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Chapter 1

(De)constructing quantum
mechanics

Quantum mechanics can be regarded as a general theoretical framework for
physical theories. It consist out of a mathematical core which becomes a phys-
ical theory when adding a set of correspondence rules telling us which mathe-
matical objects we have to use in different physical situations. In contrast to
classical physical theories, these correspondence rules are not very intuitive as
linear operators on Hilbert spaces are quite far from everyday life. It is truly
remarkable that Heisenberg, Schrödinger, Dirac, Bohr, von Neumann together
with all the other famous minds of this golden age come up with such a theory.

In this chapter we will briefly review the mathematical formalism of quan-
tum mechanics—abstracting from concrete physical realizations. All quantities
will be dimensionless and h̄ is set to one (although one should keep in mind
that it is actually 10−34Js, in other words: really, really small). Moreover, we
will with few exceptions restrict ourselves to finite dimensional systems. This
suffices to clarify the basic concepts and allows us to achieve this with little
more requirements than linear matrix algebra.

1.1 States and Observables

Preparation and Measurement It is often useful to divide physical experi-
ments into two parts: preparation and measurement . This innocent looking step
already covers one of the basic differences between the quantum and the classi-
cal world, as in classical physics there is no need to talk about measurements in
the first place. Note also that the division of a physical process into preparation
and measurement is ambiguous (see the discussion of time evolution in Sec.1.3)
but, fortunately, in the case of quantum mechanics predictions do not depend
on this choice.

A genuine request is that a physical theory should predict the outcome of any
measurement given all the information about the preparation, i.e., the initial

7



8 CHAPTER 1. (DE)CONSTRUCTING QUANTUM MECHANICS

conditions, of the system. Quantum mechanics teaches us that this is in general
not possible and that all we can do is to predict the probabilities of outcomes
in statistical experiments, i.e., long series of experiments where all relevant pa-
rameters in the procedure are kept unchanged. Thus, quantum mechanics does
not predict individual events, unless the corresponding probability distribution
happens to be tight. We will see later that there are good reasons to believe that
this ‘fuzziness’ is not due to incompleteness of the theory and lacking knowl-
edge about some hidden variables but rather part of natures character. In fact,
entanglement will be the leading actor in that story.

The fact that the appearance of probabilities is not only due to the ignorance
of the observer, but at the very heart of the description, means that the mea-
surement process can be regarded as a transition from possibilities to facts. This
leads to two related conceptual puzzles: (i) we have to specify where this cut
takes place, i.e., where facts appear. This choice is ambiguous but fortunately
irrelevant (as long as we make this cut at some point). (ii) the transition is
intrinsically irreversible and thus in apparent conflict with the usual reversible
way of setting up the theory. Variations of these two themes run under the
name measurement problem.

The preparation of a quantum system is the set of actions which determines
all probability distributions of any possible measurement. It has to be a proce-
dure which, when applied to a statistical ensemble, leads to converging relative
frequencies and thus allows us to talk about probabilities. Since many differ-
ent preparations can have the same effect in the sense that all the resulting
probability distributions coincide it is reasonable to introduce the concept of a
state, which specifies the effect of a preparation regardless of how it has actu-
ally been performed. Note that, in contrast to classical mechanics, a quantum
mechanical ‘state’ does not refer to the attributes of an individual system but
rather describes a statistical ensemble—the effect of a preparation in a statisti-
cal experiment. Although it is quite common, one should neither assign states
to single events nor interpret them as elements of reality.

States as density matrices The division of physical experiments into prepa-
ration of a state and measurement of an observable quantity (an observable) is
reflected in the mathematical structure of quantum mechanics. The mathemat-
ical representation of the set of observables is given by Hermitian elements A
taken from an algebra A (called observable algebra). Just to recall: an alge-
bra is a set which is closed under multiplication and addition as well as under
multiplication with scalars. Moreover, we will assume that each element has
an adjoint, i.e., that there is a Hermitian conjugation operation. The algebras
are usually represented in terms of bounded1 linear operators B(H) acting on
a Hilbert space H. When necessary we will write B(H1,H2) for the bounded
linear operators from a Hilbert space H1 to H2, i.e., B(H) = B(H,H). The

1At this point you might disagree when having position or momentum operators or certain
unbounded Hamiltonians in mind. However, in order to compute observable statistics, only
the spectral projectors of these operators are needed and these are bounded again.
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algebras used will always admit such a representation
A state in turn corresponds to a linear functional mapping observables onto

real numbers—their expectation values 〈A〉. That is, a state is an element of
the dual A∗ of A, i.e., the space of continuous, linear functionals over A. In
order to get a nice interpretation in terms of probabilities, states are required
to be

• normalized : 〈1〉 = 1 (i.e., A should contain a unit element 1) and

• positive: ∀A ∈ A : 〈A†A〉 ≥ 0, where † is the adjoint operation2.

Commonly, the words ‘state’ and ‘observable’ are used to refer to both the
physical concept and the mathematical operator.

We will in the following mainly consider systems of finite dimension d where
A ∈Md

∼= B(Cd) is a d× d matrix with a concrete representation on H = Cd.
In general, A is a C∗-algebra (see Sec.1.6). As inequivalent representations are
usually no issue in finite dimensions, we will largely disregard the distinction
between A and its representations.

The set of complex valued matrices Md can be upgraded to a Hilbert
space equipped with the Hilbert-Schmidt scalar product 〈B,A〉HS := tr

[
B†A

]
.3

Hence, any linear functional can be identified with a matrix itself, so that every
state can be described by a density matrix ρ ∈Md for which normalization and
positivity read tr [ρ] = 1 and ρ ≥ 0 respectively.4 The expectation value of an
observable is then given by

〈A〉 = tr [ρA] . (1.1)

An important property of the set of density matrices is that it is convex , i.e., if
ρi are density operators and λi probabilities, then the mixture

ρ =
∑
i

λiρi (1.2)

is again an admissible density operator. It describes a state which can be
prepared by generating the states ρi with probability λi. If a state ρ has no
non-trivial convex decomposition of the form in Eq.(1.2) it is called pure, and
mixed otherwise. Pure state density operators are one-dimensional projectors
ρ = |ψ〉〈ψ|, so that pure states can equivalently be represented by (normalized)
vectors |ψ〉 ∈ H traditionally called state vectors or wave functions. We will see
that various measures can be used in order to quantify how pure/mixed a given
state is. The simplest one, often called purity , is tr

[
ρ2
]

and ranges from 1
d for

the maximally mixed state ρ = 1/d to 1 which is attained iff the state is pure.

2OK, we will use a compromise in notation: A† for the adjoint, and c̄ for complex conju-
gation. Though, I don’t have the heart of writing C†-algebra.

3The resulting Hilbert space is sometimes called Hilbert Schmidt Hilbert space. Hilbert
Schmidt class operators are those for which the Hilbert Schmidt norm

√
〈A,A〉HS is finite.

4In infinite dimensions this is no longer true in general. There are states (i.e., linear positive
and normalized functionals on an observable algebra) which cannot be represented by density
matrices. These are called singular states as opposed to normal states for which a density
matrix representation exists.
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Note that every mixed state can be convexly decomposed into pure states.
A straight forward way to achieve this is given by the spectral decomposition
ρ =

∑
i λi|ψi〉〈ψi|, where the weights λi are eigenvalues and the |ψi〉 the cor-

responding orthogonal eigenvectors. However, every mixed state has infinitely
many different decompositions into pure states reflecting infinitely many pos-
sibilities of preparing it by mixing pure states. This is a crucial difference to
classical probability theory where the convex set of probability distributions
forms a simplex, meaning that there is a unique decomposition into ‘pure’ ele-
ments. Remember that by definition of a quantum mechanical state there is no
way to distinguish between preparations corresponding to different decomposi-
tions. A hypothetical device which is defined by its capability of achieving this
task is sometimes call mixed state analyzer and often appears together with an
individual state interpretation (for which we already learned to keep our hand
off it). In fact, we will see later that such an innocent looking mixed state
analyzer would immediately lead to a breakdown of Einstein locality when ap-
plied to entangled states. A closely related pitfall is to think of the occurrence
of mixed states in quantum mechanics as a result of ignorance or incomplete
knowledge. While this can be correct in specific cases it not true in general and
we will soon see that it fails in particular if the mixed state is part of a pure
entangled state.

Example 1.1 (Bloch sphere) Two-level quantum systems, qubits (d = 2), are
simpler than higher dimensional ones not just because two is smaller than three, but
very often they turn out to be special and allow for a qualitative different treatment.
One reason for this are the special properties of the three Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1.3)

which, together with the identity 1, form a basis for all 2 × 2 matrices. For any
M ∈ M2(C) we can write M = 1

2
(x01 + ~x · ~σ), where x0 = tr [M ] and ~x · ~σ =∑3

i=1 xiσi, ~x ∈ C
3. M is Hermitian iff x0 and ~x are real and it is positive iff in

addition ||~x||2 ≤ x0. Hence, the set of density matrices

ρ =
1

2

(
1+ ~x · ~σ

)
(1.4)

can be represented by a ball ||~x||2 ≤ 1, the Bloch ball. In this visualization a state
is pure iff ||~x||2 = 1, i.e., it is part of the Bloch sphere. Closer to the center states
become more and more mixed (the purity is given by tr

[
ρ2
]

= 1
2
(1 + ||~x||2)) and for

~x = 0 we have the maximally mixed state. An orthogonal rotation of the Bloch ball
corresponds to a unitary on the level of the density matrix. More precisely,

ρ 7→ U~n,θρU
†
~n,θ, with U~n,θ = e−iθ

~n·~σ
2 = 1 cos

θ

2
− i~n · ~σ sin

θ

2
(1.5)

corresponds to a rotation of the Bloch ball by an angle θ about the ~n axis. Conversely,
every 2× 2 unitary is, up to a phase factor, of the form in Eq.(1.5). This reflects the
isomorphism SO(3) ∼= SU(2)/{−1,1}, i.e., every pair ±U ∈ SU(2) is in one-to-one
correspondence with an element O ∈ SO(3).
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A close relative (if not alter ego) of the Bloch sphere is the Poincaré sphere de-
scribing polarization of light. In this context the north pole, ‘front pole’ and ‘east pole’
correspond to perfect horizontal, 45◦ linear and circular polarization. The components
of the respective vector are then called Stokes parameters.

Measurements An observable in quantum mechanics should be understood
as a measurement procedure in a statistical experiment. Again we consider
equivalence classes of measurement procedures yielding equal probability dis-
tributions when applied to equal preparations. Similar to the individual state
representation we run into trouble if we insist on assigning real entities to ob-
servables. They rather describe how we measure than what we measure.

Let us label distinct measurement outcomes corresponding to an observable
A by an index α and denote their values and probabilities by aα and pα respec-
tively.5 With this the expectation value reads 〈A〉 =

∑
α aαpα. In quantum

mechanics the probabilities pα are calculated by assigning a positive operator
0 ≤ Pα ≤ 1 (called effect operator) to each outcome so that

pα = tr [ρPα] . (1.6)

As probabilities sum up to one we have to require
∑
α Pα = 1. A set of pos-

itive operators fulfilling this normalization condition (being a resolution of the
identity) is called positive operator-valued measure (POVM). POVMs are the
most general concept in quantum mechanics for describing measurements if we
are only interested in probabilities and not in the state after the measurement.
The connection between POVMs and the standard text book notion of observ-
ables as self-adjoint operators in Eq.(1.1) is given by the spectral decomposition
A =

∑
α aαPα. Here the Pα are now orthogonal projectors onto the eigenspaces

of A with corresponding eigenvalues aα. Clearly, the spectral projectors form a
POVM and the formulas for the expectation value become consistent if one in-
terprets the eigenvalues as measurement outcomes. However, POVMs need not
consist out of orthogonal projectors, which is why they are sometimes called
generalized measurements as opposed to von Neumann measurements in the
case of spectral projectors.

Two observables given by POVMs {Pα}, {Qβ} are jointly measurable iff there
is a ‘finer’ POVM {Rαβ} which recovers them as ‘marginals’, i.e.,

∑
αRαβ = Qβ

and
∑
β Rαβ = Pα. A set of von Neumann measurements is jointly measurable

iff the corresponding Hermitian operators commute pairwise (and can thus be
all diagonalized simultaneously).

Problem 1 (What’s physical?) Is, in every given physical context, every ob-
servable (i.e., every POVM) principally measurable?6 Or similarly, does every state
correspond to a physically possible preparation procedure? Are there well-defined sys-
tems where an observable when measured would provide the answer to an undecidable
problem? If in some physical context some observable cannot be measured, can we

5To avoid subtleties in measure theory we assume that the set of measurement outcomes
is finite. From a practical point of view this is justified by finite resolutions of any apparatus.

6Is there more to say than ‘it’s a matter of energy’?
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always get rid of the ‘redundant part’ in the theoretical description? Is there a way of
making sense out of these questions?

Problem 2 (Joint measurability vs. coexistence of effects) A POVM can
be viewed as a mapping from subsets of possible measurement outcomes to the set
of positive semidefinite (psd) operators. More precisely, if X is a (not necessar-
ily discrete) measurable set characterizing all possible measurement outcomes, then
X ⊇ x 7→ P (x) is a POVM if it is a consistent assignment of psd operators with
P (x) ≥ 0 and P (X) = 1. For the above discrete case this means P (x) =

∑
α∈x Pα.

Two POVMs P and Q are said to be coexistent if there is a POVM R whose
range (as a mapping into psd operators) includes the ranges of both P and Q. For
von Neumann measurements as well as for the case of P and Q being two-valued,
coexistence and joint measurability are known to be equivalent. Which is the general
relation?

Problem 3 (Uniqueness of joint measurements) Given two jointly measur-
able POVMs {Pα} and {Qβ}. Find necessary and/or sufficient conditions for the joint
observable {Rαβ} to be unique.

1.2 Composite systems & entanglement

Quantum theory replaces the Cartesian product, which classical theories use
in order to describe composite systems, by the tensor product. The algebra of
observables for a composite system is for instance given by the tensor product
A⊗ B of their observable algebras A and B. The Hilbert space H = HA ⊗HB
then becomes a tensor product as well and the number of discrete degrees of
freedom increases to dimH = dimHA dimHB . HA is said to correspond to a
subsystem of H, but we may later loosen this notion to the extent that Ha is a
subsystem of H if

H = Ha ⊗Hb ⊕Hc. (1.7)

A composite system or bipartite system always refers to a tensor product.
The simplest states of a composite system are product states, i.e., tensor products
of individual states. States which do not factorize are said to exhibit correla-
tions, as for some observables 〈A⊗B〉 6= 〈A⊗1〉〈1⊗B〉. This is usually written
in a shorter form by introducing the reduced density operator ρA defined via
tr [ρAA] = tr [ρ(A⊗ 1)] for all A ∈ A. The mapping trB : ρ 7→

∑
b〈b|ρ|b〉 = ρA

with {|b〉} an orthonormal basis in HB is called partial trace and the resulting
ρA is sometimes called a marginal of ρ.

A special type of correlations are those which can be of classical origin:
assume a state is given by a convex combination of product states7

ρ =
∑
x

px ρ
(A)
x ⊗ ρ(B)

x , (1.8)

7Here we could choose pure product states as well, since it follows from Caratheodory’s
theorem that a density matrix of the form (1.8) can always be decomposed into at most
rank(ρ)2 pure product states. Note also that positivity of the px’s is crucial: if we allow for
px ∈ R then every state admits a representation like (1.8).
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then one way of preparing ρ is to draw a classical random variable x from the

probability distribution p and to prepare a product state ρ
(A)
x ⊗ρ(B)

x conditioned
on x. With this motivation a state of the form (1.8) is called classically cor-
related or synonymously separable or unentangled. Entanglement is defined as
its negation. An equivalent operational definition of classical correlations (to
which we will get back later) is as those which can be generated by means of
arbitrary local operations and classical communications.

Talking about ‘local operations’ and ‘communication’ already indicates that
here and in the following we usually assume that the systems corresponding to
different tensor factors are situated at distant locations. Such a distant location
paradigm is not really necessary. However, it prevents us from misconceptions
appearing when the apparently entangled systems are not spatially separated.
This also avoids an extra discussion of systems of indistinguishable particles
for which otherwise a proper definition of entanglement becomes a more subtle
issue.

Obviously, pure states are separable if and only if they are product states.
That is, any kind of correlation is then due to entanglement and in this sense
non-classical. Since entanglement properties are independent of the choice of
local bases, we may bring a pure state into a simple normal form:

Proposition 1.1 (Schmidt decomposition) For every vector |ψ〉 ∈ HA ⊗
HB with d = min{dim(HA),dim(HB)} there exist orthonormal bases {ej ∈ HA}
and {fj ∈ HB} such that

|ψ〉 =

d∑
j=1

√
λj |ej〉 ⊗ |fj〉, with λj ≥ 0,

∑
i

λi = ||ψ||2 (1.9)

The coefficients {
√
λj} are called Schmidt coefficients and the number of non-

zero λj is the Schmidt rank of ψ. Prop.1.1 is easily proven by noting that
a change of local bases in a general decomposition |ψ〉 =

∑
a,b Ca,b|a〉 ⊗ |b〉

corresponds to left and right multiplication of the coefficient matrix C with two
different unitaries. Hence, we can choose unitaries diagonalizing C such that
the Schmidt coefficients are the singular values of C.8 We will briefly summarize
some implications of the Schmidt decomposition:

• Reductions and purifications. The reduced density operators of ψ are
diagonal in the bases {ej} and {fj} and the λj ’s are their non-zero eigen-
values. Conversely, given any density matrix ρA with spectral decompo-
sition ρA =

∑
j λj |ej〉〈ej | Eq.(1.9) provides a purification such that ρA =

trB [|ψ〉〈ψ|]. The minimal dilation space Hmin
B has dim(Hmin

B ) = rank(ρA).
If ψ ∈ HA ⊗ Hmin

B is a purification then all other purifications of ρA are
of the form |ψ′〉 = (1⊗ V )|ψ〉 with V ∈ B(Hmin

B ,HB) an isometry.

• Monogamy. The Schmidt decomposition tells us that pure states cannot
be correlated with any other system: a pure state as a reduced density

8This makes clear that the bases {ej} and {fj} depend on ψ.
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operator means that any possibly larger, composite system is in a product
state. Hence, correlations contained in pure states are monogamous and
cannot be shared with any other system. This in sharp contrast to classical
correlations (1.8). In fact, an equivalent way of characterizing classical
correlations is (by the quantum de Finetti theorem) as those which can
be symmetrically shared with an arbitrary number of other parties.

• Mixed states. As a density operator ρ ∈ B(HA ⊗ HB) is itself a ‘vector’
(although not normalized) in the Hilbert-Schmidt Hilbert space, we can
find a decomposition analogous to (1.9) of the form

ρ =
∑
j

√
µjEj ⊗ Fj , µj ≥ 0, (1.10)

where {Ej} and {Fj} are sets of orthonormal operators w.r.t. the Hilbert-
Schmidt scalar product. Then tr

[
ρ2
]

=
∑
j µj and ρ being classically

correlated can be shown to imply
∑
j

√
µj ≤ 1.

Example 1.2 (Tricks with maximal entanglement) If all Schmidt coefficients
of a pure state φ are λj = 1/d, then φ is called maximally entangled9 of dimension d.
Every maximally entangled state is of the form φ = (1⊗U)|Ω〉 where U is any unitary
and

|Ω〉 =
1√
d

d∑
j=1

|jj〉. (1.11)

Note that by using a basis of Hilbert-Schmidt orthogonal unitaries {Uj}j=1,...,d2 we
can construct an orthonormal basis of maximally entangled states {(Uj ⊗ 1)|Ω〉} for
C
d ⊗Cd. Ω has a series of useful properties, like ∀A,B ∈ B(Cd):

〈Ω|A⊗B|Ω〉 =
1

d
tr
[
ATB

]
, (A⊗ 1)|Ω〉 = (1⊗AT )|Ω〉, (1.12)

where the transposition has to be taken in the Schmidt basis of Ω. This implies that (i)
(U ⊗ Ū)|Ω〉 = |Ω〉 for all unitaries U and (ii) every pure state ψ with reduced density
operator (ρB) can be written as10

|ψ〉 = (1⊗R)|Ω〉, (1.13)

where R =
√
dρBV and the isometry V takes care of adjusting the different Schmidt

bases.11

Identifying basis vectors in HA and HB (assuming they are of the same dimension)
leads to a good friend of Ω: the flip (or swap) operator, defined as F|ij〉 = |ji〉. They

9The name ‘maximally entangled’ is justified for instance by the fact that every other state
(of the same dimension) can be obtained with unit probability from a maximally entangled
one by means of local operations and classical communication.

10Clearly, ρA has to be supported by the Schmidt basis of Ω.
11 Eq.(1.13) is essentially the observation of Schrödinger who at that time was rather puzzled

about this consequence of quantum mechanics. In his own words: “It is rather discomforting
that the theory should allow a system to be steered or piloted into one or the other type of
state at the experimenter’s mercy in spite of his having no access to it”. The analogue of
Eq.(1.13) in quantum field theory is the Reeh-Schlieder theorem where the subsystem is any
open, bounded region in Minkowski-space and the vacuum plays the role of Ω.
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can be interconverted by partial transposition12 as d|Ω〉〈Ω|TA = F and the equivalent
of (1.12) is

tr [(A⊗B)F] = tr [AB] , (A⊗ 1)F = F(1⊗A). (1.14)

A useful representation of F is in terms of any orthonormal13 basis of operators
{Gi}i=1..d2 as

F =

d2∑
i=1

Gi ⊗G†i . (1.15)

Problem 4 (Separability problem) Consider small bipartite systems associated
to H = C

3⊗C3 or H = C
2⊗C4 (but feel free to be more ambitious). Find an efficient

and certifiable algorithmic way of deciding whether any density operator ρ ∈ B(H) is
separable or not. Here, efficiency refers to a run-time which scales polynomially with
the length of the specified input and also with the inverse of a reasonably chosen ‘error’.

1.3 Evolutions

Time plays a special role in quantum mechanics. Unlike most other quantities
it is in a sense treated classically—described by a parameter rather than an
operator14. When dealing with time evolution one typically distinguishes a
special case: the evolution of closed systems. Closed systems (as opposed to
open systems) are those for which the evolution is physically reversible. One
might argue that this concept is at the root of the measurement problem and is
therefore disputable, but this is a different story.

As quantum mechanics divides every physical process into preparation and
measurement there are different (but in the end equivalent) ‘pictures’ depicting
time evolution: we may treat the evolution as part of the preparation process,
as part of the measurement process or split it up between the two. This leads
to the Schrödinger picture, the Heisenberg picture or an interaction picture.

Closed systems and reversible evolutions Depending on the chosen pic-
ture we will describe the evolution for a given time as a linear transformation
on observables A 3 A 7→ u(A) (Heisenberg picture) or on states ρ 7→ u∗(ρ)
(Schrödinger picture) where consistency imposes the relation

tr [ρu(A)] = tr [u∗(ρ)A] , (1.16)

i.e., u and u∗ are mutually dual or adjoint maps. Physically reversible evolutions
should be described by mathematically reversible transformations (the converse

12 The partial transpose of an operator C ∈ B(HA ⊗HB) is defined w.r.t. a given product
basis as 〈ij|CTA |kl〉 := 〈kj|C|il〉.

13meaning tr
[
G†iGj

]
= δij .

14Pauli gave the following simple argument against the existence of a self-adjoint operator
T satisfying [T,H] = i1 with H a Hamiltonian: take T as the generator of a unitary group
eihT and let this act on an eigenstate of H with eigenvalue E, then we get another eigenstate
with energy E + h. The spectrum of H is thus continuous and in particular it cannot be
semi-bounded. This argumentation, however, gets some loopholes when considering issues of
the domains of the operators.
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is not true). Moreover, the concatenation of evolutions is naturally considered
to be associative (i.e., (uv)w = u(vw)) and should again lead to an admissible
evolution. Consequently, the set of reversible evolutions is described by a group
of linear transformations. This is in addition supposed to preserve the structure
of the algebra A in the sense that for all A,B ∈ A: u(AB) = u(A)u(B), u(A†) =
u(A)† and ||u(A)|| = ||A||. In other words the set of reversible evolutions is
identified with the group aut(A) of linear automorphisms of A.

A subgroup of such automorphisms, which are then called inner, is formed
by the unitary elements U ∈ A via u(A) = U†AU or equivalently

ρ 7→ UρU†. (1.17)

Clearly, if two unitary elements in A differ only by a phase they give rise to
the same automorphism. More generally, this is true iff they differ by a unitary
V ∈ A which commutes with all A ∈ A (i.e., V is in the center of A).

For A =Md (the case we are interested in the following) all automorphisms
are inner. However, if we either restrict A or consider an infinite dimensional
case this is no longer true in general. Take for instance the algebra of diagonal
matrices. Then the only inner automorphism is the identity map id(A) = A.
Yet there is obviously a representation for which other automorphisms (like
permutations) have the form u(A) = U†AU with U a unitary, albeit none
corresponding to an element in A. Such automorphisms are called spatial (w.r.t.
a given representation) or unitarily implementable.

We say that a reversible evolution is homogeneous in discrete time if after
n time steps it is described by the n’th power of a unitary U which describes
the evolution for a single time step. The pendant in continuous time is a one-
parameter group of unitaries Ut satisfying UtUr = Ut+r for all t, r ∈ R. Impos-
ing continuity in the form (Ut − U0)|ψ〉 → 0 for t → 0 and all ψ ∈ H, Stone’s
theorem asserts that there is a unique self-adjoint operator H (the Hamiltonian
or infinitesimal generator) such that

Ut = exp (iHt). (1.18)

Let us finally have a look at a different approach towards the statement
that reversible evolutions are associated to unitaries acting on Hilbert space.
Imagine a reversible mapping from the set of normalized pure states S := {ψ :=
|ψ〉〈ψ|} ⊂ B(H) onto itself. Two obvious types of such mappings are ψ 7→ UψU†

with U being a unitary and ψ 7→ ψT a transposition in some basis. The following
theorem asserts that these are in fact the only possibilities which preserve the
norms of scalar products:

Theorem 1.1 (Wigner’s theorem) Let S : S → S be a bijective mapping
such that tr [S(ψ)S(φ)] = tr [ψφ] for all ψ, φ ∈ S. Then S falls in one of the
two following classes:

• Unitary. There exists a unitary U such that S(ψ) = UψU† for all ψ ∈ S.
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• Antiunitary15. There exists a unitary U such that S(ψ) = UψTU† for all
ψ ∈ S.

Wigner’s theorem has various nice consequences. A simple one is the following:

Corollary 1.1 (Spectrum preserving maps) Let T :Md(C)→Md(C) be
a linear map which is Hermitian (i.e., T (X)† = T (X†) for all X) and spectrum
preserving on Hermitian matrices. Then there is a unitary U such that T is
either of the form T (X) = UXU† or T (X) = UXTU†.

Proof Note first that preservation of the spectrum as a set implies its preser-
vation counting multiplicities. This follows from continuity of linear maps: sup-
pose the multiplicities are not preserved. Then there is at least one eigenvalue
whose multiplicity is larger for the input operator than for its image. By per-
turbing the input we see that this would contradict continuity—so multiplicities
have to be preserved as well.

Consider two Hermitian rank-one projections φ, ψ ∈Md(C). The spectrum
of the matrix M := φ+ψ is given by 1±

√
tr [φψ]. Since T is linear, Hermitian

and spectrum preserving we obtain from applying T to M that tr [T (φ)T (ψ)] =
tr [φψ] so that application of Wigner’s theorem completes the proof.

Open systems and irreversible dynamics Irreversible dynamics is usually
regarded as a consequence of considering only part of a larger system which
(together with the unobserved part) undergoes reversible evolution. We will
for the moment, however, not make use of this viewpoint and rather discuss
briefly the general requirements of descriptions of physical evolution—reversible
or not. Later we will find that all these evolutions have indeed a mathematical
representation in terms of the mentioned reversible system-plus-environment-
dynamics.

Consider an evolution which, in the Schrödinger picture, is described by a
map T : B(H)→ B(H′). When describing a physically meaningful evolution T
should fulfill the following three conditions:

• Linearity. This is an inherent quantum mechanical requirement. We will
see in Sec.1.4 that it is related to locality, i.e., the fact that a spatially
localized action does not instantaneously affect distant regions. Linearity
means that

∀A,B ∈ B(H), c ∈ C : T (cA+B) = cT (A) + T (B). (1.19)

• Preservation of the trace. T has to map density operators onto density
operators. Since every element in B(H) is a linear combination of density
operators we obtain by virtue of linearity

∀A ∈ B(H) : tr [T (A)] = tr [A] . (1.20)

15This name stems from the fact that if we imagine the action of S on H then it involves
complex conjugation, i.e., it is anti-linear rather than linear on H.
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• Complete positivity. Another consequence of linearity together with asking
T to map density operators onto density operators is that it has to be a
positive map, i.e., T (A†A) ≥ 0 for all A ∈ B(H). Positivity alone is,
however, not sufficient: consider H as part of a bipartite system so that
the evolution of the larger system is described by T ⊗ id. That is, the
additional system merely plays the role of a spectator as the evolution on
this part is the trivial one. Yet T ⊗ id should again be a positive map—a
requirement which is stronger than positivity. So the relevant condition
is complete positivity of T which means positivity of the map T ⊗ idn for
all n ∈ N where idn is the identity map on Mn.

For the map T ∗ : B(H′)→ B(H) describing the same evolution in the Heisen-
berg picture via tr [T (ρ)A] = tr [ρT ∗(A)] the conditions linearity and complete
positivity remain the same, only the trace preserving condition translates to
unitality

T ∗(1) = 1. (1.21)

A mapping which fulfills the above three conditions (either in Heisenberg
or Schrödinger picture) is called a quantum channel. Quantum channels are
the most general framework in which general input-output relations (i.e., black
box devices) are described within quantum mechanics. It is crucial, however,
that the mapping itself does neither depend on the input nor on its history. If
such correlations appear, then the above black box description becomes inap-
propriate and either a larger system (including ‘the environments memory’) has
to be taken into account or a consistent effective description has to be found.
When talking about quantum channels in the following we will always mean
the Markovian or synonymously memory-less case in which such correlations or
dependencies do not occur.

Unlike positivity, complete positivity of a linear map is rather simple to
check in finite dimensions:

Proposition 1.2 (Checking complete positivity) A linear map T : B(H)→
B(H′) is completely positive iff (T ⊗ idd)(|Ω〉〈Ω|) ≥ 0, where Ω is a maximally
entangled state of dimension d = dimH.

Proof Necessity of the condition follows from the definition of complete posi-
tivity. In order to prove sufficiency let us begin with an arbitrary n and density
operator ρ ∈ B(H ⊗Cn). Then (T ⊗ idn)(ρ) ≥ 0 if the same holds true for all
pure states appearing in the spectral decomposition of ρ. By Eq.(1.13) we can
write every such pure state in the form (1d ⊗ R)|Ω〉 with some R ∈ B(H,Cn).
Together with the fact that positive semidefiniteness of an operator B implies
that of ABA†, this concludes the proof.

We will later on see that the operator (T ⊗ idd)(|Ω〉〈Ω|) called Jamiolkowski
state (or Choi matrix when multiplied by d) contains in fact all information
about T .
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Probabilistic operations and Instruments The trace preserving condition
(or unitality in the Heisenberg picture) reflects the normalization of probabil-
ities. That is, quantum channels (trace preserving, completely positive linear
maps) describe quantum operation which succeed with unit probability. When
measurements are involved we may, however, relax this condition and consider
as well linear completely positive maps T which are trace non-increasing in the
sense that tr [T (A)] ≤ tr [A] for all A ∈ B(H) (or equivalently T ∗(1) ≤ 1).
The interpretation of such a map is that it only succeeds upon an input state ρ
with probability p = tr [T (ρ)] and in this case yields the output density matrix
T (ρ)/p. Such maps are sometimes called probabilistic or stochastic (although
this notion is more than doubly occupied) or filtering operations. This leads
directly to the concept of an instrument :

In the Schrödinger picture an instrument is a set of completely positive linear
maps {Ti} whose sum

∑
i Ti is trace preserving (i.e.,

∑
i T
∗
i (1) = 1). The label

i (which might as well be a measurable continuous set) can be interpreted as
the outcome of a measurement which occurs with probability pi = tr [Ti(ρ)] and
conditioned on which the density matrix transforms as ρ 7→ Ti(ρ)/pi.

Instruments encompass both, the concept of a quantum channel (when ig-
noring i and considering only T =

∑
i Ti) and the concept of a POVM (when

ignoring the state at the output and only dealing with the set of effect operators
{T ∗i (1)}).

Note that every POVM corresponds to an entire equivalence class of instru-
ments rather than to a single one. This reflects the fact that a POVM alone
does not determine the state after the measurement. A simple type of instru-
ments realizing any POVM with effect operators {Pi} is the Lüders instrument
for which

Ti(ρ) =
√
Piρ
√
Pi. (1.22)

But obviously the instruments Ti(ρ) = U
√
Piρ
√
PiU

† (with U any unitary)
or Ti(ρ) = tr [ρPi] and many others correspond to the same POVM. The last
example may describe situations in which the quantum system ‘disappears’ after
the measurement.

Let us finally see how we can use the concept of an instrument to get a
strengthened and operational version of Eq.(1.13):

Proposition 1.3 (Quantum steering) Let ρ ∈ B(HA) be a density operator
with purification |ψ〉 ∈ HA ⊗HB. For every convex decomposition ρ =

∑
i λiρi

there is an instrument {Ti : B(HB) → B(HB)} acting on Bob’s system such
that

λiρi = trB [(id⊗ Ti)(|ψ〉〈ψ|)] . (1.23)

Proof W.l.o.g. we can assume that ψ is a minimal purification (dimHB =
rank[ρ] =: d) and write |ψ〉 = (

√
dρ ⊗ 1)|Ω〉 where Ω is a maximally entangled

state of dimension d with the same Schmidt bases as ψ. Moreover, we exploit
that for every linear map Ti:

(id⊗ Ti)(|Ω〉〈Ω|) = (θT ∗i θ ⊗ id)(|Ω〉〈Ω|), (1.24)
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where θ : B(HB)→ B(HB) is the matrix transposition w.r.t. the Schmidt basis
of Ω.16 Putting these two things together we obtain for any linear map Ti that

trB [(id⊗ Ti)(|ψ〉〈ψ|)] =
√
ρ
(
T ∗i (1)

)T√
ρ. (1.25)

Therefore, an instrument will satisfy Eq.(1.23) if it corresponds to a POVM
{T ∗i (1)} which fulfills T ∗i (1) = λiρ

−1/2ρTi ρ
−1/2 on the range of ρ. One possible

choice is thus T ∗i (A) = KiAK
†
i with Ki := ρ−1/2

√
λiρTi ⊕ (δ1,i1) where the

second term in the direct sum acts on the kernel of ρ.

The interpretation of this is the following: assume Alice and Bob share the
state ψ, then Bob can generate not only any single state on Alice side (which is
in the support of her local density operator) but he can engineer every ensemble
{λiρi} consistent with her reduced density matrix. In order to ‘steer’ the state
ρi on Alice’s side, Bob can apply the described instrument. For every single
event he has to report to Alice whether or not his operation was successful (i.e.,
he received an outcome i) which happens with probability λi. If Alice then
performs any statistical experiment using only events for which Bob reported
success, her state will be ρi. The following provides the maximum probability
of success:

Proposition 1.4 (Maximal weight in convex decomposition) Let ρ and
ρ1 be two density operators acting on the same space. There exists a convex
decomposition of the form ρ =

∑
i λiρi with λ1 > 0 iff supp(ρ1) ⊆ supp(ρ) and

λ1 ≤ ||ρ−1/2ρ1ρ
−1/2||−1

∞ , (1.26)

where the inverse is taken on the range of ρ.

Proof The necessity of the condition for the supports is evident since adding
positive operators can never decrease the support. The existence of a decomposi-
tion is equivalent to ρ−λ1ρ1 ≥ 0 which can be rewritten as 1 ≥ λ1ρ

−1/2ρ1ρ
−1/2

from which the statement follows.

1.4 Linearity and locality

Locality is one of the most basic concepts in physics. It runs under various
names like Einstein locality, no-signaling condition or the non-existence of a
Bell telephone17. Its meaning is essentially that a spatially localized action
does not (instantaneously) influence distant parts. Evidently, this is a crucial
ingredient when we want to talk about small systems without always having to
take the entire rest of the universe into account.

16Eq.(1.24) is a simple exercise which can be solved using the tools presented in Example
1.2. Of course, it can also be directly seen from a Kraus decomposition of Ti.

17Did anybody tell this the Bell telephone company?
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Quantum mechanics is by construction a local theory. 18 In order to see
this, consider a bipartite system prepared in any initial state ρ ∈ B(HA ⊗HB)
and act with a quantum channel T on Bob’s system only. The reduced density
operator on Alice’s side is then given by

trB [(id⊗ T )(ρ)] = trB [ρ], (1.27)

where we used that T ∗(1) = 1 which together with the tensor product structure
implies that Alice is not affected by Bob’s action, i.e., ρA is independent of T .

In fact, quantum mechanics exhibits a stronger form of locality/independence,
sometimes called Schlieder property : not only is Bob unable to communicate to
Alice by local operations, but Alice is unable to gain any information about
Bob’s system (when she is constrained to local operations and does not know
the overall state). This follows from the simple fact that every reduced density
matrix ρA is compatible with every other reduced density matrix ρB since there
is always a joint state (like ρA ⊗ ρB) which returns both as marginals.19

In the following we will see that locality (in the sense of no-signaling) is
strongly connected to linearity of quantum mechanics. The argument for this
comes in two flavors: (i) making explicit use of the formalism of quantum me-
chanics one can show that any sort of non-linearity would imply a breakdown of
locality (unless we modify some of the framework, e.g., by imposing additional
restrictions). (ii) The existence of certain observable correlations predicted by
quantum mechanics allows to rule out specific non-linear devices. So, while the
second argument is weaker in the sense that it relates only a particular observ-
able form of non-linearity to non-locality, it is stronger in that it applies to every
theory which predicts the required correlations.

Non-linear evolutions and mixed state analyzers Suppose there is a
physical device which is characterized by a non-linear map N on density opera-
tors, i.e., one for which there exists a convex decomposition of a density operator
ρ =

∑
i λiρi such that ∑

i

λiN(ρi) 6= N
(∑

i

λiρi

)
. (1.28)

Such a device can be used to break the no-signaling condition. In order to see
this recall the steering result of Prop.1.3 and assume that ρ is Alice’s reduced
state of a bipartite pure state ψ. If Bob leaves his part untouched (or equiva-
lently, discards it) and Alice applies her non-linear device, then N(ρ) describes
her state. If, however, Bob applies an instrument {Ti} tailored to prepare ρi on
Alice’s side with probability λi, then Alice’s state will be

∑
i λiN(ρi). As this is,

18There is a very unfortunate use of the notion ‘non-locality’ as an attribute of quantum
mechanics. This is used in order to express that certain correlations predicted by quantum
mechanics do not admit a description within a local hidden variable theory.

19Usually, this is invoked in the context of algebraic quantum field theory where the state-
ment is that AB = 0 implies that either A = 0 or B = 0 if A and B are elements of observable
algebras corresponding to spacelike separated regions.
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by the non-linear character of Alice’s mysterious machine, different from N(ρ),
she is able to distinguish the two cases with a probability of success which is
strictly bigger than one half. That is, by only looking at her local system she can
gain information about whether or not Bob applied the instrument—something
in conflict with the no-signaling condition.

The same type of argument holds for mixed state analyzers, i.e., hypothetical
devices which are capable of telling us whether the ‘true’ decomposition of a
state is ρ =

∑
i λiρi or ρ =

∑
i λ̃iρ̃i. If such a machine existed (and Alice

possesses it) then we could again think about Bob transmitting information to
Alice by choosing one out of two instruments to apply on his subsystem.

The above arguments may not be on firm enough grounds to force us to
conclude that quantum mechanics does not allow non-linear processes. How-
ever, they show at least that a naive incorporation of such processes comes in
conflict with locality unless we impose additional restrictions and/or modify the
framework.

A sequence of impossible machines Some non-linear devices can be speci-
fied by their observable action and thus without going too much into the details
of the theory. An example of this kind is the cloning device for which it is
usually argued that its impossibility within quantum mechanics follows from
the linearity of quantum mechanical evolutions. While this is certainly true,
this reasoning misses an important point. After all, the Liouville equation of
motion for classical mechanics is linear as well but we would hardly argue that
this implies impossibility of making a copy of a classical system. Evidently,
the difference is the absence of a theory of measurements in classical mechan-
ics, i.e., the tacit assumption that we can in principle observe any detail of
a system in classical mechanics without causing disturbance. A more careful
derivation of the quantum no-cloning theorem should thus take measurements
and re-preparations into account. It turns out, however, that the validity of
the no-cloning theorem goes far beyond the particular framework of quantum
mechanics and is implied by the no-signaling condition when supplemented by
the existence of certain observable correlations. This argument can be nicely
embedded in a remarkable chain: a series of hypothetical devices where the
existence of each would imply the possibility of all subsequent ones, and where
the last in the row is the Bell telephone – a device capable of breaking the
no-signaling condition. So if we want to retain locality we are forced to accept
no-go statements for all the devices of the hierarchy and within all theories
which are consistent with the required correlations. The hierarchy is build up
of the following devices:

• Classical teleportation is the process of converting an unknown system into
classical information (a bit string or punchcard) and then re-preparing it
again such that no statistical test could distinguish between the original
and the re-prepared system.20 A classical teleportation device thus con-

20The difference between classical teleportation and entanglement-assisted teleportation (of-
ten just called teleportation) is that in the latter case the re-preparation requires more than
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sists out of two parts: a measurement device and a repreparation machine.

• Cloning, i.e., generating statistically indistinguishable duplicates for arbi-
trary systems, is clearly possible if we are able to do classical teleportation—
we just make a copy of the classical bit string and feed it into two reprepa-
ration machines. Cloning in turn enables:

• Measuring without disturbance, meaning that every type of measurement
can be performed without changing the statistics of any other subsequent
measurement. A slightly weaker version of this is the possibility of

• Joint measurements of any pair of observables. This requires that the
statistics of the joint measurement is the same as the one for individ-
ual measurements. The asumed existence of a joint measurement device
implies the possibility of a

• Bell telephone, a hypothetical device which enables two distant parties to
break the no-signaling condition.

Whereas all previous implications are fairly obvious, the last one requires an
additional ingredient—specific correlations between the two parties—and some
background knowledge: suppose Alice is given a joint measurement device which
she uses to measure two observables A1 and A2 yielding outcomes a1, a2 with
probability p(a1, a2). If Bob, at a distance, measures an observable B1 with
outcome b1, then they observe in a statistical experiment a joint probability
distribution p(a1, a2, b1|B1) so that21

p(a1, a2) =
∑
b1

p(a1, a2, b1|B1). (1.29)

However, in a no-signaling theory this has to be independent of Bob’s chosen ob-
servable, i.e., a possibly measured p(a1, a2, b2|B2) has to have the same marginal
p(a1, a2). Assume that Bob chooses B1 or B2 at random so that they measure
both triple distributions albeit not simultaneously as they come from disjoint
statistical ensembles. Nevertheless we can write down a joint distribution

p(a1, a2, b1, b2) :=
p(a1, a2, b1|B1)p(a1, a2, b2|B2)

p(a1, a2)
, (1.30)

which by construction correctly returns all measured distributions as marginals.
As a result, the existence of a joint measurement device implies a joint prob-
ability distribution (1.30) if the no-signaling condition is invoked. The point
is now that not all pair distributions p(ai, bj |Ai, Bj) allow such a joint distri-
bution. The conditions under which a joint distribution exists are called Bell
inequalities. These are, however, known to be violated by certain measurements

just the classical information, namely the remaining part of an entangled state.
21As common in classical probability theory we use the notation p(·|·) where right of the

dash is the condition which the probability is subject to. In our case this is the observable
which is measured.



24 CHAPTER 1. (DE)CONSTRUCTING QUANTUM MECHANICS

performed on particular entangled quantum states. Accepting this as a fact, the
conclusion must be: either the no-signaling condition is violated or a universal
joint measurement device, and with it the entire above hierarchy, is impossible.
Even on Sundays such strong implications come rarely so cheap.

The quantum Boltzmann map is a special case of a non-linear map—
an analogue of a map Boltzmann introduced in classical statistical mechanics
in connection to the ‘Stosszahlansatz’. It is defined as T : B(HA ⊗ HB) →
B(HA ⊗HB) via

TQB(C) = trB [C]⊗ trA[C], (1.31)

and sometimes also called Zwanzig projection. For a density operator ρ we get
TQB(ρ) = ρA⊗ρB , i.e., TQB ‘breaks’ all correlations between the two subsystems
while retaining the local states. Its appearance in statistical mechanics stems
from the fact that it maximizes the global entropy under given local constraints.

1.5 Do we need complex numbers?

No, but there are good reasons to use them.
The algebras and Hilbert spaces used in the formulation of quantum me-

chanics are almost exclusively over the field of complex numbers. Of course,
we may express everything in terms of real and imaginary parts, and thus
by real numbers, but can we do so without ever writing ’i’? This is, actu-
ally, simple (although in the end not recommended): consider the mapping
Md(C) 3 A 7→ Ã ∈M2d(R) given by

Ã := R(A⊕Ā)R† =
1

2

(
ReA −ImA
ImA ReA

)
with R :=

1√
2

(
1 1

−i1 i1

)
. (1.32)

Sine R is a unitary we obtain for the trace of a product of matrices:

tr

[∏
i

Ãi

]
= 2Re tr

[∏
i

Ai

]
, (1.33)

and if A is Hermitian, positive or unitary22, Ã will be so as well. Furthermore,
a complex POVM will be mapped onto a real one and by introducing a real
density operator ρr := ρ̃/2 a unitary time-evolution of the expectation value of
a Hermitian operator A can by Eq.(1.33) be written in a purely real form:

tr
[
ρUAU†

]
= tr

[
ρrŨ ÃŨ

T
]
. (1.34)

If ρ corresponds to a pure state, then ρr will have rank two. However, we can
safely replace it by any (real) rank-one projection |ψ〉〈ψ| which is in the support

22An element of U(n) will be mapped onto a special orthogonal matrix which is symplectic
as well. Eq.(1.32) is then nothing but the group isomorphism U(n) ' Sp(2n,R)∩SO(2n,R).
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of ρr so that the expectation value in (1.34) wont change. In this way we may
even replace the Schrödinger equation by a real counterpart ∂t|ψ〉 = H|ψ〉, where
H is real and anti-symmetric. The ambiguity in choosing ψ in the support of ρr
may be compared to the irrelevance of a global phase in the complex framework.

The main drawback of the discussed real representation is the description
of composite systems. Clearly, ˜A⊗B 6= Ã ⊗ B̃ so that composite systems are
no longer associated to a tensor product—we have to make use of the tensor
product in the complex framework. Alternatively we could try to double the
dimension for each tensor factor separately (and actually use Ã ⊗ B̃). In this
case, however, the total dimension would not only depend on the number of
degrees of freedom but, quite inconveniently, also on the way we group them
into subsystems (something which might change during a calculation or which
we might not want to fix beforehand).

Of course, one can think about other ways of representing the expectation
values of complex quantum mechanics by using real Hilbert spaces. In the end
we are, however, always faced with the problem that the dimensions of tensor
products do not mach unless we invoke some unpleasant book-keeping.

Problem 5 (Quaternionic quantum mechanics) Real and complex quantum
mechanics are equivalent in the sense that they allow the same observable correlations
(incl. violations of Bell inequalities). Are complex and quaternionic quantum mechan-
ics equivalent?23 What about no-go theorems such as the impossibility of (complex)
quantum bit commitment?

1.6 The algebraic framework

“I would like to make a confession which may seem immoral: I do not believe
in Hilbert space anymore” [J.von Neumann in a letter to Birkhoff, 1935]24

A glimpse beyond ‘Hilbert-space-centrism’ Most literature/work on quan-
tum mechanics is based on Hilbert space formalism. This has, in the early days
of quantum mechanics, been brought forward by Dirac and (independently and
with a rather different flavor) by von Neumann. There is, however, a branch of
quantum physics which departs from using a (separable) Hilbert space as start-
ing point and which focuses more on properties of algebras assigned to local
observables. This point of view, which actually builds up on von Neumann’s
work on operator algebras, mainly arose in the third quarter of the 20th century
and is called algebraic quantum (field) theory . But why change the view point?
What’s wrong with Hilbert spaces?

First of all, there is hardly any difference between the two points of view
when dealing with finite dimensional quantum systems. So everything we need

23Using a representation of quaternions in terms of complex valued 2× 2 matrices, a simple
translation between the quaternionic and complex world can be found for single systems.
However, non-cummutativity complicates the description of composite systems.

24quoted from Fred Kronz: von Neumann vs. Dirac in the The Stanford Encyclopedia of
Philosophy — actually a nice article.
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for our (finite-dimensional) purposes is a little bit of useful terminology and
some representation theory for finite dimensional ∗-algebras.

The ‘algebraic framework’ becomes beneficial in the context of a mathe-
matically rigorous treatment of infinite systems. The ‘infinity’ may either arise
from thermodynamical limits (infinite lattice systems) and/or from the investi-
gation of quantum fields in continuous space(-time). In both cases there is an
assignment of an algebra of observables to each region in space(-time). This
assignment should be (i) consistent in the sense that algebras of subregions
correspond to subalgebras and (ii) local in the sense that algebras assigned to
space-like separated regions commute. For a finite lattice system we may still
think about operators acting on a tensor-product of Hilbert spaces (with one
tensor factor per site). However, the need to go beyond this framework be-
comes apparent in continuous space-time where the possibility of considering
finer-and-finer subdivisions comes in conflict with representations on separable
Hilbert spaces.

Some appealing properties of the algebraic framework are that (i) it treats
quantum and classical systems on the same ground (ii) it allows to some extent
to circumvent the problem of unitarily inequivalent representations, and (iii) it
describes the occurence of super-selection rules as a consequence of reducible
representations. Having said this, one has to admit, however, that algebraic
quantum (field) theory is, so far, more a principal framework for physical theo-
ries than the origin (or even host) of a full-fledged physical theory. It provides
solid grounds for discussing axiomatic and foundational questions, but cross-
sections and line-widths are a different story.

The following intends to provide a pedestrian introduction to the basic no-
tions around C∗-algebras. The general discussion in the next paragraph is dis-
connected from the other chapters (so, feel free to skip), but it might be useful
for connecting the discussed topics to literature which goes beyond the finite-
dimensional case. The focus in the second part will be on the finite-dimensional
world again.

Algebras in a nutshell As a guideline it is helpful to think about algebras
as ‘generalizations of matrices’, with the set of matrices as a special case (and
our main focus—at least outside the present paragraph). An algebra A over the
field of complex numbers C is a set which is closed under scalar multiplication,
addition and multiplication. That is, if A,B ∈ A and c ∈ C, then cA, A+B and
AB are elements of A as well. We will include associativity and the existence
of a unit element (1A = A) in our definition of an algebra. A is said to be
abelian or commutative if AB = BA for all A,B ∈ A and it is said to be a
∗-algebra if there is an involution † : A → A which fulfills all basic requirements
known from the Hermitian adjoint of matrices: (AB)† = B†A†, (cA)† = c̄A†

and (A + B)† = A† + B†. An element A ∈ A is called normal if AA† = A†A
and selfadjoint if A = A†.

A normed algebra is equipped with a norm || · || which satisfies, apart from
the usual requirements for vector space norms, the product inequality ||AB|| ≤
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||A|| ||B||. If A is complete w.r.t. this norm (i.e., it contains all limits of Cauchy
sequences) then it is called a Banach algebra. For a Banach ∗-algebra we require
in addition ||A†|| = ||A||.

The spectrum spec(A) can be defined in purely algebraic terms as the set
of all λ ∈ C for which (λ1 − A) is not invertible. It satisfies spec(AB)\0 =
spec(BA)\0 and selfadjoint elements for which spec(A) ⊆ R+ are called positive.
The spectral radius is defined by %(A) := sup{|λ| | λ ∈ spec(A)}. In every
Banach algebra the spectral radius fulfills %(A) ≤ ||A|| and

%(A) = lim
n→∞

||An||1/n. (1.35)

Conversely, we can define a norm from the spectral radius by ||A||∞ :=
√
%(A†A).

This satisfies
||A†A||∞ = ||A||2∞, (1.36)

which means for selfadjoint elements ||A||∞ = %(A) and thus ||A||∞ ≤ ||A||.
Note that due to Eq.(1.35) every norm wich fulfills the so-called C∗-norm prop-
erty in Eq.(1.36) has to coincide with || · ||∞. Hence, a Banach ∗-algebra norm
which fulfills condition (1.36) is unique (and called C∗-norm).

A Banach ∗-algebra whose norm satisfies condition (1.36) is called C∗-algebra.
C∗-algebras exhibit a number of useful properties, for example:

• The spectrum of an element A is the same in every C∗-subalgebra con-
taining A.25

• Positive elements are precisely those which can be written as A = B†B for
some B ∈ A. They form a convex cone whose elements have a unique pos-
itive square root which can in turn be characterized in a purely algebraic
way.

• Homomorphisms are order preserving (i.e., they map positive elements
onto positive elements) and norm decreasing (hence, continuous). Iso-
morphisms are norm preserving and the range of every homomorphism is
again a C∗-algebra.

• Every derivation is bounded.

A linear functional ρ : A → C on a C∗-algebra is called positive if ρ(A†A) ≥ 0
for all A ∈ A and normalized if ρ(1) = 1. A state is a positive, normalized linear
functional. It is called faithful if ρ(A†A) > 0 unless A = 0 and pure if it does
not admit a non-trivial convex decomposition into other states.

So far, our discussion remained abstract—before any concrete representa-
tion. Two paradigmatic examples of concrete C∗-algebras are (i) the space of
complex-valued continuous functions on a compact space, and (ii) the space of
bounded operators acting on a Hilbert space. A result by Gelfand shows that
every commutative C∗-algebra is isomorphic to one of type (i). (ii) instead sets

25In general, if a B is a subalgebra of A and A ∈ B, then the spectrum of A depends on
whether we regard A as an element of A or B, though specA(A) ⊆ specB(A) holds.
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the stage for general representations. In fact, every C∗-algebra has a faithful
(i.e., one-to-one) representation within bounded operators on some (not neces-
sarily separable) Hilbert space. The C∗-norm then becomes the operator norm
on the level of the representation. That is, if we denote the representation by
π : A → B(H), then

||A||∞ = sup
ψ∈H

||π(A)ψ||
||ψ||

, with ||ψ|| =
√
〈ψ|ψ〉. (1.37)

The Gelfand-Neumark-Segal (GNS) theorem constructs a B(H)-representation
of a C∗-algebra starting from a state ρ : A → C. The main idea is to define a
scalar product via 〈A,B〉 := ρ(A†B). If ρ is not faithful, one has to define the
elements of the sought Hilbert space in terms of equivalence classes and consider
the set A/J with J = {A ∈ A|ρ(A†A) = 0}. By completing A/J we get a
Hilbert space Hρ. The action of any A ∈ A on vectors in Hρ is then represented
by πρ(A)|B〉 := |AB〉. In this way we can write

ρ(A) = 〈1|πρ(A)|1〉, (1.38)

and interpret |1〉 as the vector state which represents ρ in Hρ. The so con-
structed GNS-representation is irreducible iff ρ is pure. Physically, the GNS
construction is closely related to constructing a Hilbert space from a ‘vacuum
state’ by acting on it with creation operators (and thereby adding particles).

From now on let us assume that a faithful representation has been chosen,
i.e., that A is a concrete algebra of bounded operators acting on some Hilbert
space H. The commutant A′ := {C ∈ B(H)|∀A ∈ A : AC = CA} is then the
set of operators which commute with every element of A. The center of A is
the intersection C := A ∩A′.

Sometimes C∗-algebras are too general and more structure is either required
or provided. In fact, C∗-algebras can exhibit some ‘unpleasant’ properties: they
may not contain projections other then 0 and 1, the bicommutant A′′ := (A′)′
may be larger than A, and a tensor product of C∗-algebras can be ambiguous
since several norms may have the C∗-property.26 All these things a ‘cured’
by restricting to a subset of C∗-algebras called von Neumann algebras. Von
Neumann algebras can be defined as bicommutant of a ∗−algebra Ã ⊆ B(H)
or, equivalently, as the weak or strong closure of Ã. A von Neumann algebra is
generated (and classified) by its projections.

A state on a von Neumann algebra A is called normal if it admits a density
operator representation, i.e., with some abuse of notation ρ(A) = tr [ρA] ,∀A ∈
A. A is called a factor if its center contains only multiples of the identity. These
can be regarded as basic building blocks as every von Neumann algebra admits
a decomposition into factors.

26No, there isn’t a contradiction with the uniqueness of the C∗-norm since that requires
that the algebra is complete w.r.t. the considered norm—this is not fulfilled by the algebraic
tensor product of two C∗-algebras unless one of them is finite dimensional.
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Finite dimensional ∗-algebras and conditional expectations Since the
topologies which make the difference between C∗ and von Neumann algebras
coincide in finite dimensions, these types of algebras coincide there, too. Simi-
larly, every normed space becomes a Banach space as finite dimensional vector
spaces are automatically complete. In this way every finite dimensional normed
∗-algebra is automatically a von Neumann/C∗ algebra w.r.t. the norm induced
by the spectral radius.

Every finite dimensional von Neumann algebra is isomorphic to a direct sum
of full matrix algebras. More precisely, if a von Neumann algebra B ⊆ A '
Md(C) is a subalgebra of a finite dimensional matrix algebra, then there is a
unitary U such that

B = U
(

0⊕
K⊕
k=1

Mdk ⊗ 1mk
)
U†. (1.39)

The K-fold direct sum corresponds to a decomposition into K factors. Each
factor is isomorphic to a full matrix algebra of dimension d2

k which appears
with multiplicity mk. Hence, the commutant of the k’th factor is a full matrix
algebra of dimension m2

k and multiplicity dk. We will denote the decomposition

of the Hilbert space to which Eq.(1.39) leads to as Cd = H0 ⊕
⊕K

k=1Hk with
Hk = Hk,1⊗Hk,2 ' Cdk ⊗Cmk . Furthermore, we will denote by Vk : Cd → Hk
the corresponding isometries which are mutually orthogonal in the sense that
VkV

†
l = δkl1Hk . Note that B is unital iff

∑
k VkV

†
k = 1, i.e., iff there is no H0.

The representation in Eq.(1.39) shows us how a subalgebra B can be em-
bedded in a larger matrix algebra A ⊇ B and it provides a simple form for
projective (in the sense of idempotent and surjective) mappings E : A → B
which allow us to ’restrict’ every element of A to B and act as the identity on
B. If we require E to be positive, then the structure in Eq.(1.39) dictates the
form of E:

Proposition 1.5 (Conditional expectations) Consider a unital ∗-subalgebra
B ⊆ A ' Md(C). If a positive linear map E : A → B satisfies E(b) = b
for all b ∈ B, then (using the above notation) there exist density operators
{ρk ∈ B(Hk,2)} such that E has the form

E(A) =

K∑
k=1

V †k

[
trk,2

[
(VkAV

†
k )(1dk ⊗ ρk)

]
⊗ 1mk

]
Vk. (1.40)

Proof Define projections Pk := VkV
†
k ∈ B and a ‘pinching’ map E0 : A → A

via E0(A) :=
∑K
k=1 PkAPk. Since E0 acts as the identity on B and the image

of E is in B we have E0E = E. In order to see that EE0 = E holds as well,
consider an operator of the form A = λPk + λ−1Pl +Q+Q† with k 6= l, λ > 0
and Q such that PkQPl = Q. If ||Q||∞ ≤ 1, then A ≥ 0 and therefore E(A) ≥ 0.
However, E(A) = λPk+λ−1Pl+E(Q+Q†) can only be positive for all λ > 0 and
properly normalized Q if E(Q+Q†) = 0. That is, the image of E is independent
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of ‘off-diagonal blocks’ in the pre-image so that indeed E = EE0 and therefore

E(A) =

K∑
kl,=1

PlE
(
PkAPk

)
Pl. (1.41)

Next, we want to argue that all summands in Eq.(1.41) with k 6= l vanish. For
that recall that every matrix can be written as a complex linear combination of
Hermitian rank-one projections so that a linear map is determined by its action
on the latter. Consider ψ⊗φα ∈ Hk,1⊗Hk,2 with {φα} any orthonormal basis in

Hk,2 and note that (i) E(V †k |ψ〉〈ψ|⊗ |φα〉〈φα|Vk) ≥ 0 and (ii)
∑
αE(V †k |ψ〉〈ψ|⊗

|φα〉〈φα|Vk) = V †k |ψ〉〈ψ| ⊗
∑
α |φα〉〈φα|Vk since E(b) = b for all b ∈ B. Hence,

the image of every summand must be supported within the support space of Pk
— in other words k 6= l gives no contribution in Eq.(1.41). So we can finally
focus on the action of E restricted to the factors of B where we refer to it as
Ek : B(Hk)→ B(Hk), i.e.,

E(A) =

K∑
k=1

V †kEk
(
VkAV

†
k

)
Vk. (1.42)

Each Ek has to be a positive linear map satisfying Ek(X ⊗ Y ) = X ′ ⊗ 1 for
some X ′(X,Y ) and Ek(|ψ〉〈ψ| ⊗ 1) = |ψ〉〈ψ| ⊗ 1 for all ψ. Since Ek is positive,
and thus order-preserving (see Sec.5.1), this implies that for Y ≤ 1 we have
Ek(|ψ〉〈ψ| ⊗ Y ) ≤ |ψ〉〈ψ| ⊗1 and therefore X ′(X,Y ) ∝ X. The proportionality
factor has to be a linear, normalized functional of Y such that this together with
positivity requires that Ek(X ⊗ Y ) = X ⊗ 1tr [ρkY ] for some density operator
ρk. Inserting into Eq.(1.42) yields Eq.(1.40).

A map E with the properties stated in Prop.1.5 is called a conditional ex-
pectation. In other words a conditional expectation is a positive map projecting
onto a unital ∗-subalgebra. Note that for conditional expectations positivity
implies complete positivity and that they are self-dual, i.e., E = E∗, if ρk ∝ 1
for all k (see below for a more detailed discussion of duality). Moreover, they
satisfy

∀b1, b2 ∈ B, ∀a ∈ A : E(b1ab2) = b1E(a)b2. (1.43)

This is often used as the defining property, since every positive linear map
E : A → B fulfilling Eq.(1.43) satisfies the requirements of Prop.1.5.

Note that there are two basic building blocks for conditional expectations:
(i) partial traces and (ii) pinchings (i.e., restrictions to block diagonal matrices).

Duality and (complete) positivity Let us now switch the focus to duality
and positivity. In finite dimensions every linear functional f : A → C can be
written as

f(A) = tr [FA] for some F ∈ A, (1.44)

so that we can identify A with its dual A∗. If T : A → B is any linear map
between two finite dimensional C∗-algebras, then its dual map T ∗ : B → A is
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defined via tr [AT ∗(B)] = tr [T (A)B] for all A,B. A map T is positive if it
maps positive elements of A to positive elements of B. Recall that positivity
(meaning positive semidefiniteness) of A ∈ A can be expressed in different
equivalent ways: (i) there is an a ∈ A such that A = a†a, (ii) for all positive
elements f ∈ A∗ : f(A) ≥ 0, or (iii) A† = A and A + λ1 is invertible for all
λ > 0 (i.e., A has no negative eigenvalues). A frequently used implication is
that BAB† ≥ 0 for all B ∈ A whenever A ≥ 0.

Every matrix X ∈ Md(C) can be expressed as a linear combination of
two Hermitian matrices via 2X = (X + X†) − i(iX − iX†) and (by further
decomposing each Hermitian term into positive and negative spectral part) as
a linear combination of four positive matrices. In fact, the polarization identity

B†A =
1

4

3∑
k=0

ik(A+ ikB)†(A+ ikB) (1.45)

holds for all bounded operators A and B.
To every linear map T : A → B we can assign a sequence of maps Tn :

Mn(A) → Mn(B) defined as Tn([Aij ]) = [T (Aij)].
27 By identifying Mn(A)

withA⊗Mn this can be written more conveniently as Tn = (T⊗idn). Attributes
of T (like positivity, contractivity, boundedness) are then said to be complete if
they hold for all Tn, n ∈ N. Putting things together we get that T is completely
positive iff

tr
[
b†b(T ⊗ idn)(a†a)

]
= tr

[
(T ∗ ⊗ idn)(b†b)a†a

]
≥ 0, (1.46)

for all a ∈ A ⊗Mn and b ∈ B ⊗Mn. In other words T is completely positive
if T ∗ is. While complete positivity is in general a stronger requirement than
positivity, they become the same if either A or B is abelian:

Proposition 1.6 (Complete positivity from positivity) Let T : A → B
be positive linear map between unital C∗-algebras. If either A or B is commu-
tative then T is completely positive.

Proof We will prove the finite-dimensional version although the proposition
holds in general. W.l.o.g. we can restrict to the case where B is commutative.
The case where the domain is commutative then follows by invoking that T is
completely positive iff T ∗ is. We have to show that

∑n
ij=1〈ψi|T (aij)|ψj〉 ≥ 0

for all {|ψi〉} is implied by [aij ] ≥ 0. As the T (aij) mutually commute we can
choose a basis where they are diagonal and denote the components of |ψj〉 in
this basis by ψj,β . Then

n∑
ij=1

〈ψi|T (aij)|ψj〉 =
∑
β

〈β|T
(∑

ij

ψ̄i,βaijψj,β︸ ︷︷ ︸
≥0

)
|β〉 ≥ 0, (1.47)

27With [Aij ] we mean the block matrix whose blocks are labeled by i and j.
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due to positivity of T and [aij ].

Sometimes a linear map might only be specified on a subspace S ⊆ A of
a C∗-algebra. If this space is closed under the adjoint and contains the unit
element, then it is called an operator system. Note for instance that in the
proof of Prop.1.6 the algebra structure of A was never used, so that complete
positivity also holds for positive maps which map an operator system to any
commutative C∗-algebra. Every such map can then be extended to one with a
larger domain (extending at the same time the utility of Prop.1.6):

Proposition 1.7 (Extending cp maps from operator systems) Let A,B
be two finite dimensional C∗-algebras and T : S → B a completely positive linear
map from an operator system S ⊆ A. Then there is a completely positive map
T̃ : A → B which coincides with T on S.

Proof We want to use the Hahn-Banach theorem, so we need a functional:
define τ(A) := 〈Ω|(T ⊗ idn)(A)|Ω〉 with Ω a maximally entangled state of di-
mension n which is in turn chosen such that B is a subalgebra ofMn(C). So τ
is a positive linear functional on S⊗Mn. Note that complete positivity can be
expressed as τ

(
1−A/||A||∞

)
≥ 0 for all A = A† or equivalently

τ(A) ≤ f(A) := ||A||∞τ(1). (1.48)

Since f is sublinear we can now invoke the Hahn-Banach theorem in order to
extend τ from the Hermitian subspace of S to that of A and (by linearity)
further to the entire algebra A. The extension fulfills Eq.(1.48) which, by the
Choi-Jamiolkowski correspondence (Prop.2.1), implies complete positivity of the
extension T̃ . By Prop.2.1 T̃ is in one-to-one correspondence with τ .

1.7 Literature

For a general introduction to quantum mechanics we refer to the excellent text
books of Ballentine [?], Galindo and Pascal [?] and Peres [?]. A closer look
on quantum mechanics from the point of view of mathematical physics can be
found in the books of Thirring [?] and Holevo [?]. A superb introduction to
quantum computing and quantum information theory can be found in Nielsen
and Chuang [?] the lecture notes by Preskill [?] and the review article of Keyl
[?].



Chapter 2

Representations

In this chapter we will discuss the most important ways of parameterizing and
representing a quantum channel: (i) in terms of a bipartite quantum state,
leading to the state-channel duality introduced by Jamiolkowski and Choi, (ii)
as the reduced dynamics of a larger (unitarily evolving) system as expressed by
the representation theorems of Kraus, Stinespring, and Neumark (for POVMs)
and (iii) as a linear map represented in terms of a ‘transfer matrix’. This will
be supplemented with a brief discussion about normal forms.

2.1 Jamiolkowski and Choi

We saw in Prop.1.2 that complete positivity of a linear map T is equivalent to
positivity of the operator τ := (T⊗id)(|Ω〉〈Ω|) which is obtained by letting T act
on half of a maximally entangled state Ω. In fact, the operator τ obtained in this
way encodes not only complete positivity but every property of T . This reflects
the simple equivalence B(Md,Md′) ' Mdd′ which was certainly observed and
used at various places, but in the context of quantum channels the credit goes
to Choi and Jamiolkowski. dτ is often called Choi matrix , and if T is a trace-
preserving quantum channel, then τ is called the corresponding Jamiolkowski
state.

Proposition 2.1 (Choi-Jamiolkowski representation of maps) The follow-
ing provides a one-to-one correspondence between linear maps T ∈ B(Md,Md′)
and operators τ ∈ B(Cd

′ ⊗Cd):

τ = (T ⊗ idd)(|Ω〉〈Ω|), tr [AT (B)] = d tr
[
τA⊗BT

]
, (2.1)

for all A ∈Md′ , B ∈Md and Ω ∈ Cd⊗Cd being a maximally entangled state as
in Eq.(1.11). The maps T 7→ τ and τ 7→ T defined by (2.1) are mutual inverses
and lead to the following correspondences:

33
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• Hermiticity: τ = τ † iff T (B†) = T (B)† for all B ∈Md,1

• Complete positivity: T is completely positive iff τ ≥ 0,

• Doubly-stochastic: T (1) ∝ 1 and T ∗(1) ∝ 1 iff trA[τ ] ∝ 1 and trB [τ ] ∝ 1.

• Unitality: T (1) = 1 iff trB [τ ] = 1d′/d.

• Preservation of the trace: trA[τ ] = T ∗(1)T /d, i.e., T ∗(1) = 1 iff trA[τ ] =
1d/d.

• Normalization: tr [τ ] = tr [T ∗(1)] /d.

Proof The complete positivity correspondence was proven in Prop.1.2 and
the other equivalences follow from Eqs.(2.1) by direct inspection. So, the only
piece to prove is that the two relations in (2.1) are mutual inverses which then
establishes the claimed one-to-one correspondence. To this end let us start with
the rightmost expression in (2.1) and insert τ = (T ⊗ id)(|Ω〉〈Ω|):

d tr
[
τA⊗BT

]
= tr

[
F
TBT ∗(A)⊗BT

]
(2.2)

= tr [F T ∗(A)⊗B] = tr [AT (B)] , (2.3)

where we have used the basic tools from Example 1.2, in particular that d|Ω〉〈Ω| =
FTB . Eqs.(2.2,2.3) show that indeed T → τ → T . So the two maps in (2.1)
are mutual inverses if T → τ is surjective. This is, however, easily seen by de-
composing τ into a linear combination of rank-one operators |ψ〉〈ψ′| and using
|ψ〉 = (X ⊗ 1)|Ω〉 from Eq.(1.13).

When writing out the mapping τ → T from Eq.(2.1) in terms of a product
basis we get

T (B) = d
∑
ijkl

〈ij|τ |kl〉 |i〉〈j| B |l〉〈k|. (2.4)

If T is a quantum channel in the Schrödinger picture, then τ is a density
operator with reduced density matrix τB = 1/d. This means that the set of
quantum channels corresponds one-to-one to the set of bipartite quantum state
which have one reduced density matrix maximally mixed. By replacing Ω in the
construction of τ by any other pure state we can easily establish a similar state-
channel-duality with respect to states with different reduced density matrices.
Such a correspondence will be one-to-one iff the respective reduced state has
full rank.

If d is countable infinite then Ω looses its meaning. However, we can partly
restore the above correspondence by using either its unnormalized counterpart∑
ij |ii〉〈jj| or any non-maximally entangled state which has reduced density

matrix with full rank instead.
The correspondence between T and τ enables us to show that every linear

map admits a decomposition into at most four completely positive maps:

1Note that this is in turn equivalent to T being a Hermiticity preserving map, i.e., T (X) =
T (X)† for all X = X†.
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Proposition 2.2 (Decomposition into completely positive maps) Every
linear map T ∈ B(Md,Md′) can be written as a complex linear combination of
four completely positive maps. If T is Hermitian (i.e., T (B†) = T (B)† for all
B), it can be written as a real linear combination of two of them.

Proof We use that the mapping T ↔ τ in Prop.2.1 is one-to-one and linear
so that it suffices to decompose τ . On this level the existence of such a decom-
position is rather obvious: we can always decompose τ into a Hermitian and
anti-Hermitian part and each of them into a positive and negative part. More
explicitly, τ = (τ+τ †)/2+i(iτ †−iτ)/2 provides a complex linear combination of
two Hermitian parts and each of the latter can, by invoking the spectral decom-
position, be written as a real linear combination of two positive semi-definite
matrices.

As a first simple application of this (extremely useful and later extensively
used) correspondence we show the following:

Proposition 2.3 (No information without disturbance) Consider an in-
strument represented by a set of completely positive maps {Tα : Md → Md}.
If there is no disturbance on average, i.e., T =

∑
α Tα satisfies T = id, then

Tα ∝ id for every α and the probability for obtaining an outcome α (given by
tr [Tα(ρ)]) is independent of the input ρ (hence, no information gain).

Proof On the level of the Jamiolkowski states the decomposition id =
∑
α Tα

reads |Ω〉〈Ω| =
∑
α τα. Since τα ≥ 0 (due to complete positivity of Tα) this

corresponds to a convex decomposition of the density operator for the maximally
entangled state. Since the latter is pure there is only the trivial decomposition,
so that τα = cα|Ω〉〈Ω| for some constants cα ≥ 0. Consequently, Tα = cαid so
that tr [Tα(ρ)] = cα independent of ρ.

Implementation via teleportation If T is a quantum channel then its Jami-
olkowski state τ can operationally be obtained by letting the channel act on a
maximally entangled state. What about the converse? If τ is given, does this
help us to implement T as an action on an arbitrary input ρ? The answer to
this involves some form of teleportation: assume that the bipartite state τ is
shared by two parties, Alice and Bob, so that Bob has the maximally mixed
reduced state. Suppose that Bob has an additional state ρ and that he per-
forms a measurement on his composite system using a POVM which contains
the maximally entangled state ω := |Ω〉〈Ω| as an effect operator. We claim now
that Alice’s state is given by T (ρ) whenever Bob has obtained a measurement
outcome corresponding to ω. In order to show this denote Alice’s reduce den-
sity matrix (in case of Bob’s success) by ρA, the success probability by p and
compute the expectation value with an arbitrary operator A:

p tr [AρA] = tr [(τ ⊗ ρ)(A⊗ ω)] (2.5)

= tr
[
(τ ⊗ ρT )(A⊗F)

]
/d (2.6)

= tr
[
τ(A⊗ ρT )

]
/d = tr [AT (ρ)] /d2, (2.7)
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where we used the basic ingredients from Example1.2 again and, in the last
step, the r.h.s. of Eq.(2.1). This shows that the described protocol is indeed
successful with probability p = 1/d2. In some cases Alice and Bob can, however,
do much better: assume that there is a set of local unitaries {Vi ⊗ Ui}i=1..N

w.r.t. which τ = (Vi⊗Ui)τ(Vi⊗Ui)† is invariant and which are orthogonal in the

sense that tr
[
UiU

†
j

]
= dδij . Due to the latter condition Bob can use a POVM

which contains all (1 ⊗ Ui)†ω(1 ⊗ Ui) as effect operators. When Bob obtains
one of the corresponding outcomes i and he reports this to Alice, she can ‘undo’
the action of the unitary by applying Vi with the consequence that ρA = T (ρ)
with probability p = N/d2. So if the Ui’s form a basis (i.e., N = d2) the two
protagonists can implement T with unit probability by ‘teleporting’ through τ .
If T = id and therefore τ = |Ω〉〈Ω| this reduces to the standard protocol for
entanglement-assisted teleportation.

Note that by linearity the implemented action of T does not only hold for
uncorrelated states but it also works properly if ρ is part of a larger system.

Problem 6 (Implementation via teleportation) Suppose Alice and Bob are
given the Jamiolkowski state τ corresponding to a given quantum channel T . Which is
the largest probability at which Bob can teleport an unknown state ρ to Alice (using τ ,
local operations and classical communication as resource) so that Alice ends up with
the state T (ρ)?

2.2 Kraus, Stinespring and Neumark

The Choi-Jamiolkowski state-channel duality allows us to translate between
properties of bibipartite states and quantum channels. One immediate implica-
tion is a more specific and very useful representation of quantum channels which
corresponds, on the level of the Jamiolkowski state, to a convex (or spectral)
decomposition into rank-one operators:

Theorem 2.1 (Kraus representation) A linear map T ∈ B(Md,Md′) is
completely positive iff it admits a representation of the form

T (A) =

r∑
j=1

KjAK
†
j . (2.8)

This decomposition has the following properties:

1. Normalization: T is trace preserving iff
∑
j K
†
jKj = 1 and unital iff∑

j KjK
†
j = 1.

2. Kraus rank:2 The minimal number of Kraus operators {Kj ∈ B(Cd,Cd
′
)}j=1..r

is r = rank(τ) ≤ dd′.
2We call r = rank(τ) Kraus rank or Choi rank in order not to confuse it with the rank of

T as a linear map. Take for instance T = id the ideal channel. As this is obviously invertible
it has full rank as a linear map. However, its Kraus rank is r = 1. T (B) = tr [B] instead has
rank one but Kraus rank equal to d, the dimension of the input space.
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3. Orthogonality: There is always a representation with r = rank(τ) Hilbert-

Schmidt orthogonal Kraus operators (i.e., tr
[
K†iKj

]
∝ δij).

4. Freedom: Two sets of Kraus operators {Kj} and {K̃l} represent the same

map T iff there is a unitary U so that Kj =
∑
l UklK̃l (where the smaller

set is padded with zeros).

Proof Assume T is completely positive. By Prop.2.1 this is equivalent to saying
that τ ≥ 0 which allows for a decomposition of the form

τ =

r∑
j=1

|ψj〉〈ψj | =
r∑
j=1

(Kj ⊗ 1)|Ω〉〈Ω|(Kj ⊗ 1)†, (2.9)

where the first step uses τ ≥ 0 and the second Eq.(1.13). Comparing the r.h.s.
of Eq.(2.9) with the definition τ := (T ⊗ id)(|Ω〉〈Ω|) and recalling that T ↔ τ
is one-to-one leads to the desired decomposition in (2.8). It also shows that
r ≥ rank(τ) where equality can be achieved and if the ψj ’s are in addition
chosen to be orthogonal, then the Kraus operators are orthogonal (w.r.t. the
Hilbert-Schmidt inner product) as well.

Conversely, if a map is of the form in (2.8) then τ ≥ 0 which implies complete
positivity. The conditions for unitality and preservation of the trace are straight
forward. It remains to show that the freedom in the representation is precisely
given by unitary linear combinations. This is a direct consequence of Eq.(2.9)
and the subsequent proposition.

Proposition 2.4 (Equivalence of ensembles) Two ensembles of (not nec-
essarily normalized) vectors {ψj} and {ψ̃l} satisfy∑

j

|ψj〉〈ψj | =
∑
l

|ψ̃l〉〈ψ̃l| (2.10)

iff there is a unitary U such that |ψj〉 =
∑
l Ujl|ψ̃l〉 (where the smaller set is

padded with zero vectors).

Proof W.l.o.g. we may think of the mixture in (2.10) as a given density matrix
ρ. From both ensembles we can construct a purification of ρ = trB [|Ψ〉〈Ψ|], of
the form |Ψ〉 =

∑
j |ψj〉⊗|j〉 where {|j〉} is an orthonormal basis which we use as

well in |Ψ̃〉 =
∑
l |ψ̃l〉⊗|l〉. It follows from the Schmidt decomposition (Prop.1.1)

that two purifications differ by a unitary (or isometry if the dimensions do not
match), i.e., |Ψ〉 = (1⊗U)|Ψ̃〉. By taking the scalar product with a basis vector
〈j| on the second tensor factor this leads to |ψj〉 =

∑
l Ujl|ψ̃l〉 which proves

necessity of the condition.3 Sufficiency follows by inspection from unitarity of
U .

3If the U relating the two purifications is an isometry it can always be embedded into a
unitary, just by completing the set of orthonormal row or column vectors to an orthonormal
basis.
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Note that the number of linearly independent Kraus operators is r = rank(τ)
independent of the representation. The Kraus representations of a completely
positive map T and its dual T ∗ are related via interchanging Kj ↔ K†j . More-
over, T ∗ = T iff there is a representation with Hermitian Kraus operators (a
simple exercise using the unitary freedom).

Stinespring and the open-system point of view A common perspective
is to regard a quantum channel as a description of ‘open system dynamics’ which
originates from considering only parts of a unitarily evolving system. Using the
Kraus representation we will now see that indeed every quantum channel can
be represented as arising in this way. Before we discuss this in the Schrödinger
picture (which might be the more familiar version for physicists), we will state
the equivalent theorem in the Heisenberg picture (more common to operator
algebraists):

Theorem 2.2 (Stinespring representation) Let T :Md →Md′ be a com-
pletely positive linear map. Then for every r ≥ rank(τ) (recall that rank(τ) ≤
dd′) there is a V : Cd → Cd

′ ⊗Cr such that

T ∗(A) = V †(A⊗ 1r)V, ∀A ∈Md′ . (2.11)

V is an isometry (i.e., V †V = 1d) iff T is trace preserving.

Proof This is a simple consequence of the Kraus representation T ∗(A) =∑r
j=1K

†
jAKj : construct V :=

∑
j Kj ⊗ |j〉 with {|j〉} any orthonormal ba-

sis in Cr. Then Eq.(2.11) holds by construction, r is at least the Kraus rank

(hence minimally r = rank(τ), see Thm.2.1) and V †V =
∑
j K
†
jKj = 1 just

reflects the trace preserving condition.

Note from the proof that a representation of the form (2.11) exists for T as
well (and not only for T ∗). However, the trace-preserving condition is easier
expressed in terms of T ∗ where it becomes unitality.

The ancillary space Cr is usually called dilation space. In the same way
in which we constructed V from the set of Kraus operators, we can obtain the
latter from V as Kj = (1d′ ⊗ 〈j|)V . As r = rank(τ) is the smallest number of
Kraus operators, it is also the least possible dimension for a representation of the
form (2.11). Dilations with r = rank(τ) are called minimal . From the unitary
freedom in the choice of Kraus operators (Thm.2.1) we obtain that for minimal
dilations V is unique up to the obvious unitary freedom V → (1d′ ⊗ U)V . All
other dilations can be obtained by an isometry U .

An alternative, but equivalent, way of characterizing minimal dilations is
the identity

C
d′ ⊗Cr = {(A⊗ 1r)V |ψ〉 | A ∈Md′ , ψ ∈ Cd}, (2.12)

i.e., the requirement that the set on the r.h.s. spans the entire space.
There is a natural partial order in the set of completely positive maps: we

write T2 ≥ T1 iff T2 − T1 is completely positive. Due to the Choi-Jamiolkowski
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representation (Prop.2.1) this is equivalent to τ2 ≥ τ1. Such an order relation
is reflected in the Stinespring representation in the following way:

Theorem 2.3 (Relation between ordered cp-maps) Let Ti :Md′ →Md,
i = 1, 2 be two completely positive linear maps with T2 ≥ T1. If Vi : Cd →
Cd
′ ⊗ Cri provide Stinespring representations Ti(A) = V †i (A ⊗ 1ri)Vi, then

there is a contraction C : Cr2 → Cr1 such that V1 = (1d′ ⊗C)V2. If V2 belongs
to a minimal dilation, then C is unique (for given V1 and V2).

Proof We exploit the fact that T2 ≥ T1 is equivalent to τ2 ≥ τ1, i.e., the anal-
ogous order relation between the corresponding Choi-Jamiolkowski operators.
Define Wi := (1ri⊗〈Ω|)(Vi⊗1d′) ∈ B(Cd⊗Cd′ ,Cri). Then for all ψ ∈ Cd⊗Cd′

||W2|ψ〉||2 = 〈ψ|τ2|ψ〉 ≥ 〈ψ|τ1|ψ〉 = ||W1|ψ〉||2. (2.13)

Hence, there is a contraction (meaning C†C ≤ 1) C : Cr2 → Cr1 such that
W1 = CW2. Since the map Vi →Wi is one-to-one4 this implies V1 = (1d′⊗C)V2.
Moreover, if r2 = rank(τ2) (i.e., Cr2 is a minimal dilation space), then W2 must
be surjective so that C becomes uniquely defined.

As a simple corollary of this result one obtains a Radon-Nikodym type the-
orem for instruments:

Theorem 2.4 (Radon-Nikodym for quantum instruments) Let {Ti} be
a set of completely positive linear maps such that

∑
i Ti = T ∈ B(Md′ ,Md)

with Stinespring representation T (A) = V †(A ⊗ 1r)V . Then there is a set of
positive operators Pi ∈Mr wich sum up to 1r such that Ti(A) = V †(A⊗Pi)V .

Now let us turn to the Schrödinger picture again and see how to represent a
quantum channel from a system-plus-environment point of view:

Theorem 2.5 (Open-system representation) Let T : Md → Md′ be a
completely positive and trace-preserving linear map. Then there is a unitary
U ∈Mdd′2 and a normalized vector ϕ ∈ Cd′ ⊗Cd′ such that

T (ρ) = trE
[
U(ρ⊗ |ϕ〉〈ϕ|)U†

]
, (2.14)

where trE denotes the partial trace over the first two tensor factors of the in-
volved Hilbert space Cd ⊗Cd′ ⊗Cd′ .

Proof By expressing Stinespring’s representation theorem in the Schrödinger
picture we get T (ρ) = trCr [V ρV

†]. Let us choose a dilation space of dimension
r = dd′. In this way we can embed V into a unitary which acts on a tensor
product and write V = U(1d ⊗ |ϕ〉) for some ϕ ∈ Cd′ ⊗Cd′ so that Eq.(2.14)
follows.

Notice the possible departure from the dimension of the minimal dilation
space in Thm.2.5: if d is not a factor of d′rank(τ), then the construction fails

4The inverse is Vi = d′2(Wi ⊗ 1d′ )(1d ⊗ |Ω〉).
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and we have to use a space of larger dimension (e.g., r = dd′ which is always
possible). In this case the type of freedom in the representation is less obvious.

The physical interpretation of Thm.2.5 is clear: we couple a system to an
environment, which is initially in a state ϕ, let them evolve jointly according
to a unitary U and finally disregard (i.e., trace out) environmental degrees of
freedom. This way of representing quantum channels nicely reminds us of the
fundamental assumption used when we express an evolution in terms of a linear,
completely positive, and trace preserving map: the initial state of the system
has to be independent of the ‘environment’—in other words T itself must not
depend on the input ρ.

Let us finally revisit Thm.2.4 from the system-plus-environment point of
view:

Proposition 2.5 (Environment induced instruments) Let T :Md →Md′

be a completely positive and trace-preserving linear with a system-plus-environment
representation as in Eq.(2.14). For every decomposition of the form T =

∑
α Ti

into completely positive maps Ti there is a POVM {Pi ∈Mdd′} such that

Ti(ρ) = trE
[
(Pi ⊗ 1d′)U(ρ⊗ |ϕ〉〈ϕ|)U†

]
. (2.15)

The Kraus rank ki of Ti satisfies ki ≤ rank(Pi).

Proof .. wouldn’t be necessary, as this can essentially be considered a rewriting
of Thm.2.4. However, we want to provide a simple alternative proof which is not
based on Thm.2.4. Consider the Jamiolkowski state τ of T and its purification
|ψ〉 := (1d ⊗ U)(|Ω〉 ⊗ |ϕ〉) so that τ = trE [|ψ〉〈ψ|]. The decomposition of T
corresponds to a decomposition τ =

∑
i τi on the level of Choi-Jamiolkowski

operators. As this is a convex decomposition of the reduced density matrix of
ψ we can invoke the quantum steering result in Prop.1.3 (together with the
one-to-one correspondence between Ti and τi) in order to arrive at Eq.(2.15).
From this the bound on the Kraus rank follows by utilizing ki = rank(τi).

Neumark’s representation of POVMs In the same way as Stinespring’s
theorem enables us to regard a quantum channel as part of larger, unitarily
evolving system, one can represent a POVM as a von Neumann measurement
performed in an extended space. To simplify matters let us assume that the
effect operators all have rank one (which can always be achieved by spectral
decomposition).

Theorem 2.6 (Neumark’s theorem) 5 Consider a POVM with effect oper-
ators {|ψi〉〈ψi|}i=1..n acting on Cd, i.e.,

∑
i |ψi〉〈ψi| = 1d. There exists an

orthonormal basis {φi}i=1..n in Cn ⊇ Cd such that each ψi is the restriction of
φi to Cd.

5As always we restrict ourselves to the case of finite dimensions and finite outcomes. Neu-
mark’s theorem holds, however, similarly if the set of measurement outcomes is characterized
by any regular, positive, B(H)-valued measure on a compact Hausdorff space. The general
theorem can be viewed as a corollary of Stinespring’s representation theorem.
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Proof Take an orthonormal basis {|j〉 ∈ Cn}j=1..n so that Cd is embedded
as a subspace spanned by the vectors |1〉, . . . , |d〉. Then the matrix Ψ ∈ Mn,d

with components Ψi,j := 〈j|ψi〉 satisfies Ψ†Ψ = 1d. That is, Ψ is an isometry
and can be extended to a unitary in Mn by completing the set of orthonormal
column vectors to an orthonormal basis. The vectors φj are then obtained from
the extended Ψ ∈Mn by 〈j|φi〉 := Ψi,j .

Note that in order to implement a general POVM with effect operators
{Pi}i=1..n as von Neumann measurement the construction leading to Thm.2.6
requires a space of dimension

∑
i rank(Pi). Sometimes we can, however, do

better by using rank-one projections which appear in the decomposition of more
than one Pi.

Problem 7 (Minimal Neumark dilation) Which is the minimal dimension re-
quired to implement a given POVM as von Neumann measurement in an extended space
if post-processing of the measurement outcomes (such as introducing randomness) is
allowed?

Neumark’s theorem shows that one can always implement a POVM (at least
in principle) as a von Neumann/sharp measurement in a larger space. That
is, we embed the system which is, say, described by a density matrix ρ into a
larger space where the additional levels are just not populated so that the state
becomes a direct sum (i.e., block diagonal) ρ⊕ 0 and we obtain the identity

〈ψi|ρ|ψi〉 = 〈φi|ρ⊕ 0|φi〉. (2.16)

For actual practical implementations a tensor product would be more convenient
than a direct sum structure, since this would allow a realization by coupling the
system to an ancillary system. Such an ‘ancilla representation’ of a POVM can
easily be obtained from Neumark’s theorem by further enlarging the space (if
necessary). Let us extend the space until the dimension is a multiple of d, say
dd′ ≥ n. As the zero-block now has dimension (d′ − 1)d, this enables us to
write ρ⊕ 0 = ρ⊗|1〉〈1| (with |1〉 an element of the computational basis in Cd

′
).

Embedding the vectors φi into this space, such that |Φi〉 := |φi〉 ⊕ 0 becomes
part of an orthonormal basis in Cd ⊗Cd′ , we get

〈ψi|ρ|ψi〉 = 〈Φi|(ρ⊗ |1〉〈1|)|Φi〉. (2.17)

2.3 Linear maps as matrices

The last representation, which we discuss, is the simplest one—linear maps
represented as matrices in a way that concatenation of maps corresponds to
multiplication of the respective matrices.

To this end, we use that the space Md,d′(C) of complex valued d × d′ ma-
trices is a vector space, i.e., it is closed under linear combinations and scalar
multiplication. As a vector space Md,d′(C) is isomorphic to Cdd

′
. We can up-

grade it to a Hilbert space by equipping it with a scalar product. A common
choice is

〈A,B〉 := tr
[
PA†B

]
, A,B ∈Md,d′ , (2.18)
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where P ∈Md′ is any positive definite operator. Each set of dd′ operators which
is orthonormal w.r.t. this scalar product (〈Ai, Aj〉 = δij , i, j = 1, . . . , dd′) forms
a basis of Md,d′ . Such orthonormal bases lead to simple completely positive
maps of the form

dd′∑
i=1

A†iρAi = tr [ρ]P−1, ∀ρ ∈Md. (2.19)

If P = 1 in Eq.(2.18) the scalar product is called Hilbert-Schmidt inner product
and the respective space Hilbert-Schmidt Hilbert space. Unless otherwise stated
we will in the following use the Hilbert-Schmidt inner product.

The space of linear maps of the form T : Md → Md′ is isomorphic to
Md′2,d2 . A concrete matrix representation, which we denote by T̂ ∈ Md′2,d2

and refer to as transfer matrix , is then obtained in given orthonormal bases
{Gβ ∈Md}β=1..d2 and {Fα ∈Md′}α=1..d′2 via

T̂α,β := tr
[
F †αT (Gβ)

]
. (2.20)

By construction a concatenation of maps, e.g., T ′′(ρ) := T ′
(
T (ρ)

)
, then corre-

sponds to a matrix multiplication T̂ ′′ = T̂ ′T̂ . With some abuse of notation we
usually write the composed map as a formal product T ′′ = T ′T as well.

From Eq.(2.20) we can see that the matrix representation of T ∗ is given
by the Hermitian conjugate matrix T̂ † if T is a Hermitian map (i.e., T (X†) =
T (X)†) and by the transpose matrix T̂T if the bases are Hermitian.

Proposition 2.6 (Self-dual channels) Let T : Md → Md be a completely
positive linear map. The following are equivalent:

1. T = T ∗,

2. T̂ = T̂ † if identical bases Fα = Gα are chosen,

3. there exists a set of Hermitian Kraus operators for T .

Proof 1↔ 2 follows from direct inspection. Also 3→ 1 is obvious as the Kraus
operators of T and T ∗ differ by Hermitian conjugation. In order to show 1→ 3
we can thus write T (X) =

∑
j KjXK

†
j = 1

2

∑
j(KjXK

†
j + K†jXKj). Every

pair (Kj ,K
†
j )/
√

2 of Kraus operators in the last representation can, however,

be transformed into a pair of Hermitian operators (Kj +K†j , i(Kj−K†j ))/2 by a
unitary linear combination. This provides a different representation of the same
map (see Prop.2.1, item 4.) by Hermitian Kraus operators.

Let us in the following have a closer look at different operator bases. The
simplest basis which is orthonormal w.r.t. the Hilbert-Schmidt inner product

(i.e., tr
[
G†βGβ′

]
= δβ,β′) is given by matrix units of the form Gβ = |k〉〈l| where

β is identified with the index pair (k, l) =: β and k, l = 1, . . . , d. Making this
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identification explicit leads to the isomorphism Md ' Cd
2

via the correspon-
dence |k〉〈l| ↔ |k, l〉. When applied to an arbitrary linear map represented as
T (·) =

∑
j Lj ·Rj this gives

T̂ =
∑
j

Lj ⊗RTj . (2.21)

That is, in particular for completely positive maps with Kraus representation
T (·) =

∑
j Kj · K†j we obtain the simple expression T̂ =

∑
j Kj ⊗ K̄j , which

is independent of the particular choice of Kraus operators (as the unitaries,
relating the different sets of Kraus operators, cancel). Another advantage of
using matrix units as a basis is a simple mapping between T̂ and the Choi-
Jamiolkowski operator τ = (T ⊗ id)(|Ω〉〈Ω|) for arbitrary linear maps:

T̂ = d τΓ, (2.22)

where τ 7→ τΓ is an involution defined by 〈m,n|τΓ|k, l〉 := 〈m, k|τ |n, l〉.

More operator bases Despite the useful relations in Eqs.(2.21,2.22) it is
sometimes advantageous to use operator bases other than matrix units. The
most common ones can be regarded as generalization of the 2 × 2 Pauli ma-
trices (incl. identity matrix) to higher dimensions. Since the two-dimensional
case is rather special one has to drop some of the nice properties—for instance
generalize to Hermitian or unitary bases.

Problem 8 (Generalizing Pauli matrices) Construct Hilbert-Schmidt orthog-
onal bases of operators inMd (different from tensor products of Pauli matrices) which
are unitary and Hermitian.

Hermitian operator bases: The set of Hermitian matrices forms a real
vector space. Thus, an orthonormal basis of Hermitian operators helps to have
this property nicely reflected in a concrete representation. A simple example
for such a basis can be constructed by embedding normalized Pauli matrices
σx/
√

2 and σy/
√

2 as 2 × 2 principal submatrices into Md (so that only two
entries are non-zero). This leads to d2 − d orthonormal matrices. In order to
complete the basis we add d diagonal matrices which we construct from any
orthogonal matrix M ∈ Md(R) by choosing the diagonal entries of the k’th
diagonal matrix equal to the k’th column vector of M . This yields a complete
Hilbert-Schmidt orthonormal basis. If in addition one column of M leads to 1d,
then the other d2− 1 matrices are traceless and generate the Lie-algebra su(d),
i.e., they provide a complete set of infinitesimal generators of SU(d). A popular
example of this kind are the 8 Gell-Mann matrices in M3 (and, of course, the
3 Pauli matrices in M2).

Unitary operator bases play an important role in quantum information
theory as they correspond one-to-one to bases of maximally entangled states
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(see example 1.2). In M2 all orthogonal bases of unitaries are of the form

Uk = eiϕkV1σkV2, k = 0, . . . , 3, (2.23)

where V1 and V2 are unitaries and σk denote the Pauli matrices (with σ0 = 1).
That is, in M2 all orthogonal bases of unitaries are essentially equivalent to
the set of Pauli matrices. In higher dimensions a similar characterization of all
unitary operator bases is not known. A priori, it is quite remarkable that such
orthogonal bases exist in every dimension. Note that this depends crucially
on the chosen scalar product: if we choose the Ai’s in Eq.(2.19) proportional
to unitaries (and thus d = d′), then ρ = 1 shows that they can only form an
orthogonal basis if P ∝ 1, corresponding to the Hilbert-Schmidt scalar product.

Example 2.1 (Discrete Weyl system and GHZ bases) One of the most im-
portant unitary operator bases and also a very inspiring example regarding the construc-
tion of others comes from a discrete version of the Heisenberg-Weyl group. Consider
a set {Ukl ∈Md}k,l=0..d−1 of d2 unitaries defined by

Ukl :=

d−1∑
r=0

ηrl|k + r〉〈r|, η := e
2πi
d , (2.24)

where addition inside the ket is modulo d. This set has the following nice properties:

• It forms a basis of operators in Md which is orthogonal w.r.t. the Hilbert-

Schmidt scalar product, i.e., tr
[
U†ijUkl

]
= d δikδjl. Since U00 = 1 we have in

particular tr [Ukl] = 0 for all (k, l) 6= (0, 0).

• It is a discrete Weyl system since UijUkl = ηjkUi+k,j+l (with addition modulo
d). Thus U−1

kl = ηklU−k,−l.

• The set is generated by U01 and U10 via Ukl = (U10)k(U01)l.

• If d is odd, then Ukl ∈ SU(d). For d even detUkl = (−1)k+l.

• For d = 2 the set reduces to the set of Pauli matrices with identity, i.e., (σx, σy, σz) =
(U10, iU11, U01).

• The group generated by the unitaries Ukl is isomorphic to the discrete Heisenberg-
Weyl group 

 1 l m
0 1 k
0 0 1

 ∣∣∣ k, l,m ∈ Zd
 . (2.25)

Among the many applications of this set we will briefly discuss the construction of
bases of entangled states. As indicated in example 1.2, (Ukl⊗1)|Ω〉 is an orthonormal
basis of maximally entangled states in Cd ⊗ Cd. For more than two, say n, parties
a similar construction can be made by exploiting some group structure. Consider the
goup of local unitaries

G =

{
n⊗
k=1

Ui,jk

∣∣∣ n∑
k=1

jkmod d = 0

}
, (2.26)

where i ∈ Zd, j ∈ Znd and one of the components of j, say j1, depends on the others
by the additional constraint. Utilizing the above properties of the set {Ukl} it is readily
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verified that G is an abelian Group with dn elements and that it spans its own com-
mutant G′. Since the algebra G′ is therefore abelian as well, it forms a simplex, i.e.,
each element in G′ has a unique convex decomposition into minimal projections. The
latter turn out to be one-dimensional and can be parametrized by ω ∈ Znd such that
they correspond to vectors of the form

|Ψω〉 :=
1√
d

d−1∑
l=0

ηlω1

n⊗
k=1

|ωk + l〉. (2.27)

These vectors form an orthonormal basis of the entire Hilbert space Cd⊗n and they
can all be obtained by local unitaries from the GHZ state |Ψ0〉 =

∑
k |k〉

⊗n/
√
d. For

n = d = 2 we get G = {1, σx⊗σx,−σy⊗σy, σz⊗σz} (which is the Klein four group6)
and the states in Eq.(2.27) become the four Bell states.

Example 2.1 exhibits two properties which suggest possible starting points for
the construction of other unitary operator bases: (i) the group structure of the
set, and (ii) the property that every element is generated by two elementary
actions: shifting the computational basis and multiplying with phases. The
latter approach leads to a fairly general construction scheme. Bases of unitaries
obtained in this way are said to be of shift-and-multiply type, and they are of
the general form

Ukl =

d−1∑
r=0

H
(l)
kr |Λlr〉〈r|, (2.28)

where {H(l) ∈ Md} is a set of (not necessarily distinct) complex Hadamard

matrices and Λ ∈ Md(Zd) is a Latin square. That is, |H(l)
kr | = 1 are phases so

that H(l)H(l)† = d1, and Λ is such that each row and column contains every
number from 0 to d − 1 exactly once. Obviously, the set in Eq.(2.24) is just
the simplest example of a shift-and-multiply basis. Its group property (the fact,
that the elements form a group of order d2, up to phases) is not shared by
all shift-and-multiply bases. For small dimensions (at least for d < 6), every
unitary basis with such a group structure (sometimes called nice error basis)
is of shift-and-multiply type. For higher dimensions (d = 165 being the first
known counter example) this is no longer valid.

Overcomplete sets, frames and SIC-POVMs We have seen that op-
erator bases forMd can be constructed from unitary as well as from Hermitian
operators. What about positive semidefinite operators or Hermitian rank-one
projections? This turns out not to be possible if one demands orthogonality
w.r.t. the Hilbert-Schmidt scalar product (see Prop.2.7). However, relaxing
this condition leads to bases with remarkable properties—and our discussion to
the framework of frames. A frame of a vector space, say Cd, is a set of vectors
{φi}i=1..n for which there are constants 0 < a ≤ b <∞ such that for all ψ ∈ Cd

a||ψ||2 ≤
∑
i

|〈ψ|φi〉|2 ≤ b||ψ||2. (2.29)

6ok, ‘Vierergruppe’ sounds better
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Hence, the φi’s have to span the entire vector space. If a = b, the frame is called
tight and if in addition n = d it is nothing but an orthonormal basis (with norm
equal to

√
a). Since for tight frames

∑
i |φi〉〈φi| = a1, they correspond one-to-

one to rank-one POVMs.
A POVM is called informationally complete if its measurement outcomes

allow for a complete reconstruction of an arbitrary state. The existence of such
POVMs is fairly obvious: just use properly normalized spectral projections of
a unitary or Hermitian operator basis as effect operators. A simple physical
implementation in Cd would be to first draw a random number from 1, . . . , d2

and then measure the corresponding element of a Hermitian operator basis.
Clearly, a POVM acting on Cd is informationally complete iff it contains d2

linearly independent effect operators.
Now let us try to construct a positive semidefinite operator basis for Md

which is ‘as orthogonal as possible’ and see how this relates to tight frames and
informationally complete POVMs:

Proposition 2.7 (SIC POVMs) Let {Pi}i=1..n be a set of positive semidefi-
nite operators in Md, d ≤ n, which are normalized w.r.t. the Hilbert-Schmidt
scalar product, i.e., 〈Pi, Pi〉 = tr

[
P 2
i

]
= 1. Then

∑
i 6=j

|〈Pi, Pj〉|2 ≥
(n− d)2n

(n− 1) d2
, (2.30)

with equality iff all Pi are rank-one projections fulfilling 〈Pi, Pj〉 = n−d
(n−1)d for

all i 6= j, and
∑
i Pi = n

d1. In case of equality the Pi’s are linearly independent.

Proof Define Q :=
∑
i Pi. Invoking Cauchy-Schwarz inequality twice we get∑

i6=j

|〈Pi, Pj〉|2 ≥ 1

n2 − n

(∑
i 6=j

〈Pi, Pj〉
)2

(2.31)

=
1

n2 − n
(
tr
[
Q2
]
− n

)2 ≥ (tr [Q]
2
/d− n

)2
n2 − n

, (2.32)

where the first inequality holds iff 〈Pi, Pj〉 = const for all i 6= j and the second
one iff Q ∝ 1. Since due to normalization tr [Pi] ≥ 1 and thus tr [Q] ≥ n
with equality iff Pi is a rank-one projection we can further bound (2.32) from
below leading to the r.h.s. of (2.30). Collecting the conditions for equality
completes the proof of the first part. In order to show linear independence
assume

∑
j cjPj = 0 and set c := 〈Pi, Pj〉 for i 6= j. Then for all i: 0 =∑

j cj〈Pi, Pj〉 = ci(1 − c) + c
∑
j cj , so ci is independent of i and therefore

ci = 0.

As claimed before, Prop.2.7 shows that positive semidefinite operators can-
not form a Hilbert-Schmidt orthogonal operator basis (for that the l.h.s. of
Eq.(2.30) would have to be zero, which is in conflict with n = d2). Whether
the conditions for equality in Prop.2.7 are vacuous or actually have a solution
depends on n and d. Whenever there exists a solution, it forms a tight frame.
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While for n = d the solutions are exactly all orthonormal bases of Cd, for n > d2

no solution exists (as the Pi’s become necessarily linear dependent then).
Remarkably, there exist solutions for some n = d2, i.e., tight frames which

are informationally complete POVMs with the additional symmetry tr [PiPj ] =
(d + 1)−1 for all i 6= j. These are called symmetric informationally complete
(SIC) POVMs. For d = 2 all SIC POVMs are obtained by choosing points on
the Bloch sphere which correspond to vertices of a tetrahedron. For d = 3 an
example can be constructed from the shift-and-multiply basis in Eq.(2.24) by
taking projections onto the vectors |ξkl〉 := Ukl|ξ00〉 with |ξ00〉 := (|0〉+ |1〉)/

√
2.

In other words, in this example the vectors onto which the Pi’s project are gen-
eralized coherent states w.r.t. the discrete Heisenberg-Weyl group. Analogous
to continuous coherent states, all SIC POVMs provide (due to the operator basis
property) a representation of arbitrary operators ρ ∈Md:

ρ =
1

d

∑
i

(
(d+ 1)tr [Piρ]− tr [ρ]

)
Pi. (2.33)

In the context of coherent states this is called diagonal representation or (in
quantum optics for the continuous Heisenberg-Weyl group) P -function repre-
sentation.

Using the effect operators of a SIC-POVM as Kraus operators we get a
quantum channel of the form

1

d

d2∑
i=1

PiρPi =
1tr [ρ] + ρ

d+ 1
, ∀ρ ∈Md. (2.34)

Both Eq.(2.33) and Eq.(2.34) are readily verified by using the properties (in
particular the operator basis property) of the Pi’s.

Problem 9 (SIC POVMs) Determine the pairs of (n, d) for which equality in
Eq.(2.30) can be achieved.

2.4 Normal forms

It is sometimes useful to cut some trees in order to get a better overview of the
forest. Depending on the situation will later encounter various ‘normal forms’ for
the representations discussed previously—in particular, decompositions based
on spectral, convex or semi-group properties. This section is devoted to normal
forms of completely positive maps w.r.t. invertible maps with Kraus rank one.
More specifically, given a completely positive map T : Md1 → Md2 we are
interested in in simple representatives of the equivalence class

T ∼ Φ2TΦ1, (2.35)

where Φi ∈ B(Mdi) is of the form Φi(·) := Xi · X†i with Xi ∈ SL(di,C), i.e.,
complex valued matrices with unit determinant. Such maps often run under
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the name filtering operations. On the level of Choi-Jamiolkowski operators
τ ∈ B(Cd2 ⊗ Cd1) the transformation in (2.35) corresponds to τ 7→ τ ′ :=
(X2 ⊗X1)τ(X2 ⊗X1)† (up to an irrelevant transposition for X1). In order to
construct a normal form w.r.t. such transformations we utilize the following
optimization problem:

p := inf
Xi∈SL(di,C)

tr [τ ′] . (2.36)

Recall that we assume complete positivity which by Prop.2.1 means τ ≥ 0.
Clearly, p ≤ tr [τ ] (as we can choose Xi = 1) and p ≥ ||Xi||2∞λmin(τ) with
λmin(τ) the smallest eigenvalue of τ . Our aim is to choose as a representative
of the equivalence class one which minimizes (2.36):

Proposition 2.8 (Normal form for generic τ) Let τ ∈ B(Cd2 ⊗ Cd1) be
positive definite. Then there exist Xi ∈ SL(di,C) which attain the infimum in
(2.36) so that the respective optimal τ ′ = (X2 ⊗ X1)τ(X2 ⊗ X1)† is such that
both partial traces are proportional to the identity matrix.

Proof From the upper and lower bound on p we know that we can w.l.o.g.
restrict to ||Xi||2∞ ≤ tr [τ ] /λmin(τ). These Xi form a compact set (since τ > 0
by assumption) so that the infimum is indeed attained.

Eq.(2.36) can now be minimized by a simple iteration in X1 and X2: denote

by τ1 = tr2[τ ] a partial trace of τ so that τ ′1 := X1τ1X
†
1 is the corresponding

one for τ ′ := (1 ⊗X1)τ(1 ⊗X1)†. Choosing X1 := det(τ1)1/2d1τ
−1/2
1 will lead

to τ ′1 ∝ 1. Moreover, the arithmetic-geometric mean inequality gives

tr [τ ′] = det(τ1)1/d1d1 ≤ tr [τ1] = tr [τ ] , (2.37)

with equality iff τ1 ∝ 1. Iterating this step w.r.t. X1 and X2 will thus decrease
the trace while both reduced density matrices converge to something propor-
tional to the identity. As this holds true in particular for the optimal τ ′, it has
to have τ ′i ∝ 1.

Together with the Choi-Jamiolkowski correspondence in Prop.2.1 this has
an immediate corollary on the level of completely positive maps:

Proposition 2.9 (Normal form for generic cp maps) Let T :Md1 →Md2

be a completely positive map with full Kraus rank. There exist invertible com-
pletely positive maps Φi ∈ B(Mdi) with Kraus rank one such that T ′ := Φ2TΦ1

is doubly-stochastic, i.e., both T (1) and T ∗(1) are proportional to the identity
matrix.

The normal form in Prop.2.8 is unique7 up to local unitaries τ ′ 7→ (U2 ⊗
U1)τ ′(U2⊗U1), which corresponds to unitary channels Φi(·) = Ui·U†i in Prop.2.9.

7This is an exercise about non-negative matrices: assume τ̃ := (D2 ⊗ D1)τ ′(D2 ⊗ D1)
is a second normal form with Di positive diagonal matrices (we can always use the unitary
freedom to choose them like this). Then Mij := 〈ij|τ ′|ij〉 (and analogously M̃) is a doubly
stochastic non-negative matrix, i.e., Mij ≥ 0 and all rows as well as well as all columns have

the same sum. Moreover, M̃ = M ∗H is a Hadamard product with Hij := [D2]ii[D1]jj . The
only H which achieves such a mapping is, however, a multiple of Hij = 1.
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This implies that the algorithmic procedure used in the proof of Prop.2.8 in or-
der to obtain the normal form by minimizing tr [τ ′] eventually converges to the
global optimum.

In cases where τ has a kernel the infimum in (2.36) may either be zero or not
be attained for finite Xi. An exhaustive investigation of general normal forms
w.r.t. the equivalence class (2.35) has been performed for qubit channels.

Qubit maps We continue the discussion about normal forms w.r.t. Kraus-
rank one operations for completely positive maps T : M2 → M2. Choosing
normalized Pauli matrices as operator basis (with σ0 = 1) we can represent T
as a 4 × 4 matrix T̂ij := tr [σiT (σj)] /2. If T is Hermitian, then T̂ is real, and
if T is trace preserving, then (T1,j) = (1, 0, 0, 0). A quantum channel in the
Schrödinger picture is thus represented by

T̂ =

(
1 0
v ∆

)
, (2.38)

where ∆ is a real 3×3 matrix and v ∈ R3. The corresponding Jamiolkowski state
is given by τ = 1

4

∑
ij T̂ijσi⊗σTj so that v describes its reduced density operator

and ∆ its correlations. The conditions for T̂ to correspond to a completely
positive map have to be read off from τ ≥ 0. The complexity of this condition
is the drawback of this representation. One of its advantages is a nice geometric
interpretation: parameterizing a density operator via ρ = (1 +

∑3
k=1 xkσk)/2,

i.e., in terms of a vector x ∈ R3 within the Bloch ball ||x|| ≤ 1 (see example1.1),
the action of T is a simple affine transformation

x 7→ v + ∆x. (2.39)

From here conditions for T to be positive are readily derived (as the vector has
to stay within the Bloch ball), and we will discuss them in greater detail in ...
. The following is a useful proposition in this context:

Proposition 2.10 Let T : M2(C) →M2(C) be a Hermiticity preserving lin-
ear map with ∆ij := tr [σiT (σj)] /2 the lower-right submatrix (i.e., i, j = 1, 2, 3)

of the matrix representation T̂ . Then T̂ ′ := T̂00 ⊕∆ represents a (completely)
positive map iff T̂ does so.

Proof We use that D := diag(1,−1,−1,−1) is the matrix representation of
time-reversal (see Sec.3.3), i.e., matrix transposition in some basis. Following
the relation in Eq.(1.24) the map DT̂D is (completely) positive if T̂ is. The
same holds thus for the convex combination (T̂ +DT̂D)/2 = T̂ ′.

Suppose now that we act with a unitary before and another one after ap-
plying the channel T so that the overall action is ρ 7→ U2T (U1ρU

†
1 )U†2 . The

transfer matrix corresponding to this concatenation is then given by the prod-
uct (1⊕O2)T̂ (1⊕O1), where Oi ∈ SO(3) are real rotations of the Bloch sphere.
This reflects the two-to-one group homomorphism SU(2) → SO(3) (see exam-
ples 1.1 and 2.2). We may use this in order to diagonalize ∆→ diag(λ1, λ2, λ3)
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so that λ1 ≥ λ2 ≥ |λ3| and for positive, trace-preserving maps necessarily
1 ≥ λ1. Up to a possibly remaining sign this diagonalization is nothing but a
real singular value decomposition. Expressed in terms of the λi’s a necessary
condition for complete positivity is that

λ1 + λ2 ≤ 1 + λ3. (2.40)

This becomes sufficient if the map is unital, i.e., if v = 0 (see also Exp.2.3).
Extending the freedom in the transformations from SU(2) to SL(2) enables

us to further simplify T̂ and to bring it to a normal form (as stated in Prop.2.9
for the full rank case):

Proposition 2.11 (Lorentz normal form) For every qubit channel T there
exist invertible completely positive maps Φ1,Φ2, both of Kraus rank one, such
that the concatenation Φ2TΦ1 =: T ′ (characterized by v and ∆) is a qubit
channel of one of the following three forms:

1. Diagonal: T ′ is unital (v = 0) with ∆ diagonal. This is the generic case
(proved in Prop.2.9).

2. Non-diagonal: T ′ has ∆ = diag(x/
√

3, x/
√

3, 1/3), 0 ≤ x ≤ 1 and v =
(0, 0, 2/3). These channels have Kraus rank 3 for x < 1 and Kraus rank
2 for x = 1.

3. Singular: T ′ has ∆ = 0 and v = (0, 0, 1). This channel has Kraus rank 2
and is singular in the sense that it maps everything onto the same output.

Example 2.2 (Lorentz group and spinor representation) Our aim is to un-

derstand the action of T → Φ2TΦ1 as an equivalence transformation on T̂ by ele-
ments from the Lorentz group. In order to see how this arises, consider the space
M†2(C) of complex Hermitian 2 × 2 matrices. Every such matrix can be expanded as
M =

∑3
i=0 xiσi with x ∈ R4. Since det(M) = x20 − x21 − x22 − x23 = 〈x, ηx〉 with

η := diag(1,−1,−1,−1) we can identify M†2(C) with Minkowski space such that the
determinant provides the Minkowski metric. If X ∈ SL(2,C), the map

M 7→ XMX† (2.41)

in this way becomes a linear isometry in Minkowski space, i.e., a Lorentz transforma-
tion. In fact, the group SL(2,C) is a double cover of the special orthochronous Lorentz
group

SO+(1, 3) := {L ∈M4(R) | det(L) = 1, LηLT = η, L00 > 0} (2.42)

in very much the same way as SU(2) is a double cover of SO(3). The map SL(2,C)→
SO+(1, 3) constructed above is sometimes called spinor map. It is two-to-one since
±X have the same effect in (2.41). Due to this equivalence the transfer matrix of the
channel Φ2TΦ1 becomes

L2T̂L1, with Li ∈ SO+(1, 3). (2.43)

The normal form in Prop.2.11 can thus be regarded as a normal form w.r.t. special
ortochronous Lorentz transformations.
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Every L ∈ SO+(1, 3) can be decomposed into a ‘boost’ and a spatial rotation. This
decomposition can be obtained from the polar decomposition X = PU in SL(2,C),
where P > 0 and UU† = 1. In order to make this more explicit, define generators of
spatial rotations by Ri :=

∑3
jk=1 εijk|k〉〈j| ∈ M4, and generators of boosts by Bi :=

|0〉〈i| + |i〉〈0| ∈ M4 with i = 1, 2, 3. Then with ~n, ~m ∈ R3 the mapping SL(2,C) →
SO+(1, 3) takes the form

U = e−i~n·~σ/2 → e−~n·
~R, P = e~m·~σ/2 → e~m·

~B . (2.44)

Decomposing P further according to the spectral decomposition leads to a diagonal
matrix which corresponds to a boost in z-direction (i.e., it acts in the 0-3–plane as
1 coshm3 + σx sinhm3).

Example 2.3 (Bell diagonal states and Pauli channels) ...

2.5 Literature
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Chapter 3

Positive, but not completely

In this chapter we will discuss linear maps which are positive (i.e., they preserve
positive semidefiniteness) but not necessarily completely positive. Although
such operations cannot directly be implemented in a physical device they play
an important role as mathematical tools, in particular in entanglement theory
(see Sec.3.2).

Recall that a linear map T : Md(C) → Md′(C) is positive if for every
positive semidefinite matrix A ∈ Md(C) (we write A ≥ 0) we have T (A) ≥ 0.
T is positive iff the adjoint map T ∗ is so, and every positive map is Hermitian
in the sense that T (X†) = T (X)† for all X ∈ Md(C). By Prop.2.2 every
positive map is a difference of two completely positive maps. Since this is,
however, true for every Hermitian map it does, unfortunately, not provide a
simple parametrization of positive maps.

The paradigm of a map, which is positive but not completely positive, is
the usual matrix transposition A 7→ θ(A) := AT which is defined with respect
to a given orthogonal basis by 〈i|AT |j〉 = 〈j|A|i〉. The transposition is trace
preserving and positive: if UDU† is the spectral decomposition of any Hermitian
matrix (i.e., U is unitary and D diagonal), then (UDU†)T = ŪDUT has the
same eigenvalues. The fact that transposition is not completely positive can
be easily seen by applying it to half of a maximally entangled state |Ω〉 =∑d
i=1 |ii〉/

√
d (see example 1.2):

(
θ ⊗ id

) (
|Ω〉〈Ω|

)
=

1

d
F , F =

d∑
i,j=1

|ij〉〈ji| . (3.1)

Since the “flip operator” F has eigenvalues ±1 (with multiplicities d(d ± 1)/2
corresponding to symmetric and antisymmetric eigenvectors respectively) θ fails
to be completely positive. For the partial transpose (θ ⊗ id)(X) we will occa-
sionally write XTA or XT1 referring to a transposition on Alice’s/the first tensor
factor.

Transposition plays an important role in the discussion of the structure of
positive maps and isometries. We came across one of its appearances already

53
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in Wigner’s theorem1.1 and we will see similar relations in Prop,3.6 and ... .
Among all positive maps transposition gets physically distinguished by a simple
interpretation—as time reversal operation (see Sec.3.3).

The simplest class of positive maps are those which are build up of a matrix
transposition together with completely positive maps T1 and T2. A positive
map which has such a decomposition in the form1

T = T1 + T2θ (3.2)

is thus called decomposable. Note that the order of maps is irrelevant here, since
θT2θ is completely positive iff T2 is. FromMd toMd with d = 2 every positive
map is decomposable, whereas for larger dimensions this is no longer true. Both
facts have far-ranging consequences in entanglement theory (see Sec.3.2). The
existence of indecomposable positive maps can, with some imagination and the
willingness to make a little detour, be traced back to the history of Hilbert’s
17’th problem. Since this is a detour of the nicer kind, we will follow it in
Sec.3.4. We will start, however, by discussing notions of positivity in between
bare positivity and complete positivity:

3.1 n-positivity

A linear map T :Md(C)→Md′(C) is called n-positive (with n ∈ N) if T ⊗ idn
is positive. That is, positivity of T is preserved if we add an ‘innocent bystander’
of dimension at most n. For given dimensions, the set Tn of n-positive maps
forms a closed convex cone, i.e., if Ti ∈ Tn then

∑
i piTi ∈ Tn for all positive

pi ∈ R and Tn contains its limit points. Moreover, the dual map T ∗ is n-positive
if and only if T is. Clearly, n-positivity implies m-positivity for all m ≤ n. Only
if n = d, then (by Prop.1.2) m-positivity holds for all m ∈ N, i.e., the map is
completely positive. For different n we thus get a chain of inclusions

Tcp := Td ⊆ Td−1 ⊆ · · · ⊆ T2 ⊆ T1, (3.3)

from completely positive maps (n = d) to positive maps (n = 1). As we will see
later all these inclusions are strict. To this end the following characterization is
useful:

Proposition 3.1 (Choi-Jamiolkowski for n-positive maps) Let T :Md(C)→
Md′(C) be a linear map and τ := (T⊗id)(|Ω〉〈Ω|) ∈Md′⊗Md its corresponding
Choi-Jamiolkowski operator. For n ≤ d the following are equivalent:

1. T is n-positive.

2. (1 ⊗ P )τ(1 ⊗ P ) ≥ 0 for all Hermitian projections P ∈ Md(C) with
rank(P ) = n.

3. 〈ψ|τ |ψ〉 ≥ 0 for all ψ ∈ Cd′ ⊗Cd with Schmidt-rank n.

1Here T2θ is a concatenation of maps, i.e., (T2θ)(X) = T2(XT ).
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Proof T is n-positive iff (T ⊗ idn)(|φ〉〈φ|) ≥ 0 for all φ ∈ Cd⊗Cn. Embedding
Cn in Cd this becomes equivalent to (T ⊗ idd)(|φ〉〈φ|) ≥ 0 for all φ ∈ Cd ⊗Cd
with Schmidt rank n. The latter can be parameterized by |φ〉 = (1 ⊗ X)|Ω〉
where X ∈Md has rank n. In this way n-positivity becomes equivalent to

(1⊗X)τ(1⊗X)† ≥ 0, ∀X ∈Md(C) : rank(X) = n. (3.4)

From here equivalence with 2. follows by expressing X = X̃P in terms of the
projector P onto its support space and an invertible X̃. Equivalence between 3.
and Eq.(3.4) is seen by taking the expectation value of the l.h.s. of (3.4) with
an arbitrary vector |ψ̃〉 and noting that (1 ⊗ X)†|ψ̃〉 =: |ψ〉 has Schmidt rank
n.

In particular the last item motivates to investigate extremal overlaps with
pure states of a given Schmidt rank:

Lemma 3.1 (Overlap with fixed Schmidt rank) Let φ ∈ Cd′ ⊗ Cd be a
normalized vector with reduced density matrix tr2|φ〉〈φ| =: ρ. Then the maximal
overlap with all normalized vectors ψ of Schmidt rank n is given by

sup
ψ
|〈φ|ψ〉|2 = ||ρ||(n), (3.5)

where || · ||(n) denotes the Ky-Fan norm, i.e., the sum over the n largest singular
values (here, eigenvalues).

Proof Using the Schmidt decomposition of both vectors we can rewrite the
optimization in the form

sup
ψ
|〈φ|ψ〉|2 = sup

U,V,µ

∣∣∣tr [U√µV√λ] ∣∣∣2, (3.6)

where U, V are unitaries, λ a diagonal matrix containing the eigenvalues of ρ and√
µ a diagonal matrix containing the Schmidt coefficients of ψ. The maximum in

Eq.(3.6) is attained for U = V = 1 (which can for instance be seen by exploiting
a standard singular value inequality2). The remaining supremum is then of the
form supµ |

∑n
i=1

√
µiλi|2 with {λ1, . . . , λn} the n largest eigenvalues of ρ. This

can easily be solved using a Lagrange multiplier for the normalization constraint∑n
i=1 µi = 1 which gives µi = cλi with c determined by normalization. Putting

things together we arrive at (3.5).

Utilizing this Lemma together with item 3. in Prop.3.1 we can now provide
a simple criterion for n-positivity in terms of the spectral decomposition τ =∑
i νi|φi〉〈φi| (with ||φi|| = 1). Denoting by ρi the reduced density operator of

φi we obtain:

2For two matrices A,B the ordered singular values satisfy
∑
i si(AB) ≤

∑
i si(A)si(B);

see Thm. IV.2.5 in ... [Bhatia] .
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Proposition 3.2 (Criterion for n-positivity) Consider a Hermitian opera-
tor τ ∈ Md′ ⊗Md (e.g., the Choi-Jamiolkowski operator of a Hermitian map)
whose smallest positive non-zero eigenvalue is ν0. Then with the above notation

inf
ψ
〈ψ|τ |ψ〉 ≥ ν0 +

∑
i:νi≤0

(νi − ν0)||ρi||(n), (3.7)

if the infimum is taken over all normalized vectors of Schmidt rank n. Con-
versely, if all but one eigenvalue ν− of τ are strictly positive, and ν∞ is the
largest positive eigenvalue, then:

inf
ψ
〈ψ|τ |ψ〉 ≤ ν∞ + (ν− − ν∞)||ρ−||(n). (3.8)

Proof By separating positive and negative parts of τ we obtain

τ ≥ ν0

∑
i:νi>0

|φi〉〈φi| +
∑
j:νj≤0

νj |φj〉〈φj |, (3.9)

= ν01+
∑
i:νi≤0

(νi − ν0)|φi〉〈φi|, (3.10)

from which Eq.(3.7) follows by exploiting Lemma 3.1. The inequality (3.9) is
reversed if we replace ν0 by ν∞, which then leads to Eq.(3.8).

Now, let us apply this to the map Tη :Md →Md defined by

Tη(ρ) = 1dtr [ρ]− ρ

η
, η ∈ R+. (3.11)

For η ≥ d this map is completely positive. For η < d all positive eigenvalues
of the corresponding Choi-Jamiolkowski operator are equal to 1/d and there
is a single negative eigenvalue ν− = (1/d − 1/η) with ||ρ−||(n) = n/d. Hence,
the upper and lower bound in Prop.3.2 actually coincide and we get that Tη
is n-positive iff η ≥ n.3 This proves that all the inclusions in the chain (3.3)
are strict. When Tη is positive (i.e., for η ≥ 1) it is decomposable as Tηθ is
completely positive.

3.2 Positive maps and entanglement theory

A map, which is positive but not completely positive, like the transposition, does
not correspond to a physically implementable operation. Nevertheless, such
maps, and in particular the transposition and the map T1 in Eq.(3.11), have
become important mathematical tools in the theory of entanglement. Applied
as (T ⊗ id) to a bipartite density matrix they are powerful tools for “detecting”
entanglement as well as for recognizing “useful” (in the sense of distillable)
entanglement.

3For the example Tη this can be proven in a simpler way (by averaging a Schmidt rank
n vector w.r.t. the group {U ⊗ Ū}), without invoking Prop.3.2. We nevertheless stated the
proposition as it can be applied to situations where τ does not have such a symmetry.
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Detecting entanglement Suppose that ρ ∈ Md ⊗Md′ is a separable state
as defined in Eq.(1.8), then positivity of T implies that (T ⊗ id)(ρ) remains
positive semi-definite, since tensor products and convex combinations of positive
operators are again positive. Hence, for any positive map T a negative eigenvalue
of (T ⊗ id)(ρ) proves that ρ is entangled:

T positive, and 〈Ψ|(T ⊗ id)(ρ)|Ψ〉 < 0 ⇒ ρ is entangled. (3.12)

We may go one step further and use an n-positive T . This gives the generaliza-
tion

T n-positive, and 〈Ψ|(T⊗id)(ρ)|Ψ〉 < 0 ⇒
Every pure state decomposition
of ρ contains at least one vector
of Schmidt rank larger than n.

The smallest n such that ρ has a convex decomposition into pure states of
Schmidt rank at most n is called the Schmidt number of ρ. With this terminol-
ogy separable states are precisely those with Schmidt number one.

In order to prove the converse of the above implications it is useful to in-
troduce the concept of witnesses for (Schmidt number n + 1) entanglement.

Proposition 3.3 (Entanglement witnesses) A density operator ρ ∈Md(C)⊗
Md′(C) has Schmidt number at least n+ 1 iff there exists a Hermitian operator
W ∈ Md(C) ⊗Md′(C) such that tr [Wρ] < 0 but 〈ψ|W |ψ〉 ≥ 0 for all vectors
ψ ∈ Cd ⊗Cd′ with Schmidt rank n.

Proof Egg–hyperplane–done. In order to be a bit more precise, let us re-
gard the space of Hermitian operators as a real vector space equipped with
the Hilbert-Schmidt inner product. Since the set Sn of density operators with
Schmidt number at most n is compact and convex, every ρ 6∈ Sn can be sepa-
rated from it by a hyperplane of Hermitian operators H satisfying 〈H, W̃ 〉 = c
for some constant c and some W̃ = W̃ †. That is, 〈ρ, W̃ 〉 < c whereas 〈ρ′, W̃ 〉 ≥ c
for all ρ′ ∈ Sn. Setting W := W̃ − c1 then completes the ‘only if’ part of the
proof. The ‘if’ part follows from the fact that Sn is the closure of the convex
hull of the set of pure states with Schmidt rank n.

An operator W with the properties mentioned in Prop.3.3 is called entan-
glement witness (for Schmidt number n + 1 entanglement). We will follow the
literature and use ‘entanglement witness’ referring to the case n = 1 unless oth-
erwise specified. Invoking the Choi-Jamiolkowski correspondence (Prop.2.1) we
can assign a positive map to each witness. This leads to the following charac-
terization:

Proposition 3.4 (Positive maps and entanglement) A density operator ρ ∈
Md(C) ⊗Md′(C) has Schmidt number at most n iff for all n-positive maps
T :Md(C)→Md′(C) it holds that (T ⊗ id)(ρ) ≥ 0.

Proof We only have to prove the ‘if’ part. For that assume that ρ 6∈ Sn. Then
by Prop.3.3 there is an entanglement witness for which tr [Wρ] < 0. This defines,
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by the Choi-Jamiolkowski correspondence, a linear map T ∗ :Md′(C)→Md(C)
via

W =: (T ∗ ⊗ id)(|Ω〉〈Ω|). (3.13)

By item 3 in Prop.3.1 T ∗ and with it its adjoint T is n-positive and by con-
struction

tr [Wρ] = 〈Ω|(T ⊗ id)(ρ)|Ω〉 < 0. (3.14)

Hence, (T ⊗ id)(ρ) cannot be positive.

We see from Eq.(3.14) that the positive map constructed from a witness
is actually more powerful, in the sense that it detects more entangled states,
than the witness we started with: after all (T ⊗ id)(ρ) might have a negative
eigenvalue without 〈Ω|(T ⊗ id)(ρ)|Ω〉 being negative. A closer look reveals that
a positive map T constructed from a witness W ‘detects’ an entangled state ρ
iff it is detected by one of the witnesses from the orbit {(1 ⊗ X)W (1 ⊗ X)†}
with X ∈Md′(C).

Decomposable positive maps correspond to decomposable witnesses which
are of the form

W = P1 + PT1
2 , with Pi ≥ 0. (3.15)

By duality, the existence of indecomposable witnesses for given dimensions is
equivalent to the existence of entangled states satisfying ρT1 ≥ 0:

Proposition 3.5 (PPT entangled states) 4 There exists an indecomposable
positive map T :Md(C)→Md′(C) iff there is an entangled state ρ ∈Md⊗Md′

with positive partial transpose ρT1 ≥ 0.

Proof We exploit the equivalence between indecomposable maps and witnesses.
That is, we show that the existence of an indecomposable positive map implies
that there is an entangled state with ρT1 ≥ 0. The converse follows from Prop3.3.
Denote by W ⊆ Md ⊗Md′ the set of all entanglement witnesses, i.e., Hermi-
tian operators with 〈φ ⊗ ψ|W |φ ⊗ ψ〉 ≥ 0 for all φ, ψ, and by WT ⊆ W all
decomposable witnesses. Both W and WT are closed convex sets. If there is
(by assumption) a W ∈ W \ WT we can separate it by a hyperplane charac-
terized by a Hermitian operator R such that tr [WR] < 0 ≤ tr [WTR] for all
WT ∈ WT . Since WT contains all positive operators R must be positive so that
ρ := R/tr [R] is a density matrix. By construction ρT1 ≥ 0 while ρ is entangled
due to tr [Wρ] < 0.

We will see shortly that entangled PPT states exists iff the dimension is
larger than C2 ⊗C3.

Example 3.1 (Some positive maps and entanglement witnesses)

Transposition is a positive map. It corresponds to the set of witnesses W =
(A⊗B)F(A⊗B)† for arbitrary A,B. The separability criterion (θ⊗ id)(ρ) := ρT1 ≥ 0
is called PPT (positive partial transpose) criterion. Although the partial transpose
depends on the choice of the local basis, the PPT criterion does not: if we take the

4Admittedly this proposition has mainly and at most pedagogical value. Once examples
of entangled PPT states are constructed it looses a lof of its charm...
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partial transposition with respect to a different (local) basis, labeled by the superscript
T̃1 , we get

ρT̃1 = (U ⊗ 1)
[
(U† ⊗ 1)ρ(U ⊗ 1)

]T1(U† ⊗ 1) (3.16)

=
[
(UUT )⊗ 1

]
ρT1
[
(UUT )† ⊗ 1

]
. (3.17)

Eqs.(3.16-3.17) show that the eigenvalues of the partial transpose are basis independent,
and so is the positivity of ρT1 . Moreover, ρT1 ≥ 0 is equivalent to ρT2 ≥ 0 since the
two operators only differ by a global transposition. We will see in ... that the PPT
criterion is necessary and sufficient for separability in C2 ⊗C2 and C2 ⊗C3.

Reduction criterion. The set of maps Tn(X) := tr [X]1 − X/n, n ∈ N in
Eq.(3.11) is n-positive (and self-dual, i.e., T ∗n = Tn). As a consequence

nρ1 ⊗ 1 ≥ ρ and n1⊗ ρ2 ≥ ρ, (3.18)

(with ρk the k’th reduced density matrix of ρ) is necessary for a bipartite state ρ to
have Schmidt number n. For n = 1 this is called reduction criterion. As Tn is a
decomposable positive map, the reduction criterion is generally weaker than the PPT
criterion for entanglement detection. For C2⊗C2 the two criteria are equivalent since
T1(X) =

(
σyXσy)T for any X ∈ M2(C). An entanglement witness corresponding to

Tn is Wn = 1/d− |Ω〉〈Ω|/n. That is, a state ρ with Schmidt number n has to satisfy
〈Ω|ρ|Ω〉 ≤ n/d which is a weak version of Lemma 3.1.

Breuer-Hall map TBH :Md →Md is positive and defined as

TBH(X) = tr [X]1−X−UXTU†, for any U with UT = −U and U†U ≤ 1. (3.19)

Positivity is easily seen by applying TBH to a pure state and noting that due to the
anti-symmetry of U we have 〈ψ|U |ψ̄〉 = 0 which implies that the subtracted terms are
orthogonal. For d even there are anti-symmetric unitaries U† = U−1 = −Ū (e.g.
embeddings of the Pauli matrix σy), whereas for d odd these do not exist (which can be
seen from the fact that det(U) = det(UT ) = det(−U) would be equal to − det(U) in this
case; see Thms. 3.1,3.2). If U is an anti-symmetric unitary TBH is not decomposable.

Choi-type maps. Let D ∈ B(Md) map a matrix X onto a diagonal matrix D(X)
with the same diagonal entries, and let Uk0 be a cyclic shift as defined in Eq.(2.24).
Then for all n ∈ N with 1 ≤ n ≤ d− 2 the map TC ∈ B(Md) defined by

TC(X) := (d− n)D(X)−X +

n∑
k=1

D
(
Uk0XU

†
k0

)
, (3.20)

is positive and indecomposable. For n = 0 it is completely positive and for n = d − 1
it is proportional to the map Tn appearing in the context of the reduction criterion.

Unextendable product bases (UPBs) are sets S = {|αj〉 ⊗ |βj〉} of normalized

and mutually orthogonal product vectors in Cd ⊗ Cd
′

(d′ ≥ d) such that there is no
product vector, which is orthogonal to every element of S, and |S| < dd′.5 That is,

the projection PS :=
∑|S|
j=1 |αj〉〈αj | ⊗ |βj〉〈βj | has a kernel which contains no product

vector. An example of such a UPB in dimension 3 ⊗ 3 can be constructed from five

5Note that this is only possible if {|αj〉} (resp. {|βj〉}) is not a set of mutually orthogonal
vectors.
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real vectors forming the apex of a regular pentagonal pyramid, where the height h is
chosen such that nonadjacent apex vectors are orthogonal. These vectors are

vj = N

(
cos

2πj

5
, sin

2πj

5
, h

)
, j = 0, . . . , 4 , (3.21)

with N = 2/
√

5 +
√

5 and h = 1
2

√
1 +
√

5. The UPB is then given by |αj〉 ⊗ |βj〉 =
|vj〉 ⊗ |v2j mod5〉. Since any subset of three vectors on either side spans the full space,
there cannot be a product vector orthogonal to all these states. Based on this or any
other UPB, one can easily construct an entangled PPT state:

ρS ∝ (1− PS). (3.22)

Since by construction ρS has no product vector in its range it has to be entangled.
Moreover, ρT1 ≥ 0, since {|ᾱj〉 ⊗ |βj〉} is again a set of mutually orthogonal and
normalized vectors. From here we can construct an entanglement witness

WS = PS − ε|ψ〉〈ψ|, (3.23)

where ψ is any maximally entangled state of dimension d fulfilling 〈ψ|ρS |ψ〉 > 0 and
ε := d inf{φi}〈φ1⊗φ2|P |φ1⊗φ2〉/||φ1⊗φ2||2. So by construction tr [WSρS ] < 0 whereas
tr [WSρ] ≥ 0 for all separable states. By the Choi-Jamiolkowski correspondence WS

thus defines a positive map which is not decomposable.

Entanglement distillation ... TO BE WRITTEN ...
LOCC & separable superoperators
PPT implies not distillable
reduction criterion, distillability (maybe majorization)

3.3 Transposition and time reversal

Due to the lack of complete positivity, the transposition (as well as the partial
transposition) does not correspond to a physically implementable operation.
However, it can physically be interpreted as “time reversal” [?] and appears as
such quite often as a (global) symmetry, in particular in particle physics [?].
Although we will not make explicit use of this interpretation or symmetry in
the following, we will briefly describe this relation.

One way to see that the transposition or complex conjugation (which is
the same on Hermitian operators) admits an interpretation as time reversal, is
looking at the Wigner function of a continuous variable system in Schrödinger
representation.6 If we choose ρ =

∑
i λi|ψi〉〈ψi| with λi ≥ 0 and

∑
i λi||ψi||2 = 1

to be a decomposition of a density operator ρ and define an integral kernel
D(x; y) =

∑
i λiψi(x)ψi(y) in the Schrödinger representation, then we can write

the Wigner function as

W(x, p) = π−n
∫
D(q − x; q + x) e−i2x·p dnx , (3.24)

6Note that we leave the case dimH <∞ within this section. The underlying Hilbert space
is now the space L2 of square integrable functions.
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where n is the number of canonical degrees of freedom, i.e., x, p, q ∈ Rn. From
Eq.(3.24) we see, that the complex conjugation or transposition D(x; y) 7→
D(y;x) is equivalent to a reversal of momenta p 7→ −p. Due to the basis
dependency of the transposition this is, however, no longer true if we choose
another representation. Hence we cannot identify the transposition or complex
conjugation with time reversal in general.

Time is a parameter in quantum mechanics. Therefore there cannot be a
general transformation in Hilbert space which directly affects this parameter
and acts as t 7→ −t. In this sense the term “time reversal” is misleading.
It characterizes a reversal of momenta including angular momenta and spins,
rather than a reversal of the arrow of time. The defining ansatz for time reversal
is thus an operator T which acts on Hilbert space in a way that position and
momentum operators transform as

T QT −1 = Q and T PT −1 = −P, (3.25)

and for consistency also T LT −1 = −L and T ST −1 = −S for angular momenta
and spins. Left and right multiplication of the canonical commutation relations
[Q,P ] = i1 leads with Eq.(3.25) to T iT −1 = −i 1. Thus T is an “anti-linear”
operator, and, as it is supposed to be norm preserving, it is “anti-unitary”.7

The simplest example of an anti-unitary operator is the complex conjuga-
tion Γ (which is on Hermitian matrices equal to the transposition). In fact, in
Schrödinger representation we may identify the time reversal operator T with
complex conjugation, since the latter leaves the position operator unchanged

and maps −i ddx
Γ7→ i ddx and therefore changes the sign of momentum and an-

gular momentum operators. As the time reversal operator should not depend
on the representation (resp. basis), T cannot be identified with Γ in general.
However, every anti-unitary operator can be written as the product of a unitary
operator with complex conjugation.

Let us now turn to spin angular momenta. Consider the standard repre-
sentation, in which Sx and Sz are real and Sy is imaginary. In this basis we
have

ΓSxΓ−1 = Sx, ΓSyΓ−1 = −Sy, ΓSzΓ
−1 = Sz, (3.26)

hence we cannot identify T with complex conjugation. However, we may write
T = ΓV , where V has to invert the signs of Sx and Sz, while leaving Sy
unchanged. Moreover, V is, as a product of two anti-unitaries, a linear unitary
operator, and it is supposed to act only on the spin degrees of freedom. These
requirements are satisfied by V = exp−iπSy, which rotates the spin through
the angle π about the y axis. Hence, we have with respect to the considered
representation8

T = Γe−iπSy , (3.27)

7An anti-linear operator A satisfies Az = z̄A for any complex number z. The product
of two anti-linear operators is thus again a linear operator. If the inverse A−1 exists and
∀Ψ ∈ H : ||AΨ|| = ||Ψ||, then we say that A is anti-unitary. We have then 〈AΦ|AΨ〉 = 〈Ψ|Φ〉.

8Note that time reversal squared is not the identity. The operator T 2 in Eq.(3.27) has
eigenvalues -1 for states with total spin n/2, with n odd.
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and applying the time reversal to a density matrix describing a finite dimensional
spin system gives then T −1ρT = V †ρTV .

Let us now consider (finite dimensional) composite systems, where ρ ∈
B(H1 ⊗ H2). The global time reversal operator is then T ⊗ T , which is a
well defined anti-unitary operator again. Unfortunately, there exists no opera-
tor on Hilbert space, which corresponds to a “partial time reversal” of only one
of the two subsystems. In fact, the action of a tensor product of the form id⊗T
(linear⊗anti-linear) on a vector Ψ ∈ H1⊗H2 is not well defined. However, since
for product vectors (id ⊗ T −1)(|ψ〉 ⊗ |φ〉) gives only rise to a phase ambiguity,
the action on the respective projectors(

id⊗ T −1
)(
|ψ〉〈ψ| ⊗ |φ〉〈φ|

)(
id⊗ T

)
(3.28)

becomes well defined without any ambiguity, and Eq.(3.28) describes a linear
operator again. Since the real linear hull of projectors onto product states equals
the set of all Hermitian operators, we can in this way define the “partial time
reversal” as a map on density matrices. Due to Eq.(3.27) this is equivalent
to the partial transposition up to a local unitary transformation. Note that
the latter is irrelevant for the detection of entanglement since it preserves the
eigenvalues.

The time reversal symmetry of a dynamics, i.e., the invariance of a Hamilto-
nian under time reversal, does not lead to a conserved quantity (like parity for
space inversion). However, it sometimes leads to a degeneracy of the eigenvalues:

Suppose [H, T ] = 0 for some anti-unitary T and Hermitian H. Writing
T = ΓV with V unitary this becomes equivalent to HV † = V †HT . Moreover,
T 2 = −1 is equivalent to V T = −V being anti-symmetric.

Theorem 3.1 (Kramer’s theorem) If [H, T ] = 0 and T 2 = −1 for a Her-
mitian H and anti-unitary T , then each eigenvalue of H is at least two-fold
degenerate.

Proof Let H|ψ〉 = λ|ψ〉. Then HV †|ψ̄〉 = V †HT |ψ̄〉 = V †H̄|ψ̄〉 = λV †|ψ̄〉, so
V †|ψ̄〉 gives rise to the same eigenvalue. This is degenerate since the two vectors
are orthogonal:

〈ψ|V †|ψ̄〉 = −〈ψ|V̄ |ψ̄〉 = −〈ψ̄|V |ψ〉 (3.29)

= −〈ψ|V †|ψ̄〉. (3.30)

Note that anti-symmetric unitaries only exist in even dimensions.9 In fact,
the restriction on the required symmetry in the theorem can be relaxed as the
same proof shows:

Theorem 3.2 (Kramer’s theorem II) Let H be Hermitian and HA = AHT

for some anti-symmetric A 6= 0. Then each eigenvalue of H is at least two-fold
degenerate.

9In odd diemnsions we get that det(V ) = det(V T ) = − det(V ) which contradicts the fact
that the determinant of a unitary has to be a phase.
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3.4 From Hilbert’s 17th problem to indecom-
posable maps

The following pages will somehow be a detour following a historical path. Rather
than writing down examples of indecomposable positive maps (as we did within
example 3.1) we will see how they arose from a problem Hilbert thought about
in 1888. For an overview of Hilbert’s 17th problem see [?].

Hilbert’s problem: A sum of squares (sos) of real polynomials is obviously
positive semi-definite. The converse question, whether a real homogeneous psd
polynomial of even degree has a sos decomposition, was posed and answered by
David Hilbert in 1888. Let Hh(Rn) be the set of homogeneous polynomials of
even degree h in n real variables, and

Ph(Rn) = {p ∈ Hh(Rn)
∣∣∀x ∈ Rn : p(x) ≥ 0}, (3.31)

Σh(Rn) =
{
p ∈ Ph(Rn)

∣∣∃{hk ∈ Hh/2(Rn)} : p =
∑
k

h2
k

}
, (3.32)

the set of psd polynomials in H and the subset of polynomials having an sos
decomposition, respectively.10 It is not difficult to see that P = Σ if n = 2 or h =
2. In fact, the latter is nothing but the spectral decomposition of psd matrices.
In 1888 Hilbert showed at first, that every p ∈ P4(R3) can be written as the
sum of squares of three quadratic forms, i.e., P4(R3) = Σ4(R3). Moreover, he
proved, albeit in a non-constructive way, that (h, n) = (2, n), (h, 2), (4, 3) are in
fact the only cases where P = Σ. In 1900 Hilbert posed a generalization of these
questions as his “17th problem” at the International Congress of Mathematics
in Paris11: Does every homogeneous psd form admit a decomposition into a
sum of squares of rational functions? This was answered in the affirmative by
Artin in 1927 using the Artin-Schreier theory of real closed fields [?] .12

Choi’s example: Concerning Hilbert’s original 1888 work it took nearly 80
years for explicit polynomials p ∈ P\Σ to appear in the literature. One of these
examples was provided by Choi, while investigating one of the numerous “sum
of squares” variants of Hilbert’s problem. Choi showed in 1975 that there are
psd biquadratic forms that cannot be expressed as the sum of squares of bilinear
forms. More precisely, let

F (x, y) =

n∑
i,j,k,l=1

Fijklxixjykyl , ∀x, y : F (x, y) ≥ 0 (3.33)

10Note that P and Σ are both convex cones. Moreover, they are closed, i.e., if pn → p
coefficientwise, and each pn is in P resp. Σ, then so is p.

11At this congress Hilbert outlined 23 major mathematical problems. Whereas some are
broad, such as the axiomatization of physics (6th problem), others were very specific and
could be solved quickly afterwards.

12Artin’s proof holds for forms with coefficients from a field with unique order, i.e., in
particular for R.
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be a real psd biquadratic form in x, y ∈ Rn. For n = 3 Choi found a counterex-
ample to the (wrongly proven13) conjecture that there is always a decomposition
into a sum of squares of bilinear forms, i.e.

F (x, y)
?
=
∑
α

(
f (α)(x, y)

)2
=
∑
α

( n∑
ij=1

f
(α)
ij xiyj

)2

. (3.34)

Choi’s counterexample, for which he gave very elementary proofs, is

F (x, y) = 2

3∑
i=1

x2
i (y

2
i + y2

i+1)−
( 3∑
j=1

xjyj

)2

, (3.35)

with y3+1 ≡ y1. Note that F ∈ P4(R6) and that every quadratic form appearing
in an sos decomposition of F has to be bilinear. Hence, Eq.(3.35) is an element
of P\Σ for (h, n) = (4, 6).14

For the mere beauty of the example let us mention an element of P\Σ for
(h, n) = (4, 5):

5∑
i=1

∏
j 6=i

(xi − xj). (3.36)

Relation to positive maps: In our context the main significance of bi-
quadratic forms lies in their relation to linear maps on symmetric matrices.
This relation is in fact the real analogue of the correspondence between entan-
glement witnesses and positive maps expressed in Eq.(3.13). Let Sn be the set of
all real symmetric n×n matrices, and let Φ : Sn → Sn be a positive linear map
on Sn, i.e. ∀x ∈ Rn : Φ

(
|x〉〈x|

)
≥ 0. Then Φ corresponds to a psd biquadratic

form F and vice versa via15

F (x, y) = 〈y|Φ
(
|x〉〈x|

)
|y〉. (3.37)

Particular instances of such maps are congruence maps of the form Φ(A) =
KTAK, which in turn correspond to psd biquadratic forms F (x, y) = f(x, y)2,
where f(x, y) =

∑
ij Kijxiyj is a bilinear form. The existence of a psd bi-

quadratic form, which does not admit an sos decomposition, thus implies that
the set of positive maps Φ : Sn → Sn properly contains the convex hull of all
congruence maps (for n ≥ 3). The latter is, however, the real analogue of the
set of (complex) decomposable positive maps. Let us now see, whether the map

Φ(S) = 2
[
tr [S]1− diag(S33, S11, S22)

]
− S, (3.38)

13For the case x ∈ Rn, y ∈ Rm with n = 2 or m = 2 Calderon [?] proved that there is
always a sos decomposition of the form in Eq.(3.34). In [?] Koga claimed that this is also true
for arbitrary n,m. Finding the flaw in Koga’s proof, was apparently Choi’s motivation for [?].

14By choosing dependent x and y, Choi also specified F (x, y), such that it yielded elements
of P\Σ for (h, n) = (4, 4) and (6, 3) respectively.

15F ≥ 0 implies Φ ≥ 0 since any symmetric matrix S ∈ Sn is psd if 〈y|S|y〉 ≥ 0 for every
real vector y ∈ Rn.
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which corresponds to the psd biquadratic form in Eq.(3.35) (see also example
3.1), represents an admissible complex non-decomposable positive map as well.
Let Λ be a complex extension of Φ defined as in Eq.(3.38) but on arbitrary
complex 3× 3 matrices. Obviously, Λ maps Hermitian matrices onto Hermitian
matrices. Moreover, if Λ is a decomposable positive map, it acts on symmetric
matrices as Λ(S) =

∑
j K
∗
j SKj for some complex matrices {Kj}. If we decom-

pose the latter with respect to their real and imaginary parts Kj = Rj + iIj we
get

Λ(S) =
∑
j

RTj SRj + ITj SIj
!
= Φ(S), (3.39)

contradicting the fact that Φ in Eq.(3.38) has no such decomposition into con-
gruence maps. Hence, Λ is either not decomposable or not a positive map at
all. The latter can, however, be excluded, since we have for every vector z ∈ C3

with zj = xjϕj , xj = |zj |:

Λ
(
|z〉〈z|

)
= D∗Φ

(
|x〉〈x|

)
D ≥ 0 , D = diag(ϕ1, ϕ2, ϕ3). (3.40)

By Prop.(3.5) Choi’s map thus proves, albeit in a non-constructive way, the
existence of PPT entangled states in 3⊗ 3.

The question whether an entanglement witness W is decomposable or not,
is equivalent to asking whether the biquadratic Hermitian psd form

W (Φ,Ψ) = 〈Φ⊗Ψ|W |Φ⊗Ψ〉 =
∑
ijkl

WijklΦ̄iΨ̄jΦkΨl (3.41)

has an sos decomposition. It is therefore the complex analog of Eq.(3.34). Apart
from examples there is, however, not much known about forms which do not
admit such a decomposition.

Every real unextendable product basis (as the one in Eq.(3.21)) can be used
to construct a real-valued non-decomposable entanglement witness. These wit-
nesses thus correspond to biquadratic psd forms, which do not admit an sos
decomposition and are therefore elements of P\Σ.

3.5 Preservation of cones and balls

Proposition 3.6 (Automorphisms and rank preserving maps) Consider
a linear map T :Md(C)→Md(C). The following are equivalent:

1. T maps the cone of positive semidefinite matrices onto itself.

2. T is positive and preserves the rank of Hermitian matrices.

3. There is an invertible Y ∈ Md(C) such that T is either of the form
T (X) = Y XY † or T (X) = Y XTY †.
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Proof 1→ 2: Note first that T is bijective and T−1 is again positive, linear and
maps the positive semidefinite cone onto itself. Consider an arbitrary positive
semidefinite P ∈Md(C) and the cone defined by

C(P ) := {A ∈Md(C) | ∃c > 0 : P ≥ cA ≥ 0}. (3.42)

Note that the subspace spanned by C(P ) has dimension rank(P )2 and that,
by the properties of T , we have T (C(P )) = C(T (P )). Since T (as a bijection)
preserves the dimension of subspaces, this implies that rank(P ) = rank(T (P )).
In order to extend this to Hermitian matrices let us decompose an arbitrary
H = H† into H = P+ − P− where P± are positive semidefinite and orthogonal.
Then rank(T (H)) ≤ rank(T (P+)) + rank(T (P−)) = rank(H). Applying the
same to T−1(H) instead of H gives the converse inequality.

2 → 3: Define T̃ (X) := T (1)−1/2T (X)T (1)−1/2. Since T (1) has full rank,
T̃ inherits the properties of T , i.e., it is positive and rank preserving and in
addition unital. Now recall that λ ∈ spec(H) iff H − λ1 has reduced rank.
Using that T̃ (H − λ1) = T̃ (H) − λ1 together with the fact that T̃ preserves
the rank for Hermitian H we get that it actually preserves the spectrum. Then
Corr.1.1 completes this part of the proof by setting Y = U(T (1))−1/2. 3 → 1
should be obvious.

From the definition of decomposable positive maps in Eq.(3.2) together with
the Kraus decomposition in Thm.2.1 it is clear that every extreme point within
the convex set of decomposable positive maps is of the form X 7→ Y XY † or
X 7→ Y XTY † (with Y not necessarily invertible). That the converse is true as
well, i.e., that all these maps are extreme point has been proven in ... .

Proposition 3.7 (Confining Lorentz cones) Consider a Hermitian matrix
A ∈Md(C). Then

1. A ≥ 0⇒ tr [A]
2 ≥ tr

[
A2
]
. Conversely,

2. A ≥ 0⇐ tr [A]
2 ≥ (d− 1)tr

[
A2
]
.

Proof 1. becomes obvious when writing it out in terms of the eigenvalues
{ai ∈ R}: (

∑
i ai)

2 ≥
∑
i a

2
i is certainly true for ai ≥ 0 as the l.h.s. contains all

terms of the r.h.s. plus some extra positive terms.
In order to prove the second implication (by contradiction) assume that A

has a negative part such that it admits a non-trivial decomposition of the form
A = A+ − A− with A± ≥ 0 and tr [A+A−] = 0. Denoting by d+ < d the rank
of A+ we can bound

tr [A] ≤ tr [A+] = ||A+||1 ≤
√
d+||A+||2 (3.43)

≤
√
d− 1||A+||2 <

√
d− 1||A||2, (3.44)

where the first inequality is a simple consequence of Hölder’s inequality16 and
the last one uses ||A||22 = ||A+||22 + ||A−||22 and A− 6= 0.

16For every unitarily invariant norm we have ||CB|| ≤ || |C|p||1/p|| |B|q ||1/q for all p > 1
and 1/p+1/q = 1. Eq.(3.43) follows from applying this to the trace norm with p = 2, C = A+

and B the projection onto the range of A+.
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Lemma 3.2 (Making positive maps trace preserving) Let T :Md(C)→
Md′(C) be a positive map for which T ∗(1) > 0. There exists an invertible
X ∈Md(C) such that T ′(ρ) := T (XρX†) is a trace-preserving positive map.

Proof Let τ := (T ⊗ id)(|Ω〉〈Ω|) be the Choi-Jamiolkowski operator corre-
sponding to T and τ ′ the one for T ′. By Prop.2.1 the map T ′ is trace preserving
if the partial trace τ ′B equals 1/d. Since (again by Prop.2.1) τ ′B = XT τBX̄ =

XTT ∗(1)T X̄/d this can be achieved by X :=
√
T ∗(1)/d.

Hildebrand: ... maps preserving the Lorentz cone ...
Gorini, Sudarshan: ... maps preserving the sphere + Kossakowski and Chr-

uscinski ...

3.6 Complexity issues

3.7 Literature
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Chapter 4

Convex Structure

4.1 Convex optimization and Lagrange duality

Admittedly, a section about optimization techniques is a bit off topic. However,
convex optimization and, in particular, semidefinite programming1 turned out
to be an extremely useful tool in the context of quantum information theory, so
we will at least sketch the basic framework here.

The utility of these methods is threefold: (i) they provide powerful algo-
rithms to solve problems numerically. In contrast to many other numerical
techniques these algorithms are certifiable. That is, they return a result to-
gether with a (usually negligeable) error bound which is essentially enabled by
duality theory. (ii) Duality theory allows to convert numerical results into an-
alytic proofs and often enough gives some analytic insight (if not a solution)
without exploiting any silicon brain. (iii) Having expressed a problem in terms
of e.g. a semidefinite program may be considered as a solution of the problem in
very much the same way as we consider a reduction to an eigenvalue problem to
be a solution. Moreover, it enables a classification of the problems complexity
in the sense of complexity theory since interior point methods provide a general
polynomial-time solution.

Conic programs Consider finite-dimensional real Hilbert spaces V and V ′.
These may be bare Rd’s but could also be spaces of Hermitian matrices or
spaces of polynomials of a certain degree. Suppose K ⊂ V is a closed convex
cone which is pointed (K ∩ −K = 0) and has a non-empty interior. For any
linear map T : V → V ′ and c ∈ V, b ∈ V ′ the optimization problem

inf
x∈K

{
〈c|x〉

∣∣ T (x) = b
}

=: Cp (4.1)

1Depending on what community one comes from it needs some time to get used to the
terminology: conic, semidefinite or linear programs are just optimization problems of a certain
type.
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is called a convex conic program. Assigned to this is a dual problem2 which
reads

sup
y∈V′

{
〈b|y〉

∣∣ c− T ∗(y) ∈ K∗
}

=: Cd, (4.2)

where T ∗ is the dual map (i.e., 〈T ∗(y)|x〉 = 〈y|T (x)〉) and K∗ is the dual cone
defined by K∗ := {x ∈ V|∀z ∈ K : 〈z|x〉 ≥ 0}.

It holds in general that Cp ≥ Cd – this is called weak duality . Strong duality ,
meaning Cp = Cd, holds if T (x) = b is fulfilled for some x which is in the
interior of K. In this case the problem in Eq.(4.1) is called strictly feasible and
the supremum Cd is attained in the dual. Similarly, strong duality holds if the
dual problem in Eq.(4.2) is strictly feasible (i.e., c − T ∗(y) is in the interior of
K∗ for some y). In this case the infimum Cp is attained in Eq.(4.1).

For many conic programs there exist polynomial-time algorithms. Roughly
speaking, the requirements for that are that membership in the cone can be
decided efficiently (like for the cone of positive semidefinite matrices) and that
bounds on the norm of candidate solutions can be given.

Semidefinite programs are special instances of convex conic programs. Here
T is a linear map between spaces of Hermitian matrices andK = K∗ is the cone of
positive semidefinite matrices. Traditionally, semidefinite programs are phrased
in a slightly different way than in Eqs.(4.1,4.2). The weak duality inequality is
usually stated as

inf
X≥0

{
tr [F0X]

∣∣ tr [FiX] = bi
}
≥ sup
y∈Rn

{
〈b|y〉

∣∣∣ F0 ≥
n∑
i=1

yiFi

}
, (4.3)

where b ∈ Rn, F0, F1, . . . , Fn as well as X are Hermitian matrices and “≥” for
matrices denotes the standard matrix ordering induced by the cone of positive
semidefinite matrices. Strong duality, meaning equality in Eq.(4.3), holds if at
least one of the two optimization problems is strictly feasible. That is, if there is
either an X > 0 with tr [FiX] = bi or a y such that F0 >

∑
i yiFi. As mentioned

in the previous paragraph, if one of the problems is strictly feasible, then the
extremum in the dual problem is attained.

If the extrema in Eq.(4.3) are both attained and equal (i.e., in particular
strong duality holds) then a simple condition called complementary slackness
relates optimal solutions X ′ and y′:[

F0 −
∑
i

y′iFi
]
X ′ = 0. (4.4)

2The relation between the primal problem in (4.1) and the dual problem (4.2) is more
symmetric than it appears at first sight. In particular, the dual problem is a convex conic
program in its own right. To see the symmetric structure note that T (x) = b defines an affine
set which can be parametrized by ỹ ∈ Rn via x = e0 +

∑n
i=1 ỹiei with suitable ei ∈ V.

Defining further b̃i := 〈c|ei〉 we can rewrite the primal problem without equality constraints
in a form similar to that of Eq.(4.2) up to a constant offset (since 〈b̃|ỹ〉 = 〈c|x〉 − 〈c|e0〉) and
a sign which has to be spent to turn the inf into a sup.
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That is, X ′ and
[
F0 −

∑
i y
′
iFi
]

have to have orthogonal supports. Moreover,
any y′ is then optimal iff there exists an X ′ ≥ 0 such that Eq.(4.4) holds and
the constraints tr [FiX

′] = bi and F0 ≥
∑
i y
′
iFi are satisfied.

4.2 Literature

Convex optimization is described in detail in the textbook [?]. [?] is a good
source for more on semidefinite programs and more on conic programs, in par-
ticular about complexity related questions, can be found in [?].
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Chapter 5

Operator Inequalities

5.1 Operator ordering

The set of Hermitian operators is equipped with a natural partial order, i.e., a
consistent way of saying that one operator is larger than another one or that two
operators are actually incomparable. In fact, we will come across various partial
orders, but spend most time on what is sometimes called  Löwner’s partial order
which is based on positive (semi-)definite differences.

First recall the basics about positive matrices. A matrix A ∈ Md(C) is
called positive semi-definite if 〈ψ|A|ψ〉 ≥ 0 for all ψ ∈ Cd and positive definite
or strictly positive if the inequality is strict (i.e., ‘> 0’ holds). Being lazy we will
occasionally just write ‘positive’ when meaning ‘positive semi-definite’. This is
equivalent to saying that A is Hermitian and has (strictly) positive eigenvalues
and we will write A ≥ 0 (A > 0). Recall that A ≥ 0 is in turn equivalent to
A = B†B for some B and that A ≥ 0 ⇒ X†AX ≥ 0. An order relation for
Hermitian matrices A,B is given by

A ≥ B ⇔ A−B ≥ 0. (5.1)

This defines a partial order in the sense that two Hermitian matrices may be
incomparable. If, for instance a Hermitian A has positive and negative eigenval-
ues, then neither A ≥ 0 nor A ≤ 0 holds. This is reminiscent to the ordering of
events in Minkowski space, and forM2(C) it is actually equivalent (see example
5.1).

Note that by the defining equation (5.1) a linear map T : Md → Md′ is
order preserving iff it is positive.

The above operator ordering leads to a peculiar structure: it makes the set
of Hermitian matrices an anti-lattice. A partially ordered set is called a lattice
if for every two elements, say A and B, there is an infimum (a largest lower
bound, typically denoted A ∧B) and a supremum (least upper bound, A ∨B).
The set of Hermitian matrices in Md (d > 1) is not a lattice (unlike the set
of Hermitian projections; see example 5.2). It has the property that if two
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elements happen to have a supremum or infimum, than this coincides with one
of the elements—this structure is called an ‘anti-lattice’.

Before we come to the main operator inequalities involving quantum channels
(or more generally positive maps) we collect some very useful basic results:

Theorem 5.1 (Douglas’ Theorem) 1 Let A,B ∈ Md(C). Then the follow-
ing are equivalent:

1. range(A) ⊆ range(B),

2. AA† ≤ µBB† for some µ ≥ 0,

3. A = BC for some C ∈Md(C).

Moreover, if this is valid, then there is a unique C for which (i) ker(A) ⊆ ker(C),
(ii) range(C) ⊆ range(B†) and (iii) ||C||2∞ = min{µ|AA† ≤ µBB†}.

Theorem 5.2 (Block matrices and Schur complements) Let A ∈Md(C)
and B ∈ Md′(C) be two positive semi-definite matrices and C ∈ Md,d′(C).
Then the following are equivalent:

1.

(
A C
C† B

)
≥ 0 ,

2. ker(B) ⊆ ker(C) and A ≥ CB−1C†, where B−1 is the pseudo-inverse
(i.e., inverse on the support) when necessary,

3. ker(B) ⊆ ker(C) and ||A−1/2CB−1/2||∞ ≤ 1.

Example 5.1 (Ordering in Minkowski space) Every Hermitian 2×2 matrix
can be expanded as M =

∑3
i=0 xiσi with x ∈ R4. Since det(M) = x20− x21− x22− x23 =

〈x, ηx〉 with η := diag(1,−1,−1,−1) we can identify x with the coordinates of an
event in Minkowski space, so that the determinant provides the Minkowski metric. As
discussed in example 2.2 Lorentz transformation then take on the form M 7→ XMX†

with X ∈ SL(2,C).
The ordering of events in Minkowski space, i.e., the causal structure imposed by

the forward and backward light cones, then becomes the operator ordering on the level
of the matrix representation. Recall that in Minkowski space two elements x and x′

are time-like (i.e., potentially causally related) if 〈x − x′, η(x − x′)〉 is positive, and
space-like (i.e., incomparable) if it is negative. The ordering between two time-like
related events is then given by (x− x′)0, i.e., the sign of the time-component and x is
in the forward/backward light cone of x′ if this component is positive/negative.

On the level of the matrix representation det (M −M ′) tells us whether the matri-
ces are comparable in matrix order and M −M ′ ≥ 0 if and only iff det(M −M ′) ≥ 0
and tr [M −M ′] ≥ 0. In other words a Hermitian 2 × 2 matrix is positive iff its
determinant and trace are.

In Minkowski space the absence of the lattice property means that for two space-
like separated events there is no ‘latest’ event in the intersection of their backward light
cones.

Example 5.2 (Lattice of projections) ...

1which is typically referred to as ‘Douglas’ Lemma’.
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5.2 Schwarz inequalities

Let T :Md →Md′ be a completely positive, trace preserving map and T ∗ its
dual (description in the Heisenberg picture). Then

∀A ∈Md′ : T ∗(A†)T ∗(A) ≤ T ∗(A†A), (5.2)

is an operator version of the Schwarz inequality . Inequality (5.2) can easily be
proven by employing Stinespring’s representation T ∗(A) = V (A ⊗ 1)V † (with
V an isometry, see Thm. 2.2) so that it can be written

V (A† ⊗ 1)V †V︸︷︷︸
≤1

(A⊗ 1)V † ≤ V (A†A⊗ 1)V †. (5.3)

The following relaxes the assumptions on the map T and characterizes the cases
of equality:

Theorem 5.3 (Operator Schwarz inequality) Let T ∗ : Md′ → Md be a
positive linear map. If T is 2-positive, then for all A,B ∈Md′ :

T ∗(A†B)T ∗(B†B)−1T ∗(B†A) ≤ T ∗(A†A), (5.4)

where the inverse is taken on the range.

Proof Define a rectangular matrix C := (A,B) so that C†C ∈M2d′ is positive
semidefinite. Then, due to 2-positivity, (id2 ⊗ T )(C†C) ≥ 0 which by Thm.5.2
implies Eq.(5.4).

Theorem 5.4 (Equality in the operator Schwarz inequality) Let T ∗ :Md′ →
Md be a positive linear map such that for a given B ∈ Md′ the Schwarz in-
equality in Eq.(5.4) holds for all A ∈Md′ . Denote by AB ⊆Md′ the set of A’s
for which equality is attained in Eq.(5.4) for the given B. Then for all A ∈ AB
we have

T ∗(A†B)T ∗(B†B)−1T ∗(B†X) = T ∗(A†X), ∀X ∈Md′ . (5.5)

Proof Assume that A ∈ AB . Applying Eq.(5.4) (where we put everything to
the r.h.s.) to B and Ã = tA+X with t ∈ R, we obtain

0 ≤ t
[
T ∗(A†X) + T ∗(X†A)− T ∗(A†B)T ∗(B†B)−1T ∗(B†X)

−T ∗(X†B)T ∗(B†B)−1T ∗(B†A)
]

(5.6)

+ T ∗(X†X)− T ∗(X†B)T ∗(B†B)−1T ∗(B†X),

as the quadratic order in t vanishes due to A ∈ AB . In order for this inequality
to hold for all t ∈ R the term linear in t has to vanish. By applying this
argument to both X and iX and taking the sum we obtain Eq.(5.5).
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Generalizations of the above inequalities to the case of block matrices can
be easily obtained by setting A =

∑n
i=1Ai ⊗ 〈i| ∈ Md′,nd′ and T = T̃ ⊗ idn

where T̃ has then to be n+ 1-positive.
Positivity alone is not sufficient for a linear map to satisfy the Schwarz

inequality (5.2); the simplest counterexample being matrix transposition with

A =
(

0 1
0 0

)
. However, there are notable exceptions:

Proposition 5.1 (Schwarz inequality for commutative domains) Let T :
Md →Md′ be a positive linear map which is trace non-increasing (i.e., T ∗(1) ≤
1). Then the Schwarz-inequality (5.2) holds for all normal operators A ∈Md′ .

2

Proof Take an arbitrary normal A. Then [A,A†] = [A,A†A] = 0 so that
by Prop.1.6 T ∗ is completely positive when restricted to the domain D :=
span{A,A†, A†A,1}. Following Prop.1.7 we can extend this to a completely
positive map on Md′ since D is an operator space. The assertion then follows
from the fact that (i) the extension coincides with T ∗ on D and (ii) the Schwarz
inequality holds for completely positive maps.

Prop.5.1 is the basis of the following generalizations. For the first one recall
that an operator A ∈ B(H) is called subnormal if there is a Hilbert space

H′ = H⊕H⊥ and some B,C so that

(
A B
0 C

)
∈ B(H′) is a normal operator.

An alternative characterization of subnormal operators is that for all n ∈ N
it holds that

∑n
k,l=0 |l〉〈k| ⊗ A†kAl ≥ 0 with A0 := 1. An operator is called

quasinormal iff [A†A,A] = 0 and the following relation between the mentioned
sets holds:

normal ⊂ quasinormal ⊂ subnormal.

Theorem 5.5 (Schwarz inequality for subnormal operators) Let T :Md →
Md′ be a positive linear map which is trace non-increasing (i.e., T ∗(1) ≤ 1)
and A ∈Md′ a subnormal operator. Then

T ∗(A†)T ∗(A) ≤ T ∗(A†A) and T ∗(A)T ∗(A†) ≤ T ∗(A†A). (5.7)

Proof Denote by N ∈ B(H′) the normal extension of A and by θ : B(H′) →
B(H) the unital and completely positive linear map which maps θ(N) = A.
That is, θ returns the North-West block of its argument. Then, by Prop.5.1

T̃ (N†N) ≥ T̃ (N)T̃ (N†), T̃ (N†)T̃ (N),

holds for the concatenated map T̃ := T ∗θ (and the second inequality follows
from the first by N → N† and NN† = N†N). Writing things out in terms of T
and A yields the claimed inequalities.

Another possibility of generalizing the Schwarz inequality to beyond 2-positive
maps is replacing the A†A term by something which is larger and commutes with
A:

2A is normal if it commutes with its adjoint. So in particular Hermitian and unitary
operators are normal.
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Theorem 5.6 (Schwarz inequality for commuting dominant operators)
Let T :Md →Md′ be a positive linear map which is trace non-increasing (i.e.,
T ∗(1) ≤ 1) and A ∈ Md′ . Then for every positive D ∈ Md′ which satisfies
[D,A] = 0 and D ≥ A†A it holds that

T ∗(A†)T ∗(A) ≤ T ∗(D) and T ∗(A)T ∗(A†) ≤ T ∗(D). (5.8)

Proof First not that D ≥ AA†. In order to see this, assume for the moment
that D is invertible. Then D ≥ A†A implies that 1 ≥ X†X with X := AD−1/2.
This in turn implies 1 ≥ XX† from which D ≥ AA† follows by using [D,A] = 0.
This generalizes to non-invertible D’s if we first replace D → D + ε1 in the
argument and then let ε→ 0.

Now construct the block matrix

N :=

(
A

√
D −AA†√

D −A†A −A†

)
.

Direct calculation (and using that A
√
D −A†A =

√
D −AA†A) shows that N

is a normal operator. Analogous to the proof of Thm.5.5 we can now introduce
a unital and completely positive linear map θ : N → A and show the desired in-
equalities by using Prop.5.1 in order to get T̃ (N†N) ≥ T̃ (N†)T̃ (N), T̃ (N)T̃ (N†)
for the map T̃ := T ∗θ. Using that θ(N†N) = D and θ(N) = A concludes the
proof.

One might wonder whether a unital positive map T ∗ which satisfies the
Schwarz inequality in Eq.(5.2) is automatically 2-positive. The following exam-
ple shows that this is not the case. Since the set of unital maps which satisfy
Eq.(5.2) is therefore larger than the subset of 2-positive maps but smaller than
the set of positive maps it may deserve an own name: Schwarz maps is the most
commonly used; 3

2 -positive maps a not too serious alternative.

Example 5.3 (Schwarz maps which are not 2-positive) Consider the map
T :M2 →M2 defined via

T ∗(A) :=
1

2

(
AT +

1

2
tr [A]1

)
. (5.9)

As a convex combination of two positive maps it is positive. However, it fails to be 2-
positive (which in this case means completely positive) since the Choi-Jamiolkowski
operator of T ∗ is (F + 1

2
1)/4 which has one eigenvalue −1/8. Nevertheless, the

map satisfies the Schwarz inequality in Eq.(5.2). In order to see this define F (A) :=
T ∗(A†A)−T ∗(A†)T ∗(A) and note that F (A) = F (A+λ1) for all λ ∈ C and A ∈M2.
So for proving that F (A) ≥ 0 for all A we can w.l.o.g. assume that tr [A] = 0. In this
case

F (A) =
1

4

(
2(A†A)T + tr

[
A†A

]
1− ĀAT

)
≥ 1

2
(A†A)T ≥ 0, (5.10)

since tr
[
A†A

]
1 = tr

[
ĀAT

]
1 ≥ ĀAT .
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By Thm.5.3 every 2-positive linear map T which is trace non-increasing (i.e.,
T ∗(1) ≤ 1) satisfies the Schwarz inequality (5.2). The cases of equality in this
inequality lead us to the sets

AR := {A ∈Md′ | T ∗(XA) = T ∗(X)T ∗(A), ∀X ∈Md′}, (5.11)

AL := {A ∈Md′ | T ∗(AX) = T ∗(A)T ∗(X), ∀X ∈Md′}, (5.12)

called the right/left multiplicative domain of T ∗, and A := AR ∩ AL its multi-
plicative domain.

Note that these three sets form each an algebra (i.e., they are in particular
closed under multiplication) and that T ∗ acts as a homomorphism on these
algebras. Since the multiplicative domain A is in addition closed under taking
the adjoint, it is a ∗-algebra and T ∗ a ∗-homomorphism when restricted to A.

Theorem 5.7 (Multiplicative domains) Let T be a linear map which fulfills
the Schwarz inequality (5.2). Then

{A ∈Md′ | T ∗(A†A) = T ∗(A†)T ∗(A)} = AR, (5.13)

{A ∈Md′ | T ∗(AA†) = T ∗(A)T ∗(A†)} = AL. (5.14)

The proof of this statement is analogous to that of Thm.5.4. The fact that the
set of operators achieving equality in the Schwarz inequality forms an algebra
has remarkable consequences when it comes to the discussion of fixed points of
quantum channels.

5.3 Operator convexity and monotonicity

Functional calculus gives a meaning to scalar functions evaluated on opera-
tors. Suppose a matrix A ∈Md(C) can be diagonalized as A = UDU−1 and a
given function f is defined on a domain including the eigenvalues of A (i.e., the
entries of the diagonal matrix D). Then a consistent way of defining f applied
to A is

f(A) = U f(D) U−1 where [f(D)]ii = f(Dii). (5.15)

As diagonalizable matrices are dense, there is at most one continuous way of
extending the definition of f(A) to all A ∈ Md(C). The core of this is the
observation that for diagonalizable matrices Eq.(5.15) implies that f(A) = g(A)
for every polynomial g which coincides with f on the spectrum of A. In general
one can show that replacing f by a such a polynomial g gives a well-defined
meaning to f(A) if the derivatives of f and g coincide up to order j−1 at every
eigenvalue of A with Jordan-block of size j.

As we are only considering Hermitian matrices in this chapter we can, how-
ever, use Eq.(5.15) and take U−1 = U† unitary. The above definition im-
plies that f(V AV †) = V f(A)V † for every unitary V . Moreover, f(A ⊕ B) =
f(A)⊕ f(B) and in particular f(A⊗ 1) = f(A)⊗ 1. Be aware, that in general
f(A⊗B) 6= f(A)⊗ f(B) and f(V AV †) 6= V f(A)V † if V is merely an isometry.
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Having defined functions on operators and Löwner’s operator ordering in
mind we may now ask how properties of functions like monotonicity or convexity
translate to the world of matrices and operators.

Operator monotonicity and operator convexity . Recall that a real-
valued function f is called convex on an interval I ⊆ R if for all λ ∈ [0, 1] and
all a, b ∈ I we have

f
(
λa+ (1− λ)b

)
≤ λf(a) + (1− λ)f(b), (5.16)

i.e., the second derivative (if it exists) should be positive on I. For continuous
functions this is equivalent to mid-point convexity, which is the same statement
with λ = 1/2. f is called concave if −f is convex, and it is called monotone on
I if for all a, b ∈ I

a ≥ b ⇒ f(a) ≥ f(b). (5.17)

If Eqs.(5.16,5.17) hold for all Hermitian matrices A,B ∈ Md(C) whose spec-
trum is contained in I, then we say that f is matrix convex or matrix monotone
of order d on I. Functions which are convex/monotone on scalars need not be
so on matrices (see example 5.4). In fact, the set of matrix convex/monotone
functions becomes smaller and smaller when we increase d. Functions which
remain matrix convex/monotone for all d ∈ N are called operator convex or
operator monotone, respectively.

Note that the sets of operator monotone functions and operator convex
functions (on a given interval) are both convex cones which are closed under
pointwise limits. So, characterizing all such functions essentially boils down to
identifying the extreme rays of these sets and then allowing for positive linear
combinations. The two following theorems do this for the positive half-line (for
other intervals analogous results hold).

Theorem 5.8 (Operator convexity) A function f : [0,∞) → R is operator
convex iff it can be written as

f(x) = a+ bx+ cx2 +

∫ ∞
0

yx2

y + x
dµ(y), (5.18)

where a, b ∈ R, c ≥ 0 and µ is a positive finite measure.

Theorem 5.9 (Löwner’s theorem—operator monotonicity) For a con-
tinuous function f : (0,∞)→ R the following statements are equivalent:

1. f is operator monotone,

2. f has an analytic continuation to the entire domain Imz 6= 0 such that it
maps the upper half-plane {z ∈ C|Imz > 0} into itself,

3. f has an integral representation of the form

f(x) = a+ bx+

∫ 0

−∞

1 + xy

y − x
dµ(y), (5.19)

where a ∈ R, β ≥ 0 and µ is a finite positive measure.
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In particular the relation between operator monotone functions and so-called
Pick functions (holomorphic functions with positive imaginary part) is a very
powerful result. It enables us to ‘see’ right away that certain functions (like the
exponential function) are not operator monotone. The integral representations
of operator convex and operator monotone functions seem somehow related
and, in fact, there are close relations between these two classes. For instance, a
continuous function f : [0,∞) → [0,∞) is operator monotone iff it is operator
concave.

Example 5.4 (Operator monotone/convex functions) The following lists
some functions (in the variable x ∈ R) and their properties regarding operator convex-
ity/monotonicity on specified intervals I ⊆ R:

operator monotone operator convex

◦ a+ bx on R for a ∈ R, b ≥ 0 ◦ a+ bx+ cx2 on R for a, b ∈ R, c ≥ 0
◦ xp on [0,∞) for p ∈ [0, 1] ◦ xp on (0,∞) for p ∈ [1, 2]
◦ −xp on (0,∞) for p ∈ [−1, 0] ◦ xp on (0,∞) for p ∈ [−1, 0]
◦ log x on (0,∞) ◦ − log x on (0,∞)
◦ (x log x)/(x− 1) on (0,∞) ◦ x log x on (0,∞)

◦ x
y+x

on (0,∞) for y ≥ 0 ◦ x2

y+x
on [0,∞) for y ≥ 0

◦ tanx on (−π/2, π/2) ◦ f : (0,∞)→ (0,∞) if x 7→ 1/f(x) is op. monotone

not operator monotone not operator convex

◦ xp on (0,∞) for p 6∈ [0, 1] ◦ xp on (0,∞) for p 6∈ [−1, 0] ∪ [1, 2]
◦ ex on any non-trivial I ◦ ex on any non-trivial I
◦ max(0, x) on any I ⊃ {0} ◦ |x| on any I ⊃ {0}

For ‘simple’ functions which are not operator monotone/convex there are similarly
‘simple’ counterexamples. Take for instance

A =

(
2 1
1 1

)
, B =

(
1 1
1 1

)
. (5.20)

When applied to them we see that f(x) = x2 is not operator monotone on [0,∞) and
that f(x) = x3 fails to be operator convex on [0,∞).

We will now connect first operator convexity and then operator monotonicity
to positive maps. Recall that positive maps are exactly the ones which preserve
the order, i.e., if A ≥ B, then T (A) ≥ T (B) for positive T . Conversely, if this
holds for all A,B, then T has to be positive.

A typical requirement in the context addressed below is that the positive
map satisfies T (1) ≤ 1. This implies that T is contractive in the following
sense: consider a Hermitian A with spec(A) ⊆ [a, b], where [a, b] is an interval
containing zero. Then T (1) ≤ 1 implies that also spec(T (A)) ⊆ [a, b] since

a1 ≤ T (a1) ≤ T (A) ≤ T (b1) ≤ b1. (5.21)

Theorem 5.10 (Operator convexity from projection inequality) Consider
a real-valued function f defined on some interval I ⊆ R with 0 ∈ I. If for all
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d ∈ N, all Hermitian projections P ∈ Md(C) and all Hermitian A ∈ Md(C)
with spec(A) ⊂ I

f(PAP ) ≤ Pf(A)P, then (5.22)

1. f(0) ≤ 0,

2. f is operator convex on I,

3. for all positive linear maps T :Md(C)→Md′(C) with T (1) ≤ 1 and all
Hermitian A with spectrum in I:

f
(
T (A)

)
≤ T

(
f(A)

)
. (5.23)

Proof 1. follows from Eq.(5.22) already by setting A = P⊥ := 1 − P . In
order to show 3. consider first a completely positive and unital map T . Using
Stinespring’s theorem (Thm.2.2) and expressing the isometry as a unitary times
a projection we can write

T (A)⊕ 0dr−d′ = PU†(A⊗ 1r)UP. (5.24)

When applying f to both sides of this inequality we can use f(U†·U) = U†f(·)U ,
and f(A ⊗ 1) = f(A) ⊗ 1 so that the Eq.(5.23) indeed follows from (5.22)
for unital and completely positive T . Now let us successively get rid of the
additional constraints. Assume T is not unital. Then we can define a unital
map T ′ : Md(C) ⊕ C → Md′(C) by T ′ : A ⊕ b 7→ T (A) + b(1 − T (1)) (and
off-diagonals are mapped to zero). T ′ is completely positive iff T is completely
positive and T (1) ≤ 1. Applying Eq.(5.23) to T ′ then yields the same inequality
for T , so unitality can be replaced by T (1) ≤ 1. If T is merely positive we can
use that A and f(A) are elements of an abelian C∗-algebra (the one generated
by A and 1) on which T is completely positive (Prop.1.6) with a completely
positive extension on Md (Prop.1.7). This completes the proof of 3.

Finally, 2. follows by applying Eq.(5.23) to the map T : A⊕B → λA+ (1−
λ)B, λ ∈ [0, 1].

This theorem becomes yet more interesting as the converse also holds:

Theorem 5.11 (Projection inequality from operator convexity) Let f :
I ⊆ R → R be an operator convex function on an interval I 3 0. Then for all
Hermitian projections P ∈ Md(C) (with P⊥ := 1 − P ) and all Hermitian
A ∈Md(C) with spec(A) ⊂ I:

f(PAP ) ≤ Pf(A)P + P⊥f(0)P⊥. (5.25)

Consequently, if f(0) ≤ 0, then for all positive maps T with T (1) ≤ 1:

f
(
T (A)

)
≤ T

(
f(A)

)
. (5.26)
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Proof Define a unitary U := P − P⊥. Then

P f(PAP ) P = P f(PAP + P⊥AP⊥) P (5.27)

= P f
(
A/2 + UAU†/2

)
P (5.28)

≤ P
(
f(A)/2 + Uf(A)U†/2

)
P = Pf(A)P, (5.29)

where the inequality is the assumed operator convexity. Eq.(5.25) then follows
from f(PAP ) = Pf(PAP )P +P⊥f(0)P⊥ and Eq.(5.26) is just Eq.(5.23) since
Thm.5.10 applies if f(0) ≤ 0.

The following shows that we can drop the restriction f(0) ≤ 0 if T is nor-
malized, i.e., unital:

Theorem 5.12 (Operator convexity and unital positive maps) Let f :
R → R be operator convex on [0,∞) and T : Md → Md′ any positive unital
map. Then for all A ≥ 0:

f
(
T (A)

)
≤ T

(
f(A)

)
. (5.30)

Proof By the integral representation in Thm.5.8 it suffices to prove Eq.(5.30)
for f(x) = x2 and f(x) = x2/(y + x), y > 0. The first case is nothing but the
Schwarz inequality in Eq.(5.2). The second case can be simplified by rewriting
it as f(x) = x − y + y2/(x + y). Inserting this into Eq.(5.30) and exploiting
linearity and unitality of T we see that proving Eq.(5.30) boils down to showing
that

T (B)−1 ≤ T (B−1), (5.31)

for all B > 0. In order to show Eq.(5.31) note that by introducing the spectral
decomposition B =

∑
i biPi (with spectral projections Pi) and using that 1 =

T (1) =
∑
i T (Pi) we get(

T (B−1) 1

1 T (B)

)
=
∑
i

(
b−1
i 1
1 bi

)
⊗ T (Pi) ≥ 0. (5.32)

From here Eq.(5.31) follows by invoking the condition for the positivity of block
matrices in Thm.5.2.

By applying this to f(x) = x log x, which is operator convex on the positive
half-line, we obtain:

Corollary 5.1 (Entropic operator inequality) Let T : Md → Md′ be a
positive unital map. Then for all ρ ≥ 0:

T (ρ) log T (ρ) ≤ T (ρ log ρ). (5.33)

Problem 10 Provide a generalization of the inequality for positive maps with T (≤ 1)
in the form of Eq.(5.30) for arbitrary operator convex f (not necessarily satisfying
f(0) ≤ 0).

Let us now turn from convexity to monotonicity:
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Theorem 5.13 (Operator monotonicity and positive maps) Let f be an
operator monotone function on an interval I = [0, a] with f(0) ≥ 0 and T :
Md → Md′ any positive map for which T (1) ≤ 1. Then for all A = A† with
spec(A) ∈ I:

T
(
f(A)

)
≤ f

(
T (A)

)
. (5.34)

Proof Let us first prove the statement for T (A) = X†AX with ||X||∞ ≤ 1. To
this end define a unitary block matrix

U :=

(
X

√
1−XX†√

1−X†X −X†

)
, (5.35)

and note that the upper left block of U†(A⊕0)U is X†AX. Hence by Thm.5.2 we
can find for every ε > 0 a δ > 0 such that U†(A⊕ 0)U ≤ (X†AX + ε1)⊕ (δ1).
Applying f to this inequality, using its monotonicity and that f(U† · U) =
U†f(·)U we get

X†f(A)X +
√
1−XX†f(0)

√
1−XX† ≤ f

(
X†AX + ε1

)
(5.36)

by comparing the upper left blocks on both sides. The asserted inequality (5.34)
follows then from continuity of operator monotone functions by taking ε → 0
together with f(0) ≥ 0.

This can be extended to all completely positive maps with T (1) ≤ 1 by
Stinespring’s theorem. Following Thms.2.2,2.3 we can represent every such
map in the form T (A) = X†(A ⊗ 1)X, where X†X = T (1) ≤ 1. By in-
voking f(A⊗1) = f(A)⊗1 we can thus generalize the inequality to contractive
completely positive maps. Finally, if T is merely positive with T (1) ≤ 1, then
it is completely positive on the abelian algebra generated by 1 and A (Prop.1.6)
and admits a completely positive extension on Md (Prop.1.7).

Applying this to some of the examples in example 5.4 leads to:

Corollary 5.2 Let T :Md →Md′ be a positive map with T (1) ≤ 1. Then

1. T (A) ≤ T
(
Ap
)1/p

for all p ≥ 1 and A ≥ 0,

2. T (A) ≥ T
(
Ap
)1/p

for all A > 0 and3 p ∈ [1/2, 1],

3. T
(

log(A)
)
≤ log

(
T (A)

)
for all A > 0.

Problem 11 Prove a counterpart of Thm.5.12 for matrix convex functions of finite
order. In other words, find a proof which does not use the integral representation (or
any other representation implying operator convexity).

Let us finally prove a useful implication of the above theorems:

Corollary 5.3 Let {Ti : Md → Md′}i=1,...,n be a collection of positive linear
maps such that

∑
i Ti(1) ≤ 1.

3This follows from Thm.5.11 and operator convexity of x 7→ x1/p for p ∈ [1/2, 1].
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1. If f is operator monotone on an interval I 3 0 with f(0) ≥ 0, then for all
Hermitian operators Ai with spectrum in I:

n∑
i=1

Ti
(
f(Ai)

)
≤ f

( n∑
i=1

Ti(Ai)
)
. (5.37)

2. If f is operator convex on an interval I 3 0 and f(0) ≤ 0, then for all
Hermitian operators Ai with spectrum in I:

n∑
i=1

Ti
(
f(Ai)

)
≥ f

( n∑
i=1

Ti(Ai)
)
. (5.38)

Proof Let us construct a new map T : Md ⊗ Mn → Md′ via T (A) :=∑n
i=1 Ti(ViAV

†
i ) with isometries Vi := 1d ⊗ 〈i|. Similarly, define A :=

∑
iAi ⊗

|i〉〈i|. Then T (A) =
∑
i Ti(Ai) and f(A) =

∑
i f(Ai) ⊗ |i〉〈i|. Since T is by

construction such that T (1) ≤ 1 we can now apply Thm.5.11 and Thm.5.13
leading to assertions 2. and 1., respectively.

5.4 Joint convexity

Joint convexity is a property of certain functions of several variables. A function
f : D ⊆ R×R→ R with domain D is called jointly convex in its arguments iff

f(a, b) ≤ λf(a1, b1) + (1− λ)f(a2, b2) (5.39)

holds for all ai, bi with a = λa1 +(1−λ)a2, b = λb1 +(1−λ)b2 and all λ ∈ [0, 1].
It is defined analogously for more than two arguments and f is called jointly
concave iff −f is jointly convex. Clearly, a jointly convex function is convex in
each of its arguments separately (i.e., f(a, b) ≤ λf(a1, b) + (1− λ)f(a2, b)); the
converse is, however, not true in general.

In the following we will apply the concept of joint convexity to operators, i.e.,
we will essentially replace R with the space of Hermitian operators. Two related
types of joint convexity results will be of interest: (i) joint operator convexity,
where the ordering ”≤” in Eq.(5.39) refers to the partial order in the space of
Hermitian operators (see Eq.(5.1)) and f is a mapping between operators, and
(ii) joint convexity of functionals which map operators into R (in most cases
the ‘functional’ will essentially be the trace).

Joint operator convexity We consider mappings of the form F : D ⊆Md1×
· · · ×Mdn →Md and say that they are jointly operator convex in the domain
D iff

F (A) ≤
∑
i

λiF
(
A(i)

)
, (5.40)

for all A,A(i) ∈ D which are related via A =
∑
i λiA

(i) with λ being a vector of
probabilities. The ordering ‘≤’ used in this context is the one between Hermitian
operators which means in particular that F should have Hermitian image.
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The following theorem encompasses most of the results about joint operator
convexity. It provides a tool for constructing maps in several variables from
maps in fewer variables while retaining the convexity properties. In particular,
it allows us to construct mappings which are jointly operator concave/convex
from simple operator concave/convex functions:

Theorem 5.14 (Joint operator convexity) Let g : D ⊆Md1×· · ·×Mdn →
Md be a map on the direct product D of n positive operators, and similarly
h : D′ ⊆ Md′1

× · · · ×Md′m
→Md. Assume that g is jointly operator concave

and positive and h is semi-definite. Let I 3 0 be the positive/negative real
half line depending on whether h is positive or negative semi-definite. For any
function f : I → R with f(0) ≤ 0 define F : D′ ×D →Md as

F (L,R) :=
√
g(R) f

(
g(R)−1/2h(L)g(R)−1/2

)√
g(R). (5.41)

We consider joint operator convexity of F in its n+m arguments. F is jointly
operator convex on positive operators for which g is invertible if at least one of
the following holds:

1. h is jointly operator concave and f is operator anti-monotone,

2. h is affine and f is operator convex.

Proof Consider the convex decompositions R =
∑
i λiRi and L =

∑
i λiLi and

define Ki :=
√
λig(Ri)g(R)−1/2. This satisfies∑
i

K†iKi = g(R)−1/2
(∑

i

λig(Ri)
)
g(R)−1/2 ≤ 1, (5.42)

where the inequality comes from joint concavity of g. Assume that the require-
ments of the first assertion are fulfilled. Then if we insert the definitions:

F (L,R) ≤
√
g(R) f

(∑
i

λig(R)−1/2h(Li)g(R)−1/2
)√

g(R), (5.43)

=
√
g(R) f

(∑
i

K†i g(Ri)
−1/2h(Li)g(Ri)

−1/2Ki

)√
g(R), (5.44)

≤
√
g(R)

∑
i

K†i f
(
g(Ri)

−1/2h(Li)g(Ri)
−1/2

)
Ki

√
g(R), (5.45)

=
∑
i

λiF (Li, Ri), (5.46)

where the first inequality comes from concavity of h together with anti-monotonicity
of f and the second inequality follows from the first part of Cor.5.3 by setting
Ti(·) := K†i ·Ki and noticing that Eq.(5.42) means

∑
i Ti(1) ≤ 1. For the second

assertion of the theorem note that if h is affine we have equality in Eq.(5.43).
The inequality in Eq.(5.45) follows then from the second part of Cor.5.3.

Note that in the preceding theorem we may extend D′ to all Hermitian op-
erators and allow h to have Hermitian image if we set I = R. Similarly, we can
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enlarge D as long as g has positive image. Applying Thm.5.14 to various func-
tions now provides us with a zoo of jointly operator convex/concave mappings:

Corollary 5.4 1. Md ×Md 3 (L,R) 7→ LR−αL is jointly operator convex
for α ∈ [0, 1] on positive L and Hermitian R,

2. Md × Md 3 (L,R) 7→ Rβ/2
(
R−β/2LγR−β/2

)α
Rβ/2 is jointly operator

concave on positive operators for α, β, γ ∈ [0, 1],

3. Mm
d ×Md 3 (L,R) 7→ Rβ/2f

(∑m
i=1R

−β/2LiR
−β/2)Rβ/2, β ∈ [0, 1] is

jointly operator convex on positive operators if f is operator convex with
f(0) ≤ 0, e.g. f(x) = −xα, f(x) = x1+α with α ∈ [0, 1] or f(x) = x log x,

Proof Use Thm.5.14 and for 1. set f(x) = x2, h(x) = x and g(x) = xα. For
2. set f(x) = −xα, g(x) = xβ , h(x) = xγ . For 3. set h(L) =

∑
i Li and

g(x) = xβ .

By replacing L,R in the above discussion by L→ L⊗1 and R→ 1⊗R and
thereby making things commutative, we obtain similar statements for tensor
product mappings:

Corollary 5.5 1. Md×Md 3 (L,R) 7→ Lx⊗Ry is jointly operator concave
on positive operators for x, y ≥ 0 with x+ y ≤ 1.

2. Mm
d 3 (A1, . . . , Am) 7→

⊗
Axii is jointly operator concave on positive

operators for xi ≥ 0 with
∑
i xi ≤ 1.

3. Md×Md 3 (L,R) 7→ L1+α⊗R−βα is jointly operator convex on positive
operators for α, β ∈ [0, 1].

Proof Statement 1. follows by inserting into the second assertion of Cor.5.4.
Statement 2. follows by induction from the previous argument. That is, for
m = 3 we continue with h(A1, A2) = Ax1 ⊗Ax2 ⊗ 1, exploit that it is concave by
the first statement and apply Thm.5.14 with R = 1⊗ 1⊗ A3 and f(x) = −xα
and g(x) = xβ , α, β ∈ [0, 1], etc. Assertion 3. follows from point 3. of Cor.5.4
when applied to f(x) = x1+α.

Jointly convex functionals In the following we will discuss joint convex-
ity/concavity properties of functionals, i.e., maps from a set of operators into
R. In most cases the results follow from the previous ones on joint operator
convexity by taking the trace or the expectation value w.r.t. some positive
operator. One of the central results in this context is the following:

Theorem 5.15 (Ando-Lieb) For every K ∈Md(C) the map

Md(C)×Md(C) 3 (A,B) 7→ tr
[
K†AxKBy

]
(5.47)

• is jointly concave on positive operators for x, y ≥ 0 if x+ y ≤ 1, and
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• jointly convex on positive operators for x ∈ [1, 2] if y ∈ [1− x, 0].

Proof The result is an immediate consequence of items 1. and 3. of Corr.5.5.
In order to see this consider the expectation value of Lx ⊗ Ry w.r.t. |ψ〉 =

(K ⊗ 1)
∑d
i=1 |ii〉. Using Eq.(1.12) this gives

〈ψ
∣∣Lx ⊗Ry∣∣ψ〉 = tr

[
K†LxK(RT )y

]
, (5.48)

so that the result follows by setting A = L and B = RT .

In fact, the parameter ranges for x and y in Thm.5.15 are the only ones
(apart from interchanging x↔ y) for which joint convexity/concavity holds.

Theorem 5.16 (Monotonicity under cp-maps) Consider a functional F :
D ⊆ Md × · · · ×Md → R which is defined for all dimensions d ∈ N. Assume
that F satisfies

1. Joint convexity in D,

2. Unitary invariance, i.e., for all A ∈ D and all unitaries U ∈ Md(C) it
holds that F

(
UA1U

†, . . . , UAnU
†) = F (A1, . . . , An),

3. Invariance under tensor products, meaning that for all A ∈ D and all den-
sity operators τ ∈Md′(C) we have F

(
A1⊗τ, . . . , An⊗τ) = F (A1, . . . , An).

Then F is monotone w.r.t. all completely positive trace-preserving maps T :
Md(C)→Md′′(C) in the sense that for all A ∈ D

F
(
T (A1), . . . , T (An)

)
≤ F (A1, . . . , An). (5.49)

Proof Let us follow Thm.2.5 and represent T as T (ρ) = trE
[
U(ρ ⊗ τ)U†

]
where τ is a density matrix, U a unitary and trE the partial trace over an
‘environmental’ system of dimension m, say. If we take a unitary operator basis
{Vi}i=1,..,m2 inMm (orthonormal w.r.t. the Hilbert-Schmidt inner product–see
Exp.2.1), we can write

T (ρ)⊗ 1m/m =
1

m2

m2∑
i=1

(1⊗ Vi)U(ρ⊗ τ)U†(1⊗ V †i ). (5.50)

Observing that 1m/m is again a density matrix and that the r.h.s. of Eq.(5.50)
represents a convex combination of unitarily equivalent terms we can straight-
forwardly arrive at the desired Eq.(5.49) by applying joint convexity together
with the invariance properties of F .

5.5 Convexity and monotonicity under the trace

Trace inequalities
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Theorem 5.17 (Convex functions and positive maps under the trace)
Let {Ti : Md(C) → Md′(C)} be a collection of positive linear maps, f : I ⊆
R → R a function which is convex on I and {Xi ∈ Md(C)} a collection of
Hermitian operators with spectrum in I. Then

tr

[
Cf
(∑

i

Ti(Xi)
)]
≤
∑
i

tr
[
CTi

(
f(Xi)

)]
(5.51)

holds for all positive semi-definite C ∈Md′(C) which commute with f
(∑

i Ti(Xi)
)

if either

1.
∑
i Ti(1) = 1, or

2.
∑
i Ti(1) ≤ 1 and f(0) ≤ 0.

Proof By linearity it is sufficient to consider C = |ψ〉〈ψ|, where ψ is a normal-
ized eigenvector of f

(∑
i Ti(Xi)

)
. Denote by Xi =

∑
x µx,i|xi〉〈xi| the spectral

decomposition of Xi. Then

〈ψ
∣∣f(∑

i

Ti(Xi)
)∣∣ψ〉 = f

(
〈ψ
∣∣∑

i

Ti(Xi)
∣∣ψ〉) (5.52)

= f
(∑
x,i

px,i µx,i

)
, px,i := 〈ψ

∣∣∑
i

Ti(|xi〉〈xi|)
∣∣ψ〉

≤
∑
x,i

px,if(µx,i) =
∑
i

〈ψ
∣∣Ti(f(Xi)

)∣∣ψ〉. (5.53)

Here the first equality follows from ψ being an eigenvector. To see this recall that
applying a function to a Hermitian matrix means applying it to the eigenvalues
(see Eq.(5.15) and the discussion of functional calculus). For the inequality in
Eq.(5.53)we use convexity of f together with the fact that the px,i’s are positive
(due to positivity of the Ti’s) and sum up to one if

∑
i Ti(1) ≤ 1 holds with

equality. If equality does not hold we can add another term which completes
the probability distribution and for which the corresponding µ = 0. In this case
the inequality then follows from convexity together with f(0) ≤ 0.

The following is a simple but important consequence of the above Thm.5.17.
It follows by setting C = 1 and Ti = λiid with λ being a probability vector:

Corollary 5.6 (Convex trace functions) Let f : I ⊆ R → R be a function
which is convex on I. Then the map X 7→ tr [f(X)] is convex on the set of
Hermitian operators with spectrum in I.

In order to get a similar result for function which are monotone, but not
necessarily operator monotone, it is convenient to recall how functions are dif-
ferentiated under the trace. If f : I ⊆ R → R is a continuously differentiable
function with derivative f ′, then

∂

∂x
tr [f(A+ xB)]

∣∣∣
x=x0

= tr [B f ′(A+ x0B)] , (5.54)
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for all Hermitian operators A,B ∈ Md(C) for which the spectrum of A + xB
in a neighborhood of x0 is contained in I.4 With this at hand we obtain:

Proposition 5.2 (Monotone trace functions) Let f : I → R be a contin-
uously differentiable and non-decreasing function on an open interval I ⊆ R.
Then for all Hermitian operators A,B ∈Md(C) with spectrum in I and A ≤ B
we have that

tr [f(A)] ≤ tr [f(B)] . (5.55)

Proof Consider the function g(x) := tr [f(A+ x∆)] with ∆ := (B − A) ≥ 0.
Following Eq.(5.54) we have g′(x0) = tr [∆f ′(A+ x0∆)] which is non-negative
for x0 ≥ 0 since it is the trace of the product of two positive semi-definite
operators. Thus g(0) ≤ g(1).

A slightly stronger result can be obtained from Weyl’s monotonicity theorem
which states that for any pair of Hermitian d× d matrices for which A ≤ B, it
holds that

∀j : λ↓j (B) ≥ λ↓j (A) + λ↓d(B −A), (5.56)

where the λ↓j ’s are the decreasingly ordered eigenvalues. Since λ↓d(B − A) ≥ 0,
one obtains immediately:

Proposition 5.3 For any pair of Hermitian operators A,B ∈ Md(C) there
exists a unitary U ∈Md(C) so that for any f : I → R which is non-decreasing
on an interval I which includes the spectra of both A and B, we have

f(A) ≤ Uf(B)U†. (5.57)

adding unitaries

5.6 Operator means

4This is easily verified by looking at a polynomial approximation of f .
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Chapter 6

Spectral properties

If a linear map has equal input and output space, like T :Md(C)→Md(C), we
can assign a spectrum to it. As outlined in Sec.1.6 the spectrum can be defined
in purely algebraic terms as the set of complex numbers λ for which (λ id−T ) is
not invertible. Since we restrict ourselves to finite dimensions this is equivalent
to the set of λ’s for which there is an X ∈Md(C) such that

T (X) = λX. (6.1)

Although X is an operator, will refer to it as an eigenvector of T as Md(C)
is considered as a vector space in this context. Hence, the spectrum of T is
the collection of eigenvalues of the d2 × d2 matrix representation T̂ introduced
in Sec.2.3. Using this representation we see that the eigenvalues of T and T ∗

coincide due to T̂ ∗ = T̂T when using a Hermitian basis of operators in Eq.(2.20).

Location of eigenvalues: For Hermiticity preserving maps (i.e., in particular
for positive maps) the adjoint of Eq.(6.1) implies that eigenvalues are either real
or they come in complex conjugate pairs.1 Moreover, for every real λ there is
at least one corresponding Hermitian eigenvector X.

Recall that the spectral radius is defined as %(T ) := sup{|λ| | λ ∈ spec(T )},
i.e., as the eigenvalue which is largest in magnitude.

Proposition 6.1 (Spectral radius of positive maps) If T is a positive map
on Md(C), then its spectral radius satisfies

%(T ) ≤ ||T (1)||∞. (6.2)

If in addition T is unital or trace-preserving, then there is an eigenvalue λ = 1.
That is, in this case %(T ) = 1 so that all eigenvalues of T lie in the unit disc of
the complex plane.

1More precisely, if we decompose X into Hermitian and anti-Hermitian parts and use the
Hermiticity preservation together with linearity we obtain T (X†) = λ̄X†.

91
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For a more detailed investigation of the spectral radius see the subsequent sec-
tion (in particular Thm. 6.5).
Proof By the theorem of Russo and Dye we have ||T (X)||∞ ≤ ||T (1)||∞||X||∞.
Therefore if T (X) = λX, then

|λ| ||X||∞ = ||T (X)||∞ ≤ ||T (1)||∞||X||∞, (6.3)

which implies Eq.(6.2). If T is unital then T (1) = 1 provides an eigenvalue
λ = 1. Similar holds if T is trace-preserving, since then T ∗ (which has the same
spectrum) is unital.

Another way to see that the spectral radius of every quantum channel (or
trace-preserving positive map) is one would be to use that %(T̂ ) = limn→∞ ||T̂n||1/n
(see Eq.(1.35)) together with the fact that Tn remains a quantum channel for
every n and that quantum channels in finite dimensions have bounded norm
(see ...).

To summarize, the eigenvalues of every quantum channel are restricted to lie
on the unit disc, there is one eigenvalue one and the others are real or come in
complex conjugate pairs. In fact, there is no further restriction (as in the case
of ’classical’ stochastic matrices): for every d > 1, every λ : |λ| ≤ 1 can appear
as an eigenvalue of a quantum channel onMd. Only the set of eigenvalues as a
whole underlies further non-trivial constraints (see Sec.6.1).

Spectral decomposition: Recall some basic linear algebra. Like every other
square matrix, T̂ ∈Md2(C) admits a Jordan decomposition of the form

T̂ = X

(
K⊕
k=1

Jk(λk)

)
X−1, Jk(λ) :=

 λ 1
. . . 1

λ

 ∈Mdk(C), (6.4)

where the Jk’s are Jordan blocks of size dk (with
∑
k dk = d2) and the number

K of Jordan blocks equals the number of different non-zero eigenvectors. It
is sometimes useful to subdivide each Jordan block into a projection2and a
nilpotent part so that we get

T̂ =

K∑
k=1

λkPk +Nk, Ndk
k = 0, NkPk = PkNk = Nk, (6.5)

PkPl = δklPk, tr [Pk] = dk,
∑
k

Pk = 1.

The number of Jordan blocks with eigenvalue λ is the geometric multiplicity of λ,
while their joint dimension

∑
k:λk=λ dk is its algebraic multiplicity. If these two

multiplicities are equal for every eigenvalue, then T̂ is called non-defective. Non-
defective matrices are dense (which is easily seen by perturbing the eigenvalues)

2This implies that in Eq.(6.5) P 2
k = Pk but not necessarily Pk = P †k , i.e., Pk need not be

an orthogonal projection.
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and exactly those for which complete bases of eigenvectors exist. We can then
write

T̂ =
∑
k

λk|Rk〉〈Lk|, 〈Lk, Rl〉 = δkl, (6.6)

so that the right eigenvectors {Rk} and the left eigenvectors {Lk} are biorthog-
onal.

Returning to the fact that T is a linear map on Md(C) this means that in
the non-defective case there are biorthogonal operator bases {Rk ∈ Md(C)}
and {Lk ∈Md(C)} such that

T (A) =
∑
k

λktr
[
L†kA

]
Rk, tr

[
L†kRl

]
= δkl, (6.7)

so that ∀k : T (Rk) = λkRk. (6.8)

The Choi-Jamiolkowski operator τ = (T ⊗ id)(|Ω〉〈Ω|) then takes the form

τ =
1

d

∑
k

λkL̄k ⊗Rk. (6.9)

If T is a trace-preserving map, then all right eigenvectors Rk corresponding to
eigenvalues λk 6= 1 have to be traceless, tr [Rk] = 0 since 1 is a left eigenvector.

Note that if T is a quantum channel, then T̂ is generally neither Hermitian
(unless T = T ∗, see Prop.2.6) nor is it necessarily non-defective. However, the
uniformly bounded norm of trace-preserving positive maps prevents eigenvalues
of magnitude one (the so-called peripheral spectrum) from having non-trivial
Jordan blocks (meaning dk > 1):

Proposition 6.2 (Trivial Jordan blocks for peripheral spectrum) Let T :
Md(C)→Md(C) be a trace-preserving (or unital) positive liner map. If λ is an
eigenvalue of T with |λ| = 1, then its geometric multiplicity equals its algebraic
multiplicity, i.e., all Jordan blocks for λ are one-dimensional.

Proof First note that for every trace-preserving (or unital) positive map tr [AT (B)]
can be upper bounded in terms of the dimension d and the norms of A and B
only. While we will discuss such bounds in greater detail later it suffices for now
to note that we may write A and B as a linear combination of positive matri-
ces and that for positive A,B we have tr [AT (B)] ≤ ||A||∞||B||∞tr [1T (1)] =
d||A||∞||B||∞. The same bound has to hold for every power Tn, n ∈ N. How-
ever, if we take the n′th power of a Jordan block J(λ), it is a Toeplitz matrix
whose first row reads

[J(λ)n]1j = λn−j+1

(
n

j − 1

)
, j = 1, . . . ,dim(J(λ)). (6.10)

Hence, if dim(J(λ)) > 1 and |λ| = 1 this would contain entries which grow
unboundedly with n contradicting the uniform boundedness of Tn.
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We can now use the obtained results in order to show that some of the
spectral projections appearing in Eq.(6.5) are (completely) positive in their own
right. Define

T̂∞ :=
∑

k:λk=1

Pk, (6.11)

T̂φ :=
∑

k:|λk|=1

Pk, (6.12)

T̂ϕ :=
∑

k:|λk|=1

λkPk, (6.13)

from the spectral decomposition in Eq.(6.5) and the corresponding maps T∞, Tφ, Tϕ
via Eq.(2.20).

Proposition 6.3 (Cesaro means) Let T :Md(C)→Md(C) be a linear map
which is trace-preserving and (completely) positive. Then T∞, Tφ, Tϕ are trace
preserving and (completely) positive as well. More precisely, we have that (i)
there exists an increasing sequence ni ∈ N such that limi→∞ Tni = Tφ, (ii)
Tϕ = TTφ and (iii)

T∞ = lim
N→∞

1

N

N∑
n=1

Tn. (6.14)

Proof Showing (i)-(iii) essentially proves the claim that the three maps are
trace-preserving and (completely) positive. Throughout we will use that the
spectral radius of T is one, that there is an eigenvalue one and that the periph-
eral spectrum of T only has one-dimensional Jordan blocks. For (i) we exploit
the subsequent Lemma on simultaneous Diophantine approximations. For our
purpose Lemma 6.1 implies that for every ε > 0 there is an n ∈ N such that
|λnk − 1| ≤ ε for all eigenvalues λk of magnitude one. This means that there is
an increasing sequence ni ∈ N such that Tni is a better and better approxi-
mation to Tφ. Since the set of (completely) positive, trace-preserving maps on
Md is compact, the limit point Tφ belongs to this set. (ii) is obvious from the
spectral decomposition in Eq.(6.5) and (iii) is an immediate consequence of the

geometric series
∑N
n=1 λ

n = (λ− λN+1)/(1− λ) for λ 6= 1.

In a similar vein as T∞ is expressed as a Cesaro mean in Eq.(6.14) we can
write

Tφ = lim
N→∞

1

N

N∑
n=1

∑
k:|λk|=1

(
λkT

)n
. (6.15)

The maps T∞ and Tφ are projections onto the set of fixed points (see
Chap.6.4) and the space spanned by the eigenvectors of the peripheral spec-
trum respectively. That is, X ∈ Md is in the range of T∞ iff T (X) = X
and it is in the range of Tφ iff for every ε > 0 there is an n ∈ N such that
||Tn(X) − X|| ≤ ε. In other words the image of Tφ is the set of operators for
which recurrences arise.
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For completeness (and later use) Dirichlet’s theorem on simultaneous Dio-
phantine approximations which was used in the above proof:

Lemma 6.1 (Dirichlet’s theorem) Let x1, . . . , xm be m real numbers and
q > 1 any integer. Then there exist integers n, p1, . . . , pm such that

1 ≤ n ≤ qm and |xkn− pk| ≤
1

q
, ∀k. (6.16)

Resolvents: The resolvent R of a linear operator T is an operator-valued
function on C defined as

R(z) := (zid− T )−1. (6.17)

The singularities of R are exactly the eigenvalues of T . Hence, R is meromorphic
and defined on the set which is the complement of the spectrum of T , called
resolvent set. For |z| > %(T ), i.e., outside the spectral radius of T , we can
express the resolvent as

R(z) =
1

z

∑
t=0

T t

zt
. (6.18)

If T t describes the discrete time evolution of a quantum (or classical) system this
series implies that the spectrum of T is reflected in a peculiar way in the time
evolution of expectation values: consider any ρ,A ∈ Md(C) and the sequence
〈A(t)〉 := tr [ρT t(A)] for t = 0, 1, 2, . . .. If A represents an observable and ρ is a
density matrix evolving according to T , then 〈A(t)〉 is the expectation value at
time t. The z-transform (or discrete Laplace transform) of the ‘signal’ 〈A(t)〉 is
given by

L(z) :=
1

z

∑
t∈N0

〈A(t)〉
zt

, (6.19)

which converges for |z| > %(T ) and can be defined in the interior of that disc
by analytic continuation. Obviously, the poles of L are located at eigenvalues
of T . Note, however, that depending on A and ρ not every eigenvalue of T will
give rise to a pole of L.

Using the resolvent, many of the results of analytic function theory carry
over to the world of operators. For instance if ∆ ⊆ C is simply connected and
enclosed by a smooth curve ∂∆, then∑

k:λk∈∆

Pk =
1

2πi

∫
∂∆

R(z)dz, and (6.20)

f(T ) =
1

2πi

∫
∂∆

f(z)R(z)dz, if λk ∈ ∆ ∀k, (6.21)

where f : C → C is any function holomorphic in ∆ and the Pk’s are the
projections appearing in the spectral decomposition in Eq.(6.5).
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6.1 Determinants

The determinant (=product of all eigenvalues) is a useful tool in particular when
it comes to the composition of maps since

det(T1T2) = det(T1) det(T2). (6.22)

In fact, the property of being multiplicative essentially characterizes the de-
terminant: if a functional F : MD(C) → C satisfies F (T1T2) = F (T1)F (T2)
for all Ti ∈ MD(C), then F (T ) = f

(
det(T )

)
for some multiplicative function

f : C→ C [?].
Also note that Eq.(6.22) implies the simple relation

∏
i si = |det(T )| between

the determinant and the singular values {si} of a map.
The following specifies the possible range of determinants for positive and

trace-preserving maps on Md(C) and characterizes the extremal values:

Theorem 6.1 (Determinants) Let T : Md → Md be a positive and trace
preserving linear map.

1. detT is real and contained in the interval [−1, 1],

2. |detT | = 1 iff T is a either a unitary conjugation (i.e., T (A) = UAU† for
some unitary U ∈ Md) or unitarily equivalent to a matrix transposition
(i.e., T (A) = UATU† for some unitary U ∈Md),

3. if T is a unitary conjugation then detT = 1 and if detT = −1 then T is a
matrix transposition up to unitary equivalence. In both cases the converse
holds iff bd2c is odd.

Proof Since eigenvalues of positive maps either come in complex conjugate
pairs or are real, their product detT is real, too. Due to the additional trace-
preserving property the spectral radius is one (Prop.6.1) so that detT ∈ [−1, 1].

Now consider the case detT = ±1 where all eigenvalues are phases. Fol-
lowing Dirichlet’s Theorem (Lem.6.1) as in the first part of Prop.6.3, there is
always a subsequence ni such that the limit of powers limi→∞ Tni =: Tφ has
eigenvalues which all converge to one which implies that Tφ = id. Hence, the
inverse T−1 = TφT

−1 = limi→∞ Tni−1 is a trace-preserving positive map as
well.

Assume that the image of any pure state density matrix Ψ under T is mixed,
i.e., T (Ψ) = λρ1 + (1− λ)ρ2 with ρ1 6= ρ2, λ ∈ (0, 1). Then by applying T−1 to
this decomposition we would get a nontrivial convex decomposition for Ψ (due
to positivity of T−1) leading to a contradiction. Hence, T and its inverse map
pure states onto pure states. Furthermore, they are unital, which can again be
seen by contradiction. So assume T (1) 6= 1. Then the smallest eigenvalue of
T (1) satisfies λmin < 1 due to the trace preserving property. If we denote by |λ〉
a corresponding eigenvector, then 1− λmin+1

2 T−1(|λ〉〈λ|) is a positive operator,
but its image under T would no longer be positive. Therefore we must have
T (1) = 1.
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Every unital positive trace preserving map is contractive with respect to
the Hilbert-Schmidt norm. As this holds for both T and T−1 we have that
∀A ∈ Md : ||T (A)||2 = ||A||2, i.e., T acts unitarily on the Hilbert-Schmidt
Hilbert space. In particular, it preserves the Hilbert Schmidt scalar product
tr
[
T (A)T (B)†

]
= tr

[
AB†

]
. Applying this to pure states A = |φ〉〈φ| and

B = |ψ〉〈ψ| shows that T gives raise to a mapping of the Hilbert space onto
itself which preserves the value of |〈φ|ψ〉|. By Wigner’s theorem (Thm. 1.1)
this has to be either unitary or anti-unitary. If T is a unitary conjugation then
detT = det(U ⊗ Ū) = 1 due to Eq.(2.21). Since every anti-unitary is unitar-
ily equivalent to complex conjugation, we get that T is in this case a matrix
transposition T (A) = AT (up to unitary equivalence). The determinant of the
matrix transposition is easily seen in the Gell-Mann basis of Md (see Hermi-
tian operator bases in Sec.2.3). That is, we take basis elements Fα of the form
σx/
√

2, σy/
√

2 for α = 1, . . . d2 − d and diagonal for α = d2 − d + 1, . . . , d2. In
this basis matrix transposition is diagonal and has eigenvalues 1 and −1 where
the latter appears with multiplicity d(d− 1)/2. This means that matrix trans-
position has determinant minus one iff d(d− 1)/2 is odd, which is equivalent to
bd2c being odd.

From this we get the following corollaries:

Corollary 6.1 (Monotonicity of the determinant) Let T, T ′ be two posi-
tive and trace-preserving linear maps on Md. Then the determinant is decreas-
ing in magnitude under composition, i.e., |detT | ≥ |detTT ′| where equality
holds iff T ′ is a unitary conjugation, a matrix transposition or detT = 0.

Corollary 6.2 (Positive invertible maps) Let T : Md → Md be a trace-
preserving and positive linear map. Then the inverse T−1 is positive, too iff T
is a unitary conjugation or matrix transposition.

Note that the inverse (if it exists) of a trace-preserving linear map is automat-
ically trace-preserving. Hence, the above statement implies that the inverse of
a quantum channel is again a quantum channel iff it describes a unitary time
evolution.

One might wonder whether completely positive maps can have negative de-
terminants. The following simple example answers this question in the affir-
mative. It is build up on the map ρ 7→ ρTc which transposes the corners of
ρ ∈Md, i.e., (ρTc)k,l is ρl,k for the entries (k, l) = (1, d), (d, 1) and remains ρk,l
otherwise. Note that for d = 2 this is the ordinary matrix transposition.

Example 6.1 (Negative determinant) The map T :Md →Md defined by

T (ρ) =
ρTc + 1tr [ρ]

1 + d
(6.23)

is trace preserving, completely positive with Kraus rank d2 − 1 and has determinant

detT = −
(
d + 1

)1−d2
. For d = 2 the channel is entanglement breaking and can be

written as

T (ρ) =
1

3

6∑
j=1

|ξ̄j〉〈ξj |ρ|ξj〉〈ξ̄j |, (6.24)
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where the six ξj are the normalized eigenvectors of the three Pauli matrices. Moreover,
the example given in Eq.(6.24) minimizes the determinant within the set of all quantum
channels on M2.
Proof A convenient matrix representation of the channel is given in the generalized
Gell-Mann basis. Choose F1 as the σy/

√
2 element corresponding to the corners and

F2 = 1/
√
d the only traceless element. Then T̂ = diag[−1, 1 + d, 1, . . . , 1]/(d + 1)

leading to detT = −(d+ 1)1−d
2

.
For complete positivity we have to check positivity of the Jamiolkowski state τ .

The corner transposition applied to a maximally entangled state leads to one negative
eigenvalue −1/d. This is, however, exactly compensated by the second part of the map
such that τ ≥ 0 with rank d2 − 1.

The representation for d = 2 is obtained from tr [AT (B)] = tr
[
(A⊗BT )τ

]
/d by

noting that in this case τ is proportional to the projector onto the symmetric subspace
which in turn can be written as 1

2

∑
j |ξj〉〈ξj |

⊗2 in agreement with the given Kraus
representation of the channel.

In order to see that the determinant is minimized for d = 2, recall from Sec.2.4
that any trace-preserving T can be conveniently represented in terms of the real 4× 4
matrix T̂ij := tr [σiT (σj)] /2 where the σis are identity and Pauli matrices:

T̂ =

(
1 0
v Λ

)
, (6.25)

where v ∈ R3, Λ is a 3 × 3 matrix and det Λ = detT . To simplify matters we can
diagonalize Λ by special orthogonal matrices O1ΛO2 = diag{λ1, λ2, λ3} corresponding
to unitary operations before and after the channel (see Exp.1.1 for the relation between
SO(3) and SU(2)). Obviously, this does neither change the determinant, nor complete

positivity. For the latter it is necessary that ~λ is contained in a tetrahedron spanned
by the four corners of the unit cube with λ1λ2λ3 = 1. Fortunately, all these points
can indeed be reached by unital channels (v = 0) for which this criterion becomes
also sufficient for complete positivity. By symmetry we can restrict our attention to
one octant and reduce the problem to maximizing p1p2p3 over all probability vectors ~p
yielding ~p = ( 1

3
, 1
3
, 1
3
) = (λ1,−λ2, λ3). Hence, the minimal determinant is −( 1

3
)3 and

the corresponding channel can easily be constructed from T̂ as T : ρ 7→ 1
3
(ρT + 1).

The example of a completely positive map with negative determinant con-
structed above has at least Kraus rank 3 (for d = 2). In fact, this is the minimal
number of Kraus operators which allows for a negative determinant:

Proposition 6.4 (Positive determinant for small Kraus rank) If T :Md →
Md is a completely positive linear map with Kraus rank at most two, then
detT ≥ 0.

Proof If A,B ∈Md are Kraus operators then T̂ = A⊗ Ā+B⊗ B̄ is a matrix
representation of T (see Eq.(2.21)). Assume for the moment that detA 6= 0.
Then due to multiplicativity of the determinant

detT = det (A⊗ Ā) det(1+A−1B ⊗ Ā−1B̄) ≥ 0. (6.26)

In order to understand the inequality note that if {λj} are the eigenvalues of
A−1B, then {1 + λiλ̄j} are those of 1 + A−1B ⊗ Ā−1B̄. That is, they all
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come in complex conjugate pairs so that their product is positive. The same
argumentation holds, of course, for the A⊗ Ā term. The proof is completed by
using that the set of maps with detA 6= 0 is dense and that detT is continuous.

Thm. 6.1 shows that if for a quantum channel detT = 1, then it has to
be a unitary or, expressed in terms of the purity of the Jamiolkowsky state,
tr
[
τ2
]

= 1. By continuity a channel close to a unitary, described by a τ with
purity close to one, will still have determinant close to one. The following is a
quantitative version of the converse: if the determinant is large, then the purity
has to be large, too. We will see later that and how this implies closeness to a
unitary for quantum channels.

Proposition 6.5 (Determinant and Choi-Jamiolkowski operator) Let T :
Md →Md be a linear map and τ the corresponding Choi-Jamiolkowski opera-
tor. Then

|detT | ≤ tr
[
τ †τ
]d2/2

. (6.27)

Proof To relate the ’purity’ to the determinant we exploit that by Eq.(2.22)
T̂ = dτΓ is a matrix representation of the map T , so that

tr
[
τ †τ
]

=
1

d2
tr
[
T̂ †T̂

]
=

1

d2

d2∑
i=1

s2
i , (6.28)

where the si are the singular values of T̂ (and thus T ). From this Eq.(6.27) is
obtained via the geometric–arithmetic mean inequality together with the fact
that |detT | =

∏
i si.

6.2 Irreducible maps and Perron-Frobenius the-
ory

Perron-Frobenius theory, roughly speaking, deals with the dominant eigenvalues
and eigenvectors of (element-wise) non-negative matrices (see Exp. ...), i.e., in
particular with those of classical channels. In order to make the theory work the
considered maps have to fulfill a generic condition like irreducibility, primitivity
or strict positivity (in order of increasing restriction).

In this section we will discuss the generalization of Perron-Frobenius theory
to the context of positive maps on Md(C). The following theorem defines
irreducible positive maps and shows that this can be done in various equivalent
ways:

Theorem 6.2 (Irreducible positive maps) Let T :Md(C) →Md(C) be a
positive linear map. The following properties are equivalent:

1. Irreducibility: If P ∈Md(C) is a Hermitian projector such that T (PMdP ) ⊆
PMdP , then P ∈ {0,1}.
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2. For every non-zero A ≥ 0 we have (id + T )d−1(A) > 0.

3. For every non-zero A ≥ 0 and every strictly positive t ∈ R we have
exp[tT ](A) > 0.

4. For every orthogonal pair of non-zero, positive semi-definite A,B ∈Md(C)
there is an integer t ∈ {1, . . . , d− 1} such that tr [BT t(A)] > 0.

Proof 1. → 2.: From T (A) ≥ 0 we get an inclusion for the kernels ker(id +
T )(A) ⊆ kerA. Suppose equality holds in this inclusion, then suppT (A) ⊆
suppA. Therefore T (PMdP ) ⊆ PMdP if we take P the Hermitian projector
onto the support space of A. By 1. (irreducibility) this can only be if A > 0.
Application of (id+T ) thus has to increase the rank until there is no kernel left,
which happens after d− 1 steps at the latest.

2. → 3.: Looking at the series expansion of both (id + T )d−1(A) and
exp[tT ](A) in terms of powers of T we realize that (i) all terms are positive,
and (ii) all terms appearing in the first expansion are also present in the second
one. Therefore we can bound exp[tT ](A) ≥ c(id+T )d−1(A) with some non-zero
positive constant c.

3. → 1.: Suppose T is reducible, i.e., there is a proper projection P 6= 0,1
for which T (P ) ≤ cP for some scalar c > 0. Then exp[tT ](P ) ≤ exp[tc]P , so T
does not fulfill 3..

4.→ 1.: If T is reducible by a proper projection P , then tr [(1− P )T t(P )] =
0 for all t ∈ N.

2.→ 4.: Expanding tr
[
B(id + T )d−1(A)

]
> 0 and using tr [BA] = 0 together

with positivity of all terms in the expansion, we get that tr [BT t(A)] > 0 for at
least one t ≤ d− 1.

Note that T is irreducible iff the dual map T ∗ is irreducible. If a proper
projection P ’reduces’ T in the sense that tr [(1− P )T (P )] = 0, then 1 − P
reduces T ∗.

In order to relate irreducibility to spectral properties of a positive map T
it is useful to consider the following functionals defined on the cone of positive
semi-definite operators:

r(X) := sup{λ ∈ R
∣∣ (T − λid)(X) ≥ 0}, (6.29)

r̃(X) := inf{λ ∈ R
∣∣ (T − λid)(X) ≤ 0}. (6.30)

We are especially interested in the maxima r := supX≥0 r(X) and r̃ := supX≥0 r̃(X)
which obviously satisfy r ≥ r̃ and actually coincide for irreducible maps:

Theorem 6.3 (Spectral radius of irreducible maps) Let T : Md(C) →
Md(C) be an irreducible positive map. Then

1. For the quantities introduced below Eqs.(6.29,6.30) r = r̃.

2. r is a non-degenerate eigenvalue of T and the corresponding eigenvector
is strictly positive, i.e., T (X) = rX > 0.
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3. If there is any λ > 0 which is an eigenvalue of T with positive egenvector,
i.e., T (Y ) = λY ≥ 0, then λ = r.

4. r is the spectral radius of T .

Proof First note that all suprema/infima in Eqs.(6.29,6.30) and for defining
r, r̃ are attained since the respective sets are compact or can be made so, e.g.,
by imposing tr [X] = 1.

We begin with showing that r is attained for a strictly positive X and that
T (X) = rX. To this end consider any non-zero X ≥ 0 for which λ := r(X) > 0.
The identity

(T + id)d−1(T − λid)(X) = (T − λid)(T + id)d−1(X), (6.31)

shows two things. First, the supremum supX≥0 r(X) is attained for a strictly

positive X, since by Thm.6.2 (T + id)d−1(X) > 0. Second, the X achieving
r(X) = r must satisfy (T − rid)(X) = 0, since otherwise the expression in
Eq.(6.31) would be positive definite so that a larger multiple of the identity map
could be subtracted—contradicting the supposed maximality. As r(X) = r̃(X)
for every eigenvector X ≥ 0, the just mentioned observation together with the
inequality r ≥ r̃ proves item 1. of the theorem.

To prove 2. we still need to show non-degeneracy. Suppose there would be
an eigenvector X ′ corresponding to r which is not a multiple of X. By taking
the Hermitian (or i times the anti-Hermitian) part we can assume X ′ = X ′†.
As X > 0 there is a non-zero c ∈ R such that 0 ≤ X + cX ′ has a kernel. This
is, however, in conflict with

0 < (T + id)d−1(X + cX ′) = (r + 1)d−1(X + cX ′), (6.32)

so that X ′ must be a multiple of X. Hence, r is indeed non-degenerate.
For the proof of 3. assume that Y ≥ 0 is an eigenvector of T corresponding

to an eigenvalue λ > 0. Using that r is an eigenvalue of the dual map T ∗ with
a strictly positive eigenvector X ′ > 0 we get

rtr [X ′Y ] = tr [T ∗(X ′)Y ] = tr [X ′T (Y )] = λtr [X ′Y ] . (6.33)

Since tr [X ′Y ] > 0 this implies r = λ.
Finally, in order to prove 4. we define a positive map T ′(·) := X−1/2T (X1/2 ·

X1/2)X−1/2/r with X > 0 being the positive eigenvector corresponding to the
eigenvalue r of T . Note that up to the factor 1/r the maps T and T ′ differ only
by a similarity transformation, i.e., their spectra coincide up to that factor. In
particular the spectral radii satisfy %(T ′) = %(T )/r. Since T ′ is a unital positive
map we have %(T ′) = 1 by Prop.6.1 and thus %(T ) = r.

The proof of the last item of Thm.6.3 leads to the following simple observa-
tion:

Proposition 6.6 (Similarity transformations preserving irreducibility)
Let T : Md(C) → Md(C) be an irreducible positive map. Then for arbitrary
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constants c > 0 and invertible matrices C ∈Md(C) the maps

T ′(·) := c C−1T (C · C†)C−†, (6.34)

are irreducible as well.

Proof Assume that a projection Q would ’reduce’ T ′. Then the projection P
onto the support of CQC† would reduce T . By invertibility of C we have that
P and Q have the same rank and thus T ′ can only be reducible if T is.

The invariance of irreducibility under similarity transformation of the form
in Eq.6.34 shows that irreducibility does not only imply spectral properties of
a positive map, but that it is determined by such properties:

Theorem 6.4 (Irreducibility from spectral properties) Let T :Md(C)→
Md(C) be a positive map with spectral radius %. The following are equivalent:

1. T is irreducible.

2. The spectral radius % is a non-degenerate eigenvalue and the corresponding
right and left eigenvectors are positive definite (i.e., T (X) = %X > 0 and
T ∗(Y ) = %Y > 0).

Proof 1.→ 2. is given by Thm.6.3 when applied to T and T ∗.

For the converse 2. → 1. we apply Eq.(6.34) with c = 1/% and C = Y −1/2.
In this way T ′ becomes trace preserving with T (X ′) = X ′ > 0, X ′ :=

√
Y X
√
Y .

Moreover, the non-degeneracy translates to that of the eigenvalue 1 of T ′. Now
assume that T ′ (and thus T ) would be reducible, i.e., there is a Hermitian
projection P 6∈ {0,1} such that T ′ : A → A with A := PMd(C)P . In this case
T ′ would have a fixed point density operator ρ ∈ A for which T ′(ρ) = ρ ≥ 0
(see Sec.6.4). Hence, the eigenvalue 1 of T would have to be degenerate since ρ
is not a multiple of X ′ because of X ′ 6∈ A (as X ′ > 0).

If we consider the time evolution of a density operator of the form ρ(t) :=
T t(ρ) where T is a positive and trace-preserving map and t ∈ N, then the
previous theorem allows us to relate irreducibility to a unique time-average
corresponding to a full rank stationary state:

Corollary 6.3 (Time-average and ergodicity) Let T : Md(C) → Md(C)
be a positive, trace-preserving linear map. Then the following are equivalent:

1. T is irreducible,

2. There is a unique state with density matrix σ > 0 such that for every
density matrix ρ ∈Md(C) we have

lim
N→∞

1

N

N∑
t=1

T t(ρ) = σ. (6.35)
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Proof Note that Eq.(6.35) is nothing but T∞(ρ) = σ, where T∞ is the projec-
tion onto the eigenspace of T with eigenvalue one as given in Eq.(6.14). The
equivalence 1.↔ 2. thus follows from the equivalence in Thm.6.4.

Irreducible positive maps are generic, i.e., in particular dense within the set
of all positive maps. For instance X 7→ T (X) + ε1tr [X] is irreducible for every
ε > 0 and positive T since it maps every positive input to a positive definite
output. By continuity of eigenvalues and eigenvectors we can therefore extend
the above observation about the spectral radius to arbitrary positive maps:

Theorem 6.5 (Spectral radius and positive eigenvectors) Let T :Md(C)→
Md(C) be a positive map with spectral radius %. Then % is an eigenvalue and
there is a positive semi-definite X ∈Md(C) such that T (X) = %X.

Of course, in general the spectral radius might be a degenerate eigenvalue and
the corresponding positive eigenvector may have a kernel. Even for irreducible
maps there can be several eigenvalues with modulus equal to the spectral radius:

The peripheral spectrum is the set of eigenvalues whose magnitude is equal
to the spectral radius, i.e., equal to one if we are considering unital positive
maps (Prop.6.1). As we saw in Prop.6.2 the properties positivity and unital-
ity together imply that all eigenvalues in the peripheral spectrum have trivial
(i.e., one-dimensional) Jordan blocks. If we add irreducibility and the assumed
validity of the Schwarz inequality in Eq.(5.2) we can say much more:

Theorem 6.6 (Peripheral spectrum of irreducible Schwarz maps) Let T :
Md(C)→Md(C) be an irreducible positive unital map which fulfills the Schwarz
inequality in Eq.(5.2). Denote by S := spec(T ) ∩ exp (iR) the peripheral spec-
trum of T . Then

1. There is an integer m ∈ {1, . . . , d2} such that S = {exp (2πik/m)}k∈Zm .

2. All eigenvalues in S are non-degenerate.

3. There is a unitary U such that for all k ∈ N: T (Uk) = γkUk where
γ := exp (2πi/m).

4. U has spectral decomposition U =
∑
k∈Zm γ

kPk where the spectral projec-
tions Pk satisfy T (Pk+1) = Pk.

Proof Take any eigenvalue λ ∈ S with corresponding eigenvector U ∈Md(C),
i.e., T (U) = λU . Then the Schwarz inequality reads U†U ≤ T (U†U). Since T
is irreducible by assumption we can apply the tools in the proof of Thm.6.3,
in particular that r(U†U) = 1, which implies that equality has to hold in the
Schwarz inequality and that U can be rescaled to be a unitary. Moreover, by
Thm.5.3 we have

λ̄U†T (X) = T (U†X), ∀X ∈Md(C). (6.36)
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Applying this to the case where X is another eigenvector of T w.r.t. an eigen-
value in S shows that S is closed under multiplication and thus a group. Since
there are at most d2 elements in S we must have S = exp(2πiZm/m) for some
integer m ≤ d2.

Now assume that U and V are both eigenvectors w.r.t. the same eigenvalue
in S. Then T (U†V ) = U†V and, since the eigenvalue one of an irreducible unital
positive map is non-degenerate (Prop.6.1 and Thm.6.3), we must have U ∝ V .
Hence, all eigenvalues in S are simple.

If U is the unitary eigenvector corresponding to the eigenvalue γ := exp (2πi/m),
then the group property gives T (Uk) = γkUk for all k ∈ N. In particular
T (Um) = Um which has to be equal to 1 by non-degeneracy of the eigenvalue
one. Therefore we can write U =

∑
k∈Zm γ

kPk with orthogonal spectral projec-
tions Pk. This gives∑

k∈Zm

γk+1Pk = γU = T (U) =
∑
k∈Zm

γkT (Pk). (6.37)

Due to T (Uk) = γkUk, T acts as an automorphism on the ∗-algebra generated
by U . Projections are thus mapped onto projections and by comparing the left
and right hand side in Eq.(6.37) we get T (Pk+1) = Pk from the uniqueness of
the spectral decomposition.

The last item implies that Tm(Pk) = Pk, i.e., if m > 1, then Tm is reducible.
Similarly, if l,m > 1, then T l is reducible if l and m have a non-trivial integer
factor in common.

In the proof of the above theorem Eq.(6.36) is remarkable and has con-
sequences beyond the peripheral spectrum: if the peripheral spectrum is non-
trivial (m > 1), then every eigenvalue of T is an element of a group of eigenvalues
of the same magnitude but rotated in the complex plane:

Proposition 6.7 (Covariance and eigensystem of irreducible maps) Let
T : Md(C) → Md(C) be an irreducible positive and unital linear map which
fulfills the Schwarz inequality. Following Thm.6.6 denote by {γk}k=1,...,m the
peripheral spectrum of T and by U = γ̄T (U) the respective unitary eigenvector.

1. For every X ∈Md(C) we have T (U†XU) = U†T (X)U .

2. If X is an eigenvector with T (X) = µX, then

T (U†X) = γ̄µ U†X, T (XU) = γµ XU. (6.38)

Proof Both statements follow directly from Eq.(6.36) and its adjoint.

Note that the statements 1. and 2. taken together imply that if µ is non-
degenerate, then U†XU = eiϕX. So either [X,U ] = 0 or eiϕ is a root of unity
and spec(X) = eiϕspec(X).



6.3. PRIMITIVE MAPS 105

6.3 Primitive maps

We will continue the discussion on Perron-Frobenius theory and direct the focus
to primitive maps. A primitive map is an irreducible positive map with trivial
peripheral spectrum. Similar to the irreducible case primitive maps can, how-
ever, be characterized by a number of equivalent properties each of which may
be used as a definition:

Theorem 6.7 (Primitive maps) Let T :Md(C)→Md(C) be a positive and
trace-preserving linear map. Then the following statements are equivalent:

1. There exists an n ∈ N such that for every density matrix ρ ∈ Md(C) we
have Tn(ρ) > 0.

2. T k is irreducible for every k ∈ N and the limit Tφ (see Prop.6.3) is irre-
ducible as well.

3. For all density matrices ρ the limit limk→∞ T k(ρ) exists, is independent
of ρ and given by a positive definite density matrix ρ∞.

4. T has trivial peripheral spectrum (i.e., counting algebraic multiplicities,
there is only one eigenvalue of magnitude one) and the corresponding
eigenvector is positive definite.

Proof 1. → 2. can be proven by contradiction: assume for instance Tφ =
limi→∞ Tni is reducible. Then there is a density matrix ρ0 which has a ker-
nel and for which ρ0 = Tφ(ρ0) = limi T

n
(
Tni−n(ρ)

)
which would imply that

Tn(ρ) 6> 0 for some ρ. Similarly, if T k and therefore also T km is reducible for
all m ∈ N, then there cannot be any n for which 1. holds.

2.→ 4.: If Tφ has a non-degenerate eigenvalue one, then, by definition of Tφ,
the map T has trivial peripheral spectrum. Moreover, since the fixed point set
of T is included in the one of Tφ which in turn contains only a single positive
definite element, this fixed point has to be the one of T as well.

4.→ 3.: Since T has only one eigenvalue of magnitude one with correspond-
ing positive definite eigenvector ρ∞ = T (ρ∞) we have limk→∞ T k = Tφ and
Tφ(ρ) = ρ∞tr [ρ] is a projection.

3.→ 1.: First note that 3. implies that the eigenvalue of T which is second
largest in magnitude, denote it by λ2, satisfies |λ2| < 1. Assume that Tn(ρ)
would have a kernel with eigenvector ψ. Then

λmin(ρ∞) ≤
∣∣〈ψ|Tn(ρ)− ρ∞|ψ〉

∣∣ ≤ ||Tn(ρ)− ρ∞|| (6.39)

= ||(Tn − T∞)(ρ− ρ∞)|| ≤ µnc ||ρ− ρ∞||, (6.40)

where λmin denotes the smallest eigenvalue, µ is such that 1 > µ > |λ2| and || · ||
is the operator norm. The constant c > 0 depends on T but is independent of n
(see the discussion around Thm.8.23 for more details). Thus if n is sufficiently
large, then Eqs.(6.39,6.40) would lead to a contradiction for every ρ. Hence,
there is a finite n such that Tn(ρ) > 0 for all ρ.
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If we interpret T t(ρ) for t ∈ N as discrete time-evolution, then primitive
maps are exactly those for which the evolution eventually converges to a station-
ary state which is strictly positive (i.e., it may in some contexts be interpreted
as a finite temperature Gibbs state) and independent of the initial state.

Note that if T in addition satisfies the Schwarz inequality as required by
Thm.6.6, then we can replace point 2. in Thm.6.7 by the statement that T k is
irreducible for all k < d2.

Moreover, if a map is completely positive, we can give three more equivalent
characterizations of primitivity:

Theorem 6.8 (Completely positive primitive maps) Let T : Md(C) →
Md(C) be a completely positive and trace-preserving linear map with Kraus

decomposition T (·) =
∑
iKi · K†i . Denote by Km := span

{∏m
k=1Kik

}
the

complex linear span of all degree-m monomials of Kraus operators. Then the
following are equivalent:

1. T is primitive.

2. There exists an n ∈ N such that for every non-zero ψ ∈ Cd and all m ≥ n:
Km|ψ〉 = Cd.

3. There exists a q ∈ N such that for all m ≥ q: Km =Md(C).

4. There exists a q ∈ N such that for all m ≥ q: (Tm ⊗ idd)(|Ω〉〈Ω|) > 0,
where Ω ∈ Cd ⊗Cd denotes a maximally entangled state.

The numbers q appearing in 3., 4. can be chosen equal and if q and n are chosen
minimal, then n ≤ q.

Proof First consider item 2. and observe that it obviously holds for all m ≥ n
if it holds for some n since we can always incorporate m−n Kraus operators in
ψ. Similar holds for item 4. In order to see this, define τq := (T q ⊗ idd)(|Ω〉〈Ω|)
and assume τq > 0. Then there is in particular a constant c > 0 such that
τq ≥ cτq−1 and therefore

τq+1 = (T ⊗ id)(τq) ≥ c(T ⊗ id)(τq−1) = cτq > 0. (6.41)

By induction the same holds then true for all integers larger than q.
1.↔ 2.: Let us introduce KI :=

∏n
k=1Kik with multi-index I = (i1, . . . , in).

If T is primitive, then by Thm.6.7 there exists an n such that
∑
I KI |ψ〉〈ψ|K†I

has full rank for every ψ. Thus, for every φ there is an I so that 〈φ|KI |ψ〉 6= 0
and therefore span{KI |ψ〉} = Cd. Conversely, if the latter is true, then for
every φ there will be a unitary U so that |φ〉 ∝

∑
I UJIKI |ψ〉 =: K ′J |ψ〉. Since

{KI} and {K ′J} both provide a Kraus representation of Tn (see Thm.2.1) the
full rank property is guaranteed. Following Thm.6.7 T then has to be primitive.

3.↔ 4.: Following the above lines and denoting by KI the Kraus operators
of T q it is clear that (T q⊗idd)(|Ω〉〈Ω|) > 0 is equivalent to span{(KI⊗1d)|Ω〉} =
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Cd ⊗Cd. From here the equivalence between item 3. and 4. follows due to the
fact that the relation K ↔ (K ⊗ 1)|Ω〉 is a linear one-to-one mapping between
Md(C) and Cd ⊗Cd.

4. → 1.: If the Choi-Jamiolkowski matrix τ := (T q ⊗ idd)(|Ω〉〈Ω|) has full
rank, then so does

T q
(
|ψ〉〈ψ|

)
= d(1d ⊗ 〈ψ̄|) τ (1d ⊗ |ψ̄〉) for all ψ ∈ Cd. (6.42)

This also shows that n = q is sufficient. So if we choose both n and q minimal,
then n ≤ q in general.

1.→ 4.: The proof for this implication is entirely parallel with Eqs.(6.39,6.40)
where q now plays the role of n: just replace ρ by Ω, ρ∞ by ρ∞ ⊗ 1/d and T
by T ⊗ id. Also the constant c now depends on T ⊗ id, but the argumentation
remains the same.

Note that all the above relations for both positive and completely positive
maps hold as well for maps which are not trace-preserving3 so that the notion
of primitivity is well-defined for arbitrary positive maps.

Finally, we will show that the number q (and therefore also n) appearing in
Thm.6.8 can be bounded by the dimension d of the system. These bounds can
be seen as a quantum counterpart to Wielandt’s inequality, which does the same
for the classical case of primitive stochastic matrices. We need two preparatory
Lemmas before the main result. As before Kn denotes the complex linear span
of the Kraus operators of Tn. We will frequently use that every K ∈ Kn is,
up to a scalar multiple, a possible Kraus operator of Tn. This follows from the
freedom in the Kraus decomposition (Thm.2.1, point 4.).

Lemma 6.2 Let T be a primitive quantum channel onMd(C) with Kraus rank
k. Then, there is an natural number n ≤ d2 − k + 1 and a K ∈ Kn such that
tr [K] 6= 0.

Proof Let us denote by Rn the complex linear span of all Km with m ≤ n.
We have to show that: (*) for any n ∈ N, if dim[Rn] < d2, then dim[Rn+1] >
dim[Rn]. Since dim[R1] = k, by iteration we obtain that Rd2−k+1 = Md(C).
This implies that a linear combination of the elements of Kn with various n ≤
d2 − k + 1 must be equal to the identity, and thus at least one of the elements
must have non-zero trace. To prove (*) we note that, by definition, Rn ⊆ Rn+1.
If they would be equal, then Rm = Rn for all m > n. Thus, equality can only
occur when dim[Rn] = d2 since otherwise the map T would not be primitive.

Lemma 6.3 Let T :Md(C)→Md(C) be a primitive completely positive map
such that at least one of its Kraus operators, say K1, has a non-zero eigenvalue,
i.e., K1|ϕ〉 = µ|ϕ〉 with µ 6= 0. Then: (a) Kd−1|ϕ〉 = Cd. (b) If K1 is not
invertible, then for all |ψ〉 ∈ Cd, |ϕ〉〈ψ| ∈ Kd2−d+1.

3The limit limk→∞ Tk has then to be normalized by the k’th power of the spectral radius
of T .
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Proof (a) We define Sn as the span of all Km|ϕ〉 with m ≤ n together with |ϕ〉.
If dim[Sn] < d, then dim[Sn+1] > dim[Sn], since otherwise the map would not
be primitive. Thus, Sd−1 = Cd. That is, for all |φ〉 ∈ Cd, there exist matrices
K(n) ∈ Kkn , kn ≤ d− 1 such that (with K(0) ∝ 1)

|φ〉 =

d−1∑
n=0

K(n)|ϕ〉 =

d−1∑
n=0

K(n)K
d−kn
1

µd−kn
|ϕ〉, (6.43)

and thus, |φ〉 ∈ Kd−1|ϕ〉. (b) We write K1 in the Jordan standard form and
divide it into two blocks. The first one, of size d̃ × d̃, consists of all Jordan
blocks corresponding to non-zero eigenvalues, whereas the second one contains
all those corresponding to zero eigenvalues. We denote by P the (not necessarily
Hermitian) projector onto the subspace where the first block is supported and by
r ≤ d− d̃ the size of the largest Jordan block corresponding to a zero eigenvalue.
We have

K1P = PK1, Kr
1 = Kr

1P. (6.44)

We define Rn := PKn and show that Rdd̃ = PMd(C). For all n ∈ N,
dim[Rn+1] ≥ dim[Rn]. The reason is that for any set of linearly independent

matrices K
(n)
k ∈ Rn, K1K

(n)
k ∈ Rn+1 are also linearly independent, given that

K1 is invertible on its range. By following the reasoning of [?, Appendix A] we
get that, if dim[Rn+1] = dim[Rn] =: d′, then dim[Rm] = d′ for all m > n, which
is incompatible with T being primitive unless d′ = d̃d. Thus, for any |ψ〉 ∈ Cd,
there exists a K ∈ Kd̃d with |ϕ〉〈ψ| = PK = Kr

1PK/µ
r = Kr

1K/µ
r ∈ Kd̃d+r.

By using that d̃ ≤ d−r and that r ≥ 1 (since K1 is supposed to be not invertible)
we get d̃d+ r ≤ d2 − d+ 1, which concludes the proof.

We have now the necessary tools to prove our main result.

Theorem 6.9 (Quantum Wielandt inequality) Let T be a primitive quan-
tum channel onMd(C) with Kraus rank k. Then for the minimal q as it appears
in Thm.6.8 we have that

1. in general q ≤ (d2 − k + 1)d2,

2. if the span of Kraus operators K1 contains an invertible element, then
q ≤ d2 − k + 1,

3. if the span of Kraus operators K1 contains an element with at least one
non-zero eigenvalue, then q ≤ d2.

Proof
2. If there is an invertible element, then it follows from [?, Appendix A,

Proposition 2]that dimKn+1 > dimKn until the full matrix space Md(C) is
spanned and thus q ≤ d2 − k + 1.

1. Let us denote by {K(n)
k } the Kraus operators corresponding to Tn. Ac-

cording to Lemma 6.2, one of them, say K
(n)
1 , has non-zero trace for some

n ≤ d2 − k + 1 and therefore there exists |ϕ〉 such that K
(n)
1 |ϕ〉 = µ|ϕ〉 with
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µ 6= 0. If K
(n)
1 is invertible, then 1. is implied by 2., so we can assume that

it is not invertible. According to Lemma 6.3.(b), for all |ψ〉, |χ〉 ∈ Cd we have
|ϕ〉〈ψ| ∈ K(d2−d+1)n; and according to Lemma 6.3.(a) |χ〉〈ψ| ∈ Knd2 . This
implies that Knd2 =Md(C) and hence the general bound 1. follows.

The argument which proves 3. is completely analogous just with n = 1 as
we do, by assumption, not have to block in order to get a Kraus operator with
non-zero eigenvalue.

In the previous proof we use, for the general case, blocks of Tn for some
n ≤ d2−k+1 just in order to get any Kraus operator with a non-zero eigenvalue.
This rather clumsy step is not necessary if the dimension is small:

Corollary 6.4 Let T be a primitive quantum channel on Md(C) with d = 2, 3.
Then there is always a Kraus operator with non-zero eigenvalue in K1 and thus
q ≤ d2.

Proof The fact that K1 has this property for d = 2, 3 stems from the classifi-
cation of nilpotent subspaces[?]: assume that K1 would be a nilpotent subspace
within the space of d× d matrices. Then for d = 2 its dimension would have to
be one, so it could not arise from the Kraus operators of a quantum channel.
Similarly, for d = 3 there are (up to similarity transformations) two types of
nilpotent subspaces [?] of dimension k > 1: one of dimension k = 3, the space of
upper-triangular matrices, whose structure does not allow the trace-preserving
property, and one of dimension k = 2 which only leads to quantum channels
having a (in modulus) degenerate largest eigenvalue. Hence, if K1 is gener-
ated by the Kraus operators of a primitive quantum channel, then it cannot be
nilpotent if d = 2, 3.

For d ≥ 4 the set of Kraus operators can form a nilpotent subspace even
for primitive quantum channels. However, exploiting the structure of such
subspaces[?] the general bound in Thm.6.9 can still be improved.

Problem 12 (Optimal Wielandt bound) Find the smallest integers n and
q (as a function of the dimension d) for Thm.6.8.
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6.4 Fixed points

Theorem 6.10 (Brouwer’s fixed point theorem) Let T be a continuous map
from a non-empty, compact, convex set S ⊂ Rn into itself, then there is an x ∈ S
such that T (x) = x.

As the set of Hermitian matrices in Md(C) is a real vector space and the
density matrices therein form a compact, convex set, Brouwer’s fixed point
theorem immediately implies:

Theorem 6.11 (Stationary states) Every continuous, trace-preserving, pos-
itive (not necessarily linear) map T : Md(C) → Md(C) has at least one sta-
tionary state. That is, there is a density matrix ρ ∈Md(C) such that T (ρ) = ρ.

In the following we are interested in linear maps, which are automatically con-
tinuous.

Proposition 6.8 (Positive fixed-points) Let T : Md(C) → Md(C) be a
trace-preserving, positive, linear map and X = T (X) a fixed point. If X =∑4
j=1 cjPj is the decomposition of X into four positive operators Pj ≥ 0 which

arises from decomposing X first into Hermitian and anti-Hermitian parts and
these further into orthogonal positive and negative parts, then

T (Pj) = Pj j = 1, . . . , 4, are fixed points as well. (6.45)

Proof For every Hermiticity preserving linear map we obviously have that the
two Hermitian operators X+X† and i(X−X†) are fixed points if X is one. So
let us assume that X is Hermitian and that P± ≥ 0 are its orthogonal positive
an negative parts, i.e., X = P+ − P− and tr [P+P−] = 0. The fixed point
equation then reads T (P+)− T (P−) = P+−P− and we want to identify T (P±)
with P±. To this end, denote by Q the projection onto the support of P+ and
note that the fixed point equation together with the trace-preserving property
of T implies that

tr [P+] = tr [Q(P+ − P−)] = tr
[
Q
(
T (P+ − P−)

)]
(6.46)

≤ tr [T (P+)] = tr [P+] . (6.47)

Since equality has to hold for the inequality in Eq.(6.47), we have to have that
T (P+) is supported on Q while T (P−) is orthogonal to it. Consequently, T
preserves the orthogonality of P± and we have T (P±) = P±.

For a map T on Md(C) let us define the set of fixed points

FT :=
{
X ∈Md(C) | X = T (X)

}
. (6.48)

Note that if T is linear, then FT is closed under linear combination, i.e., it is a
vector space, and if T is Hermiticity preserving (in particular, if it is positive),
then F is closed under Hermitian conjugation. The previous Prop.6.8 immedi-
ately implies that for trace-preserving quantum channels the set of fixed points
is spanned by stationary density operators:
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Corollary 6.5 (Linearly independent stationary states) Let T :Md(C)→
Md(C) be a trace-preserving, positive, linear map. If the space FT has di-
mension D, then there are D linearly independent density operators {ρα ∈
Md(C)}α=1,...,D such that T (ρα) = ρα and

FT = span
{
ρ1, . . . , ρD

}
. (6.49)

Proposition 6.9 (Maximal support of fixed points) Let T : Md(C) →
Md(C) be a trace-preserving, positive, linear map and T∞ the projection onto
its fixed point space as given in Eq.(6.14). Then every fixed point X = T (X) ∈
Md(C) has support and range within the support space of the fixed point T∞(1).

Proof For positive X the claim follows from positivity of T∞: since 0 ≤
T∞(X) = X ≤ ||X||∞T∞(1) the range (which equals the support) of X has
to be contained in the one of T∞(1) (See Douglas’ theorem 5.1).

IfX is not positive we can by Prop.6.8 decompose it into a linear combination
of four positive fixed points P1, . . . , P4. Using that supp(X) is in the linear span
of
⋃
j supp(Pj) together with the result for positive fixed points then shows

supp(X) ⊆ supp
(
T∞(1)

)
. The same argument applies for the range of X.

Alternatively, we may use that X is a fixed point iff X† is, and that the range
of X equals the support of X†.

The following shows that the ranges of all stationary states play an excep-
tional role: every state which is supported within such a space will remain so
after the action of the channel:

Proposition 6.10 (Stationary subspaces) Let T : Md(C) → Md(C) be a
trace-preserving, positive, linear map, and let Q ∈ Md(C) be the Hermitian
projection onto the support of any stationary density operator σ = T (σ) ∈
Md(C). Then tr [(1−Q)T (Q)] = 0 and for every density operator ρ ∈Md(C)

ρ ≤ Q ⇒ T (ρ) ≤ Q. (6.50)

Proof By definition of Q we have that Q ≤ cσ ≤ c′Q for some strictly pos-
itive numbers c and c′. Therefore T (Q) ≤ cT (σ) = cσ ≤ c′Q which implies
tr [(1−Q)T (Q)] = 0. Similarly, if ρ ≤ Q, then T (ρ) ≤ c′Q, i.e., T (ρ) has sup-
port in the range of Q. Since T (ρ) has eigenvalues at most one, this means that
T (ρ) ≤ Q.

Projections onto stationary subspaces (in the sense of Eq.(6.50)) can be
easily characterized in the Heisenberg picture, as well:

Proposition 6.11 (Stationary subspaces II) Let T :Md(C)→Md(C) be
a trace-preserving, positive, linear map, and let Q ∈ Md(C) be any Hermitian
projection. Then the following statements are equivalent:

1. For every density matrix ρ ∈ Md(C) with ρ ≤ Q, we have that T (ρ) ≤ Q
as well,

2. T ∗(Q) ≥ Q.
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Proof 1.→ 2.: define the orthogonal projection P := (1−Q). The assumption
implies that QT ∗(P )Q = 0 which in turn means that PT ∗(P )P = T ∗(P ). Using
that T ∗(1) = 1, the latter can be rewritten as T ∗(Q) − PT ∗(Q)P = Q from
which T ∗(Q) ≥ Q follows. 2.→ 1. follows from the chain of inequalities

0 ≤ tr [T (ρ)P ] = 1− tr [ρT ∗(Q)] ≤ 1− tr [ρQ] = 0.

A projection onto a stationary subspace is often called sub-harmonic and
item 2. of the previous proposition is used as the defining property of this
notion. Note that while the support projection of every stationary state is
sub-harmonic (due to Props.6.10,6.11), the converse is not necessarily true: for
instance T ∗(1) ≥ 1 holds trivially for every trace-preserving T even if there is
no stationary state of full rank.

If T is completely positive with Kraus decomposition T (·) =
∑
iKi ·K†i , one

can relate support spaces of fixed points to properties of the Kraus operators:
suppose there is a stationary state with support H ∈ Cd. Then all Kraus oper-
ators have to preserve this subspace in the sense that KiH ⊆ H. In particular,
if ρ = |ψ〉〈ψ| is a pure state, then ψ has to be a simultaneous eigenvector of all
Kraus operators.

We will now investigate the structure of the set of fixed points F of quan-
tum channels. As a first step we exploit Props.6.9,6.10 in order to restrict the
discussion to trace-preserving maps which have a full rank fixed point:

Lemma 6.4 (Restriction to full rank fixed points) Let T :Md(C)→Md(C)
be a trace-preserving, (completely) positive, linear map, and H ⊆ Cd the sup-
port space of T∞(1). Then the linear map T̃ : B(H) → B(H) defined via
T̃ (X) := T (X⊕0)

∣∣
H is trace-preserving and (completely) positive as well. More-

over, T̃ has a fixed point of full rank and4

FT = FT̃ ⊕ 0. (6.51)

Proof Denote by V : H → Cd the isometry which embeds H into Cd so that
V †V = 1 and Q := V V † is the projection onto the range of T∞(1). Then
by definition T̃ (X) = V †T (V XV †)V so that T̃ inherits the property of being
(completely) positive from T . In order to see that T̃ is trace-preserving note
that V XV † = X ⊕ 0 has support and range within the range of Q. Thus we
can decompose it into four positive operators with the same property and apply
Prop.6.10 which leads to

T (X ⊕ 0) = T̃ (X)⊕ 0, (6.52)

so that the trace-preserving property is inherited from T as well. Finally,
Eq.(6.52) also implies Eq.(6.51) since by Prop.6.9 all fixed points of T are of the
form X ⊕ 0. In particular, by definition of H, there is one fixed point which has
full rank on H.

4Here the ‘0’ is supposed to act on the orthogonal complement of H in Cd.
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Before returning to trace-preserving maps we will discuss their duals–unital
maps. This will provide an important prerequisite for the discussion of the
trace-preserving case. We will also see that the structure of the fixed point set
of a map simplifies a lot when the dual map has at least one fixed point of full
rank. This is already visible in the dual analogue of Lem.6.4:

Lemma 6.5 Let T : Md(C) → Md(C) be a trace-preserving, positive, linear
map, and T̃ and V defined as in Lem.6.4. Let us further denote by S the set of
linear unital maps which satisfy the Schwarz inequality in Eq.(5.2). Then

A ∈ FT∗ ⇒ V †AV ∈ FT̃∗ and (6.53)

X ∈ FT̃∗ ⇔ V †T ∗(V XV †)V = X. (6.54)

T ∗ ∈ S ⇒ T̃ ∗ ∈ S. (6.55)

Proof Eq.(6.54) follows from inserting the definitions. For Eq.(6.53) note that
T̃ ∗(V †AV ) = V †T ∗(QAQ)V (using the notation of Lem.6.4 again). Taking the
trace with an arbitrary C ∈ B(H) we obtain

tr
[
CT̃ ∗(V †AV )

]
= tr

[
T (V CV †)QAQ

]
(6.56)

= tr
[
T (V CV †)A

]
= tr

[
CV †AV

]
, (6.57)

where the second equality follows from Prop.6.10 and the last step uses the
assumption that A is a fixed point of T ∗. Finally, the Schwarz inequality for T̃ ∗

follows from

V †T ∗(V A†AV †)V ≥ V †T ∗(V A†V †)T ∗(V AV †)V (6.58)

≥ V †T ∗(V A†V †)V V †T ∗(V AV †)V. (6.59)

Here the first inequality comes from first inserting V †V = 1 between A† and A
and then using the Schwarz inequality for T ∗ and the second inequality is due
to V V † ≤ 1. Written in terms of T̃ ∗ the above equations lead to the claimed
T̃ ∗(A†A) ≥ T̃ ∗(A†)T̃ ∗(A).

Due to the aforementioned issue we will first characterize the fixed point set
of unital maps which have a dual with fixed point of full rank:

Theorem 6.12 (Structure of fixed points for unital Schwarz maps) Let
T ∗ :Md(C)→Md(C) be a unital map which (i) satisfies the Schwarz inequal-
ity Eq.(5.2) (e.g., a completely positive map) and (ii) is such that T has a full
rank fixed point. Then the set of fixed points FT∗ is a ∗-algebra and has thus
the form specified in Eq.(1.39) (without the zero-block).

Proof Let ρ ∈ Md(C) be a full rank fixed point of T . Note that by Prop.6.9
we can w.l.o.g. chose a positive definite ρ > 0. Denote by A = T ∗(A) ∈Md(C)
a fixed point of T ∗. Then, using the fixed point properties and the fact that A†

is a fixed point of T ∗ as well we obtain

tr
[(
T ∗(A†A)− T ∗(A†)T ∗(A)

)
ρ
]

= 0. (6.60)
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Note that the expression in parentheses is positive semi-definite by the Schwarz
inequality Eq.(5.2) and therefore, in fact, identical zero since ρ is assumed to be
positive definite. Hence, we have equality in the Schwarz inequality so that we
can apply Thm.5.4 which implies that if A,X ∈ FT∗ , then AX ∈ FT∗ is a fixed
point as well. Since FT∗ is also closed under linear combinations and Hermitian
conjugation, it is a ∗-algebra. Evidently, it is unital since T ∗(1) = 1 holds by
assumption.

If T does not have a full rank fixed point, then FT∗ need not be an algebra.
Together with Lem.6.5 we obtain a weaker structure in this case:

Corollary 6.6 Let T ∗ : Md(C) → Md(C) be a unital linear map which sat-
isfies the Schwarz inequality Eq.(5.2). Let Q = Q† ∈ Md(C) be the projection
onto the maximum rank fixed point of T , then the following set is a ∗-algebra:{

Y ∈ QMd(C)Q
∣∣ QT ∗(Y )Q = Y

}
. (6.61)

Proof The stated set is exactly the one appearing in Eq.(6.54), i.e., the fixed
point set of T̃ ∗. Since T̃ has, however, a fixed point of full rank by construction
(see Lem.6.4) we can apply Thm.6.12 which proves the claim.

The relation between fixed point sets of unital maps and ∗-algebras becomes
more transparent for completely positive maps:

Theorem 6.13 (Fixed points and commutants) Let T ∗ :Md(C)→Md(C)

be a completely positive unital map with Kraus decomposition T ∗(·) =
∑
iK
†
i ·Ki.

If both X,X†X ∈ FT∗ , then [X,Ki] = 0 for all i. Consequently, the largest ∗-
subalgebra contained within FT∗ is given by the set{

X ∈Md(C)
∣∣ ∀i : [X,Ki] = [X,K†i ] = 0

}
. (6.62)

Proof The assertion follows from the equation∑
i

[X,Ki]
†[X,Ki] = T ∗(X†X)−X†T ∗(X)− T ∗(X)†X +X†X = 0

by exploiting the fixed point properties of X and X†X together with the fact
that the l.h.s. is a sum over positive terms which is zero iff all terms vanish
individually. Hence every ∗-subalgebra of FT∗ is a subset of Eq.(6.62). Con-
versely, the set in Eq.(6.62) is a ∗-subalgebra within FT∗ on its own and thus
the largest one.

Finally, we discuss the structure of the fixed point set of trace-preserving
maps:

Theorem 6.14 (Fixed points of trace-preserving maps) Let T :Md(C)→
Md(C) be a trace-preserving, positive, linear map for which T ∗ satisfies the
Schwarz inequality in Eq.(5.2). Then there is a unitary U ∈ Md(C) and a set
of positive definite density matrices ρk ∈ Mmk(C) such that the fixed point set
of T is given by

FT = U

(
0⊕

K⊕
k=1

Mdk ⊗ ρk

)
U†, (6.63)
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for an appropriate decomposition of the Hilbert space Cd = Cd0⊕
⊕

kC
dk⊗Cmk .

Mdk stands for the full algebra of complex matrices on Cdk .

Proof We exploit that by Lem.6.4 FT = 0 ⊕ FT̃ after an appropriate basis

transformation which we can assign to a unitary U . Now T̃ has, by construction,
a full rank fixed point and following Lem.6.4 it is trace-preserving and its dual
satisfies the Schwarz inequality due to Lem.6.5. This implies by Thm.6.12 that
T̃ ∗∞ projects onto a ∗-algebra. The general form of a positive map projecting onto
a ∗−algebra (i.e., a conditional expectation) is given in Eq.(1.40). Taking the
dual of this map we arrive at T̃∞ projecting onto a set of the form in Eq.(6.63)
(without the zero-block). Putting things together and using that we can always
move the kernel of each ρk into the zero-block completes the proof.

Note that Thm.6.14 implies that the fixed point T∞(1) is (up to normaliza-
tion) given by U(0 ⊕

⊕
k 1mk ⊗ ρk)U†. Moreover, it shows that again the set

of fixed points is closely related to a ∗-algebra (actually is a ∗-algebra w.r.t. a
modified product):

Corollary 6.7 Let T :Md(C)→Md(C) be a trace-preserving, positive, linear
map for which T ∗ satisfies the Schwarz inequality in Eq.(5.2). Then for any
density matrix ρ ∈ Md(C) which is a maximum rank fixed point of T we have
that the set ρ−1/2FT ρ−1/2 is a ∗-algebra (with the inverse taken on the support
of ρ).

Another interesting consequence of Thm.6.14 is its implication according to
Prop.6.10: the decomposition of the fixed point space into a direct sum in
Eq.(6.63) implies the same decomposition into stationary subspaces. What is
more, the Mdk ’s give rise to subsystem which are invariant, i.e., on which T
acts as the identity (up to the reversible rotation given by U).

Theorem 6.15 (Unique fixed points of full rank) Let T :Md(C)→Md(C)
be a trace-preserving quantum channel with Kraus decomposition T (·) =

∑
iKi ·

K†i . If for some n ∈ N we have that

span
{ n∏
k=1

Kik

}
= Md(C), (6.64)

i.e., homogeneous polynomials of the Kraus operators span the entire matrix
algebra, then there exist a unique positive definite density matrix ρ ∈ Md(C)
such that FT ∝ ρ.

Proof Consider the map Tn, i.e., the n-fold concatenation of T . This has Kraus
operators RI :=

∏n
k=1Kik with multi-index I = (i1, . . . , in) and it satisfies

FT ⊆ FTn . Now for every ψ ∈ Cd we have that Tn(|ψ〉〈ψ|) has full rank
since by assumption span{RI |ψ〉} = Cd. This implies that there cannot be any
stationary density operator which has a kernel. Since we can always construct
a rank deficient positive fixed point if the dimension of FT is larger than one
(see Cor.6.5), the assertion follows.
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Problem 13 (Fixed points of general positive maps) Characterize the set
of fixed points of unital, positive, linear maps which do not satisfy the Schwarz inequal-
ity.

6.5 Cycles and recurrences

We will now have a closer look at the space corresponding to the periph-
eral spectrum (i.e., eigenvalues which are phases) of a positive linear map
T :Md(C)→Md(C) which is assumed to be either trace-preserving or unital.
Denote the complex linear span of all the respective eigenspaces by

XT := span
{
X ∈Md(C)

∣∣∃ϕ ∈ R : T (X) = eiϕX
}
, (6.65)

for which we will simply write X if the dependence on T is clear from the
context. The questions which we address first are: what’s the structure of X ?
what’s the structure of T restricted to X ? and what does this imply on the
peripheral spectrum?

Note that evidently XT = XTϕ if Tϕ is constructed from T as defined in
Eq.(6.13) by discarding all but those terms in the spectral decomposition which
correspond to the peripheral spectrum. Recall that by Prop.6.3 if T is trace-
preserving or unital, then Tϕ will be (completely) positive if T is and that by
Prop.6.2 there cannot any non-trivial Jordan-block associated to an eigenvalue
of modulus one.

Proposition 6.12 (Asymptotic image) Let T :Md(C)→Md(C) be a pos-
itive and trace-preserving linear map. Then XT is the image of the projection
Tφ, it is spanned by positive operators, and it is closed under the action of T .
That is,

1. Tφ
(
Md(C)

)
= XT ,

2. ∃{ρi ≥ 0} : XT = span{ρi},

3. T
(
XT
)

= XT .

Proof Note that by the proof of Prop.6.3 every X ∈ XT is a fixed point of
Tφ since there is an ascending sequence ni ∈ N such that limi∞ Tniϕ = Tφ.
Conversely, if X = Tφ(X) is such a fixed point, then it has to be a linear
combination of eigenvectors of T which correspond to eigenvalues of modulus
one. XT thus coincides with the space of fixed points of Tφ which is in turn
given by Tφ

(
Md(C)

)
, proving 1.

2. follows from 1. together with Corr.6.5 and in order to arrive at 3. we
just have to use the definition of XT and express an element X ∈ XT as a linear
combination of peripheral eigenvectors of T .

The following refines this Proposition by adding the assumption that the
map under consideration satisfies the Schwarz inequality. Exploiting this fact
one observes that X is a ∗-algebra (w.r.t. a modified product) and that T acts
on it either by permuting blocks or by unitary conjugation on subsystems:
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Theorem 6.16 (Structure of cycles) Let T :Md(C)→Md(C) be a trace-
preserving and positive linear map which fulfills the Schwarz inequality in Eq.(5.2).

1. There exists a decomposition of the Hilbert space Cd = H0⊕
⊕K

k=1Hk into
a direct sum of tensor products5 Hk = Hk,1 ⊗ Hk,2 and positive definite
density matrices ρk acting on Hk,2 such that

XT = 0⊕
K⊕
k=1

Mdk ⊗ ρk, (6.66)

where Mdk is a full complex matrix algebra on Hk,1 of dimension dk :=
dim(Hk,1). That is, for every X ∈ XT there are xk ∈ B(Hk,1) such that

X = 0⊕
⊕
k

xk ⊗ ρk. (6.67)

2. There exist unitaries Uk ∈ B(Hk,1) and a permutation π, which permutes
within subsets of {1, . . . ,K} for which the corresponding Hk’s have equal
dimension, so that for every X ∈ XT represented as in Eq.(6.67)

T (X) = 0⊕
K⊕
k=1

Ukxπ(k)U
†
k ⊗ ρk. (6.68)

Proof The basic ingredients of the proof are those which already appeared
in the proof of Thm.6.1 where we characterized maps with unit determinant.
Exploiting Dirichlet’s lemma on Diophantine approximations (Lem.6.1) we can
find an ascending subsequence ni ∈ N so that limi→∞ Tni converges to a map
I with eigenvalues which are either one or zero. Clearly, I is again a trace-
preserving, positive linear map which satisfies the Schwarz inequality since all
these properties are preserved under concatenation. Moreover, XT = XI is
the fixed-point space of I. So, statement 1. of the theorem follows from the
structure of the space of fixed points provided in Thm.6.14.

2. The map T−1 := limi→∞ Tni−1 is the inverse of T on X since by con-
struction T−1T = I. Hence, both T and T−1 map X → X in a bijective way.
The crucial point here is that T−1 is a again a positive, trace-preserving map
since it is constructed as a limit of such maps. To understand the consequences,
consider any pure state in X , i.e., a density operator σ ∈ X which has no non-
trivial convex decomposition within X . Then the image of σ under T has to
be a pure state as well: assume this is not the case, i.e., T (σ) =

∑
i λiσi is a

non-trivial convex decomposition into states σi ∈ X . Then applying T−1 to this
equation leads to a contradiction since σ =

∑
i λiT

−1(σi) is not pure. Conse-
quently, both T and T−1 map pure states in X onto pure states. Note that a

5Note that we may have dimH0 = 0 as well as dimHk,i = 1. Moreover, the direct sum
in the decomposition does not necessarily correspond to a block structure in computational
basis – just in some basis.
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pure state can only have support in one of the K blocks, for instance σ = x⊗ρk
where x ∈ B(Hk,1) is a rank one projection. Now we know that T (σ) = x′⊗ ρk′
for some k′ and some rank one projection x′ ∈ B(Hk′,1). By continuity and the
fact that T is a bijective linear map on X , we have that within X : (i) every
element of block k is mapped to an element of the block k′ (i.e., k′ does not
depend on x), and (ii) the blocks k and k′ must have equal dimension dk = dk′ .
Therefore, there is a permutation π which permutes blocks of equal size so that
X ∈ X is mapped to

T (X) = 0⊕
⊕
k

Tk(xπ(k))⊕ ρk,

with some linear maps Tk :Mdk →Mdk . Since the latter have, together with
their inverses, to be positive and trace-preserving they must be either matrix
transpositions or unitary conjugations by Cor.6.2. Matrix transpositions are,
however, ruled out by the requirement that T and thus each Tk is a Schwarz-
map.

6.6 Inverse eigenvalue problems

6.7 Literature

There are various extensions of Brouwer’s fixed point theorem. Schauder’s the-
orem, for instance, extends it to topological vector spaces, which may be of in-
finite dimension. That is, S becomes a convex, compact subset of a topological
vector space. Kakutani’s theorem is a generalization to upper semi-continuous
set-valued functions (correspondences) T from a non-empty, compact, convex
set S ∈ Rn into itself such that for all x ∈ S the set T (x) is non-empty and
convex, too. Dealing with these and more refined fixed point theorems is part
of algebraic topology.



Chapter 7

Semigroup Structure

7.1 Continuous one-parameter semigroups

In this section we discuss continuous time-evolution which is described by con-
tinuous one-parameter semigroups. We begin with a brief discussion of general
properties of such semigroups and later, in subsection 7.1.2, consider those semi-
groups which are quantum channels.

7.1.1 Dynamical semigroups

For a set Σ of ’observables’ or ’states’, a family of maps Tt : Σ → Σ, parame-
terized by t ∈ R+, is called dynamical semigroup if for all t, s ∈ R+

TtTs = Tt+s and T0 = id. (7.1)

Here ’dynamical’ should remind us that we may think of Tt as time evolution
for a time-interval [0, t]. The semigroup property TtTs = Tt+s in turn means
that the time evolution is both Markovian and homogeneous. That is, the time
evolution operation neither depends on the history nor on the actual time.1

Continuity and differentiability In order to arrive at a reasonable theory
we have to add some form of continuity to the algebraic definition in Eq.(7.1),
meaning that Tt should depend continuously on t. At this point there are
different choices - usually chosen by the nature of the problem rather than by
us. Assuming that Σ is equipped with a norm, we say that Tt → Tt0 converges
strongly when t → t0 if ||Tt(x) − Tt0(x)|| → 0 for all x ∈ Σ and we speak
about uniform convergence or convergence in norm if ||Tt0 − Tt|| → 0 where

1Note that, from a nerdy mathematical point of view, the semigroup throughout this section
is actually always the same, namely (R+,+), i.e., the positive numbers. What changes is its
representation.

119
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the norm of maps is defined as ||T || := supx∈Σ ||T (x)||/||x||.2 Following the
spirit of this exposition we will not make much use of this difference since our
main focus lies on linear spaces Σ which are of finite dimension, so that these
notions actually coincide. We will, however, occasionally comment on infinite
dimensional analogues of the derived results and those will crucially depend on
the form of continuity. As a rule of thumb the results derived for matrices tend
to hold when we ask for uniform convergence and replace matrices by bounded
operators.

From now on let us assume that Σ is a finite-dimensional vector space, say
CD for simplicity. For later purpose keep in mind that there might be additional
structure, e.g. Σ =Md(C) isomorphic to Cd

2

.
Not surprisingly, Tt = etL =

∑∞
k=0(tL)k/(k!) forms a dynamical semigroup

for any L ∈MD(C) and it fulfills the differential equation

d

dt
Tt = LTt. (7.2)

L is called the generator or infinitesimal generator of the semigroup.
Conversely, whenever Eq.(7.2) is fulfilled for a differentiable map t 7→ Tt ∈

MD(C) and T0 = 1, then Tt = etL with L = d
dtTt

∣∣
t=0

. Surprisingly, differen-
tiability for a finite-dimensional dynamical semigroup is implied by continuity:

Proposition 7.1 (From continuous semigroups to differentiable groups)
Let {Tt ∈ MD(C)} be a dynamical semigroup which is continuous in t ∈ R+.
Then Tt is differentiable for t ∈ R+ and of the form Tt = etL for some
L ∈ MD(C). Consequently, Tt can be embedded into a group by extending
the range of t to R or C.

Proof Since T0 = 1 and Tt is, by assumption, continuous in t,

Mε :=

∫ ε

0

Tsds (7.3)

will be invertible for sufficiently small ε > 0. The idea is now to express Tt in
terms of this integral expression and thereby showing that it is differentiable.
To this end note that

Tt = M−1
ε MεTt = M−1

ε

∫ ε

0

Ts+tds (7.4)

= M−1
ε

∫ t+ε

t

Tsds = M−1
ε

(
Mt+ε −Mt

)
. (7.5)

Hence, Tt is differentiable and the exists a generator L so that Tt = etL which
evidently becomes a group if we extend the range of t to R or C.

This assertion remains true in infinite dimensions if we ask for uniform con-
tinuity. The generators are then bounded operators.

2There is also the notion of weak convergence but this coincides with strong convergence
for dynamical semigroups. Needless to say, but nonetheless mentioned, uniform implies strong
implies weak convergence in general.
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Resolvents Recall from Eq.(6.17) that the resolvent of a matrix L ∈MD(C)
is a matrix-valued function on the complex plane defined by

R(z) := (z1− L)−1. (7.6)

The resolvent of a generator of a dynamical semigroup can be obtained via

R(z) =

∫ ∞
0

e−zsTsds, (7.7)

if Re(z) > sup{Re(λ)|λ ∈ spec(L)}. Conversely, if the resolvent of L is given
we can obtain the dynamical semigroup via the two expressions

Tt =
1

2πi

∫
∂∆

eztR(z)dz (7.8)

= lim
n→∞

(n/t)nR(n/t)n. (7.9)

Note that in the Chauchy integral formula in Eq.(7.8) we have to choose ∆ ⊃
spec(L). Eq.(7.9) on the other hand is nothing but Euler’s approximation etL =
limn→∞(1− (tL)/n)−n.

Some remarks on the above equations: it follows from Eq.(7.7) that if z ∈ R
is sufficiently large, then R(z) is an element of a convex cone (e.g., of positive
or completely positive maps) if Tt is for all t ∈ R+. Conversely, if R(t) is an
element of a closed convex cone for large t ∈ R+ and this cone is closed under
taking powers, then Eq.(7.9) implies that Tt is contained in this cone as well.
Hence, positivity properties in which we will be interested further down are
simultaneously reflected by the dynamical semigroup and the resolvent of its
generator.

Another point worth mentioning is that if leave the realm of matrices for
a moment and allow L to be unbounded, then the resolvent, where defined,
remains bounded so that the above expressions enable us to construct dynami-
cal semigroups from unbounded generators via bounded expressions. They are
therefore a central tool in proving the Hille-Yoshida theorem which characterizes
the generators of strongly continuous contraction semigroups. These generators
are in general unbounded and merely defined on a dense subspace.

Perturbations and series expansions Consider two dynamical semigroups
of matrices Tt = etL and T ′t = etL

′
with ∆ := L′ − L the difference of their

generators. Here is a useful relation between the two:

Lemma 7.1 Let {Tt ∈ MD(C)} and {T ′t ∈ MD(C)} be two dynamical semi-
groups and define ∆ := d

dt (T
′
t − Tt)

∣∣
t=0

the difference of their generators. Then

T ′t = Tt +

∫ t

0

Tt−s∆T
′
s ds. (7.10)
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Proof Defining a function f(s) := Tt−sT
′
s and evaluating its derivative as

d
dsf(s) =: f ′(s) = Tt−s(L

′ − L)T ′s we can express the difference of the two
dynamical semigroups as

T ′t − Tt = f(t)− f(0) =

∫ t

0

f ′(s)ds =

∫ t

0

Tt−s∆T
′
sds. (7.11)

This simple relation has some remarkable consequences. One of them which
is hard to overlook is an upper bound on the distance between the semigroups
in terms of the distance of their generators:

Corollary 7.1 (Perturbation of generators) Let {Tt ∈MD(C)} and {T ′t ∈
MD(C)} be two dynamical semigroups and let ∆ be the difference of their gen-
erators. Then for any norm and t ∈ R+

||T ′t − Tt|| ≤ t||∆|| sup
s,s′∈[0,t]

||Ts|| ||T ′s′ ||. (7.12)

Note that for various applications which we may have in mind, this simplifies
further as for instance the relevant norms of the dynamical semigroups on the
right hand side in Eq.(7.12) are one (e.g., the cb-norm of quantum channels).

A second implication of the above Lemma is the Dyson-Philips series (which
is just called Dyson series if both semigroups are unitary): by recursively in-
serting Eq.(7.10) into itself, we obtain

T ′t =

∞∑
n=0

T̃
(n)
t , T̃

(n+1)
t =

∫ t

0

Tt−s∆T̃
(n)
t ds with T̃

(0)
t = Tt. (7.13)

7.1.2 Quantum dynamical semigroups

After having analyzed general properties of ‘unstructured’ dynamical semi-
groups, we will now turn to dynamical semigroups of quantum channels, i.e.,
for any t ∈ R+ the map Tt : Md(C) → Md(C) of interest will be completely
positive. A central question in this discussion is that about the structure of
generators. It turns out that complete positivity of Tt = etL is equivalent to a
very similar property of the associated generator L, called conditional complete
positivity :

Proposition 7.2 (Conditional complete positivity) Let L :Md(C)→Md(C)
be a linear map. Then the following properties are equivalent:

1. There is a completely positive map φ : Md(C) → Md(C) and a matrix
κ ∈Md(C) so that for every ρ ∈Md(C):

L(ρ) = φ(ρ)− κρ− ρκ†. (7.14)
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2. L is Hermiticity preserving and denoting by |Ω〉 ∈ Cd ⊗Cd an arbitrary
maximally entangled state and by P = 1 − |Ω〉〈Ω| the projection onto its
orthogonal complement, we have

P
(
L⊗ id

)(
|Ω〉〈Ω|

)
P ≥ 0. (7.15)

Proof Before proving the equivalence, let us make sure that the second prop-
erty is well-defined in the sense that it doesn’t depend on the choice of the
maximally entangled state. To this end, recall that any two maximally entan-
gled states Ω and Ω′ are related via a local unitary |Ω′〉 = (1⊗U)|Ω〉. Choosing
a different maximally entangled state thus changes Eq.(7.15) by a unitary con-
jugation with (1⊗ U) which clearly doesn’t change positivity.

1.→ 2.: Inserting Eq.(7.14) into Eq.(7.15) and using that P annihilates |Ω〉,
gives P

(
L⊗ id

)(
|Ω〉〈Ω|

)
P = P

(
φ⊗ id

)(
|Ω〉〈Ω|

)
P which is positive by complete

positivity of φ. Moreover, L is Hermiticity preserving since L(ρ)† = L(ρ†).

2. → 1.: Since L is Hermiticity preserving, τ := (L ⊗ id
)(
|Ω〉〈Ω|

)
is Hermi-

tian. Moreover, since PτP ≥ 0 we can write τ = Q − |ψ〉〈Ω| − |Ω〉〈ψ| where
Q ≥ 0, when written in a basis containing Ω, has non-zero entries only in
columns and rows orthogonal to Ω and ψ contains all the entries of τ in the
column/row corresponding to Ω. By Prop.2.1 we can now define a completely
positive map via (φ ⊗ id

)(
|Ω〉〈Ω|

)
:= Q so that setting (κ ⊗ 1)|Ω〉 := |ψ〉 com-

pletes the proof.

Using this equivalence together with the fact that by Prop.7.1 there exists
always a generator, we can now derive the structure of the latter in cases where
Tt is a semigroup of completely positive maps on Md(C):

Proposition 7.3 (Completely positive dynamical semigroups) Consider
a family of linear maps Tt : Md(C) → Md(C) for t ∈ R+. The following are
equivalent:

1. Tt is a dynamical semigroup of completely positive maps which is contin-
uous in t,

2. Tt = etL for some conditional completely positive linear map L :Md(C)→
Md(C).

Proof 1. → 2.: By Prop.7.1 there exists a generator L : Md(C) → Md(C).
Since Tt is, by assumption, completely positive for all t ≥ 0 we may look at
infinitesimal t for which this implies

0 ≤
(
etL ⊗ id

)(
|Ω〉〈Ω|

)
= |Ω〉〈Ω|+ t(L⊗ id

)(
|Ω〉〈Ω|

)
+ o(t). (7.16)

Exploiting that o(t)/t → 0 as t → 0 and projecting onto the orthogonal com-
plement of Ω we obtain that L is Hermiticity preserving and fulfills Eq.(7.15).

2. → 1.: Clearly, etL is a continuous dynamical semigroup. In order to
see complete positivity we use Eq.(7.14) and decompose the generator into two
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parts L = φ + φκ with φκ(ρ) := −κρ − ρκ†. From the Lie-Trotter formula we
get

etL = lim
n→∞

(
etφ/netφκ/n

)n
. (7.17)

Since concatenations of completely positive maps are again completely positive,
it is sufficient to show that etφ/n and etφκ/n are both completely positive. For
etφ/n this follows from complete positivity of φ by Taylor expansion. For etφκ/n

we invoke the matrix representation (see Eq.(2.21)) φ̂κ = −κ⊗ 1− 1⊗ κ̄ from

which we get etφ̂κ/n = K ⊗ K̄ with K := e−tκ/n. Therefore etφκ/n(ρ) = KρK†

is completely positive as well.

Proposition 7.4 (Freedom in representation of generators) Let φ :Md(C)→
Md(C) be a completely positive map with Kraus representation φ(ρ) =

∑
i LiρL

†
i

and let κ ∈ Md(C). Consider the generator of a continuous dynamical semi-
group of completely positive maps which is represented by the pair (φ, κ) as in
Eq.(7.14).

1. A matrix κ′ and a completely positive map φ′ with Kraus operators {L′i}
represent the same generator if there are constant ci ∈ C and λ ∈ R such
that

L′i = Li + ci1, (7.18)

κ′ = κ+
∑
i

c̄iLi + iλ1+
1

2

∑
i

|ci|21. (7.19)

In particular, there is always a choice in which all Kraus operators are
trace-less.

2. If (φ, κ) and (φ′, κ′) represent the same generator and the Kraus operators
of φ as well as those of φ′ are trace-less, then φ = φ′, κ = κ′ + iλ1 for
some λ ∈ R and any two Kraus representations of φ and φ′ are related
via a unitary so that L′i =

∑
j UijLj (where the smaller set of operators

is padded by zeros).

Proof 1. That (φ, κ) and (φ′, κ′) lead to the same generator can be seen by
direct inspection. 2. If we impose that φ has trace-less Kraus operators, then
its Choi matrix has support and range on the orthogonal complement of the
corresponding maximally entangled state Ω. The map ρ 7→ κρ+ ρκ†, however,
has a Choi matrix which (in an orthogonal basis containing Ω) has entries only
in the row or column corresponding to Ω. Hence, the Choi matrix corresponding
to the generator L has a unique decomposition into a part leading to φ and a
part leading to κ. The statement that φ = φ′ and κ = κ′ + iλ1 then follows
from the one-to-one correspondence between maps and their Choi matrices (see
Prop.2.1) and the fact that the map ρ 7→ κρ + ρκ† is invariant under adding
imaginary multiples of the identity matrix to κ. Finally, the remaining unitary
freedom in the Kraus decomposition follows from Thm.2.1.
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Theorem 7.1 (Generators for semigroups of quantum channels) A lin-
ear map L :Md(C)→Md(C) is the generator of a continuous dynamical semi-
group of trace-preserving, completely positive linear maps, iff it can be written
in one (and thus any) of the following equivalent forms:

L(ρ) = φ(ρ)− κρ− ρκ†, with φ∗(1) = κ+ κ† (7.20)

= i[ρ,H] +
∑
j

LjρL
†
j −

1

2
{L†jLj , ρ}+ (7.21)

= i[ρ,H] +
1

2

∑
j

[Lj , ρL
†
j ] + [Ljρ, L

†
j ] (7.22)

= i[ρ,H] +

d2−1∑
k,l=1

Cl,k
(
[Fk, ρF

†
l ] + [Fkρ, F

†
l ]
)
, (7.23)

where φ is a completely positive linear map, H = H† Hermitian, {Lj ∈Md(C)}
a set of matrices, C ∈ Md2−1(C) positive semi-definite and F1, . . . , Fd2−1 a
basis of the space of trace-less matrices in Md(C).

Proof The first equation follows from Props.7.3,7.2 by imposing tr [L(ρ)] =
tr [ρ] for all ρ’s. Eq.(7.21) is derived by identifying the Lj ’s with the Kraus
operators of φ and

κ = iH +
1

2
φ∗(1). (7.24)

Eq.(7.22) is merely an occasionally convenient rewriting of Eq.(7.21). Eq.(7.23)
follows from Eq.(7.23) by using first that the Lj ’s can be chosen trace-less by

Prop.7.4 and then expanding them in terms of a basis as Lj =
∑d2−1
k=1 Mj,kFk.

This leads to C = M†M which is thus positive semi-definite. Conversely, if
C ≥ 0, then there is always an M such that C = M†M , which brings us back
from Eq.(7.23) to Eq.(7.22).

Some jargon and remarks are in order: H, i.e., the imaginary/anti-Hermitian
part of κ, is the Hamiltonian which governs the coherent part of the evolution.
Tee freedom κ→ κ+ iλ1, λ ∈ R is thus nothing but the irrelevance of a global
energy shift. The map φ together with the real/Hermitian part of κ (which is
determined by φ due to trace preservation) is the incoherent or dissipative part.
As Prop.7.4 shows, the decomposition into a Hamiltonian and dissipative part
is not unique but becomes so if we impose trace-less Kraus operators. In the
context of quantum dynamical semigroups the Kraus operators of φ are often
called Lindblad operators and the matrix C is often named Kossakowski matrix,

in particular when the F ’s are chosen Hermitian and orthonormal (tr
[
F †kFl

]
=

δkl) which is always possible.

Proposition 7.5 (Irreducibility implies primitivity) Let Tt = eLt :Md(C)→
Md(C) with t ∈ R+ be a dynamical semigroup of trace-preserving, completely
positive linear maps. Then the following statements are equivalent:



126 CHAPTER 7. SEMIGROUP STRUCTURE

1. There is a t0 > 0 such that Tt0 is irreducible.

2. Tt is irreducible for all t > 0.

3. Tt is primitive for all t > 0.

4. There is a ρ∞ > 0 such that for all density matrices ρ ∈ Md(C) we have
limt→∞ Tt(ρ) = ρ∞.

5. L has a one-dimensional kernel which consists out of multiples of a positive
definite density operator ρ∞ > 0.

Proof Recall from Thm.6.4 that irreducibility is equivalent to having a non-
degenerate eigenvalue one whose corresponding ‘eigenvector’, call it ρ∞, is posi-
tive definite. Moreover, by Thm.6.6 all eigenvalues of an irreducible map which
have magnitude one, denote them by {λ1, . . . , λm} are roots of unity. Thus
if Tt0 is irreducible, then T(πt0) will be irreducible, too, since eLπt has still
a non-degenerate eigenvalue one with corresponding eigenvector ρ0. However,
{λπ1 , . . . , λπm} can only remain roots of unity if m = 1, i.e., if there is a trivial
peripheral spectrum in the first place. So Tt is irreducible for all t > 0 and
thus primitive. This and the equivalence with point 4. follows from Thm.6.7
which shows that primitive channels can either be characterized as irreducible
channels with trivial peripheral spectrum, or as channels for which the evolution
eventually converges to a unique stationary state of full rank.

In order to see that 5. → 1. assume there would be imaginary eigenvalues
of L. We could then choose a t0 such that eLt0 still has a unique fixed point
and since this has to be ρ∞ > 0, eLt0 is irreducible. Conversely, in order to see
1.→ 5 note that the kernel of L is contained in the fixed point space of any eLt.
So if the kernel of L would be of higher dimension or contain a density matrix
which is not full rank, then no eLt could be irreducible for any t.

Proposition 7.6 (Reducible quantum dynamical semigroups) Let Tt =
eLt : Md(C) → Md(C) with t ∈ R+ be a dynamical semigroup of trace-
preserving, completely positive linear maps with generator L represented as in
Thm.7.1. Then the following are equivalent:

1. There is a density matrix ρ0 with non-trivial kernel and such that for all
t ≥ 0: ρ0 = Tt(ρ0).

2. There is a density matrix ρ0 with non-trivial kernel and such that L(ρ0) =
0.

3. There is a Hermitian projector P 6∈ {0,1} such that for all t ≥ 0: Tt
(
PMd(C)P

)
⊆

PMd(C)P .

4. There is a basis in which all Kraus operators Lj and κ are block-upper
triangular, i.e., they satisfy (1 − P )LjP = (1 − P )κP = 0 for some
Hermitian projector P 6∈ {0,1}.
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Proof The equivalence 1. ↔ 2. can be verified by differentiation and Taylor
expansion of the exponential respectively. 1.→ 3. can be shown by taking P the
projector onto the support of ρ0. Using that 0 ≤ Q ≤ ρ0 implies 0 ≤ Tt(Q) ≤ ρ0

and therefore Tt(Q) ⊆ PMd(C)P we can obtain 3. by exploiting that any
element of PMd(C)P is a linear combination of such Q’s, i.e., positive semi-
definite operators whose support space is contained in the one of ρ0.

For 3.→ 4. we use that Tt(P )(1− P ) = 0 which, by differentiation, implies

L(P )(1− P ) = 0. (7.25)

We first multiply this equation from the left with (1 − P ) and represent L as
in Thm.7.1. Using P = P 2 and abbreviating Xj := (1 − P )LjP this leads to∑
j XjX

†
j = 0 and thus Xj = 0 for every j. Inserting this back into Eq.(7.25)

then yields (1 − P )κP = 0. This condition is equivalent to κ being block
upper-triangular in a basis in which P = (1⊕ 0).

Conversely, 4.→ 3. follows by noticing that the block upper-triangular struc-
ture of the Lj ’s and κ implies that L

(
PMd(C)P

)
⊆ PMd(C)P . By Taylor

expansion of the exponential eLt then preserves this subspace as well. Finally,
3.→ 2. is verified as follows: choose a t0 such that the fixed point space of eLt0

equals the kernel of L. This is the case whenever no purely imaginary eigen-
value of L is an integer multiple of 2π/t0. Since Tt0 by assumption is reducible,
there is a rank deficient fixed point density matrix ρ0 = Tt0(ρ0) and therefore
L(ρ0) = 0.

In principle, Prop.7.6 gives necessary and sufficient conditions for reducibility
and thus, by negation, for irreducibility. However, the validity of the conditions
may not be easily decidable, so that the following necessary (but not sufficient)
conditions may be useful:

Corollary 7.2 (Necessary conditions for relaxation) Let Tt = eLt :Md(C)→
Md(C) with t ∈ R+ be a dynamical semigroup of trace-preserving, completely
positive linear maps with generator L represented as in Thm.7.1. There is a
positive definite density matrix ρ∞ such that for every density matrix ρ we have
limt→∞ Tt(ρ) = ρ∞ if one of the following statements is true:

1. The algebra generated by the set of Lindblad operators {Lj} and κ (i.e.,
the space of all polynomials thereof) is the entire matrix algebra Md(C).

2. The linear space spanned by the set of Lindblad operators is Hermitian3

and its commutant contains only multiples of the identity.

3. The Kossakowski matrix has rank rank(C) > d2 − d.

Proof Following Prop.7.5 we have to show that neither of three conditions
is compatible with reducibility as discussed in Prop.7.6. So assume that Tt is
reducible for one and thus any t > 0. Then by Prop.7.6, there is a basis in
which the Lindblad operators {Lj} and κ are block upper-triangular. Since this

3This means that for every X =
∑
j xjLj there are yj ∈ C such that X† =

∑
j yjLj .
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property is preserved under multiplication and addition, this proves 1.. Regard-
ing 2., if the linear space spanned by the Lj ’s is Hermitian, then reducibility
would imply a block-diagonal structure (i.e., Lj = PLjP + (1− P )Lj(1− P ))
which is incompatible with the assumed trivial commutant. Finally, for 3. first
note that the rank of C ∈ Md2−1(C) is independent of the basis we choose for
the space of trace-less operators. If the evolution is reducible, then the block
upper-triangular structure implies that the linear space L spanned by Lindblad
operators has dimension at most (d2 − d). Hence, using a basis {Fk} of the
space of trace-less operators such that F1, . . . , Fd2−d is a basis for L then shows
that rank(C) ≤ d2 − d.

Note that the inequality in 3. in Corr.7.2 is optimal in the sense that there
are reducible cases with rank(C) = d2 − d.

The kernel of the Liouvillian L leads to a space of fixed points of the map
etL. Hence, the analysis of the space of fixed points of quantum channels can
be used to learn something about the structure of kern(L):

Theorem 7.2 (Kernel of the Liouvillian) Let L : Md(C) → Md(C) be a
generator of a dynamical semigroup of trace-preserving, completely positive lin-
ear maps as presented in Thm.7.1 with Lindblad operators {Li} and Hamiltonian
H. Then

{H,Li, L†i}
′ ⊆ {X ∈Md(C)|L∗(X) = 0}. (7.26)

If there is a positive definite element in the kernel of L, i.e., ρ > 0, L(ρ) = 0,
then the converse inclusion is also true, i.e., the commutant equals the kernel.

Proof The inclusion in Eq.(7.26) follows directly from the characterization of
generators in Thm.7.1. In order to arrive at the converse inclusion note that
for some t ∈ R+ we have L∗(X) = 0⇔ etL

∗
(X) = X. Thm. 6.12 then implies

that the set {X|L∗(X) = 0} forms a *-algebra, in particular L∗(A) = 0 ⇒
L∗(A†A) = 0 and therefore∑

i

[A,Li]
†[A,Li] = φ∗(A†A) +A†φ∗(1)A− φ∗(A†)A−A†φ∗(A) = 0. (7.27)

Here the last equality used that L∗(A) = 0⇒ φ∗(A) = Aκ+κ†A (and the same
for A†A in place of A) together with φ∗(1) = κ+ κ†.

Since the l.h.s. in Eq.(7.27) is a sum of positive terms, each of them has
to be zero. So [A,Li] = 0 and since we deal with a *-algebra, also [A†, Li] =

[L†i , A]† = 0. Finally, we can exploit this in order to obtain

κA = φ∗(1)A− κ†A = φ∗(A)− κ†A = Aκ,

which implies [H,A] = 0.

7.2 Literature

Suzuki [?] gives a detailed investigation of the speed of convergence of the Lie-
Trotter formula and proves in particular that for all bounded operators A,B on
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any Banach space:

||eA+B −
(
eA/neB/n

)n|| ≤ 2

n

(
||A||+ ||B||

)2
e
n+2
n (||A||+||B||). (7.28)
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Chapter 8

Measures for distances and
mixedness

Theorem 8.1 (Russo-Dye) ...

8.1 Norms

A matrix norm is a vector norm on the space of matricesMn,m(C). That is, it
is a positive functional which is convex (i.e., it satisfies the triangle inequality
||A+B|| ≤ ||A||+ ||B|| for all A,B) and such that ||aA|| = |a| ||A|| for all a ∈ C
and (||A|| = 0 ⇒ A = 0). For square matrices some norms have the additional
property of being sub-multiplicative, meaning that ||AB|| ≤ ||A|| ||B|| holds.
Sometimes this property is included in the definition of matrix norms. Equipped
with a sub-multiplicative norm,Md(C) becomes a Banach algebra (see Sec.1.6).

An important class of sub-multiplicative matrix norms onMd(C) are those
which are unitarily invariant in the sense that ||UAV || = ||A|| for all unitaries U
and V . Since every element A ∈Md(C) has a singular value decomposition A =
Udiag(s1, . . . , sn)V , a unitarily invariant norm depends solely on the singular
values {si(A)}.1 The two mostly used classes of unitarily invariant norms are:

• Schatten p-norms: ||A||p :=
(∑d

i=1[si(A)]p
)1/p

for any p ≥ 1,

• Ky Fan k-norms: ||A||(k) :=
∑k
i=1 si(A) where k = 1, . . . , d and the sin-

gular values are decreasingly ordered.

Both classes have a monotonicity property in their parameter. Evidently, ||A||(k) ≥

1In fact, unitarily invariant norms on Md are in one-to-one correspondence with norms
f : Rd → R+ which are (i) permutational invariant and (ii) depend only on absolute values.
Such a vector norm f is called symmetric gauge function and it give rise to a unitarily invariant
norm on Md 3 A via ||A|| = f [(s1(A), . . . , sd(A))].

131
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||A||(k′) for k ≥ k′, but also

||A||1 ≥ ||A||p ≥ ||A||p′ ≥ ||A||∞, (8.1)

for all 1 ≤ p ≤ p′. Moreover, p < p′ leads to a strict inequality iff A has rank at
least two.2 The norm ||A||∞ = ||A||(1) is called the operator norm and it can be
defined alternatively as ||A||∞ = supψ,φ |〈ψ|A|φ〉| with supremum over all unit

vectors φ, ψ ∈ Cd. With the operator normMd(C) becomes a C∗-algebra as the
C∗-equality ||A†A|| = ||A||2 is satisfied (see Sec.1.6). This property uniquely
identifies the operator norm. The norm ||A||1 = ||A||(d) = tr [|A|] is called
the trace norm. Trace norm and operator norm are the largest/smallest norms
among all unitarily invariant norms in the sense that ||A||∞ ≤ ||A||/||ρ|| ≤ ||A||1,
where ρ = |1〉〈1| takes care of normalization. The norm ||A||2 is called Hilbert-
Schmidt norm or Frobenius norm. It can be regarded as arising from the Hilbert-
Schmidt scalar product (see Sec.2.3) and it coincides with the l2-norm. The

latter is defined within the class of lp norms ||A||lp :=
(∑

kl |Akl|p
)1/p

for p ≥ 1.3

They are bounded by the Schatten p-norms (which one may call Lp-norms in
this context) via ||A||lp ≥ ||A||p for p ∈ [1, 2] and with inequality in the opposite
direction for p ≥ 2. Apart from l2 the lp-norms are not unitarily invariant.

Besides being sub-multiplicative unitarily invariant norms exhibit some very
useful properties which are collected in the following:

Theorem 8.2 (Unitarily invariant norms) Let || · || be any unitarily invari-
ant norm on Md(C). Then the following holds for A,B ∈Md(C):

1. Hölder’s inequality for p ≥ 1 and p−1 + q−q = 1:

||AB|| ≤ || |A|p||1/p || |B|q||1/q. (8.2)

2. Lidskii’s inequalities: If A and B are Hermitian and E↓(A), E↑(A) denote
the diagonal matrices with decreasingly/increasingly ordered eigenvalues of
A respectively, then4

||A−B||
{
≤ ||E↓(A)− E↑(B)||
≥ ||E↓(A)− E↓(B)|| . (8.3)

3. If AB is normal, then ||AB|| ≤ ||BA||,

4. For every non-negative concave function f on [0,∞) and all A,B ≥ 0:

||f(A) + f(B)|| ≥ ||f(A+B)||. (8.4)

The inequality is reversed if f is non-negative and convex on [0,∞) with
f(0) = 0.

2In infinite dimensions the analogue of Eq.(8.1), in particular ||A||1 ≥ ||A||2 ≥ ||A||∞
gives rise to the inclusion trace class operators ⊂ Hilbert-Schmidt class operators ⊂ bounded
operators.

3Note that in the definition of the lp-norms as well as for the Schatten p-norms p ≥ 1 is
crucial for convexity.

4If one drops the restriction on A and B to be Hermitian and replaces eigenvalues by
singular values in the diagonal matrices, then still the lower bound holds true.
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5. Ky Fan dominance: if we have ||A||(k) ≥ ||B||(k) for all Ky-Fan norms
(k = 1, . . . , d), then ||A|| ≥ ||B|| for every unitarily invariant norm.

6. Araki-Lieb-Thirring inequalities: If A,B ≥ 0 and p ≥ 1, then

||(BAB)p|| ≤ ||BpApBp||, || |BA|p || ≤ ||BpAp||, (8.5)

and the reversed inequalities hold for p ∈ (0, 1].

Applying Hölder’s inequality to the trace norm and using that |tr
[
A†B

]
| ≤

tr
[
|A†B|

]
leads to a useful Cauchy-Schwarz type version of the inequality,

namely: ∣∣tr [A†B] ∣∣ ≤ ||A||p||B||q. (8.6)

For p = 2 this is indeed the Chauchy-Schwarz inequality for the Hilbert-Schmidt
inner product. Another simple application of Hölder’s inequality is a relation
between different p-norms opposite to the direction of Eq.(8.1): setting B = 1

in Eq.(8.2) and applying it to the p-norm we arrive at

||A||p ≤ d
1
p−

1
p′ ||A||p′ , for p′ ≥ p ≥ 1. (8.7)

In a similar vein we can derive the following moment inequality which generalizes
the well known variance inequality 〈X2〉 ≥ 〈X〉2 known for Hermitian operators:

Proposition 8.1 (Moment inequalities) Consider 1 ≤ p ≤ p′ and ρ,X ∈
Md(C) where ρ is a density operator and X ≥ 0. Then

tr [ρXp]
p′ ≤ tr

[
ρXp′

]p
. (8.8)

Proof This follows from Hölder’s inequality ||AB||1 ≤ ||A||p̃||B||q̃ by setting

q̃ = p′/p,A = ρ1/p̃ and B = ρ
p

2p′Xpρ
p

2p′ .

Variational characterization of norms: In the same spirit as the extremal
eigenvalue of a Hermitian matrix can be obtained variationally, we can charac-
terize the Schatten p-norms and the Ky-Fan norms as the solution of optimiza-
tion problems. For the latter it holds for instance that

||A||(k) = sup
{
|tr
[
A†B

]
|
∣∣B†B ≤ 1, rank(B) ≤ k

}
. (8.9)

Inequality (8.6) is the basis for an analogous variational characterization of the
Schatten p-norms:

Theorem 8.3 (Variational ways to p-norms) Let A,P ∈Md(C) with P ≥
0 and p−1 + q−1 = 1 with p ≥ 1. Then

||A||p = sup
{
|tr
[
A†B

]
|
∣∣ ||B||q = 1

}
, (8.10)

||A||1 = sup
{
|tr
[
A†U

]
|
∣∣UU† = 1

}
, (8.11)

||A||∞ = sup
{
|〈ψ|A|φ〉|

∣∣||ψ|| = ||φ|| = 1
}
, (8.12)

||P ||pp =
1

p
sup
X≥0

[
tr [PX]− 1

q
||X||qq

]
. (8.13)
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Proof In order to arrive at Eq.(8.10) first note that the supremum is an upper

bound by Eq.(8.6). The supremum is attained if we set B = UP p−1tr [P p]
−1/q

constructed from the polar decomposition of A = UP . Eqs.(8.11,8.12) are
special cases which arise from (8.10) due to the fact that the set of operators
with ||B||q ≤ 1 is convex and, since we maximize a convex functional, the
maximum is attained at an extreme point. The extreme points are the set of
unitaries for q = 1 and normalized rank-one operators for q =∞, respectively.

... ... ...

Eq.(8.10) is the reason why p-norms and q-norms are called dual to each
other if p−1 + q−1 = 1. In fact, for every norm || · || on Mn,m we can define a
dual norm || · ||D w.r.t. the Hilbert Schmidt inner product via

||A||D := sup{|tr
[
A†B|

] ∣∣ B ∈Mn,m(C), ||B|| = 1}. (8.14)

The dual norm is unitarily invariant iff || · || is.

8.2 Entropies

8.2.1 Information theoretic origin

8.2.2 Mathematical origin

axiomatization ..

S(ρ) = − ∂

∂p
tr [ρp]

∣∣∣
p=1

. (8.15)

8.2.3 Physical origin

Boltzmann, time asymmetry & co., relation to the above, statistical interpreta-
tion

8.3 Majorization

Majorization is a stronger means of saying that a probability distribution/density
operator is more mixed than another one. While entropies and the respective
norms provide an ordering in the space of probability distributions/density op-
erators, majorization leaves us with a partial order. We will, in fact, see that
one distribution is more mixed than another in the majorization sense iff this
holds true for all entropy-type functionals.

Consider two vectors x, y ∈ Rd. We say that x is majorized by y, and write
x ≺ y, iff for the sum of decreasingly ordered components we have

k∑
i=1

x↓i ≤
k∑
i=1

y↓i , ∀k = 1, . . . , d with equality for k = d. (8.16)
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Note that if x describes any discrete probability distribution, then(1

d
, . . . ,

1

d

)
≺ x ≺ (1, 0, . . . , 0), (8.17)

consistent with our intuition about what is the ‘maximally mixed’ distribution
and which is a most ‘pure’ distribution. If only the d inequalities in Eq.(8.16)
are satisfied but equality for k = d is not required, then we say that x is weakly
submajorized by y and we write x ≺w y.

The basic results in the context of majorization are:

Theorem 8.4 (Majorization) Let x, y ∈ Rd. The following statements are
equivalent:

1. x is majorized by y,

2. x = My for some doubly stochastic5 matrix M ∈Md(R),

3. x = My where Mkl = O2
kl for some real orthogonal matrix6 O ∈Md(R),

4.
∑
i f(xi) ≤

∑
i f(yi) for all convex functions f : R→ R.

Theorem 8.5 (Submajorization) Let x, y ∈ Rd. The following statements
are equivalent:

1. x ≺w y

2. x = My for some doubly substochastic7 matrix M ∈Md(R),

3. There exists a vector z ∈ Rd such that z ≺ y and xi ≤ zi for all i,

4.
∑
i f(xi) ≤

∑
i f(yi) for all monotonically increasing convex functions

f : R→ R.

Theorem 8.6 (Birkhoff) The set of doubly stochastic matrices in Md(R) is
a convex polytope. Its extreme points are the permutation matrices. Similarly,
the set of doubly substochastic matrices is a convex polytope. Its extreme points
are all matrices which have at most one entry 1 in each column and each row
and all other entries zero.

Excursion 8.1 (Diagonals, eigenvalues, singular values) Consider a Her-
mitian matrix H ∈ Md(C) with eigenvalues {λi} and diagonal elements Di := Hii.
Using that we can diagonalize H via a unitary U , we get the relation Di =

∑
j |Uij |

2λj

and since [|Uij |2] is doubly stochastic we have

λ � D. (8.18)

5Doubly stochastic means that M is non-negative (Mkl ≥ 0) and
∑
kMkl =

∑
jMij = 1

for all l, i.
6If U ∈ Md(C) is any unitary, then the matrix with components Mkl = |Ukl|2 is doubly

stochastic and called a unistochastic matrix. If U real orthogonal, then M is called orthos-
tochastic.

7Doubly substochastic means that M is non-negative and all columns and rows have a sum
which is at most 1.
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Given vectors D,λ ∈ Rd Eq.(8.18) is thus a necessary condition for the existence of a
Hermitian matrix with eigenvalues λ and diagonal entries D. As shown by Horn it is
also a sufficient one. If λ,D ∈ Cd are complex, then Mirsky showed that there exists a
complex matrix in Md with eigenvalues λi and diagonal entries Di iff

∑
i λi =

∑
iDi,

i.e., the trace remains the only relevant condition. In a similar vein we can ask for
the relation between eigenvalues and singular values and obtain again a majorization
like condition: let s ∈ Rd+ and λ ∈ Cd, then there exists a matrix with singular values
si and eigenvalues λi iff

k∏
i=1

si ≥
∣∣∣ k∏
i=1

λi

∣∣∣ ∀k = 1, . . . , d with equality for k = d, (8.19)

where both s and |λ| are arranged in decreasing order. That is, if there is no zero
element we can express this as log s � log |λ| which, in particular implies |λ| ≺w s.

The concept of majorization can be applied to pairs of matrices in Md(C) by
applying it to the vectors containing either the singular values or (in particular,
for Hermitian matrices) the eigenvalues in decreasing order. Let for instance
s(A), s(B) ∈ Rd be the vectors containing the singular values of two arbitrary
complex matrices A,B ∈Md(C). By Ky Fan dominance (Thm.8.2) we get that

s(A) � s(B) ⇔ ||A||1 = ||B||1 and ||A|| ≥ ||B|| for all u.i. norms. (8.20)

In the following we will apply majorization to Hermitian matrices and write
A � B iff the corresponding majorization relation holds for the eigenvalues of
A and B.

Theorem 8.7 (Majorization between density matrices) Let ρ, σ be two
density matrices in Md(C). Then the following are equivalent:

1. ρ � σ,

2. tr [f(ρ)] ≥ tr [f(σ)] for all convex functions f : R→ R,

3. there exists a set of unitaries {Ui ∈Md(C)} and probabilities pi such that

σ =
∑
i

piUiρU
†
i . (8.21)

Proof The equivalence 1. ↔ 2. is an immediate application of Thm.8.4. For
3. → 1. we can w.l.o.g. assume that ρ and σ are both diagonal since the
diagonalizing unitaries can be incorporated in the Ui’s. Then σkk =

∑
lMklρll

where Mkl =
∑
i pi|〈k|Ui|l〉|2 is doubly stochastic and thus ρ � σ by Thm.8.4.

For the converse 1. → 3. we again use the freedom of assuming the ρ, σ are
both diagonal. Then by Thm.8.4 and Birkhoff’s Thm.8.6 we can write σkk =∑
i,k,l pi〈k|Pi|l〉2ρll where the Pi’s are permutations and the pi’s probabilities.

Written in terms of the matrices this is σ =
∑
i piPiρP

T
i which completes the

proof.

A similar result holds if we go from a fixed pair of density operators to all
pairs which are related by a positive map:
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Theorem 8.8 (Majorization and doubly stochastic positive maps) Let
T :Md(C)→Md(C) be a positive linear map. Then the following are equiva-
lent:

1. T is trace preserving and unital,

2. For all density operators ρ it holds that ρ � T (ρ),

3. For all density operators ρ and convex functions f : R → R it holds that
tr [f(ρ)] ≥ tr

[
f
(
T (ρ)

)]
.

Proof The equivalence 2. ↔ 3. follows from Thm.8.4 in the same way as it
was used for the previous Thm.8.7. For 2. → 1. note that the trace preserving
property is implied by the equality condition in the definition of majorization
(see Eq.(8.16)). Unitaliy follows from assuming that 1 � T (1) together with the
fact that the maximally mixed distribution only majorizes itself (see Eq.(8.17)).
Finally, in order to show 1.→ 2. let us consider an arbitrary density operator ρ
with eigenvalue decomposition ρ = V †λ(ρ)V and similarly T (ρ) = U†λ(T (ρ))U ,
where U, V ∈ Md(C) are unitaries and the λ’s denote the diagonal matri-
ces containing the respective eigenvalues. Define a map T ′ : Md → Md via
T ′(X) = UT (V XV †)U†. By construction we have now λ(T (ρ)) = T ′(λ(ρ))
which becomes λ(T (ρ))ii =

∑
jMijλ(ρ)jj if we introduce Mij := 〈i|T ′(|j〉〈j|)|i〉.

The assertion now follows from the fact that M is a doubly stochastic matrix,
which is in turn implied by T ′ being a trace-preserving, unital and positive
map.

As a consequence we get that doubly stochastic quantum channels are ex-
actly those for which the entropy is non-decreasing:

Corollary 8.1 (Entropy increasing maps) Let T :Md(C) →Md(C) be a
positive and trace-preserving linear map and h : R → R any strictly concave
function.8 Then T is unital iff for all density operators ρ ∈ Md(C) we have
that

tr
[
h
(
T (ρ)

)]
≥ tr [h(ρ)] . (8.22)

Proof If T is unital, then the assertion follows from Thm.8.8 for every (not
necessarily strictly) concave function h. Conversely, if h is strictly concave, then
tr [h(ρ)] has ρ = 1/d as a unique maximizer within the set of density operators.
So if we assume Eq.(8.22), then necessarily T (1) = 1.

We will now use the developed tools in order to formalize the statement
that any classical probability distribution obtained from measuring a quantum
state is always at least as mixed as the density operator from which it has been
obtained:

Theorem 8.9 (Measurements and convex functions)
Let {Pi ∈Md(C)}i=1,...,m with m ≥ d be a POVM (i.e., Pi ≥ 0 and

∑
i Pi = 1)

8‘Strictly concave’ means that for all x1 6= x2 and λ ∈ (0, 1) it holds that h
(
λx1 + (1 −

λ)x2
)
) > λh(x1) + (1− λ)h(x2).
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and ρ ∈ Md(C) a density operator. Assume that the POVM is symmetric
in the sense that tr [Pi] = d/m and denote the probabilities obtained from a
measurement on ρ by pi := tr [Piρ]. For every convex function f : R → R

which satisfies f(0) ≤ 0 we have

tr [f(ρ)] ≥
m∑
i=1

f(pi). (8.23)

For m = d the same holds true without f(0) ≤ 0 being required.

Proof We want to make use of the implication 1. → 3. in Thm.8.8. To this
end we first embed everything in an m-dimensional space and set for instance
ρ′ := ρ⊕ 0 ∈Mm. Moreover, we define a linear map T :Mm →Mm via

T (X) :=
1m

m
tr [X(0⊕ 1m−d)] +

m∑
i=1

|i〉〈i| tr [X(Pi ⊕ 0)] . (8.24)

Note that T is positive, unital and trace-preserving as required by Thm.8.8.
Then

tr [f(ρ)] ≥ tr [f(ρ′)] ≥ tr
[
f
(
T (ρ′)

)]
, (8.25)

=

m∑
i=1

f(pi),

where the first inequality comes from f(0) ≤ 0 which is only required if m > d
since ρ′ = ρ for m = d.

Note that for von Neumann measurements, i.e., when the Pi’s are one-
dimensional orthogonal projections, the above theorem essentially reduces to
saying that the eigenvalues of ρ majorize the diagonal entries (see Eq.(8.18)).
We also remark that Thm.8.9 is no longer true in general if we drop any of the
three assumptions: f(0) ≤ 0, m ≥ d or tr [Pi] = d/m.

8.4 Divergences and quasi-relative entropies

In classical probability theory, one way of quantifying how two probability dis-
tributions p and q differ from each other (other than using norms and metrics)
is to use Csiszar’s f-divergence measures

Cf (p|q) :=
∑
x∈X

qxf
(px
qx

)
, (8.26)

where f : R+ → R is any continuous convex function. Every such Cf is jointly
convex in its arguments and monotone in the sense that Cf (p|q) ≥ Cf

(
t(p)|t(q)

)
for any map t : p 7→ p′ characterized by a partitioning of the set of events X
into disjoint Xi’s so that p′i =

∑
x∈Xi px. If f(1) = 0 then Cf (p|p) = 0 and if

f(x) is strictly convex at x = 1 then Cf (p|q) = 0 implies p = q. Prominent
examples of f -divergences are:
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1. Kullback Leibler divergence or relative entropy for f(x) = x log x:

QKL(p|q) =
∑
x

px log
px
qx
, (8.27)

2. Relative α-entropy9 for f(x) = (1− xα)/(α(1− α)) with α ∈ (0, 1):

Qα(p|q) =
(

1−
∑
x

pαxq
1−α
x

)
/(α(1− α)). (8.28)

This converges to the Kullback Leibler divergence as limα→0Qα(p|q) =
QKL(q|p) and limα→1Qα(p|q) = QKL(p|q).

3. χ2-divergence for f(x) = x2 − 1:

Qχ2(p|q) =
∑
x

(px − qx)2

qx
=
(∑

x

p2
x

qx

)
− 1. (8.29)

Note that by Taylor expansion the χ2-divergence locally approximates
every f -divergence which is twice differentiable at x = 1. More precisely
Cf (p|q)/Cχ2(p|q)→ 1

2f
′′(1) as p→ q.

4. Hellinger divergence for f(x) = (
√
x− 1)2/2:

Qh2(p|q) =
(

1−
∑
x

√
pxqx

)
=

1

2

∑
x

(
√
px −

√
qx)2. (8.30)

The square root of Qh2 is a metric since it is proportional to the norm
difference in l2.

5. l1-norm is the only bare metric among the f -divergences and is obtained
for f(x) = |x− 1|:

Ql1(p|q) =
∑
x

|px − qx|. (8.31)

In the following we will discuss generalizations of these ‘distance’ measures to
density operators.

8.4.1 χ2 divergence

A simple generalization of the χ2 divergence in Eq.(8.29) to the non-commutative
context of density operators ρ and σ is

χ2
α(ρ|σ) := tr

[
(ρ− σ)σ−α(ρ− σ)σα−1

]
, α ∈ R (8.32)

= tr
[
ρσ−αρσα−1

]
− 1.

9In fact, there are many variants of relative α-entropies in the literature—most of them
are slight modifications of others. The relative Renyi entropy for instance is usually defined
as Sα(p|q) = (α−1)−1 log

∑
x p

α
x q

1−α
x with α ≥ 0. In the limit α→ 1 this becomes QKL(p|q)

again.



140 CHAPTER 8. MEASURES FOR DISTANCES AND MIXEDNESS

8.4.2 Quasi-relative entropies

The relative entropy has generalizing relatives in very much the same way as the
von Neumann entropy has Renyi and Tsallis type cousins. The most prominent
ones are functions depending on the one-parameter family tr

[
ρασ1−α] where

α ∈ R. These quantities appear naturally in the context of hypothesis testing
(see Sec.8.5). The Tsallis relative entropy S(α) and the Renyi relative entropy
Sα are defined as

S(α)(ρ|σ) :=
1

1− α
(
1− tr

[
ρασ1−α] ), (8.33)

Sα(ρ|σ) :=
1

α− 1
log tr

[
ρασ1−α] . (8.34)

Both are non-negative for α ≥ 0 and coincide with the relative entropy S(ρ|σ) =
tr [ρ(log ρ− log σ)] in the limit α → 1.10 One of the main properties of these
generalized relative entropies follows from Thm.5.15 which implies that the map
(ρ, σ) 7→ tr

[
ρασ1−α] is jointly concave for α ∈ [0, 1] and jointly convex for α ∈

[−1, 0]. Exploiting that joint convexity implies monotonicity under completely
positive trace-preserving maps (see Thm.5.16) we arrive at:

Theorem 8.10 (Monotonicity of quasi-relative entropies) Let ρ, σ ∈Md(C)
be two density matrices. Then for all completely positive trace-preserving linear
maps T :Md(C)→Md′(C) and α ∈ [0, 1]

tr
[
ρασ1−α] ≤ tr

[
T (ρ)αT (σ)1−α] , (8.35)

and the reverse inequality holds for α ∈ [−1, 0].

This means that for α ∈ [0, 1] both Renyi and Tsallis relative entropy are non-
increasing under the action of a quantum channel.

A useful tool for deriving properties of the quasi-relative entropies in Eqs.(8.33,8.34)
is a simple method which relates them to their classical counterparts: consider
the spectral decompositions ρ =

∑
i λi|xi〉〈xi| and σ =

∑
j µj |yj〉〈yj | and de-

fine pij := λi|〈xi|yj〉|2 and qij := µj |〈xi|yj〉|2. Then p, q ∈ R2d are classical
probability distributions and straight forward calculation shows that

tr
[
ρασ1−α] =

∑
x

qx

(
px
qx

)α
, (8.36)

S(ρ|σ) =
∑
x

px log
px
qx
. (8.37)

That is, under the mapping (ρ, σ)→ (p, q) the quantum relative entropies coin-
cide with their classical analogues. This allows us to easily prove some of their
properties—or simply to import them from the world of classical probability
distributions:

10Outside the interval α ∈ [0, 1] inverses are take on the support and the relative entropies
are set to ∞ if the kernel of the operator to be inverted is not contained in the kernel of the
other operator.
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Theorem 8.11 (Relation among relative entropies) Let ρ, σ ∈Md(C) be
a pair of positive semi-definite operators and S(α)(ρ|σ) :=

(
tr
[
ρ− ρασ1−α] )/(1−

α). Then for all α ≤ 1 and β ≥ 1 we have

S(α)(ρ|σ) ≤ S(ρ|σ) ≤ S(β)(ρ|σ). (8.38)

Proof The result follows from the fact that for all positive numbers t and s it
holds that (1− t−s)/s ≤ log t ≤ (ts − 1)/s. This gives

px
s

(
1− p−sx qsx

)
≤ px log

px
qx
≤ px

s

(
psxq
−s
x − 1

)
. (8.39)

Using the relations in Eqs.(8.36,8.37) the desired result follows by setting s =
1− α on the l.h.s. and s = β − 1 on the right.

Note that other properties and uses of the functional tr
[
ρασ1−α] will be

discussed in Sec.8.5 in the context of hypothesis testing.

8.4.3 Fidelity

8.5 Hypothesis testing

Hypothesis testing is the simplest task in the context of statistical inference:
given two possibilities, find out which one is actually realized by performing
a statistical test. General examples are questions of the form “was there a
Higgs particle generated?” or “can we identify a tumor in our tomographic
data?”. In our context the two hypotheses correspond to two density operators
and we will see that several of the previously discussed distance measures for
density operators will get an operational meaning as a means of quantifying how
distinguishable the two states are.

Suppose we are given one out of two possible sources which produce states
characterized by density operators ρ and σ respectively. Assume further that
the a priori probability for ρ is p so that (1 − p) is the prior for σ. Imagine
we want to decide whether the actual source produces ρ or σ by performing
a single two-outcome measurement with effect operators {P,1 − P}. We then
assign one of the measurement outcomes, say the one corresponding to P , to
the hypothesis ρ while the other outcome leads us to guess σ. In this way, the
average probability for a false conclusion will be

e(P ) := ptr [ρ(1− P )] + (1− p)tr [σP ] . (8.40)

The following tells us how to minimize this average error probability and pro-
vides the optimal measurement:

Theorem 8.12 (Quantum Neyman-Pearson) Within the above context the
error probability satisfies the bound

e(P ) ≥ 1

2

(
1−

∣∣∣∣pρ− (1− p)σ
∣∣∣∣

1

)
, (8.41)
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where equality is achieved iff P is a projection onto the positive part of [pρ −
(1− p)σ].

Proof We have to minimize e(P ) w.r.t. all 0 ≤ P ≤ 1, i.e.,

min
P

e(P ) = p−max
P

tr
[(
pρ− (1− p)σ

)
P
]
. (8.42)

Decomposing (pρ− (1− p)σ) =: A into orthogonal positive and negative parts
as A = A+ −A− it becomes clear that the maximum is attained iff PA+ = A+

and PA− = 0. Eq.(8.41) then follows by using that for Hermitian operators
tr [A+] = (||A||1 + tr [A])/2.

This gives a simple operational meaning to the trace norm distance between
density operators: it quantifies how good the states can be distinguished by a
single measurement.

Let us now go one step further and assume that we can measure not only
on a single state but on n ∈ N copies of the system. That is, we let the
source produce n identical state (either ρ or σ) before we perform a global
measurement. According to the above Thm.8.12 an optimal measurement leads
to an error probability

en :=
1

n

(
1−

∣∣∣∣pρ⊗n − (1− p)σ⊗n
∣∣∣∣

1

)
. (8.43)

This turns out to decrease exponentially as exp (−ξn) at a rate which is asymp-
totically independent of p (unless p = 0, 1) and given in the following theorem:

Theorem 8.13 (Quantum Chernoff bound) For every non-trivial a priori
probability p 6= 0, 1 an optimal sequence of measurements yields

ξ := lim
n→∞

(
− 1

n
log en

)
= − log

(
inf

s∈[0,1]
tr
[
ρ1−sσs

] )
. (8.44)

In some contexts it is natural to treat the two errors (1. we guess ρ while
it was σ and 2. we guess σ while it was ρ) in an asymmetric way.11 Assume
we again perform a two-outcome measurement described by effect operators
Pn ∈ Mdn(C) and (1 − Pn) on n copies of the system. Consider the task of
minimizing the error probability

βn(Pn) := tr
[
σ⊗nPn

]
under the constraint tr

[
ρ⊗n(1− Pn)

]
≤ ε. (8.45)

For a sequence of optimal measurements the error βn will again decrease expo-
nentially with n and the rate will turn out to be the relative entropy S(ρ|σ).
The analogous classical result is sometimes called Stein’s Lemma where the
Kullback-Leibler divergence appears as the optimal rate function. Before we
come to the quantum version of this result we state a crucial ingredient for its
proof which eventually enables us again to reduce the quantum to the classical
case:

11In classical statistical analysis this is natural for instance in many medical contexts: there
we want to be sure not to overlook a certain decease, i.e., the probability for a false negative
test should be small while one may accept a larger fraction of false positive tests.
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Theorem 8.14 (Hiai-Petz) Let ρ, σ ∈ Md(C) be two density operators and

n ∈ N. Define a map T :Mdn(C) →Mdn(C) via T (X) :=
∑k
i=1 PiXPi from

the spectral decomposition σ⊗n =
∑k
i=1 λiPi where the sum runs over k distinct

eigenvalues and the Pi’s project onto the corresponding eigenspaces. Then

S
(
T (ρ⊗n)

∣∣σ⊗n) ≤ nS(ρ|σ) ≤ S
(
T (ρ⊗n)

∣∣σ⊗n)+ d log(n+ 1), (8.46)

where S(ρ|σ) = tr [ρ(log ρ− log σ)] is the relative entropy.

Proof The left inequality follows from monotonicity of the relative entropy un-
der trace-preserving completely positive maps together with additivity S

(
ρ⊗n

∣∣σ⊗n) =
nS(ρ|σ) and the invariance T (σ⊗n) = σ⊗n.

For the right inequality we use again additivity and proceed as follows:

n S(ρ|σ) ≤ tr
[
ρ⊗n

(
log T (ρ⊗n)− log σ⊗n

)]
+ log k (8.47)

≤ S
(
T (ρ⊗n)

∣∣σ⊗n)+ d log (n+ 1). (8.48)

Here the first inequality uses log ρ⊗n ≤ log T (ρ⊗n) + log k which follows from
Lemma 8.2 together with the operator monotonicity of the logarithm. The
second inequality exploits that (i) T is a conditional expectation (see Eq.(1.43)),
so that in particular tr [AT (B)] = tr [T (A)T (B)] for any A,B and (ii) the simple
combinatorial bound k ≤ (n+ 1)d.

Note that Eq.(8.46) implies in particular that

S(ρ|σ) = lim
n→∞

1

n
S
(
T (ρ⊗n)

∣∣σ⊗n). (8.49)

Moreover since σ⊗n commutes with T (ρ⊗n) the relative entropy on the r.h.s.
equals the one of the classical probability distributions which are obtained from
measuring the two states in the basis in which they are simultaneously diagonal.
Since the relative entropy (or Kullback-Leibler divergence) is the optimal rate
function appearing in the classical Stein’s lemma, the above Thm.8.14 implies
that S(ρ|σ) is an achievable rate in the quantum context as well. The following
shows that it is indeed the optimal rate:

Theorem 8.15 (Quantum Stein Lemma) Consider the task of distinguish-
ing two quantum states ρ, σ ∈Md(C). Let βn be the error probability as defined
in Eq.(8.45), minimized over all measurements. For every ε ∈ (0, 1) we have
that

lim
n→∞

− 1

n
log βn = S(ρ|σ). (8.50)

Proof As discussed above achievability of the rate S(ρ|σ) follows from Thm.8.14
together with the classical Stein’s lemma. What remains to prove is thus an
upper bound on the optimal rate, i.e., a lower bound on the error probability
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βn. To this end we apply Lemma 8.1 to A = ρ⊗n and B = eλnσ⊗n for some
λ ∈ R to be chosen later. For s ∈ [0, 1] this gives

e−sλntr
[
ρ1+sσ−s

]n ≥ tr
[(
ρ⊗n − eλnσ⊗n

)
Pn
]

(8.51)

≥ (1− ε)− enλβn(Pn), (8.52)

where the second inequality follows from Eq.(8.45). Rewriting these inequalities
we obtain

βn ≥ e−nλ
[
(1− ε)− e−n

(
λs−f(s)

)]
, (8.53)

where we set f(s) := log tr
[
ρ1+sσ−s

]
. Since f(0) = 0 and f ′(0) = S(ρ|σ) the

choice λ = S(ρ|σ) + δ will for any δ > 0 guarantee that there is an s ∈ (0, 1]
such that λs > f(s). Thus, limn→∞− 1

nβn ≤ S(ρ|σ) + δ and since this holds for
arbitrary δ > 0 the relative entropy is indeed the optimal asymptotic rate.

Lemma 8.1 Let A,B ∈ Md(C) be two positive semi-definite operators and
denote by (A − B)+ the positive part of the Hermitian matrix (A − B). Then
for all s ∈ [0, 1]:

||A−B||1 ≥ tr [A+B]− 2tr
[
AsB1−s] , and (8.54)

tr [(A−B)+] ≤ tr
[
A1+sB−s

]
. (8.55)

Proof In order to prove Eq.(8.55) we show first that it is sufficient to consider
diagonal A and B. To this end we exploit that tr

[
A1+sB−s

]
is non-increasing

under completely positive, trace-preserving maps (see e.g. Thm.8.10). We apply
this to the map T (·) :=

∑
i Pi ·Pi which is constructed from the spectral decom-

position (A − B) =:
∑
i λiPi where the Pi’s are one-dimensional projections.

Then since tr [(A−B)+] = tr
[(
T (A)− T (B)

)
+

]
and now [T (A), T (B)] = 0

it is indeed sufficient to consider diagonal A and B. For those the assertion
follows from the simple inequality a − b ≤ a(a/b)s which holds for numbers
a ≥ b ≥ 0.

Lemma 8.2 Let ρ ∈ Md(C) be a density operator and {Pi ∈ Md(C)}i=1,...,k

a POVM where each Pi is a projection. If T (X) :=
∑k
i=1 PiXPi, then

ρ ≤ kT (ρ). (8.56)

Proof Due to linearity it is sufficient to consider pure states ρ = |ψ〉〈ψ|. Then
for every |φ〉 ∈ Cd

〈φ|kT (ρ)− ρ|φ〉 =
(
k

k∑
i=1

|〈φ|Pi|ψ〉|2
)
−
∣∣〈φ∣∣ k∑

i=1

Pi
∣∣ψ〉∣∣2 ≥ 0, (8.57)

where the inequality follows from Chauchy-Schwarz when applied to a vector
with components 〈φ|Pi|ψ〉 and the other with components k-times 1.
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8.6 Hilbert’s projective metric

Let V be a real, finite-dimensional vector space (e.g., the space of Hermitian
matrices in Md(C)). A convex cone C ⊂ V is a subset for which αC + βC ⊆ C
for all α, β ≥ 0. We will call a convex cone in V a proper cone if it is closed, has
a non-empty interior and satisfies C∩(−C) = {0}. Examples of proper cones are
sets of non-negative polynomials, vectors or matrices with non-negative entries,
positive semi-definite matrices, and the cones of un-normalized density matrices
which are separable, have a positive partial transpose, are undistillable, etc.

Recall that the dual cone is defined as C∗ := {c ∈ V|∀v ∈ C : 〈v|c〉 ≥ 0} and
that by the bipolar theorem C∗∗ = C for closed convex cones. This implies that

v ∈ C ⇔ 〈v|c〉 ≥ 0 for all c ∈ C∗. (8.58)

Every proper cone induces a (partial) order relation in V and we will write
a ≥C b meaning a − b ∈ C. We will omit the subscript C if the cone C under
consideration is the set of positive semi-definite matrices. Also note that in this
case we have C = C∗.

For every pair of non-zero elements a, b ∈ C define

sup(a/b) := sup
c∈C∗

〈a|c〉
〈b|c〉

, inf(a/b) := inf
c∈C∗

〈a|c〉
〈b|c〉

. (8.59)

By construction sup(a/b) ≥ inf(a/b) ≥ 0 and sup(a/b) = 1/ inf(b/a). If C (and
consequently also C∗) is a proper cone we can use Eq.(8.58) and rewrite

sup(a/b) = inf{λ ∈ R|a ≤C λb}, (8.60)

inf(a/b) = sup{λ ∈ R|λb ≤C a}. (8.61)

This implies that inf(a/b)b ≤C a ≤C sup(a/b)b, where the latter makes sense
only if sup(a/b) is finite. In other words, Eq.(8.59) provides the factors by which
b has to be rescaled at least in order to become larger or smaller than a.

Hilbert’s projective metric is then defined for non-zero a, b ∈ C as

D(a, b) := ln
[

sup(a/b) sup(b/a)
]
. (8.62)

Obviously, D is symmetric, non-negative and satisfies D(a, βb) = D(a, b) for all
β > 0. That is, D depends only on the ’direction’ of its arguments. Since it
turns out to fulfill the triangle inequality and D(a, b) = 0 implies that a = βb
for some β > 0, D is a projective metric. Hence, if we restrict the arguments
a, b further to a subset which excludes multiples of elements (such as the unit
sphere of a norm), then D becomes a metric on that space. With C the cone of
positive semi-definite matrices D, for instance, is a metric on the set of density
matrices. The following relates Hilbert’s projective metric to metrics induced
by norms.
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Proposition 8.2 (Norm bound) Consider a proper cone C in a real linear
space. Let A,B ∈ C be non-zero elements and define ν := inf(B/A) and µ :=
inf(A/B). Then

||A−B|| ≤ |1− ν| ||A||+ |1− µ| ||B||
+ min

[
|1− ν| ||A||, |1− µ| ||B||

]
, (8.63)

for every norm for which X ≥C Y ≥C 0 implies ||X|| ≥ ||Y ||.

Proof By definition B ≥C νA which implies A − B ≤C (1 − ν)A and similar
holds for µ if only A and B are interchanged. This guarantees the existence of
positive elements Pν , Pµ ≥C 0 such that

A−B + Pν = (1− ν)A and B −A+ Pµ = (1− µ)B. (8.64)

Using the triangular inequality for the norm ||A−B|| ≤ ||A−B+Pν ||+||Pν || and
exploiting its assumed monotonicity by bounding ||Pν || ≤ ||Pν +Pµ||, Eq.(8.64)
then leads to

||A−B|| ≤ ||A−B + Pν ||+ ||Pν + Pµ|| (8.65)

≤ 2|1− ν| ||A||+ |1− µ| ||B||. (8.66)

Since the same reasoning and thus the same inequality applies with µ↔ ν and A
and B interchanged, Eq.(8.63) then follows from taking the smaller bound.

Corollary 8.2 (Norms vs. Hilbert’s projective metric) With the assump-
tions of Prop.8.2 and the additional requirement that µ, ν ≤ 1 we have

||A−B|| ≤ 3

(
||A||+ ||B||

2
−
√
||A|| ||B|| e−D(A,B)/2

)
. (8.67)

Proof Instead of taking the minimum in Eq.(8.63) we take the average and
then use that for positive numbers (a+ b)/2 ≥

√
ab. In this way we obtain

||A−B|| ≤ 3

2

(
||A||+ ||B|| − (ν||A||+ µ||B||)

)
(8.68)

≤ 3

(
||A||+ ||B||

2
−
√
ν||A||µ||B||

)
, (8.69)

which leads the sought result by using inf(A/B) = 1/ sup(B/A) together with
the definition Eq.(8.62).

Better bounds can be obtained by exploiting some additional structure. So
let us now explicitly assume that C is the cone of positive semi-definite operators
on a finite-dimensional Hilbert space and consider the trace norm:

Proposition 8.3 (Trace norm vs. Hilbert’s projective metric) Let ρ1, ρ2 ∈
Md(C) be two density matrices. Then

1

2
||ρ1 − ρ2||1 ≤

[
1 + inf(ρ2/ρ1)

]−1−
[
1 + sup(ρ2/ρ1)

]−1
(8.70)

≤ tanh
[
D(ρ1, ρ2)/4

]
. (8.71)
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Proof Recall that ||ρ1−ρ2||1/2 = tr [P (ρ1 − ρ2)] for some Hermitian projection
P . Exploiting that x(2 − x) ≤ 1 for all x ∈ [0, 2] and applying it to x =
tr [P (ρ1 + ρ2)] we obtain

1

2
||ρ1 − ρ2||1 ≤ tr [P (ρ1 − ρ2)]

tr [P (ρ1 + ρ2)]
(
2− tr [P (ρ1 + ρ2)]

) (8.72)

=
(
1 + tr [Pρ2] /tr [Pρ1]

)−1−
(
1 + tr [P ′ρ2] /tr [P ′ρ1]

)−1
, ,(8.73)

where P ′ = 1 − P and the last equation follows from elementary algebra.
Eq.(8.70) now follows from Eq.(8.73) by taking the supremum over all P, P ′ ≥ 0
and inserting the definitions from Eq.(8.59).

In order to arrive at Eq.(8.71) we use that inf(ρ2/ρ1) = 1/ sup(ρ1/ρ2) and
abbreviate x := sup(ρ1/ρ2), y := sup(ρ2/ρ1). In this way we can rewrite and
bound the r.h.s. of Eq.(8.70) as

xy − 1

(x+ 1)(y + 1)
≤
√
xy − 1
√
xy + 1

, (8.74)

where the inequality follows from applying the inequality (x + 1)(y + 1) ≥
(
√
xy + 1)2, which holds for all x, y ≥ 0. Using that according to definition

(8.62) we have xy = exp [D(ρ1, ρ2)] then completes the proof.

Exploiting that 2tanh(x/2) ≤ x for x ≥ 0 we obtain in particular

||ρ1 − ρ2||1 ≤ D(ρ1, ρ2)/2. (8.75)

Note that a non-trivial lower bound on norms cannot exist: suppose that for
some vector ψ we have 〈ψ|ρ1|ψ〉 > 0 but 〈ψ|ρ2|ψ〉 = 0. Then sup(ρ1/ρ2) = ∞
according to Eq.(8.60) so that D(ρ1, ρ2) =∞ although the two states could be
arbitrarily close in norm. However, if the supports of ρ1 and ρ2 are the same,
Hilbert’s metric is finite and can be explicitly expressed in terms of operator
norms:

Proposition 8.4 Let ρ1, ρ2 ∈ Md(C) be density matrices and consider the
positive semi-definite cone C. Then with −1 denoting the pseudo inverse (inverse
on the support) we have

sup(ρ1/ρ2) =

{
||ρ−1/2

2 ρ1ρ
−1/2
2 ||∞, if supp[ρ1] ⊆ supp[ρ2]

∞ otherwise
(8.76)

inf(ρ1/ρ2) =

{
||ρ−1/2

1 ρ2ρ
−1/2
1 ||−1

∞ , if supp[ρ2] ⊆ supp[ρ1]
0 otherwise

(8.77)

D(ρ1, ρ2) =

{
ln
[
||ρ−1/2

1 ρ2ρ
−1/2
1 ||∞||ρ−1/2

2 ρ1ρ
−1/2
2 ||∞, if supp[ρ2] = supp[ρ1]

∞ otherwise

Proof We only have to prove the relation for sup(ρ1/ρ2) since this implies
the other two by inf(ρ1/ρ2) = 1/ sup(ρ2/ρ1) and definition (8.62) respectively.
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Assume that supp[ρ1] 6⊆ supp[ρ2]. Then there is a vector ψ for which 〈ψ|ρ2|ψ〉 =
0 while 〈ψ|ρ1|ψ〉 > 0 so that the infimum in Eq.(8.60) is over an empty set and
thus by the usual convention∞. If, however, supp[ρ1] ⊆ supp[ρ2], then ρ1 ≤ λρ2

is equivalent to ρ
−1/2
2 ρ1ρ

−1/2
2 ≤ λ1 and the smallest λ for which this holds is

the operator norm.

An immediate consequence of this is a simple bound on the quantum χ2-
divergence:

Corollary 8.3 Let ρ1, ρ2 ∈Md(C) be density matrices. Then

χ2
1/2(ρ1|ρ2) ≤ sup(ρ1/ρ2)− 1. (8.78)

Proof Recall the definition of the quantum χ2-divergence from Eq.(8.32):

χ2(ρ1|ρ2) = tr
[
ρ1ρ
−1/2
2 ρ1ρ

−1/2
2

]
−1. From here the assertion follows via Eq.(8.76)

by using that tr
[
ρ1ρ
−1/2
2 ρ1ρ

−1/2
2

]
≤ ||ρ−1/2

2 ρ1ρ
−1/2
2 ||∞.

8.7 Contractivity and the increase of entropy

Trace norm

Theorem 8.16 (Trace norm contractivity) Let T : Md(C) → Md′(C) be
a trace preserving positive linear map. Then for all Hermitian H ∈Md(C):

||T (H)||1 ≤ ||H||1. (8.79)

Proof Let T (H) = Q+−Q− and H = P+−P− be decompositions into orthog-
onal parts Q± ≥ 0 and P± ≥ 0. Projecting the equation Q+ −Q− = T (P+)−
T (P−) onto the support space of Q+ (or Q−) and exploiting positivity of the in-
volved expressions leads to tr [Q+] ≤ tr [T (P+)] (or tr [Q−] ≤ tr [T (P−)]). Using
the trace-preserving property of T then leads to tr [Q+ +Q−] ≤ tr [P+ + P−]
which is a reformulation of Eq.(8.79).

Note that this means in particular that for all pairs of density operators ρ1

and ρ2 we have
||T (ρ1)− T (ρ2)||1 ≤ ||ρ1 − ρ2||1. (8.80)

For a generic map T this inequality can in principle be sharpened in the sense
that the r.h.s. is multiplied by a factor smaller than one. The best possible such
factor which is independent of the ρi’s is called contraction coefficient. For the
trace norm its computation is simplified due to the following:

Lemma 8.3 (Trace norm contraction coefficient) Let T :Md(C)→Md′(C)
be a linear map. Then

sup
ρ1,ρ2

||T (ρ1)− T (ρ2)||1
||ρ1 − ρ2||1

=
1

2
sup
ψ⊥φ

∣∣∣∣T (|ψ〉〈ψ| − |φ〉〈φ|)∣∣∣∣
1
, (8.81)

where the supremum on the l.h.s. is taken over all density matrices in Md(C)
and the one on the r.h.s. over all pairs of orthogonal state vectors in Cd.
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Proof The r.h.s. in Eq.(8.81) is certainly a lower bound since the set over which
the supremum is taken is reduced. So we have to show that it is also an upper
bound. To this end, consider any difference of density operators with ρ1− ρ2 =
P+ − P− being a decomposition into orthogonal positive and negative parts
(i.e., P± ≥ 0 and P+P− = 0). By rescaling both numerator and denominator
of ||T (P+ − P−)||1/||P+ − P−||1 we can achieve that tr [P±] = 1 so that on the
l.h.s. of Eq.(8.81) we can w.l.o.g. assume that the two density matrices have
orthogonal supports. In this case ||P+−P−||1 = 2. A convex decomposition then
leads to P+ −P− =

∑
i λi
(
|ψi〉〈ψi| − |φi〉〈φi|

)
with ψi ⊥ φi for all i. Exploiting

convexity of the norm then finally leads to the equality in Eq.(8.81).

We will see below that non-trivial upper bounds for the trace-norm contrac-
tion coefficient, and thus improvements on inequality (8.80), can for instance be
obtained from the projective diameter and the fidelity contraction coefficient.
Another possibility to improve on Eq.(8.80) is to formalize the intuition that
if T is strictly inside the cone of positive maps, then it should be a strict con-
traction. In the case of classical channels (i.e., stochastic matrices) this is the
content of Doeblin’s theorem of which a quantum counterpart looks as follows:

Theorem 8.17 (Quantum version of Doeblin’s theorem) Let T, T ′ :Md(C)→
Md′(C) be two trace-preserving and Hermiticity-preserving linear maps of which
T ′ is such that T ′(X) = tr [X]Y for some Y ∈ Md′(C). If T − εT ′ is positive
for some ε ≥ 0, then for all density matrices ρ1, ρ2 ∈Md(C):

||T (ρ1)− T (ρ2)||1 ≤ (1− ε)||ρ1 − ρ2||1. (8.82)

Proof We will use a variant of Eq.(8.10), namely that for any traceless Hermi-
tian matrix X one can express the trace-norm as

||X||1 = sup
0≤P≤1

2tr [PX] . (8.83)

Applying this to X = T (ρ1 − ρ2) and using that T ′(ρ1 − ρ2) = 0 we obtain

||T (ρ1)− T (ρ2)||1 = sup
0≤P≤1

2tr [(ρ1 − ρ2)(T − εT ′)∗(P )] . (8.84)

Note that P ′ := (T − εT ′)∗(P ) is positive if, as assumed, T − εT ′ is a positive
map. Moreover, the fact that P ≤ 1 together with the trace-preserving property
of T and T ′ implies that P ′ ≤ (T − εT ′)∗(1) = (1− ε)1 so that finally

||T (ρ1)− T (ρ2)||1 ≤ (1− ε) sup
0≤P≤1

2tr [(ρ1 − ρ2)P ] , (8.85)

from which the claimed inequality follows by exploiting Eq.(8.83) once again.

While positivity is difficult to decide, complete positivity is easily seen from
the Choi-Jamiolkowski operator (see Prop.2.1). So if τ = (T ⊗ idd)(|Ω〉〈Ω|) is
the Choi-Jamiolkowski operator of T , then Eq.(8.82) holds for every ε ≥ 0 for
which there is a Hermitian Y with tr [Y ] = 1 so that

τ ≥ ε

d

(
Y ⊗ 1

)
. (8.86)
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If T is highly contractive in the sense that it maps everything close to a highly
mixed density operator ρ∞, then Y = ρ∞ can be a reasonable choice. Also note
that for a given Y the largest ε satisfying Eq.(8.86) can be computed explicitly
following the approach of Prop.8.4. Choosing Y = 1/d enables us to relate the
spectra of a channel and it Jamiolkowski state:12

Corollary 8.4 (Channel spectrum vs. Jamiolkowski spectrum) Let T :
Md(C)→Md(C) be a completely positive and trace-preserving linear map with
corresponding Jamiolkowski state τ . If we denote by µ the largest modulus of
eigenvalues of T which are strictly inside the unit disc and write λmin(τ) for
the smallest eigenvalue of τ , then

µ ≤ 1− d2λmin(τ). (8.87)

Proof Applying Thm.8.17 with Y = 1/d to Tn for n ∈ N leads to ||Tn(ρ1 −
ρ2)||1 ≤ (1−d2λmin(τ))n||ρ1−ρ2||1. As we will see in Prop.8.6 and Thm.8.23 be-
low, supρ1,ρ2 ||T

n(ρ1−ρ2)||1 is, up to a constant, asymptotically lower bounded
by µn so that Eq.(8.87) follows when considering n→∞.

Hilbert’s projective metric While investigating Perron-Frobenius theory
of positive maps [true?], Birkhoff [?] observed that all strictly positive maps
are contractive w.r.t. Hilbert’s projective metric. This allowed him in essence
to view convergence under subsequent application of a positive map as a special
case of the Banach contraction mapping theorem. We will use the notation and
terminology of Sec.8.6 and assume throughout that all cones are embedded in
finite-dimensional real vector spaces. In order to state Birkhoff’s observation we
need to define the projective diameter ∆(T ) of a positive, i.e., cone-preserving,
map T : C → C on a proper cone C (e.g., the cone of positive semi-definite
matrices in Md(C)):

∆(T ) := sup
a,b∈C◦

D
(
T (a), T (b)

)
, (8.88)

where the supremum runs over all elements a, b in the interior of C, denoted by
C◦.

Theorem 8.18 (Birkhoff’s contraction theorem) Let C be a proper cone
and T : C → C a positive (i.e., cone-preserving) linear map. Then

sup
a,b∈C◦

D
(
T (a), T (b)

)
D(a, b)

≤ tanh
(
∆(T )/4

)
. (8.89)

In fact, Hilbert’s metric is the essentially unique projective metric which allows
to identify positive maps with contractive maps [?]. In order to formalize this,
recall that a symmetric functionalD′ : C×C → R+∪∞ is called projective metric
if it satisfies D′(a, b) ≤ D′(a, c) + D′(c, b) for all a, b, c ∈ C and D′(a, b) = 0 iff
a = λb for some λ > 0.

12For another relation of that kind see Prop.6.5.
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Theorem 8.19 (Uniqueness of Hilbert’s projective metric) Let C be a
proper cone and D′ a projective metric such that every strictly positive lin-
ear map T : C → C◦ is a strict contraction w.r.t. to D′. Then there exists a
continuous and strictly increasing function f : R+ → R+ such that D′ = f(D)
where D is Hilbert’s projective metric. Moreover, for any linear T : C → C◦ we
have

sup
a,b∈C◦

D
(
T (a), T (b)

)
D(a, b)

≤ sup
a,b∈C◦

D′
(
T (a), T (b)

)
D′(a, b)

. (8.90)

The projective diameter which appears in Birkhoff’s theorem can in turn be
lower bounded by the “second largest eigenvalue” [?]:

Theorem 8.20 (Spectral bound on projective diameter) Let C be a proper
cone and T : C → C a positive linear map for which T (c) = c for some non-zero
c ∈ C. If T (a) = λa for some λ ∈ C and a not proportional to c, then

|λ| ≤ tanh
(
∆(T )/4

)
. (8.91)

[I dropped the ∆ <∞ and the c ∈ C◦ requirement. Both seem super-
fluous .. proof? idea: perturb T in order to make it primitive and
use that the spectrum changes continuously and that ∆(T ) <∞ iff T
is primitive (which should mean something like T : C\0→ C◦)]

For the particular case of C being the cone of positive semi-definite matrices in
Md(C) we can show that the projective diameter also bounds the contraction
w.r.t. the trace norm:

Theorem 8.21 (Trace norm contraction incl. projective diameter) Let
T :Md(C) →Md′(C) be a positive, trace-preserving linear map. Then for all
pairs of density matrices ρ1, ρ2 ∈Md(C)∣∣∣∣T (ρ1)− T (ρ2)

∣∣∣∣
1
≤ ||ρ1 − ρ2||1 tanh

(
∆(T )/4

)
. (8.92)

Proof Replacing ρi → T (ρi) in Prop.8.3 and taking the supremum over all full-
rank density operators ρ1, ρ2 we obtain sup ||T (ρ1 − ρ2)||/2 ≤ tanh

(
∆(T )/4

)
.

On the l.h.s. of this inequality we may as well take the supremum over all density
matrices and then obtain a lower bound by restricting to orthogonal pure states.
Following Lem.8.3 this lower bound equals the trace-norm contraction coefficient
which then implies Eq.(8.92).

Birkhoff’s theorem implies that if for two pairs of positive operators ρ1, ρ2

and ρ′1, ρ
′
2 there is a positive map T : ρi 7→ ρ′i, then D(ρ1, ρ2) ≥ D(ρ′1, ρ

′
2). In the

following we will see that the converse is true as well: if D decreases, then there
exists a completely positive map which does the mapping up to normalization.
The main ingredient will be the following relation with the condition number
which is defined for symmetric matrices as κ(X) := ||X||∞||X−1||∞.

Lemma 8.4 Let P ∈ Md(C) and P ′ ∈ Md′(C) be positive definite operators.
Then there exists a completely positive and unital linear map T : Md(C) →
Md′(C) such that T (P ) = λP ′ for some λ > 0 iff

κ(P ) ≥ κ(P ′). (8.93)
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Proof Let us first prove the “if part” and let all norms be operator norms.
Note that κ(P ) = 1 is equivalent to P ∝ 1 for which the statement is trivially
true (since P ′ ∝ 1 as well). So let us assume that P is not proportional to the
identity. Define two functions on spaces of symmetric matrices as E1(X) :=
1 − X/||P || and E2(X) := X − 1/||P−1||. By construction Ei(P ) ≥ 0 and
span{E1(P ), E2(P )} = span{P,1}. Moreover, Eq.(8.93) implies that there is a
λ > 0 such that

||P ||
||P ′||

≥ λ ≥ ||P
′−1||

||P−1||
, (8.94)

from which Ei(λP
′) ≥ 0 follows. Let ψ1 (ψ2) be an eigenvector corresponding to

the smallest (largest) eigenvalue of P and define a map T :Md(C)→Md′(C)
via

T (X) =
∑
i

〈ψi|X|ψi〉
Ei(λP

′)

〈ψi|Ei(P )|ψi〉
. (8.95)

Since Ei(P )|ψj〉 = 0 for i 6= j we have that T : Ei(P ) 7→ Ei(λP
′) and there-

fore T (1) = 1 and T (P ) = λP ′. Moreover, due to positivity of the involved
expressions T is a completely positive map, as desired.

For the “only if part” assume that there is a positive unital map T which
acts as T (P ) = λP ′. Then, since Ei(P ) ≥ 0, we have to have that T

(
Ei(P )

)
=

Ei(λP
′) ≥ 0. These two inequalities (for i = 1, 2) are, however, equivalent to

Eq.(8.94) from which Eq.(8.93) follows.

As a consequence we obtain the claimed converse to Birkhoff’s theorem:

Theorem 8.22 Let ρ1, ρ2 ∈ Md(C) and ρ′1, ρ
′
2 ∈ Md′(C) be two pairs of den-

sity matrices so that supp(ρ1) = supp(ρ2). There exists a completely positive
map T :Md(C)→Md′(C) which acts as T (ρi) = λiρ

′
i for some λi > 0 iff

D(ρ1, ρ2) ≥ D(ρ′1, ρ
′
2). (8.96)

Proof The ‘only if’ part follows from Birkhoff’s theorem. For the converse
assume that Eq.(8.96) holds. The assumed equal support of ρ1 and ρ2 together
with Eq.(8.96) implies that ρ′1 and ρ′2 have equal support as well. We can
therefore restrict the input and output spaces to the respective support spaces
and assume w.l.o.g. that all involved states have full rank. For any map T we
can then define a map T̃ as

T̃ (X) := ρ
′−1/2
1 T

(
ρ

1/2
1 Xρ

1/2
1

)
ρ
′−1/2
1 /λ1.

Note that T is completely positive iff T̃ is. Moreover, if we define P :=

ρ
−1/2
1 ρ2ρ

−1/2
1 , P ′ := ρ

′−1/2
1 ρ′2ρ

′−1/2
1 and λ := λ2/λ1 then T (ρi) = λiρ

′
i be-

comes equivalent to T̃ (P ) = λP ′ and T̃ (1) = 1. Hence, we can apply Lem.8.4
and by using Prop.8.4 we see that Eq.(8.96) is a reformulation of Eq.(8.93).

To conclude this discussion we will give an operational interpretation of
this result: assume that for a finite set of pairs of density matrices {(ρi, ρ′i)}
there is a completely positive map T : Md(C) → Md′(C) such that T (ρi) =
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λiρ
′
i for some λi > 0. Then we can construct a new map T̃ : Md(C) →

Md′(C) ⊗ Z2 which is completely positive and trace-preserving and such that
(i) ρi 7→ ρ′i conditioned on outcome ’1’ on the ancillary two-level system, and
(ii) this outcome is obtained with non-zero probability. More explicitly, this is
obtained by

T̃ (ρ) := cT (ρ)⊗ |1〉〈1|+BρB† ⊗ |0〉〈0|, (8.97)

with c := ||T ∗(1)||−1
∞ and B :=

√
1− cT ∗(1).

In other words, Thm.8.22 shows that Hilbert’s metric provides a necessary
and sufficient condition for the existence of a probabilistic quantum operation
which maps ρi 7→ ρ′i upon success.

Asymptotic convergence and ergodic theory. In this paragraph we con-
sider quantum channels which can be applied repeatedly, i.e., T : Md(C) →
Md(C), and analyze the behavior of Tn as n ∈ N goes to infinity. Naturally,
some of the spectral properties investigated in Chapter 6 will enter the discus-
sion. For instance, depending on whether or not T has eigenvalues of modulus
one which are different from one, Tn will or will not converge. In any case
the image of Tn will converge to XT , the space spanned by all eigenvectors
corresponding to eigenvalues of modulus one as defined in Eq.(6.65). Similarly,
according to Prop.6.3 there will be an ascending subsequence ni ∈ N such that
Tni → Tφ will converge to Tφ which is a projection onto χT . In other words

||Tn − Tnϕ || → 0 (8.98)

where Tϕ := TφT describes the “asymptotic dynamics” which is studied in
greater detail in Thm.6.16. Recall from Chapter 6 that Tϕ is defined in terms of
the spectral decomposition of T where all eigenvalues of modulus smaller than
one are set to zero while the peripheral eigensystem is kept unchanged. Similarly,
Tφ is nothing but the projection corresponding to the peripheral eigenvectors.

The question which is addressed in the following is: how fast is the conver-
gence in Eq.(8.98) ?

Clearly, some of the previous results on contractivity may be applied. For
instance Thm.8.17 implies that

||Tn(ρ1)− Tn(ρ2)||1 ≤ (1− ε)n||ρ1 − ρ2||1,

but it leaves us with having to determine (1− ε).
A clearer picture about the asymptotic behavior13 can be obtained by having

a closer look at spectral properties: recall that the spectral radius of a positive
and trace-preserving map is one, so that (T − Tϕ) has spectral radius equal to
µ where µ := supλ∈spec(T ){|λ| < 1} is the largest modulus of the eigenvalues of
T which are in the interior of the unit disc. Note further that

Tn − Tnϕ = (T − Tϕ)n, (8.99)

13which might, however, lead to quite ridiculous bounds for finite n
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since TϕT = TTϕ = T 2
ϕ. Taken together these facts suggest that µ governs the

asymptotic behavior and we will see indeed that

||Tn − Tnϕ || = O(νn), for all ν > µ. (8.100)

Before we proceed, some remarks are in order: (i) note that the choice of the
norm is only relevant when it comes to decorating Eq.(8.100) with actual con-
stants; most of the time we will consider ||T̂n − T̂nϕ ||∞, (ii) if T has only one
eigenvalue of modulus one with corresponding fixed point density matrix ρ∞,
then Tϕ(·) = tr [·] ρ∞ and Tϕ = Tφ = T∞, (iii) it is not a typo that we do
not have ν ≥ µ in Eq.(8.100). In order to understand the latter, consider the
following example:

Example 8.1 (Slow convergence of non-diagonalizable channels) A sim-
ple example of a channel whose convergence is slower than O(µn) is a classical channel
with 0 < µ < 1, characterized by a stochastic matrix S ∈M3(R+) of the form

S =

 µ 0 0
1− µ µ 0

0 1− µ 1

 , leading to S∞ =

 0 0 0
0 0 0
1 1 1

 . (8.101)

In this case we can compute Sn − S∞ explicitly and verify that ||Sn − S∞|| is asymp-
totically bounded by µnn both, from below and from above. A general proof of such
an asymptotic behavior is given Thm.8.23 where it is traced back to the appearance of
non-trivial Jordan blocks.

Note that this example can be translated to the context of quantum channels by
defining a quantum channel on M3(C) as T (·) :=

∑
i,j Si,j〈j| · |j〉 |i〉〈i| which then

displays the same type of asymptotic behavior since T̂ = S ⊕ 0. The main purpose of
this example is to show that quantum channels with large Jordan blocks exist and can
be easily constructed: extending the example to Md(C) leads to a Jordan block of size
d− 1.

The above example suggests that the asymptotic behavior is governed by µ
and the size (denote it by dµ) of the largest Jordan block corresponding to µ. In
the following we will see that there are indeed n-independent constants C1, C2

such that

C1µ
nndµ−1 ≤ ||Tn − Tnϕ || ≤ C2µ

nndµ−1. (8.102)

Proving this requires a Lemma:

Lemma 8.5 Consider an upper-triangular matrix X ∈MD(C) with decompo-
sition X = Λ + N into a diagonal part Λ and a strictly upper-diagonal part N
(i.e., Ni,j = 0 if i ≥ j). If || · || is a sub-multiplicative norm, ||Λ|| ≤ 1 and
n ∈ N, then

||Xn|| ≤ ||Λn||+ CD,n||Λ||n−D+1 max{||N ||, ||N ||D−1}, (8.103)

with CD,n = (D − 1)nD−1. If in addition 2(D − 1) ≤ n then Eq.(8.103) holds
with CD,n = (D − 1)

(
n

D−1

)
.
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Similarly, if X is a Jordan block with diagonal part Λ = λ1, then for all
n ∈ N and natural numbers k0 ≤ min{n,D − 1}

|λ|n−k0
(
n

k0

)
≤ ||Xn||∞ ≤

min{n,D−1}∑
k=0

|λ|n−k
(
n

k

)
. (8.104)

Proof Looking at the binomial expansion of (Λ +N)n we first observe that all
monomials in which N appears more than D − 1 times will vanish since they
are products of more than D − 1 strictly upper-triangular matrices. Hence, by
using the basic properties of the norm we obtain

||Xn|| ≤ ||Λn||+
min{n,D−1}∑

k=1

(
n

k

)
||N ||k||Λ||n−k, (8.105)

which leads to Eq.(8.103) when bounding either
(
n
k

)
≤ nD−1 or

(
n
k

)
≤
(

n
D−1

)
if

n ≥ 2(D − 1) and then choosing k extremal in each of the three factors.
Now assume that X is a Jordan block. Since then [Λ, N ] = 0 we have

Xn =
∑
k λ

n−kNk
(
n
k

)
, where k again runs from 0 to D−1. Xn is thus a Topelitz

matrix whose first row has entries of the form λn−k
(
n
k

)
. Since the largest singular

value, i.e. the operator norm, is bounded from below by the largest modulus of
all entries, we obtain the l.h.s. of Eq.(8.104). The r.h.s. is obtained by using
the triangle inequality for the norm together with ||N ||∞ = 1.

Using this Lemma we will now derive two related results about the asymp-
totic behavior of Tn—based on either Jordan decomposition or Schur decom-
position of T . While the first one allows us to pinpoint the exact asymptotic
scaling, the second one enables us to provide explicit (albeit generally pes-
simistic) constants which depend only on n, µ and the underlying Hilbert space
dimension.

For the following consider the Jordan decomposition T̂ = A
(⊕K

k=1 Jk(λk)
)
A−1

where k labels the different eigenvalues λk of T according to their geometric
multiplicity. That is, K is the number of eigenvectors. We define the Jordan
condition number as κT := infA ||A||∞||A−1||∞ where the infimum is taken over
all similarity transformation A which bring T̂ to Jordan normal form.

Theorem 8.23 (Asymptotic convergence I) Let T :Md(C)→Md(C) be
a positive and trace preserving linear map. Denote by µ := supλ∈spec(T ){|λ| <
1} the largest modulus of all eigenvalues which are in the interior of the unit
disc, and by dµ the dimension of the largest Jordan block corresponding to an
eigenvalue of modulus µ. Then there exists a constant C1 > 0 such that for all
n ∈ N

C1µ
nndµ−1 ≤ ||T̂n − T̂nϕ ||∞. (8.106)

Moreover, this inequality holds for C1 =

{
κ−1
T if dµ = 1,

κ−1
T

(
µ(dµ − 1)

)1−dµ
if dµ ≤ n+ 1.

Similarly, there exists a C2 ∈ R such that for all n ∈ N we have

||T̂n − T̂nϕ ||∞ ≤ C2µ
nndµ−1. (8.107)
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If T̂ is diagonalizable (i.e., all Jordan blocks are one-dimensional), we can
choose C2 = κT .

Proof By definition of Tϕ we have that T̂ − T̂ϕ = A
(⊕

k:|λk|<1 Jk(λk)
)
A−1

(assuming, with some abuse of notation, that missing Jordan blocks are properly
replaced by blocks of zero matrices). Exploiting Eq.(8.99) together with sub-
multiplicativity of the norm we obtain

κ−1
T ||J

n||∞ ≤ ||T̂n − T̂nϕ ||∞ ≤ κT ||Jn||∞ with J :=
⊕

k:|λk|<1

Jk(λk). (8.108)

It follows from Eq.(8.104) that for every pair of eigenvalues with |λi| < |λj |
there is an n0 ∈ N such that ||Ji(λi)n||∞ < ||Jj(λj)n||∞ holds for the norms of
the corresponding Jordan blocks for all n ≥ n0. Moreover, if two eigenvalues
have equal magnitude, then the Jordan block with the larger dimension has the
larger norm.14 Hence, there exists an n0 ∈ N such that for all n ≥ n0 we have

||Jn||∞ ≤ ||Xn||∞

where X is chosen to be the largest Jordan block corresponding to an eigenvalue
of modulus µ. At this point the r.h.s. of Eq.(8.104) becomes applicable with
D = dµ and we arrive at the desired result in Eq.(8.107) by using that

(
n
k

)
≤

ndµ−1 is implied by k ≤ dµ − 1. Note that we can drop the requirement that
n ≥ n0 by appropriately rescaling C2.

The lower bound stated in Eq.(8.106) is similarly obtained by using ||Jn||∞ ≥
||Xn||∞ and inserting the l.h.s. of Eq.(8.108) together with Eq.(8.104) after set-
ting k0 = dµ − 1 and bounding

(
n
k0

)
≥ (n/k0)k0 .

Note that if T̂ is diagonalizable (as it holds for almost all channels), then
the Jordan decomposition used in Thm.8.23 yields

κ−1
T µn ≤ ||T̂n − T̂nϕ ||∞ ≤ κTµn (8.109)

In some cases the Jordan condition number κT can be bounded in terms of
the condition number κ(σ) := ||σ||∞||σ−1||∞ of a fixed point density matrix
σ = T (σ):

Proposition 8.5 (Jordan condition number and detailed balance) Let T :
Md(C) → Md(C) be a Hermiticity preserving linear map and Σ : Md(C) →
Md(C) a linear map such that Σ̂ > 0 is a positive definite matrix. If

ΣT ∗ = TΣ, (8.110)

then the Jordan condition number satisfies κT ≤
√
κ
(
Σ̂
)
. In particular, if

Σ(X) =
√
σX
√
σ for some positive definite σ ∈ Md(C) (which is a fixed point

of T if T ∗(1) = 1), then κT ≤
√
κ(σ).

14This can be seen by first noting that for Jordan blocks of equal size ||J(λ)n||∞ =
||J(|λ|)n||∞ and then using that J(|λ|)n contains any smaller Jordan block with eigenvalue
|λ| as principal submatrix whose operator norm thus forms a lower bound.
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Proof Expressed in terms of the matrix representation T̂ the “detailed balance”
type condition of Eq.(8.110) reads Σ̂T̂ † = T̂ Σ̂. Since Σ̂ > 0 this is equivalent
to Σ̂1/2T̂ †Σ̂−1/2 = Σ̂−1/2T̂ Σ̂1/2 which is thus a Hermitian matrix so that T̂
can be diagonalized by a similarity transformation Σ̂1/2U for some unitary U .
Since multilpying with the latter doesn’t change the operator norm, we obtain

κT ≤ κ
(
Σ̂1/2

)
=
√
κ
(
Σ̂
)

which equals
√
κ(σ) if Σ̂ = σ1/2 ⊗ σ̄1/2.

For the general non-diagonalizable case, the constant C2 (constant w.r.t.
n) in Thm.8.23 is somewhat elusive so that Eq.(8.107) becomes a rather weak
statement. A look at the proof reveals that we can obtain an explicit C2 by
either making it dependent on the separation of the moduli of eigenvalues, or
by replacing dµ in Eq.(8.107) by the dimension of the largest Jordan block cor-
responding to any eigenvalue in the interior of the unit disk. In the latter case
C2 would still involve the Jordan condition number κT which in turn may be
bounded in terms of the separation of eigenvalues (see [?]). The subsequent the-
orem will follow an alternative route which, to some extent, allows to circumvent
such issues. It is based on the Schur decomposition (T̂ − T̂ϕ) = U(Λ + N)U†

where U is unitary, Λ is diagonal and N is strictly upper triangular.

Theorem 8.24 (Asymptotic convergence II) Let T : Md(C) → Md(C)
be a positive and trace preserving linear map. Denote by µ := supλ∈spec(T ){|λ| <
1} the largest modulus of all eigenvalues which are in the interior of the unit
disc. Then for any n ∈ N

||T̂n − T̂nϕ ||∞ ≤ µn + Cd,nµ
n−d2+1 max{||N ||∞, ||N ||d

2−1
∞ }, (8.111)

with Cd,n = (d2 − 1)nd
2−1. If in addition 2(d2 − 1) ≤ n then Eq.(8.111) holds

with Cd,n = (d2 − 1)
(

n
d2−1

)
. Moreover, we can bound ||N ||∞ ≤ (µ+ 2

√
d).

Proof Eq.(8.111) is an immediate consequence of Eq.(8.103) together with
the spectral properties of T . The operator norm bound for N follows from
||N ||∞ ≤ ||Λ||∞ + ||T̂ ||∞ + ||T̂ϕ||∞ since ||Λ||∞ = µ and the singular values of

positive, trace-preserving linear maps on Md(C) are bounded by
√
d.

We will now relate the operator norm convergence of maps, which we have
discussed in the last paragraphs, to the trace norm convergence of states. Recall
that XT := span{X ∈ Md(C)|∃ϕ ∈ R : T (X) = eiϕX} is the complex linear
span of all eigenvectors of T with corresponding eigenvalue of modulus one.
According to Prop.6.12 XT admits a basis consisting of density operators and
satisfies XT = T (XT ) = Tφ

(
Md(C)

)
.

Proposition 8.6 (Convergence towards asymptotic states) Let T :Md(C)→
Md(C) be a positive and trace preserving linear map and denote by ∆T (ρ) :=
||ρ − Tφ(ρ)||1 the trace-norm distance between ρ ∈ Md(C) and its projection
onto XT . Then for any density operator ρ ∈Md(C) and n ∈ N

∆T

(
Tn(ρ)

)
≤
√
d/2 ||T̂n − T̂nϕ ||∞ ∆T (ρ). (8.112)
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Conversely, if the supremum is taken over all density operators ρ ∈ Md(C),
then

sup
ρ

∆T

(
Tn(ρ)

)
≥ 1

4
√
d
||T̂n − T̂nϕ ||∞. (8.113)

Proof First note that since TφT = TTφ = Tϕ = TϕTφ we have ∆T

(
Tn(ρ)

)
=

||Tn
(
ρ − Tφ(ρ)

)
||1 = ||(Tn − Tnϕ )

(
ρ − Tφ(ρ)

)
||1. So for any density operator ρ

we obtain

∆T

(
Tn(ρ)

)
∆T (ρ)

=
||(Tn − Tnϕ )

(
ρ− Tφ(ρ)

)
||1

||ρ− Tφ(ρ)||1
(8.114)

≤
√
d

2
sup
ψ⊥φ
||(Tn − Tnϕ )

(
|ψ〉〈ψ| − |φ〉〈φ|

)
||2 (8.115)

≤
√
d/2 sup

X∈Md(C)

||(Tn − Tnϕ )(X)||2
||X||2

(8.116)

=
√
d/2 ||(Tn − Tnϕ )||2→2. (8.117)

Here the first inequality uses Lemma 8.3 (where the optimization is over all pairs
of orthogonal unit vectors in Cd) together with || · ||1 ≤

√
d|| · ||2 from Eq.(8.7).

The second inequality uses that || |ψ〉〈ψ| − |φ〉〈φ| ||2 =
√

2. Since ||(Tn −
Tnϕ )||2→2 = ||(T̂n − T̂nϕ )||∞ we finally arrive at the inequality in Eq.(8.112).

For the converse statement recall that ||(Tn−Tnϕ )||2→2 = supX:||X||2≤1 ||(Tn−
Tnϕ )(X)||2. Any such X can be decomposed into four positive parts so that

X =
∑4
i=1 ciPi with |ci| = 1 and Pi ≥ 0, ||Pi||2 ≤ 1. Together with || · ||2 ≤ ||· ||1

this implies

1

4
||(Tn − Tnϕ )||2→2 ≤ sup

P≥0

{
||(Tn − Tnϕ )(P )||1

∣∣ ||P ||2 ≤ 1
}
.

Eq.(8.113) then follows by observing that ||P ||2 ≤ 1 implies tr [P ] ≤
√
d.

8.8 Continuity bounds
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