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I 
Factors influencing transfer learning of traffic forecasting models 

Abstract 

Traffic flow forecasting is an important strategy for reducing congestion in Intelligent Transport 

Systems (ITS). According to many kinds of literature, there are several methods of traffic forecasting 

ranging from statistical time series, and machine learning to combined deep learning. Data insufficiency 

is a crucial problem for many city areas, and transfer learning (TL) can solve this issue. Also, another 

advantage of this TL method is that it can reduce the computational burden of the re-training model. A 

pre-trained model can help to forecast traffic flow on a new limited amount of traffic dataset. This study 

is proposed for experimenting with the data insufficiency issue, where prestigious Caltrans (PeMS) 

traffic datasets from California State, USA are used. Among several external factors, weather factor 

datasets were collected and integrated with traffic datasets, and their influences were checked for 

different locations. Forecasting models were built by three different algorithms, univariate ARIMA, 

GRU, and LSTM. Model performances were checked by three different accuracy metrics MAE, MAPE, 

and RMSE. Six different scenarios were made for transfer learning models in LSTM models to check 

the performances of three different roads' traffic flow forecasting in California. In transfer learning 

models, there are three different strategies applied in traffic flow forecasting. Model accuracies were 

checked for each strategy in each scenario by MAE, MAPE, and RMSE. Although direct forecasting of 

the target baseline limited dataset model B did not give a good prediction, transfer learning techniques 

give a good prediction of traffic flow forecasting on new target datasets with a limited amount of data 

for all scenarios. Overall, strategies 2 and 3 give better forecasting than the strategy-1 transfer learning 

model in almost all scenarios of transfer-learned traffic flow forecasting. With five-months ahead 

datasets, for example, with September 2019 datasets, transfer-learned models give better accuracy than 

target baseline model B. In this case, strategies 2 and 3 also give better forecasting accuracy than 

strategy-1 traffic flow forecasting. TL method can help with data scarcity issues for forecasting. It is a 

crucial technique in ITS, which can help in the field of advanced traveler information systems (ATIS), 

traffic management, smart-signal design, route guidance, etc. 
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1 Introduction 
The first chapter of this thesis describes the introduction of this thesis. First, background and motivation 

are described in this chapter. Then the contribution and thesis outline are mentioned in this chapter. 

1.1 Background and Motivation 

Traffic forecasting is an important strategy for predicting future traffic based on historical traffic data 

on both freeways and urban roadways. It is a technique for predicting traffic information for a specific 

region by historical traffic data. Stationary sensors (loop detectors, radars, magnetometers) and moving 

sensors (floating car data, GPS technology) are the instruments that collect real-time traffic data from 

urban roadways and freeways. Some important traffic variables are flow, speed, occupancy, Vehicle 

Miles Travel (VMT), etc. Traffic forecasting can be divided into two categories: short-term forecasting 

and long-term forecasting. Short-term traffic forecasting is either with less than or equal to one-hour 

granular traffic data (Lana et al., 2018). In our study, first, we will do short-term traffic-flow forecasting, 

and then transfer learning using pre-trained models.  

Every day people lose time and fuel due to congestion, and it increases frustration to people. Congestions 

also increase environmental pollution and hamper the transportation of goods and passengers on time. 

The accident is an example of a road incident, and it can happen several times a day and has a negative 

impact on traffic flow. Accidents can create congestion, and secondary incidents can happen, which 

causes delays. Environmental effects, for example, bad weather conditions, another cause of delay 

reduce speed on highway and urban roadways. Also, an increasing number of vehicles is another issue 

for increasing congestion. The higher number of vehicles and lower capacity of roadways create 

congestion. As urbanization advances and vehicles become more popular, transportation issues become 

more and more challenging (Boukerche & Wang, 2020). Some problems happened due to the higher 

amount of traffic on the highway and urban roadways. For example, congestion is a common issue. 

Another crucial problem is traffic incidents. An accident can create secondary accidents and traffic 

congestion in the upstream direction of traffic flow due to no information on the previous incident. 

Another cause of traffic congestion is higher traffic density.  

 

Figure 1.1: Causes of congestion on highway and roadway (Source: Olayode et al., 2022) 

Building additional roadways and adding more lanes on the roads is the first answer that comes to most 

people’s minds when trying to fix these problems (Boukerche & Wang, 2020). However, increasing the 
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road capacity would result in worsening traffic conditions, according to research by Dechenaux et al. 

(2014). One efficient solution to these problems could be better transportation systems with upgraded 

transportation resources and modern traffic control systems. One most well-known systems of them are 

the Intelligent Transportation System (ITS). As an essential component of ITS, an accurate and effective 

road traffic prediction system can deliver consistent and exact information on the state of the road based 

on previous road conditions (Alipour et al., 2019; Boukerche & Wang, 2020; Domingues et al., 2019). 

Traffic forecasting can give an advanced idea about the traffic situation on roadways.  

Data scarcity is another problem in traffic forecasting because traditional traffic data collection needs a 

lot of sensors, which costs a lot. Data scarcity or insufficiency is the problem, where fewer amount of 

data is available, and which do not give good predictions but rather do overfitting. For the transferability 

of traffic forecasting from one region to another, missing data is another problem. Implementing a 

previous region’s pre-trained model to a new limited dataset is a recent smart strategy that can give 

better traffic forecasting. For the issue of data scarcity, this technique of model transferability helps a 

lot. There is a crucial problem due to the complex spatial and temporal dependencies for route guidance 

and traffic control (Y. Li et al., 2017; Y. Li & Shahabi, 2018). As traffic time series data shows strong 

temporal dynamics, incidents such as rush hours or accidents can create non-stationary time series, 

which will be a challenge in traffic forecasting for better accuracy (Y. Li & Shahabi, 2018). 

Urban congestion reduction strategies include a variety of techniques, such as traffic management, route 

guidance, congestion fees, and infrastructure improvements for transportation (J. Ma et al., 2020; J. Sun 

et al., 2020; Zheng & Huang, 2020). However, if a city's transportation infrastructure is fully developed, 

it is challenging to reduce traffic congestion by expanding road facilities (Zheng & Huang, 2020). By 

improving traffic management in this situation digitally and intelligently, that is, by creating an 

intelligent traffic system (ITS), traffic congestion might be successfully decreased (Nallaperuma et al., 

2019; Zheng & Huang, 2020). For reducing congestion and incident, traffic forecasting is a strategy for 

predicting future flow and speed in ITS, advanced traveler information systems (ATIS), and route 

guidance. Long-term traffic forecasting helps with the design and building of a sensible road network 

and will support the timely scheduling of construction progress and operation of road maintenance (Yu 

et al., 2015). As traffic flow changes are unusual and stochastic, it is challenging to get exact forecasting. 

Recent technological development, for example, the improvement of computers helps a lot in analyzing 

high volumes of data. By using these data, different statistical analyses and machine learning techniques 

help to forecast the future state of any traffic events.  

Traffic forecasting techniques can help to speed up the traffic flow and traffic speed, reduce congestion, 

save money, and increase road safety. The short-term traffic forecasting model is a modern technology 

for real-time traffic control and management (Habtemichael & Cetin, 2016). Such technologies are 

crucial for deploying emergency management systems, enhancing traffic signals, and giving travelers 

accurate travel time information (Habtemichael & Cetin, 2016). In transportation sectors, traffic data is 

a core thing for future demand estimation of traffic and infrastructure development. Historical traffic 

data are applied for getting the accurate forecasting of traffic parameters. In this study, machine learning 

and deep learning algorithms are used. Transfer learning is another technique of using a pre-trained 

forecasting model for predicting traffic of a new experimental limited dataset.  

1.2 Objective and Research Questions 

This thesis is motivated to analyze traffic prediction in the state of California, USA. We will assess and 

forecast traffic flow with the PeMS traffic data of different cities in California. The main objectives of 

this study are: 

• To develop a methodology of transfer learning (TL) of traffic forecasting. 
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• To select source datasets and target datasets using two different district data of California, 

USA. 

• To select several machine learning and deep learning algorithms for forecasting and transfer 

learning. 

• To create several scenarios of TL with several link-type datasets. 

• To investigate the data scarcity issues in traffic forecasting. 

• To compare the accuracy of the target baseline model and TL strategies. 

Following research questions raised for this study of traffic forecasting: 

(1) What is the best amount of input data in traffic forecasting models, which will be used as a 

source dataset for transfer learning? 

(2) How does weather as a factor affect the transferability of traffic forecasting models from one 

link to another? 

1.3 Contributions 

This thesis uses different types of machine learning (ML) models, and several data attributes to forecast 

traffic flow based on different types of detectors (e.g., loop detectors, radars and other types of detectors, 

and meteorological sensors) information. Machine learning has become more advanced in recent 

decades. Due to the potentiality of ML for artificial intelligence, it is now frequently employed in the 

transportation industry during the fourth industrial revolution (Olayode et al., 2022). In the context of 

the detector’s historical data, the thesis defines appropriate tools and methodologies of data analytics. 

The thesis contributes to the research of ITS based on the ML approach of traffic forecasting by real-

world data of different districts of California State, USA.  

ML models, for example, Autoregressive Moving Average (ARIMA), Gated Recurrent Unit (GRU), 

and Long Short-Term Memory (LSTM) are used to train models to predict traffic flow in two different 

districts of California state. The transfer learning (TL) strategy is used to forecast the traffic flow of a 

new District by a pre-trained model from another District. Weather data are collected and integrated 

with the model to evaluate the influences. Rainfall, wind speeds, visibility, and other features are 

available in the weather dataset. Techniques that extract dependence between historical data using 

different ML methods and estimate the traffic state is called the data-driven approach (Seo et al., 2017). 

Based on all the historical data, using machine learning algorithms for future traffic flow prediction is a 

data-driven technique, and we use this technique in this thesis. 

1.4 Thesis Outline 

The thesis consists of six chapters.  

• Chapter 1 introduces the thesis with background and motivation, objectives, and research 

questions. 

• Chapter 2 describes the literature review that focuses on traffic flow models, traffic forecasting, 

traffic state estimation, factors on traffic flow, time series models, different methods of traffic 

forecasting models, and transfer learning.  

• Chapter 3 describes the methodology where data collection, data cleaning, data filtering, model 

building with different algorithms, and transfer learning architecture are available.  

• Chapter 4 includes data analysis of selected road datasets, and weather datasets, where district 

3 traffic data, district 6 traffic data, weather data, data visualization, macroscopic-fundamental 

diagrams, and train-test split are available.  

• Chapter 5 includes results and discussions, where answers to research questions are made, and 

transfer learning several scenarios results and comparisons are made.  

• Chapter 6 describes conclusion of this thesis and future research direction. 
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2 Literature Review 
In this chapter, we will present the literature review of the different contexts of traffic forecasting. We 

split this chapter into the following sub-chapters, namely traffic flow theory, traffic forecasting, traffic 

state estimation, traffic forecasting methods, time series prediction, transferability of traffic flow, and 

transfer learning. 

2.1 Traffic Flow Theory 

John Glen Wardrop pioneered the developing field of traffic flow theory by utilizing mathematical and 

statistical concepts to describe traffic flows (Maerivoet & de Moor, 2005; WARDROP, 1952). 

Understanding the precise spatiotemporal dynamics of traffic flow is the goal of traffic flow theory 

(Rempe, 2018). The study of traffic flow modeling had a renewed interest towards the start of the 1990s 

(Maerivoet & de Moor, 2005). On the one hand, the LWR model's appealing simplicity renewed 

academics' attention, but on the other hand, one of the biggest driving factors came from the field of 

statistical physics for the traffic flow model (Maerivoet & de Moor, 2005). Traffic flow modeling has 

become one of the simplest strategies to reduce the congestion of city and highway traffic. Traffic flow 

theory advancements allow for improved design, operation, and development of Intelligent 

Transportation Systems (ITS) (Rempe, 2018). The traffic macroscopic fundamental diagram was first 

proposed by Greenshields (1934). According to Monteil (2014), the first model proposed by 

Greenshields that have the following relation: 

𝑞𝑒𝑞(𝜌) = 4𝑞𝑚𝑎𝑥𝜌 (1 −
𝜌

𝜌𝑚𝑎𝑥
) 10≤𝜌≤𝜌𝑚𝑎𝑥

                                         (1.1) 

 

Where: 𝑞𝑚𝑎𝑥 is the maximum traffic flow and 𝜌𝑚𝑎𝑥 is the maximum traffic density. The Greenshield’s 

fundamental diagram shows in figure 2.1, where 𝜌𝑐 is the critical traffic density, 𝑞𝑠 is the arbitrary flow 

and 𝑟1, 𝑟2 are the solutions to equation 𝑞𝑒𝑞(𝜌) =  𝑞𝑠, which is the flux function for hyperbolic systems 

of conservation laws. 

 

 

        Traffic density (𝜌) 

Figure 2.1: Greenshield’s fundamental diagram of traffic flow vs. density (Source: Monteil, 2014) 

Figure 2.1 represents Greenshield’s fundamental diagram of traffic flow vs. traffic density, the x-axis 

shows traffic density, and the y-axis shows traffic flow. Initially, when traffic density increases, traffic 

flow also increases. At critical density 𝜌𝑐 , traffic flow is maximum, and then due to increasing density, 

T
ra

ff
ic

 f
lo

w
 (

q
) 

 



 

5 
Factors influencing transfer learning of traffic forecasting models 

traffic flow decreases. At maximum density 𝜌𝑚𝑎𝑥, traffic flow is almost zero. The upward parabolic 

region is called the free-flow region, and the downward parabolic region is called the congestions region. 

 

Figure 2.2: Greenshield’s original linear relation between the traffic density and the mean speed 

(Source: Maerivoet & de Moor, 2005) 

Figure 2.2 describes Greenshield’s original relationship between the density and the mean speed. The 

x-axis shows the density (vehicles/km), and the y-axis shows the mean speeds of vehicles. Based on this 

relationship, the mean speeds of vehicles are initially higher with lower density. The maximum speed is 

between 0 and approximately 5 vehicles/km. Then after this point, speed linearly decreased due to 

increasing the density. The speed is completely zero at the highest density, which is 200 vehicles/km.  

 
Traffic flow (q) 

Figure 2.3: Fundamental diagram regarding traffic flow (q) vs. space mean speed (�̅�𝑠) (Source: 

Maerivoet & de Moor, 2005) 

Figure 2.3 depicts the fundamental diagram relating to the traffic flow vs traffic space mean speed. 

Capacity flow q is the maximum traffic average flow. According to Maerivoet & de Moor (2005), there 

are two regimes in the fundamental diagram. The upper branch is called the free-flow regime, and 

another one is the lower branch which is the congested regime.  

2.2 Traffic Forecasting 

Traffic forecasting is a crucial step in planning road infrastructure, from the investment feasibility 

assessment to the creation of functioning documentation (Dombalyan et al., 2017). Due to rapid 

technological development in transportation industries, traffic flow forecasting gained importance in 
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intelligent transportation systems (ITS) for modern traffic management. It is a process of highway and 

urban traffic flow, or volume prediction based on historical traffic data. For improving highway 

operations and preventing traffic congestion, a reliable prediction model might be helpful (Abduljabbar 

et al., 2021). A new generation of intelligent transportation systems has come, and with it, new 

approaches to the problems associated with traffic forecasting (Gao et al., 2022). These approaches are 

divided into two different types: classical statistical approaches and data-driven approaches (Gao et al., 

2022; Lippi et al., 2013; Vlahogianni et al., 2014). The data-driven approach is when decisions are made 

based on the analysis and interpretation of numerical data rather than on observation. Dai et al. (2019) 

proposed a study where they suggested a model for predicting short-term traffic flow that coupled 

spatiotemporal analysis with a Gated Recurrent Unit (GRU). In this study, the traffic flow was first 

submitted to time correlation analysis and spatial correlation analysis; the optimal input time and spatial 

data volume were then determined using the spatiotemporal feature selection approach. Finally, the 

prediction result of their proposed method (GRU + STFSA) was compared with Convolutional Neural 

Network (CNN) and (GRU). Their proposed method outperforms GRU and CNN models in accuracy 

and stability.  

Ren et al. (2021) proposed a study on traffic flow prediction by combining deep learning models in two 

Chinese road traffic flow datasets. They combined CNN, Long-Short Term Memory (LSTM), and GRU 

with a Dynamic Optimal Weighted Coefficient Algorithm (DOWCA), namely a CDLP model in a 

sequential combination structure. They experimented with different neuron numbers in the network and 

found the accuracy of each scenario. They compared the CDLP model with other individual and 

combined models and got a better performance by the CDLP model. According to MAPE, MAE and 

RMSE CDLP model outperforms all other models. 

Another study was done by Z. Sun et al. (2022) for forecasting short-term traffic flow based on different 

algorithms on the PeMS CalTran dataset. They compared the performance of each model, and finally, 

they found that combination model K-means-GRU performs better in comparison with the GRU 

network, stacked autoencoders (SAEs), Random Forest (RF), and Support Vector Machine Regression 

(SVR). They also found that there are significant differences in traffic flow distribution patterns.  

S. Sun et al. (2020) proposed a study of city-wide traffic flow forecasting using a deep convolutional 

neural network (CNN). They chose the Chinese state Wuhan city dataset. This dataset also included 

some external factors like holidays and weather conditions. They used one hot encoder for adding the 

external factors. Finally, the accuracy of the model was evaluated by accuracy metrics. Tran et al. (2022) 

proposed a study on short-term traffic speed forecasting for a multi-lane road using GPS-monitored data 

using different deep learning algorithms. They used a Vietnamese city road for the experiment on AR, 

ARMA, ARIMA, SARIMAX, SES, HWES, PROPHET, MLP, and LSTM models to find out the 

performance differences in these models. Finally, they found that the LSTM model performs better in 

comparison with other algorithms. 

Z. Yu et al. (2015) proposed a research article on traffic flow forecasting based on combinational 

algorithms. They used a combination of Grey Model (GM), ARIMA, and Generalized Regression 

Neural Network (GRNN) algorithms for forecasting traffic flow. Lee et al. (2021) did two experiments 

on traffic data prediction. They used STGCN, DCRNN, ASTGCN, St-MetaNet, Graph-WaveNet, 

STG2Seq, GMAN, etc. models on METR-LA, the PeMS speed, and the traffic flow dataset for 

prediction. According to their experiments, Graph-WaveNet and GMAN showed better performance. 

Qu et al. (2020) did research on intersection traffic flow forecasting. A two-layer stacked network in a 

combination of K-Nearest Neighbor (KNN) and Elman Neural Network (ENN) was used for an 

experimental intersection in China. Non-parametric and machine learning models were also used in this 

research to compare their proposed combined model for the signalized intersection. Their proposed 
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model outperformed other models in this study. Shao & Soong (2016) proposed a study on short-term 

traffic flow prediction on Caltrans PeMS historical data at mainline Irvine Center Drive by the LSTM 

model. They experimented with the LSTM model has the capability of capturing long-term dependency 

traffic data. They compared this LSTM model with other models. Moreover, LSTM outperforms other 

models.  

2.2.1 Factors on Traffic flow 

Many factors affect traffic flow patterns on highways and roadways. For example, these factors are 

adverse weather conditions, construction sites, or incidents. Bad weather conditions such as snowfall, 

rainfall, and high wind speed reduce the speed of vehicles and traffic flow (Cools et al., 2010). There 

will be a comparable drop in flows in a region when temporary traffic control is implemented due to 

road construction (Xie et al., 2019). Road construction and maintenance works can create delays and 

increase longer travel time. Extreme weather, such as thunder, lightning, and pollution, can influence 

urban traffic movements (Xie et al., 2019). When it's cloudy outside, it makes it more likely that fewer 

people will go out, however when it's bright outside, more people may go out (Xie et al., 2019). 

Additionally, there are cross-regional and increasing flows during holidays like National Day and Spring 

Festival, which occur on a cyclical basis each year (Xie et al., 2019). The day before the holiday, also 

has some effects on the urban flows in terms of time, increasing the fluctuation in crowd flows (Xie et 

al., 2019).  

Zhang & Kabuka (2017) proposed a study on combining weather conditions for the prediction of traffic 

flow in deep learning. They make two different scenarios for traffic flow prediction. One scenario is 

weather as a factor, and another is without weather as a factor. They used the gated recurrent unit (GRU) 

based recurrent neural network for the prediction, calculated the accuracy of both models, and found 

better accuracy for the model which is made with weather data. In future research, they will take a much 

larger dataset for this similar type of experiment, will build a deep neural network, and will make 

comparisons with other classical machine learning frameworks.  Braz et al. (2022) proposed research 

on traffic flow forecasting using historical traffic data with weather data using three different algorithms. 

These algorithms are LSTM, autoregressive LSTM, and CNN in terms of MAE and time intervals. They 

used two beaches of Portugal’s historical traffic and weather data. Overall, CNN performs better in 

terms of MAE with 10 minutes intervals of input variables compared to the two algorithms. Another 

study is proposed by Rahman (2020) on forecasting traffic flow with weather data using different 

machine learning algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and 

Artificial Neural Network (ANN). They used Dublin Airport route data for short-term traffic flow 

forecasting and set several parameters based on different weather conditions and different day types. 

Then they compared the results and found better results for the parameter set 1, where they used weather 

parameters as sunny + not rain, sunny + rain, not sunny + not rain, and not sunny + rain. In this study, 

they didn’t consider other parameters like traffic jams, accidents, etc. 

 

2.2.2 Application of Traffic Forecasting 

According to Navarro-Espinoza et al. (2022), traffic sensors that monitor the number of vehicles passing 

through a lane once per specified amount of time will be used to feed traffic forecasting models in smart 

traffic signal controllers. With these readings, a database like the one utilized in this study can be 

generated (Navarro-Espinoza et al., 2022). The ML model will be trained for each intersection when the 

databases are created (Navarro-Espinoza et al., 2022). Then, using a certain number of prior data, the 

traffic flow for the subsequent time will be forecasted (Navarro-Espinoza et al., 2022). Once the forecast 

did, it will be possible to better program for the timings of each state either manually by a user or 

automatically using an algorithm to determine the best times for the states of the traffic light. Wirelessly 

connecting the traffic light to a central station or the controller can complete the entire operation 
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(Navarro-Espinoza et al., 2022). This strategy can help to speed up the traffic flow and speed at 

intersections. This smart technology can reduce traffic congestion in busy intersections.  

2.3 Traffic State Estimation 

Traffic state estimation is the first part of traffic forecasting. Traffic flow, speed, and density are three 

major parameters that explain the characteristics of traffic on road segments (Grumert & Tapani, 2018). 

The flow/ volume is defined as the number of vehicles passing a point or location over a specified time 

interval in minutes, hours, etc. Traffic flow can be either short-term traffic flow or long-term traffic 

flow. According to Grumert & Tapani (2018), speed is defined by time mean speed and space mean 

speed. Time mean speed is the average speed of all vehicles crossing a particular location in a 

predetermined time. Space mean speed is the average speed of all vehicles going over a particular road 

segment at a specified time. The traffic density is the total number of vehicles occupying a unit length 

of the lane of the roadway at any time. These three traffic parameters are commonly known as traffic 

state.  

Stationary detectors like loop detectors and radar detectors are the conventional method for estimating 

traffic state (Coifman, 2003; Grumert & Tapani, 2018; Kurkjian et al., 1980; Singh & Li, 2012). To 

make these sensors more efficient, it is crucial to think about how to collect historical traffic data from 

them (Hong & Fukuda, 2012). The position of these stationary sensors is a factor for collecting traffic 

data, and effective location intervals give a better estimation of traffic flow and speed. Hong & Fukuda 

(2012) did a case study on the effects of sensor position that can help to collect better traffic data. In 

practice, detectors and cameras are some common examples of stationary sensing equipment that 

observe flow (e.g., PeMS) (van Erp et al., 2018). CalTrans PeMS covers the whole of California State 

by stationary detectors like magnetic loop detectors, radars, and magnetometers for collecting traffic 

data. According to Bouyahia et al. (2021), these conventional technologies needed higher costs to install 

and maintain, which doesn’t give benefits for large-scale deployment. Also, some other recent 

technologies which estimate traffic state by dynamic detectors like floating car data, drone videography, 

or satellite imagery (Janecek et al., 2015; Mahajan et al., 2022), cellular phones (Janecek et al., 2015) 

etc. S. M. Khan et al. (2017) proposed research, that applied connected vehicle technologies (CVT) for 

collecting traffic data. They found that with a 10% or more CV penetration with PeMS data, higher 

accuracy can be achieved using the CVT-AI algorithm than PeMS density algorithm. CVT is a recent 

potential method for collecting continuous real-time traffic data (Bhavsar et al., 2007; S. M. Khan et al., 

2017; Y. Ma et al., 2010; Yongchang Ma et al., 2009).  

Fundamental diagram proposed by  Greenshields (1934) gives an idea about traffic flow and speed 

patterns through the different diagrams. If the underlying relationship holds in fundamental diagrams, it 

is possible to predict traffic flows using easily accessible traffic flow, and speed data along with 

additional factors (Mahajan et al., 2022). Agalliadis et al. (2020) proposed a study on traffic state 

estimation for highway networks with potentially incomplete, limited data from different sensors. They 

applied an Unscented Kalman Filter (UKF) which will help in the data fusion process in the approach 

of the algorithm. Another second-order traffic model named METANET was combined with UKF, 

which was modified to consider the spatiotemporal interrelations between the corresponding error terms. 

Hawes et al. (2016) proposed a study on traffic state estimation within road segments using particle 

filters. They initiated two different approaches for handling missing measurements, one is compressive 

sensing, and another is Bayesian compressive sensing. Simulated and real data was tested by two 

algorithms. They got better improvement in terms of missing data. 

2.3.1 Data Definition 

The datasets collected by point detectors are the most often utilized in the literature in terms of data 

sources (Lana et al., 2018). Data from traffic speed sensors gathered by the Caltrans Performance 
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Measurement System (PeMS) and the Los Angeles Metropolitan Transportation Authority Service 

(METR-LA) were applied in a lot of research (Zhao et al., 2017; Lv et al., 2014; Z. Wu et al., 2019; B. 

Yu et al., 2017). These datasets are widely used for predicting traffic flow, incident detection, and 

different factors in the traffic flow of California and Los Angeles. Every day, a large amount of data are 

generated by traffic in several locations in these states. The traffic detectors are placed in multiple 

locations on urban roadways and highways in California State. These detectors can read real-time traffic 

movement, flow, speed, and other parameters. Although the datasets are critical in new traffic 

forecasting techniques, they are associated with technology that has substantial installation and 

maintenance costs (Buroni, 2021). The detectors are prone to malfunction and mistakes (daily in 

California, 30 percent out of the sensors installed do not work according to the PeMS system) (Herrera 

et al., 2010).  

 

On the other hand, just a few studies in the literature employ datasets collected by moving sensors 

(Buroni, 2021; Lana et al., 2018). Moving sensor data, for example, floating car data, and GPS tracking 

systems give quite accurate data regarding traffic movement and location. These data help a lot in traffic 

management systems for both urban roadways and highways. Real-world internet traffic forecasting is 

a bit challenging for three reasons: i) data heterogeneity, ii) anomalous data, and iii) data scarcity (Saha 

et al., 2022). In the temporal and spatial dimensions, internet traffic shows heterogeneity, because of 

different traffic patterns at different time-lapses (Saha et al., 2022). Internet traffic in the real world is 

subject to many internal and external influences, which results in nonstationary complicated traffic 

patterns additionally, such events contain data points that fall outside the parameters of the data 

distribution, which would limit the model's capacity to generalize during deployment (Saha et al., 2022). 

For better performance in traffic prediction, it is needed a high volume of historical data, but it is tough 

to get all regions data for improve traffic prediction, data scarcity is another major issue in traffic 

forecasting (Saha et al., 2022).  

 

2.4 Traffic Forecasting Methods 

This section describes different methods of traffic forecasting. According to several kinds of literature, 

these methods are categorized based on underlying assumptions about different traffic states(C. van 

Hinsbergen et al., 2007; Lana et al., 2018; Vlahogianni et al., 2004, 2014). Four methods are (i) the 

naïve methods, (ii) the parametric methods, (iii) the non-parametric methods, and (iv) the adaptive 

strategies. These methods are used widely in traffic flow, speed, and other parameters forecasting. 

2.4.1 Naïve Method 

The Naïve method is considered the simplest traffic forecasting method, which makes the forecast using 

fundamental statistical assumptions (J. J. Q. Yu, 2021). Among them, the historical average (HA) 

technique and the instantaneous travel times (ITT) approach are the two most used in real-world 

applications (Smith et al., 2002; J. J. Q. Yu, 2021). The naïve method considers what happened 

previously and predicts what happens again. Because of their simplicity and cheap computing effort, 

these approaches are commonly applied in practice. As this method has lower accuracy, we will not use 

this method for forecasting traffic flow. 

2.4.2 Parametric Methods 

A parametric technique involves using a formula to calculate a margin of error and a sample mean to 

estimate the population means. The parameters are learned from the dataset of the parametric technique, 

although its structure is fixed  (Tran et al., 2022; C. P. IJ. van Hinsbergen et al., 2009). Parametric 

models are based on traffic information, which assists in understanding traffic processes, especially in 

traffic simulations. The benefit of such parametric models is that they can catch previously undiscovered 

occurrences and situations. Another benefit is the parametric method needs fewer data. Due to the 
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assumptions made while parameterizing the models, many of these systems are demonstrated to perform 

poorly in unstable traffic conditions and complex road configurations (Tran et al., 2022; Williams, 

2001). Parametric methods consist of i) a traffic simulation model, and ii) a parametric time-series 

model. 

▪ Traffic simulation model: As early as 1956, the foundation of this modeling is laid  (D. Boyce, 

2007; D. E. Boyce & Williams, 2005). Using the concept of Network Equilibrium, traffic is 

assigned from an origin-destination (OD) matrix (‘Wardrop’s First Principle’) (Buroni, 2021). 

Utilizing car-following theories, traffic simulation uses mathematical models to show how 

vehicles might move in real-time (Alghamdi et al., 2022). According to Alghamdi et al. (2022), 

Traffic prediction differs from traffic simulation models in a way that it uses historical data to 

forecast traffic value (volume, speed, density, etc.) at a future time point under predefined 

conditions. On the other way, traffic simulation models estimate the value of the traffic (volume, 

speed, density, etc.) under certain conditions. Examples of traffic simulation models are the car 

following model, lane changing model, and gap acceptance model. VISSIM, SUMO, AIMSUN, 

MATSim, and Paramics are some traffic simulation tools. We will not implement this 

simulation technique in our study, but we will implement a traffic prediction model with 

historical traffic data.  

▪ Parametric time-series model: The prediction in these approaches involves modeling a traffic 

variable as a function of its previous observations and error factors, which necessitates that the 

process remains stable (Buroni, 2021). However, because traffic processes are rarely stationary, 

these models frequently account for seasonality (Buroni, 2021). Abduljabbar et al. (2021), When 

compared to non-parametric techniques, these models suffer from a lack of capturing the 

dynamic traffic patterns. Autoregressive integrated moving average model (ARIMA), seasonal 

autoregressive integrated moving average model (SARIMA), vector autoregressive moving 

average (VARMA), etc. are some parametric approaches for traffic flow forecasting.  

2.4.3 ARIMA Model 

The ARIMA model was first introduced by Box and Jenkins in 1970 (F. M. Khan & Gupta, 2020; Y. 

Wang et al., 2022). It is a single product autoregressive moving average process in which a random 

process with d unit roots is initially assumed, and after d times difference, the random process can be 

changed into a stable autoregressive moving average process (Y. Wang et al., 2022; W. Wu et al., 2015). 

To put it another way, the time series in the autoregressive (AR) model, the moving average (MA) 

model, and the autoregressive moving average ARMA model are all stationary series (Y. Wang et al., 

2022). Autoregressive (AR) process and Moving Average (MA) processes together build a combined 

model of time series, which is ARIMA model (Siami-Namini et al., 2018). There is no seasonality in 

these types of models, these are called stationary not moving. ARIMA (p,d,q), the main elements of this 

model: 

▪ AR: Autoregression. A regression model that takes use of the relationships between a single 

observation and several lagged observations (p) (Siami-Namini et al., 2018). 

▪ I: Integrated. For making the time series stationary, comparing the differences between 

observations made at various times (d) (Siami-Namini et al., 2018). 

▪ MA: Moving Average. A method that considers the dependency between observations and the 

residual error terms for getting lagged observations (q), a moving average model is used (Siami-

Namini et al., 2018). According to Siami-Namini et al. (2018), a simple version of an AR model 

of p order can be written as a linear process: 

𝑥𝑡 = 𝑐 + ∑ 𝜙𝑖
𝑝
𝑖=1 𝑥𝑡−𝑖 +  𝜖𝑡                                                       (2.1) 
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Where: 

𝑥𝑡 = stationary variable, 

c = constant,  

𝜙𝑖 = autocorrelation coefficients at lags 1, 2, …, p, and 

𝜖𝑡= residuals, are the Guassian white noise series with mean zero and variance 𝜎𝜖
2. 

An MA model of order q can be written as: 

𝑥𝑡 = 𝜇 +  ∑ 𝜃𝑖
𝑞
𝑖=0 𝜖𝑡−𝑖                                                       (2.2) 

Where: 

𝜇 = expectation of 𝑥𝑡 (normally assumed as zero), 

𝜃𝑖 = weights applied to the current and prior values of a stochastic term in the time series, 

𝜃0 = 1, 

𝜖𝑡= residuals, are the Guassian white noise series with mean zero and variance 𝜎𝜖
2. 

Although time series acts as d-order unit root processes in several cases, it is needed to carry out 

differential processing on the data to convert them into a stationary time series before developing the 

model (Y. Wang et al., 2022). According to Y. Wang et al. (2022), the ARIMA (p, d, q) model can be 

written by following equation: 

(1 −  ∑ 𝛼𝑖𝐿𝑖𝑝
𝑖=1 )(1 − 𝐿)𝑑𝑦𝑡 =  𝛼0 + (1 +  ∑ 𝛽𝑖𝐿𝑖𝑞

𝑖=1 )𝜀𝑡                                       (2.3) 

Where: 

p = non-seasonal autoregressive order, 

d = non-seasonal difference order, 

q = non-seasonal moving average order, 

𝛼𝑖= the autoregressive term coefficient, 

𝛽𝑖= the moving average term coefficient, 

L = the lag operator, 

𝜀𝑡= the white noise series, 

𝛼0= the constant term coefficients, 

i= the coefficient number, and 

𝑦𝑡= the time series value at time t. 

2.4.4 SARIMA Model 

The seasonal autoregressive integrated moving average model (SARIMA) always deals with 

seasonality. Seasonality means a pattern of increases and decreases in a series' mean level that stays 

throughout time (Jebb et al., 2015). For the non-stationary pattern of the datatype, the SARIMA model 

is meaningful and gives a better result. According to Y. Wang et al. (2022), considering the seasonal 

factors, the SARIMA (p, d, q)(𝑃, 𝐷, 𝑄)𝑚 model can be represented as follows: 
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(1 −  ∑ ∅𝑖𝐿𝑖𝑝
𝑖=1 ) (1 −  ∑ Φ𝑖𝐿𝑚𝑖𝑃

𝑖=1 )(1 − 𝐿)𝑑(1 − 𝐿𝑚)𝐷𝑦𝑡 =  𝛼0 + (1 +  ∑ 𝜃𝑖𝐿𝑖𝑞
𝑖=1 )(1 +

 ∑ Θ𝑖𝐿𝑚𝑖𝑄
𝑖=1 )𝜀𝑡                  (2.4) 

Where: 

P = seasonal autoregressive order, 

D = seasonal difference order, 

Q = seasonal moving average order, 

m = number of periods (monthly data m = 12, quarterly data m = 4, hourly data m = 24), 

 ∅𝑖= non-seasonal autoregressive coefficient, 

Φ𝑖= seasonal autoregressive coefficient, 

𝜃𝑖= non-seasonal moving average coefficient, 

Θ𝑖= seasonal moving average coefficient. 

If, for example, the variance increases with time shown on the data's time plot, we should apply variance-

stabilizing transformations and differences (Siami-Namini et al., 2018). To measure the amount of linear 

dependence between observations by using the autocorrelation function (ACF) in a time series are 

divided by a lag p, and the partial autocorrelation function (PACF) to determine how many 

autoregressive terms q are needed and inverse autocorrelation functions (IACF) for detecting over 

differencing, the preliminary values of autoregressive order p, the order of differencing d, the moving 

average order q and their corresponding seasonal parameters P, D, and Q can be identified (Siami-

Namini et al., 2018). m is denoted by the lag or period of repeating seasonal pattern. 

2.4.5 Non-parametric Methods 

The non-parametric approach is a statistical method that makes no assumptions about the sample's 

characteristics (its parameter) or whether the observed data is quantitative or qualitative. These 

approaches use data to identify the structure and parameters. According to Habtemichael & Cetin (2016), 

when compared to parametric models, non-parametric models perform better because they learn more 

from complicated data and adapt to its pattern. The non-parametric patterns recognition-based 

algorithms, which are a subset of these, appear to be more suitable since they are good at finding similar 

traffic conditions needed to provide predictions (Habtemichael & Cetin, 2016). These models often 

demand a large amount of data than their parametric equivalents. This category involves two different 

methods: 

(i) Non-parametric, and (ii) Neural networks (NN) method 

▪ Non-parametric Methods: The approaches are standard ML methods for traffic forecasting 

that depend on pattern recognition and chaotic systems concepts (Smith et al., 2002). The non-

parametric method aims to characterize data with behavior like the current traffic state for the 

predicting interval (Buroni, 2021). The nonparametric technique has several advantages, 

including a simple formulation, the lack of assumptions about traffic state transitions from one 

period to the next, and ultimately, the ease of modeling multivariate environments (Buroni, 

2021). Deep learning neural network models have been used to forecast future traffic speeds, 

travel time, and traffic flows in several research articles (Duan et al., 2016; X. Ma et al., 2015; 

Zhao et al., 2017), is one example of non-parametric approaches that can manage the stochastic 

pattern and the noise in traffic input data (Abduljabbar et al., 2021). 
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▪ Neural Networks (NN) Methods: In the domains of AI, machine learning, and deep learning, 

neural networks mimic the activity of the human brain, allowing computer programs to spot 

patterns and solve common problems (IBM Cloud Education, 2020). Artificial neural networks 

(ANNs) and simulated neural networks (SNNs) are types of neural networks that are used in 

deep learning techniques (IBM Cloud Education, 2020). According to Dougherty (1995), NNs 

have already been used in a wide range of transportation applications, including driver behavior, 

autonomous vehicles, parameter estimation, pavement maintenance, vehicle detection 

classification, traffic pattern analysis, freight operations, traffic forecasting, transportation 

policy and economics, traffic control, and so on. Recurrent Neural Networks (RNN), Long-

Short Term Memory (LSTM), and Gated Recurrent Units (GRU) are some mostly used neural 

networks in traffic forecasting. Neural networks (NN) are based on the human brain. 

2.4.6 LSTM Neural Network 

Traditional neural networks presupposed that each input vector observation is independent of the others 

(Sagheer et al., 2021). As a result, the sequential information present in time series data cannot be used 

by the conventional neural network (Sagheer et al., 2021). Recurrent neural network (RNN) procedures 

are used to produce a series of data so that each observation is believed to be reliant on the prior ones, 

in contrast to traditional neural network approaches (Das et al., 2021). As Recurrent Neural Networks 

(RNNs) have a long-term dependence problem, that's why Long Short-Term Memory (LSTM) networks 

are created to solve this problem (due to the vanishing gradient problem). LSTM network is used to 

classify and prediction of time series data (Saha et al., 2022). LSTMs have feedback connections to 

previous data that help to process time series data by retaining previous important information from 

previous data. Due to the model's ability to learn extensive sequences of data, LSTM has evolved into a 

trending method for time-series forecasting (Tran et al., 2022). One benefit of LSTM is that it can 

capture both long- and short-term seasonality, such as weekly and yearly trends  (Tran et al., 2022). 

According to Kashyap et al. (2022); Tran et al. (2022), LSTM is still the top choice for the use of deep 

learning algorithms to address the traffic speed prediction problem. Several 'gates' are used in LSTMs 

to control how data in a sequence enters, is stored in, and departs the network.  

 

Figure 2.4: The repeating module structure of LSTM (Source: Boukerche & Wang, 2020) 

LSTM contains two gates inside of one initially, the input gate and the output gate, compared to standard 

RNN (Boukerche & Wang, 2020). When the input time series lengthened, the two-gates LSTM was 

restricted (Boukerche & Wang, 2020; Gers et al., 2000). The two-gate LSTM models a linear process; 

hence the non-linear feature of the original dataset is ignored (Boukerche & Wang, 2020). To get the 

solution to this problem, Gers et al. (2000) introduced a third gate to the two-gate LSTM, termed the 

forget gate. Different gates of LSTM do different kinds of work. The input gate decides whether to write 

data to the cell state, the output gate decides what data to pass as the output hidden state, the forget gate 

decides whether to remove data from the cell state, and the forget gate decides whether to write data at 
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all (Sagheer et al., 2021). These three gates structure of LSTM have been shown in Figure 2.4. The 

following equations illustrate how the LSTM cell works. 

𝑖𝑡 =  𝜎(𝑊𝑥𝑖𝑋𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)                                                       (2.5) 

𝑜𝑡 =  𝜎(𝑊𝑥0𝑋𝑡 +  𝑊ℎ0ℎ𝑡−1 + 𝑏0)                                                     (2.6) 

𝑓𝑡 =  𝜎(𝑊𝑥𝑓𝑋𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)                                                  (2.7) 

𝑐𝑡 =  𝑓𝑡 ⊙ 𝑐𝑡−1 +  𝑖𝑡  ⊙ tanh(𝑊𝑥𝑐𝑋𝑡 

+𝑊ℎ𝑐ℎ𝑡−1+𝑏𝑐)                                                                             (2.8) 

ℎ𝑡 =  𝑜𝑡 ⊙ tanh (𝑐𝑡)                                                                       (2.9) 

Where: 

𝑖𝑡 = LSTM gating for the cell state to input information 

𝑜𝑡 = LSTM gating for the cell state to output information 

𝑓𝑡 = LSTM gating for the cell state to forget information 

𝑐𝑡 = Cell memory state vector 

ℎ𝑡 = Hidden state vector 

𝜎 = Sigmoid function 

tanh = Activation function (we can use also RELU, Leaky RELU activation function for better 

performance)  

𝑋𝑡= Input vector 

𝑊𝑥𝑖, 𝑊ℎ𝑖, 𝑊𝑥0, 𝑊ℎ0, 𝑊𝑥𝑓 , 𝑊ℎ𝑓 , 𝑊𝑥𝑐, 𝑊ℎ𝑐= Linear transformation matrices whose parameters are 

needed to be learned for each single gate and cell memory 

𝑏𝑖, 𝑏0, 𝑏𝑓, 𝑏𝑐 = Corresponding bias vector 

We will utilize the gate's output to determine how much information we want to save, which will be a 

value between 0 and 1 (Boukerche & Wang, 2020). According to Sagheer et al. (2021), the simple 

expression of LSTM could be shown in one form as follows: 

ℎ𝑡 , 𝑐𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1, 𝑐𝑡−1)                                              (2.10) 

To integrate the benefits of each LSTM, the given model consists of a stack of LSTM blocks (or layers) 

arranged sequentially and coupled in a deep architecture (Pascanu et al., 2013; Sagheer et al., 2021). In 

the stacked LSTM model, several layers of LSTM are stacked, where one layer gives information to the 

next layer, and the final LSTM layer will give the output. LSTM is a widely used model for traffic flow 

and speed prediction. Many studies used this algorithm either in single or combined form for the 

prediction of traffic flow and speed.  

2.4.7 Gated Recurrent Unit (GRU) 

Gated Recurrent Units (GRUs) were first proposed by Chung et al. (2014). It is considered a simpler 

version of the LSTM cell and provides better network performance while requiring less training time 

(ArunKumar et al., 2022; Chung et al., 2014). The GRU internal unit and LSTM internal unit are almost 

the same (Chung et al., 2014; Mateus et al., 2021), the only exception is a single update port is created 
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by the GRU by combining the incoming port and the forgetting port in the LSTM model (Mateus et al., 

2021). The hidden and cell states are combined into one state by GRU (ArunKumar et al., 2022). As a 

result, GRU is a popular and shortened version of the LSTM cell and has half as many gates as LSTM 

does overall (ArunKumar et al., 2022). There are two gates in the GRU unit the update gate and the reset 

gate. The reset gate regulates whether the current state should be mixed with the previous information, 

while the update gate controls how much of the state data from the previous period is maintained in the 

present state (Cho et al., 2014; Mateus et al., 2021). 

 

Figure 2.5: The cell structure of Gated Recurrent Unit (GRU) (Source: Mateus et al., 2021) 

According to Mateus et al. (2021), figure 2.5 is showing the cell structure of GRU neural network. 

Following equations will show different gate’s control mechanism: 

𝑧𝑡 =  𝜎(𝑥𝑡𝑊𝑧 + ℎ𝑡−1𝑈𝑧 + 𝑏𝑧)                                                       (2.11)    

𝑟𝑡 =  𝜎(𝑥𝑡𝑊𝑟 +  ℎ𝑡−1𝑈𝑟 +  𝑏𝑟)                                                       (2.12) 

ℎ̃𝑡 = tanh (𝑟𝑡  ×  ℎ𝑡−1U + 𝑥𝑡𝑊 + 𝑏)                                                   (2.13) 

ℎ𝑡 = (1 −  𝑧𝑡) × ℎ̃𝑡 + 𝑧𝑡  ×  ℎ𝑡−1                                                        (2.14)  

 Where: 

𝑊𝑧, 𝑊𝑟, 𝑊 = The weight matrices for the corresponding connected input vector, 

𝑈𝑧, 𝑈𝑟, 𝑈 = The weight matrices of the previous time step, 

𝑏𝑧, 𝑏𝑟, 𝑏 = Corresponding bias vector, 

𝜎 = The logistic sigmoid function, 

𝑟𝑡 = The reset gate, 

𝑧𝑡 = The update gate, and 

ℎ̃𝑡  = The candidate hidden layer.                      

2.4.8 Time-series Prediction 

Time series (definition): A time series T = [𝑥1, … , 𝑥𝑛] is a regular recording of data points at a fixed 

interval of time ∆𝑡 following the preceding point, where each data point is either a real value or a vector 

of real values (Weber et al., 2021). Univariate time series (definition): A time series where, 𝑥𝑖  ∈  ℝ is 

called univariate time series, and in univariate time series there is a single time-dependent variable, e.g., 
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periodic sensor readings from one specific sensor (Weber et al., 2021). Multivariate time series 

(definition): A time series where each 𝑥𝑖 is a d-dimensional vector of real values (𝑥𝑖
1, . . . , 𝑥𝑖

𝑑), 𝑥𝑖
𝑗

∈  ℝ 

is called multivariate time series, and multivariate time series combine multiple time-dependent 

variables e.g., sensor modalities, sensor channels of different sensor placed in several locations (Weber 

et al., 2021). 

A time series prediction system consists of predicting the system’s performance in the future based on 

data from the present and past status of the system (Sagheer et al., 2021). It is important to consider both 

the past and present status of the system for time-series prediction. Time series forecasting (definition): 

T = [𝑥1, … , 𝑥𝑛], time series forecasting denotes the problem of predicting the next value of the sequence 

𝑥𝑛+1 or the next m values 𝑥𝑛+1, … , 𝑥𝑛+𝑚 in univariate time series forecasting (Weber et al., 2021). It 

denotes the problem of forecasting the next value(s) in at least one of the d dimensions in multivariate 

time series forecasting (Weber et al., 2021). For traffic and weather prediction, time-series prediction 

techniques are used. Time-series works by considering a sequence of observations (x) measured in 

sequential order of a variable of interest at time (t) (Sagheer et al., 2021). According to Sagheer et al. 

(2021), a sequence of time series data can be illustrated as: 

X = (𝑥𝑡; 𝑡 = 1, … , 𝑁)                                                 (2.15) 

Where, X is the time series sequence or order, t denotes as the observation’s time for N observations. 

According to Sagheer et al. (2021), there are three types of time series forecasting techniques. 1) Single 

Step ahead Forecast (SSaF), 2) Multi-Step ahead Forecast (MSaF), and 3) Hierarchical time series 

forecasting. 

• Single Step ahead Forecast (SSaF): It is an easy method in time series prediction as it predicts 

only the next future value. According to Masum et al. (2018); Sagheer et al. (2021), at a time t 

+ 1 is executed by passing the current and the past observations t, t – 1, t – 2, …., t – N to a 

selected model, 

F(t + 1) = M(o(t), o(t – 1), o (t – 2),…,o(t – N))                 (2.16) 

Where, F (t + 1) is the prediction at time (t + 1), M is the selected model, and o(t) is an observation   at 

time t. 

• Multi Step ahead Forecast (MSaF): Multi-step ahead forecast (MSaF) requires forecasting 

the next H sequence of future time series values [𝑦1, 𝑦2,….,𝑦𝑁] with N observations and with H 

> 1 being the prediction horizon (Sagheer et al., 2021). There are three main techniques in 

MSaF, where one is the recursive technique, another one is the direct technique and the last 

one is the multi-input multi-output technique (MIMO) (ben Taieb et al., 2012; Sagheer et al., 

2021). 

1. The recursive technique is the oldest one used to treat MSaF where a single model f is trained 

to perform only one step ahead forecast (Sagheer et al., 2021). Then, the value just forecasted 

is used as part of the following input variable to predict the next step with the same step-ahead 

model (Sagheer et al., 2021). According to Sagheer et al. (2021), considering the trained one-

step ahead model 𝑓 and the following are the given forecasts: 

�̂�𝑁+ℎ = {

𝑓(𝑦𝑁, … , 𝑦𝑁−𝑑+1),                                                                   𝑖𝑓 ℎ = 1

𝑓(�̂�𝑁+ℎ−1, … , �̂�𝑁+1, 𝑦𝑁 , … , 𝑦𝑁−𝑑+1),                 𝑖𝑓 ℎ ∈ 2, … , 𝑑        

𝑓(�̂�𝑁+ℎ−1, … , �̂�𝑁−𝑑+ℎ)                                       𝑖𝑓 ℎ ∈ 𝑑 + 1, … , 𝐻

                       (2.17) 

Where, d represents the number of past values used to predict the future value. These 

predications are used as an input for making further predictions (ben Taieb et al., 2012). 
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2. The direct technique also called an independent technique which depends on forecasting each 

horizon independently from the others (Hamzaçebi et al., 2009; Sagheer et al., 2021; Sorjamaa 

et al., 2007). According to Sagheer et al. (2021), the forecasts equation is: 

�̂�𝑁+ℎ = 𝑓ℎ(𝑦𝑁, … , … , 𝑦𝑁−𝑑+1)                                                           (2.18) 

The predictions are protected from the error accumulation created by the recursive method since 

the direct strategy does not compute the forecasts using any approximations (Sagheer et al., 

2021). 

3. Multi-input multi-output (MIMO) technique directly derives from data, the dependence between 

previous observations and future values  (Sagheer et al., 2021), instead of being scalar values in 

this instance, the future values are a vector of values from the time series itself (Bontempi, 2008; 

Chen & Wang, 2010; Sagheer et al., 2021). The advantages of the MIMO technique are its 

ability to conserve the temporal stochastic dependency included in the forecasted future values 

as it uses only one multi-output model (Sagheer et al., 2021). It requires that all horizons can be 

predicted using the same learning method and unified structure, and that’s why the predictions 

are gained in one step at once by using the following equation: 

[�̂�𝑡+𝐻 , … , �̂�𝑡+1] =  𝐹(̂𝑦𝑁 , … , 𝑦𝑁−𝑑+1)                                                 (2.19) 

Where, �̂� is a multi-output model. 

2.5 Transferability and Transfer Learning 

In the past, short-term traffic forecasting was done by statistical models and machine learning 

techniques. Advanced machine learning approaches have been widely applied in this study area due to 

their capacity to handle missing data and their computational efficiency, dependency, and resilience (J. 

Li et al., 2021). The frequency of inadequate data over an entire network is a difficult challenge, that 

hinders the deployment of these technologies in the real world (J. Li et al., 2021; Vlahogianni et al., 

2014). It is unusual to have access to all the city's connections' historical training data, which is essential 

for model training (Abadi et al., 2014; J. Li et al., 2021). Statistical approaches have been used 

extensively in the previous several decades to investigate the transferability of various transportation 

models across time periods and several locations, such as travel demand models and route choice models 

(Bekhor & Prato, 2009; J. Li et al., 2021). For short-term travel time prediction, Luan et al. (2018) 

evaluated the link-to-link transferability of three distinct machine learning models. Many machine 

learning and data mining techniques assume that the training and testing data must be in the same feature 

space with the same distribution (J. Li et al., 2021; Pan & Yang, 2010), and that model calibration 

requires a large amount of prior training data (J. Li et al., 2021).  

Transfer learning is a potential method for dealing with data scarcity, where a model is trained for one 

task and is reused and/or altered for another (Mallick et al., 2020). In the text domain, transfer learning 

is commonly used for image classification, sentiment analysis, and document classification (Mallick et 

al., 2020; Tan et al., 2018; Zhuang et al., 2019). When labeled training data is sparse, Transfer Learning 

solves the machine learning challenge (Pan & Yang, 2010; L. Wang et al., 2019). To undertake chain 

store site suggestions, Guo et al. (2018) proposed a cross-city transfer learning system using 

collaborative filtering and AutoEncoder. In the field of computer vision and natural language processing, 

the study of transfer learning is vast (Pan & Yang, 2010; B. Wang et al., 2019). In practice, replacing or 

expanding traffic-related systems necessitates new sensors, which lack historical data for model training 

(B. Wang et al., 2019). In this case, using the fine-tuning approach, gained knowledge from previously 

used sensors might aid in predicting accuracy for freshly placed sensors, but for short-term traffic 

prediction details research on model fine-tuning is still unknown (B. Wang et al., 2019).  

Transfer learning techniques' greater generalization has the potential to overcome insufficient training 

data issues by enhancing the transferability of a traffic prediction model, and the faster training process 
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can greatly reduce the associated computing cost (J. Li et al., 2021). According to Saha et al. (2022), 

three method makes up the transfer learning approach: parameter transfer, domain adaptation, and multi-

task learning. The parameter transfer approach applies the learned parameters from the source data and 

builds a model for the target data using this information (Saha et al., 2022). This method can be useful 

in two ways: modeling smaller datasets and reusing knowledge for rapid learning (Saha et al., 2022). 

According to J. Li et al. (2021), A feature space X and a marginal probability distribution P(X) over the 

feature space comprise a domain 𝒟, where X is the learning sample. The relationship between feature 

space X and learning sample X can be described as X = {𝑥1 , … , 𝑥𝑛 }  ∈ X, where 𝑥𝑖 is the ith vector in 

the existing learning sample X with different features and X has all the features (J. Li et al., 2021). Given 

a domain 𝒟 = {X, P(X)},  a task T is made up of a label space Y containing all labels 𝑦𝑖  corresponding 

to learning vectors 𝑥𝑖  and a conditional probability distribution P(Y|X) (i.e., the objective prediction 

function f(⋅), which is generally learned from the training pairings 𝑥𝑖 ∈ X and 𝑦𝑖  ∈ Y . According to Pan 

& Yang (2010); J. Li et al. (2021), Transfer learning tries to improve the learning of the target conditional 

probability distribution P(𝑌𝑇 |𝑌𝑇 ) in 𝑇𝑇  with the knowledge learned from 𝒟𝑠  and 𝑇𝑠 , where 𝒟𝑠  ≠ 𝒟𝑇 or 

𝑇𝑠  ≠ 𝑇𝑇, given a source domain 𝒟𝑠 , a matching source task 𝑇𝑠 , as well as a target domain 𝒟𝑇 and a 

target task T𝑇. 

According to J., Li et al. (2021), the concept of {𝒟𝑠 , 𝑇𝑠 } and {𝒟𝑇, 𝑇𝑇} which are included in the neural 

network-based transfer learning technique concept, are defined as follows: 

▪ A source dataset A: expressed by 𝒟𝑠 = {𝑋𝑠 , P(𝑋𝑠 )}, where the learning samples in 𝑋𝑠 comprise 

almost all of the features in feature space X and the distribution P(X) throughout feature space. 

▪ A source task A: expressed by Ts = {𝑌𝑠 , 𝑓𝑠 (⋅)}, where a sufficient training pairs of 𝑥𝑖 ∈ 𝑋𝑠  and 

𝑦𝑖  ∈ 𝑌𝑠 to accurately estimate the objective prediction function 𝑓𝑠 (⋅). 

▪ A source network A: expressed by 𝑓𝑠 (⋅), where each network parameter is precisely estimated 

to allow 𝑓𝑠 (⋅) to make accurate predictions. 

▪ A target dataset B: expressed by 𝒟𝑇 = {𝑋𝑇 , P(𝑋𝑇 )}, where the learning samples in 𝑋𝑇  are  

limited that it prevent {𝑋𝑇 , P(𝑋𝑇 )} from accurately representing {X, P(X)}. 

▪ A target task B: expressed by 𝑇𝑇 = {𝑌𝑇 , 𝑓𝑇 (⋅)}, where the insufficient training pairs of 𝑥𝑖 ∈ 𝑋𝑠  

and 𝑦𝑖  ∈ 𝑌𝑠 cannot accurately estimate the objective prediction function 𝑓𝑠 (⋅). 

▪ A target network B: expressed by 𝑓𝑇 (⋅), where the majority of the network's parameters are not 

accurately estimated, it is uncertain to ensure the correctness of the predictions. 

Given the above descriptions, J. Li et al. (2021) used three transfer learning strategies in the deep neural 

network. One is transfer-without fine-tuning, another is fine-tuning with freezing transferred layers, and 

the last is fine-tuning without freezing transferred layers. In conventional learning systems, the 

individual dataset will create an individual model. But in transfer learning, one dataset will learn the 

knowledge and send this pre-learned knowledge to another dataset, and that pre-learned knowledge will 

create another model. This technique will reduce computational burden and can be used for a small 

dataset of the same features. The following figure describes this typical transfer learning technique.  
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(a)                                                                                 (b) 

Figure 2.6: Representation of (a) Typical traditional machine learning model, (b) Typical transfer 

learning model (Source: Sagheer et al., 2021)  

Depending on the availability of labels in the target and source dataset, there are different problem 

settings in transfer learning (Weber et al., 2021). Transfer learning is used when the target domain has 

a little quantity of labeled data, which is frequently insufficient for independently training an appropriate 

target model (Weber et al., 2021). According to Pan & Yang (2010); Weber et al. (2021), transfer 

learning solution approaches divided into four categories: instance-based, feature-based, parameter-

based, and relational-knowledge-based. The selection or reweighting of samples from the source domain 

occurs during instance-based transfer (Weber et al., 2021). Based on the assumption that examples from 

the source domain are comparable to the target domain examples, this approach is more or less helpful 

for training models (Weber et al., 2021). By transferring feature representations, data can be transformed 

into a common feature space, allowing learning to be done on features that reflect characteristics from 

both domains (Weber et al., 2021). The more generic term model-based transfer also refers to parameter 

transfer, which reuses parameters from a model that has already been trained in the source domain for 

the target model-building process (Weber et al., 2021). Finally, time series cannot use relational 

knowledge transfer since such is reserved for relational domains  (Weber et al., 2021). 

2.6 Research Gaps Related to Literature Review 

It is clear from the literature review that traffic parameters like flow, speed, and VMT forecasting are 

core tasks for reducing traffic congestion and real-time traffic information. Most of the research did 

traffic flow and other parameters forecasting and their accuracy using different statistical and machine 

learning models. They analyzed traffic forecasting models, and transfer learning models in some 

literature, but there are some research gaps in this field of research.  

▪ Spatial regional attributes (shopping malls, governmental organizations, stadiums, etc.) are not 

considered with temporal features for the traffic forecasting (Cheng et al., 2012; Du et al., 2020; 

Yao et al., 2019). 
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▪ Factors (weather conditions, incidents, signal settings, etc.) are not considered during traffic 

forecasting by transfer learning (J. Li et al., 2021). 

According to the above research gaps, in this thesis, we will use weather factor data with different 

features for finding the influences on traffic flow forecasting. We will integrate weather data with traffic 

data for traffic flow forecasting by transfer learning.  
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3 Methodology 
This chapter discusses data collection, preprocessing of data, and model building using univariate 

ARIMA, multivariate GRU, LSTM, and transfer-learning strategies. The initial part of this chapter 

describes how datasets are collected, the next step describes how data are preprocessed, how these data 

are cleaned and filtered, and next it describes model buildings. The next chapter will be data analysis of 

several roads in California State, USA. The further chapter is about results and discussions, and the next 

chapter is about conclusions and future research in this field.  

 

Figure 3.1: Methodological flow chart 

3.1 Data Collection 

Datasets are collected from the prestigious California Transportation Performance Measurement System 

(PeMS, 2022) database. In this database, all traffic data are well organized. Traffic data are collected by 

many stations situated in different parts of districts of California State. California state is separated into 

12 different districts for traffic data collection. For collecting traffic data, they used loop detectors, 

radars, magnetometers, and many other detectors for collecting traffic count data, traffic flow data, 

traffic speed data, occupancy data, VMT data, and many more. Currently, a total of 46,335 detectors are 

available and working in all California districts where there are in total 41,236-mile total distances 

covered for the traffic data. A total of 18,986 stations and a total of 18,348 traffic census stations are 

available for collecting traffic data. PeMS also check the detectors' health and always tries to maintain 

the quality of detectors in all California districts. They also analyze the data on where the detector should 

be changed or repaired. The granularity of PeMS traffic data is 5 minutes, 1 hour, and 1 day. 
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3.1.1 Caltrans PEMS Data Description 

Table 3.1: Caltrans PeMS spatial description (Source: PeMS, 2022) 

District Name Directional 

distance (mile) 

Number of 

stations 

Number of 

detectors 

1 Northwest 1889.3 0 0 

2 Northeast 3463.2 0 0 

3 North central 3004.5 1544 3177 

4 Bay area 2869.0 4027 11603 

5 Central coast 2333.2 561 1033 

6 South central 11579.3 690 1790 

7 LA/Ventura 2318.2 4895 11241 

8 San Bernardino /Riverside 3890.4 2100 5289 

9 Eastern Sierra 4598.2 0 0 

10 Central 2658.9 1253 2385 

11 San Diego/Imperial 2053.9 1440 4153 

12 Orange County 577.9 2511 5728 

 

 

Figure 3.2: Directional distance covered by each district (Source: PeMS, 2022) 

Figure 3.2 illustrates the directional distance covered by each of the 12 districts. South Central covers 

the maximum directional distance, and the lowest number of directional distances are covered by Orange 

County. Eastern Sierra covers the second-highest distance, and all other districts cover distances from 

2000 miles to 3000 miles range. 
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Figure 3.3: Number of stations covered by each district (Source: PeMS, 2022) 

Figure 3.3 illustrates the number of stations covered by every 12 districts of California state. Here, there 

is no station available for three districts, which are Northwest, Northeast, and Eastern Sierra. 

LA/Ventura has the most stations, followed by Bay Area with the second most. The third highest number 

of stations are covered by district 12 or Orange County and then San Bernardino/ Riverside. District 3 

North Central is the 5th largest district in terms of stations cover.  

 

Figure 3.4: Number of detectors covered by each district (Source: PeMS, 2022) 

Figure 3.4 illustrates the number of detectors covered by every 12 districts of California state. It shows 

that there is no detector available for district 1 which is Northwest, district 2- Northeast, and district 9- 

Eastern Sierra. Bay Area and LA/ Ventura cover the highest number of detectors. District 12- Orange 

County covers the third highest number of detectors. District 3- North Central covers approximately 

3000 detectors and district 6- South Central covers approximately, 1800 detectors. These detectors 

collect traffic data directly from the road. 

3.1.2 California District 3 Data 

California district 3 is called the North-Central part of California state. This district consists of 

Sacramento, Roseville, Colusa, Yuba City, Willows, Chico, Oroville, Placerville, etc. city of California. 

This district covers a total of 3,004.5 miles of roadway, where a total of 603 controllers, 1,540 stations, 

3,174 detectors, and 1,728 traffic census stations are available for collecting different traffic data. 
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Figure 3.5: California district 3 traffic approximate map (Source: Google Maps) 

We collected a total of 6 months of data on California district 3 from April 1, 2019, to September 30, 

2019, for forecasting traffic flow. The granularity of these data is 1 hour. These data cover Mainline 

(ML), High Occupancy Vehicle Lane (HOV), On-Ramp (OR), Off-Ramp (Off-R), Freeway-Freeway 

(Fwy-Fwy) connector road.  

3.1.3 California District 6 Data 

California district 6 is called the South-Central part of California state. This district consists of Fresno, 

Visalia, Bakersfield, Madera, etc. city of California. Currently, this district covers 11,579.3 miles of 

directional distance, where 342 controllers, 690 stations, 1,790 detectors, and 1,582 traffic census 

stations are available for collecting traffic data. We collected 1-month data for transfer learning and 

performance of traffic flow forecasting.  

 

Figure 3.6: California district 6 traffic approximate map (Source: Google Maps) 

3.2 Data Preprocessing  

Data preprocessing include data cleaning and data filtering. Each of these sub-chapters is described 

below. 
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3.2.1 Data Cleaning 

In both California district 3 and district 6 datasets, there are some missing values in the total flow data. 

This happened due to faulty detectors or there are other reasons. Speed and occupancy data are 

completely missing on the on-ramp and off-ramp roadways. According to PeMS (2022), either they did 

not collect the speed and occupancy data, or they did not calculate these data for on-ramp and off-ramp. 

On freeway-freeway connector roads, sometimes occupancy data are available, but speed data are 

completely missing. Approximately 35% of data are missing in flow, occupancy, and speed data, where 

the majority of data are on-ramp, and off-ramp link speed and occupancy data. A total of 65% of data 

are completely in good shape for traffic flow, speed, and occupancy data on mainline (ML), and high 

occupancy vehicle (HOV) lane data in district 3 data. We just removed on-ramp, off-ramp, and freeway-

freeway connector road data for univariate and multivariate time series analysis and model building.  

For district 6 data, there are approximately 85% of the data are in good shape, rest 15% data has missing 

data for the on-ramp, off-ramp, and freeway-freeway connector roads. For the mainline and HOV lane, 

almost all the data of total flow, average speed, average occupancy, and each lane parameters are 

available. In that case, we will consider only mainline (ML) and high occupancy vehicle (HOV) link-

type data for our model building.  We will select individual station data-specific spatial and temporal 

data of district 3 data as the source model dataset and district 6 data as the target model dataset in transfer 

learning models.  

3.2.2 Data Filtering 

District 3 datasets are filtered for six months duration from 2019. We took data from April to September 

2019 data for the model building. Data from District 6 are filtered to 1-month, and the pre-trained model 

will be used for transfer learning based on district 3 datasets. We have selected 2-lane, 3-lane, and 4-

lane link data in the dataset. Total flow, average occupancy, and average speed of all lanes for the 

individual link are given, also individual lane flow, average speed, and average occupancy are given. 

We filtered data to hourly data, then we took one-month data of district 3 for individual link type data 

for analysis and performance. We made different datasets for each of the 3 different link types. There 

are many features available in traffic datasets. From the raw dataset, we have created another feature 

named ‘lane type’. In this lane type column, relevant rows of each lane are mentioned by this lane 

splitting. Then we can find out how many link types are available in the datasets. From 50 different 

features, we just selected three traffic features that will be used for the multivariate time series modeling. 

Total flow, average occupancy, and average speed for each link type are taken for the model building. 

3.3 Model Building 

3.3.1 Univariate ARIMA 

For the ARIMA model structure, we take total flow as an endogenous variable, and average occupancy 

and average speed are exogenous variables in our multivariate time-series forecasting. When we do 

traffic flow forecasting with the multivariate ARIMA model, it does not perform well. In that case, we 

will not use the multivariate ARIMA model. Hence, we will check the univariate ARIMA model only 

with our target variable ‘Total Flow’. 

A Dicky-Fuller-Test (ADF) test is done for checking if the data time series is stationary or not. In the 

ADF test, the p-value will evaluate the stationarity of the time series data. If the p-value is less than 

0.05, then the series is stationary. Otherwise, the series is non-stationary. In our studies, all three roads’ 

data in all shapes of datasets, p-values are less than 0.05. Our selected 3 road datasets (Station id: 

313190, 314042, and 319351) from District 3, California State, are stationary. There will be no 

differencing needed before model building. We can directly use the training dataset for model building 

and evaluations. In this case, differencing value, d = 0. Seasonality and trend-line are also checked.   
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From (p, d, q) order, we will get p and q value from partial autocorrelation function (PACF) and 

autocorrelation function (ACF) plots. 

 

Figure 3.7: PACF plot for 4 lane road (station id 319351) data 

As per the PACF plot, the p value will be found. Here in the figure, lags 2 is significant as there is an 

exponential decay available here. This time-series p-value will be 2.  

 

Figure 3.8: ACF plot for 4 lane road (station id 319351) data 

By ACF plot we can get the q-order value of the ARIMA model. Here, the figure shows the ACF plot 

for the data of Placer County, district 3 station 319351. It is evident that here after 2 orders that means 

at order 2 the series is significant as per the plot as q = 2 order lies in a significant level. We will select 

the q value as 2 for this data type. From the Statsmodels library of Python programming language, the 

ARIMA model will be run. Also, the (p, d, q) value as (2, 0, 2) gives a lower Akaike information criterion 

(AIC) value. Seasonal ARIMA models with (2, 0, 2) and   (1, 1, 0)24 are taken for model building. These 

same orders of ARIMA models will be used in the other two links (station id: 313190 and 314042) 

traffic flow forecasting because the ACF and PACF plots are almost the same as the 4-lane link (Station 

id 319351) and the ADF tests’ p-value is less than 0.05. 

3.3.2 LSTM and GRU Neural Network Model 

For LSTM and GRU models, we will use the Python Keras library (Attri et al., 2020)for model building, 

and Python Keras library (Chollet, 2020) for transfer learning and fine tuning. The dataset is transformed 

by the MinMaxScaler function.  Then the dataset is split into the train, validation, and test dataset.  
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The dataset is transformed in the Min-Max scaler. Using the Min-Max scaler, input features or variables 

will be transformed to a scale of 0 to 1. The mathematical formulation of the MinMaxScaler function is 

shown by: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥−min(𝑥)

max(𝑥)−min (𝑥)
                                                              (3.1) 

Where: 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 is the Min-Max scaled value; x is the original value; min(𝑥) is the minimum value of 

that feature; and max(𝑥) is the maximum value of that feature or variable. 

Multiple variables will be used in LSTM and GRU models where the target variable is total flow 

(vehicles/h), and other traffic variables are average occupancy (%) and average speed (mph). This type 

of model will be called the without-weather multivariate model. For the with-weather multivariate 

model, additional weather variables will be used for checking research question 2. Additional weather 

variables are hourly precipitation (in), hourly dry bulb temperature (°F), hourly wind speed (mph), and 

hourly visibility (miles). 

For LSTM and GRU models, the following model settings are used. Both models are used as stacked 

LSTM and stacked GRU models. Which means, multiple hidden layers will be used. 

             Table 3.2: Model settings for LSTM and GRU multivariate models 

 LSTM neural network GRU neural network 

Window length 24 24 

Batch size 36 36 

Number of 

neurons 

1st hidden layer 1024 1024 

2nd hidden layer 512 512 

3rd hidden layer 264 264 

Activation function LeakyReLU LeakyReLU 

Patience 5 5 

Optimizer Adam Adam 

Number of epochs 100 100 

Learning rate Default (0.001) Default (0.001) 

Random state 123 123 
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3.3.3 Stacked-LSTM Model Architecture 

 

Figure 3.9: Stacked LSTM layers architecture (source network) 

Figure 5.3 describes the architecture of the stacked-LSTM network in our source model; this model will 

be used as the pre-trained model for transfer learning. The first layer is the input layer, where the total 

number of features is 7 (3 variables as traffic variables and 4 variables as weather variables) and window 

size is taken as 24 as data is hourly data. The second layer is the first LSTM layer with 1024 hidden 

states. ℎ1 is the first hidden state vector, and 𝑐1 is the first cell memory state vector. In the second LSTM 

layer, the number of hidden states is taken as 512 and it will release ℎ2 as a second hidden state vector 

and 𝑐2 as a cell state vector. On the second LSTM hidden neurons, a dropout layer is used where the 

dropout size is 30%. Srivastava et al. (2014) propose the dropout technique to deal with overfitting in 

deep learning. By demonstrating how dropout enhances neural network performance on supervised 

learning tasks in vision, speech recognition, document classification, and computational biology, they 

achieve cutting-edge results on several benchmark data sets (Srivastava et al., 2014). During training 

time, dropout can ignore the randomly selected neurons. In our tasks as we selected a 30% dropout rate 

which means it can drop out 30% of randomly selected neurons in each cycle of weight update. The 

third LSTM layer contains the number of hidden neurons of 264 number with a dropout layer with the 

same 30% dropout rate, and finally, it will retrieve ℎ3 hidden state vector. After that, we use a fully 

connected layer, and the last layer is the output layer.  

3.3.4  Sliding Window 

According to Hota et al. (2017), sliding window prediction system is given below. 

(a) Initial window: 
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𝑡1 𝑡2 𝑡3 … … 𝑡22 𝑡23 𝑡24 𝑡25 𝑡26 𝑡27 … … 𝑡(𝑛−1) 𝑡𝑛 

 

(b) Window sliding: 

 

𝑡1 𝑡2 𝑡3 … … 𝑡22 𝑡23 𝑡24 𝑡25 𝑡26 𝑡27 … … 𝑡(𝑛−1) 𝑡𝑛 

 

Figure 3.10: Sliding window forecasting system for time series data (Source: Hota et al., 2017) 

As our traffic datasets are 1-hour granular datasets, in each 24-time step, the patterns of traffic flow are 

almost similar. We take the window size for traffic flow forecasting as 24. Figure 3.10 shows the initial 

time series where 𝑡1 to 𝑡24 is the first window length that will give a prediction of the next time step 

which is 𝑡25 due to using the window. In the window sliding system, the next step will be the same 

window and will slide 1 step right. That means this window will cover 𝑡2 to 𝑡25 time steps and will give 

a prediction for the next step or 𝑡26 time step. It will go further until 𝑡n and will give the final prediction 

of the dataset. 

3.4 Model Evaluation Metrics 
To evaluate traffic flow forecasting model in terms of different approaches we selected Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE) metrics 

for model evolution. According to Ren et al. (2021), the formulas of evaluation metrics are given below: 

Mean absolute error, MAE = 
1

𝑛
∑ |𝑌𝑖 −  𝑌�̂�|

𝑛
𝑖=1  

Root mean squared error, RMSE = (
1

𝑛
∑ (𝑌𝑖  −  𝑌�̂�)

2𝑛
𝑖=1 )

1

2                                                                            (3.2) 

Mean absolute percentage error, MAPE = 
1

𝑛
∑ |

𝑌𝑖 − 𝑌�̂�

𝑌𝑖
|𝑛

𝑖=1  

Where: 𝑌𝑖 is the actual traffic flow, 𝑌�̂� is the predicted traffic flow, and n is the number of observations. 

3.5 Transfer Learning with Different Strategies 
Pre-trained models from district 3 datasets will be implemented here for transfer learning. There are 

three different strategies here that will be applied to transfer learning. 

▪ Strategy 1: Parameters in the first n layers will be kept frozen, and parameters in the last layer 

will be kept unfrozen and will be trained toward the target dataset, which means the district 6 

dataset of California. 

▪ Strategy 2: Fine-tuning will be done without freezing transferred layers. All parameters within 

the entire neural network will be re-trained towards target dataset which means district 6 dataset 

of California state. 

▪ Strategy 3: It is called without fine-tuned model, where source model’s all layers will be kept 

frozen and pre-trained features of source model will be used on new datasets of district 6. 
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NF = Not frozen; F = Frozen 

Figure 3.11: The architecture of transfer learning strategies adapted from J. Li et al. (2021) 

Figure 3.11 demonstrates the architecture of transfer learning strategies. Figure (a) is Source model A, 

which is taken from district 3 datasets. This source model is transferred through three different strategies 

of transfer learning. Figure (b) shows the target baseline model B, which is taken from district 6 datasets 

with the one-month dataset, and the prediction of this model is compared with test datasets. In each 

source model and target model, 3 hidden LSTM layers will be used, which is called the stacked-LSTM 

model. Figure (c) shows strategy-1 transfer learning, where all layers except the last layer of the pre-

trained model are kept frozen. This last layer will be kept unfrozen and ready for fitting on the target 

dataset. Figure (d) describes strategy-2 transfer learning, where all layers will be kept unfrozen and fine-

tuned for transfer learning on target datasets. Figure (e) illustrates the strategy-3 transfer learning model 

where all layers of the pre-trained source model are kept frozen and learned on target datasets. This is 

called without fine-tuned typical transfer learning model. 

▪ Learning rate: 

Many types of optimizers can be used in deep learning models. The learning rate is an important 

part of an optimizer. The amount of parameter updating during training, known as the learning 

rate, includes a trade-off between convergence accuracy and convergence speed (J. Li et al., 

2021). Optimization methods can be divided into two categories: non-adaptive learning rate 

methods and adaptive learning rate methods, depending on how the learning rates are calculated 

at each stage, such as non-adaptive learning rate methods are stochastic gradient descent (SGD), 

SDG with momentum (J. Li et al., 2021). Adaptive learning rate methods examples are AdaGrad 

(Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012), Adam (Kingma & Ba, 2014). Due 

to quick training times and effective results, adaptive learning rate approaches are becoming 

more and more common and widely used (Karpathy, 2017; J. Li et al., 2021). In this thesis, we 

chose Adam optimizer as their running time is faster. We take the default learning rate value as 

0.001 as this learning rate gives better performance. 
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▪ Batch Size: 

Batch size, a crucial hyper-parameter that affects the dynamics of the learning algorithm, refers 

to the number of samples from the training dataset used in the estimation of the error gradient 

(J. Li et al., 2021). According to J. Li et al. (2021), the number of features and data size have a 

direct impact on the batch size selection. That’s why when there are many training instances, 

mini-batch training is typically utilized since a smaller batch size would lead to more frequent 

gradient changes due to lower computing costs (J. Li et al., 2021). In our case, we will utilize 

mini-batch size as our models are multivariate time series models. Smaller batch size will help 

to reduce computation burden as a single batch size for a large dataset takes a lot of time to 

gradient update. In our case, the batch size is taken as 36 because it will help to estimate a faster 

gradient error.  

 

▪ Number of epochs: 

According to J. Li et al. (2021), how many times the complete dataset is fed through a neural 

network is shown by the number of training epochs. The size and diversity of the training dataset 

heavily influence the number of training epochs, and there is no one ideal amount of training 

epochs for training the neural network (J. Li et al., 2021). Early stopping is also used in our 

models, where it can control the overfitting issues.  
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4 Data Analysis 
We selected a total of 6 different road types from district 3 and district 6. 2-lane, 3-lane, and 4-lane road 

datasets are selected from both districts 3 and 6. These are described in the following sub-chapters. 

4.1 District 3 Traffic Data 

4.1.1 Selected 2 Lane Road  

The 2-lane road is selected from District 3, which has station number 313190 from Sacramento County, 

California. Traffic data collected by this station’s detector is the loop detector. This road is selected for 

the traffic flow forecasting model and source dataset of transfer learning. 

 

Figure 4.1: Elk Grove Blvd Road in Sacramento, California (Station: 313190) (Source: 

OpenStreetMap) 

4.1.2 Selected 3 Lane Road  

The 3-lane road is selected from district 3 which has station number 314042 from West Sacramento, 

California. Traffic data collected by this station’s detector is the loop detector. This road is selected for 

the traffic flow forecasting model. 

  

Figure 4.2: Sunrise Blvd Road in Sacramento, California (Station: 314042) (Source: OpenStreetMap) 

Loop detector 

Loop detector 
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4.1.3 Selected 4 Lane Road 

We selected SB Riverside Avenue from Placer County of district 3 as 4 lane road for our study. The 

station number for this 4-lane road is 319351. This road collects data by loop detectors and then 

combines all lanes data to this station number. This road dataset is selected for the model building as a 

source model dataset. 

 

Figure 4.3: SB Riverside Avenue, Placer County, California (Station: 319351) (Source: 

OpenStreetMap) 

4.2 District 6 Traffic Data 

We will use three road datasets for district 6 as the target model datasets for transfer learning. Three 

different road types are 2-lane, 3-lane, and 4-lane.  

4.2.1 Selected 2 Lane Road  

We selected a 2-lane road at Herndon Avenue in Fresno County, District 6 in California. At station 

601722, traffic data is collected using loop detectors and aggregated and recalculated for total traffic 

flow, average traffic occupancy, and average traffic speed. 1-month of traffic data from April 2019 and 

1-month of traffic data from September 2019 are taken separately as the target datasets for the transfer-

learning model.  

 

Figure 4.4: Herndon Avenue in Fresno, California (Station: 601722) (Source: OpenStreetMap) 

Loop detector 

Loop detector 
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4.2.2 Selected 3 Lane Road  

A 3-lane road Barstow Avenue which is situated in Fresno County in district 6 in California State was 

selected. Loop detectors collect traffic data, which are accumulated and recalculated for total flow, 

average occupancy, and average speed at station 602538. 1-month of traffic data from April 2019 and 

1-month of traffic data from September 2019 are taken separately as the target datasets for the transfer-

learning model. 

 

Figure 4.5: Barstow Avenue in Fresno, California (Station: 602538) (Source: OpenStreetMap) 

4.2.3 Selected 4 Lane Road  

Another 4-lane road Cedar Avenue which is situated in Fresno County in district 6 in California State 

was selected. Loop detectors collect traffic data, which are accumulated and recalculated for total flow, 

average occupancy, and average speed at station 601348. 1-month of traffic data from April 2019 and 

1-month of traffic data from September 2019 are taken separately as the target datasets for the transfer-

learning model. 

 

Figure 4.6: Cedar Avenue in Fresno, California (Station: 601348) (Source: OpenStreetMap) 

Loop detector 

Loop detector 
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4.3 Weather Data 

 

Figure 4.7: Methodological flow chart of combining weather data 

There are a lot of external factors which influence traffic flow forecasting. These might be incidents, 

weather conditions, spatial conditions, football games, concerts, or special occasions according to the 

literature. As all these factors’ data are not available, we will evaluate our model by external factor 

weather. Which will answer research question 2. We collected weather data for California state from the 

National Centers for Environmental Information (NCEI) (National Centers for Environmental 

Information, 2022) weather database, where almost more than 70 years of environmental data are 

available for all US states. We collected for the relevant County of district 3 and district 6 for checking 

the model and how it performs with weather data. We collected weather data with a granularity of 20 

minutes for each experimental location from April 2019 to September 2019. Then from this 20-minute 

granular data, we got the average value for 1-hour granular data. There are many variables available in 

this weather data. From these variables, we take hourly precipitation, hourly dry bulb temperature, 

hourly visibility, and hourly wind speed as the weather factors. Then, these weather data were combined 

with the traffic data.  

4.4 Data Visualization 

4.4.1 2 Lane Road in District 3 

  

Figure 4.8: Traffic flow, occupancy, speed vs day (2-lane road data for station 313190) 
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Figure 4.8 shows traffic flow, average occupancy, and average speed vs. day plot where two months of 

data from April 2019 to May 2019 are available. In the top plot, in the blue color line graph, total flow 

vs. day is shown. Here, the total flow for this road is higher during peak hours in the morning time and 

in the evening time because in these time limits people go outside to the workplace or school or other 

activities in the morning and come back home in the evening. In off-peak hours flow decreased due to 

less demand. Especially at mid-day and night-time the traffic flow decreases a lot. This pattern follows 

all weekdays, which means weekday traffic flows are almost similar. During weekends, traffic flows are 

low. At day flow are higher than at night-time but not like on weekdays. 

The middle figure in the orange-colored line shows two months’ average occupancy vs. day for station 

313190, which is Elk Grove Blvd of district 3 data. It illustrates that patterns of occupancy are almost 

similar to traffic flow. If the flow is higher, occupancy is also higher, and if the flow is lesser, occupancy 

is also lesser. During weekdays, occupancy values are higher like flow values, and during weekends, 

occupancy values are lower like flow values. At one point on 3rd May, it shows a sudden increase in 

occupancy value. The reason behind this is here either some traffic jam or an incident occurred. 

The bottom figure in the green color line represents two months’ average speed vs. day for station 

313190, which is Elk Grove Blvd of district 3 data. It describes that the pattern of speed data is opposite 

to traffic flow and occupancy data. If traffic flow and occupancy are higher speed of traffic will be 

lower, and if traffic flow and occupancy are lower speed of traffic will be higher. On 3rd May it is 

showing that the speed of the traffic suddenly reduced in the peak hours, where either a traffic congestion 

or any incident occurred. 

4.4.2 3 Lane Road in District 3 

 

Figure 4.9: Traffic flow, occupancy, speed vs day (3-lane road data for station 314042) 

Figure 4.9 shows the traffic flow, average occupancy, and average speed vs. day plot for the 3-lane road 

named Sunrise Blvd at Sacramento County in district 3 of California, where two months of data from 

April 2019 to May 2019 are available. The top plot in the blue color line illustrates total flow vs. day.  
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Here, the total flow for this road is higher during peak hours in the morning-time and evening-time 

because people go outside to the workplace or school or do other activities in the morning and come 

back home in the evening. In off-peak hours flow decreased due to less demand. Especially, at mid-day 

and night-time, flow decreases a lot. This pattern follows all weekdays, which means weekday traffic 

flows are almost similar. During weekends, traffic flows are low. At day-time flow are higher than at 

night-time but not like on weekdays. 

The middle figure in the orange-colored line shows two months’ average occupancy vs. day for station 

314042, which is Sunrise Blvd of district 3 data. It describes that pattern of occupancy are almost similar 

to traffic flow. If the traffic flow is higher, occupancy is also higher, and if the traffic flow is lesser, 

occupancy is also lesser. During weekdays, occupancy values are higher as traffic flow, and during 

weekends, occupancy values are lower as traffic flow.  

At the bottom figure in green color line is showing two months’ average speed vs. day for the station 

314042, which is Sunrise Blvd of district 3 data. It is stated that speed data patterns are opposite to traffic 

flow and occupancy data. If traffic flow and occupancy are higher speed of traffic will be lower, and if 

traffic flow and occupancy are lower speed of traffic will higher.  

4.4.3 4 Lane Road in District 3 

 

Figure 4.10: Traffic flow, occupancy, speed vs day (4-lane road data for station 319351) 

Figure 4.10 shows traffic total flow, average occupancy, and average speed vs. day plot for the 4-lane 

road named SB Riverside Avenue at Placer County in district 3 of California, where two months of data 

from April 2019 to May 2019 are available. In the top plot in the blue color line, total flow vs. day shows 

where total flow for this road is higher during peak hours in the morning-time and evening-time, people 

go outside to the workplace or school or other activities in the morning and come back home in the 

evening. In off-peak hours flow decreased due to less demand. Especially at mid-day and night-time 

flow decreases a lot. This pattern follows all weekdays, which means weekday traffic flows are almost 
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similar. During weekends, traffic flows are low. At day flow are higher than at night-time but not like 

on weekdays. 

The middle figure in the orange-colored line shows two months’ average occupancy vs. day for station 

319351, which is SB Riverside Avenue of district 3 data. It illustrates that patterns of occupancy are 

almost similar to traffic flow. If the flow is higher, occupancy is also higher, and if the flow is lesser, 

occupancy is also lesser. During weekdays, occupancy values are higher like flow values, and during 

weekends, occupancy values are lower like flow values. In some points, on 8th April, 1st May 15th May, 

and 24th May, the occupancy values are higher means here speeds of the vehicles are lower for the 

traffic congestion or other incident. 

The bottom figure in the green colored line shows two months’ average speed vs. day for station 319351, 

which is SB Riverside Avenue of district 3 data. It describes that speed data patterns are opposite to 

traffic flow and occupancy data. If traffic flow and occupancy are higher speed of traffic will be lower, 

and if traffic flow and occupancy are lower speed of traffic will be higher. Similarly, as average 

occupancy graph, on 8th April, 1st May, 15th May, and 24th May, speed values are suddenly decreasing, 

which means here speeds of vehicles are lower for a traffic jam or other incident. 

4.4.4 District 3 and District 6 Data Comparison (2 Lane) 

 

 

Figure 4.11: 2 lane road’s district 3 vs district 6 data comparison 

Figure 4.11 shows 15 days of traffic data from April 1, 2019, to April 14, 2019, for 2-lane roads in both 

District 3 and District 6. The district 3 2-lane road (station id 313190) is Elk Grove Blvd in Sacramento 

County, which was mentioned in previous plots. The district 6, 2-lane road (station id 601722) is 

Herndon Avenue in Fresno County. In this plot, the blue line shows the data pattern of station 313190, 

and the orange line shows the data pattern of station 601722. In this comparison plot, flow patterns are 

completely different, where overall, the total flow of 313190 is higher than the total flow of 601722. 

Although the flow of 60177 is low during weekends, the flow of 313190 is high during weekends, and 

the flow is almost the same every day on 313190 roads. The station 313190 dataset will be used as a 

source dataset for the pre-trained model, which will be used for transfer learning to the district 6 target 

dataset (601722) with a few days of data. 
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4.4.5 District 3 and District 6 Data Comparison (3 Lane) 

 

 

Figure 4.12: 3 lane road’s district 3 vs district 6 data comparison 

In figure 4.12, the plot illustrates a data pattern comparison of district 3 and district 6 for 3-lane roads. 

Here the blue line represents the actual total flow of district 3, which is Sunrise Blvd Road (Station id 

314042) in Sacramento County. The orange line shows the actual total flow of district 6, which is 

Barstow Avenue (Station id 602538) in Fresno County. This graph shows 14 days of data plots from 

April 1 to April 14 are showing for 3-lane roads. Overall, the actual total flow of 314042 is higher than 

602538 for weekdays and weekends. For 602538, traffic flow is a little bit less on weekends than on 

weekdays traffic flow. 314042 has a greater weekday actual flow than district 6 dataset 602538, but a 

smaller weekend actual flow. The 314042 dataset will be used as a source dataset for the pre-trained 

model, and the 602538 dataset will be used as the target dataset in transfer learning. 

4.4.6 District 3 and District 6 Data Comparison (4 Lane) 

 

Figure 4.13: 4 lane road’s district 3 vs district 6 data comparison 

Figure 4.13 illustrates the actual traffic flow pattern comparison for both district 3 and district 6 4 lane 

road where from April 1, 2019, to April 14, 2019, 14 days of traffic flows are used. The blue plot shows 
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the actual total flow of SB Riverside Avenue 4 lane road (Station id 319351) from Placer County, 

District 3. The orange line describes the actual total flow of Cedar Avenue (Station id 601348) from 

Fresno County of District 6. If we see at the plots, flow patterns are different in both districts’ flow plots. 

Although the maximum traffic flow on weekdays in both districts is almost the same actual traffic flow 

of 319351 is higher during weekends. The 319351 dataset will be used as a source dataset for the pre-

trained model, and the 601348 dataset will be used as a target dataset in transfer learning. 

4.4.7 District 3 Data Correlation Plots  

4.4.7.1 2 lane 

 

Figure 4.14: Correlation plot of 2 lane road in district 3 (Station id 313190) 

As city traffic behaves stochastic nature correlation of each variable (total flow, average occupancy, and 

average speed) behave differently at different time. According to figure 4.14, the total flow and average 

occupancy are 77% positively correlated. The correlation varies from case to case and from spatial 

condition to spatial condition, but it is always positive. Concerning average speed, it shows that for 

higher traffic flow average speed is lower, which means it is negatively correlated with an average speed. 

It shows that total flow -41% correlated with average speed. It also varies by different spatial and 

temporal conditions. For the relation of average occupancy with average speed, the scenario is the same 

as before, that occupancy is negatively correlated with traffic average speed. For other factors like hourly 

precipitation, hourly dry bulb temperature, hourly visibility, and hourly wind speed main variables (total 

flow, average occupancy, and average speed) behave differently. 
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4.4.7.2 3 lane  

 

Figure 4.15: Correlation plot of 3 lane road in district 3(Station id 314042) 

Figure 4.15 illustrates the correlation plot of 3 lane road from district 3 where average occupancy is 87% 

positively correlated with the total flow and average speed is 60% and 90% negatively correlated with 

both total flow and average occupancy, respectively. Hourly dry bulb temperature and hourly wind speed 

are positively correlated to total flow and average occupancy, but hourly wind speed has less effect. On 

the contrary, these two weather variables are negatively correlated to average speed. Another weather 

variable, hourly visibility is negatively correlated to total traffic flow and average occupancy and 

positively correlated to average traffic speed, but the effects are small. 

4.4.7.3 4 lane 

 

 

 

Figure 4.16: Correlation plot of 4 lane road in district 3 (Station id 319351) 

Figure 4.16 shows the correlation plot of 4 lane road from district 3, where total traffic flow is 97% 

positively correlated with average occupancy and 61% negatively correlated with average traffic speed. 
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Also, average traffic occupancy is 76% negatively correlated with average speed. If we compare the 

correlation between weather variables with traffic variables, hourly precipitation, hourly dry bulb 

temperature, hourly visibility, and hourly wind speed all are positively correlated with traffic variables 

total flow, and average occupancy, but hourly precipitation has a small influence on both traffic 

variables. On another side, all weather variables are negatively correlated with average traffic speed, 

and hourly precipitation has less amount of correlation with average traffic speed.  

4.4.8 Fundamental Diagrams 

For fundamental diagrams, we selected all stations dataset from District 3. April 1 to April 30, 2019, 

which means 30 days of the dataset of district 3 whole region macroscopic traffic data were taken for 

making the fundamental diagram. Total flow means all lanes' total traffic flow in vehicles per hour data, 

and total density means all lanes' total vehicles per mile. 

 

Figure 4.17: Fundamental diagram (Flow vs. speed)        

Figure 4.17 represents the fundamental diagrams of different traffic parameters. The graph shows the 

total flow vs. average speed relation. Here, the total flows are not dense in the range of 0 miles/hour to 

50 miles/hour of average speed. Most of the traffic flows are between 50 vehicles/hour to approximately 

75 vehicles/hour or free flow conditions. According to Greenshield’s fundamental diagram, this criterion 

is fulfilled for the flow vs. speed diagram.                  

 

Figure 4.18: Fundamental diagram (Flow vs. density) 
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Figure 4.18 illustrates the relation between total flow vs. total density, where from 0 vehicles/mile 

density to approximately 120 vehicles/mile density, traffic total flow increases, and most of the traffic 

flows are in this range. Then, the total flow decreases. The maximum value of total flow here is 

approximately, 8500 vehicles/hour. 

 

Figure 4.19: Fundamental diagram (Speed vs. density) 

Figure 4.19 shows the fundamental diagram of average speed vs. total density, wherein the x-axis shows 

total density, and the y-axis shows average speed. From 0 to 100 (vehicles/mile) density, the average 

speed of the vehicle is maximum. Then the speed gradually decreases for the increased amount of 

density. This boundary line is approximately a linear line with a negative slope. For higher density, the 

speed of the vehicles is minimum in that case.  

4.5 Train-test Split 
For the univariate ARIMA model, the dataset is split into a train-test dataset. No shuffling is used when 

the dataset is divided.  The first 95% of the dataset is picked as the training dataset, and the next 5% 

dataset is picked as the test dataset. In the GRU and LSTM models, the first 90% of the data is selected 

for the training dataset. The next 5% of data is selected for the validation dataset, and the last 5% is 

selected for the test dataset. In the train-test split model, the training dataset will be used for the 

prediction in the time series forecasting model. The test dataset will be used to determine the accuracy 

of the prediction. Similarly, the dataset for transfer learning in the LSTM model is divided into three 

parts. The first 90% dataset is taken as the training dataset, the next 5% dataset is taken as the validation 

dataset, and the last 5% dataset is selected as the test dataset in source model datasets. In target model 

datasets, we take 60% data as a training dataset, the next 20% data as a validation dataset, and the last 

20% data as a test dataset.  

4.6 Transfer Learning Scenarios 

The following table is showing the different transfer learning scenarios for different link-type LSTM 

multivariate models. Source models are chosen as station IDs 313190, 314042, and 319351. Target 

models are chosen as station IDs 601722, 602538, and 601348. 
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Table 4.1: Different scenario for transfer learning for different link type 

Timeline April 2019 to September 2019 April 2019 

Scenarios Source link Target link 

Station ID Number of lanes Station ID Number of lanes 

Scenario 1 313190 2 601722 2 

Scenario 2 314042 3 602538 3 

Scenario 3 319351 4 601348 4 

Scenario 4 314042 3 601722 2 

Scenario 5 319351 4 602538 3 

Scenario 6 319351 4 601722 2 

For experimenting with all six scenarios, we will check how transfer learning models will perform for 

April 2019 target datasets. Another three experiments will be done for 2-lane, 3-lane, and 4-lane roads 

of district 6 with five months ahead data (September datasets) as target datasets.  
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5 Result and Discussion 
In this thesis, we will implement all three categories of the time series model for performance analysis. 

ARIMA model is the statistical classical model, gradient boosting, random forest regression, and recent 

XG-boost are some machine learning time-series forecasting models. A variety of deep learning models, 

including artificial neural networks (ANN), convolutional neural networks (CNN), recurrent neural 

networks (RNN), long-short-term memory (LSTM), and graph neural networks (GNN), etc. are widely 

used for time-series forecasting. RNN follows backpropagation, which means it considers previous 

values for predicting future values and retains previous important information for prediction. LSTM is 

a modified version of RNN. In our thesis, we will use the ARIMA model, the gated recurrent unit (GRU) 

model, and the LSTM model. The LSTM model will be used for transfer learning of traffic flow 

forecasting.  

For research question one, we will get the answer by making several models with 1-month data, 2-month 

data, 3-month data 4- months data, 5-month data, and 6-month dataset for each univariate ARIMA, 

multivariate GRU, and LSTM model. We will do another experiment in transfer learning models with 

scenarios 1, 2, and 3 for 1 month source data and 6-month source data. 

For research question two, we will collect additional weather data for each district. We will consider 

different models integrating traffic data with weather data and without weather data for both district 3 

and district 6, and we will compare factors like weather influence how much in the traffic forecasting 

models for multivariate GRU and LSTM. We will compare the result of each model with weather data 

and without weather data. 

This chapter contains the findings of forecasting models and transfer-learning models. We used the 

univariate ARIMA model with only one variable total flow (vehicles/h), which is the target variable. 

ARIMA model with exogenous variables (average occupancy, average speed, weather variables) was 

experimented with, but this model does not perform well. Traditional univariate ARIMA model and two 

different neural networks LSTM and GRU are used for research question 1. For research question 2, 

LSTM and GRU multivariate models are used for the performance and effects of weather variables as a 

factor.  

5.1 Effects of training data size on model performance 

5.1.1 2 Lane Road (Station id 313190) 

Table 5.1: MAE, MAPE, RMSE value for 1 to 6 months of dataset by three algorithms for 2 lane road 

Month 

of 

dataset 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

LSTM GRU Univariate 

ARIMA 

LSTM GRU Univariate 

ARIMA 

LSTM GRU Univariate 

ARIMA 

1 101.80 117.14 118.89 7.78 9.12 7.14 130.15 147.38 134.87 

2 112.35 99.75 76.45 10.32 7.93 4.49 137.80 131.57 103.82 

3 104.86 116.69 138.74 7.89 8.68 11.02 139.71 153.77 186.10 

4 116.23 109.46 122.10 8.80 9.21 10.12 151.50 141.34 174.05 

5 105.04 111.41 157.17 7.90 8.62 10.02 147.61 153.16 236.45 

6 98.65 99.52 160.26 7.11 7.10 13.11 127.50 134.85 229.42 
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Figure 5.1: Changes of MAE based on different data length for 2 lane road (station id 313190) 

In figure 5.1, the graph illustrates the changes in MAE according to different data lengths from 1 month 

to 6 months from District 3. For 1-month of data (April 2019), MAE is almost the same for all three 

algorithms. In the 3-month dataset (April 2019 to June 2019), GRU and LSTM are performing almost 

the same, but the ARIMA model performs not well here. Again, with the 4-months of data from April 

to July 2019, all three algorithms perform almost the same. Again, for the 5-month of the dataset from 

April to August 2019, LSTM and GRU perform better, and ARIMA is not performing well. 

 

Figure 5.2: Changes of MAPE based on different data length for 2 lane road (station id 313190) 

In terms of MAPE, the patterns of all algorithms are almost the same as MAE where LSTM and GRU 

models perform almost the same, but for the 6-month of the dataset (April 2019 to September 2019), we 

get the lowest value of MAPE for both LSTM and GRU model. For the univariate ARIMA model, model 

performance is good for 1 month of data or 2 months of data but after increasing data that means at 3 

and 5 months of the dataset, the model does not perform well. Only at the 4-month of the dataset, the 

univariate model performs well. At 6-month dataset, ARIMA gives the highest amount of MAPE value. 
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Figure 5.3: Changes of RMSE based on different data length for 2 lane road (station id 313190) 

According to RMSE, model performance for all algorithms is almost the same as MAE and MAPE. 

Figure 5.3 shows almost the same results for both LSTM and GRU models. For the 6-month dataset 

(April 2019 to September 2019), model performance is well for both LSTM and GRU. At the 1-month 

or 2-month dataset, the univariate ARIMA model performs well. After increasing data, that means at 

the 3-month dataset and 5-month dataset, the univariate ARIMA model does not perform well. In the 4-

month dataset from April to July, the ARIMA model performs well according to RMSE. At the 4-month 

and 6-month dataset the ARIMA gives the highest amount of RMSE.  

 

Figure 5.4: Forecasting plots of 2 lane road (station id 313190) for 4 months of datasets 

Figure 5.4 illustrates forecasting plots for the 2-lane road from Sacramento. The actual total traffic flow 

is shown in the blue colored-line. The predicted traffic flow for the multivariate GRU model is shown 
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in the orange-colored line. The predicted traffic flow for the multivariate LSTM model is shown in the 

grey-colored line, and the predicted traffic flow for the univariate ARIMA model is shown in the yellow-

colored line. Overall, LSTM and GRU models give better fits to actual traffic flow. 

5.1.2 3 Lane Road (Station id 314042) 

Table 5.2: MAE, MAPE, RMSE value for 1 to 6 months of dataset by three algorithms for 3 lane road 

Month 

of 

dataset 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

LSTM GRU Univariate 

ARIMA 

LSTM GRU Univariate 

ARIMA 

LSTM GRU Univariate 

ARIMA 

1 195.72 181.05 169.20 12.22 11.83 9.16 297.86 251.78 296.64 

2 134.74 185.31 86.82 13.57 14.33 7.34 166.90 305.18 119.73 

3 128.50 168.86 185.67 10.45 13.47 13.75 174.17 214.32 257.71 

4 125.69 111.45 162.34 10.30 9.74 11.02 168.30 146.43 251.61 

5 99.17 126.12 220.07 8.75 11.07 13.31 147.37 177.88 404.57 

6 104.19 150.00 293.50 9.30 11.45 16.57 137.24 205.09 446.18 

 

 

 

Figure 5.5: Changes of MAE based on different data length for 3 lane road (station id 314042) 

Figure 5.5 represents 3-lane road forecasting model performances by MAE for different lengths of 

dataset patterns. Here, initially at univariate ARIMA model, the MAE value is lower for the 1-month 

dataset, and then it gradually decreases at 2-month dataset, for adding data after reaching a higher value 

at the 3-month dataset, it will decrease at the 4-month dataset and again sharply increases to peak at the 

6-month dataset. For LSTM and GRU models, the MAE value is higher for the 1-month dataset, then 

both algorithms’ MAE gradually decreases for both algorithms. In the 6-month dataset, LSTM 

performance is good, but after the 4-month dataset, the GRU model’s MAE gradually increases again.  
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Figure 5.6: Changes of MAPE based on different data length for 3 lane road (station id 314042) 

Figure 5.6 illustrates the 3-lane road traffic flow forecasting model performance for 3 different 

algorithms by MAPE, where the univariate ARIMA model performs well for both the 1-month dataset 

and the 2-month dataset. At the 3-month dataset model, the MAPE value increases and then again 

decreases to the 4-month dataset model and then again gradually increases and finally peaks at the 6-

month dataset. For LSTM and GRU models, performance is almost the same for both algorithms where 

for the 1-month dataset, MAPE value is approximately 12%, then MAPE value slightly increases for the 

2-month dataset and then again decreases to a minimum value at the 4-month dataset for the GRU model 

but at the 5-month dataset, LSTM model gives the lowest MAPE value. 

 

Figure 5.7: Changes of RMSE based on different data length for 3 lane road (station id 314042) 

Figure 5.7 represents the traffic flow forecasting performance for the 3-lane road for 3 different 

algorithms by RMSE. Here, the univariate ARIMA model’s RMSE value is low for the 1-month dataset 

and the value is approximately 300 vehicles/h, then the value decreased for the 2-month dataset and 

again gradually increased to the 3-month dataset and at 4 months of the dataset, the RMSE value is the 

approximately 250 vehicles/h and RMSE value is in peak for the 6-month dataset. For LSTM and GRU 

models, initially, for the 1-month dataset, the LSTM model's RMSE is higher, and the GRU model’s 

RMSE value is lower than the 2-month dataset, LSTM model’s RMSE slightly decreased, and the GRU 

model’s RMSE a little bit increased. At the 6-month dataset, the LSTM model’s performance is good, 
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the RMSE value is the lowest here. For the GRU model, at the 4-month dataset, the RMSE value is the 

lowest, and it gradually increased after adding more data.  

 

Figure 5.8: Forecasting plots of 3 lane road (station id 314042) for 4 months of datasets 

Figure 5.8 illustrates the traffic forecasting plot for the 3-lane road for Sacramento County, where the 

4-month dataset from April 2019 to July 2019 dataset taken as input data. Here the blue line in the graph 

shows the actual traffic flow, the orange line shows the multivariate GRU model’s predicted traffic flow, 

the grey line shows the multivariate LSTM model’s predicted traffic flow, and the yellow line shows 

the univariate ARIMA model’s predicted traffic flow. The ARIMA model does not fit well, but LSTM 

and GRU models fit well to actual traffic flow. 

5.1.3 4 Lane Road (Station id 319351) 

Table 5.3: MAE, MAPE, RMSE value for 1 to 6 months of dataset by three algorithms for 4 lane road 

Month 

of 

dataset 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

LSTM GRU Univariate 

ARIMA 

LSTM GRU Univariate 

ARIMA 

LSTM GRU Univariate 

ARIMA 

1 307.21 215.39 261.74 13.31 9.44 10.47 433.46 293.23 371.42 

2 218.20 276.60 229.45 9.83 11.48 9.15 290.69 355.47 316.48 

3 172.55 206.46 248.76 8.93 9.44 10.32 236.57 282.23 367.87 

4 195.70 213.12 221.43 8.41 9.54 9.45 278.46 295.35 313.56 

5 191.32 158.89 213.17 8.82 6.75 8.10 244.86 213.46 311.40 

6 159.78 146.00 300.88 6.64 6.56 14.32 210.75 188.71 423.30 
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Figure 5.9: Changes of MAE based on different data length for 4 lane road (station id 319351) 

Figure 5.9 shows the changes in MAE for forecasting traffic flow for the 4-lane road using three different 

algorithms (univariate ARIMA, LSTM, and GRU). Here for the univariate ARIMA model, the MAE 

value is lower in the 1-month dataset. In the 2-month dataset, the MAE value decreases and then slightly 

increased in the 3-month dataset, and the minimum value of MAE is in the 5-month dataset from April 

to August 2019 for the univariate ARIMA model.  The value is in peak for the 6-month dataset in 

ARIMA. For the LSTM model, the MAE value is higher for the 1-month dataset, after it sharply 

decreased to the 3-month dataset. After that MAE value increased a small amount for the 4- month 

dataset, and for the 6-month dataset MAE value is the minimum. For the GRU model, the MAE value 

is low in the 1-month dataset, for the 2-month dataset, MAE increased to a peak, and again decreased 

gradually, and at the 6-month dataset, the MAE value is the minimum. 

 

Figure 5.10: Changes of MAPE based on different data length for 4 lane road (station id 319351) 

Figure 5.10 represents the changes of MAPE for forecasting traffic flow of 4 lane road by three different 

algorithms (univariate ARIMA, LSTM, and GRU). Here, univariate ARIMA is performing well for the 

1-month traffic data, then the MAPE value decreases a bit until the 2-month dataset, at the 5-month 
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dataset it gives the lowest value of MAPE and at 6-month dataset the value is maximum. For the GRU 

model, the MAPE value is almost the same as the univariate ARIMA model performance, then the 

MAPE value gradually increased at the 2-month dataset, and again MAPE value decreased gradually, 

and the lowest value is at the 6-month dataset. For the LSTM model, at the 1-month dataset, the MAPE 

value is a bit higher, then for the 2-month dataset, the MAPE value reduces, and at the 6-month dataset, 

it shows the lowest value. 

 

Figure 5.11: Changes of RMSE based on different data length for 4 lane road (station id 319351) 

Figure 5.11 illustrates the changes of RMSE for 1 to 6 months of the datasets for the 4-lane road in 3 

different algorithms (univariate ARIMA, LSTM, and GRU). Here, in univariate ARIMA, the RMSE is 

less for the 1-month dataset, then decreased a bit for the 2-month dataset. After fluctuating the RMSE 

value at the 5-month dataset, where the RMSE value is the lowest for the univariate ARIMA model and 

maximum at the 6-month dataset. For the GRU model, the RMSE value is lower in the 1-month dataset, 

and its value increased. After that, for adding data, from 2 months of the dataset to 6 months of the 

dataset, the RMSE value decreased. The minimum value of RMSE is at the 6-month dataset and then 

again increased for the 6-month dataset. For the LSTM model, at the 1-month dataset, the RMSE value 

is higher, then its value gradually decreases until the 6-month dataset. The RMSE value is the minimum 

for the 6-month dataset.  
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Figure 5.12: Forecasting plots of 4 lane road (station id 319351) for 4 months of datasets 

Figure 5.12 represents the forecasting plots for the 4-lane road from Placer County. Here, the blue line 

shows the actual traffic flow. The orange line shows the predicted traffic flow by the multivariate GRU 

model. The grey line represents the predicted traffic flow by the multivariate LSTM model, and the 

yellow line represents the predicted traffic flow (vehicles/h) by the univariate ARIMA model. Overall, 

LSTM and GRU models give better fits, but the univariate ARIMA model did not fit well. 

According to all three selected road-type data, overall, we can get better performance for the 6-month 

datasets in terms of MAE, MAPE, and RMSE in LSTM and GRU multivariate models in this 

experiment. We will use the 6-month datasets from District 3 for further experiments. Also, we will do 

another experiment in transfer learning models for checking how transfer learning models perform with 

both 1-month and 6-month source datasets. Then, we can get the complete answer to research question 

1. 

5.2 Effects of weather data with traffic dataset 

We will get the answer to research question 2 by following experiments where additional weather data 

were added and made separate datasets as traffic data with weather data and traffic data without weather 

data. For the experiment, six-month traffic datasets (April 2019 to September 2019) are taken as at 6-

month datasets, we get minimum values of MAE, MAPE, and RMSE in terms of all 3 roads from District 

3 in the previous experiment. Three different roads were selected from District 3. The traffic-predicting 

results for each road were obtained using the multivariate LSTM and GRU models. A total 5 number of 

runs in each model were done, and results were presented in the following tables and boxplots for MAE, 

MAPE, and RMSE.  

5.2.1 2 Lane Road (Station id 313190) 

Table 5.4: 2 lane road MAE, MAPE for with and without weather models 
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Table 5.5: 2 lane road RMSE for with and without weather models 

 

 

 

 

 

 

   

(a) MAE                                     (b) MAPE                                      (c) RMSE 

Figure 5.13: MAE, MAPE and RMSE plots for 2 lane road for 5 runs 

Figure 5.13 (a) shows the box plot of MAE for 2-lane road 313190 with weather data and without 

weather data for both LSTM and GRU models. The mean value of with weather data model for both 

models performs better than without weather data. Overall LSTM model is performing better than the 

GRU model in terms of MAE.  

In figure 5.13 (b), in terms of MAPE, the with-weather model does not perform well as the without-

weather model in LSTM. For the GRU model, the with-weather model is performing better than the 

without-weather model. Overall, the LSTM model is performing better than the GRU model. 

Figure 5.13 (c) shows the boxplots for the 2-lane road in Sacramento, where traffic flow forecasting 

performance by RMSE for both multivariate models. Overall, the with-weather model for both 

With 

weather 

Without 

weather 

With 

weather 

Without 

weather 

With 

weather 

Without 

weather 

With 

weather 

Without 

weather 

1 102.76 96.29 106.29 111.06 7.46 6.64 7.31 8.11 

2 76.80 99.74 107.66 108.12 5.99 6.87 7.69 7.50 

3 87.00 92.32 112.77 109.05 6.65 6.40 8.61 8.58 

4 95.73 87.97 92.93 129.70 7.18 6.61 6.83 9.16 

5 99.50 95.14 92.85 106.41 7.27 6.42 6.47 8.65 

Number 

of Runs 

LSTM_RMSE 

(vehicles/h) 

LSTM_RMSE 

(vehicles/h) 

GRU_RMSE 

(vehicles/h) 

GRU_RMSE 

(vehicles/h) 

With weather Without weather With weather Without weather 

1 132.08 127.97 141.78 148.43 

2 104.71 131.68 141.80 145.26 

3 116.01 124.22 145.18 143.21 

4 123.64 113.07 125.19 167.95 

5 126.46 128.85 124.78 136.47 
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algorithms performs better than the without-weather data models. Also, the LSTM model is performing 

better than the GRU model. 

5.2.2 3 Lane Road (Station id 314042) 

Table 5.6: 3 lane road MAE, MAPE for with and without weather models 

 

Table 5.7: 3 lane road RMSE for with and without weather models 

 

   

(a) MAE                                      (b) MAPE                                       (c) RMSE 

Figure 5.14: MAE, MAPE and RMSE for 3 lane road for 5 runs 

Figure 5.14 (a) illustrates the boxplots of the 3-lane road in Sacramento, where traffic flow forecasting 

performance according to MAE is available. The with-weather data models are performing better than 

the without-weather data models. Overall, the LSTM model is performing better than the GRU model. 

In figure 5.14 (b), the MAPE value for 5 runs is shown in the boxplots where the LSTM model performs 

Number 

of Runs 

LSTM_MAE 

(vehicles/h) 

GRU_MAE 

(vehicles/h) 

LSTM_MAPE (%) GRU_MAPE (%) 

With 

weather 

Without 

weather 

With 

weather 

Without 

weather 

With 

weather 

Without 

weather 

With 

weather 

Without 

weather 

1 87.59 102.34 106.23 190.52 7.37 10.72 10.89 12.92 

2 90.03 96.07 88.70 143.05 10.85 10.69 8.64 10.80 

3 117.65 101.78 140.67 144.48 10.06 10.87 11.76 9.64 

4 117.30 143.63 94.84 143.42 12.00 14.81 10.12 10.93 

5 101.67 123.03 116.76 142.49 10.32 11.63 13.60 15.75 

Number of 

Runs 

LSTM_RMSE 

(vehicles/h) 

LSTM_RMSE 

(vehicles/h) 

GRU_RMSE 

(vehicles/h) 

GRU_RMSE 

(vehicles/h) 

With weather Without weather With weather Without weather 

1 118.56 134.70 138.15 247.45 

2 116.44 122.98 115.27 205.00 

3 157.28 134.06 186.76 190.55 

4 150.38 180.97 120.43 195.72 

5 137.06 155.69 154.63 186.87 
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better than the GRU model. In both algorithms, the with-weather models perform better than the 

without-weather models. 

Figure 5.14 (c) represents the boxplots of RMSE values for the 3-lane road with-weather and without-

weather datasets for both LSTM and GRU algorithms. Overall, the with-weather model's RMSE value 

is lower compared to the without-weather data models. Also, overall, the LSTM model’s performance 

is better than the GRU model's performance.  

5.2.3 4 Lane Road (Station id 319351) 

Table 5.8: 4 lane road MAE, MAPE for with and without weather models 

 

Table 5.9: 4 lane road RMSE for with and without weather models 

Number 

of Runs 

LSTM_RMSE 

(vehicles/h) 

LSTM_RMSE 

(vehicles/h) 

GRU_RMSE 

(vehicles/h) 

GRU_RMSE 

(vehicles/h) 

With weather Without weather With weather Without weather 

1 166.26 201.74 194.32 235.39 

2 193.40 199.69 221.85 205.80 

3 191.76 234.67 258.16 253.44 

4 207.37 249.00 249.59 221.10 

5 221.31 248.11 193.96 218.41 

 

   

(a) MAE                                  (b) MAPE                                       (c) RMSE 

Figure 5.15: MAE, MAPE and RMSE for 4 lane road for 5 runs 

Number 

of Runs 

LSTM_MAE 

(vehicles/h) 

GRU_MAE 

(vehicles/h) 

LSTM_MAPE (%) GRU_MAPE (%) 

With 

weather 

Without 

weather 

With 

weather 

Without 

weather 

With 

weather 

Without 

weather 

With 

weather 

Without 

weather 

1 130.87 159.86 151.56 189.10 6.72 7.34 8.17 10.24 

2 146.33 152.81 166.61 161.53 6.32 6.99 7.446 7.52 

3 143.99 174.62 204.15 194.71 6.93 7.21 9.93 8.88 

4 154.64 188.26 188.41 165.98 6.77 8.43 8.57 6.73 

5 163.39 187.54 148.48 173.61 6.83 7.918 7.47 9.22 



 

57 
Factors influencing transfer learning of traffic forecasting models 

Figure 5.15 (a) illustrates the MAE values for the with-weather and the without-weather models for both 

LSTM and GRU models for the 3-lane road, where overall with-weather models are performing better 

than without-weather models. Overall, the LSTM model gives better performance than the GRU model. 

Figure 5.15 (b) shows the boxplot of MAPE for the with-weather and the without-weather datasets for 

the 3-lane road in Sacramento by both deep learning algorithms, where both LSTM and GRU with 

weather models are performing better than without-weather data models. Also, LSTM models are 

performing better than GRU models. Figure 5.15 (c) represents the boxplot of the model performance 

by RMSE for the 3-lane road in Sacramento by LSTM and GRU model. The with-weather models are 

performing better than the without-weather data models.  

According to all 3 road types, overall, with-weather traffic data models perform well in terms of MAE, 

MAPE, and RMSE in both LSTM and GRU models. Moreover, the LSTM model has better performance 

than the GRU model in this experiment. We will use the LSTM model in transfer learning models for 

traffic forecasting with weather traffic data models. 

5.3 Transfer Learning Results 

5.3.1 Scenario 1 Transfer Learning (LSTM Model) 

Table 5.10: MAE, MAPE and RMSE for scenario 1 transfer learning 

Num. 

of 

runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

1 188.83 100.84 72.96 64.04 17.79 8.74 7.34 5.54 236.57 137.19 91.52 86.61 

2 212.20 95.88 82.04 63.91 20.53 8.61 8.10 5.85 256.61 133.10 107.20 82.33 

3 177.59 101.83 74.23 66.99 15.31 9.00 6.75 6.20 262.96 140.27 96.64 84.68 

4 174.66 97.72 69.97 64.99 15.07 8.86 6.39 5.88 243.89 132.01 90.50 83.51 

5 207.88 101.72 65.20 64.24 19.89 8.68 6.04 5.74 254.8 137.54 87.67 88.20 

6 165.02 102.44 63.84 68.76 13.32 9.01 5.99 6.55 245.42 141.88 84.09 86.34 

7 185.54 92.18 68.62 75.27 15.13 8.28 6.54 6.67 275.48 122.63 85.96 96.70 

8 167.85 98.21 89.48 63.38 13.82 8.65 7.30 5.74 246.15 139.92 124.63 84.21 

9 188.09 104.87 89.52 78.13 16.62 9.64 10.73 6.80 253.11 137.09 104.88 106.18 

10 184.61 100.07 61.04 73.06 14.93 8.67 5.47 6.65 258.02 142.53 85.86 92.48 

Scenario 1 accuracy plots for 2 lane road: 

   

(a) MAE                                     (b) MAPE                                          (c) RMSE 

Figure 5.16: Scenario 1 MAE, MAPE and RMSE 
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Figure 5.16 shows the accuracy of transfer learning scenario-1 with three strategies and the forecasting 

performance of target baseline model B. Here, the 2-lane road (313190) from district 3 is selected for 

the source model, and the 2-lane road (601722) from district 6 is selected for the target dataset. 

According to MAE, MAPE, and RMSE, baseline target forecasting model B does not give good 

predictions. Strategy 1 transfer learning performance is slightly higher than strategies 2 and 3 transfer 

learning. Overall, strategy-3 transfer learning gives the best accuracy compared to other strategies. 

 

Figure 5.17: Scenario 1 prediction plots for 2 lane to 2 lane transfer learning 

Figure 5.17 illustrates the forecasting graphs for the forecasting of target baseline model B and the 

forecasting of scenario-1 transfer learning. On this 2-lane road, the light-green colored line represents 

actual traffic flow. The light-blue line indicates the forecasted plot of target baseline model B, which 

did not provide a good forecast. The yellow-colored line shows forecasted traffic flow by strategy-1 

transfer learning (fine-tuned), at some point, it gives under or overfits to actual traffic flow. The purple 

line represents the predicted traffic flow using strategy-2 transfer learning (fine-tuned), while the deep 

blue line represents the forecast using strategy 3 (without fine-tuning). Overall, both strategies 2 and 3 

give a better fit. 

Scenario 1 TL with 1-month source dataset: For research question 1, we did another experiment with 

1-month source dataset. April 2019 dataset from district 3 for 2 lane road is taken. Following result will 

show the transfer learning for 1-month source data. 

Table 5.11: MAE, MAPE and RMSE for scenario 1 transfer learning with 1 month source data 

Number 

of runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Strat. 1 Strat. 2 Strat. 3 Strat. 1 Strat. 2 Strat. 3 Strat. 1 Strat. 2 Strat. 3 

1 209.09 156.49 156.39 19.77 13.82 13.37 293.75 212.46 215.56 

2 178.74 157.12 156.28 16.46 13.64 13.39 262.84 216.03 218.41 

3 216.17 163.4 159.03 20.98 14.20 14.20 304.08 231.14 219.62 
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4 222.45 158.30 159.67 21.49 13.98 14.21 313.62 218.76 218.61 

5 238.69 166.97 162.60 24.54 13.87 14.39 316.96 232.91 223.28 

 

     

(a) MAE                                         (b) MAPE                                         (c) RMSE 

Figure 5.18: Scenario 1 MAE, MAPE and RMSE with 1 month source data 

According to the above experiments in Figures 5.16 and 5.18, for both the 6-month source dataset and 

1-month source dataset models, the 6-month source-dataset transfer learning model gives better 

accuracy of traffic flow forecasting than the 1-month source dataset model. We can summarize that more 

source data model gives better traffic flow forecasting, which gives the answer to research question 1. 

5.3.2 Scenario 2 Transfer Learning (LSTM Model) 

Table 5.12: MAE, MAPE and RMSE for scenario 2 transfer learning 

Num. 

of 

runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

1 328.20 147.77 99.16 119.29 17.53 6.95 5.36 5.90 425.99 190.39 123.38 157.62 

2 409.24 148.87 94.80 98.90 21.92 7.43 4.98 5.09 520.76 195.75 124.01 127.01 

3 306.63 148.69 104.20 101.62 15.24 7.29 5.54 5.25 391.12 197.31 131.77 133.59 

4 283.17 156.54 105.36 135.99 14.98 7.87 5.40 6.61 360.83 192.93 130.33 183.29 

5 313.41 155.76 95.51 147.67 15.95 7.37 4.92 7.42 390.38 205.96 121.28 200.23 

6 378.13 135.31 99.52 91.37 19.17 6.30 5.01 4.71 477.03 179.89 129.92 120.48 

7 429.64 154.69 105.18 121.02 21.74 7.80 5.37 6.30 529.95 196.04 134.92 158.59 

8 336.46 153.80 139.05 141.85 20.11 7.56 8.14 6.91 433.34 198.03 181.90 190.52 

9 412.44 140.11 90.90 130.39 20.70 6.68 4.63 6.58 502.82 180.08 119.18 175.39 

10 367.88 151.89 96.37 92.72 19.13 7.34 5.07 5.00 454.50 196.02 120.87 118.28 

 

Scenario 2 accuracy plots for 3 lane road: 
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(a) MAE                                  (b) MAPE                                           (c) RMSE 

Figure 5.19: Scenario 2 MAE, MAPE and RMSE 

Figure 5.19 represents the performance of traffic forecasting of target baseline model B and scenario-2 

transfer learning forecasting in three strategies. For the source model, the 3-lane road (314042) is 

selected as the source dataset, and the 3-lane road (602538) dataset is selected as the target dataset. 

According to MAE, MAPE, and RMSE, the forecasting performance of target baseline model B is not 

good compared to transfer-learned models. Here, overall, strategy 2 performs better in all three strategies 

of transfer learning models. Mean MAE, MAPE, and RMSE values are the lowest for strategy-2 transfer 

learning which is the fine-tuned model with the pre-trained model’s all layers kept unfrozen. 

 

Figure 5.20: Scenario 2 prediction plots for 3 lane to 3 lane transfer learning 
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Figure 5.20 shows the forecasting graphs for the target baseline model B and scenario-2 transfer 

learning. On this graph, the light-green colored line represents actual traffic flow. The light-blue line 

indicates the forecasted plot of target baseline model B, which did not provide a better forecast. The 

yellow-colored line shows forecasted traffic flow by the strategy-1 transfer learning (fine-tuned) at some 

point, giving under or overfits to actual traffic flow. The purple line represents the predicted traffic flow 

using strategy-2 transfer learning (fine-tuned), while the deep blue line represents the forecasting plot 

using strategy-3 (without fine-tuning). Overall, both strategies 2 and 3 give better fits.  

Scenario 2 TL with 1-month source dataset: For research question 1, we did another experiment with 

1-month source dataset. April 2019 dataset from district 3 for 3 lane road is taken. Following result will 

show the transfer learning for 1-month source data. 

Table 5.13: MAE, MAPE and RMSE for scenario 2 transfer learning with 1 month source data 

Number 

of runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Strat. 1 Strat. 2 Strat. 3 Strat. 1 Strat. 2 Strat. 3 Strat. 1 Strat. 2 Strat. 3 

1 311.21 164.73 165.75 17.10 8.07 8.10 397.21 233.89 234.90 

2 295.93 151.37 163.49 14.00 7.32 7.83 385.56 216.86 228.89 

3 197.64 136.01 141.79 10.15 7.18 7.48 248.79 190.18 194.53 

4 327.97 269.68 264.97 19.01 14.63 14.27 430.83 390.72 387.87 

5 286.96 238.35 239.50 15.60 12.91 12.95 393.29 340.50 341.36 

 

     

(a) MAE                                  (b) MAPE                                           (c) RMSE 

Figure 5.21: Scenario 2 MAE, MAPE and RMSE with 1 month source data 

According to the above experiments in Figures 5.19 and 5.21, for both the 6-month source dataset and 

1-month source dataset models, the 6-month source-dataset transfer learning model gives better 

accuracy of traffic flow forecasting than the 1-month source dataset model for 3 lane road. We can 

summarize that more source data give better traffic flow forecasting, which gives the answer to research 

question 1. 

5.3.3 Scenario 3 Transfer Learning (LSTM Model) 

Table 5.14: MAE, MAPE and RMSE for scenario 3 transfer learning 

Num. 

of 

runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 
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1 484.03 197.25 143.30 145.40 24.00 9.36 6.42 7.05 624.59 255.62 194.90 193.06 

2 437.40 212.34 168.08 155.99 22.56 9.25 8.08 7.57 563.87 272.75 219.36 209.04 

3 465.31 171.94 149.05 135.88 23.76 8.57 7.31 6.16 595.16 211.95 202.16 192.91 

4 506.68 189.76 158.33 161.31 26.58 8.20 7.80 8.21 638.67 250.52 195.34 209.04 

5 594.00 186.90 147.06 151.71 26.77 9.70 6.72 6.89 710.32 230.57 195.60 209.17 

6 682.95 206.76 140.77 153.04 36.37 9.62 6.55 7.69 837.92 256.67 195.44 199.09 

7 411.33 168.84 153.57 148.96 19.86 8.55 6.93 7.22 566.01 227.04 205.75 200.14 

8 502.79 206.65 165.96 152.96 26.79 8.72 7.50 7.02 628.55 277.65 219.74 202.71 

9 425.50 205.06 162.53 154.09 20.97 8.64 8.96 7.27 558.83 269.08 201.71 208.08 

10 572.98 193.46 144.83 135.32 27.91 8.86 6.91 6.11 698.49 247.49 191.03 188.19 

 

Scenario 3 accuracy plots for 4 lane road: 

   

(b) MAE                                         (b) MAPE                                         (c) RMSE 

Figure 5.22: Scenario 3 MAE, MAPE and RMSE 

Figure 5.22 illustrates the performance of traffic forecasting for target baseline model B and scenario-3 

transfer-learned forecasting. Here the 4-lane road (319351) from district 3 is selected as the source 

dataset, and the 4-lane road (601348) from district 6 is selected as the target dataset. According to MAE, 

MAPE, and RMSE, target baseline forecasting model B does not give good predictions. Overall, 

strategies 2 and 3 transfer learned forecasting give better accuracy compared to strategy 1. Also, transfer-

learned models perform better than baseline model forecasting. 
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Figure 5.23: Scenario 3 prediction plots for 4 lane to 4 lane transfer learning 

Figure 5.23 shows the forecasting graphs for target baseline model B and scenario-3 transfer learning. 

In this graph, the light-green colored line represents actual traffic flow. The light-blue line indicates the 

forecasted plot of target baseline model B, which did not provide a better forecast. The yellow-colored 

line shows forecasted traffic flow by the strategy-1 transfer learning (fine-tuned) at some point gives 

under or overfits to actual traffic flow. The purple line represents the predicted traffic flow using 

strategy-2 transfer learning (fine-tuned), while the deep blue line represents the forecast using strategy-

3 (without fine-tuned). Overall, both strategies 2 and 3 give a better fit. 

Scenario 3 TL with 1-month source dataset: For research question 1, we did another experiment with 

1-month source dataset. April 2019 dataset from district 3 for 4 lane road is taken. Following result will 

show the transfer learning for 1-month source data. 

Table 5.15: MAE, MAPE and RMSE for scenario 3 transfer learning with 1 month source data 

Number 

of runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Strat. 1 Strat. 2 Strat. 3 Strat. 1 Strat. 2 Strat. 3 Strat. 1 Strat. 2 Strat. 3 

1 382.90 339.21 334.44 20.13 15.60 15.83 487.43 445.26 441.70 

2 349.44 314.86 313.92 17.49 13.53 13.68 449.87 413.32 412.21 

3 280.35 268.45 268.09 12.21 11.07 11.05 355.65 343.36 343.12 

4 348.76 310.02 335.45 19.03 14.37 17.47 456.08 403.03 431.99 

5 360.63 327.28 324.84 19.09 15.92 15.29 484.85 438.58 442.69 
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(a) MAE                                  (b) MAPE                                           (c) RMSE 

Figure 5.24: Scenario 3 MAE, MAPE and RMSE with 1 month source data 

According to the above experiments in Figures 5.22 and 5.24, for both the 6-month source dataset and 

1-month source dataset models, the 6-month source-dataset transfer learning model gives better 

accuracy than the 1-month source dataset model for the 4-lane road. We can summarize that more source 

data give better traffic flow forecasting. That gives the answer to research question 1. 

5.3.4 Scenario 4 Transfer Learning (LSTM Model)  

Table 5.16: MAE, MAPE and RMSE for scenario 4 transfer learning 

Num. 

of 

runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

1 188.83 83.27 69.97 67.45 17.79 7.23 6.65 6.00 236.57 118.40 90.26 92.99 

2 212.20 84.56 70.60 67.38 20.53 7.60 6.44 5.86 256.61 120.87 97.00 94.00 

3 177.59 88.25 69.94 67.54 15.31 7.82 5.93 6.01 262.96 128.83 97.47 93.14 

4 174.66 80.26 72.16 71.06 15.07 7.05 7.24 5.95 243.89 118.42 90.83 99.50 

5 207.88 85.28 76.10 70.95 19.89 7.43 7.05 6.10 254.80 123.57 104.53 98.07 

6 165.02 88.56 74.38 76.06 13.32 8.07 6.29 6.60 245.42 126.77 107.92 103.98 

7 185.54 84.94 75.57 76.14 15.13 7.58 6.09 6.60 275.48 124.66 111.03 104.03 

8 167.85 85.60 66.86 73.08 13.82 7.38 5.68 6.34 246.15 127.13 94.91 100.34 

9 188.09 88.40 73.29 70.42 16.62 7.82 6.35 6.21 253.11 129.79 103.41 95.92 

10 184.61 83.91 76.34 74.54 14.93 7.21 6.64 6.28 258.02 122.91 108.29 106.39 

 

Scenario 4 accuracy plots for 3 to 2 lane road: 
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(a) MAE                                   (b) MAPE                                            (c) RMSE 

Figure 5.25: MAE, MAPE and RMSE for 2 lane transfer learning 

Figure 5.25 illustrates the forecasting performances of target baseline model B and scenario-4 

forecasting with transfer learning three strategies. Here, the 3-lane road (314042) dataset is taken for the 

source model, and the 2-lane road (601722) dataset is taken for the target dataset. According to MAE, 

MAPE, and RMSE, target baseline forecasting model B does not give good predictions. Overall, 

strategy-3 transfer-learned forecasting gives the best accuracy compared to the other two strategies. 

Overall, transfer-learned forecasting is better than baseline model forecasting. 

 

Figure 5.26: Scenario 4 prediction plots for 3 lane to 2 lane transfer learning 
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Figure 5.26 illustrates the traffic flow forecasting graphs for the target baseline model B and scenario-4 

transfer-learned forecasting. Here, the 3-lane road (station id 314042) dataset is taken as the source 

model dataset, and the 2-lane road (station id 601722) dataset is taken as the target dataset. The light-

blue line indicates the forecasted plot of target baseline model B, which did not provide a better forecast. 

The yellow-colored line shows forecasted traffic flow by the strategy-1 transfer learning (fine-tuned) at 

some point does not give good fits to actual traffic flow. The purple line represents the predicted traffic 

flow using strategy-2 transfer learning (fine-tuned), while the deep blue line represents the forecast using 

strategy 3 (without fine-tuned). Overall, both strategies 2 and 3 give better fits. Here also, transfer-

learned traffic forecasting is better than baseline model forecasting.  

5.3.5 Scenario 5 Transfer Learning (LSTM Model) 

Table 5.17: MAE, MAPE and RMSE for scenario 5 transfer learning 

Num. 

of 

runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

1 328.20 151.58 125.17 98.63 17.53 6.85 5.67 4.75 425.99 212.05 161.03 132.02 

2 409.24 143.93 86.26 98.69 21.92 6.67 4.34 4.77 520.76 205.51 115.84 131.87 

3 306.63 165.28 100.58 95.76 15.24 7.83 5.15 4.69 391.12 229.95 128.85 131.23 

4 283.17 157.62 88.55 95.72 14.98 7.38 4.35 4.69 360.83 218.16 117.13 131.18 

5 313.41 162.15 96.48 107.63 15.95 7.25 4.77 5.34 390.38 222.81 126.90 141.93 

6 378.13 146.73 104.12 106.55 19.17 6.57 5.10 5.29 477.03 213.53 133.94 138.06 

7 429.64 145.18 95.25 100.17 21.74 6.86 4.64 5.00 529.95 202.79 127.45 127.45 

8 336.46 163.62 95.97 100.6 20.11 7.49 5.05 5.04 433.34 228.48 124.64 127.98 

9 412.44 162.09 94.60 90.85 20.70 7.27 4.86 4.44 502.82 223.14 119.99 120.45 

10 367.88 153.66 115.03 107.9 19.13 7.14 5.37 5.43 454.50 213.39 145.79 134.68 

 

Scenario 5 accuracy plots for 4 lanes to 3 lane road: 

   

(a) MAE                                     (b) MAPE                                        (c) RMSE 

Figure 5.27: MAE, MAPE and RMSE for 4 lane to 3 lane road transfer learning 

Figure 5.27 represents the accuracy metrics of scenario-5 transfer learning three strategies and target 

baseline model B’s forecasting performances. Here, the 4-lane road (319351) from district 3 is used as 
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the source dataset, and another 3-lane road (602538) from district 6 is used as the target dataset. 

According to MAE, MAPE, and RMSE, target baseline model B does not give good predictions. Overall, 

strategies 2 and 3 transfer-learned forecasting give better accuracy compared to strategy 1. Moreover, 

transfer-learned models give better forecasting than baseline model forecasting with a limited dataset. 

 

Figure 5.28: Scenario 5 prediction plots for 4 lane to 3 lane transfer learning 

Figure 5.28 represents the forecasting plots of target baseline model B, and scenario-5 transfer learned 

forecasting graphs. Here, the 4-lane road (station id 319351) dataset from district 3 is taken as the source 

dataset, and the 3-lane road (station id 602538) dataset from district 6 is taken as the target dataset. The 

light-blue line indicates the forecasted plot of target baseline model B, which did not provide a better 

forecast. The yellow-colored line shows forecasted traffic flow by strategy-1 transfer learning (fine-

tuned) at some point gives under or overfits to actual traffic flow. The purple line represents the predicted 

traffic flow using strategy-2 transfer learning (fine-tuned), while the deep blue line represents the 

forecast using strategy 3 (without fine-tuned). Overall, both strategies 2 and 3 give better fits with actual 

traffic flow. Moreover, in this scenario, transfer-learned traffic forecasting performances are better than 

target baseline model B forecasting.  

5.3.6 Scenario 6 Transfer Learning (LSTM Model) 

Table 5.18: MAE, MAPE and RMSE for scenario 6 transfer learning 

Num. 

of 

runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

1 188.83 94.08 69.38 68.36 17.79 9.65 6.65 5.97 236.57 126.86 91.22 92.33 

2 212.20 91.56 71.27 67.3 20.53 8.87 6.12 5.92 256.61 121.11 98.47 90.91 

3 177.59 90.04 74.40 67.05 15.31 8.62 6.82 6.30 262.96 125.70 95.93 88.73 

4 174.66 95.75 73.45 97.02 15.07 9.05 7.01 10.04 243.89 131.86 97.02 127.44 

5 207.88 91.97 70.14 71.45 19.89 8.79 6.52 6.49 254.80 125.17 89.89 95.60 

6 165.02 94.05 66.16 71.26 13.32 9.30 6.32 6.48 245.42 128.14 88.04 95.30 
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7 185.54 96.63 65.63 68.37 15.13 8.38 6.01 6.24 275.48 142.53 92.35 93.40 

8 167.85 96.97 83.48 64.98 13.82 9.32 7.47 5.78 246.15 137.33 108.66 87.27 

9 188.09 87.64 68.00 64.90 16.62 8.38 6.06 5.77 253.11 121.64 95.02 87.14 

10 184.61 88.18 73.91 80.02 14.93 8.31 6.67 7.78 258.02 127.14 98.04 105.51 

 

 

Scenario 6 accuracy plots for 4 lanes to 2 lanes road: 

   

(a) MAE                                        (b) MAPE                                           (c) RMSE 

Figure 5.29: Scenario 6 MAE, MAPE and RMSE 

Figure 5.29 represents the accuracy metrics of scenario-6 transfer learning three strategies and target 

baseline model B’s forecasting performances. Here, the 4-lane road (319351) from district 3 is used as 

the source dataset, and the 2-lane road (601722) from district 6 is used as the target dataset. According 

to MAE, MAPE, and RMSE, target baseline model B does not give good predictions. Transfer-learned 

forecasting performances are better than target baseline model performance with limited datasets. 

Overall, strategies 2 and 3 transfer learning give better accuracy compared to strategy-1 transfer-learned 

forecasting. 
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Figure 5.30: Scenario 6 prediction plots for 4 lane to 2 lane transfer learning 

Figure 5.30 illustrates the forecasting graphs of target baseline model B and scenario-6 transfer-learned 

forecasting. Here, the 2-lane road (station id 601722) from district 6 is taken as the target dataset, and 

the 4-lane road (station id 319351) from district 3 is used as the source dataset. The light-blue line 

indicates the forecasted plot of target baseline model B, which did not provide better forecasting. The 

yellow-colored line shows forecasted traffic flow by strategy-1 transfer learning (fine-tuned) at some 

point gives under or overfits to actual traffic flow. The purple line represents the predicted traffic flow 

using strategy-2 transfer learning (fine-tuned), while the deep blue line represents the forecasting using 

strategy-3 (without fine-tuned). Overall, the both strategies 2 and 3 give a better fit with actual traffic 

flow than strategy-1 transfer-learned forecasting. 

5.4 Transfer learning with September target dataset 

5.4.1 Target Dataset 2 Lane 

Table 5.19: Traffic forecasting accuracy with target dataset of September (2 lane) 

Num.

of 

runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

1 168.67 127.82 74.63 70.11 16.04 11.54 7.31 7.19 236.45 159.48 96.25 91.41 

2 240.67 109.93 82.43 79.35 19.71 9.73 7.24 7.31 304.52 143.61 118.02 112.29 

3 197.54 120.02 78.21 74.92 22.11 10.94 7.01 7.01 241.65 153.40 115.03 110.97 

4 214.55 122.17 77.64 78.45 18.58 10.98 7.13 7.10 272.81 154.16 105.06 106.97 

5 154.57 131.92 84.60 77.28 15.75 12.34 7.74 7.63 203.15 160.69 113.69 102.98 

6 168.31 131.19 84.68 75.36 15.98 12.66 8.81 7.62 211.88 162.65 110.26 103.88 

7 195.89 116.52 80.94 71.89 20.81 10.77 7.49 7.14 234.87 147.78 106.94 100.01 

8 153.21 136.20 76.46 69.43 15.15 12.30 7.66 6.66 208.66 166.90 100.24 94.83 

9 218.83 122.64 84.57 78.81 19.70 10.97 8.44 8.00 266.76 156.92 106.77 100.26 

10 154.02 130.63 86.84 75.58 16.67 11.84 7.88 7.21 203.39 167.56 118.22 107.75 
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(a) MAE                                 (b) MAPE                                        (c) RMSE 

Figure 5.31: MAE, MAPE and RMSE with target dataset for September (2 lane) 

Figure 5.31 illustrates forecasting accuracy by target baseline model B and transfer learning by MAE, 

MAPE, and RMSE. Here, the source model is used with the 2-lane road (313190) dataset from District 

3, and the target dataset is taken as the 2-lane road (601722) dataset of September 2019 from District 6. 

According to the mean value of MAE, MAPE, and RMSE, the transfer-learned model's performance is 

better than the target baseline model B. Overall, strategy-3 transfer learned forecasting performance is 

better than the other two strategies. The forecasting performance of strategies 2 and 3 are close to each 

other. 

 

Figure 5.32: Prediction plot for 2 lane road transfer learning with September data 
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For checking the transfer learning model performance with another month's dataset, we took the 

September 2019 dataset instead of the April 2019 dataset as a target dataset. After that, we got 

forecasting plots for the target baseline model B and 2-lane road (601722) traffic flow for three different 

transfer learning strategies. The source dataset is also the 2-lane road from district 3. Here, in figure 

5.32, the green line is the actual traffic flow of the 2-lane road. The light blue line is the forecasted traffic 

flow of target baseline model B. The yellow line represents the strategy-1 (fine-tuned) transfer learned 

traffic forecasting. The purple line is the forecasted traffic flow of strategy 2 (fine-tuned) transfer 

learning, and the deep blue line is the forecasted traffic flow of strategy 3 (without fine-tuned) transfer 

learning. Overall, strategies 2 and 3 give better fits for traffic forecasting than strategy-1 transfer learning 

and target baseline model B. 

5.4.2 Target Dataset 3 Lane 

Table 5.20: Traffic forecasting accuracy with target dataset of September (3 lane) 

Num. 

of 

runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

1 305.82 144.80 95.65 95.48 17.90 6.86 4.96 4.91 411.21 191.93 117.59 118.60 

2 280.41 154.14 113.24 114.30 16.39 7.22 5.83 5.84 403.81 206.55 144.22 144.99 

3 313.77 140.52 89.34 89.71 20.09 6.81 4.35 4.39 445.93 180.99 112.22 112.33 

4 359.64 171.44 115.93 116.35 23.77 8.61 6.22 6.21 488.10 223.37 145.96 146.72 

5 330.68 134.24 95.84 97.11 17.92 6.13 4.55 4.54 425.57 176.86 119.02 120.93 

6 368.12 162.85 111.19 111.44 20.55 8.20 5.40 5.40 474.75 204.87 145.00 145.29 

7 255.82 136.94 89.75 89.80 14.22 6.46 4.54 4.51 340.75 172.93 112.01 112.16 

8 401.38 130.62 89.53 91.42 23.09 6.68 4.31 4.46 509.30 170.92 113.21 116.17 

9 350.99 134.05 95.02 94.60 17.41 6.38 4.44 4.44 446.96 175.37 117.16 116.44 

10 367.29 140.41 90.50 89.16 20.81 6.63 4.38 4.35 479.26 180.66 114.13 112.63 

 

   

(a) MAE                                   (b) MAPE                                          (c) RMSE 

Figure 5.33: MAE, MAPE and RMSE with target dataset for September (3 lane) 

Figure 5.33 represents the accuracy boxplots of 3 lane road (602538) with the September 2019 target 

dataset. The source model's dataset here is taken 3-lane road (314042) from district 3. According to the 
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mean value of MAE, MAPE, and RMSE, the transfer-learned model's performance is better than the 

target baseline model B. Strategies 2 and 3 give better forecasting performance than strategy-1 transfer-

learned forecasting. Here, the transfer learning with the September 2019 dataset also performs well. 

 

Figure 5.34: Prediction plot for 3 lane road transfer learning with September data 

Figure 5.34 shows the forecasting plots of target baseline model B and transfer-learning with three 

strategies forecasting plots. Here, the green line represents the real-time traffic flow. The light-blue line 

illustrates the predicted traffic flow of baseline target baseline model B. The yellow line represents 

strategy-1 traffic flow forecasting, whereas the purple line presents strategy-2 traffic flow forecasting, 

and the deep-blue line represents the predicted traffic flow for strategy-3 transfer learning. All strategies 

of transfer learning perform better than target baseline model B. Strategies 2 and 3 give better fits to 

actual traffic flow. 

5.4.3 Target Dataset 4 Lane 

Table 5.21: Traffic forecasting accuracy with target dataset of September (4 lane) 

Num

ber 

of 

runs 

MAE (vehicles/h) MAPE (%) RMSE (vehicles/h) 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

Base 

line 

model 

B 

Strat. 

1 

Strat. 

2 

Strat. 

3 

1 283.10 179.51 127.64 128.04 18.03 10.08 7.65 7.90 360.50 238.72 167.14 165.75 

2 268.11 195.46 133.91 137.15 17.68 12.38 7.77 8.70 381.57 261.54 177.54 178.06 

3 375.32 189.77 129.38 128.98 24.08 10.07 7.45 7.75 507.20 272.99 169.70 167.83 

4 368.51 209.68 129.35 138.02 27.54 15.29 7.50 9.71 486.44 269.47 171.47 174.92 

5 302.13 196.55 121.19 123.45 16.64 11.71 6.77 7.42 397.71 265.73 162.25 162.79 

6 292.01 211.14 134.80 135.71 18.22 15.35 8.11 9.16 388.34 278.42 174.46 171.15 

7 263.45 186.38 131.85 136.62 14.99 12.20 7.39 9.34 342.89 253.73 170.91 169.79 

8 299.72 209.46 126.07 127.91 15.94 12.09 7.15 7.65 378.28 285.59 167.10 166.94 

9 348.97 190.51 127.89 129.16 22.42 11.09 7.69 7.99 449.60 259.49 166.05 165.59 

10 354.67 214.91 127.33 131.96 26.70 15.69 7.54 8.79 466.35 279.00 165.83 167.46 
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(a) MAE                                       (b) MAPE                                     (c) RMSE 

Figure 5.35: MAE, MAPE and RMSE with target dataset for September (4 lane) 

Figure 5.35 shows the performance of traffic flow forecasting for the target baseline model B and 

transfer learning three strategies by boxplots. Here September 2019 target dataset is used, and the 3-lane 

road dataset is taken for the source model. In terms of MAE, MAPE, and RMSE, transfer-learned model 

performances are overall better than target base-model B's forecasting. Both strategies 2 and 3 perform 

better than strategy-1 forecasting. 

 

Figure 5.36: Prediction plot for 4 lane road transfer learning with September data 
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Figure 5.36 represents the forecasting plots of target baseline model B and transfer-learning with three 

strategies forecasting plots. Here, the green line represents the real-time traffic flow. The light-blue line 

illustrates the predicted traffic flow of target baseline model B. The yellow line represents strategy-1 

traffic flow forecasting, whereas the purple line presents strategy-2 traffic flow forecasting, and the 

deep-blue line represents the predicted traffic flow for strategy-3 transfer learning. All strategies of 

transfer learning perform better than target baseline model B. Strategies 2 and 3 give better fits than 

strategy 1 to the actual traffic flow. 

5.5 Summary of Results 

Several experiments are performed to verify the accuracy of the dataset for research question 1, with 

lengths ranging from 1 month to 6 months from District 3, California State, USA. We used three 

different algorithms (univariate ARIMA, GRU, and LSTM). Overall, in 6 months of the dataset, both 

GRU and LSTM models give better accuracy of traffic forecasting in this experiment. Univariate 

ARIMA initially, for lower-length datasets, gives better accuracy, but for adding more data, it does not 

give a good prediction of traffic flow. We selected six months of data for further analysis. 

Weather datasets from relevant counties are selected for checking their influence on traffic flow 

forecasting for research question 2, we integrate weather data with traffic data in two multivariate 

models (GRU and LSTM). Overall, with-weather datasets give better accuracy than without-weather 

traffic datasets. In terms of accuracy, the LSTM model gives better prediction than GRU. For the next 

step, we select the LSTM model with weather traffic datasets for transfer learning. 

Next, six different scenarios with six different types of roads are applied in transfer learning. Datasets 

for three different road types are selected from District 3 for the source dataset, spanning six months 

(April 2019 to September 2019). 1-month of data (April 2019) and 1-month of data (September 2019) 

are selected from District 6 for target datasets. Overall, transfer-learned traffic flow forecasting is better 

than target baseline B forecasting in terms of MAE, MAPE, and RMSE. Overall, Strategy 2 and 3 

transfer learning give better accuracy than strategy-1 transfer learning for traffic forecasting. We get the 

answer to research question 1 by experimenting with a 1-month source dataset from District 3 in 

scenarios 1, 2, and 3. It shows that more source traffic dataset transfer learning models give better results 

than 1-month source dataset models. For checking the transfer learning performance with five months 

ahead target datasets, we select September 2019 datasets. In this case, we got the same results of 

forecasting like previous experiments. 

 

 

 

 

 

 

 

 

 

 



 

75 
Factors influencing transfer learning of traffic forecasting models 

6 Conclusion 

6.1 Summary 

Traffic congestion is a crucial problem these days in all big cities. This is the most alarming problem 

for most city roads and highways to cope up. People are losing lots of time and money due to this 

growing problem. This research aimed to get a solution to the problem of congestions in ITS by traffic 

forecasting for better traffic management. To these congestion problems, traffic forecasting is a great 

strategy. Data scarcity is another problem in traffic forecasting, where a limited dataset cannot give a 

good prediction. To improve traffic forecasting accuracy with limited datasets, the transfer learning 

strategy can help well in these situations. To experiment with these issues and to get the solutions to 

these problems, this study was done for California state’s two different districts.  

In response to research gaps in different dimensions of this research field, two research questions were 

framed, and an effort was made to answer these two research questions through several experiments. 

The first research question is about the best amount of input data to use in traffic flow forecasting 

models, which can be utilized as a source dataset in transfer learning models for the selected roads. We 

did several experiments on univariate ARIMA, GRU, and LSTM models with 1-month, 2-month, 3-

month, 4-month, 5-month, and 6-month of datasets for district 3. Overall, 6-months dataset for GRU 

and LSTM models gave well forecasting accuracy. Although univariate ARIMA gave a better prediction 

for smaller range datasets it did not perform well for higher ranges datasets. We selected 6 months of 

datasets for 2-lane, 3-lane, and 4-lane roads from different Counties of district 3 of California state. 

Also, in comparison to algorithm performances, the LSTM model performed significantly better than 

the other two algorithms. We also did three scenarios with 1-month source data and 6-month source 

data. Overall, in terms of MAE, MAPE, and RMSE, 6-month source dataset transfer learning models 

give better accuracy than 1-month source data models. In answer to research question 2, that is how 

much influence is happened when we use weather as an external factor in traffic forecasting. In this 

concern, the additional weather datasets for the relevant locations were collected from the NCEI weather 

database. Models' performances were checked by combining the weather data and without weather data 

in both GRU and LSTM multivariate models. In all cases, with-weather models performed well for both 

GRU and LSTM models. Overall, LSTM models performed better than the GRU model in terms of 

accuracy metrics MAE, MAPE, and RMSE. 

Finally, six different scenarios were made for transfer learning with several source datasets from District 

3 and target datasets from District 6 in the stacked LSTM model. In all the scenarios, April 2019 to 

September 2019 (6 months of datasets) were selected for all 2-lane, 3-lane, and 4-lane roads. April 2019 

(1-month) datasets were selected as target datasets for all 2-lane, 3-lane, and 4-lane roads. Three 

different strategies for the transfer learning model were formed, where strategies 1 and 2 are fine-tuned 

models, and strategy 3 is not the fine-tuned model. Overall, strategy 2 and 3 transfer-learned models 

performed better than the strategy-1 transfer-learned model in almost all scenarios. Target baseline 

model, B forecasting was done with April 2019 dataset from district 6 to check the performances of 

target models. In these cases, all 2-lane, 3-lane, and 4-lane roads did not give well forecasting in terms 

of performance. Moreover, transfer learned models gave better performance than the target baseline 

model B. Limited datasets cannot give better forecasting independently. For data scarcity problems in 

traffic forecasting, transfer learning strategies give better solutions. 

Last but not the least, we checked transfer learning performances with 5 months ahead target dataset. In 

this case, we used September 2019 dataset from district 6 for every link type transfer learning with the 

same source datasets from District 3. In all 3-road type forecasting of traffic in transfer learning, we 

used the same 3-different strategies, where strategies 2 and 3 gave better performances than fine-tuned 

model strategy-1 in terms of MAE, MAPE, and RMSE.  
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The contribution of this research on the California case study with PeMS enriched traffic datasets helps 

a lot for experimenting with different scenarios during the pre-Covid pandemic time. A novel deep 

transfer learning technique is developed for traffic forecasting in California state. The weather dataset 

gives information on how much influence happens in traffic forecasting. Components of different 

transfer learning strategies are described and analyzed. These hybrid transfer learned models give a 

smart solution for traffic forecasting in ITS with a limited amount of traffic data.  

This research can help a lot for other city traffic forecasting with transfer learning by pre-trained models. 

Traffic forecasting with transfer learning will play a vital role in proper traffic management, route 

guidance, smart intersection techniques, etc. For reducing traffic congestion on roadways and highways 

in big cities, this technology will help a lot in ITS. 

6.2 Limitations and Future Works 

There are some limitations found during model building with the ARIMA model. When tried with 

exogenous variables in the multivariate ARIMA model, it did not perform well for one step ahead of 

traffic forecasting. We used a univariate ARIMA model for comparison with the other two neural 

network forecasting. The inconsistency is another limitation. A consistent dataset gives better traffic 

forecasting. In this research, we used link-type forecasting. In the future, more source links should be 

taken considered, and a larger network-wide traffic forecasting should be experimented with. Future 

research in this field should take consider other factors like incidents and other spatial characteristics 

like stadiums, supermarkets, educational institutes, etc.  
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