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Abstract

Deep learning has significantly advanced the field of AI in the past decade, with powerful

parallel computing hardware and new approaches in ANNs enabling the creation of

very deep architectures that frequently exhibit superhuman performance. Despite this

success, energy consumption can be problematic in various contexts, such as large server

applications with independent power generation, advanced driver assistance systems in

cars with limited battery capacity, and small embedded systems with restricted power

budgets.

One potential solution to this issue is neuromorphic computing, which is inspired by

biological neurons and has the potential to reduce energy consumption through the use

of SNNs. SNNs communicate with short all-or-nothing pulses rather than the continuous-

valued activation functions used in traditional ANNs. While numerous approaches have

been proposed for training SNNs, none have achieved performance comparable to ANNs

trained with highly optimized gradient descent-based learning algorithms. As a result,

the current state-of-the-art involves taking pre-trained ANNs and converting them into

SNNs.

This thesis aims to analyze and compare the properties of ANNs and SNNs, review and

optimize existing conversion approaches, and enable the development of more e↵ective

and e�cient neuromorphic systems. We focus on the three fundamental encoding

techniques: rate coding, population coding, and temporal coding. Through our analysis,

we developed optimization techniques for increasing inference speed and approximating

hyperparameters in rate-coded networks to construct the deepest SNN to date with more

than 100 layers, providing the basis for a spiking transformer network. Furthermore, we

propose a novel approach for sparse, low-energy computation in temporal-coded networks

and demonstrate previously infeasible time-series processing through population coding

by exploiting the inhomogeneities of analog neuromorphic hardware. By thoroughly

exploring the possibilities for conversion between ANNs and SNNs, we hope to make

significant progress toward enabling the widespread adoption of neuromorphic computing

and reducing the energy consumption of AI systems.
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Zusammenfassung

Deep Learning hat den Bereich der künstlichen Intelligenz (KI) in den letzten zehn

Jahren erheblich vorangebracht. Leistungsstarke parallele Computerhardware und neue

Ansätze bei künstlichen neuronalen Netzen (ANNs) ermöglichen die Erstellung von sehr

tiefen Architekturen, die häufig übermenschliche Leistungen erbringen. Trotz dieses

Erfolgs kann der Energieverbrauch in verschiedenen Kontexten problematisch sein, z. B.

bei großen Serveranwendungen mit unabhängiger Stromerzeugung, bei fortschrittlichen

Fahrerassistenzsystemen in Autos mit begrenzter Batteriekapazität und bei kleinen

eingebetteten Systemen mit eingeschränktem Energiebudget.

Eine mögliche Lösung für dieses Problem sind neuromorphe Systeme, die von biolo-

gischen Neuronen inspiriert sind und das Potenzial haben, den Energieverbrauch durch

den Einsatz von gepulsten neuronalen Netzen (SNNs) zu senken. SNNs kommunizieren

mit kurzen Alles-oder-Nichts-Impulsen anstelle der in herkömmlichen ANNs verwendeten

Aktivierungsfunktionen mit kontinuierlichen Werten. Es wurden zahlreiche Ansätze für

das Training von SNNs vorgeschlagen, aber keiner hat bisher eine Leistung erreicht,

die mit ANNs vergleichbar ist, die mit hoch optimierten, auf gradientenbasierenden

Lernalgorithmen trainiert werden. Der derzeitige Stand der Technik besteht daher darin,

vortrainierte ANNs in SNNs zu konvertieren.

Ziel dieser Arbeit ist es, die Eigenschaften von ANNs und SNNs zu analysieren und

zu vergleichen, bestehende Konvertierungsansätze zu überprüfen und zu optimieren und

die Entwicklung e↵ektiverer und e�zienterer neuromorpher Systeme zu ermöglichen.

Wir konzentrieren uns auf die drei grundlegende Kodierungstechniken: Ratenkodierung,

Populationskodierung und zeitliche Kodierung. Durch unsere Analyse haben wir Op-

timierungstechniken zur Erhöhung der Inferenzgeschwindigkeit und zur Annäherung

von Hyperparatmetern in ratenkodierten Netzwerken entwickelt, um das zu der Zeit

tiefste gepulste neuronale Netzwerk mit mehr als 100 Schichten zu konstruieren sowie die

Grundlage für gepulste Transformer Netzwerk zu scha↵en. Darüber hinaus schlagen wir

einen neuartigen Ansatz für spärliche, energiesparende Berechnungen in zeitlich kodierten

Netzwerken vor und demonstrieren die bisher nicht mögliche Verarbeitung von zeitlich

kontinuierlichen Daten durch Populationskodierung, indem wir die Inhomogenitäten

analoger neuromorpher Hardware ausnutzen. Durch die gründliche Erforschung der

Möglichkeiten für die Umwandlung zwischen ANNs und SNNs ho↵en wir, bedeutende

Fortschritte auf dem Weg zu einer weit verbreiteten Einführung des neuromorphen

Rechnens und zur Verringerung des Energieverbrauchs von Systemen der KI zu erzielen.
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1 Introduction

Artificial Intelligence (AI) has undergone remarkable progress in recent years, with a

particular focus on Neural Networks (NNs). Despite the inception of computational

approaches for NNs as far back as the 1950s [1], they only began to receive widespread

recognition in the last decade. DanNet [2] was acknowledged in 2011 as the first NN to

achieve superhuman performance on a pattern recognition dataset. This breakthrough

marked the beginning of the disruption that AI-based approaches would bring to numerous

industries.

Recent advancements in AI have led to a significant surge in transformative technologies

across multiple disciplines. The medical field has made significant progress in the

automated detection of diseases in imaging methods-based diagnosis [3], [4]. Similarly,

the justice sector has used AI to identify issues in legal contracts [5]. Not least because

NNs can optimize the training of NNs themselves better than humans can [6].

AI has also enabled solutions that traditional algorithms are unable to address. In

2016, an NN defeated the human champion in the game of Go [7]. Furthermore, the

prediction of protein folding, a complex process that had eluded researchers for over

60 years, has now become feasible through the use of NNs [8]. This breakthrough has

opened up new possibilities in the field of drug discovery, particularly for the treatments

for diseases such as Alzheimer’s and Parkinson’s.

However, the high energy consumption of NNs is a significant issue that must be

addressed. Despite this challenge, increasing the number of layers in a deep NN can

improve performance by a fraction of a percent [10], leading to some models containing

over 10,000 layers in depth [11]. The largest language model in 2020, GPT-3 [12], had

more than 175 billion trainable parameters and required a staggering 190,000 kWh of

energy for its training, resulting in the emissions of 85 tonnes of CO2 equivalents [13].

This energy consumption assumption only accounts for the final training phase with

optimal hyperparameter settings. Algorithms such as Neural Architecture Search (NAS)

[14] can help determine these hyperparameters, resulting in multiple iterations and

significantly increasing emissions, potentially by a factor of over 3,000 [15]. As Machine

Learning (ML) capabilities continue to advance, so too does the need for increasingly

powerful computational resources to support the training of sophisticated Artificial

Neural Networks (ANNs). Recent studies suggest that this computational power doubles

approximately every 3.4 months [16] (see Figure 1.1), compared to the computation per

1
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Figure 1.1: Exponential growth of neural network parameters. Parameter counts
of several recently released pre-trained large language models (Figure updated
from [9])

Joule doubling only every 2.6 years [17]. This exponential growth will be unsustainable

in the coming years.

Researchers are exploring strategies to reduce the energy consumption of NNs, including

(1) optimizing the information flow within the networks through techniques such as

sparsity [18]–[20], (2) developing alternative network architectures such as MobileNet [21]

and Shu✏eNet [22], (3) improving training algorithms [23], and (4) utilizing hardware

accelerators that are optimized for NN computations [24].

A further approach is neuromorphic computing, representing a promising paradigm

based on the idea of mimicking the behavior of cortical neurons in biology. The core idea

is to replicate the response of biological neurons to incoming stimuli in silicon hardware

[25]. This approach has shown significant potential for energy consumption reductions

2



compared to current hardware [26]. As a result, neuromorphic computing has garnered

considerable attention from various research organizations and companies, including Intel

[27], IBM [28], and Infineon [29].

Neuromorphic computing represents a continuation of the evolutionary trajectory

of NNs, starting with the McCulloch-Pitts neurons [30] that were based on Boolean

activation functions and followed by the development of continuously activated ANNs,

sometimes also referred to as analog NNs. Recent advances in neural network design

have led to the development of Spiking Neural Networks (SNNs), which leverage the

temporal dynamics of spike events to encode and process information [31], making them

computationally more powerful compared to preceding generations [32].

Despite the benefits of SNNs, the non-di↵erentiability of pulses, typically represented

as Dirac delta functions, presents a challenge for applying traditional training algorithms

based on stochastic gradient descent and error backpropagation. Thus, new training

approaches are required to overcome this challenge.

Training of SNNs falls into three categories: (1) biologically plausible learning rules

at the synapses, for example, Spike-Timing-Dependent Plasticity (STDP) [33], [34], (2)

supervised learning with spikes as a spiking variation of gradient-descent-based error

backpropagation [35]–[37], and (3) the conversion of ANNs trained with backpropagation

to SNNs, where the architecture and parameters of pre-trained ANNs are directly

transferred to SNNs.

An ANN is trained with backpropagation to adjust the network’s weights in the

training approach. Following this training, the ANN is converted into a SNN through the

replacement of the real-valued activation functions with spiking neurons. The activity

level in the original ANN corresponds to the frequency of spikes generated by the spiking

neuron and therefore encodes the information in the firing rate, accordingly referred to as

rate-coded conversion. While rate-coded conversion is the most commonly used approach,

researchers have proposed other methods that employ di↵erent coding techniques [38]–

[40]. These conversion techniques have yielded the highest-performing SNNs to date,

as reported in various literature sources. A comprehensive overview of the available

performances can be found in [41].

An additional advantage is that an external party can handle the conversion process

without requiring the creator of the original ANN to publish or share their dataset.

In this thesis, we evaluate encoding schemes and determine which are best suited for

conversion approaches. We explore the available options, and when not available, we

develop our approaches to fill the missing gaps. The rate-coded approach is the most

common and most researched one. We scale it to very deep NNs with over 100 layers

and present optimization algorithms for increasing inference speed and approximating

hyperparameters.
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For the other information encodings suited for conversion, we present a population-

coded approach that shows high potential on subthreshold analog neuromorphic hardware

and a sparsely activated temporal-coded approach, which can reduce the energy con-

sumption even further than the low-powered rate-coded approach many times over. Our

study provides a comprehensive analysis of the encoding schemes for SNNs and provides

insights into the advantages and limitations of each approach. Our findings can guide

researchers and hardware manufacturers in selecting the most suitable approach for their

specific needs.

1.1 Research Questions and Scope of the Thesis

The overall question which guides this research work is as follows:

How can ANN-to-SNN conversion approaches be used for faster development

of energy-e�cient, state-of-the-art spiking networks?

Answering this overarching question raises several issues that require careful considera-

tion. One of the most significant benefits of spiking neurons is their ability to consume

energy only when transmitting information, thus necessitating neurons that are sparsely

activated for highly energy-e�cient computation. The Rectified Linear Unit (ReLU)

activation function is commonly used in ANNs. This activation function can be seen as

the firing rate of a neuron when averaging the number of output spikes during a given

interval. Because of that most conversion approaches adopt rate-coded spiking neurons

to convert the ReLU activation function. Researchers have proposed several alternative

coding schemes, but there is a lack of a comprehensive overview of those that could be

utilized in the conversion process, which motivates the first Research Question (RQ):

Research Question 1 (Spike Encodings)

Which spike encodings can be used for mapping the activation function of ANNs to spiking

neurons?

After analyzing the di↵erent viable encoding schemes, we investigate the state-of-the-art

network architectures that can benefit from the ANN-to-SNN conversion approaches.

While many conversion approaches focus on simple network architectures such as feedfor-

ward networks or basic Convolutional Neural Networks (CNNs), real-world applications

typically require more optimized architectures for specialized tasks with higher per-

formance, such as RetinaNet or transformer networks. Consequently, the second RQ

arises:

Research Question 2 (State-of-the-Art Architectures)

Which state-of-the-art neural network architectures and operators are missing a conversion

approach?
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1.2 Structure

Prior to the deployment on neuromorphic hardware, it is necessary to convert the

networks and run simulations to evaluate and optimize the conversion approaches.

However, running SNN simulations is computationally expensive and time-consuming

compared to the matrix multiplications of ANNs on optimized hardware. The converted

spiking networks usually take a long time to converge to their highest accuracy; therefore

various optimization approaches have been presented over time. These approaches

introduce a speed-accuracy-tradeo↵, with the optimal choice for the newly introduced

hyperparameters usually involving trial and error to obtain the best results. Determining

these hyperparameters before running a simulation of an SNN could significantly improve

the speed of development, which motivates the third RQ:

Research Question 3 (Rapid Prototyping)

Can the accuracy of the converted networks already be estimated before the conversion

process?

Many networks that solve real-world applications comprise deep structures with a

large number of layers. Accordingly, for converted SNNs to be viable, they must be

able to handle very deep networks on large datasets with high accuracy. Small errors

can accumulate per layer, resulting in unusable performance in very deep networks.

Additionally, many of the current approaches used small datasets such as MNIST or

CIFAR-10, which do not represent real-world datasets. Therefore, we raise the following

RQ:

Research Question 4 (Scalability and Optimization)

Do the existing approaches scale to very deep NNs with large datasets and can they be

further optimized?

1.2 Structure

The present work is organized into eight chapters, aimed at addressing the conversion of

ANNs to SNNs. A schematic representation of the structure of this thesis is illustrated

in Figure 1.2.

Chapter 1 serves as an introduction, in which the motivation for the research is

presented, and the problem statement is introduced. Furthermore, the chapter formulates

the research questions that focus on bridging the knowledge gap. The chapter concludes

with a list of publications that form the basis of the work presented in this thesis or are

directly related to it.

Chapter 2 focuses on the background and related work concerning the neuron models

used in this thesis, with Section 2.1 introducing the relevant models. Section 2.2 provides

an overview of the research landscape of neuromorphic hardware accelerators, while
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Figure 1.2: Structure of the thesis.

Section 2.3 highlights the di↵erent approaches for the training of SNNs, including bio-

inspired, artificial, and conversion methods.

Chapter 3 describes the approach of the present work, beginning with an overview

of the various encoding schemes that are compatible to encode information in a spike-

based format. It evaluates which encoding schemes are best suited for conversions and

which are not, aiming to answer the first research question. Next, it discusses the most

important network architectures available, highlighting which ones have been, can, and

need to be converted. Lastly, in Section 3.3, we discuss the weight normalization for
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1.2 Structure

the ANN-to-SNN conversion and how it can be approximated for faster development of

converted SNN, which aims to answer the third research question.

The following three chapters (Chapters 4 to 6) are grouped by the coding mechanisms

that are best suited for the conversion, as discussed in the previous chapter. Chapter 4

focuses on rate-coded conversion, which is currently the state-of-the-art for conversion.

It presents an optimization method in Section 4.1, which minimizes the inference time of

converted networks and compares it with other recently published optimization methods.

In Section 4.3, the chapter demonstrates the usage of the ReLU1 activation function

for rapid prototyping of converted SNNs, presenting a very deep CNN with residual

blocks, namely Residual Neural Network (ResNet), for image classification. It then uses

the combination of optimization methods with a Feature Pyramid Network (FPN) for

object detection, namely Retina Neural Network (RetinaNet), to achieve a more than

10⇥ speed increase compared to the basic conversion approach, while simultaneously

achieving the best-in-class accuracy on a very large dataset. Lastly, in Section 4.4, the

chapter shows a novel method to convert transformer networks to spiking networks and

its use for Natural Language Processing (NLP) and classification tasks.

Chapter 5 presents the conversion of Recurrent Neural Networks (RNNs), utilizing Long

Short-Term Memory (LSTM) as memory cells to solve an NLP task, achieving better

performance than previous conversion approaches using vanilla RNNs. This is possible

due to one of the drawbacks of subthreshold analog neuromorphic hardware, which can

represent S-shaped activation functions, such as sigmoid and tanh, with populations of

spiking neurons.

Chapter 6 demonstrates the usage of sparse temporal codes instead of encoding

information into the firing rates of neurons. Here, information is encoded into the time

before a spike arises, resulting in only positive activations in the original ANN that

produce a single spike in the converted SNN. The chapter showcases this approach for a

classification task with a converted CNN.

Chapter 7 summarizes the outcomes and limitations of the preceding methodological

and application-focused chapters. Lastly, Chapter 8 gives an outlook on emerging

topics and potential directions of the ANN-to-SNN conversion and its application on

neuromorphic hardware.
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1.3 Contributions

Several parts of this dissertation have been previously published and presented in peer-

reviewed journals, international peer-reviewed conferences or international peer-reviewed

workshops.

In order to answer the first RQ, a comprehensive review article was composed and

published in a journal, which provides an in-depth analysis of encoding techniques in

biological and artificial SNNs. This article’s content is reflected in Section 3.1, forming

the basis for the classification of ANN-to-SNN conversion.

1. Daniel Auge, Julian Hille, Etienne Mueller, and Alois Knoll. A Survey of En-

coding Techniques for Signal Processing in Spiking Neural Networks.

Neural Processing Letters, 2021. [41]

Based on the findings of the review article, the conversion approaches have been

classified by their spike coding into three groups: rate, population, and temporal coding.

The group of rate-coded networks marks the state-of-the-art for conversion and is reflected

in Chapter 4. An approach for the improvement of the inference time of rate-coded

networks was presented as a poster:

2. Etienne Mueller, Julius Hansjakob, Daniel Auge, Faster Conversion of Analog

to Spiking Neural Networks by Error Centering. Bernstein Conference,

2020. [42]

This approach was used to extend the existing rate-coded approach and to scale CNNs

to deep networks with large datasets while speeding up the development and further

optimizing the inference time. The details of these evaluations were published as a

conference paper:

3. Etienne Mueller, Julius Hansjakob, Daniel Auge, Alois Knoll, Minimizing Infer-

ence Time: Optimization Methods for Converted Deep Spiking Neural

Networks. International Joint Conference on Neural Networks (IJCNN), 2021.

[43]

Moreover, a novel approach for the conversion of transformer networks and their

attention mechanism was presented based on the above findings. The details are included

in Section 4.4, which was previously published as a conference paper:

4. Etienne Mueller, Viktor Studenyak, Daniel Auge, Alois Knoll. Spiking Trans-

former Networks: A Rate Coded Approach for Processing Sequential

Data. 7th International Conference on Systems and Informatics (ICSAI), 2021.

[44]
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Additionally, a search algorithm for the approximation of the normalization hyperpa-

rameter was proposed. Its finding is included in Section 3.3 and was previously presented

as a poster:

5. Etienne Mueller, Daniel Auge, Alois Knoll, Normalization Hyperparameter

Search for Converted Spiking Neural Networks. Bernstein Conference, 2021.

[39]

Our experiments showed that a rate-coded approach is not suitable for the conversion of

RNNs based on memory cells. We proposed a novel approach that exploits the properties

of analog neuromorphic hardware that uses populations of neurons instead of single,

rate-coded neurons and builds the base of Chapter 5. The approach was previously

published as a conference paper:

6. Etienne Mueller, Daniel Auge, Alois Knoll. Exploiting Inhomogeneities of

Subthreshold Transistors as Populations of Spiking Neurons. International

Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery

(ICNC-FSKD), 2022. [40]

Moreover, the temporal coding approach has been identified as the most energy-e�cient

conversion approach. However, previous work did not scale to deep networks, therefore

we introduced an approach for solving the problem resulting in a conversion with less

than a spike per neuron. It is covered in Chapter 6 and was published at a workshop:

7. Etienne Mueller, Simon Klimaschka, Daniel Auge, Alois Knoll. Neural Oscilla-

tions for Energy-E�cient Hardware Implementation of Sparsely Acti-

vated Deep Spiking Neural Networks. Association for the Advancement of

Artificial Intelligence (AAAI), Practical DL, 2022. [45]

The findings from the previously mentioned publications have led to the creation of

the publicly available toolbox:

8. Etienne Mueller. Convert2SNN: Toolbox for the ANN-to-SNN Conver-

sion. Available: https://github.com/EtienneMueller/Convert2SNN, MIT Li-

cense, 2021 [Online]. [46]

Additionally, several works contribute to the field of spiking neuron models but are

not directly part of this thesis:

9. Daniel Auge, Etienne Mueller. Resonate-and-Fire Neurons as Frequency

Selective Input Encoders for Spiking Neural Networks. Technical Report

TUM, 2020. [47]
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10. Daniel Auge, Julian Hille, Felix Kreutz, Etienne Mueller, Alois Knoll. End-to-end

Spiking Neural Network for Speech Recognition Using Resonating Input

Neurons. 30th International Conference on Artificial Neural Networks (ICANN),

2021. [48]

Furthermore, there are works related to gesture recognition with SNNs but use di↵erent

training algorithms than those presented in this thesis:

11. Daniel Auge, Julian Hille, Etienne Mueller, Alois Knoll. Hand Gesture Recog-

nition in Range-Doppler Images Using Binary Activated Spiking Neural

Networks. IEEE International Conference on Automatic Face and Gesture Recog-

nition, 2021. [49]

12. Daniel Auge, Philipp Wenner, Etienne Mueller. Hand Gesture Recognition

using Hierarchical Temporal Memory on Radar Sequence Data. Bernstein

Conference, 2020. [50]
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Figure 2.1: Chapter structure.

The present chapter provides an overview of the background and related research that

underpins our proposed approach. The chapter is structured as follows (see Figure 2.1):

In the first section, we provide a succinct introduction to the fundamental neuron

models that serve as the basis for this work, including biologically-plausible models like

Hodgkin-Huxley models and computationally e�cient integrate-and-fire models. Next, we

discuss the current state-of-the-art hardware solutions for the energy-e�cient execution

of SNNs. We review software simulation environments, digital hardware platforms

such as TrueNorth, SpiNNaker, and Loihi, as well as analog and mixed analog/digital

implementations like BrainScaleS and Neurogrid. The third section is dedicated to various
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2 Theoretical Background

learning algorithms designed specifically for SNNs, consisting of three subsections that

examine biologically plausible algorithms, supervised learning algorithms, and conversion

methods, which are the primary topic of this thesis.

In subsequent chapters (Chapters 4 to 6), we present relevant prior works that are

specific to the application domains explored in later chapters.

2.1 Neuron Models

Biological neurons are typically composed of three main components: a cell body, an

axon, and dendrites. Dendrites typically receive information and transmit it to the cell

body, axons transmit the neuron’s output. Neurons are receiving inputs via electrical

or chemical transmissions from di↵erent neurons. The point of contact amidst the end

of one neuron’s axon and the dendrite of a postsynaptic neuron, where information or

signals are being transmit, is referred to as a synapse.

Generally, neurons accumulate charge by changes in the voltage potential across their

cell membrane of the neuron, as a result of received inputs from previous neurons over

synaptic connections. When the cumulative charge within a neuron reaches a specific

threshold, it triggers the neuron to set o↵ an action potential, which travels down the

neuron’s axon, a↵ecting the charge on subsequent neurons via synaptic transmission.

Neuron models are the mathematical representations of biological neurons and are

essential in the simulation of neural systems. The first attempt to model biological

neurons was made by McCulloch and Pitts in 1943 [30]. In general, in NNs the output

value aj of a neuron j can be calculated with

aj = �

 
NX

i=0

wi,jxi

!
(2.1)

which is the sum of the output value xi of neuron i weighted by the weight wi,j of the

synaptic connection between neuron i and neuron j over the number of inputs N into

the neuron j, with a non-linear activation function �. In the approach of McCulloch and

Pitts, the activation function �MP(x) could only take binary values:

�MP(x) =

8
<

:
1 if x � ✓
0 otherwise

(2.2)

with ✓ being a threshold, that if exceeded by the accumulated weighted inputs x, the

activation function would return 1, otherwise, it returns 0. These NNs are also known as

the first generation of neural networks.
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Today’s common ANNs represents the second generation of NNs. ANNs use continuous-

valued activation functions, for example ReLU [51]:

�ReLU(x) = max(0, x) =

8
<

:
x if x > 0

0 otherwise
(2.3)

Their activation can be seen as the firing rate of biological neurons. As a result, ANNs can

transmit more information and show far better performance than the previous generation.

Due to their continuous-valued activation function, ANNs are sometimes also referred to

as analog neural networks. This improvement can represent more information and has

thus led to very deep networks and many breakthroughs in the last few years.

In the third generation of NNs, the SNNs, the activation function is exchanged

with biologically-inspired neuron models [32]. These neuron models typically consist

of coupled Ordinary Di↵erential Equations (ODEs) to describe the dynamics of the

membrane potential, which is mainly influenced by various factors such as ionic currents,

synaptic inputs, and intrinsic currents. The goal of the neuron models is to capture the

essential features and behaviors of real neurons to make predictions about their response

to input stimuli. The choice of neuron model depends on the goal of the research, with

some models being more complex and biologically realistic, while others are simplified,

computationally light representations [31].

In this section, we introduce the most common neuron models. They can be broadly

grouped into three main categories:

• Biologically-plausible models which explicitly models the behavior seen in biological

neural systems. The most common examples are the Hodgkin-Huxley [52] and the

Morris-Lecar model [53].

• Biologically-inspired models are attempting to emulate the behavior of biological

systems, albeit often without strict adherence to biological plausibility. Notable

models are Fitzhugh-Nagumo [54], [55], Hindmarsh-Rose [56] and Izhikevich [57].

• IF models are a relatively simple class of biologically-inspired spiking neuron models.

There are many models in the family of Integrate-and-Fire (IF) models, besides

simple IF neurons, for example, the Leaky Integrate-and-Fire (LIF) [58], Quadratic

Integrate-and-Fire (QIF) [59], and Adaptive Exponential Integrate-and-Fire (AEIF)

[60] models.
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2.1.1 Biologically-plausible Models

The Hodgkin-Huxley model, first proposed in 1952, is considered the most widely used

biologically-plausible neuron model [52]. By conducting experiments on the giant axons

of squid they developed the first biologically feasible neuron model. They identified

that the transport of ions through channels between the exterior and interior of the

neuron adapts the cell’s membrane potential (see Figure 2.2 left). As main carriers, they

identified the presence of three distinct ionic currents: sodium, potassium, and a leakage

current that primarily consists of chloride ions. Ion flux through the cell membrane is

regulated by voltage-gated ion channels, with one channel specifically for potassium and

another for sodium. The leakage current consists of additional ion channels that are not

explicitly described.

The Hodgkin-Huxley model is relatively complex, incorporating four-dimensional

nonlinear ODEs that capture the flows and concentrations of ions in and out of the

neuron. It can be approximated as a capacitance in parallel with multiple resistors

(see Figure 2.2 right). The membrane potential u(t) is given by the equation for the

membrane capacitance C [58]

C
du

dt
= �

X

k

Ik(t) + I(t) (2.4)

where u represents the voltage across the membrane and
P

k Ik the sum of the ionic

currents which pass through the cell membrane, i(t) the input current. The sum of

internal ion currents Ik(t) is represented as

X

k

Ik(t) = gNam
3h(u� ENa) + gKn

4(u� EK) + gL(u� EL) (2.5)

with ENa, EK, and EL being the reversal potentials for sodium (Na), potassium (K) and

the leakage. Hodgkin and Huxley empirically deducted the parameters for them have

[52]. The di↵erent variables for n, m, and h are described by ODEs in the form

dx

dt
= � 1

⌧x(v)
[x� x0(v)] . (2.6)

The necessary time constants and reverse potentials were empirically determined on

the giant axon of the squid. After crossing a certain threshold, the neuron’s membrane

potential explosively rises and falls back to a resting state. This is commonly referred to

as action potential, spike or pulse.
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2.1 Neuron Models

Figure 2.2: Schematic diagram for the Hodgkin-Huxley model. Left: ion channels
in the membrane of a neuron. Right: approximation of the Hodgkin-Huxley
model as a capacitance with multiple resistors in parallel (Figure from [58])

Approximating the temporal characteristics reduces the four-dimensional Hodgkin-

Huxley model to a simpler nonlinear two-dimensional model. The reduction process

involves two simplifying approximations [61]. The first approximation involves the

recognition that the evolution over time of the gating variable m is much more rapid

than that of the other two gating variables n and h. This leads to the treatment of m as

an instantaneous variable, represented as m(t) 7! m0 [v(t)]. The second approximation

is based on the observation that the time constants ⌧n and ⌧m exhibit similar temporal

dynamics, which suggests the approximation of the two variables n and h by a single

variable v2. This simplification process results in the simplification of the original

equations Equations (2.4) to (2.6) to the simplified equation

dv

dt
=

1

⌧
[f(v, v2) +R i(t)] and

dv2
dt

=
1

⌧2
g(v, v2).

(2.7)

By reducing the dimensions, this approach enables for a computationally more e�cient

description of the behavior of neurons while retaining the key features and dynamics of

the Hodgkin-Huxley model.

The Morris-Lecar [53] model is another widely used biologically-plausible model that

simplifies the Hodgkin-Huxley model into a two-dimensional nonlinear equation. It
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introduces a recovery variable W that quantifies the likelihood of the K+-ion channel

being in the open (conducting) state. The derivative W 0 describes the relaxation dynamics

wherein proteins channels undergo structural changes between ion-conducting and non-

conducting states.

2.1.2 Biologically-inspired Models

There exist several simplified models of the Hodgkin-Huxley neuron for practical imple-

mentation in hardware, such as the Fitzhugh-Nagumo model [54], [55] and the Hindmarsh-

Rose model [56]. These models are computationally simpler and require fewer parameters

than the Hodgkin-Huxley model. Although they are not as biologically plausible, they

still aim to model the behavior of neurons.

The Izhikevich spiking neuron model [57] is a popular simplified model that can elicit

bursting and spiking behaviors similar to the Hodgkin-Huxley model, albeit with strongly

reduced computational needs. It is well-known due to its simplicity and its ability to

accurately model biological dynamics with just the 2D system of ODEs

v0 = 0.04v2 + 5v + 140� u+ I

u0 = a(bv � u)
(2.8)

with v and u being dimensionless variables, a, b, c, and d dimensionless parameter, and t

the time.

Other popular neuron models are the Mihalaş-Niebur model [62], which replicates

bursting and spiking behaviors with a set of linear ODEs, and the quartic model [63],

which has two non-linear ODEs that describe its behavior.

2.1.3 Integrate-and-Fire Models

The IF family of spiking neuron models comprises a simpler model group that ranges from

relatively straightforward (e.g. the basic IF) to variants that approach the complexity of

the previously mentioned Izhikevich model [58]. While these models are less biologically

plausible than others, they are useful in spiking neural systems as they produce su�ciently

complex behaviors.

The popular Leaky Integrate-and-Fire (LIF) model simplifies the Hodgkin-Huxley

model to a basic resistor-capacitor circuit (see the schematic representation depicted in

Figure 2.3). It accumulates the incoming charge and includes a decay term to account

for the potential decay over time. The LIF model represents the behavior of a single
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2.1 Neuron Models

Figure 2.3: Electrical equivalent circuit of the LIF neuron. The membrane potential
is applied to the capacitance, the leakage current is simulated by a parallel
resistor, causing the voltage to drop to the resting potential. (Figure from [61])

neuron by describing the dynamics of its membrane potential u(t) with

C
dv

dt
= � 1

R
v(t) + i(t) (2.9)

with the membrane capacitance C, the input resistance R, and the input current I(t).

Typically, the input resistance and membrane capacitance are merged into a single

parameter.

The time constant ⌧ governs the rate of voltage leakage, describing an exponential

decay of the membrane potential. Upon reaching a threshold voltage vth, the LIF neuron

initiates an action potential, followed by a reset of the membrane potential to vreset.

A refractory period can be set for the neuron after resetting the membrane potential,

during which it is unable to generate another spike.

The LIF neuron model’s dynamics are driven by an input current comprising two

components: the continuous stimulation icont and the contributions from other neurons

connected via simple synapses, each with their own unique weighting factor wi,j . The

equation for this input current is given by

ii(t) = icont(t) +
X

f,j

wi,j�(t� tfj ). (2.10)

where the incoming spikes are represented as delta functions �(t). These delta functions

are zero at all time except at t = 0, and
R1
�1 �(x)dx = 1. Incoming spikes from each

connected neuron are weighted and summed, leading to an instantaneous change in the

membrane voltage whenever an incoming spike is received. The weights can be positive
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Figure 2.4: Voltage courses of Hodgkin-Huxley, LIF and IF neurons. The exemplary
current in the top plot is applied to all three models. The initial current causes
all neurons to generate two spikes. The dynamics of the Hodgkin-Huxley model
are more complex due to the temporal evolution of the variables n, m, and h
(not shown). The second current leads to an action potential of the Hodgkin-
Huxley model. However, it is not able to charge the LIF neuron enough to
reach the threshold voltage. Due to the missing leakage in the IF neuron, it is
even able to generate two action potentials during the second current.
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or negative, representing the excitatory or inhibitory nature of the synaptic connection,

respectively.

The basic non-leaking IF model simply integrates its input without any decay over

time. Its equivalent electric circuit can be seen as just a perfect capacitance without

the resistance in parallel. It was already formally described in 1907 by Louis Lapicque

[64], even before the neuronal dynamics were discovered. With no leakage present the

formula for the membrane potential further simplifies to the time derivative of the law of

capacitance Q = CV :

C
dV (t)

dt
= I(t) (2.11)

This allows for the modeling of the complex interactions between neurons in a network.

An example of the membrane potential dynamics of a neuron modeled as Hodgkin-Huxley,

LIF and IF neuron can be seen in Figure 2.4.

The leakage in spiking neuron models can lead to di↵erent responses to input patterns,

which would result in the same outcome in a ANNs. For instance, the linear activation

of an ANN, e.g. ReLU, would equal a = 1.5 for both input patterns [0.8, 0.5, 0.2] and

[0.6, 0.5, 0.4], when all weights are set to 1. However, when the input is represented

as spikes in a 10 ms temporal window, the behavior of LIF and IF neurons can di↵er.

The LIF neuron will remain silent in response to the first input pattern (as depicted

in Figure 2.5a), while an action potential is generated in response to the latter input

pattern (as depicted in Figure 2.5b).

Further neuron models in this family are amongst others the general nonlinear IF

method [58], such as the QIF model [59], which introduces further complexity with

models, or the AEIF model [60], which is similar in complexity to the Izhikevich model.
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Figure 2.5: Membrane potential of leaky and non-leaky IF neurons. Change in
membrane potential of LIF neurons (a and b) and non-leaky IF neurons (c and
d) as a response to input spikes at [2, 5, 8] ms (a and c) and [4, 5, 6] ms (b and
d). Whereas the IF neuron generates spikes in both cases, the LIF only creates
an action potential in the latter case (Figure previously published in [45]).
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2.2 Neuromorphic Hardware

2.2 Neuromorphic Hardware

Neuromorphic hardware has emerged as a promising architecture for addressing the

limitations of von Neumann systems. Carver Mead first coined the term neuromorphic

computing in 1990 to describe Very-Large-Scale Integration (VLSI) containing analog

components inspired by biological neural systems [25]. However, the term has been

expanded to include a wide range of implementations that are based on either biologically

inspired or ANNs and employ non-von Neumann architectures.

Neuromorphic systems are characterized by their strongly interconnected and parallel

nature, as well as their low-power requirements. These features are of great interest, as

they circumvent the limitation of bandwidth constraints between the processing unit and

memory imposed by the von Neumann bottleneck in classical digital network designs

[65]. Consequently, neuromorphic computers have been gathering increased attention as

a promising alternative to traditional von Neumann architectures, o↵ering advantages in

terms of speed, energy e�ciency, and compactness. As such, there is significant motivation

to develop hardware that leverages the advantages of neuromorphic architectures.

Numerous taxonomies have been proposed for neuromorphic hardware systems [66],

but they are commonly divided at a high level into three major categories [67]:

• Digital systems rely on Boolean logic-based gates for computation and are typi-

cally synchronous or clock-based. They can be further grouped into two subcate-

gories: programmable Field-Programmable Gate Arrays (FPGAs) and fully custom

Application-Specific Integrated Circuits (ASICs).

• Analog systems work with continuous values, exhibiting asynchrony by nature. The

computational processes in neuromorphic hardware often align with the kinds of

operations that analog systems perform naturally. While analog systems can be more

prone to noise than their digital counterparts, the robustness of neural networks to

moise and faults makes them an attractive candidate for neuromorphic hardware.

[68]. Analog Systems either use circuitry that is operating in superthreshold or

subthreshold mode.

• Mixed analog/digital systems commonly use analog circuitry as the core processing

elements of neurons and synapses. To overcome multiple issues of entirely analog

systems, such as unreliability, digital components have been used in some neuromor-

phic systems to store synaptic weight values or other critical memory component

of the system. Digital memory components have been found to show less noise and

higher reliability than analog-based solutions.

There are currently a variety of neuromorphic processing chips available, many of

them providing scalable multipurpose systems primarily for research purposes [27], [28],
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[69]. These hardware accelerators allow for the realization of arbitrarily large networks

without being constrained by hardware limitations. The Human Brain Project (HBP)

[70] and the Brain Initiative [71] are two prominent projects aiming to scale up these

accelerators to architectures capable of emulating the activity of a human brain which

comprises approximately 86 billion neurons.

2.2.1 Software Simulation Environments

The modeling of the time-dependent behavior of SNNsis a crucial step in their imple-

mentation of hardware accelerators. Several tools have been developed for this purpose,

including NEURON [72], GENESIS [73], Brian 2 [74], and NEST [75]. In a comparative

evaluation of these tools in [76], NEST has been found to perform well at large network

simulations and scaling to large compute systems, making it the preferred simulator in

the Neurorobotics platform [77] of the HBP.

On the other hand, Brian 2 is recognized for its ease of use, compact code length, and

extensive documentation. Further, NEURON and GENESIS are the most widely used

simulators due to their precision in modeling biological behaviors. It is worth noting that

many of these software frameworks are utilizing PyNN as a universal interface and o↵er

built-in interfaces to seamlessly integrate with neuromorphic hardware.

Recently, the use of automatic di↵erentiation frameworks such as TensorFlow [78] and

PyTorch [79] has been gaining momentum within the SNN community. These frameworks

were initially designed for training second-generation networks. Still, the development

of pseudo-gradient-based learning algorithms in SNNs has made them available for

simulating spiking networks as well.

2.2.2 Digital Implementations

Digital neuromorphic systems can be further grouped into two subcategories: flexible

FPGAs and custom ASICs. Whereas the first one is often, but not exclusively, a

temporary solution before a custom chip implementation, the latter one is a less flexible,

but more energy-e�cient solution.

FPGA-based Accelerators

FPGAs have been recognized as a promising solution for the acceleration of neuromorphic

processes using commercially available hardware. In recent works, such as [80]–[84],

various architectures have been proposed, which take advantage of the unique character-

istics of FPGAs. One such architecture is DeepSouth [84], which is highly scalable and

demonstrated the simulation of billions of LIF neurons on a chosen FPGAs board.

22



2.2 Neuromorphic Hardware

Table 2.1: Digital neuromorphic hardware solutions.

Name Year Neurons Syn. Models
Process Die Size
[nm] [mm2]

SpiNNaker [85] 2014 16k 16M Arbitrary 130 100
SpiNNaker 2 [69] 2019 tba tba Arbitrary 22 tba
TrueNorth [28] 2014 1M 256M LIF 28 430
Loihi [27] 2018 131k 130M LIF 14 60

Darwin [86] 2016 2048 4M LIF 180 25
ODIN [87] 2019 256 64k LIF/Izh. 28 0.086⇤

Chen2018 [88] 2018 4096 1M LIF 10 1.72
Cho2019 [89] 2019 2048 149k LIF 40 2.56
Park2019 [90] 2019 410 200k Sigmoid 65 10
Tianjic [91] 2019 40k 10M hybrid 28 14.5
µBrain [92] 2021 336 20k LIF 40 2.82
Kuang2021 [93] 2021 1024 1M LIF 28 3.66
Kuang2021 [94] 2021 64k 64M LIF 65 107
Zhong2021 [95] 2021 1024 256k LIF 28 1.41

*Without peripherals and pads.

It is worth noting that the size of the networks that can be simulated depends on factors

such as the temporal simulation speed and available memory. However, one significant

disadvantage of FPGAs is their relatively poor energy e�ciency when compared to ASICs.

This is mainly due to the inherent flexibility introduced by the programmable hardware,

which inevitably leads to higher energy consumption. Nevertheless, FPGAs are relatively

ubiquitous and accessible to most researchers, who can implement circuits in FPGAs

using hardware description languages such as VHDL or Verilog. These benefits make

FPGAs an attractive option for many neuromorphic computing applications.

ASIC-based Accelerators

Fully custom or ASICs chips have also been widely used in neuromorphic implementations.

The most widely used are SpiNNaker, IBM TrueNorth and Intel Loihi. An overview of

some popular digital implementations can be found in Table 2.2.

SpiNNaker SpiNNaker is a powerful multicore platform designed to simulate large

SNNs at sizes comparable to that of the human brain [85]. The architecture of SpiNNaker

is composed of an arbitrary number of processing nodes, enabling scalability to any

desired size. Each processing node is equipped with 18 cores per package that includes

local and shared memory, and an integrated packet router for managing communication
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within and between nodes. In the node, the processors are programmable, which allows

them the simulation a couple hundreds of neurons, depending on the synaptic and neural

complexity, and the learning rule. By running multiple nodes in parallel, SpiNNaker can

perform large-scale neural simulations.

SpiNNaker 2 [69], the successor to SpiNNaker, aims to significantly increase the

simulation capacity by over 50 times through numerous improvements compared to the

older architecture, including a smaller production technology of 22 nm compared to the

original’s 130 nm. Additionally, the new architecture features hardware-acceleration

and adaptive scaling of voltage and frequency, which adjusts according to the current

workload of the nodes, further enhancing the e�ciency of the platform. Furthermore,

SpiNNaker 2 is designed to serve a broad spectrum of applications extending beyond

neural simulations, including ML, robotics, and cybersecurity, to name a few. Overall,

SpiNNaker 2 promises to revolutionize large-scale computing and usher in a new era of

advanced applications.

TrueNorth TrueNorth [28] is a fully digital neuromorphic platform designed for large-

scale neural simulations. With its high capacity to simulate up to one million neurons,

TrueNorth is built from 4,096 neurosynaptic cores, each of which comprises a self-contained

neural network consisting of 256 LIF neurons. Each of the LIF neurons is equipped with

256 input and 256 output lines and a 256⇥256 matrix to specify synaptic connections.

The cores enable a single TrueNorth chip to accommodate up to 256 million synapses

in total, with the potential for larger networks by interconnecting multiple chips into

larger clusters. TrueNorth’s digital architecture is well-suited for e�cient and reliable

simulations of large-scale neural networks. Its ability to handle such simulations has

potential applications in various fields such as cognitive computing, ML, and robotics.

Additionally, TrueNorth’s high scalability makes it a valuable tool for investigating the

computational mechanisms underlying neural information processing.

Loihi The Loihi chip [27] is a state-of-the-art digital neuromorphic platform that

incorporates 128 cores, each of which has the capacity to simulate 1,024 neurons. These

cores share identical fan-in and fan-out connections, as well as configuration settings,

while ten onboard memory blocks store essential information, including spike traces used

for learning, synapse memories and mapping information, and neuronal state variables.

The on-chip learning mechanism is also fully programmable through 4-bit microcode.

The Loihi chip uses the LIF model and current-based synapses to simulate the neurons.

To ensure e�cient event processing, the Loihi chip uses synchronizing messages to

propagate spikes generated by neuromorphic cores through the grid structure of the

chip. Additionally, the cores operate asynchronously apart from this synchronization.

Like SpiNNaker, the Loihi architecture is designed for scalability, making it possible to
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Table 2.2: Analog and mixed analog/digital neuromorphic hardware solutions.

Name Year Neurons Syn. Models
Process Die Size
[nm] [mm2]

HiCANN [97] 2010 512 100k AEIF 180 55
HiCANN-DLS [98] 2016 512 131k LIF 65 32
NeuroGrid [99] 2014 64k 180 168
Braindrop [100] 2018 4096 65k 28 0.65
DYNAP-SEL [101] 2017 1088 78k LIF 180/28 7.28
Rolls [102] 2015 256 AEIF 180 51.4
Buhler2017 [103] 2017 512 LIF 40

combine multiple chips to clusters. For instance, the most extensive Loihi-based system

consists of 768 chips with 98,304 cores and 100M neurons, making it ideal for simulating

large-scale neural networks.

Recently, Intel Corporation announced a successor to Loihi, Loihi 2 [96]. However,

there is limited information available about the underlying architecture. Nonetheless,

Loihi 2 is expected to improve on the current design of the Loihi chip and advance the

field of neuromorphic computing.

2.2.3 Analog and Mixed Analog/Digital Implementations

Analog neuromorphic hardware can be divided into two subcategories: namely super-

threshold-operating implementations for processing at higher rates and subthreshold-

operating implementations for higher energy e�ciency. Mixed analog/digital neuromor-

phic systems commonly use analog circuitry for processing components, like neurons

and synapses, and implement digital components, to store synaptic weights or some

components of the memory, to increase reliability.

Superthreshold Analog Neuromorphic Hardware

Superthreshold analog neuromorphic hardware can be further classified into flexible

Field-Programmable Analog Arrays (FPAAs) and custom implementations. FPAAs

like the Field-Programmable Neural Array (FPNA) [104] and NeuroFPAA [105] have

been developed to provide a high degree of flexibility in analog computation. Custom

implementations such as BrainScaleS [97]. o↵er specialized hardware that can e�ciently

perform specific neural computations.

HICANN/BrainScaleS High Input Count Analog Neural Networks (HICANNs) serve

as chiplets for the hierarchic neuromorphic system, BrainScaleS [97]. The architecture and
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communication protocols of BrainScaleS have been tailored for large NN configurations.

The HICANNs in BrainScaleS consists of AEIF neurons [60], which provide the option

to be reduced to regular IF model if necessary. One significant advantage of HICANNs is

their fast timescale, achieving a 103 to 105 acceleration over equivalent biological circuitry.

Adjustments to the time constants of the neurons are made by varying the membrane

capacitance and the leak conductance. Additionally, the fast time constants are due to the

small electrical capacities, which in turn have compact physical dimensions. Interestingly,

as the membranes are implemented as Metal-Insulator-Metal (MIM)-capacitors, allowing

them to be integrated without increasing the overall surface area, making the design

compact and e�cient.

The Analog Network Cores in BrainScaleS comprise 512 membranes that can be

recombined to form neurons, two blocks of synapse arrays, and synaptic drivers. The

latter converts digital address events into analog currents using 4-bit Digital-to-Analog

Converters (DACs). Furthermore, each neuron can receive over 14k synapses, allowing

for the simulation of large-scale neural networks. BrainScaleS can simulate up to 180k

neurons using 352 HICANN chiplets housed on a single wafer, and the reference system

of BrainScaleS comprises 20 wafers in total.

The next generation of HICANN chiplets, High Input Count Analog Neural Network

with Digital Learning System (HICANN-DLS) [98], have incorporated more modern

manufacturing processes, higher bit-precision for neurons and synapses, and onboard

learning capabilities. BrainScaleS’ design makes it a promising candidate for simulating

large-scale neural networks.

Subthreshold Analog Neuromorphic Hardware

Neuromorphic hardware operating in subthreshold mode is employed to increase power

e�ciency. Carver Mead’S original definition of neuromorphic hardware refers to analog

circuitry that operates in subthreshold [25]. Examples of subthreshold neuromorphic

hardware are Braindrop [100], Neurogrid [99], and DYNAP-SEL [101]. These implemen-

tations strictly speaking fall under the mixed analog/digital group as they use digital

communication frameworks.

Of particular significance is the property of subthreshold analog neuromorphic hardware,

which is characterized by inhomogeneities in the silicon transistors, which can result in

inaccurate spiking thresholds of neurons due to device mismatch, shot noise, and thermal

noise [106]. These sources of mismatch can either be minimized at the device level [107]

or exploited for computational purposes [108].

Braindrop and Neurogrid Braindrop [100], a mixed-signal processor, was specifically

designed for the use with Neural Engineering Framework (NEF) [109] networks. NEF
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facilitates the transcription of ODEs to hardware. This is achieved by exploiting the

inherent imperfections of analog circuitry to produce the desired neuronal variability.

Braindrop is equipped with 4096 neurons with a weight memory of 64 KB that has been

designed to store 16 8-bit synapses for each neuron.

In large neuromorphic systems, digital communication consumes a significant amount

of power. Therefore, the authors of Braindrop have focused on spatially and temporally

sparse communication using sparse encoding, as well as accumulative thinning. While the

communication is digitally implemented, the neurons are implemented analog designed

for subthreshold operations. Because of the mixed-signal design and communication

scheme, Braindrop exhibits stronger neuronal density and significantly smaller energy

consumption for each synaptic operation than its full digital counterparts [100].

As a successor of the large-scale system Neurogrid [99], Braindrop is set to serve as

fundamental blocks for the Brainstorm chip, that has been designed for the implementation

of multicore systems containing millions of neurons [100]. By incorporating Braindrop

in this way, the authors are looking to develop even larger and more sophisticated

neuromorphic systems.

DYNAP-SEL The DYNAP-SEL processor represents a highly advanced mixed-signal

chip, designed for scalable routing infrastructure with the ability to combine multiple chips

[101]. This chip is composed of four cores for neural processing and one additional core

featuring plastic synapses. The non-plastic cores have the capacity to house 256 neurons

each, and each included neuron is equipped with 64 4-bit synapses. The supplementary

core has 64 neurons combined with 128 plastic synapses, equipped with on-chip learning

and 64 programmable synapses per neuron. This novel architecture empowers large

network simulations with e�cient on-chip learning, structural plasticity, and strong

biological plausibility. With its cutting-edge features and advanced technology, the

DYNAP-SEL chip is poised to transform the field of neuromorphic engineering.

2.2.4 Summary

Various approaches have been developed to e�ciently execute SNNs on specialized

hardware. These approaches include software-based solutions, digital FPGAs and ASICs

and analog compute elements, operating in superthreshold or subthreshold mode, each

with their unique advantages and disadvantages.

For instance, many-core systems such as Loihi [27] and TrueNorth [28] use digital

processors that can e�ciently simulate large networks, but with restrictions in neuron and

synapse models. On the other hand, SpiNNaker [85] is extremely flexible since neurons

and synapses are computed entirely in silico, albeit with larger energy usage. Analog

implementations, however, can replicate biological behaviors much faster than their

27



2 Theoretical Background

biological counterparts. Implementations like Neurogrid [99] operate in subthreshold

mode at very low energy, whereas superthreshold approaches like BrainScaleS [97]

operate at a much higher rate. However, these implementations are sensitive to ambient

temperature, process variations, and noise.

As there is no universal solution that fits all applications, this work aims to give a brief

overview of the approaches and consider their properties in the simulation environment

if necessary. The inhomogeneities of the silicon transistors mark the concept idea of

Chapter 5 for the processing of sequential data.

2.3 Training of Spiking Networks

The most popular methods for training conventional ANNs commonly rely on stochastic

gradient descent and error backpropagation. However, these methods require di↵erentiable

activation functions and therefore require modifications for the use with binary values such

as the action potentials used in SNNs. Over the past years, this has led to the development

of several strategies for training deep SNNs. These can be broadly categorized into three

main categories:

1. Biologically plausible learning algorithms. This approach involves the use of local

learning rules at the synapses, such as STDP [33], [34], [110]. STDP is a computa-

tionally expensive approach that is used for more biologically realistic training for

example in computational neuroscience simulation.

2. Supervised learning with spikes. This approach involves the direct training of SNNs

by using variants of error backpropagation through the implementation of surrogate

gradients [111]–[113].

3. Conversion Methods. Conventional deep ANNs are trained with gradient descent-

based learning algorithms, and then the continuous-valued activation functions

of the ANN are converted into spiking neurons. This approach allows the use of

existing deep ANNs architectures and training techniques, but it requires addi-

tional hardware resources to implement the spiking neurons. Special subcategories

of conversion approaches are contrain-then-train, where the original ANN is re-

trained under constraints designed to emulate the characteristics of the spiking

neuron models, and binarization, where conventional ANNs are trained with binary

activations.

2.3.1 Biologically Plausible Learning Algorithms

Understanding how the training of hierarchically organized NNs can be carried out with

local learning rules such as Hebbian learning [114] or STDP [33], [34], [110], is of great
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interest for neuroscience. The usage of local learning rules is beneficial as it allows

the detection of spatio-temporal patterns and would enable hardware-e�cient ways of

training. However, purely local learning rules pose a challenge for deep networks as

backpropagation of supervised error signals is di�cult. To overcome this, recurrent

feedback connections are introduced to modulate learning in lower layers in most studies

investigating local learning in hierarchies.

Hierarchically organized NNs, such as the brain, frequently utilize feedback connections

from higher to lower layers [115]. Another approach, random backprojections of error

signals [116], has been shown to be e↵ective for training lower layers in deep SNNs [117]

and networks with spiking multi-compartment neurons [118].

STDP’s function depends on the applied network architecture. In competitive networks,

STDP can solve unsupervised tasks like clustering [119], [120], as shown by recent work

training competitive convolutional networks with unsupervised filters [121], [122]. Spiking

neurons can be connected as restricted Boltzmann machines to approximate contrastive

divergence in an event-based way [36], [123], and this can extend to multi-layer Deep

Belief Networks (DBNs) for layer-by-layer training. Spiking CNNs [124], [125] and

autoencoders [126] can also be trained with unsupervised STDP layer-by-layer, but a

supervised learning approach is required for the output layer [127]. Reward-modulated

STDP with multiple layers has been introduced to obtain fully spiking supervised training

[128].
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2.3.2 Supervised Learning with Spikes

Various supervised learning methods for SNNs have been presented. These methods

implement the learning on the spike level and typically use variants of backpropagation

to train deep spiking networks. Unlike methods using local learning with STDP, they

do not necessarily aim for biological plausibility. Spike-based learning rules o↵er the

advantage of not being constrained to mean-rate codes, making them a good choice for

usage with spatio-temporal patterns from inputs like event-based sensors.

Together with several single-layer learning methods, such as ReSuMe [129] or Tempotron

[130], many spike-based learning rules for multilayer SNNs rely on a di↵erentiable proxy,

enabling backpropagation. Early attempts at this included SpikeProp [131] and its

variants [132], [133], but they are computationally expensive and not used for modern

deep learning applications. Lee et al. [134] presented a backpropagation approach based

on spikes that train deep SNNs used for classification tasks directly from spike signals.

This is achieved by performing stochastic gradient descent on real-valued membrane

potentials and low-pass filtering discontinuities at spike times.

O’Connor and Welling [135] suggest using signed spikes in an SNN approximating

a ReLU-activated deep multilayer perceptron. Stromatias et al. [127] fine-tuned the

output layer of deep SNNs by performing backpropagation on histogram bins. Mostafa

et al. [136] make usage of the timing of the first action potential for every neuron as its

activation feature during training, resulting in a sparsely firing network.Jin et al. [137]

propose a hybrid model that combines a long-term gradient descent-based rule for a

rate-encoded error signal with a short-term update. Spike-based learning approaches for

supervised training have been increasing in number but the benefits of these approaches

for ML on neuromorphic sensor data remain largely unexplored, but exploiting temporal

codes may lead to greater performance gains.

2.3.3 Conversion Methods

ANNs trained with conventional approaches, can be converted into SNNs by adjusting

the parameter and weights of the pulsed neuron to achieve the same input-output

mapping as the original networks (see Figure 2.6). The first conversion approaches

were developed to process event-based data using CNNs. First attempts used manually

programmed convolution kernels [138], while others introduced systematic approaches to

map conventionally trained CNNs to SNNs [139]. This approach translates the continuous-

valued activations of the ANN into firing rates of the SNN’s neurons. The network’s

weights necessitate a rescaling according to the parameters of the spiking neuron, what

introduces hyperparameters that have to be set prior to the conversion. Diehl et al.

(2016) presented a novel approach for the conversion of RNNs under the constraints of

neuromorphic systems (see Section 5.1) [140].
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The conversion approach allows for the usage of deep learning techniques in SNNs,

which has resulted in state-of-the-art performance on classification tasks [43], [141], [142].

Conversion from ANNs to SNNs is a simple process that adds minimal training overhead,

with negligible deviations in accuracy. However, ANNs cannot always be easily converted

to SNNs, particularly when dealing with negative activations, which are incompatible

with the positive firing rates of SNNs and generally require an additional inhibitory

spiking neuron. This problem can be addressed by using ReLU activation functions

[51], which are mainly linear and have only positive activations. Sigmoid activation

functions, on the other hand, require additional approximations and introduce errors

[143]. Another problem arises when dealing with softmax layers at the output, which

can have negative activations. This problem can be solved with practical solutions, for

example by accumulating all outgoing spikes in a separate layer and using a conventional

softmax classification [144].

Most approaches for converting CNNs to SNNs struggle with realizing max-pooling

operations [145], a common feature of analog deep networks. This is because the maximum

operation is non-linear and therefore is di�cult to be computed with spikes. To get

around this issue, many approaches replace max-pooling with average pooling [143],

[146], [147], for ease of implementation in SNNs but leads to accuracy loss. However,

a max-pooling mechanism was presented by Rueckauer et al. [144] that uses gating

functions to only pass action potentials from the neuron with the highest firing rate,

leading to better accuracy.

While scaling all weights in a layer in ReLU-activated networks does not change

the final output, SNNs are sensitive to weight scaling as spiking neurons comprise a

maximum spike frequency. To address this, Diehl et al. [146] propagated a subset of

training examples through the network to rescale input weights to each layer. Sengupta

et al. [147] and Rueckauer et al. [144] further extended this method to improve the

results for deep NNs by increasing robustness against outliers and incorporating the

actual firing rates during weight normalization into account.

Conversion with weight normalization can lead to increased spike production and

decreased energy e�ciency, in non-ideal conditions, the converted SNN needs more

spiking operations than the original ANN. Alternative spike codes based on timing

information are being researched to address the ine�ciencies of rate-coded conversion.

These approaches, such as HFirst [149], time surface features [150], and HATS [151],

capture spatio-temporal dynamics and utilize event-based sensors. Asynchronous pulsed

Sigma-Delta coding is also introduced [152] to maintain accuracy while utilizing fewer

spikes.

In contrast to this conversion method that converts fully trained ANNs into SNNs,

Esser et al. [153] introduced the term constrain-then-train to describe an approach that

incorporates the training of the ANN under the constraints of spiking neurons or the
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Figure 2.6: Conversion approach. Visuallisation of the basic conversion of a ReLU-
activated ANN to SNN with a spiking IF neuron (Figure adapted from [148])

target hardware. Constrain-then-train methods apply conventional gradient descent-

based learning algorithms to learn weights under spiking constraints, and then convert

the ANN into an SNN without the need for further weight scaling. While conversion

algorithms also impose some constraints on the ANN, constrain-then-train methods train

the ANN for a specific set of spiking neuron model parameters and require complete

retraining if these parameters change, unlike conversion methods which map weights for

arbitrary parameters.

Constrain-then-train models can potentially adapt better to the target platform, and

show no conversion loss, but require more complex retraining of the whole ANN. Esser

et al. constrained the continuous-valued weights and activations of the training network

between [0, 1], matching the TrueNorth platform constraints [28]. This approach yields

highly accurate classifiers on MNIST at low energy costs and was further improved and
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extended to multi-chip setups [154]. For more realistic models, non-di↵erentiable transfer

functions relating the input current to the neuron parameters can be approximated by

modeling variability in input spike trains.

One step further is the method of binarization of ANNs by reducing the activations to

binary values. In binarized networks, the information is propagated in a synchronized,

layer-by-layer manner like in conventional ANNs, which lacks asynchronous information

processing. One advantage of binarization is the energy-e�cient benefits for execution

on neuromorphic systems due to sparse activations and computation on demand. Ad-

ditionally, binarization reduces computational costs on conventional hardware, as the

memory bandwidth and multiply-add operation complexity are reduced [155]. Networks

with binary activations typically use lower-bit weight representations.

Given that, today’s large ANNs require long training times, it makes it impractical to

retrain the entire network for the constrain-then-train and binarization methods on an

industrial scale. This thesis, therefore, emphasizes the general approach utilizing weight

normalization.
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Figure 3.1: Chapter structure.

The majority of conversion approaches capitalize on the linear relation of both the

ReLU activation function and the firing rate of spiking neurons in response to their input.

This rate-coded conversion technique exhibits great performance but has to generate

many action potentials for converging to its highest accuracy. In this chapter, we examine

various encoding schemes and assess their viability for achieving enhanced conversion
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outcomes. Subsequently, we scrutinize existing ANN architectures and identify the ones

that lack a conversion mechanism. Lastly, we explore the normalization procedure that

is imperative for the conversion process and explore techniques for approximating it to

expedite development.1

3.1 Coding Schemes

The conventional conversion technique employed in SNNs involves substituting the

activation function of the ANNs with a spiking neuron. The input to the neuron is

directly proportional to the firing rate, thereby encoding the information as a rate-

coded signal. Unfortunately, this method can be substantially energy-intensive, and

recent literature indicates that SNNs must use less than 1.72 spikes per neuron to

achieve improved energy e�ciency than state-of-the-art hardware accelerators running

conventional ANNs [156]. Here, we summarize the available signal encoding schemes that

have been presented in the literature and discuss which can be used for the ANN-to-SNN

conversion.2

Given that the shape of an action potential is the same every time, information has

to be carried in the presence or absence of a spike [61]. Drawing upon the principles of

biology, it is evident that diverse coding schemes exist that are specialized for processing

specific types of data. For instance, in our eyes, photoreceptor cells convert variations in

light intensity into patterns of spikes, while microscopic hair cells within the inner ear

translate fluctuations of air pressure into frequency-selective trains of action potentials.

Similarly, chemical receptors within our olfactory system emit spikes in response to

specific molecules within the air.

The encoding of information in neural systems has been a topic of interest in neurobi-

ological research for several decades. Coding schemes can be broadly categorized into

three groups based on whether the explicit timing of spikes and their order is necessary

for information transmission and if the encoding is done by a single or a population of

neurons:

• Rate codes encode information in the instant or averaged spike rate of an individual

neuron. It can be further subcategorized to count rate codes and density rate codes.

• Temporal codes depend on the exact timing of individual spikes, which can be

understood in relation to a fixed reference time, the interspike intervals, or spike

arrival order. In this context, even slight variations in spike timing can drastically

alter temporal coded information. Temporal codes can be further categorized (see

Figure 3.5).

1Parts of this chapter have been previously published in [39], [41], [43].
2Parts of the following section have been published in [41].
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• Population codes require multiple neurons for representing the desired code. How-

ever, since that can happen both in temporal and rate codes, this group is sometimes

combined with either one of them.

Rate and temporal codes can furthermore be subcategorized to distinct coding schemes.

The classification of these individual schemes often involves ambiguity. A simple definition

based on the importance of the precise timing or order of the spikes for the transferred

information is used here. Accordingly, if precise spike timing or order is crucial, it is a

temporal code; otherwise, it is a rate code.

For a long time, there was a consensus that biological systems primarily used rate

codes. However, subsequent research did suggest that exact spike times are also utilized

to encode sensory perceptions. Thorpe’s experiment demonstrated that the human visual

system can process new stimuli in less than 150 ms, indicating that a rate code describing

the retinal image is very unlikely. These findings were later supported by publications in

visual, audio, tactile, and olfactory systems. In the latter system, experiments with mice

showed that they could discriminate between simple odors within 200 ms, and when the

smells were similar, distinction took 100 ms longer, suggesting the temporal integration

of information.

Building on these biological principles, a range of coding schemes can be adapted for

AI use cases. However, the suitability of coding schemes depends on the use case and the

type of input. Networks dealing with rapid-changing input that require fast feedback

will probably not use rate-based encoding schemes. In contrast, rate codes might be

useful for networks handling low-frequency, high-dimensional data. Currently, there is no

universal answer on which coding scheme performs best.

Figure 3.2 illustrates data encoding utilizing assorted schemes. For instance, an image

sequence can be encoded to spikes. In the case of the rate-based count code, the intensity

of every pixel in the individual frames is represented by the number of spikes emitted per

frame. On the other hand, Time-to-First-Spike (TTFS) represents a temporal coding

where only a single action potential is emitted for each pixel and frame, and the exact spike

time encodes the brightness. Temporal Contrast (TC) encodes the continuous change of

the light intensity over time, where positively or negatively valued action potentials are

transmitted once a relative intensity change exceeds a threshold. Specialized cameras

have been presented that make use of this event-based coding type.

In conclusion, the encoding of information in neural systems can be grouped in two

broad categories, rate coding and temporal coding, with further subcategorization into

distinct coding schemes. The importance of temporal codes in biological systems has

been demonstrated by various experiments. These biological coding schemes can be

adapted for artificial applications, depending on the application and input
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Figure 3.2: Exemplary coding schemes for a sequence of images over time. The
intensity-time plot indicates the changes of the pixel value in the red square as
a continuous function. The dashed lines indicate the time instances at which
the images have reached the colour value. Digital, count, and TTFS spikes
in correlation to the local minima and maxima in the intensity curve. The
TC emits spikes if the continuous intensity change exceeds a certain threshold.
(Figure previously published in [41])

3.1.1 Rate Coding

Rate codes are a widely used type of encoding scheme that can furthermore be grouped

into two subcategories: count rate and density rate coding. A schematic visualization of

the encoding resulting from a random input can be found in Figure 3.3. The definitions

are founded on the publication on neuronal dynamics by Gerstner et al. [61].

Count Rate – Average Over Time

Count rate codes, also referred to as frequency coding, are the most commonly used

coding scheme and are defined by the mean firing rate

r(t) =
Nspike

�t
(3.1)

where Nspike represents the number of spikes and �t represents the time interval. This

type of rate coding can be used to encode any analog value with slow variations, such as

pixel intensities or gas concentrations.

Count rate codes can either have exact or random spike times. The random spike times

are typically modeled using a Poisson distribution. The reconstruction error as a result to

the discretized number of action potentials in a given time interval decreases by 1/Nspikes

as the number of spikes increases. However, the variations in Poisson-distributed spike

trains result in a decrease in error only proportional to the square root of the number of

spikes 1/
p

Nspikes [157].
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Figure 3.3: Visualization of rate coding techniques. The exemplary stimulus is a
wide pulse (a). The dashed line in the encoding visualizations (b-c) indicates
the rising and falling edge of the stimulus. (Figure adapted and previously
published in [41])

As both the firing frequency of rate-coded neurons, as well as the activation of the

glsrelu function, increase linearly with their input, rate codes are well suited for the

ANN-to-SNN conversion. Because of this property, they represent the state-of-the-art for

conversion.

Density Rate – Average Over Multiple Runs

Density rate codes, on the other hand, are not a biologically plausible encoding method.

In this type of rate coding, the neuronal activity is measured over multiple simulation

runs, and the result of the neural response is presented in a Peri-Stimulus-Time Histogram

(PSTH). The spike density p(t) is defined as the number of spikes Nspikes,K in a time

interval [t; t+�t] divided by the duration of the interval �t and the total number of

iterations K:

p(t) =
1

�t

Nspike(t; t+�t)

K
(3.2)

This type of rate coding can be beneficial in stochastic SNNs, where multiple simulations

with the same inputs result in di↵erent outputs. This approach can be useful for
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(a) Stimulus
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(b) Population rate coding

Figure 3.4: Visualization of population coding techniques. The exemplary stimulus
is a wide pulse (a). The dashed line in the encoding visualization (b) indicates
the rising and falling edge of the stimulus. (Figure adapted and previously
published in [41])

evaluating conversion methods that include noise but are not directly applicable to

real-world applications.

3.1.2 Population Coding

Population codes are based on comparable properties of neurons in a population. A

schematic visualization of the codes resulting from an arbitrary input can be found in

Figure 3.4.

The firing rate A(t) is defined as the number of spikes of N neurons averaged in a

given time interval [t; t+�t]:

A(t) =
1

�t

Nspike(t; t+�t)

N
(3.3)

A population of neurons is not required to exhibit a uniform spike response to a given

stimulus. If every neuron has a known tuning curve, the superposition of the responses in

a large population can encode single numbers, vectors, or even function fields. Population

codes play an important role in the n the NEF [109].

Given that this encoding scheme averages a firing rate over time, similar to the

count rate coding but with a population of neurons, it is suitable for the ANN-to-SNN

conversion.
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Figure 3.5: Taxonomy of temporal coding techniques. Temporal codes use the precise
timing of spikes to encode information. (Figure previously published in [41])

3.1.3 Temporal Coding

As shown in Figure 3.5, temporal codes are further divided into several subcategories, each

with its unique processing mechanisms of the input signal. TC codes concentrate on the

derivative of the input signal, while globally referenced codes are processing the stimulus

in fixed-size packages relative to a periodic signal or oscillation. Interspike Interval (ISI)

codes analyze the relative timing between groups of spikes, while correlation codes rely

on the simultaneous activity of multiple neurons. Filter and optimizer-based approaches

generate spike patterns based on the comparison of the input and a predefined kernel

function. Figure 3.6 provides a visual representation of the various temporal encoding

schemes in relation to a stimulus. It’s worth mentioning that binary codes, Ben’s Spiker

Algorithm (BSA), and TC utilize a di↵erent input stimulus in the illustration.

Global Referenced Codes

Codes that are globally referenced encode the incoming information in the interval between

action potentials relative to a static or periodic reference. The encoded information is

thus processed in packages between two successive points of reference.

The initial action potential of all globally referenced encoding mechanism is often

the element with the highest importance, similar to to binary representations. This

dynamic relationship between network parameters and spike timing leads to an intriguing

consideration for optimizing output neuron thresholds, balancing speed and accuracy

according to the specific requirements of each application. As a result, the network can
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Figure 3.6: Visualization of temporal coding techniques. The wide pulse stimulus in
(a) is used for the visualizations in (b-g). The dashed line indicates the rising
and falling edge of the stimulus. �t describes the latency between the reference
point and the spike. In (d), the order of spikes is numbered on the right. The
stimulus for the coding visualization in (h) is the sinusoidal wave, which is
directly given in the same sub figure. (Figure previously published in [41])
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anticipate and generate the output pattern prior to completing the processing of the

entire input stimulus [158].

One of the simplest temporal coding schemes is TTFS coding, which conveys infor-

mation through the time interval �t between the stimulus onset and the generation

of the first action potential in a neuron. Firing times can be related to the stimulus

amplitudes in various ways. For example, the firing time can be inversely proportional to

the amplitude of the stimulus, such that �t = 1/a or it can be linearly related to the

amplitude �t = 1 � a, where a is the normalized signal amplitude. For each of these

cases, high amplitudes result in early firing times, while low amplitudes lead to longer

intervals or no spikes at all.

Johansson and Birznieks have demonstrated the importance of TTFS in encoding

information, as they identified that the relative timing of the initial action potential in

response to a discrete mechanical stimuli carries information about the direction and force

[159]. Similarly, Gollisch and Meister, in their study of the retinal pathway, observed that

TTFS is robust to noise variations and invariant with respect to stimulus contrast [160].

However, it is important to note that they used the term ”latency coding” to describe

TTFS, which can lead to confusion with ISI coding, as the definition of latency between

spikes and a global reference or between multiple spikes is not well-defined.

TTFS codes have been used in conversion approaches before [38]. Although this

approach performed well on shallow networks, it failed to do so in our experiments for

deeper networks [45] (see Section 6.1).

In contrast, phase coding conveys data through the relative timing of action potentials

with respect to a periodic reference signal [161], [162]. In this scheme, each neuron fires in

relation to a reference signal and encodes information similarly to TTFS. This behavior

was observed by Gray, König, Engel, and Singer in their study of the firing probabilities

of neurons in the cat visual cortex [163].

This coding scheme is very well suited for the ANN-to-SNN conversion and marks the

basis for our method in chapter 6.

Another type of globally referenced coding scheme is ROC, which relies on the relative

ordering of spikes within a population of neurons with respect to a common temporal

reference [158], [164]. Unlike TTFS, Rank-Order Coding (ROC) encodes information

without the consideration of the precise timing of action potentials, functioning as a

discrete normalization filter that loses absolute amplitude information. Therefore, it is

not possible to reconstruct the absolute signal amplitude or an exactly constant signal

and therefore it is not a suitable coding mechanism for the conversion approach.

Another globally referenced scheme is sequential binary coding, where every spike

corresponds to a ”1” or ”0” within a bit stream. Relative to a fixed reference clock, there

are two schemes for encoding bits: the presence or absence of an action potential within

a given interval [165] or the spike time within the interval [166]. In the first scheme, a
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logical ”1” stands for a spike present during one clock cycle, while in the latter, the clock

cycle is divided into two sub-intervals: if an action potential is present in the first half, a

”0” is encoded, and if it is present in the second half, a ”1” is encoded. This guarantees

the continuous generation of action potentials across all possible binary patterns being

represented.

This encoding scheme fails to be directly translated from continuous-valued activation

functions into spiking neurons. Therefore it is omitted from further investigation in the

context of ANN-to-SNN conversion.

ISI Coding

ISI or latency coding is a method that embeds information in the temporal gap (latency)

between action potentials of within a specific population of neurons [167]. This coding

scheme has been observed in various studies to be highly dependent on the stimulus

intensity. Pyramidal cells, in particular, have been noted to exhibit this phenomenon

[168]. There are several nuances to how ISI coding functions. For example, Li and Tsien

[169] have theorized that rare events such as prolonged silence periods contain more

information compared to periods of higher spike activity.

A further subcategory of ISI coding is known as burst coding, which is characterized

by the conversion of the input to discrete inter-spike latencies. A burst, as defined in

this context, is a group of action potentials with a very minor ISI [170]. The distinction

between a normal spike and a spike that is part of a burst is dependent on the ISI

threshold as well as the expected number of spikes within the group [171], [172].

In contrast to the activation functions found in ANNs, encoding information with ISI

relates the spike times to those of neighboring neurons. This encoding would necessitate

the creation of additional connections between the neurons of a layer in the converted

SNNs, which we were not able to find general valid rules.

Correlation and Synchrony

Correlation and synchrony coding in neural activity involves the utilization of temporal

references to other spiking neurons. This results in the representation of the input

patterns by groups of spikes with relative short ISIs [61]. The information is coded in

the correlation that emerges from the simultaneous firing of specific neuron groups, thus

forming a correlation between their spiking patterns.

SDR are a subcategory of correlation and synchrony coding [173], [174], where only a

neuron subset within a population shos activity at any given time, enabling representation

of an e↵ectively infinite number of patterns with minimal errors [175]. In the extreme

scenario, information is encoded by the activation of a single neuron at a time, referred
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to as amplitude coding. Here, the strength of the signal is directly encoded into the

activity of a single neuron, with a spike generated as soon as a specific value is crossed.

Studies have observed the general synchronous coding scheme inside the somatosensory

cortex in monkeys [176] or in the visual cortex in cats [163], [177], hypothesizing that

synchrony provides evidence of the significance of incoming stimuli. Grid and place cells

[178], [179] provide a biological example of synchrony coding, where spatial information

is encoded through the synchronized activity of a particular population of neurons.

Synchronous firing of neurons can also be interpreted as parallel binary codes, where

each neuron is encoding a specific bit of a larger word. In contrast to sequential binary

codes, where a single neuron encodes information through precise timing within a stream,

parallel binary codes encode the whole word at once.

Although the correlation and synchrony codes o↵er the potential to an even sparser

activation of the spiking neurons, it necessitates the usage of connections between neurons

of a layer. Therefore, this coding scheme can not be directly used for the ANN-to-SNN

conversion.

Filter and Optimizer

In the field of neuroscience and control theory, one common approach to describe a

system is through the examination of its input-output behavior. In this regard, the input

is a known analog stimulus, the system is represented by one or multiple neurons, and

the output is a spike train. However, instead of measuring the output in response to a

known input signal, HSA [180] and its successor BSA [181] adopt a reverse approach by

using a pre-specified filter to generate the spike train corresponding to a known input

signal. The method operates by generating a spike whenever the convolution of the signal

and the filter surpasses a defined threshold.

It is worth mentioning that this approach is limited by the range of inputs that it can

process, thus the input signal needs to be normalized before conversion.

In an attempt to interpret the encoding process as a data compression problem with

prior knowledge, Sengupta, Scott, and Kasabov [182] introduced the GaGamma scheme.

This approach aims to maximize the amount of information encoded while minimizing

the spike density. The optimization problem is framed as a mixed-integer optimization

problem and can be solved more e�ciently by leveraging prior knowledge about the signal

being encoded.

The utilization of filter and optimizer encodings for the conversion of ANNs to SNNs

is impracticable since the output of the spiking neuron has to be known, which is not

readily available.
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TC Coding

The final subcategory of temporal coding techniques is referred to as TC coding. This

approach is converting an analog stimulus into a train of action potentials by examining

changes in signal amplitude [183]. This coding method can be further divided to three

distinct algorithms: Threshold-Based Representation (TBR), Step-Forward (SF), and

Moving-Window (MW).

TBR involves comparing the absolute change of the input with a threshold and

emitting positive or negative spikes in response. The threshold value is determined by

combining the mean derivative of the signal with a factor multiplied by the derivative

standard deviation.

On the other hand, SF only employs the next available signal value and assesses

whether the previous value and a threshold have been exceeded. Based on the polarity of

the signal di↵erence, appropriate spikes are then transmitted.

Meanwhile, MW uses a base that is defined by the mean of the previous signal over a

certain time window. Positive or negative spikes are emitted when the current signal value

surpasses the base and threshold. For further information and practical implementations,

readers can refer to [184].

TC codings are also not useful for the ANN-to-SNN conversion, as it is based on the

changes in the input signal. As ANNs are not working on this principle it is not directly

feasible to implement in a conversion approach with common datasets.

3.1.4 Conclusion

In this section, we present an analysis of various spiking encoding schemes in the context

of converting ANNs to SNNs. Our investigation reveals that only certain encoding

schemes are suitable for this purpose. We find that among the rate coding schemes, the

count rate coding method represents the state-of-the-art approach for conversion. Thus,

it serves as the foundation for our methods presented in chapter 4.

Density rate coding is useful for evaluating stochastic conversion methods but is not

a viable approach for conversion. Population rate coding is a feasible alternative for

conversion, but its selection should depend on additional benefits as the number of spikes

generated by this method can be significant. Our proposed approaches for chapter 5 are

based on population codes. As we are using a stochastic approach, we evaluate it over

several runs, and, therefore, we implement density rate coding for the evaluation.

Among the temporal codes, only certain codes from the global referenced group can

be easily utilized for conversion. TTFS is a suitable candidate, as demonstrated by a

previous conversion approach (see Section 6.1). However, this method fails to scale to

deep networks. Hence, we present the necessity for a reference oscillation and propose

phase coding as a viable alternative, as discussed in chapter 6.
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3.2 Properties of Neural Networks

NN architectures represent a class of ML models inspired by structural and functional

principles of the human brain. They comprise interconnected nodes, or neurons, arranged

in layers that are responsible for processing and transmitting information. These neurons

can be organized in diverse ways to produce varying types of neural network architectures,

each with distinct advantages and disadvantages.

• Feedforward (FF) networks constitute the most common and straightforward neural

network architecture. These networks consist of interconnected layers of neurons,

with each neuron from a particular layer connected to every neuron in the following

layer. Information flows through the network in a forward direction, passing through

one or more hidden layers to the output layer, with each layer performing specific

transformations on the input.

• Convolutional neural networks (CNNs) are a class of architecture created to han-

dle multidimensional data like images, videos, or other visual data [185]. They

incorporate convolutional layers, which identify local patterns in the input data.

CNNs usually contains several convolutional layers, followed by one or more fully

connected layers.

• Recurrent neural networks (RNNs) represent an architecture designed to deal with

sequential data such as time series data, natural language text, and speech. Unlike

feedforward networks, RNNs contain feedback connections that enable data to

flow backward through the network. This property allows the network to retain a

memory of prior inputs, which is beneficial in predicting future outputs.

• Transformer networks were introduced in 2017 and have gained prominence in NLP

tasks such as language translation and text summarization [186]. The attention

mechanism represents the critical breakthrough in transformer networks, that allows

the NN to concentrate on relevant aspects of the input data during prediction.

Transformer networks include a sequence of encoder and decoder layers, where the

encoder layers process the input data, and the decoder layers produce the output

data.

The selection of NN architecture for any specific task is contingent upon the particular

data being used and the problem to be solved. FF networks are optimal for simple

classification tasks, while CNNs are suitable for visual data processing. RNNs are practical

for sequential data analysis, and transformer networks are well-suited for natural language

processing tasks.
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3.2.1 Tasks and Datasets

NNs are designed to recognize patterns and relationships in data. Neural networks are

widely used in a diverse field of applications, such as computer vision, natural language

processing, and speech recognition.

Image classification.

Image classification represents a cornerstone problem in both computer vision and machine

learning, involving the assignment of a label or category to an input image based on its

content. The goal of image classification is to develop algorithms that can automatically

identify and distinguish between di↵erent objects, scenes, or patterns within an image.

This task is typically performed using supervised learning techniques, where a dataset of

labeled images is used to train a ML model.

The MNIST dataset [187] is a widely used benchmark dataset for image classification.

It consists of a collection of 70,000 grayscale images of handwritten digits (0-9) of size

28x28 pixels. The dataset is split into a training set of 60,000 images and a test set of

10,000 images, with labels indicating the corresponding digit for each image.

Another popular dataset is CIFAR-10 [188]. It consists of a collection of 60,000 color

images of size 32x32 pixels, with 10 classes of objects, including animals, vehicles, and

everyday objects. The dataset is divided into 50,000 training images and 10,000 test

images, each with a corresponding label indicating the class of the object.

A large-scale visual recognition dataset that is commonly used is ImageNet [189]. It

contains over 14 million images, each with over 1,000 object categories, making it one of

the largest and most complex image datasets currently available.

Object Detection.

Another important task is object detection. It involves the identification and localization

of objects of interest inside an image or video sequence. The goal of object detection

is to develop algorithms that can automatically detect and classify multiple objects of

di↵erent classes within an image, and provide accurate bounding boxes that localize each

object.

Another important neural network task is object detection. Object detection involves

identifying the location and type of objects in an image. This task is typically performed

using a combination of CNNs and other ML techniques.

The most commonly used dataset for object detection is the COCO dataset [190]. It

contains more than 330,000 images with more than 2.5 million object instances labeled

into 80 di↵erent classes, such as people, animals, vehicles, and household items, and

includes images with complex scenes and multiple objects. The Common Objects in
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Context (COCO) dataset has been used in several challenges and competitions, including

the COCO Object Detection Challenge and COCO Captioning Challenge, and has

emerged as benchmark for assessing the e�cacy of ML algorithms.

NLP.

NLP entails designing and training NNs to comprehend, analyze, and synthesize human

language, encompassing written text, spoken dialogue, and other modalities. NLP has

many applications, including machine translation, sentiment analysis, chatbots, speech

recognition, and text summarization.

A common dataset is the Internet Movie Database (IMDb) movie review

sentiment classification dataset. It consists of 50,000 movie reviews from the IMDb

website, with an equal number of positive and negative reviews. The dataset is commonly

used for training and evaluating models for sentiment classification, with the goal of

accurately predicting whether a given movie review is positive or negative. The reviews

are preprocessed and labeled with binary sentiment values, and the dataset is divided

into separate training and testing sets.

3.2.2 Architectures

Convolutional Neural Networks (CNNs) CNN have demonstrated exceptional

e�cacy in solving a diverse range of computer vision tasks, such as image classification,

object detection, and semantic segmentation. CNNs comprise multiple layers that

extract increasingly intricate features from input images through convolution and pooling

operations.

Currently, the AlexNet, Inception-V3 and ResNets represent some of the most advanced

CNN models, with ResNets showing the best results on common datasets [191].

Residual Networks (ResNets).

ResNets are a novel architecture introduced in 2015 to address the challenge of

vanishing gradients that often arise in deep neural networks. The vanishing gradient

issue arises when the gradient of the loss function concerning the weights of a neural

network diminishes significantly as it propagates backwards through the network. This

phenomenon makes it di�cult to train very deep networks [192].

ResNets employ residual connections to resolve this problem (see Figure 3.7). Specifi-

cally, residual connections incorporate the input of a layer with the output of the same

layer, thereby allowing information to bypass some of the layers in the network. This

results in the formation of a shortcut path for the gradient to propagate through, which

can e↵ectively alleviate the vanishing gradient problem.

ResNets are constructed from a sequence of residual blocks, each containing multiple

convolutional layers followed by batch normalization and non-linear activation functions.

49



3 Conversion Challenges and Opportunities

Figure 3.7: Architecture of Resnet18. A residual network with 18 layers. The dotted
shortcuts increase dimension (Figure adapted from [192])

The input to each residual block is processed by a series of convolutional layers, producing

an output that is subsequently added to the original input by a residual connection. The

output of the residual block is fed forward to the subsequent block in the network.

ResNets provide a notable advantage over traditional neural networks in that they

can be much deeper while still delivering superior performance. This is primarily due

to the residual connections, which facilitate the smooth flow of gradients throughout

the network, enabling the training of very deep models. ResNets have found successful

applications in various domains, such as image classification, object detection, and speech

recognition.

Due to their exceptional performance, these networks have become the dominant

architecture for CNNs and have inspired a multitude of similar designs that leverage the

same fundamental principles. Since their introduction, many architectures have been

developed, each one drawing from the ResNets design and o↵ering further optimizations.

Some of the most notable of these designs include ResNeXt [193], DenseNet [194],

Inception-v4 [195], MobileNetV3 [196], and E�cientNet [197].

The original ResNet proposal by He et al. included several specific network configu-

rations, namely ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152, with the

number indicating the number of layers in the network.

Feature Pyramid Networks (FPNs) FPNs are a type of convolutional neural

network architecture designed for object detection in images. The key idea behind FPNs

is to address the problem of scale variance in object detection. Objects can appear at

di↵erent scales in an image, and traditional CNNs can struggle to detect objects at small

scales. FPNs address this problem by constructing a pyramid of feature maps at di↵erent

scales, where each level of the pyramid corresponds to a di↵erent level of image resolution.
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Figure 3.8: Architecture of the RetinaNet Feature Pyramid Network. (a) ResNet
architecture, (b) convolutional feature pyramid, (c) anchor boxes, (d) ground
truth boxes (Figure from [198])

FPNs consist of two components: a bottom-up pathway and a top-down pathway (see

Figure 3.8). The bottom-up pathway is a traditional CNN that extracts features from

the input image. The top-down pathway starts with the highest-resolution feature map

from the bottom-up pathway and applies a series of upsampling and merging operations

to produce a set of feature maps at di↵erent scales. The top-down pathway is designed

to integrate high-level semantic information from the bottom-up pathway with low-level

spatial information from the earlier layers.

The resulting feature maps are used for object detection by applying a set of Region

Proposal Networkss (RPNs) at each level of the pyramid. The RPNs generate a set

of candidate object bounding boxes, which are then refined and filtered using a set of

classification and regression networks.

Some of the best performing FPN architectures consist of RetinaNet [198], Faster R-

CNN [199], SSD [200], YOLO v2 [201], YOLO v3 [202], and E�cientDet [203]. RetinaNet

showed the best performance for a long time and just recently was overtaken by more

modern architectures like YOLOv5l [204].

The key advancement of RetinaNet is the use of a unique loss function called ”focal loss”

that handles the issue of class imbalance in object detection. In most object detection

datasets, the number of negative examples exceeds the number of positive examples.

Focal loss assigns higher weights to misclassified di�cult examples and down-weights

easy examples, thus ameliorating the e↵ects of class imbalance.

The network predicts a series of anchor boxes at each feature map position, which are

used to localize objects. The architecture of RetinaNets is comprised of four sub-networks,

each designed to perform a specific task in the overall object detection pipeline. Firstly,

a ResNet is utilized to extract meaningful features from the input image and generate

feature maps. These maps are then combined by the FPN, resulting in semantically rich
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Figure 3.9: Simple recurrent unit and LSTM block. Simple recurrent unit (left) and
an LSTM block (right) as used in the hidden layers of an RNN (Figure from
[205])

feature maps of low and high resolution. Finally, two sub-networks handle the tasks of

classification and bounding box regression.

Recurrent Neural Networks (RNNs) with Memory Cells RNNs are a class of

neural networks suited for handling sequential data by employing feedback connections,

enabling them to demonstrate dynamic temporal behavior. RNNs possess the unique

capability of retaining a memory of previous inputs, which allows them to process

sequences of any length.

The network functions on a sequence of input vectors, each vector representing the

characteristics of the input at a specific time step (see Figure 3.9 left). The network

then sequentially processes these inputs, calculating an output vector and a hidden state

vector at each time step. The hidden state vector is determined by combining the current

input vector with the previous hidden state, serving as a form of memory. The output

vector at each time step is then computed using the hidden state vector and a set of

learned parameters.

The use of feedback connections allows RNNs to be trained on sequences of varying

lengths and to capture long-term dependencies in the input sequence. Nonetheless,

the vanishing gradient problem, where the gradients used to update the network’s

parameters become infinitesimal, making it di�cult to learn long-term dependencies,

presents challenges when training RNNs.
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Figure 3.10: Vision transformer architecture. Left: architecture with embedding and
encoder. Right: detailed transformer encoder (Figure from [206])

To address the vanishing gradient problem, LSTMs and Gated Recurrent Units (GRUs)

have been proposed as memory cells for RNNs. These architectures utilize additional

learnable gates to regulate the information flow in the network, enabling selective updates

to the hidden state and mitigating the vanishing gradient issue (see Figure 3.9 right).

Transformer Networks Transformer networks are a class of neural network architec-

ture that is designed to handle sequential data, such as text, speech, or music. They were

first introduced by Vaswani et al. in 2017 [186] and have subsequently gained considerable

popularity in many natural language processing tasks.

The primary concept behind transformer networks is the self-attention mechanism

(see Figure 3.11a), which enables the network to assign importance scores to di↵erent

parts of the input sequence when making predictions. Unlike conventional RNNs, which

process the input sequence element-wise, transformers can process the entire sequence

concurrently, resulting in superior speed and e�ciency.

The self-attention mechanism functions by calculating a set of attention weights for

each element in the input sequence (Figure 3.11b). These weights are then used to

calculate a weighted average of the sequence elements, which serves as input to the

subsequent layer of the network. This procedure is repeated multiple times, with each

layer refining the representation of the input sequence.

Furthermore, the transformer architecture contains several other important features,

including multi-head attention (Figure 3.11c), which enables the network to attend to
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(a)

(b) (c)

Figure 3.11: Transformer architecture and attention mechanism. (a) Transformer
model architecture, (b) Scaled Dot-Product Attention and (c) Multi-Head
Attention consisting of several attention layers running in parallel (Figure
from [186])
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multiple aspects of the input sequence at the same time, and residual connections, which

mitigate the problem of vanishing gradients that can arise in deep neural networks.

3.3 Weight Normalization

3.3.1 Basic Conversion

The field of converting ANNs to SNNs has been the subject of extensive research over

the years. The study by Rueckauer et al. [144] is of particular significance as it provided

a theoretical basis for the underlying mechanisms of di↵erent spiking implementations of

ANN operators, such as max-pooling [187], batch normalization [207], and an improved

version of the softmax mechanism by Nessler et al. [208].

When converting from ANN to SNN, the spike rate r(t) can be derived from the ReLU

activation a of the original network [144]:

r(t) = armax �
V (t)� V (0)

tVthr
(3.4)

where V (t) represents the membrane potential and Vthr represents the firing threshold.

As highlighted by Diehl et al. [146], spiking neurons di↵er from ReLU units in having

an upper bound set by the maximum spike rate rmax. Thus, the weights of the ANN

must be normalized to fall within the spike frequency range. The normalized weights w0

can be calculated by

w0
ij =

wij

�l
(3.5)

with � being the layer-wise maximum firing rate in the original ANN. However, this

approach guarantees that the spike frequency remains within the upper bound and

therefore may lead to a large decrease in weights because of single outliers, which would

in turn increase the inference time of the network.

To address this issue, Rueckauer et al. proposed robust normalization [144], which

only utilizes the pth percentile of the absolute activity distribution for each layer. The

highest accuracies were obtained with values of p in the range [99.0, 99.999]. We refer to

the conversion with the usage of robust normalization as basic conversion.

3.3.2 Hyperparameter Search

The normalization parameter p regulates the trade-o↵ between inference speed and accu-

racy, with higher values promoting lower conversion loss at the cost of converging slower,

whereas smaller values expedite convergence while introducing accuracy degradation. To
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Figure 3.12: Relation between the conversion loss of test set and synthetic set. For
an exemplary 3-layer fully connected converted spiking network for di↵erent
normalization percentiles. The determined value of 96.5 converges twice as
fast as the higher values while showing a reasonable loss of only 1.2% (Figure
previously published in [39])

address this challenge, we propose a methodology to computationally detect the value of

p that balances the speed/accuracy trade-o↵.

Feeding uniformly distributed noise into a trained ANN, results in random predictions.

As the result is very sensitive to small adjustments in the ANN, this can be utilized

to evaluate how well the converted SNN represents the original ANN. Converting with

inferior normalization parameter choices will result in poor performance on the synthetic

data created this way (see Figure 3.12). Small values of p show even larger losses on the

synthetic dataset than the test set, while large values result in too slow convergence, such

that single action potentials are not averaged out during the individual time steps, which

also leads to larger losses. The minimizationg of the conversion loss on the synthetic set

determines the value of p for the fastest converging SNN with the highest accuracy at

that speed. This approach on networks with di↵erent sizes, performances, and random
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seeds has shown that it can be reliably implemented by using only a small synthetic

dataset of roughly 1% of the size of the original test set [39].

3.3.3 ReLU1 for Prototyping

In order to accurately evaluate the e�cacy of the normalization parameter, it is necessary

to convert the normalized ANN to a SNN and subsequently conduct a simulation for

evaluation. However, this process is often characterized by high computational demands

and energy consumption, which may prove impractical. To overcome this challenge, it

may be advantageous to determine the resulting accuracy of the converted SNN prior to

engaging in these simulations.

We proposed the implementation of the ReLU1 activation function to evaluate accuracy

while the ANN is still in its conventional form [43]. After the ANN undergoes conventional

training and normalization, the ReLU activation function is replaced with the ReLU1

activation function, which is limited to a maximum value of 1, therefore including an

upper limit similar to the maximum firing range of spiking neurons. Consequently, the

resulting SNN accuracy can be evaluated within the same environment in which the ANN

was trained, thereby reducing computational complexity.

This approach provides a means of evaluating the accuracy of the conversion process

without incurring the high costs associated with traditional simulation methods. It

is evaluated in Section 4.2.2 in combination with di↵erent optimization methods for

increasing the inference speed of converted SNNs.
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Figure 4.1: Chapter structure.

In this chapter, we evaluate the current state-of-the-art rate-coded conversion tech-

niques. Prior research in this domain has primarily concentrated on smaller networks, as

simulations involving deep SNNs tend to be associated with significant time and resource
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expenditures. In order to minimize the inference time, various optimization methods have

been proposed and evaluated. These methods aim to increase the accuracy of predictions

within a shorter time frame. Two of the optimization methods include voltage clamping

by Rueckauer et al. [144] and channel-wise normalization by Kim et al. [142]. In addition

to these methods, we propose a new method, called unbiased quantization, which reduces

the error in converted networks. This optimization is aimed at reducing the time required

for accurate predictions and thus improving the overall e�ciency of the spiking network.

Additionally, we undertake an evaluation of the suitability of the ReLU1 activation

function to approximate the conversion loss resulting from the normalization hyperparam-

eter, thereby accelerating the development of converted SNNs. We also show an approach

for converting transformer networks to their spiking neural network counterparts.1

4.1 Optimization Methods

In the inference process of a SNN, the input necessitates multiple time steps as it

propagates through the NN. The initial response is primarily determined by a subset of

highly active neurons and subsequently influenced by the output of an increasing number

of neurons as the simulation progresses. During this transient phase, the accuracy of

the output prediction starts with a significant reduction, ultimately converging towards

its maximum accuracy over time. The number of needed time steps for the accurate

predictions from the output is dependent on the number of layers in the network, possibly

needing a very long time for converging.

4.1.1 Related Work: Voltage Clamping

The spiking neuron model involves the integration of inputs zli(t) until the membrane

potential V l
i (t) reaches a threshold Vthr, triggering a spike. Following the spike, the

membrane potential is reset, with two main reset modes identified in the literature: reset

to zero [146], which sets the membrane potential to a baseline, commonly zero, and

reset by subtraction [209], [210], subtracting the threshold value Vthr from the membrane

potential at the time the threshold is exceeded.

The spike rates rli in relation to the ANN activation ali have to average the membrane

potential over the simulation time and reads [144]:

1Parts of this chapter have been previously published in [39], [42]–[44].
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rli(t) =

8
>>><

>>>:

ali · rmax ·
Vthr

Vthr + ✏li
�

V l
i (t)

t · (Vthr + ✏li)
reset to zero (4.1)

ali · rmax �
V l
i (t)

t · Vthr
reset by subtraction (4.2)

The reset to zero case includes an additive approximation error and a further multiplicative

error term which will lead to a continuous excess of the threshold by the same constant

amount [144]:

✏1i = V 1
i (n

1
i )� Vthr = n1

i · z1i � Vthr � 0 (4.3)

The residual charge ✏1i , which is lost during reset, reduces the firing rate and leads to

information loss, particularly in deeper layers.

In contrast, reset by subtraction benefits the approximation and makes conversion

suitable for deeper NNs, where the excess charge ✏ can be used for the subsequent spike

generation. Therefore, the error term for ✏ is absent in the spike rate and reduces the

error to just the additive error Equation (4.2).

One e↵ective strategy proposed by Rueckauer et al. [144] to mitigate the impact of

transients in neuron dynamics is to clamp the membrane potential to zero for an initial

N time steps that scales with the depth of the neural layer l:

N(l) = d · l (4.4)

The parameter d, which represents the temporal gap between releasing the clamp on

successive layers, allows for increased convergence of the preceding layer towards the

steady-state before the subsequent layer begins integrating its signal.

The authors determined that a clamping delay of d = 10 was su�cient for an Inception-

V3 network [211], although it did not have a significant impact on the accuracy of

VGG16 [212]. This method introduces another hyperparameter d, which has to be further

evaluated to determine the optimal value.

4.1.2 Related Work: Channel-Wise Normalization

Kim et al. [142] further improved the layer-wise normalization method (see Section 3.3.1)

by introducing channel-wise normalization. In contrast to conventional methods, which

apply per-layer normalization by scaling all channels within a feature map together, the

authors observed that this approach can be suboptimal due to significant variability in

channel activations within individual feature maps of a CNN. To address this issue, they

proposed to normalize each channel individually, which led to at least a 2.3⇥ increase
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in inference speed on object detection datasets. The normalization is performed by

normalizing the weights and biases of the network using the formula in

W l
i,j  �W l

i,j
�l�1
i

�lj
and blj  �

blj
�lj

(4.5)

where �kc represents the pth percentile of the cth channel in the kth layer. In their

experiments, the authors utilized the 99.9th percentile for normalizing, but this approach

also introduces an additional hyperparameter that has to be carefully adjusted for optimal

results.
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4.1.3 Unbiased Quantization

During the inference phase of the converted network, the spike activity needs to be

integrated over time, which can lead to prolonged simulation time until the accuracy

of the converted network reaches the baseline ANN. To mitigate this issue, we have

demonstrated an approach that significantly reduces the inference time while preserving

accuracy. This is achieved by adding half of the threshold voltage to the bias after

resetting the membrane voltage of the spiking neuron, resulting in a better representation

of the ground truth (see Figure 4.2a) and leading to a faster inference of converted

networks (see Figure 4.2b). The resulting rates can be calculated in accordance with

[144] using the equation

rli(t) = alirmax �
V l
i (t)

t · Vthr
+

Vthr

2 · nsteps
(4.6)

where ali is the ReLU activation, V l
i is the membrane potential, Vthr is the firing threshold,

and nsteps is the number of time steps in the simulation.

Rate Codes transform the continuous activation of analog neurons into a quantized

signal. The quantization in the basic conversion rounds down the activation to the closest

quantization step, which results in a biased quantization error of 1
2t if the activations are

uniformly distributed. This is illustrated in Figure 4.3a.

Our proposed method initializes the membrane potential of the spiking neurons with
1
2Vthr that unbiases the quantized error. Therefore, the error is averaged to zero as

the spike rate consistently over- and underestimates the corresponding activation of the

network (see figure Figure 4.3b). A similar approach was presented by Yousefzadeh et

al. [213], who proposed a hysteresis quantization of the ReLU activation function prior

to conversion. This helps in evening out the error but can lead to an increase in the

fluctuation of the output signal.

The quantization error in the first hidden layer, e1i (t), is calculated using the spike rate

r1i (t) (Equation (3.4)) and the activation a1i of the corresponding ANN neuron with an

initial potential V 1
i (0) = 0:

e1i (t) = |a1i � r1i (t)|

=

����a
1
i �

✓
a1i �

V 1
i (t)

tVthr

◆����

=

����
V 1
i (t)

tVthr

����

(4.7)

With the activation a1i being greater than 0, it is reasonable to assume that 0 < V 1
i (t) <

Vthr. With this setup, the quantization error is limited by e1i (t) <
1
t . However, initializing
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(a) Inference of a regression task after 25 time steps. While the SNN converted with centered error
matches the ground truth closely, the baseline model has not fully converged.

(b) The full convergence of a converted ResNet34 with centered error is reached one-third faster than the
baseline model.

Figure 4.2: Error-centering of spiking neurons. Figures previously published in [42]
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the membrane potential of the neurons with 1
2Vthr halves this bound:

e1i (t) =

�����a
1
i �

 
a1i �

V 1
i (t)� 1

2Vthr

tVthr

!�����

=

�����
V 1
i � 1

2Vthr

tVthr

����� <
1

2t

(4.8)

The spike rate rli(t) of a deeper layer l > 1 can be calculated using:

rli(t) =

Ml�1X

j=1

W l
i,jr

l�1
j (t) + rmaxb

l
i �

V l
i (t)� V l

i (0)

tVthr
(4.9)

With rmax = 1, the quantization error is determined by:

eli(t) =
���ali � rli(t)

���

=

�����

0

@
Ml�1X

j=1

W l
i,ja

l�1
j + bli

1

A�

0

@
Ml�1X

j=1

W l
i,jr

l�1
j (t) + bli �

V l
i (t)� V l

i (0)

tVthr

1

A
�����

=

������

Ml�1X

j=1

W l
i,je

l�1
j (t) +

V l
i (t)� V l

i (0)

tVthr

������

(4.10)

And the quantization error for V l
i (0) = 0 is limited by:

eli(t) =

������

Ml�1X

j=1

W l
i,je

l�1
j (t) +

V l
i (t)

tVthr

������
<

������

Ml�1X

j=1

W l
i,je

l�1
j (t) +

1

t

������
(4.11)

Initializing the membrane potential of the neurons with 1
2Vthr halves the maximal error

due to quantization:

eli(t) =

������

Ml�1X

j=1

W l
i,je

l�1
j (t) +

V l
i (t)� 1

2Vthr

tVthr

������
<

������

Ml�1X

j=1

W l
i,je

l�1
j (t) +

1

2t

������
(4.12)

In conclusion, initializing SNNs using our proposed method leads in a prediction with

higher accuracy with shorter simulations by centering the error. It does not introduce any

additional hyperparameters, making it an e�cient and e↵ective solution to the problem

of biased quantization error in ANNs and SNNs.
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(a)

(b)

Figure 4.3: Biased and unbiased quantization. Overview of the biased (a) and the
unbiased (b) quantization method in spiking neural networks (Figure previously
published in [43])
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4.2 Deep Spiking CNN for Classification

For a comprehensive evaluation of the three optimization methods, as well as their

combined e↵ect, we conduct experiments on four di↵erent ResNets architectures, ResNet18

to ResNet101, using the CIFAR-10 dataset [188]. The CIFAR-10 dataset is a popular

image classification benchmark, comprising 60,000 images of size 32 ⇥ 32 ⇥ 3 pixels,

classified into 10 di↵erent categories. The dataset is divided into 50,000 training images

and 10,000 test images. As there is no validation set provided in CIFAR-10, we utilize

the last 5,000 images from the training set for validation purposes, reducing the training

set to only its first 45,000 images.

In order to obtain an individual overview of the optimization methods, we perform

a separate evaluation of unbiased normalization, voltage clamping, and channel-wise

normalization on the validation set, to determine the best-performing hyperparameters.

These hyperparameters are then jointly evaluated on the test set to determine their

overall performance.

For the purpose of simplicity, we utilize potential encoding for the output layer [144],

where the softmax function is calculated based on the membrane potential of the last

layer. All SNNs are simulated for 1,000 time steps, providing ample opportunity to

evaluate their performance.

We evaluate the performance of the optimization methods of unbiased quantization,

channel-wise normalization and voltage clamping using the hyperparameter value d =

[1, 2, 3]. This initial step adheres to the normalization method proposed by Kim et al.

[142] which suggests using the 99.9th percentile. To determine the optimal normalization

parameter in this application, we examine various values beyond just the 99.9th percentile.

This is motivated by the findings of Rueckauer et al. [144] which showed that percentiles

in the range [99, 99.999] performed best for layer-wise normalization. In our evaluation,

we consider percentiles [99, 99.9, 99.99, 99.999, 100] for channel-wise normalization and

assess their performance in combination with the other two methods.

After conducting experiments and evaluating the results on the validation set of CIFAR-

10, we then assess the best-determined configuration on the test dataset to obtain an

objective result.

4.2.1 Training and Conversion

The training of the ResNets required slight adaptations to suit the small size of only

32⇥ 32 pixels. This was accomplished by modifying the first convolution layer to a 3⇥ 3

convolution with a stride of 1 and removing the max pooling layer. Additionally, the

number of channels in all convolutions was halved. The networks were trained for a total

of 50 + 100n epochs, where n = [1, 2, 3, 4] for the ResNet18, ResNet34, ResNet50, and

ResNet101, respectively. The training process involved the use of Stochastic Gradient
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Descent (SGD) as optimizer with a batch size of 128, an initial learning rate of 0.1,

momentum of 0.9 and a weight decay of 0.0005. The initial learning rate was decayed by

a factor of 10 at 50n and 25+ 75n epochs, respectively. The images were standardized by

normalizing each channel to have a zero mean and unit variance. Data augmentation was

performed following the techniques described by He et al. [192] and Lee et al. [214]. This

involved zero-padding the images with 4 pixels on each side and then randomly cropping

32x32 pixels, as well as horizontally flipping each image with a probability of 50%.

The conversion of the ResNets involves a specific normalization process of the residual

blocks, as the converted activations of the ReLU after the element-wise addition of the

residual block should not exceed the maximum value, rmax. In order to achieve this,

the residual blocks of the ResNets are normalized by the method outlined by Hu et al.

[141]. This normalization process takes into consideration both the main paths and the

shortcuts of the residual blocks and normalizes them using their activations.

4.2.2 Conversion Evaluation

Figure 4.4 illustrates the comparison of our proposed unbiased normalization method,

the channel-wise normalization (using the 99.9th percentile), and voltage clamping (with

d = [1, 2, 3]) to a baseline SNN. It has been observed that these three optimization

techniques exhibit a relatively similar level of accuracy and converge faster in comparison

to the baseline spiking ResNet. This observation can be attributed to the simplicity of

the CIFAR-10 dataset and the large size of the neural networks. As a result, lossless

conversion was achieved for ResNet18 and ResNet34. On the other hand, the baseline

spiking ResNet50 and ResNet101 failed convergence within the simulated 1,000 time

steps, although their classification accuracy was still rising. It can be deduced that they

would converge to the same accuracy as the original ANN if the simulation time was

prolonged.

Results of ReLU1

To assess the usage of ReLU1 for faster prototyping of converted SNNs, we also compute

the ReLU1 performance for the normalized ANNs. This involves replacing all ReLU

activation functions with the ReLU1 function, which clips all activations between 0

and 1. This gives us valuable insights into the extent to which the accuracy drop can

be attributed to the clipping versus the quantization errors of the SNN. Furthermore,

the ReLU1 performance can be considered a theoretical, upper-bound estimate of the

potential performance of the SNN.

The accuracy results for di↵erent percentiles of converted SNNs and the corresponding

ReLU1 activation, are depicted in Table 4.1. The ReLU1 accuracy was found to be very

close to the SNN’s performance, making it a useful predictor for evaluating di↵erent
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4.2 Deep Spiking CNN for Classification

Figure 4.4: Inference of the di↵erent optimization methods for di↵erent-sized
ResNets. Inference of the di↵erent optimization methods for ResNets of
di↵erent sizes on the CIFAR-10 dataset (Figure previously published in [43])

69



4 Rate-Coded Conversion

Table 4.1: Accuracy for di↵erent optimization methods. Accuracy for the channel-
wise normalization combined with unbiased quantization and voltage clamping
for di↵erent percentiles as well as their corresponding ReLU1 activation. For the
spiking networks, the average accuracy of the last 100 time steps is given (Table
previously published in [43])

%ile
ResNet18 ResNet34 ResNet50 ResNet101

SNN ReLU1 SNN ReLU1 SNN ReLU1 SNN ReLU1

99th 92.24% 92.24% 92.42% 92.42% 92.84% 92.86% 92.66% 92.66%
99.9th 93.71% 93.70% 94.26% 94.24% 94.71% 94.70% 95.01% 95.04%
99.99th 93.85% 93.82% 94.40% 94.38% 94.78% 94.80% 95.27% 95.24%
99.999th 93.80% 93.76% 94.40% 94.44% 94.74% 94.80% 95.28% 95.24%
100th 93.87% 93.78% 94.35% 94.44% 94.78% 94.82% 95.25% 95.26%
ANN 93.78% 94.40% 94.82% 95.26%

percentiles prior to the conversion. This additionally suggests that the main source of

variability in accuracy lies in the activation clipping rather than quantization errors in

the SNN.

Results of the individual optimization methods.

The results of the individual optimization methods were analyzed in order to determine

the most e↵ective approach for improving inference time in SNNs. The voltage clamping

method was found to be the most e↵ective, demonstrating the largest improvement in

inference time for all of the ResNet networks tested. Although the number of time steps

before the first output is produced corresponds to the number of layers in the network

multiplied by the hyperparameter d, the di↵erent values of d did not result in a large

di↵erence in performance. With d = 1 the network needs slightly more time steps for

convergences, whereas d = 3 needs three times as long to generate the first spiking output,

but subsequently converges at an accelerated pace. We decided to use d = 1 for the

following experiments, as the di↵erence in accuracy between di↵erent values of d could be

neglected and higher values would result in excessively long delays in output generation.

The second most e↵ective optimization method was unbiased quantization, which alone

was able to more than half the necessary inference time compared with the baseline SNN.

While this method converges slower than the voltage clamping approach, it does not

introduce an additional hyperparameter, making it a cost-e↵ective solution.

The channel-wise normalization method was found to be the least e↵ective of the tested

approaches, particularly for smaller networks. Despite converging to similar accuracy

levels, this approach achieved only a slight speedup compared to the baseline ResNet18.

For deeper networks, this more fine-grained normalization method produced a larger
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4.2 Deep Spiking CNN for Classification

di↵erence and was more comparable in performance to the other methods. For the

ResNet101, the channel-wise normalization method resulted in a slightly faster inference

time than the unbiased quantization.

Given the benefits demonstrated by all optimization methods, further investigation

was conducted into the hyperparameter p for channel-wise normalization in conjunction

with the other two approaches. The final accuracy results for the spiking neural networks,

calculated as the average accuracy of their last 100 time steps can be found in Table 4.1.

The 99th percentile performed the worst for both the SNN and the ANN, resulting

in lower accuracy compared to the other methods by 1.5 to 2.5 percentage points. The

99.9th percentile converged to a lower accuracy, which was most noticeable for the

ResNet101. The 99.99th, 99.999th, and 100th percentiles all converged for all ResNets

to the same accuracy as the ANN, with only minor variations in di↵erence. However,

the 100th percentile required roughly double the time for full convergence, highlighting

the importance of considering the hyperparameter tuning if inference speed is a relevant

concern.

Results of the combined optimization methods.

To evaluate the combined e↵ect of the three optimization methods, we have conducted

an extensive experiment on the CIFAR-10 test set. The optimization methods used in

this experiment are unbiased quantization, channel-wise normalization (using the 99.99th

percentile), and voltage clamping with d = 1. This configuration is referred to as the

extended conversion and will be compared to the basic conversion.

Our results indicate that the extended conversion method substantially increases

performance in comparison to the basic conversion method. Specifically, we observe a

roughly ten-fold gain in the speed of ResNet18 when compared to the basic conversion

(see Figure 4.5). The extended conversion crosses the 94% accuracy bar with only 56 time

steps, whereas the basic conversion requires approximately 600 steps to reach the same

bar. This di↵erence is even more pronounced when considering larger networks such as

ResNet101. In the 1,000 time steps of the simulation, the basic spiking ResNet101 does

not converge, whereas the extended conversion reaches the same accuracy with less than

150 time steps.

For both ResNet34 and ResNet50, we observe a significant drop in accuracy from

the basic conversion to the original ANN. However, the extended conversion method

results in networks that reach the same accuracy as the original ANN. This suggests

that the conversion process for simple datasets such as CIFAR-10 is lossless. The final

accuracy results, listed in Table 4.2, demonstrate the performance after the simulation

was completed. A comparison to other conversion work for image classification can be

found in Table 4.3
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4 Rate-Coded Conversion

Figure 4.5: Accuracy of the three optimization methods on the CIFAR-10 dataset.
Combined voltage clamping, channel-wise normalization and unbiased quanti-
zation for a ResNet18 (Figure previously published in [43])

Table 4.2: Resulting accuracies for the original ANN. the basic and the extended
conversion. For the SNNs the average accuracy of the last 100 time steps is
given (Table previously published in [43])

ResNet18 ResNet34 ResNet50 ResNet101

ANN 94.19% 94.67% 95.11% 94.92%
Basic Conversion 94.13% 94.41% 94.59% 93.45%
Extended Conversion 94.22% 94.61% 95.12% 94.95%
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4.3 Spiking FPN for Object Detection

4.3 Spiking FPN for Object Detection

To evaluate the scalability of our approach, we extend it to a large-scale application by

converting a RetinaNet with a ResNet18 backbone to a spiking network and benchmark

its performance on the challenging Microsoft COCO dataset [190]. COCO is a large-scale

benchmark for object detection, segmentation, and captioning, containing around 118,000

training, 5,000 validation, and 41,000 test images, in total roughly 164,000 images. The

objects in the images are classified into 80 di↵erent categories, with varying resolutions

that range from 72 ⇥ 51 to 640 ⇥ 640 pixels, and aspect ratios of up to 6 : 1. Due

to the high computational complexity of the network, the performance of the SNN is

only assessed on the 5,000 validation images. In this experiment, all three optimization

methods are applied combined.

To pick a reasonable percentile for the channel-wise normalization, a process outlined

in Section 4.2.2, the Mean Average Precision (mAP) of the ReLU1 must be computed

with di↵erent values. This will allow for the selection of the most suitable percentile

before the conversion takes place.

4.3.1 Training of RetinaNets

The training process for the conventional RetinaNet di↵ers from the original work by

Lin et al. [198]. The Adam optimizer, as described by Kingma and Ba [215], is used

instead of SGD with a batch size of 14, a learning rate of initially 0.0001, and the weight

decay set to 0.00001. The hyperparameters are set to �1 = 0.9, �2 = 0.999, and ✏ = 10�8,

respectively.

The training of the RetinaNet is done for a total of 90,000 iterations, with the learning

rate being divided by 10 after 60,000 and 80,000 iterations. Unlike the original work, we

treat the weight introduced by the focal loss as a constant in the derivation step.

Training involves random resizing of the image’s shorter side to a value between 640

and 896 pixels, and all images within a batch of 14 must have the same resolution.

Therefore, zero-padding is applied to the images to ensure that they all have the same

size. The images are also augmented by randomly flipping them horizontally, with a 50%

chance.

Converting the RetinaNet requires additional considerations for the FPN. The FPN

weights require adjustment to compensate for the normalization applied to the backbone

network. Specifically, the four convolutional layers that take feature maps from C3, C4,

and C5 as input need to undo this normalization. After normalizing the activation of the

3⇥3 convolution following C5, it is passed through ReLU, then immediately denormalized

by the subsequent 3⇥ 3 convolution. With P6 normalized, all pyramid feature maps are

now consistent and can proceed to the regression and classification subnetworks.
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4 Rate-Coded Conversion

Figure 4.6: mAP of the three optimization methods. mAP of the three optimization
methods on the COCO dataset for a converted RetinaNet with a ResNet18
as the backbone, as well as the corresponding ANN’s mAP (Figure previously
published in [43])

Given that both convolution and nearest neighbor upscaling are linear operations, it

follows that any combination of these two operations will yield another linear transfor-

mation. As a result, all computations within the FPN, except for the ReLU, can be

condensed into their subsequent weights, which greatly simplifies the overall process.

4.3.2 Evaluation of the Results

In addition to evaluating the extended conversion method on simple datasets, we have

also conducted a large-scale evaluation using a RetinaNet. To find the best-suited

hyperparameter for the channel-wise normalization, we computed the ReLU1 mAP for

di↵erent percentiles. Our results indicate that the 99.999th percentile performs the best

with an mAP of 30.16, followed closely by the 99.99th percentile with an mAP of 29.68.

The 99.9th percentile performed the worst with an mAP of 26.75. Our findings indicate

that there is no one-size-fits-all solution, and the optimal percentile value varies across

applications. However, we show that using ReLU1 as a performance metric can serve as

a useful predictor to guide the selection of an appropriate value tailored to each specific

use case.
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4.3 Spiking FPN for Object Detection

Within our experiments using 1,000 simulation time steps, we observed that the original

ANN achieved an mAP of 30.21, while the converted SNN reached 30.09 (see Figure 4.6).

The di↵erence between these two values amounts to a mere 0.12 or 0.40%, highlighting

the e↵ectiveness and e�ciency of the extended conversion method.

Other methods for spiking object detection have also been proposed. Hu et al. [141]

introduced conversion methods for ResNets, while Xiao et al. [216] and Kerapdiseh et al.

[124] presented biologically plausible learning algorithms for object recognition. Wu et al.

[217] introduced Progressive Tandem Learning, a layer-wise learning framework with an

adaptive training scheduler for rapid pattern recognition. A comparison of our approach

to other conversion work for object detection can be found in Table 4.3
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4.4 Spiking Transformer Networks

4.4 Spiking Transformer Networks

For the development of a conversion method, we use networks similar to the transformer

networks used in the original work for NLP [186] (see Figure 4.7) and image classification

[206] (see Figure 4.9). The architecture comprises a preprocessing stage that depends on

the data type of the input, followed by the implementation of a transformer encoder, which

forms the backbone of the network, and various subsequent layers with a classification

output layer.

The transformer encoder is constructed using multi-head self-attention, comprising

of several scaled-dot attention modules to perform the necessary computations. The

computation performed by the scaled-dot attention modules involves a series of stacked

layers of matrix multiplication, scaling, softmax, and a final matrix multiplication layer.

After the multi-head self-attention layer, a subsequent dense layer is implemented, followed

by the application of a ReLU activation function and yet another dense layer.

In our approach, we use an average pooling layer instead of the commonly used max

pooling operation, as the latter is di�cult to realize in SNNs. For classification of the

output, di↵erent spiking operators have been proposed [144], but for simplicity, we have

included an additional layer that accumulates all spikes generated by the last dense layer.

This enables the use of a common softmax layer for evaluating the accuracy, without the

need for a more complex implementation.

4.4.1 Conversion Approach

As for the conversion of CNN, conversion is done by replacing ReLU activation functions

of the ANN with IF neurons. The rate-coded spiking neurons o↵er a low computational

complexity by integrating inputs until a threshold is reached, at which point the neuron

triggers an action potential transmission to subsequent neurons before resetting. This

spike rate r(t) can be calculated using the ReLU activation a of the original ANN through

the equation:

r(t) = armax �
V (t)� V (0)

tVthr
(4.13)

where V (t) is the membrane potential and Vthr is the firing threshold.

However, unlike the ReLU activation function, which have no upper bound, spiking

neurons are characterized by a maximum firing rate that defines an upper limit rmax

[146]. This means that the weights of the original ANN must be normalized to avoid

extended inference time or decreased accuracy. To achieve this normalization, a subset of

the training set is taken and the activations of the layers to be converted are computed.

Extreme outliers are discarded through the implementation of the robust normalization

algorithm (Section 3.3 [144]), which only normalizes the pth percentile of the activation.
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The authors suggest p values in the range of [99.0, 99.999]. However, it was found that a

value of p = 99.0% performed the best.

In addition, the reset-by-subtraction method [220] was used instead of resetting to 0,

as it has shown better e�ciency in the conversion process.

In order to evaluate the e�cacy and accuracy of the proposed conversion method, we

have selected two distinct transformer network architectures for training, one is closely

related to the original NLP sentiment classification model as presented in [186], while the

other is based on the vision transformer design proposed for image classification [206].

The conversion process involves the normalization of weights and the replacement of

traditional activation functions with IF neurons. Once the networks have been converted,

they are then subjected to an evaluation in a simulation process that involves the

propagation of spikes over a period of 50 time steps.

4.4.2 NLP Evaluation

For the first experiment, we undertake the training of a transformer network specifically

designed for NLP tasks, utilizing the IMDb movie review sentiment classification dataset

[221]. This dataset comprises 25,000 movie reviews, each represented by a sequence of

word indices and labeled as positive or negative sentiment. The dataset is split into

two equal parts, with one half being utilized for training and the other half reserved for

testing purposes.

The data is prepared by limiting the length of each review to 200 words and padding

any shorter reviews with zeros. Furthermore, a vocabulary list comprised of the 20,000

most frequently used words is utilized for the encoding of each review. The labels for

each review are also transformed into categorical vectors, with a positive or negative

state.

The network inputs are encoded movie reviews, presented as sequential lists of word

indices. To properly handle this input data, embedding layers are employed for both

the word sequences and for encoding the positions of each word in the sequence. The

resulting token embeddings and positional embeddings are then summed and fed into

the transformer encoder. Subsequently, the data passes through an average pooling layer

and then two densely connected layers, each equipped with a ReLU activation function.

Finally, a softmax layer is utilized to perform the classification.

The training procedure for both the NLP and vision transformers is carried out

identically. The training process is performed using the Adam optimization algorithm

with a batch size of 64, over 2 epochs. The robust normalization strategy is applied to

the resulting weights. This process scales the weights to fit the maximum spike rate of

the integrate and fire neurons and includes setting the percentile value to p = 99.0.
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4.4 Spiking Transformer Networks

Figure 4.7: Architecture of the converted spiking NLP transformer network. The
ReLU activation of the trained ANN is replaced by spiking neuron Models. In
contrast to the original work for NLP [186], we use average pooling instead of
max pooling after the transformer encoder module (Figure previously published
in [44])
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Figure 4.8: Results of NLP transformer conversion. Averaged accuracy of the con-
verted spiking NLP transformer network over 50 time steps on the IMDB
sentiment classification dataset (Figure previously published in [44])

The spiking transformer network is created by replacing traditional ReLU activations

with a spiking neuron model. Its performance is subsequently assessed through a 50-step

simulation, where the test set accuracy is calculated and reported. To account for any

variability in the results due to random seed selection, each experiment was repeated

50 times, with the results averaged to produce a more accurate representation of the

network’s performance.

The original NLP transformer showed an average accuracy of 86.36% on the IMDb

movie review sentiment classification dataset test set. The conversion of this ANN to a

spiking network resulted in a slightly lower accuracy of 86.25% after the simulation of

50 time steps. The accuracy evened out after only 13 time steps, which is illustrated in

Figure 4.8. The comparison between the original ANN and the converted spiking network

reveals a conversion loss of only 0.11%.

4.4.3 Image Classification Evaluation

For the second experiment, we aim to evaluate the e�cacy of the proposed vision

transformer network for image classification using the Modified National Institute of

Standards and Technology Database (MNIST) dataset [187]. The MNIST dataset consists

of 60,000 handwritten digit images ranging from 0 to 9, each with a corresponding label.
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Figure 4.9: Architecture of the converted spiking vision transformer network.
The ReLU activation of the trained ANN is replaced by spiking neuron Models.
In contrast to the original work for NLP [186], we use average pooling instead of
max pooling after the transformer encoder module (Figure previously published
in [44])
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Figure 4.10: Results of vision transformer conversion. Averaged accuracy of the
converted spiking vision transformer network over 50 time steps on the MNIST
image classification dataset (Figure previously published in [44])

All images in the dataset have a resolution of 28⇥ 28 pixels. The test set contains an

additional 10,000 images.

To incorporate the images into the transformer network, we segment each image

into 49 4 ⇥ 4-pixel patches, arranged in a 7 ⇥ 7 grid. Each patch is then flattened

and transformed into a linear embedding of all patches. Positional encodings and class

embeddings are appended to these projections to provide contextual augmentations. The

resulting feature representation is then processed by the transformer encoder, which

uses the same architecture as described in the previous section. Finally, the output is

passed through a dense layer with ReLU activation, followed by another dense layer with

softmax activation for classification purposes.

The training procedure for the vision transformers is carried out identically as for the

NLP transformer. The same for the conversion, where the ReLU activation functions

are replaced with IF neurons. Also, the performance of the spiking Transformer Neural

Network (TransformerNet) is then assessed through a simulation over 50 time steps and

each experiment is repeated 50 times for averaging the results.

The vision transformer of the latter experiment attained an average accuracy before

conversion of 97.99% on the MNIST test set. The converted network resulted in a

slightly lower average accuracy of 97.16% after the simulation of 50 time steps. Similarly
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4.4 Spiking Transformer Networks

to the NLP transformer, the accuracy of the vision spiking network evened out after

13 time steps, reaching 97.02%, as illustrated in Figure 4.10. Despite this resulting good

performance, the conversion of the vision transformer to a spiking network resulted in a

higher conversion loss of 0.83% compared to the NLP transformer.

Notably, despite sharing similar architectures and containing comparable numbers of

spiking neurons, the vision transformer exhibited a greater conversion loss than the NLP

transformer. This discrepancy may be attributed to the more complex preprocessing of

input data in the vision transformer, which could have introduced additional sources of

error.
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Population-Coded Conversion

5.1 Related Work: Conversion of Elman RNNs

5.2 Methodology

5.2.1
Spiking Sigmoid

5.2.2
Spiking Tanh

5.3 Conversion Evaluation

5.3.1
Dataset

5.3.2
Network Architecture

5.3.3
Conversion of the

LSTM’s Gates and States

5.3.4
Conversion of the
Entire LSTM Cell

5.4 Discussion of the Results

Figure 5.1: Chapter structure.

The population coding strategy shares similarities with rate coding regarding its

conversion process. However, population coding distributes spikes across multiple neurons

with varying spiking thresholds instead of a single neuron emitting multiple spikes. With

a linear distribution of these thresholds, the outcome would be identical to that of the

rate-coded network, running for the equivalent number of time steps as the number of

neurons in the population. Running the rate-coded network for more time steps can

increase accuracy, resulting in a smaller quantization. Therefore, the advantage of a
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population-coded network lies in the processing speed, as it does not require running for a

minimum of time to achieve reasonable accuracy. However, this approach is only beneficial

if enough neurons are utilized to process the same node. In simulation environments, the

disadvantage of using population coding becomes more pronounced, as multiple neurons

need to be computed for a similar outcome as a rate-encoded network.

Population coding is, therefore, better suited for specialized hardware that can accom-

modate many neurons. Subthreshold analog neuromorphic hardware o↵ers a significant

advantage as it utilizes transistors operating in subthreshold mode, which are commonly

implemented in silicon. The disadvantage mentioned in Section 2.2.3 can be transformed

into an advantage, as the subthreshold analog neuromorphic hardware su↵ers from in-

homogeneities in the spiking threshold, exhibiting a normal distribution of thresholds.

These normally distributed thresholds respond with an S-shaped cumulative normal

distribution as an output for a linear input.

This characteristic of population-coding is utilized to convert sigmoid and tanh activa-

tion functions in artificial neural networks ANNs, which were previously challenging to

convert1. Figure Figure 5.1 depicts the structure of this chapter.

5.1 Related Work: Conversion of Elman RNNs

Diehl et al. [140] presented a methodology for mapping simple Elman RNNs without

memory cells onto SNNs. The proposed approach involves training RNNs using back-

propagation through time, discretizing their weights, and then converting these networks

into spiking RNNs by aligning the output responses of artificial neurons with those of

biological spiking neurons.

They demonstrated their method on an NLP task, where they discovered that brief

synaptic delays were su�cient to capture the temporal dynamics required for e↵ective

question classification. Due to the lack of memory cells, the original ANN achieved only

85% accuracy on the test set. The converted SNN dropped to 72.2%, resulting in a

conversion loss of over 15%.

5.2 Methodology

Di↵erent memory cells such as LSTM cells and GRU have been developed to address

the vulnerability of Elman RNNs to vanishing gradients over time. However, a viable

conversion method for these cells is currently lacking, as they are based on sigmoid

and tanh activation functions which translate poorly to rate-coded spiking neurons. To

1This approach has been previously published in [40].
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address this issue, non-conversion-based implementations have been presented, although

they still lag behind the performance of ANNs.

The subthreshold analog neuromorphic hardware is characterized by inhomogeneities

in the silicon transistors, including device mismatch, shot noise, and thermal noise, which

can lead to inaccurate spiking thresholds of neurons. These sources of mismatch can

either be minimized at the device level or exploited for computational purposes. In

this research, we show that the inhomogeneities in subthreshold analog neuromorphic

hardware can be utilized to resolve the previously mentioned di�culties of converting

RNNs with memory cells.

LSTM units are widely utilized in various artificial neural network applications due to

their capability to preserve information over prolonged sequences. This memorization

is achieved by incorporating a cell state variable, which is updated based on multiple

input-dependent non-linear functions. These functions are responsible for influencing the

cell state whenever the desired information is present in the input.

The architecture of a standard LSTM cell comprises three key components: sigmoid

activation functions for its input gate, output gate, and forget gate, as well as two tanh

activation functions for the hidden and carry state, respectively.

Despite their widespread use in ANNs, the direct conversion of these activation functions

into a spiking representation has proven to be a challenging task. This is primarily because

the activation functions in LSTMs exhibit S-shaped curves while the spiking frequency

of pulsing neurons increases linearly with the input [139]. This mismatch between

the activation and spiking functions has motivated researchers to explore alternative

approaches to convert LSTMs into spiking networks.

One such approach has been to adapt the spike frequency of single neurons to exhibit

a similar activation function as the sigmoid or tanh activation functions[152]. Another

approach has been to develop new SNN architectures that can e↵ectively model the

short-term memory behavior of LSTMs [112].

5.2.1 Spiking Sigmoid

In our approach, we introduce the utilization of inhomogeneous thresholds in subthreshold

operating analog neuromorphic hardware to enable the approximation of sigmoid and tanh

activation functions. By leveraging the property of a normal distribution’s cumulative

distribution function, which results in an S-shaped curve, we can e↵ectively approximate

the sigmoid and tanh functions, which exhibit similar behavior. The result is achieved

by feeding input to a su�ciently large population of spiking neurons with randomly

initialized, normally distributed thresholds. The number of spikes produced can be

predicted with the cumulative distribution function given the input current I. The

cumulative distribution function, F (I), is expressed as
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Figure 5.2: Population-coded spiking LSTM. The three gates are replaced by excitatory
populations of spiking neurons, and the two gates are replaced by an excitatory
and an inhibitory population, each.

F (I) = P (Vthresh  I) (5.1)

where P represents the probability that the spiking threshold Vthresh is less than or equal

to the input I.

To accurately represent the sigmoid function, the sum of spikes per population must

be normalized to a value in the range of [0, 1]. To achieve this, the standard deviation

must be set such that the cumulative distribution function closely maps the sigmoid

function. The optimal standard deviation can be approximated by iteratively minimizing

the error between both functions and is determined to be �sigmoid = 1.75. This value,

when applied to a population of as few as 25 neurons, already produces a reasonable

approximation of the sigmoid function (see Figure 5.3).

5.2.2 Spiking Tanh

The conversion of the tanh function, which ranges between [�1, 1], requires further steps
beyond the approximation of the sigmoid function. A second population of negative-

valued (inhibitory) spikes is required, in addition to the positive-valued (excitatory) spikes

emitted by the first population [139]. Both populations are initialized with the same

random threshold, with the second population’s sign being reversed. Like for the sigmoid

activation, the optimal standard deviation can be approximated by iteratively minimizing

the error between the cumulative distribution function and the tanh function and is
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Figure 5.3: Example of an approximated sigmoid function with a population
of neurons. Sigmoid function (dark) and the representation through the
accumulation of spikes over the input of an excitatory spiking population of
25 neurons with a normally distributed, randomly initialized threshold with
mean µ = 0 and standard deviation �sigmoid = 1.7 (light). (Figure previously
published in [40])

determined to be �tanh = 0.88. With this value, a small population of 50 neurons, 25 for

each excitatory and inhibitory population, can visibly approximate the tanh function

(see Figure 5.4).

In the event that the normal distribution is given by design, it may be necessary to

make modifications to the input current to ensure the preservation of the accuracy of

the approximation of the activation functions. In such instances, if the mean current

µI,real 6= 0 then µI,real has to be subtracted from the input current so it evens out to 0. For

the standard deviations, if their values are not equivalent to the previously noted target

values of �sigmoid = 1.75 and �tanh = 0.88, the input current for each population has to

be multiplied by the ratio of the actual and target value. For the sigmoid population,

the input current formula then reads:

Isigmoid = I

✓
�real

�sigmoid

◆
+ µreal (5.2)

89



5 Population-Coded Conversion

Figure 5.4: Example of an approximated tanh function with two joint popu-
lations of neurons. Tanh function (dark) and the representation through
the accumulation of spikes over the input of an excitatory and an inhibitory
spiking population of 25 neurons each with normally distributed, randomly
initialized thresholds with mean µ = 0 and standard deviation �tanh = 0.88
(light). (Figure previously published in [40])

with �sigmoid = 1.75 as explained before. For the tanh population, the input current

formula reads:

Itanh = I

✓
�real
�tanh

◆
+ µreal (5.3)

with �tanh = 0.88, accordingly. By using these modified formulas, it is possible to account

for deviations from ideal conditions and ensure that the spiking populations produce

accurate approximations of the sigmoid and tanh activation functions.

However, as the experiments discussed in this paper were conducted in a simulation

environment, there was no need to use these compensation formulas in practice. Nev-

ertheless, it is important to consider these modifications in real-world applications to

guarantee reliable results.
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5.3 Conversion Evaluation

In order to evaluate our proposed method, a LSTM-based neural network was trained on a

widely-used sentiment classification dataset, which was selected for its representativeness

and applicability to this particular field of study.

In the first experiment, the primary objective was to assess the performance and

accuracy loss that resulted from the conversion of the individual sigmoid-based gates

and tanh-based states of the cell to the spiking domain. This was accomplished by

implementing the method described in the previous section and observing the resulting

spike-based representations.

In order to gain deeper insights into the impact of the proposed method, the second

experiment was designed to evaluate the entire network, once the necessary population

sizes had been estimated based on the results of the first experiment. This experiment

was critical in demonstrating the feasibility and practicality of our proposed method and

its ability to handle more complex and sophisticated neural network architectures.

The results of both experiments were carefully analyzed and compared to existing

benchmarks in the field, providing a comprehensive evaluation of the e�cacy and robust-

ness of the proposed method in approximating the activation functions of the standard

LSTM cell.

5.3.1 Dataset

For our experiments, we have selected the IMDB movie review sentiment classification

dataset [221] which comprises of 25,000 movie reviews encoded as a list of word indices

and annotated as either positive or negative sentiment.

The dataset has been split into two equal parts, with one half being utilized as the

training set and the other half serving as the test set. Only the 2,500 most frequent

words are utilized and each review is limited to 500 words. Any review that falls short of

this word limit is filled with zeros to complete the requirement. To represent the input

in a spiking format, the data has been encoded as a series of one-hot vectors, with one

word being fed into the network at each time step.

5.3.2 Network Architecture

The baseline network that we aim to convert to a spiking network consists of three

primary components: an input layer, a hidden layer composed of 25 LSTM cells, and a

single densely connected output neuron designed to perform binary classification. The

network was trained with the Adam optimizer [215] over four epochs, ultimately achieving

an accuracy of 92.6% on the training set and 89.8% on the test set. However, due to the

increased complexity and larger populations after the conversion to a spiking network,
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Table 5.1: Results of the individual gate and state conversion. The mean accuracy
µacc and the standard deviation �acc in percentage points after conversion of the
individual activation function in the LSTM cell to populations of di↵erent sizes.
Averaged over 50 passes with random initialization of the spiking thresholds
(Table previously published in [40])

Pop. Input Gate Output Gate Forget Gate Hidden S. Carrs S.
Size µacc �acc µacc �acc µacc �acc µacc �acc µacc �acc

1 75.7% 9.8 70.6% 11.2 52.6% 3.3 54.2% 7.8 53.5% 7.1
10 84.2% 3.8 84.0% 3.9 65.4% 12.9 61.4% 10.9 55.7% 7.9
100 88.9% 1.0 88.9% 1.0 87.0% 2.4 75.8% 9.2 68.5% 12.7
1,000 89.6% 0.2 89.5% 0.3 86.2% 1.2 82.3% 2.4 77.8% 6.9
10,000 89.7% 0.3 89.7% 0.2 85.8% 0.5 83.4% 0.7 83.2% 1.0

the test set used to evaluate its performance had to be reduced to only 1000 reviews in

order to mitigate the computational demands.

5.3.3 Conversion of the LSTM’s Gates and States

The first experiment in our study aims to replace the activation functions of di↵erent

gates and states of the LSTM cell with populations of spiking neurons. The size of

these populations ranges from one neuron to 10,000 neurons, allowing us to observe

the influence of population size on the accuracy of the system. To account for the

direct influence of the random initialization of the spiking threshold on the classification

accuracy, each simulation is conducted fifty times to obtain an average performance over

di↵erent random seeds.

Table 5.1 displays the results of this experiment, indicating that as the number of

neurons in the population increases, the mean accuracy (µacc) increases and the standard

deviation (�acc) decreases. The conversion of the sigmoid-activated gates (Figures 5.5a

to 5.5c) performs well, with populations of 200 neurons for the input and output gates

already performing close to the original ANN classification accuracy of 89.8% with only a

small deviation between the di↵erent random seeds. Meanwhile, populations that activate

the forget gate reach a peak mean accuracy of 87.0% with a size of 100 neurons, but the

scattering decreases as the population size increases beyond 1,000 neurons. Although the

accuracy slightly decreases, this decrease can be mitigated by averaging over more passes.

On the other hand, the conversion of the tanh-activated cell states (Figures 5.6a

and 5.6b) performs worse than the sigmoid conversion. The hidden state’s accuracy

converges to roughly 83% with 2,000 neurons for each inhibitory and excitatory population,

but a further increase of the population size does not improve the deviation. On the

other hand, the activation function of the carry state needs a total of 20,000 neurons to
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Figure 5.5: Accuracy of the population-coded gates. Overview of the accuracy range
after converting each of the three sigmoid-activated gates in relation to the
number of neurons in the excitatory populations. The exemplary population
sizes are run 50 times with randomly initialized thresholds. (Figure previously
published in [40])
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Figure 5.6: Accuracy of the population-coded states. Overview of the accuracy
range after converting each of the two tanh-activated states in relation to the
number of neurons in the inhibitory and excitatory populations. The exemplary
population sizes are run 50 times with randomly initialized thresholds. (Figure
previously published in [40])

reach just over 83% accuracy. Although the accuracy appears to have leveled o↵ from

this point on, a further increase in population size may still decrease the divergence.

Finally, the results of converting all three sigmoid functions with a population of

1,000 neurons each show that the network performs with a mean accuracy of 85.8% and

a standard deviation of 1.4 percentage points, which is only slightly below the single

conversion of the forget gate. This demonstrates the considerable performance of the

sigmoid conversion. However, replacing the two tanh functions with a population of

two times 10,000 neurons (inhibitory and excitatory) each resulting in a mean accuracy

of 80.9% with a standard deviation of 0.9 percentage points, exhibiting a larger loss

compared to the single tanh conversions and indicating that the tanh function is not

represented as well by spiking populations.

5.3.4 Conversion of the Entire LSTM Cell

In the second experiment, an evaluation of the network with all converted activation

functions was conducted. The sizes of the populations were determined based on the

best results obtained from the first experiment. To be specific, 200 neurons were utilized

for the sigmoid-activated input and output gates, while 1,000 neurons were employed for

the forget gate. In the case of tanh activation functions, 2⇥2000 neurons were utilized

for the hidden state, and 2⇥10,000 neurons were employed for the carry state.
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Table 5.2: Results of the LSTM conversion. Overview of the mean accuracies, the
standard deviation in percentage points, as well as maximum/minimum values
for the conversion of an LSTM cell to population-coded spiking networks. The
baseline conversion consists of 200 neurons for the input and output gate, 1,000
for the forget gate, and 2⇥2,000 and 2⇥10,000 for the hidden and carry state,
respectively.

µacc �acc Min Max

Complete conversion 78.0% 1.35 72.8% 80.6%
Halved populations 77.7% 2.99 67.2% 84.4%
Doubled populations 78.1% 0.73 76.2% 80.4%

As before, the experiment was performed 50 times with randomly initialized thresholds

for each run. To evaluate the impact of di↵erent population sizes, the experiment was also

repeated with half and twice the number of neurons, to gather a better understanding of

how the population size a↵ects the performance of the converted network.

As per the results recorded in Table 5.2, the converted network had a mean accuracy

of 78.0% with a standard deviation of 1.35%. This resulted in a conversion loss of

approximately 13.2% compared to the original ANN, which had an accuracy of 89.8%.

Although the mean accuracy remained roughly the same when both the population sizes

were halved and doubled, the halving of population sizes resulted in slightly lower mean

accuracy and more extreme outliers.

The results suggest that the use of larger populations can greatly reduce the divergence

in the network’s performance. In this particular case, doubling the population resulted

in an approximate halving of the standard deviation. This highlights the importance of

determining the most suitable population size to maximize the network’s performance

and minimize the deviation in its accuracy.

5.4 Discussion of the Results

We introduced a novel conversion approach to convert sigmoid and tanh activation-based

neural networks into population-coded SNNs that are characterized by the use of randomly

initialized, normally distributed spiking thresholds. The conversion methodology was

tested on a Long-Short Term Memory (LSTM)-based recurrent neural network for

sentiment classification.

The first step of the conversion process involved the evaluation of individual activation

functions. The results of this experiment showed that the conversion of the tanh

activation functions resulted in the largest loss of accuracy. Therefore, improving this
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specific conversion process could lead to the most improvement in performance. One

possible approach for improvement is to use other cell types such as Gated Recurrent

Units (GRUs), which only contain a single tanh activation function. Another approach

could be to train the network using the cumulative normal distribution function for the

gates, which could significantly reduce the conversion loss and improve the performance.

In the second step of the experiment, the entire converted network was evaluated.

To achieve reasonable performance, each LSTM cell was replaced by 25,400 neurons,

resulting in a total of 635,000 neurons in our example. The accuracy of the converted

network showed a conversion loss of 13.2%. However, doubling the size of the population

reduced the scattering of the accuracy in di↵erent trials of the same experiment, without

increasing the overall performance.

One of the main benefits of the conversion approach is that it can leverage the potential

drawback of neuromorphic hardware as an advantage. The use of population-coded SNNs

eliminates the need for multiple time steps to process the inputs, unlike rate-coded SNNs,

where inputs have to be presented multiple times. The conversion process can result in a

simple method for future sub-threshold-operating analog neuromorphic hardware.

However, the sheer number of necessary neurons makes this approach impractical

in a simulation environment. The small example network in our experiment increased

the computational requirements several times, making it challenging to implement on

large-scale compatible hardware. A comprehensive evaluation of the conversion approach

would require access to compatible hardware, which is currently not available on this scale.

Nonetheless, our approach shows promising results and provides a simple conversion

methodology for future neuromorphic hardware implementations.
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Figure 6.1: Chapter structure.

In the previous chapters, we showed the conversion using rate and population coding.

Both approaches need multiple pulses to encode the information, the number being

limited by the runtime in rate-coded networks and in the size of the population in

population-coded networks. In this chapter we introduce a sparse approach that encodes

the information in the pre-spiking interval, allowing neurons with a positive activation to

fire only once. The two temporal coding mechanisms that can be used for conversion

derived in Section 3.1 are TTFS and phase coding. We give a brief overview of previous

work about the TTFS-coded conversion and propose a conversion approach with a phase

encoding.1

1This approach has been previously published in [45].
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6.1 Related Work: TTFS-coded Conversion

In the field of converting ReLU-activated ANN to temporally encoded SNNs, Rueckauer

et al. presented the TTFS base approach [38]. This method models incoming action

potentials as a weighted permanent input current, triggering a spike when the resulting

membrane potential surpasses a threshold, resetting the neuron’s state to zero (mechanism

illustrated in Figure 6.2). The membrane potential can be calculated with

ui(t) =
X

j2�<
i

wij(t� t(0)j ) + bit (6.1)

with �i denoting the set of pre-synaptic neurons. The time when neuron i emits a spike

can be determined with

t(0)i =
1

µi

0

@✓ +
X

j2�<
i

wijt
(0)
j

1

A (6.2)

with ui(t
(0)
i ) = ✓. Then, the corresponding instantaneous firing rate ri is equal to 1/t(0)i .

In order to prevent further spikes, the refractory period is prolonged longer than the

runtime of the simulation.

However, one notable drawback of the TTFS base method is the potential premature

firing of spikes, which can occur when a positive input elevates the membrane potential

above the threshold prior to the arrival of a balancing negative input. To address this

issue, Rueckauer et al. proposed the TTFS dyn thres approach that implements dynamic

thresholds, which are increased in proportion to the magnitude of missing inputs. Neurons,

therefore, fire twice: first, to signal a missing input and second, to contain the encoded

information.

As the authors mention, the approach su↵ers from the premature firing of spikes, such

as when a brief positive input surges the membrane potential past the threshold, despite

an impending negative input that would overall prevent the neuron from firing. To reduce

this problem, a second method is proposed, called TTFS dyn thresh. There, the neurons

are equipped with a dynamic threshold that increments based on the magnitude of the

missing input. Therefore, neurons fire twice: once to signal a missing input and again to

contain the temporal information.

In a comprehensive evaluation of the TTFS base and TTFS dyn thres methods,

Rueckauer et al. conducted experiments on the MNIST dataset using a 5-layer LeNet5-

CNN. The results of these experiments showed that the TTFS base method resulted

in roughly 1% conversion loss, whereas the TTFS dyn thres method yielded a slightly

improved result with 0.8% loss. A third presented approach, named TTFS clamped, does

98



6.2 Methods

-w1

-w2

t3

V

t

t2

t1

r = 1/t3

Figure 6.2: Spike generation with TTFS spike encoding. Figure from [38]

not rely on additional spikes but on the re-training of the entire network with a modified

ReLU activation function, which clips the lower activation values, leading to a further

improved performance. As this is a constrain-then-train approach (see Section 2.3.3), it

is not in the scope of this work.

6.2 Methods

However, this model also presents certain limitations that may not be beneficial for

temporal conversion.

• No temporal information: The removal of the leak in the IF neuron model also

removes the temporal information of the input.

Figure 2.5c and Figure 2.5d demonstrate that the membrane potential remains

constant following every input spike, while the input timing can be freely shifted

before the third spike occurs, without a↵ecting the overall output timing.

• Multiple pattern recognition: Di↵erent input patterns can result in a spike at the

same time, leading to multiple pattern recognition by a single neuron. On the other

hand, ANN neurons are trained to recognize specific patterns and only one linearly

independent input can maximize the activation.
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This neural system enables multiple input patterns to converge on a single spike

time, such as a cluster of large spikes or a series of small ones. Consequently, an

individual neuron can be leveraged to recognize a wide range of patterns across

various hierarchical levels. In contrast, traditional ANN neurons are typically

trained to recognize very specific patterns and respond maximally to only one

linearly independent input

• Discarding low activations: When a spiking neuron receives insu�cient input, the

membrane potential fails to cross the threshold and therefore remains silent. For

instance, if either the first or second input in Figure 2.5b were zero, the threshold

would not be reached. In contrast, ReLU neurons will output a non-zero value as

long as the total input is positive.

• Premature spiking: When an action potential is triggered, information from subse-

quent inputs is lost [38]. For instance, as seen in Figure 2.5c and Figure 2.5d, a

large negative input at 9ms has no e↵ect on the spike timing, despite the aggregate

input being insu�cient to trigger a response.

6.2.1 Neural Oscillations

The lossless conversion of ReLU-activated ANNs into temporal coded SNNs presents a

unique challenge in ensuring the preservation of information without incurring any loss

in the process. To achieve this, it is crucial that no spikes are emitted until all the inputs

to a neuron have arrived. To this end, our method aims to address this issue by utilizing

two distinct time windows within each layer of the network.

The first time window is designated for receiving incoming spikes, while the second

window is used for emitting outgoing spikes (if any). This approach guarantees that

the neuron will spikes exclusively if and when its membrane potential is positive. This

approach depends on a ”driving force” to ensure that the spiking threshold is reached to

emit a spike.

The two-time window method provides a systematic and controlled method for con-

verting ReLU-activated ANNs to temporal coded spiking networks, achieving lossless

information transfer on the condition that the temporal resolution of the spike time is as

high as the precision of the ReLU activation function.

In order to compensate for the limitations posed by IF neurons (see Section 2.1), it

is essential to meet certain requirements for the globally referenced temporal encoded

conversion.

Fixed Windows.

The first requirement is the use of fixed windows in order to address the issue of

prematurely emitted spikes in IF neurons. This is achieved by utilizing a two-phase
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approach in processing the input signals. The first phase, referred to as the listening

phase, is designed to allow the input signals to influence the membrane potential of the

neuron without eliciting an action potential.

In the second phase, referred to as the transmitting phase, an action potential is

generated by the neuron with the exact timing being dependent on the membrane

potential achieved during the previous listening phase. This phase must have a duration

equal to that of the listening phase to ensure that all input signals have been received

before an action potential is generated.

Normalization. The weights of the original ANN are normalized to guarantee that

no spikes are generated within the first time window. This is achieved by normalizing

the weights such that, when a neuron receives its maximum possible input within the

initial time frame, the neuron’s membrane potential stays precisely at or below the spike

threshold. During the transmission phase, the membrane potential undergoes a linear

increase. As a result, neurons with high membrane potential emit an action potential

early in the time frame, while those with lower potential emit action potentials later in

the same window. Neurons with resting or negative potentials are silenced until after the

time frame has ended and thus do not influence subsequent neurons in the network.

Neural Oscillation. During the transmitting phase, the membrane potential remains

constant due to the absence of an input current and no leakage of the neuron. To push

the positive membrane potential above the spiking threshold, a linear increase is required.

This is achieved through the implementation of a globally referenced neural oscillation

in the form of a continuous input current that periodically switches from positive to

negative polarity after each phase. This oscillation is configured so that in the absence of

any input, the membrane potential will merely reach the threshold without crossing it or

triggering an action potential by the end of the transmitting phase. If the membrane

potential has a positive value after the listening phase, it will cross the threshold, with

higher potentials resulting in earlier spiking and lower potentials resulting in later spiking.

Bias. The bias in rate-coded conversions is commonly modeled as a constant current

injected into the neuron. However, with neural oscillations, this method would result in

premature spiking during the listening phase if a bias with a positive value is present.

To avoid this issue, an additional, fully activated neuron is employed in each layer. The

transmitted spike is weighted by the corresponding value of the bias and propagated to all

neurons in the downstream layer. This methodology has been visualized and depicted in

Figure 6.3. To prevent subsequent spikes within subsequent cycles, the refractory period

of the neurons is set to a duration exceeding the total execution time of the network.

Refractory Period. In order to prevent the occurrence of additional spikes in

subsequent oscillating cycles, a refractory period is established. It is set longer than the

total runtime of the network.

101



6 Temporal-Coded Conversion

Sp
ik

in
g 

N
eu

ra
l N

et
w

or
k

B
ia

s L
an

e

Figure 6.3: Bias lane for temporal-coded conversion. One additional neuron per
layer that injects an additional pulse weighted by the value of the bias (Figure
previously published in [45])

Weighting of Input. As the IF neurons do not incorporate any leakage, it is

ambiguous for the membrane potential whether the input occurs early or late. Therefore,

the arriving spikes must be adjusted according to their precise timing within the listening

phase.

The voltage response of spiking neurons is dependent on the cumulative charge of

the spike, which can be represented mathematically as q =
R
I(t)dt [61]. To adapt the

incoming spikes to the IF neurons, two options are available. The first option is to adjust

the amplitude of the incoming spike, the second option is to adjust the duration of the

pulse, as discussed in the next section.

Adaption of the spikes in a neural network can be accomplished through two methods:

Firstly, by either reducing the amplitude of the spike or secondly, by adapting the duration

of the spike.

ali := max

0

@0,
l�1X

j=1

W l
ija

l�1
j + bli

1

A (6.3)
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6.2.2 Spike Amplitude Adaption

The amplitude of a spike has to decrease the later its arrival time becomes. An adaptive

resistor integrated with the neural oscillation, for example, can be employed to reduce the

amplitude of the spike as it occurs later in the listening phase. The membrane potential

ui(t) of the neuron i is determined by the following equation:

ui(t) =
X

Wij
tj
T
�j + bli (6.4)

where T is the duration of the listening phase, � is the Dirac delta function and W and b

are the weights and biases, respectively.

The listening phase starts at a value of �uthr, reaches 0 between phases, and grows to

uthr by the end of the second phase. The membrane potential in subsequent layers must

be phase-shifted.

The time at which a resulting spike is generated, relative to its time frame, can be

calculated using the equation:

ti(u) = (uthr � ul+1)T (6.5)

where ul + 1 represents the membrane potential at the beginning of the transmission

phase in layer l and the beginning of the listening phase in layer l + 1, respectively.

6.2.3 Pulse Duration Adaption

With pulse duration adaptation, a constant current is fed to the neuron following an

input event for the remaining portion of the listening phase. As a result, early spikes

carry more weight in a↵ecting the final membrane potential compared to those that spike

later. This can be achieved by extending the pulse duration to the length of a single

oscillation cycle. The input current alternates between positive and negative, with a

negative current during the listening phase and a positive one during the transmitting

phase.

For connecting layers, the sign of the pulses and threshold are reversed and set to

�uthr. The membrane potential of the neuron i at the conclusion of the listening phase

can then be computed as follows:

ui(t) =
X

Wij(T ��tj)qp + bliqp (6.6)

where �tj represents the time of the incoming pulse relative to the start of the phase, and

qp represents the total charge of a pulse. The spike time can be calculated as expressed

in equation 6.5.
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6.3 Conversion Evaluation

It is important to note that while the approach used in this study is mathematically the

same as traditional ML, as long as the temporal resolution is as high as the precision

of the ReLU activation function. Therefore, comparing the accuracy of the results

obtained through simulation is not a meaningful measure. Hence, instead of evaluating

the accuracy, we opt to compare the inference time of the current approach to previous

methods. In addition, we establish a link between the spiking operations employed in our

methodology and existing research evaluating the performance of rate-coded conversion

techniques”

In addition, we also establish a connection between the spiking operations performed in

our approach and existing research evaluating the performance of rate-coded converting

techniques. By doing so, we aim to provide a comprehensive understanding of the

e�ciency and e↵ectiveness of our approach and its relationship with existing methods.

6.3.1 Phase Coding Compared to TTFS Coding

The results from Rueckauer and Liu [38] showed that their method based on TTFS led

to premature spiking of neurons. To address this issue, an adapted version that uses

dynamic thresholds was proposed, leading to improved performance but also doubling

the number of spikes. We compare our approach to the two TTFS conversion methods

by training two ANNs with di↵erent depths on the MNIST dataset [187].

As shown in Table 6.1, we achieved similar performance to the previous study by

recreating their results using the LeNet-5 network architecture. Our approach showed the

same accuracy of 98.7% compared to the original ANN. On the other hand, the TTFS

base and TTFS dyn thresh methods showed a loss of 3.85% and 1.77%, respectively.

The number of spikes roughly doubled for TTFS dyn thresh and our approach falls in

between the two.

As we scale the network to a deeper architecture, specifically a 9-layer CNN built upon

LeNet-5 with additional convolutional layers, both TTFS base and TTFS dyn thresh

methods exhibit a substantial decline in performance. This is due to the TTFS base

method su↵ering from premature spiking, as pointed out by Rueckauer et al. The TTFS

dyn thresh method partially alleviates the issue, but does not fully eliminate it, since

the first spike is only emitted when the initial input arrives, resulting in lost information

when a neuron in a subsequent layer has already fired its second spike.

As the network is scaled, this issue worsens, with the interval between spike times

across di↵erent layers growing, leading to the suppression of lower-activated inputs as

the network becomes deeper. Notably, in the deep network, the TTFS base method

required the fewest spikes, whereas the TTFS dyn thresh method demanded the most.
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Table 6.1: Comparison to previous temporal coding approaches. Comparison of of
our method to previous temporal coding approaches [38] on the MNIST dataset.
The LeNet-5 Architecture contains 7620 neurons (7625 including the bias lane)
and the 9-layer CNN (a variant of the LeNet-5 architecture with additional
convolutional layer) in a total 13900 neurons (13909 including the bias lane)
(Table previously published in [45])

Model Network Loss # spikes

TTFS base LeNet-5 3.85% 2011
TTFS dyn thresh LeNet-5 1.77% 3867
This work LeNet-5 - 2854

TTFS base 9-layer CNN 9.18% 4670
TTFS dyn thresh 9-layer CNN 6.36% 9132
This work 9-layer CNN - 8234

Our approach is once again in between the two, but closer to the TTFS dyn thresh

method.

6.3.2 Phase Coding Compared to Rate Coding

For a thorough comparison with rate-coded conversions, we trained a neural network

on a subset of the speech commands dataset [222], employing a network architecture

analogous to that previously described by Blouw and Eliasmith [223]. This architecture

consisted of an input layer with 3920 neurons and two hidden layers each containing 256

neurons. Following the methodology of the original work, we employed a Hybrid SNN

approach, in which the input was digitally processed and only spikes generated in the

first layer were counted.

In terms of accuracy, our ANN model achieved a comparable 82.1% compared to the

81.8% reported in the original work. Unlike the rate-coded approach, our approach

retained the same accuracy after conversion, while the rate-coded approach su↵ered

a decrease in accuracy to 81.0%. In terms of computational e�ciency, the original

work required 61,362 SOPs, while our approach reduced this amount by a factor of

approximately 15 to an average of 4081 SOPs over the test set. It is worth noting that

almost all neurons in the input layer fired a spike, while the hidden and classification

layers collectively produced fewer than 200 spikes.

The original study assessed the energy e�ciency of the NN when operating as an

ANN running on a neural accelerator or as a converted SNN on an Intel Loihi chip. The

results showed that the SNN had a 4.11⇥ lower energy consumption compared to the

original network. However, it is crucial to keep in mind that the reduction in spikes

in our approach, by a factor of 15, is accompanied by an additional need for a global
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Table 6.2: Comparison to rate coded approaches. Comparison of our method to rate
coded approaches on the speech recognition dataset. The architecture contains
an input layer with 3920 neurons and two hidden layers with 256 neurons. Our
approach needs one additional neuron per layer (Table previously published in
[45])

Model ANN SNN # spikes

(Blouw et al. 2020) 81.8% 81.0% 61362
This work 82.1% 82.1% 4081

reference, which consumes additional power and therefore, cannot be directly used as a

factor for potential energy reduction.

6.4 Discussion of the Results

In this chapter, we presented a novel method for converting conventional, activation-based

neural networks into SNNs that are temporally coded. Our approach leverages the use of

globally referenced neural oscillations to convert the ReLU activation output to a listening

phase and a subsequent spike emission during a transmission phase. This mathematical

equivalence ensures a lossless conversion from activation-based to spiking networks.

We evaluate the performance of our conversion method through two experimental

studies and demonstrate that it is scalable for deep network architectures, resulting in a

reduction of spikes by a factor of 15 compared to rate-coded conversion methods.

While our method is lossless in theory and simulation, practical implementation on

neuromorphic hardware may introduce accuracy loss. Digital neuromorphic hardware

quantizes the network, making accuracy dependent on the time steps of the simulation.

Analog neuromorphic hardware is susceptible to noise interference, which can also impact

accuracy and may require a slower operating speed.

Additionally, our method requires the use of a global reference, which may not be com-

patible with current neuromorphic hardware. Furthermore, the use of neural oscillations

contributes to an increase in energy consumption. In conclusion, our method o↵ers a

lossless conversion approach for neural networks to be encoded temporally, providing

new opportunities for implementation on neuromorphic hardware.
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Figure 6.4: Neural oscillation method with pulse duration adaption. (Left half:
listening phase, right half: transmission phase). (a) Input spikes during listening
(left) and action potential generated from the two methods (right). (b) Input
and (c) resulting membrane potential with spike adaption method. (d) Input
and (e) resulting membrane potential with pulse duration adaption (Figure
previously published in [45])
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Figure 6.5: Neural oscillation method with pulse duration adapation. (Left half:
listening phase, right half: transmission phase). (a) Input spikes during listening
(left) and action potential generated from the two methods (right). (b) Input
and (c) resulting membrane potential with spike adaption method. (d) Input
and (e) resulting membrane potential with pulse duration adaption (Figure
previously published in [45])
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The conversion of Artificial Neural Networks (ANNs) to Spiking Neural Networks (SNNs)

has been recognized as the most e↵ective training approach for achieving high accuracy

in SNNs on common datasets [224]. Recent advancements in hardware accelerators for

ANNs have made it essential to minimize the number of spikes generated by neuromorphic

hardware to remain competitive in the field.

To address this challenge, this thesis aimed to explore methods for optimizing the

conversion of ANNs to SNNs for potentially energy-e�cient operation on specialized

hardware.

In the first chapter, we provided a rationale for the study and formulated Research

Questions (RQs) that guided our investigation. Chapter 2 provided an overview of the

background and foundational concepts relevant to our research, including neuron models,

neuromorphic hardware, and SNN learning algorithms. In Chapter 3, we discussed the

conditions required to convert ANNs to SNNs, highlighting the spike encodings, network

architectures and normalization algorithms that influence the performance and accuracy

of the resulting SNNs. Chapter 4 demonstrated the optimization of rate-coded SNNs

for development and inference. Building on this, Chapter 5 presented novel methods

for energy-e�cient conversion to specialized hardware using population codes. Finally,

Chapter 6 explored the use of sparse temporal codes for conversion to SNNs, which are

e↵ective in reducing energy consumption while maintaining high accuracy.

In this chapter, we provide a summary of the key findings and conclusions derived

from each chapter, highlighting the contributions of this research to the field of SNNs.

7.1 Theoretical Background

In this research, Chapter 2 serves as the theoretical foundation for the investigation.

Specifically, the chapter discusses the various neuron models that are relevant to the

study. First, biologically-plausible models like Hodgkin-Huxley and Morris-Lecar were

introduced. These models aim to replicate the behavior of biological neural systems in a

biologically realistic way.

Next, the chapter introduces biologically-inspired models, which attempt to mimic the

behavior of biological neural systems, although not necessarily with biological plausibility.

Examples include the Fitzhugh-Nagumo, Hindmarsh-Rose, and Izhekevich neuron models.
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The chapter then discusses the Integrate-and-Fire (IF) model family, which is a simpler

group of neurons based on the integration of their input currents. Examples of this family

include, among others, the simple IF neuron, the Leaky Integrate-and-Fire (LIF), and

Resonate-and-Fire (RF) neuron models.

In the following section, the chapter provides an overview of the neuromorphic hardware

landscape. Here, the distinction is made between digital implementations, which are

further subcategorized into flexible Field-Programmable Gate Arrays (FPGAs) and

custom Application-Specific Integrated Circuits (ASICs) like Loihi and TrueNorth, and

analog implementations, which can be further divided into superthreshold operating ones

like BrainScaleS and subthreshold operating ones like Neurogrid.

Next, the chapter reviews the training algorithms for SNNs. This includes biologically-

plausible learning algorithms like Spike-Timing-Dependent Plasticity (STDP), supervised

learning algorithms that attempt to adapt spiking variants of backpropagation, and the

conversion methods that form the basis of this research.

Conversion approaches typically involve conventionally training an ANN and then

adapting the network to work with spiking neurons. With this approach, the best-

performing SNNs to date have been created for common datasets. Two subcategories of

conversion methods are distinguishable: firstly, constrain-then-train, where the ANN is

adapted to the properties of the spiking neurons before training, so no further adaption is

needed in the conversion process. Secondly, binarization of the ANN, where the activation

function of the ANN can only take binary values and therefore translates into single

spikes per spiking neuron after conversion, which does not require further modifications

in the conversion process.

As the goal of this research was to accelerate the development process of SNNs, the

approach that does not require the retraining of the ANN is focused on, as the training

process is typically time-consuming, and computationally expensive.

7.2 Conversion Challenges and Opportunities

In Chapter 4, we analyze the landscape for the possibilities of converting ANNs to SNNs.

Firstly, we explore the di↵erent spike encodings that can be used in SNNs and determine

which ones are suitable for conversion. After an analysis, we found that count rate coding,

density rate coding (for evaluation purposes), population coding, and two temporal

encodings (Time-to-First-Spike (TTFS) and phase coding) are e↵ective methods that can

be used for conversion, and will serve as the foundation for the subsequent Chapters 4

to 6.

Additionally, we examine the current state-of-the-art neural network architectures and

their corresponding common datasets. For example, Convolutional Neural Networks

(CNNs) have shown outstanding performance in image classification, with Residual Neural
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Networks (ResNets) showing the best accuracy to date, while for object detection, the

implementation of Feature Pyramid Networks (FPNs) have been found to be the most

e↵ective. Meanwhile, transformer networks have emerged as the standard for processing

sequential data, particularly for Natural Language Processing (NLP) tasks. On the other

hand, Recurrent Neural Networks (RNNs) with memory cells are used for sequential data

with unknown input lengths, such as voice assistants.

We also discuss the normalization process in the ANN-to-SNN conversion process. In

order for the conversion to work, the weights of the ANN, which are usually trained

with backpropagation, must be normalized so that they do not exceed the maximum

firing rate of the spiking neurons in the SNN. A simple method involves passing the

dataset through the ANN to detect the highest firing rates, which can then be used for

normalization. However, this method may lead to very long convergence times of the

converted SNN if the weights are normalized from single outliers. Hence, commonly

robust normalization is implemented, where only the pth percentile of the maximum

activation of the original ANN is used for normalization, with p being commonly set

between 99% to 99.999%. Furthermore, we present an approach, which involves the use of

a synthetic dataset based on noise to approximate the best value for p. Additionally, we

introduce an extension to the normalization process, namely channel-wise normalization,

which aims to improve the normalization accuracy and e�ciency by normalizing each

channel of the ANN independently.

7.3 Methods and Evaluation

7.3.1 Rate-Coded Conversion

Chapter 4 focuses on the topic of rate-coded conversion, which is currently considered the

de facto standard in conversion techniques. This is primarily because both the Rectified

Linear Unit (ReLU) activation function and the firing rate of spiking neurons increase

linearly with their input. While previous studies have explored the potential of rate-coded

conversion, they often relied on simple networks and datasets to validate their approaches.

Our work seeks to evaluate whether these approaches are scalable to very deep networks

with large datasets. To accomplish this, we first evaluate optimization algorithms for

simulating SNNs and present our unbiased quantization method.

Subsequently, we assess the optimization algorithms on an image classification dataset

using state-of-the-art ResNets with a depth of up to 101 layers. This is, to the best of our

knowledge, the deepest SNN to the date of publication. By evaluating these optimization

approaches, we can determine the most e↵ective methods for SNN conversion. We then

apply these approaches to the conversion of a spiking FPN with a ResNet as its backbone
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on a large object detection dataset. As a result, we achieved the highest accuracy for

spiking object detection on that dataset.

Given the increasing interest in transformer networks, we propose an approach for the

conversion of both NLP and vision transformer networks. Our vision transformer approach

demonstrates comparable performance for image classification to state-of-the-art CNN

conversion, while our NLP transformer can outperform previous conversion approaches

for a sentiment classification dataset. However, the embedding layers cannot be directly

converted to spiking neurons and therefore must be preprocessed in conventional ways.

7.3.2 Population-Coded Conversion

Chapter 5 explores the possible implementation of population codes into the conversion

approach. Population codes and count rate codes both average spikes over a certain

period, but population codes use a group of neurons, whereas count rate codes use a

single neuron. Therefore, population codes can produce results more quickly, as the

neurons in the population can produce spikes in parallel, while count rate-coded neurons

require multiple timesteps. Therefore, population codes o↵er an advantage in processing

speed, especially when every layer produces at most one spike per neuron. As a result, a

large number of neurons is required to represent the activation functions in the original

ANN and would favor the use of subthreshold analog neuromorphic hardware due to

their small neuron size in silicon.

The expected variability of transistor dimensions due to manufacturing inaccuracies in

small process nodes leads to variability of spike activity over a population of neurons.

Since the cumulative normal distribution exhibits an S-shape, we can use the fact that

the thresholds are spread around a target value to convert similar-shaped activation

functions in ANNs to populations of spiking neurons with normally distributed spiking

thresholds. Therefore, we can take advantage of this property and convert s-shaped

activation functions, like sigmoid and tanh, to populations of spiking neurons with

normally distributed spiking thresholds.

Most common network architectures nowadays are implementing the ReLU activation

function, except for RNNs with memory cells that consist of gates and states activated

by sigmoid or tanh functions. Therefore, we evaluated our approach on RNNs with Long

Short-Term Memorys (LSTMs) as memory cells for an NLP task. As the cumulative

normal distribution and the S-shaped curves of both sigmoid and tanh do not perfectly

match, we experienced a comparatively high conversion loss of 13.2% between ANN and

SNN. Nevertheless, this marks the first successful conversion of RNNs with memory cells

to SNN to the best of our knowledge.
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7.3.3 Temporal-Coded Conversion

Recent research has shown that modern hardware accelerators for ANNs are highly

energy-e�cient, to the point where an equivalent SNNs should require no more than

1.72 spikes per neuron for optimal e�ciency. However, we could not achieve this e�ciency

with rate codes or population codes. Thus, we turn our attention to temporal codes for

conversion, which encode information in the time between spikes rather than the number

of spikes.

In our background analysis, we evaluated two temporal coding methods for conversion:

TTFS and phase codes. While TTFS has been used previously, it failed to scale to deeper

networks due to premature spiking of neurons. Attempts to improve this by including a

second spike per neuron also failed. Therefore, we explore the use of phase coding.

In phase coding, a global reference signal (in our case an oscillation) creates time

windows for each layer. Each layer has a listening phase, during which it receives all

input spikes from previous neurons, and a transmitting phase, during which it emits a

spike whose timing is based on the membrane potential from the received spikes. We

demonstrate that this approach is mathematically equivalent to linear activations in

ANNs and can be converted losslessly. However, there is a trade-o↵ between speed and

accuracy when implementing this approach in hardware, as accuracy depends on how

precisely spike times can be measured. Slower networks may result in higher accuracy,

but additional energy is required to implement the oscillating signal.

7.4 Research Questions

For this work, we raised four research questions. These have already been introduced in

the first chapter, but we will briefly recap these and show the contribution of this work:

RQ 1 (Spike Encodings)

Which spike encodings can be used for mapping the activation function of ANNs to spiking

neurons?

and

RQ 2 (State-of-the-Art Architectures)

Which state-of-the-art neural network architectures and operators are missing a conversion

approach?

The first two questions focus on spike encodings and today’s commonly applied

architectures, respectively. In Chapter 3, we analyzed the spike encoding landscape and

identified suitable encodings for the conversion approach. In Chapters 4 to 6, we evaluated

existing conversion methods based on these encodings or presented our approaches. We
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also analyzed today’s state-of-the-art neural network architectures, including ResNets,

FPNs for object detection, transformer networks for NLP, and RNNs in combination

with memory cells.

RQ 3 (Rapid Prototyping)

Can the accuracy of the converted networks already be estimated before the conversion

process?

The third research question concerns the accuracy estimation of converted networks

before the conversion process. With the activation of linear activation functions like ReLU

and the firing rate of spiking neurons increasing linearly to their input, the accuracy

for converted networks should be the same. However, since spiking neurons have a

maximum firing rate, normalization is necessary, introducing a speed-accuracy trade-o↵

that requires careful tuning of a normalization hyperparameter. We present an approach

in section 3.3 and evaluate it in Section 4.3 that uses ReLU1 to approximate the resulting

accuracy of the converted SNN, making it possible to evaluate the hyperparameter before

conversion.

RQ 4 (Scalability and Optimization)

Do the existing approaches scale to very deep Neural Networks (NNs) with large datasets

and can they be further optimized?

The fourth research question concerns the scalability and optimization of existing

approaches for very deep neural networks with large datasets. Since simulations of SNNs

are usually more computationally demanding than running ANNs, common conversion

approaches limit their evaluations to simple network architectures or datasets. However,

we show the conversion of converted SNN with over 100 layers in section 4.2 and

demonstrate the use of FPNs for object detection on a large dataset in section 4.3.

The overall question

How can ANN-to-SNN conversion approaches be used for faster development

of energy-e�cient, state-of-the-art spiking networks?

can carefully be answered with yes. We showed improvements in the speed of the

development process, presented approaches for state-of-the-art neural networks, and

demonstrated high energy e�ciency. However, recent hardware improvements for running

ANNs might surpass the e�ciency of SNNs. Nonetheless, the development of neuro-

morphic hardware is still in its early stages and may o↵er even higher e�ciency in the

future.
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7.5 Conclusion

This research work aims to evaluate the process of converting ANNs to SNNs using

di↵erent encoding schemes. The state-of-the-art conversion approach relies on rate

encodings. However, in this study, we proposed novel optimization methods for improving

the inference time of spiking networks. Additionally, we introduced an approach to

estimate the SNN accuracy from the ANN. One of the main challenges in the production

of subthreshold neuromorphic hardware is the creation of memory cells in RNNs. In

this regard, we presented a solution that makes use of the resulting inhomogeneities for

approximating the memory cells in RNNs. Furthermore, we introduced an approach for

utilizing temporal coded neurons with an oscillating reference signal. The purpose of this

approach is to produce a lossless conversion process that results in less than one spike

per neuron.

Regarding the conversion of ANN to SNN, we evaluated the performance of di↵erent

encoding schemes. We demonstrated that the state-of-the-art conversion approach based

on rate encodings can be optimized for increased inference time. Moreover, we proposed

an approach to estimate the accuracy of the converted SNN from the original ANN,

which can aid in the development process.

In the context of subthreshold neuromorphic hardware, we addressed the challenges

related to creating memory cells in RNNs. Our approach leverages the inhomogeneities

in the hardware for approximating the memory cells. This solution o↵ers an e�cient and

e↵ective way to overcome the limitations of subthreshold neuromorphic hardware.

Finally, we introduced a novel approach for using temporal coded neurons with an

oscillating reference signal. This approach o↵ers a lossless conversion process that results

in less than one spike per neuron.
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In this thesis, we have presented and evaluated various methods and approaches for

converting ANNs to SNNs that can be used to simplify the development of neuromorphic

hardware. Rate-coded network hyperparameters can be determined and evaluated prior

to conversion to save time and computational power, resulting in a near-lossless conversion

with a very high inference speed suitable for use with available low-powered neuromorphic

hardware.

Furthermore, we have demonstrated an e↵ective method for circumventing manufactur-

ing inaccuracies that arise during the development of subthreshold analog neuromorphic

hardware. We have leveraged the resulting inhomogeneities to our advantage for process-

ing sequential data, resulting in enhanced data processing e�ciency.

Finally, we have showcased how implementing a reference oscillation in neuromorphic

hardware can lead to information processing with less than a single spike per neuron.

Our results indicate the potential to achieve unprecedented levels of energy e�ciency.

8.1 Rapid Prototyping of Rate-Coded Spiking Networks

Conversion approaches for generating SNNs have become a popular choice in the neu-

romorphic hardware field. Although common datasets are designed for ANNs, they

typically require additional processing steps for usage within spiking networks. ANNs can

be trained using many tools, and their usage is prevalent among data scientists. However,

converting the existing networks to SNNs via a direct method can boost neuromorphic

hardware adoption.

Our approach proposes a novel method for converting ANNs to SNNs, providing the

added benefit of estimating the accuracy of the converted network before conversion and

speeding up the development time of SNNs. We o↵er an open-sourced Python toolbox

that integrates with the Machine Learning (ML) framework TensorFlow, facilitating the

process for trained ML engineers. However, as more and more graphical approaches

are developed for training ANNs, which can be utilized by individuals with little to no

programming background, we suggest extending our approach with a Graphical User

Interface (GUI) to facilitate the process.

The GUI will o↵er a more user-friendly interface, enabling individuals without a

programming background to easily convert ANNs to SNNs. In addition, the GUI will
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democratize the process of converting ANNs to SNNs, making it more accessible to a

broader range of individuals. We anticipate this approach will encourage more individuals

to adopt neuromorphic hardware and further enhance the development of SNNs.

8.2 Population-Coded Converted Networks

The development of subthreshold analog neuromorphic hardware has the highest potential

in terms of energy e�ciency. Silicon transistors have demonstrated similar behavior to

biological neurons when operated in subthreshold mode, making it possible to incorporate

many neurons on a single chip using existing manufacturing processes. However, inhomo-

geneities of the silicon transistors can lead to inconsistency in the spiking threshold of the

neurons, resulting from device mismatch due to process variance and shot and thermal

noise. The creation of a uniform spiking threshold has emerged as a major challenge in

the development of subthreshold analog neuromorphic hardware.

Our approach aims to leverage less-than-perfect hardware developments in implement-

ing converted NNs with populations of spiking neurons. While S-shaped activation

functions such as Sigmoid and Tanh are no longer as popular as they once were due

to the increased implementation of ReLU, they still serve as a crucial component of

memory cells in RNNs such as LSTM and Gated Recurrent Unit (GRU). Despite the

increasing popularity of transformer networks, RNNs are still commonly used for data

with an unknown input length, such as in voice assistants or text-to-speech applications.

These fields would significantly benefit from the implementation of subthreshold analog

neuromorphic hardware because of its energy-e�cient nature, especially considering

their usual usage in low-powered environments like smartphones or in cases where faster

o✏ine processing to bypass additional time requirements incurred from uploading and

downloading data to a server would benefit the user experience.

Given the points addressed, we would recommend a constrain-then-train approach

that e↵ectively utilizes the distribution of subthreshold neuron thresholds as activation

functions in the original ANN to reduce conversion loss.

8.3 Temporal-Coded Converted Networks

Among the various coding approaches in neuroscience, temporal coding holds the most

potential for energy e�ciency when compared to rate and population coding strategies,

as it encodes information in the absence of spikes, rather than by counting the number of

spikes, thus minimizing energy consumption. Given the benefits of rapid prototyping and

energy-e�cient neuromorphic hardware, a promising next step is to develop an e�cient

implementation of temporal coding for maximum energy e�ciency.
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8.3 Temporal-Coded Converted Networks

Our analysis of di↵erent encoding schemes has revealed that only time-to-first-spike

and phase coding are viable options for e↵ective temporal coding of converted spiking

networks, yet only the latter has the potential to be scaled to deep NNs. However,

phase coding requires a global reference oscillation to function, which is currently not

implemented in available neuromorphic hardware.

Developing a reference oscillation in di↵erent types of neuromorphic hardware could

enable the use of very sparsely activated converted SNNs, o↵ering further energy savings.

Our proposed approach has already been implemented in follow-up research with the use

on neuromorphic research hardware [225].
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