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Abstract—Regression test selection (RTS) aims to reduce re-
gression testing effort by selecting only those tests that are
affected by introduced changes. RTS techniques are considered
to be safe if they select all affected test cases. Several supposedly
safe RTS tools have been developed over the past decades, lately
especially for Java projects. However, recent studies have shown
that state-of-the-art RTS tools for Java can become unsafe when
confronted with dependency injection (DI) mechanisms: despite
the widespread use of DI frameworks in Java projects, no existing
technique acknowledges DI-related changes. In this paper, we
analyze the reasons behind unsafe RTS behavior for DI-related
changes and develop DIRTS, a novel DI-aware RTS tool for
Java. To counteract effects of DI on RTS, DIRTS efficiently
analyzes source code annotations and metadata employed by
popular DI frameworks, and generates a dependency graph
including edges for dynamically injected objects. We evaluate
DIRTS on 228 commits from 9 open-source Java projects that
use DI. Our results indicate that in 33.3% of those commits
DI-related changes affect some tests, and in 3.1% (7) DIRTS
identifies affected tests that are clearly missed by the static RTS
tool STARTS. Still, DIRTS is comparatively efficient and precise.
We publish DIRTS1 ,2 as an RTS tool that can either be used as
a safety extension for existing RTS tools or as a standalone RTS
solution.

Index Terms—Software testing, regression test selection, de-
pendency injection, static program analysis, cross-language links

I. INTRODUCTION

Regression testing is regularly performed on software
systems to ensure that changes have not inadvertently affected
existing system behavior. The simplest yet expensive retest-all
strategy is to execute every test case in the test suite after
each introduced change. Yet, with increasingly large test suites
and shorter development lifecycles this strategy often becomes
infeasible [2]. Regression test selection (RTS) aims to minimize
the regression testing effort by only re-executing tests that may
yield a different result due to changes in the code [3]–[5].

An RTS technique is safe, if all affected tests are correctly
identified [6]. To relate changes to tests they affect, RTS
techniques typically maintain a dependency graph of code
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entities, e.g., functions, for each test. Then, if a code entity
has changed, all tests that depend on the entity are selected.
Based on the type of program analysis they apply to generate
the dependency graph, RTS techniques can further be divided
into static and dynamic techniques [7].

Several static and dynamic RTS techniques have been
proposed, specifically for languages targeting the Java virtual
machine (JVM), such as Java [7]–[16]. Most of these techniques
were originally designed to be safe under the assumption of
Java code changes. However, Zhu et al. [17] discovered that
this assumption may not hold true in practice: using their tool
RTSCHECK, they found safety violations in state-of-the-art
RTS tools due to changes to non-Java (source) files (e.g., XML
files). More recently, Shi et al. [18] as well as Elsner et al. [12]
identified cases where RTS tools are not able to recognize Java
or XML code changes which may alter the run-time behavior
of tests through dependency injection (DI), where objects are
dynamically created and injected. Although DI is a widely
adopted design principle to reduce coupling in object-oriented
software—it is heavily used in Java EE and Spring [19], [20]—
contemporary RTS tools lack adequate DI support.

In this paper, we investigate why RTS is prone to be unsafe
when confronted with DI mechanisms. Based on our findings,
we design and implement DIRTS, a static RTS tool for Java,
which aims to address the shortcomings of existing RTS tools
regarding DI. DIRTS leverages efficient static Java source code
analysis to construct a dependency graph with additional edges
related to DI. Since DI frameworks often allow configuration
through XML, DIRTS also acknowledges these cross-language
links and parses metadata from XML files [21]. Currently,
DIRTS supports three of the most popular DI frameworks in
Java: Spring3, Guice4, and CDI5. To give software engineers
flexibility and stick to established development processes and
tooling, DIRTS can either be used as a safety extension for
existing RTS tools or as a standalone RTS tool.

We evaluate DIRTS in an empirical study on 228 commits
from 9 open-source Java projects that make use of DI. To find
commits where existing RTS tools might be unsafe, we compare
DIRTS with STARTS, a static RTS tool from prior research [7],
[8]. We find that in 33.3% of the analyzed commits DI-related

3Spring: https://spring.io/
4Guice: https://github.com/google/guice
5Jakarta CDI: https://jakarta.ee/specifications/cdi
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changes affect some tests, whereas STARTS misses to select
affected tests in 3.1% (7) commits. Despite its superior safety
for DI-related changes, DIRTS has comparable efficiency and
precision and, contrary to STARTS, does not require a fully
compiled Java workspace, giving more flexibility for selective
build optimization [12].

In summary, this paper makes the following contributions:
• DI-aware RTS: We are the first to investigate the problem

of unsafe RTS behavior related to DI mechanisms.
• DIRTS tool: We implement DIRTS, a static RTS tool for

Java that can be used as a safety extension for existing
RTS tools as well as a standalone RTS solution, where it
supports method- and class-level test selection.

• Empirical study: We present an empirical study to eval-
uate the efficiency and effectiveness of DIRTS and the
prevalence of DI-related RTS safety violations in 9 open-
source Java projects. Not only is DIRTS safer than the
RTS tool STARTS, but also comparatively efficient and
effective.

II. BACKGROUND & MOTIVATING EXAMPLES

A. Dependency Injection

Dependency injection (DI) is an object-oriented design
technique used to reduce coupling in modern software systems
[22]. As pointed out by Saeed [23], it is basically inevitable
to have certain components depend on others in software
development. Using DI, components only need to declare
where to inject components they depend on (i.e., dependencies)
and the instantiation of the corresponding objects is done by
a framework [23]. These injected objects are often referred
to as beans [24]. To identify the implementation (e.g., a Java
class) that is supposed to be instantiated and injected, mappings
between developer-defined keys and associated implementations
are typically either defined through XML metadata or source
code annotations [25].

B. DI-related Safety Violations in Regression Test Selection

In the context of RTS, Zhu et al. [17] identified safety
violations of RTS tools such as STARTS or EKSTAZI due
to their unawareness of non-Java (source) files. Since cross-
language links to XML are often employed to configure DI
frameworks [21], projects using DI are particularly prone
to these violations. Shi et al. [18] and Elsner et al. [12]
further report (potential) safety violations related to missing
edges in static and dynamic dependency graphs, respectively,
which are introduced through DI frameworks’ source code
annotations. When for example the injection priority of beans
is changed, this may affect the run-time behavior of a test
without modifying any of the entities covered by the test before
the change [12]. For the rest of the paper, we collectively refer
to changes related to DI mechanics as DI-related changes.

C. Illustrative Examples

To motivate and understand how DI-related changes can lead
to RTS safety problems, we discuss two illustrative source code
examples in the following. Both examples can result in safety

violations for the well-known Java RTS tools STARTS [7], [8],
EKSTAZI [9], [10], and HYRTS [15].

In both examples, the DI frameworks aim to inject an object
of an implementation of the interface DataSource shown in
Listing 1 (loosely inspired by javax.sql.DataSource).

Listing 1: Interface used in illustrative examples
interface DataSource {

Connection getConnection();
}

1) Safety Violations due to XML Configuration: The first
example takes into account that static and dynamic RTS tools
are typically not designed to analyze cross-language links
to XML files, which may contain relevant metadata for DI
frameworks [12], [17], [26]. For the purpose of demonstration,
we chose CDI, the DI framework integrated into the Jakarta
EE (formerly Java EE) platform, though, similar scenarios can
be constructed for other DI frameworks such as Spring.

Before the changes are introduced, there is an implementation
of DataSource named InMemoryDB shown in Listing 2,
which is injected across the application using CDI.

Listing 2: Implementation of DataSource before change
@Alternative
class InMemoryDB implements DataSource {

@Override
public Connection getConnection() {

return InMemoryDBFactory.create();
}

}

Now suppose, a new implementation of DataSource,
PostgresDB is added (see Listing 3).

Listing 3: Newly added implementation of DataSource
@Alternative
class PostgresDB implements DataSource {

private PostgresDBConfig config;

@Override
public Connection getConnection() {

return PostgresDBFactory.create(config);
}

}

Furthermore, the XML file containing the metadata about
which implementation to use for injection of DataSource
is adjusted to use PostgresDB (see Listing 4).

Listing 4: Modification of XML metadata for CDI configuration
<beans ...>
<alternatives>

- <class>InMemoryDB</class>
+ <class>PostgresDB</class>
</alternatives>

</beans>

The result of this change is that any class using an injected
object of DataSource will now receive an object of type
PostgresDB, although no changes to the previously existing
interfaces and classes were made. Consequently, tests covering



Pr
ep

rin
t

any of these affected classes may output different results; RTS
techniques can be unsafe, if they fail to select any of those
tests. Since none of STARTS, EKSTAZI, or HYRTS analyzes
files apart from Java [17], they are potentially unsafe in the
presence of such DI-related changes in XML metadata.

2) Safety Violations due to Bean Prioritization: The second
example addresses the issue first described by Elsner et al. [12],
where changes to bean priority can affect test behavior. Here, we
use the Spring framework to demonstrate the safety violation;
similar scenarios can also be constructed, for example, for
CDI. Consider Listing 5, where the original behavior is that an
object of the implementation InMemoryDB will be created
and injected by Spring.

Listing 5: Implementation of DataSource before change
class InMemoryDB implements DataSource {

@Override
public Connection getConnection() {

return InMemoryDBFactory.create();
}

}

@Configuration
class InMemoryDBBeanConfig {

@Bean
DataSource inMemoryDBBean() {

return new InMemoryDB();
}

}

Again, suppose another implementation PostgresDB is
added and prioritized using the @Primary source code
annotation (see Listing 6). All classes that use a dynamically
injected object of DataSource will now receive an object
of type PostgresDB.

Listing 6: Addition of bean with higher priority
class PostgresDB implements DataSource {

@Override
public Connection getConnection() {

return PostgresDBFactory.create();
}

}

@Configuration
class PostgresDBBeanConfig {

@Bean
@Primary
DataSource postgresDBBean() {

return new PostgresDB();
}

}

This demonstrates that it is possible to introduce and inject
beans with higher priority while not changing any existing
classes or methods. As pointed out by Elsner et al. [12], no
code that was present in the old revision may have changed
and, thus, the class containing the prioritized bean cannot be
present in test execution traces from previous runs. Therefore,
existing dynamic RTS techniques such as EKSTAZI or HYRTS
are inherently incapable of recognizing such changes, since
they can only use test execution traces from the previous run

for selecting tests. Although it would be conceptually possible
to recognize such changes through static analysis, the static
RTS tool STARTS suffers similar limitations, since the new
classes PostgresDB or PostgresDBBeanConfig are not
statically referenced anywhere.

III. DEPENDENCY INJECTION AWARE TEST SELECTION

To improve RTS safety in the presence of DI, we present
DIRTS, a DI-aware RTS tool. We have alluded to why dynamic
RTS techniques reveal an inherent weakness when confronted
with DI-related changes (see Sec. II). Therefore, we develop
DIRTS on top of static source code analysis using the popular
open-source library JAVAPARSER6. For the design of DIRTS,
we build upon ideas from contemporary RTS tools and adapt
them for DI-related changes.

A. Design Decisions

1) Dependency Graph Granularity: We implement and
partially adapt two existing approaches differing in dependency
granularity of code entities in the graph. For class-level analysis,
we choose the approach from AUTORTS by Öqvist et al. [14],
whereas for method-level analysis we use the approach from
METHSRTS by Legunsen et al. [7]. As such, DIRTS can perform
both class-level or method-level dependency analysis, but—
similar to AUTORTS, STARTS, and METHSRTS—performs
selection at class-level, e.g., JUnit test suites. Since both original
approaches are DI-unaware, we extend them to account for
dependencies introduced by DI (see Sec. III-B).

2) Analyzing Source Code Instead of Bytecode: As
Öqvist et al. [14] and Elsner et al. [12] point out, if analysis
does not require compiled Java bytecode, valuable build time
can be saved, since only those code modules that are changed
or required for testing need to be compiled. DIRTS therefore
employs lightweight source code analysis using JAVAPARSER.
When integrated with Maven (DIRTS is available as a Maven
plugin), DIRTS can enumerate all affected Maven modules in
addition to the selected tests.

3) Adjusting RTS Phases: State-of-the-art RTS tools operate
in different phases [8]–[10], [15]. The analysis phase analyzes
changes and selects tests which run during the execution phase.
During the collection phase, information on dependencies
is gathered for the analysis in the next run. By collecting
dependencies during the current execution before executing the
tests, we eliminate the problem of not recognizing dependencies
from code that has just been added (see Listing 6).

4) DI Extensions: To demonstrate the concept of DI-aware
RTS, we implement DIRTS to support three of the most popular
DI frameworks for Java: Spring, Guice, and CDI. We chose
these frameworks based on findings from prior studies [12],
[18], [21]. In Sec. III-B3, we describe how DIRTS parses cross-
language links to XML and analyzes source code annotations
for these selected DI frameworks.

6JAVAPARSER: https://javaparser.org

https://javaparser.org
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B. Dependency Analysis

Objects injected via DI may not always be directly injected
into test classes. They may be injected into collaborators or
the code under test, possibly with several layers of indirection.
Therefore, it is not sufficient to only identify edges based on
DI. We require a way to track modified code involved in DI
transitively in the dependency graph. As previously described,
DIRTS supports two strategies for dependency analysis.

1) Class-level RTS – Extending AUTORTS: For our class-
level implementation, we extend the DI-unaware extraction-
based RTS approach proposed by Öqvist et al. [14].

Öqvist et al. [14] create edges in the dependency graph
based on (1) inheritance relations, i.e., using the keywords
extends and implements, (2) constructor invocations
using new, and (3) calls to static methods and access and
assignment of static variables. These generated edges are
directed from the referencing or inheriting class to the invoked,
accessed, or inherited class [14]. Because DI generally replaces
constructor invocation, AUTORTS needs to be extended for DI
mechanisms as we show in Sec. III-B3. We formalize the class-
level dependency graph of DIRTS in Def. III.1 (inspired by
Orso et al. [27] and Legunsen et al. [7]).

Definition III.1. The dependency graph created by class-level
DIRTS can be seen as a tuple of nodes and edges

〈N,Eextends ∪ Eimplements ∪ Enew ∪ Estatic ∪ EDI〉

where
• N is the set of nodes, in this case representing classes,

interfaces, and enumerations
• Eextends ⊆ N ×N :
〈n1, n2〉 ∈ Eextends if n1 extends n2

• Eimplements ⊆ N ×N :
〈n1, n2〉 ∈ Eimplements if n1 implements interface n2

• Enew ⊆ N ×N :
〈n1, n2〉 ∈ Enew if n1 explicitly invokes a constructor of
n2

• Estatic ⊆ N ×N :
〈n1, n2〉 ∈ Estatic if n1 accesses or assigns a static
variable or calls a static method in n2 or if n1 references
an enum constant declared in n2

• EDI ⊆ N ×N :
edges created through DI are introduced in Sec. III-B3

2) Method-level RTS – Extending METHSRTS: For method-
level DIRTS, we use METHSRTS by Legunsen et al. [7] as
a basis, which constructs the edges based on method call
graphs. A formalization of our method-level dependency graph
is provided in Def. III.2.

The dependency graph of METHSRTS actually uses class-
level nodes, e.g., classes or interfaces, such that it does
not specifically need to account for dynamic dispatch [7].
The method-level version of DIRTS, in contrast, considers
more fine-grained definitions, e.g., methods or constructors,
as nodes in the graph. Consequently, by splitting up classes
into multiple method nodes, we require additional edges to

account for methods called via dynamic dispatch (Einheritance

in Def. III.2).
Legunsen et al. [7] further report safety violations using

their method-call-based dependency graphs, even when not
confronted with DI. We address a potential cause of such safety
violations by further adding edges to account for accessed and
assigned fields (EfieldAccess in Def. III.2).

Definition III.2. The dependency graph created by method-
level DIRTS can be seen as a tuple of nodes and edges

〈N,Edelegation ∪ Einheritance ∪ EfieldAccess ∪ EDI〉

where
• N is the set of nodes, in this case representing methods,

constructors, fields, enum constants, and initializers
• Edelegation ⊆ N ×N :
〈n1, n2〉 ∈ Edelegation if n2 represents a method or a
constructor and n1 calls n2

• Einheritance ⊆ N ×N :
〈n1, n2〉 ∈ Einheritance if n1 and n2 represent methods
and n2 may be executed via dynamic dispatch when n1

is called
• EfieldAccess ⊆ N ×N :
〈n1, n2〉 ∈ EfieldAccess if n2 represents a field accessed
by n1 or if n1 represents a field assigned to by n2

• EDI ⊆ N ×N :
edges created through DI are introduced in Sec. III-B3

3) DI-Aware Extensions: To account for DI-related changes
and contexts, DIRTS supports the frameworks Spring, Guice,
and CDI. Respective extensions to the dependency graphs
are conceptually similar across frameworks. Since some DI
frameworks harness cross-language links to XML for bean
definition, we need to handle these situations accordingly.

a) Extending the Dependency Graph: Similar to the
approach by Shi et al. [18] for making static RTS safe for
reflection in Java, we extend the dependency graph by adding
further edges. The idea is to close gaps in the edge relation for
objects instantiated and managed through DI. For this purpose,
we keep track of all definitions of beans and all injection points
in the entire program. The term injection point refers to any
code entity that specifies a variable that could be injected via
DI. Edges are created from a node that represents an injection
point to the node that represents a bean, which may be injected
into a variable at this injection point. To do so, we extract the
type of the bean and more framework-specific information such
as its name or custom annotations called qualifier annotations
used for identifying beans. Then, we find all injection points
that a bean can be injected into based on this information and
create edges.

Listing 7: An injection point for DataSource in Spring
public class DatabaseConnectionTest {

@Autowired
private DataSource dataSource;
// ...

}
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DataSource

DatabaseConnectionTest

InMemoryDBConfig PostgresDBConfig 𝗔

InMemoryDB

InMemoryDBFactory

PostgresDB 𝗔

PostgresDBFactory

Fig. 1: Dependency graph created by class-level DIRTS, when
applied to the example in Listings 5, 6, and 7

In the example from Listings 5 and 6, the two methods
inMemoryDBBean and postgresDBBean would be recog-
nized as beans of type DataSource, both having the name
of the respective method (specific to Spring). The field
dataSource, depicted in Listing 7 would be a corresponding
injection point of the same type. The graph generated for this
example is depicted in Fig. 1. Because the type of the two
beans and the injection point match, the two edges colored
in red are created by DIRTS’s DI extension for Spring. Edges
in green result from extends or implements, edges in blue
represent constructor invocation, and edges in black correspond
to static as formalized in Def. III.1.

By storing beans and injection points to the file system at
the end of each run, we can incrementally update these sets
while reanalyzing only classes that have changed.

Occasionally, the syntactical elements representing beans do
not suit the desired granularity. Consider a bean represented by
a whole class that is processed by the method-level algorithm.
Creating an edge to the node representing this class is not
possible, since the dependency graph used by the method-level
approach does not contain nodes of entire classes. Instead, we
add edges to the method responsible for instantiating the bean,
i.e., the constructors, that are part of the dependency graph.

Similarly, it is not possible to add edges to a method in
the graph of the class-level version. In this case, we simply
create an edge to the node representing the class that declares
this method. The same holds true for fields, as can be seen in
Listing 7 and Fig. 1.

b) XML Cross-language Links: Since JAVAPARSER only
analyzes Java, we extend DIRTS by an XML parser to find
(Spring) beans defined in XML files and add them to the
dependency graph. Nodes representing beans in XML are
assigned outgoing edges that point to other nodes which
represent code entities referenced in the definition of the bean.
Ingoing edges are created as described previously.

In CDI, beans can be enabled for injection in the so-called
bean archive, which can be found in the file META_INF/beans
.xml inside a Java archive (JAR) [24]. Again, we leverage
an XML parser to analyze these cross-language links to XML
code. To account for activation and deactivation of beans in
XML by adding or removing entries in the <alternative>-

section of the bean archive [24], we add a custom node for each
such entry. In the case of class-level DIRTS, we create an edge
starting at the node of the annotated class, pointing towards
the node representing the XML entry. For the method-level
dependency analysis, we use the constructor node instead. This
way, the code representing the bean has a transitive dependency
on the XML entry that enables it to be injected.

C. Test Selection

When DIRTS is invoked on a new revision of the code, it first
constructs a dependency graph for the new revision. We harness
an incremental graph builder algorithm based on file checksums
to only analyze the difference to the old revision’s dependency
graph. The two graphs—representing old and new revision—
are combined into a new graph called the modification graph.
It contains all nodes and edges from both input graphs as well
as the modification status of every node. This status can be
added, removed, modified, or unmodified.

DIRTS supports two test selection algorithms, depending on
whether it is used as a standalone RTS solution or as a DI
safety extension for another RTS tool.

1) Standalone: For selecting tests in standalone mode,
we use an approach similar to the one introduced by
Öqvist et al. [14]: using the reversed edges to determine the
tests that reach modified nodes.

DIRTS uses Algorithm 1 to find all nodes that transitively
reach any of the modified nodes S, i.e., the set of all nodes with
a modification status of added, removed, or modified. These
nodes are then filtered to extract those nodes representing tests
(not part of Algorithm 1).

Algorithm 1 Calculates all nodes reachable in the transitive
closure of the reversed edges — adapted from [14]

Require: N nodes in modification graph
Require: E ⊆ N ×N edges
Require: S ⊆ N modified nodes

procedure REVERSEREACHABLENODES(S,E)
nodesToVisit ← {s ∈ S}
reachableNodes ← {}
while ¬ nodesToVisit .empty() do

n← nodesToVisit .next()

reachableNodes
+← n

for all o with 〈o, n〉 ∈ E do
if ¬ o ∈ reachableNodes then

nodesToVisit
+← o

end if
end for

end while
return reachableNodes

end procedure

2) DI-aware Extension for Other RTS Tools: To restrict
the selected tests to just those affected by DI, we use a
slightly different approach shown in Algorithm 3. The idea
is to consider only those nodes that reach a modified node
with at least one edge resulting from DI in any path between
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both nodes. We accomplish this by first collecting all nodes
that are at the end of such an edge, i.e., nodes representing
injected beans. Then, we determine whether each of them
reaches a modified node in the transitive closure of the graph
via depth-first search (see Algorithm 2). All nodes that fulfill
this condition are added to a set R which is then used to invoke
Algorithm 1 again. The resulting set of nodes depicts all nodes
transitively affected through DI-related edges. Since we are
only interested in the affected tests, we filter the nodes to those
nodes representing a test.

Algorithm 2 Depth-first search to decide whether a node
transitively reaches any modified nodes

Require: E ⊆ N ×N edges in modification graph
Require: N∗ ⊆ N modified nodes
Require: n ∈ N

procedure REACHESMODIFIEDNODE(n,E,N∗, visited )
if n ∈ N∗ then

return true
else
visited

+← n
for all 〈n, o〉 ∈ E ∧ ¬o ∈ visited do

if REACHESMODIFIEDNODE(o,E,N∗, visited )
then

return true
end if

end for
return false

end if
end procedure

Algorithm 3 Calculates tests affected by DI-related changes

Require: 〈N,N∗, E〉 modification graph with nodes N , mod-
ified nodes N∗, and edges E ⊆ N ×N

Require: E∗ ⊆ E edges resulting from DI
Require: T ⊆ N tests

procedure AFFECTEDBYEDGETYPE(〈N,N∗, E〉, E∗, T )
R← {}
for all 〈n1, n2〉 ∈ E∗ do

if REACHMODIFIEDNODES(n2, E,N∗, {}) then
R

+← n1

end if
end for
return REVERSEREACHABLENODES(R,E) ∩ T

end procedure

D. Integration with Maven Surefire
Similar to EKSTAZI [10] and STARTS [8], we integrate

DIRTS with Maven Surefire [28], the testing plugin of Maven,
one of the most widespread build management tools for Java
projects. In the following, we give examples on how to use
DIRTS with Maven to (1) select tests in standalone mode, (2)
in combination with other RTS tools, and (3) for selective
compilation.

1) DIRTS Standalone: If DIRTS is used in standalone
mode (see Sec. III-C1), it outputs a text file containing the
list of all excluded test suites. In case Maven Surefire’s
excludesFile property is set, DIRTS will write to this
file while acknowledging manually excluded tests inside the
file. Listing 8 shows how DIRTS can be invoked in standalone
mode before running tests.

Listing 8: Usage in standalone mode
$ mvn dirts:class_level_select test

-Dstandalone

2) DIRTS Extension: Using the mechanism to select only
the tests affected by DI (see Sec. III-C2), DIRTS can serve
as an extension to other RTS tools that aims to correct safety
violations related to DI. Our objective is to exclude a test only
if both RTS tools agree that it is not affected by the change
and does not need to be executed. This is the default behavior
of DIRTS and can be used as depicted in Listing 9.

Listing 9: Usage in non-standalone mode
$ ... # invoke other RTS tool
$ mvn dirts:class_level_select test

RTS tools such as EKSTAZI or STARTS can be configured
to output their excluded tests to the excludesFile property
of Maven Surefire. Thus, DIRTS assumes that there are already
some entries in the excludesFile and every test which
is not excluded has been selected to run by the other RTS
tool. DIRTS walks through the list of already excluded tests
and comments out all lines representing tests that have been
selected by DIRTS. This way, we ensure that the union of the
selected tests is executed, by retaining only the intersection of
the excluded tests.

3) Saving Build Time: To save build time, as proposed by
Öqvist et al. [14] and Elsner et al. [12], DIRTS is able to
generate a list of all Maven modules with at least one affected
test, if executed on the outermost module. Compilation and
testing can then be restricted to only those modules, as shown
in Listing 10.

Listing 10: Usage to save build time
$ mvn dirts:class_level_select -Dstandalone
$ mvn -am -pl "$(cat .dirts/

affected_modules)" test

IV. EVALUATION

To evaluate DIRTS, we perform an empirical study on open-
source projects that make use of DI. Thereby, we seek to
answer the following research questions (RQs):

• RQ1: How often do DI-related changes affect tests and
yield RTS safety violations?

• RQ2: How does DIRTS compare to STARTS and retest-all
in terms of test selection ratio and end-to-end execution
time?
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A. Experimental Setup

1) Study Objects: To evaluate DIRTS, we searched for
popular open-source projects written in Java with a substantial
commit history on GitHub.

Since there is no point in evaluating DIRTS on projects that
do not make use of DI, we manually checked that enough
tokens that indicate the use of DI could be found in the code
on the latest commit (e.g., @Bean for Spring). Because both
DIRTS and STARTS come as Maven plugins, we only considered
projects that use Maven. Furthermore, these projects need to run
on Java Development Kit (JDK) 8 (required by STARTS) and
JDK 11 (required by DIRTS), which limited the set of suitable
projects. Because EKSTAZI and HYRTS revealed compatibility
issues with projects using JUnit 5 [12], we did not consider
these dynamic RTS tools in the evaluation. We further did not
consider AUTORTS, since it is not available as a Maven plugin.
Overall, we included projects that (1) use Maven, (2) rely on
DI, using one of the three supported frameworks, (3) support
JDK 8 and 11, (4) use JUnit 4 or 5 as testing framework, and
(5) do not have any other conflicting characteristics (e.g., code
written in Kotlin that would not be analyzed by DIRTS). The
projects we use in the evaluation are listed in Table I.

TABLE I: Open-source projects included in evaluation

ID Name LOC # Java # Test # Commits
Files Suites

Spring

S1 rocketmq- 8,000 120 14 15
dashboard

S2 infovore 9,000 150 35 30
S3 spring- 23,000 340 95 30

cloud-aws
S4 J-MR-Tp 9,000 190 18 22

Guice

G1 apollo 11,000 172 20 16
G2 bobcat 17,000 440 40 30
G3 barge 12,000 80 10 25

CDI

C1 weld-testing 4,000 110 50 30
C2 smallrye- 35,000 570 110 30

reactive-
messaging

2) Study Design: As formulated in RQ1, we are particularly
interested in DI-related changes. Therefore, we walk through
the commit history of the main development branch (e.g.,
master) for each project in random order to find relevant
commits for our evaluation. To check whether a commit
introduced DI-related changes, we search for tokens relevant
for any of the DI frameworks in the changed lines of the
commit. The exact patterns we use are part of our supplemental
material7. This filtering procedure ensures that at the time of
the commit, the project does in fact use DI mechanisms. Before
a commit was included in the evaluation, we checked if it can
be compiled with both JDK 8 and JDK 11 and ran all tests for

7Supplemental material: https://github.com/tum-i4/dirts/tree/evaluation
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Fig. 2: Ratio of commits with at least one test affected by
change related to DI

the project using Maven Surefire. The initial goal was to find
30 such commits per project. However, on certain projects, we
were not able to find enough suitable commits, i.e., commits
with relevant tokens that could be compiled and tested. On
average, we checked 305 commits per project (2,741 in total).
The final number of commits for each project, alongside the
average lines of code (LOC), number of Java files, and test
suites can be found in Table I. For reproducibility, we include
a list containing hashes of all analyzed commits for every
project, in our supplemental material.

3) Study Procedure: For each project, we step through each
of the included commits and execute retest-all, STARTS, and
DIRTS. In between every run, mvn clean is executed, to
remove class files of potentially renamed classes and to ensure
similar consideration of compilation time when measuring the
end-to-end execution time.

a) Retest-all: Retest-all is executed by invoking mvn

test-compile surefire:test, which first compiles the
code and then executes the Maven Surefire test goal.

b) STARTS/ DIRTS: To trigger the test selection be-
fore running the tests, both STARTS and DIRTS are in-
voked using the command mvn test-compile [select

-tests] surefire:test, where select-tests is re-
placed by starts:run and dirts:[class|method]

_level_select, respectively. Alongside, suitable options
(e.g., -DuseSpringExtension) are provided to activate an
DI extension for the project. DIRTS is executed in standalone
and non-standalone mode with method- and class-level RTS.

Among other data such as the console output, we collect the
end-to-end execution time for each commit and which tests
are executed by Maven Surefire.

B. Results

1) RQ1 – Affected Tests By DI-related Changes and Safety
Violations: To report the number of DI-related changes and
safety violations, we only consider results of the non-standalone
version of DIRTS. Fig. 2 shows the ratio of commits on which
DIRTS identified at least one test as affected based on edges
resulting from DI.

On average across all 9 projects, class-level DIRTS found
affected tests on 49.1% of the considered commits. For method-
level DIRTS, this ratio is 36%. The two approaches over-

https://github.com/apache/rocketmq-dashboard
https://github.com/apache/rocketmq-dashboard
https://github.com/paulhoule/infovore
https://github.com/awspring/spring-cloud-aws
https://github.com/awspring/spring-cloud-aws
https://github.com/aks-cykcun/J-MR-Tp
https://github.com/apolloconfig/apollo
https://github.com/wttech/bobcat
https://github.com/mgodave/barge
https://github.com/weld/weld-testing
https://github.com/smallrye/smallrye-reactive-messaging
https://github.com/smallrye/smallrye-reactive-messaging
https://github.com/smallrye/smallrye-reactive-messaging
https://github.com/tum-i4/dirts/tree/evaluation
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Fig. 3: Sum of all tests DIRTS selected based on DI that
STARTS did not select

approximate dependencies in different ways, which is why
these numbers may differ. To filter out over-approximation on
either level, we can restrict the analysis to the intersection
of tests selected by both approaches, based on DI: for 33.3%
of commits, tests have been selected by both approaches due
to DI. Even though the number of tests affected through DI
varies depending on the project, we can conclude that test-
related usage of DI is in fact present in open-source projects
as changes lead to tests being affected. Since our evaluation
only considered commits that included tokens related to DI
(see Sec. IV-A2), this number may well be lower regarding all
commits inside a project. Notably, state-of-the-art RTS tools
will not necessarily be unsafe in all commits from Fig. 2; it is
the upper bound of commits where they might be unsafe.

To get an impression on how likely it is that the tests
identified as affected through DI-related edges are missed by
state-of-the-art RTS-tools, we also recorded the tests selected
by STARTS. This refers to the second part of RQ1. Fig. 3
depicts the number of tests which DIRTS identified as affected
by DI-related changes that STARTS did not select, added up
over all analyzed commits.

The number of affected tests missed by STARTS is low on
average in most projects, but we observe some outliers. Since
DIRTS slightly over-approximates dependencies induced by
DI (see Sec. III-B3), DIRTS may select tests where run-time
behavior is not actually affected by the changes. Therefore,
we manually inspect each commit where DIRTS selected tests
that STARTS did not select to identify actual cases of unsafe
behavior. We thereby confirm 7 commits (3.1%) where STARTS
failed to select tests that are certainly affected by changes
related to DI. This means that in certain situations—two of
which we break down in detail in Sec. IV-C2—DIRTS detected
and corrected safety violations related to DI in STARTS.

RQ1 We find that in 33.3% of analyzed commits DI-related
changes affect tests and DIRTS identifies unsafe behavior
of STARTS in 3.1% (7) of commits.

2) RQ2 – Cost-Effectiveness of DIRTS vs. STARTS: The
goal of RTS is to reduce regression testing effort [7], [9]. Fig. 4
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Fig. 5: Distribution of relative number of selected tests
compared to retest-all across analyzed commits

shows the distribution of the absolute end-to-end execution time
of retest-all, STARTS, and DIRTS for all analyzed commits.

In 6 of 9 projects, DIRTS reduced the average end-to-end
execution time compared to retest-all (including the three largest
projects C2, S3, and G2). Thus, the analysis overhead of DIRTS
pays off, if there are enough tests, which can be excluded.

STARTS reduced the average end-to-end time in 8 of 9
projects. The fact that STARTS is faster than DIRTS is not
surprising, since it uses the constant pool in the class files [8],
while DIRTS has to analyze source code to obtain fully qualified
names. Still, the average end-to-end time of class-level DIRTS
was lower than for STARTS in 3 projects.

As shown in Fig. 5, the overall number of tests selected by
DIRTS is lower compared to STARTS. Considering the class-
level approach, this is because the algorithm of AUTORTS,
which we chose as a basis, does not over-approximate as much
as STARTS. As Öqvist et al. [14] point out, if a class is just
referenced, that does not necessarily mean that code from this
class is loaded and traversed during execution of a test. With
STARTS, however, in addition to inheritance, any direct use of a
class leads to a dependency edge being created [8]. Class-level
DIRTS is therefore more precise than STARTS, but following
Öqvist et al. [14] without compromising safety. For method-
level DIRTS, the number of selected tests may be lower due
to the finer granularity. Although Legunsen et al. [7] found
unsafe behavior in METHSRTS, we expect DIRTS to be safer,
as we corrected potential safety violations (see Sec. III-B2).
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RQ2 We find that on average across all commits class-level
DIRTS selected 19.6% of tests and reduced end-to-end
execution time by 17.6% compared to retest-all. Method-
level DIRTS selected only 16.8% of tests, but increased
execution time by 35.8% due to higher analysis overhead.

C. Discussion

For RQ1, we reported cases where DIRTS selected tests
that STARTS did not select. In the following, we discuss the
root causes for these cases which we identified by manually
inspecting the corresponding commits and selected tests.

1) Over-Approximation: A known problem of static RTS
is the risk of imprecision, because dependencies are overesti-
mated [7], [17]. According to their inventors, cases of impre-
cision can be found in both STARTS [8] and AUTORTS [14].
We find similar issues concerning the DI-aware extensions,
because dependencies induced through DI mechanisms can
be overestimated by DIRTS. Therefore, some tests that DIRTS
marked as affected by DI-related changes actually may not
encounter a change in runtime behavior.

2) Unsafe Behavior in STARTS: Nonetheless, we find 8
tests in 7 commits that STARTS did not select, where it is
clear that a DI-related change may influence the test results
and the respective tests need to be executed again. 5 of these
commits were found in the project infovore (S2), 1 in
spring-cloud-aws (S3) and 1 in weld-testing (C1).
The former two projects use Spring, whereas the latter one relies
on CDI. This means that for the project infovore, 16.7% of
the analyzed commits revealed safety issues in STARTS. Our
findings confirm that using STARTS in the context of DI via
Spring or CDI imposes the risk of missing a regression. In the
following, we present code excerpts for two of the identified
commits, explain why tests are affected by the DI-related
changes, and reason why STARTS did not select them.

a) Configuration in XML in Spring: The first com-
mit is from the project infovore8: it adds an entry
to a list, serving as constructor argument of an XML-
defined bean, which is in turn used as constructor pa-
rameter of a Spring bean (see Listing 11). The bean
(com.ontology2.haruhi.flows.SpringFlow) is in-
jected into the test suite, as illustrated in Listing 12.

Listing 11: Modified bean in applicationContext.xml

<bean name="basekbNowFlow" class="com.
ontology2.haruhi.flows.SpringFlow">

<constructor-arg>
<list>
<bean class="com.ontology2.haruhi.flows.

JobStep">
<constructor-arg>
<list>

+ <value>’run’</value>
<value>’freebaseRDFPrefilter’</value>
<value>pos[0]+’freebase-rdf-’+pos

[1]+’/’</value>

8infovore (S2): c2d27d8, test: TestFlowBeans

<value>tmpDir+’preprocessed/’+pos
[1]+’/’</value>

</list>
</constructor-arg>

</bean>
</list>

</constructor-arg>
</bean>

Listing 12: Test using the XML Spring bean
@ContextConfiguration({
"../shell/applicationContext.xml",
"../shell/testDefaults.xml"})

// ...
public class TestFlowBeans {

@Autowired SpringFlow basekbNowFlow;
// ...

}

Since the injected bean is used later in a test method, this
test clearly is affected by the changes. STARTS failed to select
this test because it does not analyze XML files [8], [17].

b) AutoConfiguration in CDI: The single test from
weld-testing9, where we found unsafe behavior in STARTS
uses custom annotations to configure the injection. The code
corresponding to this test can be found in Listing 13. Even
though the class of the changed bean occurs once in the code of
the affected test, STARTS does not succeed in recognizing this
as a dependency. It seems that STARTS does not consider classes
referenced in the parameters of annotations. The annotation
that has been removed from the class V8 refers to the scoping
mechanism of CDI and thus, this removal may in fact alter the
run-time behavior of tests.

Listing 13: Modified class and test that depends on it

@EnableAutoWeld
@AddBeanClasses(V8.class)
public class AddBeanClassesTest {

@Inject private Engine engine;
// ...

}

- @ApplicationScoped
public class V8 implements Engine,

Serializable {
// ...

}

D. Threats to Validity

1) Internal Threats: Internal threats to validity include the
risk of defects in our implementation or misconfiguration in
the evaluation infrastructure. We therefore wrote unit tests
and checked our evaluation results for consistency with prior
research. Additionally, we implemented sample projects for
all three supported DI frameworks to ensure that at least all
important use cases are covered.

9weld-testing (C1): 7243c80, test: AddBeanClassesTest

https://github.com/paulhoule/infovore/commit/c2d27d85c72249d0d2bce6b1b2cfa92974ecde97
https://github.com/weld/weld-testing/commit/7243c80931ff04d6c9369655f5157250ad9e9d18
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2) External Threats: External threats include the fact that we
only analyzed commits that introduced changes related to DI, to
ensure that DI is used at these commits and increase the odds to
find tests that are affected by changes related to DI. Hence, the
evaluation results might not be representative across all commits
of these projects. Further external threats may be imposed by
the restricted selection of our study objects. Those projects had
to be evaluated on both JDK 8 (STARTS) and JDK 11 (DIRTS),
which limited the possible choices. We tried to mitigate this
threat by choosing projects from different domains. Considering
the generality towards other DI frameworks, we emphasize
that our findings depend on the frameworks we considered.
Other frameworks may use entirely different mechanisms on
injection that may be easier to cope with by state-of-the-art
RTS tools such as STARTS.

V. RELATED WORK

In this paper, we investigate how DI can affect the safety
of Java RTS tools. Below, we list related work that presents
RTS techniques for Java software and their safety assessment.

Gligoric et al. [9], [10] develop EKSTAZI, the first dynamic
file-level RTS tool for Java software. EKSTAZI instruments
Java bytecode files at run-time and thereby collects per-test
execution traces. To compute the set of affected tests, EKSTAZI
uses smart file checksums and reduced end-to-end testing time
on average by 32% when evaluated on 32 open-source projects.

While EKSTAZI traces class file accesses, HYRTS presented
by Zhang [15], collects more fine-grained information about
dependencies at the level of methods and derives class
level dependencies from this information. Using this hybrid
information, HYRTS aims to increase precision when only parts
of a file are changed, while having low analysis overhead when
the whole file has changed. Similar to EKSTAZI, HYRTS uses
smart checksums to detect changes and outperformed EKSTAZI
in terms of selection ratio across 32 open-source projects.

Legunsen et al. [7] propose two static approaches for RTS
in Java software. The first approach, CLASSSRTS, calculates
dependencies of class files based on the so-called Intertype
Relation Graph (IRG). In contrast, the second approach
called METHSRTS identifies links between methods using
the method call graph. By computing the transitive closure
of each test, they determine the tests affected by changes.
Although METHSRTS creates edges based on method calls,
both approaches detect changes at the level of classes. While
CLASSSRTS achieves similar performance as EKSTAZI, METH-
SRTS exhibits more overhead and safety violations [7]. One
year later, Legunsen et al. [8] published an adaptation of
CLASSSRTS as the tool STARTS, which does not distinguish
between inheritance and reference associations (i.e., direct use).

Öqvist et al. [14] propose AUTORTS, a static RTS technique
that performs more fine-grained analysis and effectively gener-
ates a subset of the edges of the dependency graph maintained
by STARTS. Moreover, AUTORTS directly operates on Java
source code and therefore, contrary to STARTS, does not require
a fully compiled workspace. When evaluated on 5 open-source
projects, the average run time with AUTORTS was 13%–63%

of retest-all on 4 out of 5 projects. As outlined in Sec. III, the
class-level analysis of DIRTS is inspired by AUTORTS.

Static RTS tools such as STARTS can be unsafe if Java
projects make use of reflection [8]. Shi et al. [18] attempt to
solve this issue by evaluating five different static and dynamic
analysis techniques to account for reflection. Similar to DIRTS,
they add missing edges to the static dependency graph, more
precisely the IRG used by STARTS. While all studied techniques
show increased safety related to reflection, they jeopardize
precision and cost-effectiveness regarding the time needed for
testing. In their evaluation, Shi et al. further find missing edges
in dependency graphs related to the use of DI frameworks.

Zhu et al. [17] develop RTSCHECK, a system for automati-
cally assessing RTS tools regarding safety violations, precision,
and unexpected behavior. Through RTSCHECK, several sources
of safety violations, including changes to external files not
related to Java, such as XML files, have been identified.

To account for external file accesses across JVM boundaries,
Celik et al. [26] propose RTSLINUX, a dynamic file-level RTS
tool leveraging system call instrumentation on Linux. Similar to
EKSTAZI and STARTS, RTSLINUX uses smart file checksums
for selecting tests and therefore requires a readily available
compiled workspace. Celik et al. evaluate RTSLINUX on 21
Java projects and report savings of on average 53% in test
execution time compared to retest-all.

In an industrial study, Elsner et al. [12] develop a dynamic
RTS technique which combines language-agnostic system
call tracing with lightweight static and dynamic analysis.
Contrary to previous RTS techniques, their approach is build
system aware, that is, it does not need a fully compiled code
base to operate and accounts for changes in build system
configuration. When evaluating their RTS technique in industry-
scale continuous integration (CI) infrastructure, they save on
average 50%–63% of pipeline execution time. They further
describe potential safety violations of their dynamic RTS
technique, e.g., when new dynamically injected beans are added
without changing existing code.

To conclude, Shi et al. [18] and Elsner et al. [12] first
identified potential safety violations in RTS when confronted
with DI-related changes. In addition, Zhu et al. [17] discovered
safety violations with changes to external non-Java files, such
as XML files, which are commonly used by DI frameworks.
Yet, to the best of our knowledge, no prior RTS research exists
that investigates or resolves safety violations related to DI.

VI. CONCLUSION

In this paper, we present DIRTS, a novel static RTS tool
for Java, which is aware of changes related to DI frameworks.
By adding further edges to the dependency graph, DIRTS
accounts for dependencies induced by DI mechanics. While
DIRTS may be used as a standalone RTS solution, it can
also serve as a safety extension to other RTS tools. In an
empirical study on 228 commits from 9 open-source projects,
we show that DI-related changes affected tests in 33.3% of the
analyzed commits. While correcting for safety violations in a
contemporary RTS tool in 3.1% of commits, DIRTS proved
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comparative in efficiency. Since DI frameworks are widely used
in Java projects—specifically in the area of web application
development—we expect DIRTS to be a relevant extension to
existing DI-unaware RTS solutions.
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