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Zusammenfassung

Die Literatur über statistisches Lernen ist in den letzten Jahren enorm gewachsen. Es
wurden verschiedene Methoden und Algorithmen vorgeschlagen und auf reale Daten ange-
wandt. In der Literatur besteht jedoch eine Lücke in der expliziten Modellierung kom-
plexer Abhängigkeitsstrukturen und der gleichzeitigen Interpretation der Modellergebnisse
für verwertbare Erkenntnisse. Vine Copulas sind flexible und interpretierbare multivariate
Verteilungsfunktionen, die komplexe Datenabhängigkeitsstrukturen modellieren. Um diese
Lücke also zu schließen, entwickeln wir statistische Lernalgorithmen, die Vine Copulas ver-
wenden. Darüber hinaus zeigen wir ihre gesellschaftlichen Anwendungen in den Bereichen
Finanzen und Genetik.

Nach einem Überblick über die theoretischen Grundlagen von Vine Copulas und Opti-
mierung entwickeln wir überwachte und unüberwachte Lernalgorithmen unter Verwendung
von Vine Copulas, insbesondere ein modellbasiertes Clustering und eine hochdimensionale
dünnbesetze Regression. Anschließend diskutieren wir die Modellauswahl, die Parameter-
schätzung und Komplexitätsprobleme mit effizienten Lösungen. Danach vergleichen wir unsere
Algorithmen mit den in der Literatur vorhandenen Ansätzen und demonstrieren die Nützlichkeit
von Vine Copulas für verschiedene statistische Lernaufgaben.

Wir präsentieren eine Fallstudie zum modellbasierten Clustering mit Vine Copulas bei der
Analyse von Finanzdaten unter Verwendung sogenannter ESG Scores (Environmental, Social
und Governance). Darüber hinaus diskutieren wir die Nachteile der ESG-Scores und schlagen
eine neue Technik zur Behandlung fehlender Daten vor. Schließlich machen wir als Anwendung
der hochdimensionalen dünnbesetzen Vine Copula basierten Regression den ersten Schritt in
der genomischen Vorhersage von phänotypischen Merkmalen von Mais. Nach der Entwicklung
von Methoden zur Extraktion genomischer Merkmale zeigen wir die Vorteile unserer Methoden
gegenüber bestehenden Ansätzen.
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Abstract

Statistical learning literature has been tremendously growing in recent years. Various methods
and algorithms have been proposed and applied to real data. However, there is a gap in
the literature that modeling complex dependence structures explicitly and interpreting model
results for actionable insights simultaneously have not yet been handled well. Vine copulas
are flexible and interpretable multivariate distribution functions that model complex data
dependence structures. Thus, to bridge the gap, we develop statistical learning algorithms
using vine copulas. Moreover, we show some societal applications of the proposed models in
finance and genetics.

After reviewing the theoretical foundations of vine copulas and optimization, we develop
supervised and unsupervised learning algorithms using vine copulas, mainly a model-based
clustering and a high-dimensional sparse regression. Next, we discuss model selection, pa-
rameter estimation, and complexity problems with efficient solutions. Later, we compare our
algorithms with the existing approaches in the literature and demonstrate the usefulness of
vine copulas for various statistical learning tasks.

We present a case study of model-based clustering with vine copulas in financial data
analyses, using so-called Environmental, Social, and Governance (ESG) scores. We further
discuss the pitfalls of the ESG scores and propose a new missing data handling technique.
Finally, as an application of high-dimensional sparse vine copula based regression, we take
the first step in the genomic prediction of maize traits. After developing genomic feature
extraction methods, we show the advantage of our methods over existing approaches.
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Chapter 1

Introduction

As data dimensionality increases and data analysis improves the decision-making process,
the need for models to learn from data is huge. Data consists of many observations and
features. For example, consider the data collection process of companies’ sustainability levels.
A company’s sustainability level corresponds to a score for its responsibility for environmental,
social, and governmental issues. Thus, a company is an observation having values for an
issue being a feature. Alternatively, consider the data collection process of songs listened to
by people on an online platform. A person is an observation, and what they listen to has
features such as danceability and instrumentality. From observations and features in data,
useful conclusions can be drawn. For instance, identifying groups of people based on their
musical taste improves music recommendation systems. Alternatively, consider portfolio risk
management. If which companies depend on each other regarding their sustainability levels is
known, sustainable portfolio risks can be predicted and managed. What is common in these
examples from diverse areas is statistical learning, that is, the process of learning from data
and making inferences (Hastie et al. 2009).

Supervised learning is conducted when data is in the main charge of the learning process,
guiding the statistical model. One of the core elements of supervised learning is to make
predictive inferences, e.g., a regression. It has a variety of applications: predicting a trait
from genomes (Li et al. 2018), a company’s return values from its peers (Kraus and Czado
2017), and an object class from its properties (Nguyen and Wu 2011). On the other hand,
unsupervised learning comes into play when the aim is to extract knowledge from data without
any advance knowledge. For example, a task of revealing groups of observations using features
in data, also known as clustering, belongs to unsupervised learning. Its real-life applications
include identifying groups of proteins resulting in disease (Zhang and Shi 2017), groups of
periods with different asset prices (Weiß and Scheffer 2015), and estimating stations’ different
dependence structures based on the different amount of precipitations (Kim et al. 2013).

To evaluate a performance of a supervised learning algorithm, data can be partitioned into
two sets: training and test. A training set is used to make inferences, whereas a test set helps
assess the models’ performance in unseen observations. Since data supervises the model in
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2 Introduction

supervised learning, using all observations to make inferences may provide an excellent fit for
the observed data. However, it does not guarantee that the model still performs very well for
new observations that are needed to be predicted. This phenomenon is known as overfitting.
Thus, data partition prevents overfitting.

On the other hand, we might not have any labels or supervision in data to assess how well
an unsupervised learning algorithm performs. Therefore, statistical model criteria, such as the
Bayesian (Schwarz 1978) or the Akaike (Akaike 1998) information criterion, are widely used
(Scrucca et al. 2016) when applicable.

Current supervised learning approaches for regression include linear mean/quantile regres-
sion and regression trees. The advantages of linear models are that they are easy to fit
and interpret results. However, they do not explicitly consider feature interactions or skew-
ness (Hastie et al. 2009). Moreover, even though regression tree and forest approaches are
nonlinear models, one of their drawbacks is to suffer from dependent features (Strobl et al.
2008).

Likewise, popular unsupervised learning models for clustering are distance-based, like k-
means, hierarchical clustering, and model-based, like Gaussian mixture models (Hastie et al.
2009). However, their performance differs by analyzed data (Hennig 2022). While distance-
based methods are computationally efficient, they do not consider the dependence structure
in data. Similarly, mixture models usually assume that each component follows the same
statistical distribution family, reducing the model flexibility (McLachlan and Peel 2000).

These are critical issues since, in real-life problems, data will likely be high-dimensional,
nonlinear, skewed, and dependent. Moreover, the models mentioned above might not be
adequate when the focus is to model dependence structures explicitly and have actionable
insights. Even though they may achieve good prediction or clustering results, the interpretation
and reasoning behind the performance are not yet well understood. For example, consider
portfolio risk management again. To predict the likelihood of a market crash and understand
the dependence among portfolio assets, explicit dependence modeling, which can work with
dependent features, here assets, is needed. Alternatively, consider finding people groups when
they listen to pop or rock songs. A clustering model capturing complex dependencies is
needed since different dependencies exist between the pop or rock songs’ danceability and
instrumentality. Here the use of copulas comes in handy.

Copulas are powerful dependence modeling tools, explicitly capturing complex dependence
structures between multiple random variables. They go beyond correlation, a linear depen-
dence measure. Copulas glue variables’ marginal distributions and standardized dependence
structure and form their joint distribution (Sklar 1959). They provide a full distribution of
variables of interest and can also help assess the probability of extreme events.

Despite copulas’ power in modeling data analyses, standard copula families, such as Gaus-
sian, t, and Archimedean, do not express different dependence structures between different
pairs of variables. However, pair-copula constructions extend their usage, applying sequen-
tially mixing conditional distributions involving a set of bivariate copulas (Aas et al. 2009;
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Joe 1996). The set of bivariate copulas is usually applied to pairs of univariate conditional
distributions. Since such a construction is not unique, an undirected graph structure, called
vines, is used to organize them (Bedford and Cooke 2002). Accordingly, vine copulas provide
flexible and nonlinear models in high dimensions.

In this thesis, we answer how we can model nonlinear dependence in supervised and
unsupervised learning while explicitly modeling relationships between data features. Moreover,
we provide how dependence modeling in supervised and unsupervised learning may aid decision-
making processes in real-life applications. Accordingly, we will delve into using vine copulas for
statistical learning, developing new methods and algorithms for their implementation. First,
we will discuss vine copulas’ main statistical learning applications, such as clustering and
prediction. We will then present real-life case studies applying our methods and algorithms.

The thesis consists of two parts: the first part presents the development of statistical
learning algorithms based on vine copulas, and the main content of Chapters 3 and 4 are
based on the following research papers.

• Sahin, Ö., & Czado, C. (2022). Vine copula mixture models and clustering for non-
Gaussian data. Econometrics and Statistics, 22, 136-158.

• Sahin, Ö., & Czado, C. (2022). High-dimensional sparse vine copula regression with
application to genomic prediction. In revision for Biometrics, arXiv:2208.12383.

In the second part, we focus on the societal applications of the algorithms we developed. The
following research papers form the main content of Chapters 5 and 6.

• Sahin, Ö., Bax, K., Czado, C., & Paterlini, S. (2022). Environmental, Social, Gover-
nance scores and the Missing pillar—Why does missing information matter?. Corporate
Social Responsibility and Environmental Management, 29(5), 1782-1798.

• Sahin, Ö., Bax, K., Paterlini, S., & Czado, C. (2023). The pitfalls of (non-definitive)
Environmental, Social, and Governance scoring methodology. Global Finance Journal,
56, 100780.

• Sahin, Ö., & Czado, C. (2022). High-dimensional sparse vine copula regression with
application to genomic prediction. In revision for Biometrics, arXiv:2208.12383.

We discuss the content of each paper and provide additional data analyses, materials, and
discussion points.

We review the theoretical foundations of copulas, vine copulas, and optimization in Chapter
2. It provides main concepts, including copula construction methods and bivariate copulas
with their density and conditional distribution. It also preliminarily shows the core ideas behind
numerical optimization.

In Chapter 3, based on Sahin and Czado (2022b), we specify a vine copula mixture
model formulation and use the model for clustering tasks. We treat the number of mixture
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components fixed and provide efficient solutions for model selection and parameter estimation
problems, including vine tree and pair-copula family selections. We compare its performance
with existing methods using simulation studies and real-world data. In addition, we provide
its software implementation, making a big step forward in developing explainable and effective
clustering algorithms for complex data.

We will then focus on selecting features for conditional quantile estimates, i.e., quantile
regression, in high dimensions using vine copulas in Chapter 4 based on Sahin and Czado
(2022a). High-dimensional data likely includes irrelevant features for the outcome of interest
and dependent features with each other. Thus, not all features are needed for prediction.
We define and identify features for quantile regression and propose new feature selection
approaches for vine copula based regression, which are shown to be computationally efficient.
We compare their performance with linear and nonlinear models based on random forests
using training and test data sets.

As data collection increases in various fields, the pitfalls of collection processes and data
handling increase too. Chapter 5 focuses on one of the core data sets in sustainable finance:
Environmental, Social, and Governance (ESG) scores. They show how responsible a company
is compared to its peers in sustainability matters. As a case study of vine copula mixture
models, we quantify different dependence structures between good and bad score indices
depending on the stock price movements. More importantly, we discuss how data handling,
including missing scores, results in different outcomes reported in Sahin et al. (2023). We
propose a new method to account for missing scores in data sets and show its performance
in training and test data sets reported in Sahin et al. (2022).

Another rapid advancement in data generation and collection is in the field of genomics.
Lately, genotype data has been getting high-dimensional, and predicting complex phenotypes
from genotypes has been the main goal for various purposes, including adopting maize geno-
types for future breeding. In Chapter 6, based on Sahin and Czado (2022a), we apply our
prediction algorithm for high-dimensional data using vine copulas to the genomic prediction
of maize traits. Since genotype data consists of binary features, we propose new feature ex-
traction methods. We demonstrate significant improvements in the accuracy and efficiency of
our genomic prediction results compared to the existing approaches. Our work presents how
modeling complex dependencies in genomic prediction by vine copulas guides new insights
into our understanding of genotype and phenotype relationships.

Finally, we overview and conclude our findings in Chapter 7 and provide further research
directions that may increase the potential of vine copulas for handling complex and high-
dimensional data for various statistical learning tasks.



Part I

Statistical learning with vine copulas
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Chapter 2

Preliminaries

In this chapter, we will briefly review the main concepts in copulas, vine copulas, and numerical
optimization. We will mainly follow the reference books by Wright and Nocedal (2006), Joe
(2014), and Czado (2019).

2.1 Copulas

As large amounts of data have been collected, the need for statistical models to make in-
ferences about data quantities, such as group densities, tail probabilities, and conditional ex-
pectations, has increased. Especially the models that can accommodate various dependence
structures and tail behavior are highly needed; for example, copulas.

Copulas are a class of multivariate non-normal distributions and a powerful tool in depen-
dence modeling. For continuous multivariate distributions, after univariate margins, which
can be of different types, are modeled, a copula represents the dependence structure sepa-
rated from such margins. Such a representation results from Sklar’s theorem (Sklar 1959).
Formally, a d-dimensional copula C is a multivariate distribution function C : [0, 1]d → [0, 1]
with U(0, 1) margins and is given by C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud), where
U1, U2, . . . , Ud are uniformly distributed in the interval [0, 1]. In the remainder of the chapter,
we will use these notations.

Since the d-dimensional copula input (data) is uniformly distributed in [0, 1]d, to get it,
we apply the probability integral transform, i.e., if the continuous random variable X ∼ FX ,
then FX(X) ∼ U(0, 1). To see that, it holds for 0 < u < 1, P (FX(X) ≤ u) = P (X ≤
F−1X (u)) = FX(F−1X (u)) = u, where FX is continuous.

One can use univariate margins from parametric families with one, two, or more parame-
ters with different modalities, tail weight, and asymmetry properties to apply the probability
integral transform. Some parametric univariate families are detailed in Table 2.1, and their
densities are shown in Figure 2.1. For more continuous univariate distribution families and
their definitions, we refer to Appendix A in Klugman et al. (2019).

6



7 Preliminaries

Theorem 2.1: Sklar’s Theorem

Let X = (X1, . . . , Xd)
> ∈ Rd be a d-dimensional random vector following a joint

distribution F with the univariate marginal distributions F1, . . . Fd, then the copula
associated with F is a d-dimensional distribution function C : [0, 1]d → [0, 1] with
U(0, 1) margins and satisfies

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (2.1)

In the remainder, assume all random variables to be absolutely continuous. Then the
copula corresponding to F with quantile functions F−1p for p = 1, . . . , d is unique:

C(u1, . . . , ud) = F (F−11 (u1), . . . , F
−1
d (ud)). (2.2)

Moreover, the d dimensional joint density f can be written as

f(x) = c
(
F1(x1), . . . , Fd(xd)

)
· f1(x1) · · · fd(xd), x ∈ Rd, (2.3)

where f1, . . . , fd are univariate marginal distributions associated with F1, . . . Fd, and c

is a copula density of the the random vector F =
(
F1(X1), . . . Fd(Xd)

)> ∈ [0, 1]d.
Proof. See Theorem 1.1 of Joe (2014).

Example 2.1 (Univariate normal distribution). A unimodal and symmetric distribution with
the support (−∞,∞) is the univariate normal distribution. If a random variable X ∈ R
follows the univariate normal distribution, its density function in x is

f
(
x;µ, σ2

)
=

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
,

where µ ∈ R is the mean, and σ ∈ R+ is the variance, denoting X ∼ N (µ, σ2). Its
cumulative distribution function (cdf) is

F (x;µ, σ2) =
1

2

[
1 + erf

(
x− µ√

2σ

)]
,

where erf(x) is the error function defined as

erf(x) =
2√
π

∫ x

0

exp
(
−t2
)

dt.

Example 2.2 (Univariate Student’s t distribution). Another unimodal and symmetric distri-
bution with the support (−∞,∞) is the univariate Student’s t distribution. Compared to
the univariate normal distribution, the t distribution has heavy tails, changing the measure
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based on its degrees of freedom parameter. If a random variable X ∈ R follows the univariate
Student’s t distribution, its density in x is

f(x;µ, ν, σ) =
Γ
(
ν+1
2

)
σ−1

Γ
(
ν
2

)√
νπ

(
1 +

(x− µ)2

νσ2

)−(ν + 1)/2

,

where µ is the location, ν ∈ R+ is the degrees of freedom, σ ∈ R+ is the scale, and Γ is the
gamma function, denoting X ∼ t (µ, ν, σ). Its cumulative distribution function is

F (x;µ, ν, σ) =

∫ x

−∞
f(t;µ, ν, σ)dt.

Example 2.3 (Logistic distribution). The logistic distribution is also unimodal and symmetric
with the support (−∞,∞). Like the Student’s t distribution, compared to the univariate
normal distribution, it has heavy tails but independent of its parameters (Pingel 2014). If a
random variable X ∈ R follows a logistic distribution, its density in x is

f(x;µ, s) =
e−(x−µ)/s

s (1 + e−(x−µ)/s)
2

where µ ∈ R is the mean, s ∈ R+, is the scale denoting X ∼ logis (µ, s). Its cumulative
distribution function is

F (x;µ, s) =
1

1 + e−
x−µ
s

.

Example 2.4 (Univariate skew t distribution). The univariate skew t distribution is unimodal
with the support (−∞,∞) but asymmetric. Compared to the univariate normal distribution,
it has heavy tails. According to Fernández and Steel (1998), if a random variable X ∈ R
follows the skew t distribution, its density in x is

f (x;µ, σ, ν, γ) =
Γ
(
ν+1
2

)
σ−1

Γ
(
ν
2

)√
πν

2

γ + 1
γ

·
[
1 +

(x− µ)2

νσ2

{
γ2I(−∞,0)(x− µ) +

1

γ2
I[0,∞)(x− µ)

}]−(ν + 1)/2

,

where µ ∈ R is the location, σ ∈ R+ is the scale, ν ∈ R+ is the degrees of freedom, and
γ ∈ R+ is the skewness, denoting X ∼ st (µ, σ, ν, γ). Its cumulative distribution function is

F (x;µ, σ, ν, γ) =

∫ x

−∞
f(t;µ, σ, ν, γ)dt.

We remark that there are other definitions of the skew t distribution as given in Azzalini and
Capitanio (2003) and Jones and Faddy (2003).
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Example 2.5 (Exponential distribution). A unimodal but asymmetric distribution with the
support [0,∞) is the exponential distribution. It has exponential tails. If a random variable
X ∈ R follows the exponential distribution, its density in x is

f(x;λ) = λ exp(−λx),

where α ∈ R+ is the rate, denoting X ∼ exp (λ). Its cumulative distribution function is

F (x;λ) = 1− exp(−λx).

Example 2.6 (Gamma distribution). Another unimodal but asymmetric distribution with
the support (0,∞) is the gamma distribution. It has exponential tails. If a random variable
X ∈ R follows the gamma distribution, its density in x is

f(x;α, β) =
(xβ)α exp(−xβ)

xΓ(α)
,

where α ∈ R+ is the shape, and β ∈ R+ is the rate, denoting X ∼ Γ (α, β). Γ is the gamma
function defined by

Γ(α) =

∫ ∞
0

tα−1 exp(−t)dt.

The incomplete gamma function is defined by

Γ(α;x) =
1

Γ(α)

∫ x

0

tα−1 exp(−t)dt.

The cumulative distribution function is

F (x;α, β) = Γ(α;xβ).

Example 2.7 (Log-normal distribution). Like the gamma distribution, the log-normal distri-
bution is also unimodal and asymmetric with the support (0,∞). However, it has subexpo-
nential tails. A random variable X ∈ R follows a lognormal distribution if Y ∼ N (µ, σ2) for
Y = log X. Accordingly, the density of X in x is

f (x;µ, σ) =
1

x
√

2πσ2
exp

(
−(log x− µ)2

2σ2

)
.

We denote X ∼ lnorm (µ, σ2). Its cumulative distribution function is

F (x;µ, σ) = Φ

(
log x− µ

σ

)
,

where Φ(·) denotes the univariate normal distribution function with zero mean and unit vari-
ance.
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Example 2.8 (Log-logistic distribution). Another asymmetric distribution with the support
(0,∞) is the log-logistic distribution. However, it has heavier tails than the univariate log-
normal distribution (Lemonte 2014) and is unimodal as long as its shape parameter is bigger
than one. If a random variable X ∈ R follows a log-logistic distribution, the density of X in
x is

f(x;α, β) =
β (x/α)β

x
(

1 + (x/α)β
)2 ,

where α ∈ R+ is the scale, and β ∈ R+ is the shape, denoting X ∼ llogis (α, β). Its
cumulative distribution function is

F (x;α, β) =
(x/α)β

1 + (x/α)β
.

Table 2.1: Parametric univariate families with the first (mean) and second (variance)
cumulants.

Mean (E(X)) Variance (Var(X))
X ∼ N (µ, σ2) µ σ2

X ∼ t (µ, ν, σ) µ for ν > 1 σ2ν/(ν − 2), for ν > 2
X ∼ logis (µ, s) µ s2π2/3

X ∼ st (µ, σ, ν, γ) M1

(
γ − 1

γ

)
M2(γ

2 − 1 + γ−2)−M2
1 (γ − 1

γ
)2 a

X ∼ exp (λ) 1/λ 1/λ2

X ∼ Γ (α, β) α/β α/β2

X ∼ lnorm (µ, σ2) exp(µ+ σ2/2) (exp(σ2)− 1) exp(2µ+ σ2)

X ∼ llogis (α, β) απ/β
sin π/β

, for β > 1 α2
(

2π/β
sin 2π/β

− π2/β2

sin2 π/β

)
, for β > 2

aMc = 2
∫∞
0

scf(s)ds = E(|s|c), and f(s) is the corresponding density of the univariate Student’s
t distribution being symmetric about zero.

Alternatively, a non-parametric approach, such as one based on kernels (Parzen 1962),
can be applied to use the probability integral transform. An example is shown in Figure 2.2.

Example 2.9 (Kernel smoother). Let (x1, . . . , xn) be independent continuous observations
of the random variable X. If X follows a distribution with an unknown density f , its kernel
density estimate in x is

f̂(x) =
1

nh

n∑
i=1

k

(
x− xi
h

)
,

where k(.) is a symmetric probability density function like a univariate Gaussian distribution,
and h > 0 is a bandwidth parameter that can be chosen by a plug-in method as proposed in
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Sheather and Jones (1991). Its cumulative distribution function estimate is

F̂ (x) =

∫ x

−∞
f̂(t)dt.

Figure 2.1: Densities of the univariate families listed in Table 2.1, where E(X) = 1 and
Var(X) = 1, E(X) = 2 and Var(X) = 4, and E(X) = 2 and Var(X) = 1 are fixed for
red, orange, and black curves, respectively, if relevant. The degrees of freedom for the t
distributions are 3, and the skewness parameter is 2.

Figure 2.2: True densities (black lines) and estimated univariate kernel densities for 1000
observations (dashed) from the log-normal distribution with E(X) = 2, Var(X) = 4 (orange)
and E(X) = 2, Var(X) = 1 (red). The kernel is Gaussian with the bandwidth 0.6.
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Even though one can construct the copula data, i.e., u-data, by applying the probability
integral transform, the important question is how to build suitable copulas. There are different
copula construction methods (see Chapter 3 of Joe (2014)); however, simple constructions
may not result in flexible dependence in high dimensions. Still, there are alternative and
powerful approaches in dependence modeling, such as pair-copula constructions discussed in
Section 2.2, that use a set of bivariate copulas to construct multivariate copulas. Thus, we
first focus on some bivariate parametric copula families and their construction.

Bivariate copula construction allows the modeling of various dependence structures like
asymmetric dependence, conditional independence, and tail dependence between two random
variables. The tail dependence measures the strength of the dependence in the joint lower or
joint upper tail of a bivariate copula. For instance, for a strong upper tail dependence between
random variables X1 and X2, one can expect that when the value of X1 is very large, very
likely that the value of X2 is very large too.

Definition 2.1: Upper and lower tail dependence coefficients

Suppose (U1, U2) ∼ C, where C is a bivariate copula. Then the upper tail dependence
coefficient of C is

λupper = lim
u→1−

P (U2 > u|U1 > u) = lim
u→1−

1− 2u+ C(u, u)

1− u
.

The lower tail dependence coefficient of C is

λlower = lim
u→0+

P (U2 ≤ u|U1 ≤ u) = lim
u→0+

C(u, u)

u
.

We remark that the limits prevent us from having an empirical estimate of tail depen-
dence coefficients. However, as Krupskii and Joe (2015) proposed, alternative tail-weighted
dependence measures can be useful for data analyses. Moreover, a non-empirical estimate of
tail dependence is proposed by Lee et al. (2018).

Our first bivariate copula example is independence, where margins are independent. Next,
one can easily construct bivariate Gaussian copula and bivariate Student’s t copula using the
inverse of Sklar’s Theorem in Equation (2.2). Both capture a wide range of dependence and
have the closure property under marginalization, as well as a closed-form density. Nevertheless,
the former cannot model tail dependence, whereas the latter lacks modeling tail asymmetries
as shown in Figure 2.3.

Example 2.10 (Bivariate independence copula). Assuming random variables X1, X2 are
independent, i.e., F (x1, x2) = F (x1)F (x2), Equation (2.1) yields the bivariate independence
copula as

C(u1, u2) = u1u2, 0 < u1, u2 < 1.
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Its conditional distribution function and density are

C2|1(u2|u1) = u2, c(u1, u2) = 1, 0 < u1, u2 < 1.

Its upper and lower tail dependence coefficients are given by

λupper = 0, λlower = 0.

Example 2.11 (Bivariate Gaussian copula). Let Φ(·) denote the univariate normal distri-
bution function with zero mean and unit variance and let Φ2(·, ·; ρ) the bivariate normal
distribution function, where the random vector has the zero mean vector and unit variances,
and the correlation among the variables is ρ. Likewise, let φ and φ2 be the corresponding
densities. Then Equation (2.2) yields the bivariate Gaussian copula as

C(u1, u2; ρ) = Φ2(Φ
−1(u1),Φ

−1(u2); ρ), 0 < u1, u2 < 1.

Its conditional distribution function and density are

C2|1(u2|u1; ρ) = Φ

(
Φ−1(u2)− ρΦ−1(u1)√

1− ρ2

)
,

c(u1, u2; ρ) =
φ2 (Φ−1(u1),Φ

−1(u2); ρ)

φ (Φ−1(u1))φ (Φ−1(u2))
, 0 < u1, u2 < 1.

Its upper and lower tail dependence coefficients are given by

λupper = 0, λlower = 0.

Example 2.12 (Bivariate Student’s t copula). Let Tν denote the univariate Student’s t
distribution function with the degrees of freedom ν and let T2,ν the bivariate Student’s t
distribution function, where the random vector has unit variances, and the correlation among
the variables is ρ. Likewise, let tν and t2,ν be the corresponding densities. Then Equation
(2.2) yields the bivariate Student’s t copula as

C(u1, u2; ν, ρ) = T2,ν(T
−1
ν (u1), T

−1
ν (u2); ν, ρ), 0 < u1, u2 < 1.

Its conditional distribution function and density are

C2|1(u2|u1; ρ, ν) = Tν+1

(
T−1ν (u2)− ρT−1ν (u1)√
(1− ρ2)(ν + [T−1

ν (u1)]2)/ν + 1

)
,

c(u1, u2; ν, ρ) =
t2,ν (T−1ν (u1), T

−1
ν (u2); ρ)

tν (T−1ν (u1)) tν (T−1ν (u2))
, 0 < u1, u2 < 1.

Its upper and lower tail dependence coefficients are given by

λupper = λlower = 2Tv+1

(
−
√
v + 1

√
1− ρ
1 + ρ

)
.
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Figure 2.3: Marginally normalized contour plots of bivariate Gaussian and Student’s t copulas
based on van der Waerden scores (Waerden 1953), i.e., x-axis and y-axis correspond to
Φ−1(U1) and Φ−1(U2), respectively, in each plot.

Another (bivariate) copula construction method is to use generator functions, resulting in
the class of Archimedean copulas (for more details, see Chapter 4 of Nelsen (2007)).

Definition 2.2: Bivariate Archimedean copulas

Let ϕ be a generator being continuous, convex, and strictly decreasing ϕ : [0, 1] →
[0,∞) with ϕ(0) =∞, ϕ(1) = 0. Then the bivariate Archimedean copula is

Cϕ(u1, u2) = ϕ−1(ϕ(u1) + ϕ(u2)), 0 ≤ u1, u2 ≤ 1,

where ϕ−1 : [0,∞)→ [0, 1] is the pseudo-inverse of ϕ given by

ϕ−1(t) =

{
ϕ−1(t) , 0 ≤ t ≤ ϕ(0),

0 , ϕ(0) ≤ t <∞.

By choosing a suitable generator, bivariate Archimedean copulas can be constructed, such
as Clayton, Gumbel, Frank, Joe, BB1, BB6, BB7, and BB8. Like the bivariate Gaussian and
t copulas, they have a closed-form density. Moreover, the bivariate Archimedean copulas can
model tail asymmetries. However, some of them, such as Clayton, Gumbel, Joe, BB1, BB6,
BB7, and BB8, copulas can only capture a positive dependence in contrast to the bivariate
Gaussian and t copulas. Still, their range of dependence can be extended by using their their
densities’ counterclockwise rotations for 0 < u1, u2 < 1 (Czado 2019):

• 90◦ : c90(u1, u2) = c(u2, 1− u1),

• 180◦ : c180(u1, u2) = c(1− u1, 1− u2),

• 270◦ : c270(u1, u2) = c(1− u2, u1).
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The marginally normalized contour plots of the bivariate Archimedean copulas and bivariate
Archimedean copulas’ 90◦ rotations are shown in Figures 2.4 and 2.5, respectively. We remark
that we do not refer to rotations of the random vector (U1, U2) but those of copula densities
(Czado 2019).

Example 2.13 (Bivariate Clayton copula). The generator ϕ(x; δ) = 1
δ
(x−δ − 1) gives the

bivariate Clayton copula for δ ∈ [0,∞). Its cdf is

C(u1, u2; δ) = (u−δ1 + u−δ2 − 1)−
1/δ, 0 ≤ u1, u2 ≤ 1.

Its conditional distribution function is

C2|1(u2|u1; δ) =
[
1 + uδ1

(
u−δ2 − 1

)]−1−1/δ
.

Its density is

c(u1, u2; δ) = (1 + δ)[u1u2]
−δ−1 (u−δ1 + u−δ2 − 1

)−2−1/δ
, 0 < u, v < 1.

Its upper and lower tail dependence coefficients are given by

λupper = 0, λlower = 2−1/δ.

Example 2.14 (Bivariate Gumbel copula). For δ ∈ [1,∞], the generator ϕ(x; δ) = (−log x)δ

yields the bivariate Gumbel copula. Its cdf is

C(u1, u2; δ) = exp
{
−
[
(−log u1)

δ + (−log u2)
δ
]1/δ}

, 0 ≤ u1, u2 ≤ 1.

Let x = − log u, y = − log v. Then its conditional distribution function is

C2|1(u2|u1; δ) = u−11 exp
[
−
(
xδ + yδ

)1/δ] [
1 + (y/x)δ

]1/δ−1
.

Its density for 0 < u, v < 1 is

c(u1, u2; δ) = exp
[
−
(
xδ + yδ

)1/δ] [(
xδ + yδ

)1/δ
+ δ − 1

] [
xδ + yδ

]1/δ−2
(xy)δ−1(u1u2)

−1.

Its upper and lower tail dependence coefficients are given by

λupper = 2− 21/δ, λlower = 0.

Example 2.15 (Bivariate Frank copula). The generator ϕ(x; δ) = − log ((e−δx − 1)/(e−δ − 1))
yields the bivariate Frank copula for δ ∈ R/{0}. Its cdf is

C(u1, u2; δ) = −1

δ
log

(
1 +

(e−δu1 − 1)(e−δu2 − 1)

e−δ − 1

)
, 0 ≤ u1, u2 ≤ 1.
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Its conditional distribution function is

C2|1(u2|u1; δ) = e−δu1
[(

1− e−δ
) (

1− e−δu2
)−1 − (1− e−δu1)]−1 .

Its density is

c(u1, u2; δ) =
δ
(
1− e−δ

)
e−δ(u1+u2)

[1− e−δ − (1− e−δu1) (1− e−δu2)]2
, 0 < u1, u2 < 1.

Its upper and lower tail dependence coefficients are given by

λupper = 0, λlower = 0.

Example 2.16 (Bivariate Joe copula). For δ ∈ [1,∞], the generator ϕ(x; δ) = −log (1 −
(1− x)δ) yields the bivariate Joe copula. Its cdf is

C(u1, u2; δ) = 1−
[
(1− u1)δ + (1− u2)δ − (1− u1)δ(1− u2)δ

]1/δ
, 0 ≤ u1, u2 ≤ 1.

Its conditional distribution function is

C2|1(u2|u1; δ) =
[
1 + (1− u2)δ(1− u1)−δ − (1− u2)δ

]−1+1/δ [
1− (1− u2)δ

]
.

Its density for ū1 = 1− u1, ū2 = 1− u2 and 0 < u1, u2 < 1 is

c(u1, u2; δ) =
(
ūδ1 + ūδ2 − ūδ1ūδ2

)−2+1/δ
ūδ−11 ūδ−12

[
δ − 1 + ūδ1 + ūδ2 − ūδ1ūδ2

]
.

Its upper and lower tail dependence coefficients are given by

λupper = 2− 21/δ, λlower = 0.

Example 2.17 (Bivariate BB1 copula). For δ ∈ [1,∞] and θ ∈ (0,∞), the generator

ϕ(x; δ, θ) =
(
x−θ − 1

)δ
yields the bivariate BB1 copula. Its cdf is

C(u1, u2; θ, δ) =

{
1 +

[(
u−θ1 − 1

)δ
+
(
u−θ2 − 1

)δ]1/δ}−1/θ
, 0 ≤ u1, u2 ≤ 1.

Its conditional distribution function for a = (u−θ1 − 1)δ, b = (u−θ2 − 1)δ, and 0 < u1, u2 < 1 is

C2|1(u2|u1; θ, δ) =
(
1 + (a+ b)1/δ

)−1/θ−1
(a+ b)1/δ−1a1−1/δu−θ−11 .

Its density is

c(u1, u2; θ, δ) =
(
1 + (a+ b)1/δ

)−1/θ−2
(a+ b)1/δ−2

[
θ(δ − 1) + (θδ + 1)(a+ b)1/δ

]
· (ab)1−1/δ(u1u2)−θ−1.

Its upper and lower tail dependence coefficients are given by

λupper = 2− 21/δ, λlower = 21/(δθ).
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Example 2.18 (Bivariate BB6 copula). For δ ∈ [1,∞] and θ ∈ [1,∞], the generator

ϕ(x; δ, θ) =
{
− log

[
1− (1− x)θ

]}δ
yields the bivariate BB6 copula. Its cdf with ū1 = 1−u1,

ū2 = 1− u2, and 0 ≤ u1, u2 ≤ 1 is

C(u1, u2; θ, δ) = 1−
(

1− exp

{
−
[(
− log

(
1− ūθ1

))δ
+
(
− log

(
1− ūθ2

))δ]1/δ})1/θ

.

Its conditional distribution function with a = − log
(
1− (1− uθ1)

)
, b = − log

(
1− (1− uθ2)

)
,

and w = exp
(
−
(
aδ + bδ

)1/δ)
is

C2|1(u2|u1; θ, δ) = (1− w)1/θ−1w
(
aδ + bδ

)1/δ−1
aδ−1ea

(
1− e−a

)1−1/θ
.

Its density is

c(u1, u2; θ, δ) =(1− w)1/θ−2w
(
aδ + bδ

)1/δ−2 [
(θ − w)

(
aδ + bδ

)1/δ
+ θ(δ − 1)(1− w)

]
· (ab)δ−1

(
1− ūθ

)−1 (
1− v̄θ

)−1
(ūv̄)θ−1.

Its upper and lower tail dependence coefficients are given by

λupper = 2− 21/(δθ), λlower = 0.

Example 2.19 (Bivariate BB7 copula). For δ ∈ (0,∞] and θ ∈ [1,∞], the generator

ϕ(x; δ, θ) =
[
1− (1− x)θ

]−δ − 1 yields the bivariate BB7 copula. Its cdf with ū1 = 1− u1,
ū2 = 1− u2, and 0 ≤ u1, u2 ≤ 1 is

C(u1, u2; θ, δ) = 1−
(

1−
[(

1− ūθ1
)−δ

+
(
1− ūθ2

)−δ − 1
]−1/δ)1/θ

.

Its conditional distribution function with a = −
(
1− (1− uθ1)

)−δ
, b = −

(
1− (1− uθ2)

)−δ
is

C2|1(u2|u1; θ, δ) =
[
1− (a+ b+ 1)−1/δ

]1/θ−1
(a+ b+ 1)−1/δ−1(a+ 1)1+1/δ(1− u1)θ−1.

Its density is

c(u1, u2; θ, δ) =
[
1− (a+ b+ 1)−1/δ

]1/θ−2
(a+ b+ 1)−1/δ−2[(a+ 1)(b+ 1)]1+1/δ

·
[
θ(δ + 1)− (θδ + 1)(a+ b+ 1)−1/δ

]
[(1− u1)(1− u2)]θ−1.

Its upper and lower tail dependence coefficients are given by

λupper = 2− 21/θ, λlower = 2−1/δ.
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Example 2.20 (Bivariate BB8 copula). For δ ∈ (0, 1], θ ∈ [1,∞], and η = 1− (1− δ)ϑ, the
generator ϕ(x; δ, θ) = − log {[1− (1− δx)θ/η]} yields the bivariate BB8 copula whose cdf is

C(u1, u2;ϑ, δ) = δ−1
(

1−
(
1− η−1

[
1− (1− δu1)ϑ

] [
1− (1− δu2)ϑ

])1/ϑ)
, 0 ≤ u, v ≤ 1.

Its conditional distribution function and density with a = 1− (1− δu1)ϑ, b = 1− (1− δu2)ϑ:

C2|1(u2|u1;ϑ, δ) =
η−1b (1− η−1ab)1/ϑ−1

(1− a)1/ϑ−1
.

c(u1, u2;ϑ, δ) = η−1δ
(
1− η−1ab

)1/ϑ−2 (
ϑ− η−1ab

)
(1− δu1)ϑ−1(1− δu2)ϑ−1.

Its upper and lower tail dependence coefficients are given by

λupper = 0, if δ 6= 1, λupper = 2− 21/θ, if δ = 1, λlower = 0.

As seen in the above examples, bivariate Archimedean copulas may have one or two
parameters that determine their shape, dependence, and tail behavior. Even though the
bivariate Gaussian and t copulas can be parametrized by the correlation ρ, the same does
not apply to bivariate Archimedean copulas. Moreover, the correlation changes by monotone
transformations on the variables. Hence, to make the dependence consistent and comparable,
we will use a monotone association measure invariant to monotone transformations on the
variables: Kendall’s τ (Kendall 1938). It quantifies the amount of increase tendency in one
variable given that other increases or decreases. It is between -1 and 1, where τ = 1/ − 1
refers to a perfect positive/negative monotonous association of two variables. Further, if two
variables are independent, τ = 0. In addition, there is a one-to-one relationship between
Kendall’s τ and parameters of bivariate Gaussian, t, Clayton, Gumbel, Frank, Joe, BB1, and
BB7 copulas (see Table 3.2 of Czado (2019)).

Definition 2.3: Kendall’s tau (τ)

Let (X1, X2) and (X̃1, X̃2) be independent random pairs following a continuous dis-
tribution. The two pairs are concordant if (X1 − X̃1)(X2 − X̃2) > 0, discordant if
(X1 − X̃1)(X2 − X̃2) < 0, and extra X1&X2 pair if X1 = X̃1&X2 = X̃2. Then the
Kendall’s τ between random variables X1 and X2 is

τ = P [(X1 − X̃1)(X2 − X̃2) > 0]− P [(X1 − X̃1)(X2 − X̃2) < 0].

Suppose that (xi1, xi2), i = 1, . . . , n, is a random sample from the joint distribution of
(X1, X2). In the sample, let Nc be the number of concordant pairs, Nd be the number
of discordant pairs, N1 be the number of extra x1 pairs, and N2 be the number of extra
x2 pairs. Then the Kendall’s τ estimate is

τ̂ =
Nc −Nd√

Nc +Nd +N1 ×
√
Nc +Nd +N2

.
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Figure 2.4: Marginally normalized contour plots of bivariate Archimedean copulas. The em-
pirical Kendall’s τ is 0.50 for the copulas with one parameter and is ≈0.50 for the copulas
with two parameters.

Figure 2.5: Marginally normalized contour plots of the 90◦ rotated bivariate Archimedean
copulas, except Frank. The empirical Kendall’s τ is 0.50 for the copulas with one parameter
and is ≈0.50 for the copulas with two parameters.
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2.2 Vine copulas

Another important question in copula construction is how to extend it from the bivariate
case to the multivariate case to get even more flexible dependence and high-dimensional
modeling. The pair-copula construction or the vine copula approach is an ad-hoc solution.
It applies sequentially mixing conditional distributions (Joe 1996) involving a set of bivariate
copulas. The set of bivariate copulas is mostly applied to pairs of univariate conditional
distributions. As a result, vine copulas capture a wide range of dependence, including tail
asymmetries. However, unlike the bivariate Gaussian and t copulas, they do not have the
closure property under marginalization. Furthermore, even though vine copulas do not have
a closed-form cumulative distribution function, they have a closed-form density (Bedford and

Cooke 2001) and allow any d-dimensional copula and its density to be expressed by d·(d−1)
2

bivariate copulas and their densities. Nevertheless, such an expression is not unique, and
accounting for different expressions and organizing them is important. Such an organization
tool based on an undirected graph structure was developed by Bedford and Cooke (2002) and
denoted as a regular vine (R-vine). In this section, we will introduce R-vines and then discuss
the corresponding pair-copulas with their statistical properties, such as density functions,
mainly based on Sahin and Czado (2022a) and Sahin and Czado (2022b). However, for more
details about the pair-copula construction, we refer to Aas et al. (2009) and Joe (2014).

Suppose the interest is d-dimensional dependence modeling. Then a d-dimensional pair-
copula is identified by an undirected graph. First, the graph, i.e., a d-dimensional R-vine,
consists of d − 1 nested trees, each tree Tm has a node set Vm, and an edge set Em for
m = 1, . . . , d − 1. The edges in tree level m are the nodes in tree level m + 1, and a pair
of nodes in tree Tm+1 are allowed to be connected if they have a common node in tree Tm.
A formal definition of Bedford and Cooke (2002) is that a structure V = (T1, . . . , Td−1) is a
regular vine on d elements if it meets the following conditions:

1. T1 is a tree with node set V1 = {1, . . . , d} and edge set E1.

2. Tm is a tree with node set Vm = Em−1 for m = 2, . . . , d− 1.

3. (Proximity) If an edge connects two nodes in Tm+1, their associated edges in Tm must
have a shared node in Tm.

The number of edges attached to a node gives the corresponding node’s degree. If there is
one node of degree d−m in tree Tm for m = 1, . . . , d− 2, a regular vine is called a canonical
(C-) vine as shown in Figure 2.6. Another special class of R-vines are D-vines, whose graph
structure is a path, i.e., all nodes’ degree in the graph is smaller than three, as shown in Figure
2.7. The node having a degree of one is called a leaf node.

In the representation of a vine copula or pair-copula construction by a vine, there is a
bivariate (pair) copula associated with each edge in the vine. A node in a vine represents a
variable, and an edge between a pair of nodes corresponds to dependence among the variables
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Figure 2.6: Example of a 4-dimensional C-vine.

of the respective nodes expressed by a pair-copula. For instance, the nodes and edges in
the first tree represent d variables and unconditional dependence for d− 1 pairs of variables,
respectively. In the higher trees, the conditional dependence of a pair of variables conditioning
on other variables is modeled.

The structure V = (T1, . . . , Td−1) is also called a vine tree structure and truncating a vine
after the first tree is equivalent to a Markov tree model. Thus, vines are extending Markov
trees in the sense that they allow conditional dependencies. Moreover, if the pair-copulas in
the higher tree levels than t are independence, where t < d and t ≥ 1, representing conditional
independence, a t-truncated vine copula is obtained (Brechmann 2010).

Further, selecting the parameters of the edges in the first tree level as correlations and the
parameters of the edges in the next tree levels as partial correlations, where the partial corre-
lations are conditioned on m− 1 variables in tree level m, a vine can represent a multivariate
Gaussian distribution when margins follow a univariate normal distribution, and pair-copulas
are Gaussian.

Example 2.21 Following the notation in Chapter 5 of Czado (2019), Figure 2.7 shows the
graphical specification for a 4-dimensional D-vine in the form of a set of linked trees. The
D-vine with four variables has three trees, and the jth tree has 5− j nodes and 4− j edges,
j = 1, 2, 3. The first tree level T1 consists of the node set V1 = {1, 2, 3, 4} and the edge set
E1 = {{1, 2}, {2, 3}, {3, 4}}. In the second tree level, the node set is V2 = E2, and the edge
set is E2 = {{1, 2; 3}, {2, 4; 3}}. In the last tree level, two elements exist in V3, and one edge
connects two nodes.
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The first and fourth variables are leaf nodes in the first tree, and the pairs (1,2) and (3,4)
are the leaf nodes in the second tree in Figure 2.7. Each edge is associated with a pair-copula
to model the dependence between a pair of variables. Thus, in the first tree, the pair-copulas
(their densities), C1,2, C2,3, and C3,4 (c1,2, c2,3, and c3,4) model the dependence of the three
pairs of variables, (1,2), (2,3), and (3,4), respectively. In the second tree, two conditional
dependencies are modeled: between the first and third variables given the second variable
is modeled by the edge (1,3;2) with the associated pair-copula (density) C1,3;2 (c1,3;2), and
between the second and fourth variables given the third variable is modeled by the edge (2,4;3)
with the associated pair-copula (density) C2,4;3 (c2,4;3). The two nodes in T2 are joined since
they share the common nodes 2 or 3 in T1. Likewise, the third tree models the conditional
dependence between the first and fourth variables given the second and third variables using
the associated pair-copula (density) C1,4;2,3(c1,4;2,3). In addition, if c1,4;2,3 is one everywhere
in the domain, i.e., independence copula, the resulting D-vine is a 2-truncated vine.

Figure 2.7: Example of a 4-dimensional D-vine.

Moreover, we can give the 4-dimensional joint density g of the specified D-vine. Let
F1, F2, F3, F4 denote parametric, univariate marginal distribution functions with the corre-
sponding parameters γ1,γ2,γ3,γ4, and f1, f2, f3, f4 indicate their densities. Then the 4-
dimensional joint density is

g(x1, x2, x3, x4;ψ) =c1,2
(
F1(x1;γ1), F2(x2;γ2);θ1,2

)
c2,3
(
F2(x2;γ2), F3(x3;γ3);θ2,3

)
· c3,4

(
F3(x3;γ3), F4(x4;γ4);θ3,4

)
· c1,3;2

(
F1|2(x1|x2;γ1,γ2,θ1,2), F3|2(x3|x2;γ2,γ3,θ2,3);x2,θ1,3;2

)
· c2,4;3

(
F2|3(x2|x3;γ2,γ3,θ2,3), F4|3(x4|x3;γ3,γ4,θ3,4);x3,θ2,4;3

)
· c1,4;2,3

(
F1|2,3(x1|x2, x3;γ1,γ2,γ3,θ2,3,θ1,2),

F4|2,3(x4|x2, x3;γ2,γ3,γ4,θ2,3,θ3,4);x2, x3,θ1,4;2,3
)

· f1(x1;γ1)f2(x2;γ2)f3(x3;γ3)f4(x4;γ4),
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where the vector ψ contains the marginal and pair-copula parameters. As an example of
pair-copulas, c1,3;2

(
F1|2(x1|x2), F3|2(x3|x2);x2

)
is the joint (copula) density corresponding to

the random vector
(
F1|2(X1|X2), F3|2(X3|X2)

)>
given X2 = x2. The similar notation applies

to other pair-copulas. Moreover, F1|2 is the conditional distribution of the random variable
X1|X2 = x2. Using the definition of a conditional distribution and the Sklar’s Theorem, it

can be shown that F1|2 = ∂C1,2(F1(x1;γ1),u2;θ1,2)

∂u2
|u2=F2(x2;γ2). For more details, we refer to Joe

(1996).

In Example 2.21, it is assumed that all marginal distributions are parametric, which corresponds
to the inference for margins (IFM) approach (Joe and Xu 1996). Alternatively, the copula
data can be obtained empirically, such as using kernels, called a semiparametric approach
(Genest et al. 1995).

In addition, observe that the copula density c1,3;2 depends on the specific value x2 of the
conditioning variable X2 in Example 2.21. A similar case of the dependence on the specific
value of the conditioning variables can be seen for the pair-copulas C2,4;3 and C1,4;2,3. How-
ever, we will ignore this dependence to reduce model complexity, i.e., make the simplifying
assumption. Under the simplifying assumption, the copula density does not have any condi-
tional dependence on the specific value and is a 2-dimensional copula density. For instance,
c1,3;2 is independent of the specific value of x2 and is a bivariate copula density. Nevertheless,
the pair-copulas still depend on the conditioning value through their arguments. We refer to
Stöber et al. (2013) for more details.

Example 2.22 The 4-dimensional joint density g of Example 2.21 under the simplifying as-
sumption is

g(x1, x2, x3, x4;ψ) =c1,2
(
F1(x1;γ1), F2(x2;γ2);θ1,2

)
c2,3
(
F2(x2;γ2), F3(x3;γ3);θ2,3

)
· c3,4

(
F3(x3;γ3), F4(x4;γ4);θ3,4

)
· c1,3;2

(
F1|2(x1|x2;γ1,γ2,θ1,2), F3|2(x3|x2;γ2,γ3,θ2,3);θ1,3;2

)
· c2,4;3

(
F2|3(x2|x3;γ2,γ3,θ2,3), F4|3(x4|x3;γ3,γ4,θ3,4);θ2,4;3

)
· c1,4;2,3

(
F1|2,3(x1|x2, x3;γ1,γ2,γ3,θ2,3,θ1,2),

F4|2,3(x4|x2, x3;γ2,γ3,γ4,θ2,3,θ3,4);θ1,4;2,3
)

· f1(x1;γ1)f2(x2;γ2)f3(x3;γ3)f4(x4;γ4).

For a general dimension d and R-vines, a d-dimensional joint density is similarly constructed
using d univariate marginal densities and d·(d−1)

2
associated pair-copula densities. Let cea,eb;De

be a parametric pair-copula density associated with an edge e in vine tree structure V and
θea,eb;De be its parameters (e ∈ Em, for m = 1, . . . , d − 1). Let fp denote a parametric,
univariate marginal density with the parameters γp for p = 1, . . . , d. Then a d-dimensional
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joint density g under the simplifying assumption can be constructed as follows:

g(x;ψ) =
d−1∏
m=1

∏
e∈Em

cea,eb;De
(
Fea|De(xea|xDe ;γea|De ,θea|De),

Feb|De
(
xeb |xDe ;γeb|De ,θeb|De);θea,eb;De

) d∏
p=1

fp(xp;γp),

(2.4)

where xDe = (xz)z∈De is a subvector of x = (x1, . . . , xd)
> ∈ Rd, the parameter vector

ψ contains the marginal and pair-copula parameters, Fea|De is the conditional distribution
function of the random variable Xea|XDe = xDe . It can be calculated recursively using
only pair-copula terms occuring in the previous tree levels (Joe 1996). The marginal γea|De
and pair-copula θea|De parameters, which are based on the previous tree levels, are used to
determine Fea|De . The set De is called the conditioning set, and the indices ea, eb form the
conditioned set. De has m−1 elements in tree level m; therefore, it is empty in the first tree.

D-vine copulas also allow to express the conditional density of a leaf node in the first tree
in a closed form. Assume that (xi,1, . . . , xi,d), i = 1, . . . , n, are realizations of the random
vector (X1, . . . , Xd) with their marginal distributions F1, . . . , Fd. For the D-vine copula with
the node order 1− . . .−d corresponding to the variables X1− . . .−Xd, d ≥ 2, the conditional
density f1|2,...,d of X1 given the others is

f1|2...,d(x1|x2, . . . , xd)=
[ d∏
j=3

c1,j;2,...,j−1
(
F1|2,...,j−1(x1|x2, . . . , xj−1), Fj|2,...,j−1(xj|x2, . . . , xj−1

)]
· c1,2

(
F1(x1), F2(x2)

)
f1(x1).

Further, we can calculate the conditional log-likelihood cll1|2,...,d(F1(x1), F2(x2) . . . , Fd(xd))
based on the D-vine copula as

cll1|2,...,d(F1(x1), . . . , Fd(xd)) =

d∑
j=3

[
log c1,j;2,...,j−1

(
F1|2,...,j−1(x1|x2, . . . , xj−1), Fj|2,...,j−1(xj |x2, . . . , xj−1

)]
+ log c1,2

(
F1(x1), F2(x2)

)
+ log f1(x1).

(2.5)

Additionally, as stated in Kraus and Czado (2017), the conditional quantile function F−11|2,...,d
at quantile α can be expressed in terms of the inverse marginal distribution function F−11 of
X1 and the conditional D-vine copula quantile function C−11|2,...,d at quantile α:

F−11|2,...,d(α|x2, . . . , xd) = F−11

(
C−11|2,...,d(α|F2(x2), . . . , Fd(xd)

)
. (2.6)

Once the node order in the D-vines’ first tree is determined, the associated D-vine copula
structure is also determined uniquely. However, finding the node order in the first tree is still
a question. For R-vines, the selection of a vine tree structure is even more challenging than
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for D-vines since each tree level needs to be determined. In addition, one needs to select the
pair-copula families and estimate their parameters associated with a vine. For more details
and heuristics approaches to be used, we refer to Chapter 8 of Czado (2019).

2.3 Numerical optimization

This section briefly introduces numerical optimization used in Chapters 3 and 5. Numerical
optimization is an important tool for estimating the parameters of statistical models. It
aims to find the values of the parameters that optimize the given objective function. The
objective function can be in different forms, and the parameters can be constrained. For
example, consider statistical maximum likelihood estimation: the objective is to maximize the
likelihood of a given statistical model, which depends on parameters.

Let x ∈ Rn denote the parameter vector of interest. Assume the objective is expressed by
its scalar function f(x) : Rn → R to be minimized or maximized. The vector valued function
g(x) : Rn → Rm contains scalar constraint functions that define inequalities the parameter
vector needs to satisfy. Likewise, the equations the parameter vector must comply with is
expressed by the scalar constraint functions h(x) : Rn → Rp. Then the optimization problem
is written as

max
x

f(x) (2.7a)

subject to h(x) = 0, (2.7b)

g(x) ≤ 0. (2.7c)

Such problems convey different characteristics according to the nature of the objec-
tive function, constraints, the number of parameters, and the smoothness of the func-
tions. For instance, if constraints exist/do not exist, the problems are classified as con-
strained/unconstrained optimization. A derivative-free optimization tool can be used if the
functions’ derivatives are unavailable (Larson et al. 2019; Powell 2003) as in Section 5. Based
on the optimization problem characteristics, different numerical optimization techniques exist.

While finding optimal parameters of a statistical model, one usually has an unconstrained
optimization problem, or the given problem can be converted into it as in Section 3. Thus, we
focus on solving it. An optimization algorithm starts with an initial point x0 and generates
iterative sequences {xk}∞k=0 until a solution is sufficiently accurate or the objective cannot be
improved. One of the main differences between algorithms to create such sequences lies in
their search mechanism about moving from one point xk to the next. Two main strategies
are line search (Lemaréchal 2005) and trust region methods (Sorensen 1981).

In line search methods, the algorithm chooses a direction pk, the negative (approximate)
gradient at the current point, to search for a good solution point. Then the main idea is to
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find the step size in the direction that optimizes the objective function. The search for an
optimal step size can be expressed as follows

min
α>0

f(xk + αpk).

Even though line search methods are simple and efficient to implement, they can have slow
convergence rates and get stuck in narrow valleys, giving only a local optimum point.

Another method, i.e., trust region, constructs trustworthy regions to look for a good
solution point. After identifying a region, the method searches for steps within the region,
optimizing the objective function. A model function mk using the information in the objective
function can be constructed at each iteration as

min
s

mk(xk + s),

where xk+s is in the trust region. Let ∇fk and Bk denote the gradient of fk and a matrix at
the current point xk, respectively. Bk can be the (approximate) Hessian matrix, e.g., ∇2fk or
≈ ∇2fk. Then mk is usually a quadratic function, e.g., the second order Taylor approximation
of the objective function, in the following form

mk(xk + s) = fk + s>∇fk + s>Bks.

Therefore, a good solution point is searched within the trust region and optimizes the model
function that approximates the objective function. If improvement is acceptable/unsatisfactory
in a given iteration of the trust regions method, the region gets expanded/shrank. Trust region
methods balance the exploration and exploitation of the objective function; however, initial
trust region size may significantly impact the results and need fine-tuning.

Example 2.23 Consider the following optimization problem

min
x

(x1 − 1)2 + (x2 − 1)2.

where f(x) = (x1 − 1)2 + (x2 − 1)2. The optimal solution is x∗ = (1, 1)>.
Suppose a line search and a trust region method are at the point xk = (0, 0)>. At xk,

the gradient vector and the Hessian matrix of the objective is given by ∇fk = (−2,−2)> and

∇2fk =

(
2 0
0 2

)
, respectively.

In the next iteration, a trust region can be defined as a ball centered at the current point
xk with a radius R. Then R corresponds to the size of the trust region. On the other hand,
the line search looks for the best step size in the direction −∇fk = −(−2,−2)> = (2, 2)>.

To sum up, a line search method fixes the step direction and looks for an optimal step size,
whereas a trust region method identifies a maximum distance that the method can search for
a good point and then look for a direction and step size simultaneously. For more details, we
refer to the book by Wright and Nocedal (2006).



Chapter 3

Vine copula mixture models

This chapter is mainly based on Sahin and Czado (2022b), but Section 3.7 introduces its
software implementation, and Section 3.8 discusses further open research problems.

3.1 Motivation

Finite mixture models are convenient statistical tools for model-based clustering. They assume
that observations in the multivariate data can be clustered using k components. Each compo-
nent has its density, and each observation is assigned to a component with a probability. They
have many applications in finance, genetics, and marketing (e.g., Hu (2006); Gambacciani
and Paolella (2017); Sun et al. (2017); Zhang and Shi (2017)). McLachlan and Peel (2000)
provides more details about finite mixture models. Bouveyron and Brunet-Saumard (2014)
and McNicholas (2016) review recent model-based clustering methods.

One of the main questions to be addressed in the finite mixture models is how to select the
density of each component. An early answer to this question is to assume a symmetric distri-
bution such as multivariate normal distribution (e.g., Celeux and Govaert (1995); Fraley and
Raftery (1998)) or multivariate t distribution (e.g., Peel and McLachlan (2000); Andrews and
McNicholas (2011)). However, these models cannot accommodate the shape of asymmetric
components. Hennig (2010) showed one such data example. Their skewed formulations and
factor analyzers, therefore, have been extensively studied (e.g., Lin et al. (2007); Lee and
McLachlan (2014); Murray et al. (2017)).

Additionally, the models based on other distributions, for example, shifted asymmetric
Laplace distributions (Franczak et al. 2014), multivariate power exponential distributions
(Dang et al. 2015), and generalized hyperbolic distributions (Browne and McNicholas 2015)
have been proposed for the past few years. Since one of the main interests of copulas is
to relax the normality assumption both in marginal distributions and dependence structure,
the finite mixture models with copulas have also been studied (e.g., Diday and Vrac (2005);
Kosmidis and Karlis (2016); Zhuang et al. (2021)). Cuvelier and Noirhomme-Fraiture (2005)

27
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worked with the Clayton copula to represent lower tail dependence within the components,
while Vrac et al. (2005) applied the Frank copula to have non-Gaussian but symmetric depen-
dence. Nevertheless, these methods raise another question in the finite mixture models: how
to select flexible densities of each component so the model can represent different asymmetric
or/and tail dependencies for different pairs of variables. For this question, the vine copula
or pair-copula construction is a flexible and efficient tool in high-dimensional dependence
modeling (Aas et al. 2009; Joe 1996).

To motivate, consider a data set shown in Figure 3.1 simulated from a mixture of two
three-dimensional vine copulas. Its data generating process includes asymmetric tail and
non-Gaussian dependencies in the components. Most univariate margins are chosen to be
non-Gaussian and heavy-tailed as listed in Table 3.3. As seen in the top left panel of Figure
3.1, the components are well separated in two out of three bivariate scatter plots. Marginal
multimodality can be seen for the second variable. The resulting components are non-elliptical,
similar to a banana shape, as shown in the top right. After fitting a mixture of multivariate
normal distributions with two components, its challenge to capture the true shape of the
components can be seen in the bottom left panel, where the associated Bayesian Information
Criterion (BIC) (Schwarz 1978) and misclassification rate, the number of misclassified obser-
vations in the sample divided by the total number of observations, are provided. Even though
fitting a mixture of multivariate skew t distributions with two components in the bottom right
provides a better fit than the mixture of multivariate normal distributions fit, it can also not
reveal the true characteristics of the data set. The mixture of multivariate normal distribu-
tions and multivariate skew t distributions is fitted using the R packages mclust (Scrucca
et al. 2016) and mixsmsn (Prates et al. 2013), respectively. The fitting procedures apply
100 different seeds and report the best performance in terms of the misclassification rate.

To capture such behavior, applying vine copulas in finite mixture models has been explored
before (e.g., Kim et al. (2013); Roy and Parui (2014); Weiß and Scheffer (2015); Sun et
al. (2017)). However, they only worked with a subclass of vine tree structures and a small
number of pair-copula families. Therefore, a vine copula mixture model allowing for all classes
of vine tree structures and many different pair-copula families is needed. Since it provides
flexible densities, formulating its model-based clustering algorithm overcomes the drawbacks
mentioned above, especially for non-Gaussian data.

In this chapter, we formulate a vine copula mixture model for continuous data allowing all
types of vine tree structures, parametric pair-copulas, and margins. For simplicity, we treat
the number of components as known and present well-performing solutions for the remaining
model selection problems. We adopt the expectation conditional maximum algorithm for pa-
rameter estimation (Meng and Rubin 1993). We present the first study in the finite mixture
models literature that works with the full class of vine tree structures and a wide range of
pair-copula families to the best of our knowledge. It combines the flexibility of vine copulas
and finite mixture models to capture complex and diverse dependence structures in multi-
variate data. Another contribution is a new model-based clustering algorithm, called VCMM,
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Figure 3.1: Pairwise scatter plot of a simulated data set (500 observations per component)
under the scenario specified in Table 3.3 (top left). The orange and red points show the
observations of one cluster and the other cluster (top right), respectively. The bottom left
and bottom right plots display the fitted mixture of multivariate normal and multivariate
skew t distributions, respectively. The diagonal of the plots gives the fitted marginal density
function for each component.

that incorporates realistic interdependence structures of clusters. The proposed algorithm is
interpretable and allows for various shapes of the clusters. For instance, it shows how the
dependence structure varies within clusters of the data.
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The remainder of the chapter is organized as follows. Sections 3.2, 3.3, and 3.4 describe
the vine copula mixture model and discuss the model selection and parameter estimation
problems. Section 3.5 provides the new model-based clustering algorithm based on it, and
simulation studies are presented in Section 3.6. The corresponding software is detailed in
Section 3.7. Section 3.8 discusses open problems, and Section 3.9 concludes the chapter.

3.2 Vine copula mixture model formulation

We formulate a vine copula mixture model, which is fully parametric, i.e., it works with
parametric pair-copulas and univariate marginal distributions.

Suppose data consists of n observations, where an observation xi = (xi,1, . . . , xi,d)
>

is an independent realization of a d-dimensional random vector X = (X1, . . . , Xd)
> for

i = 1, . . . , n. Assume that a mixture of k components (k ∈ R+) generates the data, and
the density gj of the jth component for j = 1, . . . , k can be stated as given in Equation
(2.4). Assume that, additionally, the jth component has a mixture weight πj with πj ∈ (0, 1)

for j = 1, . . . , k and
k∑
j

πj = 1. Then the density of the vine copula mixture model for

X = (X1, . . . , Xd)
> at x = (x1, . . . , xd)

> can be written as

g(x;η) =
k∑
j=1

πj · gj(x;ψj). (3.1)

Here the vector ψj contains the marginal and pair-copula parameters of the jth component,
η denotes all model parameters, i.e., η = (η1, . . . ,ηk)

> and ηj = (πj,ψj)
> for j = 1, . . . , k.

Example 3.1 (Vine copula mixture model formulation in three dimensions with two com-

ponents). Assume data, where an observation xi =
(
xi,1, xi,2, xi,3

)>
for i = 1, . . . , n is

given, and there are two components generating the data with the mixture weights π1 > 0,
π2 > 0, and π1 + π2 = 1. An observation of the first and second component is an in-
dependent realization of a 3-dimensional random vector X(1) = (X1(1), X2(1), X3(1))

> and
X(2) = (X1(2), X2(2), X3(2))

>, respectively.
The vine tree structure’s edge sets of the first component are E(1)1 = {{1, 2}, {2, 3}}

for the first tree level, E(1)2 = {1, 3; 2} for the second tree level and that of the second
component are E(2)1 = {{1, 2}, {1, 3}}, E(2)2 = {2, 3; 1}, respectively. The pair-copula
families and marginal distributions of both components are parametric. Accordingly, C(1)1,2,
C(1)2,3, C(1)1,3;2 denote pair-copula families of the first component associated with the edges
in E1(1) and E2(1), while θ(1)1,2, θ(1)2,3, θ(1)1,3;2 show the corresponding parameters. For the
second component, we use notations C(2)1,2, C(2)1,3, C(2)2,3;1 for pair-copula families associated
with the edges in E1(2) and E2(2), and θ(2)1,2, θ(2)1,3, θ(2)2,3;1 refer to the corresponding
parameters. A copula density is denoted by the small c letter.
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F1(1/2), F2(1/2), F3(1/2) refer to the marginal distributions of the random variables X1(1/2),
X2(1/2), X3(1/2) with the corresponding parameters γ1(1/2),γ2(1/2),γ3(1/2) for the first/second
component. The small f letter denotes a marginal density.

We can now write the density of the first component at x = (x1, x2, x3)
>:

g1(x;ψ1)=c(1)1,2
(
F1(1)(x1;γ1(1)), F2(1)(x2;γ2(1));θ(1)1,2

)
· c(1)2,3

(
F2(1)(x2;γ2(1)), F3(1)(x3;γ3(1));θ(1)2,3

)
· c(1)1,3;2

(
F(1)1|2(x1|x2;γ1(1),γ2(1),θ(1)1,2), F(1)3|2(x3|x2;γ3(1),γ2(1),θ(1)2,3);θ(1)1,3;2

)
· f1(1)(x1;γ1(1)) · f2(1)(x2;γ2(1)) · f3(1)(x3;γ3(1)),

(3.2)
where the pair-copula parameters used to determine the conditional distribution functions
F(1)1|2 and F(1)3|2 are given by θ(1)1|2 = θ(1)1,2 and θ(1)3|2 = θ(1)2,3, respectively. The marginal
parameters needed for the same calculation are denoted by γ(1)1|2 = (γ1(1),γ2(1))

> and
γ(1)3|2 = (γ2(1),γ3(1))

>. We show the marginal and pair-copula parameters of the first compo-
nent by ψ1 = (γ1,θ1)

>, where γ1 = (γ1(1),γ2(1),γ3(1))
> and θ1 = (θ(1)1,2,θ(1)2,3,θ(1)1,3;2)

>.
As in the first component, we can define the parameters and write the density of the second
component at x = (x1, x2, x3)

>:

g2(x;ψ2)=c(2)1,2
(
F1(2)(x1;γ1(2)), F2(2)(x2;γ2(2));θ(2)1,2

)
· c(2)1,3

(
F1(2)(x1;γ1(2)), F3(2)(x3;γ3(2));θ(2)1,3

)
· c(2)2,3;1

(
F(2)2|1(x2|x1;γ2(2),γ1(2),θ(2)1,2), F(2)3|1(x3|x1;γ3(2),γ1(2),θ(2)1,3);θ(2)2,3;1

)
· f1(2)(x1;γ1(2)) · f2(2)(x2;γ2(2)) · f3(2)(x3;γ3(2)),

(3.3)
As a result, the vine copula mixture model density at x = (x1, x2, x3)

> is given by

g(x;η) = π1g1(x;ψ1) + π2g2(x;ψ2), (3.4)

where η1 = (π1,ψ1)
> and η2 = (π2,ψ2)

> indicate the model parameters of the first and
second component. All model parameters are given by η = (η1,η2)

>.

3.3 Model selection

Vine copula mixture models inherit the problem of estimating the total number of components
k hidden in the data from finite mixture models. Moreover, due to its formulation in Equations
(2.4) and (3.1), the vine tree structure Vj, pair-copula families Bj(Vj), and marginal distri-
butions Fj = {F1(j), . . . , Fd(j)} of the jth component need to be chosen for j = 1, . . . , k.
Accordingly, pair-copula parameters θj(Bj(Vj)) and marginal parameters γj(Fj) should be
estimated for j = 1, . . . , k. To simplify, we will assume that the total number of components
generating the data is known. If a priori information about k with complete certainty does not
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exist, methods that estimate it from the data need to be developed for vine copula mixture
models. Even though we will propose a first approach for the number of clusters selection
problem in Section 3.8, it is currently not our focus. Instead, we will explain the approaches
to the remaining model selection problems.

Assume an observation xi = (xi,1, . . . , xi,d)
> is assigned to a component for i = 1, . . . , n.

We will learn model components with the assignment for which approaches are presented in
Section 3.5. We will discuss a modification when it is hard to learn model components, e.g.,
components have non-negligible overlaps, in Section 3.6.

Assume the total number of observations assigned to the jth component is nj, and the
observations belonging to the jth component are given by x(j)ij = (x(j)ij ,1, . . . , x(j)ij ,d)

> for

ij = 1, . . . nj and j = 1, . . . , k. It holds that
k∑
j=1

nj = n and
⋃
∀(j,ij)

x(j)ij =
⋃
∀i
xi. We denote

the pth variable in the jth component by xp(j) = (x(j)1,p, . . . , x(j)nj ,p)
> for p = 1, . . . d and

j = 1, . . . , k. With the given assignment, we first select the marginal distributions of each
cluster. Their candidate set could be prespecified or chosen by a data analysis, such as using
a histogram and quantile-quantile (QQ) plot. In addition, the marginal distribution family
Fp(j) for the variable xp(j) can be determined using a model selection criteria. More precisely:

• Marginal distribution selection Fj: For p = 1, . . . , d and j = 1, . . . , k, the log-
likelihood of the marginal distribution Fp(j) with the density fp(j) and parameters γp(j)
on the variable xp(j) is

`(γp(j)) =

nj∑
i=1

log
(
fp(j)(x(j)i,p;γp(j))

)
for p = 1, . . . d and j = 1, . . . k. (3.5)

The BIC, a commonly used model selection criteria, is given by

BIC(γp(j)) = −2 · `(γp(j)) + |γp(j)| · log (nj) for p = 1, . . . d and j = 1, . . . k, (3.6)

where |γp(j)| refers to the number of marginal parameters in Fp(j), and nj denotes the
total number of observations in xp(j). For each candidate for the marginal distribution
on the variable xp(j), first, the parameters that maximize the log-likelihood `(γp(j)) are

estimated, then the marginal distribution family with the lowest BIC is selected: F̂p(j).

Since the joint density can be decomposed into univariate marginal densities and a vine copula
density, we now estimate the u-data for a vine copula model by applying the probability integral
transformation using the estimated margins F̂p(j) for each cluster: ûp(j) = F̂p(j)(xp(j); γ̂p(j))
and set ûp(j) = (û(j)1,p, . . . , û(j)nj ,p)

>. After obtaining the u-data of the jth component, the
best selection of Vj would be the true structure selection, but the total number of vine tree

structures on d variables is d!
2
· 2(d−2

2 ) (Morales-Nápoles 2010). If d is small, it is possible to
enumerate all possible structures. However, it is usually not a feasible approach, even with
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small dimensions, as one also needs to select pair-copula families for each scenario. Therefore,
a greedy algorithm proposed for vine tree structure and pair-copula family selections might
be used for each component like the greedy algorithm of Dißmann et al. (2013). Briefly, it
works as follows:

• Vine tree structure selection Vj: For j = 1, . . . , k, it proceeds sequentially tree by
tree, starting from tree one, and finds the maximum spanning tree at each tree among
all edges allowed by proximity. Edge weight is the absolute empirical Kendall’s τ value
between the pair of nodes forming the edge.

• Pair-copula family selection Bj(Vj): For j = 1, . . . , k, after learning the vine tree
structure, pair-copula families of the given structure are also estimated sequentially tree
by tree. For a parametric pair-copula C(j)ea,eb;De associated with an edge e in Vj with
the density c(j)ea,eb;De and parameters θ(j)ea,eb;De , one first estimates the parameters
that maximize the log-likelihood `(θ(j)ea,eb;De). Later the copula family with the lowest
Akaike Information Criterion (AIC) (Akaike 1998) is chosen:

AIC(θ(j)ea,eb;De)= −2·`(θ(j)ea,eb;De)+2·|θ(j)ea,eb;De| for j = 1, . . . k and e ∈ Vj, (3.7)

where |θ(j)ea,eb;De| denotes the number of copula parameters in c(j)ea,eb;De . One does
not need an alternative selection criterion like the BIC to induce model sparsity for
the pair-copula family selection when the fitted pair-copula families have one or two
parameters as later applied in Section 3.5.

3.4 Parameter estimation

Given that the marginal distributions, vine tree structure, and associated pair-copula families
of each component are selected and known, another task in vine copula mixture models is to
estimate the model parameters η in Equation (3.1). We remark that while selecting marginal
distributions and pair-copula families, their parameters are also estimated. However, they are
just the initial values. The optimal parameter estimates would be the values that maximize
the log-likelihood of the given data defined in Equation (3.8):

`(η) = log
n∏
i=1

g(xi;ψ) = log
n∏
i=1

k∑
j=1

πj · gj(xi;ψj). (3.8)

Nevertheless, the true assignment of the observations to each component is unknown, and
the parameter estimates would change depending on the component to which an observation
belongs. As a solution to this problem, the expectation-maximization (EM) algorithm (Demp-
ster et al. 1977) views the observations xi = (xi,1, . . . , xi,d)

> as incomplete and introduces
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latent variables zi = (zi,1, . . . , zi,k)
>, where each element zi,j is a binary variable defined as

zi,j =

{
1, if xi belongs to the j th component,

0, otherwise,
(3.9)

and
k∑
j=1

zi,j = 1. The random vector Zi corresponding to zi follows a multinomial distribution

with one trial and probabilities π1, . . . , πk, that is, Zi ∼ Mult
(
1,π = (π1, . . . , πk)

)
. Then

we can write the complete data log-likelihood `c(η; z,x) of the complete data yi = (xi, zi)
>

from Equation (3.1) as

`c(η; z,x)= log
n∏
i=1

k∏
j=1

[πj · gj(xi;ψj)]zi,j=
n∑
i=1

k∑
j=1

zi,j · log πj +
n∑
i=1

k∑
j=1

zi,j · log gj(xi;ψj),

(3.10)
where gj(xi;ψj) is given in Equation (2.4). Hence, we can write:

`c(η; z,x)=
n∑
i=1

k∑
j=1

[zi,j · log πj] +
n∑
i=1

k∑
j=1

d∑
p=1

[zi,j · log fp(j)(xi,p;γp(j))]

+
n∑
i=1

k∑
j=1

d−1∑
m=1

∑
e∈E(j)m

[
zi,j · log c(j)ea,eb;De

(
F(j)ea|De(xi,ea|xi,De ;γ(j)ea|De ,θ(j)ea|De),

F(j)eb|De
(
xi,eb|xi,De ;γ(j)eb|De ,θ(j)eb|De);θ(j)ea,eb;De

)]
.

(3.11)
Note that we use θj for the pair-copula parameters instead of θj(Bj(Vj)) and γj for the
marginal parameters instead of γj(Fj) to simplify notation.

The EM algorithm alternates the E and M steps, increasing the data log-likelihood at each
iteration (Dempster et al. 1977). The E-step requires calculating the conditional expectation
of the complete-data log likelihood, given the observed data and current parameter estimates.
The M-step maximizes the expected complete data log-likelihood from the E-step over all
parameters. We need to estimate marginal parameters γj, pair-copula parameters θj, and
mixture weight πj of the jth component. Since their joint estimation is not tractable and
efficient, we use the expectation conditional maximum (ECM) algorithm (Meng and Rubin
1993). Here, the M-step in the EM is replaced by three lower dimensional maximization prob-
lems called CM-steps. The vine tree structure, associated pair-copula families, and marginal
distributions remain fixed at the given choice for each component in the ECM iterations. Then
the (t+ 1)th iteration steps are

1. E-step (Posterior probabilities): Calculate the posterior probability that an observation

xi belongs to the jth component given the current values of the model parameters π
(t)
j
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and ψ
(t)
j = (γ

(t)
j ,θ

(t)
j )>:

r
(t+1)
i,j =

π
(t)
j gj(xi;ψ

(t)
j )

k∑
j′=1

π
(t)
j′ gj′(xi;ψ

(t)
j′ )

for i = 1, . . . n and j = 1, . . . k. (3.12)

2. CM-step 1 (Mixture weights): Maximize `c(η; z,x) over πj given the updated poste-

rior probabilities r
(t+1)
i,j :

π
(t+1)
j = arg max

πj

n∑
i=1

r
(t+1)
i,j · log πj for j = 1, . . . k. (3.13)

A closed form solution exists and is given by

π
(t+1)
j =

n∑
i=1

r
(t+1)
i,j

n
for j = 1, . . . k. (3.14)

3. CM-step 2 (Marginal parameters): Optimal marginal parameter estimates γ∗j of the
jth component would maximize `c(η; z,x) over γj given the current values of the

pair-copula parameters θ
(t)
j and updated posterior probabilities r

(t+1)
i,j :

γ∗j = arg max
γj

n∑
i=1

r
(t+1)
i,j · log gj(xi;γj,θ

(t)
j ) for j = 1, . . . k. (3.15)

However, since a closed form solution does not exist, we numerically maximize `c(η; z,x)
over γj

max
γj

n∑
i=1

r
(t+1)
i,j · log gj(xi;γj,θ

(t)
j ) for j = 1, . . . k (3.16)

to find the updated values of the marginal parameters γ
(t+1)
j .

4. CM-step 3 (Pair-copula parameters): Again, a closed form solution that maximizes

`c(η; z,x) over θj given the current values of the marginal parameters γ
(t+1)
j and

updated posterior probabilities r
(t+1)
i,j does not exist. Hence, we numerically maximize

`c(η; z,x) over θj

max
θj

n∑
i=1

r
(t+1)
i,j · log gj(xi;γ

(t+1)
j ,θj) for j = 1, . . . k (3.17)
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to find the updated values of the pair-copula parameters θ
(t+1)
j . In the case of a d-

dimensional vine copula with parametric pair-copulas, the total number of pair-copula
parameters to be estimated grows quadratically in dimension d. However, truncating
a vine tree structure at tree level 1, i.e., obtaining a Markov tree, reduces the total
number of parameter estimates linear in dimension d, one of the main motivations for
the third step’s formulation with Markov trees in our Algorithm in Section 3.5.

Starting values: For the ECM algorithm to run, we require initial parameters η
(0)
j of the

jth component for j = 1, . . . , k. Since the marginal distributions, vine tree structure, and
associated pair-copula families of each component stay fixed in the ECM iterations, we,
additionally, need to select them. One method is to select an initial partition in advance.
A more general alternative is to use quick clustering algorithms with possible weights of
observations xi = (xi,1, . . . , xi,d)

> for i = 1, . . . , n in different components to have a starting
partition. Assume that the total number of observations assigned to the jth component at
the 0th iteration is n

(0)
j , and the observations belonging to the jth component at the 0th

iteration are given by x
(0)
(j)ij

= (x
(0)
(j)ij ,1

, . . . , x
(0)
(j)ij ,d

)> for ij = 1, . . . , n
(0)
j and j = 1, . . . , k. It

holds that
k∑
j=1

n
(0)
j = n and

⋃
∀(j,ij)

x
(0)
(j)ij

=
⋃
∀i
xi. After specifying an initial set for parametric

marginal distributions, vine tree structures and associated parametric pair-copula families, the
starting values can be obtained as follows:

1. Initial marginal distributions F
(0)
p(j) and marginal parameters γ

(0)
p(j): For j = 1, . . . , k

and p = 1, . . . , d, the marginal parameters maximize the log-likelihood of a variable
x
(0)
p(j) = (x

(0)
(j)1,p, . . . , x

(0)

(j)n
(0)
j ,p

)> given in Equation (3.5), then the marginal distribution

with the lowest BIC given in Equation (3.6) is chosen as described in Section 3.3.

2. Initial vine tree structure V(0)
j , pair-copula families V(0)

j (B(0)
j ) and its parameters θ

(0)
(j) :

For j = 1, . . . , k and p = 1, . . . , d, first, the cumulative distribution function of the
chosen marginal distribution F

(0)
p(j) with parameters γ

(0)
p(j) on the variable x

(0)
p(j) is fitted to

obtain u-data of the jth component, u
(0)
p(j) = F

(0)
p(j)(x

(0)
p(j);γ

(0)
p(j)). The estimated u-data

is then used to select a vine or Markov tree and the associated pair-copula families with
their parameters as discussed in Section 3.3.

3. Initial mixture weights π
(0)
(j) : For j = 1, . . . , k, they are proportional to the total number

of observations belonging to the jth component and given by π
(0)
(j) =

n
(0)
j

n
.

The ECM is sensitive to the starting values, and a poor choice of them may result in conver-
gence to a local maximum as an EM-type algorithm (Karlis and Xekalaki 2003). However,
our starting values optimize an associated model selection criterion based on the data log-
likelihood. Even though there is no guarantee that the vine copula mixture model initialized
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by a fast clustering algorithm will select the correct model components, and its ECM itera-
tions will converge to the global optimum, we show promising results of our current setup and
discuss modifications with simulation studies in Section 3.6.

Stopping condition: A stopping criterion terminates the ECM algorithm when the rel-
ative difference in the data log-likelihood between two successive iterations is less than the
desired tolerance as follows:

`(η(t+1))− `(η(t))

`(η(t))
< tol for t = 1, . . . , (s− 1). (3.18)

We use the tolerance level (tol) 0.00001 in our simulation studies in Section 3.6 and real data
analysis in Section 3.8.

3.5 Model-based clustering algorithm: VCMM

After discussing the vine copula mixture model formulation, model selection and parameter
estimation problems, we will formulate a model-based clustering algorithm (VCMM) with
vine copula mixture models. We provide our pseudo-code in Algorithm 1, which consists
of six primary building blocks. We implement these blocks as a R software package, called
vineclust (Sahin 2021), explained in Section 3.7.

The first step (initial clustering assignment via a fast clustering algorithm) partitions
observations xi = (xi,1, . . . , xi,d)

> for i = 1, . . . , n into k components (clusters) using a
quick clustering algorithm. Our analyses will mostly use the distance-based clustering, k-means
(Hartigan and Wong 1979) algorithm, with default specifications used in the package stats.
Alternative clustering algorithms or partitions could be specified based on the analyzed data
set. We will present an exemplary scenario in Section 3.6. For clustering algorithms, which
are sensitive to the variables’ scale, like k-means, one can apply a standardization for each
variable; for instance, using the function scale. Since these algorithms might depend on
the seed, we will present a real data analysis in Section 3.7 to guide choosing a good option.

As a second step, we select an initial VCMM model. The marginal distributions are
determined among a candidate set of univariate parametric distributions by a model selection
criteria. As discussed in Section 3.3, the parametric families in the candidate set could be
chosen after initial graphical data analysis as given in the top left of Figure 3.1. Using the
chosen parametric marginal distributions, we obtain the u-data. Then we first truncate a vine
tree structure at tree level one for the initial selection of vine copula models, thereby obtaining
a Markov tree model. As discussed in Section 3.4, working with Markov trees allows us to
decrease the optimization problem’s size (CM-step 3) from quadratic to linear in dimension
d, thereby reducing our computational effort. However, the performance of using different
truncation levels might be investigated in the future. A wide range of parametric pair-copula
families is applicable. For this part, our software is based on the package VineCopula and
mainly its function RVineStructureSelect (Nagler et al. 2021). The VCMM selects
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d · k marginal distributions, k Markov tree structures, and (d− 1) · k pair-copula families at
this initial model selection step.

The third step (parameter estimation via the ECM algorithm allowing for Markov (vine)
tree structures) updates the VCMM parameters while keeping the marginal distributions,
Markov tree structures, and pair-copula families fixed until a stopping condition holds. For
each cluster, its mixture weight, pair-copula parameters, and marginal parameters are updated
per iteration. The total number of updated parameters per iteration is the sum of the total
number of pair-copula parameters, marginal parameters, and mixture weights over k clusters.
Assume the ECM stops after s iterations. The total number of updated parameters up to this
point is linear in dimension d, the total number of clusters k, and iterations s.

Next, we partition the observations into k clusters with the updated posterior probabilities
as a temporary clustering assignment. An observation is a member of the cluster, where its
posterior probability is highest.

The marginal distributions and dependence structure of the clusters can change due to the
successive ECM steps. Moreover, dependencies can exist in higher tree levels, and accounting
for those can improve model power. Thus, we perform a final model selection, and it is based
on a full vine specification. The fifth step estimates the model components, including all
possible vine tree levels and their parameters, with the fourth step’s clustering assignment.
The VCMM chooses d · k marginal distributions, k vine tree structures, and d·(d−1)

2
· k pair-

copula families. The total number of updated parameters with this final step is linear in the
total number of clusters k and iterations s, as in the third step, but is quadratic in dimension d
due to the estimation of all possible vine tree levels. Using a full vine specification introduces
additional parameter estimates; however, it increases model power as shown in Section 3.7.

The last step (final clustering assignment based on the full vine specification) assigns the
observations to the clusters with the final model’s posterior probabilities.
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Algorithm 1 Vine copula mixture models clustering: VCMM

Input: d-dimensional n observations to cluster xi = (xi,1, . . . , xi,d)
> ∈ Rd for i = 1, . . . , n and total number of clusters k.

Output: A clustering partition of the observations C = {C1, . . . , Ck}, estimated model components and parameters of the jth

cluster F̂j , γ̂j , V̂j , B̂j(V̂j), θ̂j
(
B̂j(V̂j)

)
, π̂j and final posterior probabilities r

(final)
i,j for i = 1, . . . , n and j = 1, . . . , k.

for j = 1, . . . , k do
Step I: Initial clustering assignment via a fast clustering algorithm

x
(0)
(j)ij

← (x
(0)
(j)ij ,1

, . . . , x
(0)
(j)ij ,d

)> for ij= 1, . . . , n
(0)
j ,

k∑
j=1

n
(0)
j = n and

⋃
∀(j,ij)

x
(0)
(j)ij

=
⋃
∀i
xi.

Step II: Initial model selection based on the Step I assignment
for p = 1, . . . , d do

x
(0)
p(j)
← (x

(0)
(j)1,p

, . . . , x
(0)

(j)n
(0)
j ,p

)>,

(F
(0)
p(j)

,γ
(0)
p(j)

)← argmin
mar,γ

− 2· `mar(γ;x(0)
p(j)

)+ |γ|· log (n
(0)
j ), where `mar is the log-likelihood of the univariate

distribution mar for mar∈{candidate univariate parametric marginal distributions},
u
(0)
p(j)
← F

(0)
p(j)

(x
(0)
p(j)

;γ
(0)
p(j)

),

end for
u
(0)
(j)
← (u

(0)
1(j)

, . . . ,u
(0)
d(j)

)>,

F(0)
j ← {F (0)

1(j)
, . . . , F

(0)
d(j)
},

bicop ∈ {candidate parametric pair-copula families},

π
(0)
j ←

n
(0)
j

n
,

modelmarkov ← RVineStructureSelect (u
(0)
(j)

, familyset=bicop, trunclevel=1), where RVineStructureSelect determines

the vine tree structure truncated at tree level 1, associated pair-copula families among the set bicop and its parameters for the
component j as described in Section 3.3,

V(0)
j ← modelmarkov$Matrix, B(0)j ← modelmarkov$Family, θ

(0)
j ← modelmarkov$pars.

end for
Step III: Parameter estimation via the ECM algorithm allowing for Markov (vine) tree structures
while stop=FALSE do

t← 0,
for j = 1, . . . , k do

F(t+1)
j ← F(0)

j , V(t+1)
j ← V(0)

j , B(t+1)
j ← B(0)j ,

Update r
(t+1)
i,j as in Equation (3.12) for i = 1, . . . , n,

Update π
(t+1)
j , γ

(t+1)
j and θ

(t+1)
j sequentially as in Equations (3.14), (3.16) and (3.17), respectively,

end for
t← t+ 1,
if the termination criterion like in Equation (3.18) holds then

s← t, stop=TRUE and break.
end if

end while
Step IV: Temporary clustering assignment based on the Markov (vine) tree structure

xi ∈ Cj∗ ⇐⇒ j∗ = argmax
j=1,...,k

r
(s)
i,j for i = 1, . . . , n.

for j = 1, . . . , k do

x
(s)
(j)ij

← (x
(s)
(j)ij ,1

, . . . , x
(s)
(j)ij ,d

)> for ij = 1, . . . , n
(s)
j ,

k∑
j=1

n
(s)
j = n,

⋃
∀(j,ij)

x
(s)
(j)ij

=
⋃
∀i
xi.

Step V: Final model selection based on a full vine specification

Perform lines 7– 12 with the new assignment x
(s)
(j)ij

and change the iteration index from (0) to (s),

mV CMM ← RVineStructureSelect (u
(s)
(j)

, familyset=bicop, trunclevel=d-1),

V(s)
j ← mV CMM$Matrix, B(s)j ← mV CMM$Family and θ

(s)
j ← mV CMM$pars.

end for
Step VI: Final clustering assignment based on the full vine specification

xi ∈ Cj∗ ⇐⇒ j∗ = argmax
j=1,...,k

r
(s+1)
i,j for i = 1, . . . , n, where r

(s+1)
i,j are the posterior probabilities calculated from the final

model,

F̂j ← {F
(s)
1(j)

, . . . , F
(s)
d(j)
}, γ̂j ← {γ

(s)
1(j)

, . . . ,γ
(s)
d(j)
}, V̂j ← V

(s)
j , B̂j(V̂j)← B

(s)
j , θ̂j

(
B̂j(V̂j)

)
← θ

(s)
j , π̂j ← π

(s)
j , r

(final)
i,j ←

r
(s+1)
i,j .
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3.6 Simulation studies

This section will demonstrate the remarkable and promising results of our clustering algorithm,
VCMM, using simulated data. We compare its performance with the initial partition from
k-means to some well-known model-based clustering algorithms: the mixture of multivariate
normal, skew normal, t, and skew t distributions, i.e., we perform various benchmarking
analyses in clustering. We fit the mixture of multivariate normal distributions using the
package mclust and the others using the package mixsmsn. The latter fits scale mixtures
of skew normal distributions and works with the initial partition of k-means like our algorithm.
Therefore, the comparison of the performance of the VCMM and the chosen competing
algorithms is fairer. We work with the default specifications of the packages but specify the
total number of clusters and seed. For the clustering performance evaluation, we use the BIC
value and misclassification rate when the true labels are available. The lower the BIC value
or misclassification rate, the better the clustering assignment.

The BIC criterion compares only the models studied; thus, it selects a better model
among the evaluated ones. However, it does not imply that it selects the best model. Since
unsupervised learning problems do not contain the true labels of the observations, a separation
of the data in training and test sets is not feasible. Therefore, the misclassification rate we
consider can be regarded as the in-sample misclassification rate of supervised learning.

Our candidate set for margins is normal, Student’s t with degrees of freedom 3, logistic, log-
normal, log-logistic, and gamma distribution whose abbreviations are listed in Table 3.1. Thus,
we allow for a heavy-tailed marginal distribution. Our pair-copula families are parametric:
Gaussian (N), t (t), Clayton (C), Gumbel (G), Frank (F), Joe (J), BB1, BB6, and BB8
copula. Since we apply their possible 90◦, 270◦, and 180◦ (S) rotations, the total number
of pair-copula families utilized is 27. Chapter 3 of Czado (2019) provides more details about
them. Thus, we have a flexibility to capture different dependence structures in data. As a
stopping criterion given in Equation (3.18), we use the tolerance level (tol) 0.00001.

Table 3.1: Abbreviation for univariate marginal distributions used in Chapter 3.

lnorm(µ, σ) log-normal distribution with mean parameter µ,
standard deviation parameter σ on the logarithmic scale,

exp(λ) exponential distribution with rate parameter λ,
llogis(α, β) log-logistic distribution with shape parameter α, scale parameter β,
logis(l, s) logistic distribution with location parameter l, scale parameter s,
Γ(α, β) gamma distribution with shape parameter α, rate parameter β,
N (µ, σ) normal distribution with mean parameter µ, standard deviation σ,
t3(µ, σ) Student’s t distribution with mean parameter µ, standard deviation

parameter σ, degrees of freedom 3.



41 Vine copula mixture models

In the first two scenarios, the simulated data has three variables, two clusters, and either
100 or 500 observations in each cluster, and we replicate their data generating process 100
times. Now Xp(1) = F−1p(1)(Up(1);γp(1)) and Xp(2) = F−1p(2)(Up(2);γp(2)) for p = 1, 2, 3 give
the variables of the first and second clusters, respectively. We simulate Up(1) and Up(2) from
a specified vine copula model and specify Fp(1), Fp(2),γp(1),γp(2). A mixture of vine copulas
generates the first scenario with one/two parameter pair-copula families and non-Gaussian
margins. The second scenario simulates data from a mixture of vine copulas with single
parameter pair-copulas and Gaussian/non-Gaussian margins. In the first scenario, we aim to
analyze how well the VCMM improves the clustering compared to its starting partition from
k-means. In the second scenario, we aim to analyze how well the VCMM and other model-
based clustering algorithms capture different dependence structures and shapes hidden in the
multivariate data with different numbers of observations.

In the third scenario, we discuss the effect of different initial clustering techniques at
Step I in Algorithm 1 on the VCMM using the artificial data from a mixture of vine copulas
with Gaussian copulas and Gaussian margins. In the last scenario, we aim to analyze the
performance of the VCMM when the data generating process is misspecified, e.g., we simulate
the data from a mixture of multivariate skew t distributions.

The mixture of vine copulas with one/two parameter pair-copulas and
non-Gaussian margins

We simulate data Up(1) and Up(2) for p = 1, 2, 3 from a vine copula model, where pair-copula
families have either single or two parameters, as shown in Table 3.2. Both clusters include
positive as well as high, medium, and low strength dependencies. Then we transform the data
from u-scale Up(1), Up(2) to x-scale Xp(1), Xp(2). Table 3.2 presents the marginal distributions
with the parameters. The clusters are non-Gaussian.

Table 3.2: The pair-copula families and univariate marginal distributions with true parameter
values of each cluster in the first simulation scenario.

Pair-copula(parameters/Kendall’s τ) Marginal distribution(parameters)
C(1)1,2 BB1(3,2/0.8) F1(1)(γ1(1)) llogis(1.5, 1.25)
C(1)2,3 F(8.0/0.6) F2(1)(γ2(1)) exp(0.1)
C(1)1,3;2 G(1.3/0.2) F3(1)(γ3(1)) lnorm(0.1, 1.3)
C(2)1,3 C(4.7/0.7) F1(2)(γ1(2)) lnorm(2.5, 0.5)
C(2)2,3 BB1(2,1/0.5) F2(2)(γ2(2)) logis(5, 3)
C(2)1,2;3 BB1(0.5,1/0.2) F3(2)(γ3(2)) exp(0.05)

We evaluate the clustering performance of the VCMM and k-means, visualizing the mis-
classification rate per simulation replication in box plots. For the larger number of observations
(500 observations per cluster), Figure 3.2 shows that the VCMM provides a noticeably better
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fit than k-means. On average, it improves the accuracy by 22% compared to its initial parti-
tion. For the small number of observations (100 observations per cluster), the VCMM usually
has lower misclassification rates than k-means. Its average misclassification rate is 10% less
than k-means. However, the VCMM variance in the accuracy increases as the number of ob-
servations gets lower. Moreover, the VCMM requires, on average, 25 and 17 ECM iterations
for the large and small numbers of observations, respectively, i.e., the convergence takes more
iterations with a larger data set in this simulation.

Figure 3.2: Comparison of the clustering performance of the VCMM and its initial partition
algorithm k-means over 100 replications under the scenario specified in Table 3.2 for the
different number of observations per cluster.

The mixture of vine copulas with one parameter pair-copulas and
Gaussian/non-Gaussian margins

In this scenario, we work with single parameter pair-copulas, add Gaussian margins within
the clusters and simulate data on u-scale Up(1), Up(2) for p = 1, 2, 3 as specified in Table
3.3. Both clusters share the same vine tree structure and include medium sized asymmetric
tail dependencies. In contrast, the second cluster has a symmetric, non-Gaussian dependency
between U1(2) and U2(2). The next step is to obtain the data on the x-scale Xp(1), Xp(2) as
described before. Marginal distributions and the parameters used are listed in Table 3.3.
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Table 3.3: The pair-copula families and univariate marginal distributions with true parameter
values of each cluster in the second simulation scenario.

Pair-copula(parameters/Kendall’s τ) Marginal distribution(parameters)
C(1)1,2 G(2.5/0.6) F1(1)(γ1(1)) N (1, 2)
C(1)2,3 SG(5.0/0.8) F2(1)(γ2(1)) exp(0.2)
C(1)1,3;2 C(0.9/0.3) F3(1)(γ3(1)) lnorm(0.8, 0.8)
C(2)1,2 F(11.4/0.7) F1(2)(γ1(2)) lnorm(1.5, 0.4)
C(2)2,3 SC(2.0/0.5) F2(2)(γ2(2)) N (18, 5)
C(2)1,3;2 J(1.4/0.2) F3(2)(γ3(2)) exp(0.2)

We illustrate the simulated data on the x-scale in the left panel of Figure 3.3. The
generated clusters are non-elliptical. The fitted VCMM detects the true shape of the clusters
as seen in the right panel of Figure 3.3 as opposed to other algorithms given in Figure 3.1.

Figure 3.3: Pairwise scatter plot of simulated data (500 observations per cluster) on x-scale
under the scenario specified in Table 3.3 (left). The right plot shows the fitted VCMM. The
orange and red points show the observations of one cluster and the other cluster, respectively.
The diagonal of the plots shows each cluster’s associated variable’s marginal density function.

Figures 3.4 and 3.5 visualize the misclassification rate and BIC value per simulation replica-
tion in box plots for 100 and 500 observations per cluster to compare the algorithms’ clustering
performance. For 500 observations per cluster, the VCMM is superior to other model-based
clustering algorithms regarding both the misclassification rate and the BIC value. It separates
two non-elliptical clusters adequately as expected, whereas others tend to find it challenging.
Even though they cannot model two clusters as the VCMM does, the mixtures of multivariate
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skew distributions show a better fit than elliptical distributions in terms of the BIC value. The
mean misclassification rate of the mixtures of multivariate skew t distributions and that of
the VCMM are 4% and 8% less than that of multivariate normal distributions.

Figure 3.4 shows that the misclassification rates of the VCMM do not change enormously
for 100 observations per cluster and are still lower than the others. Its variance in the accuracy
increases with the smaller number of observations as in the first simulation scenario. The BIC
values favor the VCMM, and after the VCMM, the mixtures of multivariate skew distributions
provide better fits than the others as shown in Figure 3.5.

Figure 3.4: Comparison of the model-based clustering algorithms’ misclassification rate over
100 replications with 100 and 500 observations per cluster under the scenario specified in
Table 3.3.

Figure 3.5: Comparison of the model-based clustering algorithms’ BIC over 100 replications
with 100 (left) and 500 (right) observations per cluster under the scenario given in Table 3.3.
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The mixture of vine copulas with Gaussian copulas and Gaussian mar-
gins: significant overlaps

We generate artificial data from a mixture of two vine copulas as specified in Table 3.4. They
have Gaussian copulas between the pairs of variables, and each margin follows a univariate
normal distribution, i.e., the scenario represents a mixture of multivariate normal distributions.

Table 3.4: The pair-copula families and univariate marginal distributions with true parameter
values of each cluster in the third simulation scenario.

Pair-copula(parameters/Kendall’s τ) Marginal distribution(parameters)
C(1)1,2 N(0.7/0.5) F1(1)(γ1(1)) N (0, 2)
C(1)2,3 N(0.8/0.6) F2(1)(γ2(1)) N (1, 2)
C(1)1,3;2 N(0.3/0.2) F3(1)(γ3(1)) N (1, 2)
C(2)1,2 N(-0.7/-0.5) F1(2)(γ1(2)) N (0, 2)
C(2)2,3 N(0.8/0.6) F2(2)(γ2(2)) N (1, 2)
C(2)1,3;2 N(0.3/0.2) F3(2)(γ3(2)) N (−2, 2)

We do not observe strong multimodality of variables in the diagonal of the left panel
in Figure 3.6. However, the data has two obvious clusters with many overlaps, creating an
X-shape in three dimensions, in the right panel of Figure 3.6.

Figure 3.6: Pairwise (left) and 3-dimensional scatter plot (right) of artificial data (500 obser-
vations per cluster) on x-scale under the scenario specified in Table 3.4. The diagonal of the
plot on the left shows the corresponding variable’s marginal density function.

In an attempt to determine the true groups, we fit the VCMM as in previous simulation
studies. Since k-means assumes spherical shapes of clusters, we suspect that the VCMM’s
model selection using the initial partition from k-means could be satisfactory in such a scenario.
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The VCMM results in 65% classification accuracy with the BIC of 12447. As we suggest at
Step I in Algorithm 1, other partition strategies can be used before fitting the VCMM. For
instance, we partition the data by the model-based hierarchical clustering using the function
hcVVV with its default specifications in the package mclust and then run our algorithm.
As a result, the VCMM has 95% classification accuracy with the BIC of 12039. Therefore,
using different starting partitions in the VCMM and selecting a final model with the lowest
BIC are suggested. Also, fitting the mixture of multivariate normal distributions gives 96%
classification accuracy with the BIC of 11987.

The mixture of multivariate skew t distributions: misspecification

As a misspecification scenario, we simulate data in three dimensions with two components
from the mixture of multivariate skew t distributions expressed as a class of skew normal
independent distributions (Cabral et al. 2012). The total number of observations is 1000.
Denoting the density of a multivariate skew t distribution by ST (.;µ,Σ,λ, ν) with location
vector µ, scale matrix Σ, skewness vector λ, and degrees of freedom ν, assume a random
vector X has this mixture distribution. Then its density at x is given by

π1 · ST (x;µ1,Σ1,λ1, ν1) + (1− π1) · ST (x;µ1,Σ2,λ2, ν2), (3.19)

where the true values of the parameters used in the simulation are µ1 = (1, 1, 0)>, µ2 =
(−2,−2,−2)>, π1 = 0.6, λ1 = (4,−4, 4)>, λ2 = (−4, 4, 4)>, ν1 = 8, ν2 = 10, and
α1 = α2 = (2, 1, 1, 2, 1, 2) vectorizing the upper triangular matrix of symmetric matrices
Σ1 = Σ2. We replicate the data generating process 100 times. The mixture of multivariate
skew t distributions fits well with the data as expected with an average misclassification rate
of 0.06 and an average BIC of 10676. The mixture of multivariate normal distributions has
more difficulty in capturing non-elliptical components than the VCMM. The former and latter
have the average misclassification rate of 0.13 and 0.09 and the average BIC of 10881 and
10822, respectively. All in all, the VCMM has good credibility also under this scenario. We
remark that adding the bivariate skew t copula to the candidate list at Step II in Algorithm 1
could increase the performance of the VCMM in this last scenario.

To conclude, the VCMM does show its effectiveness and flexibility in clustering multivariate
non-Gaussian and Gaussian data in our simulation studies. Even though its starting partition
cannot reasonably identify the clusters, the VCMM often deals with them.

3.7 Software: vineclust & model adequacy

We illustrate how to use our Algorithm 1 by focusing on improvements it provides thanks to
its steps via a real data set analysis. We also guide how to assess the adequacy of the fitted
marginal distributions by the VCMM. Our implementation is available with its R package called
vineclust (Sahin 2021). The candidate set for margins is normal, Student’s t with degrees
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of freedom 3, logistic, log-normal, log-logistic, gamma distribution, and that for pair-copula
families are Gaussian, t, Clayton, Gumbel, Frank, Joe, BB1, BB6, BB8 copula with their
possible 90◦, 180◦, 270◦ rotations. Still, we are incorporating further marginal distributions
into vineclust. The tolerance level (tol) in Equation (3.18) is 0.00001.

Additionally, we will discuss the computational effort of the VCMM. All computations in
Sections 3.7 and 3.8 are run on a MacBook Air (2018) with a 1, 6 GHz Dual-Core Intel Core
i5 and 8 GB of RAM, running R version 4.0.3.

A well-analyzed Australian Institute of Sport (AIS) data consists of 13 measurements
made on 102 male and 100 female athletes. Our objective of clustering this data is to see if
the VCMM can find two clusters for females and males and analyze its steps’ performance as
mentioned above. For our analysis, we select a subset of five variables: lean body mass (LBM),
weight (Wt), body mass index (BMI), white blood cell count (WBC), and percentage of
body fat (PBF). This sample appears non-Gaussian and has asymmetric dependence patterns
shown on the bottom panels in Figure 3.7. To obtain u-data, we fit the empirical cumulative
distribution function of each variable in each class. The lower panels in pairs plots show
marginally normalized contour plots, and we often do not observe Gaussian dependence since
most contours are non-elliptical. The pairwise dependence between the same pair of variables
usually is the same in females and males, but its strength is different (e.g., Wt and BMI).
The marginal density function of BMI and WBC for both classes is similar to each other as
shown in the diagonal of the top left panel in Figure 3.7.

Fitting k-means with 10000 different seeds leads to two different partitions of the data
set. We fit the VCMM using both partitions but present the result for the best VCMM, whose
BIC value is lower than the other. However, both models have the same final accuracy.

Since we know the gender of each observation, we can evaluate the misclassification
rate of the binary classification for the clustering algorithm and associate the final clusters
with the classes. The VCMM improves its clustering power with its steps in Algorithm 1 as
shown in Table 3.5. The starting partition obtained from k-means assigns almost one-fourth
of males to females (Step I). Then Step II fits the initial VCMM model using Markov trees,
thereby returning a log-likelihood value. The accuracy is eight percent higher than the starting
partition. After the ECM iterations and temporary clustering assignment (Step III and Step
IV), the VCMM reduces the misclassification rate by 12% compared to k-means. Selecting
the final VCMM with a full vine specification (Step V and Step VI) provides a crucial gain in
the log-likelihood. In the end, the VCMM identifies almost all females correctly except one
female. Overall it provides 12% higher accuracy in revealing females and males than k-means.
The misclassified observations by the VCMM lie on the boundary of the classes as shown in
the top right panel of Figure 3.7.
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Figure 3.7: Pairwise scatter plot of the subset of AIS data (top left) with orange/red points for
observations of females/males, diagonal: marginal density function of each class’s correspond-
ing variable, and that of the misclassified observations by the VCMM shown by magenta (top
right). Pairs plots of females (bottom left) and males (bottom right), where upper: pairs
plots of copula data, diagonal: histogram of copula margins, lower: marginally normalized
contour plots.
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Table 3.5: Comparison of the VCMM’s steps’ clustering performance on the subset of AIS.

Gender Partition
Misclassification

rate
Log-likelihood

1 2

k-means
F 93 7

0.16 -
M 26 76

VCMM after Step II
(with Markov trees)

F 95 9
0.08 -2688

M 12 90
VCMM after Step IV
(ECM using Markov trees)

F 100 0
0.04 -2603

M 8 94
Final VCMM (Full vine
using Step IV’s assignment)

F 99 1
0.04 -2326

M 7 95

The final VCMM runs for 2.28 minutes, and the ECM iterations stop after 15 iterations.
Its estimated mixture weight of females and males is 0.54 and 0.46, respectively. We see in
Table 3.6 that the VCMM fits a log-logistic distribution for BMI in both clusters, while other
variables’ marginal distributions are different in males and females.

Table 3.6: Selected marginal distributions and estimated parameters of of females and males.
The variable encoding is given as follows: 1: LBM, 2: Wt, 3: BMI, 4: WBC, and 5: PBF.
The cluster index (1) refers to females, whereas the index (2) denotes males.

Marginal distribution(parameters) Marginal distribution(parameters)
F1(1)(γ1(1)) llogis(12.4, 55.6) F1(2)(γ1(2)) lnorm(4.3, 0.1)
F2(1)(γ2(1)) N (68.6, 12.1) F2(2)(γ2(2)) lnorm(4.4, 0.1)
F3(1)(γ3(1)) llogis(14.4, 22.0) F3(2)(γ3(2)) llogis(17.9, 23.5)
F4(1)(γ4(1)) Γ(18.0, 2.5) F4(2)(γ4(2)) lnorm(1.9, 0.3)
F5(1)(γ5(1)) Γ(10.8, 0.6) F5(2)(γ5(2)) lnorm(2.1, 0.2)

The selected vine tree structure is not the same for females and males as seen in Figure
3.8. It is a path, i.e., D-vine, for males. The estimated pairwise dependence between pairs of
the variables is non-Gaussian with diverse dependence strengths in females and males, except
the pair of Wt and BMI. For instance, the pair of the variables, PBF and Wt, shows high
strength and non-Gaussian dependence (Survival BB8 copula) in females. In higher tree levels,
the highest (absolute value) estimated Kendall’s τ for females is 0.74 and exists in the second
tree, while 0.76 in the third tree for males, i.e., high strength conditional dependence exists
in the higher tree levels.
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Figure 3.8: Estimated vine copula models for males (left) and females (right). A letter at
an edge with numbers inside the parenthesis refers to its bivariate copula family with its
parameter(s)/Kendall’s τ̂ . The variable encoding is given as follows: 1: LBM, 2: Wt, 3:
BMI, 4: WBC, and 5: PBF.

Figure 3.9 shows the QQ plots of the variables in both clusters. The fitted marginal
distributions by the VCMM are adequate for the female cluster. However, the margin selection
could be improved for the variables BMI and PBF in the male cluster, e.g., by adding the
univariate skew t distribution into the list of univariate marginal distributions in Algorithm 1.

Figure 3.9: QQ plots of the variables in female (top) and male (bottom) clusters by the
VCMM.



51 Vine copula mixture models

3.8 Open problems

We discuss open problems for vine copula mixture models, and some are shown by analyzing
and clustering multivariate non-Gaussian real data. The candidate set for margins and pair-
copula families is as given in Section 3.7. We run all clustering algorithms using the same
random seed for a fair comparison, thereby using the same starting partitions.

Selection of vine tree structure for clusters

In Section 3.3, we describe a greedy approach for the selection of clusters’ vine tree structure
in the VCMM. We now compare its performance with a fixed vine tree structure for clusters
in the VCMM. We specify each cluster’s vine tree structure as a star, i.e., C-vine, in the
VCMM, selecting their root node with our approach explained in Section 3.3, and denote
this model by VCMM(C-vine). We assess their performance on the Breast Cancer Wisconsin
(Diagnostic) data obtained from the UCI Machine Learning data repository (Dheeru and
Karra Taniskidou 2017), where a digitized image of a fine needle aspirate (FNA) of a breast
mass (Mangasarian et al. 1995) is used to have ten features from 569 patients. The mean
value, extreme value (mean of the three largest values) and standard error of each feature
are calculated, returning 30 continuous variables. The data contains two types of diagnosis:
benign (352 patients) and malignant (212 patients), enabling us to assess the misclassification
rate of the binary classification for the algorithms. We limit this illustration to a subset of
four variables: perimeter standard error (PSE), extreme smoothness (ES), extreme concavity
(EC), and extreme concave points (ECP) shown on the left panel in Figure 3.10. The data
has non-Gaussian variables like PSE. We fit two-component clustering models to the data,
and k-means is not sensitive to seeds.

Imposing a fixed vine structure in the VCMM, VCMM(C-vine), has the BIC of -4014 and
the misclassification rate of 0.18, whereas the VCMM has that of -3970 and 0.10, respectively.
Thus, imposing a C-vine tree structure decreases the model accuracy, where the selected root
node is the variable ECP for both clusters. The VCMM(C-vine) appears to be the best vine
copula mixture model regarding the BIC value. Since its misclassification rate is higher than
the VCMM, we would need to construct a better model comparison criterion than the BIC
value in the vine copula mixture model context in the future. The VCMM(C-vine) takes 7.14
minutes and 57 ECM iterations.

The selected vine tree structure by the VCMM is a path for the malignant cluster and a
star with the root node of the variable ECP for the benign cluster. It runs for 1.07 minutes,
and the ECM iterations stop after nine iterations. The right panel in Figure 3.10 shows that
the observations whose estimated posterior probability is smaller than 0.9 in their assigned
cluster are at the border of the support regions of benign and malignant.

Hence, allowing a flexible vine tree structure selection for clusters rather than imposing it
improves the accuracy here. However, big simulation studies can be further conducted.
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Figure 3.10: Pairwise scatter plots of the subset of Breast Cancer
Wisconsin(Diagnostic), where orange/red points denote observations of be-
nign/malignant on the left. On the right, magenta points show observations whose estimated
posterior probability by the VCMM is smaller than 0.9 in their assigned cluster.

Selection of the number of components and model selection criteria

To study the problem of the selection of the number of components in the VCMM, we consider
the Sachs Protein data analyzed by Sachs et al. (2005). It consists of logarithmized levels
of 11 phosphorylated proteins and phospholipids in individual cells, subjected to general and
specific molecular interventions. The original goal is to learn the causal pathways linking a
set of 11 proteins and compare them to the known links in the literature, thereby validating
the important model tools in genetics, Bayesian networks. The data is continuous as seen in
the left panel of Figure 3.11, where we work with 6161 observations from nine experiments
(b2camp, cd3cd28, cd3cd28 + aktinhib, cd3cd28 + g007, cd3cd28 + ly, cd3cd28 + psitect,
cd3cd28 + u0126, cd3cd28icam2, pma) after removing 1305 observations with zero values
to avoid dealing with zero inflation. The standard approach in the literature is to assume
that the data follows a multivariate Gaussian distribution, thereby formulating a Gaussian
Bayesian network (GBN). However, Figure 3.11 shows that the data has non-Gaussian uni-
variate distributions and different components. Thus, Zhang and Shi (2017) work with the
two-component Gaussian mixture copula Bayesian network and detect the underlying causal
links better than the GBN.

Even though bimodality exists for some variables, such as PIP2 and mek, and there are
two obvious groups on some scatter plots like the one of Akt and PKA in Figure 3.11, it
is unclear how many hidden components exist in the data. Hence, following our suggestion
in the previous sections, we fit the VCMM using a starting partition of k-means and model-
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Figure 3.11: Pairwise scatter plots of the Sachs Protein data (left) and its partition
into nine clusters by the VCMM (right). The diagonal of the plots shows the corresponding
variable’s marginal density function in each cluster.

based hierarchical clustering with two to 11 components. Figure 3.12 shows that using the
initial partition from model-based hierarchical clustering in the VCMM suggests having ten
components since it is the global minimum point of its plot. However, starting with the
assignment of k-means points out nine components in the experiments, giving the lowest BIC
value among the evaluated ones. Thus, we select it as our final VCMM model. Nevertheless,
we remark that the VCMM’s BIC values from seven to eleven components are very close to
each other using the initial partition from model-based hierarchical clustering and k-means.

Using the VCMM that starts with the assignment of k-means with nine components reveals
the most observations of the experiments b2camp, cd3cd28 + g007, cd3cd28 + psitect, and
cd3cd28 + u0126 as a cluster. The remaining five experiments’ observations usually belong
to the other four clusters. The partition is given in the right panel of Figure 3.11. The fitted
univariate marginal distributions and bivariate copula families are mostly non-Gaussian in the
clusters, showing the need for a non-Gaussian model. The fitted VCMMs are available upon
request.

To provide guidelines on the number of components to consider, we give a first analysis
based on the BIC criterion. It turns out that the initial partition impacts the final model.
Hence, one possible future research direction is the selection of the number of components in
vine copula mixture models. It can be combined with the construction of a model comparison
criterion. The ideas for sparse model selection in Nagler et al. (2019) can be a starting point.
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Figure 3.12: BIC values for the VCMM with k-means and model-based hierarchical clustering
for the different number of components on the Sachs Protein data.

EM-type algorithms for vine copula mixture models

As a remark of a reviewer of Sahin and Czado (2022b), we note that the CM-step 2 in Equation
(3.16), i.e., the optimization of univariate marginal parameters, can be done separately by
variable p ∈ {1, . . . , d} within cluster k. In high dimensions, it decreases the number of
parameters to optimize per optimization problem. In this case, following our notation in the
chapter, CM-step 2 at the (t+ 1)th iteration could numerically maximize Equation (3.20) to

obtain updated marginal parameter estimates γ
(t+1)
p(j) of the pth variable in the jth component.

Assume γ
(t+1)
p(j) is obtained. It is then used to update the u-data of the pth variable in the

jth component by applying probability integral transformation: u
(t+1)
p(j) = F̂p(j)(xp(j);γ

(t+1)
p(j) ).

However, this scenario would need more estimation steps within CM-step 2, thereby more
computational effort, than CM-step 2 we presented in this chapter.

max
γp(j)

n∑
i=1

[r
(t+1)
i,j · log fp(j)(xi,p;γp(j))]

+
n∑
i=1

d−1∑
m=1

∑
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[
r
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(
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(t)
(j)ea|De),

F(j)eb|De
(
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(t)
(j)eb|De);θ

(t)
(j)ea,eb;De

)]
for p = 1, . . . d, j = 1, . . . k.

(3.20)
Moreover, the order of the CM steps can be changed, and the performance of the ECM
algorithm’s extensions, such as the expectation conditional maximization of either algorithm
(Liu and Rubin 1994), can be analyzed for our framework.
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Computationally efficient vine copula mixture models

A potential drawback of the proposed method is the computational cost for high-dimensional
data. We provide an initial framework for using vine copulas with finite mixture models and
clustering. Therefore, another future research direction is to handle variable selection and
dimensionality reduction for vine copula based clustering. The traditional variable selection
methods for other model-based clustering algorithms have to be reviewed and adjusted (e.g.,
Raftery and Dean (2006), Maugis et al. (2009)).

Parsimonious vine copula mixture models

While the current algorithm has significant advancement in revealing non-elliptical compo-
nents, further development would modify the proposed method to obtain parsimonious vine
copula mixture models and then use them for clustering. On the one hand, the optimal
truncation level can be studied. On the other hand, factor models explain the dependence
structure among the observed variables using one or several common factors. Krupskii and
Joe (2013) combine factor models with copula models to capture the complex dependence
structure of the data with relatively few parameters. An extension of Krupskii and Joe (2013)
in the context of mixture models can be considered for parsimony.

Initial model selection

We show that different quick clustering methods can initialize the algorithm, and the final
model can differ accordingly. Since running the algorithm until the stopping condition holds
takes time with high-dimensional data, initialization approaches for the vine copula mixture
models need to be further improved in the future. Scrucca and Raftery (2015) study a similar
problem with regard to the initial parameter values in multivariate normal mixture models.
Initializing the algorithm could be further studied for harder situations, as there are significant
overlaps among the components with an unknown number of components.

Mixed discrete/continuous variables and missing data

The proposed method can be extended to deal with mixed discrete/continuous variables and
missing data as other future research directions. The construction defined in Panagiotelis
et al. (2012) and further studied in Panagiotelis et al. (2017) can be a starting point for
the former. Wang and Lin (2015) discuss how to handle missing data in multivariate skew t
mixture models.
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3.9 Conclusion

We propose a vine copula mixture model that works with continuous data and fits all classes
of vine tree structures. It uses parametric marginal distributions and pair-copula families. It
applies a wide range of pair-copula families; thus, it accommodates diverse tail dependence
and asymmetries within the components. Due to its parametric nature, it nicely interprets
the structure of the data. Assuming the number of components in the data is known, we
follow a data-driven approach for the remaining model selection problems. We work with the
ECM algorithm for parameter estimation. With the proposed method, we formulate a new
model-based clustering algorithm called VCMM.

We evaluate the performance of the algorithm on simulated and real data. Our simulation
studies illustrate that the vine copula based clustering has greater flexibility than various model-
based clustering algorithms available in the literature and hence captures the non-Gaussian
components hidden in the data better than others, especially when the data has heavy-tailed
margins and tail dependence between pairs of variables. The real data analysis supports it
and the better clustering assignment thanks to allowing all types of vine tree structures. Due
to its flexibility in the formulation, it can also capture Gaussian components. Additionally, it
can answer whether the dependence between a pair of variables changes with the variables’
different values or differs among the clusters. It is an appealing clustering approach since the
era of big data comes with different data characteristics. We also discuss open problems for
vine copula mixture models.



Chapter 4

High-dimensional sparse vine copula
regression

This chapter contains the materials from Sahin and Czado (2022a), but it extends simulation
studies in Section 4.7 and discusses open research problems in Section 4.8.

4.1 Motivation

Vine copula based (quantile) regression is a significant tool for modeling the nonlinear re-
lationship between explanatory variables and response. It considers higher-order explanatory
variables and their interaction. In addition, it can deal with unknown functional error forms.
However, the current vine copula based regression methods’ computational complexity makes
them infeasible to be applied in high-dimensional data sets (Chang and Joe 2019; Kraus and
Czado 2017; Tepegjozova et al. 2022; Zhu et al. 2021). We refer to high- and ultra high-
dimensional data sets when the number of explanatory variables is between ten and 1000 and
larger than 1000, respectively.

In this chapter, we propose two vine copula based regression methods that perform well
in analyzing high-dimensional sparse data sets, where sparsity means that many explanatory
variables are not related to the response. We show that their computational complexity is
significantly less than the existing methods. We define relevant, redundant, and irrelevant
explanatory variables for quantile regression and assess the methods’ prediction power in
high-dimensional sparse simulated data sets. Our analyses regarding the inclusion of relevant
variables and exclusion of irrelevant variables show our methods’ capability to provide sparse
models. Overall, our methods are novel and powerful and can resolve data dimensionality
issues in vine copula based regression. To the best of our knowledge, there has not yet been
any study assessing vine copula regression methods’ performance in the presence of redundant
and irrelevant variables.

Alternative quantile regression models include linear models (Koenker and Bassett Jr

57
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1978), generalized additive models (GAM) (Koenker 2011; Wood 2017), quantile regres-
sion forests (QRF ) (Meinshausen 2006), and quantile regression neural networks (QRNN)
(Cannon 2011). The models GAM , QRF , and QRNN are nonlinear models like vine copu-
las. However, QRNN may suffer from quantile crossing, which does not exist in vine copula
based approaches by construction, and need some strategies for avoiding it (Cannon 2018).
Kraus and Czado (2017) show a better performance of their vine copula based approach than
GAM . Hence, among the nonlinear models, we compare our models with quantile regression
forests and show our advantages, especially in the presence of correlated variables. Addi-
tionally, despite the quantile crossing problem, we analyze the performance of linear models
incorporating variable selection in nonlinear situations with many redundant and irrelevant
variables.

The chapter is organized as follows: Section 4.2 introduces sparse vine copula regression
methods, and Section 4.3 discusses model selection problems. The complexity of the proposed
methods is analyzed in Section 4.4, and a variable classification as relevant, redundant, and
irrelevant is defined in Section 4.5. We present an illustrative example of the methods in
Section 4.6, provide simulation studies in Section 4.7, discuss open problems in Section 4.8,
and conclude in Section 4.9.

4.2 Sparse vine copula regression formulation

In the remainder of the chapter, assume that (yi, xi,1, . . . , xi,p), i = 1, . . . , n, are realizations
of the random vector (Y,X1, . . . , Xp), and Y denotes a response variable with its marginal
distribution FY and the others correspond to explanatory variables with their marginal dis-
tributions F1, . . . , Fp. Our analyses are based on D-vines introduced in Chapter 2. Since
p-dimensional D-vine copula’s input is the marginally uniform data on [0, 1]p, the estima-
tion of the D-vine copula follows a two-step approach called the inference for margins (Joe
and Xu 1996). First, each marginal distribution is estimated. Then the data is converted
to copula data by applying probability integral transformation (PIT). Univariate parametric
margins can be used to apply the PIT; however, they might not fit the data to be mod-
eled well. Alternatively, the PIT could be applied using the marginal distributions’ kernel
based density estimate. However, since vine copula based regression methods use the es-
timated inverse of the response’s marginal distribution function for quantile predictions as
discussed in Equation (2.6), such an application results in the predictions being equal to the
observed response values. To overcome these difficulties, we estimate the marginal distribu-
tions using a univariate non-parametric kernel density estimator with the R package kde1d
(Nagler and Vatter 2022a), i.e., F̂Y and F̂d, d = 1, . . . , p. Next, we have the copula data:
(vi, ui,1, . . . , ui,p) = (F̂Y (yi), F̂1(xi,1), . . . , F̂p(xi,p)), i = 1, . . . , n, being realizations of the
random vector (V, U1, . . . , Up).
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vinereg

Kraus and Czado (2017) proposed a D-vine copula based quantile regression with a forward
variable selection, and the R package vinereg (Nagler 2022) provides its implementation.
We summarize the main steps of vinereg in the following.

Assume the response variable’s index is denoted by 0, and the response variable is a leaf
node in the first tree of a D-vine.

Step 1 (initialization): For the given data (yi, xi,1, . . . , xi,p) and (vi, ui,1, . . . , ui,p), the

initial D-vine order D(1) = (0), the initial chosen variable index set I(1)var = ∅, and the initial

set of candidate explanatory variables p
(2)
cand = {1, . . . , p}.

For s = 1, 2, . . . ,
Step 2 (variable selection): Extend the D-vine structure order by adding a variable whose

index is d to have a D-vine structure order D(s+1) = (D(s), d). Fit a parametric D-vine copula
having the structure D(s+1) and denote the vine copula, its density, and its estimated param-

eters by ĈD
d(s+1)

, ĉd
d(s+1)

, and θ̂d(s+1) , respectively. Then find the variable with the index

d∗(s+1) for which the conditional log-likelihood of the D-vine copula ĈD
d∗
(s+1) is maximized,

i.e.,

d∗(s+1) = arg max
d(s+1)∈p

(s+1)
cand

n∑
i=1

ln ĉd
d(s+1)

0|d(0),...,d(s+1)
(vi|ui,d(0) , . . . , ui,d(s+1)

; θ̂d(s+1)). (4.1)

Step 3 (D-vine extension): Extend the D-vine structure order by adding the variable whose
index is d∗(s+1) to have a D-vine structure order D(s+1) = (D(s), d∗(s+1)). Select the new
parametric pair-copula families and estimate their parameters in the extended D-vine structure.
Denote the associated D-vine copula by Ĉ(s+1) and its estimated parameters by θ̂(s+1).

Step 4 (Chosen variable indices and hyperparameter updates): Extend the chosen variable

indices I(s+1)
var = I(s)var ∪ d∗(s+1) and update p

(s+2)
cand = p

(s+1)
cand \ d∗(s+1).

However, vinereg’s computational complexity makes it infeasible to run in high dimensions
as will be discussed in Section 4.4. Thus, we propose two methods to perform a D-vine copula
regression on high-dimensional sparse data sets: vineregRes and vineregParCor.

vineregRes

The method vineregRes performs the variable selection at a given iteration based on the
residuals of the previous iteration, i.e., the pseudo-response. It finds the variable among the
candidates, which provides the best bivariate copula conditional log-likelihood conditioned
on the variable and conditioning the pseudo-response of the previous iteration. Assume ỹ

(s)
i

and ṽ
(s)
i i = 1, . . . , n, denote the pseudo-response and its copula data in the sth iteration,

respectively, which are realizations of the random variable Y (s) and V (s), respectively. V (0)

and V (s) have the indices 0 and 0(s), respectively, and are always a leaf node in the first tree.
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Step 1 (initialization): For the given data (yi, xi,1, . . . , xi,p) and (vi, ui,1, . . . , ui,p), define

the initial pseudo-response ỹ
(1)
i = yi with its copula scale ṽ

(1)
i , i = 1, . . . , n, the initial D-vine

order D(1) = (0), the initial chosen variable index set I(1)var = ∅, and the initial set of candidate

explanatory variables p
(1)
cand = {1, . . . , p}.

For s = 1, 2, . . . ,
Step 2 (variable selection): Fit a parametric bivariate copula to data {(ṽ(s)i , ui,d), i =

1, . . . , n} for d ∈ p(s)cand and denote the copula, copula density, and its estimated parameters

by ĈR
d(s)

, ĉrd(s) and θ̂d(s) , respectively. Then find the variable for which the conditional

log-likelihood of the copula ĈR
d∗
(s) is maximized, i.e.,

d∗(s+1) = arg max
d(s)∈p

(s)
cand

∑n
i=1 ln ĉr

d(s)

0(s)|d(s)
(ṽ

(s)
i |ui,d(s) ; θ̂d(s)).

Step 3 (D-vine extension): Extend the D-vine order by adding the variable with index d∗(s+1)

to get a D-vine order D(s+1) = (D(s), d∗(s+1)). Select the parametric pair-copula families and
estimate the parameters in the extended D-vine structure, where the associated D-vine copula
and its estimated parameters are denoted by Ĉ(s+1) and θ̂(s+1), respectively.

Step 4 (Chosen variable indices and hyperparameter updates): Extend the chosen variable

set, adding the new variable, I(s+1)
var = I(s)var ∪ d∗(s+1) and update p

(s+1)
cand = p

(s)
cand \ d∗(s+1).

Step 5 (Pseudo-response update or stop): If a stopping condition (see Section 4.3) does
not hold, estimate the median of the response variable based on the D-vine copula Ĉ(s+1) and
update the pseudo-response using Equation (2.6), i.e.,

ỹ
(s+1)
i = yi − F̂−1Y (Ĉ

−1(s+1)

0|I(s+1)
var

(0.50|ui,p1 , . . . , ui,pd(s+1)
; θ̂(s+1))), ṽ

(s+1)
i = F̂Y (s+1)(ỹ

(s+1)
i ),

where i = 1, . . . , n and {p1, . . . , pd(s+1)
} ⊆ I(s+1)

var .

vineregParCor

Another method to perform an efficient D-vine copula regression for high-dimensional data is
to use the partial correlation between the response and a candidate explanatory variable given
the chosen variables at each iteration based on their empirical normal scores. Such scores
are calculated as detailed in Section 1 of Joe (2014): order the dth variable (x1,d, . . . , xn,d)

>

non-decreasingly such that x1o,d ≤ . . . ≤ xno,d and {x1o,d, . . . , xno,d} = {x1,d, . . . , xn,d} for
d = 1, . . . , p. Then the ith ordered value xio,d is transformed from i to its empirical normal
score zio,d via zio,d = Φ−1

(
(i+ a)/(n+ 1 + 2a)

)
with a ≈ −0.50. Next, vineregParCor follows:

Step 1 (initialization): As given in vinereg and the data’s empirical normal scores.
For s = 1, 2, . . . ,
Step 2 (variable selection): d∗(s+1) = arg max

d(s)∈p
(s)
cand
|ρ

0,d(s);I
(s)
var
|, where ρj,k;S is the

partial correlation of variables j, k given those indexed in the set S based normal scores.
Step 3 (D-vine extension): As given in vinereg.
Step 4 (Chosen variable indices and hyperparameter updates): As given in vinereg.
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4.3 Model selection

Important model selection problems in vineregRes and vineregParCor include the selection
of pair-copula families and when to stop adding explanatory variables into the model.

Bivariate copula selection

Step 3 of vineregRes and vineregParCor selects parametric pair-copulas and estimates their
parameters associated with the extension of the D-vine structure. Also, Step 2 of vineregRes
fits a parametric bivariate copula to the pseudo-response and a candidate explanatory variable.
The selection of pair-copulas can be decided by analyzing the expected behavior of conditional
quantiles in the extreme values of the variable’s space. Alternatively, a model selection criterion
can select a good fit among the candidate bivariate copula families. First, we estimate the
parameters that maximize the log-likelihood of a candidate bivariate copula family. We work
with the following bivariate copula families and their 90, 180, and 270 degree rotations: BB1,
BB6, BB7, BB8, Clayton, Frank, Gaussian, Gumbel, Joe, t, and independence copula. Later
we can select the one with the lowest AIC or the Bayesian information criterion. While
extending the D-vine structure and adding new trees at Step 3 of the methods, the fit of
parametric pair-copulas can be performed sequentially from the lowest to the highest trees
(Brechmann 2010).

Stopping criteria

To decide if a chosen candidate explanatory variable in a given iteration should be in a
model, we will consider the conditional AIC, which penalizes the conditional log-likelihood of
the model based on the D-vine copula defined in Equation (4.1) by the effective degrees of
freedom in the model. Thus, in the sth iteration of vineregRes and vineregParCor, the
conditional AIC of the model based on the D-vine copula Ĉ(s) and D-vine copula density ĉ(s)

with the model’s effective degrees of freedom |Θ̂(s)| is

CAIC(Θ̂(s)) = −2·
n∑
i=1

(
ln ĉ

(s)

0|I(s)var

(F̂Y (yi)|F̂p1(xi,p1), . . . , F̂pd(s) (xi,pd(s) )) + ln f̂Y (yi)
)

+2·|Θ̂(s)|,

where it holds {p1, . . . , pd(s)} ⊆ I
(s)
var.

The effective degrees of freedom is the sum of the number of pair copula parameters that
appear in the conditional log-likelihood of the response and the degrees of freedom from the
kernel-based margin estimate of the response. The latter is a measure of smoothing, with more
details provided in Section 5.3.2 of Loader (2006). However, using the degrees of freedom
from the kernel-based margin estimate of the response without considering the degrees of
freedom from the explanatory variables in the model might be debatable. Alternatively, one
may consider the effective degrees of freedom as the sum of the number of pair copula
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parameters in the model and the degrees of freedom from the kernel-based margin estimate
of the response and explanatory variables in the model.

We stop adding variables in D-vine copula regressions when the current iteration’s condi-
tional AIC is equal to or larger than the previous iteration’s conditional AIC. If the conditional
AIC always improves in each iteration, we stop after all explanatory variables are included in
the model. Considering the computational burden in high dimensions, an alternative is to
stop if the selected number of variables reaches a threshold.

4.4 Complexity

Assuming that the data consists of p explanatory variables, the complexity of the existing
method vinereg is O(p3) in terms of the total number of bivariate copulas to be selected
during the algorithm (Tepegjozova 2019). Thus, we evaluate the complexity of vineregRes
and vineregParCor using the same criterion. We will consider the worst-case scenario that
the algorithms run until all explanatory variables are included in the model. Further, the total
number of estimated parameters is linear in terms of the number of bivariate copulas.

In vineregRes, the selection of bivariate copulas exists at Steps 2 and 3. Step 2 fits a
bivariate copula to the data of the iteration’s pseudo-response and a candidate explanatory
variable. Therefore, the number of bivariate copulas to be chosen at Step 2 is the total
number of candidate explanatory variables at the given iteration. At the sth iteration, there
are p− (s− 1) candidate explanatory variables. Thus, the number of bivariate copulas to be
selected at this step is given by

p∑
s=1

(p− (s− 1)) =
p · (p+ 1)

2
. (4.2)

In vineregParCor, the variable selection is based on partial correlations; thus, its Step 2
does not perform any selection of bivariate copulas.

Step 3 of vineregRes and vineregParCor extends the D-vine structure, adding the
selected explanatory variable at Step 2. Thus, at the sth iteration, it results in the selection
of s pair-copulas. Hence, Step 3 selects the following number of bivariate copulas:

p∑
s=1

s =
p · (p+ 1)

2
. (4.3)

Considering Equations (4.2) and (4.3), we calculate the total complexity of vineregRes:

p∑
s=1

s+

p∑
s=1

(p− (s− 1)) = p · (p+ 1). (4.4)
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Considering Equation (4.3), we calculate the total complexity of vineregParCor:

p∑
s=1

s =
p · (p+ 1)

2
. (4.5)

Equations (4.4) and (4.5) show that the complexity of vineregParCor and vineregRes
in terms of the total number of selected bivariate copulas is O(p2). As a result, our methods
significantly reduce the computational complexity of vinereg. Further, setting pair-copulas
as independence on low tree levels or applying thresholded vine copulas as investigated by
Nagler et al. (2019), where independence copulas are fitted when the dependence strength is
less than a threshold, decreases the complexity to less than O(p2).

4.5 Relevant, redundant, and irrelevant variables

Now we define relevant, redundant, and irrelevant variables for predicting the conditional
quantile of a response variable Y given the index set of explanatory variables X . We will
denote the cdf and pdf of the variables with the index X by FX and fX , respectively.

Definition 4.1: Relevant variables

The index set of variables M is called relevant for Y if and only if it holds
FY |M(y|xM) 6= FY (y), where the vector xM includes the variables in the set M,
M⊆ X .

Definition 4.2: Redundant variables

The index set of variables R is called redundant given the set of variables M for
Y if and only if it holds FY |M,R(y|xM,xR) = FY |M(y|xM) and FM,R(xM,xR) 6=
FM(xM) ·FR(xR), where the vectors xM and xR include the variables in the setsM
and R, respectively, R ⊆ X ,M⊆ X ,R∩M = ∅.

Let R and M be the non-overlapping index sets for variables. XR is redundant for Y
given XM if Y ⊥⊥ XR|XM and XM 6⊥⊥ XR. Conditional on XM = xM, for any xM,
XR does not provide any additional information for predicting Y , but XR without XM have
some predictability for Y .

Example 4.1 Consider the model (Y,X1, X2)
> ∼ N

0
0
0

 ,

 1 0.5 0.4
0.5 1 0.8
0.4 0.8 1

, where

ρY,X2;X1 =
ρY,X2

−ρY,X1ρX2,X1√
(1−ρ2Y,X1

)(1−ρ2X2,X1
)

= 0.4−0.5·0.8√
(1−0.52)(1−0.82)

= 0, i.e., Y is conditionally independent of

X2 given X1. Hence, we have fY |X1,X2(y|x1, x2) =
fY,X2|X1

(y,x2|x1)
fX2|X1

(x2|x1) =
fY |X1

(y|x1)·fX2|X1
(x2|x1)

fX2|X1
(x2|x1) =

fY |X1(y|x1). Since fX1,X2(x1, x2) 6= fX1(x1) · fX2(x2), X2 is redundant given X1 for Y .
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Now consider the case where M is still relevant for Y , but R is independent of M.

Definition 4.3: Irrelevant variables

The set of variables I is called irrelevant given the set of variablesM for Y if and only
if it holds FY |M,I(y|xM,xI) = FY |M(y|xM), FM,I(xM,xI) = FM(xM) · FI(xI),
and FY,I(y,xI) = FY (y) ·FI(xI), where the vectors xM and xI include the variables
in the sets M and I, respectively, I ⊆ X ,M⊆ X , I ∩M = ∅.

Let I andM be the non-overlapping index sets for variables. XI is irrelevant for Y given
XM if and only if XI ⊥⊥ (Y,XM). Since XI ⊥⊥ (Y,XM) if and only if Y ⊥⊥ XI |XM
and XI ⊥⊥ XM, it marginally implies XI ⊥⊥ Y so that XI has no predictive value for
Y unconditionally or conditionally. Given that it holds XI ⊥⊥ (Y,XM), we can write the
following: fY IM = fI ·fYM = fI ·fY |M ·fM . Moreover, we can decompose fY IM = fY I|M ·fM .
Then it must hold that fY I|M = fI · fY |M . As a result, we obtain XI ⊥⊥ (Y,XM) if and only
if Y ⊥⊥XI |XM and XI ⊥⊥XM.

Example 4.2 Consider the model (Y,X1, X2)
> ∼ N

0
0
0

 ,

 1 0.5 0
0.5 1 0
0 0 1

, where it

holds ρY,X2;X1 = 0; hence, fY |X1,X2(y|x1, x2) = fY |X1(y|x1). Also, it holds fX1,X2(x1, x2) =
fX1(x1) · fX2(x2) and fY,X2(y, x2) = fY (y) · fX2(x2); thus, X2 is irrelevant given X1 for Y .

Proposition 4.1: Redundant variables in a D-vine copula

If a p-dimensional D-vine copula is a t-truncated vine, where the response is a leaf node
represented by the first node, t > 1, p ≥ 3, t ≤ p − 1, there are p − t − 1 redundant
or irrelevant variables.

Proof 4.1 We can write the conditional density of the response:

f1|2,...,p(x1|x2, . . . , xp) =
[ t∏
j=3

c1,j;2,...j−1
(
F1|m+1,...j−1(x1|x2, . . . , xj−1),

Fj|m+1,...j−1(xj|x2, . . . , xj−1
)]

·
[ p∏
k=t+1

c1,j;2,...k−1
(
F1|m+1,...k−1(x1|x2, . . . , xk−1),

Fk|m+1,...j−1(xk|x2, . . . , xk−1
)]

· c1,2
(
F1(x1), F2(x2)

)
· f1(x1).
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Due to the independence pair-copulas in the tree levels higher than t in a t-truncated vine:

f1|2,...,p(x1|x2, . . . , xp) =
[ t∏
j=3

c1,j;2,...j−1
(
F1|m+1,...j−1(x1|x2, . . . , xj−1),

Fj|m+1,...j−1(xj|x2, . . . , xj−1
)]

· c1,2
(
F1(x1), F2(x2)

)
· f1(x1).

Thus, we have f1|2,...,p(x1|x2, . . . , xp) = f1|2,...,t+1(x1|x2, . . . , xt+1). If X2, . . . , Xt+1 are de-
pendent (independent) on the variables Xt+2, . . . , Xp, there are p−t−1 redundant (irrelevant)
variables for the response.

Example 4.3 Suppose that the first node and others represent the response and three ex-
planatory variables in the D-vine in Figure 2.7, respectively (p = 4). Assume that the D-vine
is a 2-truncated vine (t = 2) and the copula for the pair (3, 4) is not independence. Then
there is one redundant variable for the response, which is the variable represented by the
fourth node, given the two relevant variables represented by the second and third nodes.

Given the set of relevant variables, the redundant and irrelevant variables do not impact the
conditional quantile of the response. However, their inclusion in a model decreases the model’s
interpretation power and, even, the predictive power due to the heuristic variable selection
methods as shown in Section 4.7. Their inclusion also increases the model complexity.

4.6 Illustrative example

Now we illustrate how vinereg, vineregRes, and vineregParCor select variables. We
simulate the data with 450 observations from the model (Y,X1, X2, X3, X4)

> ∼ N5(0,Σ)
with

Σ =


1.00 0.40 0.70 0.00 0.00
0.40 1.00 0.32 0.00 0.00
0.70 0.32 1.00 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 1.00

 .

Thus, there are a response variable and four explanatory variables in the data, and the
third and fourth variables are assumed to be irrelevant for predicting the response.

First, we convert the observations to the copula scale (vi, ui,1, ui,2, ui,3, ui,4), i = 1, . . . , 450
using the non-parametric kernel density estimator. Then we define the initial pseudo-response
on the copula scale ṽ

(1)
i = vi, i = 1, . . . , 450, the initial D-vine order D(1) = (0), the initial

chosen variable index set I(1)var = ∅, the initial set of candidate explanatory variables p
(1)
cand =

{1, 2, 3, 4}, and the given data’s normal scores (zi,0, zi,1, zi,2, zi,3, zi,4)
>, i = 1, . . . , 450.
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For an illustration purpose, we will show the methods’ variable selection step in the third
iteration, where it holds that the D-vine order D(3) = (0, 2, 1) for the D-vine copula Ĉ(3) with

the parameters θ̂(3), the chosen variable index set I(3)var = {2, 1}, and the set of candidate

explanatory variables p
(3)
cand = {3, 4}. The conditional AIC of the current D-vine copula Ĉ(3)

is 975.30. The next iteration for all methods is to decide which and if the third or fourth
variable should be added to the model.

To make the variable selection, vinereg extends the D-vine order as D(4) = (0, 2, 1, 3)
for the third variable and D(4) = (0, 2, 1, 4) for the fourth variable. Accordingly, three new
pair-copula families are selected for each D-vine order, thereby estimating their parameters.
Thus, vinereg selects six bivariate copulas in this iteration (one for the first/second/third
tree level for each D-vine order) to choose one variable. For more details about vinereg, see
Example 3.2 in Kraus and Czado (2017).

To perform the variable selection, first, vineregRes estimates the median of the response
based on the D-vine copula Ĉ(3). Then it calculates the pseudo-response and estimates the
pseudo-response’s marginal distribution nonparametrically. For this, the associated pseudo-
response on the copula scale is obtained by the PIT, i.e.,

ỹ
(3)
i = yi − F̂−1Y (Ĉ

−1(3)
0|2,1 (0.50|ui,2, ui,1; θ̂(3))), ṽ

(3)
i = F̂Y (3)(ỹ

(3)
i ), i = 1, . . . , 450.

Then it fits a parametric bivariate copula to data {(ṽ(3)i , ui,3), i = 1, . . . , n} for the third

variable and {(ṽ(3)i , ui,4), i = 1, . . . , n} for the fourth variable. It holds that the fitted copula

for the third variable ĈR
3(3)

is a Frank copula with the estimated parameter θ̂3(3) = −0.41.

The conditional log-likelihood of ĈR
3(3)

conditioned on the third variable is -474.27. More-

over, the fitted copula for the fourth variable ĈR
4(3)

is the independence copula, resulting

in the conditional log-likelihood of -475.30. Since the conditional log-likelihood of ĈR
3(3)

is higher than that of ĈR
4(3)

, vineregRes identifies the third variable as the candidate ex-
planatory variable to be added to the D-vine copula. Thus, it extends the D-vine order as
D(4) = (0, 2, 1, 3), selecting the new pair-copula families and estimating new parameters. The
resulting D-vine copula Ĉ(4) has the conditional AIC of 975.30. Since Ĉ(4) does not have a
better conditional AIC than Ĉ(3), vineregRes stops the iterations and returns the final D-vine
copula as Ĉ(3). Thus, vineregRes chooses five bivariate copulas here.

vineregParCor chooses the next variable based on its partial correlation with the response
given the chosen explanatory variables using their normal scores. It estimates ρ̂0,3;2,1 = 0.05
for the third variable and ρ̂0,4;2,1 = 0.03 for the fourth variable. Since the third variable has a
higher (absolute) estimated partial correlation than the other, vineregParCor extends the D-
vine order as D(4) = (0, 2, 1, 3). Next, it selects the new pair-copula families and performs new
parameter estimation associated with D(4). Since the D-vine copula with D(4) = (0, 2, 1, 3)
does not have a better conditional AIC than D(3) = (0, 2, 1), vineregParCor gives the final
model fit Ĉ(3). Thus, vineregParCor selects three bivariate copulas in this iteration.
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4.7 Simulation studies

We show the flexibility and effectiveness of the proposed methods on simulated datasets being
nonlinear and having different sparsity. We explore the following questions: (Q1) How do
vineregRes and vineregParCor work in situations with nonlinear explanatory variable effects
on the response’s quantiles in the presence of redundant and irrelevant variables for prediction
accuracy and computational complexity? (Q2) How well do vineregRes and vineregParCor
identify relevant and irrelevant variables for predicting the response’s quantiles? (Q3) How
do vineregRes and vineregParCor perform compared to alternative methods?

Data generating process (DGP)

For the questions (Q1, Q2, Q3), we study two nonlinear data generating processes.

DGP1: irrelevant variables

Y d
i = Xi,1 ·X2

i,2 ·
√
|Xi,3|+ 0.1 + e0.4·Xi,4·Xi,5+

(Xi,6, . . . , Xi,pd)(0, . . . , 0)> + εi · σi, i = 1, . . . , n, d = 1, 2, 3,
(4.6)

where we sample the irrelevant variables (Xi,6, . . . , Xi,pd)
> ∼ Npd−5(0, Ipd−5), relevant vari-

ables (Xi,1, . . . , Xi,5)
> ∼ N5(0,Σ), i = 1, . . . , n with the (a, b)th element of the covariance

matrix Σa,b = 0.75|a−b|, the random error terms εi ∼ N (0, 1) that are independent and iden-
tically distributed (iid), independently, and set σi ∈ {0.5, 1}, i = 1, . . . , n. Thus, the relevant
and irrelevant variables’ variances are one. To analyze the methods’ performance concerning
the prediction accuracy and relevant variables’ selection, we simulate data sets with different
number of irrelevant variables and set it to (pd − 5) in each case d = 1, 2, 3: Case 1 with p1
= 10 (50% of variables are irrelevant), Case 2 with p2 = 20 (75% of variables are irrelevant),
Case 3 with p3 = 50 (90% of variables are irrelevant).

DGP2: redundant variables

Y d
i =

√
|5 ·Xi,1 − 2 ·Xi,9 + 0.5|+Xi,8 · (−4 ·Xi,3 + 1) + eXi,6 + (2 ·X3

i,10 +X3
i,4)

+ (Xi,7 + 1) · (ln (|Xi,2 +Xi,5|+ 0.01))+

(Xi,11, . . . , Xi,pd)(0, . . . , 0)> + εi · σi, i = 1, . . . , n, d = 1, 2, 3, 4,

(4.7)

where the samples of explanatory variables are independently generated from a multivariate
normal distribution with a Toeplitz correlation structure, i.e., (Xi,1, . . . , Xi,pd)

> ∼ Npd(0,Σ),
i = 1, . . . , n, j = 1, 2, 3, with the (a, b)th element of the covariance matrix Σa,b = ρ|a−b|.
To represent a challenging but realistic scenario, we set ρ = 0.75. We sample εi ∼ N (0, 1),
i = 1, . . . , n (iid) independently from the explanatory variables and set σi ∈ {0.5, 1}, i =
1, . . . , n. Here, all variables are predicting the response’s quantiles. However, given the set of
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the first ten variables, the others are redundant. To investigate the impact of the redundant
variables on the methods’ predictive power and sparsity of the model in terms of the total
number of variables, we change the number of redundant variables and set it to (pd − 10) in
each case d = 1, 2, 3, 4: Case 1 with p1 = 20 (50% of variables are redundant given the ten
relevant ones), Case 2 with p2 = 40 (75% of variables are redundant given the ten relevant
ones), Case 3 with p3 = 100 (90% of variables are redundant given the ten relevant ones),
Case 4 with p4 = 1000 (99% of variables are redundant given the ten relevant ones).

Based on the DGPs in Equations (4.6) and (4.7), we simulate samples with size 450
(n=450) each time with a random split of 300/150 observations for a training set/a test set.
We replicate our procedure 100 times and average performance measures per sample.

Figure 4.1 shows nonlinear relationships between the response and others for both DGPs.

Figure 4.1: Pairs plots of a simulated data set of the response and relevant explanatory
variables with 450 observations under the DGP1 (left) and DGP2 (right) settings, where
diagonal: variable’s density estimates, lower: pairwise scatter plots with red curve showing a
linear model fit and orange curve demonstrating a local polynomial regression fit.

Alternative methods

For comparison, we analyze the following alternative methods performing quantile regression.
Penalized quantile regression with LASSO function (LQRLasso): it extends the linear

quantile regression method, adding a LASSO penalty function in the quantile regression ob-
jective function to perform the variable selection. Thus, it solves the following optimization
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problem to estimate the coefficients at the quantile level α:

arg min
β∈Rp+1

[ n∑
i=1

ρα

(
yi − β0 −

p∑
j=1

xi,j · βj

)
+

p∑
j=0

λ · |βj|
]
, (4.8)

where ρα(r) = r(α − 1(r < 0)) denotes the check function, λ ∈ R corresponds to a
tuning parameter for the penalization of the coefficients, (yi, xi,1, . . . , xi,p), i = 1, . . . , n, are
realizations of the random vector (Y,X1, . . . , Xp), and Y denotes a response variable, and
the others correspond to explanatory variables.

We perform a five-fold cross-validation using the training set to optimize λ in each replica-
tion and set the associated coefficients below 10−8 to zero. The variables with zero coefficients
are not relevant for predicting the response’s quantiles. Such procedures are implemented in
the R package rqPen (Sherwood and Maidman 2020). Since it is not straightforward to de-
cide which transformation of variables or some interaction effects should be applied in a linear
model in the high-dimensional data, we analyze the variables without any transformations.
Since a LASSO penalty function is sensitive to the feature scales, we apply a standardization
with zero mean and unit variance for each feature before its fit.

Quantile regression forest (QRF): it is a nonlinear quantile regression method built upon
random forest ideas (Meinshausen 2006). The core idea is to approximate the conditional
distribution function of the response given explanatory variables. It starts with fitting a
random forest regression model to data for prediction. Then for each response observation to
be predicted, it finds the terminal node, the node without any splits, in each tree. Next, each
observation in the terminal node gets a weight inversely proportional to the total number
of observations in the terminal node. Such weights are calculated for each tree for the
associated observations and then normalized to one. Accordingly, each observation used
for training the model gets a weight between zero and one, which sums up to one for all
observations. Finally, the weights are used to obtain the empirical conditional distribution
function of the response given explanatory variables, where quantile regression estimates are
calculated for the given observation to be predicted. The procedure is repeated for each new
sample. More details are given by Meinshausen (2006), and the ideas are implemented in
the package quantregForest (Meinshausen 2022). We work with the package’s default
specifications; however, we set the minimum number of observations in terminal nodes to
one-twentieth of the number of observations. We have not performed any cross-validation.

QRF assesses the feature importance implemented in the package randomForest (Liaw
and Wiener 2002). The idea is to calculate the decrease in the residual sum of squares (RSS)
for each feature, which is the sum of the squares of the difference between the response
values and the predicted response values. Specifically, the predicted values, thanks to the
split through the feature, are considered in the RSS in a given tree and for a given feature.
For instance, if the feature is split two times in a given tree, the decrease in the RSS is
evaluated two times for that feature. The process is applied to all features and trees, and
then the decrease in the RSS for each feature is divided by the number of trees grown to
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calculate the features’ importance.

Performance measures

We consider the computation time, the number of chosen variables, the true positive rate
(TPR), and the false discovery rate (FDR) as methods’ performance measures on the training
set. To evaluate the performance of a method on the test set, we apply the pinball loss (PLα)
at α = 0.05, 0.50, 0.95.

True positive rate (TPR) is the ratio of the number of chosen relevant variables by a
method M to the total number of relevant variables. False discovery rate (FDR) is the ratio
of the number of chosen irrelevant variables to the total number of chosen variables by a
method M . Formally:

TPR(M) =

∑
Xj∈Xrel

Xj∈XMchosen
j=1,...,|XMchosen|

1

|Xrel|
and FDR(M) =

∑
Xj∈Xirrel
Xj∈XMchosen

j=1,...,|XMchosen|

1

|XM
chosen|

,

where Xrel is the set of relevant variables, Xirrel is the set of irrelevant variables, and XM
chosen

denotes the set of chosen variables by a method M . Higher TPR and smaller FDR are better.
The pinball loss (PLα) measures the accuracy of the quantile predictions ŷα,Mi at the level

α by a method M compared to the given response yi, i = 1, . . . , n and has the form of

PLα(M) =

∑n
i=1(ŷ

α,M
i − yi)(I[0,∞)(ŷ

α,M
i − yi)− α)

n
.

The pinball loss is identical to check score, and smaller pinball loss values are better (Steinwart
and Christmann 2011).

Results

All computations are run on a single node CPU with Intel Xeon Platinum 8380H Processor
with around 25 GB RAM, running R version 4.2.2.

Variable selection and computational complexity results on the training set

Table 4.1 compares the average performance of the methods for cases 1—3 and 1—4 specified
in Equations (4.6) and (4.7), respectively, concerning the variable selection and computational
complexity. We analyze the TPR and FDR only for the DGP1 setting since all variables are
relevant in the DGP2 setting. Further, vinereg was not complete within three days per repli-
cation for the fourth case of the DGP2 setting, making it computationally infeasible. Likewise,
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we did not run LQRLasso for that case since it ran around seven hours per replication and
had worse performances than others in other cases.

In addition, since we do not perform any variable selection for quantile regression forests,
in all cases, QRF considers all variables in the associated DGP to make predictions. As
a result, its TPR is always one, the number of selected variables equals the total number
of variables in a sample, and its FDR is the proportion of the irrelevant variables in the
associated DGP setting. Still, we rank the variables based on their variable importance given
by the model from highest to lowest for each case of both DGPs per replication. Then when
we analyze the median rank of variables out of 100 replications, we observe that the five
relevant variables in the DGP1 setting have their rank between one and five, and the ten
most relevant variables in the DGP2 setting have their rank between one and ten, showing
that QRF ’s variable importance identifies the most important variables correct in both DGPs.
However, comparing different variable selection methods for random forests, such as proposed
by Genuer et al. (2010) and Conn et al. (2019), would be preferable in future studies. Speiser
et al. (2019) study some approaches and conclude that their performance varies regarding
computational complexity and accuracy by analyzing different data sets, making it unfair to
analyze only one.

Excluding QRF , in all cases of the DGP1 setting, vinereg has a better performance
than the others regarding the true positive rate. However, its false discovery rate is also
higher than others, adding many irrelevant variables to a model. For vineregRes, we observe
that it correctly identifies more than 75% of the relevant variables in all cases of the DGP1
setting. Furthermore, the most promising is that its false discovery rate is less than 15%
there, making it the best method for the FDR. Further, vineregParCor’s TPR is higher
than 50% in all cases of the DGP1 setting. Nonetheless, like others, its FDR increases as the
number of irrelevant variables increases in the model, reaching more than 50% in the third
case of the DGP1 setting. The other method, LQRLasso, identifies at least 48% of the
relevant variables in all cases. However, its TPR decreases with the increase in the number
of irrelevant variables.

Concerning the number of chosen variables by a method in the DGP1 and DGP2 settings:
While vineregRes selects the lowest number of variables between four and six as reflected
in its high TPR and low FDR in the DGP1 setting, vinereg includes almost half of the
total number of variables in the data in each case. This highlights the power of vineregRes
regarding the exclusion of irrelevant variables in sparse data sets. vineregParCor’s number
of chosen variables is between vinereg and vineregRes in all evaluated cases. The same
result applies to LQRLasso. However, LQRLasso selects more variables for estimating
median predictions than other quantiles. Moreover, in an ultra high-dimensional case with
1000 explanatory variables, i.e., the last case in the DGP2 setting, the number of variables
chosen by vineregParCor is, on average, 31.72 with the empirical standard error of 1.23
while it is 7.08 with that of 0.54 for vineregRes. Hence, our methods are able to perform
high-dimensional sparse regression as proposed.
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As the number of variables increases, the average running time for all methods increases.
Among vine copula based methods, vineregParCor provides the fastest computation as
expected from the results in Section 4.4. However, QRF provides the fastest computation
among all models considered. In the second case of the DGP2 setting, where 75% of variables
are redundant given the ten relevant ones, vineregRes is, on average, 15 times faster than
vinereg. In the third case of the DGP2 setting with 100 explanatory variables, vinereg takes
around three hours, whereas our methods run less than one minute on average. Likewise,
vineregRes and vineregParCor run less than 15 minutes in the ultra high-dimensional
case. The computation time for different quantile levels does not differ much for LQRLasso.

Table 4.1: Comparison of the methods’ performance on the training set over 100 replications
under the cases 1—3 and 1—4 specified in Equations (4.6) and (4.7), respectively. The num-
bers in parentheses under a method’s name column are the corresponding empirical standard
errors. (-) shows computational infeasibility. LQRLasso column corresponds to the quantile
levels (0.05, 0.50, 0.95). Chosen Vars. corresponds to the total number of chosen variables.
Time is in minutes and per replication.

DGP Measure Case vinereg vineregRes vineregParCor QRF LQRLasso (0.05, 0.50, 0.95)

1

TPR
1 0.81 (0.01) 0.80 (0.02) 0.67 (0.02) 1.00 (0.00) 0.73 (0.02), 0.69 (0.02), 0.63 (0.02)
2 0.85 (0.01) 0.79 (0.03) 0.59 (0.02) 1.00 (0.00) 0.68 (0.02), 0.68 (0.02), 0.55 (0.02)
3 0.89 (0.01) 0.78 (0.02) 0.56 (0.02) 1.00 (0.00) 0.61 (0.02), 0.61 (0.02), 0.48 (0.01)

FDR
1 0.28 (0.01) 0.08 (0.01) 0.24 (0.02) 0.50 (0.00) 0.28 (0.02), 0.32 (0.02), 0.24 (0.02)
2 0.55 (0.01) 0.13 (0.02) 0.45 (0.02) 0.75 (0.00) 0.38 (0.02), 0.49 (0.03), 0.34 (0.03)
3 0.80 (0.00) 0.15 (0.02) 0.65 (0.02) 0.90 (0.00) 0.35 (0.03), 0.58 (0.02), 0.40 (0.03)

Chosen
Vars.

1 5.83 (0.13) 4.56 (0.19) 4.68 (0.16) 10.00 (0.00) 5.24 (0.22), 5.48 (0.21), 4.99 (0.26)
2 9.76 (0.19) 5.04 (0.26) 6.03 (0.23) 20.00 (0.00) 6.60 (0.41), 8.48 (0.43), 5.30 (0.36)
3 23.24 (0.42) 5.29 (0.33) 8.74 (0.30) 50.00 (0.00) 5.93 (0.38), 10.20 (0.68), 5.97 (0.47)

Time
1 0.18 (0.00) 0.17 (0.01) 0.06 (0.00) 0.01 (0.00) 0.02 (0.00), 0.02 (0.00), 0.02 (0.00)
2 0.97 (0.02) 0.30 (0.02) 0.10 (0.01) 0.01 (0.00) 0.02 (0.00), 0.43 (0.03), 0.02 (0.00)
3 12.06 (0.31) 0.77 (0.05) 0.34 (0.03) 0.03 (0.00) 0.12 (0.00), 0.14 (0.00), 0.12 (0.00)

2

Chosen
Vars.

1 10.94 (0.23) 5.41 (0.19) 6.68 (0.20) 20.00 (0.00) 7.05 (0.32), 10.12 (0.36), 8.95 (0.40)
2 19.63 (0.54) 5.17 (0.17) 8.25 (0.28) 40.00 (0.00) 7.88 (0.43), 12.36 (0.51), 9.88 (0.48)
3 62.92 (2.78) 5.83 (0.22) 11.66 (0.42) 100.00 (0.00) 7.35 (0.36), 15.45 (0.78), 9.44 (0.55)
4 - 7.08 (0.54) 31.72 (1.23) 1000.00 (0.00) -

Time

1 1.15 (0.03) 0.20 (0.01) 0.16 (0.01) 0.01 (0.00) 0.09 (0.00), 0.10 (0.00), 0.08 (0.00)
2 7.30 (0.26) 0.32 (0.01) 0.29 (0.03) 0.02 (0.00) 0.11 (0.00), 0.13 (0.00), 0.11 (0.00)
3 159.22 (8.66) 0.84 (0.03) 0.72 (0.06) 0.05 (0.00) 0.35 (0.00), 0.35 (0.00), 0.34 (0.00)
4 - 9.44 (0.69) 12.18 (1.26) 0.44 (0.00) -

Prediction accuracy results on the test set

We see in Table 4.2 that vineregRes provides the best fit in eight evaluations out of nine, three
measures evaluated for three cases, in the DGP1 setting among vine copula based methods.
vinereg and vineregParCor have the same accuracy as vineregRes for the first case in
the DGP1 setting. However, as the number of irrelevant variables increases, a residual-based
variable selection may be better than other vine copula based methods. Moreover, LQRLasso
has the lowest accuracy in all cases of the DGP1 setting because of the high nonlinearity in
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samples. Even though vineregParCor’s performance is better than LQRLasso, it provides
worse fits than the others in the upper quantile. A likely explanation can be that including
irrelevant variables in addition to the most relevant ones in a vine copula may negatively
impact the prediction accuracy in addition to an increase in the computational complexity
unnecessarily as shown in Table 4.1. However, a similar result does not apply to QRF .
Despite considering all irrelevant variables in the model, QRF still performs better than all
in seven evaluations out of nine.

Table 4.2 also shows that vineregRes provides the lowest pinball loss at all quantiles in
all cases of the DGP2 setting, except the upper quantile in the first case. Since vineregRes
gives the most sparse models in the DGP2 setting in Table 4.1, we can infer that including
many relevant but potentially redundant variables in vinereg, vineregParCor, and QRF is
worsening the prediction accuracy in the DGP2 setting. Like in the DGP1 setting, LQRLasso
suffers from nonlinearity in all cases.

In simulation studies, the relevant, irrelevant, and redundant variables are known. Accord-
ingly, when only the relevant ten variables are used for prediction in the DGP2 setting, QRF
has the pinball loss of 0.64, 1.81, and 0.62 at levels 0.05, 0.50, and 0.95, respectively. Thus,
vineregRes would have better accuracy than QRF in most cases of the DGP2 setting, even
if the latter selected the most relevant variables.

Thus, a vine copula based prediction method with a variable selection, e.g., vineregRes,
is more advantageous than quantile regression forests in the presence of many correlated
variables in our simulations.

4.8 Open problems

There are open problems for high-dimensional sparse vine copula regression, and we discuss
some by proposing their starting point in the following.

Adaptation for more flexible vine tree structures

The flexibility of the proposed variable selection methods can be increased by using more
flexible vine tree structures than D-vines, such as R-vines.

A starting point for vineregParCor can be to choose a variable whose inclusion in
a candidate vine tree structure maximizes the sum of absolute (partial) correlations based
on normal scores, ensuring that a leaf node in each tree level includes the response in its
conditioned set. The latter guarantees that the conditional quantile of the response can be
obtained analytically from the model. Then the candidate variable with the corresponding
vine tree structure can be evaluated for the model fit regarding the CAIC. If it improves the
CAIC, then the candidate variable is added to the associated vine tree structure. Later, the
next candidate variable can be searched similarly. Otherwise, the algorithm stops.
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Table 4.2: Comparison of the average performance of the methods on the test set for the
pinball loss (PLα) at different quantile levels α over 100 replications under the cases 1—3 and
1—4 specified in Equations (4.6) and (4.7), respectively. The best performance for each quan-
tile level and DGP case is highlighted. The numbers in parentheses under a method’s name
column are the corresponding empirical standard errors. (-) shows computational infeasibility.

DGP Measure Case vinereg vineregRes vineregParCor QRF LQRLasso

1

PL0.05

1 0.21 (0.01) 0.21 (0.01) 0.21 (0.01) 0.22 (0.01) 0.34 (0.01)
2 0.23 (0.01) 0.22 (0.01) 0.22 (0.01) 0.22 (0.01) 0.34 (0.02)
3 0.24 (0.01) 0.21 (0.01) 0.22 (0.01) 0.22 (0.01) 0.32 (0.01)

PL0.50

1 0.79 (0.04) 0.79 (0.03) 0.81 (0.04) 0.76 (0.04) 0.94 (0.02)
2 0.84 (0.04) 0.79 (0.03) 0.82 (0.04) 0.69 (0.02) 0.97 (0.04)
3 0.84 (0.02) 0.76 (0.02) 0.79 (0.02) 0.72 (0.02) 0.90 (0.02)

PL0.95

1 0.43 (0.07) 0.43 (0.06) 0.46 (0.07) 0.41 (0.07) 0.59 (0.04)
2 0.37 (0.04) 0.39 (0.04) 0.44 (0.04) 0.32 (0.03) 0.64 (0.07)
3 0.38 (0.03) 0.38 (0.03) 0.41 (0.03) 0.35 (0.03) 0.53 (0.03)

2

PL0.05

1 0.53 (0.01) 0.53 (0.01) 0.54 (0.01) 0.70 (0.02) 0.84 (0.02)
2 0.57 (0.01) 0.54 (0.01) 0.56 (0.01) 0.70 (0.02) 0.85 (0.02)
3 0.81 (0.04) 0.54 (0.01) 0.58 (0.01) 0.72 (0.01) 0.92 (0.03)
4 - 0.55 (0.01) 0.89 (0.02) 0.78 (0.02) -

PL0.50

1 1.87 (0.02) 1.83 (0.02) 1.84 (0.02) 1.91 (0.02) 2.20 (0.02)
2 1.99 (0.02) 1.84 (0.02) 1.86 (0.02) 1.93 (0.03) 2.26 (0.03)
3 2.59 (0.09) 1.84 (0.02) 1.94 (0.02) 2.00 (0.03) 2.29 (0.02)
4 - 1.89 (0.03) 2.42 (0.03) 2.17 (0.03) -

PL0.95

1 0.53 (0.01) 0.55 (0.01) 0.55 (0.01) 0.65 (0.01) 0.78 (0.02)
2 0.57 (0.01) 0.56 (0.01) 0.56 (0.01) 0.67 (0.01) 0.82 (0.02)
3 0.81 (0.05) 0.57 (0.01) 0.61 (0.02) 0.68 (0.01) 0.83 (0.02)
4 - 0.57 (0.02) 0.88 (0.03) 0.75 (0.02) -

Consider the data example given in Section 4.6. The first and second variables are already
added to the model. To allow for flexible vine tree structures and decide on a better one among
others using vineregParCor, Figure 4.2 shows how the third variable can be incorporated
into a vine copula model, where red nodes are the results of such incorporation. To provide
guidelines on the idea, we focus on two possible vine structures here; however, one more vine
tree structure satisfies the proximity, where a leaf node in each tree level includes the response
in its conditioned set. The vine tree structure on the left panel of Figure 4.2 is a D-vine,
and vineregParCor estimates the correlation among the response and first variable ρ0,1, the
first and second variables ρ1,2, second and third variables ρ2,3 and partial correlations among
the response and second variable given the first ρ0,2;1, the first and third variables given the
second ρ1,3;2, and among the response and third variable given the first two ρ0,3;1,2 based on
the normal scores.

On the other hand, the right panel of Figure 4.2 is a C-vine, where the estimated correla-
tions, including partial ones, are ρ0,1, ρ1,2, ρ1,3 in the first tree, ρ0,3;1, ρ2,3;1 in the second tree,
and ρ0,2;1,3 in the last tree level. The sum of absolute (partial) correlation values resulting
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from the inclusion of the third variable is 0.59 for the D-vine and 0.72 for the C-vine. Likewise,
the candidate variable to be added can be the fourth instead of the third one in Figure 4.2.
In this case, the sum of absolute (partial) correlation values due to its inclusion is 0.60 for the
D-vine and 0.55 for the C-vine. Since the third variable attains the maximum value of the
sum of absolute correlation values for C-vine, the third variable is chosen as the candidate,
and the vine structure to consider in the next step is the C-vine shown on the right panel of
Figure 4.2. Next, after fitting pair-copulas, the resulting CAIC of the C-vine is compared with
the previous model to decide if the algorithm stops.

Even though the number of (partial) correlation calculations is high, it may pay off thanks
to allowing flexible vine tree structures. Moreover, the conditional log-likelihood of the re-
sponse includes the pair-copulas whose conditioned set has the response so that the conditional
quantile of the response can be obtained analytically from the model. Thus, one might further
reduce computational efforts considering only the correlations modeled by such copulas. For
instance, for the inclusion of the third variable in Figure 4.2, the pair copulas C0,1, C0,2;1,
and C0,3;1,2 on the left panel and C0,1, C0,3;1, and C0,2;1,3 on the right panel appear on the
conditional log-likelihood of the response. Thus, the sum of absolute values of ρ0,1, ρ0,2;1,
and ρ0,3;1,2 on the left panel may be compared with the that ρ0,1, ρ0,3;1, and ρ0,2;1,3 on the
right panel. Next, the vine copula, where the maximum sum is attained for its tree structure,
is fitted and then compared with the previous iteration’s vine copula regarding the CAIC.

Figure 4.2: Potential vine tree structures for the inclusion of the third variable, allowing the
response denoted by the node 0, to be on the conditioned set of a leaf node in each tree level.
The nodes filled by red result from the inclusion of the new variable.

Comparison of vine copula based prediction models

Even though the pinball loss is widely used to assess the quality of quantile regression models,
it does not highlight how a vine copula based prediction model is better than the other. An
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appropriate asymptotic theory might be derived for vines to construct confidence intervals in
predicting a given quantile level. Then the length of the confidence intervals may be used to
assess the different vine copula based prediction models. The estimation of standard errors in
vine copulas studied by Stöber and Schepsmeier (2013) can be a starting point.

Increase in sparsity in vine copula based prediction models

In a vine copula with p variables, assuming each pair-copula has two parameters, there are
p · (p − 1) parameters to estimate. As p gets large, its computational burden and the risk
of overfitting increase. Even though our methods identify the most relevant variables for
prediction well, a huge number of such variables also results in the same problems for us.
An approach to deal with such issues is to stop adding variables into the model, e.g., when
pmodel ≈

√
2n, as a rule of thumb, where pmodel is the number of variables in a vine copula,

and n is the number of observations. Further, our methods can be combined with sparse
vine copula models proposed by Nagler et al. (2019), and appropriate penalty terms can be
proposed and incorporated into the selection of vine copula models tailored to prediction tasks.

4.9 Conclusion

We propose two methods to perform high-dimensional sparse vine copula based regression
and analyze their performance in the presence of redundant and irrelevant variables through
simulation studies. We show that vine copula based regression methods have better accuracy
than linear models in analyzing nonlinear relationships between the response and explanatory
variables. Further, our methods perform better than quantile regression forests in the presence
of many correlated variables. Finally, we discuss future research directions to extend our
methods with high-dimensional data sets to more flexible vine tree structures.



Part II

Societal applications
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Chapter 5

Environmental, social, and governance
(ESG) data analysis

This chapter includes the materials from Sahin et al. (2022) and Sahin et al. (2023), but
Section 5.7 gives a case study characterizing different dependence structures among Energy
companies in the Standard&Poor (S&P) 500 based on their sustainability levels and stock
prices using VCMM explained in Chapter 3.

5.1 Motivation

As sustainability concerns increase globally, sustainable finance and Environmental, Social, and
Governance (ESG) investing strategies gained much interest. According to Bloomberg, the
“ESG ETF market had risen over 318% in 2020”, indicating the significant interest by investors
(Bloomberg 2021). To assess the companies’ annual ESG performance and sustainability,
investors can use the ESG scores data providers make available, using the publicly available
data and voluntary disclosure.

Until now, most scholars have focused on the link between ESG scores and corporate
financial performance (Friede et al. 2015). Lately, the European Banking Authority (EBA) has
acknowledged the role of ESG scores in impacting companies’ riskiness and identified a need to
incorporate ESG risks into overall business strategies and risk management frameworks (EBA
2020). ESG scores may affect institutions’ financial performance by manifesting themselves
in financial risks, such as “credit risk, market risk, operational risk, liquidity, and funding
risks,” and managing the ESG risk can act as a driver for managing financial risk (Page 10
of EBA (2020)). Accordingly, Kumar et al. (2016) indicate a significant negative correlation
between ESG scores and volatility. Diemont et al. (2016) and Verheyden et al. (2016) use the
Value-at-Risk (VaR) to measure tail risk and study its link with ESG scores. Bax et al. (2023)
point out that ESG risk dependence can be quantified and is not negligible in times of crisis.
Nonetheless, Ayton et al. (2022) do not find any statistically significant relationship between
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corporate social performance, measured by ESG scores, and the systematic risk of companies.
Recently, ESG data quality issues have raised another big discussion in the ESG literature.

Berg et al. (2022) report a large discrepancy between ESG scores from different data providers.
Abhayawansa and Tyagi (2021) present the main reason for the divergence as different mea-
surement methods. Gyönyörová et al. (2021) discuss that such a divergence changes from
sector to country. Finally, Billio et al. (2021) argue that such discrepancies might make the
usage of ESG scores in portfolios difficult for fund managers.

Data methodology and its pitfalls

Another important issue regarding the ESG data is if ESG scores for a certain year within the
same provider change over time. For instance, working with the same provider, one could
expect companies’ ESG scores for 2017 to be the same, independent of the data extraction
date. If so, research findings working with the same companies in similar periods should be
consistent regarding ESG scores used from the same provider. In this manner, many studies
use Thomson Reuters (Refinitiv; previously ASSET4) as a reliable data provider (Berg et al.
2021). Its ESG scores are built on the aggregation of Environmental, Social, and Governance
pillar subscores. Nonetheless, Berg et al. (2021) argued that Refinitiv might have a strong
incentive to show that their ESG scores exhibit a relationship with financial performance
measures, making them more attractive to investors. Moreover, they show that Refinitiv’s
ESG scores of the previous years are re-written thereof. For instance, using Refinitiv’s ESG
scores and S&P’s credit ratings, Aslan et al. (2021) find that the Social pillar impacts the
probability of credit default for US firms. However, Bannier et al. (2021) do not find the
same association for US firms using the same provider, S&P credit ratings, and similar time
windows. Thus, although their methodology and number of observations in the studies are
slightly different, one might ask if both studies’ ESG scores and pillar subscores for the same
companies in the same years are consistent with each other.

Indeed, focusing on Refinitiv’s ESG scoring methodology described in Refinitiv (2021a),
Refinitiv states that its ESG data of the five most recent years are regularly updated, i.e., non-
definitive. Refinitiv’s methodology to re-write its ESG data consists of a weighting scheme
to compute pillar subscores and ESG scores, the initial disclosure of ESG information, and an
update in the published ESG information. Thus, there are ongoing and unannounced ESG data
changes for the five most recent years. It is reasonable for Refinitiv to re-write its recent ESG
data to provide its customers, most likely investors, with the most updated ESG information.
However, Refinitiv’s ongoing ESG data modifications for the five most recent years imply that
researchers and investors might be using different ESG scores for the same companies in the
same years. Naturally, then, it might lead to different research conclusions.

In this chapter, first, we aim to analyze the impact of (non-definitive) ESG scoring method-
ology on (i) the link between ESG scores and risk and (ii) the potential of manipulative ESG
data changes using simple optimization and exploratory data mining approaches. While Berg
et al. (2021) document the changes in the Refinitiv ESG data, to the best of our knowledge,
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there has not yet been any study discussing the implications of a (non-definitive) ESG scor-
ing methodology for researchers and investors in detail and investigating the potential ESG
data mining approaches from a provider perspective. We focus on the risk aspect due to the
growing number of recent studies (e.g., Farah et al. (2021), Jarjir et al. (2020), Morelli and
D’Ecclesia (2021), and Rehman et al. (2020)), but other financial performance measures can
also be considered. More complex optimization schemes, such as in Ahmed et al. (2021) and
Pedersen et al. (2021), can be easily adapted.

Working with the top market capitalization companies globally, constituents of the S&P
500, we show that ESG scores from Refinitiv might diverge over time, and ESG research
findings using its non-definitive ESG data might not be replicable in the future. More specifi-
cally, if the weights given to pillar subscores to compute an ESG score change, the number of
sectors providing significant positive dependence between ESG scores and risk might increase.
Moreover, it is a common practice in the literature to classify the companies into quartiles
based on their ESG scores to assess the impact of high/low levels of social responsibility on
financial performance measures and vice versa (e.g., Barko et al. (2021), D́ıaz et al. (2021),
and Lins et al. (2017)). However, we show that such quartiles’ companies change by mod-
ifying the pillar subscore weights. Therefore, we conjecture that inconsistent relationships
between ESG and financial performance measures in the literature might result from the ESG
data extracted at different time points and used in the studies. Furthermore, how well socially
responsible a company is compared to its peers might depend on its industry group’s pillar
subscore weights.

Additionally, we discuss that a company’s initial disclosure of ESG information results in re-
written ESG scores for its peers despite the fact that the peers did not change any underlying
ESG information. Hence, such ESG information changes might make some companies more
sustainable than before despite nothing has changed. Finally, we show that as companies
initially disclose ESG information or update the published ESG information, the relationship
between ESG scores and risk changes.

Given the growing literature using the US companies’ non-definitive ESG scores (e.g., Bae
et al. (2021); Demers et al. (2021); Garel and Petit-Romec (2021); Li et al. (2021); Lööf et al.
(2021); Mohr et al. (2022)), we hypothesize that conclusions regarding the data used might
depend on sectors and the date and amount of ESG information disclosure. Hence, they need
to be evaluated carefully. Also, some results might apply to other countries and providers
since they use similar ESG scoring methodologies, but this is open to further research.

The quantification of missing data and its impact

While the above-described debate is still going on, ESG scores still play a crucial role in in-
vestors’ investment strategies. Based on the global survey conducted by senior investment
professionals, Amel-Zadeh and Serafeim (2018) find that the negative screening (only includ-
ing companies with a high ESG score in a portfolio and excluding companies with a low ESG
score (PRI 2021)), either across sectors or within a sector, is still the most used method to
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integrate ESG information into portfolios compared to positive screening, active ownership,
and full integration. As an outlook on the future, investors argue that they expect posi-
tive screening and active ownership to gain importance (Amel-Zadeh and Serafeim 2018).
Moreover, Alessandrini and Jondeau (2020) and Alessandrini et al. (2021) discuss that the
performance of ESG exclusion strategies varies across geographies and sectors. They find that
screening often leads to a better risk profile of the portfolios and often generates protection
against credit risks (Alessandrini et al. 2021). Lastly, they recommend screening as the best
strategy for passive investors with ESG preferences (Alessandrini et al. 2021). Still, the debate
about negative screening has been ongoing since the exclusion strategies based on ESG scores
can lead to capital and risk misallocations if ESG scores are not representative of company
characteristics (Alessandrini and Jondeau 2020).

Since ESG scores might be subject to changes due to a release of new ESG information,
i.e., the release of missing ESG information (Berg et al. 2021), in this chapter, we also
focus on studying the role and the amount of missing ESG information as a potential source
for a release of new ESG information with impacts on ESG scores in the future. Thus,
we introduce a new pillar quantifying the missing ESG information, called the Missing (M)
pillar, and define new scores: Environmental, Social, Governance, Missing (ESGM) scores by
simultaneously aggregating the M pillar with the three ESG pillars. The ESGM scores are
easily interpretable as a convex combination of the E, S, G, and the newly introduced M pillar
subscores. We propose an optimization scheme to link ESGM scores and risk measures and run
an in-sample and out-of-sample analysis to ensure robust results. If the amount of missing
information is explicitly considered, companies are encouraged to disclose new information
by our ESGM scoring construction methodology, as it positively impacts the score. This
assumption is reasonable considering the current ESG scoring construction methodology that
positively rewards the disclosure of new information and the fact that often missing information
is not due to the unwillingness to release such information but its unavailability.

For this part, we work with the Refinitiv ESG data of the constituents of the S&P 500
and EuroStoxx 600 in the period 2017-2019, i.e., when the missing ESG information can still
be released, and the ESG scores can be updated. We show that ESG and risk dependence
and the amount of missing ESG information change with sectors and geographical regions.
We also show that ESGM scores provide better risk profiles for companies than ESG scores.

Moreover, investors and practitioners can benefit from this research for the negative screen-
ing since using the widely available Refinitiv ESG data, which do not include the potential of
new information disclosure, would mean that possible companies with potentially high scores
after new ESG information adoption will be missed. Overall, this could lead to a more risky
and less effective portfolio. ESGM scores identify the risky companies better than ESG scores
for exclusion strategies. Nonetheless, the impact of missing ESG information on negative
screening varies in sectors and regions. We further discuss the implications of our research for
researchers, investors, companies, and managers.

The chapter is organized as follows: we introduce the methodology behind the ESG
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scoring construction from Refinitiv in Section 5.2 and describe the ESG data in Section 5.3.
Section 5.4 explores the data. We discuss the pitfalls of ESG scoring methodology in Section
5.5, while Section 5.6 presents the impact of missing ESG data on risk measures and their
quantification. Next, we apply the model-based clustering with vine copulas to evaluate the
dependence structure of companies based on their ESG scores in Section 5.7. Finally, we
discuss our findings in Section 5.8 and conclude in Section 5.9.

5.2 Review of Refinitiv’s ESG scoring methodology

Refinitiv gathers publicly available ESG information of companies and calculates a range
of ESG performance indicators. The performance indicators are aggregated with a ranking
scheme per Thomson Reuters Business Classifications Industry Group or the respective Coun-
try Group (Refinitiv 2021a) such that a category score, which is for Resource Use, Environ-
mental Innovation, Emission, Workforce, Human Rights, Community, Product Responsibility,
Management, Shareholders, or Corporate Social Responsibility, is based on the company’s
relative performance compared to its peers. A category score takes values from zero to 100,
where a zero category score means that the company has not disclosed any information about
the category’s indicators. Then the indicator values are denoted by NULL or N/A. We note
that Refinitiv shared the information as a reply to our inquiry on 07 May 2021.

Refinitiv pillar subscores are weighted sums of the respective category scores as illustrated
in Figure 5.1. The category score weights to find pillar subscores are between zero and one,
different per category, sum up to one and can be modified annually (Refinitiv 2021a). A pillar
subscore, which is for the Environmental (E), Social (S), or Governance (G) pillar, also takes
values from zero to 100, where a zero pillar subscore means that the company has not yet
disclosed any information with regard to the pillar’s and respective categories’ indicators.

ESG scores are convex combinations of the three pillar subscores and range from zero
to 100. The pillar subscore weights to find ESG scores can be updated annually (Refinitiv
2021a). The higher the ESG score is, the more ESG responsible the company is evaluated.

Example 5.1 presents an exemplary ESG score calculation using the fictitious pillar subscore
weights for the industry group Household Goods and a generic name for the company.

Example 5.1 (ESG score calculation of Refinitiv). The ESG pillar subscores of Company F
in Household Goods in 2017 are 0.00 (E pillar), 63.01 (S pillar), and 54.77 (G pillar) with
weights 0.240, 0.294, and 0.466, respectively. Then its ESG score in 2017 is the weighted
sum of all pillar subscores:
xESG,CompanyF,2017 = 0.240 · 0.00 + 0.294 · 63.01 + 0.466 · 54.77 = 44.05.

A drawback of the current Refinitiv ESG scoring methodology is that its ESG data for
the five most recent years is non-definitive. For example, the ESG scores of 2016 have been
marked as definitive since June 2021. The difference between the ESG scoring methodology
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Figure 5.1: Aggregation of ten categories and three pillars in Refinitiv’s ESG scoring con-
struction methodology, where RU, EI, EM, WF, HR, CO, PR, MG, SH, CS, E, S, and G
denote Resource Use, Environmental Innovation, Emission, Workforce, Human Rights, Com-
munity, Product Responsibility, Management, Shareholders, Corporate Social Responsibility,
Environmental, Social, and Governance.

of definitive and non-definitive ESG scores is that the former’s pillar subscore or category score
weights are not subject to modifications. For instance, if Refinitiv updates the pillar subscore
weights to compute ESG scores in January 2022, as we study in Section 5.5, the ESG scores
of 2016 stay the same (Refinitiv 2021a). However, the ESG scores from 2017 to January 2022
can get modified. Moreover, the companies are no longer allowed to update or provide ESG
information regarding 2016 or previous years of 2016, but such changes in ESG information
are feasible for the ESG data from 2017 to January 2022.

Indeed, Company F in Example 5.1 has not yet provided any ESG information for the
E pillar subscore of 2017; therefore, its E pillar subscore is zero. It also implies that the
ESG category scores of 2017 building the E pillar subscore (Resource Use, Emissions, and
Environmental Innovation) are zero. Company F can disclose its missing ESG information
regarding the E pillar’s categories until June 2022, given that ESG data for the last five years
can be updated a posteriori (Refinitiv 2021a).

5.3 Data description and preprocessing

Using the non-definitive ESG data, for which companies can still disclose new ESG information,
making their ESG data changed, our data consists of yearly ESG scores and E, S, and G
pillar subscores composed of the ten ESG categories Resource Use, Emissions, Environmental
Innovation, Workforce, Human Rights, Community, Product Responsibility, Management,
Shareholders, and Corporate Social Responsibility scores of the constituents of the S&P 500
(extracted on February 4, 2021) and the constituents of the EuroStoxx 600 (extracted on
March 28, 2022) over the period 2017 to 2019, i.e., the top market capitalization companies
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in the USA and Europe, respectively. While we use only the former in Section 5.5, Section
5.6 analyzes both samples.

We compute the companies’ daily log returns using their daily price data from January
2, 2017, to December 30, 2019. Since 17 companies in the S&P 500 and 109 companies in
the EuroStoxx 600 do not report either ESG data or price data in 2017-2018 in the database,
we excluded them from our analysis, working with 483 companies in the S&P 500 and 491
companies in the EuroStoxx 600. To have as many companies as possible in the sample, we
argue that investors use the latest score available in the market to make their risk assessment.
Hence, the ESG data of the companies, which do not have any values in 2019, is imputed by
their ESG data in 2018, assuming their score has not yet been updated, and investors would
still consider these scores in their decision-making. In total, we imputed the ESG data of 66
companies in the S&P 500 and 19 companies in the EuroStoxx 600 in 2019. The dependence
estimated using Pearson correlation (Kendall’s τ) between the ESG scores in 2017 and 2018
is equal to 0.94 (0.79), between the scores in 2018 and 2019 to 0.93 (0.78), while between
the ESG scores in 2017 and 2019 to 0.89 (0.71) in the S&P 500. Similar results apply to the
EuroStoxx 600.

We estimate the companies’ annual 95% VaR as the empirical quantile and annual volatility
as the market risk measure using the daily logarithmic returns for the risk measures. Then we
calculate the companies’ vvrisk, which is the multiplication of the VaR and annual volatility.

Both samples include companies from ten different Thomson Reuters Business Classifica-
tions Economic Sectors (Refinitiv 2021b): Basic Materials (23 and 50 companies), Consumer
Cyclicals (77 and 79 companies), Consumer Non-Cyclicals (39 and 41 companies), Energy (24
and 17 companies), Financials (60 and 88 companies), Healthcare (56 and 33 companies),
Industrials (65 and 84 companies), Real Estate (28 and 26 companies), Technology (82 and
45 companies), and Utilities (29 and 28 companies) in the S&P 500 and EuroStoxx 600,
respectively. Even though the data provider determines the ESG, pillar, and category scores
for 47 industry groups within the S&P 500 and 52 industry groups within the EuroStoxx 600,
we work with ten economic sectors to have a larger sample size within each sector.

5.4 Exploratory data analysis

Risk measures

While exploring our risk data, Figure 5.2 reports the pairwise scatter plots with the empir-
ical Kendall’s τ of the VaR, volatility, and vvrisk for the S&P 500. We remark that less
negative VaR tends to be associated with smaller volatility levels, and the vvrisk is highly
negatively/positively dependent on the volatility/VaR.

Moreover, we can observe the variability in the VaR of the companies in each of the ten
sectors in the S&P 500 and EuroStoxx 600 across three years in Figure 5.3. While Financials
and Real Estate have the smallest variation in 2017 and in 2018-2019 in the S&P 500,
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Figure 5.2: Lower triangular panels: pairwise scatter plots of volatility, VaR, and vvrisk in
a year in S&P 500, upper diagonal panels: the empirical Kendall’s τ , diagonal: empirical
marginal densities.

respectively, the variation of Real Estate in 2017-2018 and Utilities in 2019 is smaller than
others in the EuroStoxx 600. Furthermore, the variation of Energy is larger than others across
three years in the S&P 500. Additionally, Basic Materials, Consumer Cyclicals, and Consumer
Non-Cyclicals in the S&P 500 have larger variations than those in the EuroStoxx 600 across
three years, whereas Financials is the sole sector whose variation across three years is larger
in the EuroStoxx 600 than the S&P 500.

Figure 5.3: 95% VaR across ten sectors and three years in the EuroStoxx 600 and S&P 500.

Missing ESG data

The number of ESG categories with not yet disclosed (missing) ESG information varies from
zero to six, with more details given in the supplementary in Section 5.10. Our empirical
findings provide that the non-financial disclosures are higher in the EuroStoxx 600 companies
than in the S&P 500 companies. Since there are mandatory ESG disclosure regulations in



86 Environmental, social, and governance (ESG) data analysis

European Union but not in the USA, such observations might be expected (International
Platform on Sustainable Finance 2021).

Table 5.1 shows that the percentage of the companies with not yet disclosed ESG in-
formation regarding at least one of the ten ESG categories ranges from a minimum of 15%
in Consumer Non-Cyclicals in 2019 to a maximum of 71% in Healthcare in 2017 with an
average of 47% across ten sectors and three years in the S&P 500. Its range is from 11%
in Utilities in 2019 to 77% in Healthcare in 2017 with an average of 38% across ten sectors
and three years in the EuroStoxx 600. Additionally, it is always higher in the S&P 500 than
the EuroStoxx 600 per year in all sectors but Consumer Non-Cyclicals and Real Estate. Thus,
missing ESG information changes with sectors and geographical regions. More than half of
the companies in Consumer Cyclicals, Energy, and Healthcare in the S&P 500 and Real Estate
in the EuroStoxx 600 have at least one of the ten ESG categories with not yet released ESG
information each year. Moreover, we observe that the percentage of such companies tends to
decrease in time. Such a result might imply that the companies disclose more information as
it becomes available, which could provide new insights into their ESG performance and risk
characteristics. Furthermore, since the ESG scores have had a strong impact on the company’s
value (Fatemi et al. 2018), one can expect the companies to publish more ESG information
in the future.

Table 5.1: Percentage of the companies with missing ESG information at least in one of the
ten ESG categories across ten sectors and three years in S&P500 and EuroStoxx600 combined.

Sector (S&P - EuroStoxx ) 2017 2018 2019
Basic Materials 35% - 36% 30% - 24% 30% - 20%
Consumer Cycl. 56% - 43% 55% - 35% 53% - 30%
Consumer N-Cycl. 23% - 37% 18% - 34% 15% - 22%
Energy 67% - 35% 67% - 35% 58% - 29%
Financials 62% - 50% 53% - 36% 47% - 26%
Healthcare 71% - 70% 64% - 58% 59% - 45%
Industrials 48% - 46% 48% - 37% 45% - 30%
Real Estate 68% - 77% 54% - 65% 46% - 54%
Technology 48% - 42% 44% - 36% 34% - 33%
Utilities 45% - 32% 41% - 18% 34% - 11%

Figure 5.4 shows that companies with lower ESG scores tend to have more ESG categories
with not yet published ESG information. It could be due to the lack of infrastructure allowing
them to collect and then release such information. However, it would still imply that a
company with a lower ESG score could have a large potential to upgrade its ESG score when
not yet recorded information is disclosed.
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ESG scores and pillar subscores

Figure 5.5 gives the boxplots of ESG scores and pillar subscores across ten sectors and three
years in the EuroStoxx 600 and S&P 500, respectively. We see variability in all scores for all
sectors.

The median ESG score of Consumer Non-Cyclicals is higher than that of others in the
S&P 500. Since Consumer Non-Cyclicals has less missing information in the ESG categories
than the others in Table 5.1, such a case can be expected. Similar results hold for Energy in
the EuroStoxx 600.

In addition, the range of E-pillar subscores is higher than that of their other scores. It
could be due to the fact that environmental issues may be hard to compute for some sectors
like Financials. Some companies in Consumer Cyclicals, Financials, Healthcare, Industrials,
Real Estate, and Technology have not yet published any Environmental information in 2018
in the S&P 500 as indicated by their zero Environmental pillar subscores.

Figure 5.4: Scatter plot of the companies’ ESG scores and their number of ESG categories
with undisclosed ESG information in Consumer Cyclicals in S&P 500 in 2017, where a triangle
denotes the median ESG score of the respective row.
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Figure 5.5: ESG and pillar subscores across ten sectors and three years in the EuroStoxx 600
and S&P 500.
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5.5 The pitfalls of ESG scoring methodology

In this section, first, we discuss the need for non-definitive ESG scores from the provider’s
point of view. Then we study the dependence measured by Kendall’s τ between our sample
of non-definitive ESG scores and risk. Note that the dependence between the ESG scores and
annual 95% VaR in 2017 for Basic Materials increased from 0.130 to 0.170, where we use the
ESG scores from February 2021 in the former and September 2021 in the latter. Likewise, the
Industrials’ ESG scores by September 2021 have the dependence value of 0.124, increasing
from 0.118. Therefore, such changes might be the first indication that the provider can be
manipulating the ESG data thanks to its ESG scoring methodology.

We explain how the ESG scores of the five most recent years can be updated and the
implications of the resulting non-definitive ESG scores using simple optimization and data
mining approaches. In particular, we analyze the effect of the pillar subscore weights/category
score weights to compute ESG scores/pillar subscores. Later, we discuss the impact of the
initial disclosure of ESG information and an update of the published ESG information.

Non-definitive ESG scores from a provider perspective

The provider might aim to give the most updated ESG information to its customers. Thus, it is
reasonable to re-write its recent ESG data. For example, suddenly, there could be big scandals
about how a company approaches labor rights, and the company could not be regarded as
responsible as previously assessed regarding its employee treatment. Therefore, the provider
would need a modification in its ESG data, especially for its Governance pillar subscore, since
the Governance pillar subscore takes into account employee treatment. Additionally, the
world has been changing rapidly, and what is now unimportant might be the most important
thing in the next five years. Currently, the Environmental pillar has had small importance
in the aggregation to compute most Technology companies’ ESG scores (Refinitiv 2021a).
The provider’s justification might be that Environmental information is not well related to
the Technology sector’s sustainability since big Technology companies do not disclose much
Environmental information. However, it has been a hot debate how much Environmental
damage a Technology company makes to develop its software and hardware (Bender et al.
2021; Strubell et al. 2019) and if the Technology companies correctly report their emissions
(Klaaßen and Stoll 2021). Therefore, the provider might need to add much more disclosed
Environmental information in the Technology’s ESG data, even back in time, and modify the
importance of the Technology’s Environmental pillar in the future.

Non-definitive ESG scores and risk dependence

We consider Kendall’s τ as a dependence measure between ESG scores and VaR in the same
year for all sectors since our sample has nonlinear dependence as shown in Figure 5.6. The
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number companies is 23 in Basic Materials, 77 in Consumer Cyclicals, 39 in Consumer Non-
Cyclicals, 24 in Energy, 60 in Financials, 56 in Healthcare, 65 in Industrials, 28 in Real Estate,
82 in Technology, and 29 in Utilities.

Figure 5.6: The scatter plots of companies’ ESG scores and their annual 95% VaR values
in for Consumer Cyclicals and Industrials, where gray curve demonstrates a local polynomial
regression fit, denoting nonlinear dependence between two variables.

Table 5.2 shows that five sectors exhibit significant dependence for 2017, and it varies
across sectors. The hypothesis testing is for H0:τ = 0 versus HA:τ > 0 (Hollander et al.
2013). *, **, and *** denote statistical significance at 10%, 5%, and 1% levels, respectively.
Energy and Healthcare have a significant dependence at 10% and 5% levels, respectively, in all
years. Significance exists for some years for Consumer Cyclicals, Industrials, and Technology.

Re-weighting scheme for pillar subscores

A reason for non-definitive ESG scores is that the weights of pillar subscores to calculate them
can be updated. We will calculate the exemplary weights in this part. Refinitiv’s current
pillar subscore weights are determined for industry groups,1 and Refinitiv can modify them
annually.2 The modifications are based on the information provided by large- and middle-cap
companies, making them open to manipulations (Page 12 of Refinitiv (2021a)).

1To our knowledge, pillar subscore weights cannot be reported explicitly.
2As a reply to our inquiry on May 10, 2021, Refinitiv states, “Since the ESG scoring methodology which

was implemented on April 6, 2020, we have not made any changes to the pillar subscore weights. They may
change in the future to best adapt to potential changes that may occur within the industries and their ESG
performance and impact.”
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Table 5.2: Kendall’s τ between ESG/re-weighted ESG scores defined in Equation (5.1)
(left/right columns under a year) and annual 95% VaR in 2017-2019 across ten sectors.

Sector 2017 2018 2019
B. Materials 0.130 0.399 ** 0.099 0.320 ** -0.075 0.130
Cons. Cycl. 0.161 ** 0.175 ** 0.144 ** 0.182 ** 0.036 0.101 *
Cons. N-Cycl. -0.047 0.015 0.001 0.074 0.115 0.136
Energy 0.196 * 0.254 ** 0.203 * 0.377 ** 0.229 * 0.341 **
Financials 0.020 -0.003 -0.160 -0.096 -0.102 -0.005
Healthcare 0.309 *** 0.296 *** 0.278 *** 0.271 *** 0.161 ** 0.161 **
Industrials 0.118 * 0.140 ** -0.071 0.051 -0.103 0.084
Real Estate -0.138 -0.185 -0.312 -0.212 -0.310 -0.069
Technology 0.154 ** 0.172 ** 0.028 0.069 0.051 0.189 **
Utilities -0.079 0.044 -0.030 0.059 -0.099 0.079

As expected, a modification in pillar subscore weights might result in very different ESG
scores for the same company. For example, suppose that a company’s Environmental, Social,
and Governance pillar subscores are 30, 70, and 40, respectively. If the weights are 0.200,
0.500, and 0.300 for the Environmental, Social, and Governance pillar subscores, the company
has an ESG score of 53. However, the company has an ESG score of 41 using the weights
0.500, 0.200, and 0.300 for the E, S, and G pillar subscores, respectively.

A data-mining approach can be easily applied to re-write ESG scores, which might find
optimal weights of the pillar subscores to calculate the new, so-called re-weighted ESG scores.
The optimality would also have a relationship between a risk measure and the re-weighted
ESG scores. Since the pillar subscore weights are reported by three digits1, there are 501501
possible weighting schemes for pillar subscores as discussed in the supplementary in Section
5.10. Therefore, we examine if and which re-weighting scheme out of 501501 can strengthen
the relationship between the re-weighted ESG scores and VaR, solving optimization problems
like proposed in Equation (5.2) (Powell 2015).

First, we define re-weighted ESG scores for each company ip in sector p and year t via the
new weights of the pillar subscores (wEp , w

S
p , w

G
p ):

ReweightedESGt
ip,p = Et

ip,p · w
E
p + Stip,p · w

S
p +Gt

ip,p · w
G
p , (5.1)

where p ∈ {Basic Materials, . . . , Utilities}, t ∈ {2017, 2018, 2019}, ip = 1, . . . , np, and
np is the number of companies in sector p.

Then Equation (5.2a) determines new pillar subscore weights so that re-weighted ESG
scores show the highest positive dependence with the VaR within each sector in all years,
where it holds ReweightedESGt

p = (ReweightedESGt
1,p, . . . , ReweightedESG

t
np,p)

>

and V aRt
p = (V aRt

1,p, . . . , V aR
t
np,p)

>. As shown by Diemont et al. (2016), it is natural
to assume that companies with higher (re-weighted) ESG scores should have stronger VaR
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relationships. Following the ESG scoring methodology of Refinitiv (Refinitiv 2021a), Equation
(5.2b) ensures that re-weighted ESG scores are between zero and 100; Equation (5.2c) assumes
each pillar subscore has a non-negative impact on the re-weighted ESG scores. Our simple
scheme aggregates the dependence over the three recent years. Alternative approaches could
consider the re-weighting in a single year or impose a positive lower bound on weights (e.g.,
wEp , w

S
p , w

G
p ≥ 0.2) to avoid putting too much concentration on a single pillar subscore as

shown in Table 5.4. To have a larger sample size within the S&P 500, we investigate the
re-weighting on a broader level, i.e., ten economic sectors rather than 47 industry groups.3

max
wEp ,w

S
p ,w

G
p

2019∑
t=2017

τ̂
(
ReweightedESGt

p, V aR
t
p

)
(5.2a)

subject to wEp + wSp + wGp = 1, ∀p, (5.2b)

wEp , w
S
p , w

G
p ≥ 0, ∀p. (5.2c)

To minimize the sensitivity of the numerical optimization concerning initial parameter values,
we run the models using 20 different starting values. We choose the optimal weights corre-
sponding to the highest dependence value of 20 runs within each sector. We do not observe
multiple optimal solutions.

Table 5.2 presents the dependence measured by Kendall’s τ between re-weighted ESG
scores and VaR. We observe increases in the dependence using re-weighted ESG scores, but
five minimal reductions result from the fact that Refinitiv determines the weights for industry
groups within a sector, having more parameters and flexibility to strengthen the dependence.
Table 5.2 shows that the re-weighted ESG scores of Consumer Cyclicals, Energy, and Health-
care show significance at least at 10%, 5%, and 5% levels in all years, respectively. Significance
exists in some years for Basic Materials, Industrials, and Technology using re-weighted ESG
scores. However, Healthcare’s significance level is also at 5% using ESG scores for all years.

Table 5.3 reports the new pillar subscore weights as a solution of Equation (5.2). The
Environmental pillar in Utilities and Basic Materials is the sole driver of strengthening the
risk performance using re-weighted ESG scores. Determining such a high Environmental pillar
subscore weight might be unreasonable for the provider, but having its weight as high as
possible while ensuring that all pillar subscore weights are larger than 0.200, like in Table
5.4 still provides strong risk dependence for Basic Materials in 2017 as seen in the left three
columns of the same table. Likewise, Energy’s Environmental pillar plays a vital role in having
significant risk dependence using re-weighted ESG scores, but the provider currently gives the
highest importance to its Social pillar subscore1.

The Governance pillar is the main factor in reducing risks in Consumer Cyclicals, Financials,
Industrials, and Real Estate using re-weighted ESG scores. However, none of the industry
groups in Consumer Cyclicals currently has the highest weight assigned to their Governance

3The variance in current pillar weights within sectors is low, except for Consumer Cyclicals, Healthcare,
and Technology.
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pillar1. Moreover, using re-weighted ESG scores, stronger Social activities are associated with
lower tail risk in Technology.

Table 5.3: New pillar subscore weights resulting in re-weighted ESG scores in Table 5.2 across
ten sectors as a result of solving the optimization problem in Equation (5.2).

Sector E S G
Basic Materials 1.000 0.000 0.000
Consumer Cycl. 0.085 0.174 0.741
Consumer N-Cycl. 0.639 0.346 0.015
Energy 0.904 0.000 0.096
Financials 0.007 0.099 0.894
Healthcare 0.133 0.481 0.386
Industrials 0.000 0.000 1.000
Real Estate 0.000 0.024 0.976
Technology 0.065 0.935 0.000
Utilities 1.000 0.000 0.000

Table 5.4: Kendall’s τ between re-weighted ESG scores and 95% VaR, and new pillar subscore
weights in 2017-2019 across ten sectors after imposing a positive lower bound (0.2) on weights.

Sector 2017 2018 2019 E S G
B. Materials 0.209 * 0.154 -0.028 0.598 0.202 0.200
Consumer Cycl. 0.192 *** 0.184 *** 0.055 0.200 0.247 0.553
Consumer N-Cycl. -0.009 0.036 0.142 0.559 0.230 0.211
Energy 0.239 * 0.341 ** 0.297 ** 0.567 0.200 0.233
Financials 0.010 -0.155 -0.075 0.200 0.201 0.599
Healthcare 0.304 *** 0.262 *** 0.145 * 0.203 0.423 0.374
Industrials 0.130 * -0.032 0.000 0.200 0.201 0.599
Real Estate -0.164 -0.296 -0.180 0.200 0.205 0.595
Technology 0.149 ** 0.041 0.119 * 0.202 0.596 0.201
Utilities -0.044 0.034 -0.054 0.600 0.200 0.200

Figure 5.7 illustrates the companies’ ESG and re-weighted ESG scores for 2017 in Indus-
trials, where we use the re-weighting scheme given in Table 5.4. Even though the dependence
(Kendall’s τ) between ESG and re-weighted ESG scores is around 0.72, more than 35% of
the companies out of 65 are in different quartiles regarding them. Thus, also some top and
bottom quartile companies concerning their ESG scores, regarded as the good and bad ESG
responsible companies, respectively, change with a modification in the pillar subscore weights.
Nonetheless, we observe that the companies with the highest and lowest ESG score have
the same rank after the re-weighting. Therefore, the re-weighting scheme considered is not



94 Environmental, social, and governance (ESG) data analysis

enough to change their ESG rank since they have the highest and lowest pillar subscores for
two pillars among their peers.

Figure 5.7: Scatter plot of the Industrials’ ESG and re-weighted ESG scores for 2017 obtained
using the re-weighting scheme in Table 5.4, where a triangle denotes the companies whose
score quartiles change, and a grid line represents a quartile of the respective axis.

As a result, the ESG scores of the sectors, except Healthcare, can be re-written by re-
weighting the pillar subscores so that better ESG scores are associated with fewer risks,
in line with the idea of Berg et al. (2021). Therefore, using non-definitive ESG scores in
the research might lead to different conclusions based on their data extraction date, like
a significant/insignificant (re-weighted/non-definitive ESG scores) risk relationship in Basic
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Materials for 2017. However, such a simple re-weighting scheme still does not provide a
significant VaR dependence for all sectors. Therefore, further research could use more complex
models to strengthen risk dependence.

Re-weighting scheme for category scores

A re-weighting scheme can also be applied for category scores to compute (new, re-weighted)
pillar subscores. Thus, pillar subscores might be subject to modifications (Appendix E in
Refinitiv (2021a)). Then since pillar subscores compute ESG scores as discussed in Section
5.5, ESG scores can also change.

We can argue that a more flexible re-weighting scheme with more parameters, such as
one for category scores, leads to new ESG scores whose risk dependence is at least as given
in Table 5.2. Therefore, one can expect that a re-weighting scheme for category scores alters
the significance of the (new) ESG scores and risk dependence, as well as the quartiles of the
companies regarding their (new) ESG scores.

The initial disclosure of ESG information

Besides changing pillar subscore and category score weights, another pitfall that can alter ESG
scores and research findings is the initial disclosure of ESG information. If companies have not
yet released the ESG indicators’ information (value) under a category, the respective category
score is encoded as zero. However, the companies with zero scores are not considered in the
ranking scheme to find the category score of their peers (Page 9 of Refinitiv (2021a)). As
soon as the companies with zero scores publish the ESG indicators’ values, they are included
in the ranking computation, changing the peers’ category scores even though the peers did
not change any ESG indicator values. Such disclosure methodology results in the re-written
ESG scores in that industry group without any announcements by the provider.

In the following hypothetical Example 5.2, we illustrate such an effect of the initial disclo-
sure of ESG information on ESG scores.

Example 5.2 (An effect of the initial disclosure of ESG information on ESG scores).
Suppose that there are five companies with a generic name in the industry group Chemicals,
and their fictitious category score Emission is given in Table 5.5. Assume that the companies
might disclose a carbon dioxide emission (COe) value as the ESG indicator of Emission. We
see in Table 5.5 that the company X publishes its initial COe value since a number replaces
N/A, and the others do not update it. However, all companies’ COe and Emission scores
later increase by the company X’s disclosure of the COe value. For instance, the COe score
of the company B changes from 0.125 to 0.300. Thus, its Emission score of 12.50 is replaced
by 30.00. Given that higher scores represent more responsible companies, the company X’s
disclosure makes the impression that all other companies are more responsible than before.
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Table 5.5: Changes in the category score Emission before and after the disclosure of the
company X, assuming lower COe value is better.

Company COe value COe score Emission COe value COe score Emission
(before) (before) (before) (after) (after) (after)

X N/A 0.00 0.00 50.4
1/2
5

= 0.100 10.00

Y 20.5
1/2
4

= 0.125 12.50 20.5 1+1/2
5

= 0.300 30.00

Z 14.5 1+1/2
4

= 0.375 37.50 14.5 2+1/2
5

= 0.500 50.00

Q 10.5 2+1/2
4

= 0.625 62.50 10.5 3+1/2
5

= 0.700 70.00

U 5.5 3+1/2
4

= 0.875 87.50 5.5 4+1/2
5

= 0.900 90.00

Moreover, since the Environmental pillar subscore is a weighted sum of the category
scores, such disclosure causes ongoing and unannounced modifications in the companies’
Environmental pillar subscore as shown in Table 5.6. Remarkably, companies Q and U have
the highest Environmental pillar subscore before the company X’s disclosure. Nonetheless,
after the company X’s disclosure, the company Q is regarded as the best company in terms
of the Environmental pillar subscore due to updates in the EM scores. Despite the change in
the scores, the Environmental information of the companies Q and U is the same before and
after the disclosure of the company X. A similar result applies to comparing the Environmental
pillar subscore of the companies Y and Z.

Table 5.6: Modifications in the E pillar before and after the disclosure of the company X
in Table 5.5, assuming that the weights to calculate the Environmental (E) pillar subscore
are 0.400, 0.400, and 0.200 for the Emission (EM), Resource Use (RU), and Environmental
Innovation (EI) category scores, respectively.

EM score RU score EI score E pillar EM score RU score EI score E pillar
(before) (before) (before) (before) (after) (after) (after) (after)

X 0.00 0.00 0.00 0.00 10.00 0.00 0.00 4.00
Y 12.50 37.50 25.00 25.00 30.00 37.50 25.00 32.00
Z 37.50 12.50 25.00 25.00 50.00 12.50 25.00 30.00
Q 62.50 87.50 75.00 75.00 70.00 87.50 75.00 78.00
U 87.50 62.50 75.00 75.00 90.00 62.50 75.00 76.00

Finally, we observe that all companies’ ESG scores are re-written as given in Table 5.7
due to the modifications in the companies’ Environmental pillar subscore before and after the
disclosure of the company X. Thus, a company’s initial disclosure of ESG information changes
its peers’ respective category scores, respective pillar subscores, and ESG scores.

We remark that the change in the scores due to the initial disclosure of ESG information
might decrease as the number of companies in an industry group or the number of indicators to
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Table 5.7: Modifications in the ESG scores before and after the disclosure of the company
X in Table 5.5, assuming that the weights to calculate the ESG score are 0.200, 0.300, and
0.500 for the E, S, and G pillar subscores, respectively.

Company E pillar S pillar G pillar ESG E pillar S pillar G pillar ESG
(before) (before) (before) (before) (after) (after) (after) (after)

X 0.00 30.00 10.00 14.00 4.00 30.00 10.00 14.80
Y 25.00 10.00 30.00 23.00 32.00 10.00 30.00 24.40
Z 25.00 90.00 70.00 67.00 30.00 90.00 70.00 68.00
Q 75.00 50.00 90.00 75.00 78.00 50.00 90.00 75.60
U 75.00 70.00 50.00 61.00 76.00 70.00 50.00 61.20

compute a category score increases. However, companies can still disclose around 50 numerical
ESG indicators for the last five years, making unannounced score changes accumulated over
time. We remark that the average number of numerical ESG indicators is based on the key
performance indicators document provided by Refinitiv on request.

In our data sample, five companies out of 65 in Industrials have not yet reported any
Environmental information for 2018 and can report them until June 2023. For instance,
they have not published their carbon dioxide emission and water usage indicators for 2018 to
compute their Environmental pillar subscore. However, when such Environmental information
is released, they will get a non-zero Environmental pillar subscore for 2018 based on their
relative performance among their peers.

With this motivation, consider the following additional hypothetical example in 2023: these
five companies publish their Environmental information for 2018, thereby getting a non-zero
Environmental pillar subscore for 2018. Then their ESG score for 2018 increases since an ESG
score is a weighted sum of pillar subscores. Accordingly, they get better ESG score ranks for
2018 among their peers in the data extraction in 2023 than in 2021. Assume their ESG score
rank for 2018 improves around 25-35 points in 2023 compared to 2021, e.g., the company on
the 61st rank in 2021 is on the 35th rank in 2023. As a result of this assumption, the remaining
companies’ ranks change accordingly, e.g., the 56th rank in 2021 obtains the 61st rank in 2023.
However, we assume that the ranks within the remaining companies do not differ. For instance,
while the 56th rank in 2021 obtains the 61st rank in 2023, the 55th rank in 2021 obtains the
60th rank in 2023.4 Under these assumptions, the dependence (Kendall’s τ) between ESG
scores and annual 95% VaR for Industrials for 2018 changes from -0.071 in 2021 to 0.002 in
2023. If the companies disclose more and better information to improve their rank around
55-60, the associated dependence between ESG scores and VaR for Industrials for 2018 equals
0.078 in 2023, even stronger, as given by the simple optimization problem in Equation (5.3),

4Our motivation comes from a company in Industrials, whose rank for 2018 in February 2021 decreased
value by 26 points among its peers in September 2021 thanks to the initial ESG information disclosure.
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where ESG2018
Ind = {ESGi,2018

Ind : i = 1, . . . , 65} and V aR2018
Ind = {V aRi,2018

Ind : i = 1, . . . , 65}
denote the 65 companies’ ESG scores for 2018 in Industrials (Ind) and their associated annual
95% VaR, respectively. The parameters corresponding to the new ESG scores of the five
companies after the ESG information disclosure are denoted by ESG1,2018

Ind , . . . , ESG5,2018
Ind .

max
ESG1,2018

Ind ,...,ESG5,2018
Ind

τ̂
(
ESG2018

Ind , V aR2018
Ind

)
(5.3a)

subject to ESG1,2018
Ind , . . . , ESG5,2018

Ind ≤ 100, (5.3b)

ESG1,2018
Ind , . . . , ESG5,2018

Ind ≥ 0. (5.3c)

The significance of providing transparent corporate social responsibility information on com-
panies’ financial benefits has been recently shown by Du and Yu (2021). Given the growing
importance of ESG scores on companies’ value (e.g., Fatemi et al. (2018) and Wong et al.
(2021)), it is reasonable to expect companies to publish more ESG information over time.
Hence, such information potentially alters non-definitive ESG scores, and the unannounced
ESG score modification is a fact that could affect research findings.

Update of the published ESG information

Another factor that can lead to modifications in the ESG scores is an update of the published
ESG information, including its deletion. For instance, in Example 5.2, the company Y’s carbon
dioxide emission value can be updated if such previous information appears incorrect. If the
new value affects the company Y’s rank among its peers to find its carbon dioxide emission
score, its and its peers’ ESG scores are re-written as discussed in Example 5.2.

Consider another hypothetical example from our data sample: if almost 6% of the com-
panies out of 65 in Industrials update their ESG scores and ranks for 2018, assuming that
the others’ ranks within themselves are preserved, the dependence (Kendall’s τ) between ESG
scores and VaR for Industrials for 2018 increases from -0.071 to a significant value of 0.119
using the hypothesis testing of H0 : τ = 0 versus HA : τ > 0 at 10% level.

For more discussion, we refer to Berg et al. (2021).

5.6 The quantification of missing data and its impact

In this section, first, we quantify the companies’ potential to disclose more ESG information,
including missing ones, in time and analyze the impact of the disclosure on the ESG scores
and the risk of the portfolios. Accordingly, we formulate a Missing (M) pillar subscore, which
explicitly captures the amount of not yet reported ESG information regarding the ten ESG
categories. Later, we define Environmental, Social, Governance, and Missing (ESGM) scores
and propose an optimization approach for their computation, linking them to companies’
riskiness. The optimization scheme aims to harvest the potential to strengthen the risk
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relationship in disclosing missing ESG information (EBA 2020). Our analyses are based on
the constituents of the S&P 500 and EuroStoxx 600 explored in Section 5.4. In this part,
we base our four pillar subscore weights estimation on training (in-sample) data to avoid
overfitting the data. Finally, we compare the relationship between risk, ESGM scores and
ESG scores using test (out-of-sample) data.

Missing pillar (M pillar) subscore

Since a zero ESG category score denotes that the company has not yet reported any informa-
tion regarding it, like in Example 5.1, we define a new pillar accounting for zero values, i.e.,
missing information, in the ten ESG category scores in a given business class: the Missing
(M) pillar subscore. A business class can be an industry group or an economic sector based
on the business classification of Thomson Reuters (Refinitiv 2021a). For instance, the assets
from the S&P 500 in Section 5.3 belongs to 61 industry groups from ten economic sectors.

Definition 5.1: The M pillar subscore

For company p in a given business class a and year t, first, we find the total number
of zero values in its ten ESG categories, i.e., xazero,p,t. The set Sazero,t contains these
values for all a, p, t. Denoting the total number of companies with same value as p in
Sazero,t (including the company p itself) by eap,t, and the total number of companies with
a higher value than p in Sazero,t by lap,t, the M pillar subscore of company p in a given
business class a and year t is defined as

xaM,p,t = 100 ·
lap,t +

eap,t
2

na
, p = 1, . . . , na, t = 1, . . . , T, a = 1, . . . , A, (5.4)

where na is the total number of companies in the given business class a, T is the total
number of years, and A is the total number of given business classes. The detailed
calculations and notations are given in the supplementary in Section 5.10.

From the definition, when a company has more zero values in its ESG categories than
all other companies in its business class, its M pillar subscore will be the highest. This is
because it has a higher extent of not yet published ESG information reflected in a high M
pillar subscore. Moreover, the M pillar subscore is continuous and between zero and 100, with
a mean value of 50 (proof in the supplementary in Section 5.10). Such a formulation makes
it robust to outliers and comparable with the three ESG pillar subscores. Its formulation is
similar to our data provider’s ESG category score methodology (Refinitiv 2021a).

Since our data provider has ten ESG category scores, the highest total number of zero
values a company can have in its ESG categories in our empirical analysis is ten. Accordingly,
Example 5.3 shows the M pillar subscore calculation steps using ten ESG category scores,
where the business class is an economic sector.
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Example 5.3 (The M pillar subscore calculation). Let xap,t = (xaRU,p,t, . . . , x
a
CS,p,t)

> contain
ten ESG category scores of company p in business class a in year t. Suppose there are four
companies (na = 4) in the economic sector Consumer Cyclicals (a = 2), and their fictitious
ESG category scores in 2017 (t = 2017) are given as follows:
x2
1,2017 = (99.3, 50.1, 12.3, 52.2, 0.00, 67.9, 0.00, 11.2, 20.4, 0.00)>,
x2
2,2017 = (63.5, 70.1, 52.3, 84.3, 10.2, 77.9, 88.9, 55.2, 80.4, 86.3)>,
x2
3,2017 = (36.3, 0.00, 12.3, 23.2, 0.00, 17.9, 0.00, 21.2, 50.5, 58.3)>,
x2
4,2017 = (85.2, 0.00, 12.3, 12.2, 0.00, 54.3, 52.5, 81.2, 75.6, 24.3)>.

For company p with p = 1, . . . , 4, we determine the total number of zero values in its
ESG categories and have S2

zero,2017 = {3, 0, 3, 2}. Consider the fourth company: it holds
x2zero,4,2017 = 2, e24,2017 = 1, and l24,2017 = 1. Accordingly, we calculate its M pillar subscore as

given in Equation (5.4): x2M,4,2017 = 100 · 1+1/2
4

= 37.5. For the second company without any

zero values in its ESG categories, the M pillar subscore is given by x2M,2,2017 = 100·0+1/2
4

= 12.5.
Since we also calculate x2M,1,2017 = 75 and x2M,3,2017 = 75, the M pillar subscore is between
zero and 100; the average M pillar subscore of all companies is 50, as postulated.

Environmental, Social, Governance, and Missing (ESGM) scores

Next, we incorporate the M pillar into the three ESG pillars and builds new scores, the ESGM:
Environmental, Social, Governance, and Missing scores.

Definition 5.2: The ESGM score

The ESGM score of company p in a given business class a and year t is defined as a
weighted sum:

xaESGM,p,t = xaE,p,t · waE + xaS,p,t · waS + xaG,p,t · waG + xaM,p,t · waM , ∀a, p, t. (5.5)

We denote the ESGM of companies in sector a and year t by xaESGM,t =
(xaESGM,1,t, . . . , x

a
ESGM,na,t

)>.

The ESGM scores have four weighted pillar subscores, and the unknown pillar subscore
weight varies according to its business class. The next task is to estimate the pillar subscore
weights. Since even regulatory authorities, including the European Banking Authority, have
acknowledged the role of ESG scores in quantifying the company’s riskiness and have iden-
tified a need to incorporate ESG risks into overall business strategies and risk management
frameworks (EBA 2020), we propose the following optimization scheme in Equation (5.6) to
estimate them, connecting the companies’ ESGM scores with their risk performance, where
xarisk,t = (xarisk,1,t, . . . , x

a
risk,na,t

)> denotes the risk values of companies in sector a and year t
as specified in Equation (5.7).

Refinitiv allows investors to build custom ESG scores by assigning customized pillar weights
(Refinitiv 2022). Therefore, our proposed optimization scheme that links the scores and
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riskiness can be applied for such a custom aggregation by investors. From the angle of
corporate investments’ net present value estimation process, Kudratova et al. (2020) also
presented an optimization model for quantitative sustainability measurements.

(ŵaE, ŵ
a
S, ŵ

a
G, ŵ

a
M) = arg max

waE ,w
a
S ,w

a
G,w

a
M

t2∑
t=t1

τ̂risk

(
xaESGM,t, xarisk,t

)
(5.6a)

subject to waE + waS + waG + waM = 1, ∀a, (5.6b)

waE, w
a
S, w

a
G ≥ 0.100, ∀a, (5.6c)

waM ≥ 0, ∀a, (5.6d)

waE, w
a
S, w

a
G ≥ waM , ∀a. (5.6e)

We analyze the ESGM scores’ influence on their risk performance by focusing on their
dependence in Equation (5.6a). We choose Kendall’s tau (τ) as our dependence measure like in
Section 5.5. Likewise, we can specify a generic risk function in Equation (5.7), where volatility
values of companies in sector a and year t is denoted by xavol,t = (xavol,1,t, . . . , x

a
vol,na,t

)>, and

vvrisk values of companies in sector a and year t is given by xavv,t = (xavv,1,t, . . . , x
a
vv,na,t)

>.
More complex objective functions aiming to find optimal ESG portfolios for investors, such as
proposed in Ahmed et al. (2021) and Pedersen et al. (2021), are subject to future research.
Nevertheless, we propose a flexible framework that can take only VaR and volatility or their
joint interaction with the artificially introduced risk measure, i.e., vvrisk. High ESGM scores
should be linked to the strong VaR (e.g., Diemont et al. (2016)) and vvrisk, as well as the low
volatility (e.g., Kumar et al. (2016)). Moreover, the pillar subscore weights can be estimated
using data from the period [t1, t2]. For instance, we will be using the two recent years of the
ESG data for an in-sample estimation, i.e., t1 = 2017, t2 = 2018, while t3 = 2019 will be
used for an out-of-sample evaluation.

τ̂risk

(
xaESGM,t, xarisk,t

)
=


τ̂
(
xaESGM,t, xavv,t

)
, if risk = vvrisk,

τ̂
(
xaESGM,t, xaV aR,t

)
, if risk = V aR,

−τ̂
(
xaESGM,t, xavol,t

)
, if risk = vol.

(5.7)

The constraint in Equation (5.6b) ensures that the ESGM scores are between zero and
100, similar to the ESG scores. To exclude unrealistic scenarios, Equation (5.6c) ensures
that each pillar subscore except the M pillar subscore has a positive lower bound, which is
motivated by the lowest weight ever given to one of the E, S, and G pillar subscores in one of
the industry groups by our data provider. To account for cases with no impacts of disclosing
new ESG information on the risk performance, we set a lower bound of zero for the M pillar
subscore weight in Equation (5.6d).
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In Equation (5.6e), we assume that the E, S, and G pillar subscore weights are larger
than or equal to the M pillar subscore weight. It considers the relative importance of already
disclosed ESG information in the E, S, and G pillar subscores compared to the potential
disclosure represented by the M pillar subscore. Disclosing reduces the companies’ weighted
M pillar subscore due to a decrease in the number of zero values entering the computation
of the M pillar subscore. By assigning higher weights to the E, S, and G pillar subscores,
our scheme encourages companies to disclose new ESG information, which usually positively
impacts both their ESGM and ESG scores. Additionally, such an optimization scheme allows
us to see for which business classes not yet disclosed ESG information might play a role and
for which business classes a re-weighting scheme for the E, S, and G pillar subscores matters
to strengthen the risk dependence.

Overall, in Equation (5.6), the constraints are linear, and the objective function is nonlinear
in terms of the parameters with unknown derivatives. Thus, such a scheme can be solved by
a derivative-free optimization algorithm dealing with linear constraints. Larson et al. (2019)
provide a recent review of derivative-free optimization methods.

When our ESGM pillar subscore weights are estimated, we compute a company’s ESGM
score as follows in Example 5.4.

Example 5.4 (The ESGM score calculation).
Suppose the estimated pillar weights of the companies in Consumer Cyclicals (a = 2) are given
by w2

E = 0.258, w2
S = 0.122, w2

G = 0.498, w2
M = 0.122. Then a company’s ESGM score

(p = 1) in Consumer Cyclicals with the following pillar subscores in 2017, xaE,1,2017 = 40.0,
xaS,1,2017 = 60.0, xaG,1,2017 = 20.0, xaM,1,2017 = 50.0, is calculated as follows:
x2ESGM,1,2017 = 0.258 · 40.0 + 0.122 · 60.0 + 0.498 · 20.0 + 0.122 · 50.0 = 33.70.

Empirical results: M pillar subscores

Since the companies in the data sets introduced in Section 5.3 contain the ESG categories
with not yet reported ESG information as shown in Table 5.1, we account for their information
disclosure, assigning an M pillar subscore as in Equation (5.4) in each of the ten sectors.

After computing the companies’ M pillar subscores across ten sectors and three years in
the S&P 500 and EuroStoxx 600, we observe that the mean M pillar subscore within each
sector and year in both data sets is 50, as constructed. The M pillar subscore shows variation
among ten sectors, and the standard deviation of the M pillar subscore changes from 18.31
for Consumer Non-Cyclicals to 28.16 for Real Estate in 2017 in the S&P 500. Likewise,
the lowest and highest M pillar standard deviations are 15.75 for Utilities in 2019 and 28.28
for Real Estate in 2017 in the EuroStoxx 600. Consumer Non-Cyclicals and Utilities have
the lowest percentage of the companies with undisclosed ESG information regarding an ESG
category in Table 5.1 for the S&P 500 and EuroStoxx 600, respectively, and their M pillar
subscore has the lowest standard deviation.



103 Environmental, social, and governance (ESG) data analysis

Table 5.8 reports the empirical Kendall’s τ between the ESG scores, E, S, G, and M pillar
subscores in Consumer Cyclicals in 2017 in the S&P 500. We see that the E, S, and G pillar
subscores have positive medium-sized dependence on the ESG scores, while the M pillar sub-
score negatively depends on the ESG scores and the other pillars, as detailed now: when more
ESG information is available for a company, the number of ESG categories with undisclosed
ESG information decreases. Accordingly, its ESG category scores increase, assuming nothing
changes in the other available information. Then since an ESG pillar subscore aggregates the
underlying ESG category scores, the respective E, S, and G pillar subscores increase, increasing
its ESG score. However, since the number of zero values used for the computation of the M
pillar subscore decreases, its M pillar subscore goes down. Our findings are characteristically
similar when considering other years, sectors, and EuroStoxx 600.

Table 5.8: Empirical Kendall’s τ matrix of the ESG scores, E, S, G, and M pillar subscores in
Consumer Cyclicals in the S&P 500 in 2017.

ESG E S G M
ESG 1.00 0.66 0.76 0.46 -0.52
E 1.00 0.54 0.25 -0.57
S 1.00 0.31 -0.44
G 1.00 -0.20
M 1.00

Empirical results: in sample analysis

After computing the companies’ E, S, G, and M pillar subscores, now, we focus on estimating
the E, S, G, and M pillar subscore weights using the in sample data from 2017 and 2018
across ten sectors, linking the resulting ESGM scores to their risk measures as formulated in
Equation (5.6). Precisely, we find (ŵaE, ŵ

a
S, ŵ

a
G, ŵ

a
M) for all sectors a in both data sets and

aim to analyze for which sectors there is a risk strengthening effect using the M pillar, i.e.,
potential disclosure of ESG information.

We use the derivative-free optimization solver, LINCOA (Linearly Constrained Optimiza-
tion Algorithm). LINCOA solves linearly constrained optimization problems without using
derivatives of the objective function and uses a trust region method (Powell 2015). As Powell
(2015) mentioned, we transform the linear equality in Equation (5.6b) into two inequalities.
After running sensitivity analyses, the initial and final trust-region radii are set to 0.2 and
0.0005, respectively. The maximum number of function evaluations allowed is 10000. As the
numerical optimization problems are sensitive to initial parameter values, we use ten different
starting values and choose the optimal weights in correspondence with the best objective
function value of ten runs. We do not observe multiple optimal solutions. All results are
available upon request.
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Tables 5.9 and 5.10 report the sectors’ estimated four pillar subscore weights, the de-
pendence of ESG, ESGM scores and risk for the S&P 500 and EuroStoxx 600, respectively.
According to Tables 5.9 and 5.10, as postulated in Equation (5.6), the pillar subscore weights
sum up to one; the E, S, and G pillar subscore weights are at least 0.100; the M pillar subscore
is non-negative, and the E, S, and G pillar subscore weights are larger than or equal to the M
pillar subscore weight in both data sets. We also see that ESGM scores are built on the M
pillar (non-zero M pillar weight) for Consumer Cyclicals, Energy, Industrials, Technology, and
Utilities in the S&P 500 and Consumer Cyclicals, Energy, Industrials, Financials, Healthcare,
and Real Estate in the EuroStoxx 600. The sectors above the horizontal line have the positive
M pillar subscore weight in Tables 5.9 and 5.10. Even though we observe the M pillar effect
on the risk dependence in Consumer Cyclicals, Energy, and Industrials in the S&P 500 and
EuroStoxx 600, the estimated pillar weights differ in both data sets. For instance, the M
pillar weight for Consumer Cyclicals is 0.084 in the S&P 500 and 0.189 in the EuroStoxx
600. Moreover, Technology has the M pillar weight of 0.245 in the S&P 500 and of zero
in the EuroStoxx 600. Therefore, the impact of the potential disclosure of ESG information,
i.e., missing ESG information, on the VaR dependence changes by sectors and geographical
regions.

Remarkably, the dependence of ESG scores and risk also depends on sectors and geo-
graphical regions as shown in Tables 5.9 and 5.10. While the dependence on Industrials is
significant at the 10% level with the value of 0.118 in 2017 in the S&P 500, it is 0.060 without
being significant at the same level in the EuroStoxx 600.

Table 5.9: New E, S, G, M pillar subscore weights (left) and the Kendall’s τ between ESG,
ESGM scores, and annual 95% VaR in 2017-2018 across sectors (right) in the S&P 500. The
sectors above the horizontal line have the positive M pillar subscore weight.

Sector E S G M ESG and VaR ESGM and VaR
(S&P) 2017 2018 2017 2018
C. Cycl. 0.259 0.195 0.357 0.189 0.161 ** 0.144 ** 0.216 *** 0.215 ***
Energy 0.650 0.100 0.172 0.078 0.196 * 0.203 * 0.261 ** 0.355 ***
Industrials 0.102 0.103 0.751 0.044 0.118 * -0.071 0.137 * 0.019
Tech. 0.245 0.245 0.265 0.245 0.154 ** 0.028 0.189 *** 0.094
Utilities 0.323 0.323 0.177 0.177 -0.079 -0.030 0.015 0.177 *
B. Materials 0.800 0.100 0.100 0.000 0.130 0.099 0.296 ** 0.194
C. N-Cycl. 0.486 0.410 0.104 0.000 -0.047 0.001 0.015 0.053
Financials 0.100 0.100 0.800 0.000 0.020 -0.160 0.009 -0.121
Healthcare 0.730 0.100 0.169 0.000 0.309 *** 0.278 *** 0.297 *** 0.282 ***
Real Estate 0.100 0.800 0.100 0.000 -0.138 -0.312 -0.032 -0.286
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Table 5.10: New E, S, G, M pillar subscore weights (left) and the Kendall’s τ between ESG,
ESGM scores, and annual 95% VaR in 2017-2018 across sectors (right) in the EuroStoxx 600.
The sectors above the horizontal line have the positive M pillar subscore weight.

Sector E S G M ESG and VaR ESGM and VaR
(EuroStoxx) 2017 2018 2017 2018
C. Cycl. 0.240 0.541 0.135 0.084 0.144 ** 0.157 ** 0.187 *** 0.194 ***
Energy 0.238 0.485 0.175 0.102 0.471 *** 0.515 *** 0.559 *** 0.574 ***
Financials 0.100 0.100 0.700 0.100 -0.132 -0.088 -0.059 0.001
Healthcare 0.236 0.562 0.101 0.101 0.205 ** 0.432 *** 0.258 ** 0.466 ***
Industrials 0.100 0.714 0.100 0.086 0.060 0.029 0.094 0.070
Real Estate 0.700 0.100 0.100 0.100 -0.040 -0.151 -0.015 -0.114
B. Materials 0.100 0.618 0.282 0.000 -0.096 -0.171 -0.056 -0.099
C. N-Cycl. 0.683 0.217 0.100 0.000 0.054 0.085 0.129 0.115
Tech. 0.790 0.100 0.110 0.000 0.089 0.168 * 0.117 0.230 **
Utilities 0.233 0.542 0.225 0.000 0.127 0.296 ** 0.206 * 0.333 ***

A company is assigned to a rating class (i.e., A, B, C, or D) based on its ESG score using
thresholds or quartiles (Refinitiv 2021a). Thus, we group the companies with the highest
to lowest ESG and ESGM scores in the first/second/third/fourth quartile as ESG and ESGM
rating class A/B/C/D in each of the sectors where we observe the M pillar effect, respectively.
Class D contains the companies with the lowest scores and might be excluded from ESG
portfolios. For both data sets, we witness that low ESGM scores (class D) are associated with
higher or equal median risks than low ESG scores (class D), except for Industrials in 2017 in
the EuroStoxx 600, as demonstrated in Figure 5.8. Nonetheless, the median risk of ESG and
ESGM scores in the EuroStoxx 600 is closer than that of those in the S&P500.

Additionally, since the VaR variation is low in some sectors, such as Utilities in the S&P
500, dividing the companies into classes with different VaR characteristics is hard. Thus, we
can argue that the companies which have not yet released ESG information as much as their
peers do, thereby having lower ESG scores than them in some sectors, might result in risk
underestimation in the ESG portfolios using negative screening. Instead, the ESGM scores
quantify better the companies that can be excluded, e.g., ESGM class D, and provide stronger
risk performances for such portfolios than the ESG scores as seen for Consumer Cyclicals in
the S&P 500 in 2017 and Healthcare in the EuroStoxx 600 in 2018.

Comparing the ESG and ESGM rating classes in Consumer Cyclicals in the S&P 500 in
2017 presents that ESGM scores move three/one companies from the ESG class D to the
ESGM class C/B in 2017. Likewise, one company in the ESGM class B and three companies
in the ESGM class C belong to the ESG class D in Healthcare in the EuroStoxx 600 in 2018.
Such results reveal that the companies with low ESG scores might not necessarily provide
the worst risk performances. Rather, their ESG scores could be low due to not yet disclosed
ESG information the data provider does not explicitly point out. Still, these companies might
publish more ESG information in the future, increasing their ESG scores, as modeled by their
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Figure 5.8: Empirical 95% VaR of rating class D for ESG and ESGM in the S&P 500 (left)
and EuroStoxx 600 (right) in 2017, 2018.
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ESGM scores. Therefore, the ESGM scores can work not only to include missing information
but also to allocate the companies to more appropriate risk classes. Similar results hold for the
remaining sectors in both data sets with a non-zero M pillar weight (available upon request).

Empirical results: out-of-sample analysis

ESGM scores provide stronger risk dependence and identify more reliably the companies for
exclusion strategies in ESG portfolios than the ESG scores in the previous part. Now we use the
estimated E, S, G, and M pillar subscore weights for another year to calculate ESGM scores,
where the ESG data is still non-definitive, and companies can publish their ESG information
in time. Accordingly, we perform the out-of-sample analyses using the data sets for 2019.

First, we calculate the companies’ predicted ESGM scores for 2019 in each sector and data
set:

xaESGM,p,2019 = xaE,p,2019 · ŵaE + xaS,p,2019 · ŵaS + xaG,p,2019 · ŵaG + xaM,p,2019 · ŵaM ,∀a, p,

where ŵaE, ŵaS, ŵaG, and ŵaM are the estimated weights using the training data of 2017 and
2018 in Tables 5.9 and 5.10.

Second, we analyze the dependence between the ESG scores, ESGM scores and VaR in
2019 in Table 5.11, where the sectors above the horizontal line have the positive M pillar
subscore weight in Tables 5.9 and 5.10. As seen, the out-of-sample analysis also confirms the
higher risk dependence for the ESGM scores than the ESG scores in all cases but Energy in the
EuroStoxx 600. However, the significance of the risk dependence is better using the ESGM
scores than the ESG scores in Energy in the S&P 500. Likewise, the ESGM scores provide
better risk dependence than the ESG scores in all sectors, except Consumer Non-Cyclicals and
Healthcare in the S&P 500. Nonetheless, the M pillar weight is zero for both sectors, i.e., we
do not find the impact of not yet disclosed ESG information on the risk dependence.
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Table 5.11: Kendall’s τ between ESG, ESGM scores, and 95% VaR in 2019 across sectors
(out-of-sample) in the S&P 500 (left) and EuroStoxx 600 (right). The sectors above the
horizontal line have the positive M pillar subscore weight in Tables 5.9 and 5.10, respectively.

Sector (S&P500) ESG ESGM
C. Cycl. 0.036 0.096
Energy 0.229 * 0.326 **
Industrials -0.103 0.039
Tech. 0.051 0.068
Utilities -0.099 -0.010
B. Materials -0.075 0.043
C. N-Cycl. 0.115 0.115
Financials -0.102 -0.031
Healthcare 0.161 ** 0.088
Real Estate -0.310 -0.259

Sector (EuroStoxx) ESG ESGM
C. Cycl. -0.019 0.015
Energy 0.529 *** 0.529 ***
Financials -0.123 -0.031
Healthcare 0.375 *** 0.386 ***
Industrials 0.030 0.076
Real Estate -0.182 -0.120
B. Materials -0.064 -0.040
C. N-Cycl. 0.168 * 0.200 **
Tech. 0.073 0.101
Utilities 0.270 ** 0.286 **

Finally, Figure 5.9 suggests that the ESGM class D presents higher median risks than the
ESG class D in all but Utilities in the S&P 500. Similarly, the median risk ESGM scores
provided for class D is higher than that of ESG scores provided for Consumer Cyclicals,
Financials, and Real Estate in the EuroStoxx 600. However, the median risk of the ESG and
ESGM scores for class D seems to be closer in the EuroStoxx 600 than the S&P 500. Hence,
the ESG portfolios using negative screening could benefit from the ESGM scores in terms of
the risk performance, supporting our findings using the in sample data, even though there are
some differences across sectors and regions.

Figure 5.9: Empirical 95% VaR of rating class D for ESG and ESGM in the S&P 500 (left)
and EuroStoxx 600 (right) in 2019.
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5.7 Application: vine copula mixture models

In this section, we present a case study of vine copula mixture models (VCMM) explained in
Chapter 3. Since COVID-19 greatly impacted the Energy sector, our analysis focuses on 24
Energy companies in the S&P 500 and uses their daily log returns from January 2, 2017, to
December 30, 2020, including the COVID-19 period. In total, we have 997 observations.

We divide the companies into four ESG rating classes Ii ∈ {A,B,C,D} using their 2017
ESG scores’ quartiles i = 1, . . . , 24, as we did in Section 5.6. The companies in the class A is
regarded as the most ESG responsible companies, while the class B follows it. However, the
classes C and D can be regarded as the ESG irresponsible companies. Then we calculate the
four ESG indices ESGt,j as a linearly weighted combination of the associated companies’ daily
log returns yt,i and market capitalizations weights Mi for j ∈ {A,B,C,D}, t = 1, . . . , 997,
and i = 1, . . . , 24 as follows:

ESGt,j =

∑
g∈[1,24]
Ig∈j

yt,g ·Mg

∑
g∈[1,24]
Ig∈j

Mg

for t = 1, . . . , 997, j ∈ {A,B,C,D}.

For instance, the ESG index A at day t, ESGt,A, is based on the daily log returns and market
capitalization weights of the six companies whose ESG scores in 2017 are higher than the
others. As a result, we have time series data of four ESG indices with 997 observations.

The main interest is to estimate the dependence structures among ESG responsible and
irresponsible companies, represented by the corresponding ESG indices, in 2017-2020, where
the ESG scores are non-definitive. Thus, we will run the VCMM with a different number of
components and initial partition. Moreover, we work with C-vines to see which ESG index is
the main driver of the dependence (if it is). Alternatively, one may work with D-vines, where
the order of the nodes from left to right corresponds to the ESG indices A, B, C, and D. Even
though such an application might be a natural order among the four different ESG indices,
we work with the non-definitive ESG scores whose order may change in the future.

Marginal models

Since the daily log returns of the four ESG indices have the stochastic volatility shown up in
the (partial) autocorrelation functions in Figure 5.10, we apply the generalized autoregressive
conditional heteroskedastic model GARCH(1,1) with the innovation distribution standardized
and being symmetric Student’s tν with mean zero, variance one, and ν > 2 to remove the se-
rial dependence, getting the GARCH-filtered data. The (partial) autocorrelation functions of
standardized residuals in Figure 5.10 show the removal of the serial dependence and GARCH
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effects. Here we employ a quasi-maximum-likelihood estimator (QMLE) for GARCH param-
eters. Then we estimate the vine copula mixture model parameters based on the residuals
obtained from the QMLE of GARCH parameters.

Let Rt (t = 1, . . . , n) be the daily log returns of an ESG index so that for each index j,
we denote the returns as Rt,j at time t. Then the univariate GARCH(1,1) model is

Rt,j = µj + σt,jZt,j, σ2
t,j = ωj + αjR

2
t−1,j + βjσ

2
t−1,j, j ∈ {A,B,C,D}, t = 1, . . . , 997,

where ωj > 0, αj > 0, βj > 0 for each j, and Zt,j are independent and identically distributed
innovations over t. Fitting univariate GARCH(1,1) model to each of the four daily log returns
gives the estimated parameters in Table 5.12.

Table 5.12: GARCH(1,1) parameters with standardized Student’s tν distributed innovations
for ESG indices’ (absolute) daily log returns in 2017-2020.

Index µj ωj αj βj νj
A -8.96 x 10−6 6.94 x 10−7 0.113 0.885 5.477
B 1.21 x 10−4 2.63 x 10−7 0.097 0.894 5.456
C 7.55 x 10−5 9.88 x 10−8 0.124 0.871 6.437
D 4.93 x 10−5 2.41 x 10−7 0.076 0.905 4.959

Now we have independent observations across time, which can be combined by considering
a VCMM. Rather than converting the GARCH-filtered data into the copula data, we let the
VCMM do this by selecting univariate parametric margins for each component. Therefore,
we run our analysis based on GARCH models whose innovations follow a vine copula mixture
model. Before our study, Lee and Lee (2011) developed a forecasting algorithm for VaR based
on GARCH-type models whose innovations follow a Gaussian mixture model.

In future applications, we will allow the estimation of the GARCH parameters with that of
the VCMM parameters simultaneously so that GARCH-filtered data is obtained by considering
the dependence structure of the variables. In this case, we obtain a maximum log-likelihood
estimator (MLE). However, since the calculation of the MLE in GARCH models is complicated,
we apply a simple step-by-step estimation procedure in this section. We also remark that the
standardized residuals of GARCH models have zero mean and unit variance. Therefore, one
might need to impose some constraints on the VCMM estimator or modify it afterward.

VCMM results

We fit the VCMM from one to three components using three initial partitions: Gaussian
mixture models (GMM), k-means, and model-based hierarchical clustering (hcVVV) (Scrucca
et al. 2016). As we aim to identify the driver index of the dependence in different periods (if
it exists), we only work with C-vines.
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Figure 5.10: Autocorrelation (ACF) and partial autocorrelation (PACF) function plots with
the blue confidence interval bands: ESG B index’s daily log returns in 2017-2020 (top) and
its GARCH-filtered standardized residuals (bottom).
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Table 5.13 gives the VCMM results. We see that the BIC of the single-component C-vine
copula model is better than the others; however, the two-component C-vine copula mixture
model initialized by GMM has the best AIC among them. Moreover, the log-likelihood of the
three-component C-vine copula mixture model initialized by k-means is higher than that of
others. As discussed in Chapter 3, the BIC is not a good measure to compare vine copula
mixture models, and tests must be developed to decide if a mixture model is needed for data.

In addition, the GARCH-filtered data is assumed to have zero mean and unit variance,
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and the single-component C-vine copula model fits the univariate margins which satisfy it.
Likewise, the assumption is satisfied for the marginal distributions fitted by the two-component
C-vine copula mixture model initialized by GMM and by the three-component C-vine copula
mixture model initialized by k-means. Full results are available on request.

Table 5.13: ESG index’s GARCH-filtered (residuals) daily log returns in 2017-2020: vine tree
structure of each component, initial partition of the VCMM, the number of components,
log-likelihood, AIC and BIC values. The best value for each column is highlighted.

Vine structure Initial partition #components loglik. #par BIC AIC
C-vine - 1 -3333.48 23 6825.77 6712.96
C-vine kmeans 2 -3326.32 54 7025.50 6760.64
C-vine GMM 2 -3326.07 30 6859.29 6712.15
C-vine hcVVV 2 -3334.57 54 7042.00 6777.14
C-vine kmeans 3 -3293.00 67 7048.62 6720.00
C-vine GMM 3 -3310.67 50 6966.58 6721.35
C-vine hcVVV 3 -3338.73 68 7146.99 6813.47

Financial interpretation

To compare the models for financial interpretation, we focus on the (unconditional) depen-
dence structure of each component given by the model and the observations belonging to the
component.

Table 5.14 gives the estimated C-vine copula models’ first tree level. For the single-
component C-vine copula model, we see that the root node is the ESG index B and has
a symmetric lower and upper tail dependence with others. Therefore, when very good/bad
news comes to the ESG index B, they also affect the other indices. The multivariate Gaussian
distribution assumption would not be adequate for risk management in this setup. Further,
an explanation of the selection of index B as the root node could be that investor preferences
are oriented toward the ESG responsible companies. Moreover, given that such companies’
market capitalization is higher than those in the indices C and D, another reason could be the
size of the companies. However, why the ESG index B is more dependent on others than the
index A needs further investigation.

Table 5.14 shows that the two-component C-vine copula mixture model chooses the index
B/C as the root node in the first/second component. However, the number of observations
(days) assigned to the second component is 74 out of 997. Such days can be the beginning
of the pre-crisis, crisis, and post-crisis periods. To investigate them, we focus on the price
data of the Energy sector in the S&P 500 in 2017-2021 in Figure 5.11. We observe that
the second component includes the dates which can be regarded as the end of the crisis
periods, such as 21 December 2018 and 06 November 2020. The latter might be the end
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of the COVID-19 crisis for the Energy sector. Likewise, 30 January 2020 is included in the
second component, around when the COVID-19 crisis may have impacted the Energy sector
negatively. Nevertheless, other dates included in the second component, such as 7 May 2018
and 19 February 2020, need further financial interpretation and investigation.

Figure 5.11: The S&P 500’s Energy sector price in 2017-2020: time series plot with the days
colored by the two-component C-vine copula mixture model initialized by the GMM.
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We see in Table 5.14 that the dependence structure and strength among the ESG indices
differ by their components identified by the three-component C-vine copula mixture model.
While the ESG index B is the driver of the dependence in the second and third components,
the first component identifies index C as the root node. Figure 5.12 illustrates that the first
component usually corresponds to the days with negative log returns. On the other hand, the
second and third components can be regarded as positive and stable days, respectively. On
the negative days, i.e., when bad news arrives, the less ESG responsible companies tend to
drive dependence, which is consistent with the findings of Czado et al. (2022), who found that
the ESG index C has the strongest dependence with the S&P500 in times of crisis. What has
also been seen is that the dependence strength among the indices B and C is 0.70 with the
single vine copula model, but it changes from 0.39 to 0.43 based on the positive, negative,
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or stable days with the three-component C-vine copula mixture model. In addition, while a
symmetric tail dependence exists between the indices B and C with the single-component C-
vine copula model, the three-component C-vine copula mixture model identifies an asymmetric
tail dependence between them in positive days. As expected, the tail dependence does not
show up in the stable days as represented by the bivariate Frank copula in the third component.

Table 5.14: ESG index’s GARCH-filtered (residuals) daily log returns in 2017-2020: The first
tree level of the selected vine copula models with their dependence estimated by Kendall’s
τ̂ , the estimated upper and lower tail dependence coefficients, λ̂upper and λ̂lower, defined in
Equations (2.1) and (2.1), respectively, the estimated mixture weights of the corresponding
components π̂j defined in Equation (3.14) and the number of observations assigned to each
component nj.

Model Component (j) Edge Copula family τ̂ λ̂lower λ̂upper π̂j nj
Single-

component
C-vine

1
B,D t 0.61 0.46 0.46

1.00 997B,C t 0.70 0.49 0.49
B,A t 0.65 0.57 0.57

Two-
component

C-vine
(GMM)

1
B,D Gaussian 0.63 0.00 0.00

0.89 923B,C Gaussian 0.71 0.00 0.00
B,A Gaussian 0.68 0.00 0.00

2
C,D Gumbel 0.51 0.00 0.60

0.11 74C,B Gaussian 0.67 0.00 0.00
C,A BB1 0.57 0.61 0.45

Three-
component

C-vine
(k-means)

1
C,D Clayton 0.24 0.33 0.00

0.19 174C,B Clayton 0.42 0.62 0.00
C,A Survival Gumbel 0.39 0.48 0.00

2
B,D Joe 0.33 0.00 0.55

0.31 301B,C Survival BB1 0.43 0.19 0.55
B,A Joe 0.35 0.00 0.58

3
B,D Frank 0.30 0.00 0.00

0.50 522B,C Frank 0.39 0.00 0.00
B,A Survival BB8 0.30 0.00 0.00

All in all, even though the single-component C-vine copula model and two-component,
three-component C-vine copula mixture models provide some financial interpretation, we can
compare the candidate models for portfolio VaR and conditional tail expectation in financial
risk management. Research is high on the agenda to deal with such cases. We also note that
the ESG scores used to build ESG indices are based on non-definitive ESG scores. Hence,
they may not be good representatives of companies’ ESG responsibility levels.
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Figure 5.12: ESG indices’ daily log returns in 2017-2020: time series plot with the observations’
component given by the three-component C-vine copula mixture model initialized by k-means.
Each line represents the moving average of the last five days.

5.8 Discussion

Our research is in alignment with the recent discussions and has implications for researchers,
companies, legislators, investors and asset managers, and data providers. The Sustainable
Finance Roadmap, released in February 2022 by European Securities and Markets Authority
(ESMA), also lists the main challenges which need action in analyzing ESG-related risks.
They report that “Overall, data gaps, low quality and a lack of transparency may lead to
misrepresentation and to a misallocation/mispricing of investments” and call for actions to
assess the issue of the data quality affecting the ESG data users (Page 19 of ESMA (2022)).

For researchers

It is reasonable to expect researchers to use non-definitive ESG scores (e.g., Dicuonzo et al.
(2022), Ding et al. (2021), Valbuena-Hernandez and Mandojana (2022), and Zanin (2021))
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since they include the five most recent years. Hence, researchers should report their data
extraction date, including its week, month, and year, to understand the research inconsistencies
better since Refinitiv updates its ESG scores weekly.

Moreover, even though the concept of sustainability reporting and performance measures
has been discussed for many years by scholars (Milne and Gray 2013; Searcy 2012), not
only providers but also researchers can investigate how to assign unified and justifiable pil-
lar/category weights. Even though the recent efforts include the incorporation of financial
statements items with a machine learning approach to represent ESG scores (D’Amato et al.
2021a,b), there is room to develop more stable ESG scoring methodologies. EBA has re-
cently set out the pillar subscore disclosure guidelines to improve companies’ ESG information
consistency and comparability (EBA 2022).

The fact that the missing information’s potential impact on the risk differs for sectors and
geographical regions suggests investigating the determinants of the occurrence and distribution
of the companies’ missing ESG information among ESG categories across regions and sectors.
Such an analysis could also provide insights into which and how ESG information should be
disclosed to measure the companies’ ESG performance and responsible investing accurately.
Recently, ESMA also stated regarding the ESG data that “These data needs are currently not
fulfilled by the data disclosed by companies. The data gaps can neither be fully bridged by
third-party ESG data or by rating providers whose methodologies, limitations and assumptions
need to become more transparent.” (Page 19 of ESMA (2022)). Lagasio and Cucari (2019)
already identified board independence, board size, and women’s directorship as the empowering
factors of non-financial disclosures. However, as they pointed out, there is a gap in the studies
investigating the determinants of the non-financial information released by companies across
sectors.

Furthermore, for researchers, in addition to showing companies’ potential to disclose miss-
ing ESG information, the M pillar can be used as a proxy of the current ESG disclosure quality
adapted for sectoral peculiarities like other pillars. Future studies can perform a regression
analysis, where the dependent variable is a financial performance measure, and independent
variables are E, S, G, and M pillar subscores and company specifics like their market capitaliza-
tion. This would allow for analyzing the impact of the current disclosure quality on financial
measures. However, we remark that such an analysis does not provide scores comparable
to ESG scores; thus, they might be difficult to be used by investors in the same manner.
Alternative approaches for a regression analysis can encode the current disclosure quality as
a binary variable based on the industry median by counting the number of ESG categories
disclosed as proposed in Santamaria et al. (2021).

For companies

We show that the amount and time of the ESG information shared by the companies greatly
affect how the ESG scores are constructed. Moreover, our analyses imply that companies
could be excluded from investment portfolios, not necessarily because of their actual ESG
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performance but possibly due to their lack of and low speed of the ESG disclosure mechanism.
Therefore, a focus should be on providing complete disclosure material, allowing investors to
manage ESG-related risks better and make sustainable investments for the world.

For legislators

We also show that EuroStoxx 600 companies have less missing information in the ESG cat-
egories than the S&P 500 companies. In the European Union (EU), sustainable finance
legislations have been fine-tuned. For instance, the EU’s Directive 2014/95/EU sets out that
relevant, large, and public interest EU companies must disclose ESG information annually.5

On the other hand, there have not yet existed any mandatory sustainability-related disclosures
in the United States (International Platform on Sustainable Finance 2021). However, the
Federal Reserve joined the Network for Greening the Financial System, a global network of
central banks, and might take action about the applicable commitments towards a sustain-
able economy.6 The mandatory context might have a positive impact on the credibility of the
non-financial disclosures for the companies (Mazzotta et al. 2020).

For investors and asset managers

Our research also has several implications for investors and asset managers. For example,
Revelli (2017) argues that ESG information is important in mainstream analysts’ and fund
managers’ investment strategies. But, on the other hand, the identification of socially re-
sponsible and irresponsible companies to be included in socially responsible funds (SRF) has
been an issue (Gangi and Varrone 2018). As shown in Section 5.5, if the selection of socially
responsible companies regarding the ESG scores is based on the recent ESG scores, the time
of the selection may significantly impact the selected companies and their risk dependence.
It implies that the social responsibility level of the same SRF based on the ESG scores might
differ in time. Therefore, it is important to follow the ESG scores and their methodology
changes to ensure the stable selection of the companies. It is also clear that the ESG scores
show the “relative goodness” of the companies based on the available ESG information of their
sector peers. With the amount of missing information in the recent ESG scores reported and
discussed in Section 5.6, investors may even consider constructing their own scores. Refinitiv
also suggests such construction for investors (Refinitiv 2022).

Moreover, our results show the importance of knowing and understanding what is behind
the ESG scores for investors. The investors can exclude the companies based on their low
ESG scores in a given sector from their portfolios; however, the companies still disclose their
ESG information in time, increasing their ESG scores.

5https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014L0095
6https://www.federalreserve.gov/newsevents/pressreleases/bcreg20201215a.htm

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014L0095
https://www.federalreserve.gov/newsevents/pressreleases/bcreg20201215a.htm
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Additionally, we show that the dependence among daily log returns of company groups
formed by the companies’ ESG performances changes based on the characteristics of the day,
e.g., positive or negative returns, and the VaR estimation of portfolios should be investigated
regarding these.

For data providers

We conjecture that such results in Section 5.5 can hold using ESG scores from other providers.
For instance, Morgan Stanley Capital International (MSCI) states in their ESG scoring method-
ology, “Companies are monitored on a systematic and ongoing basis, including daily monitoring
of controversies and governance events. New information is reflected in reports on a weekly
basis and significant score changes trigger analyst review.” (Page 13 of MSCI (2022)). An-
other provider, Sustainalytics, shares, “Scores are updated on an annual basis... Clients are
given advance notice of upcoming structural changes, like the addition of new data points,
that can be implemented once a year.” (Pages 7 and 14 of Sustainalytics (2022)). In addition,
Sustainalytics, also encodes the missing raw scores based on company disclosures as zero.7

However, the efforts to make the ESG scoring construction methodology transparent by data
providers would support data users.

5.9 Conclusion

As the divergence of ESG scores from different ESG providers has been a vital discussion
point, a suggestion to deal with the issue has been to use ESG scores from various providers.
Nevertheless, we show that the ESG scores might not even be stable within the same provider
due to allowing ESG scores to change for the five most recent years. Such ESG scores are
called non-definitive.

Even though we work with simple optimization and data-mining schemes, we show that
a re-weighting scheme for pillar subscores and category scores might dramatically alter ESG
scores. If a weighting scheme changes, we expect it to be announced in the methodology
document by Refinitiv. However, we show that the initial disclosure or an update of ESG
information leads to changes in ESG scores, and Refinitiv does not currently state such mod-
ifications. Moreover, these reasons for modifications in ESG scores cause the companies’
ranks regarding their ESG scores to change. Thus, some companies are regarded as more
sustainable than before, even though they are not. Further, since researchers use the ranks
to classify companies as high/low ESG companies (e.g., Demers et al. (2021) and Engel-
hardt et al. (2021)), a cause of the mixed literature results regarding the link between ESG
scores and financial performance could be such score instabilities and the studies’ different
data extraction dates. The results are consistent with Bae et al. (2021), using non-definitive

7https://www.sustainalytics.com/docs/default-source/meis/kone_oyj_

riskratingsreport_18032021.pdf?sfvrsn=577d22c8_0

https://www.sustainalytics.com/docs/default-source/meis/kone_oyj_riskratingsreport_18032021.pdf?sfvrsn=577d22c8_0 
https://www.sustainalytics.com/docs/default-source/meis/kone_oyj_riskratingsreport_18032021.pdf?sfvrsn=577d22c8_0 


118 Environmental, social, and governance (ESG) data analysis

ESG scores, who believe that their inconsistency with previous studies can be due to the data
extraction timing.

Moreover, we show that even focusing on the S&P 500 companies, which are very much
under scrutiny, the link between ESG scores and risk is not clear-cut. Additionally, such a link
depends on sectors and the date and amount of ESG information disclosure.

We propose a new pillar subscore, the so-called Missing (M) pillar subscore, to explicitly
consider the companies’ potential of disclosing missing ESG information. By doing so, we
introduce a new Environmental, Social, Governance, and Missing (ESGM) score. In addition,
our study formulates an optimization scheme to link the companies’ ESGM scores and riskiness.
Such a scheme encourages companies to disclose more ESG information and evaluate the
impact of such additional information on financial risk. Furthermore, it can be used by
investors to build customized scores.

We evaluate the risk performance of the proposed ESGM scores and ESG scores using in-
sample and out-of-sample data. The in-sample data analysis allows us to estimate the ESGM
scores’ pillar weights, which are used to compute the ESGM scores. The out-of-sample data
analysis tests the power of the ESGM scores regarding their risk dependence. Using the S&P
500 and EuroStoxx 600 companies’ non-definitive ESG data provided by Refinitiv, we show
that the ESGM scores provide stronger risk dependence than the ESG scores in some sectors
using both the in-sample and out-of-sample data. We argue that a potential disclosure of
missing ESG information impacts the risk in these sectors. This approach potentially supports
the investment decisions as an ESG exclusion strategy depends on the ESG rating class,
which is affected by missing information. Furthermore, incorporating the potential of possible
disclosure allows to include companies in the portfolio that would otherwise be excluded as
too much data is missing at the time of the investment decision. Nonetheless, the dependence
of risk and ESG/ESGM scores and the impact and amount of the missing ESG information
change with sectors and geographical regions. We discuss our research’s further implications
for researchers, companies, legislators, investors and asset managers, and data providers.

Our study is limited by the small number of companies within each sector. Future studies
should consider applying our re-weighting, M pillar subscore, and ESGM scores formulations
to data from a larger number of companies. The second limitation of our research is that
it does not account for common risk factors. Nevertheless, research is high on the agenda
to deal with such issues. For future studies, researchers can consider a multivariate analysis
controlling for common factors to investigate the impact of the (non-definitive) ESG score
changes on risk. Moreover, our data-mining schemes might be applied to the link between the
(non-definitive) ESG scores and financial performance measures. Such an application would
reveal how much such a relationship might change in time. Likewise, the performance of the
socially responsible funds based on the ESG scores might be compared to the current scores
versus the “data-mined” scores. Finally, necessary modifications for the M pillar subscore and
exploring optimization schemes with different objective functions can be considered in the
future to evaluate the ESGM scores also from other ESG data providers.
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5.10 Supplementary materials

Missing information in ESG categories

Table 5.15: Percentage of the companies whose ESG category score is missing (zero) classified
by year, sector, and category in the S&P 500 and EuroStoxx 600. Only the categories for
which at least a company in a given year does not contain any information are reported.

t = 2017 Resource Emissions Environmental Human Product CSR
S&P - EuroSt. Use Innovation Rights Responsibility Strategy
B. Materials 0% - 0% 4% - 2% 26% - 18% 9% - 18% 4% - 2% 4% - 2%
C. Cycl. 16% - 4% 13% - 5% 43% - 29% 27% - 28% 0% - 10% 34% - 6%
C. N-Cycl. 0% - 0% 3% - 0% 15% - 20% 8% - 24% 0% - 0% 8% - 2%
Energy 4% - 0% 0% - 0% 62% - 29% 38% - 12% 8% - 0% 4% - 0%
Financials 18% - 9% 18% - 3% 42% - 28% 52% - 35% 0% - 11% 30% - 3%
Healthcare 14% - 0% 20% - 0% 66% - 55% 29% - 36% 0% - 6% 29% - 3%
Industrials 14% - 4% 12% - 2% 32% - 21% 28% - 33% 3% - 6% 25% - 8%
Real Estate 18% - 4% 14% - 4% 25% - 23% 61% - 69% 4% - 35% 29% - 15%
Technology 12% - 2% 21% - 2% 29% - 27% 18% - 22% 0% - 9% 40% - 7%
Utilities 3% - 0% 3% - 0% 14% - 4% 34% - 32% 0% - 0% 7% - 0%
t = 2018 Resource Emissions Environmental Human Product CSR
S&P - EuroSt. Use Innovation Rights Responsibility Strategy
B. Materials 0% - 0% 4% - 0% 26% - 18% 4% - 8% 0% - 0% 4% - 2%
C. Cycl. 16% - 4% 10% - 3% 44% - 29% 21% - 15% 0% - 4% 30% - 3%
C. N-Cycl. 0% - 0% 0% - 0% 15% - 17% 3% - 20% 0% - 0% 5% - 0%
Energy 0% - 0% 0% - 0% 62% - 29% 25% - 12% 4% - 0% 4% - 0%
Financials 13% - 7% 15% - 2% 42% - 19% 42% - 22% 0% - 6% 22% - 3%
Healthcare 7% - 0% 12% - 0% 62% - 48% 21% - 18% 0% - 0% 25% - 0%
Industrials 12% - 4% 9% - 2% 34% - 20% 18% - 21% 2% - 6% 28% - 5%
Real Estate 11% - 4% 11% - 0% 25% - 19% 43% - 58% 0% - 31% 11% - 0%
Technology 9% - 2% 20% - 0% 29% - 29% 17% - 16% 0% - 9% 34% - 4%
Utilities 0% - 0% 3% - 0% 14% - 11% 31% - 11% 0% - 0% 3% - 0%
t = 2019 Resource Emissions Environmental Human Product CSR
S&P -EuroSt. Use Innovation Rights Responsibility Strategy
B. Materials 0% - 0% 4% - 0% 26% - 18% 4% - 2% 0% - 0% 0% - 2%
C. Cycl. 14% - 4% 8% - 1% 44% - 27% 16% - 10% 0% - 1% 26% - 0%
C. N-Cycl. 0% - 0% 0% - 0% 13% - 17% 0% - 5% 0% - 0% 5% - 0%
Energy 0% - 0% 0% - 0% 54% - 24% 21% - 6% 4% - 0% 0% - 0%
Financials 8% - 5% 8% - 1% 35% - 16% 32% - 15% 0% - 1% 10% - 2%
Healthcare 4% - 0% 4% - 0% 59% - 45% 11% - 3% 0% - 0% 14% - 0%
Industrials 8% - 1% 5% - 1% 31% - 19% 14% - 11% 2% - 4% 23% - 2%
Real Estate 11% - 4% 4% - 0% 18% - 15% 43% - 42% 0% - 19% 7% - 0%
Technology 7% - 2% 15% - 0% 26% - 27% 12% - 11% 0% - 7% 20% - 2%
Utilities 0% - 0% 3% - 0% 10% - 7% 24% - 4% 0% - 0% 3% - 0%
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Notation for missing values

Table 5.16: Mathematical indices, data, and their notation used in the chapter.

Index&Data Notation
Sector (Business class) a = 1, . . . , 10
Total number of companies n
Company z z = 1, . . . , n
Total number of companies in sector a na
Company p in sector a p = 1, . . . , na
Year t = 2017, . . . , 2019
VaR of company p in sector a and year t xaV aR,p,t
VaR values of companies in sector a and year t xaV aR,t = (xaV aR,1,t, . . . , x

a
V aR,na,t

)>

Volatility of company p in sector a and year t xavol,p,t
Volatility values of companies in sector a and year t xavol,t = (xavol,1,t, . . . , x

a
vol,na,t

)>

vvrisk of company p in sector a and year t xavv,p,t
vvrisk values of companies in sector a and year t xavv,t = (xavv,1,t, . . . , x

a
vv,na,t)

>

ESG of company p in sector a and year t xaESG,p,t
ESG of companies in sector a and year t xaESG,t = (xaESG,1,t, . . . , x

a
ESG,na,t

)>

ESGM of company p in sector a and year t xaESGM,p,t

ESGM of companies in sector a and year t xaESGM,t = (xaESGM,1,t, . . . , x
a
ESGM,na,t

)>

E pillar of company p in sector a and year t xaE,p,t
E pillar of companies in sector a and year t xaE,t = (xaE,1,t, . . . , x

a
E,na,t

)>

S pillar of company p in sector a and year t xaS,p,t
S pillar of companies in sector a and year t xaS,t = (xaS,1,t, . . . , x

a
S,na,t

)>

G pillar of company p in sector a and year t xaG,p,t
G pillar of companies in sector a and year t xaG,t = (xaG,1,t, . . . , x

a
G,na,t

)>

M pillar of company p in sector a and year t xaM,p,t

M pillar of companies in sector a and year t xaM,t = (xaM,1,t, . . . , x
a
M,na,t

)>

Resource use of company p in sector a and year t xaRU,p,t
Emissions of company p in sector a and year t xaEM,p,t

Environmental innovation of company p xaEI,p,t
in sector a and year t
Workforce of company p in sector a and year t xaWF,p,t

Human rights of company p in sector a and year t xaHR,p,t
Community of company p in sector a and year t xaCO,p,t
Product Responsibility of company p xaPR,p,t
in sector a and year t
Management of company p in sector a and year t xaMG,p,t

Shareholders of company p in sector a and year t xaSH,p,t
CSR strategy of company p in sector a and year t xaCS,p,t
Total number of zero values in ESG categories xazero,p,t
of company p in sector a and year t
Set of ESG category indices SCAT = {RU,EM,EI,WF,HR,

CO, PR,MG, SH,CS}
Set of total number of zero values in ESG categories Sazero,t = {xazero,1,t, . . . , xazero,na,t}
of companies in sector a and year t
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Total number of zero values in ESG categories of company p in sector a and year t (xazero,p,t):

xazero,p,t =
∑

j′∈SCAT
j′:xa

j′,p,t=0

1, ∀a, p, t. (5.8)

Total number of companies that company p has the same total number of zero values in ESG
categories in sector a and year t (eap,t):

eap,t =
∑

j′∈[1,na]
j′:xa

zero,j′,t=x
a
zero,p,t

1, ∀a, p, t. (5.9)

Total number of companies that company p has a higher total number of zero values in ESG
categories in sector a and year t (lap,t):

lap,t =
∑

j′∈[1,na]
j′:xa

zero,j′,t<x
a
zero,p,t

1, ∀a, p, t. (5.10)

Number of re-weighting schemes for pillar subscores

Assume that the maximum increment a pillar subscore weight can have in (0, 1) is k such
that mod( 1

k
, 1) = 0. We know that a pillar subscore weight is in [0, 1]. Then a pillar subscore

weight can have 1/k + 1 different values. Moreover, there are three pillar subscore weights,
and they have to sum up to 1.

Without loss of generality, suppose that the E pillar subscore weight is 0. Then the S
pillar subscore weight can have 1/k + 1 different values so that the G pillar subscore weight is
1 - (the S pillar subscore weight). As a result, there are 1/k + 1 different weighting schemes.
Now, assume that the E pillar subscore weight increases by a value of k. Then the S pillar
subscore weight can have 1/k different values so that the G pillar subscore weight is 1 - (the E
pillar subscore weight + the S subscore score weight). Hence, there are 1/k different weighting
schemes. In a similar fashion, it can be shown that the number of re-weighting schemes for
pillar subscores is given by

(1/k + 1) + (1/k) + . . .+ 1 =
(1/k + 1) · (1/k + 2)

2
.

Since it holds k = 0.001 in Refinitiv’s methodology1, there are 501501 different re-weighting
schemes for pillar subscores.
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Proof of the M pillar subscore bounds and average

Let S = {x1, . . . , xN} be a set with N elements such that x1 ≤ . . . ≤ xN . For the dth
element, xd, assume the number of elements whose value is smaller/larger than xd in S are
denoted by nds/ndl . Also, nde corresponds to the number of elements xd has the same value
in S (including itself). It holds that nds + ndl + nde = N for d = 1, . . . N . Then its M pillar
subscore is given by:

xdM = 100 ·
nds + nde

2

N
for d = 1, . . . , N.

Lower bound on M pillar subscore: Since it holds nds ≥ 0, nde ≥ 0, N ≥ 0, we have xdM ≥ 0
for ∀d. Additionally,

lim
N→∞

100 · 0 + 1/2

N
= 0.

Upper bound on M pillar subscore: Since it holds xdM = 100 · n
d
s+

nde
2

N
≤ 100 · n

d
s+

nde
2

nds+n
d
e
≤

100 · n
d
s+n

d
e

nds+n
d
e

, we have xdM ≤ 100,∀d. Additionally,

lim
N→∞

100 · (N − 1) + 1/2

N
= 100.

Average value of M pillar subscore: Denoting the average value of the M pillar subscore
for the elements in S by x̄M , we can write:

x̄M = 100 ·
(n1

s + . . .+ nNs ) + (n1
e+...+n

N
e )

2

N ·N
.

In the first scenario, assume x1 < . . . < xN . Then it holds

x̄M = 100 ·
(0 + . . .+N − 1) + (1+...+1)

2

N ·N
= 100 ·

N ·(N−1)
2

+ N
2

N ·N
= 50.

In the second scenario, assume x1 = . . . = xj < xj+1 < . . . < xN . Then we have

x̄M = 100 ·
(0 + . . .+ 0 + J + (J + 1) + . . .+N − 1) + (J+...+J+1+...+1)

2

N ·N

= 100 ·
(N−1+J)·(N−J)

2
+ J ·J+(N−J)

2

N ·N
= 50.

The second scenario can be easily adopted for the equal elements, which exist more than once
in the set, and it can be proven that the average M pillar subscore is 50.



Chapter 6

Genomic prediction

Main materials in this chapter are based on Sahin and Czado (2022a), but we extend real
data analysis in Section 6.4 and add other discussion points in Section 6.5.

6.1 Motivation

Genomic prediction (GP) aims at predicting a breeding value using genotypic measurements.
Then an unobserved trait can be predicted using its genotype information like single-nucleotide
polymorphism (SNP). With rapid developments in genomic technologies, researchers have
high-dimensional SNP data sets available. However, it poses some challenges in prediction
modeling, such as a small number of observations and a large number of explanatory variables,
skewness in variables, irrelevant and redundant variables, interactions among variables, and
nonconstant error variance.

To solve the drawbacks regarding the data dimensionality in GP, statistical or machine
learning based approaches have been applied (Li et al. 2018). Recently, quantile regression
approaches, which model the conditional distribution of the response, have been utilized to deal
with the skewness and outliers in the data (Montesinos-López et al. 2019; Pérez-Rodŕıguez
et al. 2020). Still, the question has been how to model conditional quantiles flexibly while
handling data dimensionality in GP.

It is also important for researchers to identify the SNPs relevant for predicting breeding
values to design future genotype studies. For instance, since the human population has been
growing, the stability of food supplies has gained much more importance. Hence, recent plant
breeding efforts have been given to the genetic improvement of crops. The key task is to
predict a breeding trait well so crops can be generated based on future requirements. Hölker
et al. (2019) provided agronomic measurements and more than 500 thousand SNPs to make
European flint maize landraces available for such a task.

In this chapter, we apply our high-dimensional sparse vine copula regression methods
introduced in Chapter 4 for genomic prediction of maize traits, proposing data preprocessing

123
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and feature extraction steps on the data given by Hölker et al. (2019). Such steps can be
further applied and improved in future studies. To the best of our knowledge, there has not
yet been any study performing genomic prediction using vine copula models. Further, the real
data analysis supports the advantage of vine copula based prediction methods over linear and
forest-based models in the presence of nonlinear dependence and dependent features.

The remainder of the chapter is organized as follows. Section 6.2 describes the data and
data preprocessing steps. Section 6.3 explains the feature extraction steps. The results using
sparse vine copula regression methods on the data are given in Section 6.4. Section 6.5
discusses our findings, and Section 6.6 concludes the chapter.

6.2 Data description and preprocessing

We describe a real-data application on the doubled-haploid (DH) lines from European flint
maize landraces that motivates our sparse vine copula regression methods’ usage given in
Chapter 4. Hölker et al. (2019) evaluated 899 DH lines whose data contains genotypic mea-
surements with the SNP array technology and phenotypic measurements of agronomic traits
across environments. We can regard a DH line as an observation, a SNP as an explanatory
variable, and a trait as a response in regression.

We are interested in the relationship between a DH line’s genotype encoded by its SNPs
and its phenotypic outcome described by its traits, i.e., the genomic prediction of maize traits.
More specifically, we would like to find relevant SNPs for a trait in a multivariate prediction
model using our vine copula regression methods, performing the variable selection.

There are three landraces in the data, and we focus on the Kemater Landmais Gelb (KE)
landrace, which has the largest number of observations (471 out of 899). There are 501,124
explanatory variables, SNPs, which contain only zero and two values, e.g., zero corresponds
to the genotype TT, and two denotes the genotype CC.

In addition, we predict four responses of agronomic traits separately: early plant height
measured by centimetres at the fourth and sixth stages (PH V4/V6), female flowering time
(FF), and male flowering time (MF) measured by days. They are quantitative and continuous
as shown in Figure 6.2. Table 6.1 gives the descriptive summary statistics of the four traits,
and Figure 6.1 shows the traits’ histogram. We see in Table 6.1 that PH V4 trait has a
minimum value of 19.39 and a maximum value of 56.28, indicating a relatively wide range of
values. Moreover, PH V6 has a larger range, with a minimum of 33.95 and a maximum of
107.32. Its mean is slightly lower than its median, indicating a slightly left-skewed distribution
as also seen in Figure 6.1. Further, PH V6 stands out with the highest standard deviation,
showing greater dispersion. FF has the smallest range among the four traits, and its mean
and median are close, showing a roughly symmetrical distribution. Moreover, MF has a similar
range to the FF.

Plant breeders need to increase early plant development and adopt maize genotypes in
future studies. Also, plant breeders may avoid decreasing or increasing female and male
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Table 6.1: Summary statistics of the four traits.

Trait Minimum First Median Mean Third Maximum Standard
quartile quartile deviation

PH V4 19.39 36.91 40.42 39.93 43.46 56.28 5.76
PH V6 33.95 72.16 78.49 77.32 83.69 107.32 10.02
FF 69.40 76.94 79.71 79.68 82.38 95.37 4.23
MF 66.15 73.80 76.30 76.56 79.19 97.23 4.14

flowering times during adoption. Thus, the traits’ prediction from the genotypic measurements
is crucial.

To compare the performance of regression methods, we partition our data sets randomly
into training (67%) and test (33%) sets. As a result, the training and test sets contain 314
and 157 observations, respectively.

Moreover, we remove the duplicate explanatory variables, retaining only one. Next, we
remove the explanatory variables with common values among the observations. We use the
threshold of 5%, also known as minor allele frequency (Rédei 2008), to identify such variables.
For instance, assume an explanatory variable in our training set contains 300 zero values and
14 two values. Then such a variable does not differ among the observations and might not
be expected to have predictive power on a response. As a result, the number of explanatory
variables in the training and test sets decreases from 501124 to 44789, i.e., we retain around
9% of the initial explanatory variables.

Hence, the number of observations (DH lines) in the training sets is 314, whereas 147 for
their test sets. The number of explanatory variables (SNPs) is 44789 (p = 1, . . . , 44789), and
there are four univariate responses (traits) (k = 1, . . . , 4).

6.3 Feature extraction

Since our explanatory variables are binary, and there can be associated latent variables with
a prediction power on the response, we focus on estimating these latent variables and using
them as extracted features (new explanatory variables) in a regression model. Our approach
is to group the explanatory variables and estimate their weights in their groups so that such
weights are used to estimate the latent variables representing each group.

Let yk and SNPp denote the response vector for trait k and explanatory variable vector
p, respectively.

1. Fit a linear regression between a response and an explanatory variable, SNP:

yk = β̂0
p,k

+ β̂1
p,k
· SNPp, for k = 1, . . . , 4, p = 1, . . . , 44789.
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Figure 6.1: Histogram of the four traits.
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2. Perform a two-tailed Wald test for H0 : βp,k1 = 0 versus H1 : βp,k1 6= 0 and determine
the associated P -values P p,k for k = 1, . . . , 4, p = 1, . . . , 44789.

3. Screen the explanatory variables whose P -value from the second step are smaller than
0.10 and have the screened set Sk:

Sk = {SNPp : P p,k < 0.10|p = 1, . . . , 44789} for k = 1, . . . , 4.

4. Order the set of the explanatory variables Sk based on their P -value non-decreasingly:

Ok = {SNPw1 , . . . ,SNPwt}, where Pw1,k ≤ . . . ≤ Pwt,k for Ok = Sk, k = 1, . . . , 4.

5. Estimate the latent variables, i.e., create the features featureGk,dk by using a grouping
size G of explanatory variables in Ok and using their coefficients from the first step:

featureGk,dk = β̂1
wdk ,k · SNPwdk + . . . + β̂1

wdk+G−1,k · SNPwdk+G−1
for G ∈

{100, 200}, nkG =
⌈
|Ok|
G

⌉
, dk = 1, . . . , nkG , k = 1, . . . , 4.
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At the end of the third step above, we obtain the screened SNP sets with the length of
17363, 9163, 19727, and 18284 for FF, MF, PH V4, and PH V6, respectively. As a result,
we have 174 (87) features for FF, 92 (46) features for MF, 198 (99) features for PH V4,
and 183 (93) features for PH V6 for grouping size G = 100 (G = 200). Figure 6.2 shows a
scatter plot of a selected continuous feature and a trait, where relationships between a trait
and different features are observable.

Figure 6.2: Scatter plots of an extracted feature, combining 100 SNPs in a feature, and a
trait. Feature 2 corresponds to the combination of the SNPs whose p-value from the OLS of
the associated trait is higher than 100 SNPs but lower than others. Similar correspondence
applies to other features. Orange curves demonstrate a local polynomial regression fit.
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The correlation matrix of features using a grouping size G = 200 in Figure 6.3 shows that
many correlated features exist for PH V6. We remark that we do not observe any negative
correlation between the four traits’ features as shown in Figure 6.3 in the supplementary in
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Section 6.7. Further, the minimum correlation between features is 0.58 (0.67) for FF, 0.11
(0.30) for MF, 0.45 (0.77) for PH V4, and 0.55 (0.69) for PH V6, whereas its maximum is
0.98 (0.97) for FF, 0.91 (0.93) for MF, 0.97 (0.99) for PH V4, and 0.98 (0.99) for PH V6.

Figure 6.3: Features’ Pearson correlation map using a grouping size of G = 200 for PH V6,
where orange, purple, and white denote the strongest positive, medium, and zero dependence,
respectively.
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6.4 Application: sparse vine copula regression

We have our data DG
k = (yk,feature

G
k,1, . . . ,feature

G
k,nkG

) for each response k = 1, . . . , 4

and G ∈ {100, 200}. To identify if a feature is relevant, redundant, or irrelevant, we first
conduct a bivariate analysis by fitting a vine copula regression on each feature and trait, i.e.,
D-vines with two nodes: response and one feature. If a feature is relevant or redundant given
the others, our methods add it to the model; otherwise, it is not selected as explained in
Section 4.5. For instance, we conduct 174 (87) bivariate analyses for FF using a grouping size
of G = 100 (200). As a result, all features for the four responses are classified as relevant or
redundant using a grouping size of G = 100 and G = 200, where the relevant features are
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listed in Table 6.6 in the supplementary in Section 6.7.
Next, we explain how to find the most relevant features, thereby redundant ones given

them: we apply our methods to eight different data sets’ training sets. Moreover, we compare
them with linear quantile regression penalized with a LASSO function (LQRLasso) and
quantile regression forests (QRF ), which are described in Section 4.7. For LQRLasso, we
provide more details on its fit in the supplementary in Section 6.7. We evaluate the models’
predictive performance on test sets using the pinball loss defined in Equation (4.7) in Section
4.7 at the quantile levels 0.05, 0.50, and 0.95.

Table 6.2 shows that vine copula based methods perform worse than LQRLasso and QRF
for MF. We observe that dependencies among MF and its selected features by vineregRes
are more linear than those among other traits since it fits mostly the Gaussian copula in the
first tree of the D-vine for MF as seen in Table 6.4 in the supplementary in Section 6.7.
We remark that linear quantile regression by LQRLasso may perform well if it can avoid
crossing quantile curves, but there is no guarantee that the 95% quantile curve exceeds the
90% quantile curve everywhere as shown in Figure 6.5 in the supplementary in Section 6.7.
Further, whenever LQRLasso is more accurate than vineregRes for PH V4, it includes more
features, giving a trade-off between model sparsity and accuracy. Even though QRF provides
the lowest pinball loss at all quantiles for FF for G = 200, vineregRes has better performance
than it for G = 100, except the upper quantile. Moreover, the method vineregRes is the
most sparse and accurate model at all quantiles for PH V6 using G = 200. It chooses two
features for G = 200, identifying more than 95% of the features as redundant. It has the best
accuracy for PH V6 for four cases out of six, with three quantiles evaluated for two G values.

We provide the selected feature indices in Tables 6.6, 6.7, and 6.8 in the supplementary
in Section 6.7. Given them, the other features are redundant for a given trait and a grouping
of G using vineregRes. For instance, given the first and 88th features for PH V6 using a
grouping size of G = 200, the remaining 91 features are redundant using vineregRes. Since
the features of PH V6 are highly correlated but are not needed in a model, in parallel to
the simulation study results in Section 4.7, the reason for our methods’ better accuracy than
QRF may be many correlated but redundant features for PH V6. In addition, Table 6.7 in the
supplementary in Section 6.7 shows that the first feature is selected by all methods considered
for the prediction of PH V6. Moreover, Figures 6.6 and 6.7 in the supplementary in Section
6.7 show that QRF and LQR tend to do worse at the extremes than vineregRes.

Our SNP screening and feature extraction steps are similar to Qian et al. (2020). However,
they fit a simple linear regression on the first feature, which includes linearly and marginally the
most important SNPs. Thus, we compare our models’ performance for the pinball loss at levels
0.05, 0.50, and 0.95 by fitting a vine copula regression only on the first feature for PH V4 and
PH V6. However, any variable selection is not allowed. The bivariate copula family selection
between the response and the first feature is conducted as explained in Section 4.3. We
call such a bivariate copula based regression with the first feature bicopreg. Then bicopreg
using a grouping size of G = 200 for PH V6 has a pinball loss of 0.97, 3.18, and 0.94 at
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Table 6.2: Comparison of the methods’ performance on the test set for the pinball loss (PLα)
and on the training set for the number of selected features (No. Ftr.), where (a,b,c) under the
LQRLasso column corresponds to the quantile levels (0.05,0.50,0.95). The best performance
on the test set for each quantile level α, trait, and G is highlighted.

vregRes vregParCor LQRLasso QRF vregRes vregParCor LQRLasso QRF
Trait Measure G = 100 G = 200

FF

PL0.05 0.35 0.49 0.40 0.38 0.39 0.39 0.39 0.37
PL0.50 1.43 1.51 1.50 1.48 1.48 1.56 1.47 1.45
PL0.95 0.47 0.47 0.41 0.38 0.41 0.43 0.39 0.39
No. Ftr. 11 22 (8,41,4) 174 4 14 (8,29,5) 87

MF

PL0.05 0.35 0.36 0.34 0.33 0.35 0.36 0.32 0.34
PL0.50 1.41 1.42 1.39 1.36 1.39 1.40 1.36 1.37
PL0.95 0.45 0.47 0.41 0.39 0.44 0.45 0.40 0.39
No. Ftr. 12 16 (7,45,8) 92 8 13 (5,15,12) 46

PH V4

PL0.05 0.51 0.51 0.55 0.55 0.51 0.55 0.56 0.55
PL0.50 1.93 1.87 1.92 1.94 1.96 1.99 1.92 1.94
PL0.95 0.56 0.58 0.55 0.60 0.57 0.57 0.55 0.62
No. Ftr. 6 11 (9,15,8) 198 3 11 (7,17,4) 99

PH V6

PL0.05 1.01 1.01 0.98 1.00 0.96 0.98 1.05 1.00
PL0.50 3.09 3.10 3.04 3.27 3.06 3.47 3.14 3.31
PL0.95 0.91 0.89 0.92 0.97 0.90 1.05 0.94 1.04
No. Ftr. 4 12 (8,49,5) 183 2 12 (6,29,6) 93

0.05, 0.50, and 0.95, respectively. Thus, vineregRes, which selects the first and 88th features
as relevant for the prediction of PH V6, performs better than bicopreg as seen in Table 6.9
in the supplementary in Section 6.7. However, having more features in vineregParCor,
including the first one, worsens the performance compared to bicopreg using a grouping size
of G = 200. On the other hand, vineregParCor has better accuracy than bicopreg using a
grouping size of G = 100 for PH V6 as shown in Table 6.9 in the supplementary in Section
6.7. Likewise, the mean of selected feature indices using a grouping size of G = 100 for PH V4
is 102.33 for vineregRes and 106.18 for vineregParCor. Further, both methods do not
select the first feature as relevant but redundant for PH V4. Nevertheless, their prediction
power is stronger than bicopreg, except at the level 0.50 using G = 200. Hence, linearly
and marginally most important SNP groups might not be considered the most relevant for
prediction when allowing nonlinear dependencies as in our methods.

6.5 Discussion

High-dimensional sparse vine copula regression is a significant tool for efficiently allowing non-
linear relationships between explanatory variables and response and selecting relevant variables.
In genomic prediction, genotypic measurements like SNPs are often very high-dimensional,
which might be reduced by considering some SNP groups and their interactions. Also, many
groups may be irrelevant for prediction. Our methods can handle such situations and predict
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responses at different quantile levels. Their performance might be improved with bivariate
copula families allowing for more asymmetries, e.g., more than two parameters.

For our application, consider the following question: Which SNPs impact the low and high
quantiles of the trait PH V6? Our method vineregRes identifies two SNP groups (features)
that consist of 400 SNPs in total. In the first feature, the corresponding SNPs’ p-values
out of the linear regression with the trait PH V6 change from 10−12 to 10−7, whereas its
range is [0.087, 0.090] in the 88th feature. Thus, the marginal impacts of the selected SNPs
differ. Moreover, given these 400 SNPs, others are redundant to predict the trait PH V6. In
addition, 107 SNPs in the first feature are located in the first chromosome, while the highest
number of SNPs per chromosome in the 88th feature is 33 for the ninth chromosome. Thus,
plant breeders can assess the selected SNP groups’ impact on the trait’s various quantile
levels and identify the associated SNPs using our methods. Moreover, chosen SNP groups
can be compared to other genome-wide association studies, helping plant breeders to decide
on future genotype adoption. In our application, comparing the identified SNPs with those in
Mayer et al. (2020) is high on the agenda.

Feature extraction is a vital step that may impact our methods’ genomic prediction power.
For instance, the choice of SNPs’ weights estimating their latent variable is open to future
research. Also, even though it offers a trade-off between a computational burden and pre-
diction power, one can apply cross-validation for the choice of the SNP’s group size G. In
addition, some SNPs might affect the trait, not marginally only in the presence of certain
other SNPs. Alternatively, one may remove the P -value screening of the SNPs at the 10%
level described in Section 6.3 and consider all possible extracted features. Likewise, some
SNPs might influence the trait marginally, but not when certain other SNPs are in the model.
For such cases, some post-processing steps for feature extraction might be applied.

In addition, other feature extraction techniques using SNP information include the principal
component analysis of the genotype data (Crossa et al. 2017). The specified number of the
most important components are regarded as features and evaluated in a prediction model.
However, the approach does not consider the interaction between the extracted features and
the response. Thus, it might not predict the response well. Therefore, different feature
extraction methods’ prediction power can be compared using different models.

Another feature extraction approach considers finding the features which are not correlated
to each other but impact the response since most genomic prediction models suffer from the
correlation among features (Cuevas et al. 2014). However, vine copula based prediction
approaches deal well with them and provide a good alternative to the existing methods.

Finally, our feature extraction steps given in Section 6.3 can be extended to chromosomes.
For instance, there are ten maize chromosomes. Therefore, considering the SNPs’ chromosome
information would allow having ten different SNP sets corresponding to each chromosome in
Step 4 of Section 6.3. Accordingly, one can create the features based on the sets, allowing
more interpretation of the selected features regarding the chromosome impact on the trait.
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6.6 Conclusion

We apply our high-dimensional sparse vine copula based regression approaches to the genomic
prediction of maize traits, providing guidelines on real-data preprocessing and feature extrac-
tion. In addition, we discuss future research directions regarding the further application of
vine copulas in genomic prediction.

6.7 Supplementary materials

Pearson correlation map of features

Figure 6.4: Features’ Pearson correlation map using a grouping size of G = 200 for a trait,
where orange, purple, and white denote the strongest positive, medium, and zero dependence,
respectively.
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Estimated parameters by LQRLasso

Table 6.3: Estimated the LASSO penalty parameters λ used in Section 6.4.

Trait Quantile G = 100 G = 200 Trait Quantile G = 100 G = 200

FF
0.05 0.017 0.007

PH V4
0.05 0.020 0.018

0.50 0.014 0.010 0.50 0.027 0.014
0.95 0.024 0.009 0.95 0.013 0.009

MF
0.05 0.029 0.007

PH V6
0.05 0.015 0.010

0.50 0.009 0.011 0.50 0.011 0.009
0.95 0.032 0.029 0.95 0.013 0.013
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Fitted D-vines’ first tree level by vineregRes

Table 6.4: Pair-copulas with the estimated Kendall’s τ in the fitted D-vine’s first tree for MF
(left) and FF (right). The numbers under the edge denote the selected feature indices.

G Edge Family τ

100

(MF, 7) Gaussian 0.41
(7, 80) Gaussian 0.45
(80, 82) Gaussian 0.45
(82, 2) BB7 0.33
(2, 77) BB7 0.30
(77, 71) Gumbel 0.48
(71, 66) BB1 0.46
(66, 70) Gaussian 0.46
(70, 63) BB1 0.46
(63, 33) BB8 0.42
(33, 69) Gaussian 0.51
(69, 57) Gaussian 0.51

200

(MF, 4) Gaussian 0.41
(4, 35) Gaussian 0.53
(35, 1) BB7 0.30
(1, 29) BB7 0.31
(29, 46) Gaussian 0.59
(46, 32) BB7 0.49
(32, 9) Gumbel 0.51
(9, 40) Gaussian 0.54

G Edge Family τ

100

(FF, 34) Gaussian 0.38
(34, 164) Frank 0.51
(164, 158) Frank 0.46
(158, 137) BB8 0.46
(137, 18) BB8 0.58
(18, 20) Gaussian 0.73
(20, 144) Frank 0.49
(144, 23) Frank 0.50
(23, 155) BB8 0.55
(155, 168) Frank 0.54
(168, 51) Frank 0.48

200

(FF, 19) Gaussian 0.38
(19, 68) BB8 0.58
(68, 69) BB8 0.60
(69, 9) Gaussian 0.59

Table 6.5: Pair-copulas with the estimated Kendall’s τ in the fitted D-vine’s first tree for
PH V4 (left) and PH V6 (right). The numbers under the edge denote the selected features.

G Edge Family τ

100

(PH V4, 44) Gaussian 0.39
(44, 150) Frank 0.57
(150, 162) BB8 0.47
(162, 160) BB8 0.45
(160, 3) BB8 0.57
(3, 95) Frank 0.61

200
(PH V4, 2) Gaussian 0.38
(2, 69) Frank 0.66
(69, 49) Frank 0.71

G Edge Family τ

100

(PH V6, 1) Gumbel 0.34
(1, 175) BB8 0.40
(175, 110) BB8 0.53
(110, 169) BB8 0.58

200
(PH V6, 1) BB7 0.34
(1, 88) Frank 0.53
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Quantile crossing of LQRLasso

LQRLasso performs variable selection and linear quantile regression at a specified quantile
level at the same time. However, it might result in the crossing of quantile curves. For
an illustration, we choose the first and fourth features obtained using a grouping size of
G = 100 as explanatory variables for predicting the trait MF at levels 90% and 95% and let
LQRLasso run for both levels. Then only the fourth feature is chosen for the prediction,
thereby estimating its coefficient. However, as seen in the following plot, the coefficient
estimated by LQRLasso leads to the quantile crossing.

Figure 6.5: Fitted linear quantile regression curves at 90% (orange) and 95% (red) levels for
MF versus the selected Feature 4 by LQRLasso, where candidate features to select from are
the first and fourth features using a grouping size of G = 100.

Selected feature indices

We remark that the features are based on the grouping G. For instance, the first feature
using a grouping size of G = 100 (200) includes 100 (200) SNPs whose p-value in a simple
linear regression for a trait is smaller than others. Thus, selected features using a grouping
size of G = 100 and G = 200 cannot be compared. Moreover, QRF uses all features to
make predictions.
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Table 6.6: The relevant feature indices by vineregRes and vineregParCor for each grouping
G and trait. The same feature indices selected by vineregRes and vineregParCor for each
grouping G and trait are highlighted.

vineregRes vineregParCor vineregRes vineregParCor
Trait G = 100 G = 200

FF
34, 164, 158,137, 18, 20
144, 23, 155, 168, 51

37, 158, 137, 68, 166, 163,
140, 155, 101, 104, 126, 23,
47, 80, 41, 42, 52, 55,
49, 51, 136, 36

19, 68, 69, 9
19, 79, 24, 9, 48, 84,
70, 83, 82, 66, 63, 50,
67, 45

MF
7, 80, 82, 2, 77, 71,
66, 70, 63, 33, 69, 57

7, 80, 2, 45, 27, 24,
57, 82, 16, 52, 15, 76,
62, 63, 19, 81

4, 35, 1, 29, 46,
32, 9, 40

4, 35, 1, 29, 40, 3,
38, 8, 14, 23, 20, 15,
21

PH V4 44, 150, 162, 160, 3, 95
44, 5, 179, 153, 93, 95
92, 182, 51, 86, 88

2, 69, 49
2, 77, 99, 26, 59, 73,
4, 72, 20, 29, 83

PH V6 1, 175, 110, 169
1, 26, 2, 119, 3, 116,
86, 163, 72, 101, 130, 98

1, 88
13, 1, 82, 49, 66, 56,
53, 30, 46, 9, 68, 88

Table 6.7: The selected feature indices by LQRLasso for each G, trait, and quantile level α.
The intercept is included in all.

Trait α G = 100 G = 200

FF

0.05 76, 81, 83, 140, 157, 18, 163 9,28,40,41,42,69,79

0.50

3,4,23,37,46,49,52,54,61,63,68,
71,78,80,85,88,99,100,101,104,105,107,108,
126,130,132,134,138,142,144,147,151,155,
158,160,163,164,166,168,171

2,8,9,19,23,24,36,39,40,
44,47,48,50,51,60,61,63,70,
72,74,76,78,79,80,82,83,84,86

0.95 17, 37, 88 9,19,49,61

MF

0.05 2, 14, 24, 61, 63, 70 1,3,10,16,19,31,32,35,36,38,39

0.50

1,4,6,13,15,18,19,20,23,24,27,28,
30,33,36,37,38,39,42,45,46,47,49,52,
53,54,56,57,58,59,60,62,63,64,
69,71,75,77,78,80,81,84,85,89

1,2,3,4,7,15,23,25,29,30,
35,38,40,41

0.95 7, 8, 9, 63, 69, 70, 71 4,5,35,36

PH V4

0.05 19, 95, 109, 125, 139, 171, 174, 189 35,44,48,79,80,94

0.50
2,5,44,90,130,139,141,146,
153,158,179,181,196,197

1,2,22,30,44,59,60,65,68,73,
74,77,83,86,90,98

0.95 51, 90, 95, 130, 139, 185, 191 48,65,86

PH V6

0.05 1, 76, 93, 106, 127, 130, 175 1,38,43,53,55

0.50

1,2,10,15,22,25,29,32,39,43,45,53,
59,65,70,72,73,77,86,88,91,95,96,
97,98,99,101,106,110,116,123,125,
128,130,131,132,138,142,156,159,
160,163,165,169,177,178,179,180

1,3,6,13,15,25,30,33,35,38,
48,49,53,54,55,58,59,60,62,
66,69,74,80,83,86,88,89,90

0.95 1, 86, 135, 138 1,58,63,84,89



136 Genomic prediction

Table 6.8: The same selected feature indices by vineregRes, vineregParCor, and
LQRLasso for each G and trait and quantile level α. (-) denotes the empty set.

Trait G = 100 G = 200
FF - 9
MF 63 35
PH V4 - -
PH V6 1 1

Comparison of the vine copula based regression methods

Table 6.9: Comparison of the vine copula based regression methods’ performance on the test
set of the real data in Section 6.2. The best performance on the test set for each quantile
level, trait, and the grouping G is highlighted.

vineregRes vineregParCor bicopreg vineregRes vineregParCor bicopreg
Trait Measure G = 100 G = 200

PH V4

PL0.05 0.51 0.51 0.53 0.51 0.51 0.52
PL0.50 1.93 1.87 1.92 1.96 1.99 1.93
PL0.95 0.56 0.58 0.58 0.57 0.57 0.58

PH V6

PL0.05 1.01 1.01 1.01 0.96 0.98 0.97
PL0.50 3.09 3.10 3.18 3.06 3.47 3. 18
PL0.95 0.91 0.89 0.93 0.90 1.05 0.94

Predictions by different methods

Figure 6.6: Scatter plots of the trait PH V6 measured by centimetres and the median predic-
tions for PH V6 by LQRLasso, QRF , and vineregRes in the training set.
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Figure 6.7: Scatter plots of the trait PH V6 measured by centimetres and the predictions at
different quantile levels α for PH V6 by LQRLasso, QRF , and vineregRes in the test set.
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Chapter 7

Conclusion

In this thesis, we demonstrate the potential of using vine copulas for statistical learning and
the importance of their consideration in data analysis, focusing on financial and genomic ap-
plications. Through developing new algorithms and methods, we show that vine copula based
statistical learning models are flexible and interpretable. Further, our comprehensive compar-
ison with the existing literature demonstrates the usefulness of vine copulas for clustering and
prediction and highlights the importance of proper modeling of nonlinear dependence. We
discuss further research directions and provide guidelines for their starting points.

As data volume, including observations and features, increases with the increasing storage
power, data observations are likely to be grouped. To find them, Chapter 3 describes a vine
copula mixture model (VCMM) framework and shows the advantages of the corresponding
model-based clustering algorithm compared to other statistical distributions, especially in the
presence of heavy tail and asymmetric tail dependence between a pair of features.

Another crucial data inference method is the prediction of an outcome of interest not
only on the mean but also on quantiles. Vine copulas can express the conditional distribution
of a response given features analytically under some assumptions and be used for (quantile)
prediction. However, given that many features are not needed in a predictive model, we define
feature types for quantile regression and introduce efficient feature selection methods for vine
copula based regression in Chapter 4. We show their advantage over machine learning and
linear models when many features are correlated but are not needed.

Chapter 5 works with one of the crucial data types in finance: Environmental, Social, and
Governance (ESG) scores. We present a case study of VCMM using them and show that
the driver of the dependence among companies has neither the best nor the worst scores and
changes with stock price movements. Going beyond, we analyze data collection problems
behind the scores using data-mining schemes and propose approaches to deal with missing
data, considering companies’ sectoral peculiarities.

In Chapter 6, we show how selecting features in vine copula based regression can be useful
for genomic prediction using real data on maize genotypes and phenotypes. We also propose
genomic feature extraction techniques that consider the relationship between the phenotype

138
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and the genotype information.
As an outlook, we can incorporate machine learning and copula based models into each

other to boost their capabilities. For example, consider the prediction task with many depen-
dent features. A machine learning model, such as random forests, might not make accurate
predictions. However, a vine copula based regression with feature selection might be used to
eliminate some features to get input data and then make predictions with them for random
forests. Alternatively, suppose the dependence among important features needs to be modeled
explicitly in very high dimensional data. Since vine copulas might suffer from data dimension-
ality more than random forests, the latter can be fitted. Vine copulas can then model the
most important features for interpretation and actionable insights, such as the likelihood or
probability of extreme value/events.

An extension of the statistical learning approaches we proposed in the thesis is to combine
them as a cluster-weighted model (Gershenfeld 1997). It assumes that a finite mixture model
expresses the joint density of the response and features, and a mixture component density is
composed of the conditional density of the response given features and feature densities. It
allows modeling non-monotonicity in observations using a vine copula based regression model.

An application of our statistical learning methods is to use them for imputing missing
values. For instance, after excluding missing observations, a feature can be predicted using
other features as predictors in our vine copula based regression. Then the fit can be used
to predict the excluded missing observations. Alternatively, an expectation-minimization type
algorithm may be developed for missing value imputation similar to Ding and Song (2016).
Moreover, when observations are clustered in some features, fitting a VCMM to real-valued
observations and then predicting the missing value of an observation based on the mixture
model likelihood can be applied. Yan et al. (2015) give an application with Gaussian mixture
models. Using them, an interesting real-life application is to impute missing ESG scores.

Statistical learning algorithms based on dependence modeling tools have further application
areas. An important area to apply our models is disease progression and treatment. Diseases
have been predicted from genomes or medical features using inference methods (Eskidere et
al. 2012). However, exploring disease progression where the dependence among some genome
regions or features fires the disease in a vine copula based regression model is a novel idea
to investigate. Likewise, the disease treatment’s success can be predicted by modeling the
dependence among features, such as heart rate and blood pressure.

Object recognition has many real-life applications in computer vision that aid decision-
making processes. For example, objects have features like color and texture or are charac-
terized by their image. Dependence among features and pixels can be captured by VCMM
for image segmentation, improving object recognition. For instance, an application based on
Dirichlet Gaussian mixture models is discussed by Nguyen and Wu (2011).

While new algorithms make data analyses more appropriate and improved, the availabil-
ity of big data has made statistical software tools much more sophisticated. For example,
the R software provides many packages for fitting statistical learning algorithms (Koenker
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2022; Nagler 2022; Sahin 2021). However, Python software is particularly well suited for
deploying large-scale algorithms. There has been considerable effort to create open-source
Python libraries for vine copula models (Nagler and Vatter 2022b), and extending them to
the statistical learning algorithms discussed here would contribute to many fields and experts.

Overall, we contribute to the growing literature on vine copulas and statistical learning,
providing new insights into using vine copula based statistical learning models for data analysis.
We hope our work will inspire further research and develop more advanced methods to model
high-dimensional complex data sets.
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Crossa, J. (2014). “Bayesian genomic-enabled prediction as an inverse problem”. In: G3
Genes—Genomes—Genetics 4.10, pp. 1991–2001. doi: 10.1534/g3.114.013094.

Cuvelier, E. and Noirhomme-Fraiture, M. (2005). “Clayton copula and mixture
decomposition”. In: ASMDA 2005, pp. 699–708.

Czado, C. (2019). “Analyzing dependent data with vine copulas: a practical guide with R”.
In: Lecture Notes in Statistics. Cham: Springer. doi: 10.1007/978-3-030-13785-4_1.
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Sahin, Ö. and Czado, C. (2022b). “Vine copula mixture models and clustering for
non-Gaussian data”. In: Econometrics and Statistics 22, pp. 136–158. doi:
10.1016/j.ecosta.2021.08.011.
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