
Lecture on undecidability

Michael M. Wolf

June 27, 2012

1

Contents

1 Historical bits and pieces 4
1.1 Useful and paradoxical self-references 4

2 What’s an algorithm? 6

3 Turing machines and busy beavers 9
3.1 Functions computable by Turing machines 10
3.2 Composition of Turing machines 11
3.3 Rado’s theorem and busy beavers 11
3.4 First occurrence of the halting problem 13
3.5 Variations . 13

4 Primitive recursion 14
4.1 Primitive recursive relations, sets and predicates 15
4.2 Bounded operations . 16

5 Gödel numbers, codes, indices 18
5.1 Multiplicative encoding . 19
5.2 Pairing functions . 19

6 Limitations of primitive recursion 20
6.1 Relation to modern programming languages 23

7 Recursive function vs. Turing computability 23
7.1 Wang encoding of the tape & head configuration 24
7.2 Encoding the Turing machine instructions 25
7.3 Evolution of the Turing machine configuration 26
7.4 Halting & output . 26

8 Basic theorems of recursion theory 27
8.1 The recursion theorem and some applications 29

9 Rice’s theorem and the Church-Turing thesis 31
9.1 Church-Turing thesis . 32

10 Recursive enumerability 33

11 The word problem for Thue systems 35
11.1 Terminology and notation . 36

12 Undecidable problems for semigroups 38

13 Undecidable problems related to groups and topology 40

2

14 Post’s correspondence problem 41

15 Undecidable matrix problems 42
15.1 Matrix mortality . 43
15.2 A reachability problem . 44

16 Hilbert’s tenth problem 46
16.1 Examples of diophantine predicates 47
16.2 Examples of diophantine functions 47

3

1 Historical bits and pieces

When tracing back the attempts of axiomatizing mathematics and automa- Lecture 0
tizing proofs and calculations, one comes across a Doctor of Law in the late
seventeenth century. In Hannover, in the best of all worlds, he investigated
formal logic and at the same time built some of the worlds first computers.
About 200 years and 100km further, similar thoughts were then taken on
and posed as now famous problems to the community of mathematicians.

In this course we are interested in four of them and their aftermath:

1. Decide the continuum hypothesis, i.e. the question whether there is a
set with cardinality strictly between that of the integers and that of
the reals (Hilbert’s 1st problem, 1900).

2. Prove consistency of the axioms of arithmetics (Hilbert’s 2nd problem,
1900).

3. Find an algorithm to determine whether or not a polynomial equation
with integer coefficients has an integral solution (Hilbert’s 10th problem,
1900; in Hilbert’s formulation there seems no doubt that such an
algorithm exists).

4. Is there an algorithm which decides whether or not certain mathematical
statements can be proven? (Entscheidungsproblem, 1928).

The (admittedly vaguely formulated) Entscheidungsproblem (German for
“decision problem”) appears as a meta-problem within this list – expressing
the desire that problems like 1.-3. can be solved in principle. Shockingly,
the problems 1.-3. all turned out to hit some principle limitations to what is
computable or provable, thereby answering the Entscheidungsproblem in the
negative.

In 1931 Gödel proved that there are undecidable (in the sense of unprov-
able) statements in every consistent axiomatic formal system which is rich
enough to develop basic arithmetic (Gödel’s first incompleteness theorem).
In his second incompleteness theorem he then showed that consistency it-
self belongs to those intrinsically undecidable statements. About five years
later, Church and Turing independently provided a negative answer to the
Entscheidungsproblem by proving the existence of undecidable (in the sense
of uncomputable) decision problems.

These results show that there are two different albeit related flavors of
undecidability: axiomatic and algorithmic.

1.1 Useful and paradoxical self-references

An essential concept underlying many undecidability or incompleteness proofs
is self-reference. The way it is typically used (and useful) is in proofs by

4

contradiction which are sometimes reminiscent of logical paradoxes like “this
statement is false”. There are umpteen similar paradoxes:

• Russel’s paradox was prominent in mathematics, in particular before
the axiomatization of set theory: “the set of all sets which do not
contain themselves” can neither contain nor not contain itself.

• The barber’s paradox (again mentioned by Russel) defines the barber as
“one who shaves all those, and those only, who do not shave themselves.”
Does the barber shave himself?

• Berry’s paradox (guess by whom?) “the smallest positive integer that
cannot be specified in less than a thousand words”.

Self-referential techniques in mathematics (like the one Cantor used
to prove that the reals are not countable) often come with some form of
diagonalisation. The method is thus often called diagonal method or just
diagonalisation.

When boiled down to a simple self-referential statement, Gödel’s proof is
based on formalizing the statement “this sentence is not provable”: if the
statement is provable, then the underlying theory is inconsistent. If it is not
provable, however, the theory is incomplete and there is a true statement
which cannot be deduced. The form of opposition between consistency
and completeness which appears in Gödel’s results is often popularized
and applied to other fields where self-referential puzzles appear. On this
level (which we’ll quickly leave again) it seems tempting to think about
consciousness, the quantum measurement problem, etc.

The poet Hans Magnus Enzensberger even devoted a poem “Hommage
an Gödel” (in Elexiere der Wissenschaft) to Gödel’s results in which he writes
(sorry, German):

In jedem genügend reichhaltigen System
lassen sich Sätze formulieren,
die innerhalb des Systems
weder beweis- noch widerlegbar sind,
es sei denn das System
wäre selber inkonsistent.

Du kannst deine eigene Sprache
in deiner eigenen Sprache beschreiben:
aber nicht ganz.
Du kannst dein eigenes Gehirn
mit deinem eigenen Gehirn erforschen:
aber nicht ganz.

5

Notation: Before we proceed, some remarks on the used notation are
in order. Here and in the following, N := {0, 1, 2, . . .} means the natural
numbers including zero. When writing f : X → Y we do not require that
the function f is defined on all of X, but rather that dom(f) ⊆ X. If the
function is defined on all of X, we will call it a total function, whereas if
dom(f) is allowed (but not required) to be a proper subset of X, we will call
it a partial function.

2 What’s an algorithm?

Solving problems like Hilbert’s 10th problem or the Entscheidungsproblem Lecture 1
in the negative required to formalize the notion of an algorithm (for which
Hilbert used the German word “Verfahren”) since only then one can prove
that no algorithm can exist. During the thirties several mathematicians came
up with different but in the end equivalent ways of making this notion precise:
Gödel, Kleene, Church, Post and Turing invented and studied recursive func-
tions, λ-calculus and, of course, Post-Turing machines. Having formalized the
notion of an algorithm, the (negative) answer to the Entscheidungsproblem
turned out to be right around the corner.

When saying something like “we have an algorithm which computes this
function” or “there is no algorithm computing this function ”, what do we
mean? What’s an algorithm? Here, our primary interest is in functions com-
putable by algorithms rather than in the notion algorithm itself. Occasionally,
we will just say “computable” and mean “computable by an algorithm”.
Before we formalize this, let’s try to identify some essential ingredients. We
will mostly restrict ourselves to functions of the form f : N→ N. Computing
with reals or other “continuous” objects seems only realistic when they can
be encoded into integers, i.e., specified by finite means. Similarly, if the
(co-)domain is a countable set different from N or if the object of interest is
a relation rather than a function, we assume that we can invoke an encoding
into N, i.e., an enumeration of all possible inputs and outputs.

An algorithm for computing f is supposed to take an input x ∈ N to an
output f(x) if x is in the domain of f . But how?

Definition (Algorithm - informal). An algorithm is an effective procedure
which allows a finite description. It is based on finitely many instructions
which can be carried out in a stepwise fashion.

This informal definition tries to capture some essential points:

• Finiteness of the algorithm in the sense that it has a finite description
within a fixed language (for which candidates will be discussed in the
following lectures) which in turn is based on a finite alphabet. Note
that this does not mean that there is a fixed, finite bound on the
number of instructions, or on the size of the input.

6

• Discreteness in the sense that the instructions are carried out one after
the other – there is no “continuous” or “analog” process necessary.

• Effectiveness meaning that the instructions can be carried out by
a “simple” mechanistic machine or fictitious being. Moreover, the
algorithm has to return the outcome after a finite number of steps if
the function it is supposed to compute is defined for the input under
consideration.

There are several points here one might want to argue about, refine or
discuss. An important one is whether or not we want to impose bounds on the
spatial or temporal resources, i.e., on the amount of scratch paper (memory)
and the duration/length of the computation. Do we for instance want to
say that “f can be computed by an algorithm” only if for any input we can
say beforehand that the computation doesn’t require more resources than a
certain bound? The set of functions “computable by algorithm” will depend
on this point and we will impose no such bounds on spatial or temporal
resources. In fact, we allow and even require the computation to loop forever
if the input is not in the domain of f .

Needless to say, assuming unbounded resources in time and space is
an impractical idealization. However, if one is interested in the ultimate
limitations to what is computable, then this idealized point of view makes
sense.

One thing we haven’t specified yet is whether or not an algorithm is
allowed to use probabilistic methods. Regarding this point it turns out
that it doesn’t really matter: as long as we stick to the above mentioned
assumptions, a function computable by a probabilistic procedure will also be
computable by a deterministic one – we just have to follow all the (finitely
many) branches which appear in the probabilistic scheme.

Before even fixing a framework or language for describing algorithms we
can see that requiring the description to be finite already implies the existence
of uncomputable functions, i.e., functions which cannot be computed by any
algorithm:

Theorem (uncomputable functions). There exist functions f : N→ {0, 1}
which cannot be computed by any algorithm.

Proof. Recall that we require the alphabet on which the description of algo-
rithms should be based on to be finite. We can thus introduce a “lexicographic
order” which allows us to enumerate all finite descriptions, including those
corresponding to valid algorithms: we begin with all description of length
one, continue with all of length two, and so one. The set of algorithms has
therefore cardinality at most ℵ0 - the one of the natural numbers. On the
contrary, the set of all functions f : N→ {0, 1} can be identified with the set
of all subsets of N and has therefore cardinality 2ℵ0 . By Cantor’s argument

7

there cannot be a surjection from the former set to the latter (this would
enumerate the reals). Hence, there are functions which do not correspond to
any algorithm.

This argument shows that almost every functions is not computable by
an algorithm – independent of how cleverly we choose the language in which
we describe algorithms, if only the description is finite. However, one has
to admit that “almost every function” is of almost no interest. Functions
which we encounter are specific rather than random and they are interesting
because they have particular properties or relations to other objects. After
having introduced a particular framework for describing algorithms in the
next lectures, we will come across more specific examples of uncomputable
functions...

Before we do so, let’s look at the following three examples:

1. A function f1 : N→ {0, 1} which is defined as f1(x) = 1 iff exactly x
consecutive ones occur somewhere in the decimal expansion of π and
f1(x) = 0 otherwise.

2. A function f2 : N→ {0, 1} for which f2(x) = 1 iff at least x consecutive
ones occur somewhere in the decimal expansion of π.

3. A function f3 : N→ N which is computed by going through the decimal
expansion of π, looking for the first instance of exactly x consecutive
ones, and returning the position of the first digit of this occurrence as
the value of f3(x).

Although f1 seems to be a properly defined function, it is difficult to
imagine an algorithm computing it – unless π is sufficiently random such
that all sequences are guaranteed to appear. In fact, if f1 is not constant it
may well be that no algorithm exists since a finite procedure may be doomed
with cases where f1(x) = 0.

The function f2, at first glance, appears to have a similar problem.
However, if we distinguish between the existence of an algorithm and the
verification of its correctness, we realize that there exists a very simple
algorithm for computing f2: it is either a constant function or a simple step
function, solely characterized by a single integer. In both cases there is an
algorithm for computing f2, the problem is just to find the correct one.

Finally, f3 is already specified by giving an algorithmic procedure. It is,
however, not clear whether this really defines a function on all of N. What
can we learn from these examples?

1. One can imagine functions whose definition may already be in conflict
with the finiteness of any hypothetical algorithm computing it.

8

2. Finding an algorithm and proving that one exists are two different
things. In particular, every function on N which is piecewise constant
and defined using only finitely many regions is computable by algorithm,
regardless whether or not we can compute it in practice. Note that
this point of view also means that every function with a finite domain
is computable.

3. For some statements aiming at defining a function it seems difficult
(or impossible) to find out whether they actually do define a function
everywhere.

Two final remarks on these examples: it may turn out that π is not a
good choice for the first two examples (f1 and f2 may be provably constant).
In that case replace π by e+ π, etc.

One possible reaction to the above examples, especially to f1, is to ask
whether this is a proper definition to start with. Clearly, it invokes tertium
non datur (the law of excluded middle) which we will assume throughout
the lecture. Moreover, one has to admit that certain schools of thought, like
mathematical constructivism (not exactly a fan club of the law of excluded
middle either), are generally reluctant to objects which are defined without a
constructive procedure. We are, however, not going to enter this discussion
here...

3 Turing machines and busy beavers

In the following lectures we will introduce two in the end equivalent ways Lecture 2
of formalizing the idea of an algorithm: Turing machines and recursive
functions.

A Turing machine is a (fictitious or Lego build) device consisting out of

• a tape which is infinitely extended in both directions, divided into
equally spaced cells each of which contains a symbol from a finite
alphabet T . We will restrict ourselves to cases where T = {0, 1} and
say that the cell is “blank” if it contains a zero,

• a head which sits on top of a single cell above the tape and is (i) capable
of reading and rewriting the symbol of that cell and (ii) moves one cell
to the right or left afterwards,

• a finite set of internal states Q = {0, . . . , n},

• a list of instructions which determine the next step: depending on the
symbol read in the current cell and on the current internal state they
determine which symbol to write, in which direction to move and which
new internal state to take on.

9

We will use the convention that the initial state is q = 0 and the last
state q = n is the halting state - the only state upon which the machine halts.
Since this results in n active states, the machine is called an n-state Turing
machine. Mathematically, the set of instructions characterizing a Turing
machine is a map

M : T × (Q\{n})→ T ×Q× {R,L},

where {R,L} are the directions the head can move. We will sometimes
write M (n) if we want to make the number of active internal states explicit.
Counting the number of possibilities we get that there are (4n+ 4)2n n-state
Turing machines.

Example 1. A TM M (k+1) which writes k ones onto a blank tape and then
halts above the leftmost one. M : (0, q) 7→ (1, q + 1, L) for q = 0, . . . , k − 1
and M : (0, k) 7→ (0, k + 1, R).

Example 2. A runaway TM which never halts is for instance obtained by
setting (t, q) 7→ (t, q, R) for all t, q.

There are quite a number of variations on the theme “Turing machine”,
i.e., different (albeit eventually equivalent) definitions. The most common
ones are mentioned at the end of this lecture...

3.1 Functions computable by Turing machines

In order to talk about Turing machines as devices which compute functions
of the form f : Nk → N, we need to specify some conventions about how
input and output are represented. We will use “unary” encoding for both
of them. That is, a number x ∈ N will be represented by x+ 1 consecutive
1s on the tape with the rest of the tape blank (e.g., 2 would correspond to
0 . . . 01110 . . . 0). Similarly, (x1, . . . , xk) ∈ Nk will be represented by k such
blocks of 1s separated by single zeros (e.g. (0, 2) would be 0 . . . 0101110 . . . 0).

A Turing machine M
(n)
f is then said to compute the function f : Nk → N

iff the machine starting with the head placed on the leftmost 1 of the unary
encoding of x ∈ Nk eventually halts on the leftmost 1 of the encoded f(x) if
x ∈ dom(f) and it never halts if x 6∈ dom(f).

Definition (Turing computable functions). A function f : Nk → N is called
Turing computable iff there is an n-state Turing machine (TM) for some
finite n which computes f in the sense that the Turing machine halts for
every input x ∈ dom(f) with the tape eventually representing f(x) and it
doesn’t halt if x 6∈ dom(f). Here, input and output are supposed to be encoded
in the above specified unary way and at the start and (potential) end of the
computation the head of the TM should be positioned above the leftmost
non-blank symbol of the tape.

10

The crucial point here is finiteness of the number n of internal states.
This quantifies the length of the algorithm - which we require to be finite.

Example 3. the successor function s(x) = x + 1 can be computed by the

following 2-state Turing machine M
(2)
x+1. (1, 0) 7→ (1, 0, R), (0, 0) 7→ (1, 1, L),

(1, 1) 7→ (1, 1, L), (0, 1) 7→ (0, 2, R).

Example 4. the zero function z(x) = 0 can be computed by a 2-state TM:
(1, 0) 7→ (0, 0, R), (0, 0) 7→ (1, 1, R), (0, 1) 7→ (0, 2, L).

Example 5. the following 5-state TM M
(5)
2x implements x 7→ 2x: (0, 0) 7→

(0, 3, R), (1, 0) 7→ (0, 1, L), (0, 1) 7→ (1, 2, R), (1, 1) 7→ (1, 1, L), (0, 2) 7→
(1, 0, R), (1, 2) 7→ (1, 2, R), (0, 3) 7→ (0, 3, L), (1, 3) 7→ (0, 4, L), (0, 4) 7→
(0, 5, R), (1, 4) 7→ (1, 4, L).

3.2 Composition of Turing machines

Let M
(nf)
f and M

(ng)
g be two TMs with nf , ng internal states, computing

functions f and g respectively. Then we can a define a new (nf + ng)-state

TM M
(nf+ng)
gf via

Mgf (t, q) :=

{
Mf (t, q), q < nf

Mg(t, q − nf), q ≥ nf

Its action will be such that it first computes f(x) and then uses the
resulting output as an input for g. Hence, Mgf computes the concatenation
corresponding to x 7→ g(f(x)) for which we will also write gf(x). Note
that the possibility of concatenating two TMs in this way builds up on our
requirements that the output of a computation has to be encoded in unary
on the tape and that the TM (if ever) halts with the head positioned on the
leftmost 1.

3.3 Rado’s theorem and busy beavers

Let us assign a number B(M) ∈ N to every Turing machine M by considering
its behavior when run on an initially blank tape. We set B(M) := 0 if M
never halts and B(M) := b if it halts and the total number of (not necessarily
consecutive) 1s eventually written on the tape is b. Based on this we can
define the busy beaver function

BB: N→ N, BB(n) := max{B(M) |M ∈ {M (n)}}

as the largest number of 1s eventually written on an initially blank tape by
any n-state TM which halts. Note that the function is well-defined since the
maximum is taken over a finite set. Not surprisingly, BB is strictly increasing
in n:

11

Lemma (Monotonicity of busy beavers). BB(n+ 1) > BB(n) for all n ∈ N.

Proof. Denote the TM which achieves BB(n) by M (n). Based on this we can
define a (n + 1)-state TM M (n+1) whose instructions equal those of M (n)

for all internal states q < n and which in addition follows the rule (t, n) 7→
(1, n+ 1− t, R). By construction BB(n) + 1 = B(M (n+1)) ≤ BB(n+ 1).

This leads us to a common property of all Turing computable functions –
they cannot grow as fast as (or faster than) BB:

Theorem (Rado ’62). Let f : N → N be any function which is Turing
computable by a k-state TM Mf . Then for all x > 2k + 16 for which f is
defined we have f(x) < BB(x).

Proof. We utilize concatenation of the above discussed examples and de-
fine a (k + n + 9)-state TM (slightly abusing notation) via Mf(2n+1) :=

M
(k)
f M

(2)
x+1M

(5)
2x M

(n+2) with M (n+2) being the TM which writes n+ 1 con-
secutive 1s. Running Mf(2n+1) on the blank tape then produces f(2n+1)+1
consecutive ones before halting. Thus, f(2n+ 1) < BB(k+n+ 9). Moreover,
monotonicity of BB implies BB(k+n+9) ≤ BB(2n+1) if k+7 < n. Similar
applies if we construct a TM Mf(2n) in which case we obtain f(2n) < BB(2n)
if k + 6 < n.

From the proof of Rado’s theorem we see that an analogous statement
would still hold true if we would require a single block of consecutive 1s in
the definition of BB, rather than counting all 1s on the tape.

Corollary (Busy beavers are elusive). The busy beaver function is not Turing
computable.

Proof. If it were, then there would be a k ∈ N and a k-state TM computing
BB so that by Rado’s theorem BB(x) < BB(x) for all sufficiently large x.

This is the formalized version of the following more vague statement: if
BB(x) is the largest finite number which can be written by an algorithm
of length x, then there cannot be a single, finite algorithm which computes
BB(x) for all x.

The fact that BB is not Turing computable doesn’t mean that BB(x)
cannot be computed for given x. Rado’s theorem just tells us that the
complexity of the TM has to increase unboundedly with x. In fact, BB(x) is
known for (very) small values of x: for x = 1, 2, 3, 4 we get BB(x) = 1, 4, 6, 13.
While this doesn’t look very impressive yet, for x = 5, 6 one only knows lower
bounds which are BB(5) ≥ 4098 and BB(6) ≥ 3.5× 1018267.

12

3.4 First occurrence of the halting problem
Lecture 3

Assume we had an algorithm (using the informal sense of the word) which
could decide whether or not a given TM eventually halts upon a given input,
e.g., the blank tape. This would give us an algorithm for computing the busy
beaver function: just go through all the halting TMs (which we can identify
by assumption), count the number of 1s written by each of them and take
the maximum.

So if there is no algorithm for computing BB, then there cannot be
an algorithm which decides whether or not a given TM is going to halt.
The latter decision problem is known as the halting problem - a repeating
encounter in the following lectures.

Before we continue, here is another (the ‘standard’) heuristic argument for
why the halting problem cannot be decidable: assume there is an algorithm
(again in the informal sense) which is capable of deciding whether some
algorithm C halts upon input I. Using this as a subroutine we can then
construct another algorithm P which, given the code of an algorithm C as
input, halts iff the algorithm C runs forever upon input of its own source
code I = C. Now let P run with input C = P . Then P halts iff it runs
forever—showing that the assumed algorithmic decidability of the halting
problem leads to a contradiction.

3.5 Variations

Finally, we list some common variations regarding the definition of Turing
machines or Turing computable functions:

1. The tape is infinite only in one direction.

2. The TM can only either write a new symbol onto the tape or move one
step.

3. The output is not encoded in unary but given by the total number of
ones written after halting.

4. There is more than one halting state (e.g. called accept and reject
state).

5. There is more than one non-blank symbol available for each cell.

All these variations do not alter the class of functions which are Turing
computable. One which does, is for instance the constraint that the TM head
is only allowed to move to the right. This leads to an effective restriction of
the memory and thus restricts the set of computable functions.

13

4 Primitive recursion

Early pieces of recursion theory can be found in the work of Dedekind with
the beautiful title “Was sind und was sollen die Zahlen”.

In this section we will begin to develop another formalization of the
notion of “effectively computable functions”, this time without referring to a
particular type of machine or automaton. The basic idea will be to consider
a class of functions which can be obtained in finitely many steps from a small
set of “simple” basic functions by following “simple” rules.

Consider for instance the chain successor function (i.e., addition by
one), addition, multiplication and exponentiation. These functions can all
be recursively defined in terms of the previous, simpler function. So, the
successor functions seems to be a reasonable basic function and recursion
seems to be a reasonable rule for constructing more sophisticated functions.

As before we will restrict ourselves to functions of the form f : Nk → N.
The set of basic functions comprises the following three:

1. The successor function s(x) := x+ 1 for all x ∈ N.

2. The zero function z(x) := 0 for all x ∈ N.

3. The projection or identity functions defined for all n > 0 and k ∈
{1, . . . , n} as idnk(x1, . . . , xn) := xk.

From these we want to construct other functions using the following rules:

Composition/substitution Given a set of functions gk : Nn → N with k =
1, . . . ,m and f : Nm → N we define a new function Cn[f, g1, . . . , gm] : Nn →
N by Cn[f, g1, . . . , gm](x) := f

(
g1(x), . . . , gm(x)

)
.

Primitive recursion Given f : Nm → N and g : Nm+2 → N we define
a new function Pr[f, g] : Nm+1 → N by Pr[f, g](x, 0) := f(x) and
Pr[f, g](x, y + 1) := g

(
x, y, Pr[f, g](x, y)

)
.

Definition (Primitive recursive functions). A function f : Nk → N is called
primitive recursive iff it can be obtained from the above basic functions by
finitely many applications of the above rules Cn and Pr.

By definition the class of primitive recursive functions, which we will
denote by PR, is the smallest class of functions which is (i) closed under
primitive recursion and composition and (ii) contains the basic functions s, z
and id. Moreover, primitive recursive functions are all total functions (i.e.,
defined for every input) since the basic functions are total and this property
is preserved under composition and primitive recursion.

Undeniably, primitive recursive function are “effectively computable”.
At first glance, the definition of PR may seem to be rather restrictive. At

14

second glance, however, the class contains pretty much everything and only a
third glance will reveal... ah, sorry this is part of the next lecture. Anyhow,
talking about “primitive” recursion already suggests that there is something
beyond. Let us discuss some examples:

Example 2 (Addition). add: N2 → N can be defined by primitive recursion
since add(x, 0) := x, add(x, y+ 1) := add(x, y) + 1. A formal way of defining
it would be add := Pr

[
id1

1,Cn[s, id3
3]
]
.

Example 3 (Multiplication). We can recursively define a “product function”
by prod(x, 0) := 0, prod(x, y + 1) := prod(x, y) + x. More formally, prod :=
Pr
[
z,Cn[add, id3

1, id
3
3]
]
. Since add ∈ PR we have that prod ∈ PR.

Example 4 (Exponentiation). This can be seen to be primitive by defining
it via exp(x, 0) := 1, exp(x, y + 1) := prod(exp(x, y), x) and using that
prod ∈ PR.

Example 5 (Predecessor). This one we define via pred(0) := 0, pred(y+1) :=
y.

Example 6 (Cut-off subtraction).

x−̇y :=

{
x− y ifx ≥ y
0 ifx < y

can be defined recursively via f(x, 0) := x, f(x, y + 1) := pred(f(x, y)).

Example 7 (Sign function). sgn(x) := 1−̇(1−̇x) defines a function sgn: N→
{0, 1} which is 1 iff the argument is strictly positive.

Note that the formal way of writing a primitive recursive function (using
Pr[. . .] and Cn[. . .] etc.) provides a single-line expression – this is called
derivation. Clearly, there are infinitely many derivations for each function.
So it makes sense to distinguish between a function and its derivation (which
is nothing but one out of many algorithms for computing the function).

4.1 Primitive recursive relations, sets and predicates

A subset S ⊆ Nk can be characterized by its characteristic function χ : Nk →
{0, 1} for which χ(x) = 1 iff x ∈ S. For k > 1 we can regard S as a relation
between k objects. Similarly, we can identify any predicate which assigns a
truth value (TRUE or FALSE) to a k-tuple of numbers in N with a relation
which is satisfied iff the predicate is TRUE. Hence, we can again assign
a characteristic function to any such predicate. The predicate x > y for
instance would then correspond to the characteristic function

χ>(x, y) :=

{
1 if x > y,

0 if x ≤ y
.

15

Characteristic functions of relations and predicates will throughout be total
functions, i.e., we will in particular refrain from considering cases where
predicates are not applicable.

Definition (Primitive recursive relations, sets and predicates). A relation,
set or predicate is called primitive recursive iff the corresponding character-
istic function is a primitive recursive function.

Using the above examples of primitive recursive functions we can now
easily see that the predicates “>” and “=” are primitive recursive, since
χ>(x, y) = sgn

(
x−̇y

)
and χ=(x, y) = 1−̇

(
sgn(x−̇y) + sgn(y−̇x)

)
.

Proposition. Let P,Q be two primitive recursive predicates. Then P ∨Q,
P ∧Q and ¬Q are primitive recursive as well.

Proof. We have to show that the characteristic functions of the new predicates
are in PR if the initial ones were. This is seen from

χP∧Q = χP · χQ, χP∨Q = (χP + χQ)−̇(χP · χQ) and χ¬Q = 1−̇χQ.

Proposition (Definition by cases). Let g, h : Nk → N be primitive recursive
functions and P a primitive recursive predicate on Nk. Then f : Nk → N
defined as follows is primitive recursive as well:

f(x) :=

{
g(x) if P (x)

h(x) if ¬P (x)

Proof. f(x) = g(x)χP (x) + h(x)χ¬P (x) is obtained from primitive recursive
building blocks.

Clearly, the same works for more than two cases.

4.2 Bounded operations
Lecture 4

Proposition (Iterated products and sums). If f : N× Nk → N is primitive
recursive, then so are the functions g(y, x) :=

∑y
t=0 f(t, x) and h(y, x) :=∏y

t=0 f(t, x).

Proof. Both g and h can be obtained by primitive recursion: g(0, x) :=
f(0, x), g(y + 1, x) := g(y, x) + f(y + 1, x) and similarly h(0, x) := f(0, x),
h(y + 1, x) = h(y, x)f(y + 1, x).

Note that setting g(0, x) = 0 and h(0, x) = 1 in the above proof would
have led to a sum/product starting at t = 1.

Corollary (Bounded quantifiers). If the predicate P is primitive recursive
on N× Nk, then so are the predicates ∀t ≤ y : P (t, x) and ∃t ≤ y : P (t, x).

16

Proof. The corresponding characteristic functions are
∏y
t=0 χP (t, x) and

sgn
(∑y

t=0 χP (t, x)
)

respectively. These are primitive recursive by the pre-
ceding proposition.

We can now use these observations in order to show that “bounded
minimization” preserves the property of being primitive recursive.

Proposition (Bounded minimization). Let P be a primitive recursive predi-
cate on N × Nk. The function µ[P] : N × Nk → N defined by µ[P](y, x) :=
min{t : P (t, x) ∧ t < y}, with the minimum over an empty set set to y, is
primitive recursive.

Proof. Consider the function f(y, x) :=
∑y

n=0

∏n
t=0 χ¬P (t, x). This is primi-

tive recursive since P is. Suppose there is a smallest t, call it tx, for which
P (tx, x) is true. Then

∏n
t=0 χ¬P (t, x) = 1 iff n < tx. Summing over n then

yields tx so that a primitive recursive construction of µ[P] can be given using
definition by cases and a bounded existential quantifier by

µ[P](y, x) =

{
f(y, x) if ∃t < y : P (t, x)

y otherwise

In a similar vein, we can show that bounded maximization max{t : t <
y∧P (t, x)} is primitive recursive if P is. In that case we define the maximum
over an empty set to be zero. We will finally apply these findings to some
more examples which will be of use later:

Example 8 (Prime numbers). the predicate primality of a number x ∈ N,
which we denote by π(x), can be expressed by (1 < x)∧∀u < x∀v < x : uv 6= x
and is thus primitive recursive. The function f : N→ N which outputs the
next prime is then primitive recursive as well since we can define it by
bounded minimization f(x) := min{y : (y ≤ x! + 1) ∧ (y > x) ∧ π(y)} (using
that the factorial function is in PR). This in turn allows us to give a primitive
recursive construction of a function fπ : n 7→ nth prime number. We just set
fπ(0) = 2 and fπ(y + 1) = f

(
fπ(y)

)
.

Example 9 (Logarithms). We will use two logarithm-type functions of the
form N2 → N both of which are primitive recursive by construction:

lo(x, y) :=

{
max{z ≤ x | ∃c ≤ x : cyz = x} if x, y > 1

0 otherwise

Example 10.

lg(x, y) =

{
max{z ≤ x | yz ≤ x} if x, y > 1

0 otherwise

17

Example 11 (Quotients and remainders). Given x, y ∈ N we can find q, r ∈ N
so that x = qy + r. This become unambiguous if we choose the largest such
q. Both, the quotient q =: quo(x, y) and the remainder r =: rem(x, y) can
be obtained in a primitive recursive way via:

quo(x, y) =

{
max{z ≤ x | yz ≤ x} if y 6= 0

0 otherwise

and rem(x, y) = x−̇
(

quo(x, y)y
)
.

5 Gödel numbers, codes, indices

Nonnegative integers, i.e., N, build the framework for recursion theory/
computability theory (and, as we will see later, parts of mathematical
logic). Isn’t this too narrow? After all, most things we really want to
compute and deal with are based on real or even complex numbers, matrices,
operators, functions, not to mention pictures, audio files and minesweeper
configurations... in other words: not very natural numbers. The reason why
dealing with N appears to be sufficient, is that the objects we are eventually
interested in are countable so that we can assign a number (which one calls
index, code or Gödel number) n ∈ N to each object in a way which allows us
to effectively identify the object from a given n. This will be the content of
this lecture.

Complaint from the backseats: “the reals aren’t countable!”
True. But when we’re using a specific real number x ∈ R as an input

for a function f say, then in order to be able to compute the value f(x), we
tacitly assume that x is computable in the first place. That is, although f
may abstractly be defined on all of R we will usually evaluate it only on
computable numbers (i.e., those whose decimal expansion can be effectively
computed to arbitrary precision) or, when we’re in a more surreal mood, we
will act with it on definable numbers. In any case this is a countable set.
Expressed differently, the input of a computation should be an object which
we can specify by finite means. Arguing like this makes the restriction to N
much less restrictive since any set of practical interest then seems to reveal a
countable nature. In fact, one may, as some constructivists do, even think
about using the computable numbers instead of the reals as the basis for
mathematical analysis. We wont go in this direction and not even justify
further the focus on countable sets – we will just deal with countable sets
only.

So consider a countable set A which we call the alphabet together with
an injective assignment A → N of a number to each element in A. This
assignment maps any finite string a1 · · · ak where each aj ∈ A to an element
of Nk. As we will see below, the latter can be mapped injectively into N.
Such mappings, together with their inverses are the main content of the

18

remaining part of this lecture. The main point will be that these mappings
can be chosen primitive recursive. Before we discuss two prominent examples,
a remark concerning terminology: in our context, an injective mapping into
N is often (but not entirely coherently) called an encoding and the final
number the code.

Similarly, a surjective map from N tends to be called an indexing, Gödel
numbering or enumeration (the latter is sometimes reserved for bijective
maps) and the corresponding number is called an index or Gödel number.
We will further specify the meaning of “index” in the context of general
recursive functions.

5.1 Multiplicative encoding

Any string of numbers of the form (a0, . . . , an−1) = a ∈ Nn can be encoded
into a single number α ∈ N in an injective way by exploiting the fundamental
theorem of arithmetic, i.e., the uniqueness of prime-number factorization.
One variant of such an encoding is (a0, . . . , an−1) 7→ α = 2n

∏n
i=1 fπ(i)ai−1 ,

where fπ(i) is the i’th prime number starting with fπ(0) = 2. As a con-
sequence of the results of the last lecture, the mapping a 7→ α is a prim-
itive recursive function. Conversely, if α ∈ N is such an encoding, then
α 7→ n = lo(α, 2) as well as α 7→ aj = lo(α, fπ(j + 1)), i.e., deducing the
length and any of the original components, is achievable by primitive recur-
sive functions. In a similar primitive recursive vein, we can expand the string
on the level of its code for instance by α 7→ 2αfπ(lo(α, 2) + 1)b which results
in an encoding of (a0, . . . , an−1, b).

There are several variants of this method many of which differ by how or
whether the length n is encoded for convenience.

!"
#" $"

%"
&"

'"

("

)"
*"

+"

,"
,"

,"

Figure 1: Enumeration of N2 giving rise to a bijective and monotonic pairing
function.

5.2 Pairing functions

Another frequently used encoding is based on pairing functions J : N2 → N
which can be chosen bijective and strictly monotonic in both arguments.

19

Consider for instance N2 as a quadrant of a two-dimensional square lattice
whose points with coordinates (x, y) ∈ N2 are enumerated as depicted in
Fig.1. This enumeration defines a pairing function which is then given by
J(x, y) = 1 + 2 + . . .+ (x+ y) +x = (x+ y)(x+ y+ 1)/2 +x and thus clearly
primitive recursive. Conversely, given an encoding j ∈ N we can obtain the
corresponding components via bounded minimization:

X(j) := min{x | x ≤ j ∧ ∃y ≤ j : J(x, y) = j},
Y (j) := min{y | y ≤ j ∧ ∃x ≤ j : J(x, y) = j}.

Any longer string can then be encoded by successive use of pairing
functions, e.g., (x, y, z) 7→ J(x, J(y, z)). This leads to a useful Lemma:

Lemma (Enumeration of Nk). For any k ∈ N there is a bijective function
E : N→ Nk so that

1. each of the k component functions Ei : N→ N, i = 1, . . . , k is primitive
recursive and

2. the inverse function E−1 : Nk → N is a primitive recursive function.

6 Limitations of primitive recursion

After this lecture it should be clearer why “primitive recursion” is called Lecture 4
“primitive”. We will see two arguments – one based on diagonalisation and
one based on (too) rapidly growing functions – which reveal computable
functions which are not primitive recursive.

The first, diagonalisation based argument is somehow less constructive,
but worthwhile stating since it shows that every class of computable total
functions on N (i.e., functions defined on all of N) is necessarily incomplete in
the sense that there are computable total functions which are not contained
in it.

Let F be a class of functions which are

1. total functions from N to N,

2. enumerable in the sense that there is a surjective map F : N→ F . We
write Fx for the image of x ∈ dom(F) under F .

Proposition (Limitations of classes of enumerable, total functions). Let F
be a class of functions as described above. The following function g : N→ N
is total but not contained in F .

g(x) :=

{
Fx(x) + 1 if x ∈ dom(F),

0 otherwise

20

Proof. Suppose g ∈ F . Then there exists a y ∈ N such that Fy = g. This,
however, leads to the contradiction Fy(y) = g(y) = Fy(y) + 1, so that g
cannot be contained in F .

Since any class of “computable” functions is countable there is always
an enumerating map F . Whether g is computable then depends on the
computability of F . In the case of F being the class PR of primitive
recursive functions we can obtain a computable enumeration by considering
the formal representation of functions (using Pr[. . .] and Cn[. . .] etc.) together
with the techniques discussed in the previous lecture. This may lead to a
cumbersome but certainly computable enumerating map F , so that the
foregoing proposition implies the existence of a computable total function
which is not primitive recursive. For a second we may be tempted to
enlarge our class of functions by just adding g to it, until we realize that the
proposition will remain applicable to the extended class of functions.

Consequently, if we aim at a formalism which incorporates all computable
functions we have either to accept uncomputable enumerations and/or we
have to deal with partial (i.e., not necessary total) functions. The latter
choice is able to circumventing the above contradiction since Fy may not be
defined for y.

A different and more explicit way to see that there are computable total
functions which are not primitive recursive goes back to the work of Wilhelm
Ackermann. We will consider the simplified version provided by Rozsa
Peter. The following three equations define a total function A : N2 → N, the
Ackermann-Peter function:

A(0, y) = y + 1,

A(x+ 1, 0) = A(x, 1),

A(x+ 1, y + 1) = A
(
x,A(x+ 1, y)

)
.

Some useful properties of the Ackermann-Peter function are:

1. Monotonicity in both arguments: A(x, y) ≤ A(x, y + 1) and A(x, y) ≤
A(x+ 1, y),

2. Faster growth in first argument: A(x, y + 1) ≤ A(x+ 1, y),

3. A(2, y) ≥ 2y.

Let’s look at some special cases in order to get a feeling for what this
function is: it yields A(1, y) = y + 2, A(2, y) = 2y + 3 and A(3, y) =
2y+3−3. That is, for x = 1, 2, 3 we essentially get addition, multiplication and

exponentiation w.r.t. base 2. This continues withA(4, y) being 2(2(...
(2(2

2))))−3
where the “power tower” involves y + 3 levels of 2’s. So, increasing the first

21

argument of A basically corresponds to climbing up the ladder addition-
multiplication-exponentiation-power towers, etc. The rapid growth of the
function will in fact be the cornerstone for constructing a function which
is not primitive recursive. To this end one defines a class A of functions
which is “dominated” by A. More precisely, f : Nk → N is an element of A
iff ∃y ∈ N ∀z ∈ Nk : f(z) < A(z′, y) where z′ := max{z1, . . . , zk}.

Proposition (Ackermann-Peter function is not primitive recursive). Let A
be the class of functions which is dominated by the Ackermann-Peter function
as described above and define α(x) := A(x, x). Then PR ⊆ A but α 6∈ A
(and therefore α 6∈ PR).

Proof. Let us first check that α 6∈ A. If it were, there would be a y ∈ N
so that α(x) = A(x, x) < A(x, y) for all x. Setting x = y then leads to the
sought contradiction which implies that α 6∈ A.

That PR ⊆ A can be shown by proving (i) the three basic functions
(zero, successor and identity) are in A, (ii) A is closed under composition,
and (iii) A is closed w.r.t. primitive recursion. Here (i) is rather obvious and
(ii) and (iii) follow after a couple of elementary steps by invoking the above
mentioned properties of the Ackermann-Peter function. A detailed proof for
(ii) and (iii) can be found here.

Loosely speaking, functions which grow too rapidly (at least as fast as α)
cannot be in PR. This is reminiscent of the busy beaver function, but with a
crucial difference: although the Ackermann-Peter function is not defined in
a primitive recursive way, its definition is somehow “recursive” and allows us
to compute the function. That is, α grows too fast for PR but slow enough
to remain computable.

If we want a formal framework for all computable functions we have thus
to go beyond the set PR of primitive recursive functions. This is done by
adding a third rule in addition to composition and primitive recursion, namely
minimization which we describe in the next lecture. Extending the list of
rules in this way then leads to the class of recursive functions (as opposed
to the class of “primitive” recursive functions which is not closed w.r.t.
minimization – only w.r.t. bounded minimization). That the function α is
indeed a recursive function will only be shown later, when we’ve developed
some recursive function toolbox.

How can we intuitively understand that the Ackermann-Peter function is
not primitive recursive? One possibility is to consider the number of uses of
primitive recursion (i.e., occurrences of Pr[. . .] in the formal characterization)
in a primitive recursive derivation of the function y 7→ A(x, y) for a fixed
value of x. Recall that for x = 1, 2, 3, . . . this essentially amounts to addition,
multiplication, exponentiation, etc. for which we would use Pr[. . .] exactly x
times. In other words, the first argument of A appears to provide a lower
bound on the length of any primitive recursive derivation. Hence, the fact

22

that there has to be a finite such derivation for each function in PR is in
conflict with x 7→ A(x, x).

6.1 Relation to modern programming languages

One can express the limitation of primitive recursion and its overcoming by
general recursive functions in more modern terms of computer programming
languages: the class PR corresponds to what can be computed by algorithms
using the basic arithmetic operations, IF THEN ELSE, AND, OR, NOT, =,
> and FOR loops of the form they are allowed in Fortran for instance (just
in case anybody is familiar with ancient languages). In the PR framework
IF THEN ELSE would for instance correspond to definition by cases, FOR
loops to bounded optimization or quantification, etc. Functions which are
computable by such algorithms are sometimes called LOOP-computable and
these are exactly the primitive recursive ones.

The crucial point which is missing in the above list are WHILE loops
or, equivalently, a GOTO instruction. Adding those leads to the set of
WHILE-computable functions (or GOTO-computable functions, which is
essentially the same). The Ackermann-Peter function turns out to be WHILE
computable but, as we have seen, it is not LOOP-computable. The analog
of the WHILE loop will be the (unbounded) minimization operation to be
introduced in the next lecture...

7 Recursive function vs. Turing computability

In order to overcome the limitations of primitive recursion we add a third Lecture 5
rule in addition to composition and primitive recursion:

Minimization For any function f : N×Nk → N define Mn[f] : Nk → N via

Mn[f](x) :=

{
y if f(y, x) = 0 ∧

(
∀j < y : f(j, x) ∈ N \ {0}

)
,

undefined if no such y exists.

Note that there are two possible reasons for Mn[f](x) to be undefined:
(i) there is no y for which f(y, x) = 0 and (ii) there is such a y but f(j, x) is
undefined for some j < y.

For later use we define the closely related minimization operator µ : Nk →
N for any predicate P on N× Nk via

µ[P](x) :=

{
y P (y, x) ∧

(
∀j < y : ¬P (j, x)

)
undefined otherwise.

That is, µ[P](x) = Mn[χ¬P](x) and we will occasionally use the notation
µy
(
P (y, x)

)
:= µ[P](x) to specify which of the variables of P is considered.

23

Definition (Recursive functions and relations). A partial or total function
f : Nk → N is called recursive iff it can be obtained from the basic functions
(zero, successor and identity/projection) by finitely many applications of the
rules Cn, Pr and Mn.

A relation, set or predicate is called recursive iff the corresponding char-
acteristic function is a recursive total function.

We will denote the class of recursive partial functions with k arguments
by R(k) and write R :=

⋃
k R

(k) for the class of all recursive partial functions.
One remark concerning terminology is in order: in the literature “recursive
function” is often used in the sense of “recursive total function”. We wont
follow this practice but rather prefer to specify if a function is total or partial.
Moreover, we will use the notion “partial function” so that it includes all
total functions.

Note that R is the smallest class of functions which is (i) closed w.r.t.
composition, primitive recursion and minimization and (ii) contains the basic
functions z, s and id. The minimization operator, when applied to a recursive
predicate, leads to a recursive partial function. In fact, we will see later that
R can be obtained from PR by solely supplementing it with µ acting on
primitive recursive predicates.

Needless to say, PR ⊂ R. Moreover, this inclusion is strict as PR only
contains total functions whereas R clearly allows for functions which are not
everywhere defined. We will see, however, that there are also total functions
outside PR (like the Ackermann-Peter function) contained in R.

The content of this lecture is the following equivalence:

Theorem (Recursive = Turing computable). A partial function f : Nk → N
is recursive iff it is Turing computable.

In order to show that every recursive partial function is Turing com-
putable, we could begin with showing that this holds for z, s and id and
then prove that the class of Turing computable functions is closed w.r.t. Cn,
Pr and Mn. In fact, we essentially did the first four of these steps. The last
two, however, require a little bit more effort which we will skip and believe
the result... We will rather spend some time on the reverse direction which
will turn out to lead to additional insight into normal forms and universal
functions and machines. In the remainder of this lecture we will assume that
there is a TM M which computes a function FM : N → N and we aim at
showing that FM ∈ R.

7.1 Wang encoding of the tape & head configuration

The Wang encoding is a one-to-one map between two natural numbers and
any tape & head configuration.

We will assign two numbers l, r ∈ N to every configuration of tape and
head (disregarding the internal states for the moment and only taking care of

24

!!!"#"#$#"#"#$#"#$#$#$#"#$#"#"#$#"#$#"#$#"#$#"#"#!!!#

r l

Figure 2: The Wang encoding is a bijective map between two natural numbers
(l, r) and any tape and head configuration of a Turing machine.

the position of the head above the tape). To this end, we regard everything left
from the head position as a binary representation of a number l and everything
right from that (including the head position itself) as a binary representation
which is read backwards for a number r. So if a Turing machine (TM)
computes x 7→ f(x) this translates to (l, r) = (0, 2x+1−̇1) 7→ (0, 2f(x)+1−̇1).
Recall that by the convention we chose, every admissible initial and final
configuration has to be of the form (l, r) = (0, 2x+1−̇1) for some x ∈ N. If
the TM halts with the tape in a different configuration, then the function
value will be undefined. So checking whether or not a Wang encoding (l, r)
corresponds to a halting configuration with a defined function value, can be
done by the predicate

l = 0 ∧ r = 2lg(r,2)+1−̇1.

From the pair (l, r) we can determine the scanned symbol beneath the
head as rem(r, 2), i.e., the remainder when we divide r by 2. If the head
replaces the scanned symbol and writes some t ∈ {0, 1} instead, the Wang
encoding changes according to l 7→ l and r 7→ (r + t)−̇ rem(r, 2).

Moving the head one site to the left leads to l 7→ quo(l, 2) and r 7→
2r+rem(l, 2). Moving it one site to the right amounts to the same expressions
with r and l interchanged.

To summarize, the Wang encoding describes the tape & head configuration
of a TM in a way so that every change of that configuration due to writing
or moving can be expressed by primitive recursive functions. Similarly, the
validity of a final configuration is expressed in terms of a primitive recursive
predicate.

7.2 Encoding the Turing machine instructions

Recall that the set of instructions of a TM is represented by a mapM : (t, q) 7→
(t′, q′, d) where t, t′ ∈ {0, 1} are tape symbols, q, q′ = 0, . . . , n are internal
states and d = R,L is the direction in which the head moves one step. Let us
encode the pair (t′, d) which describes one out of four instantaneous actions

25

of the TM by a number a = 1, . . . , 4. The map M will be encoded in a
string m = (m0, . . . ,m4n−1) ∈ N4n such that if (t, q) are scanned symbol and
current internal state respectively, then m4q+2t ∈ {1, . . . , 4} is the action a,
and m4q+2t+1 ∈ {0, . . . , n} is the new internal state q′.

Finally, by using the tools developed in lecture 3 we encode the entire
string m in a single number which by abuse of notation we call M ∈ N, the
code of the TM.

7.3 Evolution of the Turing machine configuration

Let us characterize an entire configuration of the TM (i.e., tape, head and
internal state) by a single number c = 2l3q5r. Note that the map (l, q, r)↔ c
is primitive recursive in both directions. Let conf(M,x, τ) denote such an
entire configuration which is obtained after running a TM specified by a code
M ∈ N on an input x ∈ N for τ ∈ N steps. The crucial point is now that the
function conf : N3 → N turns out to be primitive recursive. In order to see
this we sketch a definition by primitive recursion:

First note that conf(M,x, 0) = 5r = 52x+1−̇1. Furthermore, conf(M,x, τ+
1) can be obtained in a primitive recursive way from M , x and conf(M,x, τ)
via:

1. extract the corresponding triple (r, q, l) from conf(M,x, τ),

2. determine the action mk with k = 4q + 2 rem(r, 2) from the code M ,

3. determine the new triple (r′, q′, l′),

4. set conf(M,x, τ + 1) := 2l
′
3q
′
5r
′
.

Since all building blocks are primitive recursive, we get conf ∈ PR.

7.4 Halting & output

The TM halts once the internal state is n (which was our convention for
the halting state). Given an entire configuration c this is expressed by the
primitive recursive predicate lo(c, 3) = n. The conjunction with the above
primitive recursive predicate for (l, r) describing a valid final configuration
gives a primitive recursive predicate P (c) which is true iff the TM has
reached a halting state in a valid final configuration. So, for given M
and x, τhalt := µy

(
P (conf(M,x, y))

)
gives the time step when and if this

happens and it is undefined otherwise. The output of the function computed
by the TM with code M and input x is thus FM (x) = lg(r, 2), where
r = lo

(
conf(M,x, τhalt), 5

)
.

This shows us not only that FM is indeed a recursive function, but it
also reveals two extremely useful facts which we will discuss in greater detail
in the following lecture. Loosely speaking, we have seen that

26

1. a single application of the minimization operation is sufficient,

2. by regarding the code M as a variable we obtain a function F (M,x) :=
FM (x) which is universal in the sense that for every Turing computable
function f there is an M ∈ N such that F (M,x) = f(x) for all x.

8 Basic theorems of recursion theory

The proof of the equivalence between Turing computability and recursiveness, Lecture 6
which we sketched in the last lecture, reveals a lot of additional structure
which we will now discuss in more detail.

Theorem (Kleene’s normal form). For any k ∈ N there is a primitive
recursive predicate T on Nk+2 and a primitive recursive function U : N→ N
such that for any recursive partial function f : Nk → N there is an M ∈ N
for which

f(x) = U
[
µy
(
T (y,M, x)

)]
for all x ∈ Nk.

Note that the only dependence on f is in M which we call an index of
the function f . In the foregoing equivalence proof M was the code of the
Turing machine. Since there are many Turing machines computing the same
function, the index of a partial recursive function is not unique. Even more,
the indexing itself is ambiguous – we could have chosen a different encoding
of TMs, leading to a different indexing. In the following we will work with
one fixed indexing/encoding in order to obtain compatible statements. This
may be the one chosen in the equivalence proof or any other one as long
as they can be interconverted by primitive recursive means. The particular
choice of the indexing wont be important.

If we define the index of a function as an M ∈ N such that the above
normal form holds, we get that a function has an index iff it is in R. In
that case we will write f = FM to indicate that we’re considering the
function specified by the index M . By considering the index itself as an
input/argument we obtain the following:

Corollary (Universal Turing machines & functions). For any k ∈ N there
exists a partial recursive function F : Nk+1 → N such that for any f ∈ R(k)

there exists an M ∈ N for which f(x) = F (M,x) for all x ∈ Nk.

Proof. This is an immediate consequence of the normal form theorem which

gives F (M,x) = U
[
µy
(
T (y,M, x)

)]
.

We will call such a function F a universal function and a respective
Turing machine a universal Turing machine. What we have said about the

27

ambiguity of indexings/encodings holds as well for universal functions and
machines: there are many; we choose a fixed one; with a little bit of care
about convertibility, the particular choice doesn’t matter.

Note that F formally depends on k, i.e., the number of arguments,
although we will suppress this dependence in the notation (hopefully for the
benefit of readability). In fact, if we express the same result in terms of
Turing machines, then universal Turing machines do no longer depend on
k, i.e., it makes sense to talk about a universal TM without specifying the
number of its inputs.

Universal Turing machines may be considered the origin of the idea of a
“universally programmable computer” reflecting the fact that we don’t have
to buy different devices for running different programs.

For the case of a tape with binary alphabet (symbols 0 and 1), there
are explicit constructions of universal TMs with n = 15 internal states. On
the other hand, for n < 4 it is known that no such universal machine can
exists (since n < 4 gives rise to a solvable halting problem). As for now, the
intermediate regime 4 ≤ n < 15 is uncharted territory – so feel free...

Another consequence of the normal-form theorem is that the range of a
function does not care about whether the function is primitive recursive or
merely partial recursive:

Theorem (Ranges of partial recursive functions). Let f : Nk → N be any par-
tial recursive function with non-empty range. Then, there exists a primitive
recursive function g : N→ N such that range(f) = range(g).

Proof. Exploiting the normal-form theorem we can define a functionG : Nk+1 →
N,

G(x, y) :=

{
U(y) if T (y,M, x) ∧ ∀j < y : ¬T (j,M, x)

s0 ∈ range(f) otherwise.

By construction G is primitive recursive and range(G) = range(f).
Now we exploit the existence of primitive recursive functions Ei : N → N,
i = 1, . . . , k + 1 which are such that the mapping x 7→ (E1(x), . . . , Ek+1(x))
is a surjection from N onto Nk+1 (see the lecture on Gödel numbers). Putting
these things together we can construct a function g(x) := G

(
E1(x), . . . , Ek+1(x)

)
which is primitive recursive and satisfies range(g) = range(G) = range(f).

The following is useful whenever we want to consider some variables of a
function as fixed parameters:

Theorem (Parameter/S-m-n-theorem). For all m,n ∈ N there is a primitive
recursive function S : Nm+1 → N such that ∀M ∈ N, ∀x = (x1, x2) ∈ Nm×Nn

F
(
S(M,x1), x2

)
= F (M,x).

28

One way of proving the parameter theorem is to exploit again the equiv-
alence between recursiveness and Turing computability: construct a TM
which (i) writes x1 in front of the current input (separated by a blank and
stopping on top of the leftmost 1) and then (ii) runs the TM with code M .
The code of this TM will then be S(M,x1) and the theorem follows from
the fact that the code of a concatenation of two TMs is a primitive recursive
function of their respective codes.

8.1 The recursion theorem and some applications

Theorem (Recursion theorem). Let f : N→ N be any total recursive func-
tion. Then, for any k ∈ N there is an n ∈ N such that F (n, x) = F

(
f(n), x

)
for all x ∈ Nk.

Proof. Define a function g : Nk×N→ N by g(x, y) := F
(
f(F (y, y)), x

)
. Since

g is recursive we can assign an index to it and then apply the parameter
theorem in order to obtain g(x, y) = F (s(y), x) for some primitive recursive
and thus total function s. For the latter there exists in turn an index m ∈ N
so that s(y) = F (m, y). Putting things together we obtain

F
(
f
(
F (y, y)

)
, x
)

= F
(
F (m, y), x

)
for all x, y.

The sought result is then obtained by setting y = m and n := F (m,m),
where the latter is possible since s is a total function.

A closer look at the recursion theorem reveals that it does not only
guarantee one such fixed point n, but infinitely many:

Corollary (Recursion theorem – refined). Let f : N→ N be any total recur-
sive function. Then, for any k ∈ N there are infinitely many n ∈ N such
that

F (n, x) = F
(
f(n), x

)
for all x ∈ Nk.

Proof. We have to show that there is no largest such n, i.e., that for any
l ∈ N there is an n > l fulfilling the above equation. To this end, pick a
c ∈ N so that Fc 6∈ {F0, . . . , Fl} and define

g(x) :=

{
c if x ≤ l
f(x) if x > l

Then g is a total recursive function to which we can apply the recursion
theorem. For any n ≤ l, however, Fg(n) = Fc 6= Fn so that there must be a
n > l for which Fn = Fg(n). Observing that in this case Fg(n) = Ff(n) then
completes the proof.

29

If we regard the indexing of partial recursive functions as a (non-injective)
enumeration, the recursion theorem says something about repetitions of
functions. For instance, that there is an n so that Fn = Fn+1, etc. It might
seem desirable to have an enumeration without repetition. Naively, this
should be obtainable by just going through the list and omitting repeating
instances. As the following corollary shows, this is, however, not possible by
recursive means.

Corollary (Enumeration without repetition is not recursive). Suppose
f : N→ N is an increasing total function so that m 6= n implies Ff(m) 6= Ff(n)

and so that f(n) is the smallest index of the function Ff(n). Then f is not
recursive.

Proof. It follows from the constraints imposed on f together with the fact
that there are repetitions in the previously used indexing that there is a
k ∈ N such that ∀n ≥ k : f(n) > n. For those n’s we thus have Ff(n) 6= Fn
since otherwise n would be a smaller index. This is, however, in conflict with
the refined version of the recursion theorem unless f is not recursive.

Our next aim is to prove the existence of functions which provide their
own index as output. For that the following intermediate step is useful:

Corollary. For all k ∈ N and f ∈ R(k+1) there are infinitely many m ∈ N
such that ∀y ∈ Nk : f(m, y) = F (m, y).

Proof. Since f is recursive we can express it in terms of a universal func-
tion and then apply the parameter theorem so that f(x, y) = F (n, x, y) =
F (s(x), y) for some primitive recursive function s : N → N. Applying the
refined recursion theorem to the latter leads to infinitely many m’s for which
F (s(m), y) = F (m, y) and thus f(m, y) = F (m, y) for all y.

Note that a simple consequence (which we know already) is that every
partial recursive function g has infinitely many indices: just apply the above
corollary to any function with a trivial m-dependence, i.e., f(m, y) := g(y).

Corollary (“Self-reflexive” functions). There is a partial recursive function
f : N→ N so that ∀x ∈ N : f(x) = m where m is an index of f , i.e., f = Fm.

Proof. This follows from the previous corollary when applied to f(m, y) :=
m.

Phrased in terms of algorithms, this corresponds to a program which
prints its own source code – something one occasionally encounters in the
unpleasant costume of a computer virus. Loosely speaking, the source code
of such a print-your-own-code-program can be of the form

Print the following twice, the second time in quotes:

"Print the following twice, the second time in quotes:"

30

Finally, we will see that the Ackermann-Peter function is indeed recursive:

Corollary (Ackermann-Peter is recursive). The Ackermann-Peter function
A : N2 → N is recursive.

Proof. Consider an auxiliary function g : N3 → N which we define by g(m, 0, y) :=
y+ 1, g(m,x+ 1, 0) := F (m,x, 1) and g(m,x+ 1, y+ 1) := F

(
m,x, F (m,x+

1, y)
)
. By construction g is recursive, so we can make use of the pa-

rameter theorem and obtain a primitive recursive function s for which
g(m,x, y) = Fs(m)(x, y). Applying the recursion theorem to s, we know that
there is an n so that Fs(n) = Fn. Using this one as first argument of g and
defining A(x, y) := g(n, x, y) we obtain a function A which satisfies exactly
the three defining equations of the Ackermann-Peter function.

9 Rice’s theorem and the Church-Turing thesis

Recall that a recursive set is defined as one whose characteristic function is Lecture 7
a total recursive function. A decision problem or predicate with domain N is
called recursively undecidable iff the corresponding characteristic function is
not a total recursive function. The following theorem states that basically
any property of functions leads to such an undecidable problem:

Theorem (Rice). Let A be any class of functions such that ∅ ⊂ A ⊂ R(1)

where both inclusions are supposed to be strict. Then A := {x ∈ N | Fx ∈ A}
is not a recursive set, i.e., x ∈ A is a recursively undecidable predicate.

Proof. Let χA be the characteristic function of the set A. Take a ∈ A, b 6∈ A
and define f(x) := χA(x)b + χ¬A(x)a. If A is recursive, then f is a total
recursive function. Hence, we can apply the recursion theorem and obtain
an n such that Ff(n) = Fn. This means that n ∈ A iff f(n) ∈ A. This
is, however, in conflict with the construction of f which implies x ∈ A iff
f(n) 6∈ A. So, A cannot be recursive.

Now we can choose to which property to apply Rice’s theorem...

Corollary (Some undecidable problems). The following predicates are re-
cursively undecidable for any y:

1. Halting type problem: z ∈ {x | Fx(y) is defined},

2. Equivalence of functions: z ∈ {x | Fx = Fy},

3. Constrained range: z ∈ {x | y ∈ Fx(N)}.

Let us rephrase the first two in terms of every-day computer programming
language. The halting problem tells us that there is no general method for
finding out whether a program eventually returns or continues running forever.

31

That is, any debugger necessarily has its limitations. The non-recursiveness
of the second set implies that there is no general way of determining whether
two algorithms actually do the same.

Some additional remarks on the halting problem are in order since this
is somehow the paradigm for a recursively undecidable problem. If we
stick to the conventions we chose in the discussion of Turing computability,
then the above problem (nr.1) is not evidently a formulation of the halting
problem. Recall that in our framework of Turing computability there were
two possibilities for Fx(y) to be not defined: (i) the TM doesn’t halt, and
(ii) the TM halts but in an ill-defined configuration. Due to the latter,
the halting problem isn’t exactly matched by the non-recursiveness of {x |
Fx(y) is defined}. However, the undecidability of the above problem clearly
implies undecidability of the halting problem. Moreover, we are free to use a
different (but computationally equivalent) convention for which there are no
ill-defined final configurations.

The set {x | Fy(x) is defined} may or may not be recursive depending on
y. One way to see that there are y’s for which it is not recursive, is to make
use of universal functions again. For instance, regard Fx(z) as a function with
arguments (x, z), so that Fx(z) = F (v, x, z) for some index v. Employing the
parameter theorem we obtain a y(v, z) so that F (v, x, z) = F (y, x) implying
that {x | Fx(z) is defined} = {x | Fy(x) is defined} is non-recursive.

9.1 Church-Turing thesis

So far we have seen that two ways of formalizing the notion “computable
by algorithm”(synonymously “effectively computable”, “computable in the
physical world” or just “computable”), namely Turing computability and
recursiveness are equivalent. We could have considered other ways of for-
malizing this: cellular automata (like Conway’s Game of Life or a Rule110
automaton), register machines (which are closer to the computers we ac-
tually use), λ-calculus, grammars for formal languages, the Shakespeare
programming language, etc.. For all of them we would in principle be able
to formally prove that they are no more (and also generally no less) powerful
than Turing machines. The same holds true for quantum computers which
act on a finite Hilbert space. The Church-Turing thesis states that this is
always true, irrespective of the model we choose, as long as it is a somewhat
realistic one:

Thesis (Church-Turing thesis). Anything which is effectively computable, is
computable by a Turing machine.

The thesis seems to be commonly accepted by computer scientist and
mathematicians. Nevertheless, machines, so-called hypercomputers, whose
capabilities go beyond Turing machines are studied (theoretically :-)). Note
that from a purely operational perspective, if we consider computation as a

32

black box process, we may not be able to distinguish hypercomputers from
not-so-hyper computers if we are restricted to finite data. It is only on the
level of the theoretical description where we might realize the difference.

Note that one motivation for studying hypercomputation could be to
specify the degree (actually called Turing-degree) of unsolvability of a prob-
lem...

We will in the following invoke the Church-Turing thesis whenever we
drop “recursively” in “recursively undecidable” or when we omit “Turing”
in “Turing computable”.

10 Recursive enumerability

Definition (Recursively enumerable sets). A set S ⊆ Nk is called recursively
enumerable iff there is a partial recursive function f such that dom(f) = S,
i.e., f(x) is defined iff x ∈ S.

Equivalently we could define recursively enumerable sets as those for
which there exists a Turing machine which halts upon input x iff x ∈ S.

Note that if S is recursively enumerable, then x ∈ S can be verified
by recursive means but in general it cannot be falsified. A paradigmatic
example of a recursively enumerable set which is not recursive is {M ∈ N |
F (M,x) is defined} for any x.

Proposition (Characterization via primitive recursive predicates). A set
S ⊆ Nk is recursively enumerable iff there exists a primitive recursive predi-
cate P on N× Nk such that S = {x ∈ Nk | ∃y : P (y, x)}.

Proof. The “only if” direction follows from Kleene’s normal form theorem:
let f be the the partial recursive function whose domain is S. Then f(x) =

U
[
µy
(
T (y,M, x)

)]
where M is any index of f . Since U is total we have that

x ∈ dom(f) iff ∃y : T (y,M, x). Setting P (y, x) := T (y,M, x) and using that
T is a primitive recursive predicate then proves the claim.

For the “if” direction define f(x) := µy
(
P (y, x)

)
. Then ∃y : P (y, x) iff

x ∈ dom(f).

Now we can show that the property of being recursively enumerable is
closed w.r.t. intersections and finite unions:

Proposition. If A,B ⊆ Nk are recursively enumerable sets, then so are
A ∪B and A ∩B.

Proof. For the union we use the foregoing proposition together with the
fact that disjunction preserves primitive recursiveness: let PA, PB be the
primitive recursive predicates characterizing A and B respectively, then we
can write A ∪B = {x | ∃y : PA(y, x) ∨ PB(y, x)}.

33

For the intersection we exploit the defining property of recursively enu-
merable sets and note that the domain of the function fAB = fA + fB is the
intersection of the domains of fA and fB.

While unions and intersections preserve recursive enumerability, the
complement does not necessarily do so:

Proposition. A set S ⊆ Nk and its complement S̄ are both recursively
enumerable iff they are both recursive.

Proof. Clearly, if S is recursive, then so is its complement and both are
recursively enumerable: to see the latter, just define a recursive function
f(x) := µy(x ∈ S). Then f(x) is undefined iff x 6∈ S. Hence, dom(f) = S.

Conversely, if we assume that S, S̄ are both recursively enumerable with
characterizing primitive recursive predicates PS , PS̄ respectively, then we
can define a recursive function f(x) := µy

(
PS(y, x) ∨ PS̄(y, x)

)
which is

total because ∀x : x ∈ S ∪ S̄ and thus ∀x∃y :
(
PS(y, x) ∨ PS̄(y, x)

)
. From

here we can construct the characteristic function χS(x) by setting it to 1
iff PS(f(x), x). Recursiveness of χS then implies (by definition of recursive
sets) that S is recursive.

Lecture 8
The following proposition makes clear why “recursively enumerable” sets

are called like that:

Proposition (recursive enumeration). Let S ⊆ N be a non-empty set. Then
the following are equivalent:

1. S is recursively enumerable.

2. There is a primitive recursive function g : N→ N such that range(g) =
S.

3. There is a k ∈ N and a partial recursive function G : Nk → N such that
range(G) = S.

Proof. The equivalence of 2. and 3. was proven in a previous lecture using
the normal-form theorem. In order to prove 1. → 3. we use that there is
a primitive recursive predicate such that S = {x | ∃y : P (y, x)}. Based on
this we define a function G(x, y) so that it equals x if P (y, x) is true and
it is equal to some s0 ∈ S otherwise. By construction, G is recursive and
range(G) = S.

Conversely, if we have a function g with range(g) =: S, then f(x) :=
µy
(
g(y) = x

)
defines a partial recursive function for which dom(f) = range(g)

so that S is indeed recursively enumerable.

So, any recursively enumerable set S ⊆ N is of the form S = f(N) for
some recursive function f . The latter can thus be thought of “enumerating”
the elements of S, albeit not necessarily in an increasing way. In fact, if the
enumeration is an increasing sequence, then S is recursive:

34

Proposition (ordered recursive enumeration). Let S ⊆ N be an infinite set.
Then the following are equivalent:

1. S is recursive.

2. There is a partial recursive function g : N→ N which is (i) total, (ii)
strictly increasing and (iii) such that range(g) = S.

Proof. For 1. → 2. define a function g(0) := µy(y ∈ S), g(n+ 1) := µy(y ∈
S ∧ y > g(n)). Then g is strictly increasing, total recursive and so that
range(g) = S.

For the converse direction note that y = g(n) implies that n ≤ y. There-
fore, the characteristic function χS of S equals the characteristic function of
the recursive predicate ∃n ≤ y : g(n) = y.

Finally, let us use the characterization via ranges together with the old
diagonalisation trick in order to show that the set of total recursive functions
itself is not recursively enumerable:

Proposition (total recursive functions are not enumerable). The set S :=
{M ∈ N | FM is total} is not recursively enumerable.

Proof. Suppose S = range(g) for some primitive recursive g : N→ N. Define
f(x) := F (g(x), x) + 1. By construction f is a total recursive function.
However, there cannot be an n ∈ N so that Fg(n) = f since then Fg(n)(n) =
Fg(n)(n)+1. Consequently, g cannot be recursive, i.e., S cannot be recursively
enumerable.

11 The word problem for Thue systems

The halting problem can serve as the origin for a chain of provably undecidable
problems. A standard and in fact the by far most common way for proving
that a problem is undecidable, is to show that the halting problem can be
reduced to it in the sense that any algorithmic solution of the considered
problem would imply a solution for the halting problem. In many cases there
is in fact a longer chain of reductions through intermediate problems.

In this lecture we will provide a first (and second) link in such chains
by proving a reduction of the halting problem to the word problem for
semi-Thue systems (and finally for Thue systems). Here and in the following
lectures (until we say something different) undecidable will always mean
algorithmically undecidable by recursive means. Having in mind the Church-
Turing thesis we will drop “by recursive means” and since we haven’t talked
about axiomatic undecidability yet, we will be even more sloppy and also
omit “algorithmically”...

35

11.1 Terminology and notation

In principle we could talk about sets, their elements, ordered pairs and
n-tuples, but in this business a different terminology is commonly used: we
consider a finite set A = {a1, . . . , aN} which we call alphabet, the elements of
which are called symbols. A finite sequence of symbols ai1ai2 . . . is called a
word over the alphabet, and the set of all words of length n will be denoted
by A(n). It is convenient to use an extra symbol, say e, for the word of zero
length and to include this into the set of all words A∗ :=

⋃
n∈NA

(n).

Definition (semi-Thue system). A semi-Thue system is a pair (A,Π) of
a finite alphabet A and a finite set of ordered pairs Π ⊂ A∗ × A∗ called
substitution rules.

Furthermore, we will write u⇒ v for a pair of words u, v ∈ A∗ iff there
is a substitution rule (P1, P2) ∈ Π and words x, y ∈ A∗ (possibly of zero
length) so that u = xP1y and v = xP2y (hence, the name substitution rule).
Note that here we make use of the natural operation on words, namely
concatenation which is, needless to say, associative.

In a similar vein, we will write u ⇒∗ v iff there is a finite sequence of
words u1, . . . , um so that u = u1 ⇒ . . . ⇒ um = v which for m = 1 means
u = v. Keep in mind that all this is always w.r.t. a given semi-Thue system.
The word problem for a fixed semi-Thue system is then the problem of
deciding whether or not u ⇒∗ v for given words u, v ∈ A∗. The following
specifies in which sense the word problem is undecidable:

Proposition (Undecidable word problem for semi-Thue systems). There is
a semi-Thue system (A,Π) and a word v ∈ A∗ such that there is no algorithm
which upon input u ∈ A∗ is capable of deciding whether or not u⇒∗ v. (That
is, every algorithm attempting to compute this predicate will necessarily fail
on an infinite subset of inputs.)

Proof. As mentioned before, the idea is to reduce the halting problem to this
word problem. So we will construct a semi-Thue process for every Turing
machine for which the corresponding map M : T ×Q→ T ×Q× {R,L} is
defined for any internal state apart from the halting state. Let us denote the
internal states as q0, . . . , qn where q0 and qn are the starting state and halting
state, respectively. In order to encode a Turing machine into a semi-Thue
system we characterize the entire tape&head configuration by a string of the
form | xqy | where q ∈ Q is the current internal state, xy ∈ T ∗ is the content
of the tape (in a sufficiently large region to be specified in a moment) and
the scanned symbol t is the left most symbol of y. If we denote the rightmost
symbol of x as s, then a single step in the TM evolution only alters the triple
sqt in the way

sqt→

{
q′st′ if L

st′q′ if R
.

36

Here the case to be chosen (R or L) and the primed = new symbols for
the internal state and the tape cell depend on t and q from which they are
determined by the map M which characterizes the TM. Hence, the evolution
of a TM corresponds to a finite set of substitution rules so that we almost
have a semi-Thue process assigned to any TM. What has yet to be taken
care of is the fact that the tape is infinite while a word has to be finite. In
order to cure this apparent conflict we introduce the marker | which does
nothing but setting a virtual mark at the outmost points of the “relevant”
part of the tape. Since we do not know beforehand how big this is to be
chosen, we allow the marks to move. This is done by adding the substitution
rules

q |→ q0 | and | q →| 0q

for all q ∈ Q \ {qn}.
Finally, we want to assure that if the halting state appears, then there

is a unique squence of substitutions which collaps the entire head&tape
configuration to a unique word. To this end we add a new symbol ω and the
substitution rules

qnt→ qn, qn |→ ω | and tω → ω

for all t ∈ T . Taking it all together we have achieved that the TM halts
upon starting with the head on the leftmost symbol of a string u ∈ T ∗ iff

| q0u |⇒∗| ω |

holds for the constructed semi-Thue system with alphabet A = Q∪T ∪{ω, |}.
Applying this to a universal TM we see that a solution to the above word
problem would imply a solution to the halting problem. Hence, there cannot
be an algorithm deciding the word problem.

The construction in the proof is such that an n-state TM with binary
tape alphabet gives rise to a semi-Thue system with 6n+ 5 substitution rules
and an alphabet with n + 4 symbols. While the latter number can easily
always be reduced to 2, the size of Π is more tricky – the current record is
|Π| = 3. Lecture 9

Definition (Thue system). A Thue system is a semi-Thue system for which
(P1, P2) ∈ Π implies that (P2, P1) ∈ Π.

It follows directly from the definition of a Thue system that the relation
u⇒∗ v becomes an equivalence relation since it is reflexive, symmetric and
transitive. We will thus write u ∼ v in this case.

Proposition (Undecidable word problem for Thue systems). There is a
Thue system (A,Π) and a word v ∈ A∗ such that there is no algorithm which
upon input u ∈ A∗ is capable of deciding whether or not u ∼ v.

37

Proof. We will exploit the semi-Thue system constructed from a universal
Turing machine in the proof of the undecidability of the word problem for
semi-Thue systems and reduce the latter to the one of Thue systems.

Denote by (A,Πs) the semi-Thue system and construct a Thue system
(A,Π) as a minimal extension thereof in the sense that Π := {(P1, P2) |
(P1, P2) ∈ Πs ∨ (P2, P1) ∈ Πs}. Now suppose that u ∼ v. Then there is a
sequence of say N words such that u = u1 ∼ u2 ∼ . . . ∼ uN = v where
each step involves only a single substitution, i.e., w.r.t. Πs we have either
uk ⇐ uk+1 or uk ⇒ uk+1. Suppose the latter is not true for all steps in the
chain. Then let i be the largest index of a word ui in this chain for which
ui ⇐ ui+1 w.r.t. Πs. Since we chose the final word uN = “|ω|” such that
there is no Πs-substitution starting with uN , the last step in the chain has
to be uN−1 ⇒ uN w.r.t. Πs, which implies that we have i ≤ N − 2. By the
construction of Π and the definition of i we get that both ui+1 ⇒ ui and
ui+1 ⇒ ui+2 w.r.t. Πs. The construction of the semi-Thue system into which
we encoded the TM was, however, such that no more than one substitution
rule applies to any word which contains exactly one symbol from the set
Q ∪ {ω}. Therefore ui = ui+2 and we can eliminate these two steps from
the chain. By induction we are then left with a sequence of words where
uk ⇒ uk+1 holds for all of them w.r.t. Πs. So u ∼ v holds iff u⇒∗ v holds
for the semi-Thue system. Consequently, the word problem for Thue systems
cannot be decidable either.

12 Undecidable problems for semigroups

Quoting Calvin (from a Calvin and Hobbes comic) “The living dead don’t
need to solve word problems”. As we saw in the previous lecture, this makes
life (or whatever) easier. In the following we will discuss some corollaries and
consequences of the undecidability of the word problem for Thue systems.
The basic line of thought will be to realize that the set of words forms
a semigroup which then allows us to extend the undecidability result to
presentations of semigroups and groups. The latter in turn enables us to
obtain similar results in the realm of algebraic topology when for instance
homotopy groups are considered.

Consider a Thue system (A,Π). As mentioned previously, the symmetric
appearance of the substitution rules makes u⇒∗ v an equivalence relation for
which we will write u ∼ v. The quotient M := A∗/ ∼ is then a monoid (i.e.,
a semigroup with identity) if we use concatenation of words as associative
binary operation. The Thue system (A,Π) then becomes a presentation of
M where A is the set of generators. Hence, u ∼ v means that u and v are
actually the same element of M albeit possibly expressed differently in terms
of the generators. Since both A and Π are supposed to be finite sets, the
resulting semigroup is said to be finitely presented. Given a presentation

38

of a monoid, the corresponding word problem is about deciding whether or
not u and v correspond to the same element of the monoid. It was proven
undecidable independently by Post and Markov in the late 40ies. In our
context it is a corollary or rather a reformulation of the result for Thue
systems:

Corollary (Undecidable word problem for monoid presentations). There is
a presentation (A,Π) of a monoid M and a word v over the set of generators
A such that there is no algorithm which upon input u ∈ A∗ is capable of
deciding whether or not u ∼ v.

The minimal number |Π| of relations for which the word problem for
monoid presentations is known to be undecidable is three. Remarkably, it is
not known if the word problem becomes decidable if we restrict ourselves to
cases with only a single relation.

There are plenty properties of finitely presented semigroups which turn
out to be undecidable. A standard and generally useful approach to prove
such an undecidability is to show that the property under consideration is a
so called Markov property.

Definition (Markov property). Let P be a property of semigroups which is
preserved under isomorphisms. P is called a Markov property iff it satisfies
the following conditions:

1. There is a finitely presented semigroup S1 with property P,

2. There exists a finitely presented semigroup S2 which does not embed
into any finitely presented semigroup with property P.

Examples of Markov properties include being finite, being a group and
many others. All those turn out to be generally undecidable for finitely
presented semigroups:

Proposition (Markov properties are undecidable). Let P be a Markov
property of semigroups. There is no algorithm which upon input of a finite
semigroup presentation decides whether or not the given semigroup has
property P.

Proof. (sketch) Let M be a finitely presented monoid with an undecidable
word problem and let S1 and S2 be two monoids as in the definition of
“Markov property”. Let S := M ∗ S2 be the “free monoid product” which
defines the monoid S =: (A,Π) in terms of a Thue system whose alphabet A
is the union of the disjoint alphabets of M and S2 and whose substitutions
rules Π are the union of those corresponding to M and S2. Then S has an
undecidable word problem, it is finitely presented (since M and S2 are) and
it does not have property P (since this would contradict the assumption on
S2).

39

For any pair u, v ∈ A∗ define a monoid Su,v via the Thue system(
B,Π ∪ {(bxvy, xvy)}∀b∈B ∪ {(xuy, e)}

)
with alphabet B := A∪{x, y} and the additional symbols x, y are understood
not to be already in A.

If u ∼ v, then Su,v is trivial since in that case b ∼ be ∼ bxuy ∼ bxvy ∼
xvy ∼ xuy ∼ e for all b ∈ B. If ¬(u ∼ v), then the additional relations
can be seen to be useless so that S2 embeds into Su,v and consequently Su,v
cannot have property P. Hence, the monoid S1 ∗ Su,v has property P iff
u ∼ v, which is the sought reduction.

13 Undecidable problems related to groups and
topology

For groups, or more precisely presentations of groups, one can now follow
similar albeit technically more demanding lines and prove that the word
problem is again undecidable for finitely presented groups. This is known as
the Novikov-Boone theorem. In our context a Thue-system gives rise to a
group presentation if A is a set of disjoint pairs ai, a

′
i such that (aia

′
i, e) ∈ Π

for all i. In the formulation of the word problem one can fix one of the
elements to be the identity, so that the (generally undecidable) question
becomes whether or not any given element equals the identity.

Similar to the semigroup case, many properties which one typically
encounters when dealing with groups turn out to be undecidable. A meta-
theorem from which many of these follow is the Adjan-Rabin theorem. Some
of its corollaries are that properties like being finite, being trivial (i.e.,
containing only one element), being cyclic, being commutative, and being
solvable are all generally undecidable from a group presentation.

Group presentations play an important role in algebraic topology where
groups which specify topological properties and invariants are typically given
in terms of generators and relations.

A simple topological consequence of the undecidability of triviality of
a group follows from a result by Haken who constructed a 2-dimensional
simplicial complex from any group presentation such that the given group
is the fundamental group of the simplicial complex. Since the fundamental
group is trivial iff the simplicial complex is simply connected, we obtain that
being simply connected is a generally undecidable property for 2-dimensional
simplicial complexes.

Another topological problem which was proven to be undecidable (in this
case by Markov) is the question whether or not two manifolds of dimension
≥ 4 are homeomorphic. For dimension two, decidability goes back to Riemann
and for dimension three it is open whether or not the question is decidable.

40

14 Post’s correspondence problem
Lecture 10

In this lecture we will show that Post’s correspondence problem (PCP) is
undecidable. The undecidability of PCP is frequently used as a final step in
undecidability proofs since many problems can more easily be related to PCP,
than for instance to the halting problem. So what is Post’s correspondence
problem?

Let A be a finite alphabet for which we consider the set of words A∗ as a
monoid with respect to which X,Y : K → A∗ are two homomorphisms from
K := {1, . . . , k}. Post’s correspondence problem is then to decide whether
or not there is a non-empty word w ∈ K∗ such that X(w) = Y (w).

An equivalent, possibly more intuitive, depiction of the problem is in
terms of “dominos”: consider a set of k dominos of the form[

X(1)
Y (1)

]
, · · · ,

[
X(k)
Y (k)

]
,

where each X(i) and Y (i) is a word over A. The question is now whether
or not there is a finite sequence of those dominos (where each domino may
occur multiple times) for which the first and second row are equal, i.e., for
which X(w1)X(w2) . . . = Y (w1)Y (w2) . . . for some w ∈ K∗ which is at least
of length one.

Example 1. Take A = {0, 1} and two dominos of the form (X(1), Y (1)) =
(0, 00), (X(2), Y (2)) = (01, 1). Then PCP has a solution in the sense that
X(1)X(2) = Y (1)Y (2) = 001.

Example 2. For (X(1), Y (1)) = (0, 01), (X(2), Y (2)) = (10, 01) there cannot
be such a solution since any word in X(K∗) ends with a zero while every
word in Y (K∗) ends with a one.

By reducing the word problem for semi-Thue systems to PCP we will
now show that there is no general recipe for deciding PCP:

Proposition (PCP is undecidable). Let A be a binary (or larger) alphabet.
There is a k ∈ N such that there exists no algorithm which upon input of
two monoid homomorphisms X,Y : K := {1, . . . , k} → A∗ decides whether
or not there exists a non-empty word w ∈ K∗ for which X(w) = Y (w).

Proof. We will show that a hypothetical algorithm capable of deciding PCP
would also allow for deciding the word problem x⇒∗ y for semi-Thue systems.
To this end, consider any semi-Thue system (A,Π) with alphabet A and
substitution rules Π. In order to encode this into a PCP, we enlarge the
alphabet first by introducing an alphabet A′ which contains symbols which
are in one-to-one correspondence to the ones of A. That is, for every a ∈ A
there is exactly one a′ ∈ A′. In addition, we introduce the symbol I, so that
the alphabet APCP := A ∪A′ ∪ {I} contains 2|A|+ 1 symbols.

41

Now we use k = 2+2|A|+|Π| ”dominos” which we will write as (X(i), Y (i))
and refer to its entries, somewhat confusingly, as first and second “row”
(imagining (X(i), Y (i)) to be rotated clockwise by 90 degrees). We choose
dominos (Ix, I), (I, yI) and (a, a′) and (a′, a) for all |A| pairs of symbols as
well as (v′, u) for all substitutions (u, v) ∈ Π. In the latter case v′ means that
each symbol in v is replaced by its primed twin from A′. We will assume
that each u, v as well as x and y are all non-empty words in A∗. This can be
done w.l.o.g. since the semi-Thue system with an undecidable word problem
stemming from the halting problem satisfied this assumption.

Any PCP solution has to start with (Ix, I) since this is the only domino
where the left most symbols coincide in both rows. The only way to catch
up with x is then the use of dominos of the types (a′, a) and (v′, u). In any
case, completing x in the second row, will generate a x′1 ∈ A′∗ in the first
row whose unprimed twin satisfies x⇒∗ x1. Catching up with x′1 in turn can
only involve the (a, a′) dominos which produce an unprimed copy x1 in the
first row. At this point our argument continues like before and we see that
forcing the two rows to lead to equal words implies (if it is at all possible)
a sequence x ⇒∗ x1 ⇒∗ x2 ⇒∗ . . . which (if at all) necessarily ends with
. . .⇒∗ y since (I, yI) is the only possibility for a right most domino. Hence
a solution X(w) = Y (w) implies a solution for x⇒∗ y. Since the converse
holds as well, we have reduced the word problem for the semi-Thue systems
to PCP. The alphabet APCP can always be reduced to a binary one – just
by binary encoding.

Using a semi-Thue system with binary alphabet and an undecidable word
problem based on |Π| substitution rules (for which we know that |Π| = 3
suffices), the above proof leads to an undecidable PCP with k = |Π| + 6
relations. There is a more efficient encoding which achieves the same with
k = |Π|+ 4, so k = 7 is currently the smallest number of dominos for which
PCP is known to be undecidable. Conversely, PCP is known to be decidable
for k = 2.

Finally, note that if we constrain the size of the alphabet, the number of
dominos as well as the length of the words X(i), Y (i), then PCP becomes a
finite set of decision problems and thus recursively decidable (even though
we might have no idea how the actual algorithm looks like).

15 Undecidable matrix problems

In this lecture we exploit PCP in order to prove that two problems involving Lecture 8
products (i.e., words) of small matrices from a small alphabet are undecidable:
the matrix mortality problem (I guess I would have chosen a different name)
and the reachability problem.

42

15.1 Matrix mortality

Consider a finite set of d× d matrices S = {M1, . . . ,Mn} ⊂ Md(Z) with in-
teger entries. We call S mortal iff there is a non-empty word w ∈ {1, . . . , n}∗,
of length m say, such that for the corresponding product of matrices:

Mw1 · · ·Mwm = 0.

Example 1. Consider a set consisting of two matrices(
0 1
−3 2

)
and

(
2 0
−0 −1

)
This cannot be mortal since the matrices have non-zero determinant and the
determinant of any product is just the product of determinants.

Example 2. The two matrices(
0 0
−0 1

)
and

(
0 1
−1 0

)
form a mortal set since their product is a nilpotent matrix whose square
vanishes.

Before we show that unlike in these simple examples there cannot be
a general recipe for deciding mortality, we will introduce some tools for
encoding words into products of matrices:

For words w = a1 . . . am over the alphabet A := {1, 2, 3} define an
injective map W (w) :=

∑m
k=1 ak4

m−k from A∗ to N. Denote by |w| the
length of a word and define a map from A∗ ×A∗ into the set of 3× 3 integer
matrices by

M(u,w) :=

 4|u| 0 0

0 4|w| 0
W (u) W (w) 1

 .

If we use concatenation of words and matrix multiplication as binary oper-
ations in the domain and codomain respectively, then (u,w) 7→M(u,w) is an
injective monoid homomorphism. That is, in particularM(u1, v1)M(u2, v2) =
M(u1u2, v1v2).

In addition we will need the matrix

B :=

 1 0 1
−1 0 −1
0 0 0

which satisfies B2 = B and BM(u, v)B =

(
4|u| +W (u)−W (v)

)
B.

The latter implies that BM(u, v)B = 0 iff W (v) = W (1u) which in turn
is equivalent to v = 1u. Now let us exploit these relations to prove the
following:

43

Proposition (Matrix mortality is undecidable). Let k ∈ N be such that PCP
with k “dominos” is undecidable. Then there is no algorithm which upon
input of a set S ⊂M3(Z) of 2k + 1 integer matrices decides whether or not
S is mortal.

Proof. Consider an undecidable PCP with k dominos and choose {2, 3} as a
binary alphabet for it. Denote by (xi, yi) with i = 1, . . . , k the pairs of words
appearing in the PCP. For each of these k dominos we define two matrices
Mi := M(xi, yi) and M ′i := M(xi, 1yi). So together with B these form a set
S of 2k + 1 integer matrices.

Now assume that PCP has a solution w ∈ {1, . . . , k}∗. Then

BM ′w1
Mw2 · · ·Mw|w|B = 0

so the set S is mortal. Conversely, if S is mortal, then there is a prod-
uct so that BM(u1, v1)BM(u2, v2)B · · ·B = 0. Since B2 = B and each
BM(ui, vi)B is a multiple of B, the product can only be zero if for at least
one i we have 1ui = vi. Observing that ui ∈ {2, 3}∗ this implies a solution
for PCP.

Using that PCP is known to be undecidable for seven dominos, we obtain
that matrix mortality is undecidable for sets of fifteen 3× 3 matrices. One
can trade the number of matrices with their dimension and show that matrix
mortality is undecidable as well for two 24× 24 matrices. On the positive
side, it is known that it is decidable for two 2× 2 matrices and for instance
for an arbitrary number of upper triangular 2× 2 matrices. Without such an
additional constraint decidability is, however, not known already for three
2× 2 matrices with integer coefficients.

15.2 A reachability problem

We will now have a look at a problem which can be motivated by problems
arising in engineering, in particular in the context of control theory. Assume
that the state of a system/machine is characterized by a vector of parameters
which can be changed by means of a finite number of controls all of which
act on this “state vector” in a linear or affine way. A natural question is
then whether or not there is a sequence of controls which map a given initial
state onto a given final state.

Again, before we prove undecidability of such a reachability problem we
introduce a way of encoding words into matrices. The basic observation is
the structure of the following simple matrix product:(

1 x
0 y

)(
1 x′

0 y′

)
=

(
1 x′ + xy′

0 yy′

)
where x, x′, y, y′ ∈ Q (and xy’,yy’ are ordinary products rather than concate-
nations of words).

44

For words w = a1 . . . am over the alphabet {0, 1} we define a map ψ(w) :=
ψ′(a1) · · ·ψ′(am) as a product of matrices of the form

ψ′(ai) :=

(
1 ai
0 2

)
.

Similarly, define φ(w) := [ψ′(am)]−1 · · · [ψ′(a1)]−1.
Using the above structure of the matrix product one can see that ψ is

an isomorphism between the monoid {0, 1}∗ and the one generated by the
matrices ψ′(0), ψ′(1) and the identity matrix 1 if we set ψ(e) := 1.

Proposition (Reachability is undecidable for affine transformations in Q2).
Let k ∈ N be such that PCP with k “dominos” is undecidable. Then there
is no algorithm which upon input of a set

{
Ti : Q2 → Q2

}
of i = 1, . . . , k

affine transformations decides whether or not there is a finite sequence of
these transformations for which Tin · · ·Ti1(0, 1) = (0, 1).

Proof. Consider any PCP instance given by k pairs (X1, Y1), . . . , (Xk, Yk) of
words in {0, 1}∗. Exploiting the properties discussed above, we obtain that
for some non-empty word w ∈ {1, . . . , k}∗, of length n say, we have that
Xw1 · · ·Xwn = Yw1 · · ·Ywn iff φ(Xwn) · · ·φ(Xw1)ψ(Yw1) · · ·ψ(Ywn) = 1.

This equation can be expressed in terms of an application of affine
transformations which we define as Ti : (x, y) 7→ (x′, y′) via(

1 x′

0 y′

)
= φ(Xi)

(
1 x
0 y

)
ψ(Yi).

The dimension of affine transformations as well as their number (we can
choose k = 7) is remarkably small.

Note that every affine transformation T on Q2 can be embedded into
a linear transformation G on Q3 in a way such that T : (x, y) 7→ (x′, y′)
becomes G : (x, y, 1) 7→ (x′, y′, 1). This leads to the following:

Corollary (Reachability is undecidable for linear transformations in Q3).
Let k ∈ N be such that PCP with k “dominos” is undecidable. Then there
is no algorithm which upon input of a set

{
Gi : Q3 → Q3

}
of i = 1, . . . , k

linear transformations decides whether or not there is a finite sequence of
these transformations for which Gin · · ·Gi1(0, 1, 1) = (0, 1, 1).

As in the case of matrix mortality, one trade the number of matrices
by their dimensions: the above reachability problem has also been shown
undecidable for two rational 16× 16 matrices.

In a similar vein, many other matrix problems with a similar flavor can be
shown to be generally undecidability: among them “set-to-point reachability”
and the “zero-in-the-upper-right-corner” problem...

45

16 Hilbert’s tenth problem

Hilbert’s tenth problem was: find a procedure (German: “Verfahren”) which Lecture 9
decides whether or not any multivariate polynomial with integer coefficients
has an integral root. 70 years after Hilbert formulated this within his now
famous list of 23 problems, it was proven to be unsolvable in the sense that
no such procedure/algorithm can exist. The undecidability of the existence
of integral roots turned out to be the consequence of a deep equivalence
which will be the content of this lecture.

Definition (diophantine predicates and relations). A predicate P on Nk is
called diophantine iff there is an n ∈ N and a polynomial p with integer
coefficients in k + n variables, such that P (x)⇔ ∃y ∈ Nn : p(x, y) = 0.

A set or relation S ⊂ Nk is called diophantine iff x ∈ S is a diophantine
predicate.

A function f : Nk → N is called diophantine iff its graph
(
f(x), x

)
⊂ Nk+1

is a diophantine set.

The definition allows for polynomials of arbitrary (though finite) degree.
The following trick by Skolem, however, shows that we can trade the degree
with the number of variables to the extent that finally we may restrict
ourselves to polynomials of degree at most four:

Lemma (Reduction to degree four). If S ⊂ Nk is a diophantine set, then
there is an m ∈ N and a polynomial q in m + k variables with integer
coefficients and of degree at most four such that S = {x ∈ Nk | ∃z ∈
Nm : q(x, z) = 0}.

Proof. By assumption there is a polynomial p with integer coefficients such
that S = {x ∈ Nk | ∃y ∈ Nn : p(x, y) = 0}. The construction of the new
polynomial is then done recursively: for all monomials in p which have degree
larger than two, introduce new variables u1, u2, . . . defined as a product of the
first two variables of the corresponding monomial. Inserting the new variables
then leads to a new polynomial p1(x, y, u) whose maximal degree is one less
than that of p and p(x, y) = p1(x, y, u) if we impose the defining constraints
for the uis. Iterating this procedure, we can obtain a sequence of polynomial
in more and more variables which eventually is at most quadratic in all
variables. Suppose pn is this quadratic polynomial. The imposed constraints
on the new variables which guarantee that p(x, y) = pn(x, y, u, . . .) can
now be formulated in terms of the existence of integral roots of quadratic
polynomials with integer coefficients. Denote by c1, c2, . . . those polynomial.
That is, if we have for instance u1 := x2y7, u2 := u1x2, then we define
c1(u1, x2, y7) := u1 − x2y7 and c2(u2, u1, x2) := u2 − u1x2. In this way,
we achieve that p(x, y) = 0 iff ∃u : p2

n +
∑

i c
2
i = 0, where we denote by

u the collection of all variables added to x and y. Hence, the polynomial

46

q := p2
n+
∑

i c
2
i leads to the sought quartic characterization of the diophantine

set S.

The following is (the simple) half of this lecture:

Proposition (Recursive enumerability of diophantine sets). Every diophan-
tine set is recursively enumerable.

Proof. Let p(x, y) be a characterizing polynomial for the diophantine set.
The statement follows from observing that p(x, y) = 0 is a primitive recursive
predicate which we call P (x, y) and from recalling that a recursively enumer-
able set S is exactly one for which there is a primitive recursive predicate
for which S = {x | ∃y : P (x, y)}.

A basic property of recursively enumerable sets is that the class is closed
w.r.t. unions and intersections. This is easily seen to hold also for diophantine
sets:

Proposition. The class of diophantine predicates is closed w.r.t. (i) con-
junction, (ii) disjunction and (iii) the use of existencial quantifiers.

Proof. Let upper case P s be diophantine predicates and lower case ps their
characterizing polynomials. Then

P1(x) ∧ P2(x)⇔ ∃y1, y2 : p1(x, y1)2 + p2(x, y2)2 = 0,

P1(x) ∨ P2(x)⇔ ∃y1, y2 : p1(x, y1)p2(x, y2) = 0,

∃x2 : P (x1, x2)⇔ ∃y, x2 : p(x1, x2, y) = 0.

16.1 Examples of diophantine predicates

Example 1. x < y is diophantine since it holds iff ∃z ∈ N : x+ z + 1− y = 0.

Example 2. x ≤ y is diophantine since it holds iff ∃z ∈ N : x+ z − y = 0.

Example 3. (x = y) mod z is diophantine since it holds iff ∃n ∈ N : (x +
nz − y)(y + nz − x) = 0.

In a similar vein, we can again use closedness w.r.t. conjunction in order
to show that a concatenation of diophantine functions, f and g say, is again
diophantine, since the predicate y=f(g(x)) holds iff y = f(z) ∧ z = g(x).

16.2 Examples of diophantine functions

Example 1. The remainder function characterized by the predicate r =
rem(a, b) is diophantine since this holds iff (r = a) mod b ∧ r < b.

Example 2. Similarly, the quotient function which corresponds to the predi-
cate q = quo(a, b) is diophantine since this holds iff 0 ≤ a− qb < b.

47

Needless to say, all polynomials with integer coefficients are diophantine
functions.

The by far most tricky example of a function which can be shown to be
diophantine is the exponential function. In fact, this has for a long time been
the bottleneck in the undecidability proof for Hilbert’s tenth problem. We
wont prove this. Once this achieved, we can go through the proof of the fact
that every Turing computable function is recursive. Since the encoding of an
arbitrary Turing machine in terms of recursive functions uses only functions
for which we now known that they are diophantine, one can with a little bit
of effort see that the predicate “the Turing machine halts” is a diophantine
predicate. Following these lines leads to two remarkable consequences:

Theorem (Davies, Putnam, Robinson, Matiyasevich). Every recursively
enumerable set is diophantine.

Theorem (Existence of universal polynomials). There is an n ∈ N and a
polynomial p with integer coefficients such that for any recursively enumerable
set S ⊆ N there exists an s ∈ N so that

S = {x ∈ N | ∃y ∈ Nn : p(s, x, y) = 0}.

Denoting by (n, d) the number of variables and the maximal degree of a
polynomial, then there are universal polynomials known for (n, d) = (58, 4)
(note that the possibility of having d = 4 follows from Skolem’s trick) to
(n, d) = (9, 1.6 ∗ 1045).

The fact that diophantine sets and recursively enumerable sets are the
same leads to the sought undecidability of Hilbert’s tenth problem:

Corollary (Undecidability of H10). Let P be the class of polynomials with
integer coefficients and of degree at most four. (i) There is no algorithm
which upon input of any element p ∈ P decides whether or not p has an
integral root, and (ii) there is no algorithm which upon input of any element
p ∈ P decides whether or not p has a non-negative integral root.

Proof. Assume there would be an algorithm for deciding integral roots. Then
there would be one for non-negative integral roots as well, since we can exploit
the Lagrange four square theorem to the end that 0 ∈ p(Nn)⇔ 0 ∈ p′(Z4n).

Then for any diophantine set S = {x ∈ Nk | ∃y ∈ Nm : p(x, y) = 0}, the
hypothetical algorithm could be used in order to decide x ∈ S for any x. In
other words, every diophantine set would be a recursive set. However, we
known that there are non-recursive sets within the recursively enumerable
sets. An since the latter are exactly the diophantine sets, the assumption
of such an algorithm leads to a contradiction. The fact that we can restrict
ourselves to degree at most four follows from Skolem’s lemma.

While for polynomials with maximal degree two, there exists such an
algorithm, the case of maximal degree three is still open. Similarly, for

48

rational (rather than integral) roots, decidability is an open problem. For
real roots, on the other hand, a result of Tarski implies that the problem
then becomes decidable.

As we will prove in the exercise, one can extend the above undecidability
result in the following direction: let C be any set of cardinal numbers ≤ ℵ0

which is neither empty nor does it contain all such cardinal numbers. Then
the question of whether or not the number of non-negative integral roots
of a polynomial is in C turns out to be undecidable as well. The proof is a
reduction from C = {0} – the undecidability of Hilbert’s tenth problem.

Proposition (Prime number producing polynomials). There is a polynomial
q(y1, . . . , yn, x) with integer coefficients such that the positive integers in its
range are exactly all prime numbers in the sense that

q(Nn+1) ∩ N \ {0} = the set of all primes.

Proof. Primes form a recursively enumerable and thus diophantine set S.
This implies that there is a polynomial p with integer coefficients such that
S = {x ∈ N | ∃y ∈ Nn : p(x, y) = 0}. Defining q(y, x) := x(1− p(x, y)2) then
gives the sought polynomial since this is positive iff p has a root in which
case indeed q(y, x) takes on the value of the corresponding prime.

Following the remark regarding universal polynomials, we obtain that
for prime number producing polynomials ten variables suffice.

A similar construction leads to the following:

Proposition (All computable functions are polynomials - somehow). Let
f : N→ N be any partial recursive function. There exists a polynomial q with
integer coefficients such that for all x, y ∈ N:

y = f(x) ⇔ ∃x0, . . . , xn ∈ N : y = q(x, x0, . . . , xn).

Proof. The graph of f is recursively enumerable and thus diophantine. So
y = f(x) holds iff for a certain polynomial p we have ∃x0, . . . , xn : (1 −
p(x0, . . . , xn, x)2) > 0 ∧ x0 = y.

This in turn is equivalent to ∃x0, . . . , xn : (x0 +1)(1−p(x0, . . . , xn, x)2) =
y + 1. Therefore the sought polynomial can be defined as q(x, x0, . . . , xn) :=
(x0 + 1)(1− p(x0, . . . , xn, x)2)− 1.

Many other interesting consequences can be derived from the equivalence
of recursively enumerable and diophantine sets. One can for instance write
down a polynomial which has an integral root iff the Riemann hypothesis
fails to hold.

Another interesting direction of research is whether or not the proof of
undecidability of Hilbert’s tenth problem can be done within what is called
bounded arithmetic. In that case one would be able to solve a longstanding
problem in theoretical computer science and prove that NP= co-NP...

49

	1 Historical bits and pieces
	1.1 Useful and paradoxical self-references

	2 What's an algorithm?
	3 Turing machines and busy beavers
	3.1 Functions computable by Turing machines
	3.2 Composition of Turing machines
	3.3 Rado's theorem and busy beavers
	3.4 First occurrence of the halting problem
	3.5 Variations

	4 Primitive recursion
	4.1 Primitive recursive relations, sets and predicates
	4.2 Bounded operations

	5 Gödel numbers, codes, indices
	5.1 Multiplicative encoding
	5.2 Pairing functions

	6 Limitations of primitive recursion
	6.1 Relation to modern programming languages

	7 Recursive function vs. Turing computability
	7.1 Wang encoding of the tape & head configuration
	7.2 Encoding the Turing machine instructions
	7.3 Evolution of the Turing machine configuration
	7.4 Halting & output

	8 Basic theorems of recursion theory
	8.1 The recursion theorem and some applications

	9 Rice's theorem and the Church-Turing thesis
	9.1 Church-Turing thesis

	10 Recursive enumerability
	11 The word problem for Thue systems
	11.1 Terminology and notation

	12 Undecidable problems for semigroups
	13 Undecidable problems related to groups and topology
	14 Post's correspondence problem
	15 Undecidable matrix problems
	15.1 Matrix mortality
	15.2 A reachability problem

	16 Hilbert's tenth problem
	16.1 Examples of diophantine predicates
	16.2 Examples of diophantine functions

