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Abstract

Spiking Neural Networks (SNNs) are the third generation of Artificial Neural Networks
(ANNs) that mimic the biological dynamics observed in neuroscience. These networks use
discrete electrical impulses, or spikes, to represent, transport, and process information.
The encoding of the input signal into a spike train is a critical step in enabling efficient
SNNs for signal processing applications.

Nature has perfected the low-power processing of data and signals throughout thou-
sands of years. Inspired by this efficient way of processing, researchers have developed
abstractions and simplifications in the form of artificial neurons. SNNs resemble this
biological inspiration more closely. They have shown several advantages over traditional
ANNs, including reduced computational complexity, smaller architectures, higher noise
robustness, and improved energy efficiency.

The main contribution of this thesis is the proposal of a data stream encoding method
based on Resonate-and-Fire (R&F) neurons. These neurons transform sequential input
streams into spatio-temporal spike trains, where each spike carries information about
the individual frequencies, amplitudes, and phases that form the signal. The spatial-
dimensional spike trains improve the classification performance of the subsequent SNN
population.

For the validation of the proposed encoding, we conducted a series of selected signal
processing applications like radar interference detection, phase detection, and angle-
of-arrival estimation. The results demonstrate that the R&F encoding outperforms
existing encoding methods in terms of efficiency and the accuracy of the subsequent SNN
population. The proposed SNN architectures show comparable performance to state-
of-the-art solutions while providing a stream processing capability, faster classification,
noise suppression ability, and sparse spike events.

The developed architectures provide evidence that SNNs with R&F encoding are viable
alternatives to traditional methods and contribute to understanding the information
processing within spiking neurons. The capability to directly process sensor signals
enables highly efficient hardware-accelerated neuromorphic signal processing in various
energy-constrained systems.
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Zusammenfassung

Pulsende Neuronale Netze (SNN) sind die dritte Generation künstlicher neuronaler Netze
(ANNs), die neurowissenschaftliche Erkenntnisse in deren Dynamik abbilden. Diese
Netzwerke nutzen diskrete elektrische Impulse, sogenannte Spikes, um Informationen
darzustellen, zu transportieren und zu verarbeiten. Die Kodierung der Eingangssignale in
Pulsfolgen ist ein entscheidender Schritt, um effiziente SNNs für Signalverarbeitungsan-
wendungen zu ermöglichen.

Die Natur hat über Jahrtausende die energiesparende Verarbeitung von Daten und
Signalen perfektioniert. Inspiriert von dieser effizienten Art der Verarbeitung haben
Forscher Abstraktionen und Vereinfachungen in Form künstlicher Neuronen entwickelt.
SNNs sind dem biologischen Vorbild am ähnlichsten und modellieren eine Vielzahl von
Beobachtungen aus der Neurowissenschaft. Sie haben gegenüber den traditionellen ANNs
mehrere Vorteile, darunter eine geringere Rechenkomplexität, kleinere Architekturen,
eine höhere Robustheit gegenüber Rauschen und eine verbesserte Energieeffizienz.

Der wichtigste Beitrag dieser Arbeit ist eine Methode zur Kodierung von Datenströmen
in Pulsfolgen auf der Grundlage von resonierenden Neuronen. Diese Resonate-and-Fire
(R&F) Neuronen wandeln sequenzielle Eingabeströme in räumlich-zeitliche Pulsfolgen
um, wobei jeder Spike Informationen über die einzelnen Frequenzen, Amplituden und
Phasen enthält, die das Signal bilden. Die räumlich-dimensionalen Pulse verbessern die
Klassifizierungsleistung der nachfolgenden SNN-Population.

Die Validierung der vorgeschlagenen Kodierung wurde anhand drei ausgewählter Sig-
nalverarbeitungsanwendungen durchgeführt, z. B. die Erkennung von Radarinterferenz,
die Phasenerkennung und die Schätzung des Einfallswinkels zur Lokalisierung von Objek-
ten. Die Ergebnisse zeigen, dass die R&F Kodierung existierende Kodierungsmethoden
in Bezug auf die Effizienz und die Genauigkeit der nachfolgenden SNN-Population über-
trifft. Die vorgeschlagenen SNN-Architekturen zeigen eine vergleichbare Leistung zu
aktuellen Lösungen und bieten gleichzeitig die Fähigkeit zur Stream-Verarbeitung, einer
schnellere Klassifizierung, die Fähigkeit zur Rauschunterdrückung und die Verwendung
von spärlichen Pulsen.

Die entwickelten Architekturen belegen, dass SNNs mit R&F Kodierung wertvolle
Alternativen zu herkömmlichen Methoden sind und zum Verständnis der Informationsver-
arbeitung in Neuronen Populationen beitragen. Die Fähigkeit, Sensorsignale direkt zu
verarbeiten, ermöglicht eine hocheffiziente hardwarebeschleunigte Neuromorphe Signalver-
arbeitung in verschiedenen energiebeschränkten Systemen.
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1 Introduction

Artificial Neural Networks (ANNs) are a cutting-edge technology in many modern
applications. Due to their ability to learn non-linear correlations, they are superior to
classical deterministic methods. Their use is established in applications including image
and speech recognition, robotic control, and sensory processing. The first vehicle with
a Neural Network (NN) automated road following system was published in 1988 [1]
and fueled the interest in autonomous driving cars. Significant milestones of NNs are
competing games like chess, Go, and arcade video games [2], [3]. Recent advances use
natural language processing to interact with human beings, answer questions, generate
creative content, and create executable software code. NN methods have become essential
to modern computing systems and our daily life.

Deeper network architectures consisting of multiple layers are computationally more
powerful, making data pre-processing less relevant. Since deeper networks consume
immense energy during training and utilization, they do not apply to memory and
power-limited edge devices [4]. The GPT-3 model is estimated to consume 358 kW [5],
while the human brain has a peak energy consumption of 20 Watts [6]. Since power
consumption includes the processing of every sensory input simultaneously, one has to
consider that the brain consumes less energy for a specific task. The current discussion
about global warming has increased the trend of reducing the carbon footprint of such
trainable computer systems with approaches like Green AI [7].

ANN algorithms are also considered a fundamental element of autonomous driving,
where the driving application should be real-time without cloud interaction. In particular,
energy consumption is an increasing concern without compromising the driving range
when processing and fusing sensor data from the camera, Lidar, geographic positioning,
gyroscope, and Radio Detection And Ranging (radar) sensors. Current radar sensors
consume around 3.3 Watts [8]. At the same time, in nature, bats use echolocation as
a primary environmental sensor with a power cost of 0.67 Watts during rest, including
signal transmission, receiving, and processing [9]. Since the bats synchronize their wing
beat to the pulse transmission, they can further reduce power consumption [10]. Bat’s
sensing functionality is comparable to the general idea of radar, differing in the signal
transmission by the bat’s tongue instead of antenna elements. The sensors extract the
object’s location with the reflections of the transmitted signal, which are the concepts
for radar and bat’s echolocation. While bats use frequencies from 25 to 150 kHz, the
automotive radar frequency is about 77 GHz. Two receiver channels are sufficient to
sense the three dimensional environment by analyzing the differences in amplitude and
phase [11]. Thus, while hunting, the bats use an increased pulse repetition frequency of
up to 200 pulses per second [11], and at rest, they can passively listen to the sound of
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1 Introduction

targets [12]. Bats also experience the problem of signal interference and use frequency
hopping, inspiring radar interference mitigation [13].

One promising biological-inspired network approach is the Spiking Neural Networks
(SNNs) because of their advantages over prior NN. They are seen as the third generation
of NN [14]. All generations use the same concept, where an activation function is applied
to the multiplication of the input with real-valued weights and an additional bias. The
weights and biases generate a set of hyperplanes in the n-dimensional space to separate
regions into distinct areas.

The history of SNNs can be traced back to 1943, when Warren McCulloch and Walter
Pitts proposed the first neuron model [15]. The neuron is called perceptron, a binary
computational unit that uses the ”all-or-nothing” behavior observed in the nervous system.
The perceptron is the fundamental element of network architectures like the multi-layer
perceptron, Hopfield nets, and Boltzmann machines [14]. Afterward, in 1952, Hodgkin
and Huxley discovered the mechanism of the action potential that travels along an axon.
They conducted experiments on the giant axon of the squid, which allowed them to
accurately measure the electrical activity of a single neuron and build the foundation for
more complex computational units. The second generation of NNs replaces the threshold
activation function with non-linear functions, like sigmoid, tanh, or Rectified Linear Unit
(ReLU). The universal approximation theorem states that second-generation networks can
approximate any linear and non-linear function [16]. The support for learning techniques
based on gradient descent, like backpropagation, is another distinguishing feature of this
network generation [17]. The current state-of-the-art uses second-generation concepts
while interpreting the biological firing rates in a step-wise representation. However,
[18], [19] demonstrated that the visual processing speed conflicts with the information
processing through firing rates since the individual neuron has a firing frequency below
200 Hz [20]. In this work, we name the second-generation networks ANNs since they are
less biologically inspired.

In contrast to the floating point communication of the second generation, the third
generation uses binary events to transport information. The main difference between
the perceptron and the spiking neuron is the processing over time, meaning that the
neuron dynamics have a local memory to remember short-term information. In general,
there are many neuron models. However, from a connectionist or engineering perspective,
models like the Hodgkin-Huxley are too computationally complex, and simpler versions
such as the Leaky-Integrate-and-Fire (LIF) are more promising. In general, SNNs have
the following advantages over ANNs:

• Temporal dynamics: These spiking neurons operate in the temporal dimension
since the neuron dynamics have a local state that changes for incoming events and
leaks historical information over time. [21], [22]

• Event-driven: SNNs process information asynchronously and only at incoming
events, reducing the computational burden and making them more effective. [21],
[23], [24]
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• Efficient structure: Traditional ANNs use a layer-wise representation, while SNNs
operate as a population where any connection could exist, leading to a lower
neuron count. Thus, the output neuron can directly connect with the input neuron,
improving the information flow but increasing the training complexity. [25], [26]

• Distributed processing: The sparse network structure and the binary communication
allow distributed processing in multicore platforms like SpiNNaker [27] because of
the reduced communication between the processing elements or between subnetworks
which can be implemented in analog or digital hardware. [28], [29]

• Speed: The neurons can provide an early estimation of the results, which further
improves over time. Also, the possibility to directly process the continuous input
stream and communicate between neurons by binary events removes additional
latency. In general, the sparse connectivity improves the speed of the SNNs. [24],
[30]

• Robust: The threshold function of a spiking neuron operates as a noise filter, and
a population of neurons has an inherent noise activity, which makes the network
more resilient to noise. [31], [32]

• Hardware-efficient: The computational effort of the synaptic weights in digital
hardware reduces from a multiplication to an addition due to the binary events
between neurons. An electrical circuit often describes the biological neurons,
enabling an efficient analog implementation. [33], [34]

• Adaptive & local plasticity: SNNs take advantage of local adaptivity mechanisms
such as the spike rate adaptation to adapt to temporal changes and reduce the spike
count. Adapting the synaptic weights by limiting the number of synaptic transmit-
ters enables a local plasticity mechanism. In contrast to traditional backpropagation
optimization, local plasticity provides a short-term and long-term adaptation that
can even provide real-time local learning in neuromorphic hardware. [35], [36]

The information must be converted to spikes to gain from the advantages of SNNs
because these networks use discrete events to represent and process information, unlike
ANNs, which use continuous values. We call the transformation into spikes “encoding”
and the conversion from spikes “decoding”. Decoding is mainly essential in neuroscience to
understand the activity of the brain. One impressive example is decoding the sensorimotor
cortex’s brain activity of persons with articulate speech loss [37]. A traditional ANN
interprets the recorded spike activity and converts it into a written language such that
people can “speak” again. This setup demonstrates that the current research has not
fully understood the information content in spikes.

Thus, encoding information is essential for the overall system’s efficiency during the
architectural design of an SNN. Encoding accomplishes two tasks: representing the crucial
information into spikes while removing unnecessary information. An incorrect encoding
will lead to inaccurate and inefficient processing because too many spikes cost more
computations, and there is no information to process without a spike event. Currently,
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1 Introduction

there is not yet a single solution that fits most applications. However, with this work, we
contribute to this by proposing a frequency-selective encoding scheme for radar signals.

Inspired by the biological observation of bats and the promising lower energy consump-
tion of SNNs, we investigate and develop spiking architectures for radar signal processing.
Therefore, thinking about temporal spike events, developing new architectures, signal
representations, and modifying established learning methods is required. The recent
adaptation of the non-differentiable activation function of the SNNs enables the utilization
of gradient-based backpropagation optimization [38], the gold standard for training ANNs
[17]. Therefore, the main objective of this dissertation is to investigate the problem
of signal-to-spike encoding for SNNs in radar signal processing. Specifically, we will
build on the recent advances and apply frequency-selective encoding to applications such
as interference detection, phase detection, and angle-of-arrival estimation. Our goal
is to contribute to understanding SNN-based signal processing and demonstrating the
conceptual advantages of SNNs compared to ANNs.

1.1 Research Questions and Scope

Main Research Question
How to process sensor signals with SNNs efficiently?

Biological observations inspire this overall research question because nature uses sparse,
event-driven, and asynchronous information to increase the system’s efficiency. Therefore,
the motivation is to connect the SNNs directly to analog sensors by representing the
compressed data in temporal spikes. The contribution of this thesis focuses on the
conceptual design and analysis of SNNs that directly process the radar time-domain
signal with a suitable signal encoding. We narrow the concepts to applications like radar
interference detection, phase detection, and radar angle-or-arrival estimation. Accordingly,
we break down the overall Research Question (RQ) into the following four questions:

One key element of spiking networks is transporting information through sparse spike
events, usually represented as binary events. Nowadays, most data exists in a floating
or fixed point representation, and traditional networks are designed to use this kind
of data. While the human brain uses spikes, we adjust our data representation to a
human-readable form. Due to evolution, nature has developed efficient methods to
convert information, and there is currently no single method to convert any data into
spatio-temporal spikes. Consequently, we define our first RQ:

Research Question 1
How to transform temporal data into spike representation for processing with SNNs?

Current state-of-the-art automotive radar extracts information about an object’s range,
velocity, and angle from the frequency and phase. The range corresponds to the frequency
and the angle to the phase of multiple receive channels. Bats perform echolocation by
extracting the phase differences of the received echo, which is an inspiration to directly
extract the frequency and phase from a multi-tone signal and convert it into a spike
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1.2 Contributions

representation without additional pre-processing. Accordingly, we raised the following
RQ:

Research Question 2
How can the frequency and phase of the received radar signals be represented in spike-
events?

In order to increase the energy advantage of SNNs, the entire system must use sparse
asynchronous processing. Therefore, it is crucial to design concepts and architectures
which use fewer pre-processing steps and apply SNNs to temporal data. Additionally, en-
ergy and memory constrains limit near-sensor processing. To demonstrate the processing
of the time-domain signal with frequency selective encoding, we select the application
of interference detection while enabling stream processing without storing historical
information. This application demonstrates the pattern separability of different NN
architectures on a prediction and classification approach, answering the following RQ:

Research Question 3
Which NN and SNN architectures can detect outliers in the time-domain radar signals?

In the previous RQ, we focused on an application that detects patterns in the time-
domain signal. Therefore, we extend it with an example application that uses both
frequency and phase. In radar, the frequency mainly defines an object’s distance, and the
phase’s information depends on the relative reference point. On the one hand, the phase
change across consecutive chirps of one transmitter and receiver pair carries the velocity
of an object. On the other hand, the phase change between receiving antennas provides
an estimate of the angle-of-arrival. The velocity estimation needs an additional temporal
memory to compare the differences between two consecutive chirps, and the information
can also be received by analyzing the changes between the chirps. More challenging is
the estimation of the angles. Inspired by biological methods like the echolocation of
dolphins or bats, we investigate solutions for a spiking angle-of-arrival estimation in radar
applications. Thus, we define the following RQ:

Research Question 4
How to perform the angle-of-arrival estimation with SNNs on time-domain radar signals?

1.2 Contributions
Some parts of this thesis have already been presented at international peer-reviewed
journals or conferences. We provide the following journal publication with an overview of
existing methods to convert signals or images to spike events. The publication presents a
taxonomy of the different encoding methods, their biological inspiration, and example
applications in engineering. It is the basis to answer the first RQ 1, and its content is
reflected in Section 3 with an extension of the Resonate-and-Fire (R&F) encoding.

1. Daniel Auge, Julian Hille, Etienne Mueller, and Alois Knoll. A Survey of Encod-
ing Techniques for Signal Processing in Spiking Neural Networks. Neural
Processing Letters (2021). [39]
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1 Introduction

The first radar-based application is the detection of outliers on the time-domain signal.
The first concept with a traditional ANN was published at a conference, a basis for
developing SNN outlier detectors. The semi-supervised trained system consists of a
supervised, trained predictor and a threshold-based classifier. Its content is included in
Chapter 4, answering RQ 3 partly.

2. Julian Hille, Daniel Auge, Cyprian Grassmann, and Alois Knoll. FMCW radar2-
radar Interference Detection with a Recurrent Neural Network. In 2022
IEEE Radar Conference (RadarConf). [40]

Furthermore, RQ 3 also asks for SNN architectures, and therefore, we investigate
different encoding methods and architectures to solve the interference detection with an
SNN. In this thesis, Chapter 2.1.3 demonstrates an extended analysis of the architecture
search and validation with synaptic and spike sparsity methods and an investigation of
the different R&F rest and spike functions. The following publication at an international
conference demonstrates the generated concept and the best-performing SNN architecture.

3. Julian Hille, Daniel Auge, Cyprian Grassmann, and Alois Knoll. Resonate-and-
Fire Neurons for Radar Interference Detection. In 2022 International
Conference of Neuromorphic Systems (ICONS2022). [41]

Apart from interference detection, we use a phase detector system to investigate
the differences between the two current injection encoding methods. We describe the
theoretical background of the encodings in Chapter 3 and answer RQ 2. The spike
encoding with LIF or R&F neurons uses the neuron’s different inherent properties and
reacts differently to noise or signal superpositions. The comparison of the encodings is
shown in Chapter 5, and we have published the analog hardware implementation of the
phase detector in an international journal.

4. Hendrik M. Lehmann, Julian Hille, Cyprian Grassmann, Alois Knoll, Vadim Is-
sakov. Analog Spiking Neural Network Based Phase Detector. In IEEE
Transactions on Circuits and Systems I: Regular Papers. [42]

The following contributions are not directly a part of this thesis but have contributed
significantly to these publications in the research field of SNN concepts, applications, and
hardware realizations. First, we demonstrate speech recognition with R&F encoding and
compare it with the state-of-the-art. The end-to-end architecture uses directly the digital
audio signal to detect keywords like “off”, “on”, and more. We compare the complete
SNN architecture with the current state-of-the-art Mel-spectrum analysis. This work was
presented at an international conference.

5. Daniel Auge, Julian Hille, Felix Kreutz, Etienne Mueller, and Alois Knoll. End-to-
End Spiking Neural Network for Speech Recognition Using Resonating
Input Neurons. In 2021 30th International Conference on Artificial Neural
Networks (ICANN). [43]
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Further, we analyzed different binarization methods of sequential Range-Doppler-Maps
(RDMs) to classify hand gestures with an SNN. The different spiking architectures work
with varying forms of conversion of frame-based data. The temporal changes across the
RDMs are classified with the inherent temporal dynamics of the spiking neurons. The
publication was presented at an international conference, where the poster was rewarded
with the best poster award.

6. Daniel Auge, Julian Hille, Etienne Mueller, and Alois Knoll. Hand Gesture
Recognition in Range-Doppler Images Using Binary Activated Spiking
Neural Networks. In 2021 16th IEEE International Conference on Automatic
Face and Gesture Recognition (FG2021). [44]

Since this research is part of the KI-ASIC project [45], funded by the German Ministry
of Education and Research (BMBF), we evaluated the usage of SNNs for automotive
radar processing with the focus on a spiking Fourier transformation and the realization
of a spiking Constant False Alarm Rate (CFAR) algorithm. Besides, we provide some
future perspectives on where SNNs can be used in the radar signal processing pipeline.
The following joint journal contribution reflects knowledge gained by our research.

7. Bernhard Vogginger, Felix Kreutz, Javier López Randulfe, Chen Liu, Robin Di-
etrich, Hector A. Gonzalez, Daniel Scholz, Nico Reeb, Daniel Auge, Julian Hille,
Muhammad Arsalan, Florian Mirus, Cyprian Grassmann, Alois Knoll, and Chris-
tian Mayr. Automotive Radar Processing with Spiking Neural Networks:
Concepts and Challenges. Frontiers in Neuroscience: 414. [46].

Besides, we have investigated other automotive-related applications, like detecting the
exact motor position in an electrical engine. The motor position sensors are expensive,
and a precise prediction of the motor position provides better cost-efficiency. Thus, we
investigated using a spiking network to predict the position, a regression problem similar
to the radar signal prediction described in Chapter 4. We submitted this work to an
international conference.

8. Felix Kreutz, Daniel Scholz, Julian Hille, Jiaxin Huang, Florian Hauer, Klaus
Knobloch, Christian Georg Mayr. Continuous Inference of Time Recurrent
Neural Networks for Field Oriented Control. In 2023 IEEE Conference on
Artificial Intelligence. [47]

Additionally, the following contributions have been gained from the research of this
thesis through the conceptual investigation of neuron dynamics and encoding methods.
The findings of these conference publications demonstrate analog circuits of the LIF neuron
for the automotive application with optimized dynamics. While these publications are
not a direct part of this thesis, they contribute to understanding the hardware limitations
and the concept requirements to enable SNNs on dedicated analog hardware. The first
publication focuses on implementing an Izhikevich neuron for a logic gate application.
We test the usability of the circuit under automotive circumstances like temperature
range in real measurements. This work was published at an international conference but
is not elaborated on in this thesis.
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9. Hendrik M. Lehmann, Julian Hille, Cyprian Grassmann, Vadim Issakov. Spiking
Neural Networks based Rate-Coded Logic Gates for Automotive Appli-
cations in BiCMOS. In 2021 IEEE International Conference on Microwaves,
Antennas, Communications and Electronic Systems (COMCAS). [48]

The next work investigates the analog implementation of a LIF neuron with an invariant
spike generation by a new refractory period mechanism. Real measurements demonstrate
the stability of the output spike events. It was published at an international conference.

10. Hendrik M. Lehmann, Julian Hille, Cyprian Grassmann, Vadim Issakov. Leaky
Integrate-and-Fire Neuron with a Refractory Period Mechanism for
Invariant Spikes. In 2022 17th Conference on Ph.D. Research in Microelectronics
and Electronics (PRIME). [49]

Additionally, we investigated the R&F neuron in analog hardware to encode analog
signals directly. This work provides the first investigation of the concepts explained in
this thesis by enabling the direct conversion of the signals to spikes instead of using
complex and non-linear Analog-to-Digital Converters (ADCs). This work is published in
an international open-access journal.

11. Hendrik M. Lehmann, Julian Hille, Cyprian Grassmann, Vadim Issakov. Direct
Signal Encoding with Analog Resonate-and-Fire Neurons. In IEEE Access.
[50]

1.3 Structure

As shown in Figure 1.1, the thesis is divided into eight chapters. The first chapter
motivates and describes the RQs to resolve the identified knowledge gaps. Subsequently,
a brief description of the publications that are either directly or indirectly related to
this thesis is provided. Chapters 2.1 and 2.2 set the basic knowledge about radar and
SNNs. We provide the theoretical principle of radar and state-of-the-art signal processing,
focusing on interference detection and angle-of-arrival estimation. Afterward, Chapter
2.2 covers the basic biological-inspired neuron models, the synapse model, and training
principles with pseudo-gradient backpropagation and evolutionary optimization.

Chapter 3 sets the fundamental methodology of signal-to-spike encoding. It reviews
signal encoding techniques and describes the proposed R&F current injection method
that is the base of all successive chapters. During the Methodologies & Experiment
chapters, we demonstrate three radar-related applications that use R&F encoding. In
Chapter 4, we design a radar-to-radar interference detector. Therefore, we compare a
prediction-based and a pattern classifier approach with traditional networks and SNNs.
We further optimize and analyze the R&F encoded SNNs by different spike functions,
various reset methods, time constants’ optimization, spike count reductions like spike
regularization, and network sparsity. Before discussing the experiments’ results, we
analyze the noise robustness of the most promising architectures.
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1.3 Structure

Chapter 1
Introduction

Chapter 2.1
FMCW Radar

Chapter 2.2
Spiking Neural

Networks

Background & State-of-the-Art

Chapter 3
Signal Encoding

Fundamental Methodology

Chapter 4
Radar Interference

Detection

Chapter 5
Phase

Estimation

Chapter 6
Angle-of-Arrival

Estimation

Methodologies & Experiment

Chapter 7
Discussion &
Conclusion

Chapter 8
Outlook

Conclusion

Figure 1.1: Structure of this thesis

In Chapter 5, we use the phase-dependent variant of the R&F neurons to implement a
phase detector. We differentiate between the LIF and R&F encoding and describe their
system’s influence. After the software-based proof-of-concept, we realize the LIF-based
network in analog hardware.

In the last chapter of the methodologies, we describe how SNNs can detect the range and
angle information on the ADC-samples of the radar sensor. The concept demonstrated
in Chapter 6 uses the R&F neurons to encode the radar signals and detect the objects’
angles. Various experiments prove the angle estimator’s application compared to the
state-of-the-art. Afterward, the chapter ends with individual discussions of the findings.

Chapter 7 provides a discussion of the overall findings, implications, industrial relevance,
and limitations of the methodologies. Finally, Chapter 8 suggests an outlook on the
future research directions and topics of signal processing with SNNs.
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2 Background

The background and state-of-the-art of this thesis can be separated into two distinct
chapters of radar and SNN fundamentals. In the radar background, we explain the
general concept of environmental sensing and the specific properties of the signal during
radar interference. The SNN chapter focuses on the biologically inspired neuron models
and the synapses we use in the applications. Besides, we describe and motivate the
surrogate gradient learning to optimize the network weights.

2.1 Automotive Radio Detection and Ranging Sensor

Radar sensors are one of the key elements for autonomous driving and driver assistance
systems. These sensors sense the environment by reflecting high-frequency signals and
extracting the range, velocity, and angle-of-arrival for objects independent of lighting
and weather conditions. This technique is based on the findings about the reflectivity of
electromagnetic waves on metal surfaces [51]. The developer Christian Huelsmeyer is seen
as the explorer of the radar system with his patent in 1904 [52], where he described a
method to detect moving metal-based objects using electromagnetic waves. Today, radar
sensors have improved performance, size, price, and production volume. The sensors are
optimized for specific applications like the military, automotive industry, and human
sensing [8], [44], [53], [54]. The first ideas for automotive radar state back in the 1960s for
collision avoidance applications [55]. Research mainly focuses on the increasing carrier
frequency from the MHz range to the 76 GHz systems. In 1998 the first commercial 76
GHz automotive radar was available in the Mercedes-Benz S class built by Macom in the
USA [56].

The newest trend is 3D imaging radar [57] and Multiple-Input and Multiple-Output
(MIMO) sensors for high-resolution detection with up to 1728 virtual channels by using
36 transmit and 144 receive antennas through cascading of 12 Monolithic Microwave
Integrated Circuits (MMICs) [58]. The MIMO principle uses multiple transmit and receive
antennas to form a bigger virtual aperture to improve angular resolution in azimuth or
elevation. The primary motivation behind image-like radar systems is the replacement
of passive sensing systems, enabling robust and weather resistance sensing with high
angular resolution. In addition to the position information, the radar can provide the
velocity of an object by detecting the object’s changes during a short time. Currently,
the automotive industry uses Frequency Modulated Continuous Wave (FMCW) mainly
due to the lower complexity, high reliability, high performance, high production volume,
and low costs. Meanwhile, research evolved to alternative digital modulation schemes
such as Orthogonal Frequency-Division Multiplexing (OFDM) [56].
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Figure 2.1: MMIC block diagram: Simplified representation of the FMCW radar function
of a single transmit and receive channel. Separation of the transmit and receive pipeline.
Modified from the publication [40].

In automotive, the number of sensors increases with the higher level of automation.
Currently, radar applications are collision avoidance, adaptive cruise control, blind spot
detection, cross-traffic alert, and lane departure warning [59]. Therefore, a front position
radar cannot detect cross-traffic in a parking lot situation of the car’s backside. Since the
antenna layout of the radar sensor defines its application, we differentiate between short,
mid, and long-range radar. The long-range focus is on 10− 250 m, mid-range on 1− 100
m, and short-range on 0.15− 15 m, classified by [60]. Thus, the number of sensors per
vehicle increase drastically to support the driver with specialized sensors. Additionally,
there are approaches using the existing radar for car-to-car communication [61].

We describe the basic concept behind the current state-of-the-art automotive FMCW
radar, the signal processing pipeline, and the interference effect between sensors. We
set the focus of the chapter to the understanding of the applications. Also, we used a
company’s internal simulator for synthetic radar data generation based on the general
concept of the mathematical description.

2.1.1 Concept

Radar is the standard in the automotive industry to detect the surrounding environment,
and it uses high-frequency reflections to extract the range, velocity, and angle of the
targets.

Many modulation schemes modify the amplitude, phase, or frequency [62]. Due to
its small size, high resolution, low cost, mass production, and reliability, FMCW has
prevailed in the automotive sector [63]. An FMCW sequence uses consecutive linear
frequency chirps with adjustable slope, bandwidth, and timing, affecting the range and
velocity resolution. Figure 2.1 depicts a block representation of the MMIC for FMCW
radar where the signal source generates a sequence of frequency chirps, like demonstrated
in the figure. A ramp is defined by its timing of idle, ramp, and flyback, where the ramp
time defines mainly the properties of the MMIC limit, the range resolution, and the
flyback and idle time. The idle time ensures the signal settles before a new chirp after the
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2.1 Automotive Radio Detection and Ranging Sensor

jump back to zero frequency. Often the signal generated mixes the carrier signal and the
modulation signal. Currently, 77 GHz is the default carrier frequency in the automotive
industry. Nevertheless, there are also 24 or 60 GHz [64], [65]. The signal is forwarded to
the different transmit channels, and an optional phase shifter enables beamforming which
is not shown here. Before sending the signal through the antenna, it is amplified because
the signal power influences the maximum range of detectable objects. The receive signals
are amplified and mixed with the transmit signal to retain the targets’ Intermediate
Frequency (IF). An amplifier and bandpass filter preprocess the signal before the ADC
to reduce alias effects. Afterward, the digital filter improves the signal, and the valid
component of the signal are separated, meaning that the time between the chirps does
not carry information about the targets and can be removed. The targets are extracted
via signal processing from the time-domain signal, as described in Section 2.1.2.

To simulate the radar functionality and understand interference, we model the function
using the mathematical description inspired by [66], [67]. Accordingly, we define the
time-dependent frequency sweep of the transmitter in a phase-modulated signal form:

sTX[t] = ATX cos (φ[t]) (2.1)

φ[t] = 2π

∫ t

0

(
fc +

B

Tm
t

)
︸ ︷︷ ︸

instantaneous frequency

dt = 2πfct+ π
B

Tm
t2 + ϕ0, (2.2)

where the frequency increases linearly during the chirp duration Tm from the carrier
frequency fc by the chirp bandwidth B. The transmitter signal can have a phase offset
defined by ϕ0 for beam-steering. The targets reflect the transmit signal and return a
delayed wave based on the round-trip-delay-time td = 2r

c , proportional to the distance r
between the sensor and the target. The received signal for a single target

sRX[t] = α cos

(
2πfc (t− td) + π

B

Tm
(t− td)

2

)
(2.3)

alters by the transmission path attenuation α. Hence, the real amplitude of the received
signal depends on the antenna gain, transmit power, target distance, and target Radar
Cross-Section (RCS). The RCS depends on the size, reflectivity of the material surface,
angular direction, and geometric shape [68]. [69] provides a comprehensive overview
of RCS and highlights the difficulties in defining it. The well-known radar equation
approximates the receive power PR of a known target at distance R with an RCS σ [60]:

PR =
PTGTGRλ

2

(4π)3R4L
σ, (2.4)

where L combines losses in the sensor, P is the power of the transmitter T or receiver R,
and G is the gain. Hence, an increase in the distance reduces the received power and
makes it challenging to detect less reflective small objects at a far distance, like a child
at 200 meters.
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2 Background

As shown in the block diagram in Figure 2.1, the mixer multiplies the received echo
signals with the transmitter signal. The mixing results in the sum and the difference
between the receive and transmit signal. Since the sum component is in the order of twice
the carrier frequency, it is suppressed by the electronic components and the band-pass
filter. We assume that a real baseband chain is implemented without the imaginary
component. Thus, the IF at the mixer output can be written as:

sIF[t] =
1

2
AIF cos

2π
Btd
Tm︸︷︷︸
=fb

t+ 2πfctd − π
B

Tm
t2d

 , (2.5)

where fb is the beat frequency of the corresponding target. Without loss of generality,
the term π B

Tm
t2d can be removed because this phase rotation is insignificant compared to

2πfctd. This simplification leads to the following:

sIF[t] =
1

2
AIF cos (2πfbt+ 2πfctd) , (2.6)

which shows that minor changes in the distance across consecutive chirps mainly affect
the phase because of its dependency on the carrier frequency fc. The velocity information
of a target can be determined by the Doppler effect, which describes the frequency shift
of a wave when the receiver moves relative to the transmitter. In Equation 2.3, we neglect
the Doppler shift because the short ramp duration of FMCW is not affected by the
Doppler effect, and the position during one chirp is constant [70]. Thus, the distance
change across multiple chirps contains the velocity information encoded in the phase of
the object’s frequency, as shown in Equation 2.6.

The range resolution is the ability to distinguish two close objects. The maximum
resolution dres = c/2B depends only on the chirp bandwidth. The maximum velocity
depends mainly on the ramp time of a single chirp vmax = λ/4Tc, while the resolution is
affected by the number of chirps defining the duration of a radar frame Tf , leading to
vres = λ/2Tf .

In contrast, the maximum angle θmax depends only on the physical properties of the
antennas and the spacing l between the antenna elements:

θmax = sin−1

(
λ

2l

)
. (2.7)

Figure 2.1 indicates the angle of the incoming waves to the receiver antennas, where the
distance between the object and the antennas introduces a slight delay. The individual
distances between the targets and the antennas is defined by lsin(θ), introducing a phase
difference.

The angular resolution defines the separability between two objects at the same distance.
In the literature, the antenna aperture is a common limitation described with the Rayleigh
criterion, a heuristic condition for the minimum distance between two separable light
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Figure 2.2: FMCW concept: Radar signals at different stages of the processing chain.
(a) represents the frequency modulated chirp sequences in the instantaneous frequency of a
FMCW radar. The transmit signal (solid) is reflected by an exemplary target (dashed), which
stays within the IF bandwidth. (b) indicates the target frequency over time, proportional
to the target’s distance. (c) is the corresponding time domain signal after the mixer and
low-pass filter.

sources [71]. The Rayleigh criterion defines a correlation between the size of the aperture
and the angular resolution, which means a bigger antenna aperture leads to a higher
resolution. For an image like radar, increasing the number of antennas is necessary.
Considering the lateral separability between two lanes of 3.75m at a distance of 200m
requires an angular resolution of approximately 1.1◦ which would need 100 antenna
elements with a single array [72]. Also, the angular resolution of 1◦ is a requirement for
level 4 and 5 autonomous driving. One solution to reduce the number of antennas is the
idea of virtual antennas, which is the multiplication of transmit and receive antennas
to generate a virtual representation of the antenna aperture and increase the angular
resolution [73]. Such systems are also crucial in wireless communication and are called
MIMO [74]. The phase difference between the receivers is proportional to the direction
of arrival. In Figure 2.1, we demonstrate the simplified received waveform from a target.
The difference in the traveling time of the wave to both antennas defines the angle.
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Figure 2.3: Radar signal processing chain: State-of-the-art signal processing chain of
a radar sensor. The radar cube represents the dimensionality of the input data. The first
windowing applies to the Range dimension, while the second to the Doppler dimension. AoA
stands for angle-of-arrival estimation. The image of the MMIC is taken from [75].

Figure 2.2 demonstrates an example of the radar signals at the different stages. The
transmit signal is shown in (a), indicating the typical parameters to define a ramp. The
bandwidth B sets the differences between the minimum and maximum frequency within
the ramp time Tm, defining the slope of the ramp. The orange marked area indicates
the valid section used for signal processing. The example target leads to a round-trip
delay that introduces a temporal shift of the transmit signal indicated by the dashed line.
Mixing the difference between the transmit and receive signals defines the constant target
frequency, IF, represented in (b). The signal is a superposition of the constant target
frequencies proportional to the target range. The IF range defines the maximum and
minimum frequencies supported by the receiver chain filters. A negative frequency can
only appear if another sensor has the same chirp sequences or the echo of an object is too
far away; both scenarios are implausible. In the last plot of Figure 2.2, we depicted the
time-domain IF signal with a superposition of target frequencies. In this work, we apply
mainly the algorithms on the time-domain signal, which corresponds to the shown signal.

2.1.2 Radar Signal Processing

We define radar signal processing as the step to extract the object’s position in the three-
dimensional space regarding the sensor and velocity information. Figure 2.1 demonstrates
the individual block of an MMIC where the outputs are the ADC samples of the received
signal. In the following, we will describe the subsequent steps to extract the information
about the targets.

Current state-of-the-art radar signal processing assumes the ADC samples are stored
in a three-dimensional matrix called a radar cube [72], [76]. The dimensions are range
(fast-time), Doppler (slow-time), and channel, as shown in Figure 2.3. Also, the figure
demonstrates a signal processing pipeline and presents an example chip of Infineon
Technologies AG.
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2.1 Automotive Radio Detection and Ranging Sensor

The first step is detecting interference in the time domain because interference affects
the time-domain samples, leading to increased noise in the frequency domain, making it
challenging to detect it [77]. The detected interference can either be mitigated or be used
to trigger the stop of the processing since it is not safe. In Section 2.1.3 and Chapter
4, we will further describe the effect of interference and the state-of-the-art detection
methods. Afterward, a windowing function across the range dimension removes artifacts
by reducing the leakage problem. In non-periodic data, the signals are spread across the
complete frequency range during the digital Discrete Fourier Transform (DFT), called
the leakage problem [78]. Thus, the signal is preprocessed by a hanning window which
reduces the ends of the data to zero. Then, we apply the first Fast Fourier Transform
(FFT) across the fast-time or range-dimension of the radar-cube. This step extracts
the individual frequencies from the IF signal since the echoes from targets are constant
frequencies with varying amplitudes.

Two objects at the same distance can be resolved by analyzing the velocity. The
velocity estimation extracts minor position changes across consecutive chirps decoded in
the individual distances’ phase. Before we apply the second FFT, we use a windowing
across the Doppler dimension. The sinusoidal superposition of the phase changes of
consecutive chirps contains information on the objects’ velocity. An object that exceeds
the maximum velocity can lead to ambiguous velocity information. While the velocity
estimation performs well for longitudinal movements, it suffers from radial position
changes [79]. We have generated the RDM, where the amplitude indicates a target by its
reflectivity. The CFAR algorithm differentiates the background noise from targets through
an adaptive threshold. The threshold depends on the noise level of the surrounding cells
by cell-averaging, ordered-statistic, or other CFAR algorithms [80]. The previous signal
processing steps are applied to each individual channel.

The last signal-processing step of the data extraction part is the angle-of-arrival
estimation. To reduce the computational complexity, latency, and power consumption,
we limit the angle estimation only to the detected targets from the CFAR algorithm.
The angle estimation is the most challenging step since the number of antennas is limited.
For imaging radars, achieving a high angular resolution in azimuth and the elevation
direction is necessary. The elevation is essential to differentiate between a truck and a
sign where the car can pass below.

One of the simplest angle estimation methods is the Bartlett beamformer, which
maximizes the angular spectrum by exploiting the spatial diversity of the antenna array
to extract the different signal delays. The method returns the position of the largest
maxima as the estimation. In general, beamforming is a technique for spatial filtering.
For a uniform linear array, the FFT can implement these spatial filter weights, which is
computationally efficient due to the reuse of the FFT accelerator from the previous two
FFT steps [81].

A more advanced angle estimation method is called Multiple Signal Classification
(MUSIC) [82], which is part of the high-resolution category, obtaining the eigenvectors
through constructing the covariance matrix and the eigenvalue decomposition. The
method can accurately estimate the angles of multiple signals arriving from different
directions. The largest eigenvalues indicate the signals, while smaller eigenvalues indicate
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noise. Then the algorithm defines the spatial spectrum where peaks correspond to
the angle-of-arrival of the targets. A computationally more efficient method is the
Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT), which
uses the rotational invariance among the signal subspace [83]. Therefore, differences in
the subarrays create the matrix for eigenvalue decomposition. From the eigenvalues,
signal parameters like the angle can be estimated.

However, all these deterministic methods suffer from computational complexity, the
necessity of prior knowledge of the number of sources, or the low performance under
noisy conditions. With the advances in machine learning, the idea of angle-of-arrival
estimation with NN received interest. Three architectures have been shown to solve the
angle estimation task. The first is a Multilayer Perceptron (MLP) consisting of multiple
layers of sigmoid neurons [84]. The network receives a snapshot containing the channel
dimension of a single detected range and velocity sample-point of the radar cube as input.
Since the network predicts objects within ±60◦ with a resolution of 0.1◦, it consists
of 1201 output neurons with a softmax output function for categorical distributions.
With extensive classifier training, the results demonstrate a super-resolution with limited
antennas.

Another architecture inspired by computer vision research is called Convolutional
Neural Network (CNN). The input is again a snapshot of the covariance matrix or after
the eigenvalue decomposition [85]. [86] demonstrates a CNN with four convolutional layers
and four fully connected layers with ReLU activations. The proposed network consists
of 28.2 million trainable parameters, which exceeds the memory of every embedded
processor. Another variant of a fully connected CNN architecture is demonstrated by
[87]. [88] highlighted the reduced number of operations with a complex-valued CNN for
angle estimation while receiving the preprocessed RDMs.

The autoencoder is an architecture that encodes the input into a latent representa-
tion, and the decoder extracts the original input with the possibility to perform noise
suppression or error correction. [89] presented an autoencoder architecture based on six
fully connected layers with a ReLU activation function. The proposed architecture is
combined with MUSIC to improve the noise robustness and angle estimation. [72] focuses
on a quantitative comparison of deep learning with traditional angle-of-arrival methods.

However, the computation complexity of this NN-inspired method is high because
of the size of the networks. An often neglected part is the network training with a
significant amount of simulated or measured data. In the subsequent steps, tasks like
object classification, clustering, or tracking can be solved where also NN approaches are
valuable [44], [90]–[93].

2.1.3 Radar Interference

The interference phenomenon appears when at least two waves move simultaneously
through a medium. The combination of the waves can produce constructive or destructive
interference, which means that the resulting amplitude is greater or lower. In the extreme
case, destructive interference can lead to the complete removal of a signal which is the
basic principle of noise-canceling headphones or microphones [94]. Such destructive

18



2.1 Automotive Radio Detection and Ranging Sensor

C1
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P1

P1

Figure 2.4: Automotive interference scenario: Typical parking lot situation with
walking pedestrians and moving cars. Car C1 interferes with car C2 and blinds pedestrians
because of their low reflectivity. The car shape is modified from [99].

interference only occurs when two signals have the same frequency and amplitude with a
relative phase of 180◦. The opposite is constructive interference, where the amplitude
doubles when the phase matches between the signals. Thus, interference effects depend
on the frequency, amplitude, and phase of the individual signals in the superposition.

In contrast to intentional noise reduction, interference is a significant problem for the
performance of radar processing. Interference can occur due to internal or external effects.
Internal effects are the crosstalk between channels or the leakage of the transmitter
signal to the receiver channels. External effects are multipath-reflections or other sending
transmitters in the same frequency range. The radar sensor is affected by interference
with a degradation of the signal power, and the performance degrades. Thus, increasing
radar sensors also increases the likelihood of interference which correlates with the interest
in research projects like MOSARIM and IMIKO [95], [96]. Note that interference could
also be seen as a possible attack to deactivate the radar sensor of autonomous vehicles.
The first method is jamming [97], which saturates the receiver with noise by active
interference that deactivates the sensor. The second method, spoofing, replicating, and
retransmitting the radar signal with wrong information, leads to artificial targets [98].
Unwanted interference between sensors can occur in various situations, like highways,
parking lots, intersections, and more. Figure 2.4 demonstrates a parking lot situation
where detecting pedestrians to prevent accidents is crucial. Since the sensor generates the
transmit signal at a random time, the likelihood of interference is low but not neglectable,
especially with the increasing number of sensors. Thus, we focus in the following section
on the radar-to-radar interference to understand the properties and be able to generate
synthetic interference data that are used in Chapter 4.

As mentioned, interference is a superposition of the target reflections with an unwanted,
unknown signal from another sender within the same frequency band. Here we use
the notation of a victim and aggressor sensor, the affected and the stimulated device,
respectively. We assume that both sensors are similar radar devices. Thus, we define the
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transmit signal sTX of the aggressor a, similar to Equation 2.1:

saTX[t] = Aa
TX cos

(
2πfac t+ π

Ba

T a
m

t2
)
, (2.8)

where the chirp slope ka = Ba

Ta
m

defines the linear frequency change from the initial carrier
frequency fac . Since the signals of the aggressor sensor and the target’s echos overlap in
the free space, the IF of the aggressor signal in the victim sensor is:

sIF[t] =
1

2
cos

(
2πfit+ π

(
B

Tm
− Ba

T a
m

)
t2 + ϕ

)
. (2.9)

The first term uses the difference of the carrier frequencies fi = fc − fac and the second
the difference of the slopes. Therefore, we get the following instantaneous frequency:

fIF = fi +

(
B

Tm
− Ba

T a
m

)
t. (2.10)

There are two fundamentally different occurrences of interference called in-phase and
out-phase. In-phase interference is when the aggressor frequency course is parallel to
the victim’s transmitter signal, meaning they have a different fi but the same slope.
With the same carrier frequency, the victim could interpret the aggressor signal as a
target that does not exist, called a ghost target. The only possibility to detect in-phase
interference is investigating the signal power, which we will explain later. In contrast to
in-phase interference, out-phase is more likely and reduces the detectability of any target.
Out-phase interference crosses the frequency courses, resulting in a triangular IF signal.
Thus, the signal is spread across the complete frequency bandwidth and increases the
noise floor because the power of interference is higher than for a signal reflection.

The likelihood of in-phase interference is neglectable small, as investigated by [100].
They defined the probability of in-phase interference by the maximum supported temporal
shift, limited by the IF bandwidth. Thus, the probability of being affected by at least
one interferer out of 1000 sensors with the same ramp scenario and starting frequency is
11.8%. Additionally, to the huge unrealistic amount of sensors, it is unlikely that the ramp
scenarios of the sensors are the same. [101] showed that the probability of interference
between two random radar sensors is 0.0665% which can be considered insignificant.

On the other hand, out-phase interference is a more common effect that drastically
increases the noise. Again, [101] calculated that the probability of interference between
two signals with a relatively uniformly distributed phase is 99.93%. However, the
probability correlated directly with the carrier frequency, and frequency hopping reduces
the likelihood of interference [13], [102]. Also, a different ramp definition between the
sensors with the same carrier frequency increases the likelihood that the signals cross
each other [101].

The previous equations assumed a unit amplitude which does not apply in reality. We
can adapt the power estimation in Equation 2.4 of a single target to a potential interferer.
Therefore, we assume the same transmit signal power of the victim and the aggressor
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Figure 2.5: Simulated interference model: Analysis of the described interference model.
(a) the instantaneous frequency aggressor crosses the bandwidth of the victim sensor. The
low-pass filtered interference in (b) and the corresponding v-shaped spectrogram (c).

transmitter. A vehicle with an aggressor radar is a target and a potential interferer.
Instead of the target-dependent properties, we change the equation to the direct signal
of the interferer. Thus, the power P of an interferer is:

Pinterf =
P a
TX GRX Ga

TX Λ2

4π R2
(2.11)

where the receiver antenna gain is from the victim, and the transmit power depends
on the aggressor sensor. The aggressor-specific variables are marked with an a for an
aggressor. The relationship between distance and power leads to the following assumption.
A target at the same distance will generate a lower signal amplitude than an aggressor
sensor at a similar position [77]. Since an aggressor is always also a target, we know that
the victim’s signal needs twice the distance than the aggressor’s signal. Therefore, the
power of a single target will most likely be lower than the interferer.

However, the victim is only affected by interference signals within the receiver band-
width. As mentioned, the receiver consists of multiple filters to prepare the signal for
the ADC. Thus, we remove the signals outside the IF bandwidth with filters before we
combine the interference and target signals. The combination of all interference signals
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and target signals is a superposition of the individual signal components as defined by:

sRX[t] =

Ntargets∑
j=0

Aj · cos(ϕj [t]) +

Ninterf∑
i=0

Ai · cos(ϕi[t]), (2.12)

with ϕ representing the instantaneous phase of the targets and interferer. The equation
is the baseline for combining synthetic interference with real radar measurements used in
Chapter 2.1.3.

Figure 2.5 demonstrates a simulated interference example scenario. The instantaneous
frequency of the aggressor chirp is for a short duration within the victim frequency band.
Since the interference frequency outside the bandwidth of the receiver filters does not
influence the signal, we can neglect the signal outside the range of 5 to 6.5µs. In (b), we
demonstrate the corresponding time-domain signal with its strong amplitude. For the
synthetic interference simulation, we use a low-pass filter to reduce the high-frequency
components at the edge of the interference window to model the non-linear effects of
the filter corner frequencies. The interference instantaneous frequency has at the edges
20MHz and in the center 0Hz. The v-shaped frequency change over time is shown
in Figure 2.5 (c). A regular target would lead to a constant frequency response in the
spectrogram, while temporal linear frequency changes make interference visible.

2.2 Spiking Neural Networks

An SNN uses more biologically realistic neuron types than the ones implemented in ANNs.
In contrast to the perceptron, the spiking neuron consists of a temporal memory and a
non-differential spike function. In the following, we describe the essential components of
an SNN, the basic neuron model, and two different variants used throughout this work.
Afterward, we review the basic synaptic model and various connectivity schemes. At the
end of this chapter, we will also investigate different SNN optimization methods, such
as surrogate gradient and the biologically inspired Spike-Timing-Dependent Plasticity
(STDP).

2.2.1 The Nervous System

A fundamental element of living being is the nervous system, a highly complex system
responsible for receiving, processing, and transmitting information throughout the body.
The name of the nervous system originates from nerve fibers, the axon of a neuron. In
the following, we will describe the fundamental elements of the biological nervous system.

The nervous system comprises the peripheral and central nervous systems [103]. The
peripheral nervous system connects the central nervous system to the rest of the body.
At the same time, the central nervous system consists of the brain and the spinal cord.
On the cellular level, the nervous system is composed of neurons. The neuron’s cell
body is called soma, which is responsible for the temporal integration of incoming action
potentials and consists of the nucleus. The dendrites are the branching extension for
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Figure 2.6: The action potential: The electrical impulse carries information between
neurons via the axon, dendrites, and synapses. After exceeding the threshold, the action
potential consists of a depolarization, repolarization, and hyperpolarization phase. The width
w and the height h correlate with the parametrization of the neuron. We simulated the
Hodgkin-Huxley neuron in the brian2 framework for the two cases of generating a spike and
not reaching the threshold.

receiving signals from other neurons, while the axon is the fundamental element to send
signals over a long distance to other neurons. To ensure a stable information transmission,
the axon is isolated with myelin [104]. The synaptic cleft is often called a synapse between
the axon and the dendrites. A rapid and dynamic transmission of signals across the tiny
gate provided by the release of chemical neurotransmitters and their binding to receptors
on [105].

Stereological studies estimate that each neuron has, on average, 7,000 synaptic con-
nections, and approximately 20 billion cortical neurons exist [105]. The number of
connections demonstrates the necessary computation complexity of the brain. Since the
research on the biological nervous system exceeds this thesis, we refer interested readers
to the publications [103], [105].

2.2.2 The Action Potential

The action potential, also called spike, is an event in time and is the fundamental element
for information transfer in an SNN. Every neuron type uses a threshold to generate
an output action potential, which we will describe in the neuron models section. A
biological action potential is a short-term electrical response to stimuli forwarded across
the axon to the synapses [106]. Figure 2.6 shows a simulated action potential based
on biological observations. The subthreshold behavior switches to the spike response
when the dynamics exceed the threshold. The spike has three phases: depolarization,
repolarization, and hyperpolarization [107]. These phases are defined by the ion flow of
sodium Na+ and potassium K+[106]. The hyperpolarization is also called the refractory
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period since it reduces the likelihood of generating a new output spike with the undershoot
potential.

So, the properties of an action potential vary as described by [108]. For example, the
voltage peak is typically between 0 and 30mV , and the width w is around 1 to 6ms.
[108] observed the variation of action potential and stated: “The spike shape depends on
the availability of sodium channels, which depends on the voltage history, which in turn is
correlated to the conductance input history.” They have also proven that this variability
does not correlate with noise and, therefore, has to carry additional information based
on the neuron history.

In SNNs for engineering applications, we simplify the action potential to a unit
amplitude and infinite small spike width because it reduces the algorithm’s complexity.
For the multiplication of synaptic weights, we can use simple memory weight lookups
instead of complex multiplications [33]. However, using various spike shapes to allow
more information is receiving more interest. In analog hardware, the shape variety can
be modeled similarly to the biological counterpart. The digital implementation needs
multiplications for the synaptic weights because the output spike varies in amplitude.
The sparse and event-driven nature of the SNNs reduces the communication overhead
between the neurons. Imagine a video frame consisting of 28x28 pixels with an average
spike activity of 200 spikes and a maximum of one spike per pixel. This means only
25% of possible spikes transport information to deeper network layers, which reduces the
necessary multiplications.

2.2.3 Neuron Models

The neuron is the essential component of all generations of NNs, and it always uses
a non-linear activation function across the combination of input signals. The basic
neuron utilizing the ”all-or-none” functionality was introduced in 1943 by [109]. The
McCulloch-Pitts neuron uses propositional logic to emulate neural events with a level
detector that can represent any boolean function in a multilayer architecture. The second
generation [14] uses non-linear activation functions like sigmoid or ReLU with continuous
input values. The third generations use temporal spike events to process information
with a Heaviside step function.

A spiking neuron consists of three components. The subthreshold dynamics describe
the integration or resonating process of the incoming events or signals and the threshold,
equivalent to the non-linear activation function, leads to a spike generation. The last
component is the reset mechanism and the refractory period or hyperpolarization.

Throughout this work, we use 2nd generation neurons, which we will not explain in
the background, and two different spiking neurons to build SNN architectures: the LIF
and the R&F neuron. Many modifications exist in the neuron models, like the adaptive
threshold or the Leaky-Integrator (LI) neuron.

Izhikevich has presented a comparison of the neuro-computational features of various
neurons [110]. The LIF neuron is computationally efficient compared to the Hodgkin-
Huxley and acts like a temporal integrator with a forgetting property. The LI is a
LIF neuron without the firing mechanism, which makes it most suitable as an output
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neuron. The R&F can use a resonating property with the unique feature of reaching the
threshold through periodic excitatory and/or inhibitory spikes. This chapter describes
the mathematical description and demonstrates the inherent properties. Additionally, we
explain the Hodgkin-Huxley model since this is the first biological description that forms
the basis for all subsequent neuron models.

Hodgkin-Huxley Model

In 1952, Hodgkin and Huxley discovered the first biologically plausible neuron model
[111]. During experiments with the giant axon of a squid, they found the three main
different ion currents: sodium, potassium, and a not further specified leak. Each ion
channel transports a specific chemical element through the cell membrane, and the
channel resistance can dynamically change depending on the opening or closing of the
channel. Due to the different ion concentrations between the extra and intracellular and
the electrochemical reactions, the neurons generate a Nernst potential [21]. The model is
a four-dimensional differential equation system that describes the transport of ion current
in an electrical circuit [21]. The current across the capacitor Ic(t) is defined by:

Ic(t) = C
u

t
= −

∑
k

Ik(t) + I(t), (2.13)

where
∑

k Ik(t) is the sum of all currents of the ion channels, and I(t) is the input current.
The membrane voltage is defined as u. Hodgkin and Huxley described a mathematical
representation of the temporal change of three-channel resistances. The variable n
controls the probability of an open K+ gate, and the combination of m (opening) and h
(blocking) defines the probability of the Na+ gate. The three ion currents are given by:∑

k

Ik(t) =
1

RNa
m3h(v − vNa) +

1

Rk
n4(v − vk) +

1

RL
(v − vL), (2.14)

with the reversal potential of the corresponding channel: vNA, vk, and vL. The m, h,
and n gates are given in the form of

dx
dt

= − 1

τx(u)
[x− x0(u)], (2.15)

which defines the convergence of the x value to the resting value x0(u) with a time
constant τx(u). The interaction between the input current and the different channels can
lead to an explosive increase of the membrane potential, also called action potential or
spike. Since the time constants of h and n react slower, the rapid increase is mitigated, and
the membrane potential reaches the hyperpolarization phase. Figure 2.6 demonstrates a
neuron with two different inputs for either generating a spike or staying in the subthreshold
dynamics of the Hodgkin-Huxley (HH) neuron.
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Leaky Integrate-and-Fire Neuron

The LIF neuron is the most common in various applications. Its first appearance dates
back to 1907 [112] when Lapicque introduced an electrical circuit to investigate the
firing frequency of nerve fibers. This IF neuron is computationally efficient because
it reduces the action potential generation to a threshold function. Today, we still use
the approximation of the action potential trajectory to reduce the computational cost
compared to the HH model and take advantage of the more biological-inspired properties
like the membrane potential leak or the refractory period.

The LIF neuron integrates the incoming current over time and emits an action potential
if it exceeds the threshold. The membrane potential U of the LIF neuron i is defined by:

τm
dUi

dt
= −(Ui − Urest) +R · Ii, (2.16)

with the input resistance R and the input current I. The membrane time constant τm
introduces a leaking effect such that Ui settles at the resting potential Urest while no
input activity is present. If the membrane potential exceeds the threshold ϑ, the neuron
emits an action potential as defined:

δ[t] =

{
1, Ui[t] > ϑ

0, else,
(2.17)

where δ[t] is the Dirac delta function for the associated spike times t. In simulations, the
amplitude of an action potential is simplified and set to one. The binary spike event
combines the depolarization and repolarization phase, while the optional refractory period
realizes the hyperpolarization. Thus, the neuron is either reset to a very low potential or
deactivated for a certain duration.

For numerical simulation, a discrete form of the LIF neuron enables the usage of
well-known deep-learning frameworks. Therefore, we can approximate the membrane
potential Ui[t] as:

Ui[t+ 1] = α · Ui[t]︸ ︷︷ ︸
leak

+R · I[t]︸ ︷︷ ︸
input

−Ureset · δ(t)︸ ︷︷ ︸
reset

, (2.18)

with the leak factor α defined by exp(∆t
τm

), where ∆t is the simulation time step size
and the membrane time constant τm. The input resistance and input current define
the input potential from the synaptic connections, and during a spike generation, the
membrane potential is reset. As mentioned, the reset is sometimes implemented by a
hyperpolarization or a refractory period, adding additional costs to the simulation. The
neuron activation utilizes the Heaviside step function to emit an action potential:

δ(t) = Θ(Ui[t]− ϑ), (2.19)

with the threshold potential ϑ and the Heaviside function Θ.
A variant of the LIF neuron is the LI neuron. It models the same dynamic except

for the Heaviside step function and the refractory period. Such a neuron acts as a pure
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integrator and provides the possibility to count spikes with a leaking effect. The LI
neuron is often used as a decoding neuron in the output layer [113], [114].

Resonate-and-Fire Neuron

The R&F neuron proposed by [115] is a symmetric two-dimensional model with oscillatory
behavior. The dynamics of the subthreshold behavior are described by

x′ = bx− ωy (2.20)
y′ = ωx+ by,

where b is the damping constant, ω is the neuron’s resonance frequency defined as 2πf0.
The variables x and y represent the current- and voltage-like variables. The equivalent
complex form of the linear system is

z′ = (b+ jw)z, (2.21)

with z = x+ iy. The general solution of the differential equation is

z (t) = C1 e
t (b+jw), (2.22)

with the assumption that C1 is a constant unit factor. For the simulation of the neuron, it
is possible to use exact solutions of the differential equation, but this limits the usage. The
discretization provides higher flexibility to build the neuron into existing NN frameworks.
Hence, we use the exact integration [116] to define the discrete representation of an R&F
neuron:

zk[n] = e∆t bk︸ ︷︷ ︸
=λ

ej∆t ωk z[n− 1] + ak[n], (2.23)

with input current ak[n] of the neuron with index k and the step size ∆t. The equation
for one R&F neuron with index k consists of two components, the damping factor λ and
the oscillation kernel ej∆t wk . The damping factor leads to an exponential decay since
b < 0; therefore, λ is defined in [0,1]. The oscillation frequency depends on the individual
neuron’s resonance frequency fk and defines the phase shift per time step. The discrete
equation can also be defined by using the Euler formula:

uk[n] = λ(u[n− 1] cos(θ)− vk[n− 1] sin(θ)) + ak[n], (2.24)
vk[n] = λ(u[n− 1] sin(θ) + vk[n− 1] cos(θ)),

where u and v represent the real and imaginary components, respectively. θ corresponds
to the exponent of the oscillation kernel ∆t ωk. We use Equation 2.24 in our simulations
because PyTorch [117] currently does not fully support arithmetic operations with complex
tensors and has limited compatibility with Just-In-Time (JIT) compilation.

The generation of an output potential is similar to the LIF when the voltage-like
variable Im(z) exceeds the firing threshold ϑ, the neuron generates an action potential,
and the internal states are reset. In the original publication of Izhikevich [115], the

27



2 Background

−2 0 2

−2

0

2

ϑReset

0 0.1 0.2 0.3 0.4

−1

0

1

Input spikes

Output spikes ϑ

t

Im(z[t])

Figure 2.7: R&F neuron with spike activation. Input spikes with the same frequency
as the resonance frequency of the neuron lead to an exceeding of the threshold and an output
potential. When the state exceeds the gray area of the phase portrait, then always an output
spike will be generated. Simulation is based on the discrete R&F neuron.

current-like variable is reset to zero. Therefore, the neuron continuous the damped
oscillation because the imaginary component is unaffected, as shown in Figure 2.7. This
is different in [43], where the real and imaginary component is reset to zero and further
oscillation is suppressed. This reduces the likelihood of an output action potential because
the excitation of a neuron starts from the beginning. After a single spike input, the
imaginary components are shifted from the real part by 90◦, enabling the oscillation.

There are also different variants of utilizing the threshold functions. In [43], an adaptive
threshold is used to reduce the number of spikes for strong input stimuli. Simultaneously
to [118], we developed the phase-dependent spike mechanism to encode the phase of
a signal in the spike timing. Thus, the threshold of the real part is combined with
the requirement that the imaginary component equals zero. For implementation in a
time-raster simulation, we approximate the requirement by detecting the sign switch of
the current and last imaginary component. Additionally, [118] combined the R&F phase-
dependent spike mechanism with graded spikes, meaning the spike has an amplitude.
This idea has some fundamental advantages but increases the computational complexity
of the subsequent synapses.

Since the neuron is complex, it is possible to input and output complex spikes. A
complex input makes sense if the preceding layer provides complex information. However,
the complex output, in combination with the phase-dependent spike mechanism, does
not carry any additional information since the imaginary component is zero when the
spike appears. Thus, we implement our R&F neuron only with a real spike output but
an optional complex input.

An incoming action potential affects the real component of Equation 2.23. Considering
two positive input spikes with a distance equal to the period of the resonance frequency of
the R&F neuron, then the amplitude of the oscillation will increase, as demonstrated in
Figure 2.7. Here we use the original spike mechanism of [115]. If the second spike appears
at a half period, the amplitude of the oscillation would be decreased; the oscillation would
not reach the threshold, demonstrating frequency selectivity. With the phase-dependent
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Table 2.1: Neuron model complexity: Computational complexity with the number of
operations of each neuron subthreshold dynamics for each time-step n. Therefore, the various
spike and reset mechanism variants can be used for all biologically inspired neurons and are
neglected here. The HH operations are extracted from the implementation of [123].

Neuron Model Multiplications Additions

HH 25 21
LI 2 1

LIF 3 2
R&F 6 3

spike mechanism, we ensure that the spike always appears at the highest peak of the
oscillation. With the idea of the graded spikes, the amplitude information of the signal
can be recovered.

The properties of an R&F neuron are mainly defined by the damped harmonic oscillation
that carries historical stimuli information of the specific neuron. A population of R&F
neurons can use the resonating property to act as memory, as demonstrated by [119].
Similar behavior was observed in biological neurons. The balance of excitatory and
inhibitory synapses with recurrent connections can act as oscillators.

Summary of Neuron Models

In the neuron models shown so far, there is a considerable variation of different types
with various dynamics, like the spike response model [120], the Galves-Löcherbach model
[121], the FitzHugh-Nagumo model [122], and many more. Izhikevich compared selected
neuron models regarding their biological plausibility and the implementation costs in
FLOPS [110]. Biological properties are spike bursting, spike frequency adaptation,
hyperpolarization, and more. Thus, a neuron that supports more biological features
requires a complex model with a higher computational cost.

Similar to [110], we summarize the number of multiplications and additions in Table 2.1.
Note that we assume a digital neuron implementation without considering the synaptic
connection. We assumed the neurons are implemented for a time-raster simulation
where each neuron consumes the shown multiplications and additions per time step.
However, event-driven implementations are less predictable in terms of their computational
complexity due to the dependency on the number of input events. Also, the neuron does
not need to be updated continuously when no inputs occur, as demonstrated by [124],
[125].

In addition to the computational complexity difference, the neurons use fundamentally
different biological features. While the LIF neuron integrates incoming spike events,
the R&F resonates, and the exact timing of the input spikes affects the neuron states.
Both neurons can be used for continuous input data because they allow the temporal
information to leak. One significant difference is the effect of inhibitory spikes, meaning
a negative spike potential. In the LIF, the membrane potential reduces during a negative
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input, while in the R&F neuron, it depends on the exact timing of the spike. A spike can
either decrease or increase the oscillation’s amplitude depending on the current position
of the oscillation, either at the lowest or highest peak. The LI neuron is similar to the
LIF except for the spike function, providing an analog output value, and is mainly used
as an output layer.

2.2.4 Synaptic Connections

The synaptic cleft is a specialized junction connecting neurons and enabling commu-
nication. The electrical pulses from pre-synaptic neurons are transported across the
≈ 20 nm wide cleft by electrochemical reactions [126]. The release of neurotransmitters
into the synaptic cleft results from a pre-synaptic activation. The transmitters move to
the other side by diffusion and activate the receptors [21]. The synaptic vesicle stores
various transmitters with a limited capacity [127]. The diffusion of neurotransmitters
leads to a structural change of the ionotropic receptors, which convert the chemical
reactions to electrical signals. The duration, direction, and number of ions within the
ion channel affect the gain of the post-synaptic potential [128]. Receptors with inward
current lead to a depolarization of the membrane potential, called Excitatory Postsynaptic
Potential (EPSP). Receptors with outgoing current discharge the membrane potential
by Inhibitory Postsynaptic Potential (IPSP). Metabotropic receptors directly trigger
intracellular events, such as opening an ion channel [129]. In contrast to the chemical
synapses, the electrical has a gap width of ≈ 3.8 nm and is bidirectional [130]. Both
synapses can either act inhibitory or excitatory.

Due to the high complexity of the biological synaptic connections, mathematical models
imitate the synaptic behavior. These simplifications neglect some aspects that could be
important for understanding the brain but less relevant in neuromorphic computing. This
section focuses on the synaptic connection, especially the static and dynamic synapse
model and the common connection schemes.

Static Synapses

The static synapse is the simplest possible synaptic connection because it reduces the
connection to two main parameters: weight and delay. The weight defines the direction
and strength of the current flow from the pre-synaptic to the post-synaptic neuron. This
synapse also models the charging processes of the transmission by a decay β, which
mainly uses an exponential or alpha-shaped function. We use the following discrete
expression:

Ij [t] = βIj [t− 1] +
∑
j

Wijδi[t], (2.25)

with the synaptic connection between neuron i and j. The exponential decay is defined
by β = exp(

∆t

τsyn
), with the synaptic time constant τsyn, which can deviate between

inhibitory and excitatory connections and the simulation time step size ∆t. Also, in
biological systems a propagation delay exists due to transmission speed, distance, and
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neurotransmitter release [131]. In event-driven simulators, it is possible to model the
synaptic delay, and in time-raster simulations, the delay is implemented as a temporal
shift.

Dynamic Synapses

In contrast to the static synapse, the dynamic changes its strength or weight over time
depending on the historical input. This mechanism regulates the information flow within
a neural circuit and balances the excitation and inhibition through short-term depression
and facilitation.

Short-term depression refers to decreased synaptic strength during repeated activation
from the pre-synaptic neuron [132]. Thus, the previous activation consumes the available
neurotransmitters and weakens the amplitude of the post-synaptic response until the
neurotransmitters have recovered, explaining the naming short-term.

On the other hand, short-term facilitation increases synaptic strength due to repeated
activation temporally [133]. Due to the constant activation, a residual calcium ion
channel appears, and leads an increase of the synaptic strength. With no activation the
facilitation recovers after a short period.

The long-term depression and potentiation [134] are very similar to their short-term
counterpart, except for the timescale of effect and recovery. Short-term refers to a
timescale of seconds, while long-term could last for hours, days, or even longer [135].

The Tsodyks-Markram model [136] describes the dynamics of short-term plasticity
by a set of differential equations that account for neurotransmitters’ release, depletion,
and recovery. A high pre-synaptic activity results in a rapid depletion and a following
short-term depression, while a low activity leads to facilitation. The well-studied short-
term plasticity model exists in many variants [137], [138]. However, in this work, we use
mainly the static synapse model because different dynamics increase the computational
complexity.

Connectivity

Besides the synaptic model, the connectivity of spiking neurons differ from the second
generation networks. Traditionally, there are only two connections schemes: feedforward,
and recurrent. Feedforward describes the connection of consecutive neuron layers from
the input to the output. Thus, the post-synaptic neuron depends only on the pre-synaptic
input. Recurrent networks use a bidirectional information flow, meaning that the output
of a neuron can be connected to the previous layer. Thus, we define the synaptic input
to a single neuron by:

I[t] =

Nff∑
i=0

Wffi
x[t]︸ ︷︷ ︸

feedforward

+

Nrec∑
j=0

WrecjIl[t− 1]︸ ︷︷ ︸
recurrent

, (2.26)
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where Il is the previous output of the neuron l that can be located deeper in the network.
For a feedforward network this equation simplifies to the first term that further reduces
the training complexity. Equation 2.26 is valid for traditional and spiking networks
when considering that the input Il and x can be spikes. The weight polarity decides
whether the spike or the input data are excitatory or inhibitory. It is worth to note
that convolution layers are just a variant of the feedforward connected architectures
with intensive weight sharing. Thus, every convolutional layer can be converted to a
feedforward representation and be applicable to spiking networks, as demonstrated by
[23], [139].

However, in spiking networks, we are not limited to think in layers. Thus, we like
the idea of a neuron population where the individual elements can be placed in a three-
dimensional environment. One extensive example is the concept of the reservoir, meaning
a population of randomly connected neurons convert the low-dimension input into a
non-linear high-dimension representation. A more understandable example is a bucket of
water with the input of a stone. The stone stimulates water waves that can be interpreted
by cameras or detectors [140]. The reservoir is called echo state machine for traditional
networks [141] and liquid state machine for spiking networks [142], [143].

2.2.5 Training Algorithm

The learning procedure represents one of the most important aspects of neural systems
since every living being learns new from experiences and applies the pre-learned knowledge
to various unseen tasks. The process of learning involves structural changes in the nervous
system architecture as well as modification of the morphology of the individual neurons
[130]. In traditional networks, learning is limited to the synaptic weights, and the
architecture is in the hand of the developer defining the hyperparameters. In spiking
networks, we can additionally train the synaptic delay, time constants, neuron threshold,
and more depending on the neuron type.

There exist a variety of training methods for spiking networks. Compared to ANNs,
there is not yet a single method that utilizes all the dynamical features of these neurons.
Thus, we can define the two conversion categories and direct-based training methods. The
conversion method relies on a previously trained ANN where the signals are converted to
a rate or Time-To-First-Spike (TTFS) spike representation [144], [145]. This is possible
since the ANNs are a rate-based approximation of the biological neuron.

The direct training method ranges from biologically inspired synaptic plasticity to
neuroevolution and gradient descent. In this thesis, we use the gradient descent method to
train SNNs. However, we provide a short review of synaptic plasticity and neuroevolution
in the following.

Previously we defined the difference between short-term and long-term plasticity while
explaining the dynamic synapse. Short-term plasticity reacts on a short timescale and
is a technique to balance the population activity. For example, the auditory system’s
frequency adaptation is a short-term adaptation process for signal amplitude changes
[146]. Learning long-term plasticity is crucial, like in STDP. It is inspired by the Hebbian
learning rule, which states: “When an axon of cell A is near enough to excite cell B
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and repeatedly or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased” [147]. In simpler words it means “neurons that fire together, wire
together” [148]. Thus, the synaptic weight increases for two connected neurons when the
pre-synaptic neuron fires shortly before the post-synaptic neuron. The weights decrease
if the pre-synaptic neurons fire after the post-synaptic neuron. For more details about
STDP, we refer to [21], [149]. The original idea of STDP follows an unsupervised learning
method, but there are also supervised variants [150].

Evolutionary algorithms are very promising because of the simultaneous optimization
of the network architectures and parameters [151]. This algorithm follows the idea of
evolution, meaning the survival of the fitters. Thus, the algorithm involves the following
steps: 1) the random network definitions and 2) utilizing a fitness function to evaluate
the performance of each network. 3) selecting the best network used for 4) generating a
new group of networks via random generation, crossover, and mutation. The crossover
combines the parameters of two-parent networks while the mutation introduces random
changes to the best-performing networks. To retrieve a small network architecture, it is
possible to include in the fitness function a network size penalty. Evolutionary training is
a smart parameter search inspired by nature, and [26], [152] has shown well-performing
small networks. Besides the capabilities of optimizing with hardware constraints, the
process of evolution is time and computationally expensive and is less suitable for large
networks and datasets.

The conversion-based training methods cannot take advantage of the neuron dynamics,
and the network architectures are limited to the ANN feature space. On the other hand,
biological methods like STDP and evolution take advantage of the neuron dynamics but
are either unstable or computationally expensive. So, one idea is using gradient descent
training with spiking neurons, which we use throughout the work. In the following, we
explain the theory and background of surrogate gradient learning.

Backpropagation

Gradient optimization is a method to find the minimum or maximum of a function. The
gradient of a loss function concerning the weights of a network for a single output is a
part of the backpropagation algorithm. So, the gradient for each layer is computed once
and iterated backward through the model. Backpropagation is commonly combined with
gradient descent or stochastic gradient descent to update the weights of the individual
layers [153].

To use gradient optimization, the following assumptions need to be valid: 1) the
function is differentiable with respect to its parameters, 2) the function’s derivative
exists and is continuous, and 3) the function is convex with unique minima or maxima.
However, in reality, the function f(x) consists of local minima or maxima, and gradient
descent tries to find the global minima by analyzing the directional derivative of f(x).
The vector of all partial derivatives δ

δxi
f(x) is the gradient of f denoted as ∇xfx [17].
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Figure 2.8: Spiking backpropagation: (a) approximation of the Heaviside step function
of the neuron activation with superspike and sigmoid. The first plot demonstrates the
function, and the second the corresponding derivative. The derivate of the Heaviside is not
defined for zero. (b) demonstrates the temporal unfolding of a neuron for backpropagation
through time learning. The input can either be a previous layer or direct signals. The gray
area corresponds to a single LIF neuron.

The iterative calculation of the next position follows the equation:

x′ = x− η∇xf(x), (2.27)

with the learning rate η, scaling the step size. In a multiplayer network, the error must
be propagated backward across each layer by following the chain rule [17].

Every spiking neuron has a threshold function that generates an output action potential
when the neuron state exceeds a threshold. This threshold is a Heaviside step function
which is either zero or one. The derivative of the Heaviside step function H(x) is undefined
for x = 0 and otherwise zero. Thus, H(x) is not compatible with the assumption 2) of
the gradient optimization. To overcome this issue, the idea of surrogate gradients uses
an approximation function for the backward path. In Figure 2.8 (a), we demonstrate the
approximation of the Heaviside step function with its derivative. In contrast to the original
function, the approximated derivatives are continuous. The upper plot demonstrates the
functions, and the lower demonstrates their derivatives. Each approximation function
has a tunable parameter which we call scale since it is a smoothness or steepness factor,
meaning a higher scale better approximates the Heaviside step function. From an
implementation perspective, the forward path executes the Heaviside step function and
the backward the derivative of the approximation function called surrogate gradient. [38]
has demonstrated that the surrogate gradient is very robust, and the selected surrogate
gradient is less important for the final network performance, while the derivative’s scale
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highly affects the training performance. The superspike [154] derivate is defined as:

f ′(x) =
1

(α|x|+ 1.0)2
, (2.28)

where α is the scaling factor, and the sigmoid derivative is:

f ′(x) = σ(x) (1− σ(x))with (2.29)

σ(x) =
1

1 + e−βx
, (2.30)

where the scaling factor is β. Since the computational complexity is much higher for the
sigmoid, we selected for all our networks the superspike approximation of the activation
function with α = 100.

Because a single spiking neuron has an inherent recurrency by its temporal-dependent
membrane potential, the gradients must be backpropagated through time. Thus, the
computational graph needs to be unfolded in time [155], meaning that a simulation of 128
times steps for a single neuron increases the computation graph from one to 128 nodes.
Back-Propagation Through Time (BPTT) is a well-known algorithm in traditional NN,
and it was first presented by Werbos in the 90s [156]. We demonstrate the general idea
in Figure 2.8 (b), where we use a single LIF neuron that we unfold over time (gray area).
The input to the spiking neuron can either be a spike or a sampled input signal. The
input contributes to the synaptic state depicted as I[t] with the forward weights Wff ,
shared across the time dimension. The synapse directly contributes to the membrane
potential that depends on the previous state. Thus, all states are randomly initialized at
t = 0. The threshold of the membrane potential decides if an output spike is generated
and triggers the reset of the membrane potential. The output can then be connected to
a further layer or the loss function for the error calculation.

Also, we demonstrate in Figure 2.8 (b) the backward path. In general, the error is
back propagated until the input of the layer except for the reset mechanism. We detach
the reset from the computation graph because it is not differentiable. There are methods
like soft reset to make the reset function differentiable. However, we neglected this part
to reduce the computational complexity during training. Additionally, there are known
problems with BPTT and surrogate gradient besides the high memory consumption:

• Local minima: The local minima problem states that the training algorithm
is stuck in local minima and cannot reach the global minima [157]. Advanced
optimizations like momentum and adaptive learning rate improve gradient opti-
mization.

• Vanishing gradient: In BPTT, the computational graph explodes with the time
dimension and thus is susceptible to gradients close to zero [158]. To prevent the
network does not train due to vanishing gradients, it is common to use a truncated
BPTT [159].
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• Dead neuron problem: Since the spiking neurons only emit zeros and ones,
the network is pruned to dead neurons. It means the neuron output is permanent
zero, and the weights will never receive an update during back-propagation. It
permanently damages the neuron because the gradient cannot flow to the previous
layers, resulting in an untrainable network [160]. The dead neuron problem can
occur for different reasons: 1) the weight initialization with zeros and 2) big negative
weights for integrating neurons.

Sparsity Regularization

The previously described training methods can include a term that increases the compu-
tation efficiency of the algorithm. On the one hand, reducing the number of operations,
the complexity, or the number of bits (digital) improves the power consumption. One
recent development is the reduction of the 32 floating point to an 8-bit floating point
representation without performance degradation [161]. However, there are other methods
to improve the efficiency of the trained networks, especially within the domain of SNNs.
The number of spike events directly correlates with the power consumption, and the
number of memory accesses increases the energy footprint due to the complexity of the
architecture [33]. Also, the processing time of event-driven implementations is sensitive
to increasing events [162]. Therefore, we describe here two methods to reduce the spike
count and the number of synaptic connections that apply to the surrogate gradient and
are used in this work.

Spike Activity Regularization:
Spike regularization is a technique to force the network to reduce the number of synaptic
events that correlate with the power consumption of the network depending on the
neuromorphic implementation. Therefore, we extend the loss function by a spike activity
regularization term to encourage the training to reduce the number of spike events. In
this work, we utilize the average spike activity of the individual sum of spikes across time:

Lspike = λ
1

NB

B∑
b=0

N∑
n=0

T∑
t=0

δbn[t], (2.31)

where T denotes the temporal length of the input data, N is the number of neurons in the
given layer, B represents the batch size, and λ scales the impact of the spike activity to
the total loss. Therefore, the network reduces the number of spike events during training.
For high λ, the training could end up in zero spikes because the rewards for no spike is
higher than for a good classification. A solution to prevent the dead neuron problem was
proposed by [38], where they use an upper and lower bound to reduce the likelihood of
no spike events. Another method uses the quadratic Euclidean distance of spike events
[163]. In general, it is a good estimate to use a λ which reduces the mean spike activity
into an equivalent range as the expected loss for the given dataset. It is important not
to mix up the spike regularization with the spike frequency adaptation, which mainly
appears in higher biological-inspired dynamical systems like the threshold adaptation
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[164]. The difference is the target of the techniques to reduce the spike rate or to adapt
on a short-term scale the firing frequency.

Synaptic Sparsity:
Another way to increase sparsity is by reducing the number of neurons or synaptic
connections within the spatial domain. The network architecture can be optimized by a
parameter search or during an evolutionary optimization. Another technique is described
by the Lottery Ticket Hypothesis: ”A randomly-initialized, dense neural network contains
a subnetwork that is initialized such that—when trained in isolation—it can match the test
accuracy of the original network after training for at most the same number of iterations”
[165]. It basically states the existence of an isolated subnetwork that performs similarly
to the original network with more parameters. In [165], the focus was on the experimental
proof of the hypothesis, where they retrained the best network after the pruning, called
a winning ticket. Therefore, they could reduce the network size to 10− 20% of the initial
network because the initial weights make the training of the winning ticket effective.
They proposed an iterative pruning method to constantly remove the weights with the
lowest magnitude during the training.

Biological-inspired SNNs often use a sparse initialization, demonstrated by reservoir
computing, where the network is randomly initialized, and only the connections to the
readout layer are trained. The sparse connectivity is necessary to reduce the likelihood
of continuous firing due to the recurrence.

The Deep Rewiring algorithm [166] is another gradient-supported method to remove
and generate connections. Therefore, each synaptic connection consists of a constant sign
(excitatory or inhibitory) and a trainable parameter ϑ. If the parameter ϑ is positive,
the connection is active; otherwise, it is obsolete. A new randomly selected synapse is
generated based on a uniform distribution for each removed synapse. Another rewiring
method was proposed by [163], which uses the magnitude of the absolute weight as a
pruning score. The momentum derived from the exponential temporal moving average of
the gradient and the spatial distance defines the probability of synaptic growth. Unlike
the rewiring algorithms, we use a less complex pruning algorithm without connection
growth. After the selected network is trained, the weights with a magnitude close to zero
are randomly removed depending on the expected pruning rate. A relationship between
the number of removed and total connections defines the pruning rate. Whenever the
loss increases, retraining, also called fine-tuning, improves the final performance [167].
This pruning algorithm is sometimes repeated iteratively to perform a scheduled pruning
for better final performance.
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Information encoding refers to the process of transforming information into a streamlined,
concise, efficient, and easily comprehensible form for a given system. It serves as an
interface between two systems, similar to how the ASCII code translates bits into human-
readable representations. Conversely, decoding involves converting letters and numbers
back into their binary representations, thus reversing the encoding process.

In biological systems like the brain, discrete electrical impulses transport information
between neurons across synaptic connections, as explained in Chapter 2.2. Two studies
discovered that various encodings represent data from different biological sensor data like
visual, acoustic, control, or somatic data [168], [169]. Therefore, the application-specific
encoding of the biological model suggests that an efficient encoding scheme depends
highly on the application. However, the encoding type greatly influences the number of
spikes and correlates with the power consumption of event-based neuromorphic hardware
[170].

There is information that follows a specific time grid, like images or clock-driven
systems. The image is recorded at constant intervals, and each pixel consists of at least
one floating point number for mono-color code. These values can then be converted into
a specific spike pattern and processed in an SNN [171], where the time between the spike
event and the reference point (start of the image processing) carries the floating point
value. Hypothetically, a simulation with infinite small-time steps also has an infinite
small resolution of the pixel value, which is very unlikely to achieve due to hardware
limitations. However, “the duration of the encoding window used for any analysis of the
neural code is not arbitrary but depends on the dynamical nature of the information being
encoded” [172]. This means the time between the input images defines the maximum
representable number.

Another type of information are continuously changing signals, which could be sensor
data from temperature, ultrasonic, radar, and more. These sequential signals can have
frequencies in the range of MHz, making a good resolution with spikes challenging. One
way to overcome this resolution limitation is converting the sequence into a frame-based
representation through preprocessing with feature-extracting methods. With such an
encoding, we reduce the temporal advantages of SNNs. Thus, we highlight the capabilities
of the encoding to convert frame or stream-based data.

There is not yet the answer to which encoding scheme to use. Thus, we provide an
overview of the different encoding methods based on our publication [39] and extend it
by the inherent properties of the R&F neuron. In the application Chapters 4, 5, and 6,
we will compare selected encoding schemes and identify a suitable representation for the
sinusoidal signals.
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Figure 3.1: Encoding taxonomy: Overview of different encodings separated into rate
and temporal techniques. Previously published in [39].

3.1 Taxonomy and Biological Inspiration

We categorized the current coding schemes into two distinct clusters: rate and temporal
codes [39]. The main difference between these two variants is whether the number of
spikes or the exact timing carries the information. The rate codes use the instantaneous
or average spike rate of the neurons. In contrast, the temporal schemes use the exact
timing of a spike by interpreting the spike time in correlation to a fixed reference, by order
of occurrences, or with the interval between spikes. Consequently, a jitter of the spike
timing impacts the temporal schemes but does not influence the rate codes. Often there
is the additional category of population codes, which we omitted since the individual
encoding of the neuron follows either the rate or the temporal scheme. A population is
defined as a group of neurons in a two or three dimensional space. Figure 3.1 represents
our taxonomy of different encoding schemes.

Rate codes are the base for the second-generation networks, which also makes the
conversion between ANNs and SNNs possible [173]. Since neurosciences proposed that
rate coding is the default information transportation technique of the nervous system
[169], it is still predominant in the current research of SNNs [174]–[176]. After Thorpe
suggested that information can be encoded in the exact spike timings [177], neuroscientists
found experimental evidence: for the processing of an object classification task, the human
visual system needs only 150 ms which cannot be explained by rate codes [178] and
further experiments promoted these findings for visual [168], [179]–[181], audio [182],
tactile [183], and olfactory system [184], [185]. Another experiment showed that a mouse
could discriminate between odors within 200 ms, which can take 100 ms longer for similar
smells [183].
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Biological evidence showed no single encoding scheme for all sensor elements, which
we also observed in the application-oriented community of SNNs. So, applications with
fast-changing input rely on temporal codes, while slow frame-based data can represent
their information in rates. Unfortunately, there is no universal solution to the question
of the most appropriate coding scheme.

3.2 Rate Coding

The general idea of rate coding represents information within the spike activity over time,
neurons, or simulations. One general known drawback of rate encoding schemes is the
generation of many spike events, making the event-based execution slow and inefficient
[33].

Count Rate (average over time) is the average spike events across time of the
individual neurons. The count rate r of neuron n is defined by:

rn =
1

T

T∑
t=0

δn[t], (3.1)

where T is the time length of the observation window and δ[t] are the spike events at time
t. Another name for these schemes is frequency coding [186]. Often the spike times are
modeled exactly, by a linear distribution of events, or random, by the Poisson distribution.
The count rate encoding was observed by Adrian and Zottermann by the change of the
firing rate due to the stretching of a frog muscle with different weights [169].

Density Rate (average over runs) estimates the rate across the neural activity across
multiple runs. Thus, the system receives the same input for multiple stimulations meaning
that such an encoding is not real-time capable. Imagine a frog trying to catch a fly with
density rate coding. It would mean the fly has to use the same trajectory multiple times
so that the frog can catch the fly, demonstrating that density rate is only an encoding in
ideal environments [21].

Population Rate (average over neurons) represents the average spike activity across
a neuron population within a time interval. Population rate is defined by

rt[t : t+∆t] =
1

N∆t

N∑
n=0

δn[t : t+∆t] (3.2)

in the time interval starting at t with the window size of ∆t. The neurons N generate
synchronized spikes, which reduces the computational efficiency of the system. Each
neuron of the population is responsive to a specific input, as it is often described as
tuning curves. The superposition of the neuron activity carries the information about
the input value [173].

The usage of the inherent properties of the LIF neuron as an encoding stage is called
current injection because the input current is directly connected to the input synapses of
the population. The input weights can be modified such that each individual neuron has
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a different firing frequency for the input range. Another extension is the receptive field,
mainly based on Gaussian kernels and inspired by the human’s visual encoding [187].

3.3 Temporal Coding

The second category of encoding schemes is temporal codes which use local or global
references to the spike timing. Methods where the exact timing is less important but the
order of the spike events from different neurons still fit into this category. Thus, there
are many subcategories of the temporal schemes. The Temporal Contrast (TC) utilizes
the signal’s derivative and focuses on the amplitude changes. The Latency and Global
Referenced use a global or local reference of the spike timing. The similarity between the
Inter-Spike-Interval (ISI) encoding and correlation & synchrony schemes exists since the
information is encoded in the difference between spikes by single or multiple neurons. The
last schemes fit the filter-based category because they use a kernel function to extract the
spike patterns. In Figure 3.2, we provide an overview of the temporal encoding methods.

In the following, we describe some selected methods shown in the taxonomy in Figure
3.1, which are important for this work. Our publication [39] provides a full overview of
the encoding techniques.

3.3.1 Global Referenced

The most common temporal encoding scheme is TTFS, where the information is encoded
in the distance between a global reference and the spike. It means an earlier spike has a
higher amplitude while low amplitudes have a large interval. Therefore, the spike timing
is the inverse of the stimulus amplitude a defined as δt = 1− 1/a. The importance of the
relative time of the first spike was discovered during experiments with discrete mechanical
fingertip events [183]. Likewise, observation from the retinal pathway strengthens the
usage of the time information by demonstrating the invariant relation of the stimulus
contrast [168].

Another version of the referenced encoding scheme uses an oscillating reference point
called phase coding. Thus, the time between the spike and its closest oscillation reference
point carries the information [188], [189]. It extends the static idea of the TTFS encoding
to continuous data. The phase coding was observed in the cat’s visual cortex by identifying
the spike pattern and the reference oscillation [190].

While TTFS coding uses the exact timing, Rank-Order Coding (ROC) uses the spike
order of a neuron population concerning the global reference point. Thus, the exact
amplitude information is lost with the benefit of resistance to jitter and noise. Often in
globally referenced coding schemes, the first spike is the most important, enabling the
processing in an importance order. Therefore, the longer the network processes incoming
spikes, the more accurate it will be, demonstrating the speed-accuracy trade-off of global
referenced coding schemes [191].

42



3.3 Temporal Coding

(a) Stimuli

stimulus

(b) TTFS coding

neuron 1

neuron 2

neuron 3

neuron 4

∆t2

∆t3

(c) Phase coding

neuron 1

neuron 2

neuron 3

refoszi

∆t2

(d) ROC coding

neuron 1

neuron 2

neuron 3

neuron 4

1

2

3

4

(e) ISI coding

neuron 1

neuron 2

neuron 3

neuron 4

∆t1 ∆t2 ∆t3

(f) Correlation coding

neuron 1

neuron 2

neuron 3

neuron 4

time window

1 0

(g) Binary coding

Presence

Timing

1 0 1 1 0

(h) BSA & TC coding

stimulus

BSA

Temporal

Contrast

Figure 3.2: Temporal coding techniques: Overview of different temporal encoding
techniques with the dashed vertical line as a reference. Here, ∆t describes the temporal
difference between reference and spike. Modified from our previously publication[39].
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3.3.2 Temporal Contrast

The last subgroup we mention in this work is TC. The spike trains represent the temporal
deviations of an analog signal [143], enabling the conversion of continuous analog signals.
One example application is the event-based camera where TC encodes the light intensity
changes with a high dynamic range [192], [193]. This biological-inspired camera only
generates positive or negative events for each pixel during an intensity change that
exceeds a predefined threshold. The following describes the theory of the three most
famous TC encoding methods. Since all methods generate a positive and negative spike
train δ[t], we define the spike function of the input signal x[t] as:

δ[t] =


+1, if x[t] > +ϑ,

−1, if x[t] < −ϑ,
0, else,

(3.3)

where ϑ represents a static or dynamic defined threshold depending on the TC method,
which we further explain in detail.

Threshold-Based Representation (TBR): uses a global threshold, which is defined
by analyzing the signal mean and standard deviation (SD) with a scaling factor β. The
threshold ϑ is defined:

ϑ = mean(x′[0 : t]) + β · SD(x[0 : t]), (3.4)

for a selected time interval x[0 : t] of the signal’s first derivative, which we can realize as
hardware implementation by the deviation between x[t] and x[t− 1]. When the difference
between the current x[t] and the last sample x[t − 1] exceeds the threshold ϑ, then a
positive spike appears as it was defined in Equation 3.3.

Moving Window: selects the threshold based on the historical mean of a moving
window and a predefined accepted SD. Hence, we define the positive and negative
thresholds like:

±ϑ[t] = mean(x[t− tw : t])± SD, (3.5)

where tw is the length of a time window. The algorithms generate the corresponding
spike when the signal exceeds the range defined by the threshold due to the positive and
negative SD. A small SD increases the sensitivity and the spike count. Since the spike
count correlates with the power consumption of event-based implementation, the SD
directly influences the system’s efficiency.

Step Forward: is another temporal contrast method that defines the threshold based
on the previous value. The positive and negative threshold is defined by:

ϑ[t] = base ± SD, (3.6)
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Figure 3.3: R&F frequency selectivity: Response of the subthreshold dynamics of the
R&F neurons to a simulated superposition of two frequencies. Integration of the neuron states
is similar to the Fourier transformation because we neglected the rest and spike function.

where the previously emitted spike sets the base. An action potential generates the
update of the base by the positive or negative SD depending on the spike polarity.
Compared to a pure comparison to previous values, it can better represent changes across
multiple time steps. Hence, the standard deviation scales the algorithm sensitivity and
the number of spikes. The SD greatly affects the overall encoding performance and
removal of unnecessary information. Figure 3.2 demonstrates an example of TC encoding
based on Step-Forward (SF).

Temporal contrast methods use the signal’s temporal deviations by different threshold
definitions and, therefore, affect the information in the spike domain. The challenge is to
select suitable parameters for a good relation between information loss and the number
of spikes. Important to mention are the high temporal and low spatial dimensions of
this encoding scheme and that the individual factor depends on the application sampling
frequency. For further information about TC encoding, we refer to [194].

3.4 Resonate-and-Fire Encoding

The following chapter exceeds the survey of encoding methods and proposes the R&F
encoding, which takes advantage of the inherent neuron properties. We described the
neuron dynamics in Chapter 2.2. A population of the R&F neurons acts like a frequency-
selective filter bank with a spike generation mechanism. The initial idea of using the
R&F neurons as encoder states back to [195]. The encoding provides two interesting
properties: 1) it is frequency selective, 2) it generates spikes based on the amplitude,
and 3) represents the phase in the exact spike timing by a slight modification. In the
following, we will describe the signal encoding technique with R&F and use synthetic
examples to demonstrate possible applications.
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3.4.1 Properties of the Damped Resonator

Instead of a spike train, the R&F receives the continuous input signal directly to the real
and imaginary neuron state. In the following, we use the neuron to encode only a real
signal. Assuming the input signal is a superposition of sinusoidal, then the individual
neuron would react to the existence of the resonate frequency, meaning the neurons
where the resonant frequency matches with the input signal increase its amplitude
significantly. Figure 3.3 demonstrates the response of the R&F without spike function to
a two-tone signal. Since the input signal matches at least two neurons, the amplitude
of the neuron oscillation increases. Due to physical reasons, the frequency is not ideal
and spectral leakage appears. The temporal summation of the neuron states generates a
Fourier transformation, as indicated in Figure 3.3, showing a resonant and non-resonant
excitation.

A resonant excitation of a neuron n with resonant frequency ωn exists if the input current
is a sinusoidal oscillation, matching the resonant frequency of the neuron. Therefore,
the input current i[t] = a cos (ωnt) enhances the neuron state. The main information
is in the envelope of the transient response because, in a resonant case, it increases
exponentially due to the damping component. Thus, we can define the envelope of the
transient response

e0n[t] =
−A
2b

(1− ebt), (3.7)

with b as the damping constant with the condition b < 0. The amplitude A of the
sinusoidal oscillation defines the maximum reachable amplitude of the neuron state.
Thus, the amplitude of the neuron state is independent of the resonant frequency, but
it depends heavily on the input signal amplitude. Equation 3.7 can be approximated
linearly for a small damping constant. Thus, the neuron’s amplitude increases over time,
which means the time is proportional to the signal’s amplitude. The damping constant
allows the encoding of continuous signals with frequency changes. While a frequency,
when present, will result in the neuron’s excitation, the neuron will lose excitation by the
disappearance of the frequency because of the damping property. The damping leads to
an exponential decay at the end of the resonant excitation with the envelope of:

e1n[t] = Amax e
bt, (3.8)

which depends on Amax, which is the maximum amplitude of the transient response. The
maximum amplitude is defined by the max(e0n) of Equation 3.7.

During a non-resonant excitation (w 6= wn) of neuron n the envelope increases much
lower in the same time. Since in any real signal wideband noise exists, the R&F neurons
are always stimulated, differing in the amplitude of the excitation of the neuron. Also,
effects like spectral leakage lead to increased excitation of neurons surrounding the
frequency of the input signal, and the same resonating case is less probable.
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Figure 3.4: Comparison of spike methods: Comparison of the phase diagrams for
different spike methods of the R&F neuron. The discrete model receives two input spike
events to reach the threshold. Simulation is stopped at the spike generation, and no reset is
applied here. The blue cross represents an action potential.

3.4.2 Properties of Spike Mechanism

One major component of a neuron is the spike mechanism, as already briefly described
from an action potential point of view in Chapter 2.2. The spike carries the information
in the rate or timing. In population-based encoding, the information is either in the rate
of the population activity, the relative timing, or the combination of both. The R&F
neuron transforms a temporal signal into a spatio-temporal representation by extracting
the frequency components and simultaneously removing noise. It consists of two internal
states, providing various variants of the spike and reset mechanism. In the following, we
will analyze the different spike methods to show the suitability of R&F neurons for data
encoding. We use the phase diagrams in Figure 3.4 to show the difference between the
original and the phase-dependent spike mechanism.

The original spike mechanism proposed by Izhikevich [115] is defined by

δ[t] =

{
1 if Im(z[t]) > ϑ

0 else,
(3.9)

that means if the imaginary component exceeds the static or adaptive threshold ϑ, an
output spike is emitted, and the neuron is reset. The measure of the real component as a
threshold indication is possible but not recommended because it is directly connected
to the input current and can be affected by noise. Figure 3.4a shows the response to a
spike stimulus with the static threshold defined as ϑ. For visibility reasons, we use the
spike, but the same idea applies to a random input signal. If the neuron state exceeds
the gray area, it will always generate a spike. [195] experienced the dependency of the
phase and the amplitude during the simulations. The reason can be explained with the
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Figure 3.5: TTFS with R&F: Comparison of the FFT with the decoding of the first spike
within a R&F population. We normalize the FFT and the temporal distance between the
start of the simulation and the first spike of the individual neurons. An early spike event
means a high amplitude, while no spike indicates no signal component. The sparse response
uses a simulation with 512 time steps and the R&F neurons without reset.

phase diagram because the phase is defined by

α = arctan(
ϑ

r
), (3.10)

where r is the instantaneous amplitude of the oscillation. Assuming that we are interested
in the phase at a fixed threshold potential, we observe that an amplitude change directly
affects the phase, making it impossible to estimate the phase exactly. However, the time
of the first spike is directly proportional to the amplitude and phase of the system, but
the individual information cannot be extracted. Two signals with the same amplitude
and frequency but with a phase difference of π would lead to a different spike timing
where it is impossible to differentiate the phase or the amplitude. With the original spike
mechanism of Izhikevich, it is impossible to detect the exact amplitude and phase of a
signal in noisy environments [195].

Not only the first spike carries information about the amplitude but also the distance
between spikes with a reset mechanism or the number of spikes. The correlation between
amplitude and phase is only valid for the first spike but does not affect the time between
spikes in a neuron with a reset mechanism. Since the generated spike does not always
appear at the same position of the neuron’s oscillation, an additional spike timing error
appears that influences the amplitude estimation. Also, the number of spikes limits
the detection of short signal components; even adaptive thresholds cannot overcome
this issue, but they have the benefit of better distinguishing between low and high
amplitude signals [43] with the drawback of additional computations. Another problem
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3.4 Resonate-and-Fire Encoding

of this threshold with binary spikes is the effect that close R&F neurons can lead to
the same number of spikes because of spectral leakage. Thus, a signal with a constant
frequency influences the surrounding frequencies through the leakage. Figure 3.5 depicts
an example that compares the Fourier transformation with the R&F encoding and the
TTFS decoding. Important to note is the noise suppression of the R&F by no activity of
the not existing frequencies. Also, the figure indicates at 2 Hz the problem of the spikes
from the surrounding neurons. Nevertheless, we demonstrate with this simulation the
extraction of the amplitude information by the time of the first spike.

One way to retrieve more information are weighted spikes with Re(z[t]) as amplitude
[118]. We can use the Pythagorean equation to extract the amplitude r =

√
Re(z[t])2 + ϑ2

and the basic trigonometric conversions to define the angle α = arcsin( ϑ
Re(z[t])). However,

this encoding does not use the exact spike timing and increases the necessary complexity
to extract the amplitude and phase.

Another approach is the utilization of the exact timing of a spike. Thus, we define a
phase-dependent spike mechanism:

δ[t] =

{
1 if Im(z[t]) > ϑ & Re(z[t]) = 0,

0 else,
(3.11)

it means that the spike is always at the zero transition of the imaginary axis, where we
have a 90◦ phase difference between real and imaginary. At this point, the imaginary
component is maximized. The spike timing carries the phase information, and the ISI
to a reference spike contains the relative phase. Important to note is the relation of the
phase, frequency, and time between spikes. Figure 3.4b shows the corresponding phase
diagram with the spike at the zero transition. The amplitude or magnitude of the signal
cannot be exactly defined through the number of generated spikes but with weighted
spikes:

δweighted[t] = (Im(z[t])− ϑ) δ[t]. (3.12)

This exact spiking of the neuron has the benefit that we can estimate the frequency,
amplitude, and phase of the signal. The frequency is encoded twice in the spatial domain
of the spike and the time between two consecutive spikes. The amplitude is in the weight
of the signal, and the phase is in the timing of the spike to a global reference. Recently,
[118] showed the encoding with R&F neurons with a similar threshold idea, but it uses
the condition of the transition of the real axis and the threshold on the real component.
It means that the spike always indicates the zero phase, but we tried to avoid the direct
connection of the threshold with the input stimuli to reduce noise-related effects. The
threshold defines the sensitivity to low amplitude signals such as noise, and the spikes focus
on the higher amplitude signals. Compared to the Fourier transformation, it removes the
noise components and enables sparse communication. [118] compared the phase-dependent
spike mechanism with the Short-Time Fourier Transform (STFT) and observed the lower
communication cost on the Loihi 2 neuromorphic hardware. There are even other variants
to define the threshold. [119] implements a threshold phasor associative memory with
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Figure 3.6: R&F frequency-spectrum: Time-to-Frequency conversion with FFT and
R&F neurons with different reset Methods. The reset method all and real overlay each other.
The right plot focuses on the region of the 10 Hz signal.

R&F neurons that use two threshold conditions: Im(z[t]) > ϑ&Re(z[t]) > 0.2 for spike
based data.

3.4.3 Properties of Reset Mechanism

An additional feature of all biological neurons is the rest functionality after an action
potential or spike. Neuroscientists observed that the potential falls below the resting to
provide an additional time that reduces the likelihood of a new spike generation called
refractory [21]. However, this mechanism is less relevant in R&F neurons since the
neurons have to be stimulated again to oscillate.

The R&F neuron has two internal states to reset the neuron, the imaginary and real
components. Therefore, we have at least three different possibilities to reset the neuron
by:

z[t] =


j Im(z[t]) or,
Re(z[t]) or,
0

(3.13)

where even the reset value can be adjusted, for example, to the threshold potential ϑ.
Due to the resonating effect, a negative value does not prevent the firing of the neuron
and is, therefore, not further analyzed. After resetting a single component, the neuron
states continuous to resonate, which is an interesting property for spike processing. In
the application of encoders, it leads to an unbalanced spike pattern around the center
frequency compared to the complete reset for non-binary spike events. Also, the complete
reset reduces the amount of spikes in the processing chain.
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Figure 3.6 shows the accumulated spikes of different reset methods. We use the
previously explained weighted phase-dependent spike mechanism and the discrete neuron
implementation. The synthetic input consists of a sinusoidal oscillation with 10 Hz and
zero phases with a Signal-to-Noise Ratio (SNR) of 1 dB. We use here additive white
Gaussian noise to model a balanced distribution. The accumulation of the weighted
action potential carries the information about the existing frequency components in
the signal. However, the overall results depend on the neuron threshold and the reset
mechanism. The threshold leads to direct noise and low amplitude suppression. The
real peak can be detected best with no reset mechanism (none), with the highest spike
count of 909. The lowest spike count of 102 has the worst performance, as seen by the
reset of the real (real) or the real and imaginary (all) state, because it is affected by the
input noise, as we could observe for multiple simulations. The reset of the imaginary
state provides 733 spikes and a decent performance. As expected, the spike count is also
affected by the number of neurons and the spacing between the resonance frequencies.
Here the simulation uses 2000 neurons from 0 to 20 Hz with a frequency step size of
0.01 Hz, where only 2% of the neurons generate spikes. The selection of an appropriate
mechanism is not a simple decision, but these findings already give insides into the
variants, which we further evaluate in the applications.

3.4.4 Comparison to the Fourier Transformation

Previously, we have described the capability of the R&F neurons to convert an input signal
into a frequency-time representation by utilizing the inherent property of the resonant
frequency kernel, as depicted in Figure 3.3. Also, we compared the response with
the Fourier transformation. The following section will present an extended comparison
between R&F encoding and STFT methods by investigating the computational complexity
and the output bandwidth. For a detailed description of the STFT, we refer to [196].

Equation 2.23 defines the discrete form of the R&F. In case of no reset mechanism and
the initial zero condition of the internal states zk[0] = 0, we can reformulate the equation
into the sum of the individual multiplications of the input with the oscillation kernel:

zk[n] =

N∑
n=0

e∆t bk ej∆t ωk ak[n]. (3.14)

This form resembles the STFT described in [118]. The damping term e∆t bk defines a
low pass filter naturally as an exponential decay, which corresponds to the windowing
function of the STFT. The resonant frequency ωk defines the rotation factor by the
complex exponential. Hence, a population of R&F neurons can perform a similar function
as the STFT.

Figure 3.7 indicates the correlation of the spike response of the R&F neurons to the
time-domain input. Here, we transform the instantaneous frequency of f(x) to the
time-domain signal and apply the R&F encoding. The spike response has a similar shape
as the expected frequency course, but the spike count depends on the steepness of the
frequency change. We used a low-frequency input signal and 12 R&F neurons with a
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Figure 3.7: Instantaneous frequency of R&F and STFT: (a) indicates the generated
frequency course of the input signal and the corresponding spike response of the R&F neurons.
The neurons use the phase-dependent spike mechanism with a damping constant of −1 and
a threshold of 0.1. In total, 113 action potentials carry the 3, 800 time-step long signal
information. (b) illustrates the STFT with zeroing and a FFT length of 128 and an overlap
of 50 step.

linear scaled resonant frequency in this example. The damping factor is −1, and the
threshold is 0.1. A smaller resonant frequency scale and a higher threshold could achieve
a better resolution.

In the case of the R&F encoding, the temporal resolution correlates with the simulation
time steps because it uses the inherent decaying as a window function. Another important
aspect is the sparse output events of the R&F neurons compared to the STFT [118]. In
Figure 3.7, a total of 113 spikes across 12 neurons out of 20 carry the information of
the input series. The STFT uses a window and FFT length of 128, but we reduce it
to the frequencies of interest. Therefore, in the best case without overlapping windows,
the complete output consists of 403 complex values for 13 frequency bins. In the worst
case, the spectrogram is defined by every time step and generates 49, 413 complex values.
Thus, the sparse representation reduces the number of output values by a factor of 875x
in the given example because the phase information is encoded at the time of the spikes
instead of an additional floating point value.

We can pre-calculate the network parameters as shown in Equation 2.24. Therefore,
the network consists of a total of 25 parameters, and each neuron has four multiplications,
three additions, the step-activation function, and the reset function. The activation
function consists of a single branch instruction, and the reset replaces the internal states
with zero if necessary. The complexity of the R&F algorithm is O(MN), where M is the
number of desired spectral components and N corresponds to the number of time steps.

A baseline method to extract the frequency course is the STFT, which applies the
Fourier transformation on a moving window across the time series [197]. It can either be
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Table 3.1: Computational complexity of STFT algorithms. N is the number of input
time steps, and M describes the number of desired spectral components. L refers to the
length of the windowed Fourier transformation, and the highest number of windows equals
N for a moving window with a single step and zero padding.

STFT Complexity Multiplications Additions

Algorithm Per spectral component

DFT∗ O(MN) 2N 2(N − 1)
FFT∗ O(N log2N) 2 log2N 3 log2N

Goertzel∗ O(MN) (N + 2) (2N + 2)
DFT∗∗ O(MLN) 2LN 2N(L− 1)
FFT∗∗ O(NL log2 L) 2N log2 L 3N log2 L

Goertzel∗∗ O(MLN) N(L+ 2) N(2L+ 2)

R&F O(MN) 4N 3N
∗without window overlap.
∗∗with single-step moving window.

implemented as DFT, FFT, or by the Goertzel algorithm [198] with different complexities
as shown in Table 3.1, where we demonstrate the trade-off between the temporal resolution
and the number of operations. The best case consists of non-overlapping moving windows
with a length L, and the worst case appears for a stride of one with zero padding because
the number of windows equals the length N of the input data. M refers to the number
of spectral components.

3.5 Discussion and Summary
Over thousands of years, nature has evolved information encoding of sensory information
for efficient processing in the brain. Thus, the encoding has the following requirements:
1) information reduction, 2) noise suppression, 3) representation in rate or temporal spike
events, 4) energy efficiency, and 5) real-time conversion. To solve all of these requirements,
nature has developed different codes.

This chapter analyzed current state-of-the-art encoding methods using rate or temporal
codes. The rate codes use the firing frequency as the primary information source, and
such networks can be converted from traditional ANNs [23]. However, the rate codes
suffer in their energy efficiency because each spike is processed so that the number of
spikes correlates with the power consumption in event-based systems. One solution to
the energy problem is the use of temporal spikes where the information is at the time of
the spike event.

The real-time conversion requirement increases the complexity of the encoding mecha-
nism. Methods like count rate or TTFS need time to represent the information. Thus,
the information is represented in subsequences which is not applicable to high-frequency
signals like in radar. Methods like TC are more promising because they can continuously
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generate spikes depending on the input changes. Also, a population where each neuron is
responsive to a different amplitude level would be sufficient, but not every population
encoding is suitable. The population code is vaguely defined since every code can be ex-
tended to a population code. A receptive field like Gaussian kernel filters the information,
represented as TTFS or rates [199], [200].

We extended the original review [39] with the R&F encoding that combines a frequency-
selective preprocessing with the conversion to spikes. Thus, we classify the R&F encoding
as a temporal filter-based method. The resonating properties allow the conversion of the
single-dimensional input to a higher dimensionality while suppressing noise. The original
signal’s information is compressed in the spikes appearances, timings, and rates. Thus,
the encoding combines the idea of population, temporal, and rate codes, providing a high
information density. This idea is inspired by observations from the auditorial cochlear
[201]. The R&F encoding is comparable to the STFT processing with a sparse stream
processing. However, the current neuromorphic hardware implementations do not fully
support the R&F except for the Loihi 2 and SpiNNaker 2.

This survey about different encoding methods contributes to the main research question
and provides a theoretical answer to RQ 1 and 2. We reuse the R&F encoding in all
applications.
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One application to demonstrate the differences between the encoding schemes is the
pattern detection of temporal data or time-series classification. Temporal data underlie
changes over time based on the historical temporal context [202]. We use the discrete
representation of a time series to model the system, which could be applied in contin-
uous applications. Time-series analysis is essential in various applications like finance,
economics, server resource management, and much more [203], [204]. Often, the analysis
is not real-time crucial and can be calculated offline, which relaxes the memory and
processing requirements. In the case of radar-to-radar interference, the detection should
be real-time capable with a low power budget because a vehicle could have a traveling
speed of 130 km/h or even more and limited battery power. Therefore, we investigate
SNN architectures with different encoding schemes to detect interference by analyzing
the time-domain signal after the ADC.

Further information about radar interference is provided in Chapter 2.1.3, and the
background of encoding is covered in Chapter 3. Also, we compare the proposed
architectures with the traditional threshold technique, which utilizes the assumption that
interference always has a higher amplitude than the signal components. We demonstrate
two basic supervised Machine Learning (ML) methods for classifying interference: 1)
deviation detection and 2) pattern detection. The detection of interference is a sort of
outlier detection with knowledge of the interference properties, which makes it suitable
for supervised learning of application-specific outliers [202]. In safety-related applications,
a supervised approach provides more control than unsupervised methods. Additionally,
we optimize the network architecture to process spatio-temporal patterns efficiently.
Therefore, we generate a synthetic and semi-synthetic dataset and compare our proposed
method with traditional and deep learning-inspired techniques like the CNN and Long
Short-Term Memory (LSTM).

4.1 Related Work
In the following, we will provide an overview of existing methods to detect interference
that we also use as a baseline. Some detection algorithms are closely interwoven with the
mitigation, but other mitigation methods are investigated based on the ideal detection
approach. The detection is the first step before applying any mitigation method, signal
processing adaptation, or forwarding the information of no-functionality to the driver.
Consequently, we provide an overview of classical deterministic and traditional machine
learning methods and highlight the limitations of these approaches.

It is widespread to use CFAR as an algorithm to detect the peaks within the range-FFT
or the RDM [205]. The algorithm analyzes the input data by a moving mean across a
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predefined window shape. It, therefore, differentiates noise from a signal component, but
it has the drawback that if a target is below the noise due to interference, then the target
will not be detected. An extension of this idea is using the time-frequency information
where CFAR is applied across each frequency, and the generated map is used to mask
interference. This approach takes advantage of the changing frequency of the interference
compared to the static target with constant frequency throughout a single chirp [206].

The most basic interference detection method is a simple threshold that detects if the
received signal crosses the expected working range; this technique is also called clipping
[207]. It relies on the assumption that the amplitude of interference is always higher
than the signal reflections. Consequently, this threshold type detects only saturation for
very strong interference or a close, highly reflective target that does not fit the sensor’s
configuration. We name this method thr-simple in the following chapters. Also possible
is the usage of the standard deviation across a sliding window. The outlier score of
a wideband interference is more likely to have a higher variation because of the high-
frequency components than the target echoes, and interference leads to a higher amplitude
than the expected targets. A predefined threshold based on the radar application and
settings differentiates interference from the expected signals. We refer to this method as
thr-windowed. Another idea of the threshold method is to estimate the threshold based
on the strongest target reflections iteratively. The threshold is iteratively defined as the
weighted mean of the signal without disturbances that are neglected due to the previous
threshold. This process is repeated until the threshold change is below a predefined
value. We implemented the newest version of this iterative threshold [208] and called it
thr-iterative. An additional threshold-based method calculates the amplitude variations
between two consecutive samples and compares them with a predefined threshold [209].
The threshold is selected based on the radar application, the expected target reflections,
and depending on the sampling frequency. The patent already indicates the problem of
wrong detections due to the nature of the static threshold if the leakage between the
transmit and the receive antenna is too high or the interference amplitude is not higher
than expected by the algorithm.

Another way to detect interference operates with the negative and positive frequency
characteristics of out-phase interference, which only applies to complex basebands. There-
fore, every channel consists of a real and imaginary component by applying a 90◦ phase
rotation. Because a real target reflection only appears in the positive half-frequency
spectrum, the interference is detectable in the negative frequency component. There
are different techniques to use the detections by interpolating the samples during the
duration of the interference and applying to zero or an adaptive noise canceler [210]. This
method increases the product cost heavily due to the higher silicon area consumption.

The recent trend of NN is also visible in the topic of radar interference detection and
mitigation, where various methods are applied to different steps of the signal processing
pipeline. [211] applies a network of Gated Recurrent Unit (GRU) cells to detect and
mitigate interference in the time-domain. The recurrently connected network acts as a
filter to remove interference by training the network to reconstruct the time-domain data
without interference. This approach is fully supervised and, therefore, good to control.
However, it is difficult to understand what the networks learn compared to autoencoder
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architectures, where the latent space represents the extracted features from the input.
[212] demonstrates the use of an image processing-inspired CNN autoencoder for RDM
denoising. The denoising can remove interference and general noise from the RDM. The
architecture is fixed to the settings of the radar sensor, and a change in the number
of ramps affects the size of the RDM. Hence, the network has to be retrained for each
individual setup.

During training, the network optimizes the image-to-image translation of corrupted
RDMs. Therefore, corrupted and not corrupted samples are necessary. The authors
recorded the interference IF signal during the off phase of the transmit path of the victim
sensor and performed a linear superposition of the recorded data. There are two ways
how the CNN can denoise the maps, either by acting as a sort of CFAR detector or
by investigating the changes across the Doppler dimensions because the interference is
unlikely to be the same across multiple chirps, but this was not further investigated.
Another CNN-based network classifies the interference into different classes depending
on the source of the disturber [213]. Similarly, [214] classifies the type of interference
with a support vector machine on the RDM. However, the source of the interference is
less important than the actual detection of the corrupted chirp.

4.2 Setups

The following chapter focuses on the two methods used as interference detectors by
assuming interference as an outlier and classifying the interference pattern. We explain
the central concept and the training methods used for the different network architectures.
This work points out the properties of the individual encoding techniques based on the
two central concepts. Due to the inherent differences between the two methods, we have
to use different datasets, limiting the direct performance comparison.

4.2.1 Normality Estimation

The first method assumes that interference is an outlier from the normal receive signal
of the radar sensors. Therefore, we use a predictor to represent the expected normality
and compare it with the real value. In the following, we will use the word outlier as a
synonym for interference. Such a method is widespread in situations with sparse outlier
events and unknown properties of the outliers [215]. This concept was presented in
the publication [40], where we showed an LSTM-based predictor in combination with a
zeroing mitigation method that masks the detected outlier sample points.

The overall idea is shown in Figure 4.1 with the continuous input time series x[t] and
the corresponding output ŷ[t] that indicates the existence of an outlier. The predictor
estimates the next time step x̂[t+ 1] based on the historical input values and calculates
the outlier score with the delayed predictor output:

s[t] = x[t]− x̂[t]. (4.1)
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x[t]

Predictor

z−1

−

x̂[t+ 1]

|s[t]| > ϑ
s[t]

ŷ[t] = 1

ŷ[t] = 0

Figure 4.1: Concept of semi-supervised outlier detector: The predictor estimates the
future sample points by using a local temporal memory to extract historical relationships.
The outliers are detected by the amount of deviation between the expected and the real data.
1 indicates a detected outlier, and 0 no outlier.

Due to the simplicity and similar performance, we decided to use a static threshold ϑ for
differentiation between normality and outlier:

outlier(t) =

{
1, if |score(t)| > ϑ

0, otherwise
. (4.2)

The threshold correlates with the system accuracy because a lower threshold increases
the probability of false-positive detection, and a higher threshold reduces true-positive
detections. A good starting point for the threshold value is above the maximum training
error between the predicted and real output, but a hyperparameter search provides an
even better selection. Dynamic threshold methods with a higher computational cost can
achieve a higher complexity and slightly better performance.

Training: The training method of the one-step-ahead predictor differs from traditional
classification and regression problems because we take advantage of the temporal prop-
erties of the input data. The network receives and generates one data sample per time
step. Therefore, we use BPTT with an adaptation for sequence-to-scalar supervised
prediction, but we test the whole model in an unsupervised mode. This approach is
called semi-supervised because the predictor is trained and supervised, but the complete
system is used unsupervised. This technique has the advantage of a high training control
but benefits for unsupervised properties during inference by detecting any outliers from
the expected normality. We depicted the training and test data pre-processing in Figure
4.2, where the training sequences are separated into subsequences by applying a moving
window. In our case, we use the last value of the chunks as the target value y, for a
one-step-ahead prediction. The window length defines the number of unrolled layers in
time and is a trade-off between vanishing gradient for long windows and the capability
to learn temporal features. Hence, we use a window length of 100 time-steps and a single
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Figure 4.2: Training sequence-to-scalar: From the training sequences, subsequences
are generated using a moving window as depicted by the windowed training sequences. The
available input is the step-wise input to the network, and the output is the next predicted
value. The test sequences use a warm-up phase to stabilize the network and then continuously
predicts the target value y[t].

target value in our example. The sequence-to-sequence method also exists, first developed
for natural language processing [216]. The idea is to predict the target sequences instead
of a single scalar value. However, the network will not be forced to learn temporal
dependencies between the first and the last sample point, which is crucial in the given
application. The same approach can be used for time series analysis with a different input
and target sequence, like observing the current consumption of a system and predicting
its state.

We do not apply any windowing for the test and validation, as shown in Figure 4.2.
After the warm-up phase, the network has stabilized, and the output can be used to
predict the target value. In our case, the test sequences contain an additional chirp which
we remove before the evaluation. We use the Mean-Squared-Error (MSE) loss between
each prediction ŷi and target yi, which is defined by:

MSE =
1

N

n∑
i=1

(yi − ŷi)
2, (4.3)

with n number of predictions. The loss function correlates with the outlier score and
shows that a high MSE leads to a low outlier detector performance.

Architectures: The baseline architecture consists of LSTMs neurons, which have
inherent recurrency by their gated architecture with an input, output, and forget gate
[217], [218]. These gates reduce the vanishing gradient problem by individual activation
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functions but increase the computational cost heavily, as shown by the equations [219]:

ft = σ(Wfxt + Ufht−1 + bf ) (4.4)
it = σ(Wixt + Uiht−1 + bi) (4.5)
ot = σ(Woxt + Uoht−1 + bo) (4.6)
c′t = tanh(Wcxt + Ucht−1 + bc) (4.7)
ct = ftct−1 + itc

′
t (4.8)

ht = ot tanh(ct), (4.9)

where σ is the sigmoid activation function and i, f , and o are the input, forget, and
output gates, respectively. The input x and the hidden state h are multiplied by the
weights W and U . We use two fully connected hidden LSTM layers with 25 recurrent
connected cells for the one-step-ahead prediction task. The input layer is a single input
node of the corresponding radar signal for a single receive channel. The output combines
the LSTM output by a dense layer with one output neuron without activation function.
An activation function at the output negatively influences the prediction by binding the
output into the value range of the function. An example is ReLU, where negative output
is bound to zero; therefore, a negative prediction is impossible. Additionally, we replaced
the LSTM cells with GRU cells for improved computational complexity.

We use the step-forward temporal contrast method for the spiking network to encode
spikes and decode the spike events. We motivate the use of TC by the continuous change
and periodicity of the radar signal. Hence, each input sample point corresponds to a time
step of the network. Therefore, a pure rate-based encoding cannot react to fast changes,
and a temporal coding like TTFS would need sub-time steps to represent the signal’s
amplitude better. Filter-based methods like Ben’s spiker algorithm (BSA) or Hough
spiker algorithm (HSA) have proven their existence in different applications like ECG
classification [220]. However, [194] has shown that temporal contrast performs better on
the step and smooth inputs, and the subcategories of SF perform best for the given task.

Additionally, we directly inject the data as input current to a population of LIF neurons
and adjust the weights during training to create different neuron transfer functions.
Further details about the encoding methods are in Chapter 3. Therefore, we compare the
baseline architecture with the SNN architecture with SF, or current injection encoding, a
population of LIF neurons, and a trainable temporal contrast decoder based on a linear
superposition of the network output. We use the same two-layer architecture with 25
hidden neurons for both encoding schemes.

In this binary classification task, we use the accuracy metric normally defined by the
division of true positive detection by total possible detections. In unbalanced datasets,
this can lead to misinterpretation of the results; therefore, we apply the balanced accuracy
defined by [221], which considers the class distribution in a binary classification task.
The balanced accuracy is specified by

accuracybalanced =
1

2
(

TP

TP + FN
+

TN

TN + FP
), (4.10)
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where TP , FN , TN , and FP are the true positive, false negative, true negative, and
false positive detections. Further information about these standard stochastic metrics
can be found in [222]. The dataset consists of 51.4% samples with interference, but since
we compare here the sample points and not the single time series, the class distribution
is highly unbalanced. Only 1.5% of the sample points in the complete dataset are labeled
as outliers. However, the network’s performance is also falsely reduced because not all
interference sample points are detected within the expected window. The detected outlier
samples are smoothed by convolving the outliers with an impulse function. The duration
of the impulse function is predefined to 10 and is either zero or one. Afterward, the results
are clipped to represent just the two classes of normal and outlier. With this, we increase
the number of detected samples and the likelihood of true positive detections, which is
especially important for the additional zeroing mitigation. Mitigation is a technique to
remove the effect of interference either by interpolation or removing the affected samples.
Here, we use exemplary zeroing mitigation by replacing the corrupted samples with zero.
In the method evaluation, we will analyze the prediction performance separately, the
outlier classification of the samples, and on a chirp basis to provide an understanding of
how well the proposed method performs.

4.2.2 Pattern Classification

The second method assumes that interference follows a specific pattern, as described
in Chapter 2.1. Thus, we can apply a pattern classification method to differentiate
between normality and interference. In this work, we have limited the detection to
binary classification due to the limited availability of sample data. However, this concept
is extendable to more outlier patterns and gives first insights into a possible signal
processing with SNNs. The architectural changes provide a study about the suitability
of the different encoding techniques for processing radar data.

All the architectures are trained with BPTT and the ADAM optimizer [17]. We
apply early stopping, which means the training is halted when the validation loss has
not improved for a specified duration (called patience). All architectures are mainly
trained on the semi-synthetic interference dataset where each chirp is labeled as normal
or interference, otherwise explicitly mentioned. We use a logarithmic Softmax function
during the supervised training for the Negative Log Likelihood (NLL) loss function.
However, for the visualization, we use a normal Softmax function. In all SNN architectures,
we utilize the surrogate gradient because of its high robustness [38]. The simulations are
done with the Norse simulator [223] and a custom-designed R&F and TC implementation
in PyTorch [117].

Figure 4.3 provides an overview of the different architectures evaluated in the following
chapter. The digital input signal is the ADC samples of the time-domain radar signal we
forward to every method under test.

One baseline architecture is inspired by the state-of-the-art by using a CNN to classify
interference instead of denoising [224]. Therefore, the input stream is converted into a
vector representation by buffering the sample points. A one-dimensional convolution layer
with multiple channels and ReLU activation extracts the features from the time series.
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Figure 4.3: Classification architectures: Overview of all basic architectures for evaluating
the interference classification task. The input is the temporal ADC-samples of the radar
signal. Green indicates the state-of-the-art methods, orange is the ANN, blue is the SNN,
and gray is the general components. The temporal buffer converts the temporal sequence
into a frame-based representation.

The convolutional layer acts like an averaging filter with a kernel size of 10, a stride of 8,
and 4 output channels. Figure 4.3 depicts the architecture without considering the exact
shapes and sizes reported in Appendix A. Afterward, the channels’ output is flattened
and fed into a fully connected dense layer consisting of 28 neurons with ReLU activation.
The readout layer with fully connected synapses uses two output neurons. Inspired by
the normality estimation technique, we apply a network of 28 LSTM cells directly on
the radar signal. Therefore, the network consists of an input and readout layer, where
the input should extract the important features across the temporal dimension, and the
readout classifies the activity.

Here, we extend the previously published SNN classifier, which uses the frequency
selective R&F encoding [41]. So, the resonate-frequencies are linearly spaced across
the supported IF of the radar sensor because the frequency corresponds to the range
information. Thus, the frequencies are within the interval from 2MHz to 24MHz with a
step size of 0.105MHz and a damping factor of −2. We use two different spike generation
methods, the binary, and graded version, to analyze the additional information content
of the graded events. After an action potential, the neuron is reset by setting the real
component to zero. The encoding layer is fully connected with the hidden population
of recurrent connected LIF neurons to extract the spatial and temporal correlation of
the spike events. The reset to zero of the membrane potential is applied after each spike
event of the individual LIF neuron. The readout layer consists of two neurons for each
class and uses LI neurons. Thus, the output neuron integrates incoming events, and a
higher membrane potential indicates the existence of the corresponding class. This task
focuses on the differentiation between a normal or disturbed chirp and does not detect
the exact position of the interference. Therefore, we use the last time step of the readout
layer for the classification, which relaxes the requirements of the time constant, and a
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non-leaky integrator could also be used. The initial time constants of the hidden layer
are adjusted to the time step size of the given dataset.

Besides, we apply the famous current injection and the TC step-forward encoding as
a replacement for the R&F encoding, which also introduces fundamental architectural
changes because of the reduced spatial dimension after the encoding. The STFT has
similarities with the R&F encoding and is another exciting way to pre-process the data.
The CNN can directly use the two-dimensional output of the R&F and STFT, but the
SNN needs an additional encoding. Therefore, we reuse our previous investigation of
ways to encode RDMs into spikes using a binarization based on the data points above
the mean [44].

4.3 Datasets

For the evaluation of the interference detection methods, we generate different datasets
that will be described in the following. Since interference is sparse and difficult to catch
in real-world applications with a few radar sensors, we mainly use synthetic datasets.
Synthetic datasets [225] are a crucial element of NN optimization and have multiple
advantages, like the number of samples, dataset balance, dataset distribution, privacy
issues, and accurate labeling. Due to the high control of the data generation user can
focus the dataset on a specific task or even generate a Gaussian-distributed dataset
to increase the training capabilities of the network. The simplification of the labeling
process has an additional benefit because mathematical descriptions set the label and are
less influenced by subjectivity, entry errors, or inadequate information [226], summarized
in the general problem of label noise [227]. Such an error could be interpreted differently
by human or automated labeling tools.

An example would be a very unclear written seven that could even represent a one.
The labeling with different human or machine-based labeling with background variations
would increase the quality of the label. However, a mathematical description reduces the
complexity of the labeling processes and defines a deterministic label.

Synthetic data are essential for training complete systems like autonomous vehicles
because capturing all possible scenarios with various sensors and sensor positions is
too time intensive and costly. Recorded datasets can also be biased [228], which could
come from the manual labeling process by the human. An automatic generation, by
mathematical descriptions, of data with the corresponding labels reduces the possibility
of bias. There even exists approaches to remove the bias of datasets, mainly on image
datasets [229]. A semi-synthetic dataset combines both worlds and can also be seen as
data augmentation, where images are rotated, or noise is included to increase the number
of samples [230]. One disadvantage of synthetic data is the deviation from the real world,
like the noise sensitivity of the algorithm or even the generalization capability of the NN.
Often the networks are fine-tuned to improve the performance on the real-world data.

However, due to better control and faster generation, we used a synthetic and semi-
synthetic dataset to evaluate the networks. In the following, we describe and analyze the
datasets we created during the work.
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Table 4.1: Victim radar settings: radar settings of the victim sensor with FMCW
modulation. Information based on [40].

Parameter Value

f0 initial frequency 77 GHz
∆f sweep bandwidth 275 MHz
Tidle idle time 10µs
Tpayload ramp time 42µs
Tflyback return time 2µs

4.3.1 Synthetic Dataset

The fully synthetic dataset is generated with an Infineon internal simulator representing
the physical functionality of the radar MMIC. This dataset is a part of the following
publication [40] and has the advantage that the radar signal consists of the complete
signal, which means it also includes the signal between the chirps, the flyback, and the
wait time. The simulator utilizes the equations presented in Chapter 2.1.1 and contains
measured non-linearity effects within the circuit. The transmit signal is generated in
the ramp generator and forwarded to the individual channels and antennas, similar to
the block diagram in Figure 2.1. The simulator calculates the intermediate frequency of
the superposition of target reflections and interference aggressor signals, as described in
Equation 2.12. We apply a band-pass filter of the IF signal to limit the bandwidth and
reduce the Alias effects before digital conversion. After the ADC, we use a sampling rate
reduction. We depict the victim sensor settings in Table 4.1, where the individual ramp
is repeated eight times with the same settings.

Table 4.2: Parameters generated targets: Parameter boundaries of the randomly
generated targets. Table modification based on [40].

Parameter Value Range

d Distance 1 m 200 m
v Velocity 0 m/s 40 m/s
α Angle of arrival -50° +50°
RCS radar cross-section -20 dBsm +80 dBsm

We use randomly generated target scenarios, where we vary the distance, angle-of-
arrival, velocity, RCS, and the number of targets. The boundaries of the parameters
are shown in Table 4.2. Additionally, we ensure a variety of interference scenarios by
randomizing the interference settings, as shown in Table 4.2. We choose the parameter
space of the interferer based on the probability of overlapping the frequency courses.
Therefore, we mainly generate out-phase interference and reduce the likelihood of in-phase
interference, which would need the same ramp settings and timing. Also, important to
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Table 4.3: Parameter generated interference: Parameter boundaries of a single aggressor
sensor’s randomly generated interference settings. The interference effect could be low due
to the short duration and low amplitude of the interference, which also occurs in the real
world. The table is modified from [40].

Parameter Value Range

f0 initial frequency 76 GHz 78 GHz
∆f sweep bandwidth 0.2 GHz 1.5 GHz
Tidle idle time 2µs 12µs
Tpayload ramp time 40µs 90µs
Tflyback return time 1µs 12µs
INR interference-noise-ratio 10 dB 40 dB

mention is that we are limiting the interference to a single aggressor and do not consider
multiple ones because the likelihood of multiple interferers is low.

Since we randomize the scenarios, the targets could get very close with a high RCS,
which leads to a saturation of the supported voltage range. Therefore, we separate these
saturation samples to further investigate the system with an additional class. Another
issue is the occurrence of a short interference duration and low amplitudes because its
effect on the noise floor is minor and can be neglected. However, these samples are
still labeled as interference. Therefore, these samples negatively influence the detection
performance by not considering the effect of the interference.

Overall, we generated 460 radar time series without interference and 2266 sequences
with random interference, where 51.4% contained interference. Each series contains eight
consecutive chirps with the signal during the wait time, as indicated in Figure 2.2. We
decided not to further explain the split into the train and test set at this point because
one of the methods utilizes only the normality representation. As a label, we generate a
binary event for each time step based on the known frequency course of the victim and the
aggressor device. Hence, we can verify methods that generate chirp or time-step-based
classifications. Thus, we can also use the dataset for pattern classification by splitting it
into separated sequences based on the frequency chirp. We follow the same technique as
state-of-the-art by only extracting the valid region of the individual chirp and removing
the time between chirps and the known settling time of the components.

4.3.2 Semi-Synthetic Dataset

Better coverage of reality achieves a semi-synthetic dataset [231], which combines the
advantages of actual measurements and synthetic data generation. Due to the real
measurements, it reduces the deviation from reality, and the synthetic superposition
of interference patterns allow high flexibility in terms of interference power, temporal
position, geographical location, and labeling. Current research focuses within the field of
ML on using simulated data to include corner cases and reduce costs and development
time. We use the High-Resolution Radar Sensor from Infineon with five MMICs, 16
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Figure 4.4: Recorded camera and radar data: Example of the radar measurements
with the camera (a), clean signals of each channel (b), and the superposition of the clean
signal with synthetic interference around time step 100 (c). The individual low-frequency
component of each channel appears due to leakage from the transmitter to the receiver, and
interference affects all channels simultaneously. We recommend viewing this figure in color.
The KI-ASIC project partner OTH Amberg-Weiden recorded the data. [232]

receive, and 8 transmit channels. We implemented our software for the two AURIX
microcontrollers1 that interact with the five MMICs. We use a Python interface on
the host side to configure the individual sensors and start the measurement with the
transmission of the ADC samples, the Range data, the Range-Doppler data, or the
Range-Doppler-Angle data cube via one or two Ethernet ports. The software architecture
and program flow of the high-resolution radar software exceed this thesis.

In the research project KI-ASIC, five such high-resolution radar sensors are attached
to a BMW x5. Additionally, the project partners mounted one Light Detection and
Ranging (LIDAR) sensor and four cameras for recording a dataset with ground-through
information. The developed automated labeling pipeline generates the dataset labels,
as explained in [232]. In the following experiments, we use the first generated example
dataset, recorded inside with targets like a car, pedestrians, and cyclists. In Figure 4.4,
we demonstrate one example camera and radar recording of a single pedestrian moving
sidewise to the ego-sensor. The left time-domain radar plot demonstrates a clean signal
where the low-frequency component affects the transmitter-to-receiver leakage. The
right plot shows the same clean signal with a superposition with a synthetic interference

1AURIX-family-tx3xx: https://www.infineon.com/cms/de/product/microcontroller/32-bit-tricore-
microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc39xxx/
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pattern regenerated by our simulator based on the mathematical description in Chapter
2.1.3.

4.4 Assessment of the Normality Predictor
The normality predictor architecture consists of the predictor, outlier threshold, smooth-
ing, and optional outlier mitigation. Every module works for itself and can be replaced by
another method. Therefore, we first analyze different predictors on exemplary data and
apply the complete outlier detection pipeline on the best-performing one. Additionally,
we extend the architecture with zeroing mitigation to present the combined improvements
of the detection and mitigation method in terms of SNR. Finally, we use the proposed
architecture to show that the method is not limited to outliers from interference.

4.4.1 Predictor Performance

The first experiment focuses on the prediction performance of different predictors. For
the training, we used the MSE loss between the target and predicted value with an
ADAM optimizer and a learning rate of 0.001. Due to early stopping, the training is
halted if there is no improvement in the validation performance for 20 epochs. These
settings are used throughout the following experiments.

Nevertheless, we implemented a small toy example before using a predictor to estimate
the radar signal. The task is to predict the future sample points of a fixed sinusoidal
waveform with unit amplitude, frequency of 250Hz, and a random phase offset. The series
is separated into chunks for the Truncated Back-Propagation Through Time (TBPTT)
training as explained in Chapter 4.2.1 and split into a training and validation set. The
test set contains the complete series because we do not apply any non-linear effects like
noise, and we are not further interested in the deployment of the toy example while
providing a comparison between different NN architectures.

The LSTM and GRU architectures consist of a two-layer network with each 25 neurons
and a fully connected interconnect without across-layer recurrent connections. The
readout layer uses a standard linear layer to convert the high-dimensional space into a
one-dimensional representation for each time step. The LSTM layer consists of an input,
forget, cell, and output gate with tangents hyperbolic and sigmoid activation functions.
A reduced complexity was developed with the GRU layer that uses only three gates, the
reset, update, and new gate. Another ANN architecture uses only two dense layers where
the input is converted to a higher dimensional representation with ReLU activation and
a readout layer to convert it into a single prediction.

The 3rd generation networks with spike transmission use a similar architecture with
an encoding, hidden, and readout layer. For the encoding, we either use TC or Current
Injection (CJ), which utilizes a population of LIF neurons. The CJ encoding uses a
population rate to represent the amplitude-selective neuron where the weights and the
threshold defines the tuning curve of the individual neuron; for further information, we
refer to [173]. The TC encoder emits spike events for an absolute change between the
time steps above the threshold 0.0009. The encoder uses two virtual neurons to indicate
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Figure 4.5: Predictor performance across epochs: Comparison of different network
architectures to predict a synthetic sinusoidal signal with constant frequency and amplitude.
The example indicates how well the networks predict a simple example. Due to early stopping,
the number of epochs differs between the architectures. We recommend viewing this figure
in color.

the positive and negative change. The hidden layer employs a recurrent connected LIF
population with a unit threshold and optimized size and time constants. The number of
neurons is 40 and 19, the synaptic time constant is 361.2 and 469.3, and the membrane
time constant is 200 and 486.6 for the TC and CJ after the optimization. Important
to note that the time constants are unitless in the Norse simulator [223] because the
simulation time steps define the unit of the time constants. The readout layer is a
linear function of all spike events from the hidden population. We decided against
the commonly implemented leaky integrators because the output should represent a
continuously changing floating point value instead of an integrator. Therefore, the linear
readout corresponds to a trainable version of the TC decoder.

Figure 4.5 shows the learning curve across the epochs. The validation loss, defined
as the MSE between the target and the predicted value, indicates how well the network
predicts the sinusoidal curve. In this task, a constant predictor that always predictions
one value can achieve a loss of 0.5 for always prediction zero, which is the minimum
necessary performance of any predictor. We could observe that both SNN architectures
have problems solving the task. The TC encoding with a temporal integrator can ideally
reconstruct the original signal, and the following network needs to extract the features.
However, we could not observe that networks with TC performed as expected during
training. They either end up predicting the mean value of the sinusoidal or in a prediction
with a sinusoidal shape in the beginning but then increases or decreases, or very unstable
predictions around the zero amplitude. Thus, the predictions do not even come close
to the sinusoidal target, and as expected, a leaky integrator layer as readout does not
further improve the results. Changing the window length that limits the BPTT does not
influence the prediction performance. Due to early stopping, the training ends up very
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Figure 4.6: Accuracy as a function of the outlier threshold: Correlation between the
balanced accuracy and the threshold of the outlier score. Standard deviation reported based
on five different random seeds of the LSTM predictor. Indication by dashed horizontal and
vertical lines of the highest mean detection rate and the selected threshold for the subsequent
experiments.

early, as depicted in Figure 4.5. A further increase in the patient of the early stopping
increases the likelihood of overfitting (not important here) but has not improved the
prediction.

On the other hand, the performance of the ANN is very stable and fast to achieve.
Even a pure dense network without any recurrency improves consequently across the
epochs. However, the GRU and LSTM learned faster to predict the sinusoidal signal and
reached a very low MSE. Overall, the performance of the LSTM was the best performance
with the highest parameter count. The spiking networks used here have a total of 1, 158
and 1, 722 parameters for the current injection and temporal contrast, respectively. The
ANN networks consist of 76 (dense), 6, 026 (GRU), and 8, 026 (LSTM) parameters. For
the given toy example, the sizes could be further reduced and optimized, which exceeds
the experiment’s requirements and usage. Due to the low performance of the SNNs, we
use for the following analysis only the LSTM network. We have previously published a
part of this work [40].

4.4.2 Threshold Estimation

After designing and selecting a suitable predictor to forecast the next sample point of a
time series or discrete signal, the outlier scoring module has to be optimized. The basic
idea is to differentiate the predicted and the real value by calculating the absolute error.
The sample is labeled as an outlier if the error exceeds a predefined static or dynamic
threshold. In this work, we use a static threshold function and evaluate the threshold
selection based on the LSTM predictor by showing the differences between the accuracy,
balanced accuracy, and the F1-score.

The experiment setup combines the LSTM predictor, the outlier score, and the
threshold module, as shown in Figure 4.1. Therefore, we trained the predictor five times
and calculated the outlier score. Afterward, we evaluated the balanced accuracy for the
threshold values between 0.01 and 0.4. We split the radar signal into the individual
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Figure 4.7: Noise robustness of the LSTM predictor: Simulated five pre-trained
networks with Gaussian white noise and varying noise levels. The previously defined threshold
is kept for the static curve, and the pink line shows the accuracy of the best-selected threshold
for each noise level. The dashed line shows the corresponding mean threshold of the simulated
networks. The higher noise level increases the necessary threshold value. We recommend
viewing this figure in color.

chirps and evaluated if any sample was detected as an outlier to reduce the effect of not
precisely detected outlier samples.

Figure 4.6 shows the experiment results with different thresholds. As expected, the
accuracy increases until the best-balanced accuracy due to a balance of the false and
true positive detections. Afterward, the performance decreases because the likelihood of
false negatives increases. We also see that the standard deviation between the networks
is neglectable but higher for smaller thresholds. We selected the threshold of 0.09 based
on the best mean balanced accuracy for the following evaluations. Furthermore, we
discovered the same threshold by the evaluation of the F1-score [40].

Consequently, we correctly classified 93.6% of chirps and 67.0% of the sample as labeled.
The high difference is also detectable in the precision of the outlier class, which improves
from 0.39 to 0.86 due to the different interpretations of the detections. These results
are consistent with the observations that it is impossible to detect all corrupted samples
because the signal’s amplitude is within the predicted range by chance and therefore
affects the detected outliers. One possibility to improve the localization is the smoothing
already proposed in our publication [40], which was implemented by a simple counter
but could also be realized by a convolution.
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4.4.3 Noise Robustness

Another aspect of the predictor is the sensitivity towards noise that can occur due
to temperature changes, disturbance in the power supply, or other effects. Hence, we
investigate the performance reduction due to increased adaptive white Gaussian noise.
We sweep the SNR between 10 dB and 45 dB and calculate an additional noise based
on the estimated radar signal power of the sum of squared sample points. We simulate
five pre-trained LSTM networks with randomly generated noise for actual deployment
and report the chirp-based balanced accuracy. Additionally, we analyze whether the
redefinition of the threshold improves the noise robustness.

As expected, we can observe a clear accuracy reduction with the noise level increase as
depicted in Figure 4.7. Below a SNR of 40 dB, the balanced accuracy drops below 90%
due to the noise level and continues to degrade. Based on data without additional noise,
the static or predefined threshold provides good performance for the low-noise outlier
detections. However, with a higher noise level, the performance drops are immense, and
the system is not usable anymore. With a SNR of 10 dB, the performance reduces to
50% accuracy, but with a redefinition of the threshold, the system can reach an accuracy
of 73%. Due to the noise, the amplitude and the expected outlier score increase, which
then affects the outlier detection. This scenario can be mitigated by readjusting the
threshold value, but in actual system deployment, this can only happen under controlled
circumstances; otherwise, the number of missed classifications increases heavily.

4.5 Evaluation of the Pattern Classification

In this work, we use the radar interference detection task as an example to answer the
research questions about the architecture design and selection of encoding scheme for radar
signals. Therefore, as explained previously, we implemented different architectures based
on traditional and spiking networks and evaluated the methods with the semi-synthetic
dataset.

4.5.1 Baseline Methods

Before evaluating the performance of the NNs, we adjust the settings of the baseline
methods. We search for suitable parameter settings for the thr-simple, simple static
threshold, and thr-windowed across the standard deviation of a moving window because
the algorithms are not trained. Therefore, it is valuable to visualize the relation of the
true positive and false positive rates for various threshold candidates, as shown in Figure
4.8. Here, the positive class represents the interference where we want to achieve a
high true positive rate with a low false positive rate for good model performance. A
classifier that cannot separate the classes predicts either a random or a constant class
corresponding to the diagonal dashed line. We have selected the threshold value based
on the best relation of the true and false positive rates. Figure 4.8 additionally shows the
higher performance of the windowed threshold, where we still see room for improvement.
The thr-simple has a validation accuracy of 56.3% and thr-windowed of 87.5%.
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Figure 4.8: ROC of threshold methods: Illustration of the relation between the true
positive and false positive rate for the two threshold-based methods. The curve indicates the
trade-off between high detection and low false detection rate. Therefore, it is a purpose to
achieve the left upper corner. We recommend viewing this figure in color.

Another baseline method is the thr-iterative proposed by [208], where the threshold is
iteratively reduced to distinguish the strongest signal from the interference. Also, we
used a hyperparameter search to find a suitable parameter setting for the training set.
We used a threshold factor k = 1.887 and a minimum difference between the iterative
thresholds of ∆0.965 and achieved a test accuracy of 58.2%. All baseline methods do
not perform as expected on the dataset because the radar signal has a low-frequency
component due to the leakage of the transmit signal into the receiver. Therefore, the
level of interference is within the signal range. Higher interference signals would lead
to saturation, which can already be detected in today’s sensors. The thr-windowed is
less sensitive because of the windowed standard deviation that mitigates the offset of the
low-frequency component and is therefore seen as a baseline for the NN methods.

4.5.2 Architecture Comparison

This chapter presents a fundamental comparison of various network architectures. Before
diving into optimizations for individual networks, this initial assessment will lay the
groundwork for our analysis.

Unlike the baseline methods, the NN-inspired algorithms have a complex design
space, and some parameters, especially of the SNNs, are not trainable. Thus, we use a
hyperparameter search to define the necessary frequencies and the neuron threshold of the
R&F population with the hybrid R&F_b-CNN network because the CNN runs natively
on the GPU with a high performance [233]. Afterward, we investigate the minimum
parameters for the extracted encoding frequencies within the R&F_b-LIF architecture
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representing an end-to-end SNN. The other network architectures are aligned such that
the number of parameters is around 3, 600 for a fair comparison. Especially edge devices
have limited resources in memory and processing, and every architecture has different
restrictions and architectural properties. Without this limitation, an accuracy of 98%
can be achieved by roughly 16 million parameters with the STFT-CNN network, which
exceeds, by far, the memory of an edge device. The naming of the architectures follows
the order shown in Figure 4.3 with the differentiation that b and g mean binary and
graded spike function.

In all parameter selection experiments, we use the optuna [234] framework for the
hyperparameter search using a Tree-Structured Parzen Estimator [235]. As previously
explained, all networks use the same learning routine, optimizer, and loss definitions. The
hyperparameter search focuses on the network architecture, like the number of hidden
neurons, the kernel size, the learning rate, and the number of encoding neurons for the
R&F neurons. The selected architectures are detailed in Appendix A. Table 4.4 depicts
the loss, accuracy, average spike count per inference, and the parameter count of the
selected classical, CNN, LSTM, and SNN architectures. We report each architecture’s
mean and standard deviation by five simulations to reduce the effect of random weight
initialization. The traditional methods are only verified ones because there exists no
parameter that is initialized randomly.

Furthermore, the networks with an encoding threshold are also optimized like the
current injection networks, where a smaller threshold value showed a better performance.
However, there is a high correlation between the threshold and the weight initialization
because the input weights scale affects the threshold value. Also, the TC method uses a
threshold to differentiate the temporal changes between an important feature and noise,
which we selected based on an extensive parameter search.

As previously analyzed, the classical methods utilize a very low parameter count but
also have a low performance compared to the other methods, which are split into the three
categories of traditional NN, hybrid, a combination of traditional and spiking methods,
and the pure SNN approaches. A random classifier that always predicts randomly or
always the same class would reach an accuracy of 50% because of the balanced binary
classification task. Therefore, the performance of the LSTM is very low and demonstrates
that it cannot extract the important features from the time series. Interestingly, both
LSTM networks show the same loss and accuracy, but a slight neglectable difference
demonstrates the problems during the training of the networks. Additionally, we observed
that an LSTM architecture with 483, 032 parameters could solve the task with comparable
accuracy, but the immense parameter count is unsuitable. The parameters contain all
necessary weights, thresholds, encoding frequencies, and important variables to deploy
the network without considering the buffering of temporal data. We also included the
number of coefficients for the STFT processing that are most likely stored to reduce the
processing latency. In general, more parameters increase the probability of good network
performance but also increase the complexity.

The two CNN architectures without and with encoding already show an improvement
in the classification with limited parameters. The STFT-encoded CNN has the highest
performance of all networks reported in Table 4.4. However, the CNN methods have one
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Table 4.4: Network hyperparameter search: Evaluation of different network architec-
tures and encoding methods for solving the interference classification task. We aligned the
architectures based on the total number of parameters around 3, 600. Due to the different
architectural properties, we slightly vary between the architectures. The dataset has a
balanced class distribution; therefore, we use the accuracy metric and the average total spike
count per inference.

Name Validation Performance Spike
Count

Number of
Parameters

Loss Accuracy

Traditional
thr-simple 0.563 1

thr-windowed 0.875 2
thr-iterative 0.582 3

ANN
LSTM 0.693± 0.0 0.5± 0.0 3, 728

LSTM-Dense 0.693± 0.0 0.5± 0.0 3, 530
CNN-Dense 0.265± 0.032 0.897± 0.016 3, 602

STFT-CNN-Dense 0.1± 0.02 0.962± 0.007 3, 650

Hybrid
R&F_g-CNN 0.144± 0.006 0.947± 0.004 3, 637
R&F_b-CNN 0.118± 0.008 0.958± 0.004 3, 637
STFT_b-LIF 0.693± 0.0003 0.829± 0.017 1.6± 1.2 3, 622
STFT_cj-LIF 0.693± 0.0001 0.595± 0.072 2.72± 1.43 3, 622

SNN
Cj-LIF 0.693± 0.0002 0.514± 0.005 4, 100± 816 3, 600
TC-LIF 0.437± 0.039 0.79± 0.049 2, 391± 584 3, 597

R&F_org-LIF 0.122± 0.0047 0.96± 0.003 810± 132 3, 585
R&F_b-LIF 0.126± 0.0135 0.955± 0.006 896± 88 3, 585
R&F_g-LIF 0.225± 0.1244 0.922± 0.045 602± 170 3, 585
R&F_b-fLIF 0.131± 0.008 0.954± 0.004 318± 36 3, 616
R&F_g-fLIF 0.227± 0.011 0.914± 0.004 195± 43 3, 616
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big drawback because at least a portion of the input time series needs to be buffered
to process the different channels compared to all other methods. The preprocessing
with the STFT improves the performance from 89.7% (CNN-Dense) to 96.2%. While
the parameters are similar, the network architecture differentiates because the STFT
transforms the series into a spatio-temporal representation, where some information
is removed due to redundancy, like the overlap of consecutive FFT windows. Thus,
the reduced network input size directly influences the number of parameters, and more
channels with a lower stride are applicable. This indicates the importance of a suitable
encoding method that extracts important features and removes unnecessary information.

Table 4.4 shows different spiking networks with varied encoding methods. The fa-
mous current injection (Cj) encoding method shows a low performance with a high
parameter count compared with the LSTMs. As expected, the performance of the TC
encoding is higher than the current injection by 28% percentage points. Consequently,
it demonstrates that the temporal features of the series can be better extracted by the
TC encoding, which could be explained by the fact that the current injection focuses
mainly on the signal’s amplitude instead of the temporal changes. Temporal information
is also encoded by the frequency-time dependent spikes of the R&F encoding, and in
combination with a population of LIF neurons, the accuracy increases to 96%.

Interestingly the original encoding architecture by Izhikevich [115] has the highest
accuracy but is comparable to the phase-dependent spike mechanism. The networks with
only forward connections perform similarly by using fewer spike events. One possible
explanation is the inherent recurrency of the neuron itself, and the neuron state already
carries information about the history and provides additional information. On the
contrary to the higher information density of the graded R&F encoding, the accuracy of
the networks with and without recurrent connections decreases.

Another observation is the correlation between the average spike count per inference of
the hidden LIF population and the accuracy of the graded spikes. The graded mechanism
always leads to a lower spike count with a lower performance. The directly connected
LIF population has the highest spike count of 4, 099.69, that most likely does not end
up in an efficient architecture because in each time step, 16 spikes exist, and each spike
increases the number of operations. Otherwise, in the temporal contrast approach, the
spike count is reduced but still high compared to the architectures with R&F encoding.

Furthermore, we investigated hybrid architectures, which are combinations of STFT or
R&F encoding with spiking or traditional NN, respectively. In the example of the STFT
encoding, we use the current injection and a simple binarization method by defining
an event when the amplitude is higher than the moving mean, similar to [44]. During
training on the current injection approach, we could observe vanishing gradients due to
the reduced time steps by the STFT. The low performance is also represented by the very
sparse spike events of the network. With the binarization method, the network reaches an
accuracy of 82.9%. The reduced number of simulation steps decreases the performance
of both approaches and only by increasing the resolution a higher performance can be
reached. Combining the R&F encoding with a CNN classification demonstrates that the
binary events carry enough information for the classification and shows that graded spikes
do not contribute more to the classification of the interference detection task. However,
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Figure 4.9: Evaluation of reset and spike methods: Comparison of different reset
methods of the R&F (markers) and the binary and graded spike activation. We use the mean
accuracy against the mean average spike count per inference of the hidden population of LIF
neurons across five runs. We recommend viewing this figure in color.

all networks with the graded R&F encoding have a lower performance. Therefore, we will
further investigate the effect of various reset and spike mechanisms of the R&F neuron
and focus our evaluation and optimization on the pure spiking variants.

4.5.3 Reset and Spike Mechanism

As mentioned in Chapter 3, using graded instead of binary spike events is possible. For
R&F neurons, the grade carries the magnitude of the frequency component in relation
to the previous spike events. Also, the reset function after an output event can be
implemented in different versions. It is possible to not reset the neuron at all (none) and
reset a single or both states (imaginary, real, all), which leads to four variants. Another
possibility is to reset the states by a specific value instead of a full reset, which will not
be further investigated here.

To analyze the differences between the spike and reset functions, we use the R&F-LIF
network architectures as a base and alternate the reset and spike functions while simulating
each network for five iterations to reduce the probability of an outlier. We focus our
evaluation on the mean accuracy and average spike count of the hidden population per
inference, that is, the mean across all samples in the dataset.

Figure 4.9 summarizes the results of the different combinations, where the markers
correspond to the reset function and the color encodes the spike function based on the
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original and phase-dependent spike method. For clarity, we only report the mean of
the networks here and do not further visualize the standard deviation. The different
accuracies of the graded and binary spike mechanisms are obvious because the networks
with binary spikes reach higher accuracies. However, the phase-dependent graded spike
with no reset is an outlier because of the highest accuracy with a mediate spike count. On
the other hand, the same approach with a reset of the real component leads to the lowest
accuracy with the lowest number of spikes. Another interesting observation is that the
number of spikes is lower for most graded spikes than for the binary spikes, which could
indicate more information within a single spike event from the input layer. The spike
count has to be seen in relation to the maximum possible spike events, which are defined
by the number of neurons and time steps. In this experiment, all the networks have the
same architecture; therefore, a maximum of 3, 584 spikes is possible. Whether the spike
count reaches the maximum number of spike events, this architecture is unsuitable for
neuromorphic processing since a low spike count is desired for event-driven processing.
Important to highlight is here the difference between a synaptic and a spike event. A
spike event is triggered when the threshold of a neuron is reached, and a synaptic event
depends on the implementation but means either a weight lookup or multiplication. Thus,
a single neuron output can be connected to x other neurons, and therefore, the single
spike event needs to be multiplied by x to extract the number of synaptic events. We
use the spike events here, but the synaptic events can be calculated for a fully connected
network.

Also, the spike count of the encoding layer changes for the different reset mechanisms
without any effect by the graded or binary spike function. As expected, the highest spike
count of 2, 203 appears during no reset, and a slight improvement is achievable by using
the imaginary reset that leads to 1, 520 spikes per inference. We observed only 295 spike
events for the real and all reset methods.

The rest of the imaginary component has the lowest performance and a high spike
count because of the direct connection of the input signal to the real component. Imagine
the phase diagram of an oscillating input and a reset of the imaginary part to zero when
the threshold is reached. Therefore, the phase rotation is limited to 90◦ because Im(z[t])
will always be between 0 and the threshold. This limitation leads to an infinite spike
response with a linear interspike interval while the oscillation exists. The use of graded
spikes introduces another effect by the constantly increasing magnitude of the phase
rotation the grade increases. This could explain why these networks have slightly lower
performance in the given task than the binary ones. Interestingly, the real and all reset
approach led to moderate performance, but here, the graded version has a lower spike
count of the hidden population. The exact spike count of the encoding layer for the real
and all reset indicates the higher importance of the real component because without
resetting, the real component explodes.

Overall, the difference between the shown variants is low, and most of these tech-
niques end up in a well-performing network. However, a wise selection of the encoding
method provides a lower spike count in the encoding and hidden population with a
good performance. In the given task, the phase-dependent spike mechanism does not
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carry additional important information because interference means a temporal frequency
change compared to the static frequency of the targets.

4.5.4 Membrane Time Constant

In this work, the network consists of two time constants the membrane and the synaptic
time constant. The membrane time constant defines the time for the decreasing potential
towards the neuron’s resting potential. Similarly, the synaptic time constant limits the
duration of the current flow from the synapse to the neuron input. In the implementation,
we use the exponential time constants that depend on the capacity C and resistance R
and can be calculated by τ = RC [236]. Norse uses internally the inverted time constant
to reduce the number of calculations, but we report the non-inverted τ here. A high
time constant means more historical information is kept in the membrane potential, but
this also influences the neuron’s activity because it takes longer to charge the neuron
membrane potential, reducing the temporal resolution. Additionally, the recurrent
connection contributes to the information from historical events that make a high time
constant unnecessary.

In the following experiment, we investigate the time constant of each neuron and synapse
layer in the R&F-LIF networks with binary spike events and real reset. Therefore, we
use again the Optuna framework to analyze the correlation between the time constant
parameters by running 200 trials. All the neurons and synapses in the network use the
same parameters to reduce complexity, and the time constant is swept in the range from
1.0 · 10−10 to 1.0 · 10−2.

The first observation tries to find an answer to the question of which time constant
parameter has the highest effect on the network’s performance. Therefore, we use the
hyperparameter assessing method proposed by [237]. We use τm and τs as the membrane
and synapse time constant. The τm of the hidden population has by far the highest
importance of 91.6%, and in both layers, the τs has a lower effect with 0.2% for the
hidden and 2.4% for the readout. Consequently, the readout τm importance is 5.8%. This
observation contradicts our expectation that the readout time constant is more important
than in the hidden population. However, the results demonstrate that selecting the
hidden population parameters is essential.

Figure 4.10 depicts the correlation of the hidden τm with the other time constants.
The color of the contour plot indicates the accuracy where darker is better, and the black
circles highlight the tested networks. From the distribution of the simulated networks,
we can see the direction of the parameter selection algorithm. First, most simulations
are performed for lower τ values because of the performance. Additionally, we observe
that τs of the readout and hidden layer have a great variety compared to τm. Therefore,
the selection of the synaptic time constant is less relevant for the system performance.
However, for the τm of the readout, it is also better to select a smaller value.

Additionally, we analyzed the number of spikes in relation to the τ values but could
observe the connection between the spike count and the accuracy. However, the experiment
proves that the initially selected τ parameters are already in a good range because the
hidden layer time constants are around 10−7, and the readout τ is at 10−4. In the
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Figure 4.10: Time constants correlation: Relationship of the membrane and synaptic
time constants of the hidden and readout layer in the R&F_b-LIF network. The darker blue
indicates a higher accuracy, and the dots represent the exact simulated networks. In general,
networks with a higher accuracy have lower τ values.

following experiments, we will keep the selected time constants as reported in the detailed
network description in Appendix A.

4.5.5 Spike Regularization

The original idea of regularization aims to increase the generalization of the network
and reduce the likelihood of overfitting. In the following chapter, we will investigate the
influence of the spike regularization of the R&F networks and the contribution to the
event sparsity. We use the graded, binary, and binary forward-only network architectures
to analyze the spike regularization. Therefore, we train the network with varying spike
regularization factors λ and analyze the accuracy and average spike count per inference.
Due to the training problems with the encoding layer, we limit the spike regularization to
the population of LIF neurons and compare only the average spike count of the hidden
layer because the spike events of the encoding are the same for each architecture.

As expected, Figure 4.11 depicts a close correlation between the accuracy and the
number of spikes. The decreasing spike count directly reduces the network performance.
The first observation is the initial spike count, where the recurrent variants need more
spike events than the forward-only network with similar performance. Important to
remember is that we have assumed a parameter count of 3, 600 for all architecture, and
due to the removed recurrency, more neurons are used. Also, we can separate the accuracy
into three regions: 1) the slight performance degradation, 2) the transition or unstable
region, and 3) the silent region. For small spike regularization factors below 0.01 the
performance decreases slightly but with an exponential reduction of the spike count.
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Figure 4.11: Effect of spike regularization: Correlation between the average number of
spikes per inference and the spike regularization factor λ. The spike count influences the
performance of the interference detection task. We recommend viewing this figure in color.

It is advisable to reduce the performance for a higher energy efficiency depending on
the application. The second region is driven by a high instability of trained networks,
as depicted by the high standard deviation, and the performance highly depends on
the removed synaptic connections. This regime should be avoided because, of luck, it
is possible to get a working network, but we expect a terrible generalization due to
the low spike response. No apparent regularization factor describes the transition to
the third region, as shown by the forward and the graded recurrent networks. The
third region starts at 0.02 and 0.05, respectively. However, the third region consists
of completely useless networks because, during training, the punishment for a false
detection is less than the spike count. Therefore, the trained networks do not emit spike
events and consistently predict the normal class, which means an accuracy of 50%. This
experiment has demonstrated how carefully the spike regularization factor has to be
selected depending on the application’s specific loss definition. In our case, we decided to
use in the following experiments a spike regularization factor of 0.003 to further reduce
the number of spike events without massive accuracy degradation.

Figure 4.12 demonstrates the spike response of the hidden LIF population with the
binary input spikes from the R&F encoding on a randomly selected sample. We only
differ the spike regularization from 0.000 to 0.003, respectively, shown in (a) and (b). The
selected scenario consists of multiple interference patterns around time step 40 to 60, 140
to 160, and a very short one at around 240. In plot (a), the spike train of neuron 10 could
be directly related to the interference because the spikes occur around the interference
pattern with a small-time shift due to the temporal integration of the neuron. Also, a
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Figure 4.12: Spike response with spike regularization: The spike events of the
hidden population in the R&F_b-LIF with binary spike events. (a) does not use any spike
regularization, and (b) uses a factor of 0.003. Interference occurs around time step 150 and
triggers a high spike response rate.

similar behavior can be observed in plot (b), but it is not as good differentiable. The
neuron index 12 and 13 only fire for the first interference patterns that could be a reason
for the removed synaptic connections but for the given task, such detection is sufficient.
However, plot (a) indicates that the exact position of the interference can be detected by
analyzing the spike train differently or training the network to detect the exact position.
Another observation is that no spike events occur in the beginning because the R&F
neurons are initialized with zeros and, therefore, need a settling time which negatively
influences the pattern detection at the beginning of the series. Such a scenario would
not happen in a continuous implementation. One remark is that we cannot compare the
neuron indices because the focus of the individual neuron will always change by retraining
the architecture. However, evaluating the average number of spikes per inference and
comparing the spike response, we have highlighted the positive effect of small-weighted
spike regularization. Therefore, we can recommend selecting the spike regularization
factor based on the expected target loss because if we target a loss of 0.1, then the spike
regularization should have a minor influence on the overall loss function.

4.5.6 Network Sparsity

Spike regularization increases the sparsity of temporal events and reduces the number
of operations across the time dimension. However, spike regularization does affect the
memory footprint because the network parameters and states are stored in the local
memory. In the case of a sparser activity, the necessary memory accesses are reduced,
but on edge devices, the memory size is already a limitation. Therefore, pruning can
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Figure 4.13: Network pruning: Evaluation of the correlation between the pruning ratio,
the accuracy, and the average spike count per inference with the hidden layer. A higher
pruning ratio means fewer connections are removed. We recommend viewing this figure in
color.

keep the network performance by reducing the network size. The main idea is to remove
unnecessary synaptic connections, as described in Chapter 2.2.5.

As part of the magnitude-based pruning [167], we randomly select the weights with
the lowest L1 norm and remove them by setting the weights to zero. The pruning
ratio describes the percentage of active connections and provides the number of pruned
connections for the random selection. After the pruning, the network is retrained to
mitigate the synaptic loss. In the following experiment, we prune the R&F architecture
with a reset of the real component and the binary spike encoding to investigate the
correlation between the performance and the pruning ratio. Therefore, we trained the
network with early stopping and applied different pruning ratios with a followed network
fine-tuning. However, we do not analyze the effect of an iterative pruning technique.

In Figure 4.13, we show the correlation between the pruning ratio, the accuracy, and
the average spike count per inference of the hidden population. We prune the hidden
population’s input and recurrent weights and the readout layer’s input weights. We do
not further reduce the input weights of the encoding layer because this is basically neuron
pruning, which we already did during the initial architecture search. As we can see, the
network spike activity is within the expected range for a spike regularization of 0.003 by
a pruning ratio of 0.9. In case of no spike regularization, the hidden population emits
more than 800 spike events.

Also, we demonstrate the pruning of the CNN architectures, where we prune all weights
of each layer except the encoding. The STFT-encoded CNN architecture has the highest
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accuracy and is constant until a pruning ratio of 0.7 and then drops rapidly into the
random classifier regime. The pure CNN has a lower initial accuracy but drops later
into a region with no functionality. From this observation, we can separate the pruning
into three regions: 1) The pruning has minor effects until a pruning ratio of 0.72, and
2) the accuracy drops, and the standard deviation increases. 3) starting roughly at
0.65, we reach the silent stage, where the network cannot perform the task anymore and
only detects the normal class. We observed the same three regions with the non-spike
regulated SNN architectures. These three regions also appear in the weight distribution
of the individual layers. The connection between the hidden population and the readout
has a flattened weight distribution compared to the input-to-hidden and hidden-to-hidden
connections. The network compensates the removed weights with a shift of the active
weights, but the number of synaptic connections is too small at a certain pruning level.
In general, we observed with and without pruning that the mean of the hidden weights
is shifted into the negative region. Figure 4.13 shows only the regularization networks
for clarity. Interestingly, the performance drop is low compared to the CNN and the
unregularized network. However, the recurrently connected networks drop at a pruning
ratio of 0.7, and the forward-connected architecture drops at 0.6. The performance of
the forward network is still above 90% for a pruning factor of 0.5. This means half of the
synaptic connections can be removed. Thus, the parameter count of 3, 616 reduces to
1, 808. A further reduction also decreases performance and could negatively influence the
training. Another observation is the low changes in the spike count, where the number
of spike events also observes the drop in accuracy. During 256 time steps, the hidden
population reduces the spike count from 170 to 160, which is neglectable compared to
the effect of spike regularization. The improvement of the spike count is even more minor
for the forward-connected network.

Thus, we have proven the lottery ticket hypotheses by demonstrating the existence
of subnetworks within the initially defined architectures on the same task. Although
the traditional ANNs can perform better, they are more sensitive to removing synaptic
connections than the SNN.

A balance of excitatory and inhibitory synaptic connections in biological systems exists
to increase noise robustness [238], [239]. We have discovered a shift towards inhibitory
connections across all layers in our networks. For example, the R&F network with
binary spike events and recurrent connections uses 1, 596 inhibitory and 935 excitatory
connections for the input-to-hidden, hidden-to-hidden, and hidden-to-readout weights.

Additionally, we analyzed the effect of weight regularization that forces the weights
closer to zero to reduce the possibility of overfitting [240]. We discovered the same
effect as with the spike regularization. For a high factor, the performance stabilizes at
50% because the reward of a small weight is higher than the correct classification. The
accuracy of the SNN drops to 2% with a weight regularization factor of 0.001. We could
not observe any benefits of weight regularization. Therefore, we do not apply it in the
following experiments.
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4.5.7 Network’s Noise Robustness

A further often-mentioned advantage of SNNs is the inherent noise robustness compared
to traditional ANNs. [241] demonstrated the noise sensitivity of a non-spiking and
spiking network on estimating the trajectory based on a radar sensor. Their findings of
higher robustness of SNNs are argued by the difference in the activation function because
the step-activation of spiking networks is less sensitive to noise than sigmoid or ReLU
functions. For analysis, they used the input data with additional Gaussian white noise or
impulse noise to train the network. Their findings indicate that SNNs are more robust.
A controversial result is the increasing test loss of the non-spiking architectures, which
usually indicates overfitting and reduces the networks’ comparability. However, the noise
robustness introduced by the Heaviside step function is not investigated in terms of the
encoding method. Therefore, we will analyze different R&F and TC encoding techniques
and compare them with the previously explained CNN architectures.

Noise is an expected component of real-world implementations, and for automotive
applications, it is necessary to investigate side effects that can degrade the system’s
reliability. Therefore, we selected six networks with different encoding properties based on
ANNs and SNNs. The five versions of the pre-trained networks with spike regularization of
0.003 and pruning of 0.8 are tested under noisy conditions without retraining. Important
to note is that the TC network does not use spike regularization or pruning because the
accuracy is already below the baseline methods. The noisy dataset is a superposition of
the validation data and Gaussian white noise with different target SNR values. The noise
is drawn from a uniform distribution with zero mean, where we calculate the noise power
based on the expected target SNR, which varies from 100 dB to 5 dB. We define the
signal power as 10 log10(

∑T
t=0 x[t]

2) for each individual sample. Important to understand
is the fact that the original dataset already contains noise from the real measurements.
Thus, the noisy data are expected to be at the border or outside the training distribution
and therefore indicate the reaction to untrained environmental effects, such as the rapid
temperature increase or the misfunction of electronic components within the sensor or
the neuromorphic circuit.

The results of the noise simulations are depicted in Figure 4.14 with the selected
networks. The CNN architectures show the highest stabilities in regard to the noise level
because the accuracy decreases below 35 dB, which we observed in the pure CNN and by
the network with STFT encoding. The STFT-encoded network performs better but loses
earlier the classification functionality than the pure CNN. The CNN architectures are
inspired by the image processing field, and there it is well-known that specific kernels can
sharpen, blur, or even denoise images [242]. Therefore, the input layer can act like a filter
of the Gaussian White noise and can suppress the occurrence of a zero mean noise by
averaging across multiple features. The TC network has the lowest initial performance
but has the most robust behavior. At a target SNR of 20 dB, the network still predicts
60% right compared to most other architectures with 50%. One possible explanation is
that the TC is the only architecture that directly converts the amplitude information
into spikes based on the changes. Because the original training data already contains
noise, the encoded spikes forward the noisy events to the hidden population. Thus, the
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Figure 4.14: Performance degradation through noisy input: Relation of the network
performance to an increased noise level without retraining the network. A network with
high accuracy at low SNR is desired. The R&F networks use a spike regularization of 0.003
and a pruning factor of 0.8 like the CNNs but not the TC and graded architectures. We
recommend viewing this figure in color.

hidden and readout population is trained with higher robustness to the spike events,
which correlates with the overall reduced performance. One example of such noise is
the TX leakage that introduces a low-frequency component and implements a non-linear
shift across time. This directly influences the TC encoding and makes it more robust.

Another interesting observation is the equal behavior of the R&F encoding with
binary spikes. Although, we have trained both architectures with spike regularization
and pruning, where we expected a higher variation. However, this demonstrates two
properties: first, the Gaussian White Noise leads to a wideband noise distribution, and
the single frequencies are less affected than the overall amplitude, and secondly, the noise
robustness is mainly driven by the encoding approach and the defined threshold value.
A lower threshold also means a higher sensitivity toward noise. Interestingly, the R&F
encoding with binary spikes is from the accuracy perspective below the STFT-CNN but
above the CNN and from a noise robustness view between the two network variants,
where the CNN is less sensitive to noise. For curiosity, we have also evaluated the R&F
encoding with graded spikes with the highest accuracy of all networks, but no complexity
reduction techniques were applied. The higher accuracy was unexpected compared to the
simulations without noise, indicating that a slight Gaussian White Noise can improve the
performance observed by [241]. Also, the spike count of the hidden population correlates
with the input noise level because the same amount of spikes are generated during the
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simulations above 35 dB, and below the spike count increases heavily. The forward
architecture increases the spike count from 69 to 616 in the recurrent network by a factor
of 3.2 up to 590. The increasing spike activity of the R&F encoding increases from 290
up to 2, 300 spike events and therefore propagates the noise through the spike events.
During a similar performance for low noise levels, the spike count of the encoding layer is
constant. This indicates the direct influence of the filtering capabilities of the encoding
method.

4.6 Discussion and Summary

This chapter uses the interference detection application to compare different encoding
methods and architectures of traditional and spiking neurons. Thus, we define interfer-
ence as an outlier from normality since it is a sparse event. Radar interference is the
superposition of the reflections of objects with other high-frequency signals generated by
another radar sensor or a deliberate attacker.

We propose two fundamentally different architectures for interference classification:
the predictor and pattern classifier. The main difference is that the predictor can detect
unseen outlier patterns, while the classifier can only detect trained outliers. The predictor
represents the expected normality, and a deviation between the actual and predicted signal
indicates an erroneous behavior. While the predictor architecture is semi-supervised,
the classifier is supervised. The classifier detects specific patterns in the input signal to
differentiate normality from interference, meaning the classifier can only detect known
patterns. However, the spiking predictor approaches fail in learning the signal prediction
with different encodings and decodings but performed very well in the classifier approach.
The LSTM and SNN architectures work directly on the data stream without storing
the input signal, showing that the local states of the network are enough to store the
temporal features.

In the spiking classifier architectures, we observe that the SNN performs comparably
to the CNN with preprocessing and outperforms the threshold-based detection. The
R&F converts the temporal signal into a sparse spatio-temporal representation similar
to the STFT. The conversion to a spatial spike train improves the training method
compared to the current injection and TC encoding. However, the BPTT is less suited
for long sequences, which need to be windowed to implement a continuous classifier. The
continuous classifier is implemented in the spiking predictor but not in the classifier. We
observe that spiking architectures need more training epochs than ANNs. Additionally,
we identified that the CNN with the STFT preprocessing performs better than the pure
CNN during limited network sizes.

Moreover, since it suppresses information, the R&F encoding affects the network’s
overall performance. Thus, we compare different spike and reset methods through
extensive simulations. We observe that the phase-dependent spike mechanism does not
help the classification in the example. This makes sense because the linear frequency
changes identify interference, not the individual frequencies’ phase. During the training of
the SNN, we apply a spike regularization to minimize the spike count to increase efficiency.
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There is a direct correlation between the classification accuracy and the spike count, but
a slight regularization factor reduces the spike count significantly with a small accuracy
drop. Also, we analyze how well we can prune the pre-trained architecture of SNNs and
ANNs. We observe that the spiking architectures are more stable during pruning than
CNNs, indicating that these networks are more suitable for safety applications.

Finally, we analyze the noise robustness of the different methods. Most methods are
stable until an SNR of 35 dB except the R&F with graded spikes, which we explain
by the propagation of the amplitude changes to deeper network layers. The pure CNN
architecture performs an averaging of the input through the kernel, which improves the
noise robustness. The STFT and the R&F can extract the frequency components in
noisy conditions and filters the noise before the subsequent layers. The best-performing
networks are less stable in noisy environments, indicating that the generalization could
be better. The LSTM predictor also shows a high noise robustness with the adaptation
of the outlier threshold.

With this application, we have shown that SNN can outperform current state-of-
the-art networks by using sparse events and data-stream processing during resource
constraints. The R&F encoding improves the classification immensely, and the SNNs are
less susceptible to pruning. However, a trade-off exists between the spike counts and the
network’s accuracy. A careful selection of regularization improves efficiency significantly.

87





5 Phase Estimation with Spiking Neural
Networks

In the previous chapter, we have shown that R&F neurons can convert the radar signals
into a spike representation where the temporal changes of the frequency are encoded in
the spike events. The interference detector proves the pattern classification capability
of the encoded events. Within the radar, the frequency and amplitude are essential for
the range estimation. The phase of the receiving signals carries information about the
object’s velocity or angular position. The relative reference of the phase under observation
controls the receiving information, as we indicated in the state-of-the-art radar signal
processing pipeline in Chapter 2.1.1.

We selected the phase detector as the application under review to investigate the phase
information within a spike train. In such an application, the encoder translates the
continuous input stream of a sinusoidal signal into a spike representation. An additional
layer decides if the signal’s phase is within predefined limits. A phase detector is crucial
in applications like signal generation [243], ultrasonic detection [244], radar, and a lot
more [245], [246]. The current state-of-the-art is the mixer-based phase detector [247],
where the phase differences arise by mixing the two signals. The DC output of the mixer
is proportional to the phase difference and can be converted with an ADC to a digital
representation for further processing. Thus, the phase difference is available as an exact
floating point value, but continuous processor interaction is necessary. In an FMCW
radar, the transmitter’s phase is highly important for different modulation schemes and
changes during slight temperature variations. The individual channels receive different
temperature effects due to their geographical location, and the continuous monitoring
of the phase changes would increase the system’s reliability. Currently, the phase is
monitored offline after a significant temperature shift. Throughout the signal processing
on the receiver side, the velocity and angle-of-arrival use the phase information. Phase
non-linearity negatively affects the performance of the object classification. The target of
this investigation is the conceptual analysis of SNN-based phase detection and not the
application in the radar system because SNNs are currently not designed for the GHz
range.

In the following sections, we investigate two current injection encoding schemes with
LIF and R&F neurons while realizing a spiking phase detector and classifier. The weights
between the two layers create the detectable phase boundaries utilized in the exact spike
timing. Following the software investigation, we implemented the LIF phase detector and
a dedicated analog circuit to analyze the efficiency. This work is part of our publication
[42], except for investigating the R&F encoding.
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Figure 5.1: Phase detector architecture: System architecture of the spike-based phase
detector. The encoding neurons convert the input signal into spike events. The detector
neurons evaluate the temporal spike difference of the reference and test channel by the
relation of the synaptic weights. The indices of the weights indicate the pre-and post-synaptic
neuron. A spike event of neuron N3 indicates that both signals are in the predefined phase
limits and N4 spikes when the signals are out of phase. A system failure is detectable by no
output activity.

5.1 Concept and Experimental Setup
The following will describe the theoretical concept with information about the simulative
experiments. Afterward, we demonstrate the hardware-specific properties of the proposed
system and highlight the differences in the weight selection to the software.

5.1.1 Theoretical Concept

The spiking phase detector consists of two fundamental elements the encoding and decision
layer. In Figure 5.1, we show the block diagram of the phase detector architecture. The
encoding layer transforms the reference and test input signal with current injection into
a spike train either with the inherent properties of the LIF or R&F neurons, and the
detector neurons (LIF) decide whether the phase is within the expected limits. We refer
to Chapter 2.2.3 for the mathematical details of the neuron types.

As mentioned, the LIF neuron fires when the neuron state exceeds the threshold poten-
tial, and the refractory period deactivates the neuron for a predefined time. Therefore,
the threshold is selected such that spikes appear at the peak of the sinusoidal input
signal. The refractory period suppresses a bursting behavior by preventing the leaking of
historical information into the next period. We select the refractory by a quarter of the
signal’s period. Thus, the neuron continues to integrate during the negative input and
reaches the threshold again during the positive part.

As another neuron under test, we use the R&F type, which acts like a frequency-
selective filter element. When the neurons’ resonate frequency matches the input, then
the neuron oscillates and spikes depending on the selected spike mechanism. During the
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interference detection in Chapter 4.5.3, we observed that the different spike mechanisms
affect the classification performance and the number of spike events. The spike mechanism
effects are negligible in the phase detector because only the relative spike timing of the two
input neurons is essential. However, we use the phase-dependent spike mechanism where
the neuron fires during the sign switch of the neuron’s imaginary state since amplitude
imbalances between the channels do not influence the output spikes. Afterward, we apply
a reset to zero, and the oscillation begins to increase again. Less relevant is the choice
of threshold because a threshold above the noise level ensures that only the resonant
frequency stimulates the neuron and generates spike events. In LIF encoding, a change
in amplitude due to channel differences can cause a shift in the pulse timing while the
threshold remains the same, and the phase can no longer be detected. This problem
cannot occur with the phase-dependent spike of the R&F. The refractory period is less
important in the R&F encoding since the neuron needs longer to reach the threshold than
in the LIF encoding. Therefore, we neglect the refractory period in the given application
with R&F encoding.

Generally, both encoding methods generate spikes depending on the phase offset of N1

and N2, directly proportional to the spikes’ time offset ∆t. Therefore, the phase ϕ can
be calculated for a specific frequency f as follows:

ϕ◦ = 360◦ f ∆t. (5.1)

This correlation demonstrates that the spikes of the encoding layer must carry the
information of the time shift between the inputs for phase detection. The input layer
supports sinusoidal, pulse, or spike-based input signals.

The second layer decides whether the phase exceeds the limits by using two neurons
that indicate in-phase (N3) or out-phase (N4) detection. Thus, the LIF neurons act
like coincidence detectors that are biologically explainable [248]. It is possible to use a
single neuron. However, from a functional safety perspective, such a two-neuron system
provides a reliability check to whether the encoding and synaptic connections are working.
However, detecting the spike activity of the encoding layer would also indicate the
encoder’s functionality but nothing about the synaptic connection. If zero spikes appear
at the output layer, then it means that the functionality is disturbed, and the system
should be checked. The connections between the neurons are denoted depending on the
pre-and post-synaptic neuron indices, where all weights expect w14 are excitatory.

The temporal correlation of the spike timing, the weights, and the neuron leak decides
whether the spike timing difference is within predefined limits. For example, the spike from
N1 appears at t1, and from N2 appears at t2 with the temporal shift of ∆t. The membrane
potential of neuron N3 increases at t1 and leaks until the second spike increases the
membrane potential again. Due to the exponential leakage defined by the time constant
τm, the weights w13, w23, and the relation between the spike events define the maximum
membrane potential of N3. We can express the decaying effect of the membrane potential
by the following simplification:

V (t) = w e−t/τ , (5.2)
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Table 5.1: Phase detector neuron parameters: Default parameters for the LIF neuron
applied in the encoding and detection layer. The second table contains the default parameters
of the R&F without an exact resonate frequency.

LIF
Parameter Value

Vth 1.0 mV
Vreset 0.0 mV
Cm 50.0 pF
τm 7.0 ms
tref 10.0 ms
τsyn 2.0 ms

R&F
Parameter Value

Vth 2.0 mV
Vreset 0.0 mV
b 1
f various

where w is the weight of the first spike event, and we assume the same weights for both
connections. The simplification neglects the membrane capacity and the exponential
post-synaptic current model. However, it demonstrates the close correlation of the
weights, the membrane time constant, and the threshold. When the membrane potential
increases with the second spike and exceeds the threshold, the neuron fires; otherwise, it
leaks to the resting potential. In the case of an action potential, a refractory period keeps
the neuron inactive to ensure a single spike event during one period of the sinusoidal
signal.

The out-phase detection uses the same properties of the LIF neuron. The first event
uses the inhibitory synapse w14 to invert the leakage from a negative to the resting
potential, and the second spike uses a strong excitatory connection. Therefore, the
neuron N4 spikes when the second incoming spike is strong enough to raise the inhibited
membrane potential above the threshold. If the second spike occurs before the first spike,
the neuron will always fire due to the strong excitation, but for an in-phase signal, the
neuron N3 also fires. Due to the exponential post-synaptic current, there is a delayed
charging which means a later inhibitory input influences the membrane potential and
suppresses a spike event. However, there are three solutions to the problem: introducing
another neuron with inverted weights to catch the out-phase for the earlier test signal,
detecting this problem, and switching the weights to N4. Another solution is to use only
the in-phase detection and verify the system’s functionality with the spikes of N4 during
out-phase scenarios. The out-phase weights are generally more difficult to select due to
the imbalance between the two synapses. Figure 5.1 shows two examples of in-phase and
out-phase detection within two separate windows. This is possible because we ensure
that all neurons reach the resting potential in less than a period.

5.1.2 Simulation Setup

For the conceptual work of the phase detector, we use the nest-simulator [249]. Since
there is currently no implementation of the R&F neuron, we circumvent this problem by
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encoding the signal with the PyTorch model and propagating the spike events directly to
the synapses w13, w14, w23, and w24. Thus, our pipeline comprises a signal generator that
generates a test and reference signal depending on the evaluation with additional noise,
signals, or synthetic disturbances. In the case of the LIF encoding, the generated signals
are directly connected with “iaf_psc_exp” neurons with the parameters from Table 5.1.
For the R&F encoding, we forward the output of our PyTorch model to “spikegenerators”
that replace the LIF encoding. In Table 5.1, we indicate the frequency parameter of the
R&F neuron, which depends on the experiment and can vary slightly from the actual
signal frequency. All other components are the same for both encoding methods, like
the synaptic connection, modeled as “static_synapse” with an adjustable delay fixed
in the current experiments to 1 ms. For a good visualization, we relax the phase limits
to ±12◦ and set the weights for the following experiments to w13 = 21.15, w23 = 21.15,
w14 = −20.5, and w24 = 59.85.

Important to note is here that these parameters are scalable to different requirements.
Further individual changes to the default settings are explained in the corresponding
experiment.

5.1.3 Hardware Implementation

The pure evaluation of the software-based concept estimates the usability, speed, costs,
and power consumption. Therefore, we have realized the previous concept of phase
detection in analog hardware in a 130 nm BiCMOS process. Currently, the research
mainly focuses on analog LIF neurons instead of R&F neurons. Due to the limited
development time and the availability of LIF circuits from previous work [49], we decided
to implement the LIF phase detector as a proof of concept. In the following chapter,
we limit the explanation of the hardware implementation to an understanding of the
later evaluations and the differences in the software concept. We refer to our publication
for more details [42]. The circuit consists of two fundamental building blocks the LIF
neuron and the synaptic connection. The block diagram in Figure 5.1 demonstrates the
alignment of the individual modules. For interested readers we provide a sophisticated
block diagram in our publication [42] in Figure 4.

Different dynamics exist for the LIF neuron to model different biological plausible
dynamics. We modified the circuit of [250] to optimize the area by removing the spike
adaptation feature. The original circuit uses a spike frequency adaptation with an
optional threshold and leak. While the spike frequency adaptation [251] has a high effect
in rate-encoded systems, it is ineffective with single spike events in the phase detector
application. The circuit can be divided into three components: the integrator with a leak,
the spiking mechanism, and the refractory mechanism. Instead of the original refractory
mechanism, we have added a transistor to decouple the refractory period from the spike
generation to ensure invariant output spikes for the subsequent synaptic modules.

Additionally, the refractory mechanism resets the membrane potential after each
spike event to prevent spike bursts. Due to technical reasons, the capacitor’s minimum
dimensions are 20 fF, allowing a maximum spike frequency of 70 MHz. The cell size is
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19.9µm x 13.2µm. The individual neuron has three freedom parameters to adjust the
functionality and response.

Each synaptic connection transports a spike event from a pre to a post-synaptic neuron
and applies a weighting function. In simulations, adding the weights to the input current
during a binary event is sufficient. Therefore, the analog implementation has the following
requirements: 1) a pre-synaptic spike triggers a synaptic output current with 2) a variable
amplitude and 3) an exponential decay by the synaptic time constant. The excitation of
the post-synaptic neuron depends on the weight that emerges from the synaptic current’s
amplitude and period. As a synaptic model, we use the differential pair integrator from
[252] that satisfies our requirements. Two voltage-controlled transistors affect the synaptic
weight and time constant, supporting global homeostatic plasticity mechanisms not used
in the phase detector. We limit the weight adjustment to the time constants to reduce
the parameter space. The synapse does not support an adjustable time delay, which the
phase detector does not require. Here the synapse consists of three parameters for the
highest flexibility but shares two between all synaptic connections.

A key difference to the software implementation is the polarity of the synaptic weight
by acting as an excitatory or inhibitory connection. In software, the sign of the weight
sets the synapse direction, but in analog hardware, the sign describes the direction of the
current flow. For higher flexibility, the same differential pair integrator synapse can lead
to excitation or inhibition depending on whether the synapse is connected to the current
input or the neuron’s leakage path. An inhibitory spike event increases the discharge of
the membrane potential via the leakage path and prevents the excitation due to incoming
excitatory events during the duration of the leakage. However, it is unlikely but possible
that strong excitatory spikes lead to a spike generation.

The phase detector comprises four neurons and four synapses, leading to 24 adjustable
parameters. Due to sharing the threshold, synaptic output current, leakage, and time
constants, we can reduce the parameter count to 8. However, this reduces flexibility, and
the synaptic weights are entirely defined by the time constant or the current flow time.
In our publication [42], we show a photography of the fabricated chip.

5.2 Evaluation
We have separated the evaluation into the encoding layer and the phase detector system.
In the first part, we focus only on the differences between the two encoding methods,
followed by the analysis of the proof of the concept and measurements of the spiking
phase detector implemented in analog hardware.

5.2.1 Encoding Layer

The phase detector consists of two layers, each with a different task. In the following
experiment, we focus on the encoding layer and highlight the differences between the
current injection method of the LIF and R&F neurons by simulations. We perform
each experiment for 1 second and select a representable part of the simulation. In the
following, we disregard the unit of the amplitude since this is just a scaling factor.
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Figure 5.2: Encoding differences by signal variations: Analogy of R&F and LIF
encoding for input signal variations like (a) amplitude changes and (b) the superposition of
multiple tones. The upper plot shows the input signals from the reference and test source,
and the lower plot demonstrates the simulated spike events of the encoding layer.

Amplitude Variation

In the first experiment, we analyze the encoding response based on the test signal’s
amplitude. For a clear visualization, we use a 20 Hz signal and apply a phase shift of
20◦ to the test signal. We generate an amplitude change of the test signal by a Kaiser
window with β = 10, as demonstrated in the first plot of Figure 5.2 (a).

The LIF encoding shows lower flexibility in terms of amplitude changes. In Figure
5.2 (a), the LIF neuron only fires during the highest amplitudes for the given input. In
contrast, the R&F neuron generates spikes for a lower amplitude level. A further increase
in the amplitude of a single channel introduces a temporal shift of the spike timing,
reducing the phase resolution of the LIF encoding. While the amplitude is above the
expected noise level, the R&F neurons generate spikes conditional to the phase. In this
example, the spikes of N2 appear earlier than N1, and an additional amplitude increase
does not influence the spike timing. Therefore, the threshold selection depends only on
the expected noise level, unlike in the LIF encoding on the actual amplitude.

The expected spike distance of the 20 Hz signal is 50 ms due to Equation 5.1, and
the average spike distance of the R&F encoder is close with 50.08 ms and a standard
deviation of 0.063 ms. Therefore, the maximum phase error of the R&F spike events is
0.45◦. In the current example, the LIF generates only two spike events with a distance of
49.2 ms. Important to note is that this metric is the phase change across spike events of
a single channel and not the relative phase between the channels.

Since the threshold of the LIF only depends on the signal’s amplitude, a change in
amplitude or imbalance between the reference and test channel introduces a jittering of
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the encoded spike. Such spike time variation does correspond to a low phase resolution.
The frequency-selectivity of the R&F neurons increases the reliability of the output events
while changing the amplitude.

Frequency Selectivity

During the second experiment, we investigate the benefit of the frequency-selective
properties of the R&F neurons. Therefore, we use the reference and test signal with a
frequency of 20 Hz and a phase difference of 20◦. We add a signal with a 5 Hz frequency,
an amplitude level of 5, and a phase shift of 10◦. The superposition of both signals is
visualized in Figure 5.2 (b).

Here, we use a very simple signal superposition demonstrating the differences between
the two encoding schemes. The LIF depends only on the relative amplitude of the input
signal, whereas the R&F is frequency and amplitude selective. Since the input shifts
into the negative domain, the LIF does not emit spikes between 200 and 500 ms. Also,
at around 120 ms, the LIF generates an additional unwanted spike because the first
spike was very early, and the refractory mechanism could not protect a second spike. On
the other hand, the R&F is unaffected by the additional sinusoidal signal. The average
spike timing of neuron N2 is 44.17± 11.63 ms and 50.07± 0.64 ms for the LIF and R&F,
respectively. For the LIF, we neglect the long temporal difference, as visible in Figure 5.2
(b). The R&F achieves the expected temporal difference defined by the signal frequency.
However, the phase of the test signal changes slightly due to the superposition of the two
signals with different phases and frequencies. The R&F encoder has the advantage of
frequency selectivity, providing a more comprehensive application range than the LIF.

Noise Robustness

Noise affects the encoding performance during the actual deployment of the LIF and
R&F current injection encoding techniques. We implement the same signal properties
as in the previous experiments but with an additional Additive white Gaussian noise
(AWGN) source and an SNR of −10 dB, demonstrating a scenario where the signal power
is below the noise level.

The selected results of the experiment are visualized in Figure 5.3. As expected, the
LIF neuron emits random spike events around the peaks of the sinusoidal signal. The
average distance between the events of N2 is 59.5 ms with a standard deviation of 26.24
ms, which can also be observed in the lower plot of Figure 5.3. We assume that the spike
distance of the reference neuron N1 is linear. Therefore, we can see that at about 365 ms,
the spike event is more or less simultaneous with a distance of 1 ms to N1. The spike
of the following event appears 8 ms earlier, at about 408 ms. The difference of 7 ms is
proportional to a phase difference of 50◦.

The average spike distance of the R&F encoder is 49.97 ms, very close to the expecta-
tions and with a standard deviation of 1.9 ms considering the noisy circumstances. The
pure visualization of the spike timing does not show the jittering of the R&F output
events. However, for the same reference point as in the previous example, the spikes
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Figure 5.3: Encoder noise sensitivity: Differences between the sensitivity of the encoders
to white Gaussian noise with an SNR of −10 dB on the test signal. The upper part shows
the reference and test signal, and the lower plot the spike response of the LIF and R&F
neurons. The R&F spike timing is less noise-sensitive than the LIF since frequency-selective
properties filter the wideband noise.

appear 1.2 ms earlier at 361.3; for the following example, the reference event appears 2.7
ms later. The difference of 1.5 ms corresponds to a phase shift of 10.8◦.

Thus, the spike timings of the LIF and R&F encoders are affected by wideband noise.
However, the filtering properties make the R&F more stable with a lower phase error.
Also, frequency spurs, close to the resonate frequency of the R&F encoder, highly affect
the spike timing quality.

5.2.2 Phase Detection

We decided to use the pure LIF network to prove the concept of the phase detector. The
encoding and decision layer use the same neuron type to simplify the analog circuit design
and reuse existing LIF implementations. Therefore, we first demonstrate the simulation
of the concept in the following section. Afterward, we focus on hardware measurements
and specific properties of the implementation. These results are previously published in
[42].

Concept Simulation

We use a neuromorphic simulator to investigate the in-phase and out-phase detection with
different temporal shifts for the functional verification of the phase detector architecture.
Also, we focus on the corner cases when the phase difference is close to the limits.
Therefore, we use a test and reference sinusoidal signal with phase settings of ±20◦ and
±5◦. Figure 5.4 demonstrates four possible cases with the different phase settings. We
differentiate between the leading signals and the expectation of in- or out-phase detection.
Since we have already analyzed the encoding layer in the previous section, we will not
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Figure 5.4: Simulation results of the phase detector: Simulative response of the
neurons inside the phase detector with in-phase in (a), (b) and out-phase (c), (d) examples.
We increased the accepted phase difference for better visualization. The last row demonstrates
the spike events of each neuron, where N3 indicates in-phase and N4 out-phase detections.
Modified version from our publication [42]. It is recommended to view this figure in color.

go into more detail. All simulations show a clear spike response with a followed dead
time due to the refractory period. This suppression mechanism prevents the generation
of more than one spike per period.

In Figure 5.4 (a), the test signal reaches the maximum later, shown by the earlier spike
event of N1 than N2. The temporal delay between the two sinusoidal inputs is within the
selected limits, indicated by the spike event of N3. It differs from (c), where the phase
is outside the limits, triggering an event by neuron N4. The concept of the synaptic
membrane potentials of the detector neurons shows the interplay between the synaptic
weights, spike timings, and membrane time constants. Due to the close spike events,
V N3
m increases fast until the threshold and is reset. The simulation can be misleading

because the simulator immediately resets the potential and does not store the maximum
membrane potential of the neuron, explaining the immediate drop without reaching the
threshold voltage. In (a), the membrane potential of N4 decreases enough to prevent an
output spike. We see that we are close to the preselected phase limit from the amplitude
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level. Therefore, in Figure 5.4 (c), the inhibitory weight is small, and the delay of the
excitatory spike leads to a decay of the membrane potential, leading neuron N4 to fire.
At the same time, the temporal distance of the input spikes is too high to generate an
output event at neuron N3.

Columns (b) and (d) in Figure 5.4 show the case when the test signal is before the
reference signal. The in-phase detection does not change by the order of the incoming
spikes since both synaptic weights are the same, which explains that we can observe
a similar response of the membrane potential of the detector neurons in (a) and (b).
Also, the membrane potential of N4 demonstrates the reason for a wise selection of
the time constant to prevent information leakage into the next event and drift of the
detected phase. In contrast, we see in (d) a proper detection of the out-phase without
the inhibitory effect at N4. N3 indicates an out-phase scenario by zero spike events,
while the neuron N4 fires. The synapse w24 is excitatory with a high weight to overshoot
the inhibitory effect of synapse w14. Because the inhibition is too late to decrease the
excitatory stimuli, the membrane potential of neuron N4 exceeds the threshold and fires.
In (d), the neuron N4 fires, and the inhibitory spike arrives during the refractory period.
Thus, out-phase detection is vaguely defined for an earlier test signal, a limitation of
the current concept. This vague out-phase detection can lead to a simultaneous firing of
both output neurons while the phase is still in the expected range. For example, with a
phase shift of the test signal by +10◦, both neurons fire simultaneously. However, the
indication of neuron N4 is only a robustness check of the system, and in such a case, a
switch of the weights to N4 is sufficient.

A failure such as the signal amplitude changes, problems in the encoding, or with the
weights leads to an anomalous activity of the output neurons. Since we have two output
neurons that fire for in-phase or out-phase, we can detect failures affecting both neurons’
spike activity. An example is that the loss of a complete input channel will lead to zero
spike events.

Hardware Measurements

We use comparable scenarios to the software simulations for the fabricated test chip to
validate the functionality. We extend the analysis by a behavioral experiment of the
circuit during a channel failure. Nevertheless, there is also an analysis of a clock-based
input shown in [42].

For the functional validation of the circuit, we use an example where the reference and
test signals have a signal frequency of 125 kHz with an amplitude of 1 V. Because we can
only use positive voltages, the signal oscillates between 0 and 1 V. The threshold and
weights are adjusted to set a phase boundary of ±7◦ for better visualization. We report
the response to a shift of 5◦ and 20◦ phase shift as shown in Figure 5.5. Since the area of
the pads exceeds the circuit itself, we are limited by the number of pads to control the
circuit. Thus, we have only two pads to read the output of neurons N3 and N4.

Figure 5.5 (a) demonstrates an in-phase example where neuron N4 is inactive and N3

fires. In contrast to the software simulation, the spike is not anymore a binary event;
instead, we see a discharge over time. This widening of the spikes appears due to parasitic
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Figure 5.5: Hardware measurements: Measurements of the fabricated spiking phase
detector hardware. (a) is the example of an in-phase detection, while (b) is the out-phase
scenario with a phase shift of 20◦. The spike response of the neurons demonstrates the
detection of the phase shift. Modified from the publication [42].

capacitance in the test chip and measurement setup, which we verified by simulations.
Still, a spike can be differentiated from no spike very easily. The second example (Figure
5.5 (b)) shows an out-phase scenario with a slight temporal shift of the test signal. This
shift is far outside the expected phase limits; therefore, N3 is inactive and N4 active. The
output spike shape of the in-phase and out-phase detection of N3 and N4 is comparable.
Also, we could observe the same effect as in the software simulation with the simultaneous
firing of both neurons. As expected, both neurons fire when the reference spike appears
later than the test spike close to the positive phase limit.

The circuit supports a maximum signal frequency of 70 MHz to generate a single spike
per period. However, in [42], we demonstrated that the phase detector could also handle
frequencies up to 200 MHz by using the refractory period of the encoding layer. The
refractory period prevents that each period generates a spike event, and the decision
layer receives input spikes with a lower frequency and can discharge between the events.
Sudden phase changes during the refractory period are not detectable anymore.

We measure the circuit’s response to a channel loss to demonstrate the built-in
monitoring. Hence, the reference and test signal use the same properties as the previous
experiment with a phase shift of 5◦. At approximately 42µs, the test signal abruptly
ends and continues with a small offset.

Figure 5.6 shows the immediate end of the test signal’s oscillation. Before the 42µs, the
circuit functions as expected because the signals are in phase, and we receive output spikes
of N3 and N4 is constantly close to zero. With the channel loss due to the oscillation
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Figure 5.6: Phase detector channel loss: Hardware measurement demonstrating the
built-in monitoring feature by an ending sinusoidal test signal. Neuron N3 detects that
reference and test signals are in phase until 42µs. Afterward, no spikes are generated.
Modified from the publication [42].

ending immediately, no further output events appear, and the output decays back to
zero.

Because the encoding does not generate spike events when the signal’s amplitude is
below the threshold, and the binary events neglect the amplitude information, we can
estimate the circuit function by the output activity. Therefore, the output will be zero
when a single channel does not generate any spike events. The output shows a short
increase and decrease of the potential between each spike event. With the immediate stop
of the test signal, the output voltage increases and then decays to its resting potential.
In the case of an out-phase detection, the spikes of neuron N4 demonstrates the function
of the circuit.

However, the identification of a failure is only limited to zero spike events. If more
spikes, as expected, appear in the decision layer, it is not possible to differentiate between
such a simple spike or no spike comparison. In such a case, observing the temporal
changes of the spike response is necessary.

The phase detector consumes 840µW calculated by the current consumption of the
voltage source, measured during the 200 MHz signal with a minimum resolution. The
active area of the circuit is 61.38µm x 38.4µm without the test chip pads.

5.3 Discussion and Summary

In this investigation, we answer the research question 2, which asks whether SNNs
can differentiate the frequency and phase by using the phase detector application. A
phase detector compares the relative phase between a test and a reference signal and
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is important in various systems. The proposed phase detector combines the detection
and evaluation without necessary processor interaction. Ideally, the output spikes could
adjust the system phase or be converted to a digital representation.

In contrast to SNNs, traditional ANNs suffer from temporal properties and, therefore,
cannot differentiate the phase differences of an input stream without additional memories.
Such memories would be necessary to convert the temporal dimension to a spatial
dimension and use a dense or convolution input layer by storing at least a period of the
input signals. Thus, the advantage of the proposed SNN is the continuous evaluation of
the phase and the sparse event activity.

In this thesis, we have extended the previous publication [42] with the comparison
between LIF and R&F encoding. While the LIF neuron is widely used, the inherent
properties of the R&F provide some relevant aspects. The frequency selectivity of the
R&F neurons enables the encoding of multi-tone signals and a higher resistance to white
Gaussian noise. The encoder replacement does not affect the second layer as long as the
spike time difference between the channels is proportional to the relative phase. The
R&F neurons can also be implemented in the detector layer and detect the frequency of
the encoded spike events across the channels. Therefore, only two events stimulate the
neuron, where the weights, damping constant, and threshold defines the phase limitations.
The in-phase neuron function is comparable to the LIF, but the out-phase neuron has
one more dimension. However, we expect that the phase detector is not limited to these
types of neurons, and with architectural changes, other neuron types can be used.

We implement the LIF phase detector to validate the concept in analog hardware. In
contrast to the simulation, the weights correspond to the current flow’s duration instead of
the current amplitude. Since the capacity of the neurons and synaptic connections should
exceed the parasitic effects, the maximum frequency of the circuit is 70 MHz. Thus,
we prove that artificial SNNs could work with higher frequencies than their biological
counterpart with 500 Hz [253]. Also, the hardware implementation works continuously
while the software simulation uses a time step size which introduces a spike timing error.

The two output neurons generate spikes depending on whether the phase is within the
predefined limits. This two-neuron system provides the advantage that problems with
the input, encoding, or synaptic connections lead to zero spike events, as demonstrated
by the channel loss example. The out-phase is vague for the case when the test signal
is before the reference signal because the inhibitory effect of the synaptic weight from
the reference appears after the test signal spike. Therefore, the earlier test signal leads
to an output event. Thus, there is a region where both neurons fire, meaning that the
signals are within the phase limits. An additional neuron could indicate the positive
phase change, but the differentiation between the scenarios depends only on the in-phase
detector neuron. Therefore, switching the weights in such a case is better or focusing
mainly on the in-phase detection and using the out-phase neuron only as a functional
check.

The study by [254] demonstrates a spiking phase detector that is integrated into a
neuromorphic phase-locked loop, enabling the conversion of temporal coding into rate
coding. This phase detector employs rate coding to represent the phase difference.
However, this system employs a population of neurons with varying synaptic delays,
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resulting in increased area and power consumption. In contrast, our approach focuses on
the classification of in-phase signals. By this, the closed loop can adjust until neuron N3

fires with an integrated encoder that directly connects the analog signal to the phase
detector. Notably, while [254] only provides examples within the 35 Hz range, our
proposed phase detector supports a maximum frequency of 200 MHz, enabling phase
decision without requiring processor interaction.
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Estimation

Radar applications like collision detection are only helpful if the signal processing
algorithm knows if the object is in front or aside from the ego vehicle. Thus, many
applications, like radar, Ultrasonic, and even stereo-cameras, must differentiate the angle
of different objects within the field of view.

In the following, we propose a spiking angle estimation method that emits temporal
spike events instead of single floating point values. The research is motivated by the
ongoing improvements in angle estimation with deep learning methods and the inspiration
of the bats’ and dolphins’ excellent and efficient echolocation abilities. In [72], the authors
compare different deep learning implementations and observed higher performance with
increased computational complexity. Thus, we present the first step towards a spiking
angle estimation method inspired by improved energy efficiency compared to traditional
NNs. Thus, we define the following assumption while developing and analyzing an
end-to-end spiking angle-of-arrival estimator: 1) The modulation scheme can be neglected
because we only use a single transmit channel and multiple receiving antennas. 2) The
range-angle map can be estimated on a single chirp to neglect phase shift by velocity
effects. The velocity estimation introduces the necessity of long-term memory in the
stream processing pipeline.

During our research, we realized that there are three possible solutions for multi-target
angle estimation. The first idea was the usage of a tracking algorithm to interpolate
between measurements of the target position. However, in some scenarios, two objects
appear simultaneous and are not trackable. The second idea was to train a NN for
angle detection, and the third was the usage of a second R&F layer. We trained a
traditional CNN on the R&F output by storing the time steps, and the network learned
the angles but was not very good at generalizing them to more angles. Still, we had the
goal of accomplishing a complete spiking solution. Therefore, we also trained multiple
networks of LIF neurons with surrogate gradient and an evolutionary algorithm with
a hyperparameter search. All tested architectures failed to solve the task. The last
solution used a second R&F layer with complex synaptic connections that we explain
and investigate in the following chapter. The network demonstrates the use of the
frequency, amplitude, and phase information of the radar signal components by reusing
the previously described characteristics of the R&F neuron.
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Figure 6.1: Architecture of the spiking angle estimator: The end-to-end architecture
for angle estimation consists of two R&F populations. The first R&F layer converts the
signal of the individual receive channels to spatio-temporal events. The output events are
weighted by complex synapses and forwarded to the second layer R&F neurons. For clarity,
the full connectivity between the first layer and the complex synapses is reduced to two
example mappings from the channel to the angle dimension. The range-angle map shows a
simulated scenario’s normalized accumulated spike events with 32 channels and two targets
with constant radar-cross-section at a ≈ 9-meter distance with an angle of ±20◦.

6.1 Method

We propose a fully spiking architecture with R&F neurons for the angle estimation with
a spiking network. However, also the spiking networks underlie the physical properties
of the receive channel while we have to mitigate the introduced differences between the
channels. The channel variations occur because of fabrication tolerances and temperature
differences between the channels through their geographical position. So, we first describe
the proposed two-layer R&F architecture with the complex weights, then explain a
possible calibration method.

6.1.1 Network Architecture

The proposed network architecture, shown in Figure 6.1, uses the previously analyzed
R&F neurons where the first layer performs two tasks: 1) the separation into the different
frequency components and 2) the conversion of the radar signal to spatio-temporal spikes
where the spike timing correlates with the phase and a unit amplitude. For each individual
receive channel, a population with linear scaled resonant frequencies is sufficient and
equivalent to the Fourier transformation as investigated in Chapter 3.4.4.
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The angle of a single target at a distance r is proportional to the phase difference
between two consecutive channels, corresponding to a temporal difference between spike
events of two identical R&F neurons of different channels. The temporal difference is
defined by:

∆t =
dn
c

cos(θ), (6.1)

where θ is the angle of the target, c is the speed of light, and unitless dn distance factor
between two antennas where the actual distance depends on the wavelength and is defined
by dn · λ. The evaluation contains more details about the angle estimation of a single
target than the traditional Fourier transformation. However, in a multi-target scenario
with more than one target, the received signals are a superposition of the individual
echoes. A frequency analysis of the phase rotation across the channels separates the
individual targets. An FFT across the channel dimension in traditional signal processing
extracts the azimuth angle. More information about traditional signal processing is
provided in Chapter 2.1.2. Before using the radar cube to process the angle, it is necessary
to reorganize the data based on the physical location of the antennas.

In the end-to-end spiking angle estimator, we use a second layer of R&F neurons with
complex input, which means the neuron receives an imaginary = and real < input. The
preceding complex synapse implements a matrix multiplication of the transposed time-
dependent pre-synaptic spike matrix X and the complex weights W of the dimensions
Nu xNc. Nc represents the number of physical receive antennas, and Nu is the number
of expected angles. Hence, the input to the post-synaptic neuron is defined by:

Yi,u[t] =

C∑
c

XT
i,c[t]Wc,u . (6.2)

We precalculate the weights based on the known distance factor dc = d · i of antenna c to
the reference. Notably, the complex weights represent the phase rotation of an imaginary
target with a specific geographical angle regarding the receive antenna. Therefore, the
weight between antenna c and angle θu is defined by:

Wc,u = e−j2πdc sin(θu) . (6.3)

Depending on the antenna and expected angle, the complex weights have a unit
magnitude and a phase. Depending on the phase rotation of the complex weight and
the oscillation of the R&F neuron at a specific spike time, the phase rotation either
strengthens or diminishes the oscillation. The most significant magnitude change occurs
if the weight vector is orthogonal to the tangent of the oscillation. This means that it
can either increase or decrease depending on the interaction of the sign of the weight
and the oscillation at the spike event, as depicted in Figure 6.2. A slight modification
of the timing reduces the magnitude change during the complex weights. However, the
complex weights solve two problems: 1) the mapping of the physical antenna position
and 2) the temporal order of the spike events because the synaptic weights consider both.
Without the complex weights, the temporal difference between two spikes decides the
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Figure 6.2: Difference between binary and complex weights: Theoretical differences
of the complex and binary weights for a decrease and increasing magnitude. The neuron
oscillation (counterclockwise) is constant for the different weights, and the weights have
a unit magnitude. If the complex weight of the event is orthogonal to the oscillation, it
receives the most significant magnitude change without affecting the phase. The binary input
modifies only the real component of the neuron state and therefore introduces a magnitude
and phase shift.

change of magnitude. For example, the antenna position and object location rotate the
phase by 180◦, leading to a magnitude decrease rather than an increase. Also, Figure
6.2 demonstrates the effect of a binary input on the real component of an oscillating
neuron. The neuron state receives a magnitude and phase change if the input event is not
precisely at = = 0. The sign and timing of the input decide if the magnitude increases or
decreases for both weight settings.

Resonant frequencies of the second layer of R&F neurons are identical to those of the
first layer. The differences between the angles are only detected by the complex weights’
stimuli, which reduces the design’s complexity. In order to further reduce the number of
parameters, all complex weights can be scaled to match the necessary threshold between
the layers (here by 102). As previously, we map the radar input directly to the first
R&F population without modeling any synaptic connections. Also, the calculation of the
complex weights is independent of the resonant frequency (see Equation 6.3) and, thus,
can be shared across the range dimension. This means the blue and green connections in
Figure 6.1 have an identical weight vector.

Consequently, the architecture consists of two layers with a total of 2C · (N +U) states,
where C is the number of channels, N is the number of range frequencies, and U is the
angle count of the output. Optionally, the output can be interpolated to more angles
than existing channels, and without calibration, the complex weights are symmetrical
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across the angle dimension. The number of parameters can be calculated by:

Ntotal = N
(1)
th +N

(1)
b +N

(1)
f + 2CU +N

(2)
th +N

(2)
b +N

(2)
f︸ ︷︷ ︸

without sharing

, (6.4)

which includes each layer’s threshold, damping, resonate frequencies, and the complex
synapse. In order to reduce the memory footprint in digital implementations, we can
apply parameter sharing between the R&F layers and remove the parameter count of the
second layer.

In the example architecture of Figure 6.1, the output represents a range-angle map
with the normalized accumulated spike events across the time of the second R&F layer.
The output can be directly used for applications like object classification and target
tracking instead of applying the optional decoding.

6.1.2 Calibration

The high-frequency components of the radar MMIC are sensitive to fabrication tolerances
that affect the balance of the different receive channels [255]. Also, the geographical
difference between the channels results in a different temperature behavior which in-
troduces a varying phase shift between the channels [256], [257]. In order to enhance
the performance of object detection, it is necessary to compensate for the imbalance
between the receivers. Several methods apply to the transmit channel for the usage
of multiple transmitters that we leave unconsidered. The mitigation of the phase and
amplitude imbalance is mostly considered in the design of the signal processing pipeline.
One possible calibration setup calculates the phase and amplitude differences during a
known measurement where the object is at zero degrees with a known distance [258].
The calibration vector is extracted from the deviation of the magnitude and phase of the
range data across the channels and has to be recalculated during temperature changes.

Similarly, we can implement a calibration of the spiking angle estimation method. The
amplitude differences only affect the range calculation and thus can be mitigated by
modifying the threshold values of the first R&F layers. However, the R&F neurons are
less sensitive to small amplitude changes because the focus is on the phase and existence
of the frequency. When big amplitude differences exist, the time-to-first spike of the
individual frequencies across the channels provides information about the increase and
decrease of the threshold. This method only approximates the amplitude imbalance
because the exact imbalance does not improve the system’s performance.

More important is the phase imbalance that mainly affects the angle estimation and,
therefore, the second layer of R&F neurons. The phase imbalance is an unwanted
temporal delay between the channels. It leads to two problems: 1) the shift of the angle
and 2) the blurring of the angle estimation across the adjacent angles. There are different
methods to compensate for the phase imbalance, for example: introducing a synaptic
delay from the input to the first R&F layer. The same delay can be spread across the
synaptic connections between the layers but the complexity scales with the number of
channels C, and for the between-layer delay, also it scales by NC. A better-suited method
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reuses the complex synaptic weights by multiplication with a calibration vector of size
C. We obtain the calibration vector similar to traditional methods by calculating the
magnitude and phase deviation of the different channels after the range estimation. Here
is again the scenario known with a single object at a known distance and an angle of
zero. Therefore, the calibration vector introduces only a phase shift and neglects, for
now, the magnitude.

6.2 Experiments
The following section further analyzes the proposed angle estimation with R&F neurons.
All experiments use the same architecture with different settings depending on the
showcase and the distances of interest. We start with the information analysis of the first
layer only with an extension of a trainable network to demonstrate that the spike train
carries information about the angle. Additionally, we have verified that a traditional
MLP and CNN can estimate the angle based on the binary output of the R&F encoding
layer. During our research, the traditional networks can only detect the event correlations
while receiving all events simultaneously. However, we investigated optimizing an SNN
classifier to increase energy efficiency. Due to various issues during the training with
surrogate gradient and the evolutionary optimization, we discovered a method to define
a network where the weights are precalculated based on Equation 6.3. Thus, we first
demonstrate the encoding ability and the limitation of a single R&F layered network.
At the same time, we focus on the two-layer architecture and the comparison to the
two-dimensional FFT. Our last experiment uses actual measurements to calibrate the
system and improve the angle estimation.

6.2.1 Single Target Scenario

The first experiment focuses on the first R&F layer within the architecture shown in
Figure 6.1, where we investigate the information content of the output spike events.
As a baseline method, we use here the Fourier transformation approach. We recorded
measurements of an object moving on the azimuth angle from −80◦ to 80◦ in a 3.6 meter
distance. Each angle measurement was repeated a minimum of two times. We used a
rope between the sensor’s center and the object to ensure the same distance.

Setup
The radar setup uses only one transmitter of the radar sensor with a bandwidth of 607.7
MHz for a ramp duration of 20.48 µs and a total of 512 sample points per chirp. In the
given experiment, we assume that we only use 2 out of 16 receive antennas to detect
the single target. We sort the channel data from the radar sensor into the order of
the physical layout to ensure that we compare the two consecutive channels. As data
preprocessing, we apply a DC offset suppression by subtracting the mean of the sample
points. The second preprocessing step is a Hanning window which reduces the effects
of the discontinuities at the boundaries of the chirp signal. The windowing is necessary
because the current setup receives a single chirp instead of a continuous input.
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As a baseline method, we use the state-of-the-art method to calculate the range by
a Fourier transformation. The method is basically already explained in Chapter 2.1.1
with an extension of calculating the phase difference between two consecutive channels.
Additionally, we calibrate the method on a measurement with zero angles at a known
distance.

We implemented 14 R&F neurons between the range from 3.5 to 5 meter distance,
where we select the closest neuron to the target. The neurons use the phase-dependent
spike mechanism and no reset. In the given example, we only investigate a single chirp
such that the network provides a higher activity for these short sequences. However, this
approach presents a drawback when dealing with longer sequences, and it leads to the
phenomenon of exploding state, causing instability. A reset operation becomes imperative
to address this challenge in the context of continuous application across multiple chirps.

In order to decode the first layer of R&F neurons, we calculate the mean temporal
difference between the two spike trains. Therefore, we convert the event matrix into
a sparse representation, which contains only the indices and times of each event. The
mean of the smallest temporal difference of each event between the test and reference
spike trains contains the relative phase of this frequency. The distance between spike
events depends on the resonance frequency of the neuron and thus limits the maximum
detectable temporal difference between spike events. This limitation prevents a significant
shift in the relative phase due to unbalanced events in the spike trains, which can occur
due to noisy input data. The mean temporal difference ∆t of the neurons with the
resonant frequency f forms the phase difference θ between the spike trains as defined by:

θ = 2πf∆t. (6.5)

We calculate the angle of the object based on the following equation:

α = arcsin

(
θ

2πd

)
(6.6)

Also, we have to calibrate the decoding method to compensate for phase imbalance
between the channels. So, we define the calibration vector within the temporal domain
by extracting the mean spike distance of a scenario with a single target at 0◦. We then
apply the temporal shift to the estimated mean spike distances for the different angles
instead of shifting the phase.

Results
In the following experiment, we do not report the range sensitivity of the R&F layer

because we have already explained it in Chapter 3.4. Figure 6.3 shows the expected
versus the predicted angles of the FFT and R&F angle detection by investigating the
phase differences between the channels. Notably, the frequencies of the corresponding
neuron do not exactly match the FFT processing. Due to the calibration, the angles are
moved toward the ideal positions. We can observe that the predicted angles of the FFT
and the R&F method are similar except for the higher variations towards the boundaries.
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Figure 6.3: Single target angle estimation: Angle estimation of a single target at
a constant distance with R&F and FFT processing. The estimated or calculated phase
difference between two receive channels defines the angle of the target. Both methods are
calibrated on the zero angles. The diagonal line represents the ideal point of the angle
estimation.

Especially broader angles than ±50◦ are less reliable than predictions close to zero degrees.
Also, for −80◦ there is not a single prediction of the R&F method because the object’s
echo leads to a neuron stimulation below the threshold. A threshold decrease would make
the object visible in this visualization but generates a low spike count and therefore has
a high phase error due to the discrete simulation of the R&F neurons. In general, the
precision of the angle increases with more spike events because the predefined step size
of the simulation introduces an error that the mean of the spike time differences can
mitigate.

We use the Root-Mean-Squared-Error (RMSE) as a metric between the expected and
predicted angles without the undefined ones. The RMSE is 22.31 and 28.73 for the
FFT and R&F methods. The difference mainly occurs due to the boundary areas of the
R&F angles because an angle precision is lower for broader angles. At −30◦, we have an
unexpected outlier where we expect the reason to be the imperfect measurements during
the data recording because the FFT results are also not ideal.

Often, the spike count is an estimate of the energy consumption because sparse temporal
events reduce the communication overhead and the necessary updates of the neurons.
Here, we use the first R&F layer as an encoding and as the time-to-frequency conversion
method, which means that the input continuously changes and updates are necessary
at each point in time. However, the spike count is an important metric if the preceding
layers use the output spike events. On average, 5.9 spikes are emitted per neuron for
a time series of 512 sample points, and the total population emits 82.66 on average for
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all angles. A selected neuron that represents one target generates 10.94 spike events on
average. Noteworthy is that the number of events highly depends on the threshold, and
it needs to be selected appropriately for the specific problem.

Outcome
Here, we have demonstrated the very first proof of concept that the R&F neurons of the
first layer are already capable of detecting the angle of a single target. The resolution of
broader angles is lower than the Fourier transformation method but can be optimized
with suitable parameter tuning. Also, we have shown how to calibrate the spiking version
with an artificial synaptic delay. However, when multiple targets at the same distance
with different angles exist, the phase difference between the two channels cannot provide
enough information to differentiate the two targets. This method is designed for two
receiving channels. A further extension of the channels would also increase the complexity
of the decoding algorithm without keeping the information within the spiking domain.

6.2.2 Multi-Target Angle Estimation

With the previously demonstrated single target angle estimation method, with only the
first R&F layer, a scenario with multiple targets per distance is not resolvable. However,
there are applications where such a method is adequate but not within the automotive
radar because scenarios like on a parking lot or the street lead to multiple targets with
the same distance at different angles. Hence, the following experiments concentrate on
the solution of the multi-target angle estimation with the architecture shown in Figure
6.1.

Setup
In this experiment, we use simulated data with the previously mentioned radar simulator
with different settings to demonstrate the flexibility of the proposed algorithm. We
simulate one transmitter with a bandwidth of 275 MHz, a ramp time of 26 µs, and 512
sample points. The 32 receive channels are already in the right order, and reordering
to the physical location is unnecessary. The data preprocessing is the same as in the
previous experiment with DC offset suppression and a Hanning window function. In the
simulated data, we have not included any channel imbalance. Therefore, we do not need
to calibrate the signal processing. The simulation consists of two targets with a constant
RCS moving towards and away from the sensor with ±20◦. The RCS simplifies and
would, in reality, change with the distance, as explained in Chapter 2.1.1. The baseline
method is the signal processing with two FFTs across the time steps and the channels,
as explained in Chapter 2.1.1. The second FFT also uses 32 channels, and we apply no
further zero padding.

Here, the first layer of the R&F architecture consists of 64 neurons ranging from 2
to 15 meters, and the second layer of 64 neurons spaced linearly between ±90◦. The
resonance frequency of the second layer is the same as the first layer, and the complex
weights are precalculated on the linear spacing of the angles. All neurons use a damping
factor of 2, but a change does not significantly affect the results. The threshold of the
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first layer is set to 4 and for the second layer to 1.5. Again, we do not use a reset after a
spike event in both layers, but the individual chirps are processed with a clean initial
network.

Results
In Figure 6.4, we visualize some selected example results to explain our observations
further. The first observation is the capability of the encoding layer to convert the tem-
poral signal into the frequency components, where the phase-dependent spike mechanism
realized by a Heaviside step function has the advantage of removing noise and setting
the focus on the targets. However, a high threshold has the drawback of an increased
likelihood to target loss.

In Figure 6.4 (a), we show the mean magnitude of the channels by accumulating the
spike events across the time dimension. Comparing the two approaches, we identified that
the FFT shows a lower magnitude for the more distant object while both targets have
the same RCS. Therefore, a closer target is more likely to be detected than a further one
because the RCS depends highly on the target’s distance. In the case of the R&F neurons,
the magnitude of the second target is even higher because the number of spikes correlates
with the resonance frequency and is not affected by the amplitude of the neuron state.

The next visualization in Figure 6.4 (b) highlights the differences in the angle estimation,
where we limit the representation to a cross-section of the azimuth angle at a distance
of 9 meters. The two targets at the same distance are separable by their angle of ±20◦

with all shown methods. We decode the angle of the R&F method by accumulating the
spike events over time. The biggest difference is the sparsity of R&F processing, where
the threshold removes the noise and reduces the information compared to the FFT. For
the given examples, the accumulated events lead to two out of 32 values and therefore
reduce the number of output information by a factor of 16. Here the object at +20◦ is
slightly smaller than the counterpart by only a single spike event which more time steps
could mitigate. However, the R&F method is also not ideal because the threshold greatly
influences the detectability. A dashed line shows an example of a reduced threshold where
the targets can still be detected, but other unwanted artifacts are introduced, comparable
to those in the FFT. One problem with a higher threshold is that closer targets are less
likely to be detected because they generate fewer spikes due to the phase-dependent
spike mechanism that emits spikes with the same frequency as the neuron’s resonance.
Consequently, compensation for this effect could use a distance- or frequency-dependent
threshold value.

Finally, we show in Figure 6.4 (c) and 6.4 (d) the two scenarios as range-angle maps,
where the normalized accumulated spike events of the second R&F layer. The two targets
are perfectly separable for all scenarios, but the detectability of closer targets is difficult
with a static threshold. Because we do not use the reset of the neurons, the number of
spikes is high. We calculate the mean spike events for a single chirp event by summing
across the time steps and the neurons, accumulating to 5183.4 events, where the first
layer consumes 96.55% of the spike events and the second 3.45%. Therefore, the first
and second layers have a mean spike count per neuron of 2.44 and 0.09, respectively.
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Figure 6.4: Multi-target angle estimation with two targets: Two examples extracted
from a two-target simulation where the targets move towards and away from the sensor
with an angle of ±20◦. In the first example, shown on the left side, the targets are at
8 and 10 meter distances, and the second example, on the right side, demonstrates both
targets at 9 meters. The RCS is constant for the complete simulation sequence and does not
reduce with the distance. In (a), we show the mean representation across the channels of
the accumulated spike events of the first layer in comparison with the FFT, and (b) shows
a cross-section of the distance 9 meters where both targets are located at a different angle.
Additionally, we visualize two different threshold settings of the second layer that introduces
some artifacts. The bottom figures, labeled as (c) and (d), show the range-angle maps in the
polar representation of the two selected scenarios by accumulating the spike events over time.
The normalized amplitude is depicted by the color intensity as depicted by the corresponding
range plot, where further targets lead to more spike events. The two targets at the same
distance have different colors because the spike count differs only by one spike event.
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Important to see the spike count in relation to the 16384 sample points for all signals of
the channels, where the total number of spike events consists of about three times fewer
points than the input signals.

Additionally, we have investigated the damping factor that leads to a damped increase
in the neuron amplitude and a decrease when the frequency is absent. Therefore, a
modification of the damping factor introduces a necessary adjustment of the threshold to
compensate for the lower or higher amplitude. However, as expected, the damping factor
has no further effect on the detection of the two objects because the frequencies of the
objects exist for the complete chirp. The importance of the damping factor increases for
concatenated chirp scenarios and continuous R&F applications.

Outcome
We have shown in the given experiment that two layers of R&F neurons are able to
differentiate the angle of objects within a predefined field of view. The comparison with
standard algorithms like the FFT is challenging because the parameter space of the R&F
is not yet optimized. Further improvement could increase the reliability and the object’s
separability. However, we have shown as the first the concept of using a fully spiking
angle estimation method with R&F neurons and complex synapses. The benefits are not
yet clearly extracted but promising is the communication reduction to events instead
of floating point values and the possibility to apply this method in a stream processing
setup. Also, the modification of the number of sample points does not change the memory
footprint because the dimension of time is continuously used.

6.2.3 Calibration

An important but smaller experiment is the calibration of the two-layer angle estimator
because the channels are imbalanced in the real world and therefore have small amplitude
and phase deviations, reducing the angle estimation capabilities. Thus, we investigate the
improvement of the angle estimation through the FFT-based calibration of the complex
weights in the following experiment. We have to reorder the data before processing since
the FFT approach needs the physical alignment of the channels.

Setup
As in previous examples, we prepare the recorded data with DC suppression and the
Hanning window. Instead of simulated data, we use recorded data that contain a single
target at different azimuth angles with a constant distance of 3.6 m. The benefit of
recorded data is that we additionally take into account the non-linear effects of the
antenna design, but the data are limited to 16 channels. The network architecture is the
same as in prior experiments with different settings. We investigate the distance between
2 and 8 meters with a constant damping factor of 2. We select the threshold such that
we see a spike response in the calibrated and uncalibrated version that leads to 2.5 and
0.5 for the first and second layers, respectively. Also, we demonstrate the capabilities of
interpolation between the angles by using more angular neurons than existing channels.

116



6.2 Experiments

-75

-50

-25 0 25

50

75

2 4 6 8
Range (m)

(a)

-75

-50

-25 0 25

50

75

2 4 6 8
Range (m)

(b)

Figure 6.5: Uncalibrated vs. calibrated angle estimation: comparison of the un-
calibrated (a) and calibrated (b) polar representation of measured radar data. The broad
target around zero angles is the reason for the linear scaled angles between ±90◦ where the
closest angles are ±2.9◦. In the uncalibrated case, spike events are spread across the azimuth
direction, reducing the maximum amount of spikes to 2. In the calibrated version, the spikes
are focused on two consecutive peaks, which lead to a maximum of 5 events.

The data employ 16 channels, whereas both layers use 32 neurons in range and angular
dimension.

Results
The example results in Figure 6.5 show the improvement of the angle estimation by
using an offset calculated by the two-dimensional FFT. In the uncalibrated version, the
object is spread across multiple azimuth positions, indicating multiple objects at the
same distance. These ghost targets are the reason for false relative phase rotation of
individual channels due to physical effects. This azimuth spread reduces the number
of output spike events to 7 compared to 27 because the number of matching spikes is
reduced heavily, and the likelihood of damped oscillation increases. However, we can
observe that there is no negative effect on the range information in both variants. After
the calibration, the object is shifted to the zero angles, as depicted in Figure 6.5 (b), and
the ghost targets disappear. We can observe a spread of spike activity in the range and
angle dimension, which is a consequence of the interpolation of the 16 channels to the 32
linear scaled angles. Therefore, the information is distributed to the ±2.9◦ angle instead
of the exact non-existing zero angle.

Outcome
Here, we have demonstrated the calibration improvements by calculating the calibration
vector based on the two-dimension FFT. Combined with the first single target experiment,
we have shown the two calibration realizations by introducing an additional synaptic
delay or applying an offset to the complex weights. However, adjusting the complex
weights is far more cost-efficient because we do not need additional delay parameters,
and we can remove the delay processing. An additional programmable delay element in
analog and digital hardware implementations increases the complexity. However, the
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shown calibration approach is enough for the proof-of-concept of the R&F neuron angle
estimation. Additionally, we have demonstrated the interpolation of the angles by a
factor of two and realized that an application-dependent angle scaling would increase the
algorithm’s efficiency.

6.3 Discussion and Summary

In this chapter, we have demonstrated conceptual proof to answer the research question
4 that spiking neurons can estimate radar signals’ arrival angle. The R&F neurons act
simultaneously as encoding and processing neurons, where the spatio-temporal data
are sparse binary events that carry information about frequency, phase, and amplitude.
Normal synaptic connections fail to differentiate the physical source of an event, and
only the introduction of the complex weights solve this issue. This research can be
separated into two fields: SNN and echolocation. In biological systems, echolocation
is performed with a low power budget with spiking networks. Therefore, the field of
bio-inspired systems emerges in applications using the angle, where the research mainly
focuses on robotics applications like head position localization [259] or steering angle
estimation [260]. However, the angle-of-arrival in radar systems means the localization of
high-frequency echos. Currently, there are three advanced traditional algorithms to solve
the angle estimation. The most famous one is the FFT across the channel dimension.
MUSIC [82] and ESPRIT [83] are more computationally complex, outperforming the
FFT, but prior knowledge of the number of components is necessary. These methods have
one thing in common: they can work with various transmitter and receiver combinations,
which is currently a limitation of the proposed angle estimator. The increasing number of
virtual antennas is the limitation of the Rayleigh Criterion [60], which poses a limitation
to distinguishing two closely spaced objects.

Currently, deep learning methods also solve the angle estimation problem, where [72]
provides a good overview. The basic components of the R&F implementation support
machine learning, but the spiking methods suffer during training. The training of R&F
with a surrogate gradient is very unstable due to the oscillating effects, and the temporal
dimension increases the likelihood of vanishing and exploding gradients. However, one
future research would be the evolutionary optimization of the proposed architecture. We
have only analyzed whether a LIF population with real-valued synapses can be optimized
using an evolutionary method that failed. A trained NN is superior to traditional methods
but also needs an extensive and carefully created dataset, as depicted by [261].

Additionally, the parameter choice is challenging and highly depends on the applica-
tion and the trade-off between the targeted low echo detection and noise suppression
requirements. The additional setup effort enhances the event sparsity and reduces the
computational effort of the subsequent layers. Each layer acts as an additional information
filter and focuses on specific ranges or angles. Similar to the FFT, the R&F underlies
the Heisenberg-Gabor uncertainty principle [262], which states that the position and
momentum of a particle are impossible to determine simultaneously.
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Nevertheless, the R&F method continuously represents the time and frequency by
generating spike events without storing temporal events in an additional memory. Also,
subsequent layers can be attached in a streaming pipeline with a low overall latency
due to the temporal processing and communication of the binary events instead of the
complete output map. A state-of-the-art 2-dimension FFT implementation, like [263],
stores the intermediate results of the first FFT in memory and therefore reduces the
necessary silicon area but increases the latency of the detection. Suppose we assume
the single Fourier transformation can generate one frequency bin per cycle. In that
case, a sequence of length 512 needs at least 1024 clock cycles for the 2-dimension FFT
without considering the initial latency and memory read/write timings. In the case of
the R&F neurons, the final result of the angle estimation is already present after 512
time steps, which we assume to be equivalent to the clock cycle. We also neglect the
initial delays. However, due to the direct interaction between the two layers, we have an
early, less accurate prediction of the final result. The reduction of the latency and earlier
prediction is an essential improvement in fast and dynamic environments like automotive
applications.

Interestingly, we could combine a temporal, rate, and population encoding scheme by
the R&F neurons. Depending on the relation, the temporal information between spike
events carries information about the relative phase or even the signal’s amplitude. A rate
only occurs over time and indicates how long a frequency exists within the signal, and the
population informs about the existence of the resonance frequency. Therefore, the first
layer acts as a frequency-selective filter, and the second layer performs the processing of
the temporal relation between the spike events. The complex weights perform additionally
to the processing of the angle a mapping of the memory to the physical antenna layout
and reduce the necessary memory rearranging.

The first layer of R&F neurons is crucial because these neurons differentiate high
or low-amplitude signals. Frequency leakage also appears with R&F neurons, and the
threshold separates the spiking and non-spiking regions while removing noise. Therefore,
a high threshold increases the likelihood of losing low-reflective objects. A low threshold
reduces the separability of close targets due to frequency leakage and the loss of quality.
The accumulated spike events generate a plateau around the target frequency, and further
research with approaches like adaptive dynamics or inhibitory connection are promising
to improve the first layer.

Overall, this chapter answers the RQ 4 by demonstrating the end-to-end application of
angle-of-arrival estimation. So far, this application is not fully evaluated yet, and future
improvements are possible to realize a low-power bio-inspired angle estimation. Until
now, we can classify the two categories of optional improvements either by optimizing the
algorithm or by an extension. Optimizations range from enabling the capability to process
a chirp sequence as a continuous stream and even using the inter-chirp interval knowledge.
Also, adjusting the threshold depending on the range increases the response to lower
signal amplitudes and introduces a fully spiking calibration method. Distant objects
generate more spike events because the spike frequency depends only on the neuron’s
resonate frequency, but the target’s RCS is also lower, which leads to the question of
how the RCS and the spike rate correlate.
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Additionally, there are possible optimizations in terms of hardware implementation
because a mixed implementation seems to be most promising by an always active first
layer and an event-driven second layer for lower power consumption. However, this is a
completely independent research area and allows exact power consumption measurement
of specific applications. Possible extensions are inhibitory connections to prevent frequency
leakage and increase the focus, similar to CFAR algorithms. Also, using the continuous
processing and extending the system with tracking algorithms to extract the velocity
information and detect the scene better. In the current implementation, we assume
only a single transmitter, but the angular resolution can be further improved with more
complex modulation schemes like time- or phase-division-multiplexing. Such an increase
in virtual antennas also increases the computation complexity of the algorithm. Besides,
comparing detection performance, computational complexity, power consumption, and
latency increases the acceptance of such bio-inspired angle estimation methods.

It was demonstrated by [72] that deep learning methods outperform current state-
of-the-art angle estimation algorithms with increasing computational costs, and [264],
[265] show the high energy efficiency of SNN, which motivates to invest in research
about the angle estimation based on spiking neurons by using the R&F neurons as
encoding and processing element. This work demonstrates the first proof of concept on
real measurements with improved angle estimation due to the FFT-based calibration.

120



7 Summary and Conclusion
This work combines the three diverse research fields of radar signal processing, Artificial
Intelligence (AI), and neuroscience. At first view, these fields might contradict since
the radar system is designed for frequencies around 77 GHz while biological neurons
operate only in the Hz range. However, the general concept of radar processing has
considerable similarities to the evolved echolocation of bats that motivated the realization
of SNNs for radar signal processing while applying AI methods like BPTT for the
optimization of the weights. To further reduce preprocessing, we developed a direct
transformation of the sensor’s signals to spatio-temporal spike events. The encoding
method and subsequent SNN architectures take advantage of sparse, asynchronous, and
spike-based communication.

Chapter 1 provides a compelling motivation for the work and highlights the key
research questions. Subsequently, in Chapters 2.1 and 2.2, we establish the essential
background on radar and SNNs respectively. Moving on to Chapter 3, we conduct a
comprehensive survey of current state-of-the-art methods to encode real values into
spikes and introduce the R&F encoding. The R&F encoding serves as the foundation
for subsequent applications, which employ various spiking methodologies to compare
encoding methods and emphasize the unique features of the frequency-selective encoding.
Notably, these applications demonstrate the usage of SNNs in this context for the first
time, as far as the authors are aware.

Chapter 4 showcases two fundamentally different concepts for classifying radar interfer-
ence using traditional and spike-based methods. In the following chapter, we analyze the
conceptual differences between the LIF and R&F encoding through the investigation of a
phase detector application. To validate our findings, we implement the spiking phase
detector with LIF neurons on analog hardware. In the final application described in
Chapter 6, we explore the capability of SNNs to detect the angle-of-arrival of multiple
objects in a three-dimensional environment.

The following sections provide a sophisticated summary of the individual chapters and
the limitations of SNN processing.

7.1 Background
We separate the background into two stand-alone chapters covering the basic knowledge
and the state-of-the-art about radar and SNNs. First, Chapter 2.1 focuses on the radar
sensor, from the theoretical concept to the signal processing pipeline. Before we derive
the equation of the instantaneous frequency of a single target, we explain the general
concept of FMCW radar systems. Afterward, we demonstrate the current standard signal
processing pipeline consisting of multiple Fourier transformations focusing on range and
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angle estimation. In the last part, we emphasize the application of radar interference
detection by deriving the IF equation. Since we use simulated data, this chapter covers
the theoretical background for synthetic data generation.

The second background chapter focuses on SNNs by introducing the properties of an
action potential, called spikes, which is the primary communication element in SNNs
and the main difference to earlier NN generations. Thus, we explain the Hodgkin-
Huxley neuron model, which is the basis of each type of neuron, and the authors were
awarded the Nobel Prize in 1963. Since the Hodgkin-Huxley model encompasses a high
dynamic, it is computationally too expensive to be viable used in industrial applications.
Therefore, we introduce the LIF and R&F neuron models that build the basis of this
work. We also describe the synaptic models, the properties of synaptic polarity, and the
topological properties of spiking networks relevant to our experiments. This thesis uses
either analytically calculated weights or weights that have been trained using gradient
descent optimization with pseudo gradients. Thus, we present the background of current
state-of-the-art learning methodologies and describe the details of the gradient descent
training. We introduce the idea of spike and synapse sparsity for architectural and energy
optimizations.

7.2 Information Encoding

Since encoding information into the spike domain is crucial for efficient processing with
SNNs, we demonstrate different methods in Chapter 3. The spike encoding combines
the task of pure transformation into spikes and the lossy information compression to the
necessary information. Generating many spikes can overwhelm the preceding network,
while a low spike count provides not enough information to process the data. Additionally,
we identify two variants to encode sequential data: frame-based and stream-based.

Encoding methods like pure count rate or TTFS encoding are frame-based approaches
since they convert the information into a spike train with sub-sequences, enabling a
representation of the temporal or the rate-based spike trains. Thus, such frame-based
encoding methods are not suited for continuous applications but are applicable to image-
based input data with a low update frequency. In the signal-processing domain, these
frame-based approaches are more powerful in combination with preprocessing steps like
the Fourier transformation.

The stream-based approaches convert continuous signals without the introduction of
fine-grained sub-sequences, enabling an immediate encoding of one-dimensional sequences.
This group contains methods like the population code, where each neuron is responsive
to specific amplitudes, or filter-based methods like BSA or HSA. Due to the sinusoidal
character of the radar IF signal, we propose the current injection encoding with R&F
neurons in Chapter 3.4.

The R&F neurons convert a one-dimensional analog input stream into a spatio-temporal
spike response, where the correlations of spikes carry the information about the signals’
amplitudes, frequencies, and phases. We demonstrate that the resonant behavior of the
R&F neurons realizes a frequency-selective property that can be used with spike- or
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signal-based inputs. When the resonant frequencies of the neuron match the present input
signal components, it increases the magnitude of the neuron oscillation and fires when
reaching the threshold potential. We present different spike functions and reset methods of
the R&F that we further investigate in the application chapters. Additionally, we analyze
in Section 3.4.4 the similarities of the R&F encoding with the Fourier transformation.

7.3 Applications
For the analysis and investigation of the proposed encoding method, we evaluate the ap-
plications of radar interference detection, phase detection, and angle-of-arrival estimation
in Chapters 4, 5, and 6. These applications utilize different signal-processing properties
of sequential data.

7.3.1 Interference Detection

In the first application in Chapter 4, we investigate the realization of an SNN for
interference detection. Interference is a disturbance of the receiving signal, appearing
when the frequency course of multiple sensors coincide. We develop two methods to
identify interference: the prediction and the classification approach. Therefore, we define
interference as an anomaly of the radar signal, and throughout all experiments, we use
simple state-of-the-art amplitude thresholding as the baseline method. The interference
detection answers the RQ 3 and demonstrates an example of the RQ 1.

The prediction approach is a semi-supervised method where the anomaly score is
defined by the deviation of a predicted to the real signal. The network learns to predict
the features from the normal signal during supervised training. As the underlying
architectures of the predictor, we have investigated LSTM, GRU, dense, and SNNs with
current injection or temporal contrast encoding. Unlike traditional ANNs, SNNs have
not mastered extracting the features from the time series.

Pattern classification is a fully supervised architecture explained in Section 4.2.2. A
classifier either predicts the normality or the outlier, equivalent to interference. The
classification takes advantage of the proposed R&F encoding, which is difficult to train.
Therefore, we perform an initial architecture search with traditional and spiking networks
utilizing different encoding methods. Additionally, we demonstrate architectures with
an STFT-preprocessing step, reaching the highest performance in combination with a
CNN. For the spiking architectures, the R&F encoding performed better than the current
injection or temporal contrast encoding. Nevertheless, the phase-dependent R&F neuron
does not provide any benefits because only the frequency changes are essential in the
interference detection application.

Furthermore, the interference application covers the simulative comparison of the
different reset and spike functions. Also, we prove that a minimum spike activity is
necessary for the classifier by implementing spike regularization and synaptic sparsity.
The spike regularization is vital for reducing the number of events by keeping the accuracy
stable, and wrong parameter selection leads to worse classification accuracy. However, the
stability of the network during the pruning of synaptic connections indicate that spiking
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networks are less prone to synaptic connection failures, making the third-generation
networks highly attractive for safety applications.

All SNNs are designed to be implemented directly on the input stream by using the
inherent features like the temporal memory in the membrane potential. Thus, we prove
that an SNN classifier with the R&F encoding uses the local state of the neurons to
remember the short-term temporal correlation between spike events since interference
leads to a sequential stimulation of different frequencies.

7.3.2 Phase Estimator

In the previous section, we select a task where the temporal information of a spike carries
the information of the signal. Now, in Chapter 5 we show the realization of a spiking
phase detector that uses the signal’s phase difference by the correlation of the exact spike
events.

Therefore, we implement a four-neuron system with two encoding and decision neurons.
The encoding layer converts the input signal into spikes where the spike timing difference
is proportional to the signal’s phase. The second layer decides if a signal is within
or outside the expected limits depending on the selected weights. We separate the
experiments of this application into the analysis of encoding and phase detection. Thus,
we compare the LIF and R&F encoding to extract the phase of a single- and multi-tone
signal. The inherent frequency selectivity makes the R&F neurons superior to the LIF
for multi-tone and noisy signals.

We implement the LIF phase detector on analog hardware and validate the simulations
with hardware measurements. Additionally, we show that the functionality of the
implementation could be monitored by observing the spike output. One limitation of
the current systems occurs during the positive phase shift. When the test signal occurs
before the reference signal, the inhibitory connection is useless, and the neuron indicating
the out phase generates false spike events. We propose multiple methods to overcome
this limitation.

7.3.3 Angle-of-Arrival Estimation

Chapter 6 covers the angle-of-arrival estimation application, utilizing the amplitude,
frequency, and phase information. The current state-of-the-art algorithm is presented in
Chapter 2.1, which we consider as a baseline for the comparison.

The proposed architecture uses the inherent properties of the R&F neurons, where
the first layer converts the radar signals into its frequency components and the phase by
the timing of the spike. The second R&F layer converts the spike timings to the angular
position, and the temporal integration of the output spikes generates a range-angle map.

In the first part of the chapter, we explore the capabilities of the encoding layer,
which is demonstrated to be sufficient to detect single-target scenarios but struggle with
more than one target at the same distance. We compare the single-layer results with
those obtained by a classical Fourier transformation-based approach by analyzing the
relative phase difference of real measured data. Afterward, we compare the azimuth angle
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estimation of the Fourier approach and the two-layer R&F architecture for a multi-target
scenario. Since the electronic components of a radar MMIC are not ideal in the real
world, a phase shift exists between the receiver channels. Thus, we propose a method to
calibrate the R&F angle-of-arrival estimator with real measurements.

The angle-of-arrival estimation provides an answer to RQs 1, 2, and 4 by the com-
bination of a suitable encoding of the time-domain radar signal with a fully spiking
architecture. With this proof of concept, we show that spiking neurons can detect objects
in the three-dimensional space. We observe advantages like noise suppression, sparse
spike events, classification speed, and a more efficient data handling since the complex
reorganization and shuffling of the data in memory is not required. Still, further research
is necessary to apply this in an industrial application, but we open a new field of SNN
processing.

7.4 Limitations

This work presents three spiking applications using R&F encoding. Overall, our ex-
periments indicated that the R&F encoding is valuable for sinusoidal signals and that
the networks outperform other algorithms by their sparsity and faster classification.
Nonetheless, the following limitations must be considered.

The encoding method significantly impacts the overall power consumption of the event-
based SNNs by selecting only necessary features and increasing the information sparsity.
The advantages of SNNs disappear for rate-based encoding, and ANN implementations are
favorable. The proposed R&F encoding combines temporal and population coding with
the information in the ISI. However, this encoding may not apply to other applications,
like the classification of images or clock-based signals.

The third-generation neurons consist of complex dynamics providing a higher compu-
tational performance while reducing the number of necessary neurons. This advantage
comes with the disadvantage of a complex design space due to many neuron parameters.
In this work, we applied parameter sharing to reduce the complexity, but in a biological
system, we expect that each neuron is unique, achieving a higher computational capability.
Examples of parameter sharing are the threshold potential and membrane time constants.

The industrial relevance of the spiking networks mainly depends on the reliability of the
optimization. As widely known, training methods like gradient descent are the standard in
ANNs. However, the adaption of gradient descent to support SNNs comes with drawbacks
like instability and neglecting neuronal dynamics. Since spiking neurons take advantage
of the temporal dimension of the input, the training has to use BPTT. Therefore, the
training of SNNs suffers from dead neuron problems, and these deep unrolled networks
are susceptible to vanishing and exploding gradients. Since gradient-based optimization
is not designed for the high dynamics of the spiking neurons, it is less effective. However,
the accuracy often reaches state-of-the-art performance compared to biological methods
like STDP.

Since we have fabricated the phase detector, we can provide the system’s energy
consumption. The other two applications are not implemented on neuromorphic hardware,
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preventing a valid energy measurements. Also, neuromorphic simulations, designed to
simulate many neuron models, are not comparable to highly optimized accelerators for
algorithms like the FFT. For a valid comparison, these networks must be implemented
in dedicated analog or digital hardware. Furthermore, it should be considered that the
power consumption depends not only on the spike count, which is often used for energy
estimation, but also on the network architecture, hardware properties, neuron types,
synaptic models, and the appearance of asynchronous events.
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The field of SNNs provides an enormous research potential because the exact functionality
of the brain is still unknown, and further research in understanding the brain is necessary.
Also, investigations about using biologically inspired NNs provide a better understanding
of the functionality and can prove the theoretical ideas. The outcome of this work
opens several directions for future research. The event-based nature of SNNs offers
the advantage of reducing power consumption because only the processing of an event
consumes energy. In the electric vehicle industry the reduction of the power budget
means a significant price and weight reduction of the battery system while achieving the
same travel range.

Stable and reliable training is most relevant for the success of SNNs in industrial
applications. Today, the community mainly uses backpropagation with pseudo gradients,
which is neither biologically explainable nor stable. Recently, Geoffrey Hinton proposed
the forward-forward algorithm [266], which has similarities to predictive coding [267].
The algorithm replaces the backward passes during backpropagation with a forward
pass, which uses an objective function for positive and negative data. The goal is to
maximize the objective of the positive pass and minimize the negative pass. Additional
to the improved learning for resource-constrained systems, the individual layers are not
necessary to be differentiable, making it more applicable to SNNs. Another direction
is the anytime classification which means that the neurons should continuously classify
the input instead of windowed classification such that input changes directly affect the
prediction.

Another central aspect to consider from an industrial perspective refers to functional
safety. Our investigations have demonstrated that SNNs exhibit a reduced susceptibility
to the pruning of synaptic connections compared to ANNs. Nonetheless, this finding alone
does not definitively address the level of safety inherent in spiking algorithms. Specifically,
we are concerned with the probability of failures during the deployment of neural networks,
as opposed to potential effects resulting from variations in dataset distributions, class
imbalances, and other training-related challenges. Thus, there are different research
directions necessary. Firstly, it is imperative to evaluate the generalization capabilities
and failure probability of SNNs. Secondly, we must investigate the stability and latency
of hardware deployment, particularly in the context of analog implementations. In this
regard, the generation of spikes is profoundly influenced by the stability of the voltage
source, which could be compromised by the simultaneous spike generation within a larger
neuron population.

We observe that the sparsity of the events increases with the depth of the neuron
layer, which means there are fewer spike events in the high hierarchical layer of the
network. Therefore, a mix of analog and digital hardware would be an efficient solution.
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The analog hardware contains the lower layers, including the encoding, and the upper
layer is implemented on digital hardware to save area by an event-driven architecture.
Therefore, analog neurons and encoders like the R&F with the phase-dependent spiking
need to be implemented by converting the continuous to discrete spike events and a digital
event-based neuromorphic processor. Such architectures would provide an indication
of the real power, latency, and area measurements for a fair comparison with highly
optimized algorithms like the Fourier transformation.

For radar applications, we see further potential in a smart and dynamic adjustment of
radar sensing, focusing on the most important locations via beam-steering. One solution
to achieve a cognitive radar is the signal processing with R&F neurons by estimating the
range-angle map and tracking the objects. However, the angle estimation can further be
optimized by continuous observation of phase drifts to automatically adjust the phase
calibration or use inhibitory connections to reduce frequency leakage across neurons.

This work lays the foundation for directly converting the radar signals to spikes and
the subsequent signal processing with an SNN. The research areas of understanding
the nervous system and the signal processing with SNN-based algorithms can positively
influence each other. This work uses biological observations to deploy spiking systems
with a suitable encoding, proposing the usage of spatio-temporal spikes instead of pure
rates or time encoding. Nevertheless, the author enthusiastically looks forward to the
promising future of SNNs, which will help to improve our understanding of the nervous
system and unlock their enormous potential in various industrial applications.
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A Interference Classification
Architectures

The following attachment is part of Chapter 2.1.3 and contains information about the
individual network architectures used throughout this chapter. Since the individual
architectures with the R&F encoding vary slightly, we only report the default values and
do not include the full list of all architectures.

• LSTM
– Layer 0: LSTM (input_dim=1, hidden_size=28, activation=ReLU)
– Layer 1: LSTM (input_dim=28, hidden_size=2, activation=ReLU)

• LSTM-Dense
– Layer 0: LSTM (input_dim=1, hidden_size=28, activation=sigmoid)
– Layer 1: Linear (input_dim=28, hidden_size=2, activation=ReLU)

• CNN-Dense
– Layer 0: Conv1d (in_channels=1, out_channels=4, kernel_size=10, stride=8,

padding=0, activation=ReLU)
– Layer 1: Linear (input_dim=28, hidden_size=2, activation=ReLU)

• CNN-Dense
– Layer 0: Conv1d (in_channels=1, out_channels=4, kernel_size=10, stride=8,

padding=0, activation=ReLU)
– Layer 1: Linear (input_dim=112, hidden_size=2, activation=ReLU)

• STFT-CNN-Dense
– Preprocessing: STFT (n_fft=256, hop_length=32)
– Layer 0: Conv2d (in_channels=1, out_channels=8, kernel_size=9, stride=

(6,2), padding=0, activation=ReLU)
– Layer 1: Linear (input_dim=168, hidden_size=16, activation=ReLU)
– Layer 1: Linear (input_dim=16, hidden_size=2, activation=ReLU)

• STFT-LIF
– Preprocessing: STFT (n_fft=256, hop_length=32)
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– Layer 0: LIF (in_features=129, out_features=22, tau_syn_inv=7142857.0,
tau_mem_inv=5000000.0, v_leak=0.0, v_th=1.0, v_reset=0.0)

– Layer 1: LIF (tau_syn_inv=50000.0, tau_mem_inv=5000.0)

• LIF
– Layer 0: LIF (in_features=1, out_features=40, tau_syn_inv=7142857.0,

tau_mem_inv=5000000.0, v_leak=0.0, v_th=1.0, v_reset=0.0)
– Layer 1: LIF (in_features=40, out_features=28, tau_syn_inv=7142857.0,

tau_mem_inv=5000000.0, v_leak=0.0, v_th=1.0, v_reset=0.0)
– Layer 2: LIF (tau_syn_inv=50000.0, tau_mem_inv=5000.0)

• TC-LIF
– Preprocessing: Temporal Contrast Step Forward (threshold=0.0961)
– Layer 0: LIF (in_features=2, out_features=58, tau_syn_inv=7142857.0,

tau_mem_inv=5000000.0, v_leak=0.0, v_th=1.0, v_reset=0.0)
– Layer 1: LIF (tau_syn_inv=50000.0, tau_mem_inv=5000.0)

• RF-CNN
– Layer 0: R&F (frequencies=range(2, 24, 0.105)MHz, damping_contant=-2.0,

threshold=0.4273)
– Layer 1: Conv2d (in_channels=1, out_channels=4, kernel_size=10, stride=6,

padding=0, activation=ReLU)
– Layer 2: Conv2d (in_channels=4, out_channels=2, kernel_size=5, stride=4,

padding=0, activation=ReLU)
– Layer 3: Linear (input_dim=140, hidden_size=16, activation=ReLU)
– Layer 4: Linear (input_dim=16, hidden_size=2, activation=ReLU)

• RF-LIF (variable reset, spike functions, recurrency)
– Layer 0: R&F (frequencies=range(2, 23, 0.105)MHz, damping_contant=-2.0,

threshold=0.4273)
– Layer 1: LIF (in_features=200, out_features=15, tau_syn_inv=7142857.0,

tau_mem_inv=5000000.0, v_leak=0.0, v_th=1.0, v_reset=0.0)
– Layer 2: LIF (tau_syn_inv=50000.0, tau_mem_inv=5000.0)
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