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1 Normed Spaces

Functional analysis is concerned with normed spaces and with operators between normed
spaces.

As an example we consider the initial value problem on I = [t0, t1],

y′ = f(t, y) , y(t0) = y0 , (1.1)

with the right side f : I × Rn → Rn. We transform (1.1) into the integral equation

y(t) = y0 +

∫ t

t0

f(s, y(s)) ds . (1.2)

We define an operator

T : C(I;Rn)→ C(I;Rn) , (Ty)(t) = y0 +

∫ t

t0

f(s, y(s)) ds . (1.3)

Now (1.2) is equivalent to the operator equation

y = Ty . (1.4)

In this manner we have transformed our original problem into an equation whose unknown
variable is a function (in this case the function y), not a number nor a vector with finitely
many components. In this equation there appears a mapping (here T ) between function
spaces (here C(I;Rn)). Such mappings are usually called “operators”. The function
spaces are typically infinite-dimensional Banach or Hilbert spaces.

In the following we write K for R or C.

Definition 1.1 (Norm, normed space)
Let X be a vector space over K. A mapping ‖ · ‖ : X → [0,∞) is called a norm on X, if

‖x‖ = 0 ⇔ x = 0 , (1.5)

‖αx‖ = |α| ‖x‖ for all α ∈ K, x ∈ X, (1.6)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X. (1.7)

The pair (X, ‖ · ‖) is called a normed space. (Often, one just writes X.)

We repeat some basic notions from the first year analysis course. (See, for example, my
lecture notes.)

Let X be a normed space. A sequence (xn)n∈N in X is called convergent to the limit
x ∈ X, written as

lim
n→∞

xn = x , (1.8)

if
lim
n→∞

‖xn − x‖ = 0 . (1.9)
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The sequence is called a Cauchy sequence, if for every ε > 0 there exists an N ∈ N
such that

‖xn − xm‖ ≤ ε , for all n,m ≥ N . (1.10)

X is called complete, if every Cauchy sequence in X has a limit (which by the definition
above has to be an element of X. If X is complete, X is called a Banach space. For
x ∈ X and ε > 0 we call

B(x, ε) = {y : y ∈ X, ‖y − x‖ < ε} , (1.11)

K(x, ε) = {y : y ∈ X, ‖y − x‖ ≤ ε} , (1.12)

the open and closed ε-ball around x, respectively. A subset O of X is called open in
X, if for every x ∈ O there exists an ε > 0 such that B(x, ε) ⊂ O. A subset A of X is
called closed in X, if X \A is open in X, or equivalently, if for every convergent sequence
(xn)n∈N in X whose elements xn all belong to A, its limit also belongs to A. The closure
Y , the interior int (Y ) and the boundary ∂Y of a subset Y of X are given by

Y =
⋂
A⊃Y

A closed

A , int (Y ) =
⋃
O⊂Y

O open

O , ∂Y = Y \ int (Y ) . (1.13)

A subspace U of the vector space X becomes itself a normed space, if we define the norm
on U to be the restriction of the given norm on X. If U is complete then U is closed in
X; if X itself is complete, the converse also holds. The closure U of a subspace U of X
is also a subspace of X.

In the basic analysis lectures we have already encountered some Banach spaces. The
spaces (Kn, ‖ · ‖p), 1 ≤ p ≤ ∞, are Banach spaces with

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

, 1 ≤ p <∞ , ‖x‖∞ = max
1≤i≤n

|xi| . (1.14)

Let D be an arbitrary set. Then (B(D;K), ‖ · ‖∞),

B(D;K) = {f | f : D → K, f bounded} , ‖f‖∞ = sup
x∈D
|f(x)| , (1.15)

is a Banach space. If moreover D is a compact metric space (for example, if D is a closed
and bounded subset of Kn), then (C(D;K), ‖ · ‖∞),

C(D;K) = {f | f : D → K, f stetig} , (1.16)

is a closed subspace of (B(D;K), ‖ · ‖∞) and therefore itself a Banach space. If D is a
Lebesgue measurable subset of Rn (this is the case, for example, if D is open or closed),
then for 1 ≤ p <∞ the space Lp(D;K) of functions which are Lebesgue integrable to the
p-th power, that is, those measurable functions for which

‖f‖p =

(∫
D

|f(x)|p dx
) 1

p

<∞ , (1.17)

becomes a Banach space for this norm ‖ · ‖p, if we “identify” functions which are equal
almost everywhere. (“Identify” means that we pass to the quotient space formed by
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equivalence classes of functions which are equal almost everywhere.) This is discussed in
detail in the course on measure and integration theory.

Sequence spaces. Let us set D = N. Then B(D;K) coincides with the space of all
bounded sequences, denoted as `∞(K),

`∞(K) = {x : x = (xk)k∈N, xk ∈ K, sup
k∈N
|xk| <∞} , ‖x‖∞ = sup

k∈N
|xk| . (1.18)

Because this is a special case of (1.15), the space `∞(K) is a Banach space. Let us consider
the subsets

c(K) = {x : x = (xk)k∈N is a convergent sequence in K} , (1.19)

c0(K) = {x : x = (xk)k∈N converges to 0 in K} . (1.20)

Proposition 1.2 We have c0(K) ⊂ c(K) ⊂ `∞(K). Endowed with the supremum norm,
the spaces c0(K) are c(K) Banach spaces.

Proof: Exercise. It suffices to show that c(K) is a closed subspace of `∞(K), and that
c0(K) is a closed subspace of c(K). 2

Moreover, we consider the space ce(K) of all finite sequences,

ce(K) = {x : x = (xk)k∈N, there exists N ∈ N with xk = 0 for all k ≥ N} . (1.21)

The space ce(K) is a subspace of c0(K); it is not closed in c0(K). Thus, it is not a Banach
space; we have (exercise)

ce(K) = c0(K) . (1.22)

Let x = (xk)k∈N be a sequence in K. We define

‖x‖p =

(
∞∑
k=1

|xk|p
) 1

p

, 1 ≤ p <∞ , (1.23)

and
`p(K) = {x : x = (xk)k∈N, xk ∈ K, ‖x‖p <∞} , (1.24)

the space of sequences which are summable to the p-th power.

Proposition 1.3 The space (`p(K), ‖ · ‖p), 1 ≤ p <∞, is a Banach space.

Proof: For x ∈ `p(K) we have

‖x‖p = 0 ⇔
∞∑
k=1

|xk|p = 0 ⇔ |xk| = 0 for all k ⇔ x = 0 .

If x ∈ `p(K), α ∈ K, then

‖αx‖p =

(
∞∑
k=1

|αxk|p
) 1

p

= |α|

(
∞∑
k=1

|xk|p
) 1

p

= |α|‖x‖p .
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In order to prove the triangle inequality, let x, y ∈ `p(K). For arbitrary N ∈ N we have(
N∑
k=1

|xk + yk|p
) 1

p

≤

(
N∑
k=1

|xk|p
) 1

p

+

(
N∑
k=1

|yk|p
) 1

p

,

this is just Minkowski’s inequality in KN . It follows that

N∑
k=1

|xk + yk|p ≤ (‖x‖p + ‖y‖p)
p , for all N ∈ N.

Passing to the limit N →∞ yields

∞∑
k=1

|xk + yk|p ≤ (‖x‖p + ‖y‖p)
p ,

so
‖x+ y‖p ≤ ‖x‖p + ‖y‖p .

Thus, `p(K) is a normed space. In order to show that it is complete, let (xn)n∈N be a
Cauchy sequence in `p(K). Then for all k, n,m ∈ N we have

|xnk − xmk |p ≤
∞∑
j=1

|xnj − xmj |p = ‖xn − xm‖pp .

Therefore, (xnk)n∈N is a Cauchy sequence in K for all k. Since K is complete, there exists

x∞k = lim
n→∞

xnk , k ∈ N .

For all k, n,m,N we have (Minkowski)(
N∑
k=1

|xnk − x∞k |p
) 1

p

≤

(
N∑
k=1

|xnk − xmk |p
) 1

p

+

(
N∑
k=1

|xmk − x∞k |p
) 1

p

≤ ‖xn − xm‖p +

(
N∑
k=1

|xmk − x∞k |p
) 1

p

. (1.25)

Let ε > 0 be arbitrary. We choose M large enough such that

‖xn − xm‖p ≤ ε , for all n,m ≥M . (1.26)

Next, for every N ∈ N we choose m(N) ∈ N such that m(N) ≥M and(
N∑
k=1

|xm(N)
k − x∞k |p

) 1
p

≤ ε . (1.27)

We set m = m(N) in (1.25). Then it follows from (1.25) – (1.27) that(
N∑
k=1

|xnk − x∞k |p
) 1

p

≤ 2ε , for all n ≥M and all N ∈ N.
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Passing to the limit N →∞ we obtain

‖xn − x∞‖p ≤ 2ε , for all n ≥M .

This implies x∞ = (x∞ − xn) + xn ∈ `p(K) and xn → x∞ in `p(K). 2

Linear continuous mappings. Let X and Y be normed spaces. By definition, a
mapping f : X → Y is continuous on X if and only if

f( lim
n→∞

xn) = lim
n→∞

f(xn) (1.28)

holds for all convergent sequences (xn)n∈N in X. From the analysis course we know that
the assertions

f−1(O) is open for every open set O ⊂ Y ,

and

f−1(A) is closed for every closed set A ⊂ Y

both are equivalent to (1.28).

f is continuous at a point x ∈ X, if (1.28) holds for all sequences (xn)n∈N which converge
to x.

Proposition 1.4 Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be normed spaces, let T : X → Y be linear.
Then the following are equivalent:

(i) T is continuous on X.

(ii) T is continuous in 0.

(iii) There exists a C > 0 such that

‖T (x)‖Y ≤ C‖x‖X , for all x ∈ X. (1.29)

(iv) T is Lipschitz continuous on X with Lipschitz constant C.

Proof: “(iii)⇒(iv)”: For all x, y ∈ X we have

‖T (x)− T (y)‖Y = ‖T (x− y)‖Y ≤ C‖x− y‖X .

“(iv)⇒(i)⇒(ii)”: obvious.
“(ii)⇒(iii)”: Contraposition. Assume that (iii) does not hold. We choose a sequence
(xn)n∈N in X satisfying

‖T (xn)‖Y > n‖xn‖X . (1.30)

We set

zn =
1

n‖xn‖X
xn ,
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this is possible, because xn 6= 0 due to (1.30). It follows that zn → 0, but ‖T (zn)‖Y > 1
and therefore T (zn) does not converge to 0. Consequently, (ii) does not hold. 2

Not all linear mappings are continuous. Here is an example: the unit vectors {ek : k ∈ N}
form a basis of ce(K). We define a linear mapping T : ce(K)→ K by T (ek) = k. Then we
have ‖ek‖∞ = 1 and |T (ek)| = k, so (iii) in Proposition 1.4 is not satisfied.

In the following we will write ‖x‖ instead of ‖x‖X if it is obvious which norm is meant.
We will also write Tx instead of T (x).

Definition 1.5 (Isomorphism)
Let X, Y be normed spaces. A mapping T : X → Y which is bijective, linear and continu-
ous is called an isomorphism between X and Y , if T−1, too, is continuous. If moreover
‖Tx‖ = ‖x‖ for all x ∈ X, T is called an isometric isomorphism. X and Y are
called (isometrically) isomorphic, if there exists an (isometric) isomorphism between
X and Y . In this case we write X ' Y (X ∼= Y ). 2

Obviously we have (and the same for “∼=”)

X ' Y , Y ' Z ⇒ X ' Z . (1.31)

Let T : X → Y be an isomorphism. According to Proposition 1.4 there exist constants
C1 and C2 such that

‖Tx‖ ≤ C1‖x‖ , ‖x‖ = ‖T−1Tx‖ ≤ C2‖Tx‖ , for all x ∈ X. (1.32)

If ‖ · ‖1 and ‖ · ‖2 are two different norms on X, the identity mapping is an isomorphism
between (X, ‖ · ‖1) and (X, ‖ · ‖2) if and only if there exist constants C1 and C2 such that

‖x‖1 ≤ C1‖x‖2 , ‖x‖2 ≤ C2‖x‖1 , for all x ∈ X. (1.33)

In this case the norms ‖ · ‖1 und ‖ · ‖2 are called equivalent.

We already know from the basic analysis course that on Kn all norms are equivalent. An
immediate generalization of this result is the following.

Proposition 1.6 Let X, Y be finite dimensional normed spaces with dim(X) = dim(Y ).
Then X ' Y .

Proof: Let dim(X) = n, let {v1, . . . , vn} be a basis of X, let e1, . . . , en be the unit vectors
in Kn. We define

T : Kn → X , Tx =
n∑
i=1

xivi if x =
n∑
i=1

xiei .

One can verify immediately that
‖x‖X = ‖Tx‖

defines a norm on Kn; T then becomes an isometric isomorphism. For Y , we proceed
analogously. Then

X ∼= (Kn, ‖ · ‖X) ' (Kn, ‖ · ‖Y ) ∼= Y .
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2

If X, Y are finite dimensional vector spaces with Y ⊂ X, Y 6= X, then dim(Y ) < dim(X),
and X und Y are not isomorphic, since bijective linear mappings leave the dimension
invariant. In the infinite dimensional case, the situation is not that simple. For example,
c0(K) ⊂ c(K) and c0(K) 6= c(K), but we have

c0(K) ' c(K) . (1.34)

Indeed, we claim that an isomorphism T : c(K)→ c0(K) is given by

(Tx)1 = lim
j→∞

xj , (Tx)k = xk−1 − lim
j→∞

xj , k ≥ 2 , (1.35)

and that the mapping S : c0(K)→ c(K),

(Sy)k = yk+1 + y1 , (1.36)

is the inverse of T . One may compute directly that T ◦ S and S ◦ T are equal to the
identity on c0(K) and c(K) resp., and that ‖Tx‖∞ ≤ 2‖x‖∞ as well as ‖Sy‖∞ ≤ 2‖y‖∞
hold for all x ∈ c(K) and all y ∈ c0(K).

Proposition 1.7 Let (X1, ‖·‖1), . . . , (Xm, ‖·‖m) be normed spaces. On the product space

X =
m∏
i=1

Xi = X1 × · · · ×Xm (1.37)

the expressions

‖x‖∞ = max
1≤i≤m

‖xi‖i , ‖x‖p =

(
m∑
i=1

‖xi‖pi

) 1
p

, (1.38)

where x = (x1, . . . , xm) ∈ X, define norms ‖ · ‖p, 1 ≤ p ≤ ∞. All these norms are
equivalent. A sequence (xn)n∈N in X converges to an x = (x1, . . . , xm) ∈ X if and only if
all component sequences (xni )n∈N converge to xi. X is complete if and only if all Xi are
complete.

Proof: Exercise. 2

Corollary 1.8 Let X be a normed space. The addition + : X ×X → X and the scalar
multiplication · : K×X → X are continuous.

Proof: If xn → x and yn → y, then

0 ≤ ‖(xn + yn)− (x+ y)‖ ≤ ‖xn − x‖+ ‖yn − y‖ → 0 .

If αn → α and xn → x, then

0 ≤ ‖αnxn − αx‖ ≤ |αn| ‖xn − x‖+ |αn − α| ‖x‖ → 0 .

2
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Definition 1.9 (Space of operators, dual space)
Let X, Y be normed spaces. We define

L(X;Y ) = {T | T : X → Y, T is linear and continuous} . (1.39)

The space L(X;K) is called the dual space of X, denoted X∗. The elements of X∗ are
called functionals. 2

From linear algebra and analysis it is known that L(X;Y ) is a vector space.

Proposition 1.10 (Operator norm)
Let X, Y be normed spaces. Then

‖T‖ = sup
x∈X,x 6=0

‖Tx‖
‖x‖

(1.40)

defines a norm on L(X, Y ), called the operator norm. We have

‖Tx‖ ≤ ‖T‖ ‖x‖ , for all x ∈ X, (1.41)

and
‖T‖ = sup

x∈X, ‖x‖≤1

‖Tx‖ = sup
x∈X, ‖x‖=1

‖Tx‖ , (1.42)

as well as
‖T‖ = inf{C : C > 0, ‖Tx‖ ≤ C‖x‖ for all x ∈ X} . (1.43)

If Y is a Banach space, then so is L(X, Y ).

Proof: Let T ∈ L(X;Y ), let C > 0 with ‖Tx‖ ≤ C‖x‖ for all x ∈ X. Dividing by ‖x‖
we see that ‖T‖ ≤ C, so ‖T‖ ∈ R+, and (1.41) as well as (1.43) hold. From (1.41) we
obtain that

sup
x∈X, ‖x‖=1

‖Tx‖ ≤ sup
x∈X, ‖x‖≤1

‖Tx‖ ≤ ‖T‖ .

Since
‖Tx‖
‖x‖

=
∥∥∥T (

x

‖x‖
)
∥∥∥ ,

(1.42) follows. We have

‖T‖ = 0 ⇔ ‖Tx‖ = 0 for all x ∈ X ⇔ Tx = 0 for all x ∈ X ⇔ T = 0 .

For α ∈ K we get

‖αT‖ = sup
‖x‖=1

‖αTx‖ = |α| sup
‖x‖=1

‖Tx‖ = |α| ‖T‖ ,

and for S, T ∈ L(X;Y ) we get

‖S + T‖ = sup
‖x‖=1

‖Sx+ Tx‖ ≤ sup
‖x‖=1

‖Sx‖+ sup
‖x‖=1

‖Tx‖ = ‖S‖+ ‖T‖ .
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Thus, the properties of a norm are satisfied. We now prove that L(X, Y ) is complete. Let
(Tn)n∈N be a Cauchy sequence in L(X;Y ). Since

‖Tnx− Tmx‖ = ‖(Tn − Tm)(x)‖ ≤ ‖Tn − Tm‖ ‖x‖

the sequence (Tnx)n∈N is a Cauchy sequence in Y for every x ∈ X. Then (as Y is complete)

Tx = lim
n→∞

Tnx

defines a mapping T : X → Y . Let x, z ∈ X, α, β ∈ K, then

αTx+ βTz = α lim
n→∞

Tnx+ β lim
n→∞

Tnz = lim
n→∞

(αTnx+ βTnz)

= lim
n→∞

Tn(αx+ βz) = T (αx+ βz) .

Therefore, T is linear. Since (as the norm is continuous)

‖Tx‖ = ‖ lim
n→∞

Tnx‖ = lim
n→∞

‖Tnx‖ ≤ (sup
n∈N
‖Tn‖)‖x‖ ,

T is continuous. It remains to prove that ‖Tn − T‖ → 0. Let ε > 0. We choose N ∈ N
such that ‖Tn − Tm‖ ≤ ε for all n,m ≥ N . For arbitrary x ∈ X with ‖x‖ = 1 we get

‖(Tn − T )x‖ ≤ ‖(Tn − Tm)x‖+ ‖(Tm − T )x‖ ≤ ‖Tn − Tm‖‖x‖+ ‖Tmx− Tx‖ .

Therefore, for n ≥ N it follows, choosing m sufficiently large,

‖(Tn − T )x‖ ≤ 2ε ,

and thus ‖Tn − T‖ ≤ 2ε if n ≥ N . 2

Example 1.11

1. D compact metric space, X = C(D;K) with the supremum norm, a ∈ D, Ta : X →
K, Tax = x(a). Ta is linear, and |Tax| = |x(a)| ≤ ‖x‖∞ with equality, if x is a
constant function. Therefore, Ta is continuous, and ‖Ta‖ = 1. The functional Ta is
called the Dirac functional in a.

2. X = C([a, b];R) with the supremum norm, T : X → R,

Tx =

∫ b

a

x(t) dt .

T is linear,

|Tx| =
∣∣∣∣∫ b

a

x(t) dt

∣∣∣∣ ≤ (b− a)‖x‖∞

with equality if x is constant. Therefore, T is continuous and ‖T‖ = b− a.

3. X = L1([a, b];R) with the L1 norm, T as before, then

|Tx| =
∣∣∣∣∫ b

a

x(t) dt

∣∣∣∣ ≤ ∫ b

a

|x(t)| dt = ‖x‖1

with equality if x is constant. Therefore, T is continuous and ‖T‖ = 1.
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4. X as before, f ∈ C([a, b];R), T : X → R,

Tx =

∫ b

a

f(t)x(t) dt .

T is linear, and

|Tx| ≤
∫ b

a

|f(t)| |x(t)| dt ≤ ‖f‖∞
∫ b

a

|x(t)| dt = ‖f‖∞ ‖x‖1 .

Therefore, T is continuous and ‖T‖ ≤ ‖f‖∞. In order to prove that actually equality
holds, we choose t∗ ∈ [a, b] with f(t∗) = ‖f‖∞ (if the maximum of the absolute value
is attained at a point where f is negative, we instead consider −f resp. −T ). Let
now ε > 0, ε < ‖f‖∞. We choose an interval I with t∗ ∈ I ⊂ [a, b], so that
f(t) ≥ ‖f‖∞ − ε holds for all t ∈ I, and set (|I| denotes the length of I)

x =
1

|I|
1I , so x(t) =

{
1
|I| , t ∈ I ,
0 , sonst .

Then ‖x‖1 = 1 and

|Tx| =
∣∣∣∣∫ b

a

f(t)x(t) dt

∣∣∣∣ =

∫
I

f(t)
1

|I|
dt ≥

∫
I

(‖f‖∞ − ε)
1

|I|
dt = ‖f‖∞ − ε .

It follows that ‖T‖ ≥ ‖f‖∞ − ε and therefore ‖T‖ = ‖f‖∞.

5. Let D = (0, 1) × (0, 1), k ∈ L2(D;R). On X = L2((0, 1);R) we want to define an
integral operator T : X → X by

(Tx)(s) =

∫ 1

0

k(s, t)x(t) dt , s ∈ (0, 1) .

Once we have proved that this integral is well defined, it is clear that T is linear.
We have (the integrals are well defined as a consequence of Fubini’s and Tonelli’s
theorem, the second inequality follows from Hölder’s inequality)

‖Tx‖2
L2((0,1);R) =

∫ 1

0

(∫ 1

0

k(s, t)x(t) dt

)2

ds ≤
∫ 1

0

(∫ 1

0

|k(s, t)| |x(t)| dt
)2

ds

≤
∫ 1

0

(∫ 1

0

|k(s, t)|2 dt
)
·
(∫ 1

0

|x(t)|2 dt
)
ds

= ‖x‖2
L2((0,1);R)

∫ 1

0

∫ 1

0

|k(s, t)|2 dt ds .

Therefore, T is continuous and

‖T‖ ≤
(∫ 1

0

∫ 1

0

|k(s, t)|2 dt ds
) 1

2

= ‖k‖L2(D;R) .
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6. Let X, Y be normed spaces with dim(X) <∞. Then every linear mapping T : X →
Y is continuous: Let {v1, . . . , vn} be a basis of X. Then for

x =
n∑
i=1

xivi ∈ X , xi ∈ K ,

we have that

‖Tx‖ =

∥∥∥∥∥
n∑
i=1

xiTvi

∥∥∥∥∥ ≤
n∑
i=1

|xi| ‖Tvi‖ ≤ max
1≤i≤n

‖Tvi‖
n∑
i=1

|xi| .

Therefore,

‖T‖ ≤ max
1≤i≤n

‖Tvi‖ , if ‖x‖ =
n∑
i=1

|xi| .

7. Let T : Rn → Rm be linear, let T (x) = Ax for the matrix A ∈ R(m,n). Via this
correspondence, we can identify the space L(Rn;Rm) with the space R(m,n) of all
m × n-matrices. The operator norm then becomes a so-called matrix norm whose
explicit form depends on the choice of the norms in Rn and Rm. Matrix norms
play an important role in the construction and analysis of numerical algorithms, in
particular in numerical linear algebra. 2

Lemma 1.12 Let X, Y, Z be normed spaces, let T : X → Y and S : Y → Z be linear
and continuous. Then S ◦ T : X → Z is linear and continuous, and

‖S ◦ T‖ ≤ ‖S‖ ‖T‖ . (1.44)

Proof: For all x ∈ X we have ‖(S ◦ T )x‖ ≤ ‖S‖ ‖Tx‖ ≤ ‖S‖ ‖T‖ ‖x‖. The assertion now
follows from Proposition 1.10. 2

Seminorms and quotient spaces.

Definition 1.13 (Seminorm)
Let X be a vector space over K. A mapping p : X → [0,∞) is called a seminorm on X,
if

p(αx) = |α| p(x) for all α ∈ K, x ∈ X, (1.45)

p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X. (1.46)

In this case, (X, p) is called a seminormed space.

Obviously,(1.45) implies p(0) = 0, but p(x) = 0 does not imply x = 0. Every norm is
a seminorm. If (Y, q) is a seminormed space, then every linear mapping T : X → Y
generates a seminorm on X by

p(x) = q(Tx) . (1.47)

Here are some examples of seminorms:

X = Rn , p(x) = |x1| , (1.48)

X = B(D;K) , a ∈ D , p(x) = |x(a)| , (1.49)

X = L1((0, 1);R) , p(x) =

∣∣∣∣∫ 1

0

x(t) dt

∣∣∣∣ , (1.50)

X = C1([0, 1];R) , p(x) = ‖ẋ‖∞ . (1.51)
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From linear algebra, we recall the concept of a quotient space. Let X be a vector space,
let U be a subspace of X. Then

x ∼U z ⇔ x− z ∈ U (1.52)

defines an equivalence relation on X. Let

[x] = {z : z ∈ X, x ∼U z} (1.53)

denote the equivalence class of x ∈ X. The quotient space X/U is defined by

X/U = {[x] : x ∈ X} . (1.54)

With the addition and scalar multiplication on X/U defined by

[x] + [y] = [x+ y] , α[x] = [αx] , (1.55)

X/U becomes a vector space, and the mapping

Q : X → X/U , Qx = [x] , (1.56)

is linear and surjective. We have 0 = [x] = Qx if and only if x ∈ U .

Proposition 1.14 (Quotient norm) Let U be a subspace of a normed space X.

(i) The formula
p([x]) = dist (x, U) = inf

z∈U
‖x− z‖ (1.57)

defines a seminorm on X/U which satisfies

p([x]) ≤ ‖x‖ , for all x ∈ X. (1.58)

(ii) If U is closed, then p is a norm.

(iii) If moreover X is a Banach space and U is closed, then (X/U, p) is a Banach space.

Proof: Part (i) is an exercise. Concerning (ii): Let

0 = p([x]) = inf
z∈U
‖x− z‖ .

There exists a sequence (zn)n∈N in U satisfying ‖x− zn‖ → 0, thus zn → x and therefore
(if U is closed) x ∈ U , so finally [x] = 0. Concerning (iii): We begin by proving: If
x, y ∈ X, then there exists a ỹ ∈ [y] with

‖ỹ − x‖ ≤ 2p([y − x]) . (1.59)

We obtain such a ỹ by first choosing a z ∈ U with

‖y − x− z‖ ≤ 2p([y − x])
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and then setting ỹ = y − z. Let now ([xn])n∈N be a Cauchy sequence in X/U . Passing to
a subsequence if necessary we may assume that

p([xn+1]− [xn]) ≤ 2−n .

We now choose according to (1.59) an x̃1 ∈ [x1] and for n > 1 an x̃n ∈ [xn] mit

‖x̃n − x̃n−1‖ ≤ 2p([xn]− [xn−1]) . (1.60)

Then for all n, p ∈ N we have

‖x̃n+p − x̃n‖ ≤
p∑
j=1

‖x̃n+j − x̃n+j−1‖ ≤
p∑
j=1

2 · 2−n−j+1 ≤ 2−n+2 .

Therefore, (x̃n)n∈N is a Cauchy sequence in X. As X is complete, there exists x =
limn∈N x̃n. From (1.58) it follows that

0 ≤ p([xn]− [x]) = p([x̃n]− [x]) ≤ ‖x̃n − x‖ → 0 ,

so [xn]→ [x] in X/U . 2

Here is an example: X = C([0, 1]), U = {x : x ∈ X, x(0) = 0}. We have

x ∼U y ⇔ x(0) = y(0) .

One directly checks that
p([x]) = |x(0)| , X/U ∼= R .

The mapping T : X/U → R, T ([x]) = x(0), is an isometric isomorphism

Dense subsets. A subset A of a metric space (X, d) is called dense in X, if

A = X (1.61)

holds. If A is dense in (X, d) and B is dense in (A, dA), then B is dense in (X, d).

Definition 1.15 (Separable space)
A metric space (X, d) is called separable if there exists a finite or countably infinite
subset A of X which is dense in X. 2

Example: Qn is a dense subset of Rn, therefore Rn is separable. Analogous for Cn.

Proposition 1.16 The space (C([a, b];K), ‖ · ‖∞) is separable.

Proof: By the approximation theorem of Weierstra”s, the set P of all polynomials is dense
in C([a, b];K). Moreover, the set of all polynomials with rational coefficients is countable.
It is dense in P , and therefore in C([a, b];K), too. 2

Proposition 1.17 Let X be a normed space, let (xn)n∈N be a sequence in X with X =
span {xn : n ∈ N}. Then X is separable.

14



Proof: Exercise. 2

Proposition 1.18 The space `p(K) is separable for 1 ≤ p <∞. The space `∞(K) is not
separable.

Proof: For p < ∞ we have `p(K) = span {en : n ∈ N}. The assertion then follows from
1.17. Let now p =∞. For arbitrary M ⊂ N we define xM ∈ `∞(K) by

xMk =

{
1 , k ∈M ,

0 , k /∈M .

If M,N ⊂ N with M 6= N , then ‖xM − xN‖∞ = 1. Therefore,

{B(xM ,
1

2
) : M ⊂ N}

is an uncountable set whose elements are disjoint open balls. If A is a dense subset of
`∞(K), it has to be dense in each of those balls. Therefore A cannot be countable. 2

Analogously it holds that, for D ⊂ Rn open, the space (Lp(D;K), ‖ · ‖p) is separable
for 1 ≤ p < ∞, but not separable for p = ∞. If p < ∞ and moreover D is bounded,
this follows from the result that C(D) is dense in (Lp(D), ‖ · ‖p) and that (in analogy to

Proposition 1.16) the polynomials with rational coefficients form a dense subset of C(D).
For D unbounded the claim follows from the representation

Lp(D;K) =
⋃
n∈N

Lp(D ∩Bn;K)

with Bn = {x : ‖x‖p < n}.

Proposition 1.19 Let X be a normed space, Y a Banach space, U a dense subspace of X
and S : U → Y linear and continuous. Then there exists a unique linear and continuous
mapping T : X → Y with T |U = S, and ‖T‖ = ‖S‖.

Proof: Given x ∈ X, we choose a sequence in (xn)n∈N in U with xn → x and define
Tx = limn→∞ Sxn. The limit exists since (xn)n∈N and consequently (Sxn)n∈N are Cauchy
sequences, and since Y is complete. The assertions now follow directly from the definitions
and elementary properties of the operator norm and of convergent sequences; we do not
write down the details. 2

Dual spaces. Let a normed space X be given. According to Proposition 1.10, the dual
space X∗ = L(X;K) is a Banach space.

Proposition 1.20 Let p, q ∈ (1,∞), let

1

p
+

1

q
= 1 . (1.62)

Then
(`p(K))∗ ∼= `q(K) . (1.63)
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Proof: We want to define an isometric isomorphism T : `q(K)→ (`p(K))∗ by

(Tx)(y) =
∞∑
k=1

xkyk , x ∈ `q(K) , y ∈ `p(K) . (1.64)

By virtue of Hölder’s inequality,

N∑
k=1

|xk| |yk| ≤

(
N∑
k=1

|xk|q
) 1

q

·

(
N∑
k=1

|yk|p
) 1

p

≤ ‖x‖q ‖y‖p .

Therefore, the series
∑

k xkyk converges absolutely, and

|(Tx)(y)| ≤
∞∑
k=1

|xkyk| ≤ ‖x‖q ‖y‖p .

Thus, (1.64) defines for any given x ∈ `q(K) a linear continuous mapping Tx : `p(K)→ K
which satisfies

‖Tx‖ ≤ ‖x‖q . (1.65)

Therefore T : `q(K) → (`p(K))∗ is well-defined. It follows from (1.64) that T is linear
and from (1.65) that T is continuous. T is injective, as (Tx)(ek) = xk, and consequently
Tx = 0 implies that xk = 0 for all k. We now prove that T is surjective. Let y∗ ∈ (`p(K))∗

be arbitrary. We want to find an x = (xk)k∈N in `q(K) such that Tx = y∗. Since
(Tx)(ek) = xk for such an x, we have to define

xk = y∗(ek) . (1.66)

Let y ∈ ce(K),

y =
N∑
k=1

ykek , yk ∈ K , N ∈ N , (1.67)

be given. We have

y∗(y) = y∗

(
N∑
k=1

ykek

)
=

N∑
k=1

yky
∗(ek) =

N∑
k=1

ykxk . (1.68)

We choose
yk = |xk|q−1sign (xk) , 1 ≤ k ≤ N . (1.69)

Then
|yk|p = |xk|p(q−1) = |xk|q = xkyk ,

and it follows from (1.68) that

N∑
k=1

|xk|q =
N∑
k=1

xkyk = y∗(y) ≤ ‖y∗‖ ‖y‖p = ‖y∗‖

(
N∑
k=1

|yk|p
) 1

p

= ‖y∗‖

(
N∑
k=1

|xk|q
) 1

p

.

Thus, (
N∑
k=1

|xk|q
) 1

q

≤ ‖y∗‖ . (1.70)
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Passing to the limit N →∞ yields x ∈ `q(K) and

‖x‖q ≤ ‖y
∗‖ . (1.71)

From (1.64) and (1.68) it follows that

(Tx)(y) = y∗(y) , for all y ∈ ce(K).

We recall that ce(K) is dense in (`p(K), ‖ · ‖p). It follows from Proposition 1.19 that

Tx = y∗ . (1.72)

Therefore T is surjective, and from (1.65) and (1.71) we obtain that ‖Tx‖ = ‖x‖q. There-
fore, T is an isometric isomorphism. 2

We mention some other results concerning the representation of dual spaces. We have

c0(K)∗ ∼= `1(K) , `1(K)∗ ∼= `∞(K) . (1.73)

We do not present the proof here.

For function spaces, analogous results hold. For example, let D ⊂ Rn be open. Then

Lp(D;K)∗ ∼= Lq(D;K) , 1 < p <∞ ,
1

p
+

1

q
= 1 . (1.74)

For the case p = 2, (1.74) is a consequence of a general result for Hilbert spaces, which
will be treated in the next chapter. We sketch the proof for arbitrary p ∈ (1,∞); its
general structure is the same as that for the sequence space `p(K). Setting

(Tx)(y) =

∫
D

x(t)y(t) dt , x ∈ Lq(D;K), y ∈ Lp(D;K) , (1.75)

one obtains a linear continuous mapping T : Lq(D;K) → Lp(D;K)∗ with ‖Tx‖ = ‖x‖q.
Indeed, by virtue of Hölder’s inequality,

|(Tx)(y)| ≤
∫
D

|x(t)| |y(t)| dt ≤
(∫

D

|x(t)|q dt
) 1

q
(∫

D

|y(t)|p dt
) 1

p

= ‖x‖q ‖y‖p , (1.76)

and for
y(t) = sign (x(t))|x(t)|q−1

we have |y(t)|p = |x(t)|q and therefore

(Tx)(y) =

∫
D

x(t)sign (x(t))|x(t)|q−1 dt =

∫
D

|x(t)|q dt

=

(∫
D

|x(t)|q dt
) 1

q
(∫

D

|x(t)|q dt
) 1

p

= ‖x‖q ‖y‖p .

In order to prove that T is surjective, for a given y∗ ∈ Lp(D;K)∗ one constructs an
x ∈ Lq(D;K) satisfying Tx = y∗ by employing the Radon-Nikodym theorem from measure
and integration theory.
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One also has the result that

L1(D;K)∗ ∼= L∞(D;K) . (1.77)

The representation theorem of Riesz states that, for compact sets D ⊂ Rn, the space
C(D;R)∗ is isometrically isomorphic to the space of all signed regular measures on the
Borel σ-algebra on D. In particular, for every y∗ ∈ C(D;R)∗ there exists a measure µ
such that

y∗(y) =

∫
D

y dµ . (1.78)

Definition 1.21 (Series in normed spaces)
Let X be a normed space, let (xk)k∈N be a sequence in X. If the sequence

sn =
n∑
k=1

xk (1.79)

of the partial sums converges to an element s ∈ X, we say that the corresponding series∑∞
k=1 xk converges, and we define

∞∑
k=1

xk = s . (1.80)

The series
∑∞

k=1 xk is called absolutely convergent if

∞∑
k=1

‖xk‖ <∞ . (1.81)

2

Because addition and scalar multiplication in normed spaces are continuous operations,
we have the rules

∞∑
k=1

(xk + yk) =
∞∑
k=1

xk +
∞∑
k=0

yk ,
∞∑
k=1

αxk = α
∞∑
k=1

xk , (1.82)

α ∈ K. They are valid when the limits on the right side exist.

Proposition 1.22 Let X be a Banach space, assume that the series
∑∞

k=1 xk converges
absolutely. Then it also converges, and∥∥∥∥∥

∞∑
k=1

xk

∥∥∥∥∥ ≤
∞∑
k=1

‖xk‖ . (1.83)

Moreover, every reordering of the series converges, and the limits are identical.

Proof: Let

σn =
n∑
k=1

‖xk‖ .
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For the partial sums defined in (1.79) we have, if n > m,

‖sn − sm‖ ≤
n∑

k=m+1

‖xk‖ = |σn − σm| .

Since (σn) is a Cauchy sequence in K, also (sn) is a Cauchy sequence in X, hence conver-
gent to some s ∈ X. Due to ‖sn‖ ≤ |σn|, (1.83) follows from

‖s‖ = lim
n→∞

‖sn‖ ≤ lim
n→∞

|σn| =
∞∑
k=1

‖xk‖ .

Let
∞∑
k=1

x̃k , x̃k = xπ(k) , π : N→ N bijective,

be a reordering of
∑
xk with the partial sums

s̃n =
n∑
k=1

x̃k .

Let ε > 0. We choose M large enough such that

∞∑
k=M+1

‖xk‖ ≤ ε .

Next, we choose N such that N ≥ M and π({1, . . . , N}) ⊃ {1, . . . ,M}. Then we have
for all n > N

‖s̃n − sn‖ ≤
∞∑

k=M+1

‖xk‖ ≤ ε ,

therefore ‖s̃n − sn‖ → 0. 2
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2 Hilbert Spaces

Definition 2.1 (Scalar product)
Let X be a vector space over K. A mapping 〈·, ·〉 : X×X → K is called a scalar product
on X, if

〈x, x〉 > 0 , for all x ∈ X with x 6= 0, (2.1)

〈x, y〉 = 〈y, x〉 , for all x, y ∈ X, (2.2)

〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉 , for all x, y, z ∈ X and all α, β ∈ K. (2.3)

(X, 〈·, ·〉) is called a prehilbert space. 2

From (2.2) and (2.3) we immediately obtain

〈x, αy + βz〉 = α 〈x, y〉+ β 〈x, z〉 , for all x, y, z ∈ X and all α, β ∈ K. (2.4)

In the case K = R, a scalar product is nothing else than a symmetric positive definite
bilinear form.

Proposition 2.2 (Cauchy-Schwarz inequality, Hilbert space)
Let (X, 〈·, ·〉) be a prehilbert space. Then

‖x‖ =
√
〈x, x〉 (2.5)

defines a norm on X which satisfies the Cauchy-Schwarz inequality

| 〈x, y〉 | ≤ ‖x‖ ‖y‖ , for all x, y ∈ X. (2.6)

If X is complete, then X is called a Hilbert space.

Proof: First, we prove (2.6). Let x, y ∈ X with y 6= 0. For every α ∈ K we have

0 ≤ 〈x+ αy, x+ αy〉 = 〈x, x〉+ α〈x, y〉+ α 〈x, y〉+ |α|2 〈y, y〉 .

We set

α = −〈x, y〉
〈y, y〉

.

Then

0 ≤ 〈x, x〉 − 2
〈x, y〉 〈x, y〉
〈y, y〉

+
| 〈x, y〉 |2

〈y, y〉
,

and moreover
0 ≤ 〈x, x〉 〈y, y〉 − | 〈x, y〉 |2 .

This proves (2.6). Now we show that the properties of a norm are satisfied. From ‖x‖ = 0
it follows that 〈x, x〉 = 0 and therefore x = 0 because of (2.1). For α ∈ K and x ∈ X we
have

‖αx‖2 = 〈αx, αx〉 = αα 〈x, x〉 = |α|2‖x‖2 .
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The triangle inequality holds since

‖x+ y‖2 = ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2 ≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2 .

2

From 〈x, y〉 = 〈y, x〉 it follows that Re 〈x, y〉 = Re 〈y, x〉, and we have

‖x+ y‖2 = ‖x‖2 + 2Re 〈x, y〉+ ‖y‖2 , for all x, y ∈ X. (2.7)

The Cauchy-Schwarz inequality directly implies (see the exercises) that the scalar product
〈·, ·〉 : X ×X → K is continuous.

Examples for Hilbert spaces:

X = Kn , 〈x, y〉 =
n∑
k=1

xkyk , (2.8)

also

X = `2(K) , 〈x, y〉 =
∞∑
k=1

xkyk , (2.9)

and

X = L2(D;K) , 〈x, y〉 =

∫
D

x(t)y(t) dt , (2.10)

where D ⊂ Rn is open. For the examples (2.9) and (2.10), it follows from Hölder’s
inequality that the scalar product is well defined.

For these spaces, the norm defined in (2.5) is identical with those considered in the
previous chapter.

Proposition 2.3 (Parallelogram identity)
Let X be a prehilbert space. Then

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) , for all x, y ∈ X. (2.11)

Proof: A direct computation using definition (2.5) and the properties of a scalar product.
2

Similarly, one can compute directly that, in a prehilbert space, the scalar product can be
expressed by the norm. Namely,

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2) , K = R , (2.12)

and

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2) , K = C . (2.13)

These identities are called polarization identities.

21



Let X be a normed space in which the parallelogram identity (2.11) does not hold. Then
there cannot exist a scalar product which generates this norm according to (2.5). Using
this argument one can show (exercise) that (C(D;K), ‖ · ‖∞), D compact metric space, is
not a prehilbert space.

If (2.11) holds in a given normed space X, one can prove that (2.12) resp. (2.13) defines
a scalar product; thus, X then becomes a prehilbert space (we do not give the proof).

Proposition 2.4 (Projection)
Let X be a Hilbert space, let K ⊂ X nonempty, convex and closed. Then for every x ∈ X
there exists a unique y ∈ K with

‖x− y‖ = inf
z∈K
‖x− z‖ . (2.14)

The association x 7→ y thus defines a mapping PK : X → K, called the projection on
K.

Proof: Let x ∈ X, let (yn)n∈N be a sequence in K such that

lim
n→∞

‖x− yn‖ = inf
z∈K
‖x− z‖ =: d .

With the aid of the parallelogram identity we get

2(‖x− yn‖2 + ‖x− ym‖2) = ‖2x− (yn + ym)‖2 + ‖yn − ym‖2 ,

so

‖yn − ym‖2 = 2(‖x− yn‖2 + ‖x− ym‖2)− 4

∥∥∥∥x− yn + ym
2

∥∥∥∥2

. (2.15)

As K is convex,
yn + ym

2
∈ K ,

therefore
0 ≤ ‖yn − ym‖2 ≤ 2(‖x− yn‖2 + ‖x− ym‖2)− 4d2 . (2.16)

Thus, (yn)n∈N is a Cauchy sequence in X. As X is complete, there exists

y = lim
n→∞

yn . (2.17)

Since K is closed, we have y ∈ K. The continuity of the norm implies

‖x− y‖ = lim
n→∞

‖x− yn‖ = d .

Therefore we have proved the existence of a y satisfying (2.14). Let now ỹ ∈ K with
‖x− ỹ‖ = d. Then as in (2.15) we conclude that

‖y − ỹ‖2 = 2(‖x− y‖2 + ‖x− ỹ‖2)− 4

∥∥∥∥x− y + ỹ

2

∥∥∥∥2

= 4d2 − 4

∥∥∥∥x− y + ỹ

2

∥∥∥∥2

≤ 0 , as
y + ỹ

2
∈ K ,

so y = ỹ. 2
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Proposition 2.5 (Variational inequality)
Let X be a Hilbert space, K ⊂ X nonempty, convex and closed. Then for every x ∈ X
there exists a unique y ∈ K with

Re 〈x− y, z − y〉 ≤ 0 , for all z ∈ K, (2.18)

and we have y = PKx.

Proof: Uniqueness: Let y, ỹ ∈ K be solutions of (2.18). Then

0 ≥ Re 〈x− y, ỹ − y〉 ,
0 ≥ Re 〈x− ỹ, y − ỹ〉 = Re 〈ỹ − x, ỹ − y〉 .

Adding these inequalities yields

0 ≥ Re 〈ỹ − y, ỹ − y〉 = ‖ỹ − y‖2 ,

and therefore y = ỹ. It remains to show that y = PKx is a solution. Let z ∈ K, t ∈ [0, 1]
be arbitrary. Then (1− t)PKx+ tz ∈ K, so

‖x− PKx‖2 ≤ ‖x− (1− t)PKx− tz‖2 = ‖(x− PKx) + t(PKx− z)‖2

= ‖x− PKx‖2 + 2 Re 〈x− PKx, t(PKx− z)〉+ t2‖PKx− z‖2 .

Dividing by t gives

0 ≤ 2 Re 〈x− PKx, PKx− z〉+ t‖PKx− z‖2 .

Passing to the limit t→ 0 yields the assertion. 2

When K = R, (2.18) becomes

〈x− y, z − y〉 ≤ 0 , for all z ∈ K. (2.19)

Corollary 2.6 Let X be a Hilbert space, K ⊂ X nonempty, convex and closed. Then we
have

‖PKx− PK x̃‖ ≤ ‖x− x̃‖ , for all x, x̃ ∈ X. (2.20)

Proof: Exercise. 2

Corollary 2.7 Let X be a Hilbert space, U a closed subspace of X. Then PUx is the
unique element y ∈ U which satisfies

〈x− y, z〉 = 0 , for all z ∈ U . (2.21)

Proof: If z ∈ U then also z + PUx ∈ U . Then (2.18) implies

Re 〈x− PUx, z〉 ≤ 0 , for all z ∈ U . (2.22)

Replacing z by −z we see that Re 〈x− PUx, z〉 = 0; replacing z by iz yields
Im 〈x− PUx, z〉 = 0, so (2.21) holds. Conversely every y ∈ U which satisfies (2.21) also
solves the variational inequality (2.18), since z − y ∈ U for all z ∈ U . 2
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Definition 2.8 (Orthogonality)
Let X be a prehilbert space. If x, y ∈ X satisfy

〈x, y〉 = 0 , (2.23)

we say that x and y are orthogonal, and write x⊥y. If Y ⊂ X, we define the orthogonal
complement Y ⊥ of Y by

Y ⊥ = {z : z ∈ X, z⊥y for all y ∈ Y } . (2.24)

2

If x⊥y then (Pythagoras)
‖x+ y‖2 = ‖x‖2 + ‖y‖2 .

Lemma 2.9 Let X be a prehilbert space, Y ⊂ X. Then Y ⊥ is a closed subspace of X
with Y ⊥ ∩ Y = {0}.

Proof: This follows directly from the fact that the scalar product is bilinear, continuous
and definite. 2

Proposition 2.10 Let X be a Hilbert space, U a closed subspace of X. Then the projec-
tion PU : X → U is linear and continuous, ker(PU) = U⊥, and

PU⊥ = id− PU . (2.25)

Proof: By Corollary 2.7 we have

〈x− PUx, z〉 = 0 , for all x ∈ X, z ∈ U . (2.26)

Therefore x− PUx ∈ U⊥. For x, x̃ ∈ X and α, β ∈ K we have

αPUx+ βPU x̃ ∈ U ,
〈(αx+ βx̃)− (αPUx+ βPU x̃), z〉 = 0 , for all z ∈ U ,

so, again using Corollary 2.7,

PU(αx+ βx̃) = αPUx+ βPU x̃ .

From (2.26) and Lemma 2.9 it follows that

x ∈ U⊥ ⇔ PUx ∈ U⊥ ⇔ PUx = 0 .

For z ∈ U⊥ we have
〈x− (id− PU)x, z〉 = 〈PUx, z〉 = 0 ,

and because of x− PUx ∈ U⊥ we conclude that

(id− PU)x = PU⊥x .

24



2

From (2.25) we immediately obtain

‖x‖2 = ‖x− PUx‖2 + ‖PUx‖2

and therefore
‖PU‖ = 1 , if U 6= {0}.

The mapping x 7→ (PUx, x− PUx) yields an isometric isomorphism

(X, ‖ · ‖) ∼= (U × U⊥, ‖ · ‖2) .

We may X also interpret as a direct sum

X = U ⊕ U⊥

in the sense of linear algebra.

Lemma 2.11 Let X be a Hilbert space, Y ⊂ X. Then

Y ⊥⊥ = spanY . (2.27)

In particular, we have Y ⊥⊥ = Y if Y is a closed subspace.

Proof: Exercise. 2

Proposition 2.12 (Riesz representation theorem)
Let X be a Hilbert space. Then for every x∗ ∈ X∗ there exists a unique x ∈ X satisfying

x∗(z) = 〈z, x〉 , for all z ∈ X. (2.28)

The mapping J : X → X∗ defined by (2.28) is bijective, isometric and conjugate linear,
that is,

J(αx+ βy) = αJ(x) + βJ(y) (2.29)

holds for all x, y ∈ X and all α, β ∈ K.

Proof: Formula (2.28) defines a linear functional x∗ : X → K. Since

|x∗(z)| ≤ ‖x‖ ‖z‖ , |x∗(x)| = ‖x‖2 ,

we have x∗ ∈ X∗. Thus J is well-defined, conjugate linear and satisfies ‖J(x)‖ = ‖x‖.
It remains to show that J is surjective. Let x∗ ∈ X∗ with x∗ 6= 0. We set U = ker(x∗).
Since U 6= X, we get U⊥ 6= {0}. We choose an x ∈ U⊥ with x∗(x) = 1. For arbitrary
z ∈ X we have

z = z − x∗(z)x+ x∗(z)x , z − x∗(z)x ∈ U .

This implies
〈z, x〉 = 〈z − x∗(z)x, x〉︸ ︷︷ ︸

=0

+ 〈x∗(z)x, x〉 = x∗(z) 〈x, x〉 ,
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and therefore

x∗ = J

(
x

‖x‖2

)
.

2

For the Hilbert space X = L2(D;K), Proposition 2.12 yields that for every functional
x∗ ∈ X∗ there exists a unique function x ∈ L2(D;K) such that

x∗(z) =

∫
D

z(t)x(t) dt , for all z ∈ L2(D;K).

Let U be a closed subspace of a Hilbert space X with U 6= X. Then there exists x ∈ X
satisfying

dist (x, U) = inf
z∈U
‖x− z‖ = 1 , ‖x‖ = 1 , (2.30)

because every x ∈ U⊥ with ‖x‖ = 1 has this property.

In a Banach space which is not a Hilbert space, the projection theorem in general does
not hold, not even when the convex set K is a subspace, and an x ∈ X which satisfies
(2.30) need not exist. Instead, the following weaker result holds.

Lemma 2.13 Let X be a normed space, U a closed subspace of X with U 6= X. Then
there exists a sequence (xn)n∈N in X with

lim
n→∞

dist (xn, U) = 1 , ‖xn‖ = 1 for all n ∈ N. (2.31)

Proof: Let x̃ ∈ X \ U , let (yn)n∈N be a sequence in U with

lim
n→∞

‖x̃− yn‖ = dist (x̃, U) .

Since U is closed, we have that dist (x̃, U) > 0. We define

xn =
x̃− yn
‖x̃− yn‖

. (2.32)

For arbitrary z ∈ U we have

‖xn − z‖ =
1

‖x̃− yn‖
‖x̃− (yn + ‖x̃− yn‖z)︸ ︷︷ ︸

∈U

‖ ≥ 1

‖x̃− yn‖
dist (x̃, U) ,

therefore

1 = ‖xn‖ ≥ dist (xn, U) ≥ 1

‖x̃− yn‖
dist (x̃, U)→ 1 for n→∞.

2

Corollary 2.14 Let X be a normed space with dim(X) = ∞. Then the closed unit ball
K(0; 1) = {x : x ∈ X, ‖x‖ ≤ 1} is not compact.
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Proof:K(0; 1) is a subset of X and thus a metric space. It therefore suffices to construct
a sequence (xn)n∈N in K(0; 1) which does not have a convergent subsequence. Let x1 ∈
K(0; 1) with ‖x1‖ = 1. Assume that x1, . . . , xn are already defined. Then choose xn+1

according to Lemma 2.13 such that ‖xn+1‖ = 1 and

dist (xn+1, Un) ≥ 1

2
, where Un = span {x1, . . . , xn} .

Then we have

‖xn − xm‖ ≥
1

2
, n 6= m.

Therefore, (xn)n∈N has no convergent subsequence. 2

If X has finite dimension, say dim(X) = n, then X ' Kn by Proposition 1.6. Thus we
have proved: In a normed space, the unit ball is compact if and only if the space
has finite dimension.

Definition 2.15 (Orthonormal basis)
Let X be a Hilbert space. A set S ⊂ X is called an orthonormal system in X, if
‖e‖ = 1 for all e ∈ S and e⊥f for all e, f ∈ S with e 6= f . An orthonormal system S
is called an orthonormal basis, if there does not exist an orthonormal system S̃ with
S ⊂ S̃ and S 6= S̃. 2

An orthonormal basis is also called a “complete orthonormal system”.

We know from linear algebra that every vector space has a basis. In an analogous manner
to that proof one can also prove that every Hilbert space has an orthonormal basis.

Proposition 2.16 Let X be a Hilbert space, X 6= {0}. Then X has orthonormal basis.
For every orthonormal system S0 there exists an orthonormal basis S with S0 ⊂ S.

Proof: The first assertion follows from the second, since X has an orthonormal system;
namely, S0 = {x/‖x‖} is an orthonormal system whenever x ∈ X, x 6= 0. Let now S0 be
an arbitrary orthonormal system. We consider the set

M = {S : S ⊃ S0, S is an orthonormal system} .

The set M is not empty, and the set inclusion defines a partial order “≤” on M,

S1 ≤ S2 ⇔ S1 ⊂ S2 .

Let V be a completely ordered subset of M (that is, for arbitrary S1, S2 ∈ V we have
S1 ≤ S2 or S2 ≤ S1). Then

T =
⋃
S∈V

S

also is an element ofM (because it follows from e, f ∈ T that there exists an S ∈ V such
that e, f ∈ S, so ‖e‖ = ‖f‖ = 1 and 〈e, f〉 = 0). Therefore, T is an upper bound of V in
M. Consequently, every totally ordered subset ofM has an upper bound. It now follows
from Zorn’s lemma thatM possesses a maximal element S, that is, an element for which
there does not exist a S̃ ∈ M with S ⊂ S̃ and S 6= S̃. Therefore, S is an orthonormal
basis. 2
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Proposition 2.17 Let X be a separable Hilbert space with dim(X) = ∞. Then every
orthonormal basis S has countably infinitely many elemente.

Proof: If S is an uncountable orthonormal basis, the space X cannot be separable, since
‖e− f‖ =

√
2 holds for elements e, f ∈ S with e 6= f (the reasoning is analogous to that

in the proof that `∞(K) is not separable). On the other hand, if S is a finite orthonormal
system, and x /∈ U = span (S), then

S ∪
{

x− PUx
‖x− PUx‖

}
is also an orthonormal system. Thus S is not an orthonormal basis. 2

Lemma 2.18 Let X be a Hilbert space, S ⊂ X an orthonormal system. Let e1, . . . , en ∈ S
and U = span {e1, . . . , en}. Then

PUx =
n∑
k=1

〈x, ek〉 ek , for all x ∈ X. (2.33)

Moreover, Bessel’s inequality
n∑
k=1

| 〈x, ek〉 |2 ≤ ‖x‖2 (2.34)

holds.

Proof: Setting

y =
n∑
k=1

〈x, ek〉 ek

we have y ∈ U and

〈x− y, ej〉 = 〈x, ej〉 −
n∑
k=1

〈x, ek〉 〈ek, ej〉 = 〈x, ej〉 − 〈x, ej〉 = 0 .

Consequently, 〈x− y, z〉 = 0 for all z ∈ U and therefore y = PUx according to Corollary
2.7. Bessel’s inequality follows because of

‖PUx‖2 =

〈
n∑
k=1

〈x, ek〉 ek,
n∑
j=1

〈x, ej〉 ej

〉
=

n∑
j,k=1

〈x, ek〉 〈x, ej〉 〈ek, ej〉

=
n∑
k=1

| 〈x, ek〉 |2

from the inequality ‖PUx‖ ≤ ‖x‖. 2

Corollary 2.19 Let X be a Hilbert space, S ⊂ X an orthonormal system, x ∈ X. Then
the set

Sx = {e : e ∈ S, 〈x, e〉 6= 0} (2.35)

is finite or countably infinite.
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Proof: Because of (2.34), for any given m ∈ N there cannot exist more than m‖x‖2

different e ∈ S with | 〈x, e〉 | > 1/m. 2

An orthonormal system S in X is linearly independent and therefore a vector space basis
of the subspace span (S) generated by S. Orthonormal systems and bases are important,
because one also can represent elements in the closure span (S), as limits of a series

x =
∞∑
k=1

〈x, ek〉 ek , ek ∈ S . (2.36)

One may extend an orthonormal system S to a vector space basis B of X (by the cor-
responding result from linear algebra) and thus represent every element of X as a finite
linear combination of elements of B. But such a basis B is uncountably infinite (as we
will see in the next chapter), and one cannot describe it in a “constructive” manner. For
this reason, vector space bases are unsuitable for the analysis of function spaces.

Proposition 2.20 Let X be a separable Hilbert space with dim(X) = ∞, let S = {ek :
k ∈ N} be an orthonormal system. Then there are equivalent

(i) S is an orthonormal basis.

(ii) S⊥ = {0}.

(iii) X = span (S).

(iv) For all x ∈ X we have

x =
∞∑
k=1

〈x, ek〉 ek . (2.37)

(v) For all x ∈ X there holds Parseval’s equality

‖x‖2 =
∞∑
k=1

| 〈x, ek〉 |2 . (2.38)

Proof: (i)⇒(ii): Let x ∈ S⊥, x 6= 0. Then

S ∪
{

x

‖x‖

}
is an orthonormal system, so S is not an orthonormal basis.
(ii)⇒(iii): By Lemma 2.11,

span (S) = S⊥⊥ = {0}⊥ = X .

(iii)⇒(iv): Let Um = span {e1, . . . , em}, Pm = PUm . Let x ∈ X be arbitrary, let (xn)n∈N
be a sequence in span (S) with xn → x, let (mn)n∈N be a strictly increasing sequence in
N with xn ∈ Umn . Then we have

0 ≤ ‖x− Pmnx‖ ≤ ‖x− xn‖ → 0 ,
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and since (‖x− Pnx‖)n∈N is decreasing, it follows from Proposition 2.18 that

0 ≤ ‖x−
n∑
k=1

〈x, ek〉 ek‖ = ‖x− Pnx‖ → 0 .

(iv)⇒(v): The partial sums sn =
∑n

k=1 〈x, ek〉 ek satisfy

‖sn‖2 = 〈sn, sn〉 =
n∑
k=1

| 〈x, ek〉 |2 .

Passing to the limit n→∞ yields (2.38).
(v)⇒(i): If S is not an orthonormal basis, then there exists an x ∈ X with ‖x‖ = 1 such
that S ∪ {x} becomes an orthonormal system. For such an x, (2.38) does not hold. 2

From Proposition 2.20 it follows immediately that in `2(K) the unit vectors ek form an
orthonormal basis S = {ek}, because span (S) = ce(K) and ce(K) is dense in `2(K).

The series in (2.37) in general is not absolutely convergent. Example: For

xk =
1

k

we have x = (xk)k∈N ∈ `2(K), but ‖ 〈x, ek〉 ek‖2 = 1
k
. Nevertheless, (2.38) shows that, in

the situation of Proposition 2.20, the limit x does not depend on the order in which the
basis vectors are chosen.

When X is a nonseparable Hilbert space, one can prove an analogous characterization,
because for every x ∈ X the scalar product 〈x, e〉 can be nonzero for at most countably
infinitely many elements e ∈ S, due to Lemma 2.19.

Proposition 2.21 Let X be a separable Hilbert space with dim(X) =∞. Then

X ∼= `2(K) . (2.39)

Proof: Let S = {ek : k ∈ N} be an orthonormal basis of X. For given x ∈ X we define a
sequence Tx by

(Tx)k = 〈x, ek〉 , x ∈ X .

Parseval’s equality implies that Tx ∈ `2(K) and that ‖Tx‖2 = ‖x‖X . Obviously, T is
linear and injective. We define R : ce(K)→ X by

R(y) =
m∑
k=1

ykek , if y = (y1, . . . , ym, 0, . . .).

Then R is linear and continuous (even isometric). Therefore, by Proposition 1.19 we can
uniquely extend R to a linear continuous mapping R : `2(K) → X. Let now y ∈ `2(K),
let (yn)n∈N be a sequence in ce(K) with yn → y. Then yn = TRyn → TRy, so y = TRy.
Thus T is surjective. 2

From Proposition 2.21 it follows that all separable Hilbert spaces of infinite dimension
are isometrically isomorphic. As a somewhat surprising consequence of this result we see
that

L2(D;K) ∼= `2(K) ,
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if D is an open subset of Rn.

In L2((−π, π);C) we now consider the functions

ek(t) =
1√
2π
eikt , k ∈ Z , (2.40)

It has been proved in the basic lecture on analysis that

S = {ek : k ∈ Z} (2.41)

is an orthonormal basis. Consequently we conclude from Proposition 2.20 that for every
x ∈ L2((−π, π);C) we have

x =
∑
k∈Z

ckek , ck = 〈x, ek〉 =
1√
2π

∫ π

−π
x(s)e−iks ds , (2.42)

where the limit has to be interpreted as a limit in L2. The series (2.42) is called the
Fourier series of x.
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3 The Principle of Uniform Boundedness

Many results of functional analysis rest on the following proposition.

Proposition 3.1 (Baire)
Let (X, d) be a complete metric space, let (Un)n∈N be a sequence of open subsets of X, let
Un be dense in X for all n ∈ N. Then

D =
⋂
n∈N

Un (3.1)

is dense in X.

Proof: It suffices to show: if V ⊂ X is open and not empty, then V ∩D 6= ∅. Let V be
open, V 6= ∅. We choose x1 ∈ U1 ∩ V (this is possible as U1 is dense in X) and an ε1 > 0
such that

x1 ∈ K(x1; ε1) ⊂ U1 ∩ V . (3.2)

Assume that (x1, ε1), . . . , (xn−1, εn−1) are defined already. We choose

xn ∈ Un ∩B(xn−1; εn−1) (possible since Un is dense in X) (3.3)

and εn > 0 such that

xn ∈ K(xn; εn) ⊂ Un ∩B(xn−1; εn−1) , εn ≤
1

2
εn−1 . (3.4)

Then

d(xn+1, xn) ≤ εn ≤ 2−n+1ε1 , d(xm, xn) ≤ 2 · 2−n+1ε1 for all m > n.

Therefore, (xn)n∈N is a Cauchy sequence. Let x = limn→∞ xn. We have K(xn; εn) ⊂
K(xn−1; εn−1) for all n ∈ N and therefore xm ∈ K(xn; εn) for all m > n. Since K(xn; εn)
is closed, it follows that x ∈ K(xn; εn) ⊂ V for all n. Consequently,

x ∈
⋂
n∈N

K(xn; εn) ⊂
⋂
n∈N

Un ∩ V = D ∩ V .

2

Definition 3.2 Let (X, d) be a metric space, M ⊂ X. M is called nowhere dense in
X, if int (M) = ∅ (that is, the closure of M has no interior points). 2

A closed set A ⊂ X is nowhere dense in X if and only if its complement X \ A is open
and dense in X.

Corollary 3.3 Let (X, d) be a complete metric space, let (An)n∈N be a sequence of closed
and nowhere dense subsets of X. Then

X \
⋃
n∈N

An (3.5)

is dense in X.
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Proof: We apply Proposition 3.1, setting Un = X \ An. 2

Proposition 3.1 and Corollary 3.3 imply in particular that D = ∩nUn resp. X \ ∪nAn are
nonempty. Thus, they provide a way to prove existence of certain objects. For example
one can show in this manner (see Werner p.139) that the set of all continuous but nowhere
differentiable functions forms a dense subset of (C([a, b]), ‖ · ‖∞).

We present another existence result.

Corollary 3.4 Let (X, d) be a complete metric space, let (An)n∈N be a sequence of closed
subsets of X such that

X =
⋃
n∈N

An . (3.6)

Then there exists a k ∈ N such that int (Ak) 6= ∅.

Proof: This is a direct consequence of Corollary 3.3. 2

From Corollary 3.4 one can conclude (exercise) for example that there does not exist a
Banach space which has a countably infinite vector space basis.

Subsets of X of the form ⋃
n∈N

Mn , Mn nowhere dense in X,

are also called sets of first category in X. Subsets of X which are not of first category
are called of second category in X. When one uses this terminology, a complete metric
space is always of second category (in itself).

The statement of the following proposition is called the principle of uniform boundedness.

Proposition 3.5 (Banach-Steinhaus)
Let X be a Banach space, Y a normed space, let T ⊂ L(X;Y ). Assume that

sup
T∈T
‖Tx‖ <∞ , for all x ∈ X. (3.7)

Then
sup
T∈T
‖T‖ <∞ . (3.8)

Thus, if a family of linear and continuous operators is pointwise bounded, it is uniformly
bounded.
Proof: For n ∈ N we define

An = {x : x ∈ X, sup
T∈T
‖Tx‖ ≤ n} . (3.9)

An is closed, since for fT (x) := ‖Tx‖ we have

An =
⋂
T∈T

f−1
T ([0, n]) .
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By assumption (3.7) we have

X =
⋃
n∈N

An .

Due to Corollary 3.4 we can choose a k ∈ N such that int (Ak) 6= ∅. Let x0 ∈ Ak, ε > 0
with K(x0; ε) ⊂ Ak. Let now x ∈ X be arbitrary, x 6= 0, then

z = x0 + ε
x

‖x‖
∈ K(x0; ε) ⊂ Ak .

In addition, let T ∈ T be arbitrary. Then

‖Tx‖ =

∥∥∥∥T (‖x‖ε (z − x0)

)∥∥∥∥ =
‖x‖
ε
‖Tz − Tx0‖ ≤

‖x‖
ε

2k ,

and therefore

‖T‖ ≤ 2k

ε
, for all T ∈ T .

2

Definition 3.6 (Open Mapping) Let (X, dX), (Y, dY ) be metric spaces. A mapping
T : X → Y is called open if T (U) is open in Y for every open subset U of X. 2

When the mapping T is open, the image of closed subset of X is not necessarily closed in
Y ; not even when T is linear (Example: exercise.)

Proposition 3.7 (Open mapping theorem)
Let X, Y be Banach spaces, T : X → Y linear and continuous. Then there are equivalent:

(i) T is open.

(ii) There exists δ > 0 such that B(0; δ) ⊂ T (B(0; 1)).

(iii) T is surjective.

Proof: “(i)⇒(ii)”: obvious.
“(ii)⇒(i)”: Let U be open in X, let y ∈ T (U). We choose x ∈ U such that Tx = y, and
ε > 0 such that B(x; ε) ⊂ U . Then

T (U) ⊃ T (B(x; ε)) = Tx+ T (B(0; ε)) ⊃ y +B(0; δε) ,

where δ > 0 is chosen according to (ii). Then y ∈ int (T (U)).
“(ii)⇒(iii)”: As T is linear, it follows from (ii) that B(0; rδ) ⊂ T (B(0; r)) for all r > 0.
“(iii)⇒(ii)”: Since T is surjective, we have

Y =
⋃
n∈N

T (B(0;n)) .

According to Corollary 3.4 we choose a k ∈ N such that int (T (B(0; k))) 6= ∅. We set
V = T (B(0; k)). Let now y ∈ V , ε > 0 such that

B(y; ε) ⊂ V .
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Since V is symmetric (that is, z ∈ V ⇒ −z ∈ V ), we see that B(−y; ε) ⊂ V . Since V is
convex, it follows that

B(0; ε) ⊂ V = T (B(0; k)) . (3.10)

It now suffices to show that
B(0; ε) ⊂ T (B(0; 3k)) , (3.11)

because then (ii) is satisfied for δ = ε/3k. By (3.10), for every y ∈ B(0; ε) we find an
x ∈ B(0; k) such that ‖y − Tx‖ < ε/2, so

2(y − Tx) ∈ B(0; ε) . (3.12)

Let now y0 ∈ B(0; ε) be given. We construct sequences (xj) in X, (yj) in Y by choosing
x0, y1, x1, y2, x2, . . . such that

xj ∈ B(0; k) , yj+1 = 2(yj − Txj) , yj+1 ∈ B(0; ε) , j ∈ N . (3.13)

It follows that
2−(j+1)yj+1 = 2−jyj − T (2−jxj) , j ∈ N ,

therefore

T

(
m∑
j=0

2−jxj

)
= y0 − 2−(m+1)ym+1 → y0 (3.14)

f”ur m→∞. Since
m∑
j=0

2−j‖xj‖ ≤ 2k , (3.15)

the series
∑

j 2−jxj is absolutely convergent, hence convergent (as X is a Banach space).
Let

x =
∞∑
j=0

2−jxj .

Now (3.14) implies that Tx = y0, and (3.15) implies that ‖x‖ ≤ 2k < 3k. Thus (3.11) is
proved. 2

Corollary 3.8 Let X, Y be Banach spaces, T : X → Y linear, continuous and bijective.
Then T−1 : Y → X is linear and continuous.

Proof: That T−1 is linear, is a result of linear algebra. It follows from Proposition 3.7
that T is open. Therefore, for every open U ⊂ X it follows that (T−1)−1(U) = T (U) is
open. Thus, T−1 is continuous. 2

Let us consider the situation when a vector space X is endowed with two different norms
‖ · ‖1 and ‖ · ‖2 so that

‖x‖1 ≤ C‖x‖2 , for all x ∈ X, (3.16)

holds with a constant C which does not depend on x. This means that ‖ · ‖1 is weaker
than ‖ · ‖2 in the sense that convergence w.r.t. ‖ · ‖2 implies convergence w.r.t. ‖ · ‖1, but
not the other way round. (3.16) means that

id : (X, ‖ · ‖2)→ (X, ‖ · ‖1)
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is continuous. We now conclude from Corollary 3.8 that

id : (X, ‖ · ‖1)→ (X, ‖ · ‖2)

is continuous, too, if (X, ‖ · ‖1) and (X, ‖ · ‖2) both are Banach spaces; in this case it
follows that both norms are equivalent, and

(X, ‖ · ‖1) ' (X, ‖ · ‖2) .

If (3.16) holds, but the two norms are not equivalent, then at least one of the spaces
(X, ‖ · ‖1) and (X, ‖ · ‖2) is not complete. Example: X = C([a, b]). C([a, b]) is complete
for ‖ · ‖2 = ‖ · ‖∞, and for the L1-Norm we have

‖x‖1 ≤ (b− a)‖x‖∞ ,

but these two norms are not equivalent (there exist sequences (xn)n∈N with ‖xn‖1 → 0,
but ‖xn‖∞ 9 0). Therefore (C([a, b]); ‖ · ‖1) is not complete.

Corollary 3.9 Let X, Y be Banach spaces, T : X → Y linear and continuous, assume
that T (X) = Y and T (X) 6= Y . Then there exists y ∈ Y such that ‖xn‖ → ∞ holds for
every sequence (xn)n∈N in X which satisfies limn→∞ Txn = y.

Proof: Exercise. 2

In the situation of Corollary 3.9, problems arise if one wants to solve Tx = y for a given
y in a “stable” manner. The corollary implies that there exists a sequence (yn) in Y of
approximations yn of y, namely yn → y, for which ‖x‖n →∞ holds for the exact solutions
xn of the equation Tx = yn. We might want to use (xn) as a sequence of approximate
solutions of Tx = y; but they are worthless for large values of n.

The graph of a mapping T : X → Y is defined as

graph (T ) = {(x, Tx) : x ∈ X} . (3.17)

Proposition 3.10 (Closed graph theorem)
Let X, Y be Banach spaces, let T : X → Y be linear. Then there are equivalent:

(i) graph (T ) is a closed subset of X × Y .

(ii) T is continuous.

Proof: “(ii)⇒(i)”: Let (xn, yn) be a sequence in graph (T ) such that (xn, yn) → (x, y) ∈
X × Y ; then yn = Txn, xn → x and Txn → Tx, thus y = Tx.
“(i)⇒(ii)”: As T is linear, graph (T ) is a closed subspace of X×Y and therefore a Banach
space. The projection PX |graph (T ) : graph (T ) → X is linear, continuous and bijective.
By Proposition 3.8, it has a linear and continuous inverse Q : X → graph (T ). It follos
that T = PY ◦Q is continuous. 2

This result is useful when one wants to prove that a given T is continuous; it says that it
suffices to prove that if xn → x and Txn → y, then Tx = y. (Otherwise one has to prove
first that if xn → x, then Txn converges to some y.)
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4 Extension, Reflexivity, Separation

Extension of functionals. We know so far that operators which are linear and continu-
ous on a dense subset of a normed space can be extended to a linear continuous operator
on the whole space while preserving its norm. The main result of this subsection (the
Hahn-Banach theorem) states that such an extension to the whole space is possible even
when starting from an arbitrary subspace.

Definition 4.1 (Sublinear functional)
Let X be a vector space. A mapping p : X → R is called sublinear if

p(αx) = αp(x) , for all x ∈ X, α ≥ 0, (4.1)

p(x+ y) ≤ p(x) + p(y) , for all x, y ∈ X. (4.2)

2

Seminorms on X and linear mappings f : X → R are sublinear.

Definition 4.2 (Minkowski functional)
Let X be a vector space, let A ⊂ X. Then

MA(x) = inf{t : t > 0,
1

t
x ∈ A} (4.3)

defines a mapping MA : X → [0,∞], it is called the Minkowski functional of A. If
MA(x) <∞ for all x ∈ X, A is called absorbing. 2

LetA be a subset of a normed space X, let 0 ∈ int (A). Then A is absorbing, since 1
t
x ∈ A

for sufficiently large t. If for A we take the unit ball in X, we have MA(x) = ‖x‖.

Lemma 4.3 Let X be a vector space, A ⊂ X convex and absorbing. Then the Minkowski
functional MA is sublinear.

Proof: The property (4.1) immediately follows from (4.3). Let now x, y ∈ X, let ε > 0.
We choose t, s > 0 such that

t ≤MA(x) + ε ,
1

t
x ∈ A , s ≤MA(y) + ε ,

1

s
y ∈ A .

Then we get, since A is convex,

1

t+ s
(x+ y) =

t

t+ s
· 1

t
x+

s

t+ s
· 1

s
y ∈ A ,

so MA(x + y) ≤ t + s ≤ MA(x) + MA(y) + 2ε. As ε > 0 was arbitrary, the assertion
follows. 2

Proposition 4.4 Let X be a vector space over R, p : X → R sublinear. Let U be a
subspace of X, let f : U → R be linear such that f(x) ≤ p(x) for all x ∈ U . Then there
exists a linear extension F : X → R of f on X which satisfies F (x) ≤ p(x) for all x ∈ X.
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Proof: We first consider the special case

X = span (U ∪ {y}) , y ∈ X \ U . (4.4)

Every x ∈ X can be decomposed uniquely as

x = z + αy , z ∈ U , α ∈ R . (4.5)

We define F : X → R by

F (x) = f(z) + αr , if x = z + αy, (4.6)

where r ∈ R will be fixed later. F is linear, and F |U = f . The required inequality

F (x) = f(z) + αr ≤ p(z + αy) = p(x) , for all z ∈ U , α ∈ R, (4.7)

holds for α = 0 by assumption. For α > 0 it is equivalent to

r ≤ p(z + αy)− f(z)

α
= p

( z
α

+ y
)
− f

( z
α

)
, (4.8)

and for α < 0 it is equivalent to

r ≥ p(z + αy)− f(z)

α
= −p

(
− z
α
− y
)

+ f
(
− z
α

)
. (4.9)

Such an r exists if

sup
z∈U

(f(z)− p(z − y)) ≤ inf
z∈U

(p(z + y)− f(z)) . (4.10)

But for arbitrary z, z̃ ∈ U we have

f(z) + f(z̃) = f(z + z̃) ≤ p(z + z̃) ≤ p(z − y) + p(z̃ + y) ,

and therefore
f(z)− p(z − y) ≤ p(z̃ + y)− f(z̃) , for all z, z̃ ∈ U .

From this, (4.10) immediately follows. Thus the proposition is proved for the special case
(4.4). To prove the claim in the general case we use Zorn’s lemma. We define the set

M = {(V, g) : V subspace, U ⊂ V ⊂ X, g : V → R linear, g|U = f , g ≤ p on V } ,
(4.11)

and endow M with the partial ordering

(V1, g1) ≤ (V2, g2) ⇔ V1 ⊂ V2 , g2|V1 = g1 .

We have (U, f) ∈M, soM 6= ∅. Let N be a completely ordered subset ofM. We define

V∗ =
⋃

(V,g)∈N

V (4.12)

and g∗ : V∗ → R by
g∗(x) = g(x) , if x ∈ V , (V, g) ∈ N . (4.13)

From the definition of N it now follows that g∗(x) does not depend on the choice of (V, g),
that V∗ is a subspace and that g∗ is linear (we do not carry out the details). Therefore,
(V∗, g∗) is an upper bound of N inM. By Zorn’s lemma,M possesses a maximal element
(V, g). We must have V = X; otherwise, by what we have proved for the special case, we
could construct a (Ṽ , g̃) ∈ M such that Ṽ = span (V ∪ {y}), y ∈ X \ V , contradicting
the maximality of (V, g). 2
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Proposition 4.5 (Hahn-Banach)
Let X be a normed space over K, let U be a subspace of X, let u∗ ∈ U∗. Then there exists
an x∗ ∈ X∗ satisfying x∗|U = u∗ and ‖x∗‖ = ‖u∗‖.

Proof: We first consider the case K = R. We define p : X → [0,∞) by

p(x) = ‖u∗‖ · ‖x‖ . (4.14)

p is sublinear, and u∗(x) ≤ p(x) for all x ∈ U . By Proposition 4.4 there exists a linear
functional x∗ : X → R such that x∗(x) ≤ p(x) for all x ∈ X and x∗|U = u∗. We then
have for all x ∈ X

x∗(x) ≤ p(x) = ‖u∗‖ · ‖x‖ , −x∗(x) = x∗(−x) ≤ p(−x) = ‖u∗‖ · ‖x‖ ,

so
|x∗(x)| ≤ ‖u∗‖ · ‖x‖ .

Therefore, x∗ is continuous and ‖x∗‖ ≤ ‖u∗‖. Since x∗ is an extension of u∗, it follows
from the definition of the operator norm that ‖x∗‖ ≥ ‖u∗‖.
Let now K = C. With XR and UR we denote the normed spaces X and U where we
restrict the scalar field to R (the norm remains the same), and set

u∗R = Reu∗ .

Then u∗R ∈ U∗R, ‖u∗R‖ ≤ ‖u∗‖,

u∗(x) = Reu∗(x) + i Imu∗(x) = u∗R(x)− iu∗R(ix) ,

for all x ∈ U , as Imu∗(x) = −Reu∗(ix). Let now x∗R ∈ X∗R be an extension of u∗R such
that ‖x∗R‖ = ‖u∗R‖, as we already have constructed. This extension is R-linear. We set

x∗(x) = x∗R(x)− ix∗R(ix) . (4.15)

Then one may check that x∗ : X → C is a C-linear extension of u∗. For any given x ∈ X
we now choose c ∈ C, |c| = 1, such that |x∗(x)| = cx∗(x). Then

|x∗(x)| = cx∗(x) = x∗(cx) = x∗R(cx) ≤ ‖x∗R‖ · ‖x‖ ,

therefore ‖x∗‖ ≤ ‖u∗‖ and, with the same reasoning as above, ‖x∗‖ = ‖u∗‖. 2

Corollary 4.6 Let X be a normed space, x ∈ X with x 6= 0. Then there exists an
x∗ ∈ X∗ such that ‖x∗‖ = 1 and x∗(x) = ‖x‖.

Proof: Let U = span ({x}), let u∗ : U → K be defined by u∗(αx) = α‖x‖ where α ∈ K is
arbitrary. Then |u∗(αx)| = ‖αx‖, so ‖u∗‖ = 1. We choose x∗ ∈ X∗ as an extension of u∗

according to Proposition 4.5. 2

Corollary 4.7 Let X be a normed space. Then

‖x‖ = max
x∗∈X∗
‖x∗‖≤1

|x∗(x)| , for all x ∈ X. (4.16)
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Proof: We have |x∗(x)| ≤ ‖x∗‖ · ‖x‖ ≤ ‖x‖, if ‖x∗‖ ≤ 1. Therefore, (4.16) follows from
Corollary 4.6. 2

Corollary 4.8 Let X be a normed space, let U ⊂ X be a closed subspace. Let x ∈ X
such that x /∈ U . Then there exists an x∗ ∈ X∗ which satisfies x∗|U = 0 and x∗(x) 6= 0.

Proof: By Proposition 1.14, X/U is a normed space, and we have [x] 6= 0. According to
Corollary 4.6 we choose a y∗ ∈ (X/U)∗ with y∗([x]) 6= 0, and define x∗ : X → K by

x∗(z) = y∗([z]) , z ∈ X .

Then x∗ ∈ X∗, x∗|U = 0 and x∗(x) 6= 0. 2.

Reflexivity. Let X be a normed space. The space X∗∗ = (X∗)∗ is called the bidual
space of X. The association x 7→ x∗∗,

x∗∗(x∗) = x∗(x) , for all x∗ ∈ X∗, (4.17)

yields, due to
|x∗∗(x∗)| ≤ ‖x‖ · ‖x∗‖ , (4.18)

an embedding
JX : X → X∗∗ . (4.19)

(This embedding is called the “canonical” embedding of X into X∗∗, since its definition
(4.17) arises from the definition of X and X∗∗ in a very natural manner. In the same
manner, if Y ⊂ X, one calls the mapping j : Y → X defined by j(x) = x the canonical
embedding of Y into X.)

Lemma 4.9 The mapping JX : X → X∗∗ defined by (4.17) is linear and isometric.

Proof: For all x ∈ X we obtain, using Corollary 4.7,

‖x‖X = max
x∗∈X∗
‖x∗‖≤1

|x∗(x)| = max
x∗∈X∗
‖x∗‖≤1

|(JXx)(x∗)| = ‖JXx‖X∗∗ .

2

The image JX(X) is a subspace of X∗∗. Since JX is isometric and X∗∗ is a Banach space,
we have

X complete ⇔ JX(X) complete ⇔ JX(X) closed in X∗∗.

If X is not complete, we may consider the closure JX(X) of JX(X) in X∗∗ as the “com-
pletion” of X.

Definition 4.10 (Reflexivity)
A Banach space X is called reflexive if JX : X → X∗∗ is surjective. 2
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By Lemma 4.9 we then have
X ∼= X∗∗ . (4.20)

Conversely, in general it does not follow from (4.20) thatX is reflexive. There are examples
where X ∼= X∗∗, but JX(X) is a closed proper subspace of X∗∗.

Every finite-dimensional Banach space X is reflexive, because in this case

dim(X∗∗) = dim(X∗) = dim(X)

and therefore JX is surjective since it is injective.

Proposition 4.11 Every Hilbert space X is reflexive.

Proof: Let J : X → X∗, (Jy)(z) = 〈z, y〉, be the conjugate linear isometric isomorphism
coming from the Riesz representation theorem 2.12. Let x∗∗ ∈ X∗∗. We define

x∗(y) = x∗∗(Jy) , y ∈ X .

Then we have x∗ ∈ X∗. We set
x = J−1x∗ .

Then for all y ∈ X we get

x∗∗(Jy) = x∗(y) = (Jx)(y) = 〈y, x〉 = 〈x, y〉 = (Jy)(x) .

Since J is surjective, x∗∗ = JX(x) follows. 2

Proposition 4.12 The spaces `p(K) are reflexive for 1 < p <∞.

Proof: Let X = `p(K), let

T1 : `q(K)→ `p(K)∗ , T2 : `p(K)→ `q(K)∗ ,

be the isometric isomorphisms from Proposition 1.20. Let x∗∗ ∈ X∗∗ be given. We set

x = T−1
2 (x∗∗ ◦ T1) .

Then we have for all x∗ ∈ X∗

x∗∗(x∗) = (x∗∗ ◦ T1)(T−1
1 x∗) = (T2x)(T−1

1 x∗) =
∞∑
k=1

xk(T
−1
1 x∗)k = x∗(x) .

2

Analogously one proves that the space Lp(D;K) is reflexive for 1 < p <∞.

Spaces with sup norms and with L1 norms are usually not reflexive. As an example we
consider X = L1(D;K). We start from the isometric isomorphism

T : L∞(D;K)→ X∗ , (Ty)(x) =

∫
D

x(t)y(t) dt .
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If X were reflexive, for every x∗∗ ∈ X∗∗ there would exist an x ∈ X such that

x∗∗(Ty) = (Ty)(x) =

∫
D

x(t)y(t) dt , for all y ∈ L∞(D;K).

An equivalent statement is that for every y∗ ∈ L∞(D;K)∗ there exists an x ∈ L1(D;K)
such that

y∗(y) =

∫
D

x(t)y(t) dt . (4.21)

Let now D = (0, 1), Ek = (1/k, 1). We set

Uk = {y : y ∈ L∞(D;K), y|(D \ Ek) = 0} , U =
∞⋃
k=2

Uk .

Then U is a closed subspace of L∞(D;K), and we have 1D /∈ U , because d(1D, Uk) = 1
for all k ≥ 2. Therefore, by Corollary 4.8 there exists a y∗ ∈ L∞(D;K) with

y∗(1D) 6= 0 (4.22)

and y∗|U = 0. In particular,

y∗(1Ek
) = 0 , for all k ≥ 2. (4.23)

But for every x ∈ L1(D;K) we have, according to the Lebesgue convergence theorem,

lim
k→∞

∫
D

x(t)1Ek
(t) dt =

∫
D

x(t)1D(t) dt . (4.24)

We see that (4.21) – (4.23) cannot hold at the same time.

The spaces c0(K), c(K), `1(K), `∞(K), C(D;K), L∞(D;K) are not reflexive (we do not
prove this here).

Proposition 4.13 Let X be a Banach space, let U be subspace of X. If X is reflexive
and U is closed, then U is reflexive.

Proof: Let u∗∗ ∈ U∗∗ be arbitrary. The formula

x∗∗(x∗) = u∗∗(x∗|U)

defines an x∗∗ ∈ X∗∗. Let x = J−1
X (x∗∗), then

x∗(x) = x∗∗(x∗) = u∗∗(x∗|U) (4.25)

for all x∗ ∈ X∗, and in particular x∗(x) = 0 for all x∗ satisfying x∗|U = 0. It follows
from Corollary 4.8 that x ∈ U . Let now u∗ ∈ U∗ be arbitrary. We choose according to
Proposition 4.5 an x∗ ∈ X∗ with x∗|U = u∗. Then (4.25) becomes

u∗(x) = x∗(x) = u∗∗(u∗) ,

thus JUx = u∗∗. 2
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Proposition 4.14 Let X be a Banach space. The X is reflexive if and only if X∗ is
reflexive.

Proof: Let X be reflexive. We want to prove that JX∗ : X∗ → X∗∗∗ is surjective. Let
x∗∗∗ ∈ X∗∗∗ be arbitrary. We set x∗ = x∗∗∗ ◦ JX . Let now x∗∗ ∈ X∗∗ be arbitrary, let
x = J−1

X x∗∗. Then

x∗∗∗(x∗∗) = x∗∗∗(JXx) = x∗(x) = (JXx)(x∗) = x∗∗(x∗) ,

so x∗∗∗ = JX∗x
∗. Conversely, let X∗ be reflexive. By what we have just proved, X∗∗ is

reflexive. By Proposition 4.13, the closed subspace JX(X) of X∗∗ is reflexive and therefore
X, too. 2

Proposition 4.15 Let X normed space, M ⊂ X. The following are equivalent:

(i) M is bounded.

(ii) x∗(M) bounded in K for all x∗ ∈ X∗.

Proof: We apply Proposition 3.5 (Banach-Steinhaus) to the subset T ⊂ L(X∗;K) = X∗∗

defined by
T = JX(M) .

Since JX is an isometric isomorphism, (i) is equivalent to

sup
T∈T
‖T‖ <∞ .

On the other hand, for every x∗ ∈ X∗

x∗(M) = {x∗(x) : x ∈M} = {Tx∗ : T ∈ T } .

The assertion now immediately follows from Proposition 3.5. 2

Separation of convex sets. Let x∗ : X → K be a linear continuous functional on a
normed space X, x∗ 6= 0. Its level sets

Hα = {x : x ∈ X, x∗(x) = α} , α ∈ K , (4.26)

are called hyperplanes. Such hyperplanes separate X into two half-spaces

{x : x ∈ X, x∗(x) < α} and {x : x ∈ X, x∗(x) > α} .

Proposition 4.16 (Separation)
Let X be a normed R-vector space, let K ⊂ X be open and convex, K 6= ∅, let x0 ∈ X
with x0 /∈ K. Then there exists an x∗ ∈ X∗ which satisfies

x∗(x) < x∗(x0) , for all x ∈ K. (4.27)

2
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The inequality (4.27) means that K lies completely on one side of the hyperplane Hα,
α = x∗(x0).
Proof: We first consider the case where 0 ∈ K. By Lemma 4.3, its Minkowski functional
MK is sublinear. Let ε > 0 with K(0; ε) ⊂ K. Then εx/‖x‖ ∈ K and therefore

MK(x) ≤ 1

ε
‖x‖ , for all x ∈ X. (4.28)

Moreover we have x0/t /∈ K for all t < 1, thus

MK(x0) ≥ 1 . (4.29)

For all x ∈ K there exists a t < 1 with x/t ∈ K, so

MK(x) < 1 , for all x ∈ K. (4.30)

We define u∗ : span ({x0})→ R by

u∗(αx0) = αMK(x0) , α ∈ R .

Then

u∗(αx0) = MK(αx0) ≥ 0 , α ≥ 0 ,

u∗(αx0) ≤ 0 ≤MK(αx0) , α < 0 .

Therefore, u∗ ≤ MK on span ({x0}). Let now x∗ : X → R, according to Proposition 4.4,
be a linear extension of u∗ with x∗ ≤MK on X. From (4.28) it follows that for all x ∈ X

|x∗(x)| = max{x∗(x), x∗(−x)} ≤ max{MK(x),MK(−x)} ≤ 1

ε
‖x‖ ,

thus x∗ ∈ X∗. From (4.29) and (4.30) it follows that

x∗(x) ≤MK(x) < 1 ≤MK(x0) = x∗(x0) , for all x ∈ K.

So (4.27) is proved. Thus, the proposition is proved for the case 0 ∈ K. For the general
case, we choose x̃ ∈ K and set K̃ = K − x̃. Then 0 ∈ K̃ and x0 − x̃ /∈ K̃. Let x∗ ∈ X∗
with x∗(z) < x∗(x0 − x̃) for all z ∈ K̃. Then we have for all x ∈ K

x∗(x) = x∗(x− x̃) + x∗(x̃) < x∗(x0 − x̃) + x∗(x̃) = x∗(x0) .

2

One may also formulate a separation result in the complex case. Formula (4.27) then
becomes dann

Rex∗(x) < Rex∗(x0) , for all x ∈ K.

We omit a detailed presentation.

Proposition 4.17 (Separation of two convex sets)
Let X be a normed R-vector space, let K1, K2 ⊂ X be convex and nonempty, let K1 be
open and assume that K1 ∩ K2 = ∅. Then there exists an x∗ ∈ X∗ and an α ∈ R such
that

x∗(x1) < α ≤ x∗(x2) , for all x1 ∈ K1, x2 ∈ K2. (4.31)
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Proof: We set
K = K1 −K2 = {x1 − x2 : x1 ∈ K1, x2 ∈ K2} .

Then K is open (it follows from x ∈ K that x ∈ K1 − x2 ⊂ K for some x2 ∈ K2) and
0 /∈ K. We choose according to Proposition 4.16 an x∗ ∈ X∗ such that x∗(x) < x∗(0) = 0
for all x ∈ K. Then we get

x∗(x1)− x∗(x2) = x∗(x1 − x2) < 0 , for all x1 ∈ K1, x2 ∈ K2,

and therefore
x∗(x1) ≤ α ≤ x∗(x2) , for all x1 ∈ K1, x2 ∈ K2,

for every α ∈ [supx∗(K1), inf x∗(K2)]. As K1 is open and x∗ 6= 0, we get x∗(x1) < α for
all x1 ∈ K1; indeed, if x∗(x1) = α for some x1 ∈ K1, then there would exist a x̃1 ∈ K1

such that x∗(x̃1) > α. 2

Proposition 4.18 (Strict Separation)
Let X be a normed R-vector space, let K ⊂ X be closed and convex, K 6= ∅, let x0 ∈ X
such that x0 /∈ K. Then there exists an x∗ ∈ X∗ and an α ∈ R such that

x∗(x) ≤ α < x∗(x0) , for all x ∈ K. (4.32)

2

Proof: Exercise. (Hint: For sufficiently small ε > 0 we have B(x0; ε) ∩K = ∅.) 2
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5 Compact subsets of C and Lp

We want to find out which subsets of the spaces C(K;K) (K compact) and Lp(Ω;K) (Ω
open) are compact. We already know that the closed unit balls in these spaces are not
compact, as this is true only for finite-dimensional spaces.

Two notions of compactness.

Proposition 5.1
Let (X, d) be a metric space. Then there are equivalent:

(i) X is sequentially compact, that is, every sequence in X has a subsequence which
converges to some element of X.

(ii) Every open covering of X has a finite subcovering, that is: If (Ui)i∈I is a family of
open subset of X such that

X =
⋃
i∈I

Ui ,

then there exists n ∈ N and indices i1, . . . , in ∈ I such that

X =
n⋃
k=1

Uik .

If (ii) holds, we say that X is compact.

Proof: Omitted. 2

A side remark: In general topological spaces, (i) and (ii) are not equivalent.

Corollary 5.2 Let X be a normed space, let F be a compact subset of X. Then F is
closed and bounded.

Proof: Let (xn)n∈N be a sequence in F with xn → a ∈ X. By Proposition 5.1(i), for
some subsequence and some b ∈ F we have xnk

→ b. As xnk
→ a, we must have a = b.

This proves that F is closed. If F were unbounded, then there would exist a sequence
(xn)n∈N in F with ‖xn‖ ≥ n for all n ∈ N. Such a sequence does not have a convergent
subsequence. Consequently, F cannot be compact. 2

Compact sets in the space of continuous functions. For a subset of C(Ω;K) to
be compact, in addition to being closed and bounded, the following property must be
satisfied.

Definition 5.3 (Equicontinuity)
Let Ω ⊂ Rn. A subset F of C(Ω;K) is called equicontinuous, if for all x ∈ Ω and all
ε > 0 there exists a δ > 0 such that for all y ∈ Ω

‖x− y‖ < δ ⇒ |f(x)− f(y)| < ε for all f ∈ F .

(“It is possible to find a common δ for all f ∈ F”.) 2
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Lemma 5.4 Let Ω ⊂ Rn, F ⊂ C(Ω;K), assume that there exists an L such that

|f(x)− f(y)| ≤ L‖x− y‖ , for all x, y ∈ Ω, f ∈ F . (5.1)

Then F is equicontinuous.

Proof: Setting δ = ε/L we see that F has the property required in Definition 5.3. 2

When F ⊂ C1(Ω), it follows from the mean value theorem that (5.1) holds, if there exists
a C > 0 such that

|∂if(x)| ≤ C , for all x ∈ Ω, f ∈ F , i = 1, . . . , n. (5.2)

This criterion is often used to prove equicontinuity of a given set F of continuous functions.

Proposition 5.5 (Arzela-Ascoli)
Let K ⊂ Rn be compact, let F ⊂ (C(K;K), ‖ · ‖∞). Then there are equivalent

(i) F is relatively compact in C(K), that is, F is compact.

(ii) F is bounded and equicontinuous.

Proof: Omitted. 2

Smoothing by convolution. We recall the definition of the convolution of two functions
f and g,

(f ∗ g)(y) =

∫
Rn

f(x)g(y − x) dx . (5.3)

It is defined for f, g ∈ L1(Rn) and yields a function f ∗ g ∈ L1(Rn) with the properties

f ∗ g = g ∗ f , ‖f ∗ g‖1 ≤ ‖f‖1 · ‖g‖1 . (5.4)

One can approximate a given function by smooth functions if one convolves it with suitable
functions. We define

ψ : R→ R , ψ(t) =

{
exp

(
−1

t

)
, t > 0 ,

0 , t ≤ 0 ,
(5.5)

ψ̃ : R→ R , ψ̃(r) = ψ(1− r2) , (5.6)

η1 : Rn → R , η1(x) = αψ̃(‖x‖) . (5.7)

Here, α > 0 is chosen such that ∫
Rn

η1(x) dx = 1 . (5.8)

For given ε > 0 we define the “standard mollifier”

ηε : Rn → R , ηε(x) =
1

εn
η1

(x
ε

)
. (5.9)
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The functions ηε are radially symmetric (that is, they only depend upon ‖x‖), and have
the properties (as developed in integration theory)

ηε ∈ C∞0 (Rn) , supp (ηε) = K(0; ε) , ηε ≥ 0 ,

∫
Rn

ηε(x) dx = 1 . (5.10)

For functions which are not defined on the whole of Rn we too want to consider convolution
with the standard mollifier.

Given f ∈ L1(Ω), we define f̃ by setting f̃ = f in Ω and f̃ = 0 outside of Ω, and define
f ε by

f ε(y) = (f̃ ∗ηε)(y) =

∫
Rn

f̃(x)ηε(y−x) dx =

∫
Ω

f(x)ηε(y−x) dx , for all y ∈ Rn. (5.11)

Since f ε = f̃ ∗ ηε = ηε ∗ f̃ , we may represent f ε as

f ε(y) =

∫
Rn

ηε(x)f̃(y − x) dx = ε−n
∫
Rn

η1

(x
ε

)
f̃(y − x) dx

=

∫
Rn

η1(z)f̃(y − εz) dz =

∫
K(0;1)

η1(z)f̃(y − εz) dz .
(5.12)

In the following, we no longer distinguish between f and f̃ , and just write f for both
functions.

Lemma 5.6 Let Ω ⊂ Rn be open and bounded, f ∈ Lp(Ω), 1 ≤ p <∞. Then f ε = f ∗ ηε
satisfies

f ε ∈ C∞(Rn) , supp (f ε) ⊂ Ω +B(0; ε) , ‖f ε‖Lp(Ω) ≤ ‖f‖Lp(Ω) . (5.13)

Proof: We have f ∈ L1(Ω) since Ω is bounded, and

f ε(y) =

∫
Ω

f(x)ηε(y − x) dx , for all y ∈ Rn. (5.14)

As ηε(y − x) = 0 holds for ‖y − x‖ ≥ ε, we get supp (f ε) ⊂ Ω +B(0; ε). For all multi-
indices α, the functions x 7→ f(x)∂αηε(y − x) are bounded (uniformly with respect to y)
by the integrable functions ‖∂αηε‖∞|f |. By a result from integration theory, all partial
derivatives ∂αf ε exist in Rn and are continuous; thus we have f ε ∈ C∞(Rn). Let now
y ∈ Ω. In the case p > 1, we choose q such that 1

p
+ 1

q
= 1. It follows from Hölder’s

inequality that

|f ε(y)| =
∣∣∣ ∫

Ω

f(x)ηε(y − x) dx
∣∣∣ ≤ ∫

Ω

|f(x)|(ηε(y − x))
1
p (ηε(y − x))

1
q dx

≤
(∫

Ω

|f(x)|pηε(y − x) dx
) 1

p
(∫

Ω

ηε(y − x) dx
) 1

q

︸ ︷︷ ︸
≤1

.
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Next, we see that for p ≥ 1 (for p > 1 we use the estimate from the previous line)∫
Ω

|f ε(y)|p dy ≤
∫

Ω

∫
Ω

|f(x)|pηε(y − x) dx dy =

∫
Ω

|f(x)|p
∫

Ω

ηε(y − x) dy dx

≤
∫

Ω

|f(x)|p dx .

2

By C0(Rn) we denote the space of functions which are continuous on Rn and have compact
support.

Lemma 5.7 Let f ∈ C0(Rn). Then f ε → f uniformly on Rn when ε→ 0.

Proof: For all y ∈ Rn we have

|f ε(y)− f(y)| =
∣∣∣ ∫

Rn

f(x)ηε(y − x) dx− f(y)
∣∣∣ =

∣∣∣ ∫
Rn

(f(x)− f(y))ηε(y − x) dx
∣∣∣

≤
∫
Rn

ηε(y − x) dx · sup
x∈Rn
‖x−y‖≤ε

|f(y)− f(x)| ≤ sup
x,z∈Rn
‖x−z‖≤ε

|f(z)− f(x)|

Since f has compact support and therefore is uniformly continuous on Rn, the assertion
follows. 2

Lemma 5.8 Let Ω ⊂ Rn be open and bounded, let f ∈ Lp(Ω), 1 ≤ p <∞. Then f ε → f
in Lp(Ω) for ε→ 0.

Proof: Let δ > 0. We choose g ∈ C0(Rn) such that

‖f − g‖Lp(Ω) ≤ δ .

This is possible since C0(Rn) is dense in Lp(Ω) (see the exercises). It follows that

‖f − f ε‖Lp(Ω) ≤ ‖f − g‖Lp(Ω) + ‖g − gε‖Lp(Ω) + ‖gε − f ε‖Lp(Ω)

≤ 2δ + ‖g − gε‖Lp(Ω) ,
(5.15)

since
gε − f ε = g ∗ ηε − f ∗ ηε = (g − f)ε

and by Lemma 5.6
‖(g − f)ε‖Lp(Ω) ≤ ‖g − f‖Lp(Ω) ≤ δ .

By Lemma 5.7 we have gε → g uniformly. Consequently,

lim sup
ε→0

‖f − f ε‖Lp(Ω) ≤ 2δ .

As δ > 0 was arbitrary, the assertion follows. 2

Compactness in Lp. We investigate the behaviour of∫
Ω

|f(x+ h)− f(x)|p dx , h→ 0 .
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Proposition 5.9 Let Ω ⊂ Rn be open and bounded, let f ∈ Lp(Ω), 1 ≤ p <∞. Then

lim
h→0

∫
Ω

|f(x+ h)− f(x)|p dx = 0 . (5.16)

(Again we extend f by 0 outside of Ω.)

Proof: We define (τhf)(x) = f(x+ h). Then∫
Ω

|f(x+ h)− f(x)|p dx = ‖τhf − f‖pLp(Ω) .

We estimate from above

‖τhf − f‖Lp(Ω) ≤ ‖τhf − τhf ε‖Lp(Ω) + ‖τhf ε − f ε‖Lp(Ω) + ‖f ε − f‖Lp(Ω) .

Let γ > 0. For ε > 0 sufficiently small, the third and also the first term on the right side
are smaller than γ/3 for all h with ‖h‖ ≤ ε because of

‖τhf − τhf ε‖Lp(Ω) = ‖τh(f − f ε)‖Lp(Ω) ≤ ‖f ε − f‖Lp(Ω+B(0;ε)) .

As f ε is uniformly continuous on Ω, for h sufficiently small the second term, too, is smaller
than γ/3. This proves the assertion. 2

Proposition 5.10 (Fréchet-Riesz-Kolmogorov)
Let Ω ⊂ Rn be open and bounded, 1 ≤ p < ∞, let F ⊂ (Lp(Ω;K), ‖ · ‖p). Then there are
equivalent:

(i) F is relatively compact in Lp(Ω), that is, F is compact.

(ii) F is bounded, and

lim
h→0

sup
f∈F

∫
Ω

|f(x+ h)− f(x)|p dx = 0 . (5.17)

Condition (5.17) means that the passage to the limit h→ 0 is uniform with respect to F .

Proof: Omitted. 2
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6 Weak Convergence

Closed and bounded subsets of a normed space X are guaranteed to be compact only if
X is finite-dimensional. When the space has infinite dimension, a closed and bounded
subset may or may not be compact, and not every bounded sequence has a subsequence
which converges in the norm of X.

In order to keep the result that every bounded sequence has a convergent subsequence,
one has to weaken the notion of convergence, so that more sequences are convergent in
the weaker sense.

Definition 6.1 (Weak convergence, weak star convergence)
Let X be a normed space. A sequence (xn)n∈N in X is called weakly convergent to an
x ∈ X, if

lim
n→∞

x∗(xn) = x∗(x) , for all x∗ ∈ X∗, (6.1)

we write xn ⇀ x. A sequence (x∗n)n∈N in X∗ is called weak star convergent to an
x∗ ∈ X∗, if

lim
n→∞

x∗n(x) = x∗(x) , for all x ∈ X, (6.2)

we write x∗n
∗
⇀ x∗. 2

Let X be a normed space. If a sequence in X converges to an x in the sense of the norm,
we also say that it converges strongly to x.

If X is reflexive, weak and weak star convergence on X∗ coincide. If X has finite dimen-
sion, both coincide with strong convergence.

It follows immediately from the definition that every strongly convergent sequence is
weakly resp. weak star convergent.

For X = `p(K), 1 ≤ p <∞, we have X∗ ∼= `q(K) where q = p/(p−1). A sequence (xn)n∈N
in X thus converges weakly to an x ∈ X if and only if

lim
n→∞

∞∑
k=1

xnkyk =
∞∑
k=1

xkyk , for all y ∈ `q(K). (6.3)

If in particular xn = en (n-th unit vector), for p > 1 (thus q <∞) we have

lim
n→∞

∞∑
k=1

enkyk = lim
n→∞

yn = 0 , for all y ∈ `q(K). (6.4)

Therefore, en ⇀ 0 for p > 1, but on the other hand ‖en‖p = 1 and thus en does not
converge strongly to 0.

For p = 1 we also have (6.4) for all y ∈ `q(K), q <∞, but for y = (−1, 1,−1, . . .) ∈ `∞(K)
and the corresponding functional y∗ ∈ X∗ we get

y∗(en) =
∞∑
k=1

enkyk = yn = (−1)n . (6.5)
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Therefore, (en)n∈N is not weakly convergent in `1(K).

In general it holds (exercise): If X is a Hilbert space, (xn)n∈N is sequence in X and x ∈ X,
then xn strongly converges to x if and only if xn converges weakly to x and ‖xn‖ converges
to ‖x‖.
As a further example we consider X = Lp(D;K), 1 ≤ p < ∞. We have X∗ ∼= Lq(D;K),
q = p/(p− 1). A sequence (xn)n∈N in X converges weakly to an x ∈ X if and only if

lim
n→∞

∫
D

xn(t)y(t) dt =

∫
D

x(t)y(t) dt , for all y ∈ Lq(D;K).

For X = L∞(D;K) we have X ∼= L1(D;K)∗, and a sequence (xn)n∈N in X converges weak
star to an x ∈ X if and only if

lim
n→∞

∫
D

xn(t)y(t) dt =

∫
D

x(t)y(t) dt , for all y ∈ L1(D;K).

Lemma 6.2 Weak and weak star limits are uniquely determined.

Proof: Let x∗n
∗
⇀ x∗ and x∗n

∗
⇀ y∗. Then

x∗(x) = lim
n→∞

x∗n(x) = y∗(x) , for all x ∈ X,

and therefore x∗ = y∗. If xn ⇀ x and xn ⇀ y, then

x∗(x) = lim
n→∞

x∗(xn) = x∗(y) , for all x∗ ∈ X∗,

and therefore x = y; otherwise, the separation theorem would imply that there exists an
x∗ ∈ X∗ such that x∗(x) 6= x∗(y). 2

Lemma 6.3 Let X be a normed space, let (x∗n)n∈N be a sequence in X∗ such that x∗n
∗
⇀ x∗,

x∗ ∈ X∗. Then
‖x∗‖ ≤ lim inf

n→∞
‖x∗n‖ . (6.6)

If (xn)n∈N is a sequence in X such that xn ⇀ x, x ∈ X, then

‖x‖ ≤ lim inf
n→∞

‖xn‖ . (6.7)

Proof: For all x ∈ X we have
|x∗n(x)| ≤ ‖x∗n‖ ‖x‖ .

Therefore it follows from x∗n
∗
⇀ x∗ that

|x∗(x)| = lim
n→∞

|x∗n(x)| ≤ lim inf
n→∞

(‖x∗n‖ ‖x‖) =
(

lim inf
n→∞

‖x∗n‖
)
‖x‖ , for all x ∈ X,

so (6.6) holds. For the proof of (6.7) we refer to the exercises. 2

Let (en)n∈N be the sequence of the unit vectors in `p(K), 1 < p <∞. It was shown above
in (6.4) that

en ⇀ 0 , 0 < lim
n→∞

‖en‖p = 1 .
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Proposition 6.4 Let X be a normed space. Then every in X weakly convergent sequence
is bounded in X (w.r.t. the norm of X). If moreover X is a Banach space, every in X∗

weak star convergent sequence is bounded in X∗ (w.r.t. the norm of X∗).

Proof: From x∗n
∗
⇀ x∗ it follows that |x∗n(x)| → |x∗(x)| for all x ∈ X, so

sup
n∈N
|x∗n(x)| <∞ , for all x ∈ X.

The Banach-Steinhaus theorem (Proposition 3.5) now implies

sup
n∈N
‖x∗n‖ <∞ .

From xn ⇀ x it follows that |x∗(xn)| → |x∗(x)| for all x∗ ∈ X∗, so

sup
n∈N
|x∗(xn)| <∞ , for all x∗ ∈ X∗.

Proposition 4.15 now implies
sup
n∈N
‖xn‖ <∞ .

2

Lemma 6.5 Let X be a normed space, let (xn)n∈N be a sequence in X such that xn → x

strongly in X, let (x∗n)n∈N be sequence in X∗ such that x∗n
∗
⇀ x∗. Then

lim
n→∞

x∗n(xn) = x∗(x) . (6.8)

If xn ⇀ x and x∗n → x∗ strongly, then (6.8) also holds.

Proof: Es gilt
|x∗(x)− x∗n(xn)| ≤ |(x∗ − x∗n)(x)|+ ‖x∗n‖ ‖x− xn‖ .

Now x∗n
∗
⇀ x∗ implies |(x∗ − x∗n)(x)| → 0, and since ‖x∗n‖ is bounded by Proposition 6.4,

(6.8) follows. The second assertion is proved analogously. 2

If xn ⇀ x and x∗n
∗
⇀ x∗, in general it does not follow that x∗n(xn) → x∗(x). Here is an

example: X = `2(R), X∗ ∼= `2(R), xn = en, x∗n = en. We have en ⇀ 0 and en
∗
⇀ 0, but

〈en, en〉 = 1.

Proposition 6.6 Let X be a normed space, K ⊂ X convex and closed, let (xn)n∈N be a
sequence in K with xn ⇀ x ∈ X. Then we have x ∈ K.

One says that K is weakly sequentially closed. Thus, convex closed subsets of a
normed space are weakly sequentially closed.

Proof: We consider the case K = R. Assume that x /∈ K. Then by the separation
theorem there exists an x∗ ∈ X∗ such that

x∗(x) > sup
z∈K

x∗(z) =: c ≥ x∗(xn) , for all n ∈ N,

which contradicts x∗(xn) → x∗(x). In the case K = C one needs the complex version of
the separation theorem (which we did not discuss in Chapter 4). 2
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Definition 6.7 (Weak sequential compactness)
Let X be a normed space. A subset M of X is called weakly sequentially compact
if every sequence in M has a weakly convergent subsequence whose limit is an element of
M . A subset M of X∗ is called weak star sequentially compact, if every sequence in
M has a weak star convergent subsequence whose limit is an element of M . 2

Proposition 6.8 Let X be a separable normed space. Then the closed unit ball K(0; 1)
in X∗ is weak star sequentially compact.

Proof: Let (x∗n)n∈N be a sequence in K(0; 1), so ‖x∗n‖ ≤ 1 for all n ∈ N. Let {xm : m ∈ N}
be a dense subset of X. Since |x∗n(xm)| ≤ ‖xm‖, the sequences (x∗n(xm))n∈N are bounded
in K for all m ∈ N. Passing to a suitable subsequence (w.r.t. n) we want to achieve
that for all m ∈ N the corresponding subsequences of (x∗n(xm))n∈N converge. This
can be done with a “diagonalization” argument. First, we choose a sequence (nk1)k∈N
such that (x∗nk1

(x1))k∈N converges. Next, we choose a subsequence (nk2)k∈N of (nk1)k∈N
such that (x∗nk2

(x2))k∈N converges. Using induction we correspondingly choose subse-
quences (nkm)k∈N for each m ∈ N. The subsequence (nkk)k∈N then has the property that
(x∗nkk

(xm))k∈N converges for all m ∈ N. We set z∗k = x∗nkk
and look for a weak star limit

of this subsequence of (x∗n).

We set Z = span {xm : m ∈ N} and define

z∗ : Z → K , z∗(z) = lim
k→∞

z∗k(z) .

This limit is well-defined, since every z ∈ Z is a linear combination of the xm. Moreover,
we have |z∗k(z)| ≤ ‖z‖, so |z∗(z)| ≤ ‖z‖ for all z ∈ Z, and therefore z∗ is continuous on
Z and ‖z∗‖ ≤ 1 holds. By Proposition 1.19, z∗ can be extended to an x∗ ∈ X∗ with
‖x∗‖ ≤ 1. Let now x ∈ X be arbitrary. For all z ∈ Z we have

|x∗(x)− z∗k(x)| ≤ |(x∗ − z∗k)(x− z)|+ |x∗(z)− z∗k(z)| ≤ 2‖x− z‖+ |z∗(z)− z∗k(z)| .

Let ε > 0 be arbitrary. We choose a z ∈ Z such that ‖x − z‖ ≤ ε (this is possible since
Z is dense in X) and an N > 0 such that |x∗(z)− z∗k(z)| ≤ ε for all k ≥ N . Then

|x∗(x)− z∗k(x)| ≤ 3ε

for all k ≥ N . Consequently, z∗k(x) → x∗(x) when k → ∞. As x was arbitrary, z∗k
∗
⇀ x∗

follows. 2

Corollary 6.9 Let X be a separable normed space. Then every bounded sequence in X∗

has a weak star convergent subsequence. 2

When 1 < p ≤ ∞, the space Lp(D) is isomorphic to the dual space of the separable
space Lq(D), q = p/(p− 1) <∞. Therefore, if (xn)n∈N is a sequence in Lp(D) such that
‖xn‖p ≤ C for all n ∈ N, there exists a subsequence (xnk

)k∈N and an x ∈ Lp(D) satisfying

lim
k→∞

∫
D

xnk
(t)y(t) dt =

∫
D

x(t)y(t) dt , for all y ∈ Lq(D). (6.9)
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As a further example we consider X = C([a, b]). Let (tn)n∈N be a sequence in [a, b]. Then

x∗n = δtn , δtn(x) = x(tn) ,

defines a sequence (x∗n)n∈N in X∗. If (tnk
)k∈N is a convergent subsequence with tnk

→ t ∈
[a, b], we have

x∗nk
(x) = x(tnk

)→ x(t) = δt(x) , for all x ∈ C[a, b].

It follows that x∗nk

∗
⇀ x∗ = δt. A generalization: If (µn)n∈N is a sequence of probability

measures on [a, b], it follows from Corollary 6.9 that there exists a subsequence (µnk
)k∈N

and a probability measure µ such that

lim
k→∞

∫ b

a

x(t) dµnk
(t) =

∫ b

a

x(t) dµ(t) , for all x ∈ C[a, b].

When X is not separable there may exist bounded sequences in X∗ which do not possess a
weak star convergent subsequence. As an example we consider X = L∞(0, 1). Let (εn)n∈N
be a monotone decreasing sequence such that

εn ∈ (0, 1) , εn → 0 ,
εn+1

εn
→ 0 . (6.10)

We define

x∗n(x) =
1

εn

∫ εn

0

x(t) dt , x ∈ L∞(0, 1) . (6.11)

We have x∗n ∈ X∗, ‖x∗n‖ = 1. Let x ∈ L∞(0, 1) be defined by

x(t) = (−1)k , if εk+1 < t < εk. (6.12)

Then

x∗n(x) =
1

εn

(∫ εn+1

0

x(t) dt+ (εn − εn+1)(−1)n
)

= (−1)n +
1

εn

∫ εn+1

0

x(t) dt− εn+1

εn
(−1)n ,

so
|x∗n(x)− (−1)n| ≤ 2

εn+1

εn
→ 0 .

Therefore, the sequence (x∗n(x))n∈N does not converge. Since the same argument can be
applied to every subsequence (x∗nk

)n∈N (the function x has to be chosen correspondingly),
the sequence (x∗n)n∈N does not possess a weak star convergent subsequence. If, however,
we view it as a sequence in X∗, X = C([0, 1]), we obtain for all x ∈ X

|x∗n(x)− x(0)| =
∣∣∣∣ 1

εn

∫ εn

0

x(t)− x(0) dt

∣∣∣∣ ≤ sup
0≤s≤εn

|x(s)− x(0)| → 0 ,

therefore x∗n
∗
⇀ δ0.

Lemma 6.10 Let X be a normed space. If X∗ is separable, then so is X.

55



Proof: Let {x∗n : n ∈ N} be a dense subset of X∗. According to the definition of the
operator norm we choose for every n ∈ N an xn ∈ X such that

|x∗n(xn)| ≥ 1

2
‖x∗n‖ , ‖xn‖ = 1 .

Let Y = span {xn : n ∈ N}. Let x∗ ∈ X∗ be arbitrary such that x∗|Y = 0. It follows that

‖x∗ − x∗n‖ ≥ |x∗(xn)− x∗n(xn)| = |x∗n(xn)| ≥ 1

2
‖x∗n‖ ≥

1

2
(‖x∗‖ − ‖x∗n − x∗‖) . (6.13)

Passing to the infimum w.r.t. n on both sides we see that ‖x∗‖ = 0 and thus x∗ = 0.
From Corollary 4.8 it follows that Y = X (if not, there would exist an x∗ 6= 0 such that
x∗|Y = 0). Applying Proposition 1.17 we conclude that X is separable. 2

Proposition 6.11 Let X be a reflexive Banach space. Then the closed unit ball K(0; 1)
in X is weakly sequentially compact.

Proof: Let (xn)n∈N be a sequence in X such that ‖xn‖ ≤ 1 for all n ∈ N. We set

Y = span {xn : n ∈ N} .

The space Y is separable by Proposition 1.17 and reflexive by Proposition 4.13. Since
Y ∗∗ ∼= Y , the bidual Y ∗∗ is separable. Lemma 6.10 now implies that Y ∗ is separable. The
sequence (JY xn)n∈N in Y ∗∗ is bounded in Y ∗∗ and therefore has, according to Corollary

6.9, a weak star convergent subsequence (JY xnk
)k∈N, assume that JY xnk

∗
⇀ y∗∗. We set

x = J−1
Y y∗∗. For arbitrary x∗ ∈ X∗ we get setting y∗ = x∗|Y ∈ Y ∗

x∗(xnk
) = y∗(xnk

) = (JY xnk
)(y∗)→ y∗∗(y∗) = y∗(x) = x∗(x) .

It follows that xnk
⇀ x. 2

The converse of Proposition 6.11 is valid, too. That is: If X is not reflexive, then K(0; 1)
is not weakly sequentially compact. (We do not give the proof.)

Corollary 6.12 Let X be a reflexive Banach space. Then every bounded sequence in X
has a weakly convergent subsequence. 2

There arises the question: What about weak star compactness in X∗ in the case where
X is neither separable nor reflexive ?

Proposition 6.13 (Alaoglu)
Let X be a normed space. Then the closed unit ball K(0; 1) in X∗ is weak star compact.
2

In order to understand this, one needs a notion which is more general than that of a
metric space, because it turns out that in general there does not exist a metric on K(0; 1)
for which the convergent sequences are just the weak star convergent sequences. This
more general notion is that of a topological space. In a topological space, one does not
axiomatize the metric (that is, the distance between two points), but rather the system
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of open sets. “Compact” then means the existence of a finite subcovering for every open
covering (see Chapter 5 for a precise definition). Here, we do not go further into this
subject.

We return to the approximation problem: let X be a normed space, K ⊂ X, x ∈ X. We
want to find a y ∈ K such that

‖x− y‖ = inf
z∈K
‖x− z‖ . (6.14)

Proposition 6.14 Let X be a reflexive Banach space, K ⊂ X convex, closed and nonempty.
Then for every x ∈ X there exists a y ∈ K such that

‖x− y‖ = inf
z∈K
‖x− z‖ . (6.15)

Proof: Let (yn)n∈N be a sequence in K such that limn→∞ ‖x− yn‖ = infz∈K ‖x− z‖ =: d.
Since ‖yn‖ ≤ ‖x − yn‖ + ‖x‖, the sequence (yn)n∈N is bounded and due to Corollary
6.12 therefore has a weakly convergent subsequence, assume that ynk

⇀ y, y ∈ X. By
Proposition 6.6, K is weakly sequentially closed, thus y ∈ K. Since moreover x− ynk

⇀
x− y, Lemma 6.3 implies that

‖x− y‖ ≤ lim inf
k→∞

‖x− ynk
‖ = d ,

which proves (6.15). 2

Definition 6.15 (Strict convexity)
A normed space X is called strictly convex if for all x1, x2 ∈ X with ‖x1‖ = ‖x2‖ = 1
and x1 6= x2 we have that ∥∥∥∥1

2
(x1 + x2)

∥∥∥∥ < 1 . (6.16)

2

Proposition 6.16 Let X be a normed space, K ⊂ X convex, x ∈ X. If X is strictly
convex, then there exists at most one y ∈ K such that

‖x− y‖ = inf
z∈K
‖x− z‖ . (6.17)

Proof: Let y, ỹ ∈ K be two different solutions (6.17),

‖x− y‖ = ‖x− ỹ‖ = d .

We have d > 0 since otherwise y = ỹ = x. We set

x1 =
1

d
(x− y) , x2 =

1

d
(x− ỹ) ,

in Definition 6.15. Then

1

d
‖x− 1

2
(y + ỹ)‖ < 1 ,

1

2
(y + ỹ) ∈ K ,
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which contradicts the minimality of y and ỹ. 2

Vector spaces endowed with the p norm typically are strictly convex when 1 < p < ∞
and not strictly convex for p = 1 and p =∞ (sup norm). This is true e.g. for Kn, `p(K),
Lp(D;K), C(D;K). Since Kn, `p(K) and Lp(D;K) are also reflexive for 1 < p < ∞,
Propositions 6.14 and 6.16 imply that the approximation problem (6.14) has a unique
solution in these spaces, for arbitrary closed convex sets K.

Conversely we have (no proof given here): If the approximation problem is uniquely
solvable for arbitrary closed convex subsets K of X, then X must be strictly convex and
reflexive.
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7 Sobolev Spaces

Sobolev spaces arise when one wants to work with complete function spaces endowed
with Lp norms which take into account not only the function but also their derivatives.
In order to get there, however, one has to generalize the notion of a derivative.

Assume for the moment that f : C[a, b] → R is continuously differentiable. Let ϕ ∈
C∞0 (a, b). Then∫ b

a

f ′(x)ϕ(x) dx = (fϕ)
∣∣∣b
a
−
∫ b

a

f(x)ϕ′(t) dx = −
∫ b

a

f(x)ϕ′(x) dx . (7.1)

We use (7.1) as the starting point for the definition of the weak derivative. Let f, g ∈
L1(a, b). The function g is called a weak derivative of f on (a, b) if∫ b

a

g(x)ϕ(x) dx = −
∫ b

a

f(x)ϕ′(x) dx , for all ϕ ∈ C∞0 (a, b). (7.2)

Since g is, if it exists, uniquely determined by (7.2), we call g “the” weak derivative of f
and denote it by f ′, too.

As an example we consider f : [−1, 1]→ R, f(x) = |x|. We have

−
∫ 1

−1

f(x)ϕ′(x) dx =

∫ 0

−1

xϕ′(x) dx−
∫ 1

0

xϕ′(x) dx

= xϕ(x)
∣∣∣x=0

x=−1
−
∫ 0

−1

ϕ(x) dx− xϕ(x)
∣∣∣x=1

x=0
+

∫ 1

0

ϕ(x) dx

=

∫ 1

−1

sign (x)ϕ(x) dx

for all ϕ ∈ C∞0 (a, b). Therefore f has the weak derivative f ′(x) = sign (x).

Let us make one further step and compute

−
∫ 1

−1

sign (x)ϕ′(x) dx =

∫ 0

−1

ϕ′(x) dx−
∫ 1

0

ϕ′(x) dx = (ϕ(0)− ϕ(−1))− (ϕ(1)− ϕ(0))

= 2ϕ(0) .

(7.3)

This shows that f ′ does not possess a weak derivative in the sense of (7.2), because there
does not exist an integrable function g such that∫ 1

−1

g(x)ϕ(x) dx = 2ϕ(0) , for all ϕ ∈ C∞0 (a, b).

In order to interpret the right side as a derivative of the sign function, one has to further
generalize the notion of the derivative; this leads to the notion of a distribution and of a
distributional derivative. We will not discuss this.

In multidimensional space, one defines weak partial derivatives. Let Ω ⊂ Rn be open, let
f be continuously differentiable on Ω. The rule for partial integration then says that the
function g = ∂if satisfies∫

Ω

g(x)ϕ(x) dx = −
∫

Ω

f(x)∂iϕ(x) dx , for all ϕ ∈ C∞0 (Ω). (7.4)
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Accordingly, g is called the weak i-th partial derivative of f in Ω, if f is integrable and
(7.4) holds. For higher partial derivatives we use the notation ∂αf with the multi-index
α = (α1, . . . , αn) ∈ Nn.

Definition 7.1 (Weak derivative)
Let Ω ⊂ Rn open, 1 ≤ p ≤ ∞, let u ∈ Lp(Ω) and α be a multi-index. A w ∈ Lp(Ω) is
called weak α-th derivative of u, if∫

Ω

w(x)ϕ(x) dx = (−1)|α|
∫

Ω

u(x)∂αϕ(x) dx , for all ϕ ∈ C∞0 (Ω). (7.5)

We denote it by ∂αu. 2

Definition 7.2 (Sobolev space)
Let Ω ⊂ Rn open. For k ∈ N, 1 ≤ p ≤ ∞ we define

W k,p(Ω) = {v : v ∈ Lp(Ω), ∂αv ∈ Lp(Ω) for all |α| ≤ k} . (7.6)

2

The phrase “∂αv ∈ Lp(Ω)” means that the α-th weak derivative exists in the sense of
Definition 7.1.

For k = 0, (7.6) means
W 0,p(Ω) = Lp(Ω) . (7.7)

Proposition 7.3 Let Ω ⊂ Rn open, 1 ≤ p ≤ ∞. The space W k,p(Ω) is a Banach space
when endowed with the norm

‖v‖Wk,p(Ω) =

∑
|α|≤k

‖∂αv‖pp

 1
p

=

∑
|α|≤k

∫
Ω

|∂αv(x)|p dx

 1
p

, 1 ≤ p <∞ , (7.8)

‖v‖Wk,∞(Ω) =
∑
|α|≤k

‖∂αv‖∞ , p =∞ . (7.9)

Proof: For p <∞, the triangle inequality follows from

‖u+ v‖Wk,p(Ω) =

∑
|α|≤k

‖∂αu+ ∂αv‖pp

 1
p

≤

∑
|α|≤k

(‖∂αu‖p + ‖∂αv‖p)
p

 1
p

≤

∑
|α|≤k

‖∂αu‖pp

 1
p

+

∑
|α|≤k

‖∂αv‖pp

 1
p

= ‖u‖Wk,p(Ω) + ‖v‖Wk,p(Ω) .

All other properties of the norm are immediate consequences of the definitions. Let now
(un)n∈N be a Cauchy sequence in W k,p(Ω). Because of

‖∂αun − ∂αum‖p ≤ ‖un − um‖Wk,p(Ω) ,
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the sequences (∂αun)n∈N are Cauchy sequences in Lp(Ω) for all |α| ≤ k. Therefore there
exist functions u ∈ Lp(Ω), uα ∈ Lp(Ω) such that

un → u , ∂αun → uα (7.10)

in Lp(Ω). Let p <∞, ϕ ∈ C∞0 (Ω) be arbitrary, then∫
Ω

u(x)∂αϕ(x) dx = lim
n→∞

∫
Ω

un(x)∂αϕ(x) dx = lim
n→∞

(−1)|α|
∫

Ω

∂αun(x)ϕ(x) dx

= (−1)|α|
∫

Ω

uα(x)ϕ(x) dx .

Therefore, for all |α| ≤ k the functions uα satisfy the requirements in the definition of the
weak derivative of u, so ∂αu exists and ∂αu = uα for all |α| ≤ k. Therefore, u ∈ W k,p(Ω).
The proof in the case p =∞ is analogous. 2

The norm in W k,p(Ω) is defined in such a way that we may easily embed W k,p(Ω) into a
product of Lp spaces. We set

X =
∏
|α|≤k

Xα , Xα = Lp(Ω) . (7.11)

Thus, an element v ∈ X has the form v = (vα)|α|≤k with vα ∈ Xα = Lp(Ω).

We endow X with the p-norm of the product,

‖v‖pX =
∑
|α|≤k

‖vα‖pLp(Ω) .

According to Proposition 1.7, X is a Banach space. Moreover, X is reflexive for 1 < p <
∞, because products of reflexive Banach spaces are again reflexive; X is separable for
1 ≤ p <∞, because products of separable metric spaces are separable. We define

T : W k,p(Ω)→ X , (Tv)α = ∂αv . (7.12)

Lemma 7.4 We have

‖Tv‖X = ‖v‖Wk,p(Ω) , for all v ∈ W k,p(Ω). (7.13)

T (W k,p(Ω)) is a closed subspace of X. For 1 < p < ∞, W k,p(Ω) is reflexive and for
1 ≤ p <∞ it is separable.

Proof: The equality (7.13) immediately follows from the definition of the two norms.
Since W k,p(Ω) is complete by Proposition 7.3, the space T (W k,p(Ω)), too, is complete and
therefore closed in X. Let now p < ∞. W k,p(Ω) is reflexive, since closed subspaces of
reflexive spaces are reflexive by Proposition 4.13. W k,p(Ω) is separable, since arbitrary
subsets of a separable metric space are separable (exercise). 2

Lemma 7.4 provides another way to prove that W k,p(Ω) is complete; one proves directly
that W k,p(Ω) is a closed subspace of X (and therefore complete, since X is complete).
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It then suffices to consider convergent (in Lp(Ω)) sequences un → u, ∂αun → uα and to
prove, as in the final part of the proof of Proposition 7.3, that uα = ∂αu holds.

We recall the standard mollifier ηε : Rn → R and the regularization

vε = v ∗ ηε , ε > 0 . (7.14)

Lemma 7.5 Let Ω, U ⊂ Rn be open, assume that U ⊂⊂ Ω. Let v ∈ W k,p(Ω), p < ∞.
Then for all ε satisfying 0 < ε < dist (U, ∂Ω) we have that vε ∈ C∞(U) ∩W k,p(U), and
vε → v in W k,p(U) for ε→ 0.

Proof: Let ε < dist (U, ∂Ω). By Lemma 5.6, vε ∈ C∞(U). Moreover, for all y ∈ U

∂αvε(y) =

∫
Ω

∂αy ηε(y − x)v(x) dx = (−1)|α|
∫

Ω

∂αx ηε(y − x)v(x) dx

=

∫
Ω

ηε(y − x)∂αv(x) dx = (ηε ∗ ∂αv)(y) .

(7.15)

Since ∂αv ∈ Lp(Ω), we obtain that ∂αvε ∈ Lp(U) by Lemma 5.6, and that ∂αvε → ∂αv in
Lp(U) by Lemma 5.8. 2

In order that the first equality in (7.15) holds, one needs that ε < dist (U, ∂Ω); for U = Ω
the assertion of the Lemma in general does not hold.

Proposition 7.6 Let Ω ⊂ Rn be open, let v ∈ W k,p(Ω), 1 ≤ p <∞. Then there exists a
sequence (vn)n∈N in C∞(Ω) ∩W k,p(Ω) such that vn → v in W k,p(Ω).

Proof: We define

Uj = {x : x ∈ Ω, dist (x, ∂Ω) >
1

j
and |x| < j} , Vj = Uj+3 \ U j+1 , j ≥ 1 , (7.16)

and set V0 = U3. Then

Ω =
∞⋃
j=0

Vj .

Let (βj)j≥0 be a partition of unity for Ω such that

0 ≤ βj ≤ 1 , βj ∈ C∞0 (Vj) ,
∞∑
j=0

βj = 1 . (7.17)

Since v ∈ W k,p(Ω), we have βjv ∈ W k,p(Ω) (see an exercise) and supp (βjv) ⊂ Vj. Let
now δ > 0 be arbitrary. We choose εj > 0 sufficiently small such that for

wj = (βjv) ∗ ηεj

we have (by Lemma 7.5 applied to βjv)

‖wj − βjv‖Wk,p(Ω) ≤ 2−(j+1)δ , (7.18)

supp (wj) ⊂ Wj := Uj+4 \ U j , j ≥ 1 , W0 := U4 . (7.19)
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We set

w =
∞∑
j=0

wj .

By construction, on each Wj only finitely many summands are different from zero. It
follows that w ∈ C∞(Ω), because each wj ∈ C∞(Ω) by Lemma 7.5. We then get

‖w − v‖Wk,p(Ω) =

∥∥∥∥∥
∞∑
j=0

wj −
∞∑
j=0

βjv

∥∥∥∥∥
Wk,p(Ω)

≤
∞∑
j=0

‖wj − βjv‖Wk,p(Ω) ≤ δ

∞∑
j=0

2−(j+1) = δ .

Since δ > 0 was arbitrary, the assertion follows. 2

Definition 7.7 Let Ω ⊂ Rn be open, let 1 ≤ p < ∞, k ∈ N. We define W k,p
0 (Ω) ⊂

W k,p(Ω) by
W k,p

0 (Ω) = C∞0 (Ω) , (7.20)

where the closure is taken w.r.t. the norm of W k,p(Ω). 2

W k,p
0 (Ω) is a closed subspace of W k,p(Ω) and thus a Banach space, too (endowed with

the norm of W k,p(Ω)). W k,p
0 (Ω) is a function space whose elements have zero values on

∂Ω in a certain “weak” sense. (From the outset, it is not clear that for a general element
v ∈ W k,p(Ω) the assertion “v = 0 on ∂Ω” makes sense, because v is actually an equivalence
class of functions which may differ on a set of measure zero; but ∂Ω usually has measure
0 as a subset of Rn.)

Definition 7.8 Let Ω ⊂ Rn be open. For k ∈ N we define

Hk(Ω) = W k,2(Ω) , Hk
0 (Ω) = W k,2

0 (Ω) . (7.21)

2

Proposition 7.9 Let Ω ⊂ Rn be open, k ∈ N. Then Hk(Ω) and Hk
0 (Ω) are Hilbert spaces

with the scalar product

〈u, v〉Hk(Ω) =
∑
|α|≤k

〈∂αu, ∂αv〉L2(Ω) =
∑
|α|≤k

∫
Ω

∂αu(x) · ∂αv(x) dx , (7.22)

and
‖v‖Wk,2(Ω) =

√
〈v, v〉Hk(Ω) , v ∈ Hk(Ω) . (7.23)

Proof: The properties of the scalar product immediately follow from the corresponding
properties of the scalar product in L2(Ω). Obviously (7.23) holds, and Hk(Ω) is complete
by Proposition 7.3. 2

Lemma 7.10 Let Ω ⊂ Rn be open, 1 ≤ p < ∞, 1/p + 1/q = 1. Let u ∈ C∞0 (Ω). Then
for all h ∈ Rn we have ∫

Ω

|u(x+ h)− u(x)|p dx ≤ ‖∇u‖pLp(Ω)‖h‖
p
q , (7.24)

where again we set u = 0 outside of Ω.
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Proof: We set g(t) = u(x+ th). We have

u(x+ h)− u(x) = g(1)− g(0) =

∫ 1

0

g′(t) dt =

∫ 1

0

〈∇u(x+ th), h〉 dt

and moreover, due to Hölder’s inequality in Kn,

|u(x+ h)− u(x)| ≤
∫ 1

0

| 〈∇u(x+ th), h〉 | dt ≤
∫ 1

0

‖∇u(x+ th)‖p‖h‖q dt

≤
∫ 1

0

‖∇u(x+ th)‖p dt · ‖h‖q .
(7.25)

In the case p = 1 we obtain (7.24) by integrating over Ω. In the case p > 1 we estimate
as ∫

Ω

|u(x+ h)− u(x)|p dx ≤
∫

Ω

(∫ 1

0

‖∇u(x+ th)‖p dt · ‖h‖q
)p
dx

≤
∫
Rn

∫ 1

0

‖∇u(x+ th)‖pp dt ·
(∫ 1

0

1q dt
)p/q

︸ ︷︷ ︸
=1

dx · ‖h‖pq

=

∫ 1

0

∫
Rn

‖∇u(x+ th)‖pp dx dt · ‖h‖pq

= ‖∇u‖pLp(Ω) · ‖h‖
p
q ,

note that the norm of the gradient of u on Rn remains unchanged when we translate every
vector by the vector th, and that ∇u = 0 outside of Ω. 2

Proposition 7.11 Let Ω ⊂ Rn be open, 1 ≤ p < ∞, let F be a bounded subset of
W 1,p

0 (Ω). Then F is relatively compact in Lp(Ω).

Proof: Let (un) be a sequence in F . According to the definition of W 1,p
0 (Ω) we can find

a sequence (vn) in C∞0 (Ω) such that

‖vn − un‖W 1,p(Ω) ≤
1

n
. (7.26)

Thus, the sequence (vn), too, is bounded in W 1,p(Ω). Therefore, both (vn) and (∇vn) are
bounded in Lp(Ω). Using Lemma 7.10 we obtain∫

Ω

|vn(x+ h)− vn(x)|p dx ≤ ‖∇vn‖pLp(Ω)‖h‖
p
q ≤ C‖h‖pq

with a constant C which does not depend on n. It follows that

lim
h→0

sup
n∈N

∫
Ω

|vn(x+ h)− vn(x)|p dx = 0 .

By the theorem of Fréchet-Riesz-Kolmogorov, (vn) is relatively compact in Lp(Ω). There-
fore, there exists a u ∈ Lp(Ω) and a subsequence (vnk

) such that vnk
→ u in Lp(Ω). Due to
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(7.26) we also have unk
→ u. As the sequence (un) was arbitrary, F is relatively compact

in Lp(Ω). 2

The corresponding result for W 1,p(Ω) may be deduced from Proposition 7.11, but this
requires some additional constructions. If Ω ⊂ Rn is open and bounded, and if ∂Ω is
sufficiently smooth, one may construct, for an arbitrary given open and bounded set
V ⊂ Rn with Ω ⊂⊂ V , a linear and continuous extension operator

E : W 1,p(Ω)→ W 1,p
0 (V )

satisfying (Eu)|Ω = u for all u ∈ W 1,p(Ω). (See e.g. Evans, Partial Differential Equa-
tions.) Let now F be bounded in W 1,p(Ω). Then E(F ) is bounded in W 1,p

0 (V ). For
every sequence (un) in W 1,p(Ω), the sequence (Eun) has a subsequence which converges
to some w ∈ Lp(V ) by Proposition 7.11. In particular, the corresponding subsequence
(unk

) converges to a u = w|Ω ∈ Lp(Ω). With this reasoning one proves the following
proposition.

Proposition 7.12 (Rellich)
Let Ω ⊂ Rn be open and bounded, with sufficiently smooth boundary, let 1 ≤ p < ∞.
Assume that F is a bounded subset of W 1,p(Ω). Then F is relatively compact in Lp(Ω).
2
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8 Compact operators

Definition 8.1 (Compact operator)
Let X, Y be Banach spaces. A linear mapping T : X → Y is called compact, or compact
operator if the image T (K(0; 1)) of the closed unit ball K(0; 1) is relatively compact in
Y . 2

Since a linear mapping is continuous if and only if the image of the unit ball is bounded,
every compact operator is continuous. By

K(X;Y ) = {T : T ∈ L(X;Y ), T compact operator} (8.1)

we denote the set of all compact operators from X to Y and set

K(X) = K(X;X) . (8.2)

By what we just said, K(X;Y ) ⊂ L(X;Y ).

Lemma 8.2 Let X, Y be Banach spaces, T : X → Y linear. Then there are equivalent:

(i) T is compact.

(ii) T (B) is relatively compact in Y for every bounded subset B ⊂ X.

(iii) For every bounded sequence (xn)n∈N in X, the sequence (Txn)n∈N has a subsequence
which converges in Y .

Proof: “(i)⇒(ii)”: If T (K(0; 1)) is relatively compact, then so is T (K(0;R)) = RT (K(0; 1))
for all R > 0. If B is bounded, so is T (B) ⊂ T (K(0;R)) for R sufficiently large. There-
fore, T (B) is compact as a closed subset of the compact set T (K0;R)).
“(ii)⇒(iii)”: Immediate. “(iii)⇒(i)”: Exercise. 2

Compact operators map weakly convergent sequences to strongly convergent sequences.

Proposition 8.3 Let X, Y be Banach spaces, let T : X → Y be a compact linear operator.
let (xn) be a bounded sequence in X. Then:
(i) (Txn)n∈N has a subsequence which strongly converges in Y .
(ii) From xn ⇀ x ∈ X it follows that Txn → Tx.

Proof: Exercise. 2

As an example we consider

T : C[0, 1]→ C[0, 1] , (Tx)(t) =

∫ 1

0

k(s, t)x(s) ds , (8.3)

where k : [0, 1]× [0, 1]→ R is continuous. We have shown in an exercise that the image of
the unit ball in C[0, 1] under T is relatively compact in C[0, 1]. Therefore, T is compact.

As a second example we again consider the integral operator defined by

(Tx)(t) =

∫ 1

0

k(s, t)x(s) ds , (8.4)

this time as an operator from L2(0, 1) to L2(0, 1).

66



Proposition 8.4 Let k ∈ L2(Ω) mit Ω = (0, 1) × (0, 1). Then (8.4) defines a linear
continuous operator T : L2(0, 1)→ L2(0, 1) satisfying ‖T‖ ≤ ‖k‖L2(Ω) .

Proof: For x ∈ L2(0, 1) we obtain, using the Cauchy-Schwarz inequality in L2(0, 1),

‖Tx‖2
2 =

∫ 1

0

∣∣∣ ∫ 1

0

k(s, t)x(s) ds
∣∣∣2 dt ≤ ∫ 1

0

(∫ 1

0

|k(s, t)|2 ds ·
∫ 1

0

|x(s)|2 ds
)
dt

=

∫ 1

0

∫ 1

0

|k(s, t)|2 ds dt ·
∫ 1

0

|x(s)|2 ds

= ‖k‖2
L2(Ω) · ‖x‖

2
2 ,

so
‖Tx‖2 ≤ ‖k‖L2(Ω)‖x‖2 , for all x ∈ L2(Ω).

This yields the assertion. That the integrals are well-defined is a consequence of Fubini’s
theorem resp. its variants. 2

Proposition 8.5 The operator T : L2(0, 1) → L2(0, 1) considered in Proposition 8.4 is
compact.

Proof: Let x ∈ L2(0, 1) and h ∈ R be arbitrary. We set k(s, t) = 0 and correspondingly
(Tx)(t) = 0 for t /∈ (0, 1). Analogously as in the proof of Proposition 8.4 we obtain∫ 1

0

|(Tx)(t+ h)− (Tx)(t)|2 dt =

∫ 1

0

∣∣∣ ∫ 1

0

(k(s, t+ h)− k(s, t)))x(s) ds
∣∣∣2 dt

≤
∫ 1

0

∫ 1

0

|k(s, t+ h)− k(s, t)|2 ds ·
∫ 1

0

|x(s)|2 ds dt

=

∫ 1

0

∫ 1

0

|k(s, t+ h)− k(s, t)|2 ds dt · ‖x‖2
2 .

(8.5)

Using Proposition 5.9 applied to k in L2(Ω) we get that

lim
h→0

∫ 1

0

∫ 1

0

|k(s, t+ h)− k(s, t)|2 ds dt = 0 .

From (8.5) it follows that

lim
h→0

sup
‖x‖2≤1

∫ 1

0

|(Tx)(t+ h)− (Tx)(t)|2 dt ≤ lim
h→0

∫ 1

0

∫ 1

0

|k(s, t+ h)− k(s, t)|2 ds dt = 0 .

The theorem of Fréchet-Riesz-Kolmogorov (Proposition 5.10) now implies that the image
of the unit ball, namely {Tx : ‖x‖2 ≤ 1}, is relatively compact in L2(0, 1). 2

As an immediate consequence of Proposition 8.3 we obtain:

Corollary 8.6 Let T the operator considered in Proposition 8.4, let (xn)n∈N be a bounded
sequence in L2(0, 1). Then the sequence (Txn)n∈N has a subsequence which strongly con-
verges in L2(0, 1). 2
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As a third example we consider the embedding

I : W 1,p(Ω)→ Lp(Ω) . (8.6)

It is compact by the result of Rellich (Proposition 7.12). We obtain, again using Proposi-
tion 8.3, that every sequence which is bounded in the norm of W 1,p(Ω) has a subsequence
which is strongly convergent in Lp(Ω).

Let T ∈ L(X;Y ), let

dim(X) <∞ , or dim(T (X)) <∞ . (8.7)

Then T (K(0; 1)) is a bounded subset of a finite-dimensional space and thus relatively
compact. Therefore, T is compact.

Lemma 8.7 Let X, Y, Z be Banach spaces, T ∈ L(X;Y ), S ∈ L(Y ;Z). If T or S is
compact, then S ◦ T is compact.

Proof: Let (xn)n∈N be a bounded sequence in X. If T is compact, the sequence (Txn)n∈N
has a convergent subsequence (Txnk

)k∈N, and because S is continuous, the sequence
(S(Txnk

))k∈N converges, too. If S is compact, the bounded sequence (Txn)n∈N (T is
linear and continuous) gives rise to a convergent subsequence (S(Txnk

))k∈N. 2

Proposition 8.8 Let X, Y be Banach spaces. The space K(X;Y ) is a closed subspace of
L(X;Y ).

Proof: Let (Tm)m∈N be a sequence in K(X;Y ) with Tm → T , T ∈ L(X;Y ). We want
to prove that T is compact. Let (xn)n∈N be a bounded sequence in X, let ‖xn‖ ≤ C for
all n ∈ N. We choose a subsequence (xnk

)k∈N such that (Tmxnk
)k∈N converges in Y for

all m ∈ N. In order to achieve this we utilize a diagonalization argument like the one we
already carried out in the proof of Proposition 6.8. Next, we show that (Txnk

)k∈N is a
Cauchy sequence: for a given ε > 0 we choose m ∈ N such that ‖T −Tm‖ ≤ ε, and K > 0
such that

‖Tmxnk
− Tmxnj

‖ < ε , for all k, j ≥ K.

Then for all j, k ≥ K we have

‖Txnk
− Txnj

‖ ≤ ‖Txnk
− Tmxnk

‖+ ‖Tmxnk
− Tmxnj

‖+ ‖Tmxnj
− Txnj

‖
≤ ‖T − Tm‖ ‖xnk

‖+ ‖Tmxnk
− Tmxnj

‖+ ‖Tm − T‖ ‖xnj
‖

≤ Cε+ ε+ Cε = (2C + 1)ε .

Thus, (Txnk
)k∈N is a Cauchy sequence and therefore convergent, since Y is complete. 2

Corollary 8.9 Let X, Y be Banach spaces, let T : X → Y be linear and continuous,
assume that there exists a sequence (Tn)n∈N of linear continuous operators Tn : X → Y
such that

lim
n→∞

‖Tn − T‖ = 0 , dim(Tn(X)) <∞ for all n ∈ N. (8.8)

Then T is compact.
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Proof: Every linear continuous operator, whose range is finite dimensional, is compact.
The assertion then follows directly from Proposition 8.8. 2

There arises the question whether every compact operator T : X → Y between Banach
spaces X and Y can be obtained as the limit of a sequence (Tn)n∈N of operators Tn : X →
Y with finite dimensional range. This is not the case. In 1973, P. Enflo has published a
counterexample.
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9 Adjoint Operators

Let X, Y be normed spaces, let T : X → Y be linear and continuous. For a given y∗ ∈ Y ∗,

T ∗y∗ = y∗ ◦ T (9.1)

defines a linear continuous mapping T ∗y∗ ∈ X∗. Obviously T ∗ : Y ∗ → X∗ is linear.

Lemma 9.1 T ∗ is continuous, and ‖T ∗‖ = ‖T‖.

Proof: We have

sup
‖y∗‖≤1

‖T ∗y∗‖ = sup
‖y∗‖≤1

sup
‖x‖≤1

|(T ∗y∗)(x)| = sup
‖x‖≤1

sup
‖y∗‖≤1

|y∗(Tx)| = sup
‖x‖≤1

‖Tx‖ = ‖T‖ .

The next-to-last equality holds because of Corollary 4.7. 2

Definition 9.2 (Adjoint Operator)
Let X, Y be normed spaces, let T ∈ L(X;Y ). The operator T ∗ ∈ L(Y ∗;X∗) defined by
(9.1) is called the adjoint operator to T . 2

Lemma 9.3 The association T 7→ T ∗ defines an isometric linear mapping from L(X;Y )
to L(Y ∗;X∗).

Proof: That T is linear is an immediate consequence of the definition; that it is isometric
follows from Lemma 9.1. 2

The mapping T 7→ T ∗ is not always surjective. (A counterexample can be found in the
book of D. Werner.)

As an example we consider the integral operator T : L2(0, 1)→ L2(0, 1),

(Tξ)(t) =

∫ 1

0

k(s, t)ξ(s) ds , k ∈ L2((0, 1)× (0, 1)) . (9.2)

The adjoint operator T ∗ : L2(0, 1)∗ → L2(0, 1)∗ satisfies

(T ∗y∗)(ξ) = y∗(Tξ) . (9.3)

According to the isometric isomorphism between L2(0, 1)∗ and L2(0, 1), see Chapter 1, y∗

can be represented by a y ∈ L2(0, 1),

y∗(Tξ) =

∫ 1

0

(Tξ)(t)y(t) dt . (9.4)

It then follows that

(T ∗y∗)(ξ) =

∫ 1

0

(Tξ)(t)y(t) dt =

∫ 1

0

∫ 1

0

k(s, t)ξ(s) ds y(t) dt (9.5)

=

∫ 1

0

∫ 1

0

k(s, t)y(t) dt ξ(s) ds , (9.6)
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that is, x∗ = T ∗y∗ is represented by the function

x(s) =

∫ 1

0

k(s, t)y(t) dt , oder x(t) =

∫ 1

0

k(t, s)y(s) ds . (9.7)

We summarize: If T is defined by the kernel function “k = k(s, t)” then T ∗ has the kernel
function “k = k(t, s)”.

Applying Definition 9.2 twice, we obtain for a given T ∈ L(X;Y ) the linear and continuous
operator

T ∗∗ : X∗∗ → Y ∗∗ .

Lemma 9.4 Let X, Y be normed spaces, let T ∈ L(X;Y ). Then

T ∗∗ ◦ JX = JY ◦ T . (9.8)

Proof: We have

[(T ∗∗ ◦ JX)(x)](y∗) = [T ∗∗(JXx)](y∗) = [(JXx) ◦ T ∗](y∗) = (JXx)(T ∗y∗)

= (T ∗y∗)(x) = y∗(Tx) = [JY (Tx)](y∗) = [(JY ◦ T )(x)](y∗) .

2

Proposition 9.5 Let X, Y be Banach spaces, let T : X → Y be linear and continuous.
Then T is compact if and only if T ∗ is compact.

Proof: Let T be compact. Then, the subset of Y defined by K = T (K(0; 1)) is compact.
Let now (y∗n)n∈N be a bounded sequence in Y ∗, let

‖y∗n‖Y ∗ ≤M . (9.9)

We consider the sequence (y∗n|K)n∈N in C(K). This sequence is bounded in C(K) since

‖y∗n|K‖∞ = sup
y∈K
|y∗n(y)| ≤ ‖y∗n‖Y ∗ sup

y∈K
‖y‖ ≤M sup

y∈K
‖y‖ <∞ . (9.10)

Moreover, for arbitrary y, ỹ ∈ K we have

|y∗n(y)− y∗n(ỹ)| ≤ ‖y∗n‖Y ∗ ‖y − ỹ‖Y ≤M‖y − ỹ‖Y . (9.11)

Therefore, (y∗n)n∈N is equicontinuous. It follows from the Arzela-Ascoli Theorem that
there exists a subsequence (y∗nk

|K)k∈N which uniformly converges on K. It follows that

‖T ∗y∗nk
− T ∗y∗nl

‖ = sup
‖x‖≤1

|y∗nk
(Tx)− y∗nl

(Tx)| ≤ sup
y∈K
|y∗nk

(y)− y∗nl
(y)| = ‖(y∗nk

− y∗nl
)|K‖∞ ;

(9.12)
Therefore, (T ∗y∗nk

)k∈N is a Cauchy sequence and thus convergent. This proves that T ∗ is
compact. For the converse, assume that T ∗ is compact. By what we have just proved,
T ∗∗ is compact. By Lemma 8.7, T ∗∗ ◦ JX is compact. By Lemma 9.4, JY ◦ T is compact.
Let now (xn)n∈N be a bounded sequence in X. Then ((JY ◦ T )xn)n∈N has a convergent
subsequence, let (JY ◦ T )xnk

→ y∗∗ ∈ Y ∗∗. Since Y is a Banach space, JY (Y ) is closed.
Thus, there exists a y ∈ Y such that y∗∗ = JY y. Since JY is isometric, we get Txkn → y.
We have found a convergent subsequence of (xn)n∈N; by Lemma 8.2, T is compact. 2
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Proposition 9.6 Let X, Y be normed spaces, let T : X → Y be linear and continuous.
Then

T (X) = (kerT ∗)o , (9.13)

where
(kerT ∗)o = {y : y ∈ Y, y∗(y) = 0 for all y∗ ∈ kerT ∗} . (9.14)

Proof: “⊂”: Let y ∈ T (X), so y = Tx for some x ∈ X. For arbitrary y∗ ∈ kerT ∗ we
get y∗(y) = y∗(Tx) = (T ∗y∗)(x) = 0. It follows that T (X) ⊂ (kerT ∗)o. Since (kerT ∗)o is
closed, as one easily verifies, the assertion follows.
“⊃”: Let y ∈ Y , y /∈ T (X). According to Corollary 4.8 we choose a y∗ ∈ Y ∗ such that
y∗ = 0 on T (X) and y∗(y) 6= 0. For all x ∈ X we have 0 = y∗(Tx) = (T ∗y∗)(x), so
T ∗y∗ = 0 and thus y∗ ∈ kerT ∗. Since y∗(y) 6= 0, we obtain y /∈ (kerT ∗)o. 2
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10 Complements, Factorization

We recall: if X is a normed space and U a closed subspace of X, then

‖[x]‖ = inf
z∈U
‖x− z‖ = inf

x̃∈[x]
‖x̃‖ (10.1)

defines a norm on X/U , and the quotient mapping

Q : X → X/U , Q(x) = [x] , (10.2)

is linear and continuous and has norm ‖Q‖ = 1 unless X = {0}.

Proposition 10.1 Let X, Y be normed spaces, U a closed subspace of X, let T ∈ L(X;Y )
with T |U = 0. Then there exists a unique T̃ ∈ L(X/U ;Y ) such that T̃ ◦ Q = T , and we
have ‖T̃‖ = ‖T‖. If in particular U = kerT , then T̃ is injective.

Proof: We define
T̃ : X/U → Y , T̃ ([x]) = T (x) . (10.3)

T̃ is well-defined since if x̃ ∈ [x] we have x̃− x ∈ U , so

T (x̃)− T (x) = T (x̃− x) = 0 .

A direct computation shows that T̃ is linear. Moreover,

‖T (x)‖ = ‖T (x̃)‖ ≤ ‖T‖ ‖x̃‖ , for all x̃ ∈ [x],

therefore
‖T̃ ([x])‖ ≤ inf

x̃∈[x]
‖T‖ ‖x̃‖ = ‖T‖ ‖[x]‖ .

Thus, ‖T̃‖ ≤ ‖T‖ and conversely

‖T‖ = ‖T̃ ◦Q‖ ≤ ‖T̃‖ ‖Q‖ = ‖T̃‖ .

If U = kerT , it follows from (10.3) that

T̃ ([x]) = 0 ⇔ x ∈ U ⇔ [x] = 0 ,

so ker T̃ = 0. 2

Corollary 10.2 Let X, Y be Banach spaces, T : X → Y linear and continuous, T (X)
closed. Then

X/ kerT ' T (X) , (10.4)

and the mapping T̃ defined by T̃ ◦Q = T is an isomorphism between X/ kerT and T (X).

Proof: By Proposition 10.1, T̃ : X/ kerT → T (X) is bijective, linear and continuous.
Since Y is a Banach space and T (X) is a closed subspace of Y , T (X) also is a Banach
space. From Corollary 3.8 we obtain that T̃−1 is continuous, too. 2
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Corollary 10.3 Let X, Y be Banach spaces, let T : X → Y linear, continuous and
surjective. Then

X/ kerT ' Y . (10.5)

Proof: This is an immediate consequence of Corollary 10.2. 2

Proposition 10.4 Let X, Y be normed spaces, let T : X → Y linear and continuous, let
T (X) closed in Y . Then

(Y/T (X))∗ ∼= kerT ∗ . (10.6)

Proof: Let z∗ ∈ (Y/T (X))∗. We set y∗ = z∗ ◦ Q where Q : Y → Y/T (X) is the
quotient mapping. We then have y∗ ∈ Y ∗, y∗ = 0 on T (X), therefore T ∗y∗ = 0 and
thus y∗ ∈ kerT ∗. We define

I : (Y/T (X))∗ → kerT ∗ , Iz∗ = z∗ ◦Q . (10.7)

The mapping I is linear and continuous and, applying Proposition 10.1 with (y∗, z∗, T (X))
in place of (T, T̃ , U), we get that ‖Iz∗‖ = ‖z∗‖ for all z∗. Moreover, I is surjective: If
y∗ ∈ kerT ∗, then y∗ ◦ T = 0, therefore y∗|T (X) = 0, and we have y∗ = z∗ ◦Q = Iz∗ for a
suitable z∗ ∈ (Y/T (X))∗. 2

Definition 10.5 (Complement)
Let X be a vector space, U a subspace of X. A subspace V of X is called an algebraic
complement of U if

U ∩ V = {0} , U + V = X . (10.8)

If moreover X is a Banach space, and U and V are closed, then V is called a complement
of U . We also say that X is the direct sum of U and V , written as

X = U ⊕ V . (10.9)

2

In linear algebra we have the following situation. Every subspace U of a vector space has
an algebraic complement V . Indeed, if (ui)i∈I is a basis of U , then by enlarging it with
suitable vectors (vj)j∈J we may obtain a basis of X;

V = span {vj : j ∈ J}

then becomes an algebraic complement of U . Algebraic complements are not uniquely
determined (unless U = X or U = {0}), but for every algebraic complement V the
quotient mapping Q : X → X/U yields a bijective linear mapping

Q|V : V → X/U . (10.10)

Conversely, every subspace V for which Q|V is bijective is an algebraic complement. In
this manner we obtain bijective linear mappings

U ×X/U → U × V → X , (10.11)
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the latter one defined by (u, v) 7→ u+ v.

In functional analysis one is interested in decompositions X = U ⊕ V where X, U and V
are Banach spaces.

When X is a Hilbert space, every closed subspace has a complement, namely U⊥. If X is
only a Banach space, then there may exist closed subspaces which have no complement.
For example, C[0, 1] does not have a complement in L∞(0, 1). (We do not prove this
here.)

Proposition 10.6 Let X be a Banach space, U a subspace of X with dim(U) <∞. Then
U has a complement.

Proof: Let dim(U) = n, let {x1, . . . , xn} be a basis of U , let {u∗1, . . . , u∗n} be the corre-
sponding dual basis, that is, the basis of U∗ defined by

u∗i (xj) = δij .

According to Proposition 4.5 (Hahn-Banach) we choose extensions x∗i ∈ X∗ of u∗i and
define

P : X → U , Px =
n∑
i=1

x∗i (x)xi . (10.12)

P is linear and continuous, and therefore V = kerP is a closed subspace of X. We now
prove that V is a complement of U . If z ∈ U ∩V , we have Pz = 0, thus 0 = x∗i (z) = u∗i (z)
for all i and therefore z = 0. Let now x ∈ X be arbitrary. Then

x = Px+ (x− Px) .

As Pxj = xj for all j, it follows that P |U = id|U , so P ◦ P = P ,

P (x− Px) = Px− PPx = 0 .

Therefore we have x− Px ∈ V and, since x was arbitrary, X = U + V . 2

Definition 10.7 (Codimension)
Let X be a vector space, U a subspace of X. Then dim(X/U) is called the codimension
of U in X, written codim (U). 2

Because of (10.10) we obviously have

codim (U) = dim(V ) (10.13)

for every complement V of U .

Proposition 10.8 Let X be a Banach space, U a closed subspace of X with codim (U) <
∞. Then U has a complement.

Proof: Let V be an algebraic complement of U inX. Then we have dim(V ) = codim (U) <
∞, therefore V is closed. 2
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Proposition 10.9 Let X, Y be Banach spaces, let T : X → Y be linear and continuous,
let the codimension of T (X) in Y be finite. Then T (X) is closed in Y .

Proof: We first consider the case where is T injective. Let codim (T (X)) = n, let
y1, . . . , yn ∈ Y such that {[y1], . . . , [yn]} is a basis of Y/T (X). We define

S : Kn ×X → Y , S(α, x) = Tx+
n∑
i=1

αiyi . (10.14)

S is linear and continuous. S is injective, since S(α, x) = 0 implies that

0 = [S(α, x)] =
n∑
i=1

αi[yi] ,

so αi = 0 for all i, thus Tx = 0 and therefore x = 0. S is surjective: Let y ∈ Y . There
exist αi ∈ K such that

[y] =
n∑
i=1

αi[yi] , so

[
y −

n∑
i=1

αiyi

]
= 0 , so y −

n∑
i=1

αiyi ∈ T (X) .

Thus S is bijective. Using Corollary 3.8 we see that S−1 is continuous. Therefore T (X) =
S({0} × X) = (S−1)−1({0} × X) is closed. Let now T be arbitrary. We consider the
linear continuous mapping T̃ : X/ kerT → Y defined by T̃ ◦Q = T . T̃ is injective due to
Proposition 10.1. By what we just have proved, T (X) = T̃ (X/ kerT ) is closed. 2

Here are a few remarks concerning the general situation.

• In 1971, Lindenstrauss and Tzafriri have proved: A Banach space X possesses the
property that every closed subspace has a complement if and only if X is isomorphic
to a Hilbert space. (If moreover X is isometrically isomorphic to a Hilbert space,
the parallelogram identity holds and the norm is generated by a suitable scalar
product.)

• In 1993, Gowers and Maurey have found an example of a reflexive Banach space
X with the property that no closed subspace U has a complement (except those
subspaces which have finite dimension or finite codimension, see Proposition 10.6
and Proposition 10.9).
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11 Fredholm operators

Definition 11.1 (Fredholm operator)
Let X, Y be Banach spaces. A linear continuous operator T : X → Y is called a Fredholm
operator if dim(kerT ) <∞ and codim (T (X)) = dim(Y/T (X)) <∞. If T is a Fredholm
operator, we define the index of T by

ind (T ) = dim(kerT )− codim (T (X)) . (11.1)

By F (X;Y ) we denote the set of all Fredholm operators from X to Y ; if X = Y we also
write F (X). 2

In this chapter, I denotes the identity mapping in L(X).

When both X and Y have finite dimension, we have F (X;Y ) = L(X;Y ). Otherwise,
0 /∈ F (X;Y ), and F (X;Y ) is not a subspace of L(X;Y ). If T ∈ F (X;Y ) and α ∈ K with
α 6= 0, then αT ∈ F (X;Y ). We always have I ∈ F (X), ind (I) = 0.

If X and Y have finite dimension, say dim(X) = n and dim(Y ) = m, then n =
dim(kerT )+dim(T (X)) and m = dim(T (X))+codim (T (X)), therefore ind (T ) = n−m.
Thus, the index contains relevant information concerning T only in the infinite dimen-
sional case.

Lemma 11.2 Let X, Y be Banach spaces, T : X → Y a Fredholm operator. Then T (X)
is closed.

Proof: This is a direct consequence of Proposition 10.9. 2

Proposition 11.3 Let X be a Banach space, let S : X → X compact operator. Then
T = I − S is a Fredholm operator.

Proof: First we note that I| kerT = S| kerT . Thus, I| kerT is a compact operator and
therefore dim(kerT ) < ∞. We want to prove that T (X) is closed. According to Propo-
sition 10.6, let us choose a complement V of kerT in X and consider T |V : V → T (X).
This mapping is injective, since V ∩ kerT = {0}. It is surjective, because for every
y = Tx ∈ T (X) we have x = v + u with v ∈ V and Tu = 0, so Tv = Tx. Let us assume

(T |V )−1 : T (X)→ V is not continuous. (11.2)

We will show that this leads to a contradiction. We choose a sequence (yn)n∈N in T (X)
such that ‖yn‖ = 1 and ‖T−1yn‖ ≥ n. For

vn =
T−1yn
‖T−1yn‖

(11.3)

we have

vn ∈ V , ‖vn‖ = 1 , ‖Tvn‖ ≤
1

n
. (11.4)
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Since S is compact, there exists a convergent subsequence (Svnk
)k∈N. Let Svnk

→ v ∈ X.
Then

vnk
= Svnk

+ Tvnk
→ v ,

so v ∈ V , ‖v‖ = 1, Tv = 0 in contradiction to V ∩kerT = {0}. Therefore, (11.2) does not
hold. It follows that T (X) and V are isomorphic. As V is complete, so is T (X), therefore
T (X) is closed in X. Proposition 10.4 now implies that

(X/T (X))∗ ∼= kerT ∗ = ker(I − S∗) . (11.5)

By Proposition 9.5, S∗ is compact. By what we just have proved,

∞ > dim(ker(I − S∗)) = dim((X/T (X))∗) = dim(X/T (X)) = codimT (X) .

2

Proposition 11.4 Let X be a Banach space, T ∈ L(X). If ‖T‖ < 1 then I − T is
bijective, (I − T )−1 ∈ L(X) and

(I − T )−1 =
∞∑
k=0

T k . (11.6)

Proof: Exercise. 2

Corollary 11.5 Let X, Y be Banach spaces, T ∈ L(X;Y ), T bijective. Let T̃ ∈ L(X;Y )
such that

‖T̃ − T‖ < 1

‖T−1‖
. (11.7)

Then T̃ is bijective and T̃−1 ∈ L(Y ;X).

Proof: We have
T̃ = T (I − T−1(T − T̃ )) , (11.8)

as one checks by performing the multiplications on the right side. From (11.7) it follows
that ‖T−1(T − T̃ )‖ ≤ ‖T−1‖ ‖T − T̃‖ < 1. The assertion now follows from Proposition
11.4. 2

Proposition 11.6 Let X, Y be Banach spaces. The set F (X;Y ) is an open subset of the
Banach space L(X;Y ), and the mapping ind : F (X;Y ) → Z is locally constant, that is,
for every T ∈ F (X;Y ) there exists an ε > 0 such that

ind (S) = ind (T ) , for all S ∈ F (X;Y ) with ‖S − T‖ < ε. (11.9)

Proof: Let T : X → Y be a Fredholm operator. By Lemma 11.2, T (X) is closed.
According to Proposition 10.6 and Proposition 10.8 we choose closed subspaces V of X
and W of Y such that

kerT ⊕ V = X , T (X)⊕W = Y . (11.10)
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We then have

dim(W ) = codim (T (X)) <∞ , codim (V ) = dim(kerT ) <∞ . (11.11)

For arbitrary given S ∈ L(X;Y ) we define

S̃ : V ×W → Y , S̃(v, w) = Sv + w , (11.12)

where V ×W is endowed with the maximum norm ‖(v, w)‖∞ = max{‖v‖, ‖w‖}. Obvi-
ously, S̃ is linear and continuous. We have

(S̃ − T̃ )(v, w) = (S − T )(v)

and therefore
‖S̃ − T̃‖ = ‖S − T‖ . (11.13)

From (11.10) it follows that T (V ) = T (X) and that T |V is injective. Therefore, T̃ : V ×
W → Y is linear, bijective and continuous. According to Corollary 11.5 we choose ε > 0
such that S̃ : V ×W → Y is bijective for all S ∈ L(X;Y ) satisfying ‖S−T‖ = ‖S̃−T̃‖ < ε.
Let now S be an arbitrary operator with this property. It follows from (11.12) that

S̃(V × {0}) = S(V ) , S̃({0} ×W ) = W ,

therefore
Y = S(V ×W ) = S(V )⊕W , codim (S(V )) <∞ . (11.14)

Since S̃ is bijective, S|V is injective, and thus

kerS ∩ V = {0} .

Let now Z be a complement of kerS ⊕ V in X,

kerS ⊕ V ⊕ Z = X , (11.15)

then both kerS ⊕ Z and kerT are complements of V in X, the latter because of (11.10).
They therefore have the same dimension,

dim(kerS) + dim(Z) = dim(kerT ) <∞ , dim(Z) <∞ . (11.16)

From (11.15) it moreover follows that S|(V ⊕ Z) is injective and

S(X) = S(V ⊕ Z) = S(V )⊕ S(Z) . (11.17)

Adding on both sides a complement of S(X) in Y , we obtain

∞ > codim (S(V )) = dim(S(Z)) + codim (S(X)) . (11.18)

Furthermore, by (11.11) and (11.14) we get, since S|Z is injective,

codim (T (X)) = dim(W ) = codim (S(V )) = dim(Z) + codim (S(X)) . (11.19)

From (11.16) and (11.19) we see that S is a Fredholm operator. Adding both equations
yields

dim(kerS) + codim (T (X)) = dim(kerT ) + codim (S(X)) ,

thus ind (S) = ind (T ). 2
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Corollary 11.7 Let X, Y be Banach spaces, let T : [0, 1] → F (X;Y ) be continuous.
Then

t 7→ ind (T (t)) (11.20)

is constant.

Proof: By Proposition 11.6, the mapping ind ◦ T : [0, 1] → R is continuous. It must be
constant because the index has only integer values. 2

A locally constant mapping is constant on connected subsets of its domain. Thus one
has the more general result that the index is constant on each connected component of
F (X;Y ).

Corollary 11.8 Let X be a Banach space, S : X → X compact. Then

ind (I − S) = 0 . (11.21)

Proof: The operator T (t) = I − tS is a Fredholm operator by Proposition 11.3. We have
ind (T (0)) = ind (I) = 0, therefore 0 = ind (T (1)) = ind (I − S) by Corollary 11.7. 2

Let T : X → X be a Fredholm operator of index 0. Then we have dim(kerT ) = 0 if and
only if codimT (X) = 0. Consequently,

T injective ⇔ T surjective. (11.22)

This is an important generalization of the corresponding result from linear algebra for
X = Kn.

We consider the equation
Tx = y , (11.23)

where y ∈ X is given and x ∈ X is to be determined.

The classical formulation of the above properties of Fredholm operators of index 0 is the
Fredholm alternative:

Either the equation (11.23) has a unique solution x ∈ X for every given
y ∈ X (this corresponds to (11.22), the case dim(kerT ) = 0),

or the homogeneous equation Tx = 0 has finitely many linearly independent
solutions, and for every given y ∈ X the equation (11.23) has a solution if
and only if y∗(y) = 0 for all y∗ ∈ kerT ∗. The maximal number of linearly
independent solutions of Tx = 0 is equal to the maximal number of linearly
independent solutions of T ∗y∗ = 0. (This is the case dim(kerT ) > 0.)

The second part of this alternative is based on the formulas

T (X) = (kerT ∗)o , (Y/T (X))∗ ∼= kerT ∗

from Proposition 9.6 and Proposition 10.4, and on the fact that T (X) = T (X).
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12 The Spectrum

In linear algebra, a structure theory for linear mappings is developed. It is mainly based on
the notions of an eigenvalue and an eigenvector. We recall these notions: let T : Kn → Kn

be linear. If
Tx = λx , λ ∈ K , x ∈ Kn , x 6= 0 , (12.1)

then λ is called an eigenvalue of T and x is called an eigenvector for λ.

A λ ∈ K is an eigenvalue of T : Kn → Kn if and only if the mapping λ I − T is not
bijective. Instead of λ I − T , in the following we write

λ− T .

The space L(X;X) of linear and continuous mappings from X to itself is denoted by

L(X) .

In this and the following chapters we always assume that X 6= {0} (otherwise L(X) = {0}
and ‖I‖ = 0.)

Definition 12.1 (Resolvent)
Let X be a Banach space, T ∈ L(X). The subset

ρ(T ) = {λ : λ ∈ K, λ− T is bijective} (12.2)

of K is called the resolvent set of T . The mapping

R : ρ(T )→ L(X) , Rλ = (λ− T )−1 , (12.3)

is called the resolvent of T . 2

The definition of R in (12.3) makes sense since (λ−T )−1 is linear and continuous if λ−T
is linear, continuous and bijective, see Corollary 3.8.

Proposition 12.2 Let X be a Banach space, T ∈ L(X). The resolvent set ρ(T ) is an
open subset of K. If λ0 ∈ ρ(T ) then

Rλ = (λ− T )−1 =
∞∑
k=0

(λ0 − λ)k[(λ0 − T )−1]k+1 =
∞∑
k=0

(λ0 − λ)kRk+1
λ0

(12.4)

for all λ ∈ K with

|λ− λ0| <
1

‖Rλ0‖
. (12.5)

Proof: We obtain
(λ0 − T )[1− (λ0 − T )−1(λ0 − λ)] = λ− T . (12.6)

by performing the multiplication on the left side. Because ‖(λ−T )− (λ0−T )‖ = |λ−λ0|,
it follows from (12.5) that the expression in brackets is invertible. Thus, λ−T is invertible.
From (12.6) it moreover follows that

(λ− T )−1 = [1− (λ0 − T )−1(λ0 − λ)]−1(λ0 − T )−1

We replace the term in brackets with its series expansion according to (11.6). This yields
(12.4). 2
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Definition 12.3 (Spectrum, Point Spectrum)
Let X be a Banach space, T ∈ L(X). The subset

σ(T ) = K \ ρ(T ) = {λ : λ ∈ K, λ− T is not bijective} (12.7)

is called the spectrum of T . Every λ ∈ σ(T ) is called a spectral value of T . If λ − T is
not injective, λ is called an eigenvalue of T with the corresponding eigenspace ker(λ−T ),
and each x ∈ X with λx = Tx and x 6= 0 is called an eigenvector for the eigenvalue λ.
The set

σp(T ) = {λ : λ is an eigenvalue of T} (12.8)

is called the point spectrum of T . 2

In the case X = Kn, the operator λ − T is injective if and only if λ − T is bijective, we
then have σ(T ) = σp(T ). If X is infinite dimensional, in general we have σ(T ) 6= σp(T ).

Definition 12.4 (Continuous Spectrum, Residual Spectrum)
Let X be a Banach space, T ∈ L(X). The set

σc(T ) = {λ : λ ∈ σ(T ), λ− T is injective, not surjective, and (λ− T )(X) = X} (12.9)

is called the continuous spectrum of T , the subset

σr(T ) = {λ : λ ∈ σ(T ), λ−T is injective, not surjective, and (λ− T )(X) 6= X} (12.10)

is called the residual spectrum of T . 2

By the definitions,
σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T )

yields a disjoint partition of the spectrum.

As an example we consider the right shift

T : `2(K)→ `2(K) , (Tx)k =

{
0 , k = 1 ,

xk−1 , k > 1 .

We have 0 ∈ σr(T ) since T is injective and T (`2(K)) = {y : y1 = 0} is a proper closed
subspace of `2(K). For

T : `2(K)→ `2(K) , (Tx)k =
1

k
xk ,

we have 0 ∈ σc(T ) since T is injective and, because of (1/k)k∈N /∈ T (`2(K)), is not
surjective, and has a dense range due to ce(K) ⊂ T (`2(K)).

Proposition 12.5 Let X be a Banach space, T ∈ L(X). The spectrum σ(T ) is compact,
and |λ| ≤ ‖T‖ for all λ ∈ σ(T ). In the case K = C, the spectrum σ(T ) is not empty.
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Proof: If T = 0 then σ(T ) = {0}. Let T 6= 0. If |λ| > ‖T‖, then it follows from

λ− T = λ

(
1− 1

λ
T

)
(12.11)

and from Proposition 11.4 that λ ∈ ρ(T ). Therefore, σ(T ) is bounded by ‖T‖ and,
because of Proposition 12.2, closed in K und thus compact. Let now K = C. For an
arbitrary given ` ∈ L(X)∗ we consider the function

f : ρ(T )→ C , f(λ) = `(Rλ) . (12.12)

Let λ0 ∈ ρ(T ) be arbitrary. Corollary 12.2 implies that

f(λ) = `(Rλ) =
∞∑
k=0

(λ0 − λ)k`(Rk+1
λ0

) , (12.13)

if λ ∈ B(λ0; 1/‖Rλ0‖). This means that f is represented by a power series which converges
in this open disc. Therefore, f is holomorphic on ρ(T ).

Let us now assume that σ(T ) = ∅, so ρ(T ) = C. On the compact set B(0; 2‖T‖), f is
bounded. For |λ| > 2‖T‖ it follows from (12.11) that

Rλ = (λ− T )−1 =
1

λ

∞∑
k=0

(
T

λ

)k
, (12.14)

and moreover

|f(λ)| = |`(Rλ)| =

∣∣∣∣∣1λ
∞∑
k=0

`(T k)

λk

∣∣∣∣∣ ≤ 1

|λ|
‖`‖

∞∑
k=0

‖T‖k

|λ|k
≤ 2‖`‖ 1

|λ|
. (12.15)

Therefore, f is bounded on C. The theorem of Liouville (from complex analysis) implies
that f is constant on C. From (12.15) it follows that f = 0. Since ` was arbitrary, we
have that `(Rλ) = 0 for all ` ∈ L(X)∗. By the theorem of Hahn-Banach we see that
Rλ = 0, a contradiction to the fact that Rλ is bijective. 2

Let p be a polynomial,

p(z) =
n∑
j=0

cjz
j , z ∈ C .

For T ∈ L(X), X Banach space, we consider

p(T ) =
n∑
j=0

cjT
j . (12.16)

We have p(T ) ∈ L(X). It turns out that in the complex case we can compute the spectrum
of p(T ) from the spectrum of T . First we need a lemma from algebra.

Lemma 12.6 Let X be a Banach space, let R, S, T ∈ L(X).
(i) If RT = TS = I, then T has an inverse in L(X) and T−1 = R = S.
(ii) If ST has an inverse in L(X) and ST = TS, then S and T have inverses in L(X).
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Proof: We have S = (RT )S = R(TS) = R, so (i) follows. To prove (ii), we set Q =
(ST )−1 ∈ L(X) and get

S(TQ) = (ST )Q = I = Q(ST ) = Q(TS) = (QT )S .

By part (i), S has an inverse in L(X). Since we may interchange S and T , the same
applies to T . 2

Proposition 12.7 (Spectral mapping theorem for polynomials)
Let X be a Banach space over C, T ∈ L(X), p a polynomial. Then

σ(p(T )) = p(σ(T )) := {p(λ) : λ ∈ σ(T )} (12.17)

Proof: Let n be the degree of p. For n = 0 we have p(z) = c0 and p(T ) = c0I, σ(T ) = {c0},
so (12.17) holds. Let n ≥ 1.
“⊃”: Let λ ∈ σ(T ). Since λ is a zero of the polynomial z 7→ p(z)− p(λ), we have

p(z)− p(λ) = (z − λ)q(z) = q(z)(z − λ) , z ∈ C ,

for some polynomial q of degree n− 1. Consequently,

p(T )− p(λ) = (T − λ)q(T ) = q(T )(T − λ) .

Since λ ∈ σ(T ), T −λ does not have an inverse in L(X). By Lemma 12.6(ii), p(T )− p(λ)
does not have an inverse in L(X), so p(λ) ∈ σ(p(T )).
“⊂”: Let λ ∈ σ(p(T )). By the fundamental theorem of algebra, p− λ has n zeroes {λj},
and we can factorize

p(z)− λ = γ
n∑
j=1

(z − λj) , p(T )− λ = γ
n∑
j=1

(T − λj) , γ 6= 0 . (12.18)

Since λ ∈ σ(p(T )), the operator p(T ) − λ does not have an inverse in L(X). It follows
from (12.18) that at least one of the operators T − λj does not have an inverse in L(X),
so λj ∈ σ(T ) for such a j. As p(λj) = λ, we obtain λ ∈ p(σ(T )). 2

Definition 12.8 (Spectral radius)
Let X be a Banach space, T ∈ L(X). The number

r(T ) = sup
λ∈σ(T )

|λ| (12.19)

is called the spectral radius of T . 2

Because the spectrum is compact by Proposition 12.5, the supremum in (12.19) is actually
attained, so

r(T ) = max
λ∈σ(T )

|λ| , (12.20)

unless the spectrum is empty.
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Proposition 12.9 Let X be a complex Banach space (that is, K = C), let T ∈ L(X).
Then

r(T ) = lim
n∈N

n
√
‖T n‖ = inf

n∈N
n
√
‖T n‖ . (12.21)

Proof: First, we show that r(T ) ≤ infn∈N
n
√
‖T n‖. By Proposition 12.5, σ(T ) is not

empty. Let λ ∈ σ(T ). By the spectral mapping theorem (Proposition 12.7), λn ∈ σ(T n)
for all n ∈ N. By Proposition 12.5 applied to T n we get |λn| ≤ ‖T n‖, so |λ| ≤ n

√
‖T n‖ for

all n ∈ N. Taking the maximum with respect to λ ∈ σ(T ), the assertion follows.

Next, we show that r(T ) ≥ lim supn→∞
n
√
‖T n‖. Let ` ∈ L(X)∗ be arbitrary. We consider

f(λ) = `(Rλ) , Rλ = (λ− T )−1 .

If |λ| > ‖T‖ then

Rλ = (λ− T )−1 =
1

λ

∞∑
k=0

(
T

λ

)k
, f(λ) =

1

λ

∞∑
k=0

`(T k)

λk
. (12.22)

In the proof of Proposition 12.5 we have seen that f : ρ(T )→ C is a holomorphic function.
In particular, f is holomorphic in the domain G = {|λ| > r(T )}. By a result of complex
analysis, f has a unique Laurent expansion on G. Since (12.22) gives a Laurent expansion
of f in {|λ| > ‖T‖}, the two expansions coincide. Therefore,

f(λ) =
1

λ

∞∑
k=0

`(T k)

λk

is valid on G. The elements of this series converge to 0,

0 = lim
k→∞

1

λ

`(T k)

λk
= λ−1 lim

k→∞
`(λ−kT k) .

Since ` was arbitrary,
λ−kT k ⇀ 0 in L(X).

The sequence (λ−kT k)k∈N is bounded in the norm of L(X) according to Proposition 6.4,
let

‖λ−kT k‖ ≤M .

It follows that
‖T k‖1/k ≤ |λ|M1/k , lim sup

k→∞
‖T k‖1/k ≤ |λ| , (12.23)

for all λ ∈ ρ(T ). Passing to the limit |λ| → r(T ) yields

lim sup
k→∞

‖T k‖1/k ≤ r(T ) . (12.24)

We thus have proved that

r(T ) ≤ inf
n∈N

n
√
‖T n‖ ≤ lim inf

n→∞
n
√
‖T n‖ ≤ lim sup

n→∞

n
√
‖T n‖ ≤ r(T ) ,

as the two inequalities in the middle are satisfied for arbitrary sequences. From this,
(12.21) immediately follows. 2
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Proposition 12.10 Let X be a Banach space, S : X → X compact. If λ ∈ C is a
spectral value of S with λ 6= 0, then λ is an eigenvalue of S. The corresponding eigenspace
ker(λ− S) has finite dimension. If dim(X) =∞ then 0 is a spectral value of S.

Proof: Let λ 6= 0. By Corollary 11.8, 1 − λ−1S is a Fredholm operator of index 0, the
same holds for λ −S. If λ is not eigenvalue of S, then λ−S is injective and thus bijective,
according to (11.22). Therefore, λ is not a spectral value of S. Since λ− S is a Fredholm
operator, ker(λ− S) has finite dimension.
If 0 ∈ ρ(S), then S is bijective, linear and continuous, therefore S−1 is continuous and
thus I = S−1S compact. This can only happen if dim(X) <∞. 2

As an example, let S be the integral operator

(Sx)(t) =

∫ 1

0

k(s, t)x(s) dx . (12.25)

The equation Tx = (λ− S)(x) = y becomes

λx(t)−
∫ 1

0

k(s, t)x(s) ds = y(t) , t ∈ [0, 1] . (12.26)

As we have seen, S is compact on L2(0, T ) if k ∈ L2((0, T )×(0, T )). We apply Proposition
12.10 and obtain that, for a given λ 6= 0, the equation (12.26) is uniquely solvable for
every y ∈ L2(0, T ) if and only if λ is not eigenvalue of S, and that the space of its solutions
has finite dimension if λ is an eigenvalue of S.

Proposition 12.11 Let X be a Banach space, S : X → X a compact linear operator.
Then the set

{λ : λ ∈ σ(S), |λ| ≥ ε} (12.27)

is finite for every ε > 0. (It may be empty.) The spectrum σ(T ) is a finite or countably
infinite set.

Proof: Let us assume that there exists a sequence (λn)n∈N of distinct spectral values of
S with |λn| ≥ ε. By Proposition 12.10, all those λn are eigenvalues of S. Let (xn)n∈N be
a sequence of corresponding eigenvectors of S. As λn are distinct, by a result of linear
algebra the set {xn : n ∈ N} is linearly independent. Setting

Xn = span {x1, . . . , xn}

we have Xn ⊂ Xn+1, Xn 6= Xn+1 and S(Xn) ⊂ Xn for all n ∈ N. We choose yn ∈ Xn

according to Lemma 2.13 with

‖yn‖ = 1 , dist (yn, Xn−1) ≥ 1

2
.

Then yn = αxn + zn−1 for some α ∈ K and zn−1 ∈ Xn−1. It follows that

λnyn − Syn = λnαxn + λnzn−1 − αSxn − Szn−1 = λnzn−1 − Szn−1 ∈ Xn−1 ,
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so for all m ∈ N mit m < n we get

‖Syn− Sym‖ = ‖λnyn− (Sym + λnyn− Syn)‖ = |λn|‖yn−
1

λn
(Sym + λnyn − Syn)︸ ︷︷ ︸

∈Xn−1

‖ ≥ ε

2
.

Therefore, (Syn)n∈N does not have a convergent subsequence, a contradiction since S is
compact. This proves that the set (12.27) is finite. Since σ(T ) equals the countable union
of those sets for ε = 1/n with n ∈ N, it is at most countably infinite. 2
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13 Spectral decomposition for compact normal oper-

ators on Hilbert space

We consider operators on Hilbert spaces.

Proposition 13.1 (Hilbert adjoint)
Let X, Y be Hilbert spaces and T ∈ L(X;Y ). Then

〈x, T ∗y〉 = 〈Tx, y〉 , for all x ∈ X , y ∈ Y , (13.1)

defines a linear continuous operator T ∗ : Y → X, it is called the Hilbert adjoint of T . We
have

T ∗∗ = T , ‖T ∗‖ = ‖T‖ . (13.2)

Moreover,
〈T ∗y, x〉 = 〈y, Tx〉 , for all x ∈ X , y ∈ Y . (13.3)

Proof: Let y ∈ Y . The mapping x 7→ 〈Tx, y〉 is linear and continuous, because the scalar
product is linear in the first argument, and because

| 〈Tx, y〉 | ≤ ‖T‖‖x‖‖y‖ (13.4)

holds for all x ∈ X. It follows from the Riesz representation theorem (Proposition 2.12)
that (13.1) specifies a unique element T ∗y ∈ X, so T ∗ is a well-defined mapping. Taking
the complex conjugate in (13.1), (13.3) follows.

T ∗ is linear since

〈x, T ∗(αy + βz)〉 = 〈Tx, αy + βz〉 = α 〈Tx, y〉+ β 〈Tx, z〉 = α 〈x, T ∗y〉+ β 〈x, T ∗z〉
= 〈x, αT ∗(y) + βT ∗(z)〉 .

Since
| 〈x, T ∗y〉 | = | 〈Tx, y〉 | ≤ ‖T‖‖x‖‖y‖ ,

for all x ∈ H, we have ‖T ∗y‖ ≤ ‖T‖‖y‖, so T ∗ is continuous and satisfies ‖T ∗‖ ≤ ‖T‖.
We have T ∗∗ = T because of

〈y, T ∗∗x〉 = 〈T ∗y, x〉 = 〈y, Tx〉 .

Finally, we see that ‖T‖ = ‖T ∗∗‖ ≤ ‖T ∗‖ and therefore ‖T ∗‖ = ‖T‖. 2

In Chapter 9, the adjoint of T ∈ L(X;Y ) for Banach spaces X and Y has been defined as
an operator from Y ∗ to X∗. For the moment, let us denote this operator by T ′ : Y ∗ → X∗.
It is related to the Hilbert adjoint T ∗ : Y → X defined by (13.1) through the duality
mappings RX : X → X∗ and RY : Y → Y ∗ (they were denoted by “J” in the Riesz
theorem),

T ∗ = R−1
X ◦ T

′ ◦RY .

Directly from the definitions we obtain the formulas

(S + T )∗ = S∗ + T ∗ , (αT )∗ = αT ∗ , (S ◦ T )∗ = T ∗ ◦ S∗ . (13.5)

The middle equation shows that, in the case K = C, the mapping T 7→ T ∗ is not linear,
but conjugate linear.
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Definition 13.2 Let X be a Hilbert space. An operator T ∈ L(X) is called normal if
T ∗T = TT ∗, and hermitian (K = C) or self-adjoint (K = R), if T ∗ = T . It is called
positive if 〈Tx, x〉 ≥ 0 for all x ∈ X. 2

Obviously, every hermitian or self-adjoint operator is normal.

Lemma 13.3 Let X, Y be Hilbert spaces, T ∈ L(X;Y ). Then T ∗T as well as TT ∗ are
positive and hermitian resp. self-adjoint. Moreover,

‖T ∗T‖ = ‖T‖2 . (13.6)

Proof: As (T ∗T )∗ = T ∗T ∗∗ = T ∗T , T ∗T is hermitian resp. self-adjoint. Next, we have for
all x ∈ X

0 ≤ ‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 ≤ ‖T ∗T‖‖x‖2 .

This shows that T ∗T is positive. Passing on both sides to the supremum with respect
to x on the unit sphere {‖x‖ = 1} we see that ‖T‖2 ≤ ‖T ∗T‖. The reverse equality
holds, since ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2 according to Proposition 13.1. As T ∗∗ = T , the
assertions concerning TT ∗ follow from those for T ∗T . 2

Proposition 13.4 Let X be a Hilbert space, T ∈ L(X) normal. Then T n is normal, and

‖T n‖ = ‖T‖n , for all n ∈ N. (13.7)

In the case K = C we have ‖T‖ = r(T ). If moreover T is compact,

‖T‖ = r(T ) = max
λ∈σp(T )

|λ| , (13.8)

that is, there exists an eigenvalue λ such that ‖T‖ = |λ|.

Proof: Using induction one checks that (T n)∗ = (T ∗)n; the computation

(T n)∗ = (TT n−1)∗ = (T n−1)∗T ∗ = (T ∗)n−1T ∗ = (T ∗)n

yields the induction step. From this, for all n ∈ N we obtain

(T n)∗T n = (T ∗)nT n = T n(T ∗)n = T n(T n)∗ , (13.9)

the middle equality follows by successively interchanging T and T ∗, which is possible since
T is normal. Therefore, T n is normal for all n ∈ N. We now prove (13.7). For n = 2, this
follows from the computation, using Lemma 13.3,

‖T 2‖2 = ‖(T 2)∗T 2‖ = ‖(T ∗T )(T ∗T )∗‖ = ‖T ∗T‖2 = ‖T‖4 .

In order to perform the induction step n→ n+ 1, we estimate (using that T n is normal)

‖T‖2n = (‖T‖n)2 = ‖T n‖2 = ‖(T n)2‖ ≤ ‖T n+1‖‖T‖n−1 ,

so ‖T‖n+1 ≤ ‖T n+1‖ ≤ ‖T‖n+1 and therefore ‖T‖n+1 = ‖T n+1‖. In the case K = C it
follows from (13.7) and Proposition 12.9 that

r(T ) = lim
n→∞

‖T n‖1/n = ‖T‖ .

That the spectral radius is equal to the maximum of the absolute values of the eigenvalues
follows from Proposition 12.10. 2
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Lemma 13.5 Let X be a Hilbert space, T ∈ L(X) normal. Then ‖Tx‖ = ‖T ∗x‖ for all
x ∈ X, and therefore kerT = kerT ∗. Moreover,

Tx = λx ⇔ T ∗x = λx . (13.10)

Consequently, λ ∈ C is an eigenvalue of T if and only if λ is an eigenvalue of T ∗.

Proof: Since T is normal, for all x ∈ X we have

0 = 〈T ∗Tx− TT ∗x, x〉 = 〈Tx, Tx〉 − 〈T ∗x, T ∗x〉 = ‖Tx‖2 − ‖T ∗x‖2 .

Because λ− T , too, is normal, the second assertion follows from

ker(λ− T ) = ker((λ− T )∗) = ker(λ− T ∗) .

2

Lemma 13.6 Let X be a Hilbert space, T ∈ L(X) normal. If Tx = λx, Ty = µy and
λ 6= µ, then 〈x, y〉 = 0, that is, eigenvectors to different eigenvalues are orthogonal to each
other.

Proof: Using (13.10), the assertion follows from the computation

λ 〈x, y〉 = 〈λx, y〉 = 〈Tx, y〉 = 〈x, T ∗y〉 = 〈x, µy〉 = µ 〈x, y〉 .

2

We now present the spectral decomposition theorem for compact normal operators in
Hilbert space. (Here we restrict ourselves to the case K = C). This generalizes the result
from finite dimensions that for every normal linear mapping T : Cn → Cn there exists an
orthonormal basis of Cn which consists of eigenvectors of T , so the matrix corresponding
to T with respect to this basis is diagonal.

Let T ∈ L(X) be a compact normal operator in a Hilbert space X. We set

Uλ = ker(λ− T ) , λ ∈ C . (13.11)

By Pλ : X → X we denote the orthogonal projection onto Uλ. Since (λ − T )Tx =
T (λ− T )x we have

T (Uλ) ⊂ Uλ , for all λ ∈ C, (13.12)

that is, T leaves invariant the subspace Uλ. Let now Eλ be an orthonormal basis of Uλ,
if λ ∈ C is an eigenvalue of T ; otherwise we set Eλ = ∅. We define

E =
⋃
λ 6=0

Eλ . (13.13)

It follows from Propositions 12.10 and 12.11 that the eigenspaces Uλ are finite dimensional
for λ 6= 0, and that T possesses at most countably infinitely many different nonzero
eigenvalues. Therefore, the set E is finite or countably infinite. Let

E = {e1, e2, . . . } = {ej : j ∈ J} (13.14)

with J = {1, . . . , |J |}, resp. J = N and |J | =∞.
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Proposition 13.7 (Spectral decomposition)
Let X be a separable Hilbert space over K = C, let T ∈ L(X) be compact and normal.
Then the set E0 ∪ E is an orthonormal basis of X, and

X = span (E0)⊕ span (E) , span (E0) = kerT , span (E) = T (X) . (13.15)

For all x ∈ X we have

Tx =
∑

λ∈σp(T )

λPλx =
∑
j∈J

λj 〈x, ej〉 ej . (13.16)

In addition,
‖T‖ = max

λ∈σp(T )
|λ| . (13.17)

Proof: The second equality in (13.15) holds by definition of E0. In order to prove that
E0 ∪ E is an orthonormal basis (and thus the first equality in (13.15)), we set

V = span (E0 ∪ E)
⊥
.

According to the characterization of orthonormal bases in Proposition 2.20 it suffices to
prove that V equals the null space, V = {0}.
First we show that T (V ) ⊂ V . Let x ∈ V . For y ∈ Eλ, λ ∈ C arbitrary, we get according
to Lemma 13.5

〈Tx, y〉 = 〈x, T ∗y〉 =
〈
x, λy

〉
= λ 〈x, y〉 = 0

by definition of V . It follows that Tx ∈ (E0 ∪ E)⊥ and therefore Tx ∈ V .
Next we show that T |V = 0. If this would not be true, T |V has, according to Proposition
13.4, an eigenvalue µ satisfying 0 6= ‖T |V ‖ = |µ|. For a corresponding eigenvector x ∈ V
we would have x ∈ Uµ ⊂ V ⊥, a contradiction to V ∩ V ⊥ = {0}. Therefore, T |V = 0.
Now, because of V ⊂ kerT = U0 ⊂ V ⊥ we obtain V = {0}. Therefore E0 ∪ E is an
orthonormal basis of X. Consequently,

X = kerT ⊕ (kerT )⊥ , (kerT )⊥ = span (E) .

According to Proposition 2.20(iv), every x ∈ X can be represented as

x = P0x+
∑
j∈J

〈x, ej〉 ej .

We have TP0 = 0, since P0(X) = kerT , and Tej = λjej. This yields (13.16) as well as
the third equality in (13.15). Finally, (13.17) was already obtained in Proposition 13.4.
2

The preceding proposition remains valid if H is not separable. In this case, every or-
thonormal basis of the eigenspace U0 = kerT is uncountable. For the proof one then
uses a more general version of the characterization result 2.20 which is valid for arbitrary
(separable or nonseparable) Hilbert spaces.

We define an approximation Tn of T by

Tnx =
n∑
j=1

λj 〈x, ej〉 ej (13.18)

for n < |J |; if |J | is finite, we set Tn = T for n ≥ |J |.
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Proposition 13.8 In the situation of Proposition 13.7 we have

‖T − Tn‖ = max
j>n
|λj| , (13.19)

and ‖T − Tn‖ → 0 as n→∞.

Proof: We have Tnej = λjej = Tej for j ≤ n as well as Tnej = 0 for j > n. It follows
that

T − Tn = T on span {ej : j > n} .
ker(T − Tn) = ker(T )⊕ span {ej : j ≤ n}

Consequently, T − Tn has the spectral decomposition

(T − Tn)x =
∑
j>n

λj 〈x, ej〉 ej , x ∈ X .

We thus have σp(T − Tn) ⊂ σp(T ) ∪ {0} and

max
λ∈σp(T−Tn)

|λ| = max
j>n
|λ| . (13.20)

This proves (13.19). Since {λ : λ ∈ σp(T ), |λ| ≥ ε} is finite for all ε > 0, (13.20) converges
to zero for n→∞. 2

We now construct a decomposition for an arbitrary (not necessarily normal) compact
operator T ∈ L(X), where X is a Hilbert space.

From Lemma 13.3 we know that T ∗T is normal and positive. It is compact since T is
compact. By Proposition 13.7, T ∗T has the spectral decomposition

(T ∗T )(x) =
∑
k∈K

νk 〈x, ek〉 ek , (13.21)

where νk are the nonzero eigenvalues of T ∗T and {ek} is a corresponding system of or-
thonormal eigenvectors. Since T ∗T is positive, we have

νk = 〈νkek, ek〉 = 〈T ∗Tek, ek〉 > 0

for all k ∈ K. The numbers
sk =

√
νk , k ∈ K , (13.22)

are called singular values of T . We define fk ∈ X by

fk =
1

sk
Tek , k ∈ K . (13.23)

Proposition 13.9 (Singular value decomposition)
Let X be a Hilbert space, T ∈ L(X) compact. Let ek, fk ∈ X and νk, sk > 0, k ∈ K, be
defined by (13.21) – (13.23). Then {fk}k∈K is an orthonormal system in X, and for all
x ∈ X we have

Tx =
∑
k∈K

sk 〈x, ek〉 fk . (13.24)

Moreover,
‖T‖ = max

k∈K
sk . (13.25)
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Proof: According to Proposition 13.7,

X = ker(T ∗T )⊕ span (E) , E = {ek : k ∈ K} .

We claim that ker(T ∗T ) = ker(T ). Indeed, ker(T ) ⊂ ker(T ∗T ), and if T ∗Tx = 0 then

0 = 〈T ∗Tx, x〉 = 〈Tx, Tx〉 = ‖Tx‖2 ,

so Tx = 0 and x ∈ ker(T ). It follows that

X = ker(T )⊕ span (E) .

Let again P0 denote the projection onto ker(T ). Then for all x ∈ X

x = P0x+
∑
k∈K

〈x, ek〉 ek

by Proposition 2.20(iv). Therefore, since T is linear and continuous,

Tx = T
(
P0x+

∑
k∈K

〈x, ek〉 ek
)

=
∑
k∈K

〈x, ek〉Tek =
∑
k∈K

sk 〈x, ek〉 fk .

This proves (13.24). Next, we check that {fk}k∈K is an orthonormal system. This follows
from the computation

〈fk, fm〉 =
1

s2
k

〈Tek, T em〉 =
1

νk
〈T ∗Tek, em〉 = 〈ek, em〉 , k,m ∈ K ,

since {ek}k∈K is an orthonormal system and T ∗Tek = νkek. Finally, since ‖T ∗T‖ =
maxk νk by Proposition 13.7, (13.25) follows from the computation, using Lemma 13.3,

‖T‖2 = ‖T ∗T‖ = max
k∈K

νk = max
k∈K

s2
k =

(
max
k∈K

sk
)2
.

2

Customarily, the nonzero singular values are arranged in decreasing order s1 ≥ s2 ≥ . . . ,
with multiplicity equal to the dimension of the corresponding eigenspace of T ∗T , which
has finite dimension as we know. In addition, one attaches zero singular values to the
vectors of an orthonormal basis of ker(T ) to obtain an orthonormal basis of X. One may
also extend {fk}k∈K to an orthonormal basis of X.

For compact and normal operators T ∈ L(H), it turns out that the singular values sk and
the eigenvalues λk are related by sk = |λk|.
The singular values are closely related to finite-rank approximations of arbitrary compact
operators T ∈ L(X). Namely, Tn ∈ L(X) defined by

Tnx =
n∑
k=1

sk 〈x, ek〉 fk (13.26)

satisfies dim(Tn(X)) = n if sn > 0. (For T ∈ L(X), one calls dim(T (X)) the rank of T .)
We have

(T − Tn)(x) =
∑
k>n

sk 〈x, ek〉 fk ,
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and one may check that this yields the singular value decomposition of T − Tn. By
Proposition 13.9 we therefore get that

‖T − Tn‖ = sn+1 , lim
n→∞

‖T − Tn‖ = 0 . (13.27)

This yields:

Corollary 13.10 Let X be a Hilbert space. Every compact operator T ∈ L(X) can be
obtained as the limit of a sequence of finite-rank operators. 2

We remark that the singular value decomposition of Proposition 13.9 can be extended to
the situation where T ∈ L(X;Y ) for Hilbert spaces X and Y . Corollary 13.10 can then
be extended, too, to arbitrary compact operators between Hilbert spaces. For general
Banach spaces instead of Hilbert spaces, however, it does not hold; see the remark at the
end of the chapter on compact operators.

Another approximation property of the singular values is the following. We present it
without proof.

Proposition 13.11 Let H be a Hilbert space, T ∈ L(H) compact. Then we have

sn(T ) = inf{‖T −Q‖ : Q ∈ L(H), rank (Q) < n} (13.28)

for all n ∈ N. (Here, sn(T ) denotes the n-th singular value of T .) 2

Corollary 13.12 Let H be a Hilbert space, T, S ∈ L(H) compact. Then

sn+m−1(T + S) ≤ sn(T ) + sm(S) (13.29)

for all n,m ∈ N.

Proof: Let Q,R ∈ L(H) with rank(Q) < n and rank(R) < m be arbitrary. Then

rank (Q+R) ≤ n+m− 2 < n+m− 1 ,

so by Proposition 13.11

sn+m−1(T + S) ≤ ‖(T + S)− (Q+R)‖ ≤ ‖T −Q‖+ ‖S −R‖
Passing to the infimum with respect to Q and R, the claim follows. 2

Corollary 13.13 Let H be a Hilbert space, T, T̃ ∈ L(H) compact. Then

|sn(T )− sn(T̃ )| ≤ ‖T − T̃‖ (13.30)

for all n ∈ N.

Proof: We apply (13.29) with S = T̃ − T and m = 1. This yields

sn(T̃ ) ≤ sn(T ) + s1(T̃ − T ) ≤ sn(T ) + ‖T̃ − T‖ .
Interchanging the role of T and T̃ completes the proof. 2

This means that the singular values of compact operators T are continuous functions of
T , considered as a mapping from L(H) → R. In contrast to that, the eigenvalues in
general do not have this property. This is one of the reasons why the singular value
decomposition is an important computational tool when one deals with linear problems
for general (not necessarily normal) operators, in the finite dimensional as well as in the
infinite dimensional case.
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