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1 Variational Methods: Some Basics

Equations and minimization. The solution of equations is related to minimization.
Suppose we want to find u ∈ Rn with

F (u) = 0 , F : Rn → Rn .

If we can find a function J : Rn → R such that F = ∇J , and if we can prove that J has
a minimizer u,

J(u) = min J(v) , v ∈ Rn ,

then we know that F (u) = ∇J(u) = 0. Conversely, suppose we want to find a minimizer
u of J . If we can find u ∈ Rn with ∇J(u) = 0, then u is a candidate for a minimizer of
J . If in addition J is convex, all such candidates are minimizers; otherwise, second order
conditions may be used.

Dirichlet’s principle for the Laplace operator. We consider the Dirichlet problem
for the Poisson equation in an open bounded set Ω ⊂ Rn,

−∆u = f in Ω

u = g auf ∂Ω.
(1.1)

We also consider the functional (“| · |” denotes the Euclidean norm in Rn)

J(v) =

∫
Ω

1

2
|∇v(x)|2 − f(x)v(x) dx . (1.2)

The functional J and the boundary value problem (1.1) are related as follows.

Assume that f : Ω→ R and g : ∂Ω→ R are continuous, let

K = {v : v ∈ C2(Ω), v(x) = g(x) for all x ∈ ∂Ω} . (1.3)

Let u be a minimizer of J on K, that is,

u ∈ K , J(u) = min
v∈K

J(v) . (1.4)

Let ϕ ∈ C∞0 (Ω) be given. We have u+ λϕ ∈ K for all λ ∈ R. We consider

J̃ : R→ R , J̃(λ) = J(u+ λϕ) . (1.5)

We have

J̃(λ) =

∫
Ω

1

2
|∇(u+ λϕ)(x)|2 − f(x)(u+ λϕ)(x) dx

= J(u) + λ

∫
Ω

〈∇u(x),∇ϕ(x)〉 − f(x)ϕ(x) dx+ λ2

∫
Ω

1

2
|∇ϕ(x)|2 dx .

Since 0 is a minimizer of the differentiable function J̃ , we get

0 = J̃ ′(0) =

∫
Ω

〈∇u(x),∇ϕ(x)〉 − f(x)ϕ(x) dx =

∫
Ω

(−∆u(x)− f(x))ϕ(x) dx .
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(Here we have used partial integration and the fact that ϕ = 0 on ∂Ω.) Since ϕ ∈ C∞0 (Ω)
can be chosen arbitrarily, it follows that (we will prove this later)

−∆u(x) = f(x) , for all x ∈ Ω. (1.6)

Thus, every minimizer of J on K solves (1.1). Conversely, let u ∈ C2(Ω) be a solution of
(1.1), so in particular u ∈ K. Let v ∈ K be arbitrary. Then∫

Ω

(−∆u(x)− f(x))(u(x)− v(x)) dx = 0 .

Since u− v = 0 on ∂Ω, partial integration gives∫
Ω

〈∇u(x),∇u(x)−∇v(x)〉 dx−
∫

Ω

f(x))(u(x)− v(x)) dx = 0 .

It follows that (we drop the argument “x” of the functions)∫
Ω

|∇u|2 − fu dx =

∫
Ω

〈∇u,∇v〉 − fv dx ≤
∫

Ω

1

2
|∇u|2 +

1

2
|∇v|2 − fv dx , (1.7)

since for arbitrary vectors y, z ∈ Rn we have

| 〈y, z〉 | ≤ |y| · |z| ≤ 1

2
|y|2 +

1

2
|z|2 .

Subtracting (1/2)
∫

Ω
|∇u|2 dx on both sides of (1.7), we arrive at

J(u) ≤ J(v) ,

so u is a minimizer of J on K.

The equivalence

u solves (1.1) ⇔ u is a minimizer of J on K (1.8)

is called Dirichlet’s principle. In this context, the equation

−∆u = f

is called the Euler equation or Euler-Lagrange equation corresponding to the func-
tional J in (1.2).

More general, this approach relates functionals of the form

J(v) =

∫
Ω

L(x, v(x),∇v(x)) dx (1.9)

to differential equations. These are ordinary differential equations in the case n = 1,
Ω ⊂ R, and partial differential equations in the case n > 1.

Minimizing functionals of the form (1.9) constitutes the basic problem of the calculus of
variations.

The Dirichlet principle yields equivalence, but not existence.
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The existence problem is hard in general, because the domain of the functional J is a
subset of a function space, which has infinite dimension. Therefore, functional analysis
comes into play. Using its methods to prove existence of a minimizer is called the direct
method of the calculus of variations. That such a minimizer solves the Euler equation is
then proved as above by setting to zero the derivatives of J in all directions ϕ ∈ C∞0 (Ω).

Proving existence of a minimizer of J in (1.9) by proving first the existence of a solution to
the Euler equation is called the indirect method. If J is not convex, however, solutions
of the Euler equation for J in general need to have additional properties in order to be
minimizers of J (as is the case in finite dimensions, where second derivatives of J play a
role).

Quadratic minimization: An abstract form of Dirichlet’s principle. We consider
the following situation.

Problem 1.1 (Quadratic minimization problem)
Let V be a vector space, K ⊂ V convex, let a : V × V → R be a bilinear form and
F : V → R a linear form. We consider the problem

min
v∈K

J(v) , J(v) =
1

2
a(v, v)− F (v) . (1.10)

2

Proposition 1.2 Consider the situation of Problem 1.1 and assume in addition that a
is symmetric and positive definite. Then J is strictly convex, and for u ∈ K we have

J(u) = min
v∈K

J(v) ⇔ a(u, v − u) ≥ F (v − u) ∀v ∈ K . (1.11)

There exists at most one u ∈ K with this property.

Proof: Let u, h ∈ V be arbitrary with h 6= 0. We define

Ju,h : R→ R , Ju,h(λ) = J(u+ λh) .

We have

Ju,h(λ) =
1

2
a(u+λh, u+λh)−F (u+λh) = J(u)+λ(a(u, h)−F (h))+

λ2

2
a(h, h) . (1.12)

Since a(h, h) > 0, the quadratic function Ju,h is strictly convex, and so is J . Therefore J
has at most one minimizer.
“⇐”: Let v ∈ K. Setting h = v − u, from (1.12) and (1.11) it follows that

J(v)− J(u) = J(u+ h)− J(u) = (a(u, h)− F (h)) +
1

2
a(h, h) ≥ 0 .

“⇒”: Let v ∈ K. Again setting h = v − u, we have u + λh ∈ K for 0 ≤ λ ≤ 1 (since K
is convex). Thus

0 ≤ Ju,h(λ)− Ju,h(0) = λ(a(u, h)− F (h)) +
λ2

2
a(h, h) . (1.13)

3



Dividing by λ and passing to the limit λ ↓ 0 yields 0 ≤ a(u, h)− F (h). 2

The inequality system (one inequality for each v ∈ K)

u ∈ K , a(u, v − u) ≥ F (v − u) ∀v ∈ K , (1.14)

is called a variational inequality. As (1.13) shows, the variational inequality says that
the directional derivative of J in a minimizer is nonnegative for those directions h = v−u
which point into the “admissible set” K.

Corollary 1.3 In the situation of Proposition 1.2 assume that K is an affine subspace
of V , that is, K = v0 + U with v0 ∈ V , U subspace of V . Then we have

J(u) = min
v∈K

J(v) ⇔ a(u,w) = F (w) ∀w ∈ U . (1.15)

Proof: If u ∈ K we have U = {v − u : v ∈ K} and therefore

a(u, v − u) ≥ F (v − u) ∀v ∈ K ⇔ a(u,w) ≥ F (w) ∀w ∈ U
⇔ a(u,w) = F (w) ∀w ∈ U ,

the latter equivalence holds because w ∈ U implies −w ∈ U . 2

The system of equations

u ∈ v0 + U , a(u, v) = F (v) ∀v ∈ U , (1.16)

is called a variational equation.

The situation (1.1) – (1.4), which we considered at the beginning, becomes a special case
of (1.16) if we set

a(u, v) =

∫
Ω

〈∇u(x),∇v(x)〉 dx , F (v) =

∫
Ω

f(x)v(x) dx . (1.17)

The variational equation then reads∫
Ω

〈∇u(x),∇v(x)〉 dx =

∫
Ω

f(x)v(x) dx , for all v in U . (1.18)

(So far we did not specify the space V and the subspace U .)

If one starts from the Poisson equation

−∆u = f , in Ω, (1.19)

one may arrive at the variational formulation (1.18) immediately by multiplying (1.19)
on both sides with functions v which are zero on ∂Ω, and performing partial integration.
In this manner one bypasses the functional J .

The variational equation. In order to obtain existence, the algebraic vector space
structure by itself does not suffice. One uses the setting of normed spaces. Thus, topo-
logical aspects enter the picture.
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Definition 1.4 (Bilinear form, continuity and ellipticity)
Let V be a normed space. A bilinear form a : V × V → R is called continuous if there
exists a Ca > 0 such that

|a(u, v)| ≤ Ca‖u‖ ‖v‖ , for all u, v ∈ V , (1.20)

it is called V -elliptic if there exists a ca > 0 such that

a(v, v) ≥ ca‖v‖2 , for all v ∈ V . (1.21)

2

As an immediate consequence of this definition we see that a V -elliptic bilinear form is
positive definite.

In order to obtain existence, completeness of the normed space is required.

Proposition 1.5 (Variational equation, solvability)
Let (V, ‖ · ‖) be a Banach space, let a : V × V → R be a symmetric, continuous and
V -elliptic bilinear form, let F : V → R be linear and continuous. Then there exists a
unique solution u ∈ V of the variational equation

a(u, v) = F (v) ∀v ∈ V . (1.22)

Proof: For all v ∈ V we have

ca‖v‖2 ≤ a(v, v) ≤ Ca‖v‖2 .

Since ca > 0,
〈u, v〉a = a(u, v) , ‖v‖a =

√
a(v, v) ,

defines a scalar product whose associated norm ‖·‖a is equivalent to the original norm ‖·‖.
Therefore, (V, 〈·, ·〉a) is complete and thus a Hilbert space. Moreover, F : (V, ‖ · ‖a)→ R
is continuous. The representation theorem of Riesz (from functional analysis) states that
there is a unique u ∈ V such that

〈u, v〉a = F (v) .

2

Corollary 1.6 The solution u of the variational equation (1.22) in Proposition 1.5 sat-
isfies

‖u‖ ≤ 1

ca
‖F‖ . (1.23)

Proof: Inserting u for v in (1.22) yields

ca‖u‖2 ≤ a(u, u) = F (u) ≤ ‖F‖ · ‖u‖ .

2
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Proposition 1.5 and Corollary 1.6 state that, under the given assumptions, the solution
of the variational equation is a well-posed problem in the sense that its solution exists,
is unique and depends continuously upon the data (the right hand side specified by F ).
The latter property has to interpreted as follows: the solution operator S : V ∗ → V which
maps F ∈ V ∗ (the dual space of V ) to the solution u of (1.22), is continuous. Indeed, it
is linear (this follows immediately from (1.22)), and according to (1.23) we have

‖S(F )|| ≤ ‖F‖
ca

, therefore ‖S‖ ≤ 1

ca
.

The variational inequality. In Proposition 1.5 we have assumed that the bilinear form
is symmetric. It turns out that this assumption is superfluous. We present this extension
in an even more general context, namely, for the variational inequality.

Proposition 1.7 (Variational inequality, solvability)
Let V be a Banach space, let K ⊂ V be closed, convex and nonempty. Let a : V ×V → R
be a continuous V -elliptic bilinear form with

a(v, v) ≥ ca‖v‖2 ∀v ∈ V , (1.24)

let F : V → R be linear and continuous. Then the variational inequality

a(u, v − u) ≥ F (v − u) ∀ v ∈ K , (1.25)

has a unique solution u ∈ K. Moreover, if ũ ∈ K is the solution of (1.25) corresponding
to a linear and continuous F̃ : V → R in place of F , we have

‖u− ũ‖ ≤ 1

ca
‖F − F̃‖ . (1.26)

Proof: We first prove (1.26). This also implies the uniqueness. Assume that u, ũ are
solutions corresponding to F, F̃ . Then

a(u, ũ− u) ≥ F (ũ− u) ,

a(ũ, u− ũ) ≥ F̃ (u− ũ) .

Adding these inequalities yields

a(u− ũ, ũ− u) ≥ (F − F̃ )(ũ− u) , (1.27)

so
0 ≤ ca‖u− ũ‖2 ≤ a(u− ũ, u− ũ) ≤ ‖F − F̃‖‖u− ũ‖ . (1.28)

This shows that (1.26) holds. To prove existence we first consider the special case where
a is symmetric. By Proposition 1.2 it suffices to show that the associated quadratic
functional

J(v) =
1

2
a(v, v)− F (v)

has a minimizer on K. In order to prove this, we see that

J(v) ≥ 1

2
ca‖v‖2 − ‖F‖‖v‖ =

(√
ca
2
‖v‖ −

√
1

2ca
‖F‖

)2

− 1

2ca
‖F‖2 (1.29)
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holds for all v ∈ V , therefore J is bounded from below. Define

d = inf
v∈K

J(v) , (1.30)

and let (un)n∈N be a sequence in K such that

d ≤ J(un) ≤ d+
1

n
. (1.31)

The sequence (un)n∈N is a Cauchy sequence, because

ca‖un − um‖2 ≤ a(un − um, un − um)

= 2a(un, un) + 2a(um, um)− 4a

(
1

2
(un + um),

1

2
(un + um)

)
= 4J(un) + 4J(um)− 8J

(
1

2
(un + um)

)
≤ 4

(
d+

1

n

)
+ 4

(
d+

1

m

)
− 8d

≤ 4

(
1

n
+

1

m

)
.

(1.32)

As V is a Banach space, there exists a u ∈ V such that un → u. Since K is closed, we
have u ∈ K. Since J is continuous, we have J(u) = d. This concludes the proof in the
case where a is symmetric.

Now let a be arbitrary. We utilize a continuation argument. We consider the family of
bilinear forms

at(u, v) = a0(u, v) + tb(u, v) , t ∈ [0, 1] , (1.33)

where

a0(u, v) =
1

2
(a(u, v) + a(v, u)) , (1.34)

b(u, v) =
1

2
(a(u, v)− a(v, u)) . (1.35)

Then a0 is symmetric and a1 = a. The bilinear forms at are continuous and V -elliptic,
and (1.24) holds for at with the same constant ca as for a, because at(u, u) = a(u, u) holds
for all u ∈ V . As a0 is symmetric, it now suffices to prove the following claim:

If the variational inequality

aτ (u, v − u) ≥ G(v − u) , ∀ v ∈ K , (1.36)

has a unique solution u ∈ K for every G ∈ V ∗, then the same is true if we replace τ by t
with

τ ≤ t ≤ τ +
ca

2Ca
. (1.37)

We prove this claim. Let t be given, satisfying (1.37). We only have to prove the existence
of a solution. Let G : V → R be linear and continuous. We look for a solution ut ∈ K
satisfying

at(ut, v − ut) ≥ G(v − ut) , ∀ v ∈ K . (1.38)
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For this purpose, we consider for arbitrary given w ∈ V the variational inequality

aτ (u, v − u) ≥ Fw(v − u) , ∀ v ∈ K , (1.39)

where
Fw(v) = G(v)− (t− τ)b(w, v) . (1.40)

Let T : V → K be the mapping which associates to each w ∈ V the solution u ∈ K of
(1.39). T is a contraction, since

‖Tw1 − Tw2‖ ≤
1

ca
‖Fw1 − Fw2‖ ≤

1

ca
|t− τ | sup

‖v‖=1

|b(w1 − w2, v)|

≤ 1

ca
|t− τ |Ca‖w1 − w2‖ ≤

1

2
‖w1 − w2‖ .

(1.41)

By Banach’s fixed point theorem, T has a unique fixed point which we denote by ut. Then
ut ∈ K, and for all v ∈ K we have

at(ut, v − ut) = aτ (ut, v − ut) + (t− τ)b(ut, v − ut)
≥ Fut(v − ut) + (t− τ)b(ut, v − ut) = G(v − ut) .

This finishes the proof. 2

Corollary 1.8 (Lax-Milgram theorem)
Let V be a Banach space, let a : V × V → R be a continuous V -elliptic bilinear form, let
F : V → R be linear and continuous. Then the variational equation

a(u, v) = F (v) ∀ v ∈ V , (1.42)

has a unique solution u ∈ V .

Proof: We apply Proposition 1.7 with K = V . As in Corollary 1.3, the assertion follows
from the equivalences

a(u, v − u) ≥ F (v − u) ∀ v ∈ V ⇔ a(u, v) ≥ F (v) ∀ v ∈ V
⇔ a(u, v) = F (v) ∀ v ∈ V .

(1.43)

2

Assume that one wants to solve a given linear partial differential equation. This usually
determines the form of the associated bilinear form a. If one wants to apply the Lax-
Milgram theorem to prove existence and uniqueness, one has to choose the Banach space
V such that a is continuous and V -elliptic. The spaces V for which this works are the
Sobolev spaces.
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2 Sobolev Spaces: Definition

In this section Ω always denotes an open subset of Rn.

Weak derivatives. Let u ∈ C1(Ω) and ϕ ∈ C∞0 (Ω). Partial integration yields∫
Ω

∂iu(x)ϕ(x) dx = −
∫

Ω

u(x)∂iϕ(x) dx , 1 ≤ i ≤ n . (2.1)

The right side of this equation is well-defined for functions u whose restriction to the
support of ϕ (a compact subset of Ω) is integrable. We thus consider the vector space

L1
loc(Ω) = {v : v|K ∈ L1(K) for all compact subsets K ⊂ Ω} . (2.2)

The functions in L1
loc(Ω) are called locally integrable.

Continuous functions u : Ω → R are locally integrable since they are bounded on every
compact subset of Ω; they may or may not be integrable on Ω. For example,

u(x) =
1

x
, u : (0, 1)→ R ,

belongs to L1
loc(0, 1), but not to L1(0, 1). We remark that Lp(Ω) ⊂ L1

loc(Ω) for all p ∈
[1,∞], no matter whether Ω is bounded or not.

For locally integrable functions one can use (2.1) in order to define a generalization of the
classical derivative.

Definition 2.1 (Weak partial derivative)
Let u ∈ L1

loc(Ω). A function w ∈ L1
loc(Ω) which satisfies∫

Ω

w(x)ϕ(x) dx = −
∫

Ω

u(x)∂iϕ(x) dx , for all ϕ ∈ C∞0 (Ω), (2.3)

is called an i-th weak partial derivative of u. We also denote it by ∂iu. 2

The notation “∂iu” for weak derivatives makes sense only if they are uniquely determined.
This we will see later in Corollary 2.8.

For u ∈ C1(Ω), the classical partial derivatives ∂iu of u are also weak derivatives of u.

Consider the example
u : R→ R , u(x) = |x| . (2.4)

For ϕ ∈ C∞0 (R) we have

−
∫
R
|x|ϕ′(x) dx =

∫ 0

−∞
xϕ′(x) dx−

∫ ∞
0

xϕ′(x) dx

= xϕ(x)
∣∣∣x=0

x=−∞
−
∫ 0

−∞
ϕ(x) dx− xϕ(x)

∣∣∣x=∞

x=0
+

∫ ∞
0

ϕ(x) dx

=

∫
R
(signx)ϕ(x) dx ,
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therefore the weak derivative of u exists, and

u′ = sign . (2.5)

This equality has to be understood as an equality in L1
loc(R), that is,

u′(x) = sign (x) , a.e. in R. (2.6)

For this example, the standard pointwise derivative of u exists in all points x 6= 0, and is
a.e. equal to the weak derivative.

As a second example, consider the Heaviside funktion H : R→ R,

H(x) =

{
1 , x > 0 ,

0 , x ≤ 0 .
(2.7)

For ϕ ∈ C∞0 (R) we have

−
∫
R
H(x)ϕ′(x) dx = −

∫ ∞
0

ϕ′(x) dx = ϕ(0) . (2.8)

If w ∈ L1
loc(R) were a weak derivative of H, we would have∫

R
w(x)ϕ(x) dx = ϕ(0) , for all ϕ ∈ C∞0 (R). (2.9)

But this is not possible (see an exercise), thus the Heaviside function does not have a
weak derivative in the sense of Definition 2.1.

One can of course consider the pointwise derivative of H, which is zero except at x = 0.
However, this function is a.e. equal to zero, so (when it appears under an integral sign)
it does not distinguish between H and a constant function. But one can use (2.8) to
generalize the concept of a weak derivative even further and consider the linear functional
T : C∞0 (R)→ R defined by

T (ϕ) = ϕ(0) (2.10)

as a generalized derivative of H. This is the starting point of distribution theory;
the corresponding derivative is also called distributional derivative. The theory of
distributions was initiated in the ’40s of the previous century, the main proponent being
Laurent Schwartz (1915 – 2002).

Approximation by smooth functions. Given a function u : Ω→ R, there are various
ways to define smooth approximations uε of u with uε → u as ε ↓ 0. Here we mainly use
approximation by convolution.

Let us recall the definition of the convolution of two functions u and v,

(u ∗ v)(x) =

∫
Rn

u(x− y)v(y) dy . (2.11)

It is defined for u, v ∈ L1(Rn) and yields a function u ∗ v ∈ L1(Rn). It has the properties

u ∗ v = v ∗ u , ‖u ∗ v‖1 ≤ ‖u‖1 · ‖v‖1 . (2.12)
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We want to approximate a given function u by functions ηε ∗ u; they will turn out to be
smooth if ηε is smooth. In order to achieve this, we define

ψ : R→ R , ψ(t) =

{
exp

(
−1

t

)
, t > 0 ,

0 , t ≤ 0 ,
(2.13)

ψ̃ : R→ R , ψ̃(r) = ψ(1− r2) , (2.14)

η1 : Rn → R , η1(x) = αψ̃(|x|) , (2.15)

where α > 0 is chosen such that ∫
Rn

η1(x) dx = 1 . (2.16)

For given ε > 0 we define the functions

ηε : Rn → R , ηε(x) =
1

εn
η1

(x
ε

)
. (2.17)

These functions are radially symmetric (that is, they only depend upon |x|), and we have

ηε ∈ C∞0 (Rn) , supp (ηε) = K(0; ε) , ηε ≥ 0 ,

∫
Rn

ηε(x) dx = 1 . (2.18)

The function η1, or the family (ηε)ε>0, is called a mollifier.

Given u : Ω→ R, by ũ we denote its extension to Rn,

ũ(x) =

{
u(x) , x ∈ Ω ,

0 , x /∈ Ω .
(2.19)

Given u ∈ L1
loc(Ω), we define functions uε : Rn → R by

uε = ηε ∗ ũ . (2.20)

We then have

uε(x) =

∫
Rn

ηε(x− y)ũ(y) dy =

∫
Ω

ηε(x− y)u(y) dy , for all x ∈ Rn. (2.21)

We define the ε-neighbourhood of a subset U of Rn by

Uε = {x : x ∈ Rn, dist (x, U) < ε} . (2.22)

Since ηε(x− y) = 0 if |x− y| ≥ ε, we see from (2.21) that

supp (uε) ⊂ Ωε , if u ∈ L1
loc(Ω). (2.23)

To denote higher order partial derivatives we use multi-indices. Let

α = (α1, . . . , αn) ∈ Nn

be a multi-index. We set

∂α = ∂α1
1 ∂α2

2 · · · ∂αn
n , |α| =

n∑
j=1

αj . (2.24)
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Proposition 2.2 Let Ω ⊂ Rn be open, u ∈ Lp(Ω), 1 ≤ p ≤ ∞, ε > 0. Then we have

uε ∈ C∞(Rn) , supp (uε) ⊂ Ωε , (2.25)

∂αuε(x) =

∫
Ω

∂αηε(x− y)u(y) dy , for all x ∈ Rn. (2.26)

‖uε‖Lp(Rn) ≤ ‖u‖Lp(Ω) . (2.27)

Proof: Let α be a multi-index. Fix x0 ∈ Rn. For x, y ∈ Rn with |x− x0| ≤ 1 we have we
have

|u(y)∂αηε(x− y)| ≤

{
‖∂αηε‖∞ · |u(y)| , |y − x0| ≤ 1 + ε ,

0 , otherwise,

since |x− y| > ε if |y − x0| > 1 + ε. The function on the right side is integrable and does
not depend on x. Therefore, we can interchange ∂α with the convolution integral in the
neighbourhood of every point x0 ∈ Rn. This proves (2.25) and (2.26). Let us now prove
(2.27). In the case p =∞, (2.27) follows from the estimate

|uε(x)| ≤
∫

Ω

ηε(x− y)|u(y)| dy ≤ ‖u‖∞ ·
∫

Ω

ηε(x− y) dy ≤ ‖u‖∞ , x ∈ Rn .

In the case 1 < p <∞, 1
p

+ 1
q

= 1, we obtain for all x ∈ Rn, using Hölder’s inequality,

|uε(x)| =
∣∣∣∣∫

Ω

ηε(x− y)u(y) dy

∣∣∣∣ ≤ ∫
Ω

|u(y)|(ηε(x− y))
1
p (ηε(x− y))

1
q dx

≤
(∫

Ω

|u(y)|pηε(x− y) dx

) 1
p
(∫

Ω

ηε(x− y) dx

) 1
q

︸ ︷︷ ︸
≤1

.
(2.28)

From this we obtain, now for 1 ≤ p <∞∫
Rn

|uε(x)|p dx ≤
∫
Rn

∫
Ω

|u(y)|pηε(x− y) dy dx =

∫
Ω

|u(y)|p
∫
Rn

ηε(x− y) dx dy

≤
∫

Ω

|u(y)|p dx .

2

Definition 2.3
Let Ω ⊂ Rn be open. We say that U ⊂ Rn is compactly embedded in Ω, if U is
compact and U ⊂ Ω. We write

U ⊂⊂ Ω . (2.29)

2

Let us denote by
C0(Ω) = {v : v ∈ C(Ω), supp (v) ⊂⊂ Ω} (2.30)

the set of all continuous functions on Ω whose support is a compact subset of Ω. We have
C0(Ω) ⊂ Lp(Ω) for all p ∈ [1,∞].
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Proposition 2.4 The set C0(Rn) is a dense subspace of Lp(Rn) for all p ∈ [1,∞), that is,
for every u ∈ Lp(Rn) and every δ > 0 there exists a v ∈ C0(Rn) such that ‖u− v‖p ≤ δ.

Proof: One possibility is to consider first the special case u = 1B, where B is an arbitrary
measurable subset of Ω, using the regularity of the Lebesgue measure. Another possibility
is to use Lusin’s theorem (which says that measurable functions can be approximated
uniformly by continuous functions on subsets of “almost full” measure). This might be
discussed in the exercises. 2

Proposition 2.5 Let u ∈ C0(Rn). Then uε → u uniformly in Rn.

Proof: We have for all x ∈ Rn

|uε(x)− u(x)| =
∣∣∣ ∫

Rn

ηε(x− y)(u(y)− u(x)) dy
∣∣∣ ≤ ∫

Rn

ηε(x− y)|u(y)− u(x)| dy

≤
∫
Rn

ηε(x− y) dy · max
|z−y|≤ε

|u(z)− u(y)| = max
|z−y|≤ε

|u(z)− u(y)| → 0

as ε→ 0, since u is uniformly continuous on the compact set supp (u). 2

Proposition 2.6 Let u ∈ Lp(Ω), 1 ≤ p <∞. Then we have uε → u in Lp(Ω) for ε→ 0.

Proof: Let δ > 0. We extend u to ũ ∈ Lp(Rn), setting ũ to 0 outside Ω. According to
Proposition 2.4 we can find v ∈ C0(Rn) with ‖ũ− v‖Lp(Rn) ≤ δ, thus ‖u− v‖Lp(Ω) ≤ δ.
Then

‖u− uε‖Lp(Ω) ≤ ‖u− v‖Lp(Ω) + ‖v − vε‖Lp(Ω) + ‖vε − uε‖Lp(Ω) (2.31)

≤ 2δ + ‖v − vε‖Lp(Ω) , (2.32)

because
vε − uε = ηε ∗ v − ηε ∗ u = (v − u)ε

and, by Proposition 2.2

‖(v − u)ε‖Lp(Ω) ≤ ‖v − ũ‖Lp(Rn) ≤ δ .

Since v ∈ C0(Rn), we have vε → v uniformly by Proposition 2.5, so vε → v in Lp(Ω) and
therefore

lim sup
ε→0

‖u− uε‖Lp(Ω) ≤ 2δ .

As δ > 0 was arbitrary, the assertion follows. 2

The next result (or a variant of it) is also called the fundamental lemma of the
calculus variations.

Proposition 2.7 Let Ω ⊂ Rn be open, let u ∈ L1
loc(Ω), assume that∫

Ω

u(x)ϕ(x) dx = 0 , for all ϕ ∈ C∞0 (Ω). (2.33)

Then u = 0 a.e. in Ω.

13



Proof: Let x ∈ Ω be arbitrary. If ε is small enough, the support of the function ϕ(y) =
ηε(x− y) is compactly embedded in Ω, so ϕ ∈ C∞0 (Ω). From (2.33) it follows that

uε(x) =

∫
Rn

ηε(x− y)u(y) dy =

∫
Ω

u(y)ϕ(y) dy = 0 .

Consequently,
lim
ε↓0

uε(x) = 0 , for all x ∈ Ω.

On the other hand, for every ball B ⊂⊂ Ω we have u ∈ L1(B), so uε → u in L1(B) by
Proposition 2.6. Thus u = 0 a.e. in B and therefore u = 0 a.e. in Ω. 2

Corollary 2.8 Weak partial derivatives of a function u ∈ L1
loc(Ω) are uniquely deter-

mined.

Proof: If w, w̃ ∈ L1
loc(Ω) satisfy∫

Ω

w(x)ϕ(x) dx = −
∫

Ω

u(x)∂iϕ(x) dx =

∫
Ω

w̃(x)ϕ(x) dx

for all ϕ ∈ C∞0 (Ω), Proposition 2.7 implies that w − w̃ = 0 a.e. in Ω. 2

Sobolev spaces. We have already defined weak derivatives of first order via the partial
integration rule. The same can be done for higher derivatives.

Definition 2.9 Let u ∈ L1
loc(Ω), α a multi-index. A function w ∈ L1

loc(Ω) which satisfies∫
Ω

w(x)ϕ(x) dx = (−1)|α|
∫

Ω

u(x)∂αϕ(x) dx , for all ϕ ∈ C∞0 (Ω), (2.34)

is called an α-th weak partial derivative of u and denoted by ∂αu. 2

Again, it follows from the fundamental lemma of the calculus of variations (Proposition
2.7) that there can be at most one α-th weak partial derivative of u.

Definition 2.10 (Sobolev space)
Let Ω ⊂ Rn be open, k ∈ N, 1 ≤ p ≤ ∞. We define

W k,p(Ω) = {v : v ∈ Lp(Ω), ∂αv ∈ Lp(Ω) for all |α| ≤ k} . (2.35)

2

In particular, we have
W 0,p(Ω) = Lp(Ω) . (2.36)

The spaces W k,p(Ω) are vector spaces. Indeed, if u, v ∈ L1
loc(Ω) have weak derivatives ∂αu

and ∂αv, we have∫
Ω

(β∂αu(x) + γ∂αv(x))ϕ(x) dx = (−1)|α|
∫

Ω

(βu(x) + γv(x))∂αϕ(x) dx

for all β, γ ∈ R and all ϕ ∈ C∞0 (Ω). Therefore, ∂α(βu + γv) exists as a weak partial
derivative, and

∂α(βu+ γv) = β∂αu+ γ∂αv . (2.37)
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Proposition 2.11 Let Ω ⊂ Rn be open, k ∈ N, 1 ≤ p ≤ ∞. The space W k,p(Ω) is a
Banach space when equipped with the norm

‖v‖Wk,p(Ω) =

∑
|α|≤k

‖∂αv‖pp

 1
p

=

∑
|α|≤k

∫
Ω

|∂αv(x)|p dx

 1
p

, 1 ≤ p <∞ , (2.38)

‖v‖Wk,∞(Ω) =
∑
|α|≤k

‖∂αv‖∞ , p =∞ . (2.39)

Proof: Consider first p <∞. The triangle inequality holds because

‖u+ v‖Wk,p(Ω) =

∑
|α|≤k

‖∂αu+ ∂αv‖pp

 1
p

≤

∑
|α|≤k

(‖∂αu‖p + ‖∂αv‖p)
p

 1
p

≤

∑
|α|≤k

‖∂αu‖pp

 1
p

+

∑
|α|≤k

‖∂αv‖pp

 1
p

= ‖u‖Wk,p(Ω) + ‖v‖Wk,p(Ω) .

All other properties of the norm follow immediately from the definitions. It remains to
prove the completeness. Let (un)n∈N be a Cauchy sequence in W k,p(Ω). Due to

‖∂αun − ∂αum‖p ≤ ‖un − um‖Wk,p(Ω)

the sequences (∂αun)n∈N are Cauchy sequences in Lp(Ω) for all multi-indices |α| ≤ k.
Therefore there exist u ∈ Lp(Ω), uα ∈ Lp(Ω) satisfying

un → u , ∂αun → uα (2.40)

in Lp(Ω). Let now ϕ ∈ C∞0 (Ω). We have∫
Ω

u(x)∂αϕ(x) dx = lim
n→∞

∫
Ω

un(x)∂αϕ(x) dx = lim
n→∞

(−1)|α|
∫

Ω

∂αun(x)ϕ(x) dx

= (−1)|α|
∫

Ω

uα(x)ϕ(x) dx ,

therefore ∂αu = uα for all |α| ≤ k and thus u ∈ W k,p(Ω). For the case p =∞ the proofs
are analogous. 2

We have seen that for u ∈ Lp(Ω), the functions uε defined by

uε(x) =

∫
Ω

ηε(x− y)u(y) dy

converge to u in Lp(Ω). This does not carry over to W k,p(Ω); near the boundary of Ω,
the situation is more complicated. This is related to the fact that for u ∈ W k,p(Ω), the
extension ũ = u on Ω, ũ = 0 outside of Ω, in general does not belong to W k,p(Ω) (compare
the example of the Heaviside function). However, if we stay away from the boundary, this
problem does not arise.

Consider open sets Ω, U ⊂ Rn with U ⊂⊂ Ω. Then

dist (U, ∂Ω) := inf
x∈U,y∈∂Ω

|x− y| > 0 , (2.41)

since U is compact. (In the case Ω = Rn we set dist (U, ∂Ω) =∞.)
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Lemma 2.12 Let Ω, U ⊂ Rn be open, U ⊂⊂ Ω. let u ∈ W k,p(Ω), 1 ≤ p < ∞. Then
uε ∈ C∞(U) ∩W k,p(U) holds for all ε satisfying 0 < ε < dist (U, ∂Ω). Moreover, uε → u
in W k,p(U) for ε→ 0.

Proof: Let ε < dist (U, ∂Ω). By Proposition 2.2 we have uε ∈ C∞(U). Moreover, for all
x ∈ U

∂αuε(x) =

∫
Ω

∂αηε(x− y)u(y) dy = (−1)|α|
∫

Ω

∂αy ηε(x− y)u(y) dy

=

∫
Ω

ηε(x− y)∂αu(y) dy = (ηε ∗ ∂αu)(x) .

Since ∂αu ∈ Lp(Ω), by Proposition 2.2 we get ∂αuε ∈ Lp(U). From Proposition 2.6 we
get that ∂αuε → ∂αu in Lp(U). 2

While in general it does not hold that uε → u in W k,p(Ω), we nevertheless can construct
smooth approximations in W k,p(Ω) from the interior.

Proposition 2.13 Let Ω ⊂ Rn be open, let v ∈ W k,p(Ω), 1 ≤ p < ∞. Then there exists
a sequence (vn)n∈N in C∞(Ω) ∩W k,p(Ω) with vn → v in W k,p(Ω).

Proof: We first consider the case Ω 6= Rn. We define

Uj = {x : x ∈ Ω, dist (x, ∂Ω) >
1

j
and |x| < j} , Vj = Uj+3 \ U j+1 , j ≥ 1 , (2.42)

and V0 = U3. We have

Ω =
∞⋃
j=0

Vj .

Let (βj)j≥0 be a partition of unity for Ω with

0 ≤ βj ≤ 1 , βj ∈ C∞0 (Vj) ,
∞∑
j=0

βj = 1 . (2.43)

Since v ∈ W k,p(Ω), one also has βjv ∈ W k,p(Ω) (see the exercises), and supp (βjv) ⊂ Vj.
Let now δ > 0 be arbitrary. We choose εj > 0 sufficiently small so that for

wj = ηεj ∗ (βjv) , Wj = Uj+4 \ U j , j ≥ 1 , W0 = U4 ,

we have from Lemma 2.12, applied to βjv and Wj in place of u and U ,

supp (wj) ⊂ Wj , (2.44)

‖wj − βjv‖Wk,p(Ω) = ‖wj − βjv‖Wk,p(Wj) ≤ 2−(j+1)δ . (2.45)

We set

w =
∞∑
j=0

wj .
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By construction, on each Wj only finitely many summands are nonzero. Therefore we
have w ∈ C∞(Ω), as wj ∈ C∞(Ω) for each j according to Lemma 2.12. It now follows
that

‖w − v‖Wk,p(Ω) =

∥∥∥∥∥
∞∑
j=0

wj −
∞∑
j=0

βjv

∥∥∥∥∥
Wk,p(Ω)

≤
∞∑
j=0

‖wj − βjv‖Wk,p(Ω) ≤ δ

∞∑
j=0

2−(j+1) = δ .

As δ > 0 was arbitrary, the assertion follows.

In the case Ω = Rn the proof proceeds analogously, with the choice Uj = B(0, j), the
open ball around 0 with radius j. 2

Density results of this kind can be used to extend to Sobolev spaces properties known to
hold for smooth functions. For example, we know that

∂i(uv) = (∂iu)v + u∂iv , u, v ∈ C1(Ω) . (2.46)

Consider now u ∈ W 1,p(Ω), v ∈ C1(Ω). According to Proposition 2.13, choose un ∈
W 1,p(Ω) ∩ C∞(Ω) such that un → u in W 1,p(Ω). Let ϕ ∈ C∞0 (Ω) be arbitrary. We have

−
∫

Ω

unv∂iϕdx =

∫
Ω

∂i(unv)ϕdx =

∫
Ω

((∂iun)v + un∂iv)ϕdx .

Since un → u and ∂iun → ∂iu in Lp(Ω) as n→∞, we obtain

−
∫

Ω

uv∂iϕdx =

∫
Ω

((∂iu)v + u∂iv)ϕdx .

This shows that ∂i(uv) exists as a weak derivative and that (2.46) holds. If moreover v
and its derivatives are bounded, then uv ∈ W 1,p(Ω).

Definition 2.14 Let Ω ⊂ Rn be open, let 1 ≤ p < ∞, k ∈ N. We define W k,p
0 (Ω) ⊂

W k,p(Ω) by
W k,p

0 (Ω) = C∞0 (Ω) , (2.47)

the closure being taken with respect to the norm in W k,p(Ω). 2

W k,p
0 (Ω) is a closed subspace of W k,p(Ω) and therefore itself a Banach space, if equipped

with the norm of W k,p(Ω). W k,p
0 (Ω) is a function space whose elements are zero on ∂Ω

in a certain weak sense; it is not clear at this point whether the statement “v = 0 on
∂Ω” makes sense for a general v ∈ W k,p(Ω), because equality in W k,p(Ω) means equality
almost everywhere, and the statement “v = 0 a.e. on ∂Ω” does not give any information
when ∂Ω has measure 0 in Rn (which usually is the case).

Definition 2.15 Let Ω ⊂ Rn be open, let k ∈ N. We define

Hk(Ω) = W k,2(Ω) , Hk
0 (Ω) = W k,2

0 (Ω) . (2.48)

2
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Proposition 2.16 Let Ω ⊂ Rn be open, k ∈ N. The spaces Hk(Ω) and Hk
0 (Ω) are Hilbert

spaces when equipped with the scalar product

〈u, v〉Hk(Ω) =
∑
|α|≤k

〈∂αu, ∂αv〉L2(Ω) =
∑
|α|≤k

∫
Ω

∂αu(x) · ∂αv(x) dx . (2.49)

We have
‖v‖Wk,2(Ω) =

√
〈v, v〉Hk(Ω) , v ∈ Hk(Ω) . (2.50)

Proof: The properties of the scalar product (2.49) immediately follow from the corre-
sponding properties of the scalar product in L2(Ω). Obviously we have (2.50), and by
Proposition 2.11 the space Hk(Ω) is complete. 2

Setting

|v|Hk(Ω) =

∑
|α|=k

∫
Ω

|∂αv(x)|2 dx

 1
2

, (2.51)

one obtains a seminorm on Hk(Ω) with

|v|Hk(Ω) ≤ ‖v‖Hk(Ω) . (2.52)

For k > 0, this is not a norm since |v|Hk(Ω) = 0 whenever v is a polynomial of degree less
than k.

The following inequality (2.53) is known as the Poincaré-Friedrichs inequality.

Proposition 2.17
Let Ω ⊂ [−R,R]n be open. Then for every v ∈ H1

0 (Ω) we have∫
Ω

|v(x)|2 dx ≤ 4R2

∫
Ω

|∂jv(x)|2 dx , 1 ≤ j ≤ n , (2.53)

and therefore with C = 4R2∫
Ω

|v(x)|2 dx ≤ C

∫
Ω

|∇v(x)|2 dx . (2.54)

Proof: Consider first v ∈ C∞0 (Ω). Extending v by zero on all of Rn we have v ∈ C∞0 (Rn).
Let x = (x1, . . . , xn) ∈ Ω. Then we have

v(x) = v(−R, x2, . . . , xn)︸ ︷︷ ︸
=0

+

∫ x1

−R
∂1v(t, x2, . . . , xn) dt ,

and therefore, by the Cauchy-Schwarz inequality,

|v(x)|2 =

(∫ x1

−R
1 · ∂1v(t, x2, . . . , xn) dt

)2

≤
∫ x1

−R
12 dt ·

∫ x1

−R
(∂1v(t, x2, . . . , xn))2 dt

≤ 2R

∫ R

−R
(∂1v(t, x2, . . . , xn))2 dt .
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Since the right hand side does not depend on x1, it follows that∫ R

−R
|v(x)|2 dx1 ≤ 4R2

∫ R

−R
(∂1v(t, x2, . . . , xn))2 dt . (2.55)

Integrating with respect to the other coordinates x2, . . . , xn yields∫
Ω

|v(x)|2 dx ≤ 4R2

∫
Ω

(∂1v(x))2 dx ,

Since we may choose any other j in places of 1, (2.53) is proved for v ∈ C∞0 (Ω). For
arbitrary v ∈ H1

0 (Ω), we choose a sequence (vk)k∈N in C∞0 (Ω) with vk → v in H1
0 (Ω).

Then (2.53) holds for vk and, passing to the limit k →∞, for v also. 2

Proposition 2.18 Let Ω ⊂ Rn be open and bounded. Then there exists a C > 0 such
that

‖v‖Hk(Ω) ≤ C|v|Hk(Ω) , for all v ∈ Hk
0 (Ω). (2.56)

Proof: Let v ∈ Hk
0 (Ω), let α be a multi-index with |α| = j − 1, 1 ≤ j ≤ k. Then we have

∂αv ∈ H1
0 (Ω), and it follows from Proposition 2.17 that

‖∂αv‖2
2 ≤ 4R2‖∂1∂

αv‖2
2 .

Consequently, ∑
|α|=j−1

‖∂αv‖2
2 ≤ 4R2

∑
|α|=j−1

‖∂1∂
αv‖2

2 ≤ 4R2
∑
|α|=j

‖∂αv‖2
2 ,

so
|v|2Hj−1(Ω) ≤ 4R2|v|2Hj(Ω) ,

and finally

‖v‖2
Hk(Ω) =

k∑
j=0

|v|2Hj(Ω) ≤
k∑
j=0

(4R2)k−j|v|2Hk(Ω) .

2

Corollary 2.19 The space Hk
0 (Ω) becomes a Hilbert space when equipped with the scalar

product corresponding to |·|Hk(Ω), and |·|Hk(Ω) defines a norm on Hk
0 (Ω) which is equivalent

to ‖ · ‖Hk(Ω). 2

With an analogous proof, one can also obtain the Poincaré-Friedrichs inequality for an
exponent p ∈ (1,∞) instead of 2,

‖v‖Lp(Ω) ≤ C‖∇v‖Lp(Ω) , for all v ∈ W 1,p
0 (Ω). (2.57)

This yields an equivalent norm on W 1,p
0 (Ω) in the same manner as in Corollary 2.19.

The optimal (that is, smallest possible) C in (2.57) is called Poincaré constant, it
depends on Ω and p. It is not easy to determine it.
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3 Elliptic Boundary Value Problems

We want to solve the boundary value problem

Lu = f , in Ω, (3.1)

u = 0 , on ∂Ω. (3.2)

Here, Ω ⊂ Rn is open, f : Ω→ R, and L is an elliptic differential operator of the form

Lu = −
n∑

i,j=1

∂j(aij(x)∂iu) +
n∑
i=1

bi(x)∂iu+ c(x)u (3.3)

= −div (A(x)T∇u) + 〈b(x),∇u〉+ c(x)u .

One says that L is written in divergence form. The variational formulation of (3.1),
(3.2) is obtained multiplying (3.1) by an arbitary test function ϕ ∈ C∞0 (Ω) and integrating
over Ω. After partial integration, the left side of (3.1) then becomes∫

Ω

Lu(x)ϕ(x) dx =

∫
Ω

n∑
i,j=1

aij(x)∂iu(x)∂jϕ(x) dx+

∫
Ω

n∑
i=1

bi(x)∂iu(x)ϕ(x) dx

+

∫
Ω

c(x)u(x)ϕ(x) dx .

Thus, the corresponding bilinear form is given by

a(u, v) =

∫
Ω

n∑
i,j=1

aij(x)∂iu(x)∂jv(x) dx+

∫
Ω

n∑
i=1

bi(x)∂iu(x)v(x) dx

+

∫
Ω

c(x)u(x)v(x) dx (3.4)

=

∫
Ω

〈∇u(x), A(x)∇v(x)〉 dx+

∫
Ω

〈b(x),∇u(x)〉 v(x) dx+

∫
Ω

c(x)u(x)v(x) dx .

It is symmetric if A is symmetric and b = 0.

Assumption 3.1 We assume that there exists a∗ > 0 such that

ξTA(x)ξ =
n∑

i,j=1

ξiaij(x)ξj ≥ a∗|ξ|2 , for all ξ ∈ Rn, x ∈ Ω. (3.5)

(In this case, the differential operator L is called uniformly elliptic.) We moreover
assume that aij, bi, c ∈ L∞(Ω) for all i, j. 2

Definition 3.2 (Weak solution)
Assume that 3.1 holds and that f ∈ L2(Ω). A function u ∈ H1

0 (Ω) is called a weak
solution of the boundary value problem (3.1), (3.2) if u solves the variational equation

a(u, v) = F (v) , for all v ∈ H1
0 (Ω), (3.6)

where a is defined by (3.4) and

F (v) =

∫
Ω

f(x)v(x) dx . (3.7)

2
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Lemma 3.3 Let Ω ⊂ Rn be open, assume that 3.1 holds. Then (3.4) defines a continuous
bilinear form on H1(Ω). Moreover, (3.7) defines a continuous linear form on H1(Ω) if
f ∈ L2(Ω).

Proof: Setting
a∗ = n ess sup

x∈Ω
1≤i,j≤n

|aij(x)| , b∗ = n ess sup
x∈Ω

|b(x)|

we get for all u, v ∈ H1(Ω)

|a(u, v)| ≤
∫

Ω

| 〈∇u(x), A(x)∇v(x)〉 | dx+

∫
Ω

| 〈b(x),∇u(x)〉 v(x)| dx+

∫
Ω

|c(x)u(x)v(x)| dx

≤ a∗‖∇u‖2 ‖∇v‖2 + b∗‖∇u‖2 ‖v‖2 + ‖c‖∞‖u‖2 ‖v‖2

≤ (a∗ + b∗ + ‖c‖∞)‖u‖H1(Ω)‖v‖H1(Ω) .

2

Let us now consider the special case b = c = 0, that is, the boundary value problem
becomes

−
∑
i,j

∂j(aij(x)∂iu) = f , in Ω, (3.8)

u = 0 , on ∂Ω. (3.9)

Proposition 3.4 Let Ω ⊂ Rn be open and bounded, let f ∈ L2(Ω), assume 3.1. Then
(3.8), (3.9) has a unique weak solution u ∈ H1

0 (Ω), and

‖u‖H1(Ω) ≤ C‖F‖ . (3.10)

Here, the norm ‖F‖ of the functional (3.7) is taken in the dual space of H1
0 (Ω), and C

does not depend on F .

Proof: In order to apply Lax-Milgram, Proposition 1.8, in view of Lemma 3.3 it remains
to show that a is H1

0 (Ω)-elliptic. According to our assumptions we have

a(v, v) =

∫
Ω

〈∇v(x), A(x)∇v(x)〉 dx ≥
∫

Ω

a∗|∇v(x)|2 dx = a∗|v|2H1(Ω)

≥ a∗C0‖v‖2
H1(Ω) ,

the last inequality is a consequence of the Poincaré-Friedrichs inequality, see Proposition
2.18. 2

Since

|F (v)| ≤
∫

Ω

|f(x)v(x)| dx ≤ ‖f‖2 ‖v‖2 ≤ ‖f‖2 ‖v‖H1(Ω) , (3.11)

we have
‖F‖ ≤ ‖f‖2 . (3.12)

Therefore, from (3.10) we obtain the estimate

‖u‖H1(Ω) ≤ C‖f‖2 . (3.13)

We now consider the general form of the operator L from (3.3), that is, the first-order
and zero-order terms are also included.
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Lemma 3.5 Let Ω ⊂ Rn be open, assume 3.1. Then there exists c∗ ≥ 0 such that the
bilinear form (3.4) satisfies

a(v, v) ≥ a∗
2
‖∇v‖2

2 − c∗‖v‖
2
2 , (3.14)

for all v ∈ H1(Ω).

This inequality (or a variant of it) is called G̊arding’s inequality.

Proof: We have, with b∗ as in the proof of Lemma 3.3,

a∗‖∇v‖2
2 ≤

∫
Ω

〈∇v(x), A(x)∇v(x)〉 dx

= a(v, v)−
∫

Ω

〈b(x),∇v(x)〉 v(x) + c(x)v(x)2 dx

≤ a(v, v) + b∗
∫

Ω

|∇v(x)| |v(x)| dx+ ‖c‖∞‖v‖
2
2 .

We have∫
Ω

|∇v(x)| |v(x)| dx =

∫
Ω

(√
ε|∇v(x)|

)( 1√
ε
|v(x)|

)
dx ≤ ε

2
‖∇v‖2

2 +
1

2ε
‖v‖2

2 .

Setting ε = a∗/b
∗, we get

a∗
2
‖∇v‖2

2 ≤ a(v, v) +

(
(b∗)2

2a∗
+ ‖c‖∞

)
‖v‖2

2 .

From this, the assertion follows, setting c∗ = (b∗)2/2a∗ + ‖c‖∞. 2

The bilinear form a is in general not H1
0 (Ω)-elliptic; it is if (3.5) holds for c∗ = 0. However,

the bilinear form
aµ(u, v) = a(u, v) + µ 〈u, v〉L2(Ω) (3.15)

is even H1(Ω)-elliptic for µ > µ0 := c∗ since we then have by virtue of Lemma 3.5

aµ(v, v) ≥ a∗
2
‖∇v‖2

2 + (µ− c∗)‖v‖2
2 .

The bilinear form aµ is associated to the boundary value problem

Lu+ µu = f , in Ω, (3.16)

u = 0 , on ∂Ω, (3.17)

the operator L being taken from (3.3). The equation Lu + µu = f is also called the
Helmholtz equation. The foregoing considerations together with the Lax-Milgram
theorem 1.8 yield the following result.

Proposition 3.6 Let Ω ⊂ Rn be open, assume 3.1, let f ∈ L2(Ω). Then there exists
a µ0 ∈ R such that, for every µ > µ0, the boundary value problem (3.16), (3.17) has a
unique weak solution u ∈ H1

0 (Ω). 2
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Note that µ0 may be negative if G̊arding’s inequality holds for some c∗ < 0.

The derivation of the variational formulation (3.1) – (3.4) shows that every classical
solution of the boundary value problem is a weak solution (we refrain from presenting an
exact formulation of this issue). On the other hand, the existence and uniqueness results
of the variational theory only yield weak solutions. One then asks whether these weak
solutions possess additional smoothness properties (thus, possibly, one might arrive at
classical solutions). Such results are called regularity results.

Let us come back to the boundary value problem

−∆u = f , in Ω, (3.18)

u = 0 , auf ∂Ω. (3.19)

Let us assume for the moment that u is a solution such that ∆u ∈ L2(Ω) and the following
partial integration is valid:∫

Ω

∆u(x)2 dx =

∫
Ω

n∑
i,j=1

∂2
i u(x) · ∂2

ju(x) dx =

∫
Ω

n∑
i,j=1

∂j∂iu(x) · ∂i∂ju(x) dx

=

∫
Ω

n∑
i,j=1

(∂i∂ju(x))2 dx .

This would imply that
|u|2H2(Ω) = ‖∆u‖2

2 = ‖f‖2
2 . (3.20)

One therefore may hope that a solution u of (3.18), (3.19) has to be an element of H2(Ω)
if the right side f belongs to L2(Ω).

An estimate like
|u|H2(Ω) ≤ C‖f‖2

obtained as above from manipulation of the problem equations is called an a priori
estimate. This is an important heuristic technique; in a second step (usually the difficult
part) one has to prove that the solution actually has the asserted regularity.

For our elliptic boundary value problem, one way of proving H2 regularity is to replace ∆u
by a difference quotient approximation for ∇u and to obtain the existence of weak second
derivatives from a compactness argument. Our function spaces have infinite dimension;
it turns out that the appropriate notion is weak compactness.

We are interested in the relation between weak derivatives and difference quotients. Let
v : Ω→ R and h 6= 0 be given. We consider the difference quotient

(Dh
j v)(x) =

v(x+ hej)− v(x)

h
, 1 ≤ j ≤ n . (3.21)

Here, ej denotes the j-th unit vector. We set

Dhv = (Dh
1v, . . . , D

h
nv) . (3.22)

Lemma 3.7 Let Ω, U ⊂ Rn be open, let U ⊂⊂ Ω, p ∈ [1,∞). Then

‖Dh
j v‖Lp(U)

≤ ‖∂jv‖Lp(Ω) , 1 ≤ j ≤ n , (3.23)

for all v ∈ W 1,p(Ω) and all h 6= 0 with |h| < dist (U, ∂Ω).
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Proof: First, assume that v ∈ C∞(Ω) ∩W 1,p(Ω). For all x ∈ U and |h| < dist (U, ∂Ω) we
get

|v(x+ hej)− v(x)| =
∣∣∣∣∫ 1

0

∂jv(x+ thej)h dt

∣∣∣∣ ≤ |h|∫ 1

0

|∂jv(x+ thej)| dt ,

thus∫
U

|Dh
j v(x)|p dx ≤

∫
U

(∫ 1

0

|∂jv(x+ thej)| dt
)p

dx ≤
∫
U

∫ 1

0

|∂jv(x+ thej)|p dt dx

=

∫ 1

0

∫
U

|∂jv(x+ thej)|p dx dt ≤
∫ 1

0

‖∂jv‖pLp(Ω) dt = ‖∂jv‖pLp(Ω) .

Let now v ∈ W 1,p(Ω) be arbitrary. According to Proposition 2.13 we choose a sequence
(vk)k∈N in C∞(Ω) ∩W 1,p(Ω) satisfying vk → v in W 1,p(Ω). For fixed h 6= 0, (3.23) holds
for all vk. Since Dh

j vk → Dh
j v in W 1,p(U) as well as ∂jvk → ∂jv in Lp(Ω), passing to the

limit k →∞ we obtain (3.23). 2

Conversely, we want to derive the existence of a weak derivative ∂jv from the uniform
boundedness of the difference quotients Dh

j v. We need a result of functional analysis: if
(fk)k∈N is a bounded sequence in Lp(Ω), 1 < p < ∞, then there exists a subsequence
(fkm)m∈N which converges weakly to some f ∈ Lp(Ω). This means that

lim
m→∞

∫
Ω

fkm(x)ϕ(x) dx =

∫
Ω

f(x)ϕ(x) dx , for all ϕ ∈ Lq(Ω), (3.24)

where q is the exponent dual to p, 1
p

+ 1
q

= 1. Moreover, the weak limit has the property

‖f‖Lp(Ω) ≤ lim inf
m→∞

‖fkm‖Lp(Ω) . (3.25)

We write
fkm ⇀ f

for weak convergence.

Proposition 3.8 Let Ω, U ⊂ Rn be open, U ⊂⊂ Ω, 1 < p < ∞, v ∈ Lp(Ω), j ∈
{1, . . . , n}. Assume that there exists C > 0 and h0 ≤ dist (U, ∂Ω) such that

‖Dh
j v‖Lp(U)

≤ C (3.26)

for all h 6= 0, |h| < h0. Then we have ∂jv ∈ Lp(U), and

‖∂jv‖Lp(U) ≤ C . (3.27)

Proof: Let ϕ ∈ C∞0 (U) be arbitrary. For |h| < h0 we have∫
Ω

v(x)Dh
jϕ(x) dx =

∫
Ω

v(x)
ϕ(x+ hej)− ϕ(x)

h
dx = −

∫
Ω

v(x)− v(x− hej)
h

ϕ(x) dx

= −
∫

Ω

(D−hj v)(x)ϕ(x) dx .
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We choose a sequence (hm)m∈N such that hm → 0, hm 6= 0, and a w ∈ Lp(U) satisfying

D−hmj v ⇀ w .

Since Dhm
j ϕ→ ∂jϕ uniformly in Ω, for sufficiently small h it follows that∫

U

v(x)∂jϕ(x) dx =

∫
Ω

v(x)∂jϕ(x) dx = lim
m→∞

∫
Ω

v(x)(Dhm
j ϕ)(x) dx

= lim
m→∞

[
−
∫

Ω

(D−hmj v)(x)ϕ(x) dx

]
= −

∫
Ω

w(x)ϕ(x) dx = −
∫
U

w(x)ϕ(x) dx ,

so w = ∂jv. 2

We come back to the question of the regularity of solutions of the elliptic equation

Lu = f , in Ω, (3.28)

where L is the operator given in divergence form as in (3.3). We present a result on
interior regularity, that is, on the regularity of a weak solution in parts of Ω away from
the boundary. Such a weak solution satisfies

a(u, v) =

∫
Ω

f(x)v(x) dx , for all v ∈ H1
0 (Ω), (3.29)

where a is the bilinear form given by (3.4).

Proposition 3.9
Let Ω, U be open, U ⊂⊂ Ω, let f ∈ L2(Ω). In addition to 3.1, assume that aij ∈ C1(Ω)
for 1 ≤ i, j ≤ n. Let u ∈ H1(Ω) be a weak solution of Lu = f in the sense of (3.29).
Then we have u ∈ H2(U), and

‖u‖H2(U) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)) . (3.30)

Here, C depends only on Ω, U and on the coefficients of L.

Proof: The idea of the proof is to estimate ‖Dh
k∇u‖L2(Ω) and then apply Proposition 3.8

to conclude that the weak second derivatives of u exist and that (3.30) holds.

The variational equation (3.29) uses variations v defined on Ω. In order to obtain results
on U , one uses the technique of localization by cut-off functions. For this purpose, we
choose open sets W,Y ⊂ Rn such that

U ⊂⊂ W ⊂⊂ Y ⊂⊂ Ω . (3.31)

Let ζ ∈ C∞0 (Ω) such that

0 ≤ ζ ≤ 1 , ζ|U = 1 , ζ|(Ω \W ) = 0 . (3.32)

Such a ζ is called a cut-off function. For every v ∈ H1
0 (Ω) we have∫

Ω

〈∇u(x), A(x)∇v(x)〉 dx =

∫
Ω

[f(x)− 〈b(x),∇u(x)〉 − c(x)u(x)]v(x) dx . (3.33)
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Let h 6= 0, |h| sufficiently small, let k ∈ {1, . . . , n}. As a test function in (3.33) we choose

v = −D−hk (ζ2Dh
ku) . (3.34)

This function replaces −∆u as a test function. The difference quotient is defined as before,

(Dh
ku)(x) =

1

h
(u(x+ hek)− u(x)) (3.35)

First, we estimate the left side of (3.33) from below. We have∫
Ω

〈∇u(x), A(x)∇v(x)〉 dx = −
n∑

i,j=1

∫
Ω

aij(x)∂iu(x)∂j
[
D−hk (ζ2Dh

ku)(x)
]
dx

=
n∑

i,j=1

∫
Ω

(
Dh
k(aij∂iu)

)
(x) · (∂j(ζ2Dh

ku))(x) dx

= A1 + A2 ,

(3.36)

where we set

A1 =
n∑

i,j=1

∫
Ω

aij(x+ hek)(D
h
k(∂iu))(x) · ζ2(x)(Dh

k(∂ju))(x) dx , (3.37)

and

A2 =
n∑

i,j=1

∫
Ω

aij(x+ hek)(D
h
k(∂iu))(x) · (Dh

ku)(x) · 2ζ(x)∂jζ(x) dx

+
n∑

i,j=1

∫
Ω

∂iu ·Dh
kaij · [ζ2Dh

k(∂ju) + 2ζ(∂jζ)(Dh
ku)] dx .

(3.38)

Since L is uniformly elliptic, we get (see 3.1)

A1 =

∫
Ω

〈
(ζ(x)Dh

k∇u)(x), A(x+ hek)ζ(x)(Dh
k∇u)(x)

〉
dx ≥ a∗

∫
Ω

|(Dh
k∇u)(x)|2ζ2(x) dx .

(3.39)
Next, we want to estimate A2 from above. As aij ∈ C1(Ω), we have aij ∈ C1(U) and

|Dh
kaij(x)| ≤ ‖∂kaij‖∞ . (3.40)

In the following computations will appear constants Ci; they depend on U , W , Y , Ω, aij,
bi, c, ζ, but not on f , u and h. For A2 we get, because ζ = 0 outside of W ,

|A2| ≤ C1

∫
W

ζ(x)
[
|Dh

k∇u(x)| |Dh
ku(x)|+ |Dh

k∇u(x)| |∇u(x)|+ |Dh
ku(x)| |∇u(x)|

]
dx .

(3.41)
Therefore, for every ε > 0 we get

|A2| ≤ εC1

∫
Ω

ζ2(x)|Dh
k∇u(x)|2 dx+

C1

ε

∫
W

|Dh
ku(x)|2 + |∇u(x)|2 dx

+ C1

∫
W

|Dh
ku(x)|2 + |∇u(x)|2 dx .
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Setting ε = a∗/(2C1), we obtain

|A2| ≤
a∗
2

∫
Ω

ζ2(x)|Dh
k∇u(x)|2 dx+ C2

∫
W

|Dh
ku(x)|2 + |∇u(x)|2 dx . (3.42)

By Lemma 3.7 we have ∫
W

|Dh
ku(x)|2 dx ≤

∫
Y

|∇u(x)|2 dx . (3.43)

Altogether, the left side of (3.33) can be estimated as∫
Ω

〈∇u(x), A(x)∇v(x)〉 dx ≥ a∗
2

∫
Ω

ζ2(x)|Dh
k∇u(x)|2 dx− C3

∫
Y

|∇u(x)|2 dx . (3.44)

Secondly, we consider the right side of (3.33) and denote it by B. Because v = 0 outside
of Y , we have

|B| ≤ C4

∫
Y

(|f |+ |∇u|+ |u|)|v| dx . (3.45)

Using once more Lemma 3.7, since ζ = 0 outside of W , it follows that∫
Y

|v|2 dx =

∫
W

|D−hk (ζ2Dh
ku)|2 dx ≤

∫
Ω

|∇(ζ2Dh
ku)|2 dx

=

∫
W

2ζ4|Dh
k∇u|2 + 8ζ2|∇ζ|2|Dh

ku|2 dx

≤
∫
W

2ζ2|Dh
k∇u|2 dx+ C5

∫
Y

|∇u|2 dx .

It follows that

|B| ≤ ε

∫
Ω

2ζ2|Dh
k∇u|2 dx+

C6

ε

∫
Y

f 2 + |∇u|2 + u2 dx+ C5

∫
Y

|∇u|2 dx . (3.46)

Setting ε = a∗/8, we get

|B| ≤ a∗
4

∫
Ω

ζ2|Dh
k∇u|2 dx+ C7

∫
Y

f 2 + |∇u|2 + u2 dx . (3.47)

All in all, we now have obtained from (3.33) the estimate

a∗
4

∫
U

|Dh
k∇u|2 dx ≤

a∗
4

∫
Ω

ζ2|Dh
k∇u|2 dx ≤ C8

∫
Y

f 2 + |∇u|2 + u2 dx . (3.48)

It now follows from Proposition 3.8, since C8 does not depend on h, that

∂k∇u ∈ L2(U) , ‖∂k∇u‖2
L2(U) ≤ C9

∫
Y

f 2 + |∇u|2 + u2 dx , (3.49)

and therefore u ∈ H2(U), as k was arbitrary. Finally, we want to estimate∫
Y

|∇u|2 dx
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from above. Choose ζ ∈ C∞0 (Ω) such that ζ|Y = 1. We test the variational equation with
v = ζ2u. This yields as above (but simpler)

a∗

∫
Ω

ζ2|∇u|2 dx ≤
∫

Ω

〈
∇u,Aζ2∇u

〉
dx =

∫
Ω

〈∇u,A∇v〉 dx−
∫

Ω

〈∇u, 2Auζ∇ζ〉 dx

≤ C10

∫
Ω

(|f |+ |∇u|+ |u|)|u|ζ dx

≤ a∗
2

∫
Ω

ζ2|∇u|2 dx+ C11

∫
Ω

f 2 + u2 dx .

Consequently, ∫
Y

|∇u|2 dx ≤ C12

∫
Ω

f 2 + u2 dx . (3.50)

Combining (3.49) and (3.50) we obtain

|u|2H2(U) ≤ C13(‖f‖2
L2(Ω) + ‖u‖2

L2(Ω))

and then, again because of (3.50), the assertion. 2

Note that the boundary behaviour of the solution u does not matter for this result.

Proposition 3.9 shows that, in the given situation, the solution u gains two orders of
differentiability with respect to the right side f . (This is optimal, since one certainly
cannot expect more.)

This also applies when f ∈ Hk(Ω).

Proposition 3.10 In the situation of Proposition 3.9, assume in addition that for some
k ∈ N we have aij, bi, c ∈ Ck+1(Ω) and f ∈ Hk(Ω). Then u ∈ Hk+2(U) and

‖u‖Hk+2(U) ≤ C(‖f‖Hk(Ω) + ‖u‖L2(Ω)) , (3.51)

where C depends only on k, Ω, U and on the coefficients of L.

Proof: One uses induction with respect to k. Proposition 3.9 both yields the induction
basis k = 0 and the essential tool for the induction step. It is carried out in detail in the
book L. Evans (Partial Differential Equations), section 6.3. 2
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4 Boundary Conditions, Traces

Inhomogeneous Dirichlet boundary conditions. The only boundary condition we
have discussed so far is “u = 0 on ∂Ω”, the so-called homogeneous Dirichlet boundary
condition. Let us now consider the problem with an inhomogeneous Dirichlet boundary
condition,

−∆u = f , in Ω,

u = g , on ∂Ω.
(4.1)

In the homogeneous case we did not treat “u = 0 on ∂Ω” as a constraining equation, but
instead incorporated it into the underlying function space by requiring a solution u to
belong to H1

0 (Ω). This can be extended to (4.1) as follows. Assume that g ∈ H1(Ω) is
given. Instead of “u = g on ∂Ω” we impose the condition

u− g ∈ H1
0 (Ω) . (4.2)

As H1
0 (Ω) = C∞0 (Ω) by definition, this means that there exists a sequence ϕn ∈ C∞0 (Ω)

with ϕn → u − g in H1
0 (Ω). As before, the weak formulation of the differential equation

reads ∫
Ω

fϕ dx =

∫
Ω

(−∆u)ϕdx =

∫
Ω

〈∇u,∇ϕ〉 dx , for all ϕ ∈ C∞0 (Ω),

or, with a and F as before,

a(u, ϕ) = F (ϕ) , for all ϕ ∈ C∞0 (Ω). (4.3)

This is equivalent to
a(u, v) = F (v) , for all v ∈ H1

0 (Ω), (4.4)

because for every v ∈ H1
0 (Ω) we can find ϕn ∈ C∞0 (Ω) with ϕn → v in H1

0 (Ω), and we
may pass to the limit in (4.3).

The variational formulation (4.2), (4.4) can be rewritten in terms of w = u− g. We then
have the problem to find w,

w ∈ H1
0 (Ω) , a(w, v) = F (v)− a(g, v) , for all v ∈ H1

0 (Ω). (4.5)

By the results of the previous chapter, this problem has a unique solution w ∈ H1
0 (Ω).

These considerations apply to the more general problem

Lu = f , in Ω,

u = g , on ∂Ω.
(4.6)

Proposition 4.1 Let Ω ⊂ Rn be open and bounded, let f ∈ L2(Ω), g ∈ H1(Ω), assume
3.1. Then (4.6) has a unique weak solution u ∈ H1(Ω), and

‖u‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖H1(Ω)) (4.7)

for some constant C independent from f and g.
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Proof: From Proposition 3.4, applied to (4.5), we get that

‖w‖H1(Ω) ≤ C1(C2‖f‖L2(Ω) + C3‖g‖H1(Ω))

Since ‖u‖H1(Ω) ≤ ‖w‖H1(Ω) + ‖g‖H1(Ω), the assertion follows. 2

The procedure above gives rise to the question: How are functions g : ∂Ω→ R related to
functions g ∈ H1(Ω) ?

If v : Ω→ R is continuous, then its restrictions to Ω and ∂Ω are continuous. One would
like to define an operator γ which maps H1(Ω) to a suitable class of functions defined on
∂Ω, such that for continuous functions it coincides with their restrictions.

Traces on hyperplanes. One first considers a function v ∈ C∞0 (Rn) and its restriction
to the hyperplane Rn−1 × {0}. This defines a function

γv : Rn−1 → R , (γv)(x′) = v(x′, 0) , x′ = (x1, . . . , xn−1) ∈ Rn−1 , (4.8)

and an operator
γ : C∞0 (Rn)→ C∞0 (Rn−1) . (4.9)

The function γv is called the trace of v on the hyperplane Rn−1 × {0}, and the operator
γ is called a trace operator.

Let X be a Banach space of functions over Rn such that C∞0 (Ω) is dense in X. One wants
to find a Banach space Y of functions over Rn−1 such that γ can be extended to a linear
and continuous operator from X to Y . It turns out that for X = H1(Rn) one can choose
Y = L2(Rn−1). However, γ(H1(Rn)) turns out to be a proper subset of L2(Rn−1); in order
to describe the class of functions which are traces of functions in H1, one has to introduce
Sobolev spaces of fractional order.

One way to define those spaces makes use of the Fourier transform. For v ∈ C∞0 (Ω) the
Fourier transform is defined by

(Fv)(ξ) = v̂(ξ) = (2π)−
n
2

∫
Rn

v(x)e−i〈x,ξ〉 dx , ξ ∈ Rn . (4.10)

It has the properties

∂̂jv(ξ) = iξj v̂(ξ) ,

x̂jv(ξ) = i∂j v̂(ξ) .
(4.11)

Since ∫
Rn

u(x)v(x) dx =

∫
Rn

û(ξ)v̂(ξ) dξ , u, v ∈ C∞0 (Ω) , (4.12)

it can be extended to an isometry F : L2(Rn)→ L2(Rn).

Lemma 4.2 For every k ∈ N there exists Ck > 0 such that

1

Ck
(1 + |ξ|2)k ≤

∑
|α|≤k

ξ2α ≤ Ck(1 + |ξ|2)k , for all ξ ∈ Rn. (4.13)

Proof: Exercise. 2
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Proposition 4.3
Let k ∈ N. Then

〈u, v〉k,F =

∫
Rn

(1 + |ξ|2)kû(ξ)v̂(ξ) dξ (4.14)

defines a scalar product on C∞0 (Rn). The associated norm

‖v‖2
k,F =

∫
Rn

(1 + |ξ|2)k|v̂(ξ)|2 dξ (4.15)

on C∞0 (Rn) is equivalent to the Sobolev norm ‖ · ‖Hk(Rn), that is, there exists Ck > 0 such
that

1

Ck

∫
Rn

(1 + |ξ|2)k|v̂(ξ)|2 dξ ≤ ‖v‖2
Hk(Rn) ≤ Ck

∫
Rn

(1 + |ξ|2)k|v̂(ξ)|2 dξ (4.16)

for all v ∈ C∞0 (Ω).

Proof: Let v ∈ C∞0 (Rn). Since∫
Rn

|v(x)|2 dx =

∫
Rn

|v̂(ξ)|2 dξ , (4.17)

we get

‖v‖2
Hk(Rn) =

∑
|α|≤k

∫
Rn

|∂αv(x)|2 dx =
∑
|α|≤k

∫
Rn

|∂̂αv(ξ)|2 dξ

=
∑
|α|≤k

∫
Rn

|ξαv̂(ξ)|2 dξ =

∫
Rn

|v̂(ξ)|2
∑
|α|≤k

ξ2α dξ .

From Lemma 4.2 we now obtain (4.16). 2

Proposition 4.4 (Sobolev space with fractional norm)
Let s ≥ 0. Then

〈u, v〉s,F =

∫
Rn

(1 + |ξ|2)sû(ξ)v̂(ξ) dξ , (4.18)

‖v‖s,F =
√
〈v, v〉s,F , (4.19)

defines a scalar product on the space

Hs(Rn) = {v : v ∈ L2(Rn), ‖v‖s,F <∞} , (4.20)

and Hs(Rn) is a Hilbert space.

The spaces Hs(Rn) are called Bessel potential spaces.

Proof: We consider X = L2(Rn;µ) with the measure

µ = fλ , f(ξ) = (1 + |ξ|2)s ,
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that is, ∫
Rn

w dµ =

∫
Rn

(1 + |ξ|2)sw(ξ) dξ .

X is a Hilbert space, and Hs(Rn) = {v : v ∈ L2(Rn) , v̂ ∈ L2(Rn;µ)}. Since the Fourier
transform is linear, Hs(Rn) is a vector space, and

〈u, v〉s,F = 〈û, v̂〉X , ‖v‖s,F = ‖v̂‖X ,

defines a scalar product and its associated norm on Hs(Rn). For v ∈ Hs(Rn) we have
‖v‖L2 = ‖v̂‖L2 ≤ ‖v̂‖X = ‖v‖s,F . Let {vm} be a Cauchy sequence in Hs(Rn). Then

{v̂m} is a Cauchy sequence in X, and {vm} is a Cauchy sequence in L2(Rn). Therefore,
there exist w ∈ X and v ∈ L2(Rn) such that v̂m → w in X and vm → v in L2(Rn), thus
moreover v̂m → w in L2(Rn) and v̂m → v̂ in L2(Rn). It follows that w = v̂ and therefore
v ∈ Hs(Rn). 2

Lemma 4.5 Let k ∈ N. Then C∞0 (Rn) is dense in Hk(Rn) with respect to ‖ · ‖Hk(Rn),
that is, we have Hk(Rn) = Hk

0 (Rn).

Proof: Since C∞(Rn) ∩ Hk(Rn) is dense in Hk(Rn) by Proposition 2.13, it suffices to
find for every v ∈ C∞(Rn) ∩ Hk(Rn) a sequence (vm)m∈N in C∞0 (Rn) such that vm → v
in Hk(Rn). To this purpose, choose ψ ∈ C∞0 (Rn) such that ψ(x) = 1 for |x| ≤ 1 and
ψ(x) = 0 for |x| ≥ 2. We set

vm(x) = ψ
( x
m

)
v(x) . (4.21)

Then for all multi-indices α with |α| ≤ k we have

|∂α(v − vm)(x)| =
∣∣∣∂α ((1− ψ(

x

m
))v(x)

)∣∣∣ {
≤ C

∑
|β|≤|α| |∂βv(x)| , |x| > m ,

= 0 , |x| ≤ m,

where C does not depend on m. It follows that∫
Rn

|∂α(v − vm)(x)|2 dx ≤ C
∑
|β|≤|α|

∫
|x|>m

|∂βv(x)|2 dx→ 0

for m→∞, since ∂βv ∈ L2(Rn) for all |β| ≤ k. 2

Lemma 4.6 For s ≥ 0 the space C∞0 (Rn) is dense in Hs(Rn) with respect to ‖ · ‖s,F .

Proof: This is proved, for example, in the book of Wloka: Partial Differential Equations
(in German and in English), on p.96 of the German edition. 2

With the aid of Lemma 4.5 and Lemma 4.6 one can prove that, for integer k, the two
definitions of Hk(Rn) (based on weak derivatives, or on the Fourier transform) yield the
same space and that the corresponding norms are equivalent on Hk(Rn) (and not only
on the subspace C∞0 (Rn), as was obtained in Proposition 4.3). The proof is analogous to
that of Proposition 4.4.
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Lemma 4.7 For 0 ≤ s ≤ t we have

H t(Rn) ⊂ Hs(Rn) . (4.22)

The embedding j : H t(Rn)→ Hs(Rn) is continuous.

Proof: From (1 + |ξ|2)s ≤ (1 + |ξ|2)t we obtain ‖v‖s,F ≤ ‖v‖t,F . 2

These results now enable us to define the trace operator γ on Hs(Rn) such that

γv : Rn−1 → R , (γv)(x′) = v(x′, 0) , x′ = (x1, . . . , xn−1) ∈ Rn−1 , (4.23)

for smooth functions v.

Proposition 4.8 (Trace theorem)
Let s ∈ R, s > 1

2
. There exists a unique linear and continuous mapping

γ : Hs(Rn)→ Hs− 1
2 (Rn−1) (4.24)

such that (4.23) holds for all v ∈ C∞0 (Rn).

Proof: It suffices to prove that there exists C > 0 such that

‖γϕ‖
Hs− 1

2 (Rn−1)
≤ C‖ϕ‖Hs(Rn) , for all ϕ ∈ C∞0 (Rn), (4.25)

because then γ is linear and continuous on the dense subset C∞0 (Rn) of Hs(Rn), and
therefore can be extended uniquely to a linear continuous mapping on Hs(Rn), by a
theorem of functional analysis.

Let ϕ ∈ C∞0 (Rn). We define

g(x′) = ϕ(x′, 0) , x′ ∈ Rn−1 . (4.26)

We fix x′ ∈ Rn−1 and define

ψ(xn) = ϕ(x′, xn) , xn ∈ R . (4.27)

Applying the Fourier transform in R, we get

ψ̂(ξn) =
1√
2π

∫
R
ϕ(x′, xn)e−ixnξn dxn , (4.28)

thus

g(x′) = ϕ(x′, 0) = ψ(0) =
1√
2π

∫
R
ψ̂(ξn)ei0ξn dξn

=
1√
2π

∫
R

1√
2π

∫
R
ϕ(x′, xn)e−ixnξn dxn dξn .

33



Applying the Fourier transform in Rn−1 yields

ĝ(ξ′) = (2π)−
n−1

2

∫
Rn−1

g(x′)e−i〈x
′,ξ′〉 dx′

=
1√
2π

∫
R
(2π)−

n
2

∫
R

∫
Rn−1

ϕ(x′, xn)e−ixnξne−i〈x
′,ξ′〉 dx′ dxn dξn

=
1√
2π

∫
R
ϕ̂(ξ′, ξn) dξn ,

in the last line the Fourier transform has been applied in Rn. We continue with

‖g‖2
s− 1

2
,F =

∫
Rn−1

(1 + |ξ′|2)s−
1
2 |ĝ(ξ′)|2 dξ′ = 1

2π

∫
Rn−1

(1 + |ξ′|2)s−
1
2

∣∣∣∣∫
R
ϕ̂(ξ′, ξn) dξn

∣∣∣∣2 dξ′
=

1

2π

∫
Rn−1

(1 + |ξ′|2)s−
1
2

∣∣∣∣∫
R
ϕ̂(ξ′, ξn)(1 + |ξ|2)

s
2 (1 + |ξ|2)−

s
2 dξn

∣∣∣∣2 dξ′
≤ 1

2π

∫
Rn−1

(1 + |ξ′|2)s−
1
2

∫
R
|ϕ̂(ξ′, ξn)|2(1 + |ξ|2)s dξn ·

∫
R
(1 + |ξ|2)−s dξn dξ

′ .

Now we obtain, for s > 1
2

as assumed,∫
R
(1 + |ξ|2)−s dξn =

∫
R
(1 + |ξ′|2 + ξ2

n)−s dξn

= (1 + |ξ′|2)−s+
1
2

∫
R
(1 + y2)−s dy︸ ︷︷ ︸

=:c(s)

(
substitution ξn = (1 + |ξ′|2)

1
2y
)
.

It now follows (since c(s) <∞ because of s > 1
2
) that

‖g‖2
s− 1

2
,F ≤

c(s)

2π

∫
Rn−1

∫
R
|ϕ̂(ξ′, ξn)|2(1 + |ξ|2)s dξn dξ

′ =
c(s)

2π
‖ϕ‖2

s,F .

2

Proposition 4.8 means that when one restricts a function, one loses one half (generalized)
order of differentiation for each dimension. Restricting a function in Hk(Rn) to Rn−2, one
thus obtains a function in Hk−1(Rn−2).

Corollary 4.9 For k ∈ N, k ≥ 1, the trace operator γ : Hk(Rn) → Hk−1(Rn−1) is
well-defined, linear and continuous.

Proof: This is a direct consequence of 4.8 and Lemma 4.7, the latter applied with s = k−1
and t = k − 1

2
. 2

If one is satisfied with the corollary (whose direct proof is simpler than that of the propo-
sition above), one can avoid fractional spaces. However, because of the following result
Proposition 4.8 precisely describes the range of the trace operator, that is, for which
functions g on Rn−1 one can find a Sobolev function whose trace coincides with g.

Proposition 4.10 The trace operator γ considered in Proposition 4.8 is surjective.
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Proof: Given g ∈ C∞0 (Rn−1) one can define a function v by an explicit formula and prove
that γv = g with similar computations than those in the proof of Proposition 4.8. For
details we refer again to the book of Wloka. 2

Sobolev spaces over the boundary of a region. Unlike spaces of continuous functions
(which can be defined directly on arbitrary subsets of Rn), spaces of integrable functions
on lower-dimensional sets require some consideration; the integrals over the boundary
in which one is interested are surface integrals. In order that they are meaningful, the
boundary has to have a certain regularity. Besides addressing that aspect, the following
definition does not allow Ω to lie on both sides of its boundary.

Definition 4.11 Let Ω ⊂ Rn be open and bounded.
(i) Let x ∈ ∂Ω. A local representation of Ω near x consists of an open set U ⊂ Rn

with x ∈ U and of a mapping α : B → U , where B = {y : |y| < 1} is the unit ball in Rn,
such that α(0) = x, α is bijective, and

α(y) = α(y1, . . . , yn) ∈


∂Ω , if yn = 0,

Ω , if yn > 0,

Rn \ (Ω ∪ ∂Ω) , if yn < 0.

(4.29)

(ii) Let k ∈ N. A local representation (α, U) of Ω near x has regularity Ck (or Lips-
chitz, respectively), if α and α−1 are Ck-functions (or Lipschitz functions, respectively).
(iii) The open set Ω has regularity Ck (or Lipschitz, respectively), if there exist finitely
many points xj ∈ ∂Ω, j ∈ J , and local representations (αj, Uj) near xj of corresponding
regularity such that

∂Ω ⊂
⋃
j∈J

Uj . (4.30)

The family (αj, Uj)j∈J is called a Ck resp. Lipschitz representation of Ω.

(4.30) means that (Uj)j∈J forms an open covering of ∂Ω.

A side remark: One can extend this definition to open sets which are unbounded; in (iii),
one allows for infinitely many points xj and requires that every x ∈ ∂Ω lies in a ball which
intersects only finitely many of the Uj. A covering (Uj)j∈J of ∂Ω having this property is
called locally finite.

In order to define Sobolev spaces (in particular, Lp spaces) over ∂Ω, one uses a two-step
procedure: localization and “flattening out”. In the first step, we choose a finite open
covering (Uj)j∈J of ∂Ω and a C∞-partition of unity (βj)j∈J for that covering, that is,

βj ∈ C∞0 (Uj) , 0 ≤ βj ≤ 1 ,
∑
j∈J

βj(x) = 1 for all x ∈ ∂Ω.

For functions v : ∂Ω→ R we then have

supp (βjv) ⊂⊂ Uj , v =
∑
j∈J

βjv .

For the second step, let (αj, Uj)j∈J be a representation of Ω according to Definition 4.11,
and (βj)j∈J be a partition of unity as above. We consider the functions

(βjv) ◦ αj : B ∩ (Rn−1 × {0}) .
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They have compact support, because each βjv has compact support and each α−1
j is

continuous. Next, we identify B ∩ (Rn−1 × {0}) with the unit ball B̂ in Rn−1. In this
manner, we obtain functions

(βjv) ◦ αj : B̂ → R .

Extending by 0 outside of B̂ as usual, we end up with functions

(βjv) ◦ αj : Rn−1 → R . (4.31)

The idea now is to use function spaces for these functions in order to construct function
spaces for functions v : ∂Ω→ R. One wants to define

Hs(∂Ω) = {v : v : ∂Ω→ R , (βjv) ◦ αj ∈ Hs(Rn−1) for all j ∈ J} (4.32)

and equip it with the scalar product

〈u, v〉Hs(∂Ω) =
∑
j∈J

〈ũj, ṽj〉Hs(Rn−1) . (4.33)

where ũj = (βju) ◦ αj and ṽj = (βjv) ◦ αj. For s = 0 this becomes

〈u, v〉L2(∂Ω) =
∑
j∈J

∫
Rn−1

ũj(x)ṽj(x) dx . (4.34)

This construction depends on the choice of the representation (αj, Uj) and of the partition
of unity (βj). The question is whether the resulting spaces are independent from these
choices. It turns out that they are, provided Ω has high enough regularity.

Proposition 4.12 Let Ω ⊂ Rn be open and bounded. Assume that Ω has regularity Ck,
let 0 ≤ s ≤ k. Then (4.32) defines a Hilbert space Hs(∂Ω) when equipped with the scalar
product (4.33). Different choices of (αj, Uj) and of (βj) yield the same space, and the
norms generated by the corresponding scalar products are equivalent.

Proof: We will not present the proof of this result and refer to the book of Wloka. 2

The procedure which defines Hs(∂Ω) via Hs(Rn−1) can be also be used to obtain a trace
theorem onHs(∂Ω) from the trace theorem onHs(Rn), Theorem 4.8. We restrict ourselves
to the case where s is integer.

Proposition 4.13 Let Ω ⊂ Rn be open and bounded with regularity Ck, k ∈ N, k ≥ 1.
Then the trace operator γ : Hk(Ω)→ Hk− 1

2 (∂Ω) is well-defined, linear and continuous.

As in the case of a hyperplane, the trace operator ist first defined for smooth functions
and then extended to the Sobolev space by continuity. For the first step we need the
following result.

Proposition 4.14 Let Ω ⊂ Rn be open and bounded with regularity Ck, k ∈ N, k ≥ 1.
Then

C∞0 (Rn)|Ω = {v|Ω : v ∈ C∞0 (Rn)}
is a dense subspace of Hk(Ω).
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Proof: Again we will not prove this result. 2

We also need the following result. Here, B denotes the unit ball in Rn as before, and
B+ = {(y′, yn) ∈ B : yn > 0}.

Proposition 4.15 Let v ∈ Ck(B+) with supp (v) ⊂⊂ B. Then there exists an extension
w ∈ Ck

0 (B) of v and a c > 0 such that

‖w‖Hk(B) ≤ c‖v‖Hk(B+) . (4.35)

The constant c can be chosen independent from v.

Proof: We present the case k = 1. We set w = v on B+ and have to define w on
B− = {(y′, yn) ∈ B : yn < 0}. We define for yn < 0

w(y′, yn) = a1v(y′,−yn) + a2v(y′,−yn
2

) (4.36)

and determine a1, a2 ∈ Rn such that (”0–” denotes the limit from below)

w(y′, 0−) = v(y′, 0) , ∂nw(y′, 0−) = ∂nv(y′, 0) . (4.37)

The equations in (4.37) are equivalent to

a1 + a2 = 1 , −a1 −
a2

2
= 1 .

Therefore, setting a1 = −3 and a2 = 4 we obtain an extension w ∈ Ck
0 (B) ⊂ Hk(B) of v,

and the integrals of w and its derivatives over B− can be estimated against integrals of v
over B+ using (4.36).

For k > 1 one replaces (4.36) by a similar ansatz with k + 1 coefficients. 2

Proof of Proposition 4.13. Assume that v ∈ Hk(Ω) is a function which is a restriction
of an element of C∞0 (Rn). Let (αj, Uj) be a Ck representation of Ω with a corresponding
partition of unity (βj), let B+ = {(y′, yn) ∈ B : yn > 0}. Set vj = (βjv) ◦ αj. Then
supp (vj) ⊂⊂ B and vj ∈ Ck(B+). According to Proposition 4.15 we choose an extension
ṽj ∈ Ck

0 (B) of vj with
‖ṽj‖Hk(B) ≤ c‖vj‖Hk(B+) , (4.38)

where c only depends on k. Extending by zero we get ṽj ∈ Ck
0 (Rn) ⊂ Hk(Rn). We

consider its trace

γ̃ṽj : Rn−1 → R
(γ̃ṽj)(y

′) = ṽj(y
′, 0) = vj(x

′, 0) = ((βjv) ◦ αj)(y′, 0) , for all (y′, 0) ∈ B.

By Proposition 4.8 we have

‖γ̃ṽj‖Hk−1/2(Rn−1) ≤ C1‖ṽj‖Hk(Rn) (4.39)

for some constant C1 independent from v. Moreover,

‖ṽj‖Hk(Rn) ≤ c‖ṽj‖Hk(Rn
+) (4.40)
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according to Proposition 4.15. Furthermore,

‖ṽj‖Hk(Rn
+) = ‖ṽj‖Hk(B+) = ‖(βjv)◦αj‖Hk(B+) ≤ C2‖(βjv)‖Hk(Uj∩Ω) ≤ C3‖v‖Hk(Ω) . (4.41)

In view of all these estimates, we finally obtain, setting s = k − 1/2,

‖γv‖2
Hs(∂Ω) =

∑
j∈J

‖(βjv) ◦ αj‖2
Hs(Rn−1) =

∑
j∈J

‖γ̃j ṽj‖2
Hs(Rn−1) ≤ C‖v‖2

Hk(Ω)

for some constant C independent from v. Because the restrictions of functions from
C∞0 (Rn) are dense in Hk(Ω) by Proposition 4.14, the trace operator γ can be uniquely
extended to a linear continuous γ : Hk(Ω)→ Hk−1/2(∂Ω). 2

A proposition analogous to 4.13 can be obtained for the case where the domain Ω has
only Lipschitz regularity (as, for example, when Ω is a polyhedron). One also obtains the
inclusions H t(∂Ω) ⊂ Hs(∂Ω) for s ≤ t, by applying Lemma 4.7 to the representations.
As a consequence:

Corollary 4.16 Let Ω ⊂ Rn be open and have C1 regularity. Then the trace operator
γ : H1(Ω)→ L2(∂Ω) is well-defined, linear and continuous. 2

Proposition 4.17 Let Ω ⊂ Rn be open and bounded with regularity Ck, k ∈ N, k ≥ 1.
Then the trace operator γ : Hk(Ω)→ Hk− 1

2 (∂Ω) has a linear and continuous right inverse,

that is, there exists a linear and continuous E : Hk− 1
2 (∂Ω) → Hk(Ω) such that γEv = v

for all v ∈ Hk− 1
2 (∂Ω). In particular, γ is surjective.

Proof: See the book of Wloka, Chapter 8. 2

We come back to the inhomogeneous Dirichlet problem

Lu = f , in Ω,

u = g , on ∂Ω.
(4.42)

and improve Proposition 4.1 as follows.

Proposition 4.18 Let Ω ⊂ Rn be open and bounded with regularity C1, let f ∈ L2(Ω),
g ∈ H1/2(∂Ω), assume 3.1. Then (4.42) has a unique weak solution u ∈ H1(Ω), and

‖u‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)) (4.43)

for some constant C independent from f and g.

Proof: We apply Proposition 4.17 with k = 1 and set g̃ = Eg. Due to Proposition 4.1,
there is a unique solution u ∈ H1(Ω) with u− g̃ ∈ H1

0 (Ω), so γu = γg̃ = g and

‖u‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g̃‖H1(Ω)) ≤ C(‖f‖L2(Ω) + ‖E‖‖g‖H1/2(∂Ω)) .

2
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Neumann boundary conditions. We consider the problem

−∆u = f , in Ω, (4.44)

∂νu = g , on ∂Ω. (4.45)

The boundary condition (4.45) is called Neumann boundary condition or simply
Neumann condition.

Testing with ϕ ∈ C∞(Ω) we get∫
Ω

f(x)ϕ(x) dx =

∫
Ω

−∆u(x)ϕ(x) dx =

∫
Ω

〈∇u(x),∇ϕ(x)〉 dx−
∫
∂Ω

∂νu(ξ)ϕ(ξ) dS(ξ)

=

∫
Ω

〈∇u(x),∇ϕ(x)〉 dx−
∫
∂Ω

g(ξ)ϕ(ξ) dS(ξ) . (4.46)

The right side involves a surface integral over the boundary. We recall from vector analysis
that the surface integral is defined via a C1 representation (αj, Uj) of Ω and a correspond-
ing partition of unity (βj); for suitable functions v : ∂Ω→ R one defines∫

∂Ω

v(ξ) dS(ξ) =
∑
j∈J

∫
∂Ω

(βjv)(ξ) dS(ξ) , (4.47)

and ∫
∂Ω

(βjv)(ξ) dS(ξ) =

∫
Rn−1

(βjv)(αj(y
′))
√
Gj(y′) dy

′ , (4.48)

where Gj is the Gram determinant of the Jacobian of αj,

Gj(y
′) = det(Dαj(y

′)TDαj(y
′)) , y′ ∈ Rn−1 . (4.49)

We consider the function space L1(∂Ω) of all functions v : ∂Ω→ R such that ṽj = (βjv)◦αj
belongs to L1(Rn−1) for all j ∈ J . This is a Banach space with the norm

‖v‖L1(∂Ω) =
∑
j∈J

‖ṽj‖L1(Rn−1) . (4.50)

As in the case of Hs(∂Ω) one can prove that different representations lead to the same
space with different but equivalent norms.

Lemma 4.19 Let Ω ⊂ Rn be open and bounded, having C1 regularity. Let g ∈ L2(∂Ω).
Then

F (v) =

∫
∂Ω

v(ξ)g(ξ) dS(ξ) (4.51)

defines a linear and continuous functional F : L2(∂Ω)→ R.

Proof: Using a representation of Ω one checks that

|F (v)| ≤
∫
∂Ω

|v(ξ)g(ξ)| dS(ξ) ≤
(∫

∂Ω

|g(ξ)|2 dS(ξ)
)1/2(∫

∂Ω

|v(ξ)|2 dS(ξ)
)1/2

= ‖g‖L2(∂Ω)‖v‖L2(∂Ω) .
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2

We consider the Neumann problem for the operator −∆ + µI,

−∆u+ µu = f , in Ω, (4.52)

∂νu = g , on ∂Ω. (4.53)

According to the computation (4.46), its variational formulation reads as follows. We
want to find u ∈ H1(Ω) such that

a(u, v) = F (v) , for all v ∈ H1(Ω), (4.54)

where

a(u, v) =

∫
Ω

〈∇u,∇v〉+ µuv dx , F (v) =

∫
Ω

fv dx+

∫
∂Ω

g · (γv) dS(ξ) . (4.55)

The rightmost integral involves the trace of v on ∂Ω.

Proposition 4.20 Let Ω ⊂ Rn open and bounded, having C1 regularity, let f ∈ L2(Ω),
g ∈ L2(∂Ω) and µ > 0. Then the boundary value problem (4.52), (4.53) has a unique
weak solution u ∈ H1(Ω), and

‖u‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖L2(∂Ω)) , (4.56)

where the constant C is independent from f and g.

Proof: Because
a(v, v) ≥ min{1, µ}‖v‖2

H1(Ω) ,

the bilinear form a is H1(Ω)-elliptic, and a is continuous by Lemma 3.3. Using the trace
theorem and Lemma 4.19, we obtain

|F (v)| ≤ ‖f‖L2(Ω) ‖v‖L2(Ω) + ‖g‖L2(∂Ω) ‖γv‖L2(∂Ω) ≤ (‖f‖L2(Ω) + ‖g‖L2(∂Ω) ‖γ‖)‖v‖H1(Ω) .

Thus, F is linear and continuous. The assertion now follows from Lax-Milgram. 2

In the homogeneous case g = 0, the boundary condition “∂νu = 0 on ∂Ω” is also called
a natural boundary condition. It arises “naturally” when we minimize on H1(Ω) the
quadratic functional

J(v) =
1

2
a(v, v)−

∫
Ω

fv dx , (4.57)

where a(v, v) =
∫

Ω
|∇v|2 dx. In contrast to that, the Dirichlet boundary condition “u = 0

on ∂Ω” is “enforced” through a suitable choice of a subspace (namely, H1
0 (Ω)) of H1(Ω).

Therefore, the Dirichlet condition is also termed a “forced boundary condition”.

We now pose the question: What is the natural boundary condition which arises if we
minimize (4.57) on H1(Ω) with the more general bilinear form

a(u, v) =

∫
Ω

n∑
i,j=1

aij(x)∂iu(x)∂jv(x) dx+

∫
Ω

c(x)u(x)v(x) dx . (4.58)
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Since we minimize, we assume A to be symmetric.

For the following computation we assume that all functions involved are sufficiently
smooth. We get∫

Ω

aij∂iu∂jv dx = −
∫

Ω

∂j(aij∂iu) · v dx+

∫
∂Ω

aij∂iu · vνjdS , (4.59)

thus

a(u, v) =

∫
Ω

(Lu)(x)v(x) dx+

∫
∂Ω

(Bu)(ξ)v(ξ) dS(ξ) , (4.60)

where
Lu = −div (AT∇u) + cu (4.61)

as in (3.3), and

(Bu)(ξ) =
n∑

i,j=1

aij(ξ)(∂iu)(ξ)νj(ξ) , ξ ∈ ∂Ω . (4.62)

We consider the variational formulation

a(u, v) = F (v) =

∫
Ω

fv dx+

∫
∂Ω

gv dS . (4.63)

It follows that ∫
Ω

(Lu)(x)v(x) dx =

∫
Ω

f(x)v(x) dx , for all v ∈ C∞0 (Ω), (4.64)

since for v ∈ C∞0 (Ω) the boundary integrals vanish. Therefore,

Lu = f , in Ω. (4.65)

Inserting (4.65) into (4.63), we now obtain∫
∂Ω

(Bu)(ξ)v(ξ) dS(ξ) =

∫
∂Ω

g(ξ)v(ξ) dS(ξ) , (4.66)

for all v ∈ H1(Ω). Since γ(H1(Ω)) = H1/2(∂Ω) is dense in L2(∂Ω), it follows that

Bu = g , on ∂Ω. (4.67)

The minimizer u ∈ H1(Ω) of (4.57) satisfies (4.63) with g = 0. Thus, the natural boundary
condition associated with the bilinear form a is

Bu = 0 (4.68)

with B from (4.62).

Compatibility conditions. The assumption µ > 0 in Proposition 4.20 is essential. Let
us return to the Neumann problem

−∆u = f , in Ω, (4.69)

∂νu = g , on ∂Ω (4.70)
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with the associated variational formulation∫
Ω

〈∇u(x),∇ϕ(x)〉 dx =

∫
Ω

f(x)ϕ(x) dx+

∫
∂Ω

g(ξ)ϕ(ξ) dS(ξ) , ϕ ∈ C∞0 (Ω) . (4.71)

Assume that u solves (4.69), (4.70). This solution is not unique, because all functions
u + c, c ∈ R being an arbitrary constant, are also solutions. On the other hand, setting
ϕ = 1 in (4.71) we obtain ∫

Ω

f(x) dx+

∫
∂Ω

g(y) dS(y) = 0 . (4.72)

This means that a solution can exist only if the data f and g satisfy an additional com-
pabitibility condition, namely (4.72).

This issue corresponds to the situation which arises when solving linear equations in finite
dimensions,

Ax = b , b ∈ Rn , A ∈ R(n,n) . (4.73)

There we have the dimension formula

dim(kerA) = n− dim(imA) = dim(cokerA) , (4.74)

and (4.73) is uniquely solvable if and only if dim(kerA) = 0.

This has been generalized to linear equations in infinite dimensional spaces since around
1900, by Fredholm for linear integral equations and later by Riesz and Schauder for linear
equations in Hilbert spaces. The main result is the so-called Fredholm alternative.
But this is not the subject of this course.
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5 Homogenization: Introduction

A good reference is the book of D. Cioranescu and P. Donato, An introduction to homog-
enization.

We consider
Lu = f , (5.1)

where

Lu = −
n∑

i,j=1

∂j(aij(x)∂iu) = −div (A(x)T∇u) . (5.2)

When describing real processes with partial differential equations, often the form of the
operator L is determined by the underlying model (for example, a conservation law),
while the coefficients aij represent properties of the medium where the process takes place
(heat conduction coefficients, elasticity modulus, electric conductivity etc.). In the case
of constant coefficients aij one speaks of a homogeneous medium, otherwise of an
inhomogeneous medium. Inhomogeneities may be of different types. For example, if
the medium represented by Ω consists of different materials M1, . . . ,MK which take up
the parts Ω1, . . . ,ΩK of Ω and are characterized by coefficients aij,k, k ∈ {1, . . . , K}, one
may set

aij(x) =
K∑
k=1

aij,k1Ωk
(x) , (5.3)

where 1Ωk
denotes the characteristic function of Ωk.

In this chapter we consider the situation where inhomogeneities appear on two “scales”.
For example, when one wants to describe biomechanical processes in the human bone, the
macroscale is in the centimeter range, whereas the porous structure (which determines
the mechanical strength of the bone) has typical lengths in the range of 10 – 100 µm.
This leads to material parameters

aεij(x) ,

where ε is small.

Often one is mainly interested in macroscopic properties. One then wants to take the
microstructure into account only to the extent it influences the macroscopic properties.
One hopes that this can be described by some averaging procedure. The question is: what
is the correct way to average ?

We consider a one-dimensional example. Let Y = (0, l) be a reference interval in R, let
a ∈ L∞(0, l). Setting

a(y + l) = a(y) , y ∈ R , (5.4)

we obtain a l-periodic function a ∈ L∞(R). We define now, for a given ε > 0,

aε(x) = a
(x
ε

)
, (5.5)

and consider in Ω = (d1, d2) the boundary value problem

−∂x(aε(x)∂xuε) = f , x ∈ Ω , (5.6)

uε(d1) = uε(d2) = 0 . (5.7)
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The coefficient aε varies with the period εl. We assume that there exist constants ca, Ca >
0 such that

ca ≤ a(y) ≤ Ca , for all y ∈ Y . (5.8)

We have
ca ≤ aε(x) ≤ Ca , for all x ∈ Ω. (5.9)

By the theorem of Lax-Milgram, the elliptic boundary value problem (5.6), (5.7) has a
unique weak solution uε ∈ H1

0 (Ω). Now there arises the question whether uε converges
to some u0 in some sense, and whether such a u0 can be obtained as the solution of a
suitable “averaged boundary value problem”.

We already know that

‖uε‖H1
0 (Ω) ≤

1

ca
‖f‖L2(Ω) , (5.10)

therefore (uε)ε>0 is bounded in H1
0 (Ω). Consequently, (uε)ε>0 and (∂xuε)ε>0 are bounded

in L2(Ω). Therefore, there exists weakly convergent subsequences

uεk ⇀ u0 in L2(Ω), ∂xuεk ⇀ w0 = ∂xu0 in L2(Ω). (5.11)

We now define
ξε(x) = aε(x)∂xuε(x) , x ∈ Ω . (5.12)

By (5.6),
−∂xξε = f , in Ω. (5.13)

The family (ξε), too, is bounded inH1
0 (Ω), due to (5.13) and because |ξε(x)| ≤ Ca|∂xuε(x)|,

so

‖ξε‖L2(Ω) ≤ Ca‖∂xuε‖L2(Ω) ≤
Ca
ca
‖f‖L2(Ω) . (5.14)

Therefore there exists ξ0 ∈ H1
0 (Ω) such that (after having passed to a suitable subse-

quence)
ξεk ⇀ ξ0 in L2(Ω), ∂xξεk = −f = ∂xξ0 in L2(Ω). (5.15)

Since Ω = (d1, d2) is one-dimensional, every bounded subset of H1
0 (Ω) satisfies the as-

sumptions of the theorem of Ascoli and Arzela. Therefore, for a subsequence

ξεk → ξ0 uniformly in C[d1, d2]. (5.16)

We now investigate the relation between u0 and ξ0. By (5.12) we have

∂xuε(x) =
1

aε(x)
ξε(x) , x ∈ Ω . (5.17)

It follows from (5.9) that
1

Ca
≤ 1

aε
≤ 1

ca
, (5.18)

so (1/aε) is bounded in L∞(Ω). As we will prove later, for yet another subsequence

1

aεk
∗
⇀ β , β =

1

l

∫ l

0

1

a(y)
dy . (5.19)
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It then follows (as we also will see later)

1

aεk
ξεk ⇀ βξ0 , in L2(Ω). (5.20)

Since ∂xuεk ⇀ ∂xu0 in L2(Ω) due to (5.11), from (5.17) and (5.20) we obtain

∂xu0(x) =
1

l

∫ l

0

1

a(y)
dy · ξ0(x) . (5.21)

We now define

a0 =

(
1

l

∫ l

0

1

a(y)
dy

)−1

. (5.22)

From (5.21) and (5.15) it follows that

−∂x(a0∂xu0) = f , x ∈ Ω , (5.23)

as well as
u(d1) = u(d2) = 0 . (5.24)

Since H1
0 (d1, d2) ⊂ C[d1, d2], the boundary conditions (5.24) hold in the classical sense

(no trace theorem is needed).

Thus, it has turned out that the “homogenization limit” u0 solves the boundary value
problem (5.23), (5.24), which has the constant coefficient a0 given by (5.22). Moreover,
the solution u0 of this boundary value problem is unique since a0 ≥ ca. Since u0 is unique,
we furthermore obtain that

uεk ⇀ u0 in H1
0 (Ω) (5.25)

for every sequence εk → 0, by the “convergence principle”: if every subsequence of a given
sequence has a convergent subsequence, and if those limits are identical, then the whole
sequence converges to this limit.

Since a0 is constant, one even obtains an explicit formula for u0, namely

u0(x) = − 1

a0

∫ x

0

∫ t

0

f(s) ds dt+
x

a0

∫ 1

0

∫ t

0

f(s) ds dt . (5.26)

We consider the example

(0, l) = (0, 1) , a(y) = 1 + y . (5.27)

We have ∫ 1

0

1

a(y)
dy = ln(1 + y)

∣∣∣1
0

= ln 2 , a0 =
1

ln 2
, (5.28)

but on the other hand ∫ 1

0

a(y) dy =
3

2
. (5.29)

Thus, the homogenization coefficient a0 is not the integral mean of a. The same is true
for the example

(0, l) = (0, 1) , a(y) =

{
1 , 0 < y < 2

3

2 , 2
3
< y .

(5.30)

45



Here we get ∫ 1

0

1

a(y)
dy =

2

3
· 1 +

1

3
· 1

2
=

5

6
, a0 =

6

5
, (5.31)

but ∫ 1

0

a(y) dy =
2

3
· 1 +

1

3
· 2 =

4

3
. (5.32)

Discontinuous coefficients. We return to the multidimensional situation. Before con-
sidering the homogenization problem, we want to take a look at the meaning of a weak
solution of an elliptic problem when the coefficients are discontinuous, as in (5.3). If the
right side f in (5.1) is smooth, one cannot expect that ∇u(x) is continuous in points
where A(x) is discontinuous. We consider the special case where Ω decomposes according
to

Ω = Ω1 ∪ Ω2 , Ω1 ∩ Ω2 = ∅ , (5.33)

where Ω1,Ω2 are open subsets of a bounded open Ω ⊂ Rn. We assume moreover that
∂Ω1, ∂Ω2 are sufficiently smooth. Let u ∈ H1

0 (Ω) be a weak solution of

−div (A(x)T∇u) = f in Ω (5.34)

with u = 0 on ∂Ω, assume moreover that u ∈ C(Ω) and u ∈ C2(Ωi) for i = 1, 2, and
that the derivatives ∇u in Ωi can be continuously extended to ∂Ωi. We denote these
extensions by ∇ui. We do not assume that ∇u1 and ∇u2 coincide on ∂Ω1 ∩ ∂Ω2. Let
moreover A : Ω→ R(n,n) be continuously differentiable on Ωi with continuous extensions
A1 and A2 to ∂Ωi. Then we have for all test functions ϕ ∈ C∞0 (Ω)∫

Ω

f(x)ϕ(x) dx =

∫
Ω

∇u(x)TA(x)∇ϕ(x) dx =
2∑
i=1

∫
Ωi

∇u(x)TA(x)∇ϕ(x) dx =

= −
2∑
i=1

∫
Ωi

div (A(x)T∇u(x))ϕ(x) dx+
2∑
i=1

∫
∂Ωi

∇ui(ξ)TAi(ξ)νi(ξ)ϕ(ξ) dS(ξ) .

Due to (5.34) and since ϕ = 0 on ∂Ω,

2∑
i=1

∫
∂Ω1∩∂Ω2

∇ui(ξ)TAi(ξ)νi(ξ)ϕ(ξ) dS(ξ) = 0 , for all ϕ ∈ C∞0 (Ω). (5.35)

Since the unit outer normals νi to ∂Ωi satisfy ν1 = −ν2 on ∂Ω1 ∩ ∂Ω2, setting ν = ν1 it
follows that∫

∂Ω1∩∂Ω2

∇u1(ξ)TA1(ξ)ν(ξ)ϕ(ξ) dS(ξ) =

∫
∂Ω1∩∂Ω2

∇u2(ξ)TA2(ξ)ν(ξ)ϕ(ξ) dS(ξ) , (5.36)

for all ϕ ∈ C∞0 (Ω). Thus〈
A1(x)T∇u1(x), ν(x)

〉
=
〈
A2(x)T∇u2(x), ν(x)

〉
, a.e. on ∂Ω1 ∩ ∂Ω2. (5.37)

This means that the normal component of the flux A(x)T∇u(x) is continuous across the
discontinuity surface ∂Ω1 ∩ ∂Ω2 of the coefficients.

We conclude: If in a given situation to be described (for example, a diffusion process) the
flux of some quantity u has this conservation property (namely, there is no flux production
on the surface), then the concept of a weak solution for u correctly reflects this property.
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6 Averages and weak convergence

We recall that by definition the sequence (vn)n∈N in Lp(Ω) weakly converges to a v ∈ Lp(Ω)
if

lim
n→∞

∫
Ω

vn(x)ϕ(x) dx =

∫
Ω

v(x)ϕ(x) dx , for all ϕ ∈ Lq(Ω), (6.1)

where
1

p
+

1

q
= 1 . (6.2)

The case p = ∞: a sequence (vn)n∈N in L∞(Ω) is said to be weakly star convergent to
v ∈ L∞(Ω) if (6.2) holds with q = 1.

A subset I of Rn having the form

I =
n∏
i=1

(ai, bi) , resp. I =
n∏
i=1

[ai, bi]

is called open resp. closed interval in Rn.

Proposition 6.1 Let Ω ⊂ Rn be open, let (vn)n∈N be a sequence in Lp(Ω), 1 < p ≤ ∞,
let v ∈ Lp(Ω). Then the following are equivalent:

(i) (vn)n∈N weakly converges to v (in the case p = ∞: (vn)n∈N weakly star converges to
v).

(ii) (vn)n∈N is bounded in Lp(Ω) (that is, the set {‖vn‖Lp(Ω) : n ∈ N} is bounded), and

lim
n→∞

∫
I

vn(x) dx =

∫
I

v(x) dx (6.3)

for all intervals I ⊂ Ω.

Proof: “(i)⇒(ii)”: Every weakly convergent (weakly star convergent, resp.) sequence is
bounded, by a theorem of functional analysis. Setting ϕ = χI in (6.1) we obtain (6.3).

“(ii)⇒(i)”: By (6.3), (6.1) holds for all ϕ = χI , I interval, and therefore also for all
functions of the form

ϕ =
m∑
k=1

αkχIk , αk ∈ R . (6.4)

Let now ϕ ∈ Lq(Ω) be arbitrary, let q be the dual exponent from (6.2), let δ > 0. Since
the subspace of functions of the form (6.4) is dense in Lq(Ω), there exists a simple function
ϕδ such that

‖ϕ− ϕδ‖q ≤ δ .

We have ∫
Ω

(vn − v)ϕdx =

∫
Ω

(vn − v)ϕδ dx+

∫
Ω

(vn − v)(ϕ− ϕδ) dx .

We choose n0 such that ∣∣∣∣∫
Ω

(vn − v)ϕδ dx

∣∣∣∣ ≤ δ
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for all n ≥ n0. Then it follows that∣∣∣∣∫
Ω

(vn − v)ϕdx

∣∣∣∣ ≤ δ + ‖vn − v‖p ‖ϕ− ϕδ‖q ≤ Cδ ,

for all n ≥ n0, where C is independent from n0 and δ. 2

For p = 1, (ii) does not imply (i).

Let Y be an interval in Rn of the form

Y =
n∏
i=1

(0, li) , li > 0 . (6.5)

Definition 6.2 A function f : Rn → R is called Y -periodic if

f(x+ liei) = f(x) (6.6)

holds for all x ∈ Rn, 1 ≤ i ≤ n, where ei denotes the i-th unit vector. 2

We immediately see that every Y -periodic function satisfies

f

(
x+

n∑
i=1

kiliei

)
= f(x) , x ∈ Rn , ki ∈ Z . (6.7)

Every f : Y → R can be extended to a Y -periodic function f : Rn → R which is uniquely
determined except for its values on the null set given by the translation of ∂Y according
to (6.7).

Lemma 6.3 Let f : Rn → R be Y -periodic, f |Y ∈ L1(Y ). Then∫
y0+Y

f(y) dy =

∫
Y

f(y) dy (6.8)

holds for all y0 ∈ Rn.

Proof: It suffices to consider the case y0 = cei, c ∈ R. We define

g(yi) =

∫
∏

j 6=i(0,lj)

f(y1, . . . , yn) dy1 · · · dyi−1 dyi+1 · · · dyn .

We then have∫
y0+Y

f(y) dy =

∫ c+li

c

g(yi) dyi =

(∫ li

c

+

∫ c+li

li

)
g(yi) dyi =

(∫ li

c

+

∫ c

0

)
g(yi) dyi

=

∫ li

0

g(yi) dyi =

∫
Y

f(y) dy .

2

For the function defined by

fε(x) = f
(x
ε

)
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it follows from the substitution formula and from Lemma 6.3, since fε is (εY )-periodic,∫
ε(y0+Y )

fε(x) dx =

∫
εY

fε(x) dx = εn
∫
Y

f(y) dy (6.9)

for all y0 ∈ Rn and all ε > 0.

We investigate the convergence behaviour of (fε) as ε→ 0. As an example we consider

Y = (0, 1) , f : Y → R , f(y) = sin(2πy) . (6.10)

For every interval I = [a, b] ⊂ R we obtain∫ b

a

fε(x) dx =

∫ b

a

sin
(

2π
x

ε

)
dx = − ε

2π
cos
(

2π
x

ε

) ∣∣∣b
a
→ 0

for ε→ 0, and from Proposition 6.1 it follows that fε ⇀ 0 in Lp(Ω) for 1 < p <∞ resp.

fε
∗
⇀ 0 in L∞(Ω) for every open Ω ⊂ R. On the other hand,

‖fε‖2
L2(Ω) =

b− a
2

+
ε

8π

[
− sin

(
4πb

ε

)
+ sin

(
4πa

ε

)]
→ b− a

2

for ε→ 0, thus fε does not converge strongly to 0.

Notation 6.4 (Mean value)
Let Ω ⊂ Rn be measurable, |Ω| := meas (Ω) <∞. We define the mean value of f ∈ L1(Ω)
by

MΩ(f) =
1

|Ω|

∫
Ω

f(y) dy . (6.11)

2

Proposition 6.5 (Weak convergence to the mean value)
Let Ω ⊂ Rn be open and bounded, let Y =

∏n
i=1(0, li), let p ∈ [1,∞], let f : Rn → R be a

Y -periodic function with f ∈ Lp(Y ). Then, in the case p <∞ we have

fε ⇀MY (f) in Lp(Ω), for ε→ 0, (6.12)

and in the case p =∞

fε
∗
⇀MY (f) in L∞(Ω), for ε→ 0. (6.13)

In each case, for every interval I ⊂ Rn there exists a constant c which is independent
from f such that

‖fε‖Lp(I) ≤ c‖f‖Lp(Y ) , (6.14)

for every ε > 0.

Proof: At first, assume that

I = (a, b) =
n∏
i=1

(ai, bi) (6.15)
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is an arbitrary open interval in Rn. Starting in the corner a with the interval a+ εY , we
fill in I with adjacent intervals of the form

Jε = x+ εY , xi = ai + jiεli , 0 ≤ ji ≤ kεi , (6.16)

where kεi ∈ N with
εlik

ε
i ≤ bi − ai ≤ εli(k

ε
i + 1) . (6.17)

Let Aε be the set of all such Jε with Jε ⊂ I, then

|Aε| =
n∏
i=1

kεi , lim
ε→0

εn|Aε| = lim
ε→0

n∏
i=1

εkεi =
n∏
i=1

bi − ai
li

=
|I|
|Y |

. (6.18)

Let Bε be the set of all remaining Jε. Then

|Bε| =
n∑
i=1

∏
j 6=i

kεj , lim
ε→0

εn|Bε| = lim
ε→0

ε
n∑
i=1

∏
j 6=i

εkεj = 0 . (6.19)

After these preliminary considerations we prove that the set (fε)ε>0 is bounded in Lp(Ω)
and that (6.14) holds. For p = ∞ we obviously have ‖fε‖∞ = ‖f‖∞. Let p ∈ [1,∞).
Using (6.9) we obtain that, for an arbitrary open interval I in Rn,

‖fε‖pLp(I) ≤
∑
Jε∈Aε

∫
Jε

|fε(x)|p dx+
∑
Jε∈Bε

∫
Jε

|fε(x)|p dx

= |Aε|εn
∫
Y

|f(y)|p dy + |Bε|εn︸ ︷︷ ︸
→0

∫
Y

|f(y)|p dy (6.20)

→ |I|
|Y |

∫
Y

|f(y)|p dy .

This implies the boundedness (choose I with Ω ⊂ I and moreover (6.14). We now prove
the asserted convergence for the case p > 1 by applying Proposition 6.1. For an arbitrary
interval I ⊂ Ω we have, analogous to (6.20),∫

I

fε(x) dx =
∑
Jε∈Aε

∫
Jε

fε(x) dx+
∑
Jε∈Bε

∫
Jε∩I

fε(x) dx

→ |I|
|Y |

∫
Y

f(y) dy = |I|MY (f) =

∫
I

MY (f) dx .

It remains to prove the convergence in the case p = 1. This is done by reduction to the
case p > 1. Let I be a fixed interval in Rn with Ω ⊂ I, let η > 0 be arbitrary. We choose
f η ∈ L2(Y ) with

‖f − f η‖L1(Y ) ≤ η , (6.21)

and extend f η Y -periodically to Rn. We have

(f − f η)ε(x) = (f − f η)
(x
ε

)
= (fε − f ηε )(x) . (6.22)
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Let ϕ ∈ L∞(Ω) be arbitrary. We have∫
Ω

(fε(x)−MY (f))ϕ(x) dx =

∫
Ω

(fε(x)− f ηε (x))ϕ(x) dx+

∫
Ω

(f ηε (x)−MY (f η))ϕ(x) dx

+

∫
Ω

(MY (f η)−MY (f))ϕ(x) dx . (6.23)

The first integral on the right side can be estimated, using (6.14) and (6.22), by∣∣∣∣∫
Ω

(fε(x)− f ηε (x))ϕ(x) dx

∣∣∣∣ ≤ ‖ϕ‖∞ ‖fε − f ηε ‖L1(I) ≤ c‖ϕ‖∞ ‖f − f
η‖L1(Y )

≤ c‖ϕ‖∞ η .
(6.24)

For the third integral we obtain∣∣∣∣∫
Ω

(MY (f η)−MY (f))ϕ(x) dx

∣∣∣∣ ≤ ‖ϕ‖∞ |Ω| 1

|Y |

∫
Y

|f η(y)− f(y)| dy ≤ ‖ϕ‖∞ |Ω|
1

|Y |
η .

(6.25)
We have ϕ ∈ L2(Ω) since Ω is bounded. We apply the convergence result which we already
proved for p = 2, and obtain

lim
ε→0

∫
Ω

(f ηε (x)−MY (f η))ϕ(x) dx = 0 . (6.26)

Combining (6.24) – (6.26) we get

lim
ε→0

∫
Ω

(fε(x)−MY (f))ϕ(x) dx = 0 . (6.27)

2

Definition 6.6 (Compact embedding)
Let (X, ‖ · ‖X), (Z, ‖ · ‖Z) be Banach spaces with X ⊂ Z. We say that X is compactly
embedded in Z if every bounded subset of X is relatively compact in Z. We write

X ⊂⊂ Z . (6.28)

2

This is equivalent to: the canonical embedding j : X → Z is a compact mapping (see
functional analysis).

Proposition 6.7 (Compact embedding in Sobolev space)
Let Ω ⊂ Rn be open and bounded. Then

W 1,p
0 (Ω) ⊂⊂ Lp(Ω) , for all p ∈ [1,∞]. (6.29)

If Ω has regularity C1, then

W 1,p(Ω) ⊂⊂ Lp(Ω) , for all p ∈ [1,∞]. (6.30)
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Proof: See for example the books of Evans, Gilbarg/Trudinger, Wloka. 2

Corollary 6.8 In the situation of Proposition 6.7 it holds: Every bounded sequence in
W 1,p

0 (Ω) resp. W 1,p(Ω) has a subsequence which converges in the norm of Lp. Every se-
quence which converges weakly (resp. weak star) in W 1,p

0 (Ω) resp. W 1,p(Ω) also converges
in the norm of Lp. 2

Proposition 6.9 (Poincaré inequality, mean values)
Let Ω ⊂ Rn be bounded, open and connected, let Ω have C1 regularity, let p ∈ [1,∞].
Then there exists a C > 0 such that

‖v −MΩ(v)‖Lp(Ω) ≤ C‖∇v‖Lp(Ω) , for all v ∈ W 1,p(Ω). (6.31)

Proof: We assume that (6.31) does not hold. Then there exists a sequence (vk)k∈N in
W 1,p(Ω) such that

‖vk −MΩ(vk)‖Lp(Ω) > k‖∇vk‖Lp(Ω) . (6.32)

Setting

wk =
vk −MΩ(vk)

‖vk −MΩ(vk)‖Lp(Ω)

, (6.33)

we see that

MΩ(wk) = 0 , ‖wk‖Lp(Ω) = 1 , (6.34)

‖∇wk‖Lp(Ω) =
‖∇vk‖Lp(Ω)

‖vk −MΩ(vk)‖Lp(Ω)

<
1

k
. (6.35)

Thus, the sequence (wk)k∈N is bounded in W 1,p(Ω). By Corollary 6.8 there exists a
subsequence (wkm)m∈N and a w ∈ W 1,p(Ω) such that

wkm → w in Lp(Ω). (6.36)

It follows that
MΩ(w) = 0 , ‖w‖Lp(Ω) = 1 . (6.37)

Let ϕ ∈ C∞0 (Ω), then because of (6.36) and (6.35) we have for all j∫
Ω

w(x)∂jϕ(x) dx = lim
m→∞

∫
Ω

wkm(x)∂jϕ(x) dx = − lim
m→∞

∫
Ω

∂jwkm(x)ϕ(x) dx = 0 ,

thus∇w = 0 in Ω. Since Ω is connected, the function w has to be constant, a contradiction
to (6.37). 2

52



7 Periodic boundary conditions

In the next chapter we will consider the problem for periodic homogenization in several
space dimensions (Ω ⊂ Rn, n > 1). It will turn out that, as in the one-dimensional case,
the homogenized coefficients are constant (that is, they do not depend on x ∈ Ω). It will
also turn out that in order to characterize them, one has to solve an elliptic boundary
problem on the reference interval Y =

∏n
i=1(0, li) with periodic boundary conditions.

We consider the boundary value problem

Lu = −
n∑

i,j=1

∂j(aij(y)∂iu) = f , in Y , (7.1)

u Y -periodic. (7.2)

If u is a solution, then u+ c also is a solution, for arbitary constants c.

Assumption 7.1 Let aij ∈ L∞(Y ) for all i, j, let L in (7.1) be uniformly elliptic with
ellipticity constant ca > 0, that is,

ξTA(y)ξ ≥ ca|ξ|2 , for all y ∈ Y and all ξ ∈ Rn. (7.3)

2

Definition 7.2 (Sobolev space of periodic functions)
Setting

C∞per(Y ) = {v|Y : v ∈ C∞(Rn), v is Y -periodic} , (7.4)

we define H1
per(Y ) to be the closure of C∞per(Y ), considered as a subspace of H1(Y ), with

respect to the H1 norm. 2

The interval Y has 2n faces of dimension n− 1, namely for each i the opposite faces

S0
i = {y : yi = 0 , yj ∈ [0, lj] for j 6= i} , S1

i = {y : yi = li , yj ∈ [0, lj] for j 6= i} . (7.5)

The periodicity condition

v(x+ liei) = v(x) , x ∈ S0
i , (7.6)

for v ∈ C∞per(Y ) extends to functions v ∈ H1
per(Y ) in the sense of traces,

(γv)(x+ liei) = (γv)(x) , for a.e. x ∈ S0
i . (7.7)

since the trace operator is continuous w.r.t. the H1 norm.

In the following proposition, by vp we denote the Y -periodic extension to Rn of a function
v : Y → R, in order to make understanding easier.

Due to (7.7), for a given v ∈ H1
per(Y ) the trace γvp is well-defined on the grid

G =
⋃
{x+ ∂Y : x =

n∑
i=1

jiliei, ji ∈ Z} , (7.8)

that is, almost everywhere on each face of dimension n− 1.
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Proposition 7.3 Let v ∈ H1
per(Y ). Then we have vp|Ω ∈ H1(Ω) for every bounded open

set Ω ⊂ Rn, and
∂ivp = (∂iv)p , 1 ≤ i ≤ n . (7.9)

Proof: Let ϕ ∈ C∞0 (Ω). We cover supp (ϕ) by an open interval I that consists of translated
intervals

Yk = yk + Y , yki = jili , ji ∈ Z , (7.10)

such that

supp (ϕ) ⊂ Ω ⊂ I , I =

(⋃
k

Yk

)
. (7.11)

We have

−
∫

Ω

vp(y)∂iϕ(y) dy = −
∑
k

∫
Yk

vp(y)∂iϕ(y) dy . (7.12)

Transformation to Y and partial integration yields∫
Yk

vp(y)∂iϕ(y) dy =

∫
Y

v(y)∂iϕ(y + yk) dy

= −
∫
Y

(∂iv)(y)ϕ(y + yk) dy +

∫
∂Y

(γv)(ξ)ϕ(ξ + yk)νi(ξ) dS(ξ) .

Therefore,

−
∫

Ω

vp(y)∂iϕ(y) dy =
∑
k

∫
Yk

(∂iv)p(y)ϕ(y) dy −
∑
k

∫
∂Yk

(γvp)(ξ)ϕ(ξ)νi(ξ) dS(ξ) . (7.13)

The second sum equals zero because on those faces of ∂Yk which also belong to ∂I we have
ϕ = 0, and because all other faces appear in exactly two boundary terms with opposite
sign. It follows that

−
∫

Ω

vp(y)∂iϕ(y) dy =

∫
Ω

(∂iv)p(x)ϕ(x) dx . (7.14)

Since ϕ was arbitrary, the assertion follows. 2

Lemma 7.4 Let v, w ∈ H1
per(Y ). Then∫
Y

v(y)∂iw(y) dy = −
∫
Y

w(y)∂iv(y) dy (7.15)

holds for all i. In particular (set w = 1)∫
Y

∇v(y) dy = 0 . (7.16)

Proof: Since v and w are periodic, the boundary terms on opposite faces cancel each
other out, so ∫

∂Y

[(γv)(γw)ν](ξ) dS(ξ) = 0 .
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2

Since the solutions of (7.1), (7.2) can be unique only up to a constant, one considers the
space

H̃(Y ) = H1
per(Y )/R . (7.17)

The elements of H̃(Y ) are equivalence classes [v] of functions v ∈ H1
per(Y ) satisfying

[u] = [v] ⇔ u− v is constant ⇔ ∇u = ∇v . (7.18)

The canonical norm in H̃(Y ) is the quotient norm

‖[v]‖H̃(Y ) = inf
w∈[v]
‖w‖H1(Y ) = inf

c∈R
‖v − c‖H1(Y ) . (7.19)

Proposition 7.5 The mapping [v] 7→ ‖∇v‖L2(Y ) defines a norm on H̃(Y ), so that H̃(Y )
becomes a Banach space. Moreover, there exists C > 0 such that

‖∇v‖L2(Y ) ≤ ‖[v]‖H̃(Y ) ≤ ‖v −MY (v)‖H1(Y ) ≤ C‖∇v‖L2(Y ) (7.20)

for all v ∈ H1(Y ).

Proof: We have

‖∇v‖L2(Y ) = inf
c∈R
‖∇(v − c)‖L2(Y ) ≤ ‖[v]‖H̃(Y ) ≤ ‖v −MY (v)‖H1(Y ) ≤ C‖∇v‖L2(Y ) .

The last inequality as well as the existence of C follow from Poincaré inequality for mean
values (Proposition 6.9). That H̃(Y ) is a Banach space when equipped with the by (7.20)
equivalent quotient norm (7.19), is a consequence of a general result of functional analysis.
2

In the following, for elements of H̃(Y ) we will also write v instead of [v].

We return to the boundary value problem

Lu = −
n∑

i,j=1

∂j(aij(y)∂iu) = f , in Y , (7.21)

u Y -periodic. (7.22)

We consider the variational formulation: Find u ∈ H̃(Y ) such that

a(u, v) = F (v) , for all v ∈ H̃(Y ). (7.23)

As before we set

a(u, v) =

∫
Y

∇u(y)TA(y)∇v(y) dy , F (v) =

∫
Y

f(y)v(y) dy . (7.24)

Due to (7.18), the bilinear form a is well-defied on H̃(Y ). This does not apply to F unless
we require in addition that ∫

Y

f(y) dy = 0 . (7.25)

Indeed, then ∫
Y

f(y)v(y) dy =

∫
Y

f(y)(v(y)− c) dy , for all c ∈ R. (7.26)
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Proposition 7.6 (Unique solvability, periodic bounddary conditions)
Let assumption 7.1 hold. Then the variational problem (7.23) has a unique solution u ∈
H̃(Y ) for every f ∈ L2(Y ) that satisfies (7.25), and

‖u‖H̃(Y ) ≤
C

ca
‖f‖L2(Y ) , (7.27)

where C denotes the constant from the Poincaré inequality for mean values.

Proof: The bilinear form a is continuous and H̃(Y )-elliptic. For the right side F we have
for all v

|F (v)| =
∣∣∣∣∫
Y

f(y)v(y) dy

∣∣∣∣ =

∣∣∣∣∫
Y

f(y)(v(y)−MY (v)) dy

∣∣∣∣ ≤ ‖f‖L2(Y ) ‖v −MY (v)‖L2(Y )

≤ ‖f‖L2(Y )C‖∇v‖L2(Y ) ≤ C‖f‖L2(Y )‖v‖H̃(Y ) ,

where again we have used Proposition 6.9. The linear form F therefore is continuous, too.
The assertion now follows from Lax-Milgram. 2

We may remove the multivalued character of the solution of the boundary value problem
by a suitable normalization. We consider

Lu = −
n∑

i,j=1

∂j(aij(y)∂iu) = f , in Y , (7.28)

u Y -periodic, (7.29)

MY (u) = 0 . (7.30)

Corollary 7.7 Under the assumptions of Proposition 7.6, the boundary value problem
(7.28) – (7.30) has a unique weak solution u ∈ H1

per(Y ).

Proof: Proposition 7.6 yields a unique solution [u] in H1
per(Y ). From this equivalence

class we choose the unique function u which satisfies (7.30). 2

Alternatively one may proceed as follows. We define

HM(Y ) = {v : v ∈ H1
per(Y ), MY (v) = 0} . (7.31)

HM(Y ) is a closed subspace of H1
per(Y ), because v 7→MY (v) is continuous, and therefore

a Banach space.

Lemma 7.8 The assignment v 7→ ‖∇v‖L2(Y ) defines a norm on HM(Y ) which is equiv-

alent to the H1 norm.

Proof: By Proposition 6.9,

‖v‖L2(Y ) ≤ C‖∇v‖L2(Y ) , for all v ∈ HM(Y ),

for a suitable constant C. This yields the assertion. 2
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A variational formulation of the periodic boundary value problem in the space HM(Y ) is
the following.

Find u ∈ HM(Y ) such that a(u, v) = F (v) for all v ∈ HM(Y ). (7.32)

Here, F : HM(Y ) → R is a continuous linear functional, and a is given by (7.24). We
consider an F of the form

F (v) =

∫
Y

〈h(y),∇v(y)〉 dy , h : Y → Rn . (7.33)

Proposition 7.9 (Unique solvability, second version)
Let assumption 7.1 hold. Then the variational problem (7.32), (7.33) has a unique solution
u ∈ HM(Y ) for each h ∈ L2(Y )n, and

‖∇u‖L2(Y ) ≤
1

ca
‖h‖L2(Y )n . (7.34)

Proof: This proposition, too, is a direct consequence of Lax-Milgram. We use the norm
from Lemma 7.8. 2

Let h ∈ H1
per(Y ). Then we have, according to Lemma 7.4 applied with w = hi,

F (v) =

∫
Y

〈h(y),∇v(y)〉 dy = −
∫
Y

v(y)(divh)(y) dy . (7.35)

The corresponding boundary value problem is

Lu = −
n∑

i,j=1

∂j(aij(y)∂iu) = −divh , in Y , (7.36)

u Y -periodic, (7.37)

MY (u) = 0 . (7.38)

One may ask whether the periodic extension up of the solution u of (7.32), (7.33) con-
stitutes a weak solution of the partial differential equation with coefficients Ap and right
side hp, extended by periodicity from A and h. This is true in the following sense.

Proposition 7.10 Let assumption 7.1 hold. If u ∈ HM(Y ) solves (7.32), (7.33) for
h ∈ L2(Y )n, then ∫

Rn

∇up(x)TAp(x)∇ϕ(x) dx =

∫
Rn

〈hp(x),∇ϕ(x)〉 dx (7.39)

for all ϕ ∈ C∞0 (Rn).

Proof: Let ϕ ∈ C∞0 (Rn) be arbitrary. Let (Yk)k∈K be a finite open covering of supp (ϕ)
with translated intervals Yk = yk +Y , let (ψk)k∈K be an associated C∞ partition of unity.
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For each k ∈ K we define the function (ϕψk)p as the Y -periodic extension of (ϕψk)|Yk.
Then ∫

Rn

∇up(x)TAp(x)∇ϕ(x) dx =
∑
k∈K

∫
Yk

∇up(x)TAp(x)∇(ϕψk)(x) dx

=
∑
k∈K

∫
Y

∇u(x)TA(x)∇(ϕψk)p(x) dx =
∑
k∈K

∫
Y

〈h(x),∇(ϕψk)p(x)〉 dx

=
∑
k∈K

∫
Yk

〈hp(x),∇(ϕψk)(x)〉 dx =

∫
Rn

〈hp(x),∇ϕ(x)〉 dx .

2
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8 Homogenization: The multidimensional case

On an open and bounded set Ω ⊂ Rn we consider the boundary value problem

−
n∑

i,j=1

∂j(a
ε
ij(x)∂iuε) = f , in Ω, (8.1)

uε = 0 , on ∂Ω. (8.2)

The coefficients are given by

aεij(x) = aij

(x
ε

)
, 1 ≤ i, j ≤ n , (8.3)

Written in matrix-vector form,(8.1), (8.3) becomes

−div (Aε(x)T∇u) = f , Aε(x) = A
(x
ε

)
. (8.4)

Again, let

Y =
n∏
i=1

(0, li) (8.5)

be a fixed reference interval.

Assumption 8.1 Let aij ∈ L∞(Rn) be Y -periodic and uniformly elliptic with ellipticity
constant ca. 2

As we know already, under this assumption the boundary value problem (8.1), (8.2) has
a unique weak solution uε ∈ H1

0 (Ω) for every f ∈ L2(Ω),∫
Ω

∇uε(x)TAε(x)∇v(x) dx =

∫
Ω

f(x)v(x) dx , for all v ∈ H1
0 (Ω). (8.6)

We want to find a matrix A0 of coefficients (the “homogenized coefficient matrix”) such
that, as ε→ 0, the solutions uε of (8.1), (8.2) converge to the solution u0 of

−
n∑

i,j=1

∂j(a
0
ij(x)∂iu0) = f , in Ω, (8.7)

u0 = 0 , on ∂Ω. (8.8)

It turns out that the matrix A0 arises as the result of averaging the solutions of certain
boundary value problems on Y with periodic boundary conditions, in the following way.

For a given λ ∈ Rn we look for the weak solution χλ ∈ HM(Y ) of the boundary value
problem (in variational formulation)

ã(χλ, v) = Fλ(v) , for all v ∈ HM(Y ), (8.9)

where

ã(u, v) =

∫
Y

∇u(y)TA(y)T∇v(y) dy =

∫
Y

〈A(y)∇u(y),∇v(y)〉 dy , (8.10)

Fλ(v) =

∫
Y

λTA(y)T∇v(y) dy =

∫
Y

〈A(y)λ,∇v(y)〉 dy . (8.11)
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According to Proposition 7.9, this problem has a unique solution χλ ∈ HM(Y ). The
associated “standard” formulation is

−div (A(y)∇χλ) = −div (A(y)λ) , (8.12)

χλ Y -periodic, MY (χλ) = 0. (8.13)

If the matrix A of coefficients has weak derivatives as a function of y, then the right
side of (8.12) defines a function on Y . If this is not the case, for example when A is
discontinuous, one can understand (8.12) only in the weak sense (8.9) – (8.11), and Fλ in
(8.11) has to be understood as an element the dual space of H1

0 (Y ), which is denoted by
H−1(Y ).

Having obtained χλ, we define another auxiliary function wλ,

wλ(y) = −χλ(y) + λTy . (8.14)

It will turn out that the homogenized coefficient matrix can be computed by the equation

A0λ = MY (A∇wλ) , (8.15)

that is, we obtain the ith column of A0 by setting λ = ei in (8.15). (Since the mapping
λ 7→MY (A∇wλ) is linear, (8.15) then holds for all λ ∈ Rn.)

In particular, the functions a0
ij in (8.7) are constant, since the matrix A0 does not depend

on x.

Theorem 8.2 (Periodic homogenization, convergence)
Let assumption 8.1 hold, let the constant matrix A0 be given by (8.15), let f ∈ L2(Ω).
Then A0 is uniformly elliptic, the boundary value problem (8.7), (8.8) has a unique weak
solution u0 ∈ H1

0 (Ω), and the solutions uε of (8.1), (8.2) satisfy

uε ⇀ u0 in H1
0 (Ω), (8.16)

(Aε)T∇uε ⇀ (A0)T∇u0 in L2(Ω)n. (8.17)

Proof: This will be developed in the remainder of this chapter. 2

Lemma 8.3 (Weak convergence of products)
(i) Let (vk)k∈N, (wk)k∈N be sequences in L2(Ω) such that

vk → v in L2(Ω), wk ⇀ w in L2(Ω). (8.18)

Then ∫
Ω

vk(x)wk(x) dx→
∫

Ω

v(x)w(x) dx . (8.19)

(i) Let (vk)k∈N be a sequence in L∞(Ω), (wk)k∈N a sequence in L2(Ω) such that

vk → v uniformly, wk ⇀ w in L2(Ω). (8.20)

Then
vkwk ⇀ vw in L2(Ω). (8.21)
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Proof: Exercise. 2

We define
ξε(x) = (Aε(x))T∇uε(x) , x ∈ Ω . (8.22)

We have ξε ∈ L2(Ω)n, since Aε(x) is uniformly bounded in x,

Lemma 8.4 There exist u0 ∈ H1
0 (Ω) and ξ0 ∈ L2(Ω)n such that for some subsequence

uε ⇀ u0 in H1
0 (Ω), uε → u0 in L2(Ω), (8.23)

ξε ⇀ ξ0 in L2(Ω)n. (8.24)

Moreover, ∫
Ω

f(x)v(x) dx =

∫
Ω

〈ξε,∇v〉 dx =

∫
Ω

〈ξ0,∇v〉 dx (8.25)

for all v ∈ H1
0 (Ω) and all ε > 0.

Proof: Due to Lax-Milgram, for a suitable constant C

‖uε‖H1
0 (Ω) ≤

C

ca
‖f‖L2(Ω) (8.26)

for all ε > 0. The set (uε)ε>0 is thus bounded in H1
0 (Ω). Consequently, there exists a

sequence (uεn) that weakly converges to some u0 ∈ H1
0 (Ω). Due to Corollary 6.8, uεn → u0

strongly in L2(Ω). As Aε(x) is bounded uniformly with respect to x and ε, the set (ξε)ε>0 is
bounded in L2(Ω)n. Passing to a subsequence, we also obtain (8.24). The left equation in
(8.25) is the same as (8.6), the right equation follows from the weak convergence ξε ⇀ ξ0.
2

We define
wελ(x) = εwλ

(x
ε

)
= λTx− εχλ

(x
ε

)
. (8.27)

Lemma 8.5 Set Λ(x) = λTx. Then

wελ ⇀ Λ in H1(Ω), wελ → Λ in L2(Ω), (8.28)

the latter for a suitable sequence εn → 0.

Proof: The functions
x 7→ χλ

(x
ε

)
weakly converge to MY (χλ) = 0 in L2(Ω) as ε → 0 by Proposition 6.5. It follows that
wελ ⇀ Λ in L2(Ω). Moreover,

∇wελ(x) = λ−∇χλ
(x
ε

)
.

The function y 7→ ∇χλ(y) is Y -periodic. Therefore, again by Proposition 6.5

∇wελ ⇀ λ−MY (∇χλ) in L2(Ω)n.

By Lemma 7.4 we get MY (∇χλ) = 0. The first assertion in (8.28) is now proved, the
second follows from the compactness of the embedding H1(Ω) ⊂⊂ L2(Ω). 2

We now define
ηελ(x) = Aε(x)∇wελ(x) . (8.29)
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Lemma 8.6 We have
ηελ ⇀ A0λ in L2(Ω)n, (8.30)

and ∫
Ω

〈ηελ(x),∇v(x)〉 dx = 0 , for all v ∈ H1
0 (Ω). (8.31)

Proof: From
ηελ(x) = A

(x
ε

)
∇wλ

(x
ε

)
we obtain, by virtue of Proposition 6.5,

ηελ ⇀MY (A∇wλ) = A0λ in L2(Ω)n.

Let now ϕ ∈ C∞0 (Ω) be arbitrary. We set

ϕε(y) = ϕ(εy) .

Then ϕε ∈ C∞0 (Rn). We apply Proposition 7.10 to the variational problem (8.9) and
obtain ∫

Rn

〈A(y)∇χλ(y),∇ϕε(y)〉 dy =

∫
Rn

〈A(y)λ,∇ϕε(y)〉 dy ,

therefore

0 =

∫
Rn

〈A(y)∇wλ(y),∇ϕε(y)〉 dy =

∫
Rn

〈
A
(x
ε

)
∇wλ

(x
ε

)
,∇ϕε

(x
ε

)〉
dx

=

∫
Ω

〈ηελ(x),∇ϕ(x)〉 dx .

Since C∞0 (Ω) is dense in H1
0 (Ω), the assertion follows. 2

Proof of Theorem 8.2, the convergence part. We now prove that (8.16) and (8.17)
hold for every convergent subsequence. Let ϕ ∈ C∞0 (Ω) be arbitrary. As a test function
in (8.25) we use v = ϕwελ and obtain (we omit the argument x)∫

Ω

fϕwελ dx =

∫
Ω

〈ξε,∇(ϕwελ)〉 dx

=

∫
Ω

〈ξε,∇wελ〉ϕdx+

∫
Ω

〈ξε,∇ϕ〉wελ dx .
(8.32)

In (8.31) we use v = ϕuε as a test function and obtain

0 =

∫
Ω

〈ηελ,∇(ϕuε)〉 dx =

∫
Ω

〈ηελ,∇uε〉ϕdx+

∫
Ω

〈ηελ,∇ϕ〉uε dx . (8.33)

We look at the scalar products in the first integrals on the right sides of both (8.32)
and (8.33). Both factors in these scalar products are weakly convergent only, so that we
cannot pass to the limits directly. But according to the definition of ξε and ηελ,

〈ξε,∇wελ〉 =
〈
AεT∇uε,∇wελ

〉
= 〈∇uε, Aε∇wελ〉 = 〈∇uε, ηελ〉 . (8.34)
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We subtract (8.33) from (8.32) and obtain because of (8.34)∫
Ω

〈ξε,∇ϕ〉wελ dx−
∫

Ω

〈ηελ,∇ϕ〉uε dx =

∫
Ω

fϕwελ dx . (8.35)

Now we may pass to the limit. By Lemma 8.4, Lemma 8.5 and Lemma 8.3, we get∫
Ω

〈ξε,∇ϕ〉wελ dx→
∫

Ω

〈ξ0,∇ϕ〉Λ dx (8.36)

for a suitable subsequence. By Lemma 8.4, Lemma 8.6 and Lemma 8.3,∫
Ω

〈ηελ,∇ϕ〉uε dx→
∫

Ω

〈
A0λ,∇ϕ

〉
u0 dx (8.37)

for a subsequence, and moreover∫
Ω

fϕwελ dx→
∫

Ω

fϕΛ dx . (8.38)

Thus we obtain ∫
Ω

〈ξ0,∇ϕ〉Λ dx−
∫

Ω

〈
A0λ,∇ϕ

〉
u0 dx =

∫
Ω

fϕΛ dx . (8.39)

In (8.25) we now use v = ϕΛ as a test function and get∫
Ω

fϕΛ dx =

∫
Ω

〈ξ0,∇(ϕΛ)〉 dx =

∫
Ω

〈ξ0,∇ϕ〉Λ dx+

∫
Ω

〈ξ0, λ〉ϕdx . (8.40)

Inserting (8.40) into (8.39) we get, since A0λ is a constant vector,∫
Ω

〈ξ0, λ〉ϕdx = −
∫

Ω

〈
A0λ,∇ϕ

〉
u0 dx =

∫
Ω

〈
A0λ,∇u0

〉
ϕdx , (8.41)

for all ϕ ∈ C∞0 (Ω). This implies

〈ξ0, λ〉 =
〈
A0λ,∇u0

〉
=
〈
(A0)T∇u0, λ

〉
. (8.42)

Since (8.42) holds for all λ ∈ Rn, it follows that

ξ0 = (A0)T∇u0 . (8.43)

2

We now consider another periodic auxiliary problem. It differs from von (8.9) – (8.12)
only in that the matrix A is replaced by the matrix AT . For a given λ ∈ Rn we want to
find χ̂λ ∈ HM(Y ) such that

a(χ̂λ, v) = F̂λ(v) , for all v ∈ HM(Y ), (8.44)

where a(u, v) =
∫
Y
∇uTA∇v dy and

F̂λ(v) =

∫
Y

λTA(y)∇v(y) dy . (8.45)

We set
ŵλ(y) = −χ̂λ(y) + λTy . (8.46)
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Lemma 8.7 For all λ ∈ Rn,

(A0)Tλ = MY (AT∇ŵλ) . (8.47)

Proof: Let λ, µ ∈ Rn be arbitrary. According to the definition of A0 we then have

µT (A0)Tλ = λTA0µ = λTMY (A∇wµ) = λTMY (Aµ)− λTMY (A∇χµ) . (8.48)

Moreover,
λTMY (Aµ) = MY (λTAµ) = MY (µTATλ) = µTMY (ATλ) . (8.49)

In order to transform the rightmost term in (8.48) we use the variational equations for
χλ and χ̂λ. We compute

|Y |λTMY (A∇χµ) =

∫
Y

λTA(y)∇χµ(y) dy =

∫
Y

∇χ̂λ(y)TA(y)∇χµ(y) dy

=

∫
Y

∇χµ(y)TA(y)T∇χ̂λ(y) dy =

∫
Y

µTA(y)T∇χ̂λ(y) dy

= |Y |µTMY (AT∇χ̂λ) .

Thus we obtain

µT (A0)Tλ = µTMY (ATλ− AT∇χ̂λ) = µTMY (AT∇ŵλ) .

2

Corollary 8.8 The homogenized matrix A0 satisfies

(AT )0 = (A0)T . (8.50)

If A is symmetric, then so is A0.

Proof: Replacing A by AT in the definition of the auxiliary periodic problem we obtain

(AT )0λ = MY (AT∇ŵλ) .

Now Lemma 8.7 implies (8.50). If A is symmetric,

(A0)T = (AT )0 = A0 .

2

Setting λ = ej we obtain formulas for the elements a0
ij from the equation defining A0. We

set χj = χej , wj = wej , so

χj(y) + wj(y) = eTj y = yj . (8.51)

Lemma 8.9 We have

a0
ij = MY (eTi A∇wj) = MY (aij)−MY

(
n∑
k=1

aik∂kχj

)
. (8.52)
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Proof: We have

a0
ij = eTi A

0ej = eTi MY (A∇wj) = MY (eTi A∇wj)

= MY (eTi Aej)−MY (eTi A∇χj) = MY (aij)−MY

(
n∑
k=1

aik∂kχj

)
.

2

Thus, the difference A0−MY (A) is a matrix whose elements are −MY (eTi A∇χj). Due to
this, the function χj are called correctors.

Lemma 8.10 We have
a0
ij = MY (∇wTj AT∇wi) . (8.53)

Proof: We use χi as a test function in (8.9) for λ = ej,

ã(χj, χi) = Fj(χ) , Fj := Fej .

Then ∫
Y

∇χTj AT∇χi dy =

∫
Y

eTj A
T∇χi dy ,

therefore
0 = MY (∇wTj AT∇χi) . (8.54)

From Lemma 8.9 we obtain

a0
ij = MY (eTi A∇wj) = MY (∇wTj AT ei) . (8.55)

Subtracting (8.54) from (8.55) we arrive at (8.53). 2

Lemma 8.11 The matrix A0 is positive definite.

Proof: Let ξ ∈ Rn be arbitrary. Using Lemma 8.10 we get

ξTA0ξ =
n∑

i,j=1

ξia
0
ijξj =

n∑
i,j=1

ξiMY (∇wTj AT∇wi)ξj =
n∑

i,j=1

MY (ξj∇wTj AT∇wiξi) . (8.56)

We set

ζ(y) =
n∑
k=1

ξkwk(y) . (8.57)

From (8.56) it follows that

ξTA0ξ = MY (∇ζTAT∇ζ) = MY (∇ζTA∇ζ) ≥ 0 , (8.58)

since by assumption for A

∇ζT (y)A(y)∇ζ(y) ≥ 0 , a.e. in Y . (8.59)
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Let us assume that there exists a ξ 6= 0 with ξTA0ξ = 0. Then it follows from (8.58) and
(8.59) that

∇ζT (y)A(y)∇ζ(y) = 0 , a.e. in Y . (8.60)

Since A is uniformly elliptic, ∇ζ = 0 a.e. in Y , and moreover, since MY (∇χk) = 0 by
Lemma 7.4,

0 = MY (∇ζ) =
n∑
k=1

ξkMY (∇wk) =
n∑
k=1

ξkMY (ek −∇χk) =
n∑
k=1

ξkMY (ek) =
n∑
k=1

ξkek

= ξ ,

which contradicts the assumption ξ 6= 0. 2

Completion of the proof of Theorem 8.2. For all ξ ∈ Rn with ξ 6= 0 we have

ξTA0ξ = |ξ|2 ξ
T

|ξ|
A0 ξ

|ξ|
≥ c0|ξ|2 , (8.61)

where
c0 := min

|e|=1
eTA0e > 0 (8.62)

due to Lemma 8.11 and because the unit ball in Rn is compact. Therefore, A0 is uniformly
elliptic. Therefore, the solution u0 of (8.7), (8.8) is unique by Lax-Milgram.

According to what we have proved so far: If (εk)k∈N → 0, then there exists a subsequence
(εkm)m∈N satisfying

uεkm ⇀ u0 .

But now the “convergence principle” implies that uεk ⇀ u0 for every sequence (εk)k∈N
which converges to 0. Thus, Theorem 8.2 is completely proved. 2

We now apply Theorem 8.2 to two situations in which we can explicitly compute the
homogenized matrix A0.

First, we reproduce for the one dimensional case the result which we already have obtained
in a previous chapter. We consider

−∂x
(
a
(x
ε

)
∂xuε

)
= f , in Ω = (d1, d2), (8.63)

uε(d1) = uε(d2) = 0 . (8.64)

On the periodicity interval Y = (0, l1) of a, the auxiliary problem becomes (λ = 1)∫
Y

χ′(y)a(y)v′(y) dy =

∫
Y

a(y)v′(y) dy , for all v ∈ HM(Y ), (8.65)

which has a unique solution χ ∈ HM(Y ). For arbitrary v ∈ C∞0 (Y ) we have v−MY (v) ∈
HM(Y ), thus ∫

Y

(χ′(y)a(y)− a(y))v′(y) dy = 0 . (8.66)

It follows that
χ′(y)a(y)− a(y) = c ∈ R , (8.67)
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since by (8.66) the weak derivative of the left side of (8.67) is equal to zero. Moreover,

χ′(y) =
c

a(y)
+ 1 , w′(y) = 1− χ′(y) = − c

a(y)
. (8.68)

By the definition of a0 we get

a0 = MY (aw′) = MY (−c) = −c . (8.69)

Since χ is Y -periodic,

0 =

∫
Y

χ′(y) dy = l1 + l1cMY

(
1

a

)
, (8.70)

therefore

c = −
(
MY

(
1

a

))−1

, a0 =

(
MY

(
1

a

))−1

. (8.71)

As a second example we consider a layered two-dimensional medium, that is, we have
n = 2, Y = Y1×Y2 = (0, l1)× (0, l2), and A depends only upon y1, ∂2A = 0. The problem
now becomes

−
2∑

i,j=1

∂j

(
aij

(x1

ε

)
∂iuε(x1, x2)

)
= f(x1, x2) , in Ω ⊂ R2, (8.72)

uε = 0 , on ∂Ω. (8.73)

We compute the coefficients of A0. The periodic problem∫
Y

∇χTj AT∇v dy =

∫
Y

eTj A
T∇v dy , for all v ∈ HM(Y ), (8.74)

has unique solutions χj for j = 1, 2. We want to prove that they depend upon y1 only,
and that they can be obtained from solving a suitable one-dimensional problem. For this
purpose we consider the unique solution χ̃j ∈ HM(Y1) of the periodic problem∫

Y1

χ̃′j(y1)a11(y1)ṽ′(y1) dy1 =

∫
Y1

a1j(y1)ṽ′(y1) dy1 , for all ṽ ∈ HM(Y1). (8.75)

Let v ∈ HM(Y ), let

ṽ(y1) =

∫
Y2

v(y1, y2) dy2 . (8.76)

Then

ṽ ∈ HM(Y1) , ṽ′(y1) =

∫
Y2

∂1v(y1, y2) dy2 . (8.77)

We now define
χj(y1, y2) = χ̃j(y1) . (8.78)

For arbitrary v ∈ HM(Y ) we get∫
Y2

∂2v(y1, y2) dy2 = v(y1, l2)− v(y1, 0) = 0 . (8.79)
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From (8.75) – (8.77) it follows that∫
Y

∇χTj AT∇v dy =

∫
Y

χ̃′j(y1)[a11(y1)∂1v(y1, y2) + a21(y1)∂2v(y1, y2)] dy

=

∫
Y1

χ̃′j(y1)a11(y1)

∫
Y2

∂1v(y1, y2) dy2 dy1

=

∫
Y1

a1j(y1)

∫
Y2

∂1v(y1, y2) dy2 dy1 =

∫
Y

eTj A
T∇v dy .

Therefore, the function χj ∈ HM(Y ) defined by (8.78) indeed is the solution of (8.74).
We now can compute χ̃j in analogy to the one-dimensional case. We have

χ̃′j(y1)a11(y1)− a1j(y1) = cj , j = 1, 2 . (8.80)

Since χ̃j is periodic,

0 =

∫
Y1

χ̃′j(y1) dy1 = cjMY1

(
1

a11

)
+MY1

(
a1j

a11

)
. (8.81)

We obtain the coefficients of A0 from Lemma 8.9. We have

a0
ij = MY (aij)−MY (ai1∂1χj + ai2∂2χj) = MY (aij − ai1χ̃′j) . (8.82)

We consider the case j = 1. According to (8.80),

1− χ̃′1 = − c1

a11

, c1 = −
(
MY1

(
1

a11

))−1

, (8.83)

therefore

a0
11 = MY (a11 − a11χ̃

′
1) = MY (−c1) = −c1 =

(
MY1

(
1

a11

))−1

, (8.84)

a0
21 = MY (a21 − a21χ̃

′
1) = MY

(
−a21

c1

a11

)
= a0

11MY1

(
a21

a11

)
. (8.85)

In the case j = 2 we get from (8.80) and (8.81)

χ̃′2 =
c2

a11

+
a12

a11

, c2 = −a0
11MY1

(
a12

a11

)
. (8.86)

This finally yields

a0
12 = MY (a12 − a11χ̃

′
2) = MY (−c2) = −c2 = a0

11MY1

(
a12

a11

)
, (8.87)

and

a0
22 = MY (a22 − a21χ̃

′
2) = MY

(
a22 − a21

(
c2

a11

+
a12

a11

))
= MY1

(
a22 − a21

a12

a11

)
+ a0

11MY1

(
a12

a11

)
MY1

(
a21

a11

)
. (8.88)

In particular we obtain that A0 is diagonal if so is A.
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9 Monotone Problems

We consider the elliptic boundary value problem

−div (a(∇u)) = f , in Ω,

u(x) = 0 , on ∂Ω.
(9.1)

The function a : Rn → Rn is given. If a is linear, the problem is linear, and if the
matrix representing a is positive definite, we have a linear elliptic problem. The special
case a(y) = y corresponds to the equation −∆u = f . If a is nonlinear, one speaks of
a quasilinear problem; performing differentiation in div (a(∇u(x))) with respect to x
leads to an expression which is linear with respect to the derivative of highest (in this
case second) order, but nonlinear with respect to the lower order derivatives.

The variational formulation of (9.1) becomes∫
Ω

〈a(∇u(x)),∇v(x)〉 dx =

∫
Ω

f(x)v(x) dx , for all v ∈ H1
0 (Ω), (9.2)

as in the linear case it is obtained by testing with v and partial integration.

We may rewrite (9.2) as an operator equation

Au = F . (9.3)

Here, A : V → V ∗ with V = H1
0 (Ω),

〈Au, v〉 =

∫
Ω

〈a(∇u(x)),∇v(x)〉 dx , (9.4)

and F ∈ V ∗,
〈F, v〉 =

∫
Ω

f(x)v(x) dx .

When the function a is nonlinear, the operator A is nonlinear. Thus, (9.3) represents a
nonlinear operator equation.

In this section we consider the situation when a satisfies the condition

〈a(y)− a(z), y − z〉 ≥ 0 , for all y, z ∈ Rn. (9.5)

If a is linear, (9.5) means that the associated matrix M ∈ R(n,n) is positive semidefinite.
This occurs for example when a is the derivative of a convex quadratic function J : Rn →
R. Then M equals D2J , the Hessian of J .

Definition 9.1 (Monotone Operator)
Let V be a normed space. An operator A : V → V ∗ is called monotone if

〈Au− Av, u− v〉 ≥ 0 , for all u, v ∈ V , (9.6)

and strictly monotone, if this inequality is strict whenever u 6= v.

69



Definition 9.2 Let V be a normed space. An operator A : V → V ∗ is called coercive if

lim
‖v‖→+∞

〈Av, v〉
‖v‖

= +∞ . (9.7)

For solving Au = F , let us consider first the finite dimensional case.

Proposition 9.3 (Brouwer’s fixed point theorem)
Let K ⊂ Rn be compact and convex, f : K → K continuous, K 6= ∅. Then f has a fixed
point u ∈ K, that is, F (u) = u.

Proof: This is a fundamental result of analysis, not proved here. 2

Corollary 9.4 Let A : Rn → Rn be continuous, let R > 0 such that

〈Av, v〉 ≥ 0 , for all v with |v| = R. (9.8)

Then A has a zero u (that is, Au = 0) satisfying |u| ≤ R.

Proof: By contradiction. Let us assume that no such zero exists. Then

f(v) = −R Av

|Av|

defines a continous mapping f : BR → BR, where BR denotes the closed ball around 0
with radius R. According to Brouwer’s fixed point theorem there exists an u ∈ BR with
f(u) = u. By definition of f we have |u| = |f(u)| = R. By virtue of (9.8),

0 ≤ 〈Au, u〉 = 〈Au, f(u)〉 = −R|Au| ,

thus Au = 0, a contradiction. 2

Proposition 9.5 Let A : Rn → Rn be continuous and coercive. Then the equation
Au = F has a solution u ∈ Rn for every F ∈ Rn.

Proof: Assume first that F = 0. We apply Corollary 9.4. Since A is coercive, there exists
R > 0 such that (9.8) holds. Therefore, Au = 0 has a solution u ∈ Rn. For arbitrary
F ∈ Rn we consider AF : Rn → Rn, AFv = Av − F . AF is continuous; it is also coercive:
We have

〈AFv, v〉 = 〈Av, v〉 − 〈F, v〉 ≥ 〈Av, v〉 − ‖F‖‖v‖ ,

therefore
〈AFv, v〉
‖v‖

≥ 〈Av, v〉
‖v‖

− ‖F‖ ,

and since A is coercive, it follows that AF is coercive. 2

We now consider the infinite dimensional case. By approximation, we reduce it to the
finite dimensional case.

In view of applying the results to partial differential equations, one wants to keep the
continuity assumptions on A to a minimum.
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Definition 9.6 (Hemicontinuity) Let V be a normed space. An operator A : V → V ∗

is called hemicontinuous if, for all u, v, w ∈ V , the mapping

t 7→ 〈A(u+ tv), w〉 (9.9)

is continuous on [0, 1].

Lemma 9.7 Let V be a Banach space, A : V → V ∗. Then A is monotone if and only if
for all u, v ∈ V the mapping

t 7→ 〈A(u+ tv), v〉 (9.10)

is monotone nondecreasing on [0, 1].

Proof: Exercise.

Proposition 9.8 Let V be a Banach space, A : V → V ∗ monotone. Then A is locally
bounded, that is, for every u ∈ V there exists a neighbourhood U of u such that A(U) is
a bounded subset of V ∗.

Proof: Let us assume that A is not locally bounded. Then there exists an u ∈ V and a
sequence (un) in V such that

un → u , ‖Aun‖ → ∞ . (9.11)

We define
cn = 1 + ‖Aun‖ ‖un − u‖ . (9.12)

We want to show that the sequence c−1
n Aun is bounded in V ∗. To this purpose, let v ∈ V

be arbitrary. We have

0 ≤ 〈A(u+ v)− A(un), u+ v − un〉 , (9.13)

consequently

1

cn
〈A(un), v〉 ≤ 1

cn
(〈A(un), un − u〉+ 〈A(u+ v), u+ v − un〉)

≤ 1 +
1

cn
‖A(u+ v)‖ ‖u+ v − un‖ ≤M(v)

(9.14)

with a constant M(v) which does not depend on n. Applying the same argument for −v
in place of v, we obtain

sup
n∈N

∣∣∣∣ 1

cn
〈Aun, v〉

∣∣∣∣ ≤ max{M(v),M(−v)} <∞ . (9.15)

The principle of uniform boundedness (the theorem of Banach and Steinhaus from func-
tional analysis) implies that

sup
n∈N

1

cn
‖Aun‖ =: C <∞ . (9.16)

It follows that
‖Aun‖ ≤ Ccn = C(1 + ‖Aun‖ ‖u− un‖) , n ∈ N , (9.17)

therefore
(1− C‖u− un‖)‖Aun‖ ≤ C , n ∈ N , (9.18)

and so ‖Aun‖ ≤ 2C if ‖u− un‖ ≤ 1/2C. This contradicts (9.11). 2
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Corollary 9.9 Let V be a Banach space, A : V → V ∗ monotone, let (un) be a sequence
which converges in the norm of V . Then the sequence (Aun) is bounded in V ∗.

Proof: This is a direct consequence of Proposition 9.8. 2

Corollary 9.10 Let V be a Banach space, A : V → V ∗ monotone, K ⊂ V bounded, let
C > 0 such that

〈Au, u〉 ≤ C , for all u ∈ K. (9.19)

Then A(K) is bounded in V ∗.

Proof: For ε > 0 sufficiently small, it follows from Proposition 9.8, setting there u = 0,

sup
‖v‖≤ε

‖Av‖ =: c <∞ . (9.20)

Therefore, for arbitrary u ∈ K we then have, since 0 ≤ 〈Au− Av, u− v〉,

‖Au‖ = sup
‖v‖≤1

〈Au, v〉 = sup
‖v‖≤ε

1

ε
〈Au, v〉

≤ sup
‖v‖≤ε

1

ε

(
〈Au, u〉+ 〈Av, v〉 − 〈Av, u〉

)
≤ 1

ε
(C + cε+ cCK) , CK := sup

u∈K
‖u‖ .

(9.21)

2

Proposition 9.11 Let V be a reflexive Banach space, A : V → V ∗ monotone. Then the
following are equivalent:

(i) A ist hemicontinuous.

(ii) For all u ∈ V and all b ∈ V ∗ we have: If

〈b− Av, u− v〉 ≥ 0 , for all v ∈ V , (9.22)

then Au = b.

(iii) For all u ∈ V and b ∈ V ∗ we have: If (un) is a sequence in V satisfying

un ⇀ u , Aun ⇀ b , lim sup
n→∞

〈Aun, un〉 ≤ 〈b, u〉 , (9.23)

then Au = b.

(iv) A is demicontinuous, that is, for all u ∈ V we have: If (un) is a sequence in V with
un → u, then Aun ⇀ Au.

The implication “(i)⇒(iii)” (or a variant of this) is called the “Minty trick”.

Proof: “(i)⇒(ii)”: Let u ∈ V , b ∈ V ∗ such that (9.22) holds. Setting v = u− tw it follows
that

〈b− A(u− tw), tw〉 ≥ 0 , ∀ w ∈ V , t > 0 , (9.24)
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therefore
〈b− A(u− tw), w〉 ≥ 0 , ∀ w ∈ V , t > 0 . (9.25)

Passing to the limit t ↓ 0 we obtain, since A is hemicontinuous,

〈b− A(u), w〉 ≥ 0 , ∀ w ∈ V . (9.26)

Since w was arbitrary, Au = b follows.
“(ii)⇒(iii)”: Let (un) be a sequence which satisfies (9.23), let v ∈ V . Then

0 ≤ 〈Aun − Av, un − v〉 = 〈Aun, un〉 − 〈Aun, v〉 − 〈Av, un − v〉 , (9.27)

and therefore

0 ≤ lim sup
n→∞

(〈Aun, un〉 − 〈Aun, v〉 − 〈Av, un − v〉)

= lim sup
n→∞

〈Aun, un〉 − lim
n→∞

〈Aun, v〉 − lim
n→∞

〈Av, un − v〉

≤ 〈b, u〉 − 〈b, v〉 − 〈Av, u− v〉
= 〈b− Av, u− v〉 .

(9.28)

Since v was arbitrary, b = Au follows from assumption (ii).
“(iii)⇒(iv)”: Let (un) be a sequence in V with un → u. Due to Corollary 9.9, (Aun) is
bounded in V ∗. Let (unk

) be a subsequence such that (Aunk
) converges weakly in V ∗;

such a subsequence exists since bounded subsets of reflexive spaces have this property.
Let Aunk

⇀ b. Since (unk
) converges in the norm of V , it follows that

lim
k→∞
〈Aunk

, unk
〉 = 〈b, u〉 , (9.29)

thus b = Au by assumption (iii). Consequently, the limit of every such weakly convergent
subsequence (Aunk

) is the same, namely Au. By the convergence principle, Aun ⇀ Au
holds for the whole sequence.
“(iv)⇒(i)”: Let u, v, w ∈ V , tn → t in [0, 1]. Then u + tnv → u + tv in V , thus
A(u+ tnv) ⇀ A(u+ tv) in V ∗ by assumption (iv). Therefore,

lim
n→∞

〈A(u+ tnv), w〉 = 〈A(u+ tv), w〉 . (9.30)

Thus A is hemicontinuous. 2

We now present a frame for finite-dimensional approximations of equations in infinite-
dimensional spaces.

A normed space X is called separable if there exists a countable subset M of X which
is dense in X, that is, M = X.

Proposition 9.12 Let V be a separable normed space with dim(V ) = ∞. Then there
exists a sequence (wn)n∈N in V such that

dim(Vn) = n , Vn := span {w1, . . . , wn} , (9.31)

and

V =
∞⋃
k=1

Vk . (9.32)
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Proof: Let M = {un : n ∈ N} be a countable subset of V with M = V . We obtain
the sequence (wn) by removing all those un for which un ∈ span {u1, . . . , un−1}. The
remaining elements are linearly independent; there are infinitely many of them, since
otherwise span (M) would be finite dimensional and hence closed, contradicting the fact
that M = V . 2

Let V be a separable Banach space. We consider the equation

Au = F , (9.33)

in the dual V ∗ of V , where A : V → V ∗ and F ∈ V ∗. An element u ∈ V solves (9.33) if
and only if it is a solution of the associated variational equation

〈Au, v〉 = 〈F, v〉 , for all v ∈ V . (9.34)

We consider a finite dimensional approximation of (9.34), namely

〈Aun, v〉 = 〈F, v〉 , for all v ∈ Vn. (9.35)

Here, Vn is a subspace of V with dim(Vn) = n, and we look for solutions un ∈ Vn.

If {w1, . . . , wn} is a basis of Vn, then un ∈ Vn solves (9.35) if and only if un solves

〈Aun, wk〉 = 〈F,wk〉 , 1 ≤ k ≤ n . (9.36)

This is a finite-dimensional problem: We want to determine n unknowns, namely coeffi-
cients of un with respect to the basis {w1, . . . , wn}, from the n equations in (9.36).

The equations (9.36) are called Galerkin equations. The method which consists in
choosing these un as approximations for the solution u of (9.33) is called the Galerkin
method. The following theorem is also called the main theorem for monotone operators.

Theorem 9.13 (Browder and Minty)
Let V be a reflexive separable Banach space, let A : V → V ∗ be monotone, hemicontinuous
and coercive. Then the equation

Au = F (9.37)

has a solution u ∈ V for every F ∈ V ∗.

Proof: It suffices to consider the case F = 0 zu betrachten. The general case is reduced to
this replacing A by AF with AFu = Au−F . Then AF , too, is monotone, hemicontinuous
and coercive (to see that AF is coercive, one argues as in the proof of Proposition 9.5).

According to Proposition 9.12 we choose a sequence (wn) in V satisfying

dim(Vn) = n , Vn := span {w1, . . . , wn} , V =
∞⋃
k=1

Vk . (9.38)

At first, we prove that, for every n ∈ N, the Galerkin equations

〈Aun, wk〉 = 0 , 1 ≤ k ≤ n , (9.39)
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have a solution un ∈ Vn. Let jn : Rn → Vn the linear isomorphism defined by

jn(x) =
n∑
k=1

xkwk , (9.40)

let An : Rn → Rn be defined by

(Anx)k = 〈Ajn(x), wk〉 , 1 ≤ k ≤ n . (9.41)

Since A is demicontinuous by Proposition 9.11(iv), all (An)k and thus all An are contin-
uous. For x ∈ Rn we have

〈Anx, x〉 =
n∑
k=1

(Anx)kxk =
n∑
k=1

〈Ajn(x), wk〉xk = 〈Ajn(x), jn(x)〉 .

Since ‖jn(x)‖ → ∞ if |x| → ∞, An is coercive because A is coercive. By Proposition
9.5, the equation Anx = 0 has a solution x ∈ Rn, so un = j(x) ∈ Vn is a solution of the
Galerkin equations (9.39). Equivalently,

〈Aun, v〉 = 0 , for all v ∈ Vn. (9.42)

Since un ∈ Vn we have
〈Aun, un〉 = 0 . (9.43)

As A is coercive, the sequence (un) is bounded in V . Corollary 9.10 now implies that
(Aun) is bounded in V ∗. From (9.42) we obtain

lim
n→∞

〈Aun, v〉 = 0 , for all v ∈
∞⋃
k=1

Vk . (9.44)

Because (Aun) is bounded, it follows from (9.44) that Aun ⇀ 0 in V ∗ (exercise). Let
now (unk

) be a weakly convergent subsequence of (un) with unk
⇀ u ∈ V . We apply

Proposition 9.11(iii), setting b = 0, to the subsequence unk
) and obtain Au = 0. 2

One can prove that the set of solutions of Au = F is a convex, closed and bounded subset
of V . Since V is assumed to be reflexive, one concludes that the set of solutions is weakly
compact.

Proposition 9.14 Let the assumptions of Theorem 9.13 be satisfied, let moreover A be
strictly monotone. Then the solution u ∈ V of Au = F is uniquely determined for every
given F ∈ V ∗, so A : V → V ∗ is bijective. The inverse operator A−1 : V ∗ → V is strictly
monotone and hemicontinuous, and maps bounded sets to bounded sets.

Proof: If Au = F = Av, then 〈Au− Av, u− v〉 = 0, and therefore u = v since A is
strictly monotone. Let F1, F2 ∈ V ∗, set ui = A−1Fi. Then u1 6= u2 if and only if F1 6= F2,
and in this case we have〈

F1 − F2, A
−1F1 − A−1F2

〉
= 〈Au1 − Au2, u1 − u2〉 > 0
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since A is strictly monotone. To prove that A−1 is hemicontinous, according to Proposition
9.11 it suffices to show that, for every F ∈ V ∗ and every u ∈ V , the property〈

u− A−1G,F −G
〉
≥ 0 , for all G ∈ V ∗, (9.45)

implies A−1F = u. Thus, let (9.45) be satisfied, let G ∈ V ∗. Setting v = A−1G we have

〈u− v, F − Av〉 ≥ 0 . (9.46)

Since A is hemicontinuous and A−1(V ∗) = V , we conclude that F = Au by applying
Proposition 9.11 to A. It remains to show that A−1 is bounded. Let F ∈ V ∗ with

‖F‖ ≤ C , u = A−1F . (9.47)

It follows that
〈Au, u〉
‖u‖

=
〈F, u〉
‖u‖

≤ ‖F‖ ≤ C . (9.48)

If {u : ‖Au‖ ≤ C} were unbounded, there would exist a sequence (un) in V with ‖un‖ →
∞ and

〈Aun, un〉
‖un‖

≤ C

This contradicts the assumption that A is coercive. 2

We now investigate the convergence of the Galerkin method. Let Vn, as in the proof of
Theorem 9.13, be an increasing sequence of subspaces of V with

Vn = span {w1, . . . , wn} , dim(Vn) = n ,

∞⋃
k=1

Vk = V . (9.49)

Once again we consider the problem: Given F ∈ V ∗, determine un ∈ Vn such that

〈Aun, v〉 = 〈F, v〉 , for all v ∈ Vn. (9.50)

Proposition 9.15 Let the assumptions of Theorem 9.13 hold, let moreover A be strictly
monotone, let F ∈ V ∗. Then for every n ∈ N there exists a unique solution un of (9.50).
Moreover, un ⇀ u in V , where u denotes the unique solution of Au = F . If in addition
A is uniformly monotone, that is, there exists a constant c with

〈Av − Aw, v − w〉 ≥ c‖v − w‖2 , for all v, w ∈ V , (9.51)

then un → u in V .

Proof: The existence of un is a consequence of Theorem 9.13. If un, vn ∈ Vn are two
solutions of (9.50), then

〈Aun, v〉 = 〈F, v〉 = 〈Avn, v〉 , f”ur alle v ∈ Vn, (9.52)

and since v = un − vn it follows that 〈Aun − Avn, un − vn〉 = 0, thus un = vn. In the
proof of Theorem 9.13 we also have shown that every limit ũ of a weakly convergent
subsequence (unk

) of (un) solves the orginal problem, that is, Aũ = F . The uniqueness
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result 9.14 implies that ũ = u. From the convergence principle we obtain that un ⇀ u.
Let now (9.51) be satisfied. Since un ⇀ u, the set (un) is bounded in V . Moreover,

〈Aun, un〉 = 〈F, un〉 ≤ ‖F‖ sup
n∈N
‖un‖ . (9.53)

Therefore, Corollary 9.10 implies that (Aun) is bounded in V ∗. We have

〈Aun − Au, v〉 = 0 , for all v ∈ Vn. (9.54)

We choose a sequence vn ∈ Vn with vn → u in V . Then

0 ≤ c‖un − u‖2 ≤ 〈Aun − Au, un − u〉 = 〈Aun − Au, vn − u〉
≤ (‖Aun‖+ ‖Au‖) ‖vn − u‖ ≤ C‖vn − u‖

(9.55)

for some constant C which does not depend on n. Therefore, vn → u implies that un → u.
2

Remark: The uniform monotonicity (9.51) already implies coercivity.

We consider the boundary value problem

−div (a(x,∇u)) + a0(x, u) = f , in Ω,

u(x) = 0 , on ∂Ω,
(9.56)

which constitutes a slight generalization of Problem (9.1). An example is given by the
p-Laplacian operator which results when we set a(x, ξ) = |ξ|p−2ξ with p ≥ 2. (p = 2 yields
the Laplace operator.) The variational formulation becomes∫

Ω

〈a(x,∇u(x)),∇v(x)〉 dx+

∫
Ω

a0(x, u(x))v(x) dx =

∫
Ω

f(x)v(x) dx , for all v ∈ V .

(9.57)
The space V still has to be fixed. We assume that a satisfies the growth condition

|a(x, ξ)| ≤ c0(1 + |ξ|p−1) (9.58)

for some p ∈ (1,∞) and the Carathéodory condition

x 7→ a(x, ξ) is measurable for all ξ ∈ Rn

ξ 7→ a(x, ξ) is continuous for almost all x ∈ Ω.
(9.59)

We assume that the same is true for a0 in place of a. The Carathéodory condition
implies that the function x 7→ a(x,∇u(x)) is measurable if ∇u is measurable. The growth
condition (9.58) implies that∫

Ω

〈a(x,∇u(x)),∇v(x)〉 dx ≤ c0

∫
Ω

(1 + |∇u(x)|p−1)|∇v(x)| dx

≤ c0(|Ω|1/q + ‖ |∇u|p−1‖q)‖∇v‖p
(9.60)

holds with 1/p+ 1/q = 1, due to H”older’s inequality. Because q(p− 1) = p we have

‖ |∇u|p−1‖q = (‖∇u‖p)q/p .
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We conclude that the reflexive and separable Banach space

V = W 1,p
0 (Ω)

is the appropriate space for the variational formulation (9.57). Indeed,

〈Au, v〉 =

∫
Ω

〈a(x,∇u(x)),∇v(x)〉 dx+

∫
Ω

a0(x, u(x))v(x) dx (9.61)

defines an operator A : V → V ∗, according to the considerations above (and analogous
ones for a0). This operator is continuous (exercise). It is moreover monotone if we require
that

〈a(x,w)− a(x, z), w − z〉 ≥ 0 , for all w, z ∈ Rn, x ∈ Ω, (9.62)

and the same for a0 instead of a. If in addition

〈a(x,w)− a(x, z), w − z〉 ≥ c|w − z|2 , for all w, z ∈ Rn, x ∈ Ω (9.63)

for some constant c > 0, then A is uniformly monotone in the sense of (9.51). (For a0

we do not require (9.63) to hold, this already follows from the Poincaré inequality in V .)
From Proposition 9.15 it now follows:

Proposition 9.16 Let (9.58), (9.59) and (9.62) be satisfied. Then the quasilinear bound-
ary value problem (9.56) has a unique weak solution in V = W 1,p

0 (Ω) for every right hand
side F ∈ V ∗, and the Galerkin approximations un converge to u in the norm of V . 2
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10 The Bochner Integral

In this chapter, [a, b] always denotes a compact interval in R. For A ⊂ [a, b] we denote its
characteristic function by χA,

χA(t) =

{
1 , t ∈ A ,
0 , t /∈ A .

(10.1)

Definition 10.1 (Simple function) Let V be a Banach space. A function u : [a, b]→ V
is called simple if it has the form

u(t) =
n∑
i=1

χAi
(t)vi , (10.2)

where n ∈ N, Ai ⊂ [a, b] measurable and vi ∈ V for 1 ≤ i ≤ n.

Lemma 10.2 Let V be a Banach space, u : [a, b]→ V simple. Then there exists a unique
representation of u in the form (10.2) satisfying⋃

i

Ai = [a, b] , Ai ∩ Aj = ∅ and vi 6= vj for i 6= j . (10.3)

It is called the canonical representation of u.

Proof: Exercise. 2

Definition 10.3 (Bochner measurability)
Let V be a Banach space. A function u : [a, b] → V is called Bochner measurable if
there exists a sequence of simple functions un : [a, b]→ V such that

lim
n→∞

un(t) = u(t) (10.4)

for almost all t ∈ [a, b].

Definition 10.4 Let V be a Banach space, u : [a, b]→ V a simple function

u(t) =
n∑
i=1

χAi
(t)vi . (10.5)

The Bochner integral of u is defined as∫ b

a

u(t) dt =
n∑
i=1

meas (Ai)vi . (10.6)

For measurable A ⊂ [a, b] we define∫
A

u(t) dt =

∫ b

a

χA(t)u(t) dt . (10.7)
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Definition 10.4 makes sense since the value of the right side of (10.6) does not depend on
which representation of u we choose.

As a direct consequence of the definition we obtain that for simple functions u, v : [a, b]→
V and numbers α, β ∈ R∫ b

a

αu(t) + βv(t) dt = α

∫ b

a

u(t) dt+ β

∫ b

a

v(t) dt , (10.8)

as well as ∥∥∥∥∫ b

a

u(t) dt

∥∥∥∥ ≤ ∫ b

a

‖u(t)‖ dt . (10.9)

Lemma 10.5 Let V be a Banach space, un : [a, b] → V a sequence of simple functions
satisfying un → u almost everywhere. Then for every n ∈ N the function f : [a, b] → R
defined by

f(t) = ‖un(t)− u(t)‖ (10.10)

is measurable.

Proof: We have
f(t) = lim

m→∞
fm(t) , fm(t) := ‖un(t)− um(t)‖ , (10.11)

and fm is a simple function for all m ∈ N. 2

Let now un : [a, b] → V be a sequence of simple function with un → u pointwise a.e.,
satisfying

lim
n→∞

∫ b

a

‖un(t)− u(t)‖ dt = 0 . (10.12)

(By Lemma 10.5 the integrand is measurable.) Due to∥∥∥∥∫ b

a

un(t) dt−
∫ b

a

um(t) dt

∥∥∥∥ ≤ ∫ b

a

‖un(t)− um(t)‖ dt

≤
∫ b

a

‖un(t)− u(t)‖ dt+

∫ b

a

‖um(t)− u(t)‖ dt ,
(10.13)

setting

yn =

∫ b

a

un(t) dt (10.14)

we obtain a Cauchy sequence {yn} in V . If vn : [a, b]→ V defines another sequence with
the same properties as {un},∥∥∥∥∫ b

a

vn(t) dt−
∫ b

a

un(t) dt

∥∥∥∥ ≤ ∫ b

a

‖vn(t)− un(t)‖ dt

≤
∫ b

a

‖vn(t)− u(t)‖ dt+

∫ b

a

‖un(t)− u(t)‖ dt .
(10.15)

Therefore, the limit of {yn} does not depend on the choice of the sequence {un}.
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Definition 10.6 (Bochner integral) Let u : [a, b] → V . If there exists a sequence of
simple functions un : [a, b]→ V such that un → u pointwise a.e. and

lim
n→∞

∫ b

a

‖un(t)− u(t)‖ dt = 0 , (10.16)

then u is called Bochner integrable, and the Bochner integral of u is defined by∫ b

a

u(t) dt = lim
n→∞

∫ b

a

un(t) dt . (10.17)

Lemma 10.7 Let V be a Banach space, let u, v : [a, b] → V Bochner integrable and
α, β ∈ R. Then αu+ βv is Bochner integrable, and∫ b

a

αu(t) + βv(t) dt = α

∫ b

a

u(t) dt+ β

∫ b

a

v(t) dt . (10.18)

Proof: This follows directly from the definitions. 2

Proposition 10.8 Let V be a Banach space. A function u : [a, b] → V is Bochner
integrable if and only if u is Bochner measurable and the function t 7→ ‖u(t)‖ is integrable.
In this case, ∥∥∥∥∫ b

a

u(t) dt

∥∥∥∥ ≤ ∫ b

a

‖u(t)‖ dt . (10.19)

Proof: “⇒”: Let (un) be a sequence of simple functions with un → u pointwise a.e. and∫ b

a

‖u(t)− un(t)‖ dt = 0 . (10.20)

Since ‖un(t)‖ → ‖u(t)‖ for a.e. t ∈ [a, b], the function t 7→ ‖u(t)‖ is measurable. Then∫ b

a

‖u(t)‖ dt ≤
∫ b

a

‖u(t)− un(t)‖ dt+

∫ b

a

‖un(t)‖ dt <∞ . (10.21)

“⇐”: Let (un) be a sequence of simple functions with un → u pointwise almost every-
where. For any given ε > 0 we define vn : [a, b]→ V by

vn(t) =

{
un(t) , if ‖un(t)‖ ≤ (1 + ε)‖u(t)‖ ,
0 , otherwise.

(10.22)

vn is a simple function, since {t : ‖un(t)‖ ≤ (1 + ε)‖u(t)‖} is measurable. For

fn(t) = ‖vn(t)− u(t)‖ (10.23)

we have fn → 0 pointwise a.e. and

0 ≤ fn(t) ≤ (2 + ε)‖u(t)‖ . (10.24)
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From Lebesgue’s theorem on dominated convergence we obtain

lim
n→∞

∫ b

a

‖vn(t)− u(t)‖ dt = lim
n→∞

∫ b

a

fn(t) dt = 0 . (10.25)

Therefore, u is Bochner integrable. With (10.9) it follows that∥∥∥∥∫ b

a

vn(t) dt

∥∥∥∥ ≤ ∫ b

a

‖vn(t)‖ dt ≤ (1 + ε)

∫ b

a

‖u(t)‖ dt (10.26)

and thus ∥∥∥∥∫ b

a

u(t) dt

∥∥∥∥ =

∥∥∥∥ lim
n→∞

∫ b

a

vn(t) dt

∥∥∥∥ ≤ (1 + ε)

∫ b

a

‖u(t)‖ dt . (10.27)

Since ε > 0 was arbitrary, (10.19) follows. 2

We now consider functions u : [a, b]→ V for which∫ b

a

‖u(t)‖p dt <∞ (10.28)

holds.

Definition 10.9 Let V be a Banach space, 1 ≤ p <∞. We define

Lp(a, b;V ) = {[u] |u : [a, b]→ V is Bochner measurable and satisfies (10.28) } . (10.29)

Here, [u] denotes the equivalence class of u with respect to the equivalence relation

u ∼ v ⇔ u = v almost everywhere . (10.30)

Due to Proposition 10.8, L1(a, b;V ) coincides with the vector space of all Bochner inte-
grable functions on [a, b].

Proposition 10.10 Let V be a Banach space, 1 ≤ p < ∞. The space Lp(a, b;V ) is a
Banach space when equipped with the norm

‖u‖Lp(a,b;V ) =

(∫ b

a

‖u(t)‖pV dt
) 1

p

. (10.31)

If V is a Hilbert space, then L2(a, b;V ) becomes a Hilbert space when equipped with the
scalar product

〈u, v〉 =

∫ b

a

〈u(t), v(t)〉V dt . (10.32)

Proof: Omitted. For a given Cauchy sequence, one constructs a limit in the same way as
in the scalar case V = R. In order to prove that this limit is Bochner measurable, one
uses a characterization of measurability due to Pettis. 2

Definition 10.11 For u : [a, b]→ R we define

ess sup
t∈[a,b]

u(t) = inf{M : M ∈ R, u(t) ≤M for almost all t ∈ [a, b]} . (10.33)
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We now consider functions u : [a, b]→ V with values in a Banach space V for which

ess sup
t∈[a,b]

‖u(t)‖V <∞ . (10.34)

Definition 10.12 Let V be a Banach space. We define

L∞(a, b;V ) = {[u] |u : [a, b]→ V is Bochner measurable and (10.34) holds } . (10.35)

Proposition 10.13 Let V be a Banach space. Then L∞(a, b;V ) is a Banach space.

Proof: Again, this is proved in the same manner as in the case V = R. 2

Lemma 10.14 Let V be a Banach space. Then for all 1 ≤ p ≤ q ≤ ∞ we have

Lq(a, b;V ) ⊂ Lp(a, b;V ) . (10.36)

Proof: As in the case V = R. 2

Definition 10.15 Let V be a Banach space. We define

C([a, b];V ) = {u |u : [a, b]→ V continuous} . (10.37)

Definition 10.16 (Oszillation) Let V be a Banach space, u : [a, b]→ V . We define the
oscillation of u by

osc
[a,b]

(u; δ) = sup{‖u(t)− u(s)‖ : s, t ∈ [a, b], |t− s| ≤ δ} . (10.38)

Lemma 10.17 Let V be a Banach space, u : [a, b]→ V continuous. Then

lim
δ→0

osc
[a,b]

(u; δ) = 0 . (10.39)

Proof: The statement (10.39) is equivalent to the uniform continuity of u. 2

For a continuous function u : [a, b]→ V we have

ess sup
t∈[a,b]

‖u(t)‖ = max
t∈[a,b]

‖u(t)‖ , (10.40)

since continuity of u implies that ‖u(t)‖ ≤ ess sups∈[a,b] ‖u(s)‖ holds for all t.

Proposition 10.18 Let V be a Banach space. Then C([a, b];V ) is a Banach space when
equipped with the norm

‖u‖C([a,b];V ) = max
t∈[a,b]

‖u(t)‖ . (10.41)

Moreover, C([a, b];V ) can be identified with a closed subspace of L∞(a, b;V ).
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Proof: If u : [a, b]→ V is continuous, it is Bochner measurable: We define a sequence of
simple functions un : [a, b] → V by un(t) = u(ih), if t ∈ [ih, (i + 1)h), h = (b − a)/n is.
Then

‖un(t)− u(t)‖ ≤ osc
[a,b]

(u;h) , h =
b− a
n

, (10.42)

therefore un → u uniformly (pointwise convergence would already be sufficient for our
purpose). Moreover: Let (un) be a sequence in C satisfying [un]→ [u] in L∞. We choose
a subset N in [a, b] of zero measure such that un → u uniformly in M = [a, b] \N . Then
u is continuous on M . For an arbitrary given t ∈ N we choose a sequence (tk)k∈N in M
such that tk → t. Then

‖un(t)− um(t)‖ ≤ ‖un(t)− un(tk)‖+ ‖un − um‖L∞(a,b;V ) + ‖um(tk)− um(t)‖ ,

thus (un(t))n∈N is a Cauchy sequence. For t ∈ N , let ũ(t) be the limit of this Cauchy
sequence, and set ũ(t) = u(t) for t ∈ M . Then ũ : [a, b]→ V is continuous and [ũ] = [u].
2
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11 Linear parabolic equations

A parabolic equation has the form

∂tu+ Lu = f , (11.1)

where L is an elliptic operator. Let L be given in divergence form as

Lu = −
n∑

i,j=1

∂j(aij(x, t)∂iu) +
n∑
i=1

bi(x, t)∂iu+ c(x, t)u . (11.2)

We consider the corresponding initial-boundary value problem

∂tu+ Lu = f in ΩT = Ω× (0, T ], (11.3)

u = 0 on ∂Ω× (0, T ), (11.4)

u(x, 0) = u0(x) for x ∈ Ω. (11.5)

We pass to a variational formulation with respect to the space variable x.

Let v ∈ C∞0 (Ω) be a test function. We multiply both sides of (11.3) with v, integrate over
Ω and perform partial integration of the divergence term. This yields∫

Ω

∂tu(x, t)v(x) dx+

∫
Ω

n∑
i,j=1

aij(x, t)∂iu(x, t)∂jv(x) dx

+

∫
Ω

n∑
i=1

bi(x, t)∂iu(x, t)v(x) dx+

∫
Ω

c(x, t)u(x, t)v(x) dx

=

∫
Ω

f(x, t)v(x) dx .

(11.6)

Assumption 11.1 Let Ω ⊂ Rn be open and bounded, let aij, bi, c be measurable and
bounded for all i, j, let u0 ∈ L2(Ω), f ∈ L2(ΩT ). We assume that ∂t + L is uniformly
parabolic, that is, there exists a∗ > 0 such that

ξTA(x, t)ξ =
n∑

i,j=1

ξiaij(x, t)ξj ≥ a∗|ξ|2 , for all ξ ∈ Rn, x ∈ Ω, t ∈ (0, T ). (11.7)

2

“Uniformly parabolic” thus means that L is uniformly elliptic, and the ellipticity constant
does not depend on t.

We want to interpret the unknown function u as a function u : [0, T ]→ V , where V is a
suitable Banach space of functions on Ω,

u(t) : Ω→ R , for all t ∈ [0, T ]. (11.8)

The value (u(t))(x) corresponds to u(x, t) in (11.3).
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We write the initial-boundary value problem as

d

dt
(u(t), v)H + a(u(t), v; t) = 〈F (t), v〉V , for all v ∈ V , (11.9)

u(0) = u0 . (11.10)

Here,

H = L2(Ω) , (w, v)H =

∫
Ω

w(x)v(x) dx , (11.11)

V = H1
0 (Ω) , F : [0, T ]→ V ∗ , (11.12)

〈F (t), v〉V stands for (F (t))(v), and

a(w, v; t) =

∫
Ω

(∇w(x))TA(x, t)∇v(x) dx+

∫
Ω

b(x, t)T∇w(x)v(x) dx (11.13)

+

∫
Ω

c(x, t)w(x)v(x) dx . (11.14)

Since in (11.9)
v 7→ a(u(t), v; t)

defines an element of V ∗, one has to expect the same for

v 7→ d

dt
(u(t), v)H .

Thus, when considering (11.9), the three spaces V , H, and V ∗ are involved. It turns out
that the notion of an evolution triple provides a suitable abstract formulation for this
situation.

For v∗ ∈ V ∗ and v ∈ V , as above we use the notation

〈v∗, v〉V := v∗(v) . (11.15)

Proposition 11.2 Let H be a Hilbert space, V a reflexive Banach space over R, let
j : V → H be linear, continuous and injective, let j(V ) be dense in H. Then

〈j∗(h), v〉V = (h, j(v))H (11.16)

defines a linear, continuous and injective mapping j∗ : H → V ∗ satifying ‖j∗‖ ≤ ‖j‖, and
j∗(H) is dense in V ∗.

Proof: Let h ∈ H. The right hand side of (11.16) defines, since

|(h, j(v))H | ≤ ‖h‖H ‖j(v)‖H ≤ ‖h‖H ‖j‖ ‖v‖V , (11.17)

an element j∗(h) ∈ V ∗ with
‖j∗(h)‖V ∗ ≤ ‖j‖ ‖h‖H . (11.18)

j∗ is linear and, because of (11.18), continuous, and ‖j∗‖ ≤ ‖j‖. Let j∗(h) = 0. Then

(h, j(v))H = 0 , for all v ∈ V . (11.19)
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Let (vn) be a sequence in V with j(vn)→ h in H. Then

(h, h)H = (h, lim
n→∞

j(vn))H = lim
n→∞

(h, j(vn))H = 0 , (11.20)

thus h = 0. This shows that j∗ is injective. It remains to show that j∗(H) is dense in V ∗.
Let v∗∗ ∈ V ∗∗ be arbitrary with v∗∗(j∗(H)) = 0. It suffices to show that we then must
have v∗∗ = 0. (If W = cl (j∗(H)) were a proper subset of V ∗, according to the theorem
of Hahn-Banach there would exist a v∗∗ ∈ V ∗∗ with v∗∗(W ) = 0, but v∗∗ 6= 0). As V is
reflexive, we find a v ∈ V with

〈v∗, v〉V = v∗∗(v∗) , for all v∗ ∈ V ∗ . (11.21)

We then have

0 = v∗∗(j∗(h)) = 〈j∗(h), v〉V = (h, j(v))H , for all h ∈ H, (11.22)

therefore j(v) = 0 and, since j is injective, v = 0. Thus, v∗∗ = 0. 2

Corollary 11.3 In the situation of Proposition 11.2 we moreover have: the mapping
J : V → V ∗, J = j∗ ◦ j, is linear, continuous and injective, J(V ) is dense in V ∗, and

〈Jv, w〉V = 〈Jw, v〉V , for all v, w ∈ V . (11.23)

Proof: This follows directly from Proposition 11.2 and from the identity

〈Jv, w〉V = (j(v), j(w))H = (j(w), j(v))H = 〈Jw, v〉V . (11.24)

2

We thus have
V

j→ H
j∗→ V ∗ (11.25)

with continuous and dense embeddings.

Definition 11.4 Under the assumptions of Proposition 11.2, (11.25) is called an evolu-
tion triple or Gelfand triple.

For the parabolic problem (11.3) – (11.5) we set

V = H1
0 (Ω) , H = L2(Ω) , (11.26)

and let
j : H1

0 (Ω)→ L2(Ω) (11.27)

be the canonical embedding defined by j(v)(x) = v(x). The mapping j∗ can be interpreted
as follows. For h ∈ H = L2(Ω),

〈j∗(h), v〉V = (h, j(v))H =

∫
Ω

h(x)v(x) dx . (11.28)
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To the element j∗(h) ∈ V ∗ we associate an element w ∈ V via the Riesz representation
theorem and obtain

〈j∗(h), v〉V =

∫
Ω

〈∇w(x),∇v(x)〉 dx . (11.29)

Here, we have taken the scalar product in H1
0 (Ω) to be the L2 scalar product of the

gradients (see the Poincaré inequality). From (11.28) and (11.29) it follows that w is
nothing else than the weak solution of the elliptic boundary value problem

−∆w = h in Ω,

w = 0 on ∂Ω.
(11.30)

The embeddings j and j∗ of an evolution triple induce via

u 7→ j ◦ u 7→ j∗ ◦ j ◦ u (11.31)

embeddings of the corresponding Lp spaces,

Lp(0, T ;V )→ Lp(0, T ;H)→ Lp(0, T ;V ∗) . (11.32)

In what follows we sometimes do not write j and j∗ explicitly, that is, when we write
“h = v” or “w = v” with v ∈ V , h ∈ H and w ∈ V ∗, it stands for “h = j(v)” resp.
“w = j∗(j(v))”.

Definition 11.5 (Weak time derivative)
Let u ∈ L1(0, T ;V ). A w ∈ L1(0, T ;V ∗) is called a weak derivative of u if∫ T

0

w(t)ϕ(t) dt = −
∫ T

0

J(u(t))ϕ′(t) dt , (11.33)

for all ϕ ∈ C∞0 (0, T ). 2

The integrals in (11.33) are Bochner integrals.

We want to reduce equations in V and V ∗ to equations in R. For this, we need the
formulas〈

v∗ ,

∫ T

0

u(t) dt

〉
V

=

∫ T

0

〈v∗, u(t)〉V dt , v∗ ∈ V ∗ , u ∈ L1(0, T ;V ) , (11.34)

and 〈∫ T

0

u(t) dt , v

〉
V

=

∫ T

0

〈u(t), v〉V dt , v ∈ V , u ∈ L1(0, T ;V ∗) . (11.35)

Proposition 11.6 Let V be a Banach space. If v∗ ∈ V ∗ and u ∈ L1(0, T ;V ), then
t 7→ 〈v∗, u(t)〉V is integrable, and (11.34) holds. If v ∈ V and u ∈ L1(0, T ;V ∗), then
t 7→ 〈u(t), v〉V is integrable, and (11.35) holds.
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Proof: We consider (11.34). If

u =
n∑
i=1

χAi
vi (11.36)

is a simple function with values vi ∈ V , then t 7→ 〈v∗, u(t)〉V is a simple function, too,
and 〈

v∗ ,

∫ T

0

u(t) dt

〉
V

=

〈
v∗ ,

n∑
i=1

meas (Ai)vi

〉
V

=
n∑
i=1

meas (Ai) 〈v∗, vi〉V

=

∫ T

0

〈v∗, u(t)〉V dt , v∗ ∈ V ∗ .

Let now u ∈ L1(0, T ;V ) be arbitrary. For v∗ ∈ V ∗ we have 〈v∗, u(t)〉V = (v∗ ◦ u)(t).
Moreover, v∗ ◦ u is measurable, since v∗ is continuous and u is Bochner measurable.
Moreover, ∫ T

0

| 〈v∗, u(t)〉V | dt ≤
∫ T

0

‖v∗‖V ∗‖u(t)‖V dt ≤ ‖v
∗‖V ∗‖u‖L1(0,T ;V ) .

Analogously, we obtain∣∣∣∣〈v∗ , ∫ T

0

u(t) dt

〉
V

∣∣∣∣ ≤ ‖v∗‖V ∗ ∥∥∥∥∫ T

0

u(t) dt

∥∥∥∥
V

≤ ‖v∗‖V ∗‖u‖L1(0,T ;V ) .

Therefore, both sides of (11.34) define a linear and continous functional on L1(0, T ;V ).
They coincide on the dense subspace of the simple functions and are therefore equal.

The proof of (11.35) is analogous. 2

The following two results are concerned with the characterization and the uniqueness of
the weak derivative.

Lemma 11.7 Let V
j→ H

j∗→ V ∗ be an evolution triple, u ∈ L1(0, T ;V ), w ∈ L1(0, T ;V ∗).
Then w is the weak derivative of u if and only if∫ T

0

(u(t), v)Hϕ
′(t) dt = −

∫ T

0

〈w(t), v〉V ϕ(t) dt , ∀ v ∈ V, ϕ ∈ C∞0 (0, T ) . (11.37)

Proof: Due to (11.35), for all v ∈ V and all ϕ ∈ C∞0 (0, T ) we have∫ T

0

(j(u(t)), j(v))Hϕ
′(t) dt =

∫ T

0

〈ϕ′(t)J(u(t)), v〉V dt

=

〈∫ T

0

J(u(t))ϕ′(t) dt , v

〉
V

,

(11.38)

and

−
∫ T

0

〈w(t), v〉V ϕ(t) dt =

〈∫ T

0

−w(t)ϕ(t) dt , v

〉
V

. (11.39)

Therefore, (11.37) is equivalent to∫ T

0

J(u(t))ϕ′(t) dt = −
∫ T

0

w(t)ϕ(t) dt , for all ϕ ∈ C∞0 (0, T ) . (11.40)

2
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Corollary 11.8 Let w ∈ L2(0, T ;V ∗) be the weak derivative of u ∈ L2(0, T ;V ). Then,
for every v ∈ V , the function t 7→ 〈w(t), v〉V is the weak derivative of the function
t 7→ (u(t), v)H in L2(0, T ). The same is true if L2 is replaced by L1.

Lemma 11.9 Let V be a separable Banach space, w ∈ L1(0, T ;V ∗), let∫ T

0

ϕ(t)w(t) dt = 0 , for all ϕ ∈ C∞0 (0, T ) . (11.41)

Then w = 0 almost everywhere.

Proof: In the special case V = R = V ∗, this is the fundamental lemma of the calculus of
variations, see Proposition 2.7.

For v ∈ V and ϕ ∈ C∞0 (0, T ) we have

0 =

〈∫ T

0

ϕ(t)w(t) dt , v

〉
V

=

∫ T

0

ϕ(t) 〈w(t), v〉V dt . (11.42)

Using the result for V = R, we obtain that for every v ∈ V there exists a null set N(v)
with

〈w(t), v〉 = 0 , for all t ∈ (0, T ) \N(v) . (11.43)

Let D be a countable dense subset of V , let

N =
⋃
v∈D

N(v) . (11.44)

Then N is a null set, and

〈w(t), v〉 = 0 , for all t ∈ (0, T ) \N , v ∈ D . (11.45)

Since D is dense in V ,

〈w(t), v〉 = 0 , for all t ∈ (0, T ) \N , v ∈ V , (11.46)

and thus w(t) = 0 for all t /∈ N . 2

Proposition 11.10 Let V be a separable Banach space, u ∈ L2(0, T ;V ). Then there
exists at most one weak derivative w ∈ L2(0, T ;V ∗) of u. If it exists, we denote it by u′.

Proof: If w1, w2 ∈ L2(0, T ;V ∗) are weak derivatives of u, it follows from its definition
that for w = w1 − w2 we have ∫ T

0

w(t)ϕ(t) dt = 0 (11.47)

for all ϕ ∈ C∞0 (0, T ). From Lemma 11.9 we conclude that w = 0. 2

Remark: The assertions of Lemma 11.9 and of Proposition 11.10 hold for also for non-
separable Banach spaces X and w ∈ L1(0, T ;X).
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We return to the parabolic initial-boundary value problem and repeat its formulation as
an “abstract” initial value problem

〈u′(t), v〉V + a(u(t), v; t) = 〈F (t), v〉V , for all v ∈ V , (11.48)

u(0) = u0 . (11.49)

The boundary condition u = 0 on ∂Ω is taken care of by the space H1
0 (Ω).

We look for a solution u in the space

W = {u : u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;V ∗)} , (11.50)

which satisfies (11.48) for almost all t ∈ (0, T ).

Proposition 11.11 Let V
j→ H

j∗→ V ∗ be an evolution triple. Then we have

W ⊂ C([0, T ];H) . (11.51)

Moreover, the rule of partial integration

(u(t), v(t))H − (u(s), v(s))H =

∫ t

s

〈u′(τ), v(τ)〉V + 〈v′(τ), u(τ)〉V dτ (11.52)

holds for all u, v ∈ W and all s, t ∈ [0, T ].

Proof: See for example chapter IV in the book of Gajewski, Gröger and Zacharias (in
German), or Theorem 5.9.3 in Evans, or my lecture notes from the summer term 2013 (in
German). 2

The inclusion (11.51) has to be understood in the following sense: If u ∈ W , the equiv-
alence classe [j ◦ u] ∈ L2(0, T ;H) of j ◦ u contains a continuous function (in fact, this
function is then uniquely determined). The left side of (11.52) has to be interpreted in
this sense, as continuous functions can be evaluated unambiguously at the points s and t.
For the same reason, the initial condition (11.49) is well-defined for functions in W . (For
arbitrary functions in L2(0, T ;V ), (11.49) is not well-defined.)

Assumption 11.12

(i) V
j→ H

j∗→ V ∗ is an evolution triple, V is a separable Banach space with dim(V ) =
+∞.

(ii) a : V × V × (0, T ] → R is a bilinear form for every t ∈ (0, T ], end there exist
ca, ch, Ca > 0 with

a(v, v; t) ≥ ca‖v‖2
V − ch‖j(v)‖2

H , for all v ∈ V , t ∈ (0, T ], (11.53)

|a(v, w; t)| ≤ Ca‖v‖ ‖w‖ , for all v, w ∈ V , t ∈ (0, T ]. (11.54)

The mappings t 7→ a(v, w; t) are measurable for all v, w ∈ V .

(iii) u0 ∈ H, F ∈ L2(0, T ;V ∗).
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2

Theorem 11.13 Under the assumptions in 11.12, the initial-boundary value problem
(11.48), (11.49) has a solution u ∈ W .

The proof consists of a sequence of Lemmas; we always assume that Assumption 11.12 is
satisfied.

As in chapter 9 we use Galerkin approximation. The idea is to solve first the initial value
problem on finite dimensional subspaces Vn of V , and to obtain the solution on V by a
limit passage. The existence of the limit results from a compactness argument. In order
for this to work, the sequence of approximate solutions has to be bounded. This will
follow from the properties of the bilinear form guaranteed by assumption 11.12. These
properties will turn out to hold since ∂t + L is uniformly parabolic.

The Galerkin approximation is based on a sequence (wn)n∈N in V with

dim(Vn) = n , Vn := span {w1, . . . , wn} , V = cl

(⋃
n∈N

Vn

)
. (11.55)

We want to determine functions un : [0, T ]→ Vn, represented as

un(t) =
n∑
k=1

cnk(t)wk , cnk : [0, T ]→ R , (11.56)

such that we have, for almost all t ∈ (0, T ],

(u′n(t), v)H + a(un(t), v; t) = 〈F (t), v〉V , for all v ∈ Vn ,
un(0) = u0n .

(11.57)

The initial values u0n ∈ Vn are uniquely defined (recall that j is injective) by

j(u0n) = p(u0, j(Vn)) . (11.58)

Here, p(u0, j(Vn)) denotes the orthogonal projection of u0 to the closed subspace j(Vn) of
H. This definition ensures that j(u0n)→ u0 in H and that ‖j(u0n)‖H ≤ ‖u0‖H . Let

u0n =
n∑
k=1

αnkwk ∈ Vn . (11.59)

A system equivalent to (11.57) and (11.58) is given by

n∑
k=1

c′nk(t)(wk, wi)H +
n∑
k=1

cnk(t)a(wk, wi; t) = 〈F (t), wi〉V , 1 ≤ i ≤ n , (11.60)

cnk(0) = αnk , 1 ≤ k ≤ n . (11.61)

Lemma 11.14 The Galerkin equations (11.57), (11.58) have a unique solution un :
[0, T ]→ Vn with u′n ∈ L2(0, T ;Vn) and

un(t) = u0n +

∫ t

0

u′n(s) ds . (11.62)
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Proof: The vectors w1, . . . , wn are linearly independent in V . Since j is injective, the
vectors j(w1), . . . , j(wn) are linearly independent in H. The matrix

B = (bik) , bik = (wk, wi)H , (11.63)

is invertible (exercise), and we may write (11.60), (11.61) in the form

c′n(t) +B−1Ã(t)cn(t) = B−1F̃ (t) , cn(0) = αn , (11.64)

where

Ã(t) = (ãik(t)) , ãik(t) = a(wk, wi; t) , F̃i(t) = 〈F (t), wi〉V . (11.65)

By our assumptions, Ã ∈ L∞(0, T ;R(n,n)), and because of

|F̃i(t)| = | 〈F (t), wi〉V | ≤ ‖F (t)‖V ∗ ‖wi‖V

we have F̃ ∈ L2(0, T ;Rn). The initial value problem (11.64) has a unique solution cn :
[0, T ]→ Rn with

cn(t) = cn(0) +

∫ t

0

c′n(s) ds , c′n ∈ L2(0, T ;Rn) , (11.66)

according to the Picard-Lindelöf theorem in the version for measurable right hand sides,
see for example the book of Walter on ordinary differential equations. 2

Lemma 11.15 There exists a constant C > 0, which does not depend on n, such that

max
t∈[0,T ]

‖un(t)‖H + ‖un‖L2(0,T ;V ) + ‖u′n‖L2(0,T ;V ∗) ≤ C(‖u0‖H + ‖F‖L2(0,T ;V ∗)) . (11.67)

Proof: Let n ∈ N be fixed. We set v = un(t) in (11.57) and obtain

(u′n(t), un(t))H + a(un(t), un(t); t) = 〈F (t), un(t)〉V . (11.68)

We have
d

dt

1

2
(un(t), un(t))H = (u′n(t), un(t))H (11.69)

according to the product rule for bilinear forms (applied on the finite dimensional subspace
Vn). By our assumption on a,

a(un(t), un(t); t) ≥ ca‖un(t)‖2
V − ch‖un(t)‖2

H . (11.70)

We integrate (11.68) over [0, t] and obtain, using (11.69) and (11.70),

1

2
‖un(t)‖2

H −
1

2
‖un(0)‖2

H + ca

∫ t

0

‖un(s)‖2
V ds

≤ ch

∫ t

0

‖un(s)‖2
H ds+

∫ t

0

〈F (s), un(s)〉V ds

(11.71)

According to our choice of u0n,
‖u0n‖H ≤ ‖u0‖H . (11.72)
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Using Young’s inequality, we get∫ t

0

〈F (s), un(s)〉V ds ≤ ca
2

∫ t

0

‖un(s)‖2
V ds+

1

2ca

∫ t

0

‖F (s)‖2
V ∗ ds . (11.73)

We insert (11.72) and (11.73) into (11.71), multiply by 2 and obtain

‖un(t)‖2
H + ca

∫ t

0

‖un(s)‖2
V ds

≤ ‖u0‖2
H + 2ch

∫ t

0

‖un(s)‖2
H ds+

1

ca

∫ t

0

‖F (s)‖2
V ∗ ds .

(11.74)

For
η(t) = ‖un(t)‖2

H (11.75)

it follows that

η(t) ≤ d0 + 2ch

∫ t

0

η(s) ds , d0 = ‖u0‖2
H +

1

ca

∫ T

0

‖F (s)‖2
V ∗ ds , t ∈ [0, T ] . (11.76)

Using Gronwall’s lemma we conclude that

η(t) ≤ d0e
2cht , for all t ∈ [0, T ]. (11.77)

Thus, for a suitable constant C,

‖un(t)‖2
H ≤ C(‖u0‖2

H + ‖F‖2
L2(0,T ;V ∗)) , for all t ∈ [0, T ]. (11.78)

From (11.74) it follows (with C suitably enlarged)

‖un‖2
L2(0,T ;V ) ≤ C(‖u0‖2

H + ‖F‖2
L2(0,T ;V ∗)) . (11.79)

In order to estimate u′n in the norm of V ∗ we consider once more the variational equation

〈u′n(t), v〉V + a(un(t), v; t) = 〈F (t), v〉V , for all v ∈ V . (11.80)

It follows that
| 〈u′n(t), v〉V | ≤ Ca‖un(t)‖V ‖v‖V + ‖F (t)‖V ∗‖v‖V , (11.81)

thus
‖u′n(t)‖V ∗ ≤ Ca‖un(t)‖V + ‖F (t)‖V ∗ , (11.82)

and therefore

‖u′n‖2
L2(0,T ;V ∗) ≤

∫ T

0

(Ca‖un(t)‖V + ‖F (t)‖V ∗)
2 dt

≤ 2C2
a‖un‖

2
L2(0,T ;V ) + 2‖F‖2

L2(0,T ;V ∗) .

The assertion now follows from (11.79). 2
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Lemma 11.16 There exists a subsequence (unk
)k∈N and a u ∈ L2(0, T ;V ) such that unk

converges weakly in L2(0, T ;V ). The limit function u satisfies

− (u0, v)H ϕ(0)−
∫ T

0

〈u(t), v〉V ϕ
′(t) dt+

∫ T

0

a(u(t), v; t)ϕ(t) dt

=

∫ T

0

〈F (t), v〉V ϕ(t) dt ,

(11.83)

for all v ∈ V and all ϕ ∈ C1[0, T ] with ϕ(T ) = 0.

Proof: Due to Lemma 11.15, (un) is bounded in the Hilbert space L2(0, T ;V ). Thus,
there exists a subsequence (unk

) which converges weakly to some u ∈ L2(0, T ;V ).

Let i ∈ N, v ∈ Vi, ϕ ∈ C1[0, T ] with ϕ(T ) = 0. For n ≥ i we get, because of (11.57),∫ T

0

(u′n(t), v)Hϕ(t) dt+

∫ T

0

a(un(t), v; t)ϕ(t) dt =

∫ T

0

〈F (t), v〉V ϕ(t) dt . (11.84)

Partial integration yields

− (un(0), v)Hϕ(0)−
∫ T

0

〈un(t), v〉V ϕ
′(t) dt+

∫ T

0

a(un(t), v; t)ϕ(t) dt

=

∫ T

0

〈F (t), v〉V ϕ(t) dt .

(11.85)

Since un(0) = u0n → u0 in H, we obtain

lim
k→∞
−(unk

(0), v)H = −(u0, v)H . (11.86)

We investigate the passage to the limit for the two integrals on the left side of (11.85).
The assignment

z 7→
∫ T

0

〈z(t), v〉V ϕ
′(t) dt (11.87)

defines a linear continuous functional on L2(0, T ;V ), since∣∣∣∣∫ T

0

〈J(z(t)), v〉V ϕ
′(t) dt

∣∣∣∣ ≤ ∫ T

0

‖J(z(t))‖V ∗‖v‖V |ϕ
′(t)| dt

≤ ‖j∗ ◦ j‖ ‖v‖V ‖ϕ
′‖∞

∫ T

0

‖z(t)‖V dt

≤ ‖j∗ ◦ j‖ ‖v‖V ‖ϕ
′‖∞
√
T‖z‖L2(0,T ;V ) .

(11.88)

The weak convergence unk
⇀ u therefore implies that

lim
k→∞

∫ T

0

〈unk
(t), v〉V ϕ

′(t) dt =

∫ T

0

〈u(t), v〉V ϕ
′(t) dt . (11.89)

Analogously, from∫ T

0

a(z(t), v; t)ϕ(t) dt ≤ Ca‖v‖V ‖ϕ‖∞
√
T‖z‖L2(0,T ;V ) (11.90)
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for all z ∈ L2(0, T ;V ) we obtain that

lim
k→∞

∫ T

0

a(unk
(t), v; t)ϕ(t) dt =

∫ T

0

a(u(t), v; t)ϕ(t) dt . (11.91)

Thus, (11.83) is proved for v ∈ Vi. Since i was arbitrary and ∪iVi is dense in V , the
assertion follows. 2

Lemma 11.17 The expression

〈α̃(t), v〉V = a(u(t), v; t) , v ∈ V , t ∈ (0, T ) , (11.92)

defines a function α̃ ∈ L2(0, T ;V ∗) which satisfies

‖α̃‖L2(0,T ;V ∗) ≤ Ca‖u‖L2(0,T ;V ) . (11.93)

Proof: We have
|a(u(t), v; t)| ≤ Ca‖u(t)‖V ‖v‖V , v ∈ V ,

for almost all t ∈ (0, T ). Therefore,

α̃(t) ∈ V ∗ , ‖α̃(t)‖V ∗ ≤ Ca‖u(t)‖V

for almost all t ∈ (0, T ), and (11.93) follows from∫ T

0

‖α̃(t)‖2
V ∗ dt ≤ C2

a

∫ T

0

‖u(t)‖2
V dt .

2

Proof of Theorem 11.13. According to Lemma 11.16 and Lemma 11.17, for all ϕ ∈
C∞0 (0, T ) and all v ∈ V we have

−
∫ T

0

(u(t), v)Hϕ
′(t) dt = −

∫ T

0

〈α̃(t), v〉V ϕ(t) dt+

∫ T

0

〈F (t), v〉V ϕ(t) dt . (11.94)

By Lemma 11.7, u has the weak derivative

u′ ∈ L2(0, T ;V ∗) , u′(t) = −α̃(t) + F (t) ,

so
〈u′(t), v〉V + a(u(t), v; t) = 〈F (t), v〉V , v ∈ V , (11.95)

as claimed, and u ∈ W . From Proposition 11.11 we obtain that u ∈ C([0, T ];H). We
now replace in (11.83) the two rightmost integrals according to (11.95) and obtain

−(u0, v)Hϕ(0)−
∫ T

0

〈u(t), v〉V ϕ
′(t) dt =

∫ T

0

〈u′(t), v〉V ϕ(t) dt (11.96)

for all v ∈ V and all ϕ ∈ C1[0, T ] with ϕ(T ) = 0. Since, on the other hand, the function
t 7→ ϕ(t)v also is an element of W , we obtain for such functions ϕ by Proposition 11.11

−(u(0), v)Hϕ(0) =

∫ T

0

〈u′(t), ϕ(t)v〉V + 〈ϕ′(t)v, u(t)〉V dt . (11.97)
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Choosing in particular a ϕ with ϕ(0) = 1 it follows from (11.96) and (11.97) that

(u(0)− u0, v)H = 0 (11.98)

for all v ∈ V . As j(V ) is dense in H, we obtain u(0) = u0. Theorem 11.13 is now
completely proved. 2

Theorem 11.18 Under the assumptions 11.12, the initial value problem (11.48), (11.49)
has a unique solution u ∈ W . Moreover, there exists a constant C > 0 which is indepen-
dent from u0 and F such that

max
t∈[0,T ]

‖u(t)‖H + ‖u‖L2(0,T ;V ) + ‖u′‖L2(0,T ;V ∗) ≤ C(‖u0‖H + ‖F‖L2(0,T ;V ∗)) . (11.99)

Proof: Existence follows from Proposition 11.13. For every solution u ∈ W it follows
from Proposition 11.11 that for every t ∈ [0, T ]

1

2
(u(t), u(t))H −

1

2
(u0, u0)H =

∫ t

0

〈u′(s), u(s)〉V ds

= −
∫ t

0

a(u(s), u(s); s) ds+

∫ t

0

〈F (s), u(s)〉V ds .

Thus,

1

2
‖u(t)‖2

H +

∫ t

0

a(u(s), u(s); s) ds =
1

2
‖u0‖2

H +

∫ t

0

〈F (s), u(s)〉V ds . (11.100)

It follows that

1

2
‖u(t)‖2

H + ca

∫ t

0

‖u(s)‖2
V ds− ch

∫ t

0

‖u(s)‖2
H ds

≤ 1

2
‖u0‖2

H +
ca
2

∫ t

0

‖u(s)‖2
V ds+

1

2ca

∫ t

0

‖F (s)‖2
V ∗ ds .

(11.101)

Using Gronwall’s lemma, we obtain with an argument analogous to that in the proof of
Lemma 11.15

max
t∈[0,T ]

‖u(t)‖H ≤ C(‖u0‖H + ‖F‖L2(0,T ;V ∗)) . (11.102)

From (11.101) we also obtain

‖u‖L2(0,T ;V ) ≤ C(‖u0‖H + ‖F‖L2(0,T ;V ∗)) . (11.103)

From (11.95) and Lemma 11.17 it follows that

‖u′‖L2(0,T ;V ∗) ≤ Ca‖u‖L2(0,T ;V ) + ‖F‖L2(0,T ;V ∗) . (11.104)

From (11.101) and (11.104) we now obtain (11.99) as well as the uniqueness, since to the
difference of two solutions we may apply (11.99) with F = 0, u0 = 0. 2

We return to the initial-boundary value problem

∂tu+ Lu = f in ΩT = Ω× (0, T ], (11.105)

u = 0 on ∂Ω× (0, T ), (11.106)

u(x, 0) = u0(x) for x ∈ Ω. (11.107)
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As a weak solution of (11.105) – (11.107) we define a solution of the associated initial
value problem (11.48), (11.49), which is discussed above. In this case,

a(w, v; t) =

∫
Ω

(∇w(x))TA(x, t)∇v(x) dx+

∫
Ω

b(x, t)T∇w(x)v(x) dx (11.108)

+

∫
Ω

c(x, t)w(x)v(x) dx , (11.109)

and

(F (t))(v) =

∫
Ω

f(x, t)v(x) dx . (11.110)

Theorem 11.19 (Unique solvability of the initial-boundary value problem)
Let the assumptions 11.1 be satisfied. The the problem (11.105) – (11.107) has a unique
solution u ∈ W .

Proof: The assertion is a consequence of Proposition 11.18; we only have to check that
the assumptions in 11.12 are satisfied. As evolution triple we choose

V = H1
0 (Ω) , H = L2(Ω) , (j(v))(x) = v(x) .

Since ∂t + L is uniformly parabolic, G̊arding’s inequality (Lemma 3.5) implies that

a(v, v; t) ≥ ca‖v‖2
V − ch‖v‖2

H , f”ur alle v ∈ V , t ∈ (0, T ],

holds with suitable constants ca, ch. Since the coefficients A, b, and c are bounded, it
follows that

|a(v, w; t)| ≤ Ca‖v‖V ‖w‖V , for all v, w ∈ V , t ∈ (0, T ],

for a suitable constant Ca. Moreover,

|(F (t))(v)|2 ≤
∫

Ω

|f(x, t)v(x)|2 dx ≤
∫

Ω

|f(x, t)|2 dx ·
∫

Ω

|v(x)|2 dx

≤ CΩ

∫
Ω

|f(x, t)|2 dx · ‖v‖2
V ,

where we have used Poincaré’s inequality. It follows that

‖F‖2
L2(0,T ;V ∗) =

∫ T

0

‖F (t)‖2
V ∗ dt ≤ CΩ

∫ T

0

∫
Ω

|f(x, t)|2 dx dt ≤ CΩ‖f‖2
L2(ΩT ) ,

therefore F ∈ L2(0, T ;V ∗). 2

The method described above reduces the initial-boundary value problem to an initial value
problem in the context of an evolution triple. This method can also be applied to other
partial differential equations. For example, one can reformulate hyperbolic equations (in
particular, the wave equation) as a second order equation (with leading term u′′(t)) in a
form analogous to (11.48), and one can prove a corresponding existence and uniqueness
result.
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The method of Galerkin approximation can also be used for the numerical solution
of a parabolic initial-boundary value problem. One chooses Vn together with a basis
{w1, . . . , wn} and solves the system

n∑
k=1

c′nk(t)(j(wk), j(wi))H +
n∑
k=1

cnk(t)a(wk, wi; t) = 〈F (t), wi〉V , 1 ≤ i ≤ n , (11.111)

of n ordinary differential equations for the unknown functions cnk, 1 ≤ k ≤ n, by a
suitable numerical method.
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12 PDEs in Continuum Mechanics

Space as a continuum. Continuum mechanics describes phenomena in space and time.
Space is modeled as R3, and time is modeled as R. With regard to space, continuum
mechanics operates on a macroscopic scale, many magnitudes of order above molecular and
atomic length scales. Nevertheless, a function with arguments in R3 has a mathematical
meaning on all (even arbitrarily small) length scales. In view of this contrast, what is the
relation between “reality” and mathematical model ?

As an example we consider a porous material, that is, a body consisting of solid material
and of cavities (also called pores). Examples are a pile of sand or of rocks, or a cellular
.... Whether the cavities are empty or filled (with a gas or a fluid) does not matter at the
moment. Let G ⊂ Rd be the region in space that we consider, let P ⊂ G be the region
“occupied” by the cavities. Depending on the situation we may have d = 1, 2, or 3. Let
x ∈ G be a point, let

Wh(x) = {z : ‖z − x‖∞ ≤
h

2
} (12.1)

be a cube completely contained in G with center x and sidelength h. We define

ϕh(x) =
vold(P ∩Wh(x))

vold(Wh(x))
= h−dvold(P ∩Wh(x)) . (12.2)

The function ϕh yields the fraction of cavity volume in the cube Wh(x). We want to
replace this function by a function which depends only on x, not on h. This means that
we want to define the fraction of cavity volume “at a point x”. For this, it does not make
sense to look for a limit as h → 0; one wants to obtain a function which represents the
behaviour for small, but finite values of h.

The basic assumption which underlies such a procedure is the following:

There is an interval I of values of h, in which h 7→ ϕh(x) is approximately
constant, at all points x of G.

This basic assumption means that, in this interval, averaging according to (12.2) yields
a reasonable approximation to the real situation. The values of h in I are typically big
with respect to the fine structure of the porous material. In addition, one requires that
I also includes values of h which are small when compared to the size of G. If this is not
the case, it would not make much sense to consider a dependence on x. One now models
the volume fraction of the cavities (as a variable which contributes to the description of
the porous structure) as a function ϕ : G → R which approximates ϕh from (12.2) This
function is called the porosity of the material.

We may rewrite (12.2) equivalently as

vold(P ∩Wh(x)) = ϕh(x) · hd = ϕh(x)vold(Wh(x)) . (12.3)

For the continuum model this means that∫
U

ϕ(x) dx (12.4)
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is a reasonable approximation for the actual volume vold(P ∩ U) of the cavity. We may
interpret the function ϕ as the density function of a measure. This measure approxi-
mates the measure ν defined by ν(U) = vold(P ∩U) which yields the actual cavity volume
in subsets U of G.

Another example of a variable which is continuous in space is the mass density. Let us
consider a solid body occupying a region G ⊂ Rd. Let the cube Wh(x) given by (12.1)
have the mass m(Wh(x)). Its average per volume is

ρh(x) =
m(Wh(x))

vold(Wh(x))
. (12.5)

In the same manner as above one introduces the continuous mass density ρ : G → R.
Then the mass of a subset U ⊂ G is taken to be

m(U) =

∫
U

ρ(x) dx . (12.6)

Space and time as continuum. In this case, the density function depends on time,
“ϕ = ϕ(t, x)”. Let us assume that ϕ models a quantity of dimension G. For example,
G could be kilograms or calories. The density function ϕ has dimension GL−d, where d
is the dimension of space, and L is the dimension of length. The total amount of the
quantity contained in a region U ⊂ Rd at time t is∫

U

ϕ(t, x) dx , (12.7)

which has dimension G.

We want to derive a general so-called balance equation in space dimension d = 1, that
is, for regions U = (a, b). We assume that the total amount of the quantity moving (or
“flowing”) through a given space point x ∈ (a, b) during the time interval [t, τ ] is given by∫ τ

t

q(s, x) ds . (12.8)

The function q is called flux, it is also a density function. It describes the time rate
with which the quantity flows through the point x in the positive x-direction, it has the
dimension GT −1, where T is a dimension of time.

A balance equation describing this process is∫ b

a

ϕ(τ, x) dx−
∫ b

a

ϕ(t, x) dx = −
∫ τ

t

q(s, b) ds+

∫ τ

t

q(s, a) ds . (12.9)

This equation means that the difference of the total amount of the quantity within (a, b)
between time t and time τ equals the total amount of the quantity which flows through
the boundary points a and b during the time interval [t, τ ]. This is valid for a process
where the “items” of the quantity (e.g. the individual fluid particles) just flow but are
neither destroyed nor created.

Let us now assume that the balance equation (12.9) is valid for every space interval (a, b)
and every time interval [t, τ ]. Dividing by τ − t yields∫ b

a

ϕ(τ, x)− ϕ(t, x)

τ − t
dx =

1

τ − t

∫ τ

t

−q(s, b) + q(s, a) ds . (12.10)
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Passing to the limit τ → t yields∫ b

a

∂tϕ(t, x)dx = −q(t, b) + q(t, a) . (12.11)

Analogously, dividing by b− a passing to the limit b→ a gives

∂tϕ(t, a) = −∂xq(t, a) .

Since (12.9) is assumed to hold for all intervals (a, b) and [t, τ ] of interest, we arrive at
the partial differential equation

∂tϕ(t, x) + ∂xq(t, x) = 0 , for all t, x, (12.12)

for the two unknown functions ϕ and q.

Since this equation is valid for all kinds of processes which conserve a quantity in the
sense described above, it is not surprising that it alone is not sufficient to determine the
functions ϕ and q. To describe a specific process, one needs additional properties, for
example an equation of the form

q = Q(ϕ) , that is, q(t, x) = Q(ϕ(t, x)) , (12.13)

with a given function Q. (Other forms are also possible, for example q = Q(∇ϕ).) Such
an equation is called a constitutive equation. Inserting (12.13) into (12.12) we obtain

∂tϕ(t, x) +Q′(ϕ(t, x))∂xϕ(t, x) = 0 . (12.14)

As an example we consider a model for traffic flow. The interval (a, b) corresponds to a
section of a road. The quantity to be modelled is the number of cars. Thus, ϕ describes
the time dependent spatial density of the number of cars. We interpret∫ b

a

ϕ(t, x) dx = number of cars in the section (a, b) at time t,

and ∫ τ

t

q(s, x) ds

as the number of cars which pass the point x within the time interval [t, τ ], so that q(x, t)
yields the rate (amount per unit of time) at time t.

Kinematics. The so-called kinematics is concerned with the change in time of quanti-
ties which are modelled as continuous in space. It is based on the assumption that the
quantities are attached to material points (“particles”) which move in space. One fixes a
reference configuration Ω ⊂ Rd. Let a material point occupy the point X ∈ Ω at time t0.
Its position at time t is described by a function

t 7→ x(t,X) .

One assumes that this function satisfies, for all x ∈ Ω and all times t of interest,

x(t0, X) = X . (12.15)

(t,X) 7→ x(t,X) is continuously differentiable. (12.16)

X 7→ x(t,X) is bijective between Ω and x(t,Ω), for every fixed t. (12.17)

J(t,X) = det ∂Xx(t,X) > 0 . (12.18)
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Here, ∂Xx(t,X) ∈ R(d,d) denotes the Jacobi matrix of the derivative with respect to X,

(∂Xx(t,X))jk = ∂Xk
xj(t,X) .

The values of the quantity density to be modeled can be described either as ϕ(t, x) or as
Φ(t,X), namely

• ϕ(t, x) refers to the value at the material point which occupies the point x at time
t (“the quantity is given in Euler coordinates”),

• Φ(t,X) refers to the material point at time t which originally (in the reference
configuration at time t0) occupied the point X (“the quantity is given in Lagrange
coordinates”).

Since we intend to describe with ϕ and Φ the same quantity, we must have

ϕ(t, x(t,X)) = Φ(t,X) . (12.19)

The chain rule yields

∂tΦ(t,X) = ∂tϕ(t, x(t,X)) +∇xϕ(t, x(t,X)) · ∂tx(t,X) . (12.20)

This expression describes the rate of change of the quantity attached to a moving material
point (characterized by its position X in the reference configuration) at time t.

The velocity of this material point X at time t is given in Lagrange coordinates by

V (t,X) = ∂tx(t,X) , (12.21)

this is nothing else than the tangent vector to the curve t 7→ x(t,X). In Euler coordinates
it becomes

v(t, x) = V (t,X(t, x)) , v(t, x(t,X)) = V (t,X) . (12.22)

The mapping t 7→ X(t, x) specifies from which point of the reference configuration the
material point occupying the position x at time t “has started”. We have

X = X(t, x(t,X)) , for all X ∈ Ω.

Expressing (12.20) in Euler coordinates we obtain the so-called material derivative

Dtϕ(t, x) := ∂tϕ(t, x) +∇xϕ(t, x) · v(t, x) . (12.23)

It also describes the rate of change of the quantity in a moving material point, namely in
that point which at time t occupies the position x.

We define
Ω(t) = x(t,Ω) = {x(t,X) : X ∈ Ω} . (12.24)

According to the substitution formula of multidimensional integration,

vold(Ω(t)) =

∫
Ω(t)

1 dx =

∫
Ω

J(t,X) dX . (12.25)
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Let now ϕ(t, ·) be the density per volume of a quantity. Its total amount within the
volume Ω(t) is given by∫

Ω(t)

ϕ(t, x) dx =

∫
Ω

ϕ(t, x(t,X))J(t,X) dX =

∫
Ω

Φ(t,X)J(t,X) dX . (12.26)

In order to compute the time rate of change of this total amount within the time dependent
volume Ω(t), we will need the time derivative ∂tJ(t,X) of the determinant of the Jacobian.

Lemma 12.1 Let I be an open interval, A : I → R(d,d) continuously differentiable, let
A(t) be invertible for all t ∈ I. Then

d

dt
detA(t) = trace

(
A(t)−1A′(t)

)
detA(t) . (12.27)

Proof: We first compute the derivative of det : R(d,d) → R at a given fixed matrix A.
From linear algebra we gather the identity

(detA)I = A · Â , Â = (detA)A−1 . (12.28)

Here, Â is the adjunct of A having the elements

âij = (−1)i+j detA(ji) , (12.29)

where A(ji) is obtained from A by deleting the j-th row and the i-th column. From (12.28)
we see that the diagonal elements detA of AÂ satisfy

detA =
d∑

k=1

aikâki , 1 ≤ i ≤ d . (12.30)

Due to (12.29), the elements âki do not depend on the elements aij of the i-th row of A.
It follows that

∂aij(detA) = âji , 1 ≤ i, j ≤ d , (12.31)

and furthermore

((D det)(A))(H) =
d∑

i,j=1

∂aij(detA)hij =
d∑

i,j=1

âjihij =
d∑
j=1

d∑
i=1

âjihij

= trace (ÂH) , for all H ∈ R(d,d).

(12.32)

Using the chain rule we now obtain

d

dt
detA(t) = ((D det)(A(t)))A′(t) = trace (Â(t)A′(t))

= trace
(
A(t)−1A′(t)

)
detA(t) .

(12.33)

2

Proposition 12.2 (Euler’s expansion formula)
Let (12.15) – (12.18) hold, let moreover (t,X) 7→ ∂tx(t,X) be continuously differentiable.
Then

∂tJ(t,X) = (div v)(t, x(t,X))J(t,X) . (12.34)
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Proof: We apply Lemma 12.1 to

A(t) = ∂Xx(t,X) .

For the elements of A(t) we get

a′ij(t) = ∂t∂Xj
xi(t,X) = ∂Xj

∂txi(t,X) = ∂Xj
Vi(t,X) = ∂Xj

vi(t, x(t,X))

=
d∑

k=1

∂kvi(t, x(t,X))∂Xj
xk(t,X) .

(12.35)

It follows that

trace
(
A(t)−1A′(t)

)
=

d∑
i,j=1

(A−1(t))jia
′
ij(t) =

d∑
i,k=1

d∑
j=1

(A−1(t))ji∂kvi(t, x(t,X))akj(t)

=
d∑

i,k=1

δki∂kvi(t, x(t,X)) = (div v)(t, x(t,X)) , (12.36)

and finally

∂tJ(t,X) =
d

dt
detA(t) = trace

(
A(t)−1A′(t)

)
detA(t) = (div v)(t, x(t,X))J(t,X) .

2

Corollary 12.3 (Volume change)
The rate of change of the volume of Ω(t) is given by

d

dt
vol Ω(t) =

∫
Ω(t)

div v(t, x) dx . (12.37)

Proof: We again use the substitution formula of multidimensional integration. We have

vol Ω(t) =

∫
Ω

J(t,X) dX ,

therefore

d

dt
vol Ω(t) =

∫
Ω

(div v)(t, x(t,X))J(t,X) dX =

∫
Ω(t)

div v(t, x) dx .

2

We now can compute the rate of change of the total amount of a quantity described by
ϕ within a time dependent volume Ω(t).

Proposition 12.4 (Transport theorem of Reynolds)
Let (12.15) – (12.18) be satisfied, let moreover (t,X) 7→ ∂tx(t,X) as well as (t, x) 7→
ϕ(t, x) be continuously differentiable. Then

d

dt

∫
Ω(t)

ϕ(t, x) dx =

∫
Ω(t)

∂tϕ(t, x) + (div (ϕv))(t, x) dx . (12.38)
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Proof: From Proposition 12.2 we obtain, using the chain rule and the substitution rule

d

dt

∫
Ω(t)

ϕ(t, x) dx =
d

dt

∫
Ω

ϕ(t, x(t,X))J(t,X) dX

=

∫
Ω

[
∂tϕ(t, x(t,X)) +

d∑
k=1

∂kϕ(t, x(t,X))Vk(t,X)

+ ϕ(t, x(t,X))(div v)(t, x(t,X))

]
J(t,X) dX

=

∫
Ω(t)

∂tϕ(t, x) + (div (ϕv))(t, x) dx .

2

As an exemplary application of the transport theorem we consider the balance equation
for the mass. In this case ϕ = ρ represents the mass density, it has the dimensionML−d
where M is the dimension of mass. We assume that mass conservation holds, that is,
the total amount of mass within Ω(t) is constant as a function of t,

d

dt

∫
Ω(t)

ρ(t, x) dx = 0 . (12.39)

The transport theorem implies that∫
Ω(t)

∂tρ(t, x) + (div (ρv))(t, x) dx = 0 . (12.40)

Let now U ⊂ Ω(t) be open, let us define

ΩU = X(t, U) = {X : x(t,X) ∈ U} .

Applying the transport theorem to ΩU we obtain, since U = ΩU(t),∫
U

∂tρ(t, x) + (div (ρv))(t, x) dx = 0 . (12.41)

Since U ⊂ Ω(t) is an arbitrary open set, we can conclude (for example, if ∂tρ and div (ρv)
are continuous)

∂tρ+ div (ρv) = 0 (12.42)

in Ω(t). This equation is called the continuity equation.

Conservation laws, balance equations. If instead of mass density we also consider
other quantities ϕ, additional mechanisms usually come into play. Propagation of heat,
for instance, arises not only from transport but also from diffusion. Moreover, heat is
generated when other types of energy (for example, mechanical or electromagnetic energy)
are transformed into heat. Other mechanical and electromagnetic quantities are related,
too (e.g. in piezoelectricity).

In order to analyze all those dependencies, one has to understand how to express the
“flow” of a quantity through a given (d− 1)-dimensional manifold M in Rd.

106



We first discuss the concept of flux of a quantity. Let us assume that a quantity flows
in Rd in a fixed direction with an intensity which is constant in space and time. The
corresponding flux is described by a vector q ∈ Rd. Its direction

q

|q|
, |q| = ‖q‖2 =

√√√√ d∑
i=1

q2
i .

specifies the direction of the flux. Its length |q| specifies the amount of the quantity
(with dimension G) which flows per unit of time through a unit cube of dimension d− 1
perpendicular to the direction of the flux. This unit cube is a unit square in the case
d = 3, or a unit interval in the case d = 2. Thus, the dimension of the flux is given by
GT −1L1−d, it is a density of a time rate called the flux density.

We consider such a flux of constant intensity, given by the vector q ∈ Rd, through a unit
cube E ∈ Rd−1 perpendicular to the flux direction. We imagine a second cube W which
is positioned at an angle α with respect to E in such a manner that the same “particles”
flow through E and W . We then have

1 = vold−1(E) = vold−1(W ) · cosα .

The total flux per unit time through E is the same as through W , and is given by |q|.
The flux densities, however, are different, they are equal to

|q|
vold−1(E)

= |q| , |q|
vold−1(W )

= |q| cosα ,

respectively. Let n ∈ Rd be the unit normal to W in the flux direction. Then the angle
between q and n is equal to α, and

〈q, n〉 = |q| cosα (12.43)

specifies the flux density with respect to W .

We now turn to the general situation, a flux through a given (d−1) dimensional manifold
M in Rd. In the case d = 3, M is an (open or closed) surface, we denote its unit normal in
the point ξ ∈M by n(ξ). The flux is described by a function q : R×R3 → R3. According
to the explanations above, the function

ξ 7→ 〈q(t, ξ), n(ξ)〉 (12.44)

represents the time-dependent flux density on M , it has the dimension GT −1L1−d. The
integral (it is a surface integral) ∫

M

〈q(t, ξ), n(ξ)〉 dS(ξ) (12.45)

represents the total flux through M of the considered quantity in form of a time rate,
with dimension GT −1. The total amount of the quantity flowing through M within the
time interval [t1, t2] is equal to∫ t2

t1

∫
M

〈q(t, ξ), n(ξ)〉 dS(ξ) dt . (12.46)
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Let now U ⊂ Rd be open with boundary M = ∂U , assumed to be a two-dimensional
manifold. By n(ξ) we denote the exterior unit normal, that is the vector normal to ∂U
in ξ pointing to the exterior of U . We can now formulate a conservation law by

d

dt

∫
U

ϕ(t, x) dx = −
∫
∂U

〈q(t, ξ), n(ξ)〉 dS(ξ) . (12.47)

This means that the total amount within U of the quantity considered changes only by
flow through the boundary of U . The minus sign arises because the scalar product 〈q, n〉
is negative for inflow and positive for outflow. Equation (12.47) is also called the integral
form of the conservation law.

The divergence theorem states that∫
∂U

〈q(t, ξ), n(ξ)〉 dS(ξ) =

∫
U

div q(t, x) dx . (12.48)

Therefore, for all t ∫
U

∂tϕ(t, x) + div q(t, x) dx = 0 . (12.49)

If the conservation law (12.47) holds for “arbitrary domains” U , we may deduce from
(12.47) the differential form of the conservation law,

∂tϕ(t, x) + div q(t, x) = 0 , for all x, t. (12.50)

In the one-dimensional case (d = 1) we have obtained this equation already in (12.12).

When considering the flux of a quantity, one distinguishes between its convective and
nonconvective part. The convective part refers to the situation, discussed in the sub-
section on kinematics above, where the quantity ϕ is attached to particles moving with
velocity v. In (12.41), where ϕ = ρ, we have deduced from the transport theorem that∫

U

(∂tϕ+ div (ϕv))(t, x) dx = 0

holds for all U . The convective part qK of the flux is therefore given by (compare with
(12.49))

qK = ϕv . (12.51)

An example for the nonconvective part qNK is provided by the mechanism of diffusion.
In the simplest case we have

qNK = −λ∇ϕ , λ > 0 . (12.52)

This form is attained by Fourier’s law (for the heat flux) and by Fick’s law (for a substance
dissolved in another substance, like a pollutant in water). Let us consider a situation where
no convection is present, thus v = 0. From (12.50) we obtain

∂tϕ− div (λ∇ϕ) = 0 .

If λ is constant, we may move λ in front of the divergence and obtain, since div (∇ϕ) = ∆ϕ
the equation

∂tϕ = λ∆ϕ . (12.53)

108



This equation represents the simplest parabolic equation and, due to its origin, is called
diffusion equation or heat equation.

In addition to flowing through the boundary, the total amount of a quantity within a
region may also change by supply or drain in the interior. Examples are gravity (which
acts on all “mass particles” of a solid body), chemical reactions or radiation (for example,
heating by microwaves). When their time rate of change is described by a time-dependent
density function z, the total rate of change within a volume U due to this action becomes∫

U

z(t, x) dx . (12.54)

Considering all those terms we obtain a general balance equation in integral form,

d

dt

∫
U

ϕdx = −
∫
∂U

〈ϕv, n〉 dS −
∫
∂U

〈qNK , n〉 dS +

∫
U

z dx . (12.55)

The functions appearing in (12.55) depend on t, x, or ξ respectively. Using the divergence
theorem, we get ∫

U

∂tϕdx = −
∫
U

div (ϕv + qNK) dx+

∫
U

z dx . (12.56)

As above, this yields the differential form

∂tϕ+ div (ϕv + qNK) = z . (12.57)

In (12.55) – (12.57), the convective part of the flux is represented by the term div (ϕq). In
many applications, one speaks of “flux” meaning the nonconvective part of the flux (this
does not make a difference when no convection is present) and writes q instead of qNK .

So far, the quantity ϕ has been a volume density with dimension GL−d. Its total amount
within a volume U equals ∫

U

ϕ(t, x) dx . (12.58)

However, it is often more convenient to deal with quantities related to mass, these have
the dimension GM−1. A quantity ψ related to mass is connected to a volumetric quantity
ϕ of the same type by

ϕ = ρψ . (12.59)

Here, ρ is the mass density as before with dimensionML−d. The general balance equation
(12.55) then becomes

d

dt

∫
U

ρψ dx = −
∫
∂U

〈ρψv, n〉 dS −
∫
∂U

〈qNK , n〉 dS +

∫
U

ρζ dx , (12.60)

in integral form; one then writes the rate of the internal supply in the form z = ρζ. The
differential formulation is

∂t(ρψ) + div (ρψv + qNK) = ρζ . (12.61)

A density related to mass is also called specific density.
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We now investigate several special situations and exhibit the equations which result from
the general balance equation.

We have already considered the mass balance. Here, ψ = 1 resp. ϕ = ρ, q = 0 and
ζ = 0. Next, we mention a so-called multicomponent system. Here we have J dif-
ferent substances, for example chemical compounds. In the continuum model these are
characterized by their mass-related concentrations. cj : R×Rd → R, 1 ≤ j ≤ J , taking
values in [0, 1]. The function cj specifies the relative proportion (or fraction) of the j-th
component as a function of (t, x). The total amount of the j-th component within the
volume U is thus equal to ∫

U

(ρjcj)(t, x) dx .

For each component we obtain a balance equation. We have ψ = cj and therefore, in the
differential formulation,

∂t(ρjcj) + div (ρjcjv + qj) = ρjζj , 1 ≤ j ≤ J . (12.62)

Moreover it must be the case that
J∑
j=1

cj = 1 . (12.63)

If the components interact, for example due to a chemical reaction, additional terms
appear on the right side of (12.62).

Momentum balance. Here ϕ = ρv and ψ = v, thus we deal with vector-valued quanti-
ties. The expression

d

dt

∫
U

ρv dx (12.64)

represents the rate of change of the total momentum within the volume U . For d = 3, the
general balance equation (12.55) becomes a system of 3 equations involving the 4 scalar
quantities ρ and ψi = vi, i = 1, 2, 3. Gravity induces a momentum influx within U , thus
(on the surface of the earth)

ζ =

 0
0
−g

 , g = 9.8067
m

sec2
. (12.65)

The first two space coordinates represent a horizontal plane, the third the vertical direc-
tion.

The nonconvective momentum flux arises from transmission by forces in the form of
stresses (in particular, pressure forces). These forces are described by the stress tensor
σ(t, x) ∈ R(3,3). The function

x 7→ σ(t, x)n(x) , (σn)i =
3∑
j=1

σijnj ,

represents the surface density of the force vector acting on a surface with normal n. The
nonconvective flux thus becomes

qNK,i = −σi ,

110



where σi denotes the i-th row of the stress tensor σ. The special case of pure pressure
corresponds to

σ = −pI , σij = −pδij , (12.66)

where p(t, x) is a scalar quantity (the pressure). The momentum balance equation thus
has the form

d

dt

∫
U

ρvi dx = −
∫
∂U

〈ρviv, n〉 dS +

∫
∂U

〈σi, n〉 dS +

∫
U

ρζi dx , 1 ≤ i ≤ 3 . (12.67)

The differential formulation becomes

∂t(ρvi) + div (ρviv − σi) = ρζi , 1 ≤ i ≤ 3 , (12.68)

or, in the case of pure pressure,

∂t(ρvi) + div (ρviv) + ∂ip = ρζi , 1 ≤ i ≤ 3 . (12.69)

We do not discuss the balance equation for the angular momentum; we only remark that
from it one derives that the stress tensor is symmetric, that is σij = σji holds for all i, j.

Incompressible flow. Let us consider a flow of an incompressible fluid at constant
temperature. Then we may assume ρ to be constant. The mass balance ∂tρ+div (ρv) = 0
becomes

div v = 0 . (12.70)

From the momentum balance (12.68) we then obtain

ρ∂tvi + ρ div (viv)− divσi − ρζi = 0 , 1 ≤ i ≤ 3 . (12.71)

Using the product rule we get

div (viv) = vi div (v) + 〈∇vi, v〉 = 〈∇vi, v〉 =
3∑
j=1

vj∂jvi . (12.72)

Combining this with (12.68), we obtain

∂tvi +
3∑
j=1

vj∂jvi −
1

ρ
divσi = ζi . (12.73)

Incompressible flow, pure pressure. This applies, for example, to water flow at
constant temperature. As above, we have divσi = −∂ip. We can write (12.73) in vector
form as

∂tv + (v · ∇)v = −1

ρ
∇p+ ζ . (12.74)

Here, one uses the notation

(v · ∇)v =
( 3∑
j=1

vj∂j
)
v . (12.75)
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Let us consider the even more special case when the flow is stationary, that is, v and p
depend only on x but not on t. We also assume that ζ arises from gravity according to
(12.65). We define the scalar quantity

ϕ(x) =
1

2
ρ 〈v(x), v(x)〉+ p(x) + ρgx3 . (12.76)

We have

∂iϕ(x) = ρ 〈v(x), ∂iv(x)〉+ ∂ip(x) + ρgδi3 . (Kronecker delta) (12.77)

Since
3∑
i=1

vi 〈v, ∂iv〉 =
3∑

i,j=1

vivj∂ivj =
3∑

i,j=1

vivj∂jvi =
3∑
i=1

vi

3∑
j=1

vj∂jvi ,

we obtain, using (12.71) and (12.72)

〈v,∇ϕ〉 =
3∑
i=1

vi∂iϕ =
3∑
i=1

vi

(
ρ

3∑
j=1

vj∂jvi + ∂ip− ρζi
)

= 0 . (12.78)

The expression 〈v(x),∇ϕ(x)〉 is nothing else than the material derivative of ϕ (note that
ϕ does not depend on t). Therefore,

1

2
ρ‖v(x)‖2 + p(x) + gx3 = const (12.79)

holds along streamlines of the flow (that is, curves along which the material particles
move). This result, or equivalently equation (12.78), is called the Bernoulli equation.
It means that the pressure is small where the velocity is big.

Incompressible viscous flow. This describes the case with internal friction, that is,
adjacent particles with different velocity exert forces on each other. The stress tensor
then contains other terms in addition to the pressure term. The simplest case arises when
the addition term is proportional to the “velocity gradient” Dv, the Jacobian of v with
respect to x, and when

σ = 2µ
Dv + (Dv)T

2
− pI = µ(Dv + (Dv)T )− pI . (12.80)

According to (12.71), one has to compute divσi. We have

div (Dv)i =
∑
j

∂j(Dv)ij =
∑
j

∂j∂jvi

as well as, using incompressibility,

div (Dv)Tij =
∑
j

∂j∂ivj = ∂i div v = 0 ,

so
divσi = µ∆vi − ∂ip , 1 ≤ i ≤ 3 . (12.81)
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Now (12.73) becomes

∂tvi +
3∑
j=1

vj∂jvi =
µ

ρ
∆vi −

1

ρ
∂ip+ ζi , 1 ≤ i ≤ 3 . (12.82)

These are the Navier-Stokes equations. In vector form they are written as

∂tv + (v · ∇)v =
µ

ρ
∆v − 1

ρ
∇p+ ζ . (12.83)

Energy balance. The energy balance is a scalar equation. Here, ψ is the specific (that
is, mass-related) energy density

ψ = u+
1

2
|v|2 , (12.84)

where u stands for the specific density of the internal energy and 1
2
|v|2 represents the

specific density of the kinetic energy. The rate of change of the total energy within the
volume U is given by

d

dt

∫
U

ρ

(
u+

1

2
|v|2
)
dx . (12.85)

The internal energy may for example include

• the kinetic energy of the fluctuation of atoms and molecules (measured on the
macroscopic scale as temperature),

• the potential energy between atoms or molecules depending on their distance from
each other (for example, the elastic energy which accompanies the deformation of
solid bodies),

• the chemical bond energy,

• the nuclear energy

The nonconvective energy flux consists of the mechanical power (work per time) and the
heat flux,

qNK = −σv + qW . (12.86)

The energy inflow consists of the power due to gravity and of the absorbed specific heat
radiation ζW ,

ζ = −gv3 + ζW . (12.87)

The energy balance becomes

d

dt

∫
U

ρ

(
u+

1

2
|v|2
)
dx = −

∫
∂U

ρ(u+
1

2
|v|2) 〈v, n〉 dS (12.88)

+

∫
∂U

〈σv, n〉 dS −
∫
∂U

〈qW , n〉 dS +

∫
U

ρζ dx .

This balance is called the first law of thermodynamics. After several transformations
one obtains the partial differential equation

∂t(ρu) + div (ρuv + qW ) = σ : Dv + ρζ , (12.89)
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where

σ : Dv =
3∑

i,j=1

σij ∂jvi .
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