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A B S T R A C T

To derive meaningful navigation strategies, animals have to estimate their directional headings in the
environment. Accordingly, this function is achieved by the head direction cells that were found in mammalian
brains, whose neural activities encode one’s heading direction. It is believed that such head direction
information is generated by integrating self-motion cues, which also introduces accumulative errors in the
long term. To eliminate such errors, this paper presents an efficient calibration model that mimics the animals’
behavior by exploiting visual cues in a biologically plausible way, and then implements it in robotic navigation
tasks. The proposed calibration model allows the agent to associate its head direction and the perceived
egocentric direction of a visual cue with its position and orientation, and therefore to calibrate the head
direction when the same cue is viewed again. We examine the proposed head direction calibration model in
extensive simulations and real-world experiments and demonstrate its excellent performance in terms of quick
association of information to proximal or distal cues as well as accuracy of calibrating the integration errors
of the head direction. Videos can be viewed at https://videoviewsite.wixsite.com/hdc-calibration.
. Introduction

To survive in the wild, animals have to navigate efficiently through
heir environment, even under constantly changing conditions, like
he time of the year or the weather. The brilliant navigation skills
f animals are brought about by the cognitive map in their brains,
hich is formed by the neural representations of spatial information
bout the environment [1]. This cognitive map allows many animals,
ike sea turtles, wolves, bears, and homing pigeons, to return to their
ome bases even over hundreds of kilometers and long periods of time
2–6]. The mechanism of creating a cognitive map by integrating
patial information, while using it to navigate, is believed to be relevant
o several types of spatially modulated cells, such as head direction cells
HDCs) [7], grid cells (GCs) [8], and place cells (PCs) [9].

One central part for the derivation of meaningful navigation strate-
ies is the estimation of one’s head direction [10]. The so-called head
irection cells (HDCs), discovered in many species [11–15], were re-
orted to undertake this function by firing corresponding to one’s head
irection (HD) with respect to the environment, but independent of
he animal’s location or the ambient conditions of the environment.
herefore, HDCs are believed to state the sense of spatial orientation
f animals by integrating self-motion cues from the vestibular system,
ike the animal’s angular velocity [14]. The process of integrating such
elf-motion information is often referred to as path integration, which
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allows, for example, rats to estimate their orientation even in dark-
ness [16]. However, accumulative errors will be inevitably introduced
to the HD signal during the process of path integration [17].

Inspired by the fact that animals utilize landmark information (from
e.g. olfactory or visual cues) to correct HD errors [14], this work
aims to address the problem of how the HD signal can be calibrated
using the directional information derived from egocentrically perceived
landmarks. State-of-the-art HDC calibration models can be generally
divided into two categories. Models in the first category directly infer
the HD signal from the egocentric cue direction (ECD), which describes
the perceived angular direction of a visual landmark in the egocentric
frame [18,19]. These models are only applicable to environments in
which the positional relationship between the agent and the cue is
constant, for example, when the visual cue is in infinite distance.
In this case, the cue acts like a compass and is used to infer one’s
head direction. The second category contains calibration models that
associate a combination of ECD information and the position of the
agent with the HD signal [20–22]. Subsequently, these models can
infer the HD information from perceiving a visual landmark from a
known position and orientation in the environment. Therefore, unlike
the models in the first category, these models can cope with proximal
landmarks as well. However, these methods are inefficient due to the
fact that they can only calibrate the HD signal when perceiving a
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landmark a second time on the exact same location with the same
orientation.

To this end, this paper presents a new biologically plausible com-
putational model that efficiently facilitates the correction of HD errors
arising from path integration using a visual landmark. In contrast to
existing simple place encoding models [20,21], the proposed model is
able to calibrate the HD signal when the visual cue is perceived again,
regardless of the agent’s position or orientation, which leads to much
more efficient calibration. The proposed calibration model is proven to
be accurate and applicable to be used in real-world robotic tasks. The
contributions of this work are summarized as follows.

• We propose a novel HDC calibration model that efficiently uses
the egocentrically perceived angular direction of a visual cue in
combination with positional information of an exploring agent
to correct for HD errors introduced by path integration. This
proposed model allows an agent to calibrate its HD signal from
any locations where the visual cue can be perceived again.

• As one part of the calibration model, we propose a neural circuit
based on two two-dimensional conjunctive cells, which allows the
model to continuously compute the global direction of a visual
cue from a certain location (allocentric cue direction, ACD), given
the ECD and HD information during exploration. In turn, the
restored ACD can be used to compute the HD with perceived ECD
for calibration.

• As one part of the calibration model, we propose a novel place
encoding strategy for calibrating the HD signal, which is named
as first glance learning (FGL). Compared with the simple place
field encoding strategy [20,21], FGL allows the agent to calibrate
the HD signal independent of its position or orientation, leading
to more calibration opportunities.

• We demonstrate the accuracy of the HD error calibration model
by testing it in both simulated environments and real-world sce-
narios. Experimental results show that the model is able to ef-
fectively and efficiently calibrate the HD signal with a distal or
proximal visual landmark.

2. Biology background

In this section, we first briefly describe the experimental findings
about information sources and reference frames that are used by ani-
mals for the spatial navigation task. Secondly, we present a selection
of spatially modulated cells that are found in the brain and are thought
to serve as a mental representation of the environment.

2.1. Navigation cues

Rodents can integrate multi-modal sensory information to construct
an internal representation of the environment [23]. The sources of
information can be categorized into two kinds, namely, the allothetic
and idiothetic ones [23,24]. Allothetic information lies externally to
the body of the animal [25], which are features or properties of the
environment [23]. An animal can derive allothetic information from en-
vironmental properties by using different sensory modalities, including
the visual, auditory, and olfactory system [25]. By contrast, idiothetic
information is self-referential and also referred to as internal cues [24].
It allows the animal to calculate its position as well as allothetic cues,
but without the need for prior knowledge about the environment as
only self-information is integrated. Idiothetic information can be gen-
erated from the vestibular system, the proprioception, and the motor
system [26,27]. It was found that, for example, the brain improves
the estimation of position and orientation by using a combination of

different sensory information [28].

32
2.2. Navigation references

Animals make use of a variety of stimulus sources that correspond
to mainly two frames of Ref. [29], namely, the allocentric and the ego-
centric reference frame. The allocentric reference frame’s coordinates
are external to the animal and world-centered [23]. It is anchored in
to a fixed location of the environment [30,31]. For example, the HD
signal of an animal within the environment is a spatial information
that is processed in the allocentric frame. The egocentric reference’s
coordinates are defined relative to the animal itself, and therefore is
body-centered [31]. The coordinates are anchored to the animal’s pose
and change along with the rotation and translation of the animal [23].
For instance, the perception of a visual cue is facilitated in the egocen-
tric frame. Therefore, the egocentric perception of the angular direction
of the cue depends on the animal’s position and orientation [30,31].

2.3. Spatially modulated cells

The firing property of spatially modulated cells represents envi-
ronmental features and can serve as a mental representation of the
environment [23,32,33]. In the following, cells that are thought to be
important for navigation and used in this paper are briefly described.
All cells are either proven to exist biologically, for example, in rat
brains, or at least proposed by other researchers.

2.3.1. Head direction cells
HDCs fire according to the animal’s head direction, or rather its allo-

centric orientation, in reference to the external environment regardless
of the animal’s position [11,16,28,34,35]. Therefore, HDCs function as
an internal neural compass, and consequently serve as the fundamental
base for spatial navigation [23]. Transformations between egocentric
coordinates (of e.g. sensory feature angles) and allocentric coordinates
(location of environmental features) can be facilitated with the help of
the HD signal [36,37].

2.3.2. Egocentric cue direction cells
ECD cells encode the direction of a cue in the egocentric coordi-

nates [38]. Evidence for cells that resemble view-dependent direction
encoding of visual cues were found in [38,39]. For example, if an
animal is positioned in an environment with one visual cue, the ECD
cells will encode the direction in which the visual landmark lies with
reference to the animal’s orientation (See Fig. 1). Computational mod-
els of ECD cells can be found in [18,19]. More formal definition of ECD
cells can be found in Section 4.4.2.

2.3.3. Allocentric cue direction cells
ACD cells are supposed to fire in relation to the direction of a cue

in the allocentric coordinates [30]. In this case, the direction encoded
by these cells is solely dependent on the animal’s current position and
independent from its orientation. ACD cells have not been reported yet,
but are predicted by a computational model from [40]. Their firing
behavior could be generated by combining information from ECD cells
and HDCs [40] and one example is shown in Fig. 1.

2.3.4. Conjunctive cells
Conjunctive cells were discovered by [38]. These neurons are

thought to be aligned in a grid, and therefore form a two-dimensional
conjunctive cell field that combines the encoding of allocentric and
egocentric reference frames via a two-dimensional activity peak, where
one dimension encodes the HD (allocentric) and the other dimension
encodes the ECD (egocentric) of a visual cue [38].

2.3.5. Place cells
Place cells were discovered in the hippocampus of rats for the first

time by [41]. This population of cells is sensitive to an animal’s location
within the environment [41]. When an animal enters a certain place

field, the corresponding place cell’s firing activity increases.
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Fig. 1. The spatial relation between an agent and a visual landmark.

. Related work

Existing HD calibration models can be divided into two categories
ccording to the usage of allothetic information. The first category con-
ains simple feedback models that use the egocentric cue information as
he single source of allothetic information to infer the HD information.
he second category, the place encoding models, use a combination of
CD and positional information of an agent to infer its HD.

.1. Simple feedback models

Simple feedback models use the perceived ECD of a visual cue
s a single source of allothetic information to directly infer the HD
ignal. The general setup is shown in the left part of Fig. 2. Simple
eedback models consist mainly of two rings of neurons. The outer
ing consists of ECD cells which directly project onto the inner ring
hat is composed of HDCs. Taking ‘‘Pose 1’’ as an example, the agent
erceives the visual cue in its front direction. Therefore, the ECD cell
epresenting ‘‘front’’ is the most active neuron and drives the HD cell to
epresent 0◦, which is in accordance with the agent’s orientation. If the

spatial relation between an agent and a visual cue in the environment
is stable, these models can sufficiently derive the HD information from
the egocentric perception of a visual cue. It must be noted that this
model only works properly under two conditions. Either the visual cue
is in infinite distance, or the agent’s freedom of movement is limited to
a straight line originating from the landmark’s position. This ensures
that the ECD always has the same offset to the HD.

Zhang [18] proposed a simple feedback model that uses a contin-
uous attractor neural network consisting of two rings to encode the
current estimation of HD by integrating angular velocity input from the
agent. A third outer ring, composed of ECD cells, encodes the ECD of
a visual landmark. The ECD cells directly project onto one of the two
rings of HDCs via one-to-one connections. The connection weights are
learned via one-shot Hebbian learning at the first view of the landmark.
Subsequently, the ECD cells control the neural activities in both HD
rings to correct for accumulative HD errors. Another simple feedback
model from [19] used a similar approach to calibrate the HD signal.
However, the visual feature detectors have constantly Hebbian-learning
connections to all HDCs, which allows the model to connect the HD
representation to spatially stable landmarks and to disconnect from
unstable landmarks.

3.2. Place-encoding feedback models

The second category, the place encoding feedback models, uses the
perceived ECD of a visual cue to infer HD according to the current
position of the agent around the landmark. The right part of Fig. 2
33
Fig. 2. The two main types of HD calibration models. Left: simple feedback models
consist of two rings of neurons. The outer ring encodes the ECD of a perceived visual
landmark and directly projects onto the inner ring which encodes HD. Right: place-
encoding feedback models associate the information about the agent’s position with
the current perceived ECD to infer HD. Their setup can be imagined as using several
ECD rings that directly drive the HD.

illustrates the general concept of place-encoding feedback models. The
inner ring consists of HDCs. The outer ring consists of ECD cells that en-
code the ECD of the visual landmark depending on the agent’s current
position. The ECD cells project again directly onto the HDCs. Taking
‘‘Pose 1’’ as an example, when the agent is located in the green field,
the ECD cells will correspond to the ECDs labeled in green, which is
identical to the setup of the simple feedback model. However, for ‘‘Pose
2’’, the right neuron in the ECD ring represents the ECD ‘‘front’’ when
the agent is in the purple field of the example situation and corresponds
to 180◦ in the HD layer. In this case, the ECD cells according to the
reen labels would introduce a huge HD error. Therefore, the second set
f ECD cells corresponding to the purple labels is active and indicates
he correct HD of the agent when located in the purple field. By doing
his, place-encoding feedback models can derive HD information from
roximal cues as well as from distal cues.

The place-encoding feedback model from [20] used neuron sheets
hat act as position dependent interface to associate HD with ECD.
he model encodes the ECD of a visual landmark via a visual sen-
ory input, similar to ECD cells. The place-encoding feedback model
rom [21] used only one set of interface neurons, called calibration
ells, to infer HD from ECD and positional information about the agent.
ach calibration cell receives input via learning connections from both
he visual sensory input that encodes the ECD of a visual landmark
nd the position encoding cells. Milford et al. [22] proposed a place-
ncoding feedback model that uses two three-dimensional attractor cell
etworks. A pose cell network encodes the position of the agent in two
imensions and the orientation of the agent in the third dimension,
uch that a three-dimensional activity packet describes an agent’s pose
ompletely. Some other works also use visual information to calibrate
ntegration error [42].

. Modeling of neural circuit

This section presents the computation model of the proposed HDC
alibration mechanism. We first provide an overview of the calibration
ystem and then the computation model of each component. Finally,
e explain the general procedure to compute the synaptic connections
etween different components within the system.

.1. Overview

The architecture of the proposed HD calibration system is shown
n Fig. 3. It consists of two major neural circuits, namely, the basic
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Fig. 3. Architecture of the proposed HD calibration model: (1) The basis HD circuit
indicates the current estimation of HD by integrating the angular velocity input via
the HDCs. (2) The calibration circuit facilitates learning and exploiting of directional
information from visual landmarks. When the visual detector input is active, ACD
information is created by combining HD with ECD information via the Adder. The
position encoder either stores the ACD from the ACD cells or resets the activity of
the ACD cells corresponding to the current position of the agent. The feedback signal
back onto the HDCs is generated by combining ACD with ECD information via the
Subtractor.

HDC circuit and its calibration circuit. The HDC circuit is reused from
our previous work [43], which mimics the path integration process by
integrating the angular velocity of an agent and estimating its head
direction. The principle of the calibration circuit is to reset the head
direction with the help of a fixed visual landmark in three steps.

• When the landmark is perceived for the first time, the egocentric
direction of the visual cue can be obtained by the egocentric
cue direction cells. Then, the allocentric direction of the cue can
be calculated via the Adder with the information of the head
direction and the egocentric direction of the cue.

• The allocentric direction of the cue is stored in the allocentric cue
direction cells and this information is associated with the position
of the agent by the position encoder.

• When the landmark is in sight again at any other position, the
allocentric direction of the visual cue will be reset. Then, the ACD
cells and ECD cells project together onto the Subtractor, which in
turn calibrates the corresponding head direction of the agent.

.2. Neuron model

The neural activity of a biological neuron is described with its firing
ate, which is determined by the synaptic input from other neurons.
n this paper, the activity of a neuron model supported by in vivo
ata [44] is used and modeled as
𝑑𝑓𝑖
𝑑𝑡

= −𝑓𝑖 +𝛷(𝐼𝑖 +
∑

𝑗
𝑤𝑖𝑗𝑓𝑗 ) = −𝑓𝑖 +𝛷(𝑢𝑖). (1)

𝑓𝑖 is the firing rate of neuron 𝑖. 𝜏 is a time constant. 𝐼𝑖 is the external
inputs to neuron 𝑖. 𝑤𝑖𝑗 is the connection (synaptic) weight from neuron
𝑗 to neuron 𝑖. 𝑢𝑖 is the total synaptic input to neuron i. 𝛷(⋅) is the single-
neuron transfer function, which is defined in our prior work [43].
According to (1), the firing rate of a neuron will always converge to
the sigmoid term

𝑓𝑖 = 𝛷(𝐼𝑖 +
∑

𝑗
𝑤𝑖𝑗𝑓𝑗 ) = 𝛷(𝑢𝑖). (2)

4.3. Head direction cell network

The HDC network is designed to estimate the directional heading of
the system only relying on its angular velocity. As mentioned above,
 c

34
this work is built on the basis of the HDC network proposed in our
previous work [43]. To ensure a general understanding of the HDC
network, we briefly describe its architecture and functionality. More
detailed information can be found in [43].

The HDC network consists of three ring layers of neurons, namely,
the HDC layer and two shift layers to shift the peak activity of the HDC
layer to the left or right direction. Additionally, two turning cells are
used to inject turning stimuli to the HDC network, whose activities are
calculated based on the angular velocity. The HDC layer represents the
directional heading of the system and consists of 𝑛 head direction cells.
Their preferred direction 𝜃𝑖 (𝑖 ∈ [0,… , 𝑛 − 1]) is equally distributed
around the circle and given in radians in the interval [0, 2𝜋). Each cell
n the shift layer is associated with one cell in the HDC layer. Take one
hift left cell as an example, it is connected to the HDCs on the left side
f its corresponding HDC with excitatory synapses and to the other half
ith inhibitory synapses. When the agent turns left, the turning left cell
ill inject stimuli to all the cells in the shift left layer and therefore shift

he activity of the HDC layer, which represents the head direction.

.4. Calibration circuit

There are six components in the calibration circuit, namely, the
isual detector, egocentric cue direction (ECD) cells, allocentric cue
irection (ACD) cells, conjunctive cells Adder, conjunctive cells Sub-

tractor, and position encoder. Each component of the calibration cir-
cuit is explained in further detail below, which contains its structure,
functionality, and the firing behavior.

4.4.1. Visual detector
The visual detector is an abstract block governing the whole vi-

sual perception process of a visual cue in the environment. It solely
represents the visual input signal that stimulates the ECD cells. This
is based on the assumption that animals use extracted visual features
of landmarks instead of the whole configuration of a landmark as
the visual cue [29]. This assumption is also used by other calibration
models described in Section 3.

4.4.2. Cue direction cells
This paper uses the same model to construct both the ECD cells

and ACD cells, which represent the egocentric and allocentric angular
direction of a visual landmark, respectively. Examples are visualized
in Fig. 4. Each neuron’s activity depends on the bearing of a visual
landmark relative to the agent’s orientation and position within the
environment. Take the ECD cells module as an example, it contains
𝑛 neurons and numbered with 𝑖 ∈ {0,… , 𝑛 − 1}. 𝛼𝑖 describes each
neuron’s preferred egocentric cue direction around the circle in the
interval [0, 2𝜋) as

𝛼𝑖 =
2𝜋𝑖
𝑛

. (3)

he angular distance 𝛥𝛼𝑖𝐿 between the cue (Landmark) and 𝛼𝑖 in the
gocentric frame is defined as

𝛼𝑖𝐿 = 𝛼𝐿 − 𝛼𝑖, (4)

here 𝛼𝐿 is the egocentric direction of the cue. According to [43], its
iring activity 𝑓 (𝛥𝛼𝑖𝐿) can be governed by

(𝛥𝛼𝑖𝐿) = 𝐴 + 𝐵𝑒𝐾𝑐𝑜𝑠(𝛥𝛼𝑖𝐿)

= 1.72 + 0.344𝑒5.29𝑐𝑜𝑠(𝛥𝛼𝑖𝐿). (5)

is the background firing rate and 𝐵𝑒𝐾 is the peak firing rate. 𝐾 is
parameter to control the shape of the activity curve. The peak firing

ate and the background firing rate are defined as 70Hz and 1.72Hz to
imic the data recorded from in-vivo neurons [44]. The highest firing

ate arises at the neuron whose preferred cue direction is closest to the
ngular direction of the landmark. The lowest activity appears at the
ue direction cell that is the furthest away from the landmark’s position.
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Fig. 4. ECD and ACD illustration for one example of spatial relation between the agent and the visual landmark.
The ACD cells share the same model and parameters as the ECD cells
nd its preferred allocentric cue direction is defined as 𝛽𝑖. Therefore, its
ctivity 𝑓 (𝛥𝛽𝑖𝐿) is calculated as

(𝛥𝛽𝑖𝐿) = 𝐴 + 𝐵𝑒𝐾𝑐𝑜𝑠(𝛥𝛽𝑖𝐿)

= 1.72 + 0.344𝑒5.29𝑐𝑜𝑠(𝛥𝛽𝑖𝐿), (6)

here 𝛥𝛽𝑖𝐿 = 𝛽𝐿 − 𝛽𝑖 and 𝛽𝐿 is the allocentric direction of the cue. An
xample of the firing behavior of the ECD and ACD rings is illustrated
n Figs. 4(b) and 4(d).

.4.3. Conjunctive cell Adder
The task of the conjunctive cells in the calibration mechanism is

o serve as a bridge between the egocentric and allocentric reference
rame. In this case, the input information, ECD and HD, are used to
ompute the ACD of a landmark, which is subsequently encoded by
he ACD cells. Therefore, this conjunctive cell field is also referred to
s the Adder. Fig. 1 shows an example relation between an agent and a
isual landmark. The agent’s orientation is 𝜃𝐴 = 90◦. The landmark is
erceived at 𝛼𝐿 = 30◦ from the agent’s pose. The ACD from the agent’s
osition is 𝛽𝐿 = 120◦. The mathematical relation between these three
ariables is governed by

𝐿 = (𝜃𝐴 + 𝛼𝐿) mod 360◦ (7)

As illustrated in Fig. 5a, the conjunctive cell Adder consists of 𝑛
onjunctive cells aligned in a two-dimensional grid. The neurons are
umbered with 𝑖 ∈ {0,… , 𝑛 − 1}. Each row and each column consists
f
√

𝑛 neurons. Each neuron is associated with two inputs: the HD of
35
the agent and the ECD of a visual landmark in the environment. The
represented ECD 𝛼𝑖 and HD 𝜃𝑖 of neuron 𝑖 are governed by

𝛼𝑖 =
2𝜋
√

𝑛
(𝑖 mod

√

𝑛) (8)

𝜃𝑖 =
2𝜋
√

𝑛
(
√

𝑛 − 1 − (𝑖 div
√

𝑛)), (9)

where ‘‘mod’’ stands for the modulo operation and ‘‘div’’ stands for the
integer division operation. The activity function for each neuron in the
Adder is given by

𝑓 (𝛥𝛼𝑖𝐿, 𝛥𝜃𝑖𝐴) = 𝐴 + 𝐵𝑒0.5𝐾(𝑐𝑜𝑠(𝛥𝛼𝑖𝐿)+𝑐𝑜𝑠(𝛥𝜃𝑖𝐴))

= 0.0504𝑒2.645(𝑐𝑜𝑠(𝛥𝛼𝑖𝐿)+𝑐𝑜𝑠(𝛥𝜃𝑖𝐴)) (10)

The lowest and the peak firing rate are set to 0Hz and 10Hz according
to the measured values in [38]. This Adder describes a two-dimensional
activity peak that emerges in the conjunctive cell field and combines
information about HD and ECD at the same time. For example, an
Adder with 36 neurons is visualized in Fig. 5a. The conjunctive cells
show a two-dimensional activity peak with the peak firing rate at the
intersection of the ECD 𝛼𝐿 = 30◦ and HD 𝜃𝐴 = 90◦. The intensity
of the neural activity is represented with the gradation of color red.
Each ACD cell integrates the accumulated neuron firing rates via the
diagonal input connections. The neuron number 𝑖 = 2 of the ACD ring
receives the largest input as it lies in the diagonal extension of the two-
dimensional activity peak. Finally, an activity peak emerges in the ACD
ring that encodes the ACD of the landmark. In this case, the resulting
activity peak encodes 𝛽 = 120◦, which equals to the operation in (7).
𝐿
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4.4.4. Conjunctive cell Subtractor
The conjunctive cell Subtractor also exhibits a similar two-

dimensional activity profile as the Adder. In contrast, the purpose of
the Subtractor is to perform a subtraction to obtain a feedback signal
for resetting the HD signal. Therefore, the Subtractor takes ACD and
ECD as the input to generate the HD signal according to

𝜃𝐴 = (𝛽𝐿 − 𝛼𝐿 + 360◦) mod 360◦ (11)

Therefore, each conjunctive cell’s activity corresponds to a certain ECD
𝛼𝑖 and ACD 𝛽𝑖. The represented ECD and ACD of neuron 𝑖 can be
obtained by

𝛼𝑖 =
2𝜋
√

𝑛
(
√

𝑛 − 1 − (𝑖 mod
√

𝑛)) (12)

𝑖 =
2𝜋
√

𝑛
(
√

𝑛 − 1 − (𝑖 div
√

𝑛)) (13)

hese angular distances determine the activity of neuron 𝑖 according to

(𝛥𝛼𝑖𝐿, 𝛥𝛽𝑖𝐿) = 𝐴 + 𝐵𝑒0.5𝐾(𝑐𝑜𝑠(𝛥𝛼𝑖𝐿)+𝑐𝑜𝑠(𝛥𝛽𝑖𝐿))

= 0.0504𝑒2.645(𝑐𝑜𝑠(𝛥𝛼𝑖𝑙 )+𝑐𝑜𝑠(𝛥𝛽𝑖𝑙 )) (14)

For example, a Subtractor with 36 neurons is visualized in Fig. 5b,
where the ECD direction is set to 𝛼𝐿 = 270◦ and ACD to 𝛽𝐿 = 90◦.
Thus, the HDC 𝑖 = 3 receives the largest input as it lies on the diagonal
extension of the two-dimensional activity peak of the conjunctive cells,
and therefore is the most active HDC. In conclusion, this setup of
neurons is capable of calculating the HD feedback signal with given
ECD and ACD.

4.4.5. Position encoder
The position encoder stores the local allocentric position of the

agent in relation to the position of the visual landmark, and additionally
interacts with the ACD cells. First, it reads out the encoded ACD
information from the ACD cells and associates it with the allocentric
position of the agent. Second, it restores the ACD information according
to the agent’s position, and subsequently resets the firing activity in the
ACD cells. However, it should be noted that the position encoder is not
modeled in a biologically plausible way and its functionality is only
abstractly defined.

4.5. Synaptic weight

The calculation of the synaptic weights between the components
of the calibration circuit is adapted from [18], which aims to obtain
a stable activity described by the firing rate model of each cell type
36
(See (5), (6), (10), and (14)). The input current 𝑢𝑖 at each post-synaptic
neuron 𝑖 is determined by summing up the input firing rates 𝑓𝑗 from the
pre-synaptic neurons 𝑗 multiplied with their corresponding connection
weights 𝑤𝑖𝑗 . Hence, the connection weights need to be adjusted so that
he desired input current 𝑢𝑖 is reached. In [18], the continuous error
unction describing the difference between the desired input currents
nd obtained input currents is defined in the Fourier domain as

=
𝑛−1
∑

𝑎=0
|𝑢̂𝑎 − 𝑤̂𝑎𝑓𝑎|

2 + 𝜆
𝑛−1
∑

𝑎=0
|𝑤̂𝑎|

2. (15)

𝑢̂𝑎, 𝑓𝑎, and 𝑤̂𝑎 are the 𝑎th Fourier coefficient of the input current vector,
firing rate vector, and the synaptic weight vector, respectively. 𝜆 is a
regularization factor to control the shape of the weight function. The
objective goal is to minimize the error 𝐸 and the synaptic weight can
be calculated in the Fourier domain by solving 𝑑𝐸

𝑑𝑤̂𝑎
= 0. Therefore, the

ynaptic weight can be described as

̂ 𝑎 =
𝑢̂𝑎𝑓𝑎

𝜆 + |𝑓𝑎|
2

. (16)

Detailed explanations can be found in [18,43]. According to (2), the
desired input current 𝑢 can be calculated as 𝛷−1(𝑓 ). Then, the pseu-
docode for calculating the synaptic weight is given in Algorithm 1.
Since all the synaptic weights in the calibration circuit can be calculated
by following this general procedure and the limited page space, we omit
the detailed descriptions of the weight calculations and only provide
the code of our algorithm at here.1

5. HDC calibration mechanism

The HDC calibration model consists of two mechanisms that work
in parallel: the feedback loop and the ACD control.

5.1. Feedback loop

As shown in Fig. 3, the feedback loop consists of HDCs, ECD cells,
the Adder, the Subtractor, and ACD cells. The feedback loop covers two
functionalities. On the one hand, it calculates the ACD information with
the ECD and HD information. On the other hand, it resets the activity
of the HDCs according to the activity in the ECD cells and ACD cells.
The feedback loop is driven by two inputs. The first input is the angular
velocity that will be integrated by the HDCs. The second input is the

1 https://github.com/BZSROCKETS/HDC_calibration.

https://github.com/BZSROCKETS/HDC_calibration
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Fig. 6. (a) The agent associated one ACD to the yellow colored place field when the agent perceived the visual landmark the first time in this place field. When revisiting this
yellow place field, the associated ACD is used to restore the ACD cells’ activity. (b) The position encoder stored the agent’s position from the first glance and the landmark vector
which is created with distance and ACD information. The ACD in the agent’s current position is estimated by adding the vector to the agent’s position from the first glance (green)
to the landmark vector. (c) Visualization of the toy environment. Either a proximal visual cue or a distal visual cue is used in this environment.
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Algorithm 1: Calculate Connection Weights
Input: 𝑛: number of neurons

𝜆: flatness parameter
𝛬: vector containing flatness parameters 𝜆
𝐹 : desired firing rates of 𝑛 presynaptic neurons
𝑈 : desired currents of 𝑛 post-synaptic neurons
𝐸: summation of squared error for 𝜆

Output: 𝑊𝑜𝑝𝑡: the optimal connection weights
# initialize E with infinity
𝐸 ∶= ∞;
# compute Fourier transforms (FFT)
𝐹 ∶= FFT(𝐹 );
𝑈̂ ∶= FFT(𝑈 );
for 𝜆 in 𝛬 do

# calculate the Fourier coefficients of W
for 𝑖 = 0...𝑛 − 1 do

𝑊̂ [𝑖] = 𝑈̂ [𝑖]𝐹 [𝑖]
𝜆+|𝐹 [𝑖]|2

;
end
# compute the inverse Fourier transformation
𝑊 ∶= FFT(𝑊̂ );
# compute the sum of squared errors and store it
𝑋 ∶=

∑𝑛−1
𝑖=0 (𝑈 [𝑖] −𝑊 [𝑖]𝐹 [𝑖])2 + 1

𝜆 ;
if 𝐸 > 𝑋 then

𝑊𝑜𝑝𝑡 ∶= 𝑊 ;
𝐸 = 𝑋;

end
end
return 𝑊𝑜𝑝𝑡;

visual information when a visual landmark is in the agent’s field and
range of vision. Depending on the presence of a visual landmark, the
feedback loop will be switched on or off.

If both inputs are present, the HD ring and the ECD ring project onto
the Adder, which in turn stimulates the ACD ring. Then, the ACD cells
nd the ECD cells project together onto the Subtractor, which computes
he HD feedback signal. This means that the HDCs receive input that
s based on the activity in the ACD cells and ECD cells. If there is no
andmark visible to the agent, the visual detector will not project on the
CD cells and no activity peak will emerge at the ECD cells. Therefore,
o feedback signal will be created, as the Subtractor is driven by the
CD cells and the ECD cells that exhibit no activity peak.
 c

37
5.2. Allocentric cue direction control

When the feedback loop is switched on, the position encoder will
interact with the ACD cells. It can either store ACD information or
reset the activity in the ACD cells according to previously restored
ACD information. The processing of reading and resetting the ACD
information can be conducted using two alternative strategies, namely
the place-encoding feedback based on place field matrix (PFM-based
calibration) [20] and our proposed place encoding feedback based on
the first glance learning (FGL-based calibration). In both modes, the
position encoder stores the ACD information, which is obtained by
egocentrically observing a visual landmark. Subsequently, the stored
ACD information is used to correct the accumulative HD errors when
observing the visual landmark again.

PFM-based calibration. The idea of PFM-based calibration was devel-
oped in [20] and is adapted as a benchmark for comparison in this
paper. The allocentric direction of the cue (ACD) is encoded via a place
field matrix, in which each matrix element corresponds to a certain
squared spatial area around the landmark, as illustrated in Fig. 6(a).
The center of the place field matrix is placed at the position of the
visual cue and the space covered by the matrix is decided by the visual
field of the agent. The number of place fields can be finely tuned. In
the example in Fig. 6(a), the dimension of one place field is set to
1 unit and the matrix covers 4 × 4 units. Each place field will store
he ACD information when the agent is in this field and it will reset
he activity ACD cells with the encoded ACD information, when the
gent revisits this place field again. However, the error of this method
s highly related to the fineness of the place field matrix.

GL-based calibration. We propose the first glance learning (FGL)
echanism, in which the position encoder stores all the necessary

nformation of a visual landmark at once, which is visualized in
ig. 6(b). When a landmark is perceived by the agent for the first time,
he position encoder stores the distance vector between the agent and
he visual cue as well as the ACD information. The agent will reset its
D once the cue is observed again within its visual field at any place. To

eset the HD, the agent performs a distance vector addition to estimate
he current ACD at the new location where it perceives the cue again.
ubsequently, this newly obtained ACD is used to reset the ACD cells’
ctivity, which is used to reset the HD via the Subtractor.

The idea of this mechanism is to allow the agent to calibrate the HD
rror as soon as a visual cue is perceived, while only storing information
hat animals can infer using their senses. As supported by neurobiology
indings, the distance vector between the agent and the landmark

an be obtained with grid cells and visual perception. However, in
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Fig. 7. HD error plot for a 60 s run in the toy environment. Left: A distal cue is placed at position (20, 0). The timestamps 9.5 s and 19.8 s indicate exemplary moments when the
visual landmark is in sight. The timestamp 2.5 s describes the last moment when the visual landmark is in sight during the first circular turn of the agent. Right: A proximal cue is
placed at (1.05, 0). The timestamps 9.8 s and 20.2 s indicate example moments when the visual landmark falls in sight. Timestamp 2.5 s describes the last moment when the visual
landmark falls in sight in the first circular turn of the agent.
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this work, this distance vector information is directly acquired from
simulation or real-world experiments, which is out of our scope. Thus,
this mode accounts more for mimicking the calibration behavior found
from animals than designing a neural vector computing circuit.

6. Experiments

In this section, we will evaluate the performance of the proposed
HDC calibration network in both simulations and real-world implemen-
tations.

6.1. Simulations

All the simulation tasks are performed in PyBullet [45], in which a
simulated mobile robot is controlled to move in an environment with
one visual landmark. The robot is equipped with 16 proximity sensors
that are circularly distributed around itself and used to detect any ob-
stacles. Then, with the help of a Braitenberg controller [46], the robot is
able to move freely without colliding with any walls. One camera with
a viewing angle of 90◦ is mounted on the top of the robot to perceive
visual landmarks. The HDC calibration network is simulated with a step
size of 0.5 ms. The PyBullet is simulated with a step size of 50 ms.
In each task, four approaches are tested, namely, no HDC calibration,
simple feedback calibration, place-encoding calibration based PFM, and
the proposed place encoding calibration based on first glance learning.

The toy simulation environment is a square box with the upper left
corner positioned at (−1, 1) and the lower right corner at (1,−1) (See
Fig. 6(c)). The blue circle placed in the environment represents the
visual landmark. The agent is initially placed at (0,−0.5) and oriented to
the right (normal vector (1, 0) which corresponds to 0◦). Each episode
is set to 60 s, during which the agent is able to drive almost six full
ounterclockwise circles. The agent’s angular velocity varies between
0◦∕𝑠 and 40◦∕𝑠 over time.

6.1.1. Distal landmark
In the first simulation environment, the box contains a distal visual

andmark at (20, 0). The resulting HD errors over time are plotted in
Fig. 7. All four calibration setups show negative HD errors, which
indicates that the shift of the HDCs’ activity peak falls behind of the
steering of the agent due to its own neural dynamics. The blue curve
shows the HD error evolving over time with no calibration. The HD
error increases limitlessly with a slope of −0.05◦∕𝑠. In contrast, all the
other three calibration methods limit the HD error to a lower bound.

The FGL-based calibration and the simple feedback calibration show
the best accuracy in an environment with a distal landmark. While, the
PFM-based calibration performs the least accurately and exhibits HD
38
errors up to −6◦. Since the robot starts at a position where the visual
landmark is in sight, the feedback loop is active from the beginning of
each episode. The landmark is in sight until 2.5 s in the first lap. During
this period, the feedback loop will introduce additional errors than the
setting with no calibration, since its internal computation is based on
the HD and ECD information that are already a few steps old. In this
phase, the ACD information is associated with the visited place fields.
Therefore, the smallest error included in the ACD is generated right at
the beginning of the episode, which is around −1◦. When the landmark
is out of sight (e.g., from 2.5 s to 9.5 s), the HD errors of all three
calibration models increase over time with the same slope as the model
without calibration. When the agent perceives the landmark again (at
9.5 s, 19.8 s, etc.), the simple feedback calibration immediately calibrate
the HD error to −0.8◦, which resets the HD via direct projections from
the ECD cells, whenever the landmark is in the agent’s vision field.
As the landmark is not in infinite distance, small parallax errors are
introduced for the simple feedback calibration. At the same time, the
FGL-based calibration also starts to calibrate and maintain at a level
with very small errors until the visual cue is out of sight. For the PFM-
based calibration, the HD error increases first and right after this, the
ACD corresponding to the currently occupied place field is restored
and used to reset the HD signal to almost −1◦. During the calibration
phase (e.g. from 9.5 s until ≈13 s), the HD error increases again due to
he limitation of the PFM method. The calibration accuracy is highly
elated to the granularity of the place field matrix, in which one unit
ector describes the ACD information that is associated with this place
ield. However, the agent may be located at different positions within
ne single place field. Hence, the associated unit vector to a place field
annot accurately represent the ACD at different positions within one
lace field. Therefore, parallax errors are introduced when the agent
evisits a known place field but traverses positions that are different
rom the first time when the ACD is stored.

.1.2. Proximal landmark
In the second setup, a proximal visual landmark is placed at position

1.05, 0). The experiment results are also shown in Fig. 7. The FGL-based
calibration performs on the same level as the task when using the distal
landmark, which demonstrates its applicability to either proximal or
distal visual cues. As explained above, the simple feedback calibration
is not applicable to tasks with proximal cues, as it introduces an error
over −25◦, which is not fully visualized in Fig. 7. The place encoding
alibration performs slightly better than with the distal landmark, but
till introduces a larger error than the path integration.

Based on the evaluation results in the toy environment, we can
onclude that the simple feedback calibration mechanism is not appli-
able in environments with proximal cues. The PFM-based calibration
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Fig. 8. Illustration of the real-world experiment setup and the trajectories of the robot. The dark blue graph shows the route of the agent. Marker ‘‘M’’, ‘‘S’’, and ‘‘E’’ represent
the position of the landmark, starting position, and the ending position, respectively. The gray dashed square shows the visible field of the landmark. The four yellow stickers are
used as referential points to infer the agent’s position (red sticker) during a run.
Fig. 9. Illustration of the HD error and the corresponding angular velocity during each run in the real-world experiment.
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s able to calibrate the HD error with a limited bound, but does not
erform well compared with the proposed mechanism based on FGL,
hich can calibrate the HD error with high accuracy (less than 2◦).
ote the measurement noise is fully considered and the performance
f the proposed method is proved to be robust against the noise. In
he following section, we will further show the performance of the
roposed method with real-world noise generated from IMU sensors.

.2. Real-world experiments

The proposed HDC calibration model is also evaluated in the real
orld by performing an indoor robotic navigation task, which is il-

ustrated in Fig. 8. The robotic car is equipped with a Raspberry Pi
hat receives drive commands from the human operator. The on-board
nertial measurement unit (IMU, BNO055 [47]) is used to track the
round truth of the directional heading and the angular velocity of the
obot. The angular velocity is used to estimate the directional heading
f the robot by using the HDC model proposed in [43]. An RGB camera
ounted above the experiment field is used to track the position of

he car, in relation to the coordination system that is set up by four
ellow markers on the floor. A proximal visual landmark is placed in
he middle of the field and it can only be observed within a minimum
ange of 0.5 m, which means the visual landmark is approximately
 t

39
isible to the agent only when the agent is located within the dashed
quare in Fig. 8. The positions of the landmark are set separately for
ach run to ensure that the agent perceives the landmark from different
ngles in different runs. The number of the place field matrix elements
hat are used for the PFM-based calibration is set to 3000 × 3000.

.2.1. First run
In the first run, the agent is manually controlled to run along one

ingle circle. The trajectory of the robot is shown in the middle of
ig. 8(b). The landmark is positioned at (1850, 650), which is repre-
ented by the marker ‘‘M’’. The starting position and end position
re marked by ‘‘S’’ and ‘‘E’’, respectively. Therefore, the agent is able
o perceive the visual landmark twice in this single lap. The angular
elocity during this run is shown in Fig. 9(a), which is up to 120 ◦/s.
ig. 9(a) also shows the HD errors of three different calibration meth-
ds, namely, no calibration (path integration), PFM-based calibration,
nd FGL-based calibration. The simple feedback calibration is not eval-
ated in the real world, since it is not applicable to tasks with proximal
ues. The agent starts to turn at 6 s and perceives the visual landmark
or the first time from 6.7 s to 7.8 s. When the robot discovers the
isual landmark for the first time, the calibration mechanism introduces
n HD error due to the information delay in the feedback loop of
he proposed system. The FGL-based place encoding calibration model



Z. Bing, D. Nitschke, G. Zhuang et al. Journal of Automation and Intelligence 2 (2023) 31–41

t
c
a
a
u
a
t
l
a
c
c
i

7

w
p
t
s
H
T
t
t
i
g
h

D

c
i

D

quickly reduces the HD error to reach almost the same error level
as the model without calibration at 7.8 s. In contrast, the PFM-based
calibration keeps a constant offset to the blue line describing the HD
error of the model without calibration, since it is only able to calibrate
the HD error in a new view of the landmark at the same place field.
The landmark is out of sight after 7.8 s and perceived for the second
time at 22.6 s. Then, the FGL-based calibration model resets the HD
error to 0.48◦. The reason for the small error at the end arises from the
parallax error introduced while one-shot learning the landmark vector
at the beginning of the episode. However, it limits the HD error to a
maximum, and therefore, improves the performance compared to the
model with no calibration and to the PFM-based calibration. The blue
and the gray graph show almost the same HD error at the end. As the
agent does not revisit the same place field when the agent has another
view on the landmark, the PFM-based calibration never restores the
ACD to calibrate. It can be concluded that the calibration model using
FGL performs best as it resets the HD error when the landmark is seen
for a second time.

6.2.2. Second run
The second run is performed to evaluate calibration models when an

agent revisits a landmark several times, and additionally performs one
phase of left turns as well as one phase of right turns. Fig. 8(c) shows
the trajectory of the agent and its starting position and end position.
The landmark is placed at (1350, 400). The HD error and the angular
velocity are plotted in Fig. 9(b). The agent starts to turn left until 20 s
and continues to turn right with a negative angular velocity. At 3.2 s
he agent perceives the landmark for the first time. In this phase, both
alibration models activate the feedback loop, and therefore introduce
parallax error in the HD signal. From this moment, the offset between
ll curves stays almost constant through the path integration phase
ntil 40.35 s. The PFM-based calibration increases the HD error as the
gent perceives the visual landmark in a new place field. In contrast,
he FGL-based calibration is able to reduce the HD error at this point. In
ine with the results from the first run, the calibration model using FGL
chieves the lowest HD error at the end. However, the model without
alibration performs second best, and thus better than the PFM-based
alibration. The reason is that the agent is not revisiting a place field
n which it already had a look at the visual landmark.

. Conclusion

This paper presents a biologically plausible HD calibration model,
hich uses visual landmarks to calibrate the HD error introduced by
ath integration. Our HD calibration model can transform the direc-
ional information of a visual cue from the egocentric coordination
ystem to the allocentric coordination system, with the help of the
D information of the agent in the allocentric coordination system.
herefore, by associating the position information of the agent with
he allocentric direction information of a visual cue, our method allows
he agent to calibrate its internal sense of the direction when revis-
ng a known visual landmark. The experimental results demonstrated
reat performance in terms of accuracy for calibrating the directional
eading and real-world capability compared with previous studies.
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