
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Carbon-Aware Scheduling for Serverless
Computing

Thandayuthapani Subramanian

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Carbon-Aware Scheduling for Serverless
Computing

Kohlenstoffbewusste Planung für serverloses
Computing

Author: Thandayuthapani Subramanian
Supervisor: Prof. Dr. Michael Gerndt
Advisor: M.Sc. Mohak Chadha
Submission Date: 15.02.2023

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, 15.02.2023 Thandayuthapani Subramanian

Acknowledgments

I extend my sincerest thanks to Prof. Dr. Michael Gerndt for affording me the opportunity
to engage in a stimulating project within a conducive workspace.

I express my profound appreciation and indebtedness to my advisor, Mohak Chadha, for
his unwavering mentorship and forbearance throughout the thesis. His invaluable guidance
and assistance were instrumental in enabling me to attain the current milestone.

I would like to express my deep appreciation to my mother, Maheswari, my father, Sub-
ramanian and my brother, Saravanan for their unwavering love, support, and encouragement
throughout my academic journey. Their steadfast belief in my abilities has been a constant
source of strength and motivation, and I acknowledge that my achievements would not have
been possible without their guidance and sacrifices.

Thank you Amma, for your unwavering support and sacrifices, and for always being
there for me no matter what. Your love, care, and guidance have been instrumental in shaping
me as a person and as a scholar.

Thank you Appa, for your guidance, wisdom, and unflinching support. Your unwavering
belief in me has given me the courage and determination to pursue my academic goals, and I
am forever grateful for your sacrifices and dedication.

Thank you Anna, for being my constant source of motivation and inspiration. Your
unwavering belief in me has been a driving force behind my academic pursuits, and I am
grateful for your support and encouragement.

I want to take this opportunity to extend my sincere appreciation to you, Anand, for the
unwavering support and encouragement you have provided me. Your unwavering belief in
my abilities and your willingness to lend an ear and offer guidance whenever I have needed
it has been an enormous help in guiding me through the challenges of academia. Moreover,
your friendly and positive attitude has made the journey more enjoyable and less stressful,
and for that, I am incredibly grateful.

Abstract

The combustion of fossil fuels for the production of electricity is a prominent driver of global
greenhouse gas emissions, which have far-reaching implications for climate change on a
planetary scale. The proliferation of cloud computing in recent years has led to a significant
increase in energy consumption and consequent carbon emissions. In an effort to mitigate
this, there has been a growing trend towards the adoption of serverless computing as an
alternative to traditional infrastructure-based deployments. However, serverless computing is
still reliant on energy consumption and thus, contributes to the overall carbon footprint of
cloud computing. Geographical differences in the energy mix, which dictate the proportion
of electricity generated from fossil fuels versus renewable energy sources, coupled with local
disparities in electricity demand, play an instrumental role in the emission levels across
different regions. So, it does make a difference in executing a serverless functions in different
regions of the world, depending on how clean the electricity is. In this thesis, we propose
GreenCourier, an intelligent carbon-aware scheduling approach that enables the delivery of
serverless functions in various geographical regions based on the greenness of electricity
available at any given moment, to address the issue of carbon emission during function
invocation. To achieve this, Knative was chosen as the open-source platform to deploy
serverless functions and Kubernetes as the container orchestration platform and Liqo to
establish multi-cluster topology of Kubernetes clusters distributed in different geographical
regions. The scheduling decision is taken using real-time data obtained from a external source,
such as WattTime or Green Software Foundation’s carbon-aware Software Development Kit
(SDK), which provide information on the carbon intensity of the electricity at a given location.
Our proposed approach takes into account the carbon footprint of electricity at different
regions at the time of scheduling, with the aim of minimizing the overall carbon emission
during function execution by selecting the most carbon-efficient location to run a given
workload. To evaluate the effectiveness of our proposed approach, we conduct experiments
using realistic serverless workloads in a geographically distributed Kubernetes cluster. The
experimental results demonstrate the efficacy of our proposed approach in reducing the
carbon footprint of the system without compromising as much as possible on performance.
For instance, our approach reduced the carbon emission by 8.7% and 17.8% per function
execution in comparison to the default implementation of Kubernetes scheduler and geo-
aware scheduler. Additionally, GreenCourier exhibited superior performance over the default
and geo-aware scheduling schemes by 36.6% and 63.7%, respectively, in correctly identifying
ecologically viable regions and deploying pods in those regions.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Problem Definition . 2
1.2 Research Objectives . 3

1.2.1 RQ 1: Migrating Serverless Workloads 3
1.2.2 RQ 2: Extending Knative . 4
1.2.3 RQ 3: Scheduling Policy . 4

1.3 Thesis Overview . 5

2 Background 6
2.1 Serverless Computing . 6

2.1.1 Characteristics . 7
2.1.2 Advantages and Issues . 7
2.1.3 Use Cases . 9

2.2 Container Orchestration and Serverless Frameworks 9
2.2.1 Kubernetes Architecture . 10
2.2.2 Scheduling in Kubernetes . 13
2.2.3 Scheduling Framework in Kubernetes . 14
2.2.4 Serverless Frameworks based on Kubernetes 17

2.3 Multi-Cluster Kubernetes . 20
2.3.1 Multi-Cluster Control Plane . 20
2.3.2 Network Interconnection Projects . 22
2.3.3 Liqo . 23

2.4 Green Software and Intensity Specification . 26
2.4.1 Green Software Foundation . 27
2.4.2 Software Carbon Intensity . 28

3 Related Work 29
3.1 Serverless Scheduling . 29
3.2 Sustainable scheduling in data centers . 31
3.3 Scheduling in Kubernetes . 33

4 System Design 37
4.1 System Architecture . 37

v

Contents

4.2 Scheduling Workflow . 40
4.3 Coscheduling and Cluster Authorization . 40

4.3.1 Coscheduling . 42
4.3.2 Cluster Authorization . 42

4.4 Metrics Server . 44
4.4.1 WattTime Data Source . 44
4.4.2 Carbon Aware SDK . 45

4.5 Intelligent Node Selection . 45
4.5.1 Carbon-Aware Node Selection . 45
4.5.2 Geo-Aware Node Selection . 47

5 Experiments and Evaluation 49
5.1 Metrics and Experiments Configuration . 49

5.1.1 Evaluation Metrics . 49
5.1.2 Benchmark and Functions . 51
5.1.3 Experiment setup . 51

5.2 Pod Placement Efficiency . 52
5.3 Scheduling time and Response Time . 54

5.3.1 Scheduling Latency . 54
5.3.2 Binding Latency . 55
5.3.3 Response Time . 57

5.4 Carbon Emission . 59
5.5 Discussion . 61

6 Conclusion and Future Work 64

List of Figures 66

List of Tables 67

Acronyms 68

Bibliography 70

vi

1 Introduction

The escalating energy demands of data centers are projected to consume a considerable
fraction of global electricity around 3% to 13% by 2030 [1], exacerbating the greenhouse gas
emissions predicament. A recent report [2] from the Intergovernmental Panel on Climate
Change [3] underscores that the world is rapidly approaching a perilous 1.5° Celsius rise
in temperature, which would trigger disastrous environmental impacts, as it is predicted
to have global temperature raise of about 4° Celsius. Consequently, there is an urgent
need to devise innovative approaches to boost data center energy efficiency and mitigate
its environmental footprint [4, 5]. Serverless Computing is an emerging cloud computing
paradigm that promises to separate software from hardware, representing a potential avenue
to enhance cloud systems in terms of energy efficiency. To this end, it is essential to evaluate
the energy efficiency of serverless cloud offerings, especially as many predict it to be the next
big evolution in cloud computing [6].

Prominent cloud providers such as Google Cloud Platform (GCP) have publicly an-
nounced their intention to attain complete carbon neutrality by 2030 [7], and have demon-
strated tangible progress towards this goal by consistently matching their electricity use with
renewable sources since 2017. Likewise, Microsoft has adopted a carbon-neutral stance since
2012, with an ambitious target to become carbon negative by 2030 [8]. Other cloud service
providers such as Oracle Cloud have also made significant strides towards achieving carbon
neutrality, with their European data centers already functioning on 100% carbon-neutral
electricity [9]. Despite these impressive efforts, several cloud providers continue to generate
carbon emissions, which are offsetted by their carbon offset programs. This enables them to
claim a net-zero operational emissions status, as verified in Google’s sustainability report [6].

Cloud computing has been extensively adopted due to its widely accepted and highly
scalable nature. The enterprises and organizations are significantly migrating from on-premise
to the cloud infrastructure in recent years, owing to the availability of various cloud service
offerings such as Infrastructure-as-a-Service (IaaS) that provide a pay-per-use model to their
customers. Although these services have made it easier for the customers to rent the resources,
the infrastructure management has become more challenging, and the developers tend to
over-provision the resources, leading to under-utilization and resource idling. According
to a recent study, data centers are wasting 50% of their energy in idle resources [10]. In
this context, the emerging paradigm of cloud computing called Serverless Computing has the
potential to address the issue of wasted energy consumption by idle computing resources.

Function-as-a-Service (FaaS), a key enabler of the serverless computing paradigm offers
an attractive cloud model with several advantages such as no infrastructure management,
scaling-to-zero for idle resources, a fine-grained pay-per-use billing policy, and rapid auto-
matic scaling on a burst of service requests [11]. As a result, it has gained significant popularity

1

1 Introduction

and widespread adoption in various application domains such as machine learning, federated
learning, edge computing, and scientific computing [12, 13, 14]. In FaaS, applications are
developed as small pieces of code called functions that are executed in response to event
triggers such as HTTP requests. According to recent estimates, the market for serverless
computing is going to increase from USD 13.47 Billion in 2021 to USD 86.94 Billion by 2030
[15]. All major cloud service providers such as Google, Amazon, and Microsoft have their
own commercial FaaS offerings such as Google Cloud Functions[16],Amazon Web Services
(AWS) Lambda [17], and Azure Functions [18]. Typically, these cloud service providers
receive around 1.1 billion function invocations each day [11]. However, none of the current
commercial FaaS offerings consider the carbon-efficiency of the different geographical regions
for executing the functions.

In general the characteristics of serverless functions being temporal i.e, short execution
time, so moving them to a different region for execution will not impact their performance
much. In this work we strive to achieve a novel approach to sustainable serverless computing,
in the form of GreenCourier, an intelligent scheduling policy that enables the delivery of
serverless functions in various geographical regions based on the renewable resources avail-
able at any given moment. GreenCourier leverages Kubernetes[19], the leading container
orchestration platform in the cloud, and Knative [20], a corporate-grade platform for con-
structing serverless applications. And as part of this thesis, we evaluate implementation of
GreenCourier against performance of default scheduler implementation in Kubernetes and
geo-aware scheduling scheme which prioritizes scheduling of functions to a region which is
the closest.

This thesis introduces the problem of escalating energy demands of data centers, which
are projected to consume a considerable fraction of global electricity, exacerbating the green-
house gas emissions predicament. It proposes that Serverless Computing, an emerging cloud
computing paradigm, represents a potential avenue to enhance cloud systems in terms of
energy efficiency. The thesis then introduces the concept of sustainability in Function-as-
a-Service (FaaS) and its benefits, as well as the potential of GreenCourier, an intelligent
scheduling policy that enables the delivery of serverless functions in various geographical
regions based on the greenness of electricity available at any given moment, to address the
issue of carbon emission during function invocation. GreenCourier aims to reduce carbon
emissions without compromising on performance. Finally, the thesis outlines the research ob-
jective of evaluating the implementation of GreenCourier against the performance of default
scheduler implementation in Kubernetes and a geo-aware scheduling scheme.

1.1 Problem Definition

The problem that GreenCourier aims to address is the lack of consideration for carbon effi-
ciency in current commercial serverless computing offerings. Although serverless computing
provides a highly scalable and flexible model for executing short-lived tasks, its carbon foot-
print has not been optimized due to the lack of intelligent scheduling policies that leverage
renewable energy sources. As a result, the energy consumption of data centers continues to

2

1 Introduction

rise, exacerbating the global greenhouse gas emissions predicament. GreenCourier proposes
an intelligent scheduling policy that delivers serverless functions in various geographical
regions based on the availability of renewable resources to minimize carbon emissions while
ensuring optimal performance.

1.2 Research Objectives

Based on the above mentioned goals, this study aims to answer the following three research
questions (RQs) by evaluating and implementing scheduling policies for serverless workloads:

• Research Question 1: When and what kind of serverless workloads should be migrated?

• Research Question 2: How can Knative be extended to support carbon-aware scheduling of
serverless functions?

• Research Question 3: What kind of scheduling policy should be adopted to achieve the goal?

By answering these three research question, aim of this work is to deliver key outcomes as
such:

• Implementation of a scheduling framework which can identify and schedule server-
less functions in a environmentally-sustainable region, to minimise carbon emission
associated with function execution.

• Implement metrics server which calculates carbon score for different regions which
should have capability of supporting different sources of Marginal Operating Emissions
Rate (MOER).

• Evaluate system’s performance against default scheduler implementation and geo-aware
scheduling scheme and benchmark results in terms of carbon emission and response
time.

Our experiments show that there is significant reduction in carbon emission associated with
function execution by intelligently scheduling functions to region of "low-carbon" electricity
when compared with default and geo-aware scheduling schemes.

1.2.1 RQ 1: Migrating Serverless Workloads

In general, we can safely segregate types of workloads which are commonly deployed as
serverless workloads into four [21]: 1) Micro Jobs, 2) Application, 3) Machine Learning
(ML) Model - Training, 4) ML Model - Serving. Micro Jobs can be relatively short running
workloads in comparison with other workloads. Typically, this kind of workload involve
having arithmetic operations, matrix operations and solving equations. It can be safely
assumed that micro jobs take either some values or a JavaScript Object Notation (JSON) as
input and either JSON or file as an output. In case of application, the workload can vary
from processing a transaction and storing the state in some database to image and video

3

1 Introduction

processing application. So the execution time of such workloads will vary depending on the
use case. Though the names look similar for next two workloads, they both have different
characteristics. In ML model - Training workload, we train actual ML model, which is very
much a data intensive and long running workload. In ML model - Serving workload, we
deploy already trained model and use it for inference. This type of workload can also be long
running one, but not as data intensive as training a ML model.

Our main goal in this research is to make carbon-aware scheduling decision. Transferring
huge amount of data through network as input for serverless workload or output from
serverless workload will consume energy and directly contradicts our main goal, which
is to reduce the carbon foot print for our workload execution. So it is sensible to migrate
serverless workloads which are not data intensive and transferring input and output through
network will not cost much in terms of energy. In conclusion, it is logical to migrate following
serverless workload types: Micro jobs, Application which are not data intensive and ML
model - Serving.

1.2.2 RQ 2: Extending Knative

In this research, Knative will be used to create serverless workloads. Knative is an open
source solution to build and manage serverless workloads in kubernetes clusters. In short,
the functionality involved in Knative can be explained as follows: It is required as an user
to create Knative service [22] to deploy their application. Under the hood, Knative create
a ReplicaSet [23] in Kubernetes. ReplicaSet is a Kubernetes object which ensures there is
stable set of running pods for a specific workload. Number of pods should be defined in
ReplicaSet configuration. Those pods are scheduled using scheduler process in Kubernetes.
As mentioned above, it is possible to extend kubernetes schedulers [24, 25]. Real-time data
carbon intensity data is required for making scheduling decisions. It is possible to access
those data from services like WattTime [26, 27] and electricityMap [28, 29]. Other alternatives
like simulated dataset [30] is also available. Theoretically, it is possible to extend Knative with
Kubernetes with the above mentioned resources to make carbon-aware scheduling decisions.

1.2.3 RQ 3: Scheduling Policy

Scheduling policy is set of directives and purpose which directs the scheduler process to
make optimal decision. In Kubernetes scheduler, selection of node is done in a 2-step
operation [31]: 1) Filtering using Predicate scheduling policies, 2) Scoring using Priorities
scheduling policies. Filtering step finds suitable set of nodes which is feasible to schedule
the workload. In filtering stage, scheduler runs workload’s requirement and list of nodes
in cluster through predefined set of predicate policies like CheckNodeConditionPredicate,
CheckNodeUnschedulablePredicate, etc., and obtains list of nodes which satisfies workload’s
requirement. After filtering step, in scoring stage filtered set of nodes and workload’s
requirement is given as input for definite set of priority scheduling policies like ImageLocality,
PodTopologySpread, etc. After scoring stage, we get score assigned to each node and
scheduler chooses the node which has the highest score. In this research, a new scheduling

4

1 Introduction

policy in scoring stage would help accomplishing the expected behaviour. Aim of this research
is to implement a carbon-aware scheduling policy, which prioritizes to place the workload in
a node in a region which uses energy with less carbon footprint.

1.3 Thesis Overview

This thesis follows a structured approach and consists of multiple chapters. In Chapter
2, we examine the fundamental concepts of serverless computing, container orchestration,
and Kubernetes, with a specific focus on the scheduler’s core concepts and its extensibility
through the Scheduling framework. We also delve into different open-source serverless
platforms’ architectures and their adoption by the open-source community. Furthermore, the
chapter explores various projects that allow users to establish a multi-cluster topology in
Kubernetes, with an in-depth analysis of Liqo and its components. Chapter 3 is dedicated to
exploring different scheduling solutions in the realm of serverless computing and sustainable
scheduling in data centers, along with other sustainable scheduling approaches on top of
Kubernetes. In Chapter 4, we provide an in-depth discussion of the proposed solution’s
system architecture and implementation, with a focus on GreenCourier. Additionally, we
discuss the challenges encountered during development and the solutions implemented to
overcome them. Chapter 5 defines the metrics used to evaluate various scheduling schemes
and presents an analysis of the results. Furthermore, the chapter delves into experiments that
were conducted to determine the response time of functions and analyzed the pod placement
characteristics in relation to carbon emission numbers. Finally, the last chapter provides a
summary of the work and discusses the system’s limitations while suggesting future steps to
enhance GreenCourier.

5

2 Background

2.1 Serverless Computing

Serverless is the fastest-growing and the most preferred cloud service model with annual
increase of 75% increase in adoption [32]. Serverless computing offers a platform in cloud
where developers simply have to upload their code, and the platform has capabilities to
execute on their behalf as needed at any scale. Provisioning resources is responsibility of
the platform. Developers only have to pay for the resources only when the code is invoked
[33]. Serverless platforms promise new capabilities like event processing, API composition
and data flow control that make writing scalable microservices easier and effective. All the
major cloud providers have their own solution for serverless computing, like Amazon Web
Services (AWS) Lambda [17], Google Cloud Platform (GCP)’s Cloud functions [16] and Azure
functions [18]. And many open source solutions like OpenWhisk [34] from Apache Software
Foundation [35] and Knative [36] from Cloud Native Computing Foundation [37].

The main benefits of using a proprietary solution for serverless computing are the reliable
underlying infrastructure and the ability to easily integrate with the provider’s ecosystem (e.g.
using an S3 bucket object to trigger a function on AWS Lambda). The significant drawback of
utilizing proprietary solutions lies in the dependence on the vendor for both the framework
updates and underlying infrastructure, which imposes limitations on developer agility and
may result in vendor lock-in. In contrast, the implementation of open-source solutions confers
greater control, transparency, and customization potential, leveraging the contributions of a
vast developer community and offering support. Open-source platforms do offer more control
over the platform’s infrastructure and adopt more suitable deployment schemes, either to
enhance resource usage, to reduce latency or to enhance data locality. It also enables more
efficient testing and benchmarking, which can help identify and address performance issues,
leading to overall system efficiency. However, it demands a higher investment in terms of
maintenance, deployment, and security, and may entail a more challenging learning curve for
neophytes. So in scope of this thesis, we use Knative as the serverless platform for deploying
the functions and the architecture of the Knative serving is shown 2.1. Knative [20] as the
open-source framework for our research, because major public cloud offers services to deploy
Knative application such as in Google Cloud Platform [38], IBM Cloud [39] and also because
of it’s interoperability with Amazon Web Services [40] using TriggerMesh [41]. By this way,
issue of vendor-lock in is avoided and true potential of public cloud is also utilized.

6

2 Background

Figure 2.1: Knative Serving Architecture [42]

2.1.1 Characteristics

Applications conforming to the tenets of serverless computing and specifically, FaaS solutions,
typically exhibit a set of common attributes, as evidenced by the findings presented in
[43]. An exhaustive investigation of the runtime characteristics of serverless applications in
this domain revealed that the vast majority of such applications display a runtime that is
negligible in magnitude, with a typical order of seconds or milliseconds. In contrast, only a
minuscule fraction of serverless applications exhibit a runtime that surpasses a duration of
minutes. The study further revealed that serverless applications frequently exhibit a workload
pattern characterized by "burstiness," i.e., the utilization of Function-as-a-Service (FaaS)-based
applications often exhibits sporadic spikes in resource consumption, as a result of their
predominantly HTTP-based or cloud-trigger-initiated invocations, such as those arising from
file uploads to cloud-based storage. In FaaS-based serverless applications, small and specific
functions are used to perform particular tasks efficiently. The scalability of such functions is
generally easier and cost-effective as it necessitates scaling only the specific components of
the application, as opposed to a less specialized function that might result in the unnecessary
scaling of multiple parts of the application. Using functions with fewer libraries results in
faster load times due to the smaller size of the function code archive and quicker library
initiation, reducing the cold start problem as explained in 2.1.2. Hence, it is considered a
general guideline to minimize the number of libraries utilized in functions within FaaS-based
applications.

2.1.2 Advantages and Issues

As previously elucidated, serverless computing enables developers to concentrate solely on the
implementation of the application, absolving them of any obligation for the administration of
the underlying infrastructure. This advantage, in tandem with the various language runtimes

7

2 Background

commonly accessible in serverless platforms, facilitates the optimization of the development
and deployment process. The serverless architecture allows the use of various programming
languages and libraries without needing a deep understanding of the infrastructure.

In comparison to Infrastructure-as-a-Service (IaaS) solutions, serverless computing is
generally considered to be cost-efficient due to the pay-per-use model, in which customers
are only charged for function execution. This is particularly beneficial for scenarios with
dynamic or ephemeral workloads, which involve alternate short durations of computation
and extended periods of inactivity. In an IaaS approach, the customer would need to incur
expenses for provisioned resources until their explicit decommissioning, whereas in FaaS,
only the time of execution incurs a charge. Despite these advantages, various limitations
and challenges exist within the domains of serverless computing and FaaS. A comprehensive
evaluation of these existing behaviors and constraints is presented by the authors of [44] such
as:

• The limitations of FaaS solutions in terms of resource allocation and execution time
often hinder their suitability for computationally intensive applications. The FaaS
abstraction typically only provides a single function without differentiating between
function types, limiting the resources available to the function’s runtime. Additionally,
if platforms impose maximum execution time restrictions on functions, errors can
occur for prolonged tasks. This is particularly relevant in the context of deep learning
applications, which often require longer execution times and precise control over the
hardware executing the function (e.g. use of Graphics Processor Units (GPUs)).

• Users lack control over the platform’s elasticity controller, causing standard provisioning
and de-provisioning times of FaaS solutions to be unsuitable for the application’s scaling
requirements. This may lead to slow response to spikes in traffic or reduced performance
due to over-eager de-provisioning. This becomes a bigger issue when combined with the
limited elasticity of many services, potentially failing to meet the demands of serverless
applications [45].

• While FaaS is generally cost-effective, not accounting for idle time, other factors can still
increase the cost of execution. Developers must consider the cost-performance trade-off
by specifying the memory size of functions, which might not be sufficient or exceed the
actual needs. Additionally, the cost of function composition, such as synchronous calls
between functions being billed as execution time, should also be considered.

In their work "Serverless Computing: One Step Forward, Two Steps Back" by Hellerstein
et al [46] also highlight similar issues, including the lack of access to specialized hardware
and limited function lifetime in the AWS Lambda platform. Vendor lock-in is a concern
in commercial serverless solutions. While some serverless applications can be deployed
on multiple cloud providers or using open-source frameworks, proprietary solutions are
still widely used (80% on AWS according to [45]). Migration to other providers can also be
difficult if the application interacts with specific workflows or services, and vendor lock-in
with serverless computing may be stronger than with traditional solutions. Deploying an

8

2 Background

open-source solution on a private cluster also requires cluster management, contradicting the
ease of use appeal of the serverless paradigm, leading to reliance on a single cloud provider
and vendor lock-in. Handling cold starts, or the time taken to initialize the environment, is a
widely discussed issue in FaaS [47, 48]. Cold start latency, especially with functions packaged
with many libraries, can lead to delays in code execution and make serverless approaches
unsuitable for applications with fast response times. However, applications requiring a stable
latency (e.g. human-user interactions) still exist [43], despite cold starts.

2.1.3 Use Cases

According to IBM[49], the main use cases for serverless architecture are microservices, Ap-
plication Programming Interface (API) backends, data and stream processing, and parallel
tasks. Microservices benefit from serverless computing’s automatic scaling and quick provi-
sioning/deprovisioning of resources. API backends can be created by combining functions
triggered by external events like Hypertext Transfer Protocol (HTTP) requests. Data and
stream processing benefits from the simplicity and scalability of serverless solutions and can
be more cost-effective compared to alternatives like Amazon Elastic MapReduce (Amazon
EMR). In [46], three categories of applications are listed: embarrassingly parallel functions,
orchestration functions, and function composition. The first category involves simple, inde-
pendent tasks and has limited scope and complexity. The second category involves functions
that orchestrate calls to other services (e.g. preprocessing data for analytics). The last category
involves collections of functions combined to build applications and pass along inputs and
outputs (e.g. groups of functions triggered by events on storage services). Serverless solu-
tions are widely applicable and are used for various application domains such as machine
learning [50, 51, 52, 53], edge computing [54, 55], high performance computing [56, 57], and
heterogeneous computing [58, 59].

2.2 Container Orchestration and Serverless Frameworks

Kubernetes was developed and open sourced by Google in 2015. It was initially used internally
in Google for running and maintaining their containers [60]. Kubernetes was then donated to
Cloud Native Computing Foundation, which is part of Linux Foundation. Default scheduling
algorithm used in Kubernetes can be understood from kubernetes official documentation [61].
Excerpt from the official documentation as follows: There are two steps before a destination
node of a Pod is chosen. The first step is filtering all the nodes and the second is ranking
the remaining nodes to find a best fit for the Pod. Scheduler first evaluates all the nodes in
the cluster based on number of rules called predicates, which filters out unqualified nodes.
Next, all the qualified nodes goes through another scheduling rules called priorities, which
ranks the nodes according to preferences. In general, a scheduling policy is combination of
predicates and priorities. List of all supported scheduling policies of predicates and priorities
are explained in official Kubernetes documentation [61].

9

2 Background

2.2.1 Kubernetes Architecture

Figure 2.2: Kubernetes Architecture [62]

Kubernetes is also no different from other Cloud Native applications, which use the
Twelve Factor App methodology [63]. Different components of Kubernetes can be seen in 2.2.
And each components are explained in detail below.

2.2.1.1 Control Plane Components

The orchestration layer within the control plane is tasked with executing critical, high-level
determinations regarding the overall cluster operations, including but not limited to the
allocation of resources for tasks and processes. Additionally, it executes event-driven, real-
time monitoring and response functions with respect to changes and fluctuations within the
cluster, including scaling events involving the incorporation or detachment of nodes. The
control plane is charged with preserving the predefined cluster configuration, and it engages
in continuous, bidirectional communication with worker nodes to guarantee compliance with
their assigned responsibilities. Control plane components are as follows:

• API Server: API server acts as the front-end for other control plane components. Every
control plane component should communicate with each other through API server. API
server can be scaled horizontally to ensure high-availability in the cluster even when
one of the instances fail. API Server is responsible for authentication and authorization
of the requests from user to control plane.

• Controller Manager: Controller Manager are simply just a control loops which en-
sure the system’s current state to desired state. There are many controllers like Node
Controller, Job Controller, EndPoint Controller, ServiceAccount Controller. The imple-
mentation of a Replication Controller in a Kubernetes cluster facilitates the management

10

2 Background

of pod replicas by monitoring and adjusting the number of running pods to align
with the specified configuration. The availability of nodes is monitored via the Node
Controller, while the Endpoint Controller performs the function of aggregating pods
into services. Furthermore, the Service Account Controller is responsible for generating
API access tokens and creating default accounts for newly created namespaces, thereby
contributing to the maintenance of the desired state within the cluster.

• ETCD: ETCD is the default data-store in Kubernetes. It is the only component which
is stateful and other control plane componenets are stateless and store their state in
ETCD. ETCD is a key-value store and serves request from API server. ETCD can also be
deployed in highly available setup, which uses RAFT consensus protocol to maintain
consistency. Initially the development was driven by CoreOS, but currently it is adopted
as a open source project.

• Cloud Controller Manager: The Cloud Controller Manager, similar to the Controller
Manager, implements a control loop to execute cloud-specific operations within the
Kubernetes cluster environment. Its introduction in version 1.6 of the platform facilitated
the independent lifecycle management of cloud components, enabling leading cloud
service providers, such as Amazon, Google, Microsoft, Oracle, etc., to develop their own
unique Cloud Controller Manager implementations. This abstraction layer integrates
cloud-specific features, such as load balancing and storage, into the Kubernetes API,
thereby facilitating the management of cloud resources required by the cluster. The
separation of cloud-specific code enables the Kubernetes core to maintain its vendor-
agnostic and flexible nature, enabling users to employ a uniform management layer
across multiple cloud providers or on-premise infrastructure.

• Scheduler: Scheduler picks up the pod objects from ETCD through API server and
checks for pods which are not assigned with nodes and assigns a node for the pod to
run by evaluating several predicate and priority schemes, which are selected as part of
scheduler configuration. Scheduler can preempt or remove pods from the cluster if it
jeopardizes the cluster state.

• Kube-Proxy: Kube-proxy acts as the network proxy running on every node of the
cluster enabling the capability of connecting multiple pods through service objects. It
creates and maintains network rules across cluster. It is capable of forwarding every
User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) traffic and
does simple loadbalancing within available workloads in round-robin fashion.

• Kubelet: Kubelet is a daemon agent running on every worker node, responsible for
ensuring the desired state mandated by control plane. Also establishes status sync
loopback with API server about the node status and status of workloads running
that node. Kubelet is the connection between Kubernetes and container runtime in a
particular node.

11

2 Background

2.2.1.2 Kubernetes Objects

Kubernetes objects serve as persistent entities within the Kubernetes ecosystem, representing
the current state of the cluster. These objects, such as Pods, Services, Replication Controllers,
and Deployments, each symbolize a particular facet of the cluster, including a running
process, network service, desired replication state, or a specified application deployment.
The Kubernetes API is utilized for the creation, modification, and deletion of these objects,
with the state of the cluster monitored and maintained by the control plane components,
including the API server, Controller Manager, and ETCD, which continuously assess the state
of the objects and take appropriate actions to ensure adherence to the desired state. The
Kubernetes object model plays a crucial role in the definition, deployment, and administration
of applications on the cluster, further incorporating configuration information such as resource
constraints, network policies, and access controls, as well as the capability for annotation
with supplementary metadata to provide additional context and information. The object
model’s ease and efficiency in managing complex and large-scale applications make it a vital
component of the Kubernetes platform. In this section, we pick two of Kubernetes objects -
Pods, Services and discuss in detail.

• Pods: Pods are the smallest unit in Kubernetes which can be deployed. A pod can
have one or more containers. Containers in a single pod share same network and
storage namespaces, i.e., uses same IP address and shares a mounted data across each
other. Communication between two containers in a pod is done through localhost and
inter-pod communication is done through unique IP assigned when a pod is created.

• Service: The Service abstraction in Kubernetes represents a persistent network endpoint
for accessing a set of Pods in a manner that is insulated from the underlying network
infrastructure. It serves as a crucial component in the Kubernetes networking model
and provides a stable and consistent mechanism for accessing applications hosted on
Pods. By utilizing Services, application developers are relieved from the requirement
of modifying their code to adapt to unfamiliar service discovery methodologies. Fur-
thermore, Services are equipped with the ability to assign unique IP addresses and
single Domain Name Service (DNS) names to a group of Pods, and can effectively
balance network traffic amongst them to achieve high levels of application availability
and resiliency. The utilization of Services in a Kubernetes cluster enables decoupled
deployment and management of applications, allowing developers to focus solely on
the development of the application, rather than worrying about the complexities of the
underlying network infrastructure. Additionally, Services provide a unified and stream-
lined access mechanism for the deployed applications, making it easier to scale and
manage applications in a production environment. The Service abstraction layer serves
as an integral part of the Kubernetes infrastructure and enables efficient application
deployment, management, and scaling in a robust and scalable manner.

• Event: Event in general is used for denoting some change in the system usually
generated by some components in the cluster. It is usually used for debugging clusters
by examining state of the particular component or some objects in the cluster.

12

2 Background

2.2.2 Scheduling in Kubernetes

In the context of Kubernetes cluster orchestration, the process of determining the optimal
node for running a pod involves two consecutive stages - filtering and scoring. The filtering
phase is executed using a set of predicates, which act as stringent limitations that the selected
node must satisfy to be deemed eligible for hosting the pod. In contrast, the scoring phase
evaluates the node based on a series of soft constraints, referred to as priorities. These
priorities may either be specified in the pod definition or could stem from broader constraints
associated with the nodes or the cluster. During filtering, the scheduler eliminates nodes that
fail to meet the required predicates and the final selection is based on the outcome of the
scoring phase. Example of filtering plugins is NodeResourcesFit, this plugin checks whether
the resource requested by the pod is available in a particular node, i.e., whether a node
satisfies resource contraints set by pod or not. Another example is NodeUnschedulable plugin,
which checks whether a node is marked as unschedulable because of various reasons, such as
upcoming maintenance or node failure. Once all the predicate plugin is done evaluating all
the nodes in a cluster, filtered set of nodes are sent to priority phase as shown in Figure 2.3.
In priority phase, every node is evaluated by enabled priority plugins, which assigns every
node with a score. Example of a priority plugin is ImageLocality, which scores a node with
high score if the container image requested by pod is locally present in that node. Similarly
node, runs through all the enabled priority plugins and is ranked depending on node’s score.
Node with highest score is selected and pod is assigned to that node. Few of the important
plugins are listed below [31]:

• NodeResourcesFit: Checks for resource available in particular node against pod’s
resource request and retains or removes the node from scheduling cycle depending on
resource availability.

• NodeUnschedulable: Removes nodes with .spec.unschedulable field set to true from
scheduling cycle.

• ImageLocality: The scheduling algorithm prioritizes nodes that already have the
required container images for the specified Pod, thereby reducing the time and resources
required for image transfer and improving the overall efficiency of the scheduling
process.

• TaintToleration: Implements taints and toleration logic. In Kubernetes, set of nodes can
be assigned with a taint, which forces scheduler to avoid scheduling in that node. But
when a toleration is added as part of podSpec, then scheduler tries to ignore the taint
associated with a node and adds a possibility of deploying pod to the tainted node as
well.

• NodeName: This is a filter algorithm which checks for assigned node name already, if
any. If so, the pod is forced to be deployed in that particular node, taking other nodes
out of contest.

13

2 Background

• NodePorts: In a multi-tenant computing environment, the presence of heterogeneous
workloads originating from various sources can raise the probability of port conflicts. To
mitigate this issue, the scheduling mechanism enforces the placement of newly created
pods with conflicting port requirements on separate nodes, thus avoiding any port
collisions and ensuring the seamless operation of all Pods. This approach safeguards the
cluster’s ability to operate optimally and maintain its high level of resource utilization.

• NodeAffinity: The heterogeneous nature of nodes in a cluster may sometimes result in
workloads having specific requirements for node specifications. To address this issue,
the algorithm implements a mechanism for identifying suitable nodes based on these
specifications and assigning the relevant pods to these nodes, thereby ensuring optimal
workload placement and resource utilization.

• PodTopologySpread: Regulation of Pod distribution across various topological do-
mains including regions, zones, nodes, and user-defined domains, in accordance with
failure-domain considerations. This results in a balance between high availability and
resource efficiency.

2.2.3 Scheduling Framework in Kubernetes

Scheduling framework[65] is a feature provided by Kubernetes community from kubernetes-
v1.19 release. It adds a new set of "plugin APIs" into scheduler code, enabling developers to
create custom logic as required for a business use case. Because of this pluggable architecture,
the necessity of developing and maintaining core scheduler logic has become effortless, thus
decoupling the dependency on maintaining core modules of scheduler. Scheduler framework
defines various extension points exposed by scheduler API, where plugins can be plugged
and executed during scheduling. Scheduling will happen in two phases - scheduling cycle
and binding cycle. Each phase has different number of extension points, each invoked at
different point of time during scheduling and providing unique functionality. Different
extension points can be seen in Figure 2.4 There are 10 unique extension points, each serve
own purpose. One can implement the exposed interface in scheduler code and compile the
plugin code into scheduler code and can be used for deployment. Those 10 extension points
and it’s functionality are as explained:

• QueueSort: Queue sort plugins serves to prioritize the sequence of Pod scheduling
within a queue. The queue sort plugin operates by implementing a comparison function,
"Less", that assesses the relative order of two Pods in the queue. It is important to note
that, in order to maintain consistency, only a singular queue sort plugin can be enabled
concurrently.

• PreFilter: PreFilter plugins serves to provide pre-processing of information related to a
Pod or to validate specified conditions that must be satisfied by the cluster or the Pod.
If a PreFilter plugin returns an error during its execution, the scheduling cycle will be
terminated.

14

2 Background

Figure 2.3: Pod lifecycle in Kubernetes [64]

15

2 Background

Figure 2.4: Kubernetes Architecture [65]

• Filter: Filter plugins are employed to eliminate nodes that are unable to run a particular
Pod. The scheduler will sequentially call the filter plugins for each node, in accordance
with their configuration order. If any of the filter plugins marks a node as infeasible,
subsequent filter plugins will not be invoked for that node. Evaluation of nodes may
occur concurrently.

• PostFilter: The PostFilter phase is invoked when no feasible nodes have been found for
a Pod during the Filter phase. The plugins are called in their configured order and if
any PostFilter plugin designates a node as Schedulable, the subsequent plugins will not
be executed. An example implementation of PostFilter is preemption, which aims to
make a Pod schedulable by preempting other Pods.

• PreScore: PreScore plugins are utilized to perform pre-scoring operations, which create
a shared state for the Score plugins. If a PreScore plugin returns an error during its
execution, the scheduling cycle will be terminated.

• Score: Score plugins are leveraged to hierarchically categorize nodes that have been
deemed eligible via the filtering phase. The scheduler will iteratively invoke each scoring
plugin for each node and the scores generated will be represented by an integer range
that denotes the lower and upper bounds. Upon completion of the NormalizeScore
phase, the scheduler will amalgamate the node scores generated by all plugins, utilizing
the specified weightage configuration of each plugin.

• NormaliseScore: After score phase, this phase is invoked. This plugin is used to modify
the score, before scheduler makes the decision of assigning a node to a pod. This phase
is executed once every scheduling cycle.

• Reserve: Reserve phase is executed before scheduler starts its binding cycle. It is
implemented through a plugin that encompasses two operative methods, Reserve and
Unreserve. These methods are associated with the Reserve and Unreserve informational

16

2 Background

scheduling phases, respectively. Stateful plugins, which maintain runtime state informa-
tion, should leverage these phases to be apprised of the scheduling process with regards
to the reservation and de-reservation of resources on a node for a designated Pod.

• Permit: In this phase, scheduler takes either one of three decisions - approve, deny,
Wait. Once all the plugins in permit phase approves the pod, then the pod is taken
for binding cycle. If any of the plugins rejects the pod object, the pod is sent back to
scheduling queue and in next cycle, scheduler tries to assign node for that pod. If any
of the permit plugins return "wait" signal, then the pods are kept in waiting state until
timeout or until any other signal to approve or deny is sent.

• PreBind: From this phase onwards, the binding cycle of the scheduler starts. These
plugins perform any actions which are required before a pod is bound. For example,
if the pod needs a network volume, prebind plugin creates one and mounts it on the
target node, before pod is deployed. If any of the prebind plugins returns error, then
the pod is again added scheduling queue.

• Bind: These plugins are the actual ones which work on binding the pod to assigned
node. If any of the bind plugins chooses to handle the pod, then the other bind plugins
are skipped.

• PostBind: This phase does not do anything important in terms of running the pod in
assigned node. It is used for any clean up activity after the scheduling is done.

2.2.4 Serverless Frameworks based on Kubernetes

The open-source platforms affords developers the flexibility to seamlessly integrate multiple
services into their applications, thereby augmenting the robustness of the application and
reducing development time. The open-source nature of such software and frameworks
is further reinforced by a large and thriving community of developers who contribute to
their ongoing development and maintenance. While open-source platforms offer numerous
advantages, but there are certain drawbacks too and that must be taken into consideration.
One such limitation is the learning curve associated with utilizing open-source software,
which can require a certain level of technical competency and proficiency to effectively utilize
and integrate the various components within an application. Despite this challenge, the
benefits of open-source platforms often outweigh the disadvantages, making it a popular
choice among developers for building robust, scalable and flexible applications.

2.2.4.1 OpenFaaS

OpenFaaS [66] is an open-source Serverless framework for building and deploying cloud-
agnostic Functions as a Service (FaaS). The architecture of OpenFaaS consists of three main
components: API gateway, function watchdogs, and user-defined functions. How those
components interact with each other can be seen in Figure 2.5. The API gateway serves as the
entry point for incoming requests and manages the routing of requests to the appropriate

17

2 Background

function. The API gateway is implemented using a reverse proxy, such as NGINX, and
is responsible for handling request authentication, monitoring and scaling of functions,
and providing an API endpoint for management operations. The function watchdogs are
responsible for managing the lifecycle of user-defined functions. The watchdog is a lightweight
process that monitors the function’s health, restarts it in case of failure, and communicates
with the API gateway to update the function’s status. The watchdog is a critical component
in ensuring high availability and resilience of the OpenFaaS deployment. The user-defined
functions are the main building blocks of the OpenFaaS architecture and are the units of
computation that perform the desired business logic. The functions are packaged with a
minimal runtime and executed in isolated environments, which enables high scalability
and reduces the attack surface of the overall deployment. In conclusion, the OpenFaaS
architecture provides a robust, scalable, and secure Serverless platform for building and
deploying cloud-agnostic FaaS, leveraging containerization, reverse proxying, and lightweight
process management to achieve its goals.

Figure 2.5: OpenFaaS Architecture [67]

2.2.4.2 Openwhisk

The architecture of Apache OpenWhisk [34] comprises a distributed, event-driven compute
platform that is built to run serverless functions. It is based on a microservices architecture
that includes components such as the controller, invoker, and database services. The controller
is responsible for managing and coordinating the platform, receiving events and triggering
actions, and enforcing access control policies. The invoker is responsible for executing
the functions and providing feedback on their execution. The database services provide
persistence for platform metadata and functions. Architecture of OpenWhisk is pictorially
depicted in Figure 2.6. OpenWhisk leverages a highly scalable, publish-subscribe model
that enables the system to quickly process high-volume events and concurrently execute a
large number of actions. The platform can be extended with additional services, such as
external databases, object stores, and message queues, to provide additional functionality
for building and deploying complex, multi-tier applications. OpenWhisk’s architecture
encompasses a polyglot, loosely-coupled system that employs a choreographed collection of

18

2 Background

microservices to dynamically allocate compute resources and execute functions in response
to events. The system leverages advanced concepts such as auto-scaling, self-healing, and
elastic resource allocation to provide a highly available and scalable platform for executing
serverless functions. With its emphasis on event-driven computing, OpenWhisk’s architecture
is well-suited for building applications that require fast, real-time processing of events and
data streams.

Figure 2.6: OpenWhisk Architecture [68]

2.2.4.3 Knative

Knative [20] is a platform for building, deploying, and managing modern serverless workloads
on Kubernetes. The architecture of Knative as shows in 2.1 is designed to simplify the
development, deployment, and management of serverless applications, and it consists of
several key components that work together to provide a complete serverless platform.

The components of Knative’s architecture include:

• Knative Serving: This component is responsible for managing the lifecycle of serverless
applications, including managing their deployment, scaling, and handling of incoming
requests. It uses a custom resource definition (CRD) and a set of controllers to manage
the state of applications and handle events. Architecture of Knative Serving is shown as
Figure 2.1.

• Knative Eventing: This component provides event-driven and asynchronous communi-
cation between components, enabling the development of event-driven microservices.

19

2 Background

It uses a pub/sub model, and provides a way to manage event sources and event
consumers, as well as event processing pipelines.

• Knative Build: This component is a CI/CD platform that provides a way to build and
package applications into containers, and integrate them with Knative Serving and
Eventing. It uses Kubernetes build and packaging tools such as Kaniko, Buildah, and
Skaffold.

The underlying infrastructure that powers Knative is Kubernetes, which provides a powerful
and flexible platform for managing containers and services. Knative leverages Kubernetes to
provide scalability, high availability, and resiliency to serverless applications, and makes it
possible to build and run complex serverless workloads on Kubernetes.

2.3 Multi-Cluster Kubernetes

Multi-cluster Kubernetes is an environment that uses multiple Kubernetes clusters. These
clusters can be located on the same physical host or on different hosts within the same
data center, or even in different clouds across different countries, enabling a multi-cloud
environment [69]. Multi-cluster Kubernetes does have multitude of advantages such as:
Tenant Isolation, High Availability, etc. In Kubernetes, the two challenges which arise when
setting up a multi-cluster topology are as follows:

• Synchronization: Mechanism to synchronize cluster object status one-way or two-way
between clusters depending on design of the cluster topology. In a one-way cluster, one
cluster acts as provider and other as consumer i.e., one cluster can offload pods to other
cluster, by not the other way around. In two-way clusters, both the clusters can offload
pods onto each other, each cluster has the capability to act as provider and consumer
cluster at the same time.

• Interconnection: Mechanism to enable communication between services is different
clusters.

So for further discussion, we will split the explanation into two section which discusses
projects which helps to setup multi-cluster control plane and projects for network intercon-
nection.

2.3.1 Multi-Cluster Control Plane

This section discusses about projects whose work are on the area of setting up a control plane
for a multi-cluster Kubernetes setup. Comparison of those projects are shown in Table 2.1

Open-source projects mentioned in Table 2.1 are compared on different aspects such as:

• Seamless Scheduling: Seamless scheduling in a multi-cluster Kubernetes setup refers
to the ability to schedule workloads across multiple clusters without the need for
manual intervention or complex configuration. It allows organizations to manage their

20

2 Background

Criteria Liqo [70] Admiralty [71] Tensile-Kube [72] KubeFed [73] Argo CD [74] Fleet [75] FluxCD [76]
Seamless

Scheduling
Yes Yes Yes No No No No

Decentralized
Governance

Yes Yes Yes No Yes Yes Yes

Application
Extra APIs

Yes Yes Yes No No No No

Dynamic
Cluster

Discovery

Yes No No No No No No

Table 2.1: Comparison of Multi-Cluster Control Plane projects [77]

resources efficiently by distributing workloads across different clusters based on their
specific needs and priorities. With seamless scheduling, organizations can ensure that
their applications are running on the most appropriate cluster and have access to the
necessary resources, leading to better performance and reliability.

• Decentralized Governance: Decentralized governance in a multi-cluster Kubernetes
setup refers to the distribution of decision-making authority across different clusters.
It means that each cluster is managed independently, with its own set of policies and
procedures, and that decisions are made at the local level rather than being centralized.
At the same time, it requires coordination and communication between different teams
to ensure that the overall system is functioning effectively and efficiently.

• Application Extra APIs: In a multi-cluster Kubernetes setup, application extra APIs
are custom APIs that are designed to enable specific functionality for an application.
These APIs are implemented on top of the Kubernetes API and allow developers to
create custom resources and controllers that can be used to manage their applications
across multiple clusters. For example, an application extra API can be used to manage
application deployments, scale applications, or manage storage resources. By providing
additional abstraction and automation layers, application extra APIs can simplify the
deployment and management of complex applications in a multi-cluster environment.

• Dynamic Cluster Discovery: Dynamic cluster discovery in a multi-cluster Kubernetes
setup refers to the automatic discovery of new clusters as they are added to the
environment. It allows organizations to manage a large number of clusters more easily
by automatically incorporating them into the overall system without requiring manual
intervention. This can be accomplished through the use of discovery services or other
mechanisms that automatically detect the presence of new clusters and integrate them
into the existing infrastructure. Dynamic cluster discovery enables organizations to scale
their Kubernetes environment more efficiently and with less administrative overhead,
which can result in significant cost savings and increased operational agility.

21

2 Background

2.3.2 Network Interconnection Projects

This section discusses about projects whose work are on the area of setting up a network
interconnection for a multi-cluster Kubernetes setup. Comparison of those projects are shown
in Table 2.2

Criteria Liqo
[70]

Cilium
[78]

Submariner
[79]

Skupper
[80]

Istio
[81]

Linkerd
[82]

Architecture
Overlay

Network and
Gateway

Node to
Node
traffic

Overlay
Network and

Gateway

L7 Vitrual
Network

Gateway
based

Gateway
based

Interconnection
setup

Peer-To
-Peer,

Automatic

Manual
Broker-
based,

manual

Manual Manual Manual

Secure Tunnel
Technology

Wireguard No IPsec TLS TLS TLS

CNI
Agnostic

Yes No Yes Yes Yes Yes

Multi-Cluster
Services

Yes Yes Limited Yes Yes Yes

Seamless
Cluster

Extension

Yes Yes Yes No No No

Support for
Overlapped IPs

Yes No No Yes Yes Yes

Table 2.2: Comparison of Network Interconnection projects [77]

Open-source projects mentioned in Table 2.2 are compared on different aspects such as:

• Architecture: Architecture refers to the overall design and structure of the network
infrastructure that connects different clusters. This requires careful consideration
of factors such as network topology, routing protocols, IP addressing, and network
security policies. A well-designed network architecture is essential for enabling seamless
communication and workload management across multiple clusters in a Kubernetes
environment.

• Interconnection Setup: An interconnection setup refers to the method or approach
used to establish connectivity and communication between different clusters. There
are several possible approaches to interconnecting clusters, including peer-to-peer,
broker-based, and manual methods.

• Secure Tunnel Technology: A secure tunnel technology refers to method of establish
an encrypted connection between clusters to ensure communication and data transfer.

22

2 Background

Secure tunneling can be used to establish a direct connection between clusters or to
route traffic through an intermediary such as a load balancer or a proxy server. Some
examples of secure tunnel technologies include Secure Shell (SSH) tunneling, Transport
Layer Security (TLS) tunneling, and Virtual Private Network (VPN) tunneling.

• CNI Agnostic: CNI agnostic refers to the ability of a networking solution to work with
any Container Network Interface (CNI) plugin, regardless of the specific implementation
used by each cluster. CNI is a specification for networking in container orchestration
platforms like Kubernetes, which allows different networking solutions to be used with
a consistent interface.

• Multi-Cluster Services: Multi-cluster services refer to a mechanism for enabling
services to be exposed across multiple clusters as a single entity. Multi-cluster services
provide a way to distribute workloads across multiple clusters while maintaining a
consistent view of the service for clients.

• Seamless Cluster Extension: Seamless cluster extension refers to the ability to easily
add new clusters to an existing cluster topology without interrupting the ongoing
operation of the system. With seamless cluster extension, a new cluster can be added to
the existing infrastructure without the need to manually reconfigure services or modify
networking settings.

• Support for overlapped IPs: Support for overlapped IPs refers to the ability of the
networking solution to handle IP address conflicts that may arise when multiple clusters
are interconnected. Overlapping IP addresses can occur when different clusters have
been assigned the same IP address range, which can cause network communication
issues. To avoid these conflicts, a networking solution must be able to handle IP
address overlap by isolating each cluster’s IP address range and mapping the IP
addresses to unique addresses in the wider network. This allows the different clusters
to communicate with each other without any IP address conflicts.

2.3.3 Liqo

Liqo is an open-source project that enables dynamic and seamless Kubernetes multi-cluster
topologies, supporting heterogeneous on-premise, cloud and edge infrastructures [70]. As
shown in Table 2.1 and table 2.2, Liqo has the competence to provide multi-cluster control
plane and also provides a network fabric [83], which extends Kubernetes network model
across multiple clusters, enabling communication between pods within cluster and with
pods running in different clusters (East - West communication) between pods deployed in
independent clusters.

2.3.3.1 Peering and Offloading

Peering [84] involves establishing a unidirectional resource and service consumption relation-
ship between two clusters, where one cluster (referred to as the consumer) is granted the

23

2 Background

Figure 2.7: Out-of-band Control Plane setup in Liqo [84]

ability to offload tasks to another remote cluster (referred to as the provider), but not the
other way around. In this scenario, the consumer creates an outgoing peering connection
towards the provider, while the provider is subjected to an incoming peering connection from
the consumer. This allows for the two clusters to interconnect and enables the consumer to
access the services and resources provided by the provider cluster.

The virtual node abstraction plays a crucial role in enabling workload offloading[85]
in a multi-cluster Kubernetes setup. This concept involves creating a virtual node in the
local cluster after the peering process has been completed, which represents and aggregates
the subset of shared resources from the remote cluster. By doing so, the local cluster can
be extended seamlessly, and the new node and its capabilities can be considered by the
vanilla Kubernetes scheduler while determining the best location for executing workloads.
Additionally, this approach is in full compliance with standard Kubernetes APIs, making it
possible to interact with and inspect offloaded pods as if they were running locally in the
cluster.

Liqo’s implementation of the virtual node abstraction leverages an updated version of
the Virtual Kubelet [86] project. A virtual kubelet [87] can be used as a replacement for a
traditional kubelet, but operates on non-physical nodes. In the Liqo context, it interacts with
both the local and remote clusters’ Kubernetes API servers to carry out three main tasks [85]:

• Generate the virtual node resource and maintain its status according to the negotiated
configuration.

• Offload the local pods assigned to the corresponding (virtual) node to the remote cluster
while synchronizing their status.

• Ensure that the ancillary artifacts (e.g., ConfigMaps, Services, Secrets) necessary for the
proper execution of the offloaded workloads are reflected and synchronized between
the local and remote clusters. This capability is referred to as resource reflection.

Liqo connects two different clusters using peering methodology, which includes four
main tasks, which are as follows:

24

2 Background

Figure 2.8: In-band Control Plane setup in Liqo [84]

• Authentication: Token is generated in the source cluster, which provides resource to
target cluster to deploy workloads. Generated token is then shared with target cluster
which authenticates and grants access to limited liqo-related resources, such as kuber-
netes objects which should reflect in target cluster when the pod is offloaded. Those
Kubernetes objects are: Pods, Services, EndPointSlices, Ingresses, PersistentVolumeClaims,
PersistentVolumes, ConfigMaps, Secrets

• Parameters Negotiation: Automatic exchange of parameters between two clusters for
establishing a peering relationship, with details on shared resources, VPN setup, and
no manual intervention required.

• Virtual Node Setup: The consumer cluster creates a virtual node for managing resources
shared by the provider, allowing for transparent task offloading. This process follows
standard Kubernetes practices and requires no modifications to application deployment
APIs.

• Network Fabric Setup: The two clusters establish a secure cross-cluster VPN tunnel
by configuring their network fabric based on agreed parameters, enabling seamless
communication between local and offloaded pods independent of CNI plugin and
configuration.

Characteristics Out-of-band In-band
Control Plane Traffic Flows outside VPN tunnel Flows inside VPN tunnel

Configuration Dynamic Static
Multi-Endpoint support Yes No

Table 2.3: Out-of-band peering vs In-band peering

Peering in Liqo can be done in two ways: Out-of-band peering as shown in Figure 2.7
and In-band peering as shown in Figure 2.8. Comparison of those two types of setup is listed
in Table 2.3.

25

2 Background

2.3.3.2 Network Fabric

Network Farbic [83] ensures inter-pod communicability across all clusters. Since each cluster
has independent mechanism to setup CNI, which assigns unique IP for every pod. Since,
the CNI is configured only on one cluster level, two pods in different clusters having same
IP is possible. To avoid such IP conflicts within pods in different cluster, network fabric
solution should adopt the mechanism of Network Address Translation (NAT). Usually it is a
mapping of multiple local private IPs to a single IP visible outside cluster. This will be a costly
operation in terms of encapsulating every data packets and transferring and de-encapsulation
at the receiver’s end. When CNI can be configured in such a way that the IPs assigned are
from disjointed ranges for each cluster, then a NAT-less approach will be adopted by network
fabric implementation.

This is due to the inherent variability of cluster configurations, including differing
CNI plugin usage, which precludes the possibility of guaranteeing a consistent and non-
overlapping PodCIDR. As such, in cases where PodCIDR disjointness exists, address transla-
tion mechanisms may be necessary to sustain inter-pod communicability. Interconnection
between peered clusters are done using secure VPN tunnels, with the help of WireGuard
[88]. Liqo Gateway is responsible for populating routing table and NAT rules by leveraging
iptables. The overlay networks are also used to forward all traffic from local pods to remote
cluster pods through liqo gateway. Network gateway is pictorially depicted in Figure 2.9

Figure 2.9: Network Fabric - Liqo [83]

2.4 Green Software and Intensity Specification

Green Software refers to software systems designed and developed to optimize resource
utilization, minimize waste, and reduce the carbon footprint of the software development life
cycle. This encompasses a variety of practices such as energy-efficient algorithms, efficient
data management, sustainable development processes, and environmentally conscious dis-
posal of software systems. From a technical perspective, Green Software is characterized by

26

2 Background

the implementation of energy-efficient algorithms, optimized resource utilization, reduction
of waste in software development processes, and the use of eco-friendly computing practices.
These include but are not limited to utilizing virtualization techniques, efficient data manage-
ment, and the application of sustainable development methodologies, as well as adherence
to environmentally conscious software disposal practices. The development of Green Soft-
ware often entails a sophisticated interplay between software engineering, energy-efficient
computing, and environmental sustainability.

2.4.1 Green Software Foundation

The Green Software Foundation is an organization dedicated to reducing the environmental
impact of software systems through the utilization of innovative technologies and best
practices in software engineering. Their primary goal is to promote the development and
adoption of eco-friendly software by creating technical specifications and methodologies that
promote sustainable software development.

As part of its mission, the Green Software Foundation (GSF) engages in various initiatives
and projects aimed at reducing the carbon footprint of software systems. These projects are
centered around the implementation of green software engineering principles and practices,
including the optimization of software resource utilization, the adoption of energy-efficient
hardware and cloud infrastructures, and the implementation of lifecycle management strate-
gies that minimize the carbon emissions associated with software development, deployment,
and maintenance. Through these efforts, the GSF aims to establish itself as a leading voice in
the advancement of sustainable software development and deployment practices, and to drive
the widespread adoption of environmentally responsible software development practices
within the industry.

The Green Software Foundation (GSF) drives various initiatives and projects aimed at
reducing the carbon footprint of the software industry. Some examples of their projects
include:

• Development and promotion of the Software Carbon Intensity (SCI) specification, which
outlines the methodology for calculating the carbon footprint of software applications.

• Collaboration with software companies, researchers, and experts to identify and develop
innovative solutions to reduce the carbon impact of software systems.

• Promotion of energy-efficient software engineering practices through educational pro-
grams, workshops, and training sessions.

• Engagement with stakeholders in the software industry to drive industry-wide adoption
of best practices for reducing the carbon footprint of software.

• Research and development of open-source tools and technologies to enable software
engineers to measure, monitor, and reduce the carbon impact of their systems.

27

2 Background

These initiatives and projects are aimed at promoting sustainability in the software
industry and mitigating the environmental impact of software systems through technology,
education, and collaboration.

2.4.2 Software Carbon Intensity

The Software Carbon Intensity [89] technical specification is a detailed guide for determining
the carbon footprint of a software application by quantifying its associated carbon emissions.
This methodology involves calculating the total carbon emissions produced during the
application’s life cycle and converting it into a rate that facilitates practical emission reduction
efforts, known as abatement. The carbon intensity of a software application is influenced by
the carbon intensity of electricity consumption during its deployment, making it important
to take into account the time and location of usage. The carbon intensity rate provides
valuable information for software engineers and developers in the design, development, and
deployment stages of software application development, as it gives them a means to evaluate
the carbon impact of their work. Software Carbon Intensity can be calculated using following
formula as shown in Equation 2.1

Sotware Carbon Intensity = ((E ∗ I) + M)/R (2.1)

Where:

• (E) - Energy consumption for different components of the software boundary over a
given time period.
Examples:

– CPU/GPUs at different percentages of utilisation

– Data Storage

– Memory allocation

– Data transferred over a network

• (I) - Emissions factors. These may be regional yearly averages to begin with, but should
ideally be marginal, and more granular than that.

• (M) - Embodied emissions data for servers, mobile devices and laptops

• (R) - The functional unit defines how your application scales. For instance, if your
application scales by APIs then choose API as your functional unit.

28

3 Related Work

Despite a plethora of research in the domain of serverless scheduling, carbon-aware computing
in data centers, and scheduling techniques for Kubernetes, there is limited investigation at
the intersection of these fields. Thus, this research will examine the current advancements in
these areas, and posits how our research sets itself apart as a unique contribution, in the field
of carbon-aware scheduling scheme specifically designed for serverless workloads.

3.1 Serverless Scheduling

The scheduling of serverless functions can be compartmentalized into two distinct stages: the
runtime configuration phase and the function scheduling phase. In the runtime configuration
phase, the serverless platform retrieves the function’s source codes and required resource
allocation from a database. The serverless platform assesses the current state of the system,
including the resource utilization of active instances and the concurrency of running instances.
In the function scheduling phase, serverless platforms typically rely on a general-purpose
task scheduler or delegate this responsibility to a Platform-as-a-Service (PaaS) platform,
such as Kubernetes [19], as is the case with the Knative platform [20]. The PaaS platform
then schedules functions according to its own discretion, ensuring efficient utilization of
resources and meeting the desired Quality of service (QoS) requirements. General process of
a serverless scheduler is illustrated in Figure 3.1.

Serverless workloads are characterized by their burstiness, short and variable execution
times, statelessness, and utilization of single cores [90]. However, traditional general-purpose
schedulers are not equipped to handle such workloads effectively. Kaffes et al [90] have
proposed a centralized scheduler that can allocate functions to processor cores instead of
physical servers, which better addresses the unique requirements of serverless workloads.
In this paper, the authors put forward the benefits of implementing a centralized scheduler,
specifically citing two advantages: 1) its ability to possess a comprehensive overview of the
cluster resources, thereby providing enhanced elasticity to users, and 2) its facility to adapt to
varying workload demands with ease. Our research also focuses on creating a centralized
scheduler that can comprehend the overall cluster resources, however, the authors suggest
that the core-level granularity as described in the paper will limit optimal utilization of these
resources. This is because most serverless functions do not require a full core allocation,
rather, it is often necessary to consolidate multiple functions onto a single core, making such
detailed granularity unnecessary.

29

3 Related Work

Figure 3.1: General process of serverless scheduler [91]

FnSched, a scheduler introduced by Suresh et al [92], is a cost-effective solution that is
designed to minimise the provider resource cost but also ensures performance requirements
for serverless functions. The scheduler categorizes functions based on resource utilization
and lifetime behavior, enabling runtime regulation of CPU shares for colocated functions.
FnSched also has the ability to dynamically scale host resources, with the capability to add or
remove hosts as needed. Built on top of OpenWhisk [34]’s controller component, FnSched
outperforms traditional systems, such as OpenWhisk and Linux scheduler, by reducing host
usage by 36-55%. In their work, they adopt a policy of sacrificing performanace in place of
cost minimization. This is achieved by regulating CPU shares between functions and actively
managing resources in a compute-intensive manner [93]. On the other hand, GreenCourier
has a different objective, which is to reduce carbon emissions during function execution rather
than minimize cost. The motivation and goal of GreenCourier are different from FnSched, as
it does not compromise function performance for the sake of cost reduction.

Szalay et al [94] propose a novel solution for scheduling real-time serverless workloads
in multi-node clusters. The solution includes a heuristic partitioning scheduling algorithm
and an analytical model to deploy real-time functions in containers. To use the solution, users
must provide the tolerated response time and period of the function. The response time refers
to the maximum time it takes for the function’s response to reach the user’s ingress point,
while the period defines the frequency of function requests. In their approach, available cores
are partitioned into two categories: one exclusively reserved for real-time functions and the
other for non-real-time functions. When the load on real-time functions is high, non-real-time
functions may be preempted, potentially leading to starvation of non-real-time functions. The
authors state that the scheduler will leave as many processors as possible available, but do
not provide a mechanism to ensure this. This scheduling strategy is known as "Partitioned

30

3 Related Work

Earliest Deadline First scheduling". One of the assumptions made in their research is that
real-time serverless functions operate on a deterministic network both between hosts and
within hosts. While this is a challenging assumption, the authors believe that this requirement
will be met in the future. GreenCourier and RT-FaaS get along in terms of scheduling func-
tions in a multi-node clusters, but other than that there is no similarities between two research.

3.2 Sustainable scheduling in data centers

Most of the research in sustainable scheduling in data centres has been focused on energy-
aware approaches. In this section, we will review the current research on sustainable
scheduling, with a focus on energy-awareness, and highlight how GreenCourier differs from
the other approaches.

Alahmadi et al [95] propose a novel approach for scheduling, sharing and migration of
virtual machines to reduce energy consumption. They report that average resource utilization
is as low as 20% and energy consumption of idle resources are as high as 60% [96]. Hence,
in this paper they propose scheduling a task on the minimum number of virtual machines
using First Fit Decreasing approach. In First Fit Decreasing approach, they assume the tasks
come sequentially and they are assigned to the first node that can accommodate it, where
all the nodes are order in decreasing order of utilization rate. On top of First Fit Decreasing
approach, they implement a enhancement of reuse and migration technique. Approach on
this paper matches almost with the approach of GreenCourier, where new tasks are preferred
to be deployed in a specific node or cluster. But the parameter on which decisions are taken
are completely different, in GreenCourier’s case it depends on carbon efficiency of that region,
where as this paper concentrates on deploying task on node with high utilization rate. And
the tasks are defined as Operating System (OS) processes, but in GreenCourier the tasks are
handled as pods/functions. And GreenCourier is capable of scheduling tasks over clusters
distributed over different regions.

Zhu et al [97] propose a real-time task scheduling approach in virtualized cloud environ-
ments that uses a rolling-horizon scheduling architecture. This is an energy-aware scheduling
algorithm called Energy Aware Rolling Horizon (EARH), which is capable of balancing task
schedulability and energy conservation. In the EARH approach, jobs are composed of batches
of tasks are added to a queue maintained by the controller. The controller creates a plan
for the execution order of tasks within and between jobs. When the controller determines
that a job is likely to finish within its estimated deadline, it scales up the number of virtual
machines, and when the load is lower, it scales down the number. EARH performs a similar
function to horizontal pod auto scaling in Kubernetes, but instead of creating pods, it creates
virtual machines to run tasks. EARH is limited to handling jobs composed of batch tasks,
and its goal is to minimize energy consumption while executing a set number of jobs. Unlike
GreenCourier, EARH lacks any intelligent selection logic and focuses solely on energy conser-

31

3 Related Work

vation, while GreenCourier employs a node selection logic to minimize carbon emissions into
the environment.

Goiri et al [98] present a parallel batch job scheduler for a data center that is powered
by a photovoltaic solar array and uses the electrical grid as a backup source. GreenSlot
utilizes prediction technology to forecast the availability of solar energy and schedules jobs
to maximize the consumption of green energy while minimizing the consumption of brown
energy. Brown energy [98, 99] have been introduced to refer to the energy produced from
non-renewable sources that pollute the environment, in opposition to green energy which
is generated from clean and renewable sources. The scheduler prioritizes brown energy
consumption during times of low energy costs. This approach has been shown to increase the
consumption of green energy by 117% and decrease energy costs by 39%. The scheduler is
designed for tasks that are not time-sensitive, meaning that they can be scheduled for future
execution, rather than being executed immediately upon receipt. In conclusion, GreenSlot
and GreenCourier have different goals and serve different use cases. While GreenSlot aims to
maximize the consumption of green energy and reduce the use of brown energy in a data
center, it requires additional information such as the number of nodes, expected running
time, and deadlines. It schedules batch jobs that are not time-sensitive and can wait for the
availability of green energy. On the other hand, GreenCourier is a scheduler that prioritizes
minimal carbon emission in function execution real-time, rather than maximizing the use of
green energy. It employs an intelligent node selection logic to choose the cluster with the
greenest energy at a given point in time. Both solutions cater to different business require-
ments and serve unique purposes.

The study conducted by Li et al. in [100] introduces the GreenWorks framework,
specifically geared towards hybrid data centers powered by a mixture of renewable energy
sources. The framework features a cross-layer power management strategy that accounts
for the unique temporal characteristics and capacity limitations of each energy source. This
research highlights the limitations of current green data center approaches, which typically
rely on one of three methods (load scaling, battery discharge, or load following), and fail to
capture the potential synergies that can be achieved through a multi-source energy mix.

32

3 Related Work

Figure 3.2: GreenWorks power management hierarchy [100]

As a result, they tend to result in suboptimal design decisions. Their system consists
of two elements: green workers - system-specific power control modules for each different
source, 2) green manager - a global controller of different green workers. This work is more a
coordination strategy where various source of power is present, rather than taking control at
the level of tasks which are controlled or scheduled using different strategy. In this paper, they
explain the necessity of different workers, rather than merely adjusting server load or power
budget. Solution they provide in terms of GreenWork framework is a hierarchical coordinator
as shown in Figure 3.2. GreenCourier completely differs from GreenWorks in multiple level -
1) GreenCourier controls scheduling of incoming functions, does not have control over quality
of electricity being used at a data center, 2) GreenCourier does not actively manage life cycle
of the functions deployed, it is taken care by serverless platform (Knative [20] in this case), 3)
GreenWorks provides a efficient mechanism to manage power from different sources which
are intermittent by nature, GreenCourier only takes into account of real-time carbon efficiency
of different regions, does not use any predictive mechanism or use history data to create a
pattern.

In general, existing literature on energy aware scheduling, they focus one of following
strategy:

• Scheduling tasks by increasing or decreasing frequency and voltage depending on task
criticality and priority

• Concentrated scheduling over number of nodes/processor, with as minimal resource as
possible

• Delaying task execution which are time immune (not necessarily executed on the
moment but put in a queue and wait for preferable time), such that it still satisfied
user’s requirement

3.3 Scheduling in Kubernetes

Kubernetes [19] has been around since 2014, currently it is the industry’s go-to solution
for container deployment and orchestration. Heterogeneity in characteristics of workload

33

3 Related Work

in industry is well known and solution offered by Kubernetes is not enough to bridge the
gap between requirement and offerings. So, lot of other projects whose intention was to
extend the platform to cater customer needs were developed. One such point of extension
of platform happened in scheduler module, which is the sole decision maker in terms of
scheduling pods inside the cluster. Since then there has been lot of research work done on this
field and GreenCourier is also no exception from above fact. Rejiba et al [64] produced their
surveyed custom scheduling in Kubernetes and discuss the common problems and solution
approaches in their paper.

Kaur et al [101] propose a controller, named Kubernetes-based Energy and Interference
Driven Scheduler(KEIDS) for container management in edge cloud by taking in to account the
emission of carbon footprints, interference and energy consumption. They design their solu-
tion based on a Multi-Objective Optimization Problem (MOOP). Proposed solution performs
better in terms of energy utilization, reduced carbon footprint and minimal interference by
14.42%, 47%, 31.83% respectively, when compared with default First Come First Serve (FCFS)
scheduler. Mathematical formulation of above said objectives is shows in Equation 3.1

F
(
Tijkl

)
= min f

(
F1

(
Tijkl

)
, F2

(
Tijkl

)
, F3

(
Tijkl

))
(3.1)

Equation 3.1 represents the MOOP for efficient scheduling of pods to the available nodes
in multi-constraint setup, with a binary decision variable as defined in Equation 3.2.

T
p
ijkl =

1 : if the ith container (associated with the pth job)

is mapped to the jth pod deployed on the kth

node of the lthcluster

0 : Otherwise.

(3.2)

Formulated MOOP is a typical case of Integer Linear Programming, which they solve
using Mosek [102]. As established, KEIDS proposes a solution to solve a multi-objective
scheduler problem. In the case of GreenCourier, only objective is to minimise the carbon
emitted during execution of functions, to achieve that GreenCourier uses a multi-cluster
topology of geographically distributed clusters, where as KEIDS only works in a conventional
setup of Kubernetes cluster.

Rocha et al [103] introduces a task-oriented and energy-aware orchestrator, named
HEATS used for containerized application targeting clusters with heterogeneous resources.
HEATS analyses the cluster for its performance and energy features, then opportunistically
migrates them to different nodes based on the previous learning. HEATS allows users to hit
a balance between performance and energy requirements. It integrates a modified version
of the Kubernetes platform, with a cluster control plane that is augmented with machine
learning capabilities to make informed decisions on pod migration, based on performance
and energy requirements. Additionally, HEATS features a novel scheduler policy that con-
siders a user-specified performance trade-off value to determine the degree of performance

34

3 Related Work

reduction that the user is willing to tolerate. Their evaluation result shows that HEATS out-
performed default scheduler in terms of energy savings, by compromising on performance.
Basic difference between GreenCourier and HEATS is that, GreenCourier does not actively
compromise performance of the workloads at all and it is not concerned above minimising
the energy consumed during the execution. GreenCourier’s primary concern is reduction
of carbon emission by using comparative clean energy. HEATS and GreenCourier, though a
scheduler designed to scheduler pods in a energy efficient way, they both adopt two different
approaches to reduce carbon emission during execution.

Townend et al [104] proposes a holistic scheduling system replaces default scheduler
in Kubernetes, by taking into account of software and hardware model. By deploying this
scheme, they were able to achieve 10-20% of power consumption reduction. They shows that
introduction of hardware modelling into to a software-based system produces significant
improvement in data center efficiency. They create such software models from past history
data and other online data and predict the amount of resources that will be required to
execute a workload and determine the duration to achieve that. They strive to build a
predictive capability to assess the impact of each incoming container on the nodes. They use
this predictive capability to intelligently schedule pods to a node in optimal way - tuned to
conserve energy or improve performance or both depending on the configuration. Two main
focus of this work is to improve performance or conserve energy by adapting Dynamic Voltage
Frequency Scaling (DVFS) method, which clocks the performance of CPU by reduction of
power. GreenCourier’s focus is not either of those two, but the end goal achieved by both
the work is same, as explain for previous works, the approach adopted is completely different.

Menouer [105] proposes a multi-criteria scheduling algorithm which uses Technique for
the Order of Prioritisation by Similarity to Ideal Solution (TOPSIS) algorithm. This algorithm
considers following criteria for scheduling:

• CPU Utilization rate

• Memory Utilization rate

• Disk Utilization rate

• Power Consumption

• Number of running containers in each node

• Time for transmitting the image selected by the user to that node

The aim of this study is to incorporate various considerations, including energy con-
sumption, into the scheduling process to make informed decisions. The evaluation results
demonstrate that this approach leads to a reduction in power consumption, as well as a
decrease in both makespan and average waiting times for containers. To accomplish this,
modifications were made to the existing Kubernetes framework code, extending beyond mere

35

3 Related Work

changes to the scheduler code alone.

It can be discerned from the above-cited literature that a prevailing commonality among
the various strategies employed to minimize energy consumption is the utilization of tech-
niques that either modulate the clock frequency of processors or defer the execution of
tasks until they can be accommodated within the existing cluster configuration, rather than
scaling up the infrastructure dynamically. However, this approach is only applicable to
certain use-cases that permit a degree of latency in the execution of tasks, and does not
address the requirement for real-time deployment of workloads that necessitate prompt
accessibility for end-users. It has been observed that some of the research studies provide
solutions to multi-objective optimization problems, one of the objectives being the reduction
of energy consumption, which translates to a decrease in the carbon emissions generated
by the workload. In the context of the GreenCourier system, a novel approach is adopted
to address this objective by identifying the most energy-efficient region for deploying the
functions, thereby reducing the carbon footprint during their execution. Although there exist
certain technical similarities with other works, the methodology adopted by GreenCourier is
distinct and dissimilar from the conventional approaches.

36

4 System Design

In this section, we will delve deeper into technical characteristics of the thesis including
the design choices and system architecture. Overall system architecture will be broken into
multiple sub-systems and detailed explanation and implementation details will be discussed.

4.1 System Architecture

The primary aim of this study is to design a scheduling framework that can effectively detect
environmentally sustainable regions and prioritize scheduling serverless functions in those
regions. The purpose of this scheduling approach is to reduce the carbon footprint associated
with function execution. In typical commercial Function-as-a-Service (FaaS) offerings, users
are not afforded the flexibility of selecting a region during runtime, but instead must specify
a region during function creation. However, the characteristics of electricity in a given region
can fluctuate over time due to various external factors such as light and wind availability. In
order to optimize the use of renewable energy and consequently minimize carbon emissions,
it is imperative to implement a policy that can dynamically select regions during runtime
based on the quality of greenness in electricity available in various parts of the world or
pre-selected regions of choice. To implement this kind of scheduling scheme, we need a
multi-cluster setup, with a management plane cluster and multiple peer clusters, which are
geographically distributed in different regions. Since Knative [20] has been decided as the
serverless platform, because of its interoperability with public clouds and its dependence on
Kubernetes [19], which is a production-grade container orchestration platform. And Liqo
[70] to setup multi-cluster Kubernetes topology, because of its advantages over other parallel
offerings as shown in Section 2.3.

The technical setup for this framework can be broadly categorized into three distinct
sections: User, Management Cluster, and Peer Cluster. The user interface involves interaction
with the management plane to deploy novel serverless functions and to use the load balancer
incorporated at the management cluster to interface with the deployed functions. More
specifically, the user establishes functions using Knative service specification by interfacing
with the Knative control plane that is deployed in the management cluster. Within the
management cluster, several disparate components are deployed, including Knative Serving,
Liqo, GreenCourier, Metrics Server, and Virtual Kubelet [86], which serves to connect peer
clusters through Liqo. All of the aforementioned components rely on Kubernetes to operate;
therefore, as depicted in Figure 4.1, all of these components are deployed within a Kubernetes
cluster. The Knative Serving components are essential to deploying functions and making
them available to serve user requests. As previously discussed in Section 2.3.3, Liqo is

37

4 System Design

utilized to establish a multi-cluster topology. The fundamental requirement for establishing a
multi-cluster Kubernetes configuration is to have a multi-cluster control plane and network
interconnectivity between clusters, both of which Liqo provides out-of-the-box. Liqo utilizes
virtual kubelet to cloak a peer cluster as a virtual node and connect it to the management
cluster as a node. GreenCourier is built on top of Kubernetes scheduler framework, therefore
it is not required to develop and maintain core functionalities of Kubernetes scheduler.
Kubernetes Scheduler Framework as discussed in Section 2.2.3 is used to build GreenCourier.
GreenCourier extends Score extension points and implements custom logic to prioritize nodes
running in region which uses comparatively clean energy. GreenCourier is accountable for
querying the carbon score from the metrics server and making runtime scheduling decisions
to place pods in any of the peer clusters as shown in Figure 4.2. This decision is made using
the carbon score reported by the metrics server, and GreenCourier assigns pods to a peer
cluster that has the highest carbon score. If GreenCourier is unable to deploy pods to a peer
cluster that has the highest carbon score, it assigns them to a peer cluster that has the next
highest score. Metrics Server is capable to connecting to different sources which provides
marginal emissions rate MOER. It represents the emission rate of the electricity [27] and it
is quantified in terms of CO2 lbs/MWh or g/kWh, depending on the type of source, unit
is determined. As part of Peer Cluster, it is required to deploy Liqo as part of the cluster.
Since, Liqo establishes network fabric, which maintains routing table and Network Address
Translation (NAT) tables, by taking directions from Liqo control plane. As a peer cluster in a
multi-cluster environment facilitated by Liqo, the deployment of Knative Serving components
may not be necessary, as the Kubernetes objects created by Knative, namely the ReplicaSets,
are automatically managed by Kubernetes itself. Since the management cluster exercises
control over the pods deployed in peer clusters and the interconnection between clusters is
established at the Kubernetes level, Knative Serving components are not required in the peer
cluster. Instead, the overlay network established by Kubernetes and Liqo can be used by
Knative to route traffic to the deployed pods.

In conclusion, the scheduling framework proposed in this study aims to dynamically
select environmentally sustainable regions during runtime and prioritize scheduling serverless
functions in those regions to reduce the carbon footprint associated with function execution.
This framework requires a multi-cluster setup, including a management plane cluster and
multiple peer clusters, and utilizes Knative as the serverless platform and Liqo to establish
a multi-cluster topology. The management cluster hosts several components, including
Knative Serving, Liqo, GreenCourier, Metrics Server, and Virtual Kubelet, all of which rely
on Kubernetes to operate. GreenCourier is responsible for querying the carbon score from
the metrics server and making runtime scheduling decisions to place pods in any of the peer
clusters. Metrics Server is capable of connecting to different sources to provide marginal
emissions rate. The pods objects are created when a function is invoked in Knative, which are
then offloaded to one of the peer clusters, where the function is executed.

38

4 System Design

Figure 4.1: System Architecture - GreenCourier

39

4 System Design

4.2 Scheduling Workflow

Typical workflow of deploying functions in GreenCourier is shown in Figure 4.2. At first, 1
user defines function as a specification file which contains information regarding container
image and runtime configurations. To use GreenCourier for scheduling functions, user should
set the following field - .spec.schedulerName to kube-carbon-scheduler. Using this specification
file, user sends request to Knative Serving control plane to create function. Knative picks up
the specification file 2 , and creates associated Kubernetes Objects like ReplicaSet and Service.
When there is state change in ETCD [106], Kubernetes detects the state change and pulls the
update from ETCD 3 , which sends changes in Kubernetes objects, in this case ReplicaSet.
Kubernetes then acts on this request and creates associated Pod objects and updates the
creation back to ETCD 4 . GreenCourier also listens to state change associated with Pod
objects. Since new pods are created by Kubernetes control plane (to be precise, replicaset
controller), GreenCourier scheduler gets newly created pod objects 5 . GreenCourier in
parallel keeps scraping carbon score metrics from metrics server 6 , which has capability
of querying carbon intensity data from multiple sources. Retrieved carbon score is stored
in local cache within GreenCourier and this score is used to rank nodes during scheduling
cycle. After evaluating every node, node with highest score is selected. This selected node is
assigned with newly created pod object. To do this, GreenCourier edits .spec.nodeName field
in pod specification and pushes the updated specification to ETCD 7 . Liqo does the work of
Kubelet [87] in our setup, which is to look for pods which are assigned with node name that
Kubelet is responsible for. In our case, Liqo cloaks a cluster as a virtual node in management
cluster, with the help of Virtual Kubelet [86]. When Liqo sees a pod assigned to the virtual
node which it is responsible for, it queries pod object from ETCD 8 . Once pod object is
queried, Liqo initiates offloading 9 , more on offloading is explained in Section 2.3.3.1. Once
the peer cluster, reconciles the pod creation request, it updates the state back to management
cluster through Liqo 10 . Liqo then updates local routing table rules in such a way, that
traffic to that pod is sent through secure tunnel established by Liqo between peer cluster and
management cluster. It is required to update the endpoints objects created in ancillary during
function creation. So Liqo initiated endpoint updation by sending update request to ETCD
11 . Since EndPoint objects are listened by Kubernetes control plane, update is pulled by

control plane 12 . When such EndPoint objects are updated, Kubernetes initiates function
updation 13 , because function object created by Knative should be updated with IPs of pods
running in peer cluster, so that Knative will forward function invocation to respective pod.
Local snapshot of objects like Functions should be updated with latest version in Knative
Serving components, so Knative initiates and updates local snapshot of Function object 14 .

4.3 Coscheduling and Cluster Authorization

In this segment, we will delve into the intricacies of coscheduling and its pertinence to
GreenCourier. Furthermore, the challenge of cluster authorization, a paramount aspect in
the research procedure, will be scrutinized. To fulfill its mandate, GreenCourier necessitates

40

4 System Design

Figure 4.2: Workflow of typical Function Scheduling in GreenCourier

41

4 System Design

privileged access to the status of Kubernetes cluster objects, as well as the capability to
perform modifications to these objects. This presents a significant obstacle that must be
overcome during the course of research.

4.3.1 Coscheduling

Coscheduling refers to the simultaneous execution of two or more scheduling-related pro-
cesses in concurrent systems. Essentially, two separate processes utilize the same snapshot of
cluster resource status and run in parallel to deploy workloads for the same resource. This can
result in a race condition, so to avoid this, one of the processes must be notified not to handle
a particular resource request so the other process can take over and perform the necessary
actions. GreenCourier operates in a similar manner, running in parallel with the Kubernetes
scheduler, which also selects unassigned pods and attempts to assign them to a node through
the application of various predicate and priority scheduling algorithms. Kubernetes itself
provides capability to explicitly mention scheduler name in pod specification file. Scheduler
name can be explicitly set in .spec.schedulerName field.

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: annotation-second-scheduler
5 labels:
6 name: multischeduler-example
7 spec:
8 schedulerName: GreenCourier
9 containers:

10 - name: pod-with-second-annotation-container
11 image: thandayuthapani/kube-carbon-scheduler:latest

4.3.2 Cluster Authorization

As a kubernetes scheduler, GreenCourier needs to watch on kubernetes objects and has to
take appropriate action when there is changes in respective kubernetes objects. Kubernetes
enforces authentication and authorization for every API requests sent. Kubernetes reviews
following API request attributes: user, group, extra, API, request path, API request Verb, HTTP
request verb, resource, subresource, namespace, API group. In short, GreenCourier should get
explicit access rights for set of Kubernetes objects under particular resource and different
verbs that GreenCourier can execute on that particular resource. For example, GreenCourier
should have access to GET, LIST, UPDATE, DELETE verbs for Pod. Similarly other Kubernetes
objects like ConfigMap, PersistentVolume, PersistentVolumeClaims, etc., are required for
proper functioning of schedulers. Available request verbs are as follows: GET, LIST, WATCH,
UPDATE, PATCH, DELETE, DELETECOLLECTION.

42

4 System Design

The implementation of Role-based access control (RBAC) in Kubernetes provides a
secure solution to the authorization challenge faced by GreenCourier. This feature empowers
users to assign an RBAC policy to GreenCourier, providing it the necessary authorization
to access privileged Kubernetes objects and perform updates on cluster objects. The RBAC
policy specifies the Kubernetes objects and request verbs that GreenCourier is permitted
to access and execute, thereby ensuring a secure and controlled environment for resource
utilization. The implementation of RBAC in Kubernetes is achieved through the use of
ClusterRole and ClusterRoleBinding objects. A new ClusterRole object can be created to define
the RBAC policy, and a specific ClusterRole can be assigned to a workload by using the
ClusterRoleBinding object, granting it privileged access to objects defined in the scope. Many
default Role-based access control (RBAC) policy are created by Kubernetes cluster, out of
those three ClusterRole objects are required for GreenCourier to get access to Kubernetes
objects. Those three ClusterRole objects are: system:kube-scheduler, system:volume-scheduler,
extension-apiserver-authentication-reader. ClusterRole objects are bound to GreenCourier using
ClusterRoleBinding objects. It can be done using following configuration:

1 apiVersion: v1
2 kind: ServiceAccount
3 metadata:
4 name: my-scheduler
5 namespace: kube-system
6 ---
7 apiVersion: rbac.authorization.k8s.io/v1
8 kind: ClusterRoleBinding
9 metadata:

10 name: GreenCourier-as-kube-scheduler
11 subjects:
12 - kind: ServiceAccount
13 name: GreenCourier
14 namespace: kube-system
15 roleRef:
16 kind: ClusterRole
17 name: system:kube-scheduler
18 apiGroup: rbac.authorization.k8s.io
19 ---
20 apiVersion: rbac.authorization.k8s.io/v1
21 kind: ClusterRoleBinding
22 metadata:
23 name: GreenCourier-as-volume-scheduler
24 subjects:
25 - kind: ServiceAccount
26 name: GreenCourier
27 namespace: kube-system

43

4 System Design

28 roleRef:
29 kind: ClusterRole
30 name: system:volume-scheduler
31 apiGroup: rbac.authorization.k8s.io
32 ---
33 apiVersion: rbac.authorization.k8s.io/v1
34 kind: RoleBinding
35 metadata:
36 name: GreenCourier-extension-apiserver-authentication-reader
37 namespace: kube-system
38 roleRef:
39 kind: Role
40 name: extension-apiserver-authentication-reader
41 apiGroup: rbac.authorization.k8s.io
42 subjects:
43 - kind: ServiceAccount
44 name: GreenCourier
45 namespace: kube-system

4.4 Metrics Server

The metrics server plays a crucial role in the functioning of the Carbon-Aware scheduling
system as it acts as the central repository for calculating and normalizing the carbon efficiency
score. The metrics server employs a straightforward methodology where it collects data
from designated sources and subsequently exposes a REST API that can be utilized by the
scheduler to retrieve the normalized score. This arrangement streamlines the process of
obtaining the carbon efficiency score and ensures its seamless integration into the scheduling
framework.
Currently, there are two different sources supported by metrics server, where it can readily
scrape data by simple change in configuration of metrics server. Those two sources are as
follows: WattTime [26] and Green Software Foundation (GSF)’s Carbon Aware SDK [107]. Metrics
server is written in such a way, any new sources can be added with ease.

4.4.1 WattTime Data Source

WattTime leverages real-time grid data, advanced algorithmic techniques, and machine
learning to present unprecedented visibility into the marginal carbon emission rate of the
local electricity grid. The Marginal Operating Emissions Rate (MOER) is a quantification of
the rate of emissions produced by the electricity generators in response to variations in the
demand for energy on the local electrical grid, at a specific point in time. And MOER data
from WattTime is in units of pounds of emissions per megawatt-hour (e.g. CO2 lbs/MWh).
Quantification of emissions can be achieved through utilization of the marginal emissions

44

4 System Design

rate MOER value by computing energy usage and multiplying that quantity by the MOER.
The resulting quantity represents the CO2 emissions, which can be calculated as the sum
of the product over the time-series. This method is often employed to assess the efficacy of
load-shifting strategies aimed at mitigating greenhouse gas emissions.

4.4.2 Carbon Aware SDK

The Carbon-Aware SDK is a cutting-edge tool for building advanced software solutions that
embody a carbon-conscious approach to energy consumption. By incorporating real-time
carbon intensity data, applications can dynamically optimize energy utilization by selectively
utilizing sources that are most environmentally-sustainable. This results in decreased carbon
footprint and a more ecologically responsible approach to software development. With the
Carbon-Aware SDK, one has the ability to create software that leverages dynamic meteorolog-
ical data to choose the most favorable times for operation, such as when wind generation is at
its peak. Many sources which provide same carbon efficient score reports data in lbCO2/kWh
or gCO2/Wh and many other units. Carbon-Aware SDK tries to aggregate those data under
one umbrella and report the data required by applications in gCO2/kWh.

4.5 Intelligent Node Selection

This section endeavors to delve into the intricacies of the algorithms of carbon-aware schedul-
ing and geo-aware scheduling. The systematic demonstration of these algorithms will be
furnished in the ensuing Section 4.5.1 and 4.5.2, conveyed via a pseudocode representation.

4.5.1 Carbon-Aware Node Selection

During scheduling cycle of GreenCourier, it runs through various piece of plugins which can
be disabled through scheduler configuration. Following is the pseudocode representation
carbon-aware logic implemented as part of research work as shown in Algorithm 1.

The scheduler implements a carbon-aware scheduling algorithm which leverages the
carbon intensity values for a range of regions to perform an evaluation and ranking of said
regions. The algorithm utilizes a multi-scheme evaluation process to determine the optimal
region based on predefined criteria such as carbon intensity, though it may also incorporate
additional parameters and weighting as needed. The algorithm is configured to prioritize
the ranking according to carbon intensity, however, it offers the ability to modify its ranking
criteria as needed to suit the specific requirements of the use case scenario. Once the most
suitable region i.e., the greenest region in determined, the carbon-aware scheduler assigns
pods to that region, until the cluster resource is exhausted or podSpec has restriction stopping
from deploying in that region because of dependency or incompatibility. By default, WattTime
is the source of carbon-aware scheduler, but it also supports Carbon Software Development
Kit (SDK) from Green Software Foundation (GSF) at the moment.

In the GreenCourier Scheduler, multiple pre-integrated plugins can be utilized or
disabled based on the scheduler configuration. The scheduler begins by collecting the

45

4 System Design

list of enabled predicates (as shows in Section 2.2.2) from the configuration file and loading
the relevant plugin code into cache. An empty array object, referred to as the "nodeList," is
declared to store the nodes that meet all the conditions specified by the predicate plugins.
The nodeList is then used to iterate through each node, evaluating it against every enabled
predicate plugin to determine its suitability for pod scheduling. In essence, the process of
node selection in a scheduling system entails the utilization of predicate plugins to perform a
comprehensive assessment of each node. Any node that does not pass the evaluation criteria
established by the enabled predicate plugins is excluded from further consideration. The
resulting subset of nodes that have met all the predicates are then subjected to a ranking
algorithm facilitated by score plugins, which assigns a score to each node based on specified
metrics, resulting in a ranked list of nodes.

The GreenCourier scheduling system incorporates a filter phase that enforces stringent
constraints on nodes or pod objects in the cluster, thereby eliminating non-compliant nodes
from further consideration in the pod scheduling process (as explained in Section 2.2.2). The
scoring phase employs a comparable methodology, executing an evaluation of nodes utilizing
the active priority plugins, including the geo-aware plugin implemented for this study. The
region of the node is determined by reading the annotations set by the administrator during
cluster creation line 3-4, followed by the retrieval of real-time carbon efficiency scores from the
metrics server line 5. The metrics server, developed as part of this research, provides a means
of obtaining the carbon efficiency scores at 5-minute intervals. The scores are processed in
a local cache within the program, using a simple map implementation (region as key and
carbon score of that particular region as value) line 6, normalized to a specified ceiling, in our
case the scores are normalised in range from 0 to 100 line 8, and the node with the highest
score is selected line 9. The selected node’s name is then assigned in the podSpec field and
updated in the API server, ultimately being stored in the ETCD database line 10-11.

Algorithm 1 CarbonAware Scheduler

1: Scoring Logic:
2: function Calculate_Scores(PodObject, ListOfNodeObjects)
3: for Node ∈ ListO f Nodes do
4: Region = Node.Annotation("region")
5: NodeScore = RetriveDataFromMetricsServer(Region)
6: UpdateAndStoreNodeScore(Region)
7: end for
8: NormaliseNodeScores()
9: Node = GetNodeWithHighestScore()

10: AssignNodeForPod(PodObject, Node)
11: return PodObject
12: end function

46

4 System Design

4.5.2 Geo-Aware Node Selection

The Geo-Aware scheduling scheme as shown in Algorithm 2 was introduced in this research
to evaluate its performance against the Carbon-Aware scheduler and to compare the results
against the commonly used scheduling schemes for serverless functions, including the default
scheduler code. The Geo-Aware scheduling scheme uses annotations created by the cluster
administrator during cluster creation to determine the score of each node. These annotations
are used to evaluate the nodes based on the distance between the management clusters and
peer clusters. That distance is pre-calculated in case of GeoAware scheduler as this was
only used for evaluation purposes, atleast in the scope of this thesis. This section provides a
comprehensive examination of the workings of the Geo-Aware scheduler.

The scheduler begins by collecting the list of enabled predicates from the configuration
file and loading the relevant plugin code into cache. An empty array object, referred to
as the "nodeList," is declared to store the nodes that meet all the conditions specified by
the predicate plugins. The nodeList is then used to iterate through each node, evaluating
it against every enabled predicate plugin to determine its suitability for pod scheduling.
In essence, the process of node selection in a scheduling system entails the utilization of
predicate plugins to perform a comprehensive assessment of each node. Any node that does
not pass the evaluation criteria established by the enabled predicate plugins is excluded from
further consideration. The resulting subset of nodes that have met all the predicates are
then subjected to a ranking algorithm facilitated by score plugins, which assigns a score to
each node based on specified metrics, resulting in a ranked list of nodes. The region of the
node under consideration is identified through the parsing of annotations set by the cluster
administrator during the inception of the cluster creation process (line 4-5). A comprehensive
score is then calculated based on the relative proximity of the node to the management
plane. The score calculation methodology is contingent on the compilation of regions where
the clusters are deployed, and is established through the evaluation of the relative distance
between regions line 6. Node distance value is calculated by finding the geographical distance
between two control plane region and region of that particular node. Since, GeoAware
scheduler is used only for evaluation, pre-calculated values are hard-coded as part of code
base. But it is easier to extend the logic of GeoAware scheduler to collect the data from
metrics-server, as GreenCourier does. The score computation procedure is executed within
the confines of the program’s local cache storage mechanism (line 7) and is then normalized
to an established ceiling (line 9). Subsequently, the node with the highest score is identified
and its name is recorded in the podSpec field (line 10). The updated podSpec, inclusive of the
assigned node name, is then transmitted to the API server for persistent storage in the ETCD
database (line 11-12).

47

4 System Design

Algorithm 2 GeoAware Scheduler

1: Scoring Logic:
2: function Calculate_Scores(PodObject, ListOfNodeObjects)
3: for Node ∈ ListO f Nodes do
4: CurrentRegion = Node.Annotation("region")
5: NodeDistance = CalculateNodeDistance(CurrentRegion, ControlPlaneRegion)
6: UpdateAndStoreNodeDistance(Region)
7: end for
8: NormaliseNodeScores(NodeDistance)
9: Node = GetNodeWithHighestScore()

10: AssignNodeForPod(PodObject, Node)
11: return PodObject
12: end function

48

5 Experiments and Evaluation

GreenCourier being developed for the goal of having a carbon-aware scheduling scheme for
serverless functions, it is pertinent that we test the scheme against existing scheduling schemes
which are used to schedule serverless in industry. Two of the scheduling scheme used are:
GeoAware as mentioned in Section 4.5.2 and default scheduling scheme implemented by
kubernetes [31]. Above mentioned evaluation should give us insights into performance of
GreenCourier, both expectations and limitations.

5.1 Metrics and Experiments Configuration

5.1.1 Evaluation Metrics

The evaluation of GreenCourier aims to gauge its proficiency in mitigating the carbon footprint
of cloud computing systems by means of a comparative analysis with GeoAware scheduling
scheme and the conventional scheduling scheme. This evaluation will be based on three
critical performance indicators, namely:

• Carbon Emission during function invocation.

• Placement of workloads in efficient region.

• Scheduling time and response time.

The results of the evaluation will provide insights into the carbon emission, placement effi-
ciency, and scheduling and binding latency of GreenCourier compared to other scheduling
schemes. The results will also help to identify areas for improvement and potential optimiza-
tions for GreenCourier.
Placement of Workloads in Efficient Region: This aspect evaluates the effectiveness of
GreenCourier in placing pods in regions with efficient energy sources, compared to other
scheduling schemes. Metrics used for this evaluation include the number of workloads placed
in regions with clean energy sources, and the energy consumption of these regions compared
to regions powered by non-renewable energy sources.

Placement E f f iciency =
no. f unction instances deployed in possible carbon e f f icient region

total f unction instances
(5.1)

49

5 Experiments and Evaluation

Carbon Emission during Function Invocation: This aspect evaluates the carbon emis-
sions generated during function invocations in the GreenCourier system compared to the
other scheduling schemes. Metrics used for this evaluation is based on Green Software
Foundation (GSF)’s Software Carbon Intensity specification project[89]. The methodology
used for this evaluation will involve analyzing the energy consumption of the hardware and
infrastructure used to run the functions, as well as the sources of energy used to power the
hardware. The calculation of carbon emissions produced during function invocation can
be achieved by multiplying the energy consumption, represented in kilowatt hours (kWh),
and the carbon intensity value obtained from a carbon intensity specification, along with
the Marginal Operating Emissions Rate (MOER) value obtained from WattTime. Since the
functions can be deployed at various regions, we can approximate the MOER value by taking
weighted average of number of instances deployed in particular region.

AverageMOER =
∑n

i=1 number o f instance in a region ∗ MOER
∑n

i=1 number o f instance in a region
(5.2)

We can then use the calculated average MOER value and plug it in Software Carbon
Intensity (SCI) formula:

SCI = ((E ∗ I) + M)/R (5.3)

Where:

• (E) - Energy consumption of software.

• (I) - Marginal Emissions factors.

• (M) - Embodied emissions.

• (R) - The functional unit.

By incorporating the computed Average Marginal Carbon Intensity (MOER) value as I in
Equation 5.3, while disregarding the Embodied Emissions as they remain unaffected by the
implementation of GreenCourier, the equation can be succinctly formulated as follows:

SCI = (E ∗ AverageMOER)/R (5.4)

To calculate the energy consumed by a machine, we will consider a example - A one core
virtual machine, which uses Intel Skylake i9-7980XE processor with clock rate of 2.4 GHz, has
Thermal Design Power (TDP) of 165 W. Assuming the 50% of the core is used at any point,
energy consumed by the processor for 24 hours is:

Energy = (TDP ∗ Load ∗ Time) = 165 ∗ 50% ∗ 24 = 1.98kWh

Scheduling time and response time: This aspect evaluates the latency of the scheduling
and binding process in the GreenCourier system compared to the other scheduling schemes.

50

5 Experiments and Evaluation

Metrics used for this evaluation include the time taken to schedule and bind a task, and the
impact of this latency on the overall completion time of the task. The methodology used for
this evaluation will involve analyzing the time taken for the scheduling and binding process
and comparing it to the other scheduling schemes. Here we split the scheduling time into
scheduling latency taken by scheduler to assign node to a pod and binding latency taken
by other components like Kubelet [87] (in normal setup) and Liqo [70] (in a geographically
distributed multi-cluster setup) to actually deploy the pod and sync the status to control plane.
This is accomplished by monitoring events (as described in Section 2.2.1.2) emitted by the
Kubernetes cluster whenever there is a modification in the state of the workload or pod. The
metric of response time holds paramount importance in the realm of serverless deployment
as it quantifies the amount of time it takes for the server to process and respond to a client’s
request. A low response time is indicative of a highly performant system, which is imperative
for delivering a superior user experience and fostering user engagement. Within a serverless
deployment, the response time metric can play a crucial role in determining the overall system
performance, and a slow response time can have a detrimental effect on the user experience
and result in decreased business value. Hence, the monitoring and optimization of response
time is crucial for ensuring the viability and sustainability of a serverless deployment.

5.1.2 Benchmark and Functions

For the purpose of benchmark, we use k6 [108], a open-source project driven by grafana
labs. Grafana k6 is a free and open-source load testing tool designed for engineering teams.
It prioritizes ease-of-use and productivity, making performance testing accessible. It is
developer-focused and can be easily customized to meet specific requirements. We utilize
functions of varying characteristics but with a relatively short execution time, which can be
considered as having a temporal life. List of all the functions and a short description about
them can be found in Table 5.2.

Cluster Type Region Instance name # of instances # of vCPUs RAM
Management europe-west3-a e2-standard-16 1 1 × 16 1 × 64GB

Peer

europe-southwest1-a e2-standard-4 4 4 × 4 4 × 16GB
europe-west9-a e2-standard-4 4 4 × 4 4 × 16GB
europe-west1-b e2-standard-4 4 4 × 4 4 × 16GB
europe-west4-a e2-standard-4 4 4 × 4 4 × 16GB

Table 5.1: Cluster setup used while benchmarking GreenCourier

5.1.3 Experiment setup

To effectively evaluate GreenCourier under heavy loads and benchmark its performance, a
multi-cluster setup was established using 80 vCPUs and 320 GB of RAM resources. Cluster
setup included a management cluster in Frankfurt region (europe-west3-a) in Google Cloud
Platform (GCP). Other than the management cluster, 4 other peer clusters were deployed in
geographically distributed manner as shown in Table 5.1. Four peer clusters were deployed

51

5 Experiments and Evaluation

in following regions: europe-southwest1-a (Madrid, Spain), europe-west9-a (Paris, France),
europe-west1-b (St. Ghislain, Belgium), europe-west4-a (Eemshaven, Netherlands).

As previously articulated, the load testing tool employed was Grafana k6. The test suite
arrangement for load testing was established as 110 Virtual Users (VUs) with a duration of 5
minutes, thereby translating to a concurrent volume of 110 parallel requests per second over
a span of 300 seconds. This experiment was conducted with a repeated iteration for each
scheduling setup and each of the 8 distinct functions as outlined in Table 5.2. This resulted
in a comprehensive evaluation of GreenCourier through 24 distinct scenarios, comprising
of the 3 scheduling configurations, i.e., GreenCourier, GeoAware, and the default scheduler
schemes serving as the baseline for performance comparison.

Function Name Description

CNN-Serving
SqeezeNet [109] CNN based function which uses ImageNet[110]

dataset to train the model and serve the request

Float operations
Simple function which executes simple math and

trigonometric operations on set of data

LR-Serving
A Linear regression model which is used

to predit the TD-IDF [111] features of a document.

LinPack
Function that used linalg library [112]
to solve set of linear matrix equation

Matrix
Multiplication

Funtion implementation of matrix multiplication
using NumPy library [113].

Pyaes
Simple function which uses Pyaes [114] library

to encrypt data

RNN-Serving
Pytorch [115] based Recurrent Neural Networks

implementation of simple language model

Chameleon
An XML/HTML rendering

function using chameleon [116] library.

Table 5.2: Short description on functions used for benchmarking GreenCourier

5.2 Pod Placement Efficiency

The Pod placement efficiency metric is employed to evaluate the ability of various scheduling
schemes to place pods in regions with optimal carbon efficiency. Although the default
scheme and the GeoAware scheme do not distinguish between clusters based on their carbon
efficiency, they may occasionally deploy pods to high-efficiency clusters due to the influence
of the "PodSpreadTopology" (as described in Section 2.2.2) plugin in the default scheme
or resource availability in the GeoAware scheme. The results, as illustrated in Figure 5.1,
demonstrate that the CarbonAware scheduler outperforms the other two scheduling schemes
by significant margins.

52

5 Experiments and Evaluation

Figure 5.1: Pod placement efficiency comparison between GeoAware scheduler 4.5.2, default
scheduler [61] and GreenCourier

The GreenCourier scheduling scheme exhibits a substantial improvement in the profi-
ciency of identifying and positioning pods in regions that exhibit superior carbon efficiency.
This is evidenced by the average improvement of 36.6% when compared to the conventional
default scheduling approach. Conversely, the GeoAware scheduling scheme exhibits an
adverse performance in the placement of pods in carbon-efficient regions. This inferiority
is particularly pronounced when the number of instances is comparatively low(lr-serving,
pyaes). This can be attributed to the priority given by the GeoAware scheduler to regions such
as europe-west1-b and europe-west4-a, as indicated in Table 5.3. However, it is worth noting
that these regions exhibit low carbon scores when compared to europe-southwest1-a and
europe-west9-a, which in turn contributes to the inadequate performance of the GeoAware
scheduling scheme in the pod placement metric. In quantifiable terms, the GeoAware
scheduler demonstrates a 63.7% deficiency in comparison to the CarbonAware scheduler in
terms of accurately identifying environmentally friendly regions for deploying pods. This
information further highlights the superiority of the default scheduling scheme over the
GeoAware scheme. As previously mentioned, the default scheme focuses on maximizing
availability by spreading pods throughout the setup, leading to a certain number of pods
being deployed in environmentally conscious regions. However, it does not maximize the
number of pods in those regions. To put it in concrete terms, the default scheduling approach
performs 50% better in terms of placing pods in environmentally conscious regions within a
geographically distributed multi-cluster topology setup when compared to the GeoAware
scheduling approach.

53

5 Experiments and Evaluation

5.3 Scheduling time and Response Time

This section commences the evaluation process by contrasting the time taken during schedul-
ing time and response time performance of three different scheduling configurations.

5.3.1 Scheduling Latency

As discussed previously, the scheduling time can be split into two sub-metrics - scheduling
latency and binding latency. Scheduling latency is the time taken for a scheduler to evaluate
every nodes in a cluster during pod scheduling and assign a node to the pod, it is pictorially
depicted as highlighted white area shown in Figure 2.3. This was calculated by listening to
cluster events, by finding difference between timestamp associated with pod creation event
and node assignment event emitted by replicaset controller and scheduler respectively. Figure
5.2 depicts the scheduling latency between two schemes - GreenCourier and default. The
chart shows a box plot comparison of scheduling latency metrics between GreenCourier
and default implementation of Kubernetes scheduler. In the plot, we draw box from 25th
percentile or 1st quartile (minimum) to 75th percentile or 3rd quartile (maximum). Line in
the middle signifies median value. And the whiskers represent minimum and maximum
value. The comparison between GreenCourier and the default scheduler is conducted as the
baseline, and not with the GeoAware scheme, as the performance of the scheduler component
in the GreenCourier system is almost similar to that of the traditional scheduling scheme.
Moreover, the implementation of the GeoAware scheduling scheme is also closely aligned
to that of the GreenCourier, thus rendering the inclusion of an additional baseline with
GeoAware unnecessary. To put it in more concrete terms, when comparing the performance
of GreenCourier with the default scheme, it was observed that the average time taken by
GreenCourier was 539 ms, which is a mere 24 ms more than the average time taken by the
default scheduler, which was 515 ms. It can be noted that when the overall scheduling latency
is taken into consideration, both the GreenCourier and default scheduler schemes exhibit
similar behavior in terms of their minimum and maximum values, as well as the 25th and
75th percentile values as shown in Figure 5.2.

54

5 Experiments and Evaluation

Figure 5.2: Scheduling latency comparison between GreenCourier and Default Scheduler

5.3.2 Binding Latency

Binding latency is the time taken from node assignment by scheduler to pod get started and
status of the pod is updated to running state in Kubernetes. Binding Latency is calculated
similarly as scheduling latency, which is by listening to cluster events. Especially node
assignment event from scheduler and pod running event from kubelet or Liqo depending on
the case, it is pictorially depicted as highlighted yellow area shown in Figure 2.3. In evaluating
the binding latency of the GreenCourier system, we compare it to the conventional setup that
uses a single cluster with multiple worker nodes. In the conventional setup, the kubelet [87]
component is responsible for deploying pods in worker nodes and updating their status in
the control plane. However, in the GreenCourier system that employs Liqo for multi-cluster
topology setup, the virtual kubelet [86] component of Liqo is used to masquerade a cluster as
a node from the viewpoint of the management cluster. This leads to an additional layer of
synchronization in the GreenCourier system, as the status of the peer cluster is sent to the
management cluster through the virtual kubelet and Liqo, while in the conventional setup,
there is no need for this extra synchronisation step as there is no overhead associated with
maintaining a multi-cluster topology.

55

5 Experiments and Evaluation

Figure 5.3: Binding latency comparison between Liqo and Kubelet

In this evaluation, we compare the binding latency of the GreenCourier system, which
is based on the multi-cluster topology facilitated by Liqo, against the conventional default
setup of a single cluster with multiple worker nodes. The conventional setup involves kubelet,
which is responsible for picking up the pod and deploying it on a worker node and then
synchronizing the status back to the control plane. However, in the multi-cluster topology of
GreenCourier, the virtual kubelet of Liqo acts as an intermediary between the peer clusters
and the management cluster, thereby adding an additional layer of synchronization.

As anticipated, the binding latency of Liqo surpasses that of kubelet, as illustrated in
Figure 5.3. The chart shows a box plot comparison of scheduling latency metrics between
GreenCourier and default implementation of Kubernetes scheduler. In the plot, we draw box
from 25th percentile or 1st quartile (minimum) to 75th percentile or 3rd quartile (maximum).
Line in the middle signifies median value. And the whiskers represent minimum and
maximum value. And the circles represent outlier values, which is one of the data points
collected, which is significantly different than the rest of the values observed during evaluation.
The GreenCourier system, by its nature, offloads pods to the more carbon-efficient or "green"
clusters, putting the control-plane components of the peer clusters under stress. Meanwhile,
the other clusters remain unscathed from the sudden increase in load.

In comparison, the default scheduler assigns pods using the "PodTopologySpread"
scheme, which strives to evenly distribute pods among worker nodes or peer clusters in

56

5 Experiments and Evaluation

the context of Liqo. As a result, the kubelet on the worker node is not put under the same
pressure to ensure the creation, starting, and checking of the liveness probe of the pods, when
compared to the GreenCourier system. The latter prioritizes scheduling as many pods as
possible in a single peer cluster in a carbon-efficient region, which exacerbates the difference
in binding state delay.

Furthermore, the introduction of a supplementary cycle of inter-cluster synchronization
in the GreenCourier system exacerbates the overhead incurred. This overhead stems from the
inherent need for managing a multi-cluster topology, in order to leverage the carbon efficiency
of specific regions, in the GreenCourier setup. The augmenting of resource abstraction always
incurs latency, owing to the additional level of synchronization required to be performed.
There is a potential additional latency introduced due to the inter-regional communication
transpiring between the geographically dispersed clusters, as all inter-cluster communication
must traverse the public internet, unlike the intra-VPC communication in a conventional
setup. This is likely to have a substantial impact on the binding latency of Liqo.

The mean binding latency of Liqo in the multi-cluster topology setup is observed to be
approximately 8.28 seconds, which is substantially higher than that of the conventional single
cluster setup utilizing kubelet, which exhibits an average binding latency of 4.53 seconds
as shows in Figure 5.3, when the system is under stress. This disparity can be attributed
to the increased complexity introduced by the utilization of Liqo, which necessitates inter-
region communication between geographically dispersed clusters, thereby increasing the
binding latency by the added overhead from public internet communication, in comparison
to communication within a VPC as is the case in the conventional setup.

5.3.3 Response Time

Although the primary objective of this research is to optimize Carbon efficiency, a thorough
analysis of any potential side effects associated with the proposed scheduling scheme is essen-
tial. From the user’s perspective, it is imperative to ensure that the usage experience remains
uncompromised, i.e. without any adverse impact on latency and service quality. The response
time metric results obtained from the load testing are depicted in Table 5.4. An examination of
the results highlights that the CarbonAware scheme utilized in the GreenCourier system has
the lowest performance, followed by the default scheme. On the other hand, the GeoAware
scheme exhibits the most optimal response time when compared to the other two schemes, as
anticipated. This section will delve into the reasons behind the superior performance of the
GeoAware scheme and the underperformance of the CarbonAware scheme.

Region Carbon Score GeoScore
europe-southwest1-a 100 15

europe-west9-a 98 71
europe-west1-b 71 100
europe-west4-a 56 97

Table 5.3: Scores assigned by Carbon plugin and Geo plugin during load test

57

5 Experiments and Evaluation

Function Name Scheduling Scheme
Response Time in ms

Average Median p(90) p(95)

CNN-Serving
Default 195.77 106.31 267.18 362.41

GeoAware 190.45 96.41 321.81 621.37
CarbonAware 212.58 111.04 309.76 465.38

Float
Default 1310 996.48 2050 2530

GeoAware 1250 1070 2110 2590
CarbonAware 1470 1420 2370 2790

LR-Serving
Default 24.7 15.12 31.78 56.86

GeoAware 22.88 13.67 34.39 36.11
CarbonAware 26.78 33.5 41.97 54.33

LinPack
Default 942.04 736.8 1510 1800

GeoAware 866.53 650.07 1300 1550
CarbonAware 1010 738.54 1450 1760

Matrix
Multiplication

Default 463.48 386.05 835.62 1000
GeoAware 425.83 378.92 730.41 845.23

CarbonAware 513.4 315.53 723.63 916.79

Pyaes - Block Cipher
Default 19.38 15.07 23.12 35.44

GeoAware 19.13 14.45 35.25 36.3
CarbonAware 21.04 26.46 42.13 47.03

RNN-Serving
Default 48.27 46.4 65.84 79.11

GeoAware 47.39 42.84 67.65 87.85
CarbonAware 55.45 48.97 86.21 120.97

Chameleon - HTML/XML
Template Engine

Default 53.19 40.79 102.76 127.25
GeoAware 48.94 42.14 62.21 85.62

CarbonAware 60.69 51.7 87.33 136.85

Table 5.4: Response time of scheduling schemes during load test

As noted, the four regions were selected based on their carbon efficiency and geographi-
cal scores, with two regions exhibiting the highest carbon efficiency scores and the remaining
two regions showcasing the highest geographical scores. It is imperative to mention that the
carbon efficiency scores are subject to alteration every 5 minutes, however, the geographical
scores remain constant until a new node region is added or an existing node region is removed
from the scheduling process.

Table 5.4 presents statistical data from a load test conducted on the system, including
average, median, 90th percentile and 95th percentile values. As demonstrated in the Table 5.4,
the CarbonAware scheme exhibits a slower response rate, with an geometric mean of 10.26%
reduction compared to the default scheme. This degradation in performance can be attributed
to the selection of green regions, which are the farthest regions in our test setup, as indicated
in Table 5.3 (europe-southwest1-a and europe-west9-a regions). The low geo score of these
regions suggests that the management cluster is situated at a relatively farther distance from

58

5 Experiments and Evaluation

the peer cluster, compared to other peer clusters in the registered regions. The GeoAware
system demonstrates superior performance compared to the default scheme, as demonstrated
by a 4.2% improvement in response rate. This is because the deployment of workloads in
regions closest to the management cluster contributes to better performance. When GeoAware
performs better than the default scheme, it can be inferred that it should also perform better
than the CarbonAware scheme. The data in Table 5.4 indicates that GeoAware exhibits a
16.24% improvement in response rate compared to the CarbonAware scheme. Hence, it can
be concluded that the GeoAware system delivers a better performance in terms of response
rate.

5.4 Carbon Emission

Despite the remarkable efficiency demonstrated by GreenCourier in identifying and deploying
pods in carbon-efficient regions, it is crucial to delve deeper into the actual carbon emissions
generated when a particular scheduling scheme is employed. The evaluation can be performed
utilizing the modified Software Carbon Intensity (SCI) metric proposed by Green Software
Foundation, as demonstrated in Equation 5.4.

Figure 5.4: Carbon emissions comparison between default scheduler [61], GeoAware scheduler
4.5.2 and GreenCourier for functions with execution time < 50 ms

In accordance with Section 5.1.1, the average Metric of Energy and Resource (MOER)
value, as well as the energy consumption by the cluster resources can be calculated. Sub-
sequently, the carbon intensity can be estimated in gCO2eq (grams of carbon equivalent).
The carbon emission comparisons between the three scheduling schemes are demonstrated
in Figures 5.4 and 5.5. It is imperative to note that due to the significant scale difference

59

5 Experiments and Evaluation

in execution time between the listed 8 functions, the illustration of comparison has been
provided in two separate figures for the convenience of visualization.

Figure 5.5: Carbon emission comparison between default scheduler [61], GeoAware scheduler
4.5.2 and GreenCourier for functions with execution time > 50 ms

After conducting thorough evaluations, it was determined that the GreenCourier schedul-
ing scheme outperforms both the default and GeoAware scheduling schemes in terms of
carbon emission reduction. GreenCourier demonstrated 8.7% and 17.8% lower carbon
emission levels compared to the default and GeoAware schemes per function execution,
respectively. This disparity can be attributed to the fact that the GeoAware scheme tends to
place pods in regions with comparatively low carbon efficiency, resulting in a higher carbon
footprint. These results, represented in Figure 5.4 and 5.5, are expressed in µg and can be
scaled to accommodate multiple requests by multiplying the value by the number of function
invocations. In our evaluation, only EU regions were taken into consideration. As shown in
Table 5.3, all the regions selected were having carbon scores of more than 50, which implies
the regions selected were having comparatively better scores than the regions which were left
out. This does significantly influences our results. If regions with lower carbon scores or if
there were high difference between scores of the best and the worst regions, results would
have shown better performance numbers in terms of carbon emissions, i.e., the pod placement
efficiency numbers would have translated in much better performance for GreenCourier. In
conclusion, evaluation results shows that by using GreenCourier’s scheduling scheme, 9% of
carbon emission was reduced per function invocation.

60

5 Experiments and Evaluation

5.5 Discussion

GreenCourier’s unique placement strategy of considering carbon efficiency while deploying
pods sets it apart from the other two schemes. This results in lower carbon emissions compared
to default and GeoAware, as illustrated in the previous figures and analysis. However, it
should be noted that each scheduling scheme has its own strengths and weaknesses, and the
ideal choice of a scheduler would depend on the specific requirements and priorities of the
user. Additionally, it is important to consider the trade-offs and limitations of each scheme
while making a decision.

The operational reliability of the three scheduler implementations is equivalent, as they
are all founded on the underlying core scheduler code and necessitate similar computational
resources to execute within the cluster environment. However, a drawback of the Green-
Courier implementation is its reliance on a metrics server to collect carbon score data, unlike
the other two implementations which do not have any additional dependencies beyond
the cluster control plane. Despite this external dependency, the communication overhead
between the GreenCourier scheduler and metrics server is minimal and does not negatively
impact the scheduling latency. In the event of metrics server unavailability, the GreenCourier
scheduler will rely on cached, albeit potentially expired, carbon score data for real-time
scheduling. This may result in suboptimal "green" region scheduling, yet the functionality
for node identification and pod placement remains intact. In the event of an inability to
retrieve a carbon score data update even for a single round of scheduling, GreenCourier will
operate like the standard scheduler, meaning it will still be able to allocate pods to nodes in
the Kubernetes cluster, but will not engage in "green" region-based intelligent scheduling.

In order to make use of electricity produced by renewable or low-carbon emission
sources, it is crucial to have a geographically distributed multi-cluster setup that can make
real-time decisions on function deployment based on the cleanliness of energy at a given time.
Currently, none of the cloud providers allow for the creation of a geographically distributed
Kubernetes cluster in different parts of the world, as they only allow nodes of a cluster to be
in one region. Thus, the topology of creating a geographically distributed multi-cluster is
critical. However, due to the extra layer of abstraction involved, there may be a performance
drop in terms of longer time to synchronize the status of all clusters with the management
cluster, which was 82% (as shown in Section 5.3.2) more than the conventional cluster setup.
This is due to the added layer of abstraction in the form of a geographically distributed
multi-cluster setup. The extra time taken in the binding phase can be attributed to the added
complexity of synchronizing the status of multiple clusters with the management cluster,
which is a necessary step in this setup. The higher binding latency indicates the trade-off
that is made between reduced carbon emission and increased latency in the binding phase.
However, it should be noted that despite this increased latency, the overall reduction in
carbon emission achieved through the use of GreenCourier is still significant. Additionally,
improving the efficiency and speed of the Liqo component could result in better performance
in terms of reduced binding latency and improved overall performance of the multi-cluster
setup. Furthermore, investigating and implementing strategies to increase concurrency in
Liqo could potentially mitigate the drawbacks of the geographically distributed multi-cluster

61

5 Experiments and Evaluation

setup and enhance the system’s ability to effectively synchronize the status of all clusters. As
such, future research efforts should focus on investigating and optimizing the performance of
Liqo to further improve the functionality and efficiency of the multi-cluster setup.

Our GreenCourier scheduling approach was subjected to a comprehensive evaluation
within a multi-cluster, geographically dispersed setup, comprising one central management/-
consumer cluster with 16 vCPUs and 64 GB RAM and 4 peer/provider clusters located in
different regions, each with 4 homogeneous nodes of e2-standard-4 VMs (4 vCPUs, 16 GB
RAM). The total cluster capacity was 80 vCPUs and 320 GB RAM, which is a representative
estimation of typical production-level clusters in the industry. The load testing tool employed
was k6, and the results, as depicted in Table 5.4, indicated that functions deployed through
GreenCourier, which leverages the CarbonAware scheduling strategy, exhibited the highest
response time compared to the default strategy and the GeoAware strategy by a margin
of 10% and 16% respectively. Additionally, it is noteworthy that the results highlight the
need for further optimization of the GreenCourier approach, particularly with respect to the
CarbonAware scheme to reduce the response time of functions. GeoAware scheduling scheme
does have significant advantage over other two scheduling schemes in this aspect.

The use of a more efficient scheduling algorithm that takes into account not only carbon
efficiency, but also geographical proximity performance of GreenCourier. The GreenCourier
scheduling scheme was developed with the primary goal of reducing carbon emissions into
the environment. While it was theoretically anticipated that the response time would take
a hit with the implementation of this scheme. As expected, the results of the evaluation
showed that the response time was worse than the default strategy and the GeoAware strategy.
However, it is important to note that the primary motivation of this research was not to
improve response time but to minimize carbon emissions. Improvements to the network
address translation scheme adopted by Liqo could potentially reduce the effect on response
time, but the current scheme is not suspected to be the bottleneck. Nevertheless, users should
be aware that the primary focus of GreenCourier is reducing carbon emissions, and the
trade-off is a potentially slower response time.

Another limitation of the GeoAware and GreenCourier scheduling schemes is that they
tend to concentrate the workload on certain nodes, leading to imbalanced load distribution.
This behavior is designed to maximize performance (e.g. low response time or reduced carbon
emissions), but it also increases the likelihood of node failure and subsequent performance
drop until the cluster returns to its desired state. In contrast, the default scheduling scheme
spreads the deployment of functions evenly across all nodes, reducing the risk of performance
drop during node failure. However, it should be noted that node failure is a possibility in the
default scheme as well. The choice of scheduling scheme ultimately depends on the desired
trade-off between performance and stability. Based on the results of the evaluation, it appears
that the default scheduling scheme has an advantage over the GeoAware and GreenCourier
schemes. The default scheme provides a more balanced workload distribution, reducing the
risk of node failure and subsequent performance drop. It is important to note that the choice
of scheduling scheme ultimately depends on the specific requirements and constraints of
each use case.

62

5 Experiments and Evaluation

The GreenCourier scheme successfully achieves its goal of reducing carbon emis-
sions through intelligent function deployment in selected regions. In the evaluated test
setup, the GreenCourier scheme resulted in a 36.6% and 63.7% better placement of pods in
environmentally-sustainable regions (as shown in Section 5.2) compared to the default and
GeoAware schemes, respectively. These reductions translated to an 8.7% and 17.8% (as shown
in Section 5.4) reduction in grams of CO2 equivalent gCO2eq compared to the default and
GeoAware schemes.

63

6 Conclusion and Future Work

The objective of this study is to devise and assess a new scheduling framework for serverless
functions that can efficiently allocate these functions to environmentally sustainable regions,
reducing the carbon footprint during function execution. In this regard, a metrics server
was developed to collect Marginal Operating Emissions Rate (MOER) data from various
sources, including WattTime and Carbon-aware SDK provided by Green Software Foundation.
The performance of the GreenCourier scheduling framework was then extensively evaluated
against Kubernetes default implementation and geo-aware scheduling scheme. The findings
of the study demonstrate that GreenCourier outperforms the other two scheduling schemes in
terms of pod placement in environmentally sustainable regions and carbon emissions during
function execution. However, it lags in terms of response time, indicating the need for further
research to address this issue.

GreenCourier can be further improved by adding High Availability (HA) capability to its
deployment. Although Kubernetes does provide the ability to deploy a scheduler in HA mode,
it cannot ensure consistency between different instances due to the external dependency of
GreenCourier on the metrics server. Another potential enhancement to GreenCourier is the
implementation and exposure of customized metrics related to its performance and scheduler
state. This will reduce the need for manual intervention during evaluation and enhance its
monitoring capabilities.

In light of the results of the evaluation, it is clear that the GreenCourier scheduling
scheme has certain limitations that should be taken into consideration. These limitations
include a potentially slower response time compared to the default and GeoAware schemes,
as well as a higher risk of node failure due to imbalanced workload distribution. To overcome
these drawbacks, significant time and resources should be invested in finding ways to
mitigate these limitations and improve the overall performance of the GreenCourier scheme.
Improvements to the network address translation scheme adopted by Liqo could potentially
reduce the effect on response time, but the current scheme is not suspected to be the bottleneck.
Future research should explore alternative network translation schemes to determine if they
have a positive impact on response time.

Another area of performance degradation is observed during the binding latency of pods,
which involves status synchronization of offloaded pods between the target and management
clusters. To address this limitation, significant effort should be directed towards parallelizing
the status synchronization at the Liqo level, as the current network bandwidth between the
two clusters is not fully utilized. This will help mitigate the loss of response time performance.

In conclusion, serverless computing is a rapidly developing field that requires consider-
able investment of time and resources to create innovative advancements. We believe that
our work on developing and implementing a new carbon-aware scheduling framework will

64

6 Conclusion and Future Work

inspire further research in the area of sustainability in serverless computing.

65

List of Figures

2.1 Knative Serving Architecture [42] . 7
2.2 Kubernetes Architecture [62] . 10
2.3 Pod lifecycle in Kubernetes [64] . 15
2.4 Kubernetes Architecture [65] . 16
2.5 OpenFaaS Architecture [67] . 18
2.6 OpenWhisk Architecture [68] . 19
2.7 Out-of-band Control Plane setup in Liqo [84] . 24
2.8 In-band Control Plane setup in Liqo [84] . 25
2.9 Network Fabric - Liqo [83] . 26

3.1 General process of serverless scheduler [91] . 30
3.2 GreenWorks power management hierarchy [100] 33

4.1 System Architecture - GreenCourier . 39
4.2 Workflow of typical Function Scheduling in GreenCourier 41

5.1 Pod placement efficiency comparison between GeoAware scheduler 4.5.2, de-
fault scheduler [61] and GreenCourier . 53

5.2 Scheduling latency comparison between GreenCourier and Default Scheduler 55
5.3 Binding latency comparison between Liqo and Kubelet 56
5.4 Carbon emissions comparison between default scheduler [61], GeoAware sched-

uler 4.5.2 and GreenCourier for functions with execution time < 50 ms 59
5.5 Carbon emission comparison between default scheduler [61], GeoAware sched-

uler 4.5.2 and GreenCourier for functions with execution time > 50 ms 60

66

List of Tables

2.1 Comparison of Multi-Cluster Control Plane projects [77] 21
2.2 Comparison of Network Interconnection projects [77] 22
2.3 Out-of-band peering vs In-band peering . 25

5.1 Cluster setup used while benchmarking GreenCourier 51
5.2 Short description on functions used for benchmarking GreenCourier 52
5.3 Scores assigned by Carbon plugin and Geo plugin during load test 57
5.4 Response time of scheduling schemes during load test 58

67

Acronyms

Amazon EMR Amazon Elastic MapReduce. 9

API Application Programming Interface. 9–12, 17, 24, 28

AWS Amazon Web Services. 2, 6, 8

CNI Container Network Interface. 22, 23, 26

DNS Domain Name Service. 12

DVFS Dynamic Voltage Frequency Scaling. 35

FaaS Function-as-a-Service. 1, 2, 7–9, 18, 31, 37

FCFS First Come First Serve. 34

GCP Google Cloud Platform. 1, 6, 51

GPU Graphics Processor Unit. 8

GSF Green Software Foundation. v, 27, 44, 45, 50, 59, 64

HA High Availability. 64

HTML HyperText Markup Language. 52

HTTP Hypertext Transfer Protocol. 9

IaaS Infrastructure-as-a-Service. 1, 8

IP Internet Protocol. 22, 23, 26, 40

IPsec Internet Protocol Security. 22

JSON JavaScript Object Notation. 3

ML Machine Learning. 3, 4

MOER Marginal Operating Emissions Rate. 3, 38, 44, 45, 50, 64

MOOP Multi-Objective Optimization Problem. 34

68

Acronyms

NAT Network Address Translation. 26, 38

OS Operating System. 31

PaaS Platform-as-a-Service. 29

QoS Quality of service. 29

RAM Random Access Memory. 51

RBAC Role-based access control. 43

RNN Recurrent Neural Networks. 52

SCI Software Carbon Intensity. 50, 59

SDK Software Development Kit. iv, 45, 64

TCP Transmission Control Protocol. 11

TDP Thermal Design Power. 50

TLS Transport Layer Protocol. 22

UDP User Datagram Protocol. 11

VPC Virtual Private Cloud. 57

XML Extensible Markup Language. 52

69

Bibliography

[1] A. S. G. Andrae and T. Edler. “On Global Electricity Usage of Communication Tech-
nology: Trends to 2030”. In: Challenges 6.1 (2015), pp. 117–157. issn: 2078-1547. doi:
10.3390/challe6010117. url: https://www.mdpi.com/2078-1547/6/1/117.

[2] e. P.R. Shukla J. Skea. “Climate Change 2022: Mitigation of Climate Change”. In:
Cambridge University Press, Cambridge, UK and New York, NY, USA. (2022). doi: 10.
1017/9781009157926. url: https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_
FinalDraft_FullReport.pdf.

[3] The Intergovernmental Panel on Climate Change. https://www.ipcc.ch/. Accessed:
2022-06-01.

[4] M. Dayarathna, Y. Wen, and R. Fan. “Data Center Energy Consumption Modeling: A
Survey”. In: IEEE Communications Surveys and Tutorials 18.1 (2016), pp. 732–794. doi:
10.1109/COMST.2015.2481183.

[5] Data centers are more energy efficient than ever. https : / / blog . google / outreach -
initiatives/sustainability/data-centers-energy-efficient. Accessed: 2022-06-
01.

[6] J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J. Yadwadkar, R. A.
Popa, J. E. Gonzalez, I. Stoica, and D. A. Patterson. “What Serverless Computing
is and Should Become: The next Phase of Cloud Computing”. In: Commun. ACM
64.5 (Apr. 2021), pp. 76–84. issn: 0001-0782. doi: 10.1145/3406011. url: https:
//doi.org/10.1145/3406011.

[7] Tracking Google’s carbon-free energy progress. https://sustainability.google/progress/
energy/. Accessed: 2022-06-01.

[8] Environmental sustainability - Microsoft. https://www.microsoft.com/en-us/corporate-
responsibility/sustainability. Accessed: 2022-06-01.

[9] Sustainability - Oracle Cloud. https://www.oracle.com/corporate/citizenship/
sustainability/clean-cloud.html. Accessed: 2022-06-01.

[10] How much energy do data centers use? https://davidmytton.blog/how-much-energy-
do-data-centers-use/. Accessed: 2022-06-01.

[11] GreenCourier: Towards sustainable Serverless Computing. https://taikai.network/gsf/
hackathons/carbonhack22/projects/cl8om5s2c6222501xclyvpc9h0/idea. Accessed:
2023-02-05.

70

https://doi.org/10.3390/challe6010117
https://www.mdpi.com/2078-1547/6/1/117
https://doi.org/10.1017/9781009157926
https://doi.org/10.1017/9781009157926
https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_FinalDraft_FullReport.pdf
https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_FinalDraft_FullReport.pdf
https://www.ipcc.ch/
https://doi.org/10.1109/COMST.2015.2481183
https://blog.google/outreach-initiatives/sustainability/data-centers-energy-efficient
https://blog.google/outreach-initiatives/sustainability/data-centers-energy-efficient
https://doi.org/10.1145/3406011
https://doi.org/10.1145/3406011
https://doi.org/10.1145/3406011
https://sustainability.google/progress/energy/
https://sustainability.google/progress/energy/
https://www.microsoft.com/en-us/corporate-responsibility/sustainability
https://www.microsoft.com/en-us/corporate-responsibility/sustainability
https://www.oracle.com/corporate/citizenship/sustainability/clean-cloud.html
https://www.oracle.com/corporate/citizenship/sustainability/clean-cloud.html
https://davidmytton.blog/how-much-energy-do-data-centers-use/
https://davidmytton.blog/how-much-energy-do-data-centers-use/
https://taikai.network/gsf/hackathons/carbonhack22/projects/cl8om5s2c6222501xclyvpc9h0/idea
https://taikai.network/gsf/hackathons/carbonhack22/projects/cl8om5s2c6222501xclyvpc9h0/idea

Bibliography

[12] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski. “The Rise of Serverless
Computing”. In: (2019). doi: 10.1145/3368454. url: https://doi.org/10.1145/
3368454.

[13] S. Allen, C. Aniszczyk, C. Arimura, B. Browning, L. Calcote, A. Chaudhry, A. G. Doug
Davis Louis Fourie, Y. Haviv, D. Krook, O. Nissan-Messing, C. Munns, K. Owens, M.
Peek, and C. Zhang. CNCF Serverless Whitepaper v1.0. https://github.com/cncf/wg-
serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_
whitepaper_v1.0.pdf. Accessed: 2023-02-05. 2022.

[14] V. Ishakian, V. Muthusamy, and A. Slominski. Serving deep learning models in a serverless
platform. doi: 10.48550/ARXIV.1710.08460. url: https://arxiv.org/abs/1710.
08460.

[15] Global Serverless Architecture Market To Reach USD 86.94 Billion By 2030. https://www.
reportsanddata.com/press-release/global-serverless-architecture-market.
Accessed: 2023-02-05.

[16] GCP - Cloud Functions. https://cloud.google.com/functions/. Accessed: 2022-06-01.

[17] AWS Functions. https://aws.amazon.com/lambda/. Accessed: 2022-06-01.

[18] Azure Functions. https://azure.microsoft.com/en- us/services/functions/.
Accessed: 2022-06-01.

[19] Kubernetes - Production-Grade container Orchestration. https://kubernetes.io/. Ac-
cessed: 2023-02-05.

[20] Knative is an Open-Source Enterprise-level solution to build Serverless and Event Driven
Applications. https://knative.dev/docs/. Accessed: 2023-01-31.

[21] J. Kim and K. Lee. “FunctionBench: A Suite of Workloads for Serverless Cloud Function
Service”. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). 2019,
pp. 502–504. doi: 10.1109/CLOUD.2019.00091.

[22] About Knative Services. https://knative.dev/docs/serving/services/. Accessed:
2022-06-12.

[23] ReplicaSet | Kubernetes. https://kubernetes.io/docs/concepts/workloads/controllers/
replicaset/. Accessed: 2022-06-12.

[24] Scheduler extender. https://github.com/kubernetes/design-proposals-archive/
blob/main/scheduling/scheduler_extender.md. Accessed: 2022-06-01.

[25] Scheduler extender. https://github.com/kubernetes/enhancements/blob/master/
keps/sig-scheduling/624-scheduling-framework/README.md. Accessed: 2022-06-
01.

[26] WattTime - The Power to Choose Clean Energy. https://www.watttime.org/. Accessed:
2022-06-01.

[27] WattTime - API reference. https://www.watttime.org/api-documentation. Accessed:
2022-06-01.

71

https://doi.org/10.1145/3368454
https://doi.org/10.1145/3368454
https://doi.org/10.1145/3368454
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://doi.org/10.48550/ARXIV.1710.08460
https://arxiv.org/abs/1710.08460
https://arxiv.org/abs/1710.08460
https://www.reportsanddata.com/press-release/global-serverless-architecture-market
https://www.reportsanddata.com/press-release/global-serverless-architecture-market
https://cloud.google.com/functions/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://kubernetes.io/
https://knative.dev/docs/
https://doi.org/10.1109/CLOUD.2019.00091
https://knative.dev/docs/serving/services/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://github.com/kubernetes/design-proposals-archive/blob/main/scheduling/scheduler_extender.md
https://github.com/kubernetes/design-proposals-archive/blob/main/scheduling/scheduler_extender.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-scheduling/624-scheduling-framework/README.md
https://github.com/kubernetes/enhancements/blob/master/keps/sig-scheduling/624-scheduling-framework/README.md
https://www.watttime.org/
https://www.watttime.org/api-documentation

Bibliography

[28] electricityMap - The leading resource for 24/7 electricity CO2 data. https://electricitymap.
org/. Accessed: 2022-06-01.

[29] electricityMap - API reference. https://static.electricitymap.org/api/docs/index.
html. Accessed: 2022-06-01.

[30] Let’s Wait Awhile - Datasets, Simulator, Analysis. https://github.com/dos-group/lets-
wait-awhile. Accessed: 2022-06-01.

[31] Kubernetes Scheduler. https://kubernetes.io/docs/concepts/scheduling-eviction/
kube-scheduler/. Accessed: 2022-06-12.

[32] Serverless Trends. https://techbeacon.com/enterprise-it/state-serverless-6-
trends-watch. Accessed: 2022-06-01.

[33] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov,
and C. Wu. “Serverless computing: One step forward, two steps back”. In: arXiv
preprint arXiv:1812.03651 (2018).

[34] Apache OpenWhisk: An open source serverless cloud platform. https://openwhisk.apache.
org/. Accessed: 2022-06-01.

[35] Apache Software Foundation. https://www.apache.org/. Accessed: 2022-06-01.

[36] Knative Has Applied to Become a CNCF Incubating Project. https://knative.dev/blog/
steering/knative-cncf-donation/. Accessed: 2022-06-01.

[37] Cloud Native Computing Foundation. https://www.cncf.io/. Accessed: 2022-06-01.

[38] Knative - Google Cloud Platforms. https://cloud.google.com/knative. Accessed:
2023-02-05.

[39] Knative on IBM Cloud. https://www.ibm.com/cloud/knative. Accessed: 2023-02-05.

[40] Knative - Amazon Web Services. https : / / aws . amazon . com / blogs / opensource /
deploying-lambda-compatible-functions-eks-triggermesh-klr/. Accessed: 2023-
02-05.

[41] TriggerMesh - Easily build event-driven applications. https://www.triggermesh.com/.
Accessed: 2023-02-05.

[42] N. Kaviani, D. Kalinin, and M. Maximilien. “Towards Serverless as Commodity: a case
of Knative”. In: Oct. 2019. isbn: 978-1-4503-7038-7. doi: 10.1145/3366623.3368135.

[43] S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. L.
Abad, and A. Iosup. A Review of Serverless Use Cases and their Characteristics. 2020. doi:
10.48550/ARXIV.2008.11110. url: https://arxiv.org/abs/2008.11110.

[44] J. Kuhlenkamp, S. Werner, and S. Tai. “The Ifs and Buts of Less is More: A Serverless
Computing Reality Check”. In: 2020 IEEE International Conference on Cloud Engineering
(IC2E). 2020, pp. 154–161. doi: 10.1109/IC2E48712.2020.00023.

72

https://electricitymap.org/
https://electricitymap.org/
https://static.electricitymap.org/api/docs/index.html
https://static.electricitymap.org/api/docs/index.html
https://github.com/dos-group/lets-wait-awhile
https://github.com/dos-group/lets-wait-awhile
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://techbeacon.com/enterprise-it/state-serverless-6-trends-watch
https://techbeacon.com/enterprise-it/state-serverless-6-trends-watch
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://www.apache.org/
https://knative.dev/blog/steering/knative-cncf-donation/
https://knative.dev/blog/steering/knative-cncf-donation/
https://www.cncf.io/
https://cloud.google.com/knative
https://www.ibm.com/cloud/knative
https://aws.amazon.com/blogs/opensource/deploying-lambda-compatible-functions-eks-triggermesh-klr/
https://aws.amazon.com/blogs/opensource/deploying-lambda-compatible-functions-eks-triggermesh-klr/
https://www.triggermesh.com/
https://doi.org/10.1145/3366623.3368135
https://doi.org/10.48550/ARXIV.2008.11110
https://arxiv.org/abs/2008.11110
https://doi.org/10.1109/IC2E48712.2020.00023

Bibliography

[45] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar,
J. Carreira, K. Krauth, N. Yadwadkar, J. E. Gonzalez, R. A. Popa, I. Stoica, and D. A.
Patterson. Cloud Programming Simplified: A Berkeley View on Serverless Computing. 2019.
doi: 10.48550/ARXIV.1902.03383. url: https://arxiv.org/abs/1902.03383.

[46] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov,
and C. Wu. Serverless Computing: One Step Forward, Two Steps Back. 2018. doi: 10.48550/
ARXIV.1812.03651. url: https://arxiv.org/abs/1812.03651.

[47] M. Steinbach, A. Jindal, M. Chadha, M. Gerndt, and S. Benedict. “TppFaaS: Modeling
Serverless Functions Invocations via Temporal Point Processes”. In: IEEE Access 10
(2022), pp. 9059–9084. doi: 10.1109/ACCESS.2022.3144078. url: https://doi.org/
10.1109/ACCESS.2022.3144078.

[48] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhomlinov. “Agile
Cold Starts for Scalable Serverless”. In: 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19). Renton, WA: USENIX Association, July 2019. url: https:
//www.usenix.org/conference/hotcloud19/presentation/mohan.

[49] What is Serverless? https://www.ibm.com/topics/serverless. Accessed: 2023-01-31.

[50] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz. “Cirrus: A Serverless
Framework for End-To-end ML Workflows”. In: SoCC 2019 - Proceedings of the ACM
Symposium on Cloud Computing. Association for Computing Machinery, Nov. 2019,
pp. 13–24. isbn: 9781450369732. doi: 10.1145/3357223.3362711.

[51] M. Chadha, A. Jindal, and M. Gerndt. “Towards Federated Learning Using FaaS
Fabric”. In: Proceedings of the 2020 Sixth International Workshop on Serverless Computing.
WoSC’20. Delft, Netherlands: Association for Computing Machinery, 2020, pp. 49–54.
isbn: 9781450382045. url: https://doi.org/10.1145/3429880.3430100.

[52] A. Grafberger, M. Chadha, A. Jindal, J. Gu, and M. Gerndt. “FedLess: Secure and
Scalable Federated Learning Using Serverless Computing”. In: 2021 IEEE International
Conference on Big Data (Big Data). 2021, pp. 164–173. url: https://doi.org/10.1109/
BigData52589.2021.9672067.

[53] M. Elzohairy, M. Chadha, A. Jindal, A. Grafberger, J. Gu, M. Gerndt, and O. Abboud.
“FedLesScan: Mitigating Stragglers in Serverless Federated Learning”. In: arXiv preprint
arXiv:2211.05739 (2022). url: https://doi.org/10.48550/arXiv.2211.05739.

[54] C. P. Smith, A. Jindal, M. Chadha, M. Gerndt, and S. Benedict. “FaDO: FaaS Functions
and Data Orchestrator for Multiple Serverless Edge-Cloud Clusters”. In: 2022 IEEE
6th International Conference on Fog and Edge Computing (ICFEC). 2022, pp. 17–25. doi:
10.1109/ICFEC54809.2022.00010. url: https://doi.org/10.1109/ICFEC54809.
2022.00010.

[55] T. Pfandzelter and D. Bermbach. “tinyFaaS: A Lightweight FaaS Platform for Edge
Environments”. In: 2020 IEEE International Conference on Fog Computing (ICFC). 2020,
pp. 17–24. doi: 10.1109/ICFC49376.2020.00011.

73

https://doi.org/10.48550/ARXIV.1902.03383
https://arxiv.org/abs/1902.03383
https://doi.org/10.48550/ARXIV.1812.03651
https://doi.org/10.48550/ARXIV.1812.03651
https://arxiv.org/abs/1812.03651
https://doi.org/10.1109/ACCESS.2022.3144078
https://doi.org/10.1109/ACCESS.2022.3144078
https://doi.org/10.1109/ACCESS.2022.3144078
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.ibm.com/topics/serverless
https://doi.org/10.1145/3357223.3362711
https://doi.org/10.1145/3429880.3430100
https://doi.org/10.1109/BigData52589.2021.9672067
https://doi.org/10.1109/BigData52589.2021.9672067
https://doi.org/10.48550/arXiv.2211.05739
https://doi.org/10.1109/ICFEC54809.2022.00010
https://doi.org/10.1109/ICFEC54809.2022.00010
https://doi.org/10.1109/ICFEC54809.2022.00010
https://doi.org/10.1109/ICFC49376.2020.00011

Bibliography

[56] M. Chadha, A. Jindal, and M. Gerndt. “Architecture-Specific Performance Optimization
of Compute-Intensive FaaS Functions”. In: 2021 IEEE 14th International Conference on
Cloud Computing (CLOUD). 2021, pp. 478–483. doi: 10.1109/CLOUD53861.2021.00062.
url: https://doi.org/10.1109/CLOUD53861.2021.00062.

[57] B. Przybylski, M. Pawlik, P. Zuk, B. Łagosz, M. Malawski, and K. Rzadca. “Using
unused: non-invasive dynamic FaaS infrastructure with HPC-whisk”. In: Proceedings
of the International Conference on High Performance Computing, Networking, Storage and
Analysis. 2022, pp. 1–15.

[58] A. Jindal, J. Frielinghaus, M. Chadha, and M. Gerndt. “Courier: Delivering Serverless
Functions Within Heterogeneous FaaS Deployments”. In: 2021 IEEE/ACM 14th Interna-
tional Conference on Utility and Cloud Computing (UCC’21). UCC ’21. Leicester, United
Kingdom: Association for Computing Machinery, 2021. isbn: 978-1-4503-8564-0/21/12.
doi: 10.1145/3468737.3494097. url: https://doi.org/10.1145/3468737.3494097.

[59] A. Jindal, M. Chadha, S. Benedict, and M. Gerndt. “Estimating the Capacities of
Function-as-a-Service Functions”. In: Proceedings of the 14th IEEE/ACM International
Conference on Utility and Cloud Computing Companion. UCC ’21 Companion. Leicester,
United Kingdom: Association for Computing Machinery, 2021. isbn: 978-1-4503-9163-
4/21/12. doi: 10.1145/3492323.3495628. url: https://doi.org/10.1145/3492323.
3495628.

[60] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.
“Large-scale cluster management at Google with Borg”. In: Proceedings of the European
Conference on Computer Systems (EuroSys). Bordeaux, France, 2015.

[61] Scheduling algorithm in Kubernetes. https://kubernetes.io/docs/concepts/scheduling-
eviction/kube-scheduler/. Accessed: 2022-06-01.

[62] Simplified Kubernetes Architecture. https : / / mohan08p . medium . com / simplified -
kubernetes-architecture-3febe12480eb. Accessed: 2023-01-31.

[63] The Tweleve Factor App. https://12factor.net/. Accessed: 2023-01-31.

[64] Z. Rejiba and J. Chamanara. “Custom Scheduling in Kubernetes: A Survey on Common
Problems and Solution Approaches”. In: ACM Comput. Surv. 55.7 (Dec. 2022). issn:
0360-0300. doi: 10.1145/3544788. url: https://doi.org/10.1145/3544788.

[65] Scheduling Framework. https://kubernetes.io/docs/concepts/scheduling-eviction/
scheduling-framework/. Accessed: 2023-02-01.

[66] OpenFaaS makes it simple to deploy both functions and existing code to Kubernetes. https:
//www.openfaas.com/. Accessed: 2023-01-31.

[67] The power of interfaces in OpenFaaS. https://blog.alexellis.io/the-power-of-
interfaces-openfaas/. Accessed: 2023-01-31.

[68] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Isahagian, N. Mitchell, V. Muthusamy,
R. Rabbah, A. Slominski, and P. Suter. “Serverless Computing: Current Trends and
Open Problems”. In: Jan. 2017, pp. 1–20. isbn: 978-981-10-5025-1.

74

https://doi.org/10.1109/CLOUD53861.2021.00062
https://doi.org/10.1109/CLOUD53861.2021.00062
https://doi.org/10.1145/3468737.3494097
https://doi.org/10.1145/3468737.3494097
https://doi.org/10.1145/3492323.3495628
https://doi.org/10.1145/3492323.3495628
https://doi.org/10.1145/3492323.3495628
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://mohan08p.medium.com/simplified-kubernetes-architecture-3febe12480eb
https://mohan08p.medium.com/simplified-kubernetes-architecture-3febe12480eb
https://12factor.net/
https://doi.org/10.1145/3544788
https://doi.org/10.1145/3544788
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://www.openfaas.com/
https://www.openfaas.com/
https://blog.alexellis.io/the-power-of-interfaces-openfaas/
https://blog.alexellis.io/the-power-of-interfaces-openfaas/

Bibliography

[69] What is multi-cluster Kubernetes? https://www.mirantis.com/cloud-native-concepts/
getting- started- with- kubernetes/what- is- kubernetes- multi- cluster/. Ac-
cessed: 2023-02-05.

[70] What is Liqo? https://docs.liqo.io/en/v0.7.0/. Accessed: 2023-02-01.

[71] Admiralty - The simplest way to deploy applications to multiple Kubernetes clusters. https:
//admiralty.io/docs/. Accessed: 2022-06-01.

[72] tensile-kube - enables kubernetes clusters work together. https://github.com/virtual-
kubelet/tensile-kube. Accessed: 2023-02-05.

[73] Kubernetes Cluster Federation. https://github.com/kubernetes-sigs/kubefed. Ac-
cessed: 2023-02-05.

[74] Argo CD - Declarative GitOps CD for Kubernetes. https://argo-cd.readthedocs.io/
en/stable/. Accessed: 2023-02-05.

[75] Fleet - GitOps at scale. https://github.com/rancher/fleet. Accessed: 2023-02-05.

[76] Flux CD - tool for keeping Kubernetes clusters in sync. https://github.com/fluxcd/flux2.
Accessed: 2023-02-05.

[77] Simplifying multi-clusters in Kubernetes. https://www.cncf.io/blog/2021/04/12/
simplifying-multi-clusters-in-kubernetes/. Accessed: 2023-02-05.

[78] eBPF-based Networking, Observability, Security. https://github.com/cilium/cilium.
Accessed: 2023-02-05.

[79] Submariner - A tool built to connect overlay networks of different Kubernetes clusters. https:
//github.com/submariner-io/submariner. Accessed: 2023-02-05.

[80] Multicloud communication for Kubernetes. https : / / github . com / skupperproject /
skupper. Accessed: 2023-02-05.

[81] Istio - A open source service mesh. https://istio.io/latest/about/service-mesh/.
Accessed: 2023-02-05.

[82] Linkerd - A different kind of service mesh. https://github.com/linkerd/linkerd2.
Accessed: 2023-02-05.

[83] Network Fabric - Liqo. https://docs.liqo.io/en/v0.7.0/features/network-
fabric.html. Accessed: 2023-02-01.

[84] Peering - Liqo. https://docs.liqo.io/en/v0.7.0/features/peering.html. Accessed:
2023-02-01.

[85] Offloading - Liqo. https://docs.liqo.io/en/v0.7.0/features/offloading.html.
Accessed: 2023-02-05.

[86] Virtual Kubelet. https://virtual-kubelet.io/. Accessed: 2022-06-01.

[87] Kubelet | Kubernetes docs. https://kubernetes.io/docs/reference/command-line-
tools-reference/kubelet. Accessed: 2022-06-01.

75

https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-multi-cluster/
https://www.mirantis.com/cloud-native-concepts/getting-started-with-kubernetes/what-is-kubernetes-multi-cluster/
https://docs.liqo.io/en/v0.7.0/
https://admiralty.io/docs/
https://admiralty.io/docs/
https://github.com/virtual-kubelet/tensile-kube
https://github.com/virtual-kubelet/tensile-kube
https://github.com/kubernetes-sigs/kubefed
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://github.com/rancher/fleet
https://github.com/fluxcd/flux2
https://www.cncf.io/blog/2021/04/12/simplifying-multi-clusters-in-kubernetes/
https://www.cncf.io/blog/2021/04/12/simplifying-multi-clusters-in-kubernetes/
https://github.com/cilium/cilium
https://github.com/submariner-io/submariner
https://github.com/submariner-io/submariner
https://github.com/skupperproject/skupper
https://github.com/skupperproject/skupper
https://istio.io/latest/about/service-mesh/
https://github.com/linkerd/linkerd2
https://docs.liqo.io/en/v0.7.0/features/network-fabric.html
https://docs.liqo.io/en/v0.7.0/features/network-fabric.html
https://docs.liqo.io/en/v0.7.0/features/peering.html
https://docs.liqo.io/en/v0.7.0/features/offloading.html
https://virtual-kubelet.io/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet

Bibliography

[88] WireGuard - Fast, Modern, Secure VPN Tunnel. https://www.wireguard.com/. Accessed:
2023-02-01.

[89] Software Carbon Intensity (SCI) Specification. https://github.com/Green-Software-
Foundation/software_carbon_intensity. Accessed: 2023-01-31.

[90] K. Kaffes, N. J. Yadwadkar, and C. Kozyrakis. “Centralized Core-Granular Scheduling
for Serverless Functions”. In: Proceedings of the ACM Symposium on Cloud Computing.
SoCC ’19. Santa Cruz, CA, USA: Association for Computing Machinery, 2019. isbn:
9781450369732. doi: 10.1145/3357223.3362709. url: https://doi.org/10.1145/
3357223.3362709.

[91] Y. Li, Y. Lin, Y. Wang, K. Ye, and C.-Z. Xu. “Serverless Computing: State-of-the-Art,
Challenges and Opportunities”. In: IEEE Transactions on Services Computing (2022),
pp. 1–1. doi: 10.1109/TSC.2022.3166553.

[92] A. Suresh and A. Gandhi. “FnSched: An Efficient Scheduler for Serverless Functions”.
In: Proceedings of the 5th International Workshop on Serverless Computing. WOSC ’19.
Davis, CA, USA: Association for Computing Machinery, 2019. isbn: 9781450370387.
doi: 10.1145/3366623.3368136. url: https://doi.org/10.1145/3366623.3368136.

[93] A. Jeatsa, B. Teabe, and D. Hagimont. “CASY: A CPU Cache Allocation System for
FaaS Platform”. In: 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). 2022, pp. 494–503. doi: 10.1109/CCGrid54584.2022.00059.

[94] M. Szalay, P. Mátray, and L. Toka. “Real-time task scheduling in a FaaS cloud”. In:
2021 IEEE 14th International Conference on Cloud Computing (CLOUD). 2021, pp. 497–507.
doi: 10.1109/CLOUD53861.2021.00065.

[95] A. Alahmadi, A. Alnowiser, M. M. Zhu, D. Che, and P. Ghodous. “Enhanced First-Fit
Decreasing Algorithm for Energy-Aware Job Scheduling in Cloud”. In: 2014 Inter-
national Conference on Computational Science and Computational Intelligence. 2014. doi:
10.1109/CSCI.2014.97.

[96] G. von Laszewski, L. Wang, A. Younge, and X. He. “Power-aware scheduling of virtual
machines in DVFS-enabled clusters”. In: Oct. 2009, pp. 1–10. doi: 10.1109/CLUSTR.
2009.5289182.

[97] X. Zhu, L. T. Yang, H. Chen, J. Wang, S. Yin, and X. Liu. “Real-Time Tasks Oriented
Energy-Aware Scheduling in Virtualized Clouds”. In: IEEE Transactions on Cloud
Computing 2.2 (2014), pp. 168–180. doi: 10.1109/TCC.2014.2310452.

[98] Í. Goiri, R. Beauchea, K. Le, T. D. Nguyen, M. E. Haque, J. Guitart, J. Torres, and
R. Bianchini. “GreenSlot: Scheduling energy consumption in green datacenters”. In:
SC ’11: Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. 2011, pp. 1–11. doi: 10.1145/2063384.2063411.

[99] What is Brown Energy? https://en.wikipedia.org/wiki/Brown_energy. Accessed:
2023-02-05.

76

https://www.wireguard.com/
https://github.com/Green-Software-Foundation/software_carbon_intensity
https://github.com/Green-Software-Foundation/software_carbon_intensity
https://doi.org/10.1145/3357223.3362709
https://doi.org/10.1145/3357223.3362709
https://doi.org/10.1145/3357223.3362709
https://doi.org/10.1109/TSC.2022.3166553
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1109/CCGrid54584.2022.00059
https://doi.org/10.1109/CLOUD53861.2021.00065
https://doi.org/10.1109/CSCI.2014.97
https://doi.org/10.1109/CLUSTR.2009.5289182
https://doi.org/10.1109/CLUSTR.2009.5289182
https://doi.org/10.1109/TCC.2014.2310452
https://doi.org/10.1145/2063384.2063411
https://en.wikipedia.org/wiki/Brown_energy

Bibliography

[100] C. Li, R. Wang, D. Qian, and T. Li. “Managing Server Clusters on Renewable Energy
Mix”. In: ACM Trans. Auton. Adapt. Syst. 11.1 (Feb. 2016). issn: 1556-4665. doi: 10.
1145/2845085. url: https://doi.org/10.1145/2845085.

[101] K. Kaur, S. Garg, G. Kaddoum, S. H. Ahmed, and M. Atiquzzaman. “KEIDS: Kubernetes-
Based Energy and Interference Driven Scheduler for Industrial IoT in Edge-Cloud
Ecosystem”. In: IEEE Internet of Things Journal 7.5 (2020), pp. 4228–4237. doi: 10.1109/
JIOT.2019.2939534.

[102] Mosek - A software package for the solution of linear, mixed-integer linear, quadratic, mixed-
integer quadratic, quadratically constraint, conic and convex nonlinear mathematical optimiza-
tion problems. https://www.mosek.com/. Accessed: 2023-02-05.

[103] I. Rocha, C. Göttel, P. Felber, M. Pasin, R. Rouvoy, and V. Schiavoni. HEATS: Heterogeneity-
and Energy-Aware Task-based Scheduling. 2019. doi: 10.48550/ARXIV.1906.11321. url:
https://arxiv.org/abs/1906.11321.

[104] P. Townend, S. Clement, D. Burdett, R. Yang, J. Shaw, B. Slater, and J. Xu. “Invited
Paper: Improving Data Center Efficiency Through Holistic Scheduling In Kubernetes”.
In: 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE).
2019, pp. 156–15610. doi: 10.1109/SOSE.2019.00030.

[105] T. Menouer. “KCSS: Kubernetes container scheduling strategy”. In: The Journal of
Supercomputing 77 (May 2021). doi: 10.1007/s11227-020-03427-3.

[106] A distributed, reliable key-value store for the most critical data of a distributed system. https:
//etcd.io/. Accessed: 2023-02-05.

[107] Carbon Aware SDK by Green Software Foundation. https : / / github . com / Green -
Software-Foundation/carbon-aware-sdk. Accessed: 2023-02-05.

[108] k6 - A load testing tool. https://k6.io/docs/. Accessed: 2023-02-05.

[109] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and lt;0.5MB model size. doi:
10.48550/ARXIV.1602.07360. url: https://arxiv.org/abs/1602.07360.

[110] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: A large-scale
hierarchical image database”. In: 2009 IEEE conference on computer vision and pattern
recognition. Ieee. 2009, pp. 248–255.

[111] Understanding TF-ID: A Simple Introduction. https://monkeylearn.com/blog/what-
is-tf-idf. Accessed: 2023-02-05.

[112] Linear Algebra - NumPy - API Reference. https://numpy.org/doc/stable/reference/
routines.linalg.html. Accessed: 2023-02-05.

[113] NumPy - Python library used for working with arrays. https://numpy.org/. Accessed:
2023-02-05.

[114] A pure-Python implementation of the AES. https://pypi.org/project/pyaes/. Ac-
cessed: 2023-02-05.

77

https://doi.org/10.1145/2845085
https://doi.org/10.1145/2845085
https://doi.org/10.1145/2845085
https://doi.org/10.1109/JIOT.2019.2939534
https://doi.org/10.1109/JIOT.2019.2939534
https://www.mosek.com/
https://doi.org/10.48550/ARXIV.1906.11321
https://arxiv.org/abs/1906.11321
https://doi.org/10.1109/SOSE.2019.00030
https://doi.org/10.1007/s11227-020-03427-3
https://etcd.io/
https://etcd.io/
https://github.com/Green-Software-Foundation/carbon-aware-sdk
https://github.com/Green-Software-Foundation/carbon-aware-sdk
https://k6.io/docs/
https://doi.org/10.48550/ARXIV.1602.07360
https://arxiv.org/abs/1602.07360
https://monkeylearn.com/blog/what-is-tf-idf
https://monkeylearn.com/blog/what-is-tf-idf
https://numpy.org/doc/stable/reference/routines.linalg.html
https://numpy.org/doc/stable/reference/routines.linalg.html
https://numpy.org/
https://pypi.org/project/pyaes/

Bibliography

[115] A machine learning framework based on the Torch library. https://pytorch.org/. Ac-
cessed: 2023-02-05.

[116] HTML/XML template engine for Python. https://chameleon.readthedocs.io/en/
latest/. Accessed: 2023-02-05.

78

https://pytorch.org/
https://chameleon.readthedocs.io/en/latest/
https://chameleon.readthedocs.io/en/latest/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem Definition
	Research Objectives
	RQ 1: Migrating Serverless Workloads
	RQ 2: Extending Knative
	RQ 3: Scheduling Policy

	Thesis Overview

	Background
	Serverless Computing
	Characteristics
	Advantages and Issues
	Use Cases

	Container Orchestration and Serverless Frameworks
	Kubernetes Architecture
	Scheduling in Kubernetes
	Scheduling Framework in Kubernetes
	Serverless Frameworks based on Kubernetes

	Multi-Cluster Kubernetes
	Multi-Cluster Control Plane
	Network Interconnection Projects
	Liqo

	Green Software and Intensity Specification
	gsf
	Software Carbon Intensity

	Related Work
	Serverless Scheduling
	Sustainable scheduling in data centers
	Scheduling in Kubernetes

	System Design
	System Architecture
	Scheduling Workflow
	Coscheduling and Cluster Authorization
	Coscheduling
	Cluster Authorization

	Metrics Server
	WattTime Data Source
	Carbon Aware SDK

	Intelligent Node Selection
	Carbon-Aware Node Selection
	Geo-Aware Node Selection

	Experiments and Evaluation
	Metrics and Experiments Configuration
	Evaluation Metrics
	Benchmark and Functions
	Experiment setup

	Pod Placement Efficiency
	Scheduling time and Response Time
	Scheduling Latency
	Binding Latency
	Response Time

	Carbon Emission
	Discussion

	Conclusion and Future Work
	List of Figures
	List of Tables
	Acronyms
	Bibliography

