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Abstract

Unsupervised Representation Learning aims to reduce the dimensionality of given
data in an unsupervised fashion while retaining the important information required
for downstream tasks such as classification, clustering, and visualization, etc. Such
representations not only alleviate the issue of feature engineering but also make the
data more usable for other Machine Learning algorithms. Variational Autoencoder
(VAE) is one of the most well-known generative models, employed for unsupervised
learning of the representation of the input data. In this work, we study VAE in
the context of graph-structured data and examine its utility in network embedding.
We limit ourselves to homophilic networks, i.e., the graphs where the nodes tend
to connect to similar nodes, and vice versa.
We start by investigating Variational Graph Autoencoder (VGAE) - the extension

of VAE to graph datasets - with respect to over-pruning, a phenomenon that limits
the modeling and generative capacity of VAE in general and VGAE in particular.
After reviewing the drawbacks of the current solution implemented in VGAE, we
propose a model-based approach named Epitomic Variational Graph Autoencoder
(EVGAE) to tackle the over-pruning issue such that the generative ability of
VGAE is also maintained.
Graph Neural Network (GNN) layers often focus on the structural information

limited to the immediate neighborhood. In this work, we look at the possibility
of explicitly preserving the information in both the immediate and the larger
neighborhood of nodes. For this, we again exploit the baseline framework of VAE
for graphs and propose Barlow Variational Graph Autoencoder (BVGAE)
- a technique that makes use of the redundancy-reduction-principle to efficiently
fuse the two sources of information.
In the second half of this work, we zoom in on a sub-problem of network embed-

ding, i.e., community-aware network embedding. We first target the homogeneous
graphs and propose J-Enc - a variational framework for jointly encoding the
network embedding and the community embeddings. The learning is constrained in
such a way that connected nodes are not only “closer” to each other but also share
similar community assignments. We then extend this approach to heterogeneous
information networks (HINs) and propose VaCA-HINE for jointly learning the
community embeddings and Variational Community-Aware HIN Embedding. For
both types of networks, we learn a single embedding enriched with information
in immediate as well as larger neighborhoods. For homogeneous graphs, we use
communities as a proxy for the larger neighborhood. For HINs, VaCA-HINE
deploys contrastive modules to simultaneously utilize the information in multiple
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meta-paths, thereby alleviating the meta-path selection problem - a challenge faced
by many of the famous HIN embedding approaches.

viii





Contents

Acknowledgements v

Abstract vii

Contents x

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I General Unsupervised Network Embedding 9

2 Epitomic Variational Graph Autoencoder 11
2.1 Pure Variational Graph Autoencoder . . . . . . . . . . . . . . . . . 12
2.2 Over-pruning in pure VGAE . . . . . . . . . . . . . . . . . . . . . . 14
2.3 VGAE: Sacrificing Generative Ability for Handling Over-pruning . . 16
2.4 Epitomic Variational Graph Autoencoder . . . . . . . . . . . . . . . 18
2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Barlow Graph Autoencoder 29
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Barlow Graph AutoEncoder . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II Community-Aware Network Embedding 45

4 Case of Homogeneous Networks 47

x



Contents

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Case of Heterogeneous Networks 69
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Variational Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Contrastive Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Conclusion and Outlook 87

Bibliography 89

A BGAE Supplementary Material 103
A.1 Derivation of Lrecon for Variational Case . . . . . . . . . . . . . . . . 103
A.2 Detailed Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.4 Variants of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . 112

B ELBO Bound for J-ENC and VaCA-HINE 115

C VaCA-HINE Supplementary Material 117
C.1 Implementation Details of VaCA-HINE . . . . . . . . . . . . . . . 117
C.2 VaCA-HINE with Different Encoders . . . . . . . . . . . . . . . . . 117

xi



List of Figures

1.1 Architecture of Variational Autoencoder. . . . . . . . . . . . . . . . 2

2.1 KL-divergence and unit activity in pure VGAE . . . . . . . . . . . . 15
2.2 KL-divergence and unit activity in VGAE . . . . . . . . . . . . . . . 16
2.3 Effect of varying β on original VGAE . . . . . . . . . . . . . . . . . 18
2.4 Example of eight epitomes in a 16-dimensional latent space. . . . . . 20
2.5 KL-divergence and unit activity in EVGAE . . . . . . . . . . . . . . 24
2.6 Effect of latent space dimensions on active units and their KL-divergence 27

3.1 General model architecture of BGAE . . . . . . . . . . . . . . . . . 32

4.1 Block diagram of J-ENC . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Community detection by J-ENC in synthetic dataset. . . . . . . . . 56
4.3 Effect of hyperparameters on the performance of J-ENC . . . . . . 64
4.4 Comparison of running times of J-ENC with different algorithms. . 65
4.5 Graph visualization with community assignments by J-ENC . . . . 67

5.1 A sample HIN with three node types and two edge types. . . . . . . . . . . . 71
5.2 Overview of VaCA-HINE architecture . . . . . . . . . . . . . . . . 74

A.1 Effect of β on transductive node classification performance. . . . . . 109
A.2 Effect of λ on transductive node classification performance. . . . . . 110
A.3 Effect of average node degree in S on transductive node classification

performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.4 Variants of BGAE for all link prediction, node clustering, and node

classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

C.1 Community Detection performance of VaCA-HINE for different
encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.2 Classification performance of VaCA-HINE for different encoders. . 119

xii



List of Tables

1.1 Notation and symbols used throughout the this work. . . . . . . . . 8

2.1 Results of link prediction by EVGAE . . . . . . . . . . . . . . . . . 23

3.1 Datasets used for evaluating BGAEand BVGAE . . . . . . . . . . . 37
3.2 Link prediction results of BGAE and BVGAE . . . . . . . . . . . . 38
3.3 Transductive node classification results of BGAE and BVGAE . . . 40
3.4 Node clustering results of BGAE and BVGAE . . . . . . . . . . . . 42

4.1 Datasets used for evaluating J-ENC . . . . . . . . . . . . . . . . . . 57
4.2 F1 scores (%) for overlapping communities detected by J-ENC . . 59
4.3 Jaccard scores (%) for overlapping communities detected by J-ENC 60
4.4 Non-overlapping community detection results by J-ENC . . . . . . 61
4.5 Node classification results by J-ENC . . . . . . . . . . . . . . . . . 62

5.1 Datasets used for evaluating VaCA-HINE . . . . . . . . . . . . . . 80
5.2 Community detection results by VaCA-HINE . . . . . . . . . . . 83
5.3 Node classification results by VaCA-HINE . . . . . . . . . . . . . 84

A.1 Complete link prediction results of BGAE and BVGAE . . . . . . . 105
A.2 Complete node clustering results of BGAE and BVGAE . . . . . . . 106
A.3 Complete transductive node classification with BGAE and BVGAE 108

xiii





1 Introduction

Unsupervised Machine Learning aims to discover patterns and relationships in the
input data without the need for explicit supervisory or training labels [1]. While
this field has long been an important area of Machine Learning, it has gained
much more significance and popularity in recent years [2]. The main reason is
the increasing availability of large, complex datasets, e.g., related to the fields of
healthcare [3, 4], finance, networking [5], and natural language processing [6], etc.,
which are too broad and complex to be analyzed or labeled by humans.
Representation Learning [7] is one of the key research areas of Machine

Learning. It deals with the distillation of important information from raw data to
express it in a form that is:

� more compact, i.e., has reduced dimensionality.

� more actionable, i.e., the learned representations are general in the sense that
they can be used for a multitude of downstream tasks such as clustering,
classification, regression, visualization, etc.

This alleviates the problem of feature selection and also yields data in a form
that is more usable for other Machine Learning algorithms. For instance, in the
case of computer vision, there is no need to manually curate image features unlike
before [8, 9]. Instead, the representations learned by the pre-trained computer
vision models like ResNet [10] or Inception [11] are often used for specific tasks
like zero-shot learning [12] and real-time object detection [13], etc. With the
advent of big data, this research area has found its applications in many fields,
including Natural Language Processing [14, 15], Speech Recognition and Signal
Processing [16,17], Object Recognition [18], and Recommendation Systems [14].
The models ResNet and Inception, mentioned in the example above, are trained

in a supervised manner. However, Representation Learning is often employed in an
unsupervised setting where it can discover useful representations of data without
the need for explicit labels. Variational Autoencoder (VAE) [19] is one such
well-known neural network model. It has a simple encoder-decoder architecture
as shown in figure 1.1. The input x is fed to the encoder block which learns the
parameters (µ, σ) of a Gaussian distribution N (µ, σ). Using these parameters, we
sample the latent representation z from N (µ, σ). These samples are fed to the
decoder block which attempts to reconstruct x̂ such that x and x̂ are similar. In
summary, VAE aims to learn the representations of the input dataset such that:

1



1 Introduction

x Encoder z

∼ N (0, 1)

≈

Decoder x̂

Figure 1.1: Architecture of Variational Autoencoder. The input x is encoded into latent
embedding z, which is aimed to be normally distributed. This embedding is then
fed to the decoder, which reconstructs x̂ such that x and x̂ are similar. The blue
blocks are the learnable parts of VAE. The solid arrows show the flow of data, while
the dashed arrows represent the parts of the objective that VAE aims to achieve.

� The latent embeddings have standard Gaussian distribution. This is achieved
by minimizing Kullback Leibler (KL) divergence between N (µ, σ) and the
standard Gaussian.

� The reconstructed data is similar to the input data. This is achieved by
minimizing the cross-entropy between x̂ and x. Since the dimension of z is
set much lower than that of x, minimizing this loss ensures that the latent
embedding only distills the information required for efficient reconstruction
and leaves out the rest.

There is also a simple non-variational counterpart of VAE, known as Autoencoder,
where x is directly mapped to z. There are, however, many advantages of mapping
the input x to the parameters (µ, σ) instead of z directly. By using the distribution
samples instead of a deterministic map, we add a natural regularization in the
latent embeddings, thereby alleviating the problem of potential overfitting. It also
enables a better exploration of the latent space, because we can sample multiple z
per x. Moreover, VAE gets its generative ability because of this mapping, i.e., once
the model is trained, we can generate representations, similar to encoded input, by
simply sampling from N (µ, σ). Hence, by feeding these samples to the decoder, we
can generate data similar to the input data on which VAE was trained. Because of
the highly intuitive underlying mathematics and simple yet extensible architecture,
VAE has been employed in various domains and applications.
All the methodologies, presented in this work, employ VAE as a base model

for representation learning. In addition, we focus on the graph-domain datasets.
Graphs are flexible data structures used to model complex relations in a myriad of
real-world phenomena such as biological and social networks, chemistry, knowledge
graphs, and many others [20–24]. Recent years have seen a remarkable interest
in the field of graph analysis in general and unsupervised network embedding
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learning in particular. Network embedding learning aims to project the graph
nodes into a continuous low-dimensional vector space such that the structural
properties and semantics of the network are preserved [25, 26]. The quality of
the embedding is determined by downstream tasks such as transductive node
classification and clustering. Recently the field of deep learning has seen a noticeable
growth in the interest in graph-related problems mainly because of the increase in the
computational power and the capacity of graphs to model complex relations between
objects. Deep learning applications related to graphs include but are not limited to
link prediction, node classification, clustering [27] and recommender systems [28–30].
In addition to the datasets derived directly from physical phenomena, there are many
other areas where graphs have found their applications, e.g., in knowledge graphs for
reasoning [31], in graph databases [32], and in Natural Language Processing [33,34].

The diversity in graph datasets draws us to study them in the light of homophily
- the observed tendency of “like to associate with like” or “Similarity breeds
connection”. In the context of graphs, this means that the nodes in a graph tend
to be connected to other nodes that are similar to themselves. The principle of
homophily was first hypothesized in [35] for social networks. However, it has shown
to be an important empirical characteristic of a variety of graph-based datasets
such as co-authorship networks [36], peer influence processes [37], and e-commerce
networks [38]. It is worth noticing that not all graphs exhibit this characteristic.
For instance, in a knowledge graph about movies, the movies of different genres are
more likely to be connected if they have little in common but are watched by many
people. As another example, let us consider a transportation network where nodes
represent modes of communication e.g., airports, bus stations, train stations, etc.
In such a network, the nodes serving different modes of transport are likely to be
connected, e.g., an airport might be connected to multiple bus stations and train
stations. In this work, we restrict ourselves to the graphs which exhibit homophily.
The information in the links of such graphs is complementary, not competing or
contrasting with the information provided by the node features. It is also worth
noticing that depending on the problem at hand, the above-mentioned networks
can also be viewed as homophilic. For instance, one may want to jointly cluster the
users and the movies based on their connections. In such a scenario, the similarity
between the movies will be governed not by their genre or plot, but by the users
watching them, which adds the notion of homophily to the network.

In the first half of this work, we start by studying the Variational Graph Au-
toencoder (VGAE) model [39] in chapter 2. VGAE is the extension of VAE to
graph datasets where the authors propose a simple yet intuitive architecture by
incorporating Graph Convolutional Network (GCN) [40] layers for learning the
network embedding such that the adjacency matrix can be reconstructed from
the node representations. GCN layers are designed to learn from both the node
attributes and the links between them. There is, however, a known issue with
VAE. The KL-divergence part of the VAE objective attempts to achieve standard

3



1 Introduction

Gaussian distribution for every dimension of the latent embedding. However, the
reconstruction loss does not enforce anything on individual dimensions. As a result,
the latent dimensions, that fail to capture enough information for reconstruction,
are harshly penalized by VAE, thereby rendering them practically useless. Hence
the model is not utilized to its full potential as a significant number of latent
dimensions simply become inactive. This issue, referred to as over-pruning, was
highlighted by Burda et al. [41] in their seminal paper [42,43]. VGAE, being an
extension of VAE, suffers from the same issue. We show that sometimes less than
20% latent dimensions remain active and the rest simply output Gaussian noise.
For VAE, several solutions have been proposed to tackle this problem [44,45]. As
for the VGAE model, the authors scale down the effect of KL-divergence loss-term.
While this mitigates the effect of over-pruning, it effectively turns VGAE into a
non-variational model GAE because now the total loss is practically driven by the
reconstruction loss only. In contrast, we take motivation from [45] to introduce a
model-based approach in chapter 1 for tackling over-pruning in the graph domain.
We divide the latent dimension into overlapping subsets called epitomes and re-
construct the adjacency matrix in a way that multiple epitomes are encouraged to
participate in the reconstruction. This aids in increasing active units as epitomes
compete to learn a better representation of the graph data. The resulting approach,
named Epitomic Variational Graph Autoencoder (EVGAE) alleviates the
issue of over-pruning while retaining the effect of KL-divergence loss-term.

One main reason for the easy extensibility of VAE is that its architecture is
independent of the choice of encoder and decoder blocks. This is what VGAE
exploits by using GCN layers in the encoder blocks. In practice we can also use
other Graph Neural Network (GNN) layers, such as Graph Attention Network
(GAT) [46], Graph Isomorphism Networks (GIN) [47], and GraphSAGE [48],
etc. However, most neural network-based approaches focus on the structural
information by limiting themselves to the immediate neighborhood. In contrast,
spectral, random-walk based and matrix-factorization-based methods aim to learn
the node representations by employing the proximity information which is not
limited to the first-hop neighbors. Intuitively, employing the information in a
larger neighborhood should improve the quality of the learned network embedding.
Although we can learn from the information in the larger neighborhood by using
multiple layers of GNNs, or by using the approaches like [49–51], the information
is still captured in an implicit manner in the sense that there is no objective
function to ensure the preservation of the information in the larger neighborhood.
Motivated by this, in chapter 3 we study the possibility of extending the VAE
architecture for learning the network embedding by simultaneously incorporating
the information in the immediate as well as the larger neighborhood in an explicit
manner. To efficiently merge the two sources of information, we take inspiration
from [52], where H. Barlow hypothesized that sensory processing should aim to
code highly redundant signals into statistically independent components. This

4



redundancy-reduction-principle has been recently applied to the image domain in
Barlow Twins [53]. In this work, we use the same principle and propose Barlow
Graph Autoencoder (BGAE) along with its variational counterpart named
Barlow Variational Graph Autoencoder (BVGAE). Both BGAE and BVGAE
aim to maximize the similarity between the embedding vectors of immediate and
larger neighborhoods of a node while minimizing the redundancy between the
components of these projections. As demonstrated in chapter 3, our approach
performs at par with the state of the art, often outperforming its direct competitors.

In the second half of our work, we focus on a more specific sub-task of representa-
tion learning on graphs, i.e., learning representations in a community-aware manner.
A community can be defined as a set of nodes that share denser connections amongst
themselves compared to the other nodes of the network. Community detection, one
of the major tasks in unsupervised graph analysis, aims to group the nodes into
different communities. In the literature, representation learning and community
detection are usually treated separately. Community detection is often treated as a
downstream task to be performed using the learned network embedding. In the case
of euclidean datasets, there are many studies to demonstrate that the joint learning
of latent embeddings and clustering assignments yields better results compared
to when these two tasks are treated independently [54–57]. We first look at this
problem in chapter 4 in the context of homogeneous graphs, i.e., the graphs with
a single node type. For graph datasets, some recent approaches, like CNRL [58],
ComE [59], vGraph [60], etc., propose to learn the node embeddings and detect
communities simultaneously in a unified framework. However, these methods learn
two embeddings for each node, one used for the node representation and the other
serves as the “context” of the node to aid in community detection. In contrast, in
chapter 4 we argue that a single network embedding is enough for learning both
the representations of the nodes as well as their contexts needed for community
detection. We propose J-Enc - an architecture for unsupervised learning of a single
community-aware networking embedding. This has advantages for downstream
analysis because the analyst has to deal with only a single embedding enriched with
the local information from the adjacency matrix, as well as the global information
captured during simultaneous community detection. In addition, our approach is
performant as well as computationally efficient.

In the last chapter, i.e., chapter 5, we extend the above-mentioned approach
to Heterogeneous Information Networks (HINs), i.e., the networks where either
nodes, or links, or both are of multiple types. HINs can be used to explicitly model
more complex relations between multiple node types. The advantages of HINs over
homogeneous networks have resulted in an increasing interest in the techniques
related to HIN embedding [61]. Extension of J-Enc to HINs consists of two parts.
Since the adjacency matrices and nodes now contain richer information, we need to
plug in more generic GNN layers in the encoder block. This is achieved by employing
Relational Graph Convolution Network (RGCN) [62] layers which explicitly model
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1 Introduction

heterogeneity in the nodes and edges. The second, and more important part, is to
revise the sampling techniques incorporated during training. For instance, we can
use random walks [63] in homogeneous graphs to get sample interactions of a node
with a larger neighborhood. However, for heterogeneous networks, we need to devise
this more carefully because different edge types can have different weights. As an
example, if a node v is connected to N nodes of type A and a single node w of type
B, a naive sampling will visit the connection v → w only 1

1+N
times, which can yield

poor results if the relation v → w holds high significance. To model this explicitly,
we use the concept of meta-path. A meta-path is a tuple of node types, which serves
as a template to dictate the order in which the relations between the nodes are
sampled. In practice, the quality of the HIN embedding is greatly affected by the
choice of the meta-path [64]. Hence, one needs to be careful in selecting which meta-
path to choose for training. This needs domain knowledge, which can be subjective
and expensive. Recently, some approaches have been proposed to fuse information
from predefined meta-paths [65–67]. In this work, we propose VaCA-HINE for
learning Variational Community-Aware HIN Embedding. VaCA-HINE learns
a single network embedding, just like in the case of J-Enc. Moreover, it allows
the usage of multiple meta-paths, thereby alleviating the problem of meta-path
selection. To embed the high-order information from multiple meta-paths, we
employ Contrastive Learning - a ML technique that involves training a model to
recognize the differences between two or more groups of data. Using this approach,
we preserve high-order HIN semantics by discriminating between real and corrupted
instances of different meta-paths. The network embedding, learned by VaCA-
HINE, contains the information in pairwise relations, the community assignments,
and the high-order HIN structure, making it a suitable candidate for downstream
tasks.

1.1 List of publications

This work includes the following publications*:

1. Khan, R.A.*, Anwaar, M.U.* and Kleinsteuber, M., 2021, January. Epitomic
variational graph autoencoder. In 2020 25th International Conference on
Pattern Recognition (ICPR) (pp. 7203-7210). IEEE.

2. Khan, R.A.* and Kleinsteuber, M., 2021. Barlow Graph Auto-Encoder
for Unsupervised Network Embedding. arXiv preprint arXiv:2110.15742.
Accepted at the 26th International Conference on Artificial Intelligence and
Statistics (AISTATS).

3. Khan, R.A.*, Anwaar, M.U.*, Kaddah, O.*, Han, Z*. and Kleinsteuber,
M., 2021, September. Unsupervised Learning of Joint Embeddings for Node

* denotes equal contribution.
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Representation and Community Detection. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML PKDD)
(pp. 19-35). Springer, Cham.

4. Khan, R.A.* and Kleinsteuber, M., 2022, February. Cluster-Aware Hetero-
geneous Information Network Embedding. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining (WSDM)
(pp. 476-486).

The following were not made a part of this thesis:

1. Anwaar, M.U.*, Khan, R.A.*, Pan, Z. and Kleinsteuber, M., 2021, October.
A Contrastive Learning Approach for Compositional Zero-Shot Learning. In
Proceedings of the 2021 International Conference on Multimodal Interaction
(pp. 34-42).

2. Anwaar, M.U.*, Han, Z.*, Arumugaswamy, S.*, Khan, R.A.*, Weber,
T., Qiu, T., Shen, H., Liu, Y. and Kleinsteuber, M., 2022, October. On
Leveraging the Metapath and Entity Aware Subgraphs for Recommendation.
In Proceedings of the 1st Workshop on Multimedia Computing towards
Fashion Recommendation (pp. 3-10)

3. Khan, R.A.*, Amjad, R.A.* and Kleinsteuber, M., 2018. Extended affinity
propagation: global discovery and local insights. arXiv preprint arXiv:1803.04459.
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1 Introduction

1.2 Notation

Description Symbol

M ×N matrix X of real numbers X ∈ RM×N

M ×N binary matrix X X ∈ {0, 1}M×N

i-th row of matrix X xi

i-th entry of a vector c ci

Entry in i-th row and j-th column of X xij

Sum over all xi
∑
i
xi

Integration over the support of f(·)
∫
f(z)dz

Product over all xi
∏
i
xi

Function f(·), parameterized by θ fθ(·)

Dot product of x and y < x,y >= xTy

Sample x from a distribution q(x) x ∼ q(x)

Probability of a sample x w.r.t. the distribution q(·) q(x)

Conditional probability of x given y w.r.t. the distribution q(·) q(x|y)

Expectation of f(·) w.r.t. all involved random variables. E
{
f(·)

}
Expectation of f(x) w.r.t. distribution q(·). Eq

{
f(x)

}
= Ex∼q(x)

{
f(x)

}
Kullback-Leibler divergence between the distributions p(·) and q(·) DKL

(
p||q
)

Table 1.1: Notation and symbols used throughout the this work.
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2 Epitomic Variational Graph Autoencoder

Based on the following peer-reviewed publication:

Khan, R.A.*, Anwaar, M.U.* and Kleinsteuber, M., 2021, Jan-
uary. Epitomic variational graph autoencoder. In 2020 25th International
Conference on Pattern Recognition (ICPR) (pp. 7203-7210). IEEE.

Kipf and Welling [39] introduced variational graph autoencoder (VGAE) by
extending the variational autoencoder (VAE) model [19]. Like VAE, VGAE tends
to achieve the following two competitive objectives:

1. An approximation of input data should be possible.

2. The latent representation of input data should follow the standard Gaussian
distribution.

There is, however, a well-known issue with VAE in general: The latent units, which
fail to capture enough information about the input data, are harshly suppressed
during training. As a result, the corresponding latent variables collapse to the prior
distribution and are simply generating standard Gaussian noise. Consequently, in
practice, the number of latent units, referred to as active units, actually contributing
to the reconstruction of the input data are quite low compared to the total available
latent units. This phenomenon is referred to as over-pruning [41–43]. Several
solutions have been proposed to tackle this problem for VAEs. For instance, adding
dropout can be a simple solution to achieve more active units. However, this
solution adds redundancy rather than encoding more useful information with latent
variables [45]. [44] proposes division of the hidden units into subsets and forcing
each subset to contribute to the KL divergence. [42] uses KL cost annealing to
activate more hidden units. [45] uses a model-based approach where latent units are
divided into subsets with only one subset penalized for a certain data point. These
subsets also share some latent variables which help in reducing the redundancy
between different subsets.
VGAE, being an extension of VAE for graph datasets, is also susceptible to the

over-pruning problem. This greatly reduces the modeling power of pure VGAE
and undermines its ability to learn diverse and meaningful latent representations
As demonstrated in detail in section 2.2. To suppress this issue, the authors of [39]
simply reduce the weight of the second objective by a number of nodes in training
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2 Epitomic Variational Graph Autoencoder

data. For instance, PubMed dataset1 has ∼20k nodes, so the second objective is
given 20,000 times less weight than the first objective. Since the second objective is
the one enforcing standard gaussian distribution for the latent variables, reducing
its weight adversely affects the generative ability of VGAE and effectively reduces
it to non-variational graph autoencoder. We discuss this further in section 2.3.

In this work, we refer to VGAE without any weighted objectives as pure VGAE
to distinguish it from VGAE [39]. In order to attain good generative ability and
mitigate over-pruning, we adopt a model-based approach called epitomic VGAE
(EVGAE). Our approach is motivated by a solution proposed for tackling the
over-pruning problem in VAE [45]. We consider our model to consist of multiple
sparse VGAE models, called epitomes, that share the latent space such that for
every graph node only one epitome is forced to follow the prior distribution. This
results in a higher number of active units as epitomes compete to learn a better
representation of the graph data.

Our main contributions are summarized below:

� We identify that VGAE [39] has poor generative ability due to the extra factor
in the training objective.

� We show that pure VGAE ( without any weighted objectives) suffers from
the over-pruning problem.

� We propose a true variational model EVGAE that not only achieves better
generative ability than VGAE but also mitigates the over-pruning issue.

2.1 Pure Variational Graph Autoencoder

Given an undirected and unweighted graph G consisting ofN nodes {x1,x2, · · · ,xN}
with each node having F features. We assume that the information in nodes and
edges can be jointly encoded in a D dimensional latent space such that the respec-
tive latent variables {z1, z2, · · · , zN} follow the standard Gaussian distribution.
These latent variables are stacked into a matrix Z ∈ RN×D. For reconstructing the
input data, this matrix is then fed to the decoder network pθ(G|Z) parameterized
by θ. The assumption on latent representation allows the trained model to generate
new data, similar to the training data, by sampling from the prior distribution.
Following VAE, the joint distribution can be written as

p(G,Z) = p(Z)pθ(G|Z), (2.1)

1PubMed is a citation dataset [68], widely used in deep learning for graph analysis. Details of the
dataset are given in experiments section 2.5.1
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2.1 Pure Variational Graph Autoencoder

where

p(Z) =
N∏
i=0

p(zi) (2.2)

p(zi) = N (0, diag(1)) ∀i. (2.3)

For an unweighted and undirected graph G, we follow [39] and restrict the decoder
to reconstruct only edge information from the latent space. The edge information
can be represented by an adjacency matrix A ∈ RN×N where aij refers to the
element in i-th row and j-th column. If an edge exists between node i and j, we
have aij = 1. Thus, the decoder is given by

pθ(A|Z) =

(N,N)∏
(i,j)=(1,1)

pθ(aij = 1|zi, zj), (2.4)

with

pθ(aij = 1|zi, zj) = sigmoid(< zi, zj >), (2.5)

where < . , . > denotes dot product. The training objective should be such that
the model is able to generate new data and recover graph information from the
embeddings simultaneously. For this, we aim to learn the free parameters of our
model such that the log probability of G is maximized i.e.

log
(
p(G)

)
= log

(∫
p(Z)pθ(G|Z) dZ

)
= log

(∫ qϕ(Z|G)
qϕ(Z|G)

p(Z)pθ(G|Z) dZ
)

= log
(
EZ∼qϕ(Z|G)

{p(Z)pθ(G|Z)

qϕ(Z|G)

})
, (2.6)

where qϕ(Z|G), parameterized by ϕ, models the recognition network for approximate
posterior inference. It is given by

qϕ(Z|G) =
N∏
i

qϕ(zi|G) (2.7)

qϕ(zi|G) = N
(
µi(G), diag(σ2

i (G))
)

(2.8)

where µi(.) and σ2
i (.) are learned using graph convolution networks(GCN) [40] and

samples of qϕ(Z|G) are obtained from mean and variance using reparameterization
trick [19].

13



2 Epitomic Variational Graph Autoencoder

In order to ensure computational tractability, we use Jensen’s Inequality [69] to
get the ELBO bound of equation 2.6. i.e.

log
(
p(G)

)
≥ EZ∼qϕ(Z|G)

{
log
(p(Z)pθ(G|Z)

qϕ(Z|G)

)}
(2.9)

= EZ∼qϕ(Z|G)

{
log
(
pθ(G|Z)

)}
+ EZ∼qϕ(Z|G)

{
log
( p(Z)

qϕ(Z|G)

)}
(2.10)

= −BCE−DKL

(
qϕ(Z|G)||p(Z)

)
(2.11)

where BCE denotes binary cross-entropy loss between input edges and the
reconstructed edges. The Kullback-Leibler (KL) divergence is denoted by DKL. By
using equation 2.2, equation 2.3, equation 2.7 and equation 2.8, the loss function
of pure VGAE can be formulated as negative of equation 2.11 i.e.

L = BCE +
N∑
i=1

DKL

(
N
(
µi(G),σ2

i (G)
)
|| N (0, diag(1))

)
(2.12)

2.2 Over-pruning in pure VGAE

Burda et al. [41] showed that the learning capacity of VAE is limited by over-
pruning. Several other studies [42–45] confirm this and propose different remedies
for the over-pruning problem. They hold the KL-divergence term in the loss
function of VAE responsible for over-pruning. This term forces the latent variables
to follow the standard Gaussian distribution. Consequently, those variables which
fail to encode enough information about input data are harshly penalized. In
other words, if a latent variable is contributing little to the reconstruction, the
variational loss is minimized easily by “turning off” the corresponding hidden unit.
Subsequently, such variables simply collapse to the prior, i.e. generate standard
Gaussian noise. We refer to the hidden units contributing to the reconstruction as
active units and the turned-off units as inactive units. The activity of a hidden
unit u was quantified by Burda et al. [41] via the statistic

Au = Covx(Eu∼q(u|x){u}). (2.13)

A hidden unit u is said to be active if Au ≥ 10−2.
VGAE is an extension of VAE for graph data and the loss function of both

models contains the KL-divergence term. Consequently, pure VGAE inherits
the over-pruning issue. We verify this by training VGAE with equation 2.12 on
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2.2 Over-pruning in pure VGAE

Cora dataset2. We employ the same graph architecture as Kipf and Welling [39].
The mean and log-variance of 16-dimensional latent space are learned via Graph
Convolutional Networks [40]. From figure 2.1(a), we observe that 15 out of 16
latent variables have KL-divergence around 0.03, indicating that they are very
closely matched with standard Gaussian distribution. Only one latent variable
has managed to diverge to encode the information required by the decoder for the
reconstruction of the input.

(a) KL-divergence of latent variables in pure VGAE

(b) Unit activity of 16 hidden units in pure VGAE

Figure 2.1: (a) show that only one out of 16 hidden units is actively encoding input information
required for the reconstruction. This is confirmed by the plot of unit activity in (b).

In other words, the pure VGAE model is using only one variable for encoding
the input information while the rest 15 latent variables are not learning anything
about the input. These 15 latent variables collapse to the prior distribution and
are simply generating standard Gaussian noise. Figure 2.1(b) shows the activity of

2Details of Cora dataset are given in experiments section 2.5.1
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2 Epitomic Variational Graph Autoencoder

hidden units as defined in equation 2.13. It is clear that only one unit is active,
which corresponds to the latent variable with the highest KL-divergence in the
figure 2.1(a). All others units have become inactive and are not contributing to
learning the reconstruction of the input. This verifies the existence of over-pruning
in the pure VGAE model.

2.3 VGAE: Sacrificing Generative Ability for Handling
Over-pruning

(a) KL-divergence of latent variables: VGAE (β ≈ 0.0003 [39])

(b) Unit activity of 16 hidden units: VGAE (β ≈ 0.0003 [39])

Figure 2.2: All the hidden units are active but KL-divergence is quite high, indicating poor
matching of learned distribution with prior, consequently affecting the generative
ability of the model.

Kipf and Welling’s VGAE [39] employed a simple way to get around the over-
pruning problem by adding a penalty factor to the KL-divergence in equation 2.12.
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2.3 VGAE: Sacrificing Generative Ability for Handling Over-pruning

That is

L = BCE + β DKL

(
q(Z|G)||p(Z)

)
. (2.14)

But a consequence of using the penalty factor β is the poor generative ability of
VGAE. We verify this by training VGAE on the Cora dataset with varying β in
equation 2.14. We call the penalty factor β, as the loss of βVAE [70,71] has the
same factor multiplied with its KL-divergence term. Specifically, in βVAE, β > 1 is
chosen to enforce better distribution matching. Conversely, smaller β is selected for
relaxing the distribution matching, i.e. the latent distribution is allowed to be more
different than the prior distribution. This enables latent variables to learn better
reconstruction at the expense of the generative ability. In the degenerate case,
when β = 0, the VGAE model is reduced to non-variational graph autoencoder
(GAE). VGAE as proposed by Kipf and Welling [39] has the loss function similar
to βVAE with β chosen as the reciprocal of the number of nodes in the graph. As
a result β is quite small i.e. ∼ 0.0001-0.00001.

Figure 2.2 shows the KL-divergence and hidden unit activity for original VGAE
[39] model. We observe that all the hidden units are active, i.e. Au ≥ 10−2.
However, the value of KL-divergence is quite high for all latent variables, indicating
poor matching of qϕ(Z|G) with the prior distribution. This adversely affects the
generative ability of the model. Concretely, the variational model is supposed to
learn such a latent representation that follow standard Gaussian (prior) distribution.
Such high values of KL-divergence implies that the learned distribution is not
standard gaussian. The reason is that the KL-divergence term in equation 2.14
was responsible for ensuring that the posterior distribution being learned follows
standard Gaussian distribution. VGAE [39] model assigns too small weight (β =
0.0003) to the KL-divergence term. Consequently, when new samples are generated
from standard gaussian distribution p(Z) and then passed through the decoder
pθ(A|Z), we get quite different output than the graph data used for training.

Figure 2.3 shows that Kipf and Welling’s [39] approach to dealing with over-
pruning makes VAGE similar to its non-variational counterpart i.e. graph autoen-
coder (GAE). As β is decreased, VGAE model learns to give up on the generative
ability and behaves similarly to GAE. This can be seen in figure 2.3 (a), where the
average KL-divergence per active hidden unit increases drastically as β becomes
smaller. On the other hand, we observe from figure 2.3 (b) that decreasing β results
in a higher number of active hidden units till it achieves the same number as GAE.

We conclude that as the contribution of KL-divergence is penalized in the loss
function (equation 2.14), the VGAE model learns to sacrifice the generative ability
for avoiding over-pruning. Conversely, VGAE handles the over-pruning problem by
behaving like a non-variational model GAE [72].
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2 Epitomic Variational Graph Autoencoder

(a) Change in the active units of original VGAE [39]

(b) Change in the Average KL-divergence per active unit

Figure 2.3: Effect of varying β on original VGAE

2.4 Epitomic Variational Graph Autoencoder

We propose epitomic variational graph autoencoder (EVGAE) which generalizes
and improves the VGAE model. EVGAE not only successfully mitigates the
over-pruning issue of pure VGAE but also attains better generative ability than
VGAE [39]. The motivation comes from the observation that for a certain graph
node, a subset of the latent space suffices to yield good reconstruction of edges.
Yeung et al. [45] proposed a similar solution for tackling the over-pruning problem
in VAE. We assume M subsets of the latent space called epitomes. They are
denoted by {D1, · · · ,DM}. Furthermore, it is ensured that every subset shares
some latent variables with at least one other subset. We penalize only one epitome
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2.4 Epitomic Variational Graph Autoencoder

for an input node. This encourages other epitomes to be active. Let yi denote a
discrete random variable that decides which epitome is active for a node i. For
a given node, the prior distribution of yi is assumed to be uniform over all the
epitomes. y represents the stacked random vector for all N nodes of the graph. So:

p(y) =
∏
i

p(yi) (2.15)

p(yi) = U(1,M), (2.16)

where U(·) denotes uniform distribution.
Let E ∈ RM×D denote a binary matrix, where each row represent an epitome

and each column represents a latent variable. Figure 2.4 shows E with M = 8 and
D = 16 in a D-dimensional latent space. The grayed squares of rth row show the
latent variables which constitute the epitome Dr. We denote rth row of E by er.
The variational model of EVGAE is the same as VGAE i.e.:

p(G,Z) = p(Z)pθ(G|Z) (2.17)

The corresponding approximate posterior is given by:

qϕ(Z,y|G) = qϕ(y|G)qϕ(Z|G), (2.18)

with

qϕ(y|G) =
N∏
i=1

qϕ(yi|G) (2.19)

qϕ(yi|G) = Cat(πi(G)) (2.20)

qϕ(Z|G) =
N∏
i

qϕ(zi|G) (2.21)

qϕ(zi|G) = N
(
µi(G), diag(σ2

i (G))
)
, (2.22)

where Cat(·) refers to the categorical distribution. πi(·), µi(·) and σ2
i (·) are

learned using two-layer GCN networks. Under the assumption that y and G are
independent, given Z; the objective function is given by

log
(
p(G)

)
= log

(∫ ∑
y

p(y)p(Z|y)pθ(G|Z) dZ
)

(2.23)

= log
(
E(Z,y)∼qϕ(Z,y|G)

{p(y)p(Z|y)pθ(G|Z)

qϕ(Z,y|G)

})
(2.24)

= log
(
E(Z,y)∼qϕ(Z,y|G)

{p(y)p(Z|y)pθ(G|Z)

qϕ(Z|G)qϕ(y|G)

})
. (2.25)
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2 Epitomic Variational Graph Autoencoder

Figure 2.4: Example of eight epitomes in a 16-dimensional latent space.

By using Jensen’s inequality [69], the ELBO bound for log probability becomes

log
(
p(G)

)
≥ E(Z,y)∼qϕ(Z,y|G)

{
log
(p(y)p(Z|y)pθ(G|Z)

qϕ(Z|G)qϕ(y|G)

)}
(2.26)

= EZ∼qϕ(Z|G)

{
log
(
pθ(G|Z)

)}
+ Ey∼qϕ(y|G)

{
log
( p(y)

qϕ(y|G)

)}
+ E(Z,y)∼qϕ(Z,y|G)

{
log
( p(Z|y)
qϕ(Z|G)

)}
. (2.27)

Following VGAE [39], we restrict the decoder to recover only edge information
from the latent space. Hence, the decoder is the same as in equation 2.4. Thus,
the first term in equation 2.27 simplifies in a similar way as in VGAE i.e. binary
cross-entropy between input and reconstructed edges.

The second term in equation 2.27 is computed as:

Ey∼qϕ(y|G)

{
log
( p(y)

qϕ(y|G)

)}
= Ey∼qϕ(y|G)

{ N∑
i=1

log
( p(yi)

qϕ(yi|G)

)}
=

N∑
i=1

Eyi∼qϕ(yi|G)

{
log
( p(yi)

qϕ(yi|G)

)}
= −

N∑
i=1

DKL

(
qϕ(yi|G)||p(yi)

)
= −

N∑
i=1

DKL

(
Cat(πi(G))|| U(1,M)

)
. (2.28)
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2.4 Epitomic Variational Graph Autoencoder

The third term in equation 2.27 is computed as follows:

E(Z,y)∼qϕ(Z,y|G)

{
log
( p(Z|y)
qϕ(Z|G)

)}
=Ey∼qϕ(y|G)

{
EZ∼qϕ(Z|G)

{
log
( p(Z|y)
qϕ(Z|G)

)}}
=
∑
y

qϕ(y|G)EZ∼qϕ(Z|G)

{
log
( p(Z|y)
qϕ(Z|G)

)}
=

N∑
i=1

∑
y

qϕ(y|G)Ezi∼qϕ(zi|G)

{
log
( p(zi|yi)
qϕ(zi|G)

)}
=

N∑
i=1

∑
yi

qϕ(yi|G)Ezi∼qϕ(zi|G)

{
log
( p(zi|yi)
qϕ(zi|G)

)}
=−

N∑
i=1

∑
yi

qϕ(yi|G)DKL

(
qϕ(zi|G)||p(zi|yi)

)
(2.29)

We take motivation from [45] to compute equation 2.29 as:

−
N∑
i=1

∑
yi

qϕ(yi|G)DKL

(
qϕ(zi|G)||p(zi|yi)

)
=−

N∑
i=1

∑
yi

qϕ(yi|G)
D∑
j=1

E[yi, j]DKL

(
qϕ(z

j
i |G)||p(z

j
i )
)

(2.30)

=−
N∑
i=1

∑
yi

πi(G)
D∑
j=1

E[yi, j]DKL

(
N
(
µj
i (G), (σ2

i )
j(G)

)
||N (0, 1)

)
, (2.31)

where E[yi, j] refers to j
th component of epitome yi and z

j
i denotes j

th component
of vector zi. In equation 2.31, for each node, we sum over all the epitomes. For a
given epitome, we only consider the effect of those latent variables which are selected
by E for that epitome. This also implies that the remaining latent variables have
the freedom to better learn the reconstruction. Consequently, EVGAE encourages
more hidden units to be active without penalizing the hidden units which are
contributing little to the reconstruction. The final loss function is given by:

L = BCE +
N∑
i=1

DKL

(
Cat(πi(G))|| U(1,M)

)
+

N∑
i=1

∑
yi

πi(G)
D∑
j=1

E[yi, j]DKL

(
N
(
µj
i (G), (σ2

i )
j(G)

)
||N (0, 1)

)
. (2.32)
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2 Epitomic Variational Graph Autoencoder

Algorithm 1: EVGAE Algorithm

Input:

� G

� Epochs

� The matrix E to select latent variables
for each epitome.

Initialize model weights; i = 1
while e ≤ Epochs do

compute πi(.), µi(.) and σ2
i (.) ∀i;

compute zi ∀i by reparameterization trick;
compute loss using equation 2.32;
update model weights using backpropagation

end

VGAE model can be recovered from EVGAE model, if we have only one epitome
consisting of all latent variables. Hence the model generalizes VGAE. The algorithm
for training EVGAE is given in Algo. 1.

2.5 Experiments

2.5.1 Datasets

We compare the performance of EVGAE with several baseline methods on the
link prediction task. We conduct the experiments on three benchmark citation
datasets [68].
Cora dataset has 2,708 nodes with 5,297 undirected and unweighted links. The

nodes are defined by 1433 dimensional binary feature vectors, divided in 7 classes.
Citeseer dataset has 3,312 nodes defined by 3703 dimensional feature vectors.

The nodes are divided in 6 distinct classes. There are 4,732 links between the
nodes.
PubMed consists of 19,717 nodes defined by 500 dimensional feature vectors

linked by 44,338 unweighted and undirected edges. These nodes are divided in 3
classes.

2.5.2 Implementation Details and Performance Comparison

In order to ensure fair comparison, we follow the experimental setup of Kipf and
Welling [39]. That is, we train the EVGAE and pure VGAE model on an incomplete
version of citation datasets. Concretely, the edges of the dataset are divided in
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training set, validation set and test set. Following [39], we use 85% edges for
training, 5% for validation and 10% for testing the performance of the model.

We compare the performance of EVGAE with three strong baselines, namely:
VGAE [39], spectral clustering [73] and DeepWalk [63]. We also report the per-
formance of pure VGAE (β=1) and GAE (VGAE with β=0). Since DeepWalk
and spectral clustering do not employ node features; so VGAE, GAE and EVGAE
have an undue advantage over them. The implementation of spectral clustering is
taken from [74] with 128 dimensional embedding and for DeepWalk, the standard
implementation is used [75]. For VGAE and GAE, we use the implementation
provided by Kipf and Welling [39]. EVGAE also follows a similar structure with
latent embedding being 512 dimensional and the hidden layer consisting of 1024
hidden units, half of which learn µi(.) and the other half for learning log-variance.
We select 256 epitomes for all three datasets. Each epitome enforces three units
to be active, while sharing one unit with neighboring epitomes. This can also be
viewed as an extension of the matrix shown in figure 2.4. Adam [76] is used as
optimizer with learning rate 1e−3. Further implementation details of EVGAE can
be found in the code [77].

For evaluation, we follow the same protocols as other recent works [39, 63, 73].
That is, we measure the performance of models in terms of area under the ROC
curve (AUC) and average precision (AP) scores on the test set. We repeat each
experiment 10 times in order to estimate the mean and the standard deviation in
the performance of the models.

Method
Cora Citeseer PubMed

AUC AP AUC AP AUC AP

DeepWalk 83.1± 0.01 85.0± 0.00 80.5± 0.02 83.6± 0.01 84.4± 0.00 84.1± 0.0

Spectral Clus-
tering

84.6± 0.01 88.5± 0.00 80.5± 0.01 85.0± 0.01 84.2± 0.02 87.8± 0.01

GAE (VGAE
[39] with β =
0)

91.0± 0.02 92.0± 0.03 89.5± 0.04 89.9± 0.05 96.4± 0.00 96.5± 0.0

VGAE [39] (β
∼ 10−4−10−5)

91.4± 0.01 92.6± 0.01 90.8± 0.02 92.0± 0.02 94.4± 0.02 94.7± 0.0

pure VGAE (β
= 1)

79.44± 0.03 80.51± 0.02 77.08± 0.03 79.07± 0.02 82.79± 0.01 83.88± 0.01

EVGAE (β =
1)

92.96± 0.02 93.58± 0.03 91.55± 0.03 93.24± 0.02 96.80± 0.01 96.91± 0.02

Table 2.1: Results of link prediction on citation datasets

We can observe from Table 2.1 that the results of EVGAE are competitive or
slightly better than other methods. We also note that the performance of variational
method pure VGAE is quite bad as compared to our variational method EVGAE.
Moreover, the performance of methods with no or poor generative ability (GAE
and VGAE [39] with β ∼ 10−4 − 10−5) is quite similar.
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2 Epitomic Variational Graph Autoencoder

(a) KL-divergence of latent variables in EVGAE

(b) Unit activity of 16 hidden units of EVGAE

Figure 2.5: Three hidden units are active and KL-divergence of corresponding latent variables
is quite low compared to figure 2.2(a), indicating a good matching of learned
distribution with prior, consequently improving the generative ability of the model.
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2.5.3 EVGAE: Over-pruning and Generative Ability

We now show the learning behavior of EVGAE model on our running example
of Cora dataset. We select 8 epitomes, each dictating three hidden units to be
active. The configuration is shown in figure 2.4. Figure 2.5 shows the evolution of
KL-divergence and unit activity during training of EVGAE model. By comparing
this figure with pure VGAE (figure 2.1), we can observe that EVGAE has more
active hidden units. This demonstrates that our model is better than pure VGAE
at mitigating the over-pruning issue.

On the other hand, if we compare it to VGAE [39](figure 2.2), we observe
EVGAE have less active units in comparison. But KL-divergence of the latent
variables for VGAE is greater than 1 for all the latent variables (figure 2.2(a)). This
implies that the latent distribution is quite different from the prior distribution
(standard gaussian). In contrast, we observe from figure 2.5(a) that EVGAE
has KL-divergence around 0.1 for 13 latent variables and approximately 0.6 for
remaining 3 latent variables. This reinforces our claim that VGAE achieves more
active hidden units by excessively penalizing the KL-term responsible for generative
ability.

In short, although EVGAE has less active units, the distribution matching is
better compared to VGAE. VGAE is akin to GAE due to such low weightage to
KL-term, i.e. β = 0.0003.

2.5.4 Impact of Latent Space Dimension

We now look at the impact of latent space dimension on the number of active
units and average KL-divergence per active unit. We plot the active units for
dimensions D ∈ {16, 32, 64, 128, 256, 512}. Figure 2.6 presents an overview of this
impact on our running example (Cora dataset). For all values of D, the number of
epitomes is set to D

2
and one unit is allowed to overlap with neighboring epitomes.

Similar to the configuration in figure 2.4 for D = 16. It is to be noted that we
kept same configuration of epitomes for consistency reasons. Choosing a different
configuration of epitomes does not affect the learning behavior of EVGAE.

It can be observed that the number of active units is quite less compared to the
available units for VGAE with β = 1 (pure VGAE). Concretely, for D = 512 only
48 units are active. This shows that the over-pruning problem persists even in high
dimensional latent space.

Now we observe the behavior of VGAE with β = N−1 as proposed by Kipf and
Welling [39], where N denotes the number of nodes in the graph. All the units
are active irrespective of the dimension of latent space. In case of EVGAE, the
number of active units is in between the two. i.e. we are able to mitigate the
over-pruning without sacrificing the generative ability (β = 1). This results in
better performance in graph analysis tasks as shown in table 2.1.
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2 Epitomic Variational Graph Autoencoder

To demonstrate that EVGAE achieves better distribution matching than VGAE,
we compare the average KL-divergence of active units for different latent space
dimensions. Only active units are considered when averaging the KL-divergence
because the inactive units introduce a bias towards zero in the results. Figure 2.6(b)
shows how the distribution matching varies as we increase the number of dimensions.
We note that when β = 1, the average KL-divergence for active unit is still quite
small, indicating a good match between learned latent distribution and the prior.
Conversely, when β = N−1 the average KL-divergence per active unit is quite
high. This supports our claim that original VGAE [39] learns a latent distribution
which is quite different from the prior. Thus, when we generate new samples
from standard gaussian distribution and pass it through the decoder, we get quite
different output than the graph data used for training. In case of EVGAE, the
KL divergence is quite closer to the prior compared to VGAE. For D = 512, it is
almost similar to the case with β = 1.

2.6 Conclusion

In this paper we looked at the issue of over-pruning in variational graph autoencoder.
We demonstrated that the way VGAE [39] deals with this issue results in a latent
distribution which is quite different from the standard gaussian prior. We proposed
an alternative model based approach EVGAE that mitigates the problem of over-
pruning by encouraging more latent variables to actively play their role in the
reconstruction. EVGAE also has a better generative ability than VGAE [39]
i.e. better matching between learned and prior distribution. Moreover, EVGAE
performs comparable or slightly better than the popular methods for the link
prediction task.
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Figure 2.6: Effect of changing latent space dimensions on active units and their KL-divergence.
It can be observed that EVGAE has more active units compared to VGAE, and
with better generative ability
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Based on the following publication:

Khan, R.A.* and Kleinsteuber, M., 2021. Barlow Graph Auto-Encoder
for Unsupervised Network Embedding. arXiv preprint arXiv:2110.15742.
Manuscript under-review at AISATS 2023

Over the years, a variety of approaches have been proposed for learning network
embedding. On one hand, we have techniques that aim to learn the network
embedding by employing the proximity information which is not limited to the
first-hop neighbors. Such approaches include spectral, random-walk based and
matrix-factorization-based methods [63,75,78,79]. On the other hand, most neural
network-based approaches focus on the structural information by limiting themselves
to the immediate neighborhood [40, 46, 47]. Intuitively, a larger neighborhood
offers richer information that should consequently help in learning better network
embedding. However, the neural network-based approaches often yield better
results compared to the spectral techniques etc., despite them being theoretically
more elegant. Recently, graph Diffusion [80] has been proposed to enable a variety
of graph-based algorithms to make use of a larger neighborhood in the graphs with
high homophily. This is achieved by precomputing a graph diffusion matrix from
the adjacency matrix and then using it in place of the original adjacency matrix. For
instance, coupling this technique with graph neural networks (GNNs) enables them
to learn from a larger neighborhood, thereby improving network embedding learning.
However, replacing the adjacency matrix with the diffusion matrix deprives the
algorithms of an explicit local view provided by the immediate neighborhood, and
forces them to learn only from the global view presented by the diffusion matrix.
Such an approach can affect the performance of the learning algorithm, especially
in the graphs where the immediate neighborhood holds high significance. This
advocates the need to revisit how the information in the multi-hop neighborhood is
employed to learn the network embedding. There exist some contrastive approaches
like [49–51] that can capture the information in a larger neighborhood in the form
of the summary vectors, and then learn network embedding by aiming to maximize
the local-global mutual information between local node representations and the
global summary vectors. However, this information is captured in an implicit
manner in the sense that there is no objective function to ensure the preservation
of the information in the larger neighborhood.
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3 Barlow Graph Autoencoder

In this work, we adopt a novel approach for learning network embedding by
simultaneously employing the information in the immediate as well as the larger
neighborhood in an explicit manner. This is achieved by learning concurrently from
the adjacency matrix and the graph diffusion matrix. To efficiently merge the two
sources of information, we take inspiration from Barlow Twins, an approach recently
proposed for unsupervised learning of the image embeddings by constructing the
cross-correlation matrix between the outputs of two identical networks fed with
distorted versions of image samples, and making it as close to the identity matrix
as possible [53]. Motivated by this, we propose an autoencoder-based architecture
named Barlow GraphAuto-Encoder(BGAE), along with its variational counterpart
named Barlow Variational Graph Auto-Encoder(BVGAE). Both BGAE and
BVGAE make use of the immediate as well as the larger neighborhood information
to learn network embedding in an unsupervised manner while minimizing the
redundancy between the components of the low-dimensional projections. Our
contribution is three-fold:

� We propose a simple yet effective autoencoder-based architecture for unsuper-
vised network embedding, which explicitly learns from both the immediate
and the larger neighborhoods provided in the form of the adjacency matrix
and the graph diffusion matrix respectively.

� Motivated by Barlow Twins, BGAE and BVGAE aim to achieve stability
towards distortions and redundancy-minimization between the components of
the embedding vectors.

� We show the efficacy of our approach by evaluating it on link prediction,
transductive node classification and clustering on eight benchmark datasets.
Our approach consistently yields promising results for all the tasks whereas
the included competitors often under-perform on one or more tasks.

As detailed in the subsequent sections and derivations, it is non-trivial to efficiently
merge the information from neighborhoods at different levels, as it needs a careful
choice of the loss function and related architecture components.

3.1 Related Work

3.1.1 Network Embedding

Earlier work related to network embedding, such as GraRep [81], HOPE [82], and
M-NMF [79], etc., employed matrix factorization-based techniques. Concurrently,
some probabilistic models were proposed to learn network embedding by using
random-walk-based objectives. Examples of such approaches include DeepWalk [63],
Node2Vec [75], and LINE [83], etc. Such techniques over-emphasize the information
in proximity, thereby sacrificing the structural information [84]. In recent years
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several graph neural network (GNN) architectures have been proposed as an
alternative to matrix-factorization and random-walk-based methods for learning
graph-domain tasks. Some well-known examples of such architectures include graph
convolutional network or GCN [40], graph attention network or GAT [46], Graph
Isomorphism Networks or GIN [47], and GraphSAGE [48], etc. This has allowed
exploration of network embedding using GNNs [25,26]. Such approaches include
autoencoder based (e.g., VGAE [39] and GALA [85]), adversarial (e.g, ARVGA [86]
and DBGANp [87]), and contrastive techniques (e.g., DGI [49], MVGRL [88] and
GRACE [51]), etc.

3.1.2 Barlow Twins

This approach has been recently proposed [53] as a self-supervised learning (SSL)
mechanism making use of redundancy reduction - a principle first proposed in neu-
roscience [52]. Barlow Twins employs two identical networks, fed with two different
versions of the batch samples, to construct two versions of the low-dimensional
projections. Afterward, it attempts to equate the cross-correlation matrix computed
from the twin projections to identity, hence reducing the redundancy between differ-
ent components of the projections. This approach is relatable to several well-known
objective functions for SSL, such as the information bottleneck objective [89], or
the infoNCE objective [90].
The idea of Barlow Twins has been ported recently to graph datasets by Graph

Barlow Twins or G-BT [91]. Inspired by the image augmentations proposed by
Barlow Twins (cropping, color jittering, blurring, etc.), G-BT adopts edge dropping
and node feature masking to form the augmented views of the input graphs. While
this approach works for transductive node classification, its performance degrades
for tasks involving link prediction as demonstrated by the experiments in section 3.3
because there is no explicit objective to preserve the information in links. As we
will see in section 3.2.2.2, the addition of this objective is non-trivial because it
involves a careful modification of the original loss term from Barlow Twins.

3.1.3 Graph Diffusion Convolution (GDC)

GDC [80] was proposed as a way to efficiently aggregate information from a large
neighborhood. This is achieved in two steps.

1. Diffusion: First a dense diffusion matrix S is constructed from the adjacency
matrix using generalized graph diffusion as a denoising filter.

2. Sparsification: This is the second step where either top k entries of S are
selected in every row, or the entries below a threshold ϵ are set to 0. We use S
to denote the resulting sparse diffused matrix. The value of the threshold can
also be estimated from the intended average degree of the sparse graph [80].
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Encoder

Diffusion

Encoder Edge decoder

Edge decoder

Figure 3.1: General model architecture. Based upon the input adjacency matrix A, we get
the diffusion matrix S, which needs to be computed only once. The encoder yields

the low dimensional projection matrices ZI and ZI corresponding to I and I
respectively. Using a fusion function h(·), The projections ZI and ZI are fused into
a single projection Z, which is then fed to the edge decoder to reconstruct Â and Ŝ.

S defines an alternate graph with weighted edges that carry more information
than a binary adjacency matrix. This sparse matrix, when used in place of the
original adjacency matrix, improves graph learning for a variety of graph-based
models such as degree-corrected stochastic block model or DCSBM [92], DeepWalk,
GCN, GAT, GIN, and DGI, etc.

3.2 Barlow Graph AutoEncoder

3.2.1 Problem Formulation

Suppose an undirected graph G = (V , E) with the adjacency matrix A ∈ {0, 1}N×N

and optionally a matrix X ∈ RN×F of F -dimensional node features, N being the
number of nodes. In addition, we construct a diffused version of G by building a
diffusion matrix S ∈ RN×N from A. For brevity we use I = (A,X) and I = (S,X)
if features are available, otherwise I = A and I = S. Given d as the embedding-
dimension size, we aim to optimize the model parameters for finding the network
embeddings ZI ∈ RN×d and ZI ∈ RN×d from I and I such that:

1. ZI and ZI can be fused in a way that both A and S can be reconstructed from
the fused embedding Z ∈ RN×d. This allows the embedding to capture the
local information from I as well as the information in a larger neighborhood
from I.

2. Same components of different projections have high covariance and vice versa
for different components. This adds to the stability towards distortions and
also reduces redundancy between different components of the embedding.

Mathematically, the above objective is achieved by minimizing the following loss
function

L = Lrecon + βLcov (3.1)
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3.2 Barlow Graph AutoEncoder

where β is a hyperparameter of the algorithm to weigh between the reconstruction
loss and the cross-covariance loss. The general model architecture is given in
figure 3.1. We first define the loss terms and then brief the modules of the
architecture.

3.2.2 Loss Terms

3.2.2.1 Reconstruction Loss (Lrecon)

We aim to learn the free model parameters θ in order to maximize the log proba-
bility of recovering both A and S from Z. This probability can be written as a
marginalization over the joint distribution containing the latent variables Z as

log
(
pθ(A,S)

)
= log

(∫
pθ(A,S,Z)dZ

)
(3.2)

= log
(∫

p(Z)pθ(A|Z)pθ(S|Z)dZ
)
, (3.3)

where the prior p(Z) is modelled as a unit gaussian. Equation 3.3 assumes condi-
tional independence between A and S given Z.
To ensure tractability, we introduce the approximate posterior qϕ(Z|I, I), pa-

rameterized by ϕ as

qϕ(Z|I, I) = qϕ(Z
IZI |I, I) (3.4)

= qϕ(Z
I |I)qϕ(ZI |I), (3.5)

where equation 3.5 follows from equation 3.4 because of the assumed conditional
independence of ZI and ZI given their respective inputs. Both qϕ(Z

I |I) and

qϕ(Z
I |I) are modelled as Gaussians by a single encoder block that learns the

parameters µ(·) and σ(·) of the distribution conditioned on the given inputs I and
I respectively. The term Lrecon can now be considered as a negative of the ELBO
bound derived as

log
(
pθ(A,S)

)
≥−DKL

(
qϕ(Z

I |I) || N (0, I)
)

−DKL

(
qϕ(Z

I |I) || N (0, I)
)

− BCE
(
Â,A

)
− BCE

(
Ŝ,S

)
(3.6)

=LELBO (3.7)

= − Lrecon, (3.8)

where DKL refers to the KL divergence, BCE is the binary cross-entropy, and the
matrices Â and Ŝ refer to reconstructed versions of A and S respectively. The
inequality in 3.6 follows from Jensen’s inequality. It is worth noticing that BCE
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3 Barlow Graph Autoencoder

is computed based on the edges constructed from the fused embedding Z. For
detailed derivation, we refer the reader to the supplementary material.
The reconstruction loss in 3.8 refers to the variational variant BVGAE. For the

non-variational case of BGAE, the KL divergence terms get dropped, leaving only
the two BCE terms.

3.2.2.2 Covariance Loss (Lcov)

The correlation-loss in [53] (also employed in [91]) involves normalization by the
standard deviation of the embedding vectors, centered across the input batch
(equation 2 in [53]). While this works for images and for nodes of the graphs, it
has a tendency to obscure the information in the relative strengths of the links in
a graph. For graph datasets, we often replace cosine similarity with dot products,
followed by a sigmoid (as done in [39], [93], and [88], etc.) as it helps in preventing
the information in the magnitude of the vectors. Following this approach, instead
of computing the cross-correlation matrix, we compute the cross-covariance matrix
and use the sigmoid function to individually normalize the absolute entries cℓm.
The loss Lcov is then computed as a summation of two terms corresponding to the
mean of diagonal elements and off-diagonal elements of C.

Lcov =− 1

N

∑
ℓ=m

log(cmm)−
λ

N(N − 1)

∑
ℓ̸=m

log(1− cℓm), (3.9)

where λ defines the trade-off between the two terms. The first term of equation 3.9
is the invariance term. When minimized, it makes the embedding stable towards
distortions. The second term refers to the cross-covariance between different
components of C. When minimized, it reduces the redundancy between different
components of the vectors. The entries cℓm of C are given by

cℓm = sigmoid
(∣∣ |B|∑

b=1

(zIbℓ − zIℓ )(z
I
bm − zIm)

∣∣), (3.10)

where b indexes the batch B with size |B| and the ℓ-th component of the latent

embedding zIb is denoted by zIbℓ. The empirical means across embeddings ZI and ZI

are denoted by zI and zI respectively. It is also worth noticing that the underlying
objective is the same for equation 3.9 as well as the original correlation-based loss
in Barlow Twins i.e., C should be as close to the identity matrix as possible.

3.2.3 Model Architecture Blocks

We now describe the modules leading to the loss terms in equation 3.1 as shown in
figure 3.1.
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3.2.3.1 Diffusion:

The generalized diffusion to construct S from A is given by

S =
∞∑
k=0

θkT
k, (3.11)

where T is the generalized transition matrix and θk are the weighting coefficients.
There can be multiple possibilities for θk and Tk while ensuring the convergence of
equation 3.11 such as the ones proposed in [94], [95], and [80] etc. In this work,
we report the case of Personalized PageRank (PPR: [96]) as it consistently gave
better results with BGAE/BVGAE. For the detailed results including the Heat
Kernel [80], we refer the reader to the supplementary material.
PPR kernel corresponds to T = AD−1 and θk = α(1−α)k, where D is the degree

matrix and α ∈ (0, 1) is the teleport probability. The corresponding symmetric
transition matrix is given by T = D−1/2AD−1/2. Substitution of T and θk into
equation 3.11 leads to a closed form solution for diffusion using PPR kernel as

S = α
(
I− (1− α)D−1/2AD−1/2

)−1

. (3.12)

Equation 3.12 restricts the use of PPR-based diffusion for large graphs. However,
in practice, there exist multiple approaches to efficiently approximate equation 3.12
such as the ones proposed by [97] and [98]. In all the results reported in this paper,
we use the approximate version of equation 3.12. Diffusion works well for graphs
with high homophily. So BGAE/BVGAE also target similar networks.

3.2.3.2 Encoder:

This module is responsible for projecting the information in I and I into d-
dimensional embeddings ZI and ZI respectively. Following [53], we use a single
encoder to encode both versions of the input graph. Our framework is general
in the sense that any reasonable encoder can be plugged in to get the learnable
projections.
In our work, we have considered two options for the encoder block, consequently

leading to two variants of the framework.

� For BGAE, we use a single-layer GCN encoder.

� For BVGAE, we employ a simple variational encoder that learns the param-
eters µ(·) and σ(·) of a gaussian distribution conditioned upon the input
samples. The latent samples can then be generated by following the reparam-
eterization trick [19].
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3.2.3.3 Fusion Function:

The function h(·) is used to fuse ZI and ZI into a single matrix Z. In this work

we define Z as a weighted sum of ZI and ZI as

h(zIi , z
I
i ) = ψI

i z
I
i + ψI

i z
I
i , (3.13)

where the weights {ψI
i }Ni=1 and {ψI

i }Ni=1 can either be fixed or learned. In this work,
we report two variants of the fusion function.

� Fixing ψI
i = ψI

i = 0.5 ∀i.

� Learning {ψI
i }Ni=1 and {ψI

i }Ni=1 using attention mechanism.

For attention, we compute the dot products of different embeddings of the same
node with respective learnable weight vectors, followed by LeakyReLU activation.
Afterward, a softmax is applied to get the probabilistic weight assignments, i.e.

ψI
i =

exp
(
A
(
wT

1 z
I
i

))
exp

(
A
(
wT

1 z
I
i

))
+ exp

(
A
(
wT

2 z
I
i

)) , (3.14)

ψI
i = 1− ψI

i . (3.15)

where A(·) is the LeakyReLU activation function and w1,w2 ∈ Rd are learnable
weight vectors.

3.2.3.4 Decoder

Since our approach is autoencoder-based, we use the edge decoder as proposed
by [39], to reconstruct the entries âij of Â as

âij = sigmoid(zTi zj) (3.16)

The entries of Ŝ can also be reconstructed similarly.

3.3 Experiments

This section describes the datasets and the experiments conducted to evaluate the
efficacy of our approach. We choose eight benchmark datasets including Wikipedia
articles (WikiCS) [99], Amazon co-purchase data networks (AmazonPhoto and Ama-
zonComputers [100]), extracts from Microsoft Academic Graph (CoauthorCS and
CoauthorPhysics) [101], and citation networks (Cora, CiteSeer and PubMed) [68].
The basic characteristics of these datasets are briefed in table 3.1. We first report
the results for link prediction. The network embedding learned by BGAE and
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Dataset Nodes Edges Features Classes

Cora [68] 2,708 5,297 1,433 7
CiteSeer [68] 3,312 4,732 3,703 6
PubMed [68] 19,717 44,338 500 3
WikiCS [99] 11,701 216,123 300 10
AmazonComputers [100] 13,752 245,861 767 10
AmazonPhotos [100] 7,650 119,081 745 8
CoauthorCS [101] 18,333 81,894 6,805 15
CoauthorPhysics [101] 34,493 247,962 8,415 5

Table 3.1: Datasets used for evaluation.

BVGAE is unsupervised as no node labels are used during training. Hence, to
measure the quality of the network embedding, we analyze our approach for two
downstream tasks: clustering and transductive node classification. For interested
readers, the supplementary material contains a detailed analysis of BGAE and
BVGAE in different settings. We use the AWS EC2 instance type g4dn.4xlarge
with 16GB GPU for training. For reproducibility, the implementation details of all
the experiments along with the code are provided in [102]. For all the experiments,
we report publicly available results from our competitors.

3.3.1 Link Prediction

3.3.1.1 Comparison Methods

For link prediction, we select 12 competitors. We start with DeepWalk [63] as
the baseline.

Autoencoder based Architectures: We include graph autoencoder or GAE
which aims to reconstruct the adjacency matrix for the input graph. The variational
graph autoencoder or VGAE [39] is its variational counterpart that extends
the idea of variational autoencoder or VAE [19] to the graph domain. In the
case of adversarially regularized graph autoencoder or ARGA [86], the latent
representation is forced to match the prior via an adversarial training scheme. Just
like VGAE, there exists a variational alternative to ARGA, known as adversarially
regularized variational graph autoencoder or ARVGA. GALA [85] learns network
embedding by treating encoding and decoding steps as Laplacian smoothing and
Laplace sharpening respectively.

Contrastive Methods: DGI [49] leverages Deep-Infomax [103] for graph
datasets. Graph InfoClust or GIC [104] learns network embedding by maximizing
the mutual information with respect to the graph-level summary as well as the
cluster-level summaries. GMI [105] aims to learn node representations while
aiming to improve generalization performance via added contrastive regularization.
GCA [106] proposes adaptive augmentation techniques to contrast views between
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nodes and subgraphs or structurally transformed graphs. MVGRL [88] learns
graph embedding by contrasting multiple views of the input data.

In addition, we include G-BT [91] which is another approach making use of the
redundancy-minimization principle introduced in [53] as discussed in section 3.1.2.
For link prediction, we skip the three datasets where many public results are

missing and report these results in the supplementary material.

3.3.1.2 Settings

For link prediction, we follow the same link split as adopted by our competitors,
i.e., we split the edges into the training, validation, and test sets containing 85%,
5%, and 10% links respectively. For all the competitors we keep the same settings
as given by the authors. For the methods where multiple variants are given by
the authors(e.g., ARGA, ARVGA, etc.), we report the best results among all
the variants. For our approach, we keep the latent dimension to 512 for all the
experiments except CoauthorPhysics where d = 128 to avoid out-of-memory issues.
We use a single layer GCN encoder for BGAE, and two GCN encoders to output
the parameters µ(·) and σ(·) in case of the variational encoder block of BVGAE.
For all the experiments, we get S by setting the average degree to 25. The value of
the hyperparameter λ in equation 3.9 is set to 5e−3 for all the experiments. This is
the same as proposed in Barlow-Twins [53]. Adam [76] is used as the optimizer
with learning rate and rate decay set to 0.01 and 5e−6. The hyperparameter β is
fixed to 1 for all experiments. Instead of computing a closed-form solution, it is
sufficient to compute the BCE loss using the samples z. For this, we follow other
autoencoder-based approaches such as [39,93] for dataset splits and sampling of
positive/negative edges for every training iteration. For evaluation, we report the
area under the curve (AUC) and average precision (AP) metrics. All the results
are the average of 10 runs. Further implementation details can be found in [102].

3.3.1.3 Results

Table 3.2 gives the results for the link prediction task. For our approach, we give
the results for BGAE as well as BVGAE, both with and without attention. We can
observe that our approach achieves the best or second-best results in all the datasets.
Overall the variant of BGAE with attention performs well across all the datasets
and metrics. This validates the choice of attention as a fusion function. Among
the competitors, the contrastive approaches perform relatively better across all the
datasets. One exception is AmazonPhoto where ARGA achieves the best results.
However, as the next sections demonstrate, the performance of ARGA/ARVGA
degrades for downstream node classification and clustering. Another thing to
note is the results of G-BT. As the training epochs go on for G-BT, the results
degrade rapidly, often by about 30% of the results reported in table 3.2. Apart
from AmazonPhotos, there is a healthy margin between BGAE and G-BT mainly
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3.3 Experiments

because unlike BGAE, G-BT does not explicitly preserve the information in the
links.

3.3.2 Transductive Node Classification

3.3.2.1 Comparison Methods

We compare with 14 competitors for transductive node classification, using raw
features and DeepWalk(with features) as the baselines. In addition to the methods
briefed in section 3.3.1.1, we include two more contrastive methods i.e. GRACE and
BGRL: GRACE [51] learns network embedding by making use of multiple views
and contrasting the representation of a node with its raw information (e.g., node
features) or neighbors’ representations in different views. BGRL [107] eliminates
the need for negative samples by minimizing invariance between two augmented
versions of mini-batches of graphs.

3.3.2.2 Settings

The training phase uses the same settings as reported in section 3.3.1.2. For
transductive node classification, we do not need to split the edges into training/-
validation/test sets. So we use all the edges for self-supervised learning of the
node embeddings. For evaluating the embedding, a logistic regression head is
used with lbfgs solver. For this, we use the default settings of the scikit-learn
package. For citation datasets (Cora, CiteSeer, and PubMed), we follow the stan-
dard public splits for training/validation/test sets used in many previous works
such as [40, 49, 108, 109], i.e., 20 labels per class for training, 500 samples for
validation, and 1000 for testing. For WikiCS, we average over the 20 splits that are
publicly provided. For the rest of the datasets (AmazonPhoto, AmazonComputers,
CoauthorPhysics, and coauthorCS), we follow the split configuration of B-JT, i.e.
generate random splits with training, validation, and test sets containing 10%, 10%,
and 80% nodes respectively. For evaluation, we use accuracy as the metric.

3.3.2.3 Results

Table 3.3 gives the comparison between different algorithms for transductive node
classification. We can again observe consistently good results with our approach
for all eight datasets. For this task, the margin is rather small, especially for Cora
and CiteSeer, compared to the best competitor i.e. GMI. Nonetheless, our point
still stands well-conveyed that our approach performs on par with the well-known
network embedding techniques for transductive node classification. A comparison
of table 3.3 with table 3.2 demonstrates inconsistencies in the performance of our
competitors for the two tasks. This is mainly because either the competitors do
not explicitly preserve information in the links (e.g. MVGRL, G-BT, etc), or link
prediction is their main focus (e.g., in GAE/ARGA, etc). For instance, ARGA
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3.4 Conclusion

performed reasonably well for link prediction but fails to give a similar consistent
performance across all datasets in table 3.3. On the other hand, MVGRL performs
well in table 3.3, although it suffered in table 3.2.

3.3.3 Node Clustering

3.3.3.1 Settings

For clustering, we choose 10 methods in total for comparison, with the baseline
established by K-Means. The experimental configuration for node clustering follows
the same pattern as in section 3.3.1.2. For clustering, we use all the edges just like
in section 3.3.2.2, i.e., all the edges are used for self-supervised learning of the node
embeddings. Afterward, we use K-Means to infer the cluster assignments from the
embeddings. For evaluation, we use normalized mutual information (NMI) as the
metric.

3.3.3.2 Results

The results of the experiments for downstream node clustering are given in table 3.4.
Here again, we perform consistently well for all the datasets except CiteSeer, where
we achieve the second-best results by a small margin. It is worth noticing that
apart from CiteSeer, we achieve both the best and the second results using different
variants of BGAE. A comparison of table 3.3 with table 3.2 and table 3.4 again
highlights that no competitor algorithm performs consistently well for all the tasks
and datasets. For instance, ARGA performed well on some datasets in table 3.2.
However, its performance suffers in table 3.4. Similarly, GMI, which performs well
in table 3.3, is outperformed by many other algorithms in node clustering. On
the other hand, the algorithms such as GIC, that perform well in table 3.4 are
outperformed by others in table 3.3. This highlights the task-specific nature of the
network embedding learned by different competitors and also shows the efficacy of
BGAE across multiple tasks and datasets.

3.4 Conclusion

This work proposes a simple yet effective autoencoder-based approach for network
embedding that simultaneously employs the information in the immediate and larger
neighborhoods. To construct a uniform network embedding, the two information
sources are efficiently coupled using the redundancy-minimization principle. We
propose two variants, BGAE and BVGAE, depending upon the type of encoder
block. To construct a larger neighborhood from the immediate neighborhood, we
use graph diffusion. Our work is restricted to the networks with high homophily
because diffusion only works well for such networks. As demonstrated by the
extensive experimentation, our approach is on par with the well-known baselines,
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3 Barlow Graph Autoencoder

often outperforming them over a variety of tasks such as link prediction, clustering,
and transductive node classification.
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Community-Aware Network
Embedding
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4 Case of Homogeneous Networks

Based on the following peer-reviewed publication:

Khan, R.A.*, Anwaar, M.U.*, Kaddah, O.*, Han, Z*. and Kleinsteuber,
M., 2021, September. Unsupervised Learning of Joint Embeddings for Node
Representation and Community Detection. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases (pp. 19-35).
Springer, Cham.

In this chapter we simultaneously look at two important tasks in graph analysis:

� Network Embedding, which deals with learning the node embeddings of
a network. The quality of network embedding is measured by how well it
performs for the downstream tasks such as graph visualization [79,110–112],
node clustering, and transductive node classification [81,83].

� Community detection, where the objective is to cluster nodes into multiple
groups (communities). Each community is a set of densely connected nodes,
according to some defined similarity function. The communities can be
overlapping or non-overlapping, depending on whether they share some nodes
or not. Several algorithmic [113,114] and probabilistic approaches [79,115–117]
to community detection have been proposed. The task of community detection
is evaluated by employing some objective function that quantifies the inta-
community similarities against the inter-community similarities.

In the literature, these tasks are usually treated separately. Although the
standard graph embedding methods capture the basic connectivity, the learning
of the node embeddings is independent of community detection. For instance,
a simple approach can be to get the node embeddings via DeepWalk [63] and
get community assignments for each node by using k-means or the Gaussian
mixture model. Looking from the other perspective, methods like Bigclam [118],
that focus on finding the community structure in the dataset, perform poorly for
node-representation tasks e.g. node classification. This motivates us to study the
approaches that jointly learn community-aware node embeddings.
Recently several approaches, like CNRL [58], ComE [59], vGraph [60] etc, have

been proposed to learn the node embeddings and detect communities simultaneously
in a unified framework. Several studies have shown that community detection is
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4 Case of Homogeneous Networks

improved by incorporating the node representation in the learning process [81,119].
The intuition is that the global structure of graphs learned during community
detection can provide useful context for node embeddings and vice versa.
The joint learning methods (CNRL, ComE and vGraph) learn two embeddings

for each node. One node embedding is used for the node representation task.
The second node embedding is the “context” embedding of the node which aids
in community detection. As CNRL and ComE are based on Skip-Gram [120]
and DeepWalk [63], they inherit “context” embedding from it for learning the
neighborhood information of the node. vGraph also requires two node embeddings
for parameterizing two different distributions. In contrast, we propose learning a
single community-aware node representation that is directly used for both tasks.
In this work, we propose an efficient generative model called J-ENC for jointly

learning both community detection and node representation. The underlying
intuition behind J-ENC is that every node can be a member of one or more
communities. However, the node embeddings should be learned in such a way that
connected nodes are “closer” to each other than unconnected nodes. Moreover,
connected nodes should have similar community assignments. Formally, we assume
that for i-th node, the node embeddings zi are generated from a prior distribution
p(z). Given zi, the community assignments ci are sampled from p(ci|zi), which is
parameterized by node and community embeddings. In order to generate an edge
(i, j), we sample another node embedding zj from p(z) and respective community
assignment cj from p(cj|zj). Afterward, the node embeddings and the respective
community assignments of node pairs are fed to a decoder. The decoder ensures
that embeddings of both the nodes and the communities of connected nodes share
high similarity. This enables learning such node embeddings that are useful for
both community detection and node representation tasks.
We validate the effectiveness of our approach on several real-world graph datasets.

In section 4.3, we show empirically that J-ENC is able to outperform the baseline
methods including the direct competitors on all three tasks i.e. node classifica-
tion, overlapping community detection and non-overlapping community detection.
Furthermore, we compare the computational cost of training different algorithms.
J-ENC is up to 40x more time-efficient than its competitors. We also conduct
hyperparameter sensitivity analysis which demonstrates the robustness of our
approach. Our main contributions are summarized below:

� We propose an efficient generative model called J-ENC for joint community
detection and node representation learning.

� We adopt a novel approach and argue that a single node embedding is sufficient
for learning both the representation of the node itself and its context.

� Training J-ENC is extremely time-efficient in comparison to its competitors.

We restrict ourselves to the case of homogeneous graph datasets i.e. the networks
where the nodes are of the same type. This setting also ensures that the edges
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are also of the same type. A common example of such a graph is a social network,
where a node represents a user and an edge indicates a connection between two
users.

4.1 Related Work

4.1.1 Community Detection

Early community detection algorithms are inspired by clustering algorithms [121].
For instance, spectral clustering [73] is applied to the graph Laplacian matrix for
extracting the communities. Similarly, several matrix factorization-based methods
have been proposed to tackle the community detection problem. For example,
Bigclam [118] treats the problem as a non-negative matrix factorization (NMF)
task. Another method CESNA [117] extends Bigclam by modeling the interaction
between the network structure and the node attributes. Some generative models,
like vGraph [60], Circles [116] etc, have also been proposed to detect communities
in a graph.

4.1.2 Node Representation Learning

Many successful algorithms which learn node representation in an unsupervised
way are based on random walk objectives [48, 63, 75]. Some known issues with
random-walk-based methods (e.g. DeepWalk, node2vec etc) are: (1) They sacrifice
the structural information of the graph by putting over-emphasis on the proximity
information [84] and (2) great dependence of the performance on hyperparameters
(walk-length, number of hops etc) [63,75]. Some interesting GCN-based approaches
include graph autoencoders e.g. GAE and VGAE [39] and DGI [49].

4.1.3 Joint Community Detection and Node Representation Learning

In the literature, several attempts have been made to tackle both of these tasks in a
single framework. Most of these methods propose an alternate optimization process,
i.e. learn node embeddings and improve community assignments with them and vice
versa [58,59]. Some approaches (CNRL [58], ComE [59]) are inspired by random
walk, thus they inherit the issues discussed above. Others, like GEMSEC [122],
are limited to the detection of non-overlapping communities. Some generative
models like CommunityGAN [123] and vGraph [60] also jointly learn community
assignments and node embeddings. CNRL, ComE and vGraph require learning two
embeddings for each node for simultaneously tackling the two tasks. Unlike them,
J-ENC learns a single community-aware node representation which is directly used
for both tasks.
It is pertinent to highlight that although both vGraph and J-ENC adopt a

variational approach but the underlying models are quite different. vGraph assumes
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that each node can be represented as a mixture of multiple communities and is
described by a multinomial distribution over communities, whereas J-ENC models
the node embedding by a single distribution. For a given node, vGraph, first draws
a community assignment and then a connected neighbor node is generated based
on the assignment. Whereas, J-ENC draws the node embedding from the prior
distribution and then community assignment is conditioned on a single node only.
In simple terms, vGraph also needs edge information in the generative process
whereas J-ENC does not require it. J-ENC relies on the decoder to ensure that
embeddings of the connected nodes and their communities share high similarity
with each other.

4.2 Methodology

4.2.1 Problem Formulation

Suppose an undirected graph G = (V , E) with the adjacency matrix A ∈ RN×N

and a matrix X ∈ RN×F of F -dimensional node features, N being the number of
nodes. Given K as the number of communities, we aim to jointly learn the node
embeddings and the community embeddings following a variational approach such
that:

� One or more communities can be assigned to every node.

� The node embeddings can be used for both community detection and node
classification.

4.2.2 Variational Model

Let the random variables zi ∈ Rd and ci respectively denote the latent node
embeddings and community assignment for i-th node. The probability of the
constructing A is modelled as:

p(A) =

∫ ∑
c

pθ(Z, c,A)dZ, (4.1)

where θ denotes the model parameters, c stacks the community assignments as
c = [c1, c2, · · · , cN ]T and the matrix Z stacks the node embeddings zi. The joint
distribution in equation 4.1 is factorized as

p(Z, c,A) = p(Z) pθ(c|Z) pθ(A|c,Z). (4.2)

Let us denote elements of A by aij. Following existing approaches [39, 93], we
consider zi to be i.i.d. random variables. The conditional random variables ci|zi are
also assumed i.i.d. The reconstruction of aij depends upon the node embeddings zi

50



4.2 Methodology

and zj, as well as the community assignments ci and cj. The underlying intuition
comes from the observation that the connected nodes have a high probability of
falling into the same community. Since zi have been assumed i.i.d., we need to
reconstruct aij in a way to ensure the dependence between the connected nodes
and the communities chosen by them. Following these assumptions, the joint
distributions in equation 4.2 can be factorized as

p(Z) =
N∏
i=1

p(zi) (4.3)

pθ(c|Z) =
N∏
i=1

pθ(ci|zi) (4.4)

pθ(A|c,Z) =
∏
i,j

pθ(aij|ci, cj, zi, zj), (4.5)

where equation 4.5 assumes that the edge decoder pθ(aij|ci, cj, zi, zj) depends only
on ci, cj, zi and zj.

We aim to learn the model parameters θ such that log(pθ(A)) is maximized. In
order to ensure computational tractability, we introduce the approximate posterior

qϕ(Z, c|I) =
∏
i

qϕ(zi, ci|I) (4.6)

=
∏
i

qϕ(zi|I)qϕ(ci|zi, I), (4.7)

where ϕ denotes the parameters of the approximate posterior. We set I = (A,X)
if node features are available, otherwise I = A. The objective now takes the form

log(pθ(A)) = log

(
Eqϕ(Z,c|I)

{
p(Z) pθ(c|Z) pθ(A|c,Z)

qϕ(Z|I)qϕ(c|Z, I)

})
(4.8)

≥ Eqϕ(Z,c|I)

{
log

(
p(Z) pθ(c|Z) pθ(A|c,Z)

qϕ(Z|I)qϕ(c|Z, I)

)}
, (4.9)
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where 4.9 follows from Jensen’s Inequality. So we maximize, with respect to the
parameters θ and ϕ, the corresponding ELBO bound LELBO in 4.9, given by

LELBO ≈ −
N∑
i=1

DKL

(
qϕ(zi|I) || p(zi)

)
︸ ︷︷ ︸

Lenc

−
N∑
i=1

1

J

J∑
j=1

DKL

(
qϕ(ci|z(j)i , I) || pθ(ci|z(j)i )

)
︸ ︷︷ ︸

Lc

+
∑

(i,j)∈E

E(zi,zj ,ci,cj)∼qϕ(zi,zj ,ci,cj |I)

{
log
(
pθ(aij|ci, cj, zi, zj)

)}
︸ ︷︷ ︸

−Lrecon

, (4.10)

where DKL(·||·) represents the KL-divergence between two distributions. The
detailed derivation of equation 4.10 is provided in appendix B. Equation 4.10
contains three major summation terms as indicated by the braces under these
terms.

1. Lenc refers to the encoder loss. Minimizing this term minimizes the mismatch
between the approximate posterior and the prior distributions of the node
embeddings.

2. Lc gives the mismatch between the categorical distributions governing the
community assignments. Minimizing this term ensures that the community
assignments ci take into consideration the respective node embeddings.

3. The third term is the negative of the reconstruction loss or Lrecon. It is the neg-
ative of binary cross-entropy (BCE) between the input and the reconstructed
edges.

Instead of maximizing the ELBO bound, we can minimize the corresponding loss,
which we refer to as the variational loss or Lvar, given by

L = −LELBO = Lenc + Lc + Lrecon (4.11)

4.2.3 Choice of Distributions

Distributions Involved in Lenc: In equation 4.3, p(zi) is chosen to be the standard
gaussian distribution for all i. The corresponding approximate posterior qϕ(zi|I)
in equation 4.7, is also chosen to be a gaussian, with the parameters (mean µi and
variance σ2

i ) learned by the encoder block. i.e.

qϕ(zi|I) = N
(
µi(I), diag(σ2

i(I))
)
. (4.12)
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Distributions Involved in Lc: For parameterizing pθ(ci|zi) in equation 4.4, we
introduce community embeddings {g1, · · · , gK}; gk ∈ Rd. The distribution pθ(ci|zi)
is then modelled as the softmax of dot products of zi with gk, i.e.

pθ(ci = k|zi) = softmax(< zi,gk >). (4.13)

The softmax is over K community embeddings to ensure that pθ(ci|zi) is a distri-
bution. The corresponding approximate posterior qϕ(ci = k|zi, I) in equation 4.7
is affected by the node embedding zi as well as the neighborhood. To design this,
our intuition is to consider the similarity of gk with the embedding zi as well as
with the embeddings of the neighbors of the i-th node. The overall similarity with
neighbors is mathematically formulated as the average of the dot products of their
embeddings. Afterward, a hyperparameter α is introduced to control the bias
between the effect of zi and the set Ni of the neighbors of the i-th node. Finally, a
softmax is applied, i.e.

qϕ(ci = k|zi, I) = softmax
(
α < zi,gk > +(1− α)

1

|Ni|
∑
j∈Ni

< zj,gk >
)
. (4.14)

Hence, equation 4.14 ensures that graph structure information is employed to
learn community assignments instead of relying on an extraneous node embedding
as done in [59,60].

Distributions Involved in Lrecon: The distribution qϕ(zi, zj, ci, cj|I) in the third
term of equation 4.10 is factorized into two conditionally independent distributions
i.e.

qϕ(zi, zj, ci, cj|I) = qϕ(zi, ci|I)qϕ(zj, cj|I). (4.15)

where qϕ(zi, ci|I) factorization and the related distributions have been given in
equation 4.7, 4.12 and 4.14.
Finally, the edge-decoder in equation 4.5 is modeled to maximize the probability

of connected nodes having same community assignments, i.e.,

pθ(aij|ci = ℓ, cj = m, zi, zj) =
sigmoid(< zi,gm >) + sigmoid(< zj,gℓ >)

2
. (4.16)

The primary objective of the variational module in equation 4.11 is not to
directly optimize the community assignments, but to preserve edge information in
a community-aware fashion. So the information in the community embeddings, the
node embeddings, and the community assignments is simultaneously incorporated
by equation 4.16. This formation forces the community embeddings of the connected
nodes to be similar and vice versa. On one hand, this helps in learning better node
representations by leveraging the global information about the graph structure
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4 Case of Homogeneous Networks

Figure 4.1: Block diagram of J-ENC . The encoder (in yellow) maps I to Z, which, along with
the community embeddings gk, is used to sample c. Both Z and c are then fed to
the edge-decoder to reconstruct A. The trainable blocks of the architecture are
colored gray, and the deterministic functions are colored blue.

via community assignments. On the other hand, this also refines the community
embeddings by exploiting the local graph structure via node embeddings and edge
information.

4.2.4 Practical Aspects

Following the pattern in section 4.2.3, we discuss the practical considerations related
to the different loss terms in equation 4.10.

Conbsiderations Related to Lenc: For computational stability, we learn log(σ)
instead of variance in 4.7. The parameters of qϕ(zi|I) can be learned by any en-
coder network e.g. graph convolutional network [40], graph attention network [46],
GraphSAGE [48] or even two matrices to learn µi(I) and diag(σ2

i(I)). Samples
are then generated using reparameterization trick [19].

Conbsiderations Related to Lc: Since community assignment follows a categor-
ical distribution, we use Gumbel-softmax [124] for efficient backpropagation of the
gradients.

Conbsiderations Related to Lrecon: The third term in equation 4.10 is es-
timated in practice using the samples generated by the approximate posterior.
This term is equivalent to the negative binary cross-entropy (BCE) loss between
observed edges and reconstructed edges. The decoder block requires both positive
and negative edges for learning the respective distribution in equation 4.16. Hence
we follow the current approaches, e.g., [39, 93] and sample an equal number of
negative edges from A to provide at the decoder input along with the positive
edges.
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4.2.5 Inference

For inference, non-overlapping community assignment can be obtained for i-th
node as

Ci = argmax
k∈{1,··· ,K}

qϕ(ci = k|zi, I). (4.17)

To get overlapping community assignments for i-th node, we can threshold its
weighted probability vector at ϵ, a hyperparameter, as follows

Ci =
{
k

∣∣∣∣ qϕ(ci = k|zi, I)
max

ℓ
qϕ(ci = ℓ|zi, I)

≥ ϵ
}
, ϵ ∈ [0, 1]. (4.18)

4.2.6 Complexity

The computation of dot products for all combinations of node and community
embeddings takes O(NKd) time. Solving equation 4.14 further requires the calcu-
lation of the mean of dot products over the neighborhood for every node, which
takes O(|E|K) computations overall as we traverse every edge for every community.
Finally, we need softmax over all communities for every node in equation 4.13 and
equation 4.14 which takes O(NK) time. equation 4.16 takes O(|E|) time for all
edges as we have already calculated the dot products. As a result, the overall
complexity becomes O(|E|K +NKd). This complexity is quite low compared to
other algorithms designed to achieve similar goals [59, 125].

4.3 Experiments

4.3.1 Synthetic Example

We start with a synthetic dataset, consisting of 3 communities with 5 points per
community. This dataset is actually a random partition graph generated by the
python package networkx. The encoder simply consists of two matrices that give
µi(I) and diag(σ2

i(I)). The results of the community assignments discovered
by J-ENC are given in figure 4.2, where the node sizes are reciprocal to the
confidence of J-ENC in the community assignments. We choose 3 communities
for demonstration because the probabilistic community assignments in such case
can be thought of as rgb values for coloring the nodes. It can be seen that J-ENC
discovers the correct community structure. However, the two bigger nodes in the
center can be assigned to more than one community as J-ENC is not very confident
in the case of these nodes. This is evident from the colors which are a mix of red,
green and blue. We now proceed to the experiments on real-world datasets.
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4 Case of Homogeneous Networks

Figure 4.2: Visualization of community assignments discovered by J-ENC in the synthetic
dataset of 15 points divided into three communities.

4.3.2 Datasets

We have selected 18 different datasets ranging from 270 to 126,842 edges. For
non-overlapping community detection and node classification, we use 5 the cita-
tion datasets [108, 126]. The remaining datasets [116, 127], used for overlapping
community detection, are taken from SNAP repository [128]. Following [60], we
take 5 biggest ground truth communities for youtube, amazon and dblp. Moreover,
we also analyze the case of a large number of communities. For this purpose, we
prepare two subsets of the amazon dataset by randomly selecting 500 and 1000
communities from the 2000 smallest communities in the amazon dataset.

4.3.3 Baselines

For overlapping community detection, we compare with the following competitive
baselines: MNMF [79] learns community membership distribution by using joint
non-negative matrix factorization with modularity based regularization. BIG-
CLAM [118] also formulates community detection as a non-negative matrix factor-
ization (NMF) task. It simultaneously optimizes the model likelihood of observed
links and learns the latent factors which represent community affiliations of nodes.
CESNA [117] extends BIGCLAM by statistically modeling the interaction between
the network structure and the node attributes. Circles [116] introduces a genera-
tive model for community detection in ego networks by learning node similarity
metrics for every community. SVI [115] formulates membership of nodes in multiple
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Dataset |V| |E| K |F | Overlap

CiteSeer 3327 9104 6 3703 N
CiteSeer-full 4230 10674 6 602 N
Cora 2708 10556 7 1433 N
Cora-ML 2995 16316 7 2879 N
Cora-full 19793 126842 70 8710 N
fb0 333 2519 24 N/A Y
fb107 1034 26749 9 N/A Y
fb1684 786 14024 17 N/A Y
fb1912 747 30025 46 N/A Y
fb3437 534 4813 32 N/A Y
fb348 224 3192 14 N/A Y
fb414 150 1693 7 N/A Y
fb698 61 270 13 N/A Y
youtube 5346 24121 5 N/A Y
amazon 794 2109 5 N/A Y
amazon500 1113 3496 500 N/A Y
amazon1000 1540 4488 1000 N/A Y
dblp 24493 89063 5 N/A Y

Table 4.1: Every dataset has |V| nodes, |E| edges, K communities and |F | features. |F | = N/A
means that either the features were missing or not used.

communities by a Bayesian model of networks. vGraph [60] simultaneously learns
node embeddings and community assignments by modeling the nodes as being gen-
erated from a mixture of communities. vGraph+, a variant further incorporates
regularization to weigh local connectivity. ComE [59] jointly learns community
and node embeddings by using gaussian mixture model formulation. CNRL [58]
enhances the random walk sequences (generated by DeepWalk, node2vec etc) to
jointly learn community and node embeddings. CommunityGAN (ComGAN)is
a generative adversarial model for learning node embeddings such that the entries
of the embedding vector of each node refer to the membership strength of the node
to different communities. Lastly, we compare the results with the communities
obtained by applying k-means to the learned embeddings of DGI [49].

For non-overlapping community detection and node classification, in addition
to MNMF, DGI, CNRL, CommunityGAN, vGraph and ComE, we compare J-
ENC with the following baselines: DeepWalk [63] makes use of SkipGram
[120] and truncated random walks on the network to learn node embeddings.
LINE [83] learns node embeddings while attempting to preserve first and second-
order proximities of nodes. Node2Vec [75] learns the embeddings using biased
random walk while aiming to preserve network neighborhoods of nodes. Graph
Autoencoder (GAE) [39] extends the idea of autoencoders to graph datasets.
We also include its variational counterpart i.e. VGAE. GEMSEC is a sequence
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4 Case of Homogeneous Networks

sampling-based learning model which aims to jointly learn the node embeddings
and clustering assignments.

4.3.4 Settings

For overlapping community detection, we learn mean and log-variance ma-
trices of 16-dimensional node embeddings. We set α = 0.9 and ϵ = 0.3 in all our
experiments. Following [39], we first pre-train a variational graph autoencoder. We
perform gradient descent with Adam optimizer [76] and learning rate = 0.01. Com-
munity assignments are obtained using equation 4.18. For the baselines, we employ
the results reported by [60]. For evaluating the performance, we use F1-score and
Jaccard similarity.

For non-overlapping community detection, since the default implementations
of most the baselines use 128 dimensional embeddings, for we use d = 128 for fair
comparison. equation 4.17 is used for community assignments. For vGraph, we
use the code provided by the authors. We employ normalized mutual information
(NMI) and adjusted random index (ARI) as evaluation metrics.

For node classification, we follow the training split used in various previous
works [40,49,108], i.e. 20 nodes per class for training. We train logistic regression
using LIBLINEAR [129] solver as our classifier and report the evaluation results on
the rest of the nodes. For the algorithms that do not use node features, we train
the classifier by appending the raw node features with the learned embeddings. For
evaluation, we use F1-macro and F1-micro scores.
All the reported results are the average over five runs. Further implementation

details can be found in [130].

4.3.5 Discussion of Results

Tables 4.2 and 4.3 summarize the results of the performance comparison for the
overlapping community detection task.
First, we note that our proposed method J-ENC outperforms the competitors

on all datasets in terms of Jaccard score as well as F1-score, with the dataset
(fb0 ) being the only exception where J-ENC is the second best. These results
demonstrate the capability of J-ENC to learn multiple community assignments
quite well and hence reinforce our intuition behind the design of equation 4.14.
Second, we observe that there is no consistent performing algorithm among the

competitive methods. That is, excluding J-ENC , the best performance is achieved
by vGraph/vGraph+ on 5, ComGAN on 4 and ComE on 3 out of 13 datasets in
terms of F1-score. A similar trend can be seen in Jaccard Similarity. It is worth
noting that all the methods, which achieve the second-best performance, are solving
the task of community detection and node representation learning jointly.
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4.3 Experiments

Third, we observe that vGraph+ results are generally better than vGraph. This
is because vGraph+ incorporates a regularization term in the loss function which
is based on Jaccard coefficients of connected nodes as edge weights. However,
it should be noted that this prepossessing step is computationally expensive for
densely connected graphs.
table 4.4 shows the results on non-overlapping community detection. First, we

observe that MNMF, DeepWalk, LINE and Node2Vec provide a good baseline for
the task. However, these methods are not able to achieve comparable performance
on any dataset relative to the frameworks that treat the two tasks jointly. Second,
J-ENC consistently outperforms all the competitors in NMI and ARI metrics,
except for CiteSeer where it achieves second best ARI. Third, we observe that
GCN-based models i.e. GAE, VGAE and DGI show competitive performance. That
is, they achieve the second best performance in all the datasets except CiteSeer. In
particular, DGI achieves second-best NMI results in 3 out of 5 datasets and 2 out
of 5 datasets in terms of ARI. Nonetheless, DGI results are not very competitive in
table 4.2 and table 4.3, showing that while DGI can be a good choice for learning
node embeddings for attributed graphs with non-overlapping communities, it is
not the best option for non-attributed graphs or overlapping communities.
The results for node classification are presented in table 4.5. J-ENC achieves

best F1-micro and F1-macro scores on 4 out of 5 datasets. We also observe that
GCN-based models i.e. GAE, VGAE and DGI show competitive performance,
following the trend in results of table 4.4. Furthermore, we note that the node
classification results of CommunityGan (ComGAN) are quite poor. We think a
potential reason behind it is that the node embeddings are constrained to have the
same dimensions as the number of communities. Hence, different components of
the learned node embeddings simply represent the membership strengths of nodes
for different communities. The linear classifiers may find it difficult to separate
such vectors.

4.3.6 Hyperparameter Sensitivity

We study the dependence of J-ENC on ϵ and α by evaluating on four datasets
of different sizes: fb698 (N = 61), fb1912 (N = 747), amazon1000 (N=1540) and
youtube(N = 5346).
Effect of ϵ: We sweep for ϵ = {0.1, 0.2, · · · , 0.9}. For demonstrating effect of α,

we fix ϵ = 0.3 and sweep for α = {0.1, 0.2, · · · , 0.9}. The average results of five runs
for ϵ and α are given in figure 4.3(a) and figure 4.3(b) respectively. Overall J-ENC
is quite robust to the change in the values of ϵ and α. In the case of ϵ, we see a
general trend of decrease in performance when the threshold ϵ is set quite high e.g.
ϵ > 0.7. This is because the datasets contain overlapping communities and a very
high ϵ will cause the algorithm to give only the most probable community assignment
instead of potentially providing multiple communities per node. However, for a
large part of the sweep space, the results are almost consistent.
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(a) Effect of ϵ. Overall a slight decrease in scores can be observed
after ϵ = 0.7 mark.
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(b) Effect of α. The scores generally tend to decrease for small
values of α.

Figure 4.3: Effect of hyperparameters on the performance. F1 and Jaccard scores are in solid
and dashed lines respectively.

Effect of α: When ϵ is fixed and α is changed, the results are mostly consistent
except when α is set to a low value. equation 4.14 shows that in such a case the
node itself is almost neglected and J-ENC tends to assign communities based upon
neighborhood only, which may cause a decrease in the performance. This effect
is most visible in amazon1000 dataset because it has only 1.54 points on average
per community. This implies a decent chance for neighbors of a point of being in
different communities. Thus, sole dependence on the neighbors will most likely
result in poor results.
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Figure 4.4: Comparison of running times of different algorithms. We can see that J-ENC
outperforms the direct competitors. The time on the y-axis is in the log scale.

4.3.7 Training Time

Now we compare the training times of different algorithms in figure 4.4. As some
of the baselines are more resource intensive than others, we select AWS instance
type g4dn.4xlarge for a fair comparison of training times. For vGraph, we train
for 1000 iterations and for J-ENC for 1500 iterations. For all other algorithms, we
use the default parameters as used in section 4.3.4. We observe that the methods
that simply output the node embeddings take relatively less time compared to the
algorithms that jointly learn node representations and community assignments e.g
J-ENC , vGraph and CNRL. Among these algorithms J-ENC is the most time
efficient. It consistently trains in less time compared to its direct competitors. For
instance, it is about 12 times faster than ComE for CiteSeer-full and about 40
times faster compared to vGraph for Cora-full dataset. This provides evidence for
the lower computational complexity of J-ENC in Section 4.2.6.

4.3.8 Visualization

Our experiments demonstrate that a single community-aware node embedding is
sufficient to aid in both the node representation and community assignment tasks.
This is also qualitatively demonstrated by graph visualizations of node embeddings
(obtained via t-SNE [131]) and inferred communities for two datasets, fb107 and
fb3437, presented in figure 4.5.

4.4 Conclusion

We propose a scalable generative method J-ENC to simultaneously perform
community detection and node representation learning. Our novel approach learns a
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single community-aware node embedding for both the representation of the node and
its context. J-ENC is scalable due to its low complexity, i.e. O(|E|K+NKd). The
experiments on several graph datasets show that J-ENC consistently outperforms
all the competitive baselines on node classification, overlapping community detection
and non-overlapping community detection tasks. Moreover, training the J-ENC is
highly time-efficient than its competitors.
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(a) fb107

(b) fb3437

Figure 4.5: Graph visualization with community assignments (better viewed in color)

67
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Based on the following peer-reviewed publication:

Khan, R.A.* and Kleinsteuber, M., 2022, February. Cluster-Aware
Heterogeneous Information Network Embedding. In Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining
(pp. 476-486).

A large number of real-world phenomena express themselves in the form of
heterogeneous information networks or HINs consisting of multiple node types and
edges. For instance, figure 5.1 illustrates a sample HIN consisting of three types
of nodes (authors, papers, and conferences) and two types of edges. A red edge
indicates that an author has written a paper and blue edge models the relation
that a paper is published in a conference. Compared to homogeneous networks (i.e.,
the networks consisting of only a single node type and edge type), HINs are able to
convey a more comprehensive view of data by explicitly modeling the rich semantics
and complex relations between multiple node types. The advantages of HINs over
homogeneous networks have resulted in an increasing interest in the techniques
related to HIN embedding [61]. The main idea of a network embedding is to project
the graph nodes into a continuous low-dimensional vector space such that the
structural properties of the network are preserved [25,26]. Many HIN embedding
methods follow meta-paths based approaches to preserve HIN structure [65,132,133],
where a meta-path is a template indicating the sequence of relations between two
node types in HIN. As an example, PAP and PCP in figure 5.1 are two meta-paths
defining different semantic relations between two paper nodes. Although the HIN
embedding techniques based on meta-paths have received considerable success,
meta-path selection is still an open problem. Above that, the quality of HIN
embedding highly depends on the selected meta-path [64]. To overcome this issue,
either domain knowledge is utilized, which can be subjective and expensive, or some
strategy is devised to fuse the information from predefined meta-paths [65–67].
As discussed in chapter 4, community detection is another important task for

unsupervised network analysis, where the aim is to group similar graph nodes
together. The most basic approach to achieve this can be to apply an off-the-shelf
clustering algorithm, e.g., K-Means or Gaussian Mixture Model (GMM), on the
learned network embedding. However, this usually results in suboptimal results
because of treating the two highly correlated tasks, i.e., network embedding and
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5 Case of Heterogeneous Networks

node clustering, in an independent way. There has been substantial evidence from
the domain of euclidean data that the joint learning of latent embeddings and
clustering assignments yields better results compared to when these two tasks
are treated independently [54–57]. For homogeneous networks, there are some
approaches, e.g., [58, 122, 123], that take motivation from the euclidean domain
to jointly learn the network embedding and the node community assignments.
However, no such approach exists for HINs to the best of our knowledge.
We propose an approach for Variational Community Aware HIN Embedding,

called VaCA-HINE to address the above challenges of meta-path selection and
joint learning of HIN embedding and community assignments. Our approach
makes use of two parts that simultaneously refine the target network embedding by
optimizing their respective objectives. The first part employs a variational approach
to preserve pairwise proximity in a community-aware manner by aiming that the
connected nodes fall in the same community and vice versa. The second part utilizes
a contrastive approach to preserve high-order HIN semantics by discriminating
between real and corrupted instances of different meta-paths. VaCA-HINE is
flexible in the sense that multiple meta-paths can be simultaneously used and they
all aim to refine a single embedding. Hence, the HIN embedding is learned by
jointly leveraging the information in pairwise relations, the community assignments,
and the high-order HIN structure.
Our major contributions are summarized below:

� To the best of our knowledge, our work is the first to propose a unified approach
for learning the HIN embedding and the node community assignments in a
joint fashion.

� We propose a novel architecture that fuses together variational and contrastive
approaches to preserve pairwise proximity as well as high-order HIN semantics
by simultaneously employing multiple meta-paths, such that the meta-path
selection problem is also mitigated.

� We show the efficacy of our approach by conducting community detection
and downstream node classification experiments on multiple datasets.

5.1 Preliminaries

This section sets up the basic definitions and notations that will be followed in the
subsequent sections.

Definition 5.1.1 (Heterogeneous Information Network). A Heterogeneous Infor-
mation Network or HIN is defined as a graph G = {V , E ,A,R, π, λ} with the sets
of nodes and edges represented by V and E respectively. A and R denote the sets
of node types and edge types respectively. In addition, a HIN has a node-type
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A1

A2

A3

A4

P1

P2

P3

P4

C1

C2

Authors(A) Papers(P) Conferences(C)

Figure 5.1: A sample HIN with three node types and two edge types.

mapping function π : V → A and an edge-type mapping function λ : E → R such
that |A|+ |R| > 2.

Example: Figure 5.1 illustrates a sample HIN on an academic network,
consisting of three node types, i.e., authors(A), papers(P), and conferences (C).
Assuming symmetric relations between nodes, we end up with two types of edges,
i.e., the author-paper edges, colored in red, and the paper-conference edges, colored
in blue.

Definition 5.1.2 (Meta-path). A meta-path M of length |M| is defined on the
graph network schema as a sequence of the form

A1
R1−→ A2

R2−→ · · ·
R|M|−−−→ A|M|+1,

where Ai ∈ A and Ri ∈ R. Using ◦ to denote the composition operator on relations,
a meta-path can be viewed as a composite relation R|M| ◦R|M|−1 · · · ◦R1 between
A1 and A|M|+1. A meta-path is often abbreviated by the sequence of the involved
node types i.e. (A1A2 · · ·A|M|+1).

Example: In figure 5.1, although no direct relation exists between authors,
we can build semantic relations between them based on the co-authored papers.
This results in the meta-path (APA). We can also go a step further and define a
longer meta-path (APCPA) by including conference nodes. Similarly, semantics
between two papers can be defined in terms of the same authors or same conferences,
yielding two possible meta-paths, i.e., (PAP) and (PCP).
In this work, we denote the p-th meta-path by Mp and the set of the samples of

Mp by {mp} where mp refers to a single sample of Mp. The node at n-th position
in mp is denoted by mp(n).
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5.2 Related Work

Unsupervised Network Embedding: Most of the earlier work on network
embedding targets homogeneous networks and employs random-walk-based objec-
tives, e.g., DeepWalk [63], Node2Vec [75], and LINE [83]. Afterward, the success
of different graph neural network (GNN) architectures (e.g., graph convolutional
network or GCN [40], graph attention network or GAT [46] and GraphSAGE [48],
etc.) gave rise to GNN based network embedding approaches [25,26]. For instance,
graph autoencoders(GAE and VGAE [39]) extend the idea of variational autoen-
coders [134] to graph datasets while deploying GCN modules to encode latent
node embeddings as gaussian random variables. Deep Graph Infomax (DGI [49])
is another interesting approach that employs a GCN encoder. DGI extends the
idea of Deep Infomax [103] to the graph domain and learns network embedding
in a contrastive fashion by maximizing mutual information between a graph-level
representation and high-level node representations. Nonetheless, these methods are
restricted to homogeneous graphs and fail to efficiently learn the semantic relations
in HINs.
Many HIN embedding methods, for instance Metapath2Vec [132], HIN2Vec [65],

RHINE [135] and HERec [133], etc., are partially inspired by homogeneous network
embedding techniques in the sense that they employ meta-paths based random
walks for learning HIN embedding. In doing so, they inherit the known challenges
of random walks such as high dependence on hyperparameters and sacrificing
structural information to preserve proximity information [84]. Moreover, their
performance highly depends upon the selected meta-path or the strategy adopted
to fuse the information from different meta-paths. Recent literature also pro-
poses HIN embedding using approaches that do not depend on one meta-path.
For instance, a jump-and-stay strategy is proposed in [64] for learning the HIN
embedding. HeGAN [136] employs a generative adversarial approach for HIN
embedding. Following DGI [49], HDGI [137] adopts a contrastive approach based
on mutual information maximization. NSHE [138] is another HIN-related approach
that learns two sets of embeddings to simultaneously preserve information in edges
and multiple network schema. DHNE [139] is a hyper-network embedding-based
approach that can be used to learn HIN embedding by considering meta-paths
instances as hyper-edges.

Community Detection: For homogeneous networks, we classify the approaches
for community detection into the following three classes:

1. The most basic approach is the unsupervised learning of the network em-
bedding, followed by a clustering algorithm, e.g., K-Means or GMM, on the
embedding.

2. Some architectures learn the network embedding with the primary objective to
find good cluster/community assignments for nodes [140, 141]. However, they
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usually do not perform well on downstream tasks such as node classification
as the embeddings are primarily aimed to find clusters/communities.

3. There are some other approaches, e.g., CommunityGAN [123], CNRL [58]
and GEMSEC [122], etc., that take motivation from the euclidean domain to
jointly learn the network embedding and the community assignments.

To the best of our knowledge, there exists no approach for HINs that can be
classified as (3) as per the above list. For HINs, the known methods use mostly
the basic approach, stated in (1), to infer the community assignments from the
HIN embedding. At this point, it is worth clarifying that in theory, the output
of any hidden layer in a sequential GNN can be viewed as some sort of network
embedding. However, these representations are highly task-specific, just like the
output of a penultimate layer of a simple convolutional network used for image
classification. To address this very concern, the methods, that claim to learn
unsupervised network embedding, evaluate the quality of the embedding on some
downstream task like link prediction or transductive node classification etc., as done
by the class-(3) techniques for homogeneous networks such as [58–60,122] etc. It is
worth noticing that devising an approach of class (3) for HINs is non-trivial as it
requires explicit modeling of heterogeneity as well as a revision of the sampling
techniques. VaCA-HINE is classified as (3) as it presents a unified approach for
community-aware HIN embedding that can also be utilized for downstream tasks
such as node classification.

5.3 Problem Formulation

Suppose a HIN G = {V , E ,A,R, π, λ} and a matrix X ∈ RN×F of node features, N
being the number of nodes. Let A ∈ {0, 1}N×N denote the adjacency matrix of G,
with aij referring to the element in i-th row and j-th column of A. Given K as the
number of communities, our aim is to jointly learn the d-dimensional community
embeddings as well as the HIN embedding such that these embeddings can be used
for community detection as well as downstream node classification.

Figure 5.2 gives an overview of the VaCA-HINE framework. It consists of a
variational module and a set of contrastive modules. The main goal of the variational
module is to optimize the reconstruction of A by simultaneously incorporating
the information in the HIN edges and the communities. The contrastive modules
aim to preserve the high-order structure by discriminating between the positive
and negative samples of different meta-paths. So, if M meta-paths are selected
to preserve high-order HIN structure, the overall loss function, to be minimized,
becomes
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Figure 5.2: Overview of VaCA-HINE architecture. For illustrational convenience, the varia-
tional encoder block has been extracted to the top-left. All the encoder blocks have
been colored yellow to highlight that a single shared encoder is used in the whole
architecture. Blocks containing learnable and non-learnable parameters are colored
gray and blue respectively. On the bottom, lies the variational module for learning
the node embeddings Z and the community embeddings {gk}Kk=1 such that the vari-
ational loss Lvar, given in equation 5.8, is minimized. The p-th contrastive module
lies on the top right. It discriminates between true/positive and corrupted/negative
samples for the meta-path Mp. The red-dashed arrow indicates the corruption of
the positive samples {mp} of the meta-path Mp, to generate negative samples {mp}.
The encoded representations of the true and corrupted versions of the respective
meta-path samples are denoted by {Zp} and {Zp}. These representations, along
with the summary vectors s

(
{Zp}

)
, are fed to the discriminator Dp

φ to distinguish
between positive and negative samples.

L = Lvar + Lcont (5.1)

= Lvar +
M∑
p=1

Lp, (5.2)

where Lvar and Lcont refer to the loss of variational module and contrastive modules
respectively. We now discuss these modules along with their losses in detail.

5.4 Variational Module

The objective of the variational module is to recover the adjacency matrix A.
More precisely, we aim to learn the free parameters θ of our model such that
log
(
pθ(A)

)
is maximized. This module is closely related to section 4.2.2 in terms of

the underlying objective and basic assumptions on prior pθ(·) and the approximate
posterior qϕ(·). So, we can write log

(
pθ(A)

)
as
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log

(
pθ(A)

)
= log

(∫ ∑
c

pθ(Z, c,A)dZ

)
(5.3)

= log

(∫ ∑
c

p(Z)pθ(c|Z)pθ(A|c,Z)dZ

)
(5.4)

= log

(
Eqϕ(Z,c|I)

{
p(Z) pθ(c|Z) pθ(A|c,Z)

qϕ(Z|I)qϕ(c|Z, I)

})
(5.5)

≥ Eqϕ(Z,c|I)

{
log

(
p(Z) pθ(c|Z) pθ(A|c,Z)

qϕ(Z|I)qϕ(c|Z, I)

)}
, (5.6)

where we define I = (A, π, λ,X) for notational convenience. Here 5.6 follows from
Jensen’s Inequality. So we maximize, with respect to the parameters θ and ϕ, the
corresponding ELBO bound LELBO in 5.6, given by

LELBO ≈ −
N∑
i=1

DKL(qϕ(zi|I) || p(zi))︸ ︷︷ ︸
Lenc

−
N∑
i=1

1

J

J∑
j=1

DKL(qϕ(ci|z(j)i , I) || pθ(ci|z(j)i ))︸ ︷︷ ︸
Lc

+
∑

(i,j)∈E

Eqϕ(zi,zj ,ci,cj |I)

{
log

(
pθ(aij|ci, cj, zi, zj)

)}
︸ ︷︷ ︸

−Lrecon

, (5.7)

where DKL(·||·) represents the KL-divergence between two distributions. The
detailed derivation of equation 5.7 is provided in appendix B. It is worth noticing
that Equation 5.7 is similar to equation 4.10. The individual terms p(zi), qϕ(zi|I),
pθ(ci|zi), qϕ(ci|zi, I), and pθ(aij|ci, cj, zi, zj) in 5.7 are obtained by applying the
same assumptions on the random variables as in section 4.2.2.
Instead of maximizing the ELBO bound, we can minimize the corresponding

loss, which we refer to as the variational loss or Lvar, given by

Lvar = −LELBO = Lenc + Lc + Lrecon (5.8)

5.4.1 Choice of Distributions

The distributions involved in Lenc and Lrecon are the same as briefed in section 4.2.3.
For the term Lc, we need to carefully incorporate the information in the K commu-
nity embeddings {g1, g2, · · · , gK}, gk ∈ Rd as well as the high order HIN structure.
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The prior pθ(ci|zi) is the same as equation 4.13. The corresponding approximate
posterior qϕ(ci|zi, I) in equation 5.7 is conditioned on the node embedding zi as
well as the high-order HIN structure. The intuition governing its design is that if
i-th node falls into k-th community, its immediate neighbors as well as high-order
neighbors have a relatively higher probability of falling in the k-th community,
compared to the other nodes. To model this mathematically, we make use of
the samples of the meta-paths involving the i-th node. Let us denote this set as
ζi = {m | ∃n : m(n) = i}. For every meta-path sample, we average the embeddings
of the nodes constituting the sample. Afterward, we get a single representative
embedding by averaging over ζi as

ẑi =
1

|ζi|
∑
m∈ζi

1

|m|+ 1

|m|+1∑
n=1

zm(n). (5.9)

The posterior distribution qϕ(ci|zi, I) can now be modeled similar to the prior as

qϕ(ci = k|zi, I) = softmax(< ẑi,gk >). (5.10)

So, while the prior targets only zi for ci, the equation 5.10 relies on the high-
order HIN structure by targeting meta-path-based neighbors. Minimizing the
KL-divergence between these two distributions ultimately results in an agreement
where nearby nodes tend to have the same community assignments and vice versa.

5.4.2 Practical Considerations

Following the same pattern as in section 4.2.3, we go through the individual loss
terms in Lvar and discuss the practical aspects related to minimization of these
terms.

5.4.2.1 Considerations Related to Lenc

For computational stability, we learn log(σ) instead of variance in qϕ(z|I). In theory,
the parameters of qϕ(zi|I) can be learned by any suitable network, e.g., relational
graph convolutional network (RGCN [62]), graph convolutional network (GCN [40]),
graph attention network (GAT [46]), GraphSAGE [48], or even two linear modules.
In practice, some encoders may give better HIN embedding than others. Appendix
C.2 contains further discussion on this. For efficient backpropagation, we use the
reparameterization trick [19] as illustrated in the encoder block in figure 5.2.

5.4.2.2 Considerations Related to Lc

Since the community assignments in equation 5.10 follow a categorical distribution,
we use Gumbel-softmax [124] for efficient back-propagation of the gradients. In
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the special case where a node i does not appear in any meta-path samples, we
formulate ẑi in 5.9 by averaging over its immediate neighbors. i.e.

ẑi =
1

|{j : aij = 1}|
∑

j: aij=1

zj, (5.11)

i.e., when meta-path-based neighbors are not available for a node, we restrict
ourselves to leveraging the information in first-order neighbors only.

5.4.2.3 Considerations Related to Lrecon

The decoder block is the same as defined for the homogeneous networks in sec-
tion 4.2.4 because it aims to simply discern between positive and negative edges.

5.5 Contrastive Modules

In addition to the variational module, VaCA-HINE architecture consists of M
contrastive modules, each referring to a meta-path. All the contrastive modules
target the same HIN embedding Z generated by the variational module. Every
module contributes to the enrichment of the HIN embedding by aiming to preserve
the high-order HIN structure corresponding to a certain meta-path. This, along
with the variational module, enables VaCA-HINE to learn HIN embedding by
exploiting the local information (in the form of pairwise relations) as well as the
global information (in the form of community assignments and samples of different
meta-paths). In this section, we discuss the architecture and the loss of p-th module
as shown in the figure 5.2.

5.5.1 Architecture of p-th Contrastive Module

5.5.1.1 Input

The input to p-th module is the set {mp} consisting of the samples of the meta-path
Mp.

5.5.1.2 Corruption

As indicated by the red-dashed arrow in figure 5.2, a corruption function is used to
generate the set {mp} of negative/corrupted samples using the HIN information
related to true samples, wheremp is a negative sample corresponding tomp. VaCA-
HINE performs corruption by permuting the matrix X row-wise to shuffle the
features between different nodes.
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5.5.1.3 Encoder

All the contrastive blocks in VaCA-HINE use the same encoder, as used in the
variational module. For a sample mp, the output of encoder is denoted by the
matrix Zp ∈ R(|Mp|+1)×d given by

Zp = [zmp(1), zmp(2), · · · , zmp(|Mp|+1)] (5.12)

Following the same approach, we can obtain Zp for a corrupted sample mp.

5.5.1.4 Summaries

The set of the representations of {mp}, denoted by {Zp}, is used to generate the
summary vectors s(mp) given by

s(mp) =
1

|Mp|+ 1

|Mp|+1∑
n=1

zmp(n). (5.13)

5.5.1.5 Discriminator

The discriminator of p-th block is denoted by Dp
φ where φ collectively refers to

the parameters of all the contrastive modules. The aim of Dp
φ is to differentiate

between positive and corrupted samples of Mp. It takes the representations {Zp}
and {Zp} along with the summary vectors at the input, and outputs a binary
decision for every sample, i.e., 1 for positive and 0 for negative or corrupted samples.
Specifically, for a sample mp, the discriminator Dp

φ first flattens Zp in equation 5.12
into vp by vertically stacking the columns of Zp as

vp =
|Mp|+1

∥
n=1

zmp(n), (5.14)

where ∥ denotes the concatenation operator. Afterward, the output of Dp
φ is given

by

Dp
φ

(
mp, s(mp)

)
= sigmoid

(
vT
p Wps(mp)

)
, (5.15)

whereWp ∈ R(|Mp|+1)×d is the learnable weight matrix of Dp
φ. Similarly, for negative

sample mp,

Dp
φ

(
mp, s(mp)

)
= sigmoid

(
vT
pWps(mp)

)
, (5.16)

where vT
p is the flattened version of Zp.
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5.5.2 Loss of p-th Contrastive Module

The outputs in equation 5.15 and 5.16 can be respectively viewed as the probabilities
of mp and mp being positive samples according to the discriminator. Consequently,
we can model the contrastive loss Lp, associated with the p-th block, in terms
of the binary cross-entropy loss between the positive and the corrupted samples.
Considering J negative samples m(j)

p for every positive sample mp, the loss Lp can
be written as

Lp = − 1

(J + 1)× |{mp}|
∑

mp∈{mp}

(
log
[
Dp

φ

(
mp, s(mp)

)]
+

J∑
j=1

log
[
1−Dp

φ

(
m(j)

p , s(mp)
)])

. (5.17)

Minimizing Lp preserves the high-order HIN structure by ensuring that the
correct samples of Mp are distinguishable from the corrupted ones. This module
can be replicated for different meta-paths. Hence, given M meta-paths, we have
M contrastive modules, each one aiming to preserve the integrity of the samples of
a specific meta-path by using a separate discriminator. The resulting loss, denoted
by Lcont, is the sum of the losses from all the contrastive modules as defined in
equation 5.2. Since the encoder is shared between the variational module and
the contrastive modules, minimizing Lcont ensures that the node embeddings also
leverage the information in the high-order HIN structure.

5.6 Experiments

In this section, we conduct an extensive empirical evaluation of our approach.
We start with a brief description of the datasets and the baselines selected for
evaluation. Afterward, we provide the experimental setup for the baselines as
well as for VaCA-HINE . Then we analyze the results of community detection
and downstream node classification tasks. Since most of our competitors limit
themselves to non-overlapping communities, we follow the same for sake of fair
comparison. Furthermore, appendix C.2 contains the evaluation with different
encoder modules both with and without contrastive loss Lcont.

5.6.1 Datasets

We select two academic networks and a subset of IMDB [142] for our experiments.
The detailed statistics of these datasets are given in table 5.1.
DBLP [62]: The extracted subset of DBLP has the author and paper nodes

divided into four areas, i.e., database, data mining, machine learning, and informa-
tion retrieval. We report the results of community detection and node classification
for author nodes as well as paper nodes by comparing with the research area as
the ground truth. We do not report the results for conference nodes as they are
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Name Nodes #Nodes Relations #Relations Meta-paths

DBLP
Papers (P) 9556

P-A
P-C

18304
9556

ACPCA
Authors (A) 2000 APA

Conferences (C) 20 ACA

ACM
Papers (P) 4019

P-A
P-S

13407
4019

PAP
PSPAuthors (A) 7167

Subjects (S) 60

IMDB
Movies (M) 3676

M-A
M-D

11028
3676

MAM
MDMActors (A) 4353

Directors (D) 1678

Table 5.1: Statistics of the datasets used for evaluation.

only 20 in number. To distinguish between the results of different node types, we
use the names DBLP-A and DBLP-P respectively for the part of DBLP with the
node-type authors and papers.
ACM [142]: Following [142] and [138], the extracted subset of ACM is chosen

with papers published in KDD, SIGMOD, SIGCOMM, MobiCOMM and VLDB.
The paper features are the bag-of-words representation of keywords. They are
classified based on whether they belong to data mining, database, or wireless
communication.
IMDB [142]: Here we use the extracted subset of movies classified according

to their genre, i.e., action, comedy, and drama.

5.6.2 Baselines

We compare the performance of VaCA-HINE with 15 competitive baselines used
for unsupervised network embedding. These baselines include 5 homogeneous
network embedding methods, 3 techniques proposed for joint homogeneous network
embedding and community detection, and 7 HIN embedding approaches. Deep-
Walk [63] learns the node embeddings by first performing classical truncated
random walks on an input graph, followed by the skip-gram model. LINE [83]
samples node pairs directly from a homogeneous graph and learns node embeddings
with the aim of preserving first-order or second-order proximity, respectively denoted
by LINE-1 and LINE-2 in this work. GAE [39] extends the idea of autoencoders
to graph datasets. The aim here is to reconstruct A for the input homogeneous
graph. VGAE [39] is the variational counterpart of GAE. It models the latent
node embeddings as Gaussian random variables and aims to optimize log

(
p(A)

)
using a variational model. DGI [49] extends Deep-Infomax [103] to graphs. This
is a contrastive approach to learning network embedding such that the true samples
share a higher similarity to a global network representation (known as summary),
as compared to the corrupted samples. GEMSEC [122] jointly learns network
embedding and node clustering assignments by sequence sampling. CNRL [58]
makes use of the node sequences generated by random-walk-based techniques, to
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jointly learn node communities and node embeddings. CommunityGAN [123] is
a generative adversarial approach for learning community-based network embedding.
Given K as the number of desired communities, it learns K-dimensional latent
node embeddings such that every dimension gives the assignment strength for the
target node in a certain community. Metapath2Vec [132] is a HIN embedding
approach that makes use of a meta-path when performing random walks on graphs.
The generated random walks are then fed to a heterogeneous skip-gram model,
thus preserving the semantics-based similarities in a HIN. HIN2Vec [65] jointly
learns the embeddings of nodes as well as meta-paths, thus preserving the HIN
semantics. The node embeddings are learned such that they can predict the meta-
paths connecting them. HERec [133] learns semantic-preserving HIN embedding
by designing a type-constraint strategy for filtering the node-sequences based upon
meta-paths. Afterward, skip-gram model is applied to get the HIN embedding.
HDGI [137] extends DGI model to HINs. The main idea is to disassemble a HIN
into multiple homogeneous graphs based upon different meta-paths, followed by
semantic-level attention to aggregate different node representations. Afterward, a
contrastive approach is applied to maximize the mutual information between the
high-level node representations and the graph representation. DHNE [139] learns
hyper-network embedding by modeling the relations between the nodes in terms of
indecomposable hyper-edges. It uses deep autoencoders and classifiers to realize
a non-linear tuple-wise similarity function while preserving both local and global
proximities in the formed embedding space. NSHE [138] embeds a HIN by jointly
learning two embeddings: one for optimizing the pairwise proximity, as dictated
by A, and the second one for preserving the high-order proximity, as dictated by
the meta-path samples. HeGAN [136] is a generative adversarial approach for
learning HIN embedding by discriminating between real and fake heterogeneous
relations.

5.6.3 Implementation Details

For Baselines: The embedding dimension d for all the methods is kept to 128.
The only exception is CommunityGAN because it requires the node embeddings
to have the same dimensions as the desired communities, i.e., d = K. The rest of
the parameters for all the competitors are kept the same as given by their authors.
For GAE and VGAE, the number of sampled negative edges is the same as the
positive edges as given in the original implementations. For the competitors that
are designed for homogeneous graphs (i.e., DeepWalk, LINE, GAE, VGAE, and
DGI), we treat the HINs as homogeneous graphs. For the methods Metapath2Vec
and HERec, we test all the meta-paths in table 5.1 and report the best results. For
DHNE, the meta-path instances are considered as hyper-edges. The embeddings
obtained by DeepWalk are used for all the models that require node features. For
VaCA-HINE : The meta-path samples are generated using dgl [143] and the
overall architecture is implemented in pytorch-geometric [144]. For every meta-path,
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we select 10 samples from every starting node. For the loss Lp in equation 5.17,
we select J = 1, i.e., we generate one negative sample for every positive sample.
The joint community assignments are obtained as the argmax of the corresponding
community distribution. All the results are presented as an average of 10 runs.
Kindly refer to [145] and the appendix C.1 for further details of implementation.

5.6.4 Community Detection

We start by evaluating the learned embeddings on community detection. Apart from
GEMSEC, CNRL, and CommunityGAN, no baseline learns node cluster/community
assignments jointly with the embeddings. Therefore we choose K-Means to find the
community assignments for such algorithms. For VaCA-HINE we give the results
both with and without Lcont. Moreover, for comparison with the baselines, we also
look at the case where the community embeddings gk are used during joint training
but not used for extracting the community assignments. Instead, we use the
assignments obtained by directly fitting K-Means on the learned HIN embedding.
We use normalized mutual information (NMI) score for the quantitative evaluation
of the performance.
Table 5.2 gives the comparison of different algorithms for community detection.

The results in the table are divided into three sections i.e., the approaches dealing
with homogeneous networks, the approaches for unsupervised HIN embedding, and
different variants of the proposed method. VaCA-HINE results are the best on
all the datasets. In addition, the use of Lcont improves the results in 3 out of 4
cases, the exception being the IMDB dataset. It is rather difficult to comment
on the reason behind this because this dataset is inherently not easy to cluster as
demonstrated by the low NMI scores for all the algorithms. Whether or not we use
Lcont, the performance achieved by using the jointly learned community assignments
is always better than the one where K-Means is used to cluster the HIN embedding.
So joint learning of community assignments and network embedding consistently
outperforms the case where these two tasks are treated independently. This
conforms to the results obtained in the domain of euclidean data and homogeneous
networks. It also highlights the efficacy of the variational module and validates
the intuition behind the choices of involved distributions. Moreover, as shown by
the last two rows of table 5.2, Lcont has a negative effect on the performance in 3
out of 4 datasets if K-Means is used to get community assignments. Apart from
VaCA-HINE , the approaches that explicitly model HIN structure (e.g., HeGAN,
NSHE, and Metapath2Vec) generally perform better on HINs.

5.6.5 Transductive Node Classification

For node classification, we first learn the HIN embedding in an unsupervised
manner for each of the four cases. Afterward, 80% of the labels are used for
training the logistic classifier using lbfgs solver [74, 146]. We keep the split the
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Method DBLP-P DBLP-A ACM IMDB

DeepWalk 46.75 66.25 48.81 0.41
LINE-1 42.18 29.98 37.75 0.03
LINE-2 46.83 61.11 41.8 0.03
GAE 63.21 65.43 41.03 2.91
VGAE 62.76 63.42 42.14 3.51
DGI 37.33 10.98 39.66 0.53
GEMSEC 41.18 62.22 32.69 0.21
CNRL 39.02 66.18 36.81 0.30
CommunityGAN 41.43 66.93 38.06 0.68

DHNE 35.33 21.00 20.25 0.05
Metapath2Vec 56.89 68.74 42.71 0.09
HIN2Vec 30.47 65.79 42.28 0.04
HERec 39.46 24.09 40.70 0.51
HDGI 41.48 29.46 41.05 0.71
NSHE 65.54 69.52 42.19 5.61
HeGAN 60.78 68.95 43.35 6.56

VaCA-HINE with gk and Lcont 72.85 71.25 52.44 6.63
VaCA-HINE with gk without Lcont 72.35 69.85 50.65 7.59
VaCA-HINE with KM and Lcont 70.33 68.30 50.93 4.58
VaCA-HINE with KM without Lcont 70.89 69.47 51.77 3.38

Table 5.2: NMI scores on community detection task. Best results for each dataset are bold.
For comparison, we give the results both with and without contrastive loss Lcont.
For VaCA-HINE results, We use gk when the results are obtained by utilizing
community embeddings for inferring the community assignments. Moreover, we also
give the results obtained by fitting K-Means (abbreviated as KM) on the learned
embeddings.

same as our competitors for a fair comparison. The performance is evaluated using
F1-Micro and F1-macro scores. Table 5.3 gives a comparison of VaCA-HINE
with the baselines. In all the datasets, VaCA-HINE gives the best performance.
However, the performance suffers when Lcont is ignored, thereby providing empirical
evidence of the utility of the contrastive modules for improving HIN embedding
quality. The improvement margin is maximum in the case of DBLP-P because
relatively fewer labeled nodes are available for this dataset. So, compared to the
competitors, correctly classifying even a few more nodes enables us to achieve
perfect results. Among the methods that jointly learn homogeneous network
embedding and community assignments, CommunityGAN performs poorly in
particular. A possible reason is restricting the latent dimensions to be the same as
the number of communities. While it can yield acceptable community assignments,
it makes the downstream node classification difficult for linear classifiers, especially
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Method
F1-Micro / F1-Macro

DBLP-P DBLP-A ACM IMDB

DeepWalk 90.12 / 89.45 89.44 / 88.48 82.17 / 81.82 56.52 / 55.24
LINE-1 81.43 / 80.74 82.32 / 80.2 82.46 / 82.35 43.75 / 39.87
LINE-2 84.76 / 83.45 88.76 / 87.35 82.21 / 81.32 40.54 / 33.06
GAE 90.09 / 89.23 77.54 / 60.21 81.97 / 81.47 55.16 / 53.57
VGAE 90.95 / 90.04 71.43 / 69.03 81.59 / 81.30 57.47 / 56.06
DGI 95.24 / 94.51 91.81 / 91.20 81.65 / 81.79 58.42 / 56.94
GEMSEC 78.38 / 77.85 87.45 / 87.01 62.05 / 61.24 51.56 / 50.2
CNRL 81.43 / 80.83 83.20 / 82.68 66.58 / 65.28 43.12 / 41.48
CommunityGAN 72.01 / 66.54 67.81 / 71.55 52.87 / 51.67 33.81 / 31.09

DHNE 85.71 / 84.67 73.30 / 67.61 65.27 / 62.31 38.99 / 30.53
Metapath2Vec 92.86 / 92.44 89.36 / 87.95 83.60 / 82.77 51.90 / 50.21
HIN2Vec 83.81 / 83.85 90.30 / 89.46 54.30 / 48.59 48.02 / 46.24
HERec 90.47 / 87.50 86.21 / 84.55 81.89 / 81.74 54.48 / 53.46
HDGI 95.24 / 94.51 92.27 / 91.81 82.06 / 81.64 57.81 / 55.73
NSHE 95.24 / 94.76 93.10 / 92.37 82.52 / 82.67 59.21 / 58.31
HeGAN 88.79 / 83.81 90.48 / 89.27 83.09 / 82.94 58.56 / 57.12

VaCA-HINE 100.00 / 100.00 93.57 / 92.80 83.70 / 83.48 60.73 / 59.28
VaCA-HINE

100.00 / 100.00 93.10 / 92.22 80.46 / 79.85 57.60 / 53.27
without Lcont

Table 5.3: F1-Micro and F1-Macro scores on node classification task. Best results for each dataset
are bold. For comparison, we give the results both with and without contrastive loss
Lcont. It can be readily observed that VaCA-HINE outperforms the baselines for all
the datasets. Moreover, the results are always improved by including the contrastive
modules.

when K is small. An interesting observation lies in the results of contrastive
approaches (DGI and HDGI) and autoencoder-based models in table 5.2 and
table 5.3. For community detection in table 5.2, DGI/HDGI results are usually
quite poor compared to GAE and VGAE. However, for classification in table 5.3,
DGI and HDGI almost always outperform GAE and VGAE. This gives a hint
that an approach based on edge reconstruction might be better suited for HIN
community detection, whereas a contrastive approach could help in the general
improvement of node embedding quality as evaluated by the downstream node
classification. Since VaCA-HINE makes use of a variational module (aimed to
reconstruct A) as well as the contrastive modules, it performs well in both tasks.
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5.7 Conclusion

We make the first attempt at joint learning of community assignments and HIN
embedding. This is achieved by refining a single target HIN embedding using
a variational module and multiple contrastive modules. The variational module
aims at the reconstruction of the adjacency matrix A in a community-aware man-
ner. The contrastive modules attempt to preserve the high-order HIN structure.
Specifically, every contrastive module attempts to distinguish between positive and
negative/corrupted samples of a certain meta-path. The joint training of the varia-
tional and contrastive modules yields the HIN embedding that leverages the local
information (provided by the pairwise relations) as well as the global information
(present in community assignments and high-order semantics as dictated by the
samples of different meta-paths). In addition to the HIN embedding, VaCA-HINE
simultaneously learns the community embeddings and consequently the community
assignments for HIN nodes. These jointly learned community assignments consis-
tently outperform many many competitive baselines in community detection as
well as downstream node classification task.
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In this work, we have studied the framework of the Variational Autoencoder (VAE)
for unsupervised network embedding in graph datasets. We have focused on the
datasets which exhibit homophily, and attempted to extend VAE architecture for
general network embedding as well as community-aware network embedding. We
start with the analysis of over-pruning in VGAE - the extension of VAE proposed
by Kipf and Welling [39] - and propose a model-based solution to this problem.
Afterward, we attempt to explicitly preserve the information in the immediate as
well as the broader neighborhood by exploiting the redundancy-reduction-principle
to efficiently fuse the representations of various meta paths.
The underlying assumption of homophily raises an interesting question regarding

the latent embeddings z: Can the current prior of i.i.d. standard Gaussian be
replaced with a better one? For vector datasets, VAE assumes the latent embedding
to have N (0,1) distribution due to the absence of any additional information.
However, for the homophilic graphs, we can exploit the information in the links
to build a more expressive prior. For instance, it is reasonable to assume that the
latent representation of a node i is the mean of its neighbors and the standard
deviation is a scalar multiple of the overall similarity of i with its neighbors. Such a
prior could help in a better and more targeted regularization in homophilic graphs
which could consequently lead to better representation without manually decreasing
the effect of regularization as done in [39, 72]. This is a future work for me to
explore.
The second half of this thesis proposes methodologies to jointly learn community

embeddings as well as community-aware network embedding. We ensure that the
proposed approach is computationally cheaper than its direct competitors. The
extension of this approach from homogeneous to heterogeneous networks requires
special care, especially when dealing with sampling techniques. To alleviate this
issue, we propose embedding the information from all the selected meta-paths in a
contrastive manner. This enriches the network embedding with local information
from the immediate neighborhoods, as well as global information from community
assignments and larger neighborhoods. For all the proposed approaches, we provide
an extensive comparison with the direct competitors to demonstrate that all our
approaches are on par with the state-of-the-art methodologies, often outperforming
them. However, there are two important factors to be kept in mind when using
such approaches. The first one is the fact that these approaches need the number
of communities to be known beforehand - a requirement that is often not fulfilled in
many practical scenarios. The second point to remember is that these approaches
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scale with the number of communities. J-Enc and VaCA-HINE are still better
than many competitors that scale quadratically with the number of communities.
Nonetheless, for networks where the number of communities becomes comparable
with the number of nodes, such algorithms can become computationally expensive.
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A.1 Derivation of Lrecon for Variational Case

As mentioned in the paper, we aim to learn the model parameters θ to maximize
the log probability of recovering the joint probability of A and S from Z, given as

log
(
pθ(A,S)

)
= log

(∫
pθ(A,S,Z)dZ

)
(A.1)

= log
(∫

p(Z)pθ(A|Z)pθ(S|Z)dZ
)
. (A.2)

Here we assume conditional independence between A and S given Z. The approxi-
mate posterior, introduced for tractability, is given as

qϕ(Z|I, I) = qϕ(Z
IZI |I, I) (A.3)

= qϕ(Z
I |I)qϕ(ZI |I,ZI) (A.4)

= qϕ(Z
I |I)qϕ(ZI |I), (A.5)

where equation A.5 follows from equation A.4 because of the assumed conditional
independence of ZI and ZI given their respective inputs I and I. The corresponding
prior p(Z) is assumed as a joint of i.i.d. standard Gaussians, i.e.

p(Z) = p(ZI)p(ZI) = N (0, I)N (0, I). (A.6)

So Lrecon can now be considered as a negative of the ELBO bound derived as

log
(
pθ(A,S)

)
= log

(∫
p(Z)pθ(A|Z)pθ(S|Z)dZ

)
(A.7)

= log
(∫ p(Z)pθ(A|Z)pθ(S|Z)

qϕ(Z|I, I)
qϕ(Z|I, I)dZ

)
(A.8)

= log

(
EZ∼q

{p(Z)pθ(A|Z)pθ(S|Z)
qϕ(Z|I, I)

})
(A.9)

≥EZ∼q

{
log
(p(Z)pθ(A|Z)pθ(S|Z)

qϕ(Z|I, I)

)}
, (A.10)
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where (A.10) follows from Jensen’s Inequality. Using the factorizations in equa-
tion A.4 and equation A.5, we can now separate the factors inside log of (A.10)
as

EZ∼q

{
log
(p(Z)pθ(A|Z)pθ(S|Z)

qϕ(Z|I, I)

)}

= EZ∼q

{
log
(p(ZI)p(ZI)pθ(A|Z)pθ(S|Z)

qϕ(ZI |I)qϕ(ZI |I)

)}
(A.11)

= EZ∼q

{
log
( p(ZI)

qϕ(ZI |I)

)
+ log

( p(ZI)

qϕ(ZI |I)

)
+ log

(
pθ(A|Z)

)
+ log

(
pθ(S|Z)

)}
(A.12)

= −DKL

(
qϕ(Z

I |I)||p(ZI)
)
−DKL

(
qϕ(Z

I |I)||p(ZI)
)
− BCE(Â,A)− BCE(Ŝ,S) (A.13)

= −DKL

(
qϕ(Z

I |I)||N (0, I)
)
−DKL

(
qϕ(Z

I |I)||N (0, I)
)
− BCE(Â,A)− BCE(Ŝ,S) (A.14)

= LELBO = −Lrecon. (A.15)

A.2 Detailed Comparison

We now aggregate the publicly available results for all three tasks discussed in
the paper. The publicly available approaches often cover only a subset of the
datasets evaluated in this work. So we leave the table cells empty in case of missing
public results. In addition to the competitors mentioned in the paper, we add new
competitors for different tasks.

A.2.1 Link Prediction

We add the following approaches in addition to the ones given in table 3.2: GNN
based architectures GCN [40] and GAT [46], along with their hyperbolic variants
HGCN [147] and HGAT [148]. Deep Generative Latent Feature Relational Model
or DGLFRM [149] that aims to reconstruct the adjacency matrix while retaining
the interpretability of stochastic block models. Graph InfoClust orGIC [104], which
learns network embedding by maximizing the mutual information with respect to
the graph-level summary as well as the cluster-level summaries. Graphite [150] is
another autoencoder based generative model that employs a multi-layer procedure,
inspired by low-rank approximations, to iteratively refine the reconstructed graph
via message passing.

A.2.1.1 Results

We can notice that our approach is still either best or second best including all
the competitors. GMI and GCA achieve good results for CoauthorCS, Graphite
performs consistently well for all the datasets. However these algorithms suffer
when evaluated for clustering and transductive node classification.
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A.2.2 Clustering

We include the following clustering-specific competitors in addition to the ones
given in table 3.4 and section A.2.1: BigClam [118] uses matrix factorization for
community detection. DNGR [151] learns network embedding by using stacked
denoising autoencoders. RMSC [152] introduces a multi-view spectral clustering
approach to recover a low-rank transition probability matrix from the transition
matrices corresponding to multiple views of input data. TADW [153] learns the
network embedding by treating DeepWalk as matrix factorization and adding
the features of vertices. AGC [154] performs attributed graph clustering by first
obtaining smooth node feature representations via k-order graph convolution and
then performing spectral clustering on the learned features. DAEGC [155] uses
GAT to encode the importance of the neighboring nodes in the latent space such
that both the reconstruction loss and the KL-divergence based clustering loss are
minimized.

In addition, we include some well-known approaches for unsupervised network
embedding. DBGAN [87] introduces a bidirectional adversarial learning framework
to learn network embedding in such a way that the prior distribution is also
estimated along with the adversarial learning. GMI [105] is an unsupervised
approach to learn node representations while aiming to improve generalization
performance via added contrastive regularization. GMNN [156] relies on a random
field model, which can be trained with variational expectation maximization.

A.2.2.1 Results

Our approach performs the best overall, although GIC and BGRL achieve the best
results for CiteSeer and AmazonPhoto respectively. Graphite performed well in
table A.1, but for clustering, it is outperformed by many other competitors. The
converse is true for GIC and GALA, which outperform BGAE for a single dataset
in clustering, but fail to compete in the link prediction task. Similarly, DBGAN
emerges as a decent competitor for node-clustering. However, as we will see in
the next section, its performance degrades for the task of node classification. We
cannot comment on BGRL because we could neither find its public implementation
nor any publicly published results for link prediction on the selected datasets.

A.2.3 Transductive Node Classification

The competitors evaluated in table A.3 have already been introduced in the main
paper and in section A.2.1 and section A.2.2. We exclude some methods that
are specifically designed for clustering, because such methods perform poor on
transductive node classification.
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A.3 Ablation Studies

A.2.3.1 Results

GRACE, GMI, GALA, and BGRL perform well for WikiCS, CiteSeer, and Ama-
zonPhoto. However our approach performs the best overall as we achieve the best
or second-best results in 6 out of 8 datasets. This demonstrates the efficacy of our
approach over a variety of tasks unlike many competitors that shine only in some
of the target tasks.

A.3 Ablation Studies

We now observe how our approach is affected by changes in β from equation 3.1,
λ from equation 3.9, and average-node degree used for sparsification of S into S.
For sake of brevity, we only plot the results for transductive node classification
task because link prediction and clustering follow a similar pattern. To emphasize
the relative performance, the vertical axes correspond to the percentage accuracy
scores relative to the ones reported in table 3.3.

A.3.1 Effect of β

To evaluate the effect of β in equation 3.1, we sweep β for the values across the set
{0, 0.1, 1, 10, 100, 1000, 10000}.

β
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Figure A.1: Effect of β on transductive node classification performance. The vertical axis shows
the performance in %, relative to the results reported in the main paper.
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Figure A.3.1 shows the effect of β on transductive node classification for different
datasets. For most of the datasets, the results are rather stable for quite a large
range of β, i.e., in [1, 50] range. AmazonComputers and AmazonPhoto datasets
are an exception in the sense that their performance degrades quicker than other
datasets. Overall, a general trend of degradation can be observed for high values
of β for all datasets, which is intuitive because for such values, the covariance loss
takes over and the reconstruction loss is practically neglected, resulting in relatively
poor results. Another observation is that the results above the 0-line on the graphs
are better than the ones reported in the main paper. So, by carefully tuning β, we
can achieve even better results compared to the ones reported in the paper.

A.3.2 Effect of λ

The hyperparameter λ governs the trade-off between invariance and cross-covariance
in equation 3.9. The proposed value of λ in [53] is 5e−3. To see the effect of changing
β, we sweep it across the values {1e−3, 5e−3, 1e−2, 5e−2}. The effect of changing
λ on different datasets has been plotted in figure A.3.2. The plot validates that
λ = 5e−3, proposed in Barlow Twins [53], is a reasonable choice also for graph
datasets. Some datasets perform better for λ = 1e−3 and some yield better results
for λ = 1e−2. However, there is a general trend of decrease in the performance for
λ ≥ 5e−2.
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Figure A.2: Effect of λ on transductive node classification performance. The vertical axis shows
the performance in %, relative to the results reported in the main paper.
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A.3.3 Effect of Average Sparsification Degree in S

As mentioned in section 3.1.3, one of the ways of sparsification is to provide the
intended average node degree. We have fixed this value to 25 for all the reported
results. Now we observe the effect of changing this hyperparameter. We sweep the
average degree over the values {5, 10, 20, 25, 30, 40, 50, 60, 75, 80, 100, 125, 150}. The
results have been plotted in figure A.3.3. The results for PubMed are not plotted
for the degree values greater than 75 because of out-of-memory issues. The relative
performance remains more or less consistent over the plotted range, and varies
between ±1% of the reported results. This also shows that the architecture can
extract the relevant information from the neighborhood over a reasonable range
of average degree. An exception is WikiCS where the results improve by up to
2% compared to the reported results in table 3.3 for the average degree value of
150. However, for such a high value, the graph is no longer reasonably sparse. This
causes high training overhead because of the large number of edges in S. On the
other extreme, for the value of 5, we can see a decline in many datasets because
here S is too sparse, hence the information in S is too little to be of use.

average-degree for sparsification
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Figure A.3: Effect of average node degree in S on transductive node classification performance.
The vertical axis shows the performance in %, relative to the results reported in
the main paper.
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A.4 Variants of Our Approach

In the main paper, we have reported the results for PPR both with and without
attention. From these results, we can already establish that it is always better
to use attention i.e., let the neural network decide the weights for averaging the
embeddings from the immediate and larger neighborhood. So, in this section, we
focus on the case with attention, and report the results with following variations:

� Toggling Lrecon on/off in equation 3.1

� Choosing between BGAE and BVGAE.

� Choosing between PPR and Heat Kernels for diffusion.

For brevity, we use triple of the form
(
1(Lrecon is mute), 1( variational model), kernel name

)
.

For instance, (1, 0, ppr) means that we are referring to the variant where we are
only using Lcov in non-variational mode with PPR kernel for diffusion. In the
main paper, we have reported the results for the variant (0, 0, ppr) and (0, 1,
ppr). Using this notation, we plot the results for all the eight variations for all
three tasks i.e. link prediction, clustering and transductive node classification in
figure A.4(a), figure A.4(b), and figure A.4(c) respectively. For some datasets (e.g.,
CoauthorPhysics), some variants could not be plotted because of out-of-memory
issues. The general behavior is similar for different variants across all three tasks.
The important observations from figure A.4 are as follows:

� The variant (0, 0, ppr), shown in green, performs the best overall.

� The variants (0, 0, ppr) and (0, 0, heat) are usually close in performance,
although (0, 0, ppr) is often better by a small margin.

� The variants (0, 0, ppr) and (0, 0, heat) with simple GCN encoders usually
outperform their variational counterparts, i.e., (0, 1, ppr) and (0, 1, heat).
There are, however, minor exceptions. For instance, in figure A.4(a), (0, 1, ppr)
is marginally better than (0, 0, ppr) for CiteSeer. Similarly, in figure A.4(b),
(0, 1, heat) is marginally better than (0, 0, heat) for CoauthorCS.

� When Lrecon is turned off, the performance is usually relatively worse than
when Lrecon is on. This can be seen in (1, 1, ppr), (1, 0, ppr), (1, 1, heat), and
(1, 0, heat) variants. The only exception is CiteSeer in figure A.4(a) where (1,
1, ppr) outperforms (0, 1, ppr) by a tiny margin. This validates our intuition
that Lrecon aids Lcov almost always.
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(a) Variants of our approach for link prediction
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(b) Variants of our approach for node clustering
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(c) Variants of our approach for node classification

Figure A.4: Variants of BGAE for all link prediction, node clustering, and node classification.
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log(pθ(A))

= log

(∫ ∑
c

pθ(Z, c,A)dZ

)
(B.1)

= log

(∫ ∑
c

p(Z) pθ(c|Z) pθ(A|c,Z)dZ

)
(B.2)

= log

(
E(Z,c)∼qϕ(Z,c|I)

{
p(Z) pθ(c|Z) pθ(A|c,Z)

qϕ(Z|I)qϕ(c|Z, I)

})
(B.3)

≥ E(Z,c)∼qϕ(Z,c|I)

{
log

(
p(Z) pθ(c|Z) pθ(A|c,Z)

qϕ(Z|I)qϕ(c|Z, I)

)}
(B.4)

= E(Z,c)∼qϕ(Z,c|I)

{
log

(
p(Z)

qϕ(Z|I)

)
+ log

(
pθ(c|Z)

qϕ(c|Z, I)

)
+ log

(
pθ(A|c,Z)

)}
(B.5)

= EZ∼qϕ(Z|I)

{
log

(
p(Z)

qϕ(Z|I)

)}
+ E(Z,c)∼qϕ(Z,c|I)

{
log

(
pθ(c|Z)

qϕ(c|Z, I)

)}
+ E(Z,c)∼qϕ(Z,c|I)

{
log

(
pθ(A|c,Z)

)}
. (B.6)

Where (B.4) follows from Jensen’s Inequality. First term of (B.6) is given by:

EZ∼qϕ(Z|I)

{
log

(
p(Z)

qϕ(Z|I)

)}
=

N∑
i=1

Ezi∼qϕ(zi|I)

{
log

(
p(zi)

qϕ(zi|I)

)}
(B.7)

= −
N∑
i=1

DKL(qϕ(zi|I) || p(zi)). (B.8)
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Second term of equation B.6 can be derived as:

E(Z,c)∼qϕ(Z,c|I)

{
log

(
pθ(c|Z)

qϕ(c|Z, I)

)}
=

N∑
i=1

E(zi,ci)∼qϕ(zi,ci|I)

{
log

(
pθ(ci|zi)
qϕ(ci|zi, I)

)}
(B.9)

≈
N∑
i=1

1

J

J∑
j=1

E
ci∼qϕ(ci|z

(j)
i ,I)

{
log

(
pθ(ci|z(j)i )

qϕ(ci|z(j)i , I)

)}
(B.10)

= −
N∑
i=1

1

J

J∑
j=1

DKL(qϕ(ci|z(j)i , I) || pθ(ci|z(j)i )) (B.11)

where (B.10) follows from equation B.9 by replacing the expectation over zi with

sample mean by generating J samples z
(j)
i from distribution q(zi|I). Assuming

aij ∈ [0, 1] ∀i, the third term of equation B.6 is the negative of binary cross entropy
(BCE) between observed and predicted edges.

E(Z,c)∼qϕ(Z,c|I)

{
log

(
pθ(A|c,Z)

)}
=
∑

(i,j)∈E

E(zi,zj ,ci,cj)∼qϕ(zi,zj ,ci,cj |I)

{
log

(
pθ(aij|ci, cj, zi, zj)

)}
(B.12)

Hence, by substituting equation B.8 and equation B.11 in equation B.6, we get
the ELBO bound as:

LELBO ≈ −
N∑
i=1

DKL(qϕ(zi|I) || p(zi))

−
N∑
i=1

1

J

J∑
j=1

DKL(qϕ(ci|z(j)i , I) || pθ(ci|z(j)i ))

+
∑

(i,j)∈E

E(zi,zj ,ci,cj)∼qϕ(zi,zj ,ci,cj |I)

{
log

(
pθ(aij|ci, cj, zi, zj)

)}
(B.13)
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C.1 Implementation Details of VaCA-HINE

The training process of VaCA-HINE has the following steps:

1. Z Initialization: This step involves pre-training of the variational encoder
to get Z. So, Lenc is the only loss considered in this step.

2. gk Initialization: We fit K-Means on Z and then transform Z to the
community-distance space, i.e., we get a transformed matrix of size N ×K
where the entry in i-th row and k-th column is the euclidean distance of zi
from k-th community center. A softmax over the columns of this matrix
gives us initial probabilistic community assignments. We then pre-train the
community embeddings gk by minimizing the KL-divergence between pθ(c|Z)
and the initialized community assignment probabilities. This KL-divergence
term is used as a substitute for Lc. All the other loss terms function the same
as detailed in section 5.4 and section 5.5

3. Joint Training: The end-to-end training of VaCA-HINE is performed in
this step to minimize the loss in equation 5.1.

C.2 VaCA-HINE with Different Encoders

In this section, we evaluate the performance of VaCA-HINE for five different
encoders. For GCN [40] and RGCN [62], we compare both variational and non-
variational counterparts. For variational encoder, we learn both mean and variance,
followed by the reparameterization trick as given in section 5.4.2.1. For non-
variational encoders, we ignore Lenc as we directly learn Z from the input I.
In addition to GCN and RGCN encoders, we also give the results for a simple
linear encoder consisting of two matrices to learn the parameters of qϕ(zi|I). For
classification, we only report the F1-Micro score as F1-Macro follows the same
trend.
The relative community detection and classification performances achieved using

these encoders are illustrated in figure C.1 and figure C.2 respectively. The results
in these bar plots are normalized by the second best values in table 5.2 and table 5.3
for better visualization. In figure C.1 the results are usually better with Lcont,
although the performance difference is rather small. One exception is the IMDB

117



C VaCA-HINE Supplementary Material

0.6

0.8

1.0

DBLP-A DBLP-P ACM IMDB

GCN GCN-Variational RGCN RGCN-Variational Matrices-Variational

(a) With Lcont.

chapter

0.6

0.8

1.0

DBLP-A DBLP-P ACM IMDB

GCN GCN-Variational RGCN RGCN-Variational Matrices-Variational

(b) Without Lcont.

Figure C.1: Community Detection performance (NMI) of VaCA-HINE for different types of
encoders.
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Figure C.2: Classification performance (F1-Micro) of VaCA-HINE for different types of en-
coders.
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dataset where the results are better without Lcont as stated in section 5.6.4. Overall,
VaCA-HINE performs better than its competitors with at least three out of
five encoders in all four cases. The effect of Lcont gets more highlighted for the
classification task in figure C.2. For instance, without Lcont, VaCA-HINE fails
to beat the second-best F1-Micro scores for ACM and IMDB, irrespective of the
chosen encoder architecture. In addition, it is worth noticing that even a simple
matrices-based variational encoder yields reasonable performance for downstream
classification, which hints at the stability of the architecture of VaCA-HINE for
downstream node classification even with a simple encoder.
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