
Received 17 October 2022; revised 24 January 2023; accepted 23 February 2023. Date of publication 13 March 2023;
date of current version 31 March 2023. Recommended by Senior Editor Lacra Pavel.

Digital Object Identifier 10.1109/OJCSYS.2023.3256305

Provably Safe Reinforcement Learning via
Action Projection Using Reachability Analysis

and Polynomial Zonotopes
NIKLAS KOCHDUMPER 1,2, HANNA KRASOWSKI 1, XIAO WANG 1, STANLEY BAK 2,

AND MATTHIAS ALTHOFF 1

1Department of Computer Engineering, Technical University of Munich, 85748 Garching, Germany
2Department of Computer Science, Stony Brook University, Stony Brook, NY 11794 USA

CORRESPONDING AUTHORS: NIKLAS KOCHDUMPER; HANNA KRASOWSKI; XIAO WANG (e-mail: niklas.kochdumper@stonybrook.edu;
hanna.krasowski@tum.de; xiao.wang@tum.de)

This work was supported by the European Research Council (ERC) through the Project justITSELF under Grant 817629, in part by the German Research
Foundation through the Research Training Group ConVeY under Grant GRK 2428, and in part by the Air Force Office of Scientific Research and the Office of

Naval Research under Grants FA9550-19-1-0288, FA9550-21-1-0121, FA9550-23-1-0066, and N00014-22-1-2156. (Niklas Kochdumper, Hanna Krasowski, and
Xiao Wang contributed equally to this work.)

This article has supplementary downloadable material available at https://doi.org/10.1109/OJCSYS.2023.3256305, provided by the authors.

ABSTRACT While reinforcement learning produces very promising results for many applications, its main
disadvantage is the lack of safety guarantees, which prevents its use in safety-critical systems. In this
work, we address this issue by a safety shield for nonlinear continuous systems that solve reach-avoid
tasks. Our safety shield prevents applying potentially unsafe actions from a reinforcement learning agent
by projecting the proposed action to the closest safe action. This approach is called action projection and
is implemented via mixed-integer optimization. The safety constraints for action projection are obtained
by applying parameterized reachability analysis using polynomial zonotopes, which enables to accurately
capture the nonlinear effects of the actions on the system. In contrast to other state-of-the-art approaches
for action projection, our safety shield can efficiently handle input constraints and dynamic obstacles, eases
incorporation of the spatial robot dimensions into the safety constraints, guarantees robust safety despite
process noise and measurement errors, and is well suited for high-dimensional systems, as we demonstrate
on several challenging benchmark systems.

INDEX TERMS Action projection, reach-avoid problems, reachability analysis, reinforcement learning.

I. INTRODUCTION
Reinforcement learning has been successfully applied to
find solutions for many challenging applications, such as
robotics [1], autonomous driving [2], and power systems [3].
Many of these applications are safety-critical, so that the
lack of safety guarantees for standard reinforcement learning
controllers prevents their deployment in the real world. We
aim to overcome this limitation with a novel safety shield for
reinforcement learning agents that considers the very general
case of disturbed nonlinear continuous systems with input
constraints that have to avoid dynamic obstacles. Note that
our safety shield can be applied to arbitrary unsafe controllers,
while reinforcement learning is the main focus of this work.

A. STATE OF THE ART
We first provide a summary of the current state of the art in
safety-related methods of reinforcement learning. The term
safe reinforcement learning refers to approaches that aim
to obtain safe agents, but do not provide hard safety guar-
antees. One example for this is constrained reinforcement
learning [4], [5], where the objective of the training phase
is to maximize the reward while satisfying safety constraints.
While advantages of this technique are that no system model
is required and that even complex temporal logic safety spec-
ifications [6], [7] can be considered, the obvious disadvantage
is that hard safety guarantees can be provided during neither
training nor deployment. The same is true for probabilistic

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2023 79

https://orcid.org/0000-0001-6017-7623
https://orcid.org/0000-0002-6730-3802
https://orcid.org/0000-0003-4441-139X
https://orcid.org/0000-0003-4947-9553
https://orcid.org/0000-0003-3733-842X
https://doi.org/10.1109/OJCSYS.2023.3256305

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

FIGURE 1. Steps for action projection using parameterized reachability
analysis, where the reachable set is depicted in gray and the unsafe
regions are shown in red: 1) Computation of the reachable set for all
actions starting from the current state x0. 2) Extraction of action
constraints from the intersections between the reachable set and unsafe
regions. 3) Projection of the action ua outputted by the agent to the
closest safe action.

approaches [8], [9] that aim to identify the safety probability
of an action. Overall, safe reinforcement learning techniques
can be used for non-critical applications, where unsafe actions
do not cause major damage; however, these methods are not
suited for safety-critical systems.

In contrast to safe reinforcement learning, provably safe
reinforcement learning approaches provide hard safety guar-
antees. They can be divided into the three main categories: ac-
tion masking, action replacement, and action projection [10].
In action masking [11], [12], a mask that only allows the
agent to choose actions from the set of safe actions is ap-
plied. One disadvantage of this method is that it is often hard
to explicitly compute the set of safe actions, especially for
continuous action spaces, where the set of safe actions often
has a very complex non-convex shape as shown in Fig. 1. In
addition, it is non-trivial to correctly consider the masking
during training so that the reinforcement learning algorithm
is not perturbed [13]. For action replacement [14], [15], [16],
[17], unsafe actions returned by the agent are replaced by safe
actions. As replacement, one can either use a single safe action
obtained from a failsafe planner [14] or via human feed-
back [15] or one can sample from the set of safe actions [16],
[17]. Also the well-known simplex architecture [18], [19],
[20], where a safe controller is used as a backup for an unsafe

controller, can be categorized as action replacement. One dis-
advantage of action replacement is that the difference between
the original action and the replacement action can be very
large, which might prevent the agent from completing its task.
Action projection tries to avoid this issue by finding the safe
action that is closest to the action suggested by the agent.

Since our approach applies action projection, we discuss
this category in more detail. The most prominent methods
for action projection are control barrier functions [21], [22],
model predictive control [23], [24], and parameterized reach-
ability analysis [25]. A control barrier function is a level-set
function that divides the state space into a safe and a poten-
tially unsafe region. Here, action projection is formulated as
an optimization problem, where the correction of the action is
minimized, such that the system stays inside the safe region
defined by the control barrier function. While an advantage
is that control barrier functions can for static environments
guarantee safety for infinite time, the method also has several
disadvantages: 1) It is often not easy to find a suitable control
barrier function, especially in the presence of dynamic obsta-
cles. 2) Control barrier functions are often quite conservative
since they usually exclude many states that are safe. 3) The
approach is often limited to control affine systems because the
optimization problems would otherwise become non-convex.
4) It is challenging to consider input constraints as well as
process noise and measurement errors. The second method is
model predictive control, which also formulates the projection
as an optimization problem, but uses the safety constraint that
the system should not enter any unsafe regions for a certain
finite prediction horizon, which avoids the requirement for a
control barrier function. However, one downside is that it is of-
ten not possible to guarantee that the solution is robustly safe
despite process noise and measurement errors since for non-
linear systems these uncertainties usually cannot be encoded
directly into the optimization problem. Our safety shield is
based on the parameterized reachability analysis approach,
which is visualized in Fig. 1: The first step is to compute the
reachable set for all available actions. Since this reachable set
is parameterized by the actions, one can directly extract the
safety constraints for action projection from the intersection
between the reachable sets and the unsafe regions. Since pro-
cess noise as well as measurement errors can conveniently be
integrated into reachability analysis, this approach is very well
suited for guaranteeing robust safety.

Due to its advantageous properties, several approaches ap-
ply reachability analysis to guarantee safety. One method [26]
uses the Hamilton-Jacobi reachability framework [27] to com-
pute the backward reachable set starting from the unsafe sets
— a state is safe for all possible actions if it is outside of
the backward reachable set. This has the disadvantage that
for each unsafe set a different backward reachable set has
to be computed. Moreover, the Hamilton-Jacobi framework
requires gridding the state space so that the computational
complexity of the approach grows exponentially with the
system dimension. Another method [28] applies reachabil-
ity analysis for black-box systems and uses a differentiable

80 VOLUME 2, 2023

collision check that is based on constrained zonotopes [29]
to efficiently push the reachable set for the proposed action
away from unsafe sets. This, however, has the drawback that
the reachable set has to be recomputed after each correction
update of the action, which is computationally demanding.
The method closest to our approach is a reachability-based
trajectory safeguard [25], which computes the parameterized
reachable set for a simplified trajectory-generating model and
determines a safe action satisfying the constraints extracted
from the reachable set via random sampling. While this ap-
proach can be computationally efficient for some systems,
sampling methods often fail to find feasible solutions, espe-
cially in high-dimensional action spaces.

B. CONTRIBUTIONS AND OUTLINE
We present a novel safety shield that is based on action pro-
jection using parameterized reachability analysis. This safety
shield extends our previous work on dependency preserving
reachability analysis [30], [31], [32] by a method for correct-
ing unsafe actions, and we additionally also study the effect
online verification has on the learning process. Unlike the
related approach in [25], our safety shield directly operates on
the original nonlinear system model rather than on a simplified
trajectory-generating model. Moreover, in contrast to [25], we
use conservative polynomialization [30] instead of conserva-
tive linearization [33] for reachability analysis, which enables
us to efficiently capture the nonlinear effects the actions have
on the system. Another advantage over [25] is that we use
mixed-integer optimization instead of random sampling for
projection, which always finds the action with the smallest
correction. Finally, the various design choices provided by our
safety shield enable the user to fine-tune its performance for
the considered application.

The remainder of this paper is structured as follows: After
introducing some preliminaries in Section II, we provide the
problem definition in Section III. Our main contribution is
the reachability-based safety shield for reinforcement learning
presented in Section IV, for which we discuss several exten-
sions in Section V. Finally, we demonstrate our approach on
several numerical examples in Section VI and conclude with
a discussion of its properties in Section VII.

II. PRELIMINARIES
We first introduce our notation and define the set representa-
tions that we use in this paper.

A. NOTATION
Sets are denoted by calligraphic letters, matrices by uppercase
letters, and vectors by lowercase letters. Given a vector a ∈
R

n, a(i) is the i-th entry and the p-norm is denoted by ‖a‖p.
Given a matrix A ∈ R

n×m, A(i,·) represents the i-th matrix row,
A(·, j) the j-th column, and A(i, j) the j-th entry of matrix row
i. The concatenation of two matrices C and D is denoted by
[C D], In ∈ R

n×n is the identity matrix, and the symbols 0
and 1 represent vectors of zeros and ones of proper dimen-
sion. We further introduce an n-dimensional interval as I :=

[x, x], ∀i x(i) ≤ x(i), x, x ∈ R
n. Given two sets S1,S2 ⊂ R

n,
their Minkowski sum is S1 ⊕ S2 = {s1 + s2 | s1 ∈ S1, s2 ∈
S2} and their Cartesian product is S1 × S2 = {[sT

1 sT
2]T

∣∣ s1 ∈
S1, s2 ∈ S2}.

B. SET REPRESENTATIONS
Our approach relies on several different set representations,
which we introduce here. Let us begin with polytopes, for
which we use the halfspace representation:

Definition 1 (Polytope): Given a constraint matrix A ∈
R

s×n and a constraint offset b ∈ R
s, the halfspace represen-

tation of a polytope P ⊆ R
n is

P := {
x ∈ R

n
∣∣A x ≤ b

}
.

We use the shorthand P = 〈A, b〉P.
Zonotopes are a special type of polytopes that can be repre-

sented efficiently using generators:
Definition 2 (Zonotope): Given a center vector c ∈ R

n and
a generator matrix G ∈ R

n×p, a zonotope Z ⊂ R
n is

Z :=
{

c +
p∑

i=1

G(·,i) αi

∣∣∣∣αi ∈ [−1, 1]

}
with so-called factors αi. We use the shorthand Z = 〈c,G〉Z .

An extension to zonotopes are polynomial zonotopes [30],
which can represent non-convex sets. We use the sparse rep-
resentation of polynomial zonotopes [32]:1

Definition 3 (Polynomial Zonotope): Given a constant off-
set c ∈ R

n, a generator matrix of dependent generators G ∈
R

n×h, a generator matrix of independent generators GI ∈
R

n×q, and an exponent matrix E ∈ N
p×h
0 , a polynomial zono-

tope PZ ⊂ R
n is

PZ :=
⎧⎨⎩c +

h∑
i=1

(p∏
k=1

α
E(k,i)
k

)
G(·,i) +

q∑
j=1

β jGI (·, j)

∣∣∣∣αk, β j ∈ [−1, 1]

⎫⎬⎭.
The scalars αk are called dependent factors and β j indepen-
dent factors. We use the shorthand PZ = 〈c,G,GI ,E〉PZ .

Polynomial zonotopes can equivalently represent intervals,
zonotopes, polytopes, and Taylor models [32, Sec. II.B].
Moreover, due to their polynomial nature, they are closely
related to polynomial level sets:

Definition 4 (Polynomial Level Set): Given a vector of co-
efficients a ∈ R

h, an offset b ∈ R, and an exponent matrix
E ∈ N

n×h
0 , a polynomial level set LS ⊆ R

n is

LS :=
{

x ∈ R
n

∣∣∣∣ h∑
i=1

(
n∏

k=1

x
E(k,i)
(k)

)
a(i) ≤ b

}
.

We use the shorthand LS = 〈a, b,E〉LS .

1In contrast to [32, Def. 1] we do not integrate the constant offset c into G.
Moreover, we omit the identifier vector used in [32] for simplicity

VOLUME 2, 2023 81

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

III. PROBLEM FORMULATION
We consider general nonlinear disturbed systems with input
constraints defined by the ordinary differential equation

ẋ(t) = f (x(t), u(t),w(t)) , (1)

where x(t) ∈ R
n is the system state, u(t) ∈ R

m is the control
input, w(t) ∈ R

z is the process noise, f : R
n × R

m × R
z →

R
n is a Lipschitz continuous function, and t ∈ R

+ is time. The
process noise is bounded by a compact set w(t) ∈ W ⊂ R

z

and the system has to satisfy the input constraints defined by
the convex set u(t) ∈ U ⊆ R

m. The set W can for example
be determined from measurements of the real physical system
using conformance checking [34].

Given a nonlinear system defined as in (1), the goal is to
solve a reach-avoid problem, where the system state should be
steered from the current state x0 = x(0) to a goal set G ⊆ R

n

while avoiding collisions with potentially time-varying unsafe
sets Fi ⊂ R

n, i = 1, . . . , o, where o denotes the number of
unsafe sets. In case the measurements of the system state are
subject to a measurement error v(t) ∈ V , the goal becomes
to steer all states in the set x0 ⊕ V to the goal set. We aim
to solve reach-avoid problems with reinforcement learning,
where we train an agent to return the control inputs ua(t) for
a given state x(t) steering the system to the goal set while
avoiding obstacles. However, we have no guarantee that the
behavior learned by the agent is safe. Therefore, we add a
safety shield that is based on reachability analysis to obtain
formal guarantees:

Definition 5 (Reachable Set): Let ξ (t, x0, u(·),w(·)) de-
note the solution of (1) at time t for an initial state x0 = x(0),
control input trajectory u(·) and process noise trajectory w(·).
The reachable set at time t is

R(t) := {
ξ (t, x0, u(·),w(·)) ∣∣ x0 ∈ X0,

∀τ ∈ [0, t] : w(τ) ∈ W} ,
where X0 ⊂ R

n is the initial set and W ⊂ R
z is the set of

process noise.
For our safety shield, we consider that U , W , and V are

represented as zonotopes, and G and Fi are represented as
polytopes in halfspace representation. Moreover, we use poly-
nomial zonotopes to represent reachable sets. In case other
agents are present in the environment, we can apply set-based
methods [35] to safely predict their future behavior and obtain
the corresponding time-varying unsafe sets.

IV. SAFETY SHIELD
As visualized in Fig. 1, the high-level idea behind our safety
shield is to compute the reachable set for a time horizon
of t f and the set of all control inputs satisfying the input
constraints ∀t ∈ [0, t f] : u(t) ∈ U rather than a single control
input trajectory u(·). The intersection of this reachable set
with the unsafe sets then yields constraints that define safe
control inputs, which we can use to formulate the projection
of the control input ua provided by the reinforcement policy to
the closest safe control input as an optimization problem. We

first consider input trajectories that are constant over time for
simplicity and discuss more advanced control strategies later
in Section V-A. For constant control inputs, we can compute
the reachable set using the extended system dynamics[

ẋ(t)

u̇(t)

]
=

[
f (x(t), u(t),w(t))

0

]
(2)

together with the initial set X0 = x0 × U , where we omit
the set of measurement errors V for simplicity. For reach-
ability analysis, we use the conservative polynomialization
algorithm [30], which encloses the nonlinear dynamics in
(1) by a differential inclusion ẋ ∈ p(x(t), u(t),w(t)) ⊕ E con-
sisting of a polynomial approximation p(x(t), u(t),w(t)) and
the abstraction error E . This reachability algorithm explic-
itly preserves dependencies between the initial states and the
reachable states [31]. Since with the extended system dynam-
ics in (2), the control inputs become part of the system state,
we can therefore directly determine from the reachable set
which control inputs steer the system to unsafe regions. Let
us demonstrate this dependency preservation by an example:

Example 1: As a running example we consider the system

ẋ1 = 4 + 2 x2 u1 + w1, ẋ2 = 1.7 + u1 u2

with initial state x0 = [0 0]T , set of process noise W =
[−0.01, 0.01], and time horizon t f = 1 s. Moreover,

F = 〈[
[−4 − 1]T [−1 − 4]T]

, [−14 − 8]T 〉
P

is the unsafe set and

U =
{[

−0.5

1

]
+

[
0.5

0

]
α1 +

[
0

1

]
α2

∣∣∣∣α1, α2 = [−1, 1]

}
is the set of control inputs. With the conservative polynomial-
ization algorithm we obtain the final reachable set

R(t f)=

⎧⎪⎨⎪⎩
[

3.4

1.2

]
+
[

0.34

0.5

]
α1+

[
0.25

−0.5

]
α2+

[
−0.49

0.5

]
α1α2

+
[

0.25

0

]
α2

1 +
[

0.25

0

]
α2

1α2+
[

0.1

0

]
β1

∣∣∣∣α1, α2, β1 ∈ [−1, 1]

⎫⎪⎬⎪⎭,
which is visualized in Fig. 2 . Since the reachable set R(t f)
and the input set U are parameterized by the same factors
α1 and α2, we have a direct analytical relation between the
control inputs and the corresponding reachable states.

We now exploit the analytical relation between the control
inputs and the reachable states to determine the set of safe
control inputs. As demonstrated in the example above, the
control input u(t) ∈ U = 〈cu,Gu〉Z is unambiguously defined
by the factors α via the relation u = cu + Guα through the
definition of a zonotope in Def. 2. Instead of determining the
set of safe control inputs directly, we therefore determine the
safe set for α instead, since this simplifies the computations
as it becomes apparent later. The independent generators of

82 VOLUME 2, 2023

FIGURE 2. Reachable set for the system from Example 1, where the initial
state x0 is shown as a black dot, the final reachable set R(tf) is depicted
in blue with a black border, and the unsafe set F is shown in red.

the polynomial zonotope R(t f) represent uncertainties that
results from abstraction errors during reachability analysis
as well as from the process noise. Consequently, a control
input is safe only if the reachable set does not intersect the
unsafe sets for any possible value of the independent factors
β j . We formulate this in the following theorem, which extends
our previous results for unsafe sets given as halfspaces [31,
Sec. 4.1] to the more general case of polytopes:

Theorem 1: Given is an unsafe set F = 〈A, b〉P ⊂ R
n con-

sisting of s halfspace constraints and the reachable set R(t) =
〈c,G,GI ,E〉PZ ⊂ R

n of the system in (2) computed with the
conservative polynomialization algorithm [30] for the initial
set X0 = x0 × U , x0 ∈ R

n, U = 〈cu,Gu〉Z ⊂ R
m and the set

of process noise W ⊂ R
z. The following constraints on the

zonotope factors α that parameterize the control input ensure
that there exists no trajectory that enters the unsafe set:

∀α ∈ [−1, 1] ∩
s⋃

l=1

LS l , ∀w(·) ∈ W :

ξ (t, x0, cu + Guα,w(·)) /∈ F
with

LS l =
〈
− A(l,·)G,A(l,·)c −

q∑
j=1

∣∣A(l,·)GI (·, j)
∣∣ − b(l),E

〉
LS

for l = 1, . . . , s.
Proof: A single point x ∈ R

n is located outside the unsafe
set F if it is fully located outside of at least one halfspace:

s∨
l=1

A(l,·) x > b(l) ⇒ x �∈ F . (3)

Moreover, due to dependency preservation of reachability
analysis, it holds according to [31, Thm. 1] that the disturbed
trajectory ξ (t, x0, cu + Guα,w(·)) for a specific control input
u = cu + Guα is contained inside the reachable subset ob-
tained by restricting the factors αk ∈ [−1, 1] in the definition
of polynomial zonotopes in Def. 3 to the corresponding con-
crete value for α = [α1 . . . αp]T :

∀αk ∈ [−1, 1] : ξ (t, x0, cu + Guα,w(·)) ∈

c +
h∑

i=1

(p∏
k=1

α
E(k,i)
k

)
G(·,i) +

⎧⎨⎩
q∑

j=1

β jGI (·, j)
∣∣∣∣β j ∈ [−1, 1]

⎫⎬⎭ .
Finally, combining this with (3) under the consideration that

the constraints should hold for all values of the independent
factors β j yields

∀αk, β j ∈ [−1, 1] :
s∨

l=1

A(l,·)c +
h∑

i=1

(p∏
k=1

α
E(k,i)
k

)
A(l,·)G(·,i)

+
q∑

j=1

β jA(l,·)GI (·, j) > b(l) ⇒ ξ (t, x0, cu + Guα,w(·)) �∈ F ,

which results in the statement of the theorem after bringing
the constant offset and the independent generators to the other
side of the inequality. �

Remark 1: A geometric interpretation of Theorem 1 is that
we first bloat the obstacle F by the uncertainty given by
the independent generators through pushing each polytope
halfspace outward. Next, we obtain the constraints via in-
tersecting with the part of the polynomial zonotope spanned
by the dependent generators, where the intersection between
each halfspace of the bloated polytope F corresponds to a
polynomial level set constraint for the factors α.

Theorem 1 defines a feasible region α ∈ [−1, 1] ∩ ⋃
l LS l

for the factors α that parameterize the control input such that
the intersection between a reachable set at a specific point
in time and a single unsafe set is empty. However, to guar-
antee safety we have to consider the reachable set for the
whole time horizon t ∈ [0, t f], which consists of a sequence of
reachable sets R(τ0),R(τ1), . . . ,R(τ f) for consecutive time
intervals τ0, τ1, . . . , τ f . Moreover, we might also have more
than one unsafe set. So overall we obtain one feasible region
α ∈ [−1, 1] ∩ ⋃

l LS l for each pair of reachable sets and un-
safe sets resulting in an intersection. The feasible region for
α to guarantee safety for all time intervals and all unsafe sets
is given by the intersection of the feasible regions for single
pairs:

α ∈ [−1, 1] ∩
ν⋂

r=1

sr⋃
l=1

〈arl , brl ,Erl 〉LS︸ ︷︷ ︸
LSrl

,

where the level sets LSrl are obtained from Theorem 1 and
ν is the number of intersecting pairs. To efficiently check if a
reachable set represented by a polynomial zonotope intersects
an obstacle represented by a polytope, the polynomial zono-
tope refinement algorithm [36] can be used. This algorithm
recursively splits the polynomial zonotope along the longest
generator until the intersection with the polytope can either
be proven or disproven using zonotope enclosures of the split
polynomial zonotopes. Overall, given a vector of factors αa ∈
R

p that corresponds to the control input ua = cu + Guαa ∈
U = 〈cu,Gu〉Z provided by the reinforcement learning policy,
we can formulate the projection to the closest safe control

VOLUME 2, 2023 83

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

input as an optimization problem:

min
α∈[−1,1]

‖α − αa‖2
2 s.t. α ∈

ν⋂
r=1

sr⋃
l=1

〈arl , brl ,Erl 〉LS.

This is a disjunctive programming problem, which can be
formulated as a mixed-integer quadratic program with poly-
nomial constraints using the convex hull relaxation [37]:

min
α∈[−1,1]

‖α − αa‖2
2 (4)

subject to

h∑
i=1

(p∏
k=1

α
Erl (k,i)
rl (k)

)
arl (·,k)λrl ≤ −brl λrl ,

λrl ∈ {0, 1}, α =
sr∑

l=1

λrl αrl ,

sr∑
l=1

λrl = 1,

for r = 1, . . . , ν and l = 1, . . . , sr . Here, the disjunction is
realized using the binary variables λrl ∈ {0, 1} which modify
the corresponding polynomial constraints to be either active
(λrl = 1) or inactive (λrl = 0). Let us demonstrate the opti-
mization for our running example:

Example 2: As shown in Fig. 2, for the nonlinear system
in Example 1 only the final reachable set R(t f) intersects the
unsafe set F . We consequently obtain the feasible region for α
by applying Theorem 1 to the sets R(t f) and F , which yields
α ∈ LS1 ∨ LS2 with

LS1 =
{

[α1 α2]T ∈ R
2
∣∣ 1.86α1 + 0.5α2 − 1.46α1α2

+ α2
1 + α2

1α2 ≤ −1.2
}

and

LS2 =
{

[α1 α2]T ∈ R
2
∣∣ 2.34α1 − 1.75α2 + 1.51α1α2

+ 0.25α2
1 + 0.25α2

1α2 ≤ −0.3
}
.

Given αa = [0.3 0]T , the optimization problem (4) becomes

min
α1,α2∈[−1,1]

(α1 − 0.3)2 + α2
2

subject to

1.86α11(1)λ11 + 0.5α11(2)λ11 − 1.46α11(1)α11(2)λ11

+ α2
11(1)λ11 + α2

11(1)α11(2)λ11 ≤ −1.2 λ11,

2.34α12(1)λ12 − 1.75α12(2)λ12 + 1.51α12(1)α12(2)λ12

+ 0.25α2
12(1)λ12 + 0.25α2

12(1)α12(2)λ12 ≤ −0.3 λ12,

λ11, λ12 ∈ {0, 1}, λ11 + λ12 = 1[
α1

α2

]
= λ11

[
α11(1)

α11(2)

]
+ λ12

[
α12(1)

α12(2)

]
,

which has the optimal solution α = [α1 α2]T = [0.04 0.2]T .
The feasible regions for α1 and α2 are shown in Fig. 3 .

FIGURE 3. Domain (left) and objective function (right) for the optimization
problem from Example 2. For the domain plot the set of infeasible values
is shown in red, the desired value αa is visualized as a black dot, and the
optimal solution to the optimization problem is depicted as a blue dot.

In the presence of measurement errors v(t) ∈ V we can ap-
ply the same overall approach but have to change the initial set
to X0 = (x0 ⊕ V) × U , where the set V has to be represented
by independent generators to ensure that safety is guaranteed
for all possible values of the measurement errors. While we
focused on the conservative polynomialization algorithm [30]
for simplicity, our safety shield is also compatible with other
reachability approaches as long as they preserve dependencies
between initial states and reachable states. This is for example
the case for algorithms that compute reachable sets using the
Picard-Lindelöf iteration together with Taylor models [38].

The safety shield can be used during reinforcement learning
or for a learned agent. For every decision step, the action
suggested by the agent is corrected to the closest safe action
by (4) only if it violates safety constraints. If the safety shield
is used during learning, it can be beneficial to adapt the reward
to inform the agent about corrections of actions [10].

V. EXTENSIONS
We now discuss several extensions for our safety shield.

A. DIFFERENT TYPES OF CONTROL LAWS
For the basic safety shield presented in Section IV, for sim-
plicity we considered that the control input is kept constant
for the whole planning horizon. Since this is very restrictive
and would in practice often prevent us from finding a feasible
solution, we now discuss how to realize more advanced con-
trol strategies. Note that the reinforcement learning agent has
to match the control law used for the safety shield.
a) Piecewise Constant Control Law: One simple but very
effective extension to constant control inputs are piecewise
constant control inputs. Instead of determining a single con-
trol input from the input set U , we determine control inputs
for all piecewise constant segments from the set U × · · · × U .
We can still use the extended system in (2), but have to reset
the initial set for reachability analysis to R(ti) × U after each
of the i = 1, . . . , μ piecewise constant time segments [ti−1, ti]
with ti = i · t f /μ, where R(ti) is the final reachable set from
the previous segment.
b) Polynomial Control Law: Another possibility is to use
control laws that are polynomial functions with respect to

84 VOLUME 2, 2023

FIGURE 4. Final reachable set for the system in Example 1 for a quadratic
control law and piecewise constant control laws with different numbers of
segments μ.

time. We consider the quadratic case for simplicity since the
extension to general polynomials is straightforward. For a
quadratic control law u(t) = c(1) + c(2)t + c(3)t2 parameter-
ized by the vector of coefficients c ∈ R

3, we can use the
extended system⎡⎢⎣ẋ(t)

ċ

ṫ

⎤⎥⎦ =

⎡⎢⎣ f
(
x(t), c(1) + c(2)t + c(3)t2,w(t)

)
0
1

⎤⎥⎦
together with the initial set x0 × C × 0. In the optimization
problem (4) we then determine the values for the parameter
vector c, where we add the constraint c(1) + c(2)t + c(3)t2 ∈ U
to ensure that the input constraints are satisfied. The initial
set C ⊂ R

3 for the coefficient vector c can be determined by
estimating the feasible values for c such that the constraint
c(1) + c(2)t + c(3)t2 ∈ U is satisfied for the whole time hori-
zon.
c) Feedback Control: We can also apply a feedback control
law u(t) = ure f (t) + K (x(t) − xre f (t)) with a fixed feedback
matrix K ∈ R

m×n, where both piecewise constant or polyno-
mial control inputs can be used for the reference control input
ure f (t) corresponding to the reference trajectory xre f (t). For
the safety shield, we then compute the reachable set for the
extended system⎡⎢⎣ ẋ(t)

u̇re f (t)

ẋre f (t)

⎤⎥⎦ =

⎡⎢⎣ f
(
x(t), ure f (t) + K (x(t) − xre f (t)),w(t)

)
0

f
(
xre f (t), ure f (t),w(t)

)
⎤⎥⎦

using the initial set x0 × U × x0. In the optimization prob-
lem (4) we then determine the optimal parameter for the
reference control inputs ure f (t), where we add the constraint
ure f + K (x(t) − xre f (t)) ∈ U to satisfy the input constraints.

A comparison of the different control laws presented in
this section is shown in Fig. 4 for the system in Example 1.
The results demonstrate that even for a piecewise constant
control law with only μ = 2 segments we already obtain a
larger reachable set than with a quadratic control law, which

increases our chances to find a safe control input. While piece-
wise constant control laws therefore seem to be preferable,
their rapidly changing values often negatively impact comfort
or durability for many systems, which can be avoided with
polynomial control laws.

For all control strategies we apply the following control
scheme: We plan for a time horizon of t f , but execute the
resulting control law for only a shorter time period tc < t f

before planning a new trajectory. This increases the chances
to avoid getting stuck in dead ends and ensures that we can
react quickly to dynamic changes in the environment.

B. SPATIAL DIMENSIONS OF MOBILE ROBOTS
So far we considered the case where the safety constraints
are specified directly by the system state. For collision avoid-
ance, however, this setup is usually not sufficient since we
additionally have to consider the shape and spatial dimension
of mobile robots, e.g., cars, vessels, or drones, which we
want to control safely. While for many other approaches this
poses a huge problem, incorporating spatial dimensions of the
robot into our safety shield is quite straightforward since we
simply have to replace the reachable set with the occupancy
set. Given the reachable set R(t) that typically describes all
possible positions of a reference point on the robot as well as
all possible robot orientations, the occupancy set is defined as

O(t) = {
o(x, d)

∣∣ x ∈ R(t), d ∈ D}
, (5)

where the function o : Rn × R
δ → R

γ describes how the
space occupied by the robot is computed from the system state
and the set D specifying the spatial dimension of the robot.

Example 3: Let us consider a car where the states x(1) and
x(2) describe the x- and y-position of its center, and state x(3)

describes the orientation of the car. Then the function o(x, d)
that defines the space occupied by the car is given as

o(x, d) =
[

x(1) + cos(x(3)) d(1) − sin(x(3)) d(2)

x(2) + sin(x(3)) d(1) + cos(x(3)) d(2)

]
, (6)

where the shape of the car is for simplicity enclosed by a
rectangle, so that d ∈ D = [−l/2, l/2] × [−w/2,w/2] with
l and w denoting the length and width of the car.

To compute the occupancy set (5) from the reachable set
R(t) and the set D using polynomial zonotopes, we suggest
two approaches:

1) We can compute a Taylor series expansion enclosure of
the function o(x, d) and evaluate it in a set-based way to
obtain the occupancy set O(t) [39, Sec. 4.4].

2) Since polynomial zonotopes can be converted to Taylor
models [32, Prop. 4] we can apply Taylor model arith-
metic [40] to evaluate (5) and then convert the resulting
set back to a polynomial zonotope.

The resulting safety constraints that we obtain from the
intersections between the occupancy set O(t) and obstacles
have to hold for all values d ∈ D. To ensure this, we could
represent the set D with independent generators before com-
puting O(t), similarly as we did for the set of measurement

VOLUME 2, 2023 85

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

errors in Section IV. However, since the set D is in general
much larger than the set of measurement errors V , this would
often yield very conservative results. A better approach is
to project out all factors that correspond to the set D using
Fourier-Motzkin elimination [41, Chapter 4.4]. Let us demon-
strate this by an example:

Example 4: We consider the constraint

∀α3 ∈ [−1, 1] : α1 + α2 + α3 + α2
1α3 ≤ 1.5, (7)

from which we want to eliminate α3. The first step of Fourier-
Motzkin elimination is to solve all constraints for α3, which
yields

α3 ≤ 1.5 − α1 − α2

1 + α2
1

, α3 ≤ 1, α3 ≥ −1. (8)

Next, we have to form all combinations of the constraints in
(8) that result in a non-empty solution, yielding the constraints

1.5 − α1 − α2

1 + α2
1

≥ −1 ⇒ −α2
1 + α1 + α2 ≤ 2.5

1.5 − α1 − α2

1 + α2
1

≤ 1 ⇒ α2
1 + α1 + α2 ≥ 0.5,

which represent an equivalent formulation of (7).
Since Fourier-Motzkin elimination requires that the con-

straints are solvable for the variable that is eliminated, all
terms that violate this condition have to be removed first by
applying a zonotope enclosure [32, Prop. 5].

C. MIXED-INTEGER LINEAR PROGRAM FORMULATION
For some systems, solving the nonlinear mixed-integer opti-
mization problem (4) might be computationally too expensive,
especially when we have to evaluate the safety shield in real-
time for online application. Therefore, we now discuss how to
obtain a feasible and close to optimal solution using mixed-
integer linear programming, which is significantly faster. To
achieve this, we enclose the polynomial zonotopes that rep-
resent the reachable set with zonotopes using [32, Prop. 5].
Since zonotopes are linear in the factors α, the feasible region
for α calculated using Theorem 1 is then given as a union of
polytopes

⋃
l〈Al , bl 〉P instead of a union of polynomial level

sets. Consequently, if we additionally minimize the L1-norm
instead of the L2-norm, we can simplify the optimization
problem (4) to

min
α∈[−1,1]

‖α − αa‖1 s.t. α ∈
ν⋂

r=1

sr⋃
l=1

〈Arl , brl 〉P,

which can be formulated as a mixed-integer linear program
using Balas’ Theorem [42]:

min
α∈[−1,1]

‖α − αa‖1 (9)

subject to

Arl α̂rl ≤ λrl brl , −1 λrl ≤ α̂rl ≤ 1 λrl ,

λrl ∈ {0, 1}, α =
sr∑

l=1

α̂rl ,

sr∑
l=1

λrl = 1,

for r = 1, . . . , ν and l = 1, . . . , sr . The structure of this
optimization problem is very similar to (4), except that
we introduced the new variables α̂rl = αrlλrl to avoid the
bilinear terms and obtain a linear program. Due to the
over-approximation of all nonlinear terms of the polynomial
zonotope by the zonotope enclosure, it holds that every fea-
sible solution for (9) is a feasible solution to the original
problem (4), but some values that are feasible for (4) will
not be feasible for (9). Note that if the system dynamics (1)
is linear, we directly obtain a mixed-integer linear program
in the form of (9). Moreover, we can always first check if
the desired value αa satisfies the original nonlinear constraints
and only perform the simplification to a mixed-integer linear
program if it does not. A mixed-integer quadratic program
can be obtained in a similar way as the mixed-integer linear
program by enclosing all generators that belong to higher-
order polynomials by a zonotope. Finally, since mixed-integer
programming can be highly parallelized, the computation time
for optimization can always be reduced by using a more pow-
erful machine with more cores.

D. CONSTRAINT GROUPING
Since the time step size for reachability analysis is usually
relatively small, it often happens that many reachable sets
for consecutive time intervals intersect the same obstacle,
resulting in a lot of very similar constraints. We can reduce the
computation time by grouping similar constraints together, as
we demonstrate with the following example:

Example 5: The two constraints

1.1α1 + 0.7α1α2 ≤ 0.3

1.3α1 + 0.5α1α2 ≤ 0.3

on α1, α2 ∈ [−1, 1] can be grouped to the single constraint

∀ε1 ∈ [1.1, 1.3], ∀ε2 ∈ [0.5, 0.7] : ε1 α1 + ε2 α1α2 ≤ 0.3.

To eliminate the new variables ε1 and ε2 we represent
their domains as a summation of the center with a zero-
centered uncertainty as ε1 ∈ 1.2 + ε̃1, ε2 ∈ 0.6 + ε̃2 with
ε̃1, ε̃2 ∈ [−0.1, 0.1], which finally yields

1.2 α1 + 0.6α1α2 ≤ min
α1,α2∈[−1,1]
ε̃1 ,̃ε2∈[−0.1,0.1]

0.3 − ε1 α1 − ε2 α1α2,

where a lower bound for the optimal value of the minimization
problem can be computed using interval arithmetic [43].

In addition to the number of constraints, constraints group-
ing also decreases the number of integer variables for the
optimization in (4), which reduces computation time. Since
integer variables are required only if the safe region for the
agent is non-convex, another strategy to accelerate the opti-
mization is to replace non-convex safe regions by the largest
convex subset [44].

86 VOLUME 2, 2023

TABLE 1. States n, control inputs m, planning horizon tf , number of
pre-computed reachable sets, and extensions applied for each
benchmark.

E. REACHABLE SET PRE-COMPUTATION
In order to reduce the computation time for our safety
shield, we can pre-compute the reachable set starting from
an initial set X0 offline, and then apply the reachable sub-
set approach [31] to efficiently extract the reachable set for
the current state x0 ∈ X0 during online execution. Since for
nonlinear systems the accuracy of the reachable set enclosure
depends on the size of the initial set, we cannot make X0 too
large but instead have to divide the relevant state space into
sets of suitable size. The number of required sets for such
a division grows exponentially with the system dimension,
so that this approach is not suited for high-dimensional sys-
tems. However, for many systems the differential equation
ẋ(t) = f (x(t), u(t),w(t)) describing the system dynamics is
invariant with respect to transformations of certain states [45,
Sec. 4.1]. For example, the dynamics of a car are invariant
with respect to translations of the car’s position and with
respect to rotations of the car’s orientation. In this case only
the state space for the states that are not invariant has to
be divided since we can always apply a suitable state space
transformation to set the invariant states to 0.

VI. EXPERIMENTAL EVALUATION
We now demonstrate the performance of our safety shield on
several benchmark systems, where each benchmark highlights
different properties of our approach. If not explicitly stated
otherwise, all computations are carried out in Python on a
2.9 GHz quad-core i7 processor with 32 GB memory. We
use the CORA toolbox [46] to pre-compute reachable sets,
proximal policy optimization [47] for reinforcement learn-
ing, Gurobi to solve the mixed-integer linear and quadratic
programs, and CasADi together with the BONMIN solver
to solve mixed-integer nonlinear programs.2 Benchmark pa-
rameters as well as the applied extensions from Section V
are listed in Table 1. We published our implementation on
CodeOcean3 and created a video showing our results.4

A. F1TENTH RACECAR
To demonstrate that our safety shield is fast and robust enough
to be applied to a real system, we conduct experiments on
an F1tenth racecar [48], whose dynamics are described by

2[Online]. Available: https://www.gurobi.com/ and https://web.casadi.org/
3[Online]. Available: https://codeocean.com/capsule/9949621/tree/v1
4[Online]. Available: https://youtu.be/6ISKxO4DDWA

a kinematic single-track model. Moreover, the car contains
a low-level PI controller with gains kP = 8 and kI = 1 that
takes as input the desired velocity and realizes the required
acceleration. Overall, this results in the model

ṡx = cos(ψ) v, ṡy = sin(ψ) v, ψ̇ = u2 + w2,

v̇ = kP(u1 − v) + kI eI + w1, ėI = u1 − v, (10)

where the system state consists of the x- and y-position of
the center sx, sy, the velocity v, the orientation ψ , and the
integrated error of the PI controller eI . The control inputs are
the desired velocity u1 and the steering angle u2, which are
bounded by the set U = [0, 0.5]m s−1 × [−0.3, 0.3]rad. To
ensure that the model (10) encloses all possible behaviors of
the real system, we performed conformance checking using
the AROC toolbox [49] to determine the process noise as well
as the measurement error from data traces we recorded from
the real car, which results in the sets

W = [−0.007, 0.0035]m s−2 × [−0.0104, 0.0132]rad s−1

V = [−0.0584, 0.0446]m s−1 × [−0.0438, 0.0466]m s−1

× [−0.0933, 0.0561]m s−2 × [−0.0446, 0.0593]rad s−1

× [−0.0005, 0]m s−2.

To incorporate the size of the car, we use the output function
in (6) with length 0.51 m and width 0.31 m.

For control we use a piecewise constant control law with
μ = 2 segments and a planning horizon of t f = 2 s, and
we replan as soon as the previous computation is finished.
Moreover, we simplify the optimization problem for action
projection to a mixed-integer quadratic program, which on
average took 0.14 s to solve during our experiments. The
car uses a 1.9 GHz six-core ARMv8 processor with 7.6 GB
memory and is equipped with a LiDAR sensor. To obtain the
unsafe sets Fi, we enclose all points measured by the LiDAR
by a union of polytopes. Moreover, while the velocity and
the integrated error can be directly obtained from the car’s
internal sensors, we use a particle filter [50] to determine the
position and orientation of the car in the environment from
LiDAR measurements. For our experiments, we then applied
reinforcement learning to train an agent on four environment
maps that were similar to but slightly different from the map
we used for the experiments on the real F1tenth car. In addi-
tion to the system state, we used the LiDAR measurements
and the position of the goal set as observations for the agent,
and we did not use the safety shield during training.

As shown in Fig. 5, without the safety shield, the trained
agent is unsafe since the car crashes into the obstacle. With
our safety shield, however, the car avoids the obstacle and
safely reaches the goal set. This not only demonstrates that
our safety shield successfully works on a real system, but also
that the modifications to the control inputs suggested by the
reinforcement learning policy are small enough for the agent
to still fulfill its objective.

VOLUME 2, 2023 87

https://www.gurobi.com/
https://web.casadi.org/
https://codeocean.com/capsule/9949621/tree/v1
https://youtu.be/6ISKxO4DDWA

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

FIGURE 5. Trajectories driven by the F1tenth racecar with and without the
safety shield, where the green area is the goal set and the orange area is
the obstacle.

TABLE 2. Results for the evaluation of our safety shield on 2000 common
road traffic scenarios.

B. AUTONOMOUS DRIVING
In order to show that our safety shield can handle very com-
plex reach-avoid problems that include dynamic obstacles,
we consider the motion planning benchmarks for autonomous
cars provided by the CommonRoad database [51]. As system
dynamics we use the kinematic single track model from [20,
Sec. VII] with the same input set U and set of process noise
W as in [20, Sec. VII]. This model is very similar to the
model in (10), with the only difference that the acceleration
instead of the desired velocity is used as a control input.
The car we consider is a BMW 320i, which has a length of
4.51 m and a width of 1.61 m. To guarantee safety even though
the intentions of the other cars are unclear, we use the tool
SPOT [52] to compute all possible occupancies of the other
traffic participants that apply to traffic rules using set-based
prediction.

To counteract the large process noise for this benchmark,
we use a feedback controller u(t) = ure f + K (x(t) − xre f (t))
for the safety shield, where the reference input ure f is piece-
wise constant with μ = 2 segments. The feedback matrix K ∈
R

m×n is determined by applying an LQR control approach
with state weighting matrix Q = I4 and input weighting ma-
trix R = I2 to the linearized system. Moreover, we use a
planning horizon of t f = 0.8 s and replan after tc = 0.4 s. We
apply reinforcement learning to train an agent that aims to
safely control the car, where we do not use the safety shield
during training. The observations for the agent are selected
from [53, Table II]. In particular, we use the state of the ego
vehicle, the distances of the ego vehicle to road/lane bound-
aries as well as to the goal set, and the states of surrounding
vehicles.

The effect of the safety shield is highlighted by the results
for 2000 traffic scenarios shown in Table 2: While the original

agent collides with other traffic participants in 10 scenarios,
our safety shield successfully prevents all collisions. More-
over, applying the safety shield does not lead to a reduced
goal-reaching percentage, but instead even increases the num-
ber of scenarios for which the goal set is reached. Table 2
also demonstrates the effect of constraint grouping (see Sec-
tion V-D), which reduces the average computation time for
solving the optimization problem, but slightly decreases the
goal reaching percentage due to the increased conservatism.
In Fig. 6 the results for one specific traffic scenario are visu-
alized. There, the agent without the safety shield changes the
lane too early and collides with the adjacent truck, whereas
the agent with the safety shield changes the lane just in time
and finally reaches the goal set in the end.

C. QUADROTOR 2D
Next, we compare our safety shield with a safe reinforcement
learning approach that modifies the optimization criterion. In
particular, we incorporate the safety specification as a viola-
tion penalty in the reward function. For this, we consider a
benchmark problem from the safe-control-gym [54] featuring
a trajectory tracking task for a two-dimensional quadrotor.
As shown in Fig. 7, the trajectory that should be tracked is
partially located inside an unsafe region, so that there exists a
conflict between tracking performance and safety constraint
satisfaction. The dynamics of the quadrotor are according
to [54, Eq. (3)] given as

s̈x = sin(ψ) (u1 + u2)/m + w1

s̈z = cos(ψ) (u1 + u2)/m − g + w2

ψ̈ = (u2 − u1) a/
(√

2 Iyy

)
+ w3,

where m = 0.027 kg is the mass, g = 9.81 m s−2 is the grav-
itational acceleration, a = 0.0397 m is distance from each
motor pair to the center of mass of the quadrotor, and Iyy =
1.4 · 10−5 kg/m2 is the moment of inertia. The system state
consists of the x- and z-positions sx, sz as well as the pitch
angle ψ of the quadrotor together with the corresponding
velocities. To decouple forward thrust and tilting torque, the
input set for the control inputs u1 and u2 that represent the
thrusts generated by the two rotors is restricted to

U =
〈[

0.1323 N

0.1323 N

]
,

[
0.0125 N 0.0015 N

0.0125 N −0.0015 N

]〉
Z

.

The process noise w1,w2,w3 is bounded by the set W =
0.01 · [−1, 1].

For the safety shield we use a constant control input with
a planning horizon of t f = 0.5 s, where we replan after tc =
0.02 s. To perform action projection, we solve the original
nonlinear optimization problem, which takes 0.004 s on av-
erage during our experiments. The main reason for the fast
computation time is that the safe region for the quadrotor is
convex, which results in an optimization problem without any
integer variables. We train three different agents: A baseline
agent that should track the trajectory and gets no information

88 VOLUME 2, 2023

FIGURE 6. Results for the CommonRoad scenario DEU_LocationALower-33_16_T-1 visualized at times 0 s, 1.2 s, 2.8 s, 4.4 s, and 9.2 s (from top to
bottom), where the agent without safety shield is depicted in purple, the agent with safety shield is depicted in blue, the dynamic obstacles are depicted
in red, and the goal set is depicted in green.

FIGURE 7. Trajectories for the 2D quadrotor benchmark featuring the
baseline agent with and without safety shield, the constraint-penalty
agent, and the agent that is trained with the safety shield. The trajectory
that should be tracked is visualized by the dashed black line and the
unsafe regions are depicted in red.

about the constraints, a constraint-penalty agent where the
reward is extended with a penalty for constraint violation, and
a safe agent that is trained with the safety shield. As shown
in Fig. 8, the safe and baseline agents converge after 400 000
training steps while the agent with constraint penalty needs
2 million training steps to converge. Moreover, only the safe
agent never violates any constraints during training, and could
therefore also be used for training directly on the real physical
system.

The results for deploying the different trained agents are
shown in Fig. 7. As expected, the baseline agent without the
safety shield violates the safety constraints since they were

FIGURE 8. Episode rewards and constraint violations for the 2D quadrotor
benchmark observed during training without safety shield, with safety
shield, and with constraint penalty.

not considered during training. Also, the constraint-penalty
agent violates the constraints, which demonstrates that it is
not sufficient to incorporate the safety constraints into the
training process. Only the two agents that apply our safety
shield stay inside the safe region for all times, where the agent
that uses the safety shield during training achieves a smoother
trajectory compared to the baseline agent.

D. QUADROTOR 3D
To compare our safety shield with reachability-based tra-
jectory safeguard [25], we consider the three-dimensional
quadrotor benchmark from [25, Sec. V.B]. Reachability-
based trajectory safeguard [25] applies the safety shield to a
simplified trajectory-generating model and the resulting tra-
jectory is then tracked by a low-level controller that uses

VOLUME 2, 2023 89

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

the original nonlinear system model. For the quadrotor, the
trajectory-generating model for each of the three spatial di-
rections i ∈ {1, 2, 3} is

ẋi = vi + ai t − (2ai + 3(vi − ui)) t2 + (ai + 2(vi − ui)) t3

v̇i = 0, ȧi = 0, ṫ = 1,

where xi is the quadrotor position, vi and ai are respectively
the velocity and the acceleration at the beginning of the
trajectory, and t is time. The input ui to the system is the
peak velocity reached at time t = 1.5 s, which is bounded
by the set U = {u = [u1 u2 u3]T | ‖u‖2 ≤ 5 m s−1}. To apply
our safety shield, we tightly inner-approximate the set U with
a zonotope using the method described in [55, Sec. IV]. A
similar trajectory-generating model is used to decelerate the
quadrotor from the peak velocity back to velocity 0, so that
the overall planning horizon is t f = 3 s. We consider the same
control task as in [25, Sec. V.B], which is to safely navigate
the quadrotor through a 100 m long tunnel with randomly
generated box obstacles. For our experiments, we deployed
the same trained reinforcement learning agent as used in [25]
on 100 tunnels with different obstacles and compared the
conservatism of the two safety shields in terms of the re-
quired control input correction ‖u − ua‖2 at each intervention
of the safety shield. While both safety shields had to inter-
vene for 5078 out of 5760 time steps, the average control
input modification for our approach is with 1.13 m s−1 smaller
than the average modification 1.22 m s−1 for the safety shield
from [25], which increases the chances that the agent can
successfully complete its task.

VII. DISCUSSION
Finally, let us discuss some properties of our safety shield.

A. SAFETY GUARANTEES FOR INFINITE TIME
Our basic safety shield approach can guarantee safety only
for the finite time horizon t f . To obtain safety guarantees for
an infinite time horizon, one can either combine our safety
shield with a fail-safe planner [56] that takes over when the
safety shield cannot determine a safe trajectory anymore, or
one can modify the safety shield in such a way that the system
always stops in a safe final state at the end of the planning
horizon [25].

B. COMPUTATIONAL COMPLEXITY
The two main steps required for our safety shield are com-
puting the reachable set and solving the mixed-integer opti-
mization problem (4) for action projection. The complexity of
the conservative polynomialization algorithm for reachability
analysis is O(n5) with respect to the system dimension ac-
cording to [57, Sec. 4.1.4]. However, for many benchmarks
one can apply the pre-computation discussed in Section V-E
to avoid computing reachable sets online. Solving a mixed-
integer optimization problem is in general NP-hard [58]. But,
as we demonstrated with the numerical experiments in Sec-
tion VI, by applying the simplification to a mixed-integer

linear program in Section V-C and/or constraint grouping in
Section V-D we can solve this optimization efficiently.

C. SAFE COMPUTATION TIME CONSIDERATION
As demonstrated by the experiments in Section VI, even with
all the speed-ups discussed in Section V, the calculations
required for our safety shield still need a certain amount of
computation time that, depending on the system, might be too
long to simply be neglected. Therefore, in order to consider
the required computation time in a formally correct manner,
we can apply the following well-known procedure [59]: We
allocate a certain computation time tcomp for the calculations
and use reachability analysis to predict the reachable states
for the allocated computation time. By using this set as the
initial set for our safety shield, we can guarantee safety even
though the required calculations are not instantaneous. If the
computation does not finish in the allocated computation time,
we either stick to the safe solution from the previous time step
or apply a failsafe maneuver.

D. CONSERVATISM OF THE SAFETY SHIELD
Due to over-approximation errors, our safety shield might not
be able to always find a feasible solution if one exists. In
particular, there are four sources of conservatism:
� Since the exact reachable set cannot be computed for

general nonlinear systems, we compute a tight enclosure
instead (e.g., we aim to minimize the Hausdorff distance
between the enclosure and the exact set).

� Due to dependency preservation, the abstraction error for
reachability analysis is computed on the reachable set for
the whole input set rather than the smaller reachable set
for a specific control input, which results in additional
conservatism.

� For bloating the obstacles by the set of uncertainties
defined by the independent generators, we use an over-
approximative Minkowski sum in Theorem 1 that simply
pushes the obstacle halfspaces outward.

� Since we choose a certain type of control law in advance,
we restrict the space of possible control inputs.

However, all of these over-approximation errors can be
made arbitrarily small: The over-approximation for reach-
ability converges to zero if the time step size is reduced
and/or the reachable set is split, which also eliminates the
error introduced by dependency preservation. Moreover, the
approximative Minkowski sum in Theorem 1 can be replaced
by the exact one and every control law can be approximated
arbitrary close by a piecewise constant control law with an
infinite number of piecewise constant segments.

E. PARAMETER TUNING
Since the settings for reachability analysis can be tuned auto-
matically [60], [61], the main design parameters for our safety
shield in addition to the type of control law discussed in Sec-
tion V-A are the planning horizon t f and the replanning time
tc. A longer planning horizon t f often yields better control
performance due to the larger lookahead, but also increases

90 VOLUME 2, 2023

the computation time. Especially in the presence of dynamic
obstacles, a small replanning time tc is desirable in order to
be able to quickly react to a changing environment. However,
a small tc requires the approach to be faster in order to run
in real-time. Finally, the extensions discussed in Section V-C,
V-D, and V-E all reduce the computation time at the cost of
introducing more conservatism.

VIII. CONCLUSION
We presented a novel safety shield for nonlinear continuous
systems with input constraints that can be added to reinforce-
ment learning agents in order to prevent them from applying
unsafe actions. Since our safety shield uses set-based com-
putations in the form of reachability analysis to determine
which actions are safe and which are unsafe, it can guarantee
robust safety despite process noise and measurement errors.
Moreover, because our approach applies highly parallelized
mixed-integer programming to project the action from the
agent to the closest safe action, it is possible to reduce the
computation time by using a more powerful machine with
more cores. Finally, we demonstrated with several numerical
examples as well as experiments on a real system that our
safety shield modifies the actions proposed by the reinforce-
ment learning agent as little as necessary for robust safety.

ACKNOWLEDGMENT
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the United States Air Force or
the United States Navy.

REFERENCES
[1] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in

deep reinforcement learning for robotics: A survey,” in Proc. Symp. Ser.
Comput. Intell., 2020, pp. 737–744.

[2] B. R. Kiran et al., “Deep reinforcement learning for autonomous
driving: A survey,” Trans. Intell. Transp. Syst., vol. 23, no. 6,
pp. 4909–4926, Jun. 2022.

[3] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for
power system applications: An overview,” CSEE J. Power Energy Syst.,
vol. 6, no. 1, pp. 213–225, 2019.

[4] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 22–31.

[5] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge, “Projection-
based constrained policy optimization,” in Proc. Int. Conf. Learn.
Representations, 2019.

[6] M. Hasanbeig, A. Abate, and D. Kroening, “Cautious reinforcement
learning with logical constraints,” in Proc. Int. Conf. Auton. Agents
Multiagent Syst., 2020, pp. 483–491.

[7] X. Wang, C. Pillmayer, and M. Althoff, “Learning to obey traffic
rules using constrained policy optimization,” in Proc. Int. Conf. Intell.
Transp. Syst., 2022, pp. 2415–2421.

[8] B. Könighofer, J. Rudolf, A. Palmisano, M. Tappler, and R. Bloem,
“Online shielding for stochastic systems,” in Proc. NASA Formal Meth-
ods Symp., 2021, pp. 231–248.

[9] P. Geibel and F. Wysotzki, “Risk-sensitive reinforcement learning
applied to control under constraints,” J. Artif. Intell. Res., vol. 24,
pp. 81–108, 2005.

[10] H. Krasowski, J. Thumm, M. Müller, X. Wang, and M. Althoff,
“Provably safe reinforcement learning: A theoretical and experimental
comparison,” 2022, arXiv:2205.06750.

[11] H. Krasowski, X. Wang, and M. Althoff, “Safe reinforcement learning
for autonomous lane changing using set-based prediction,” in Proc. Int.
Conf. Intell. Transp. Syst., 2020, pp. 1–7.

[12] D. Isele, A. Nakhaei, and K. Fujimura, “Safe reinforcement learning
on autonomous vehicles,” in Proc. Int. Conf. Intell. Robots Syst., 2018,
pp. 6162–6167.

[13] S. Huang and S. Ontañón, “A closer look at invalid action masking in
policy gradient algorithms,” in Proc. Int. FLAIRS Conf., 2022.

[14] J. Thumm and M. Althoff, “Provably safe deep reinforcement learning
for robotic manipulation in human environments,” in Proc. Int. Conf.
Robot. Automat., 2022, pp. 6344–6350.

[15] W. Saunders, G. Sastry, A. Stuhlmüller, and O. Evans, “Trial without
error: Towards safe reinforcement learning via human intervention,” in
Proc. Int. Conf. Auton. Agents MultiAgent Syst., 2018, pp. 2067–2069.

[16] N. Hunt, N. Fulton, S. Magliacane, T. N. Hoang, S. Das, and A.
Solar-Lezama, “Verifiably safe exploration for end-to-end reinforce-
ment learning,” in Proc. 24th Int. Conf. Hybrid Systems: Comput.
Control, 2021, pp. 1–11.

[17] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and U.
Topcu, “Safe reinforcement learning via shielding,” in Proc. AAAI Conf.
Artif. Intell., 2018, pp. 2669–2678.

[18] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “The Simplex architecture
for safe online control system upgrades,” in Proc. Amer. Control Conf.,
1998, pp. 3504–3508.

[19] D. T. Phan, R. Grosu, N. Jansen, N. Paoletti, S. A. Smolka, and S. D.
Stoller, “Neural simplex architecture,” in Proc. NASA Formal Methods
Symp., 2020, pp. 97–114.

[20] B. Schürmann, M. Klischat, N. Kochdumper, and M. Althoff, “Formal
safety net control using backward reachability analysis,” IEEE Trans.
Autom. Control, vol. 67, no. 11, pp. 5698–5713, Nov. 2022.

[21] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proc. AAAI Conf. Artif. Intell., 2019,
pp. 3387–3395.

[22] Z. Marvi and B. Kiumarsi, “Safe reinforcement learning: A control bar-
rier function optimization approach,” Int. J. Robust Nonlinear Control,
vol. 31, no. 6, pp. 1923–1940, 2021.

[23] O. Bastani, “Safe reinforcement learning with nonlinear dynamics
via model predictive shielding,” in Proc. Amer. Control Conf., 2021,
pp. 3488–3494.

[24] K. P. Wabersich and M. N. Zeilinger, “A predictive safety filter for
learning-based control of constrained nonlinear dynamical systems,”
Automatica, vol. 129, 2021, Art. no. 109597.

[25] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan, “Reachability-based
trajectory safeguard (RTS): A safe and fast reinforcement learning
safety layer for continuous control,” IEEE Robot. Autom. Lett., vol. 6,
no. 2, pp. 3663–3670, Apr. 2021.

[26] J. H. Gillula and C. J. Tomlin, “Guaranteed safe online learning via
reachability: Tracking a ground target using a quadrotor,” in Proc. Int.
Conf. Robot. Automat., 2012, pp. 2723–2730.

[27] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent
HamiltonJacobi formulation of reachable sets for continuous dynamic
games,” IEEE Trans. Autom. Control, vol. 50, no. 7, pp. 947–957,
Jul. 2005.

[28] M. Selim, A. Alanwar, S. Kousik, G. Gao, M. Pavone, and K. H.
Johansson, “Safe reinforcement learning using black-box reachability
analysis,” IEEE Robot. Automat. Lett., vol. 7, no. 4, pp. 10665–10672,
Oct. 2022.

[29] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and fault
detection,” Automatica, vol. 69, pp. 126–136, 2016.

[30] M. Althoff, “Reachability analysis of nonlinear systems using conserva-
tive polynomialization and non-convex sets,” in Proc. Int. Conf. Hybrid
Syst.: Comput. Control, 2013, pp. 173–182.

[31] N. Kochdumper, B. Schürmann, and M. Althoff, “Utilizing dependen-
cies to obtain subsets of reachable sets,” in Proc. Int. Conf. Hybrid Syst.:
Comput. Control, 2020, article 1.

[32] N. Kochdumper and M. Althoff, “Sparse polynomial zonotopes: A
novel set representation for reachability analysis,” IEEE Trans. Autom.
Control, vol. 66, no. 9, pp. 4043–4058, Sep. 2021.

[33] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of
nonlinear systems with uncertain parameters using conservative lin-
earization,” in Proc. Int. Conf. Decis. Control, 2008, pp. 4042–4048.

VOLUME 2, 2023 91

KOCHDUMPER ET AL.: PROVABLY SAFE REINFORCEMENT LEARNING VIA ACTION PROJECTION

[34] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff, “Model confor-
mance for cyber-physical systems: A survey,” Trans. Cyber- Phys. Syst.,
vol. 3, no. 3, 2018, Art. no. 30.

[35] M. Koschi and M. Althoff, “Set-based prediction of traffic participants
considering occlusions and traffic rules,” IEEE Trans. Intell. Veh., vol. 6,
no. 2, pp. 249–265, Jun. 2021.

[36] S. Bak, S. Bogomolov, B. Hencey, N. Kochdumper, E. Lew, and K.
Potomkin, “Reachability of Koopman linearized systems using random
fourier feature observables and polynomial zonotope refinement,” in
Proc. Int. Conf. Comput. Aided Verification, 2022, pp. 490–510.

[37] I. E. Grossmann and S. Lee, “Generalized convex disjunctive program-
ming: Nonlinear convex hull relaxation,” Comput. Optim. Appl., vol. 26,
no. 1, pp. 83–100, 2003.

[38] X. Chen, S. Sankaranarayanan, and E. Ábrahám, “Taylor model flow-
pipe construction for non-linear hybrid systems,” in Proc. Real-Time
Syst. Symp., 2012, pp. 183–192.

[39] N. Kochdumper and M. Althoff, “Reachability analysis for hybrid sys-
tems with nonlinear guard sets,” in Proc. 23rd Int. Conf. Hybrid Syst.:
Comput. Control, 2020, pp. 1–10.

[40] K. Makino and M. Berz, “Taylor models and other validated functional
inclusion methods,” Int. J. Pure Appl. Math., vol. 4, no. 4, pp. 379–456,
2003.

[41] G. Dantzig, Linear Programming and Extensions. Princeton, NJ, USA:
Princeton Univ. Press, 2016.

[42] E. Balas, “Disjunctive programming: Properties of the convex hull of
feasible points,” Discrete Appl. Math., vol. 89, no. 1, pp. 3–44, 1998.

[43] L. Jaulin, M. Kieffer, and O. Didrit, Applied Interval Analysis.
Berlin/Heidelberg, Germany: Springer, 2006.

[44] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming,” in Proc. Int. Workshop
Algorithmic Found. Robot., 2015, pp. 109–124.

[45] S. Bak, Z. Huang, F. A. T. Abad, and M. Caccamo, “Safety and progress
for distributed cyber-physical systems with unreliable communication,”
Trans. Embedded Comput. Syst., vol. 14, no. 4, 1–22, 2015.

[46] M. Althoff, “An introduction to CORA 2015,” in Proc. Int. Workshop
Appl. Verification Continuous Hybrid Syst., 2015, pp. 120–151.

[47] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” 2017, arXiv:1707.06347.

[48] M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth: An
open-source evaluation environment for continuous control and rein-
forcement learning,” Proc. Mach. Learn. Res., vol. 123, pp. 77–89,
2020.

[49] N. Kochdumper, F. Gruber, B. Schürmann, V. Gaßmann, M. Klischat,
and M. Althoff, “AROC: A toolbox for automated reachset optimal
controller synthesis,” in Proc. 24th Int. Conf. Hybrid Syst.: Computation
Control, 2021, pp. 1–6.

[50] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo lo-
calization for mobile robots,” Artif. Intell., vol. 128, no. 1-2, pp. 99–141,
2001.

[51] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Composable
benchmarks for motion planning on roads,” in Proc. IEEE Intell. Veh.
Symp., 2017, pp. 719–726.

[52] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction of
traffic participants,” in Proc. Intell. Veh. Symp., 2017, pp. 1686–1693.

[53] X. Wang, H. Krasowski, and M. Althoff, “CommonRoad-RL: A con-
figurable reinforcement learning environment for motion planning of
autonomous vehicles,” in Proc. Int. Intell. Transp. Syst. Conf., 2021,
pp. 466–472.

[54] Z. Yuan et al., “Safe-control-Gym: A unified benchmark suite for safe
learning-based control and reinforcement learning in robotics,” IEEE
Robot. Automat. Lett., vol. 7, no. 4, pp. 11142–11149, Oct. 2022.

[55] V. Gaßmann and M. Althoff, “Scalable zonotope-ellipsoid conversions
using the Euclidean zonotope norm,” in Proc. Amer. Control Conf.,
2020, pp. 4715–4721.

[56] C. Pek and M. Althoff, “Computationally efficient fail-safe trajectory
planning for self-driving vehicles using convex optimization,” in Proc.
Int. Conf. Intell. Transp. Syst., 2018, pp. 1447–1454.

[57] N. Kochdumper, “Extensions of polynomial zonotopes and their ap-
plication to verification of cyber-physical systems,” Ph.D. dissertation,
Tech. Univ. Munich, München, Germany, 2022.

[58] C. H. Papadimitriou, “On the complexity of integer programming,” J.
ACM, vol. 28, no. 4, pp. 765–768, 1981.

[59] B. Schürmann, N. Kochdumper, and M. Althoff, “Reachset model pre-
dictive control for disturbed nonlinear systems,” in Proc. Int. Conf.
Decis. Control, 2018, pp. 3463–3470.

[60] M. Wetzlinger, A. Kulmburg, and M. Althoff, “Adaptive parameter
tuning for reachability analysis of nonlinear systems,” in Proc. 24th Int.
Conf. Hybrid Syst.: Comput. Control, 2021, pp. 1–11.

[61] M. Wetzlinger, N. Kochdumper, S. Bak, and M. Althoff, “Fully-
automated verification of linear systems using inner-and outer-
approximations of reachable sets,” 2022, arXiv:2209.09321.

NIKLAS KOCHDUMPER received the B.Sc. de-
gree in mechanical engineering, the M.Sc. degree
in robotics, cognition and intelligence, and the
Ph.D. degree in computer science from Technis-
che Universität München, Germany, in 2015, 2017,
and 2022, respectively. He is currently a Post-
doctoral Researcher with Stony Brook University,
Stony Brook, NY, USA. His research interests in-
clude formal verification of continuous and hybrid
systems, reachability analysis, computational ge-
ometry, controller synthesis, and neural network
verification.

HANNA KRASOWSKI received the B.Sc. de-
gree in mechanical engineering from Technische
Universität Darmstadt, Darmstadt, Germany, in
2017, and the M.Sc. degree in robotics, cogni-
tion and intelligence in 2020 from Technische
Universität München, Munich, Germany, where
she is currently working toward the Ph.D. de-
gree. Her research interests include provably safe
reinforcement learning and motion planning for
cyber-physical systems.

XIAO WANG received the B.Eng. degree in vehi-
cle engineering from Tongji University, Shanghai,
China, in 2015, and the M.Sc. degree in me-
chanical engineering in 2018 from Technische
Universität München, München, Germany, where
she is currently working toward the Ph.D. degree.
Her research interests include motion planning for
autonomous vehicles, formal methods, and safe re-
inforcement learning.

STANLEY BAK received the B.Sc. degree in
computer science from Rensselaer Polytechnic In-
stitute, Troy, NY, USA, in 2007, and the M.Sc. and
Ph.D. degrees in computer science from the Uni-
versity of Illinois at Urbana-Champaign, Cham-
paign, IL, USA, in 2009 and 2013, respectively.
He is currently an Assistant Professor in com-
puter science with Stony Brook University in Stony
Brook, NY, USA. His research interests include
verification and testing methods for cyber-physical
systems and neural networks.

MATTHIAS ALTHOFF received the Diploma En-
gineering degree in mechanical engineering and
the Ph.D. degree in electrical engineering from
Technische Universität München, München, Ger-
many, in 2005 and 2010, respectively. He is
currently an Associate Professor in computer sci-
ence with Technische Universität München. From
2010 to 2012 he was a Postdoctoral Researcher
with Carnegie Mellon University, Pittsburgh, PA,
USA, and from 2012 to 2013 an Assistant Profes-
sor with Technische Universität Ilmenau, Ilmenau,

Germany. His research interests include formal verification of continuous and
hybrid systems, reachability analysis, planning algorithms, nonlinear control,
automated vehicles, and power systems.

92 VOLUME 2, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

