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Abstract—Stability properties of Bernstein’s characterization
of Gaussian vectors are derived. Stability leads to a soft doubling
argument through which one can prove capacity theorems with-
out requiring the existence of capacity-achieving distributions.

I. INTRODUCTION

The following characterization of vector Gaussian distribu-
tions builds on work of Kac [1] and Bernstein [2] and is a
special case of the main results in [3]–[5].

Theorem 1. Consider the independent1 d-dimensional random
vectors X1 and X2. If X1 + X2 and X1 − X2 are also
independent then X1 and X2 are Gaussian with the same
covariance matrix.

We refer to Theorem 1 is as Bernstein’s theorem. The result
has been used to establish the optimality of Gaussian functions
and Gaussian random vectors for several inequalities, includ-
ing inequalities with applications to reliable communications
over channels with additive Gaussian noise (AGN). In the
following, we review applications of Bernstein’s theorem and
motivate stability theorems.

A. Applications of Bernstein’s Theorem

Lieb [6] used the “O(2) rotation invariance of products of
centered Gaussians” to show that Gaussian functions achieve
equality in the generalized Brascamp-Lieb inequality [7].
Lieb’s method is closely related to Bernstein’s theorem as it
considers products of a function with the vector arguments
(x1 + x2)/

√
2 and (x1 − x2)/

√
2. A special case of the

generalized Brascamp-Lieb inequality is Young’s inequality
which is met with equality by Gaussian functions. Carlen [8]
used Lieb’s technique to prove that Gaussian functions achieve
equality in the logarithmic Sobolev inequalities; he refers to
the technique as a “doubling trick”.

More recently, Theorem 1 was applied to communications
problems by establishing that Gaussian random vectors are
optimal for certain functional and extremal inequalities [9]–
[16]. For instance, the doubling trick was used to characterize
the capacity region, or capacity points, of vector Gaussian
broadcast channels [17]–[20], multiaccess channels with feed-
back [21], relay channels [22], Z-interference channels [23],

1By “independent” we mean statistical independence as opposed to, e.g.,
linear independence.

[24], Gray-Wyner networks [25], source coding with a causal
helper [26], and two-way wiretap channels [27].

B. Motivation

A key step in applying Bernstein’s theorem to communi-
cations problems is establishing the existence of distributions
achieving rate tuples on the boundaries of capacity regions.
One motivation for this paper is to investigate the necessity of
this step. After all, in practice one can only approach rather
than achieve the capacity of noisy channels, so requiring a
capacity supremum to be a maximum is more of mathemat-
ical than engineering relevance. Moreover, if a maximizing
distribution exists and is continuous then stability is important
because practical modulation alphabets are finite.

A second motivation for this paper is that the existence proof
in [17] requires several technical theorems on the convergence
of sequences of distributions, including Prokhorov’s theorem,
the converse of the Scheffé-Riesz theorem, Lévy’s continuity
theorem, and a theorem of Godavarti-Hero [28]. We instead
wish to have a proof that requires only basic theory, and
that considers individual distributions rather than sequences
of distributions.

A third motivation is a mathematical one, namely to extend
the stability of Bernstein’s theorem from scalars to vectors. For
scalars, this stability is based on the stability of the Cauchy
functional equation for bi-infinite and finite intervals; treating
vectors requires extensions to multivariate functions. We also
use stability results for vector differential entropies based on
individual distributions [29].

C. Stability of Bernstein’s Theorem

Several stability results are described in [30, Sec. 4] with
different assumptions on the sums and differences of indepen-
dent X1 and X2. For example, in [30, Thm. 4.4] the random
variables X1 and X2 are said to be ϵ-dependent2 if

sup
x1,x2∈R

|FX1,X2
(x1, x2)− FX1

(x1)FX2
(x2)| < ϵ. (1)

Define the Gaussian c.d.f.s Fi with means mi and variances
σ2
i , i = 1, 2. Let E [X] and Var [X] = E

[
(X − E [X])2

]
denote the expectation and variance of X .

2This property is called ϵ-independent in [30, Sec. 2] but it seems more nat-
ural to identify independence with 0-dependence rather than 0-independence.



Now suppose X1 + X2 and X1 − X2 are ϵ-dependent for
some ϵ satisfying 0 < ϵ < 1, and that E

[
|Xi|2(1+δ)

]
< ∞ for

i = 1, 2 and some δ satisfying 0 < δ ≤ 1. Then [30, Thm. 4.4]
states that

sup
x∈R

|FXi
(x)−Fi(x)| < c (− ln ϵ)−1/2 (2)

for i = 1, 2, where c is independent of ϵ, mi = E [Xi], and
σ2
i = (Var [X1] + Var [X2])/2.
The discussion in [30] describes several other stability met-

rics, including the Lévy metric [31]. We instead follow [32],
[33] (see also [34]) and consider a metric in the characteristic
function (c.f.) domain. Let j =

√
−1 and let

fX(t) = E
[
ejtX

]
, fX1,X2

(t1, t2) = E
[
ejt1X1+jt2X2

]
(3)

be the c.f.s of X and (X1, X2), respectively. For example, the
c.f. of a Gaussian X with mean m and variance σ2 is

Φ(t) = ejmt− 1
2σ

2t2 , t ∈ R. (4)

X1 and X2 are said to be ϵ-dependent in the c.f. domain if

sup
t1,t2∈R

|fX1,X2
(t1, t2)− fX1

(t1)fX2
(t2)| ≤ ϵ. (5)

The paper [33] develops the following stability theorem. Let
Pϵ be the class of (X1, X2) for which X1 and X2 are
independent and X1 + X2 and X1 − X2 are ϵ-dependent in
the c.f. domain. Then we have (see [33, Thm. 1])

c1ϵ ≤ sup
(X1,X2)∈Pϵ

max
i=1,2

(
sup
t∈R

|fXi(t)− Φi(t)|
)

≤ c2ϵ (6)

for Gaussian c.f.s Φi, i = 1, 2, where c1 and c2 are positive
constants independent of ϵ. The bounds (6) imply that the
scaling proportional to ϵ is the best possible in general.

D. Multivariate Stability

Gabovič [35] established stability for a vector form of the
Darmois-Skitovič theorem [3], [4] that generalizes Bernstein’s
theorem. However, there are several differences to our result.
Perhaps the most important is that the random vectors must
satisfy a special condition “to prevent the ‘leakage’ of a signif-
icant probabilistic mass to infinity” [35, p. 5]; this restriction
seems to prevent Gabovič’s stability from truly generalizing
Bernstein’s theorem. Also, there is no claim of an identical
covariance matrix for X1 and X2.

Thus, there are important advantages of studying stability
in the c.f. domain. First, one need not a-priori exclude certain
random vectors. Second, one can prove a common covariance
matrix for sufficiently small ϵ, i.e., the stability theory gen-
eralizes Theorem 1. Third, convergence is proportional to ϵ
which is the best possible scaling, see (6) and Theorems 3
and 4 below. Finally, one can relate ϵ-dependence to mutual
information by using Pinsker’s inequality, see Lemma 2 below.

E. Organization

This paper is organized as follows. Sec. II develops notation
and reviews properties of multivariate c.f.s. Sec. III states and
proves our main stability theorems (Theorems 3-5). Sec. IV
develops “soft” versions of the “hard” doubling arguments
in [17] for point-to-point channels, and outlines extensions to
product channels and two-receiver broadcast channels. Sec. V
concludes the paper. Due to space constraints, most proofs are
given in a separate version of this paper [36].

II. PRELIMINARIES

A. Basic Notation

The p-norm for d-dimensional vectors is written as

∥x∥p =

(
d∑

i=1

|xi|p
)1/p

(7)

and we write ∥x∥∞ = max1≤i≤d |xi|. We usually consider
the 1-norm that we write as ∥x∥ = ∥x∥1. For complex-valued
functions on Rd we write

∥f∥p =

(∫
Rd

|f(t)|p dt
)1/p

. (8)

For a square matrix Q, we write detQ for the determinant
of Q, and Q′ ⪯ Q if Q − Q′ is positive semi-definite. The
d × d identity matrix is written as Id. The vector with zero
entries except for a 1 in entry i is written as ei.

The distribution, c.d.f., mean, and covariance matrix of X
are written as PX, FX, mX = E [X], and

QX = E
[
(X−mX)(X−mX)T

]
(9)

respectively, where tT is the transpose of t. The distribution
PX is absolutely continuous (a.c.) with respect to the Lebesgue
measure if and only if a probability density function (p.d.f.)
exists that we write as pX.

The notation h(p), h(X), I(X;Y), and D(p||q) refers to the
differential entropy of the p.d.f. p, the differential entropy of
X, the mutual information of X and Y, and the informational
divergence of the p.d.f.s p and q, respectively. We often discard
subscripts on probability distributions and other functions for
notational convenience.

B. Multivariate Characteristic Functions

The characteristic function (c.f.) of the d-dimensional real-
valued X evaluated at t ∈ Rd is

fX(t) = E
[
ejt

TX
]
. (10)

If the p.d.f. pX exists then pX and fX can be interpreted as a
Fourier transform pair. The c.f. of the pair X1,X2 evaluated
at t1, t2 is

fX1,X2(t1, t2) = E
[
ejt

T
1 X1+jtT2 X2

]
(11)

Note that X1 and X2 need not have the same dimension.
Four properties of c.f.s are as follows, see [37, p. 55]:

fX(0) = 1; |fX(t)| ≤ 1; fX(−t) = fX(t)∗ where x∗ is



the complex conjugate of x; fX is uniformly continuous and
therefore non-vanishing in a region around t = 0.

We state two properties of pairs of random vectors. First,
X1 and X2 are statistically independent if and only if fX1,X2

factors as fX1
fX2

. Second, we state a lemma that relates the
c.f.s of pairs of random vectors and their mutual information.
We also define two versions of ϵ-dependence.

Lemma 2. For random vectors X1,X2 with joint p.d.f.
pX1,X2 and for all t1 ∈ Rd1 and t2 ∈ Rd2 we have

|fX1,X2(t1, t2)− fX1(t1)fX2(t2)|
≤ ∥pX1,X2 − pX1pX2∥
≤
√

2I(X1;X2) (12)

where the mutual information is measured in nats.

Definition 1. Let ϵ and T be non-negative constants. The
random vectors X1 and X2 are (ϵ, T )-dependent if

sup
∥t1∥≤T,∥t2∥≤T

|fX1,X2
(t1, t2)− fX1

(t1)fX2
(t2)| ≤ ϵ. (13)

Similarly, X1 and X2 are ϵ-dependent if they are (ϵ, T )-
dependent for all non-negative T .

The ϵ-dependence of Definition 1 can be interpreted as
(ϵ,∞)-dependence. Also, X1 and X2 are 0-dependent (or
(0,∞)-dependent) if and only if they are independent.

C. Gaussian Vectors

We write X ∼ N (mX,QX) if X is Gaussian with mean
mX and covariance matrix QX, i.e., the p.d.f of X is

ϕX(x) =
1

det (2πQX)
1/2

e−
1
2 (x−mX)TQ−1

X (x−mX) (14)

where we assumed that QX is invertible. More generally, the
Gaussian c.f. is

ΦX(t) = et
T (jmX− 1

2QX t) (15)

and we have |ΦX(t)| = 1 if and only if t lies in the null space
of QX. Otherwise, |ΦX(c · t)| strictly decreases from 1 to 0
as c increases from c = 0 to c = ∞.

III. STABILITY THEOREMS

This section states three stability theorems for d-
dimensional random vectors. Theorem 3 considers the local
stability for a finite interval around t = 0. Theorem 4 extends
Bernstein’s Theorem to include local stability, and extends
the scalar theory in [33] to vectors. We emphasize that both
theorems have a common covariance matrix Q̂ which is not
the case in [33] but is important to generalize Theorem 1
and to develop further results for product channels and for
broadcast channels. Theorem 5 gives two stability results: one
for differential entropy and one for correlation matrices. Again,
due to space constraints, proofs are provided in the separate
paper [36].

Theorem 3. Suppose X1 and X2 are independent random
vectors, and X1 + X2 and X1 − X2 are (ϵ, T )-dependent.
Also, suppose there is a constant p > 0 such that

|fi(t)| ≥ p for ∥t∥ ≤ T and i = 1, 2. (16)

Then for 0 < ϵ ≤ p4/[360d2(d+ 1)] and ∥t∥ ≤ T/2 we have

|fi(t)− Φi(t)| ≤ C(ϵ) · |Φi(t)|, i = 1, 2 (17)

where for some mean vectors m̂i, i = 1, 2, and for some
common covariance matrix Q̂ we have the Gaussian c.f.s

Φi(t) = et
T (jm̂i− 1

2 Q̂ t), i = 1, 2 (18)

and the error term is

C(ϵ) =
720d2(d+ 1)

p4
ϵ. (19)

Theorem 4. Suppose X1 and X2 are independent random
vectors, and X1 + X2 and X1 − X2 are ϵ-dependent. Then
for all ϵ below some positive threshold, for all t ∈ Rd, and
for i = 1, 2 we have

|fi(t)− Φi(t)| ≤ C̃ϵ (20)

for the Gaussian c.f.s (18), and for a constant C̃ independent
of ϵ and t. In particular, if ϵ = 0 then X1 and X2 are Gaussian
with the same covariance matrix.

Theorem 5. Consider the random vectors Y1 = X1 + Z1

and Y2 = X2 + Z2 where X1,X2,Z1,Z2 are mutually
independent, Y1,Y2 have finite second moments, and the
noise vectors Zi ∼ N (0,QZi), i = 1, 2, are non-degenerate.
Suppose Y1+Y2 and Y1−Y2 are ϵ-dependent. Then for all
ϵ below some positive threshold and for i = 1, 2 we have

|h(Yi)− h(Yg,i)| ≤ B(ϵ) (21)

where the Yg,i are Gaussian with the same covariance matrix,
and thus h(Yg,1) = h(Yg,2), and

E
[
Yg,iY

T
g,i

]
⪯ E

[
YiY

T
i

]
+B(ϵ) Id. (22)

where B(ϵ) → 0 as ϵ → 0 and B(ϵ) = 0 if ϵ = 0.

IV. SOFT DOUBLING FOR AGN CHANNELS

This section shows how to combine the stability of Bern-
stein’s theorem with the doubling argument in [17] to obtain
a soft doubling argument that does not require the existence
of maximizers. We consider point-to-point channels, product
channels, and broadcast channels with AGN that have appli-
cations to cellular wireless networks [38].

A. Point-to-Point Channels

An AGN channel has output

Y = X+ Z (23)

where X,Y,Z ∈ Rd and Z ∼ N (0,QZ) is independent of
X. Consider the optimization problem:

V (Q) := sup
X: E[XXT ]⪯Q

I(X;Y). (24)



We use Theorem 5 and a soft doubling argument to prove the
following known result.

Proposition 6. For the AGN channel (23) we have

I(X;Y) ≤ 1

2
log

det (QX +QZ)

detQZ
(25)

with equality if X is Gaussian.

Proof. Equality holds in (25) if X is Gaussian so it remains
to prove the inequality. Note that we may assume E [X] = 0
because I(X;Y) does not depend on translation of X.

Now consider Y1 = X1 + Z1 and Y2 = X2 + Z2, where
X1,X2 ∼ PX and Z1,Z2 ∼ PZ are mutually independent.
Further define

X+ :=
1√
2
(X1 +X2), X− :=

1√
2
(X1 −X2). (26)

Note that E
[
X+X

T
+

]
⪯ Q and E

[
X−X

T
−
]
⪯ Q. Also, define

Y+ :=
1√
2
(Y1 +Y2), Y− :=

1√
2
(Y1 −Y2) (27)

Z+ :=
1√
2
(Z1 + Z2), Z− :=

1√
2
(Z1 − Z2) (28)

so that Y+ = X++Z+ and Y− = X−+Z− where the noise
vectors Z+,Z− ∼ PZ are independent.

Now suppose ϵ > 0 and

I(X;Y) = V (QX)− ϵ. (29)

We then have

2V (QX) = I(X1;Y1) + I(X2;Y2) + 2ϵ

= I(X1X2;Y1Y2) + 2ϵ

= I(X+X−;Y+Y−) + 2ϵ

(a)
= I(X+;Y+)︸ ︷︷ ︸

≤ V (QX)

+ I(X−;Y−)︸ ︷︷ ︸
≤ V (QX)

−I(Y+;Y−) + 2ϵ

≤ 2V (QX)− I(Y+;Y−) + 2ϵ (30)

where step (a) follows by

p(y+,y−|x+,x−) = p(y+|x+) p(y−|x−)

for all x+,x−,y+,y−. Lemma 2 and (30) give∣∣fY+,Y−(t1, t2)− fY+
(t1)fY−(t2)

∣∣
≤
√
2I(Y+;Y−) ≤ 2

√
ϵ (31)

so Y+ and Y− are (2
√
ϵ)-dependent.

For sufficiently small ϵ, Theorem 5 gives

I(X;Y) = h(Y1)− h(Z)

≤ h(Yg,1)−
1

2
log det(2πQZ) +B

(
2
√
ϵ
)

=
1

2
log

detQYg,1

detQZ
+B

(
2
√
ϵ
)

(32)

where for some mean vector mg,1 we have

QYg,1
= E

[
Yg,1Y

T
g,1

]
−mg,1m

T
g,1

⪯ E
[
Y1Y

T
1

]
+B

(
2
√
ϵ
)
Id

(a)
= QX +QZ +B

(
2
√
ϵ
)
Id (33)

and step (a) follows by E [X] = 0. Moreover, the ϵ in (29)
can be chosen as close to zero as desired because V (QX) is
a supremum. Finally, observe that if I(X;Y) ≤ J + ϵ for all
ϵ > 0 then I(X;Y) ≤ J .

B. Product Channels and Broadcast Channels

The proof of Proposition 6 uses an AGN product channel
with two outputs Y1 and Y2 where Z1 and Z2 have the same
covariance matrix. More generally, suppose the covariance
matrices are different. Since the noise is non-degenerate, this
channel is equivalent to the AGN product channel considered
in [17, Sec. I.A], namely3

Y11 = G1X1 + Z11 (34)
Y22 = G2X2 + Z22 (35)

where G1 = Q
−1/2
Z1

, G2 = Q
−1/2
Z2

, the noise vectors
Z11,Z22 ∼ N (0, Id) are independent, and (X1,X2) is in-
dependent of (Z11,Z22).

For the channel (34)-(35) we prove several results that let
us treat the two-receiver AGN broadcast channel with

Y1 = G1X+ Z1 (36)
Y2 = G2X+ Z2 (37)

where G1,G2 are invertible, and Z1,Z2 ∼ N (0, Id) are
independent. Note that the input X is common to both sub-
channels, and that Z1,Z2 have the same covariance matrix.

Define the expressions (see [17])

sλ(X) := I(X;Y1)− λI(X;Y2) (38)
sλ(X|V) := I(X;Y1|V)− λI(X;Y2|V) (39)

Sλ(X) := sup
p(v|x):V−X−Y1Y2

sλ(X|V) (40)

Vλ(Q) := sup
X: E[XXT ]⪯Q

Sλ(X) (41)

where Sλ(X) is the upper concave envelope of sλ(X) as a
function of p(x).

The longer version [36] of this paper now re-proves a key
result from [39] which states that a Gaussian X is optimal
for the problem (41) and one does not require V. This
theorem was also re-proved in [17, Thm. 1] through a series
of propositions. Our proof follows similar steps but we do not
require the existence of a maximizer, and we must replace the
independence result [17, Prop. 2] with other steps.

Theorem 7 (See [39, Thm. 8]). If λ > 1 then we have
Vλ(Q) = sλ(Xg) for some Xg ∼ N (0, Q̂) with Q̂ ⪯ Q.

Theorem 7 can be used to show that Gaussian signaling
is optimal for two-receiver broadcast channels with dedicated

3We replace the G11,G22 in [17, Sec. I.A] with G1,G2.



(also called private) messages for each receiver, see [39,
Sec. IV.A] and [17, Sec. III.A]. Moreover, the method de-
scribed above extends to two-receiver broadcast channels with
a common message since the proof of Theorem 2 in [17]
applies similar steps.

We remark that [17, Sec. II.B] and Theorem 7 treat the
case λ > 1 while [39, Thm. 8] includes λ = 1. However, as
pointed out in [17, Remark 9], the case λ = 1 can be treated
by showing that a capacity function is convex and bounded
while the case λ < 1 can be treated by reversing the roles of
Y1 and Y2.

V. CONCLUSIONS

The stability of Bernstein’s characterization of Gaussian
distributions was extended to vectors. The theory led to a soft
doubling argument that establishes the optimality of Gaussian
vectors for point-to-point channels with AGN.

It seems that soft doubling can replace hard doubling in
general. However, whether soft doubling can provide new
inequalities and capacity theorems that hard doubling cannot
remains to be seen. For example, if a communications model
has a strict cost constraint such as E

[
∥X∥2

]
< P then one

can turn to stability rather than, e.g., relaxing the constraint
to E

[
∥X∥2

]
≤ P , proving the existence of a maximizer (if

possible) and applying Theorem 1. In this sense, stability
seems to be more flexible than requiring the existence of
maximizing distributions, just as suprema are more flexible
than maxima.
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Villars, Paris, 1937.

[32] L. Klebanov and R. Yanushkyavichyus, “ε-dependence of X1+X2 and
X1 − X2,” Litovskii Matemat. Sbornik (Lietuvos Matemat. Rinkinys),
vol. 25, no. 3, pp. 83–92, 1985, English translation: Inst. Mathem.
Cybernet., Academy Sci. Lithuanian SSR, pp. 236-242, 1985.

[33] L. B. Klebanov and R. V. Yanushkyavichyus, “Estimation of stability
in S. N. Bernshtein’s Theorem,” Theory Probab. & Its Appl., vol. 30,
no. 2, pp. 383–386, 1986.

[34] R. Yanushkevichius, “On stability of the B. Gnedenko characterization,”
J. Math. Sci., vol. 92, no. 3, pp. 3960–3971, 1998.

[35] Y. R. Gabovic, “The stability of the characterization of the normal
distribution by the Skitovic-Darmois theorem,” Zap. Naucn. Sem.
Leningrad Otdel. Mat. Inst. Steklov., vol. 61, 1976.

[36] M. M. Mahvari and G. Kramer, “Stability of Bernstein’s theorem
and soft doubling for vector Gaussian channels,” arXiv preprint
arXiv:2212.04484, 2022.

[37] N. G. Ushakov, Selected Topics in Characteristic Functions, VSP,
Utrecht, The Netherlands, 1999.

[38] Y.-H. Kim and G. Kramer, “Information theory for cellular wireless
networks,” in Information Theoretic Perspectives on 5G Systems and
Beyond, pp. 10–92. Cambridge Univ. Press, 2022.

[39] T. Liu and P. Viswanath, “An extremal inequality motivated by
multiterminal information-theoretic problems,” IEEE Trans. Inf. Theory,
vol. 53, no. 5, pp. 1839–1851, May 2007.


	Introduction
	Applications of Bernstein's Theorem
	Motivation
	Stability of Bernstein's Theorem
	Multivariate Stability
	Organization

	Preliminaries
	Basic Notation
	Multivariate Characteristic Functions
	Gaussian Vectors

	Stability Theorems
	Soft Doubling for AGN Channels
	Point-to-Point Channels
	Product Channels and Broadcast Channels

	Conclusions
	Acknowledgments
	References

