the
corresponding global error measures [2]:

ε̄µ = 1
Ω

�
Z

|εµ(z)| dz, (7.29)

ε̄V = 1
Ω

�
Z

|εV(z)| dz. (7.30)

In addition, the influence of the RF discretization on the system response is assessed in
terms of the system reliability, or equivalently its probability of failure. The failure event F is
expressed in terms of a limit state function g

(
X(z)

)
, such that failure occurs if g

(
X(z)

)
≤ 0.

That is, the probability of failure is PF = Pr
(
g
(
X(z)

)
≤ 0

)
. We will be comparing PF with

P̂F = Pr
(
g
(
X̂(z)

)
≤ 0

)
. Typically, g

(
X(z)

)
is a function of an output quantity of interest

Q(z) and F occurs with a small probability. Hence, through assessing the influence of the
RF discretization on the probability of failure, we evaluate the ability of the discretization to
accurately represent the tails of the distribution of Q(z).

7.3.2 Analysis of a one-dimensional beam

A one-dimensional beam subject to uniformly distributed vertical load is investigated, whose
flexibility F (z) is modeled by a Gaussian RF that is updated with measurement data. The
beam has length L = 2 m and the applied load is q = 1.4 kNm−1. F̂ (z) is the piece-wise constant
SA approximation of F (z) by using nSA averaging elements. Euler-Bernoulli beam theory is
used to evaluate the response of the structural system. We consider two different settings for the
boundary conditions of the beam; a statically determinate case and a statically indeterminate
case.

7.3.2.1 Random field model of the beam flexibility

The prior model of F (z) is a homogeneous RF with a mean of µ′
F = 0.5 MN−1m−2 and a

standard deviation of σ′
F = 0.1 MN−1m−2. The prior autocorrelation function is modeled by the

exponential correlation function [1]:

ρ′(zi, zj) = exp
(

−2 |zj − zi|
ϑ

)
, (7.31)

where ϑ is the scale of fluctuation, which is set to 1 m.
We assume that measurement data M is available in the form of nm direct measurements

of the beam flexibility xm = [xm,1, . . . , xm,nm ] and the corresponding measurement locations
zm = [zm,1, . . . , zm,nm ]. These measurements are associated with an additive zero-mean Gaussian
measurement error ε with standard deviation σ2

ε = 0.05µ′
F . In this case, updating of F (z) can be

done in closed form by making use of the self-conjugacy of the Gaussian distribution, resulting
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in the following posterior mean and covariance functions [41, 29, 15]:

µ′′
F (z) = µ′

F +Rzm(z) · R−1
zm,ε ·

(
xm − µ′

F

)T
, (7.32)

C ′′
F (zi, zj) =

(
σ′

F

)2 ·
(
ρ(zi, zj) −Rzm(zi) · R−1

zm,ε ·RT
zm

(zj)
)
. (7.33)

Rzm(z) is a 1×nm row vector function with element i equal to ρ′(z, zm,i). Rzm,ε = Rzm,zm +Rε,
where Rzm,zm is an nm ×nm matrix with element (i, j) equal to ρ′(zm,i, zm,j) and Rε =

(
σε
σ′

F

)2
· I,

where I is the nm × nm identity matrix.
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Figure 7.6: Posterior spatial mean value (panel a) and standard deviation (panel b) of the RF for the
beam flexibility F ′′(z) (blue) and its approximation with four averaging elements F̂ ′′(z)
(red); posterior spatial autocorrelation of the RF F ′′(z) (panel c) and correlation of the four
averaging random variables for the approximation of F ′′(z) with SA (panel d).

A single measurement fm = 0.75 · µ′
F = 0.375 MN−1m−2 at measurement location zm =

0.25L = 0.5 m is considered in the RF update. The resulting posterior RF parameters of the
beam flexibility are obtained by application of Equations (7.32) and (7.33). We first set the
number of SA elements to nSA = 4. Figure 7.6 illustrates the posterior RF parameters together
with the parameters of the corresponding four spatial averaging random variables calculated
by means of Equations (7.4), (7.5) and (7.11). The measurement leads to a reduction in the
mean value at the measurement location and in the region around the measurement compared
to the prior mean (blue line in panel a). In addition, the uncertainty and hence the standard
deviation at the measurement location and in its vicinity is reduced (blue line in panel b). These

170



C
ha

pt
er

7

7.3 Numerical investigations

effects decrease with increasing distance from the measurement location and thus the posterior
parameters converge to the prior parameters. A similar effect can be observed in the posterior
correlation structure (panel c). The parameters of the spatial averaging random variables reflect
the non-homogeneity, however the local extrema in the spatial mean and standard deviation
average out when applying the averaging operations for the discretization with SA (red lines
in panel a and b). The spatial autocorrelation function of the RF is approximated by a 4 × 4
correlation matrix (panel d). Again, the SA discretization accounts for the non-homogeneity of
the RF but local effects average out.

7.3.2.2 Statically determinate cantilever beam

The statically determinate cantilever beam is illustrated in Figure 7.7. The internal forces are
independent of the flexibility and hence the bending moment M(z) can be directly calculated
as M(z) = − q

2 (L− z)2. Using the Euler-Bernoulli beam theory, the rotation φ(z) and vertical
displacement w(z) as illustrated in Figure 7.7 are obtained as follows:

φ(z) = −q

2

� z

0
(L− t)2 F (t) dt, (7.34)

w(z) = −q

2

� z

0

� s

0
(L− t)2 F (t) dtds. (7.35)

L

q

w(z)

ϕ(z)
z

Figure 7.7: Statically determinate cantilever beam under uniform vertical load q.

Since F (z) is modeled with a Gaussian RF and φ(z) and w(z) are linear functions of F (z),
they are also Gaussian RFs. Based on Equations (7.34) and (7.35), spatial functions for the
mean and autocovariance of the system response RFs can be derived:

µφ(z) = −q

2

� z

0
(L− t)2 µF (t) dt, (7.36)

Cφ(zi, zj) = q2

4

� zj

0

� zi

0
(L− ti)2 (L− tj)2CF (ti, tj) dtidtj , (7.37)

µw(z) = −q

2

� z

0

� s

0
(L− t)2 µF (t) dtds, (7.38)

Cw(zi, zj) = q2

4

� zj

0

� zi

0

� sj

0

� si

0
(L− ti)2 (L− tj)2CF (ti, tj) dtidtjdsidsj . (7.39)

Replacing µF (t) and CF (ti, tj) in Equations (7.36) to (7.39) with the element-wise constant ap-
proximations obtained by means of Equations (7.4) and (7.11) results in µφ̂(z), Cφ̂(zi, zj), µŵ(z)
and Cŵ(zi, zj), i.e., the spatial functions for the system response when F (z) is approximated
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Table 7.1: Average normalized bias ε̄µ and variance error ε̄V of the beam rotation φ′′ and vertical
displacement w′′ for varying number of spatial averaging elements nSA to discretize the
posterior beam flexibility RF.

ε̄µ ε̄V

nSA φ′′ w′′ φ′′ w′′

2 0.009 0.019 0.301 0.458
4 0.010 0.020 0.144 0.240
8 0.003 0.005 0.044 0.063

by F̂ (z) with nSA spatial averaging elements. Due to the linearity of the averaging operations,
φ̂(z) and ŵ(z) are also Gaussian RFs. The system response RFs and their SA discretization

b) Standard deviation of displacement
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Figure 7.8: Posterior spatial standard deviation of the system response (rotation: panel a; displacement:
panel b) for the cantilever beam. The blue lines mark the analytical RF solution and the red
lines mark the SA approximation with nSA = 2 (dashed line), 4 (solid line) and 8 (dotted
line).

with nSA = 2, 4 and 8 are evaluated using Equations (7.36) to (7.39). The spatial mean value
is approximated well with any chosen SA discretization. For nSA = 2, the maximum of the
point-wise error εµ(z) is in the order of 5% (close to the fixed end of the beam) and <1% for most
spatial locations z. εµ(z) decreases further for nSA = 4 and nSA = 8. In general, εµ(z) decreases
with increasing distance to the fixed end. Figure 7.8 shows the spatial standard deviation of the
beam rotation (panel a) and vertical displacement (panel b). The spatial standard deviation of
the system response RFs is underestimated throughout the length of the beam, with decreasing
approximation error for increasing nSA. The local effect of the measurement appears in the
shape of σ′′

φ(z) and σ′′
φ̂(z) but not in σ′′

w(z) and σ′′
ŵ(z) due to the smoothing caused by the

additional integration when calculating the vertical displacement.
The average error measures for the system response according to Equations (7.29) and (7.30)

are listed in Table 7.1 for nSA = 2, 4 and 8. The average bias is small for all configurations and
the variance error decreases with increasing nSA. In general, the average error is larger for the
displacement than it is for the rotation.

To investigate the effect of the SA discretization on the failure probability of the system,
a maximum allowable vertical displacement of wlim = −1.5 mm is defined. Since the vertical
displacement of a cantilever beam reaches its maximum at the free end, the following limit state
function can be formulated:

g(F (z)) = w′′(z = 2 m) − wlim, (7.40)

Replacing w′′(z = 2 m) by ŵ′′(z = 2 m) in Equation (7.40) yields the SA approximation of the
failure event. Both w′′(z = 2 m) and ŵ′′(z = 2 m) are Gaussian random variables with mean
value and standard deviation directly computable by means of Equations (7.38) and (7.39).
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Thus, PF is given as
PF = Φ

(
wlim − µ′′

w(z = 2 m)
σ′′

w(z = 2 m)

)
, (7.41)

where Φ(·) is the cumulative distribution function of the standard normal distribution. The
reference solution is PF = 9.9 × 10−4. The SA approximation of PF is obtained by replacing
µ′′

w(z = 2 m) and σ′′
w(z = 2 m) by the respective SA approximations.

10-4

10-2

P
F›

2 4 6 8 10
n

SA

12 14 16 18 20

10-3

2 4 6 8 10
n

SA

12 14 16 18 20

0.1

0.09

0.08

-1.15

-1.2

-1.25

-1.3

µ
ʹʹ 

(z
 =

 2
 m

) 
[m

m
]

w

›

σ
ʹʹ 

(z
 =

 2
 m

) 
[m

m
]

w

›

µʹʹ (z = 2 m)w

σʹʹ (z = 2 m)w

P
F

a) Convergence of mean and standard deviation b) Convergence of failure probability

µʹʹ (z = 2 m)w

›

σʹʹ (z = 2 m)w

›

P
F

›

Figure 7.9: Panel a shows the SA approximation of the mean (solid red line, left ordinate) and standard
deviation (dashed red line, right ordinate) for the tip displacement of the cantilever beam as
function of the number of equisized averaging elements nSA. The blue lines show the analytical
mean value µ′′

w(z = 2 m) (solid blue line) and standard deviation σ′′
w(z = 2 m) (dashed blue

line). Panel b shows the corresponding SA approximation of the failure probability P̂F (red
line) as function of the number of equisized averaging elements nSA. The blue line shows the
analytical failure probability PF .

Figure 7.9 illustrates the approximated mean and standard deviation of the displacement at
the free end and the corresponding failure probability estimate as function of nSA and compares
them to the respective analytical solutions. It appears that a single averaging element results
in a strong overestimation of the failure probability as P̂F is approximately eight times larger
than PF . When increasing nSA, P̂F becomes negatively biased and converges to the analytical
solution PF with increasing nSA. The relative error in the probability of failure falls below
30% for nSA ≥ 5. The overestimation for nSA = 1 results from the fact that the RF F ′′(z)
is discretized with a single random variable that averages over the whole length of the beam,
which reduces the local effect of the measurement at zm = 0.5 m and leads to an overestimation
of the flexibility in that region. This error propagates through the model evaluation and, on
the one hand, leads to a strong bias of the vertical displacement. On the other hand, it leads
to an almost perfect approximation of σ′′

w(z = 2 m) with a single averaging element, since it
counteracts the underestimation of the variance that is typically observed when using a small
number of averaging elements.

So far, the SA elements have been equisized, i.e., Li = L
nSA

, i = 1, . . . , nSA independent of
the location within the structural system. In the following, the SA mesh is chosen such that it is
finer in regions that may be critical for the system response, in this case the fixed end of the beam
z = 0 m and the measurement location zm = 0.5 m. Figure 7.10 shows the parameters of the

Table 7.2: Average normalized bias ε̄µ and variance error ε̄V of the vertical displacement w′′ and estimated
probability of failure P̂F with eight SA elements of uniform size, a refined mesh at the fixed
end and a refined mesh at the measurement location.

ε̄µ ε̄V P̂F

Uniform mesh 0.005 0.063 8.4 × 10−4

Fine mesh at fixed end 0.001 0.025 9.6 × 10−4

Fine mesh at zm 0.004 0.044 9.0 × 10−4
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Figure 7.10: Posterior mean value (top row), standard deviation (middle row) and correlation (bottom
row) of the SA approximation of the posterior flexibility RF with eight equisized averaging
elements (left column), refined mesh at the fixed end (middle column) and refined mesh at
the measurement location zm (right column).
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Figure 7.11: Effect of adaptive SA element size in an 8-element mesh (solid line: equisized elements,
dotted line: refined mesh at the fixed end, dashed line: refined mesh around the measurement
location) on the point-wise normalized bias (panel a) and variance error (panel b) of the
vertical displacement.
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random variables and their correlation for nSA = 8 with equisized elements (left column), refined
mesh at the fixed end (middle column) and refined mesh around the measurement location
zm = 0.5 m (right column). As nSA = 8 for all three settings, a refinement of the SA mesh in
one region of the beam necessarily leads to a coarser mesh in other parts of the domain, in this
case towards the free end of the beam. Figure 7.11 illustrates the effect on the point-wise error
in approximating the vertical displacement.

Refining the mesh leads to smaller bias and variance error in that region compared to the
error with equisized elements. The coarser mesh towards the free end of the beam leads to slightly
larger bias and variance error for the two adaptive mesh choices. The average error measures
are listed in Table 7.2 showing the minor effect on the average variance error of the vertical
displacement. The investigated adaptive mesh choices lead to a failure probability estimate
of P̂F = 9.6 × 10−4 (mesh refinement at fixed end) and P̂F = 9.0 × 10−4 (mesh refinement
at measurement location), respectively compared to P̂F = 8.4 × 10−4 with nSA = 8 equisized
averaging elements. It is reminded that the reference solution is PF = 9.9 × 10−4. However,
although the results with the adaptive mesh choices are more accurate, they are also more
sensitive to the analysis at hand and thus should be handled with caution. This sensitivity is
illustrated by using another adaptive SA mesh with nSA = 8, where the refinement is towards
the free end of the beam, i.e., the region of interest with respect to the limit state function of
Equation (7.40). The SA mesh is a left-to-right reversion of the adaptive SA mesh with the
refinement at the fixed end (cf. middle column of Figure 7.10). The resulting failure probability
estimate is P̂F = 5.0 × 10−4, which underestimates PF significantly. In the general case, it
might be difficult to find a suitable adaptive SA mesh, especially in cases where the relation
between the RF discretization and the output quantity of interest is hidden by a black box
model evaluation, as is the case for complex finite element models.

7.3.2.3 Propped cantilever beam

The structural system is modified by adding an additional vertical support at the free end of
the beam as illustrated in Figure 7.12. The resulting propped cantilever beam is statically
indeterminate and thus, Equations (7.34) and (7.35) cannot be used to evaluate the beam
rotation and displacement.

L

q

w(z)

ϕ(z)
z

Figure 7.12: Statically indeterminate propped cantilever beam under uniform vertical load q.

Due to the spatial variability of the beam flexibility, the inner forces of the beam depend
on the flexibility. Therefore, the system response is evaluated with the linear finite element
method based on the Euler-Bernoulli beam theory with a finite element size of lF E = 0.01 m.
Since the system response RFs and their moments cannot be calculated analytically, a numerical
reference solution is employed. To this end, the posterior flexibility RF is discretized with the
Karhunen-Loève (KL) expansion with a large number of terms (mKL = 500) [17]. The KL
expansion is based on a spectral decomposition of the autocovariance operator of the RF and
can be used for homogeneous and non-homogeneous RFs [2, 38, 15]. Using the KL expansion,
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a) Mean displacement b) Standard deviation of displacement
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Figure 7.13: Posterior spatial mean value (panel a) and standard deviation (panel b) of the vertical
displacement for the propped cantilever beam. The KL expansion in the reference solution
(blue) discretizes the RF F ′′(z) with mKL = 500 terms, the SA approximation (red) with
four averaging elements of equal size.

Table 7.3: Average normalized bias ε̄µ and variance error ε̄V of the propped cantilever vertical displacement
w′′ for varying number of spatial averaging elements nSA to discretize the posterior beam
flexibility RF.

nSA ε̄µ ε̄V

2 0.016 0.322
4 0.023 0.278
8 0.007 0.070

the mean value of an RF is represented exactly, while there is an approximation error in the
covariance operator. The average variance error of the beam flexibility with the chosen number
of terms for the reference solution is smaller than 1%. The parameters of the posterior flexibility
RF F ′′(z) are the same as in the previous investigation and its SA discretization is done with
four equisized averaging elements (cf. Figure 7.6). The reference solution as well as the SA
solution for the moments of the vertical displacement are obtained by running a Monte Carlo
simulation with NMCS = 1 × 104 independent samples and is illustrated in Figure 7.13.

Panel a shows that the mean displacement is approximated well with four SA elements,
concerning both shape and magnitude of the curve. The standard deviation of the displacement
is underestimated throughout the beam and the magnitude increases with increasing distance to
one of the supports.

Table 7.3 lists the average bias and variance error of the vertical displacement for nSA = 2,
4 and 8. Increasing nSA to eight elements leads to large error reductions while the difference
between nSA = 2 and nSA = 4 is comparatively small. Comparison of Table 7.3 with Table 7.1
for the statically determinate cantilever beam indicates that the average error is larger for the
propped cantilever beam than for the statically determinate cantilever beam.

Due to the non-uniform flexibility of the propped cantilever beam, the inner forces (i.e.,
bending moment and shear) are functions of the applied load and the support reactions, which
need to be evaluated numerically, e.g., by means of the finite element method. The bending
moment in a propped cantilever beam is calculated as follows:

M(z) = M(z = 0) · L− z

L
+ q ·

(
L · z2 − z2

2

)
, (7.42)

where M(z = 0) is the bending moment at the fixed end of the beam. For constant beam
flexibility, the support reactions can be determined analytically and M(z = 0) = −q · L2

8 . As
F (z) is modeled by an RF, the evaluated bending moment at the fixed end depends on the
chosen discretization. To illustrate this, a reliability analysis with the following limit state
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Figure 7.14: Panel a shows the SA approximation of the mean (solid red line, left ordinate) and standard
deviation (dashed red line, right ordinate) for the bending moment at the fixed end of
the propped cantilever beam as function of the number of equisized averaging elements
nSA. The blue lines show the analytical mean value µ′′

M (z = 0 m) (solid blue line) and
standard deviation σ′′

M (z = 0 m) (dashed blue line). Panel b shows the corresponding SA
approximation of the failure probability P̂F (red line) as function of the number of equisized
averaging elements nSA. The blue line shows the analytical failure probability PF .

function is performed:
g(F (z)) = M(z = 0 m) −Mlim, (7.43)

where Mlim is chosen as −1.25 ·q · L2

8 = −750 kNm. It is noted that M(z = 0 m) is not a Gaussian
random variable and thus, evaluation of the probability of failure in terms of the normal integral
is not possible. Instead, a Monte Carlo simulation with NMCS = 1 × 106 samples is employed to
estimate PF , where the full finite element model of the propped cantilever beam is evaluated
for each realization of the beam flexibility. A reference solution is obtained based on the KL
expansion with mKL = 500 terms to discretize the beam flexibility in a Monte Carlo simulation
with NMCS = 1×107 resulting in PF = 2.01×10−3. The results for varying number of averaging
elements in the SA discretization are illustrated in Figure 7.14. The SA approximations for mean
(red line) and standard deviation (dashed red line) are plotted as function of nSA in panel a and
compared to the respective reference solution (blue line and dashed blue line). If nSA = 1, the
beam flexibility is uniform throughout the domain, leading to a deterministic bending moment
at the fixed end (µ̂′′

M (z = 0) = −q · L2

8 = −600 kNm and σ̂′′
M (z = 0) = 0 kNm). The SA method

underestimates both mean µ̂′′
M (z = 0) and standard deviation σ̂′′

M (z = 0) before converging to
the reference solution with increase of nSA. Panel b shows the convergence of the estimated
failure probability P̂F (red line) towards the reference solution (blue line). Failure cannot occur
for nSA = 1 because the uniform flexibility results in a deterministic bending moment that does
not lead to a failed state of the system. No failure sample was observed for nSA = 2 in the
Monte Carlo simulation with the chosen sample size, indicating that P̂F strongly underestimates
PF . Choosing nSA ≥ 3 leads to negatively biased estimates of the failure probability converging
towards the reference solution with increasing nSA. P̂F is of the correct order of magnitude for
nSA ≥ 5.

7.3.2.4 Summary and interpretation of results

The one-dimensional beam example shows that SA can be used to approximate non-homogeneous
RFs in reliability analyses of simple beam structures. Due to the smoothing effect of the forward
operator, local fluctuations in the beam flexibility average out and thus, the system response
can be approximated well with spatially averaging elements. Not surprisingly, a larger number
of averaging elements and thus, a larger number of random variables to approximate the RF
leads to a better global accuracy of the system response approximation. However, due to the
changing interval bounds when changing the number of SA elements, this does not necessarily
hold for all error measures when the RF is non-homogeneous. The distribution tails of the
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system response are especially important when performing reliability analysis. Our results show
that the distribution tails can be sufficiently well approximated with a reasonable number of
random variables for the RF discretization, although the required number is larger than for
estimating the mean response. The choice of an adaptive size of the averaging elements can
lead to a better accuracy of the results, but at the same time increases the sensitivity of the
SA discretization to the behavior of the numerical model. Hence, it cannot be recommended
for general use; in general problems, the underlying numerical model may be more complex, in
which case the choice of an appropriate adaptive mesh is not straightforward. The influence of
the spatial variability of the beam flexibility on the system response depends on the quantity of
interest and the problem setting. Local failure mechanisms (in our investigation the bending
moment) require a larger number of averaging elements than failure mechanisms dominated
by global behavior of the flexibility (in our investigation the maximum displacement). Other
than in statically determinate settings, the inner forces in a statically indeterminate setting are
influenced by spatially variable beam flexibility and thus are spatially variable functions. This
leads to larger approximation error in the spatial system response when using SA for the RF
discretization.

7.3.3 Sliding failure in the construction joint of a ship lock

The chamber of a fictitious ship lock is investigated. It has a length of L = 109 m, a usable
width between the chamber walls of 12 m and is made of unreinforced tamped concrete. Several
failure mechanisms can occur in a ship lock, one of them being sliding of the construction
joint between the chamber wall and the base slab. The cross section of the wall including the
joint with a width of W = 4.5 m and the surrounding soil are illustrated in Figure 7.15. In

2.0 m

8.4 m

1.5 m

4.5 m

z1

z2
z3

Construction
joint

Ground water 
level

Soil

Figure 7.15: Half cross section of a ship lock chamber with construction joint between base slab and
chamber wall.

structural verifications, sliding of this joint due to shear is one of the failure mechanisms that
are investigated by checking the following condition [8, 4]:

VEd ≤ SRd, (7.44)

where VEd denotes the applied design shear force at the interface and SRd is the design sliding
resistance of the joint. In practice, both VEd and SRd depend on a number of factors and
additional variables to cover different effects on the sliding failure. For simplicity, a slimmed-
down version is used here. VEd consists of all forces acting horizontally on the structure, i.e.,
the horizontal earth and water pressure. SRd is the product of the vertical forces NEd and the
friction coefficient τ of the construction joint. Further contributions to SRd (e.g., the concrete
tensile strength) are neglected at this point. NEd is given by the self weight of the chamber wall
plus the vertical earth and water pressure, wall friction, and crack and pore water pressure.
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In this example, two failure events are considered. The first one is a local exceedance of the
sliding resistance along z2, defined by the following limit state function:

g1(z1, τ(z)) = γR · SR (z1) − VE (z1) , (7.45)

where γR = 1.3 is a deterministic coefficient to account for the spatial load bearing behavior
of the chamber wall in a simplified manner. A detailed mechanical model for the spatial load
bearing would go beyond the scope of the investigation at this point. SR (z1) is defined as the
average sliding resistance along the construction joint in z2:

SR (z1) = NE (z1)
4.5 m

� 4.5 m

0 m
τ(z) dz2. (7.46)

VE (z1) and NE (z1) are the loads acting on the structure in horizontal and vertical direction.
The second limit state function is defined as exceedance of the average sliding resistance of a
substantial part of the chamber wall:

g2 (ζ1, τ(z)) =
� ζ1+ z̄1

2

ζ1− z̄1
2

SR (z1) dz1 −
� ζ1+ z̄1

2

ζ1− z̄1
2

VE (z1) dz1, (7.47)

where z̄1 = L
5 is the length in z1 that is assumed critical for the sliding failure mechanism of a

substantial part of the wall and ζ1 ∈ ( z̄1
2 , L− z̄1

2 ) is the location of the potential failure point
along the wall.

Failure of the chamber wall occurs if any of the two described limit state functions gives a
value smaller than zero at any point in z1 direction. Thus, the limit state function for system
failure is given as a function of the two individual failure probabilities:

gsys(τ(z)) = min

 minz1 {g1(z1, τ(z))} , z1 ∈ (0 m, L)
minζ1 {g2(ζ1, τ(z))} , ζ1 ∈ ( z̄1

2 , L− z̄1
2 )

 . (7.48)

7.3.3.1 Two-dimensional random field for the friction coefficient

The friction coefficient τ in the construction joint is modeled by a two-dimensional RF τ (z) in
z1 and z2. The prior RF τ ′ (z) is homogeneous with lognormal marginal distribution F ′

τ . The
corresponding parameters are µ′

lnτ and σ′
lnτ , which are the mean value and standard deviation of

the Gaussian distribution F ′
lnτ of the underlying homogeneous Gaussian RF τln (z). The spatial

correlation of τ ′
ln (z) is modeled with the Matérn correlation model with a smoothness parameter

of ν = 1.5 [1, 32]:

ρ′(zi, zj) =
(

1 +
√

3δz
lc

)
· exp

(
−

√
3δz
lc

)
. (7.49)

The correlation length is chosen as lc = 4 m.
A typical assumption for the friction coefficient in indented construction joints of concrete

structures is τ = 0.9 [8], while in-situ measurements often show significantly higher friction
coefficients. Hence, the prior RF distribution parameters are chosen such that τ = 0.9 approxi-
mately equals the 5%-quantile value of the lognormal distribution. This is achieved by choosing
µ′

lnτ = 0.25 and σ′
lnτ = 0.2. The corresponding mean value and standard deviation are µ′

τ = 1.31
and σ′

τ = 0.26. Note that this prior distribution is based on relatively strong assumptions and
may not hold in practice.

It is assumed that data from concrete core samples of the chamber wall is available including
nm = 8 spatial measurements of the friction coefficient τ in the construction joint (i.e., z3 = 0 m).
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Table 7.4: Measurement values τm of the friction coefficient and corresponding locations in the construction
joint of the ship lock chamber wall.

1 2 3 4 5 6 7 8

z1 [m] 17.80 22.30 46.55 52.05 54.70 54.70 76.25 81.40
z2 [m] 0.75 0.50 1.25 1.45 0.85 1.75 0.35 1.00
τm 2.6 2.1 1.2 1.7 3.1 2.1 2.9 5.0

Table 7.4 lists the measurements τm = [τm,1, . . . , τm,8] and corresponding locations. It is further
assumed that the data are associated with a lognormal multiplicative measurement error with
median 1 and coefficient of variation CVε = 0.1, which is equivalent to an additive zero-mean
Gaussian measurement error for the logarithmic transformation of the measurements ln(τm).
Equations (7.32) and (7.33) can be adapted for the two-dimensional update of the mean and
covariance function of the Gaussian RF τln (z):

µ′′
lnτ (z) = µ′

lnτ +Rzm(z) · R−1
zm,ε ·

(
ln(τm) − µ′

lnτ

)T
, (7.50)

C ′′
lnτ (zi, zj) =

(
σ′

lnτ

)2 ·
(
ρ(zi, zj) −Rzm(zi) · R−1

zm,ε ·RT
zm

(zj)
)
. (7.51)

Rzm(z) is a 1×nm row vector function with element i equal to ρ′(z, zm,i). Rzm,ε = Rzm,zm +Rε,
where Rzm,zm is an nm × nm matrix with element (i, j) equal to ρ′(zm,i, zm,j) and Rε = σ2

lnε · I,
where I is the nm × nm identity matrix. The resulting posterior mean value and standard
deviation of the marginal lognormal distributions of τ ′′ (z) are plotted in Figure 7.16.
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Figure 7.16: Posterior spatial mean value (panel a) and standard deviation (panel b) of the two-dimensional
RF for the friction coefficient in the construction joint of a ship lock chamber wall. The red
crosses indicate the locations of the nm = 8 measurements of the friction coefficient.

To approximate τ ′′ (z) with SA, the domain of the construction joint is divided into rectangu-
lar averaging domains. Their length is L

nSA,1
in z1 and W

nSA,2
in z2, resulting in nSA = nSA,1 ·nSA,2

rectangular elements of equal size. The corresponding parameters of the lognormal averaging
random variables and their correlation are found by application of Equations (7.13) to (7.15)
in combination with the transformation in Equation (7.20). The mean values and standard
deviations for nSA,1 = 20 and nSA,2 = 1 are illustrated in Figure 7.17. It can be seen that local
extrema of the RF parameters resulting from high or low measurement values are not fully
reflected in the SA parameters but regions of high or low values are visible.

7.3.3.2 Loads acting on the structure

The vertical forces from self weight, vertical earth and water pressure, wall friction and crack
and pore water pressure are modeled space-invariant and deterministically. They sum up to
NE(z1) = 580 kNm−1 per running length. The horizontal water pressure is assumed deterministic
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Figure 7.17: Posterior spatial mean value (panel a) and standard deviation (panel b) of the SA discretiza-
tion of the two-dimensional RF for the friction coefficient in the construction joint of a ship
lock chamber wall. The number of elements is nSA = 20 with nSA,1 = 20 and nSA,2 = 1.
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Figure 7.18: Failure probability estimates for the sliding failure of the ship lock chamber wall as function
of the number of equisized averaging elements in z1 direction nSA,1. Panel a shows the
estimate of the system failure probability P̂F (red line) and panel b shows the estimates of
the individual failure probabilities P̂F,1 (solid red line) and P̂F,2 (dashed red line). The blue
lines mark the corresponding reference failure probabilities PF , PF,1 and PF,2 (dashed blue
line).

based on the given ground water level (cf. Figure 7.15), resulting in a value of VE,w = 353 kNm−1

per running length. The horizontal earth pressure consists of a basic value of VE,e = 159 kNm−1

and is multiplied with a location-specific random term. This term is modeled with a one-
dimensional KL representation using a fixed number of terms (mKL = 10). It has mean value
µp = 1, standard deviation σp = 0.05 and exponential spatial correlation (cf. Equation (7.31))
with a scale of fluctuation of ϑ = 40 m.

7.3.3.3 Reliability analysis

The reliability analysis is carried out with MCS using 107 independent samples. A reference
solution is obtained by discretizing the two-dimensional RF τ ′′ (z) with the KL expansion with
mKL = 500 terms. Figure 7.18 illustrates the resulting failure probability estimates as function
of the number of SA elements in z1 direction nSA,1. Panel a shows that P̂F (red line) strongly
underestimates PF (blue line) for small nSA,1 but converges to the reference solution with
increasing nSA,1. P̂F = 0 when nSA,1 < 4, confirming the trend to underestimate PF for small
nSA,1. The system failure probability can be split up into the two individual failure probabilities
PF,1 and PF,2 for failure as defined by Equation (7.45) and (7.47), respectively. Panel b of
Figure 7.18 shows the convergence of the individual probability estimates P̂F,1 (solid red line)
and P̂F,2 (dashed red line) to the reference solution (respective blue lines) with increasing
nSA,1. For nSA,1 < 5 (4), the estimated individual failure probability for failure mechanism 1
(2) is 0. The required number of averaging elements for obtaining a good approximation of
PF,1 is significantly larger than for PF,2. This is related to the nature of the two considered
failure mechanisms. g1(z1, τ(z)) describes a failure mechanism that is located at a single point
in direction z1, i.e., it is sensitive to local spatial variability. g2 (ζ1, τ(z)) on the other hand
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Table 7.5: Effect of the number of SA elements in z2 direction nSA,2 on the failure probability estimate
P̂F for sliding failure of the ship lock chamber, exemplarily for nSA,1 = 25, nSA,1 = 50 and
nSA,1 = 75.

P̂F

nSA,1 nSA,2 = 1 nSA,2 = 2 nSA,2 = 3

25 8.9 × 10−4 8.4 × 10−4 8.4 × 10−4

50 2.7 × 10−3 2.6 × 10−3 2.6 × 10−3

75 3.8 × 10−3 3.7 × 10−3 3.6 × 10−3

describes the average resistance over the length z̄1, which is dominated by regions of high and
low values of the friction coefficient. This type of failure mechanism is less sensitive to local
variations of the RF approximation error, and thus, can be well approximated with a smaller
number of averaging elements. Increasing the number of elements in z2 direction has a minor
effect on the estimated failure probability, as shown in Table 7.5 for nSA,1 = 25, nSA,1 = 50 and
nSA,1 = 75. The reason is that both failure mechanisms include an integration of the sliding
resistance over W in z2 direction. The minor changes in P̂F can be attributed to the fact that
τ ′′ (z) is approximated by the geometric average in each SA element. Increasing the number of
elements leads to a smaller difference between the integration of geometric averages (with SA)
and the integration of τ ′′ (z) (in the reference solution).

This example shows that, for an efficient reliability analysis, the number of SA elements
should be chosen depending on the problem at hand. Local failure mechanisms require a larger
number of averaging elements than failure mechanisms dominated by averages over specific
regions or even determined by global averages. By an intelligent choice of the SA mesh, the
stochastic dimension, i.e., the number of random variables, can be significantly reduced without
loss of accuracy. This is of special interest in multi-dimensional settings, where on the one hand
the number of random variables increases exponentially when the SA mesh is refined and on the
other hand, as illustrated above, the SA mesh might need to be fine in one direction but can be
relatively coarse in the other direction(s).

7.4 Conclusion

This paper presents the spatial averaging method for discretizing non-homogeneous random
fields with focus on application in reliability analysis with forward engineering models. Non-
homogeneous random fields can be induced through a spatial Bayesian update of the random
field with measurement data. Each random variable in the discretization with spatial averages
represents the average behaviour of the random field in a chosen linear (in one dimension) or
rectangular (in higher dimensions) spatial domain. Equations to calculate the mean vector
and the covariance matrix of the set of averaging random variables are presented. These
equations enable direct application of the method to Gaussian random fields. Additionally, we
present application of the method to non-Gaussian translation fields and derive the required
transformation for fields with lognormal, Student’s t- and log-Student’s t-marginal distribution.

The performance of the method is investigated through two numerical examples, a one-
dimensional beam and a two-dimensional ship lock chamber wall. Thereby, the method is assessed
in terms of its ability to accurately represent output quantities of interest and, particularly, the
reliability of engineering structures. It is shown that the spatial averaging method is suitable to
approximate non-homogeneous random fields with a relatively small set of random variables,
especially when the numerical model of the system response involves integration of the spatially
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7.4 Conclusion

variable quantity. In such cases, even a single random variable can be sufficient for obtaining a
reasonable approximation of the output variability. The examples highlight that understanding
of the mechanical model is essential for efficient application of the spatial averaging method in
conjunction with structural models. It is shown that not only the number of averaging elements
but also the size of the individual elements are critical parameters for the performance of the
method. An adaptive element size can increase the accuracy of the discretization by increasing
the quality of the random field discretization in regions of special importance. However, it
cannot be recommended for general application as it requires detailed knowledge of the effect of
spatial variability in the input on the output quantity of interest. Thus, a uniform mesh size is
to be preferred since it is more robust in terms of the approximation error of the random field
discretization. In the absence of an insight on the mechanical model, the number of elements
can be chosen by defining a target average relative bias and variance error on the input random
field.

The method is particularly suitable for coupling with black box models of engineering
systems, such as finite element models, and, hence, enables consideration of spatial variability in
practical reliability analyses. Additionally, the presented method can be used to account for
spatial variability in the verification of structures, e.g., by determining a conservative estimate
for the spatial average of material properties or by accounting for spatial load bearing behavior
but still maintaining the simplifications of a plane structural model. It is left to future studies to
investigate the suitability of the spatial averaging method for practical application in structural
verification.
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