
TUM School of Computation, Information and Technology
Technische Universität München

Model Reduction for Controller Synthesis of Networks of
Cyber-Physical Systems

Asad Ullah Awan
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Abstract

In recent years, there has been a marked increase in interest in the control and analysis of
large-scale interconnected cyber-physical systems (CPSs). This heightened attention is
primarily driven by the prevalence of such systems in various contemporary engineering
applications, including power systems, transportation networks, and biochemical sys-
tems. Due to the challenges posed by the so-called “curse of dimensionality” and the
existing limitations in computational performance, the synthesis of controllers for large-
scale interconnected systems in order to enforce complex specifications in a reliable and
cost-effective manner has become a formidable problem. One approach that has emerged
to tackle this challenge is abstraction based controller synthesis. In this approach one
synthesizes a controller to enforce the complex specifications over a reduced-order model
(known as abstraction) instead of the original (concrete) system, and refines the con-
troller to that of the concrete system. The error between the output of the concrete
system and that of its abstraction is quantified a priori. Therefore, one can ensure that
the concrete system also satisfies the specifications (within a priori known error bounds).

Unfortunately, constructing (reduced-order) abstractions for a complex system when
viewed monolithically is also a challenging task in itself. One approach to deal with
this is to leverage the fact that many large-scale complex systems can be regarded as
interconnected systems consisting of smaller subsystems. This motivates a compositional
approach for the construction of the abstractions wherein abstractions of the concrete
systems can be constructed by using the abstractions of the smaller subsystems. This
dissertation builds on existing related work primarily in three directions:

1. In the first part of the dissertation, we derive conditions under which compositional
abstractions of networks of stochastic hybrid systems can be constructed using the
interconnection topology and joint dissipativity-type properties of subsystems and
their abstractions. In the proposed framework, the abstraction, itself a stochastic
hybrid system (possibly with a lower dimension), can be used as a substitute of the
original system in the controller design process. Moreover, we derive conditions for
the construction of abstractions for a class of stochastic hybrid systems involving
nonlinearities satisfying an incremental quadratic inequality. In our result, unlike
existing results, the stochastic noises and jumps in the concrete subsystem and its
abstraction need not to be the same. We provide examples, including a physically
motivated case study (electrical network), with numerical simulations to illustrate
the effectiveness of the proposed dissipativity-type compositional reasoning for
interconnected stochastic hybrid systems.
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2. The network topology in many interconnected systems is not fixed, and is either
changing dynamically or randomly switching between multiple network topologies.
In the second part of the dissertation, techniques for compositional abstractions of
networks of control systems under dynamic and randomly switching interconnec-
tion topologies are investigated.

3. The state-space of many systems, e.g. configuration spaces of robotic manipula-
tors, are Riemannian manifolds, and therefore, their analysis requires techniques
from differential geometry. In the third part of the dissertation, a compositional
approach for the construction of abstractions for interconnected systems evolving
on Riemannian manifolds is presented. This allows for larger classes of systems
than the ones considered in existing works defined only over Euclidean spaces.
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Zusammenfassung

In den letzten Jahren hat das Interesse an der Steuerung und Analyse großer vernet-
zter cyber-physischer Systeme (CPS) deutlich zugenommen. Diese verstärkte Aufmerk-
samkeit ist in erster Linie darauf zurückzuführen, dass solche Systeme in verschiede-
nen modernen technischen Anwendungen wie Energiesystemen, Verkehrsnetzen und bio-
chemischen Systemen weit verbreitet sind.

Aufgrund der Herausforderungen, die sich aus dem so genannten “Fluch der Dimen-
sionalität” und den bestehenden Beschränkungen der Rechenleistung ergeben, ist die
Synthese von Reglern für große vernetzte Systeme zur zuverlässigen und kostengünstigen
Durchsetzung komplexer Spezifikationen zu einem gewaltigen Problem geworden. Ein
Ansatz, der sich zur Bewältigung dieser Herausforderung herausgebildet hat, ist die
auf TextitAbstraktion basierende Controller-Synthese. Bei diesem Ansatz wird ein
Controller synthetisiert, um die komplexen Spezifikationen über ein reduziertes Ord-
nungsmodell (bekannt als Abstraktion) anstelle des ursprünglichen (konkreten) Systems
durchzusetzen, und verfeinert den Controller zu dem des konkreten Systems.

Bei diesem Ansatz wird ein Controller synthetisiert, um die komplexen Spezifikatio-
nen über ein Modell mit reduzierter Ordnung (bekannt als Abstraktion) anstelle des
ursprünglichen (konkreten) Systems durchzusetzen, und der Controller wird auf den des
konkreten Systems verfeinert. Der Fehler zwischen der Ausgabe des konkreten Systems
und der seiner Abstraktion wird a priori quantifiziert. Daher kann man sicherstellen, dass
das konkrete System auch die Spezifikationen erfüllt (innerhalb der a priori bekannten
Fehlergrenzen).

Leider ist die Konstruktion von Abstraktionen (reduzierter Ordnung) für ein kom-
plexes System, wenn es monolithisch betrachtet wird, auch eine Herausforderung für
sich selbst. Ein Ansatz zur Bewältigung dieses Problems besteht darin, die Tatsache
zu nutzen, dass viele große komplexe Systeme als miteinander verbundene Systeme be-
trachtet werden können, die aus kleineren Teilsystemen bestehen. Dies motiviert einen
compositional -Ansatz für die Konstruktion der Abstraktionen, bei dem Abstraktionen
der konkreten Systeme durch die Verwendung der Abstraktionen kleinerer Subsysteme
konstruiert werden können.

Diese Dissertation baut auf bestehenden verwandten Arbeiten hauptsächlich in drei
Richtungen auf:

1. Im ersten Teil wird ein bestehender Dissipativitätsansatz zur Konstruktion kom-
positorischer Abstraktionen kontinuierlicher dynamischer Systeme auf eine Klasse
stochastischer Hybridsysteme, nämlich Sprungdiffusionen, erweitert. Im vorgeschla-
genen Rahmen kann die Abstraktion, selbst ein stochastisches Hybridsystem
(möglicherweise mit einer niedrigeren Dimension), als Ersatz für das ursprüngliche
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System im Controller-Designprozess verwendet werden. Darüber hinaus leiten wir
Bedingungen für die Konstruktion von Abstraktionen für eine Klasse stochastis-
cher Hybridsysteme ab, die Nichtlinearitäten beinhalten, die eine inkrementelle
quadratische Ungleichung erfüllen. In diesem Kapitel müssen die stochastischen
Geräusche und Sprünge im konkreten Teilsystem und dessen Abstraktion im Gegen-
satz zu bestehenden Ergebnissen nicht identisch sein. Wir stellen Beispiele ein-
schließlich einer Fallstudie (elektrisches Netzwerk) mit numerischen Simulatio-
nen zur Verfügung, um die Wirksamkeit des vorgeschlagenen kompositorischen
Denkens vom dissipativen Typ für miteinander verbundene stochastische Hybridsys-
teme zu veranschaulichen.

2. Die Netzwerktopologie in vielen miteinander verbundenen Systemen ist nicht fest-
gelegt und ändert sich entweder dynamisch oder wechselt zufällig zwischen mehreren
Netzwerktopologien. Im zweiten Teil der Dissertation werden Techniken zur kom-
positorischen Abstraktion von Netzwerken von Steuerungssystemen unter dynamis-
chen und zufällig wechselnden Verbindungstopologien untersucht.

3. Der Zustandsraum vieler Systeme, z.B. Konfigurationsräume von Robotermanip-
ulatoren, sind Riemannsche Mannigfaltigkeiten und daher erfordert ihre Analyse
Techniken aus der Differentialgeometrie. Im dritten Teil der Dissertation wird
ein kompositorischer Ansatz zur Konstruktion von Näherungen für vernetzte Sys-
teme vorgestellt, die sich auf Riemannschen Mannigfaltigkeiten entwickeln. Dies
ermöglicht größere Klassen von Systemen als diejenigen, die in bestehenden Ar-
beiten berücksichtigt werden, die nur über Euklidischer Räume definiert sind.
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Chapter 1

Introduction

1.1 Motivation

The dissertation is motivated by the need to develop techniques to facilitate computa-
tionally efficient controller synthesis for large-scale cyber-physical systems (CPS). CPSs
are dynamical systems typically characterized by the complex interaction of computa-
tional (cyber) elements and physical systems [Aga19]. CPSs have widespread practi-
cal applications; from smart manufacturing and robotics to health care and medicine
[BG11; Gun+14; RMR17; TWW17]. Large-scale networks of CPSs are also becoming
increasingly ubiquitous in the modern world [LS16]. Such interconnected systems appear
in many modern-day engineering applications such as power system networks [RSF14;
DBS17; YX16], traffic networks [Coo+15; CA15; CAB17], biochemical reaction networks
[SAS10; AS08; BG21], and smart water distribution networks [FM20; Pol+23; Guo+22]
(see Figure 1.1).

Figure 1.1: Examples of interconnected CPSs

Due to existence of both discrete and continuous elements in such systems, such sys-
tems are regarded as hybrid in nature [Tab09]. They consist of elements which can
be modeled as discrete elements (such as computational units including hardware and
software), as well as physical elements (such as energy storage elements like capacitors).
In order to ensure that such an interconnected system behaves in a desired way re-
quires synthesizing a controller for the system. Controller synthesis for such large-scale
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interconnected control systems to achieve complex specifications in a cost effective and
reliable way is a challenging task. Examples of complex specifications, going beyond con-
ventional objectives (e.g., stability or reference tracking), are those expressed in linear
temporal logic (LTL) formulae [Pnu77; Coo+15]. The complexity of the control objec-
tives together with the high dimensionality of such systems pose a difficult challenge for
controller synthesis. Existing computational techniques and tool for control synthesis
do not scale well to such modern large-scale interconnected systems [AMP16; Vid81].

1.2 Model Order Reduction (Abstraction)

One promising direction to address these issues is a combination of techniques from con-
trol theory (e.g., Lyapunov theory) and those of computer science (e.g., formal methods).
One approach resulting from this symbiosis is discrete abstractions (also known as sym-
bolic models). In this approach, first a finite approximation, called finite abstraction1,
of the concrete (original) system is constructed [PPD16a; Zam+11; Alu+00]. Then,
a controller to satisfy complex specifications is synthesized over the finite abstraction
using automata-theoretic techniques, which can be refined back to the concrete system
[Tab09; RWR16].

Unfortunately, the computational complexity of constructing finite abstractions and
synthesizing controllers hinders the applicability of such techniques to large-scale sys-
tems. One way to overcome this challenge is to introduce an intermediate step of con-
structing a continuous low-dimensional abstraction (we refer to this as infinite abstrac-
tion) of the concrete system (see Figure 1.2). This allows for a potentially easier design of
a controller for the abstraction, which can be refined to the one for the original concrete
system via a refinement map. The error between the output behavior of the concrete
system and the one of its abstraction can be quantified a priori in this detour controller
synthesis approach, thus ensuring that the concrete system also satisfies the complex
specifications within known error bounds. From hereon in, we will simply use the term
abstractions for continuous abstractions (reduced-order models) unless stated otherwise.

1.2.1 Compositional Approach to Model Order Reduction (Abstraction)

Constructing abstractions for a complex system when viewed monolithically is a challeng-
ing task in itself. Some recent techniques rely on numerically searching for a Lyapunov-
like function to construct such abstractions. However, such techniques are only appli-
cable to problems of modest size. One approach to deal with this is to leverage the
fact that many large-scale complex systems can be regarded as interconnected systems
consisting of smaller subsystems (see Figure 1.3).

This motivates a compositional approach for the construction of the abstractions
wherein abstractions of the concrete systems can be constructed by using the abstrac-
tions of smaller subsystems. In such an approach, rather than treating the interconnected

1We call the approximation infinite if its set of states is infinite, and finite otherwise

2
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Figure 1.2: Abstraction of interconnected system. Σ represents the original (concrete) network,
and Σ̂ represents the (reduced-order) abstraction. u (resp. û) represents the input
while y (resp. ŷ) represents the output of the concrete network (resp. abstract
network).

Figure 1.3: Large-scale complex systems can be regarded as interconnected systems consisting
of smaller subsystems. Here M represents the coupling between the subsystems of
the network.
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system in a monolithic manner, compositional schemes provide network-level certifica-
tions from main structural properties of the subsystems and their interconnections. To
do so, one should first i) divide the overall concrete network into a number of concrete
subsystems and construct abstractions of each subsystem individually; ii) then establish
a compositional scheme that allows us to construct an abstraction model of the overall
network using those of individual subsystems.

In a recent result in [ZA17], a compositional framework utilizing dissipativity theory
was introduced for constructing abstractions of networks of control systems. The pro-
posed framework introduced a concept of a storage function, characterizing the joint
dissipativity properties of control systems and their abstractions. This concept was then
employed to establish compositional conditions, under which a network of abstractions
approximate a network of concrete subsystems.
Building upon this work, in Chapter 3 of this dissertation, we expand upon this

methodology to encompass a class of stochastic hybrid systems known as jump-diffusions.
Stochastic hybrid systems are a general class of systems consisting of continuous and
discrete dynamics subject to probabilistic noise and events [LP10]. In the case of jump-
diffusions, continuous dynamics are modeled by stochastic differential equations, while
discrete jumps are modeled as Poisson processes. We derive conditions under which
compositional abstractions of networks of stochastic hybrid systems can be constructed
using the interconnection topology and joint dissipativity-type properties of subsystems
and their abstractions. In the proposed framework, the abstraction, itself a stochastic
hybrid system (possibly with a lower dimension), can be used as a substitute of the
original system in the controller design process.
In more realistic scenarios, the interconnection topology of interconnected systems is

not fixed due to various causes, for example loss of communication between the robot
agents due to occlusion caused by obstacles [SWX08; OM04; YW10], or failure of switch-
ing lines in an electric distribution grid [Cav+19; DKC23; GH21]. To accommodate for
this scenario, in Chapter 4, we deal with networks of stochastic hybrid systems wherein
the interconnection topology is randomly switching between P different topologies. We
derive compositional conditions for construction of abstractions leveraging the inter-
connection topology, switching randomly between P different topologies, and the joint
dissipativity-type properties of subsystems and their abstractions. Additionally, we also
consider the scenario wherein the interconnection is governed by a dynamical system
[Lin84]. In such interconnected systems, the additional dynamics introduced due to the
interconnection/interaction system has to be taken into account in the compositional
reasoning.
All the aforementioned results in the context of infinite abstractions consider systems

evolving over Euclidean spaces. The state-space of many systems are Riemannian mani-
folds [BL04; LS16; MHP08; Oma+23; AMD17; Ahn+21; Jaq+18; PFA06], and therefore,
their analysis requires tools from differential geometry [Tar+13; SB14]. In Chapter 5,
we propose techniques for compositional construction of infinite abstractions for inter-
connected control systems evolving over smooth Riemannian manifolds. To this end, we
propose two different approaches. In the first approach, we provide a small-gain type
condition that enables the construction of an abstraction for the interconnected control
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1.3 Outline of the Dissertation

system compositionally. The second approach is based on dissipativity theory wherein
we derive sufficient conditions under which compositional abstractions of interconnected
systems evolving on Riemannian manifolds can be constructed using the interconnec-
tion topology and joint differential dissipativity-type properties of subsystems and their
abstractions.
We illustrate the efficacy of the proposed techniques using various examples, including

physically motivated case studies (network of electric circuits).

1.3 Outline of the Dissertation

This dissertation is divided into 6 chapters, the first of which is the current Introduction.
The rest is structured as follows:
Chapter 2 presents mathematical notations, preliminaries and notions from proba-

bility theory, manifold theory, and control theory.
Chapter 3 presents techniques for compositional abstraction of networks of stochastic

hybrid systems using dissipativity theory. The content of this chapter is based on results
published in [AZ17b; AZ19].
Chapter 4 provides compositional construction techniques for networks of dynamical

systems with dynamic and randomly switched topologies. The content of this chapter
is based on results published in [AZ17a; AZ18b; AZ23].
Chapter 5 discusses techniques for compositional construction of dynamical systems

evolving over Riemannian manifolds. The content of this chapter is based on results
published in [ACZ18; AZ18a].
Chapter 6 summarizes the results of this dissertation and presents potential direc-

tions for future research.
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Chapter 2

Preliminaries, Notation and System
Definitions

In this chapter, we introduce notations, preliminary concepts in probability theory, con-
trol theory, and definitions of systems used for modeling CPS networks that will be used
in the subsequent chapters.

2.1 Notation

The sets of non-negative integer and real numbers are denoted by N and R, respectively.
Those symbols are subscripted to restrict them in the usual way, e.g. R>0 denotes the
positive real numbers. The symbol Rn×m denotes the vector space of real matrices with
n rows and m columns. The symbols 1⃗n, 0⃗n, In, 0n×m denote the vector in Rn with all
its elements to be one, the zero vector, identity, and zero matrices in Rn,Rn×n,Rn×m,
respectively. For a, b ∈ R with a ≤ b, the closed, open, and half-open intervals in R
are denoted by [a, b], ]a, b[, [a, b[, and ]a, b], respectively. For a, b ∈ N and a ≤ b, we use
[a; b], ]a; b[, [a; b[, and ]a; b] to denote the corresponding intervals in N. Given N ∈ N≥1,
vectors xi ∈ Rni , ni ∈ N≥1 and i ∈ [1;N ], we use x = [x1; . . . ;xN ] to denote the
concatenated vector in Rn with n =

∑N
i=1 ni. Similarly, we use X = [X1; . . . ;XN ] to

denote the matrix in Rn×m with n =
∑N

i=1 ni, givenN ∈ N≥1, matricesXi ∈ Rni×m, ni ∈
N≥1, and i ∈ [1;N ]. Given a vector x ∈ Rn, we denote by ∥x∥ the Euclidean norm of
x. Given a matrix M = {mij} ∈ Rn×m, we denote by ∥M∥ the induced 2-norm of M .
Given matrices M1, . . . ,Mn, the notation diag(M1, . . . ,Mn) represents a block diagonal
matrix with diagonal matrix entries M1, . . . ,Mn. Given a function f : R≥0 → Rn, the
(essential) supremum of f is denoted by ∥f∥∞ := (ess)sup{∥f(t)∥, t ≥ 0}. A continuous
function γ : R≥0 → R≥0, is said to belong to class K if it is strictly increasing and
γ(0) = 0; γ is said to belong to K∞ if γ ∈ K and γ(r) → ∞ as r → ∞. A continuous
function β : R≥0 × R≥0 → R≥0 is said to belong to class KL if, for each fixed t, the
map β(r, t) belongs to class K with respect to r, and for each fixed non zero r, the map
β(r, t) is decreasing with respect to t and β(r, t) → 0 as t → ∞. Given a vector x =
[x1;x2; . . . ;xn] ∈ Rn and matrix A ∈ Rn×n, we write [x1;x2; . . . ;xn]

TA[∗] to concisely
represent the quadratic form [x1;x2; . . . ;xn]

TA[x1;x2; . . . ;xn]. Given sets U and A ⊆ U ,
the complement of A with respect to U is defined as U\A = {x : x ∈ U, x /∈ A}. Given a
set S, the cardinality of S is denoted by #S. Given sets S and A ⊆ S, IA : S → {0, 1}
denotes the indicator function defined as IA(x) := 1 if x ∈ A and IA(x) := 0 if x /∈ A.
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2.2 Probability Space

A topological space S is called a Borel space if it is homeomorphic to a Borel subset of a
Polish space (i.e., a separable and completely metrizable space) [Sri08]. Here, any Borel
space S is assumed to be endowed with a Borel σ-algebra denoted by B(S). A map
f : X → Y is measurable whenever it is Borel measurable. Moreover, a map f : X → Y
is universally measurable if the inverse image of every Borel set under f is measurable
with respect to every complete probability measure on X that measures all Borel subsets
of X.

A probability space in this dissertation is denoted by (Ω,F ,P), where Ω is the sample
space, F is a sigma algebra on Ω which consists of subsets of Ω as events, and P is
a complete probability measure. Let F = (Fs)s≥0 be an increasing system of sigma-
subalgebras of F , i.e., Fs ⊆ Ft whenever 0 ≤ s ≤ t ≤ ∞. Such a system is called
filteration, and the probability space (Ω,F , (Ft)t≥0,P) equipped with this filteration
is called a filtered probability space [RY13]. We assume that the filteration F obeys
the usual conditions, i.e., F0 contains all the P-null sets of F , and the filteration is
right-continuous in the sense that ∩s>0Ft+s = Ft for each t ≥ 0 [KS12].

The expected value of a measurable function g(X), where X is a random variable
defined on a probability space (Ω,F ,P), is defined by the Lebesgue integral E[g(X)] :=∫
Ω g(X(ω))dP(ω), where ω ∈ Ω.

2.3 Riemannian Manifolds

An (n-dimensional) manifold Mn is a pair (Mn,A+) where Mn is a set and A+ is a
maximal atlas into Rn, such that the topology induced by A+ is Hausdorff and second
countable. We denote the tangent space of Mn at x ∈ Mn by TxMn, and the tangent
bundle of Mn by T Mn =

⋃
x∈Mn

{x} × TxMn.

A curve on the manifold is a mapping γ : I ⊂ R → Mn. A distance (or metric)
d : Mn ×Mn → R≥0 on a manifold Mn is a continuous positive function that satisfies
d(x, y) = 0 if and only if x = y for each x, y ∈ Mn, and d(x, z) ≤ d(x, y) + d(y, z) for
each x, y, z ∈ Mn. A (pseudo) Riemannian metric [FS14] on a smooth manifold Mn is
a smoothly varying inner product on the tangent bundle T Mn of manifold Mn.

Given Mn, and a matrix valued map G : Mn → Rn×n such that G(x) is a pos-
itive (semi) definite matrix for each x ∈ Mn, the (pseudo) Riemannian metric cor-
responding to the (pseudo) Riemannian structure G is given by δxTG(x)δy for each
x ∈ Mn, δx ∈ TxMn and δy ∈ TxMn. Given two points x, y ∈ Mn, a smooth
curve γ : [0, 1] → Mn such that γ(0) = x, and γ(1) = y, and a (pseudo) Rieman-
nian structure G defined on Mn, we define the (pseudo) Riemannian energy functional

as EG(γ) =
∫ 1
0
∂γ
∂s

T
(s)G(γ(s))∂γ∂s (s)ds. The n-dimensional manifold Sn is defined by

Sn = {x ∈ Rn+1 : ∥x∥ = 1}. For two points z1, z2 ∈ Mn, Γ(z1, z2) denotes the
set of piece-wise continuous curves connecting z1 and z2: Γ(z1, z2) = {γ : [0, 1] →
Mn|γ is piece-wise continuous , γ(0) = z1, γ(1) = z2}. Given two points x, y ∈ Mn, a
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Riemannian structure G defined on Mn, arg min
γ∈Γ(x,y)

∫ 1
0

√
∂γ
∂s

T
(s)G(γ(s))∂γ∂s (s)ds is called

a geodesic curve between x and y with respect to G.
In the following section, we introduce the classes of dynamical systems that are used

to model networks of CPSs in the dissertation.

2.4 Deterministic Control Systems

Here, we define two classes of control systems which will be used in the modeling of CPS
networks.

2.4.1 Control Systems

Definition 2.4.1. A class of deterministic control systems used in this dissertation is
a tuple

D = (Rn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2, hu1, hu2),

where

� Rn, Rm, Rp, Rq1, and Rq2 are the state, external input, internal input, external
output, and internal output spaces, respectively;

� U and W are subsets of sets of all measurable functions of time taking values in
Rm and Rp, respectively;

� f : Rn × Rm × Rp → Rn is a continuous map satisfying the following Lipschitz
assumption: for every compact set D ⊂ Rn, there exists a constant Z ∈ R>0 such
that ∥f(x, u, w) − f(y, u, w)∥ ≤ Z∥x − y∥ for all x, y ∈ D, all u ∈ Rm, and all
w ∈ Rp;

� h1 : Rn → Rq1 is the external output map;

� h2 : Rn → Rq2 is the internal output map.

� hu1 : Rm → Rq1 is the external feedforward map;

� hu2 : Rm → Rq2 is the internal feedforward map.

A control system D satisfies

D :


ξ̇(t) = f(ξ(t), υ(t), ω(t)),

ζ1(t) = h1(ξ(t)) + hu1(υ(t)),

ζ2(t) = h2(ξ(t)) + hu2(υ(t)),

(2.1)

for any υ ∈ U and any ω ∈ W, where a locally absolutely continuous curve ξ : R≥0 → Rn
is called a state trajectory of D, ζ1 : R≥0 → Rq1 is called an external output trajectory
of D, and ζ2 : R≥0 → Rq2 is called an internal output trajectory of Σ. We call the tuple
(ξ, ζ1, ζ2, υ, ω) a trajectory of D, consisting of a state trajectory ξ, output trajectories ζ1
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and ζ2, and input trajectories υ and ω, satisfying (2.1). We also write ξaυω(t) to denote
the value of the state trajectory at time t ∈ R≥0 under the input trajectories υ and ω
from initial condition ξaυω(0) = a, where a ∈ Rn. We denote by ζ1aυω and ζ2aυω the
external and internal output trajectories corresponding to the state trajectory ξaυω.

Remark 2.4.2. If the control system D does not have internal and external feedforward
maps, the description of the system defined in Definition 2.4.1 reduces to the tuple

D = (Rn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2).

Correspondingly, equation (2.1) describing the evolution of state and output trajectories
reduces to:

D :


ξ̇(t) = f(ξ(t), υ(t), ω(t)),

ζ1(t) = h1(ξ(t)),

ζ2(t) = h2(ξ(t)).

(2.2)

We will use the notion of control system in (2.2) later to refer to control subsystems
in an interconnected system.

Remark 2.4.3. If the control system D does not have internal inputs and outputs, the
description of the control system in Definition 2.4.1 reduces to the tuple

D = (Rn,Rm,U , f,Rq, h, hu).

Correspondingly, the equation (2.1) describing the evolution of state and output trajec-
tories reduces to:

D :

{
ξ̇(t) = f(ξ(t), υ(t)),

ζ(t) = h(ξ(t)) + hu(υ(t)).
(2.3)

We will use the notion of control system in (2.3) later to refer to a dynamical inter-
connection topology in an interconnected system.

Remark 2.4.4. If the control system does not have internal inputs and outputs, and
external feedforward map, the definition of the control system in Definition 2.4.1 reduces
to the tuple

D = (Rn,Rm,U , f,Rq, h).

Correspondingly, the equation (2.1) describing the state and output trajectories reduces
to:

D :

{
ξ̇(t) = f(ξ(t), υ(t)),

ζ(t) = h(ξ(t)).
(2.4)

We will use the notion of control system in (2.4) later to refer to an overall intercon-
nected control system.
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Figure 2.1: Deterministic control system defined in Definition 2.4.1.

Figure 2.2: Deterministic control system as in Remark (2.4.4).

2.4.2 Control Systems over Riemannian Manifolds

In this subsection, we introduce a class of deterministic control systems whose state
space are (smooth) Riemannian manifolds, formally defined as follows.

Definition 2.4.5. The class of control systems over Riemannian manifolds a tuple

S = (Mn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2),

where

� Mn is an n-dimensional state manifold containing the origin, while Rm,Rp,Rq1 ,
and Rq2 are the external input, internal input, external output, and internal output
(Euclidean) spaces of dimension m, p, q1, and q2 respectively;

� U and W are subsets of sets of all measurable functions of time taking values in
Rm and Rp, respectively;

� f : Mn×Rm×Rp → T Mn is the continuously differentiable state evolution map.
We assume that f(0, 0, 0) = 0;

� h1 : Mn → Rq1 is the continuously differentiable external output map;

� h2 : Mn → Rq2 is the continuously differentiable internal output map.

A control system S satisfies

S :


ξ̇(t) = f(ξ(t), υ(t), ω(t)),

ζ1(t) = h1(ξ(t)),

ζ2(t) = h2(ξ(t)),

(2.5)

11
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for any υ ∈ U and any ω ∈ W, where a locally absolutely continuous curve ξ : R≥0 → Mn

is called a state trajectory of S, ζ1 : R≥0 → Rq1 is called an external output trajectory of
S, and ζ2 : R≥0 → Rq2 is called an internal output trajectory of S. We also write ξaυω(t)
to denote the value of the state trajectory at time t ∈ R≥0 under the input trajectories υ
and ω from initial condition ξaυω(0) = a, where a ∈ Mn. We denote by ζ1aυω and ζ2aυω
the external and internal output trajectories corresponding to the state trajectory ξaυω.

Remark 2.4.6. If the control system S does not have internal outputs, the definition
of the control system in Definition 2.4.5 reduces to the tuple

S = (Mn,Rm,Rp,U ,W, f,Rq, h).

Correspondingly, the equation (2.5) describing the state and output trajectories reduces
to:

S :

{
ξ̇(t) = f(ξ(t), υ(t), ω(t)),

ζ(t) = h(ξ(t)),
(2.6)

We will use the notions of control system in (2.5) and (2.6) later in Chapter 5 to refer
to a subsytem in an interconnected control system over Riemannian manifold.

Remark 2.4.7. If the control system S does not have internal inputs and outputs, the
definition of the control system in Definition 2.4.5 reduces to the tuple

S = (Mn,Rm,U , f,Rq, h).

Correspondingly, the equation (2.5) describing the state and output trajectories reduces
to:

S :

{
ξ̇(t) = f(ξ(t), υ(t)),

ζ(t) = h(ξ(t)).
(2.7)

We will use the notion of control system in (2.7) later in Chapter 5 to refer to an
overall interconnected control system over Riemannian manifold.

2.5 Stochastic Systems

2.5.1 Stochastic Hybrid Systems

In this section, we formally introduce a class of dynamical systems known as stochastic
hybrid systems which will be used in the modeling of CPS networks. Stochastic hybrid
systems are dynamical systems which consist of both continuous and discrete dynamics
subject to probabilistic noise and events [LP10].
Let (Ω,F ,P) denote a probability space endowed with a filteration F = (Fs)s≥0

satisfying the usual conditions of completeness and right continuity [KS12]. Let (Ws)s≥0

be a b-dimensional F-Brownian motion and (Ps)s≥0 be an r- dimensional F-Poisson
process. We assume that the Poisson process and Brownian motion are independent
of each other. The Poisson process Ps = [P 1

s ; . . . ;P
r
s ] models r kinds of events whose

occurrences are assumed to be independent of each other.
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Definition 2.5.1. A class of stochastic hybrid systems studied in this dissertation is a
tuple

Σ = (Rn,Rm,Rp,U ,W, f, σ, ρ,Rq1 ,Rq2 , h1, h2),

where

� Rn, Rm, Rp, Rq1, and Rq2 are the state, external input, internal input, external
output, and internal output spaces, respectively;

� U and W are subsets of sets of all F-progressively measurable processes taking
values in Rm and Rp, respectively;

� f : Rn×Rm×Rp → Rn is the drift term which is globally Lipschitz continuous: there
exist Lipschitz constants Lx, Lu, Lw ∈ R≥0 such that ∥f(x, u, w) − f(x′, u′, w′)∥ ≤
Lx∥x − x′∥ + Lu∥u − u′∥ + Lw∥w − w′∥ for all x, x′ ∈ Rn, all u, u′ ∈ Rm, and all
w,w′ ∈ Rp;

� σ : Rn → Rn×b is the diffusion term which is globally Lipschitz continuous with
the Lipschitz constant Lσ;

� ρ : Rn → Rn×r is the reset term which is globally Lipschitz continuous with the
Lipschitz constant Lρ;

� h1 : Rn → Rq1 is the external output map;

� h2 : Rn → Rq2 is the internal output map.

A stochastic hybrid system Σ satisfies

Σ :


dξ(t) = f(ξ(t), υ(t), ω(t))dt+ σ(ξ(t))dWt + ρ(ξ(t))dPt

ζ1(t) = h1(ξ(t)),

ζ2(t) = h2(ξ(t)),

(2.8)

P-almost surely (P-a.s.) for any υ ∈ U and any ω ∈ W, where stochastic process
ξ : Ω×R≥0 → Rn is called a solution process of Σ, stochastic process ζ1 : Ω×R≥0 → Rq1
is called an external output trajectory of Σ, and stochastic process ζ2 : Ω×R≥0 → Rq2 is
called an internal output trajectory of Σ. We also write ξaυω(t) to denote the value of the
solution process at time t ∈ R≥0 under input trajectories υ and ω from initial condition
ξaυω(0) = a P-a.s., where a is a random variable that is F0-measurable. We denote by
ζ1aυω and ζ2aυω the external and internal output trajectories corresponding to solution
process ξaυω. Here, we assume that the Poisson processes P is , for any i ∈ [1; r], have the
rates λi. We emphasize that the postulated assumptions on f, σ, and ρ ensure existence,
uniqueness, and strong Markov property of the solution process [ØS05; Law10].

Remark 2.5.2. Note that the underlying dynamic considered in (2.8) is a class of
stochastic hybrid systems in which the drift and diffusion terms model the continuous
part and the Poisson process models the discrete jump of the system.
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Remark 2.5.3. If the stochastic hybrid system Σ does not have internal inputs and
outputs, the system defined in Definition 2.5.1 reduces to

Σ = (Rn,Rm,U , f, σ, ρ,Rq, h),

where f : Rn × Rm → Rn. Correspondingly, equation (2.8) describing the evolution of
solution processes reduces to:

Σ :

{
dξ(t)=f(ξ(t), υ(t))dt+σ(ξ(t))dWt+ρ(ξ(t))dPt,

ζ(t)=h(ξ(t)).
(2.9)

2.5.2 Switching Stochastic Hybrid System

We now introduce another class of dynamical systems called switching stochastic hybrid
systems to model which will be used to model CPS network with randomly switched
topologies.

Definition 2.5.4. A switching stochastic hybrid system is a tuple

Σ = (Rn,Rm,U ,P,P, f, σ, ρ,Rq, h),

where

� Rn, Rm, and Rq, are the state, external input and external output spaces, respec-
tively;

� U is a subset of the set of all F-progressively measurable processes taking values in
Rm;

� P = {1, . . . ,P} is a finite set of modes;

� P is a subset of the set of all piece-wise constant càdlàg (i.e. right continuous
and with left limits) functions of time from R≥0 to P and characterized by a finite
number of discontinuities on every bounded interval in R≥0 (no Zeno behaviour);

� f : Rn×Rm×P → Rn, is the drift term such that for every fixed p ∈ P, f(., ., p) is
globally Lipschitz continuous: there exists Lipschitz constants Lx, Lu ∈ R≥0 such
that ∥f(x, u, p)− f(x′, u′, p)∥ ≤ Lx∥x− x′∥+ Lu∥u− u′∥ for all x, x′ ∈ Rn and all
u, u′ ∈ Rm;

� σ : Rn → Rn×p̃ is the diffusion term which is globally Lipschitz continuous with
the Lipschitz constant Lσ;

� ρ : Rn → Rn×r̃ is the reset term which is globally Lipschitz continuous with the
Lipschitz constant Lρ;

� h : Rn → Rq is the external output map.
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The stochastic process ξ : Ω×R≥0 → Rn is a solution process of Σ if there exists υ ∈ U
and π ∈ P satisfying

Σ :

{
dξ(t) = f(ξ(t), υ(t), π(t))dt+ σ(ξ(t))dWt + ρ(ξ(t))dPt,

ζ(t) = h(ξ(t)),
(2.10)

P-a.s., at each time t ∈ R≥0. We denote by ξaυ(t, π(t)) the value of the solution process
at time t ∈ R≥0 under the control input υ ∈ U and the switching process π ∈ P, starting
from an initial condition ξaυ(0, π(0)) = a P-a.s., where a is measurable in the trivial
sigma-algebra F0.

Remark 2.5.5. In our definition of switching stochastic hybrid system, we exclude sys-
tems which exhibit Zeno behaviour i.e. that an infinite number of mode transitions occur
in a finite amount of time [Hes04; Lib03], named after the philosopher Zeno of Elena
(500-400 B.C.) [Sim+00].
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Chapter 3

Compositional Abstraction of Stochastic
Hybrid Systems

3.1 Introduction

Constructing reduced-order models (i.e., infinite abstractions) for a complex system when
viewed monolithically is a challenging task. One approach to deal with this is to lever-
age the fact that many large-scale complex systems can be regarded as interconnected
systems consisting of smaller subsystems. This motivates a compositional approach for
the construction of the abstractions wherein abstractions of the concrete systems can be
constructed by using the abstractions of smaller subsystems.

Recently, there have been several results on the compositional construction of infinite
abstractions of deterministic control systems including [PPD16b], [TI08], [RZ18], and
of a class of stochastic hybrid systems [ZRE17]. These results employ a small-gain
type condition for the compositional construction of abstractions. However, as shown in
[DK04], this type of condition is a function of the size of the network and can be violated
as the number of subsystems grows. Recently in [ZA17], a compositional framework for
the construction of infinite abstractions of networks of control systems has been proposed
using dissipativity theory. In this result a notion of storage function is proposed which
describes joint dissipativity properties of control systems and their abstractions. This
notion is used to derive compositional conditions under which a network of abstractions
approximate a network of the concrete subsystems. Those conditions can be independent
of the number or gains of the subsystems under some properties for the interconnection
topologies.

In this chapter of the dissertation, we extend this approach to a class of stochastic
hybrid systems, namely, jump-diffusions. Stochastic hybrid systems are a general class
of systems consisting of continuous and discrete dynamics subject to probabilistic noise
and events. In jump-diffusions, the continuous dynamics are modeled by stochastic
differential equations and switches are modeled as Poisson processes. We introduce a
notion of so-called stochastic storage functions describing joint dissipativity properties
of stochastic hybrid subsystems and their abstractions. Given a network of stochastic
hybrid subsystems and the stochastic storage functions between subsystems and their
abstractions, we derive conditions based on the interconnection topology, guaranteeing
that a network of abstractions quantitatively approximate the network of concrete sub-
systems. For a class of stochastic hybrid subsystems and using the incremental quadratic
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inequality for the nonlinearity, we derive a set of matrix (in)equalities facilitating the
construction of their abstractions together with the corresponding stochastic storage
functions. We illustrate the effectiveness of the proposed results in two examples in
which compositionality conditions are satisfied independent of the number or gains of
the subsystems.

3.1.1 Contributions

Compositional abstraction for (deterministic) interconnected control systems using dis-
sipativity was introduced in [ZA17]. In [AZ17b], this technique was extended to a class
of stochastic hybrid systems. In both works, the joint dissipativity properties are defined
with respect to a static map whose input is the (internal) inputs and outputs of the sub-
systems and their abstractions. In contrast to this, in this chapter we employ a dynamic
map based on a similar notion introduced in [TB11]. This allows for a broader class
of (stochastic hybrid) subsystems for which one can find (stochastic) storage functions
between them and their abstractions (cf. case study in Section 3.5.2). Furthermore,
in this work we derive constructive conditions for computing abstractions for a class of
stochastic hybrid systems by considering nonlinearities which are more general than the
ones considered in [ZA17] and [AZ17b].

Compositional abstractions for jump-diffusions are also introduced in [ZRE17]. How-
ever, in [ZRE17] it is assumed that the stochastic noises in a subsystem and its abstrac-
tion are the same. This assumption is not realistic in practice, as it requires access to
the realization of the noises in the original subsystem in order to refine the constructed
controllers for the abstractions to the original subsystems. On the other hand, in our
approach concrete subsystems and their abstractions do not share the same stochas-
tic noises. In addition, the results in [ZRE17] use small-gain type conditions for the
main compositionality result whereas the proposed approach here uses dissipativity-
type conditions which can potentially provide scale-free results under some properties
over the interconnection topologies. Although the results in [ZRE17] derive conditions
for constructing abstractions for just linear jump-diffusions, here we provide constructive
conditions for a class of nonlinear jump-diffusions.

3.2 Certificates for Abstraction

In this section, we introduce two notions which we use to formally relate a stochastic
hybrid system and its abstraction. The first notion, namely stochastic storage functions,
relates a stochastic hybrid system introduced in Definition 2.5.1 and its abstraction.
The second notion, namely stochastic simulation functions, relates a stochastic hybrid
system without internal inputs and outputs (as in (2.9)) and its abstraction.

3.2.1 Stochastic Storage Function

In this subsection, we introduce a notion of so-called stochastic storage functions, adapted
from the notion of storage functions from dissipativity theory [AMP16]. Before intro-
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3.2 Certificates for Abstraction

ducing the notion of stochastic storage functions, we introduce a linear control system
which is given by:

ξ̇θ(t) = Aθξθ(t) +Bθυθ(t)

ζθ(t) = Cθξθ(t) +Dθυθ(t), (3.1)

where Aθ ∈ Rlθ×lθ , Bθ ∈ Rlθ×mθ , Cθ ∈ Rqθ×lθ , and Dθ ∈ Rqθ×mθ , where Bθ, and Dθ have
the conformal partitions

Bθ =
[
B1 B2

]
, Dθ =

[
D1 D2

]
, (3.2)

respectively. These conformal partitions will be used later in the chapter. We use the
tuple Σθ = (Aθ, Bθ, Cθ, Dθ) to represent such a linear control system. Now we define the
infinitesimal generator of a stochastic process which will be used later to define a notion
of stochastic storage functions.

Definition 3.2.1. Consider two stochastic hybrid systems

Σ = (Rn,Rm,Rp,U ,W, f, σ, ρ,Rq1 ,Rq2 , h1, h2)

and

Σ̂ = (Rn̂,Rm̂,Rp̂, Û , Ŵ, f̂ , σ̂, ρ̂,Rq1 ,Rq̂2 , ĥ1, ĥ2)

with solution processes ξ and ξ̂, respectively. Consider a linear control system Σθ =
(Aθ, Bθ, Cθ, Dθ) satisfying (3.1) with state trajectory ξθ. Consider a twice continuously
differentiable function V : Rn × Rn̂ × Rlθ → R≥0. The infinitesimal generator of the
stochastic process Ξ = [ξ; ξ̂; ξθ], denoted by L, acting on function V is defined as [ØS05]:

LV (x, x̂, θ) :=
[
∂xV ∂x̂V ∂θV

]  f(x, u, w)

f̂(x̂, û, ŵ)
Aθθ +Bθuθ


+

1

2
Tr
(
σ(x)σT (x)∂x,xV

)
+

1

2
Tr
(
σ̂(x̂)σ̂T (x̂)∂x̂,x̂V

)
+

r∑
j=1

λj(V (x+ ρ(x)erj , x̂)− V (x, x̂))

+
r̂∑

j=1

λ̂j(V (x, x̂+ ρ̂(x̂)er̂j)− V (x, x̂)), (3.3)

where erj denotes an r-dimensional vector with 1 on the j-th entry and 0 elsewhere.

Now we have all the ingredients to introduce a notion of stochastic storage functions.

Definition 3.2.2. Consider two stochastic hybrid systems

Σ = (Rn,Rm,Rp,U ,W, f, σ, ρ,Rq1 ,Rq2 , h1, h2)
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and
Σ̂ = (Rn̂,Rm̂,Rp̂, Û , Ŵ, f̂ , σ̂, ρ̂,Rq1 ,Rq̂2 , ĥ1, ĥ2)

with the same external output space dimension and let Σθ = (Aθ, Bθ, Cθ, Dθ) be a linear
control system as in (3.1). A twice continuously differentiable function V : Rn × Rn̂ ×
Rlθ → R≥0 is called a stochastic storage function from Σ̂ to Σ, with respect to Σθ, in the
k-th moment (SStF-M2), where k ≥ 1, if it has polynomial growth rate and there exist
convex functions α, η ∈ K∞, concave function ψext ∈ K∞ ∪ {0}, some constant c ∈ R≥0,
some matrices W, Ŵ , and H, and some symmetric matrix X of appropriate dimension
such that

DT
2XD2 ⪯ 0, (3.4)

where D2 is given in (3.2), and ∀x ∈ Rn, ∀x̂ ∈ Rn̂, and ∀θ ∈ Rlθ one has

α(∥h1(x)− ĥ1(x̂)∥k) ≤ V (x, x̂, θ), (3.5)

and ∀x ∈ Rn, ∀x̂ ∈ Rn̂,∀û ∈ Rm̂ ∃u ∈ Rm, such that ∀ŵ ∈ Rp̂ ∀w ∈ Rp, one obtains

LV (x, x̂, θ) ≤ −η(V (x, x̂, θ)) + ψext(∥û∥k) + zTXz + c, (3.6)

where z = Cdθ +Dduθ and

uθ =

[
Ww − Ŵ ŵ

h2(x)−Hĥ2(x̂)

]
.

The second condition (3.6) implicitly implies the existence of a function u = kt(x, x̂, û)
to choose u for any x, x̂, and û. We call this function an interface function. We use
notation Σ̂ ⪯ Σ if there exists an SStF-M2 V from Σ̂ to Σ. The stochastic hybrid
system Σ̂ (possibly with n̂ < n) is called an abstraction of Σ. This reduction in the
dimensionality of the state-space from the concrete system to its abstraction can be
viewed as a model-order reduction scheme.

Remark 3.2.3. If Cθ is the zero matrix, and Dθ is the identity matrix, then the quadratic
term in (3.6) reduces to the one in [ZA17; AZ17b], with

z =

[
Ww − Ŵ ŵ

h2(x)−Hĥ2(x̂)

]
.

Remark 3.2.4. Condition (3.4) has also appeared in various forms in the literature as
a necessary condition for deriving asymptotic stability from dissipativity properties of a
system. See for example [TB11].

3.2.2 Stochastic Simulation Function

Now, we recall a slightly adapted version of the notion of stochastic simulation function
introduced in [ZRE17]. This notion is appropriate for relating interconnected systems
without internal inputs and outputs.
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Definition 3.2.5. Let

Σ = (Rn,Rm,U , f, σ, ρ,Rq, h)

and

Σ̂ = (Rn̂,Rm̂, Û , f̂ , σ̂, ρ̂,Rq, ĥ)

be two stochastic hybrid systems. A twice continuously differentiable function V : Rn ×
Rn̂ × Rlθ → R≥0 is called a stochastic simulation function from Σ̂ to Σ in the k-th
moment (SSF-M2), where k ≥ 1, if there exist convex functions α, η ∈ K∞, concave
function ψext ∈ K∞∪{0}, and some constant c ∈ R≥0, such that ∀x ∈ Rn, ∀x̂ ∈ Rn̂, and
∀θ ∈ Rlθ , one has

α(∥h(x)− ĥ(x̂)∥k) ≤ V (x, x̂, θ), (3.7)

and ∀x ∈ Rn, ∀x̂ ∈ Rn̂, ∀û ∈ Rm̂ ∃u ∈ Rm such that

LV (x, x̂, θ) ≤ −η(V (x, x̂, θ)) + ψext(∥û∥k) + c. (3.8)

We say that a stochastic hybrid system Σ̂ is approximately simulated by a stochastic
hybrid system Σ, denoted by Σ̂ ⪯AS Σ, if there exists an SSF-M2 function V from Σ̂ to
Σ. We call Σ̂ (possibly with lower dimension n̂ < n) an abstraction of Σ.

The next theorem shows the important of the existence of an SSF-M2 by quantifying
the error between the output behaviors of Σ and the ones of its abstractions Σ̂.

Theorem 3.2.6. Let

Σ = (Rn,Rm,U , f, σ, ρ,Rq, h),

and

Σ̂ = (Rn̂,Rm̂, Û , f̂ , σ̂, ρ̂,Rq, ĥ)

be two stochastic hybrid systems. Suppose V is an SSF-M2 from Σ̂ to Σ. Then, there
exists a KL function β, a K∞ function γext, and some constant c′ ∈ R≥0 such that for
any υ̂ ∈ Û , any random variable a and â that are F0-measurable, and any θ0 ∈ Rlθ ,
there exists υ ∈ U such that the following inequality holds for any t ∈ R≥0:

E[∥ζaυ(t)− ζ̂âυ̂(t)∥k] ≤ β(E[V (a, â, θ0)], t) + γext(E[∥υ̂∥k∞]) + c′. (3.9)

Proof. The proof is similar to the one of Theorem 3.5 in [ZRE17].

In the next section we first provide a definition of interconnected stochastic hybrid
systems. We then provide conditions under which we can construct abstractions of
interconnected stochastic hybrid systems in a compositional way.
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Figure 3.1: Interconnected stochastic hybrid system defined in Definition 3.3.1

3.3 Interconnected Stochastic Hybrid Systems

Next definition provides a notion of interconnection for stochastic hybrid subsystems
investigated in this chapter.

Definition 3.3.1. Consider N ∈ N≥1 stochastic hybrid subsystems

Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi, ρi,Rq1i ,Rq2i , h1i, h2i),

where i ∈ [1;N ], and a matrix M (the interconnection matrix) of an appropriate di-
mension defining the coupling of these subsystems. The interconnected stochastic hybrid
system

Σ = (Rn,Rm,U , f, σ, ρ,Rq, h),

denoted by I(Σ1, . . . ,ΣN ), follows by n =
∑N

i=1 ni,m =
∑N

i=1mi, q =
∑N

i=1 q1i, and the
functions

f(x, u) := [f1(x1, u1, w1); . . . ; fN (xN , uN , wN )], (3.10)

σ(x) := [σ1(x1); . . . ;σN (xN )], (3.11)

ρ(x) := [ρ1(x1); . . . ; ρN (xN )], (3.12)

h(x) := [h11(x1); . . . ;h1N (xN )], (3.13)

where u = [u1; . . . ;uN ], x = [x1; . . . ;xN ] and with internal variables constrained by

[w1; . . . ;wN ] =M [h21(x1); . . . ;h2N (xN )]. (3.14)

Assume we are given N stochastic hybrid subsystems

Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi, ρi,Rq1i ,Rq2i , h1i, h2i),

together with their corresponding abstractions

Σ̂i = (Rn̂i ,Rm̂i ,Rp̂i , Ûi, Ŵi, f̂i, σ̂i, ρ̂i,Rq1i ,Rq̂2i , ĥ1i, ĥ2i)
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3.3 Interconnected Stochastic Hybrid Systems

and with SStF-M2 Vi from Σ̂i to Σi. We use αi, ηi, ψiext, Aθi , Bθi , Cθi , Dθi , Hi, Wi,
Ŵi, and Xi to denote the corresponding functions, matrices, and their corresponding
conformal block partitions appearing in Definition 3.2.2.
The next theorem provides a compositional approach on the construction of abstrac-

tions of networks of stochastic hybrid systems.

Theorem 3.3.2. Consider an interconnected system Σ = I(Σ1, . . . ,ΣN ) induced by
N ∈ N≥1 stochastic hybrid subsystems Σi and the interconnection matrix M . Suppose
each subsystem Σi admits an abstraction Σ̂i with the corresponding SStF-M2 Vi with
respect to Σθi = (Aθi , Bθi , Cθi , Dθi), i ∈ [1;N ]. Suppose there exists µi > 0, i ∈ [1;N ],
symmetric matrix Q̃ ⪰ 0, and matrix M̂ of appropriate dimension such that the matrix
(in)equalities ATDQ̃+ Q̃AD Q̃BDS

[
WM
Iq̃

]
[
WM
Iq̃

]T
STBT

DQ̃ 0



+

[
CD DDS

[
WM
Iq̃

]]T µ1X1

. . .

µNXN

[CD DDS

[
WM
Iq̃

]]
⪯ 0, (3.15)

WMH = ŴM̂, (3.16)

are satisfied, where q̃ =
∑N

i=1 q2i, and

W = diag(W1, . . . ,WN ), Ŵ = diag(Ŵ1, . . . , ŴN ),

H = diag(H1, . . . ,HN ), (3.17)

AD = diag(Aθ1 , . . . , AθN ), BD = diag(Bθ1 , . . . , BθN ),

CD = diag(Cθ1 , . . . , CθN ), DD = diag(Dθ1 , . . . , DθN ), (3.18)

and S is the following permutation matrix:

S =



IrW1
0rW2

. . . 0rWN
0rH1

0rH2
. . . 0rHN

0rW1
0rW2

. . . 0rWN
IrH1

0rH2
. . . 0rHN

0rW1
IrW2

. . . 0rWN
0rH1

0rH2
. . . 0rHN

0rW1
0rW2

. . . 0rWN
0rH1

IrH2
. . . 0rHN

...
. . .

...
...

. . .
...

0rW1
0rW2

. . . IrWN
0rH1

0rH2
. . . 0rHN

0rW1
0rW2

. . . 0rWN
0rH1

0rH2
. . . IrHN


, (3.19)

where, for each i ∈ [1;N ], rWi and rHi denote the number of rows in Wi and Hi,
respectively. Then

V (x, x̂, θ) :=

N∑
i=1

µiVi(xi, x̂i, θi) + θT Q̃θ,
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where θ := [θ1; . . . ; θN ] ∈ Rlθ , lθ =
∑N

i=1 lθi, is an SSF-M2 from the interconnected

system Σ̂ := I(Σ̂1, . . . , Σ̂N ), with the coupling matrix M̂ , to Σ.

Proof. The proof is inspired by that of Theorem 4.2 in [ZA17]. First we show that the
inequality (3.7) holds for some convex K∞ function α. As also argued in the proof of
Theorem 4.2 in [ZRE17], for any x = [x1; . . . ;xN ] ∈ Rn, any x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂, and
any θ := [θ1; . . . ; θN ] ∈ Rlθ , one gets:

∥h(x)− ĥ(x̂)∥k ≤ Nmax{ k
2
,1}−1

N∑
i=1

∥h1i(xi)− ĥ1i(x̂i)∥k

≤ Nmax{ k
2
,1}−1

N∑
i=1

α−1
i (Vi(xi, x̂i, θi))

≤ α(V (x, x̂, θ)),

for any k ≥ 1, where α is a K∞ function defined as

α(s) :=

max
s⃗≥0

Nmax{ k
2
,1}−1

N∑
i=1

α−1
i (si)

s.t. µT s⃗ = s,

(3.20)

where s⃗ = [s1; . . . ; sN ] ∈ RN and µ = [µ1; . . . ;µN ]. The function α is a concave function
as argued in [ZRE17]. By defining the convex function1 α(s) = α−1(s),∀s ∈ R≥0, one
obtains

α(∥h1(x)− ĥ1(x̂)∥k) ≤ V (x, x̂, θ),

satisfying inequality (3.7). Now we prove the inequality (3.8). Consider any x =
[x1; . . . ;xN ] ∈ Rn, x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂, and û = [û1; . . . ; ûN ] ∈ Rm̂. For any
i ∈ [1;N ], there exists ui ∈ Rmi , consequently, a vector u = [u1; . . . ;uN ] ∈ Rm, sat-
isfying (3.6) for each pair of subsystems Σi and Σ̂i with the internal inputs given by

[w1; . . . ;wN ] = M [h21(x1); . . . ;h2N (xN )] and [ŵ1; . . . ; ŵN ] = M̂ [ĥ21(x̂1); . . . ; ĥ2N (x̂N )],
respectively. The dynamics of Σθi , i ∈ [1;N ], can be lumped together into a single

1The inverse of a strictly increasing concave (resp. convex) function is a strictly increasing convex
(resp. concave) function.
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auxiliary system as the following:

θ̇(t) = ADθ(t) +BDS



W1w1 − Ŵ1ŵ1

...

WNwN − ŴN ŵN

h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )


= ADθ(t) +BDS

[
WM
Iq̃

] h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )

 ,

z(t) = CDθ(t) +DDS



W1w1 − Ŵ1ŵ1

...

WNwN − ŴN ŵN

h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )


= CDθ(t) +DDS

[
WM
Iq̃

] h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )

 , (3.21)

where z = [z1; . . . ; zN ]. We now consider the infinitesimal generator of the function V ,
and employ the previous auxiliary system and conditions (3.15) and (3.16) to derive the

chain of inequalities given in (3.22), where c′ =
∑N

i=1 µici,

Θ(x, θ) :=



θ1
...
θN

h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )


, (3.23)

and the functions η ∈ K∞ and ψext ∈ K∞ ∪ {0} are defined as

η(s) :=

min
s⃗≥0

∑N
i=1 µiηi(si)

s.t. µT s⃗ = s,
(3.24)

ψext(s) :=

max
s⃗≥0

∑N
i=1 µiψiext(si)

s.t. ∥s⃗∥ ≤ s.
(3.25)
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LV (x, x̂, θ) =

N∑
i=1

µiLVi(xi, x̂i, θi) + θ̇T Q̃θ + θT Q̃θ̇

≤
N∑
i=1

µi

(
− ηi(Vi(xi, x̂i, θi)) + ψiext(∥ûi∥k) + zTi Xizi + ci

)
+θ̇T Q̃θ+θT Q̃θ̇

= −
N∑
i=1

µiηi(Vi(xi, x̂i, θi)) +

N∑
i=1

µiψiext(∥ûi∥k) +

 z1...
zN


T µ1X1

. . .

µNXN


 z1...
zN


︸ ︷︷ ︸

z

+Θ(x, θ)T

 AT
DQ̃+ Q̃AD Q̃BDS

[
WM
Iq̃

]
[
WM
Iq̃

]T
STBT

DQ̃ 0

Θ(x, θ) + c′

= −
N∑
i=1

µiηi(Vi(xi, x̂i, θi)) +

N∑
i=1

µiψiext(∥ûi∥k)

+ Θ(x, θ)T

 AT
DQ̃+ Q̃AD Q̃BDS

[
WM
Iq̃

]
[
WM
Iq̃

]T
STBT

DQ̃ 0

Θ(x, θ)

+ Θ(x, θ)T
[
CD DDS

[
WM
Iq̃

]]T µ1X1

. . .

µNXN

[CD DDS

[
WM
Iq̃

]]
Θ(x, θ)

+ c′

≤ −η(V (x, x̂, θ)) + ψext(∥û∥k) + c′, (3.22)

It remains to show that η is a convex function and ψext is a concave one. Let us recall
that by assumption functions ηi, ∀i ∈ [1;N ], are convex functions. Thus the function
η above defines a perturbation function which is a convex one; see [BV04] for further
details. Again, by assumption ψiext, ∀i ∈ [1;N ], are concave functions. By similar
reasoning, we conclude that ψext is a concave function. Hence, we conclude V is an
SSF-M2 function from Σ̂ to Σ.

Remark 3.3.3. If Cθi is the zero matrix and Dθi is the identity matrix (i.e. Σθi is a
static map), ∀i ∈ [1;N ], then matrix inequality (3.15) reduces to matrix inequality (15)
in [AZ17b, Theorem 7] (which is a stochastic counterpart of matrix inequality (IV.1) in
[ZA17, Theorem 4.2]).

Remark 3.3.4. The matrix inequality (3.15) is linear with respect to the decision vari-
ables Q̃ and µ = [µ1; . . . ;µN ] , and matrix equality (3.16) is linear with respect to the
decision variable M̂ , which can be solved by using readily available software packages
such as YALMIP [Lof04].
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In the next section, we consider a specific class of stochastic hybrid systems Σ, and
a specific candidate SStF-M2 function V . We derive conditions facilitating the con-
struction of Σ̂ as an abstraction of Σ and such that V is an SStF-M2 from Σ̂ to Σ.

3.4 A Class of Stochastic Hybrid Systems

We consider a specific class of stochastic hybrid systems with the drift, diffusion, reset,
and output functions given by

dξ(t) = (Aξ(t) +Bυ(t) + Eφ(t, F ξ) +Dω(t))dt+GdWt +

r∑
i=1

RidP
i
t ,

ζ1(t) = C1ξ(t),

ζ2(t) = C2ξ(t), (3.26)

where A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×p, E ∈ Rn×lk , F ∈ Rlk×n, G ∈ Rn×1, Ri ∈ Rn,∀i ∈
[1; r], C1 ∈ Rq1×n, and C2 ∈ Rq2×n. The vector Ri and scalar λi > 0 (rate of the Poisson
process), ∀i ∈ [1; r], parametrize the jumps associated with events i. The time-varying
non-linearity is the one considered in [AC11], which satisfies an incremental quadratic
inequality: for all M̃ ∈ M̃, where M̃ is the set of symmetric matrices referred to as
incremental multiplier matrices, the following incremental quadratic constraint holds for
all t ∈ R≥0, and k1, k2 ∈ Rlk :[

k2 − k1
φ(t, k2)− φ(t, k1)

]T
M̃

[
k2 − k1

φ(t, k2)− φ(t, k1)

]
≥ 0. (3.27)

To facilitate subsequent analysis, we write matrix M̃ in the following conformal parti-
tioned form

M̃ =

[
M11 M12

MT
12 M22

]
. (3.28)

We use the tuple

Σ = (A,B,C1, C2, D,E, F,G,R, φ, λ),

where R = {R1, . . . , Rr} and λ = {λ1, . . . , λr}, to refer to the class of system of the form
(3.26). We now consider a specific candidate function and derive conditions under which
it is an SStF-M2 from Σ̂ to Σ.

3.4.1 Stochastic Storage Function

Here, we consider a candidate SStF-M2 of the form

V (x, x̂, θ) = (x− Px̂)T M̂(x− Px̂) + θTΛθ, (3.29)
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Chapter 3 Compositional Abstraction of Stochastic Hybrid Systems

where P , M̂T = M̂ ≻ 0, and Λ = ΛT ≻ 0 are matrices of appropriate dimensions.
In order to show that V (x, x̂, θ) in (3.29) is an SStF-M2 from an abstraction Σ̂ to the
concrete system Σ, with respect to Σθ = (Ad, Bd, Cd, Dd), where Bθ =

[
B1 B2

]
and

Dθ =
[
D1 D2

]
, we require the following assumptions on the concrete system Σ and on

Σθ.

Assumption 3.4.1. Let Σ = (A,B,C1, C2, D,E, F,G,R, φ, λ). There exist matrices

M̂ ≻ 0, K, X, L1, Z, W , Λ, Ad, Cd, Bθ := [B1 B2], Dθ := [D1 D2], and positive
constants κ̂ and κ̄, such that

DT
2XD2 ⪯ 0,

and the following (in)equalities hold,

D = ZW, (3.30)


∆ M̂Z M̂(BL1 + E) CT2 B

T
2 Λ

ZT M̂ 0 0 BT
1 Λ

(BL1 + E)T M̂ 0 0 0

ΛB2C2 ΛB1 0 Ad
TΛ + ΛAd



⪯


−κ̂M̂ + CT2 D

T
2XD2C2 − F TM11F CT2 D

T
2XD1 −F TM12 CT2 D

T
2XCθ

DT
1XD2C2 DT

1XD1 0 DT
1XCθ

−MT
12F 0 −M22 0

CTθ XD2C2 CTθ XD1 0 Cd
TXCd − κ̄Λ

 ,
(3.31)

where

∆ = (A+BK)T M̂ + M̂(A+BK). (3.32)

An equivalent geometric characterization of (3.30) is given by the following lemma.

Lemma 3.4.2. Given D and Z, the condition (3.30) is satisfied for some matrix W if
and only if

im D ⊆ im Z. (3.33)

Remark 3.4.3. Remark that when the non-linearity in (3.26) reduces to the one de-
scribed in [ZA17, Section V] and Σθ is a static map, matrix inequality (3.31) reduces
to (V.5) in [ZA17, Theorem 5.5]. Note also that in the absence of the non-linearity
in (3.26), matrix inequality (3.31) is feasible if the pair (A,B) is stabilizable and Aθ is
Hurwitz.

Now, we provide one of the main results of this section showing under which conditions
V in (3.29) is an SStF-M2.
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Theorem 3.4.4. Let

Σ = (A,B,C1, C2, D,E, F,G,R, φ, λ),

and
Σ̂ = (Â, B̂, Ĉ1, Ĉ2, D̂, Ê, F̂ , Ĝ, R̂, φ, λ̂),

with the same external output dimension. Suppose Assumption 3.4.1 holds and there
exist matrices P , Q, H, Ŵ and L2 of appropriate dimensions such that:

AP = PÂ−BQ (3.34a)

C1P = Ĉ1 (3.34b)

C2P = HĈ2 (3.34c)

FP = F̂ (3.34d)

E = PÊ +B(L2 − L1) (3.34e)

PD̂ = ZŴ . (3.34f)

Then, function V defined in (3.29) is an SStF-M2 from Σ̂ to Σ, with respect to Σθ =
(Aθ, Bθ, Cθ, Dθ).

Proof. We note that from (3.34b), ∀x ∈ Rn and ∀x̂ ∈ Rn̂, we have ∥C1x− Ĉ1x̂∥2 = (x−
Px̂)TCT1 C1(x−Px̂). It can be readily verified that λmin(M̂)

λmax(CT
1 C1)

∥C1x− Ĉ1x̂∥2 ≤ V (x, x̂, θ)

for all θ ∈ Rlθ , implying that inequality (3.5) holds with α(r) = λmin(M̂)

λmax(CT
1 C1)

r for any

r ∈ R≥0, which is a convex function. We proceed to prove inequality (3.6). By the
definition of V , one has

∂xV = 2(x− Px̂)T M̂,

∂x̂V = −2(x− Px̂)T M̂P,

∂x,xV = 2M̂,

∂x̂,x̂V = 2P T M̂P.

Following the definition of L, for any x ∈ Rn, x̂ ∈ Rn̂, θ ∈ Rlθ , one obtains:

LV (x, x̂, θ) = 2(x− Px̂)T M̂(Ax+ Eφ(Fx) +Bu+Dw)

− 2(x− Px̂)T M̂P (Âx̂+ Êφ(F̂ x̂) + B̂û+ D̂ŵ) +GT M̂G

+ ĜTP T M̂PĜ+ 2(x− Px̂)T M̂
r∑
i=1

λiRi +
r∑
i=1

λiR
T
i M̂Ri

− 2(x− Px̂)T M̂
r̂∑
i=1

λ̂iPR̂+
r̂∑
i=1

λ̂iR̂
T
i P

T M̂PR̂i

+ 2θTΛ
(
Adθ +

[
B1 B2

] [ Ww − Ŵ ŵ

C2x−HĈ2x̂

])
.
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Given any x ∈ Rn, x̂ ∈ Rn̂, and û ∈ Rm̂, we use the following interface function to choose
u ∈ Rm:

u = K(x− Px̂) +Qx̂+ R̃û+ L1φ(t, Fx)− L2φ(t, F̂ x̂), (3.35)

where L2, Q, and R̃ are matrices of appropriate dimension. Using the interface function
in (3.35), and the conditions (3.30), (3.34a), (3.34d), (3.34e), and (3.34f), one obtains:

LV (x, x̂, θ) = 2(x− Px̂)T M̂
(
A(x− Px̂) +BK(x− Px̂)

+ ZWw − ZŴŵ + (BR̃− PB̂)û+ (BL1 + E)δφ
)

+GT M̂G+ ĜTP T M̂PĜ+
r∑
i=1

λiR
T
i M̂Ri +

r̂∑
i=1

λ̂iR̂
T
i PM̂PR̂i

+ 2(x− Px̂)T M̂(
r∑
i=1

λiRi −
r̂∑
i=1

λ̂iPR̂i) + 2θTΛAdθ

+ 2θTΛB1(Ww − Ŵ ŵ) + 2θTΛB2(C2x−HĈ2x̂),

where δφ = φ(t, Fx) − φ(t, F̂ x̂). Using Young’s inequality [You12], Cauchy-Schwarz
inequality [MV70], (3.31), and (3.34c), one obtains the upper bound for LV (x, x̂, θ) as
given in (3.36), where π, π′ ∈ R>0 satisfy π + π′ < κ̂, κ̃ = min{κ̂− π − π′, κ̄}, and

c̃=GT M̂G+ĜTPT M̂PĜ+

r∑
i=1

λiR
T
i M̂Ri+

r̂∑
i=1

λ̂iR̂
T
i P

T M̂PR̂i, (3.37)

c′ =

∥
√
M̂

(
r∑

i=1

λiRi −
r̂∑

i=1

λ̂iPR̂i

)
∥2

π′ . (3.38)

Here, we have used the fact that for any x ∈ Rn and any x̂ ∈ Rn̂, one has [AC11],[
x− Px̂
δφ

]T [
F 0lk
0lk Ilk

]T
M̃

[
F 0lk
0lk Ilk

] [
x− Px̂
δφ

]
≥ 0. (3.39)

Using the upper bound (3.36), the inequality (3.6) is satisfied, implying that V is an
SStF-M2 from Σ̂ to Σ, with respect to Σθ = (Aθ, Bθ, Cθ, Dθ), with the convex function

η(s) = κ̃s, concave function ψext(s) = ∥
√
M̂(BR̃−PB̂)∥2

π s, ∀s ∈ R≥0, matrix X, and c =
c̃+ c′.

Remark 3.4.5. Note that matrix R̃ is a free design parameter in the interface function.
As explained in [ZA17] and [GP09], one can choose R̃ to minimize the function ψext for
V and, hence, lower the upper bound on the error between the output behaviors of Σ and
Σ̂. The choice of R̃ minimizing ψext is given by

R̃ = (BT M̂B)−1BT M̂PB̂. (3.40)
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LV (x, x̂, θ) =


x− P x̂

Ww − Ŵ ŵ
δφ
θ


T


∆ M̂Z M̂(BL1 + E) CT
2 B

T
2 Λ

ZT M̂ 0 0 BT
1 Λ

(BL1 + E)T M̂ 0 0 0
ΛB2C2 ΛB1 0 Ad

TΛ + ΛAd




x− P x̂

Ww − Ŵ ŵ
δφ
θ


+ 2(x− P x̂)T M̂(BR̃− PB̂)û+ 2(x− P x̂)T M̂

(
r∑

i=1

λiRi −
r̂∑

i=1

λ̂iPR̂i

)
+ c̃

≤


x− P x̂

Ww − Ŵ ŵ
δφ
θ


T 

−κ̂M̂ + CT
2 D

T
2 XD2C2 − FTM11F CT

2 D
T
2 XD1 −FTM12 CT

2 D
T
2 XCθ

DT
1 XD2C2 DT

1 XD1 0 DT
1 XCθ

−MT
12F 0 −M22 0

CT
θ XD2C2 CT

θ XD1 0 Cd
TXCd − κ̄Λ


∗


+ 2(x− P x̂)T M̂(BR̃− PB̂)û+ 2(x− P x̂)T M̂

(
r∑

i=1

λiRi −
r̂∑

i=1

λ̂iPR̂i

)
+ c̃

≤ −(κ̂− π − π′)(x− P x̂)T M̂(x− P x̂) +
∥
√
M̂(BR̃− PB̂)∥2

π
∥û∥2 − κ̄θTΛθ

− 2

[
x− P x̂
δφ

]T [
F 0lk
0lk Ilk

]T
M̃

[
F 0lk
0lk Ilk

] [
x− P x̂
δφ

]

+

(
Cdθ +

[
D1 D2

]T [ Ww − Ŵ ŵ

C2x−HĈ2x̂

])T

X

(
Cdθ +

[
D1 D2

] [ Ww − Ŵ ŵ

C2x−HĈ2x̂

])
+ c̃

+

∥
√
M̂

(
r∑

i=1

λiRi −
r̂∑

i=1

λ̂iPR̂i

)
∥2

π′

≤ −(κ̂− π − π′)(x− P x̂)T M̂(x− P x̂)− κ̄θTΛθ +
∥
√
M̂(BR̃− PB̂)∥2

π
∥û∥2 + zTXz + c̃+ c′

≤ −κ̃V (x, x̂, θ) +
∥
√
M̂(BR̃− PB̂)∥2

π
∥û∥2 + zTXz + c̃+ c′ (3.36)

Remark 3.4.6. The constant c, can be also minimized, thereby lowering the upper bound
on the error between the output behaviours of Σ and Σ̂. One can choose Ĝ to be the zero
matrix and choose λ̂ and R̂ to solve the following optimization problem:

arg min
R̂,λ̂>0

r̂∑
i=1

λ̂iR̂
T
i P

T M̂PR̂i −
2(

r∑
i=0

λiR
T
i )M̂P (

r̂∑
i=0

λ̂iR̂i)

π′ +

(
r̂∑

i=1

λ̂iR̂
T
i )P

T M̂P (
r̂∑

i=1

λ̂iR̂i)

π′ ,

(3.41)

where λ̂ = {λ̂1, . . . , λ̂r̂} and R̂ = {R̂1, . . . , R̂r̂}. This optimization problem is, in general,
a non-convex one.

Remark 3.4.7. The matrix inequality (3.31) is bi-linear in M̂,K,L1, Z, and linear in
X and Λ if we fix κ̂, κ̄, and the matrices Aθ, Bθ, Cθ, and Dθ.

In the following theorem we show that conditions (3.34a), (3.34b), (3.34c), (3.34d),
and (3.34e) are not only sufficient, but also necessary for (3.29) to be an SStF-M2 from
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Chapter 3 Compositional Abstraction of Stochastic Hybrid Systems

Σ̂ to Σ, provided that the interface function is as in (3.35) for some matrices K,Q, R̃, L1,
and L2, of appropriate dimensions.

Theorem 3.4.8. Let

Σ = (A,B,C1, C2, D,E, F,G,R, φ, λ)

and

Σ̂ = (Â, B̂, Ĉ1, Ĉ2, D̂, Ê, F̂ , Ĝ, R̂, φ, λ̂),

with the same external output space dimension. Assume that G = Ĝ = 0, and Ri = R̂i =
0 ∀i ∈ [1; r̂], where 0 represents the zero matrices of appropriate dimensions. Suppose that
V , defined in (3.29), is an SStF-M2 from Σ̂ to Σ, with respect to Σθ = (Ad, Bd, Cd, Dd),
with the interface function given in (3.35). Then equations (3.34a), (3.34b), (3.34c),
(3.34d), and (3.34e) hold.

Proof. Since V is an SStF-M2 from Σ̂ to Σ, there exists a K∞ function α such that
∥C1x − Ĉ1x̂∥2 ≤ α−1(V (x, x̂, θ)) for any x ∈ Rn, any x̂ ∈ Rn̂, and any θ ∈ Rlθ . From
(3.29), it follows that ∥C1Px̂− Ĉ1x̂∥2 ≤ α−1(V (Px̂, x̂, 0)) = 0 holds for all x̂ ∈ Rn̂ which
implies (3.34b). Let us assume that DT

2XD2 ̸= 0. To prove (3.34c), we consider the
inputs w ≡ 0, ŵ ≡ 0, û ≡ 0, and choose x = Px̂ and θ = 0 in (3.6). One has:

0 ≤ (C2Px̂−HĈ2x̂)
TDT

2XD2(C2Px̂−HĈ2x̂), (3.42)

for all x̂ ∈ Rn̂. Since DT
2XD2 ⪯ 0, and DT

2XD2 ̸= 0 by assumption, one obtains
C2P −HĈ2 = 0, which implies (3.34c). Consider the input signals υ̂ ≡ 0, ω ≡ 0, ω̂ ≡ 0.
It can be easily seen that the subspace {(x, x̂, θ) : x = Px̂, θ = 0} ⊆ Rn × Rn̂ × Rlθ is
invariant [Kha96], which implies that when ξ(0) = P ξ̂(0) and ξθ(0) = 0, one has:

ξ(t) = P ξ̂(t), ξθ(t) = 0, dξ(t) = Pdξ̂(t), (3.43)

for all t ∈ R≥0, from which we derive that

(AP ξ̂(t) +BQξ̂(t) +BL1φ(t, F ξ(t))−BL2φ(t, F̂ ξ̂(t)) + Eφ(t, FP ξ̂(t)))dt

= (PÂξ̂(t) + PÊφ(t, F̂ ξ̂(t)))dt, (3.44)

for all t ∈ R≥0, thus implying (3.34a), (3.34d), and (3.34e).

3.4.2 Geometric Interpretation of Different Conditions

In this section, we provide geometric conditions on matrices appearing on the definition of
Σ̂, of stochastic storage function and its corresponding interface function. The geometric
conditions facilitate the construction of the abstraction. First, we recall the following
result from [GP09], providing necessary and sufficient conditions for the existence of Â
and Q satisfying (3.34a).
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Lemma 3.4.9. Consider matrices A, B, and P . There exist matrices Â and Q satisfying
(4.36a) if and only if

im AP ⊆ im P + im B. (3.45)

Similarly, we provide necessary and sufficient conditions for the existence of Ĉ2 and
Ê, L2 satisfying (3.34c) and (3.34e), respectively.

Lemma 3.4.10. Given P and C2, there exists matrix Ĉ2 satisfying (3.34c) if and only
if

im C2P ⊆ im H (3.46)

for some matrix H of appropriate dimension.

Lemma 3.4.11. Given P , B, and L1, there exist matrices Ê and L2 satisfying (3.34e)
if and only if

im E ⊆ im B + im P. (3.47)

Lemmas 3.4.9, 3.4.10, and 3.4.11 provide sufficient and necessary conditions on P
and H, resulting in the construction of matrices Â, Ĉ2, and Ê and matrices Q and L2

appearing in the interface function (3.35). The next lemma provides a sufficient and
necessary condition on the existence of D̂ satisfying (4.36e).

Lemma 3.4.12. Given Z, there exists matrix D̂ satisfying (3.34f) if and only if

im ZŴ ⊆ im P, (3.48)

for some matrix Ŵ of appropriate dimension.

Although condition (3.48) is readily satisfied by choosing Ŵ = 0, one should prefer-
ably aim at finding a nonzero Ŵ with the highest possible rank to facilitate later the
satisfaction of compositionality condition (3.16).

3.4.3 Construction of Abstraction

We summarize the construction of abstraction Σ̂, stochastic storage function V in (3.29),
and its corresponding interface function in (3.35) in Table 3.1.

Remark 3.4.13. One way to solve the matrix inequality (3.31) is as follows: First, we
select arbitrary Cθ and Dθ =

[
D1 D2

]
, and solve the following bilinear matrix inequality

(BMI) for κ̂, X, M̂ , and L1: ∆ M̂Z M̂(BL1 + E)

ZT M̂ 0 0

(BL1 + E)T M̂ 0 0


⪯

−κ̂M̂ + CT2 D
T
2XD2C2 − F TM11F CT2 D

T
2XD1 −FM12

DT
1XD2C2 DT

1XD1 0
−MT

12F 0 −M22

 . (3.49)
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1. Choose matrix Z such that (3.33) is satisfied;

2. Choose W such that D = ZW ;

3. Choose matrices M̂,K,L1,Λ, X,Aθ, Cθ, Bθ = [B1 B2], Dθ = [D1 D2], and
constants κ̂, κ̄ such that (3.31) is satisfied (see Remark 3.4.13);

4. Determine matrix P of lowest rank with kerP = 0 that satisfies (3.45), (3.46),
(3.47), and (3.48) (see Remark 3.4.14);

5. Choose Â and Q according to (3.34a);

6. Choose L2 and Ê according to (3.34e);

7. Compute F̂ = FP ;

8. Compute Ĉ1 = C1P ;

9. Choose Ĝ = 0. Choose R̂ = {R̂1, . . . , R̂r̂} and λ̂ = {λ̂1, . . . , λ̂r̂} according to
(3.41);

10. Choose Ĉ2 satisfying HĈ2 = C2P for some H;

11. Choose D̂ satisfying PD̂ = ZŴ for some Ŵ with the highest possible rank;

12. Choose B̂ freely (e.g. B̂ = In̂ making Σ̂ fully actuated);

13. Compute R̃, appearing in (3.35), according to (3.40);

Table 3.1: Construction of Σ̂ = (Â, B̂, Ĉ1, Ĉ2, D̂, Ê, F̂ , Ĝ, R̂, φ, λ̂) together with the correspond-

ing stochastic storage function V in (4.31), with Σθ = (Aθ, Bθ, Cθ, Dθ), and interface

function in (3.35) for a given Σ = (A,B,C1, C2, D,E, F,G,R, φ, λ).
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3.5 Examples

We then solve the following bilinear matrix equation for κ̄, Λ, and Aθ:

ATθ Λ + ΛAθ = CTθ XCθ − κ̄Λ.

Finally, we solve the following linear equations for Bθ =
[
B1 B2

]
:

ΛB1 = CTθ XD
T
1 ,

ΛB2 = CTθ XD2.

Remark 3.4.14. One way to satisfy the geometric conditions (3.45)-(3.48) is to start
with a scalar abstraction (i.e. n̂ = 1) and pick P to be an arbitrary column vector,
and check if (3.45)-(3.48) hold. If not, then increase the state-space dimension of the
abstraction by one (i.e. n̂ = 2), add a linearly independent column vector to P , and
check again if (3.45)-(3.48) hold. Repeat this process until (3.45)-(3.48) are satisfied.
Note that in the worst-case scenario, this process will terminate when n̂ = n (i.e. the
state-space dimension of the concrete subsystem and abstraction are equal).

In the next section, we provide two examples for compositional construction of ab-
stractions of a network of stochastic hybrid systems using the technique presented in the
paper. First, in a physically motivated example, we construct a compositional abstrac-
tion of a network of resistor-capacitor (R-C) circuits affected by stochastic noise. In the
second example, we illustrate the advantage of using a linear control system Σθ over
just a static map (which was used in [ZA17; AZ17b]) to conclude the joint dissipativity
property of a concrete subsystem and its abstraction.

3.5 Examples

3.5.1 Case Study - Electrical Network

Consider an interconnection of n first order R-C circuits. The i-th R-C circuit has a
dynamic given by:

dvci =

(
− 1

RiCi
vci +

1

RiCi
vsi +

1

Ci
w̃i

)
dt+ϖdWt

+ τdPt, (3.50)

where ϖ ∈ R>0, τ ∈ R>0, i ∈ [1;n], vsi ∈ R represents the input source voltage (ex-
ternal input), vci ∈ R is the voltage across capacitor, Ci is the capacitance, Ri is the
resistance, and w̃i ∈ R is the total current inflow from other R-C circuits in the net-
work. The continuous noise and jump terms represent the thermal noise (also known
as Johnson-Nyquist noise) and the so-called Shot noise [HHR80], respectively. Assume
the rate of the Poisson process Pt is λ. For illustration purposes, in this example we
fix Ri = 1 Ohm, and Ci = 1 Farad ∀i ∈ [1;N ]. We consider the above intercon-
nected system as an interconnection of N concrete subsystems Σi, i ∈ [1;N ], wherein
each subsystem Σi is formed by clustering ni R-C circuits (ni ≤ n). We also add a
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non-linearity belonging to the class of nonlinearities presented in this chapter. Each
subsystem, Σi = (Ai, Bi, C1i, Ini, Di, 1⃗ni, 1⃗

T
ni, ϖ1⃗ni, τ 1⃗ni, φ, λ), generates a scalar exter-

nal output:

Σi :


dξi = (Aiξi +Biui +Diwi + 1⃗niφ(⃗1

T
niξi))dt

+ϖ1⃗nidWt + τ 1⃗nidPt,

ζ1i = C1iξi,

ζ2i = ξi,

where ξi = Liv, v = [vc1 ; . . . ; vcn ], Li := [ei1; . . . ; eini ], eij ∈ R1×n is a row vector whose
k-th element is defined as

e
(k)
ij =

{
1 if k-th R-C circuit is part of the i-th cluster

0 otherwise,
(3.51)

Ai, Bi, Di ∈ Rni×ni are readily obtained from (3.50), C1i ∈ R1×ni , ui = Livs, vs =
[vs1 ; . . . ; vsn ], wi = Liw̃ , w̃ = [w̃1; . . . ; w̃n], and φ : R → R is defined as

φ(x) = sin(x).

The interconnection topology in this example is given by

M = −


n− 1 −1 . . . . . . −1
−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1
...

. . .
. . .

...
−1 . . . . . . −1 n− 1

 . (3.52)

The interconnection topology represents a fully-connected interconnection topology.
We aggregate each Σi into a scalar deterministic abstraction Σ̂i = (Âi, B̂i, Ĉ1i, 1, 1, 1, 1, 0, 0, φ, 0)
given by the following dynamics

Σ̂i :


dξ̂i = (Âiξ̂i + B̂iûi + ŵi + φ(ξ̂i))dt

ζ̂1i = Ĉ1iξ̂i,

ζ̂2i = ξ̂i,

where Âi satisfies Ai1⃗ni = 1⃗niÂi, B̂i is chosen arbitrarily (in this example we choose

B̂i = 1), Ĉ1i = C1i1⃗ni . The function Vi(xi, x̂i) = (xi − 1⃗ni x̂i)
T (xi − 1⃗ni x̂i) (i.e. M̂i =

Ini , Pi = 1⃗ni ,Λi = 0) is a SStF-M2 function from Σ̂i to Σi, with the following parameters

Ki = −χIni , Zi = Ini ,Wi = Ini , Xi =

[
0ni Ini

Ini 0ni

]
,

κ̂i = 2χ− 2λτ −ϖ2 − λτ2, Qi = 0ni , Hi = Ŵi = 1⃗ni ,

L1i = −1⃗ni , Aθi = 0, Bθi = 0, Cθi = 0, Dθi = I2ni , κ̄ = 0, (3.53)
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where χ > λτ + ϖ2

2 + λτ2

2 , and with αi(r) = 1
λmax(CT

1iC1i)
r, ηi(r) = (2χ − 2λτ − ϖ2 −

λτ2)r, ψiext(r) = 0, ∀r ∈ R≥0, and ci = τ2+ϖ2. Inputs ui ∈ Rni is given via the interface
function in (3.35) as (i.e. R̃i = 1⃗ni , L2i = 1⃗ni)

ui = −χ(xi − 1⃗ni x̂i) + 1⃗ni ûi − 1⃗niφ(⃗1
T
ni
xi) + 1⃗niφ(x̂i). (3.54)

By selecting µ1 = . . . = µN = 1, the function V (x, x̂, θ) =
∑N

i=1 µiVi(xi, x̂i, θi) is an

SSF-M2 function from Σ̂ to Σ, where Σ̂ is the interconnection of the abstract subsystems
Σ̂ = I(Σ̂1, . . . , Σ̂N ) with a coupling matrix M̂ , satisfying condition (3.16) as the following

Mdiag(⃗1n1 , . . . , 1⃗nN ) = diag(⃗1n1 , . . . , 1⃗nN )M̂. (3.55)

A matrix M̂ exists satisfying (3.55) if there exist N equitable partitions of the graph de-
scribed by the Laplacian matrix L = −M , which is always true here because L represents
a fully connected graphs, as explained in [GR13].

It can be easily seen that condition (3.15) reduces to

[
−L
In

]T [
0 In
In 0

] [
−L
In

]
= −(L+ LT ) ⪯ 0, (3.56)

which always holds since L = LT ⪰ 0, which is always true for Laplacian matrices of
undirected graphs [GR13].

3.5.1.1 Controller Synthesis

Now, we synthesize a controller for the abstract interconnected system Σ̂ = I(Σ̂1, . . . , Σ̂N )
to enforce a specification, and then refine the designed controller to the one for the con-
crete interconnected system. We fix n = 9, N = 3, τ = 0.2, ϖ = 0.4, λ = 1, χ = 10
and

C11 =
[
1 0 0

]
, C12 =

[
0 1 0

]
, C13 =

[
0 0 1

]
.

We synthesize a controller using toolbox SCOTS [RZ16] to enforce the following linear
temporal logic specification [BK08] over the outputs of Σ̂:

Ψ = □S ∧

(
5∧
i=1

□(¬Oi)

)
∧□♢T1 ∧□♢T2, (3.57)

which can be interpreted as follows: the output trajectory of the closed loop system
evolves inside the set S, avoids regions Oi, i ∈ [1; 5], indicated with blue boxes in Figure
3.2, and visits Ti, i ∈ [1; 2] infinitely often, indicated with red boxes in Figure 3.2. We use
(3.54) to generate the corresponding input enforcing this specification over the original
system Σ.
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Figure 3.2: The figure shows the output trajectories of the abstract (red) and one realization

of the concrete (black) interconnected systems. The initial point of the trajectories

is represented by the diamond.

3.5.2 Example 2

In this part, we provide compositional abstractions of a network of subsystems wherein
the joint dissipativity property of each concrete subsystem and its abstraction is only
concluded with respect to a linear control system Σθ rather than a static map. Consider
an interconnection of N second order subsystems Σi, where each Σi is given by

Σi :


dξi(t) = (Aiξi(t) +Biυi(t) +Diωi(t))dt,

ζ1i(t) = C1iξi(t),

ζ2i(t) = ξi(t),

(3.58)

where

Ai =

[
0ni Ini

−Ini −0.5Ini

]
, Bi = Di =

[
0ni

Ini

]
, C1i =

[
0ni

eni

]T
, (3.59)

vector eni represents a column vector whose first element is 1 and remaining elements
are zero. For the sake of simulation we choose N = 3, ni = 10, ∀i ∈ [1;N ]. We consider
the following abstract system Σ̂i,

Σ̂i :


dξ̂i(t) =

([
0 1
−1 −0.5

]
ξ̂i(t) +

[
0
1

]
υ̂i(t) +

[
0
1

]
ω̂i(t)

)
dt,

ζ̂1i(t) =
[
0 1

]
ξ̂i(t),

ζ̂2i(t) = ξ̂i(t).
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We restrict Ki for each i ∈ [1;N ] appearing in (3.35) such that the last ni columns
are identically zero. This restriction can appear in practice when for example only some
state variables are available to be measured. With this restriction on the structure of Ki,
one cannot find a storage function with Cθi = 0 in this example. Using the guidelines
shown in Table 3.1 and the solver package Yalmip [Lof04], it can be shown that the
function

Vi(xi, x̂i, θi) = (xi − Px̂i)
T M̂(xi − Px̂i) + θTi Λθi

is an SStF-M2 from Σ̂i to Σi, with respect to Σθi = (Aθi , Bθi , Cθi , Dθi), ∀i ∈ [1;N ], with
the following parameters

M̂i =

[
2Ini Ini

Ini Ini

]
, Pi =

[
1⃗ni 0⃗ni

0⃗ni 1⃗ni

]
,Ki =

[
−0.5Ini 0ni

]
,

κ̂i = 0.1,Wi = Ini , Qi = 0, Hi = Ŵi = 1⃗ni , L1i = 0,Λ = I2ni , (3.60)

Aθi = −5I2ni , Bθi =

[
0ni 0.207Ini

0ni −0.573Ini

]
, Cθi = 0.1I2ni , (3.61)

Dθi =

[
0ni Ini

0ni Ini

]
, Xi =

[
9.47785Ini −7.4055Ini

−7.4055Ini 1.6526Ini

]
, κ̄i = 1, (3.62)

with αi(r) = λmin(M̂i)

λmax(CT
1iC1i)

r, ηi(r) = 0.1r, ψiext = 0,∀r ∈ R≥0, and ci = 0. Functions

ui ∈ Rni are given via the interface function:

ui = −Ki(xi − Pix̂i) + 1⃗ni ûi, (3.63)

(i.e. R̃i = 1⃗ni , L2i = 0). With the interconnection matrix M given by

M =



−2 1 0 0 . . . 1
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

. . .
. . .

1 0 0 . . . 1 −2


. (3.64)

and by selecting µ1 = · · · = µN = 1, it can be verified that the function V =
N∑
i=1

µiVi(xi, x̂i, θi) + θT θ, where θ = [θi; . . . ; θN ], is an SSF-M2 from Σ̂ to Σ, where Σ̂

is the interconnection of the abstract subsystems Σ̂ = I(Σ̂1, . . . , Σ̂N ) with the coupling
matrix M̂ given by

M̂ =

−2 1 1
1 −2 1
1 1 −2

 , (3.65)

satisfying conditions (3.15) and (3.16). In the simulation, the input signal to the abstract
system is chosen arbitrarily as υ̂(t) = [sin(t); 0.1e−t;−t]. Figure 3.3 shows the evolution
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Figure 3.3: The evolution of ∥ζ(t)− ζ̂(t)∥2, where ζ(t) = [ζ11(t); . . . ; ζ1N (t)], and ζ̂(t) =

[ζ̂11(t); . . . ; ζ̂1N (t)], and the theoretical upper bound obtained for this example ac-

cording to (3.9).

.

of the absolute value of the error between the output trajectories of the concrete inter-
connected system and its abstraction. One can readily verify that the error is always
bounded by the computed error bound in Theorem 3.2.6.

3.6 Summary

In this chapter, using tools from stochastic calculus and dissipativity theory, we derived
conditions under which abstractions of interconnected stochastic hybrid systems can
be constructed compositionally. We offered two examples demonstrating the composi-
tional construction of abstractions for a network of stochastic hybrid systems based on
the methodology outlined in the chapter. First we applied this approach to a physi-
cally motivated case study, compositionally constructing an abstraction for a network
of resistor-capacitor (R-C) circuits influenced by stochastic noise. In the second exam-
ple, we highlighted the efficacy of employing a linear control system Σθ in contrast to a
static map in establishing the joint dissipativity property between a subsystem and its
abstraction.

40



Chapter 4

Compositional Abstraction of
Interconnected Systems with Variable
Topology

4.1 Introduction

In more realistic scenarios, the topology of interconnected systems is not fixed due to
various causes, for example loss of communication between the robot agents due to
occlusion caused by obstacles [SWX08; OM04], or failure of switching lines in an electric
distribution grid [Cav+19].

Figure 4.1: Interconnected system consisting of stochastic hybrid subsystems with a switched
interconnection topology switching among three matrices (exemplification). The
overall system is modeled as a switched stochastic hybrid system.

Contribution: To accommodate for this scenario, in this chapter, we deal with
interconnected systems wherein the topology is not fixed. We derive conditions under
which compositional abstractions of interconnected systems can be constructed using the
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varying interconnection topology and joint dissipativity-type properties of subsystems
and their abstractions. In this regard, we consider two different cases.

In the first case, we consider a network wherein interconnection topology among the
subsystems, modeled as stochastic hybrid systems, is randomly switching between P
different topologies (see Figure 4.1). We derive conditions under which one can con-
struct an abstraction of a given network of stochastic hybrid systems under randomly
switched topologies in a compositional way. The random switching is modeled using
a continuous-time Markov chain, with each state of the chain representing a different
interconnection topology. In addition, we consider a scenario wherein some of these
compositionality conditions are not satisfied by all the interconnection topologies (cf.
Section 4.2.5). Inspired by a recent result in [WZ17], we show that compositional ab-
stractions of interconnected stochastic hybrid systems can still be achieved under weaker
compositionality conditions, provided that an additional condition on the parameters of
the Markov chain is satisfied. This additional condition on the parameters of the Markov
chain can be interpreted as a probabilistic version of the so-called dwell time condition
used in the context of deterministic switching systems [Lib12]. We illustrate the ef-
fectiveness of the approach by synthesizing a controller to enforce a given specification
expressed as a linear temporal logic formula [BK08] over the interconnected abstraction
and then refining it back to the original interconnected system.
In the second case, we consider networks of deterministic control systems in which

the interconnection topology is governed by a linear dynamical system [Lin84]. In such
interconnected systems, the additional dynamics introduced due to the interconnec-
tion/interaction system has to be taken into account in the compositional reasoning.
We derive conditions under which compositional abstractions of networks of control sys-
tems, interconnected via some dynamic interconnection topology, can be constructed
using the dynamic interconnection and joint dissipativity-type properties of subsystems
and their abstractions. We provide an example to illustrate the effectiveness of the
proposed dissipativity-type compositional reasoning by reducing a 150-dimensional non-
linear system (electric network) to a 3-dimensional one.

4.2 Interconnected Stochastic Hybrid System with Randomly
Switched Topologies

We study the problem of constructing an abstraction of networks of stochastic hybrid
systems. The interconnection topology in this network is randomly switching between
P different topologies. Each topology is modeled by an interconnection matrix. Figure
4.1 shows such an interconnected system.

We first define the infinitesimal generator of a stochastic process which we will later
use to define notions of certificates for abstractions of subsystems in Section 4.2.3. This
definition is similar to the one in Definition 3.2.1.

Definition 4.2.1. Consider two stochastic hybrid systems

Σ = (Rn,Rm,Rp,U ,W, f, σ, ρ,Rq1 ,Rq2 , h1, h2),
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and

Σ̂ = (Rn̂,Rm̂,Rp̂, Û , Ŵ, f̂ , σ̂, ρ̂,Rq1 ,Rq̂2 , ĥ1, ĥ2),

as in Definition 2.5.1. Consider a twice continuously differentiable function V : Rn ×
Rn̂ → R≥0. The infinitesimal generator of the stochastic process Ξ = [ξ; ξ̂], denoted by
L, acting on the function V is defined as [ØS05]:

LV (x, x̂) :=
[
∂xV ∂x̂V

] [f(x, u, w)
f̂(x̂, û, ŵ)

]
+

1

2
Tr

([
σ(x)
σ̂(x̂)

] [
σT (x) σ̂T (x̂)

] [∂x,xV ∂x,x̂V
∂x̂,xV ∂x̂,x̂V

])
+

r̃∑
j=1

λj(V (x+ ρ(x)ej , x̂+ ρ̂(x̂)ej)− V (x, x̂)), (4.1)

where ej denotes a vector with 1 on the j-th entry and 0 elsewhere.

In the next sub-section, we introduce the model of the randomly switching intercon-
nection topology for the interconnected system.

4.2.1 Switching Interconnection Topology

We model the switching interconnection topology using a continuous-time Markov chain
defined as follows.

Definition 4.2.2. A continuous-time Markov chain is a tuple Π = (P,Q), where

� P is a finite set with cardinality P, called the state-space of the Markov-chain;

� Q = {qij} ∈ RP×P is called the generator matrix.

Associated with Π there is a stochastic process π̂ : Ω×R≥0 → P, on the probability space
(Ω,F ,P), such that for every fixed ω ∈ Ω, π(·) = π̂(ω, ·) : R≥0 → P. For any i, j ∈ P
and t ∈ R≥0, one has

P(π(t+ h) = j|π(t) = i) =

{
qijh+ o(h), i ̸= j,

1 + qiih+ o(h), i = j,
(4.2)

where h > 0, limh→0
o(h)
h = 0, qii = −

∑
i ̸=j qij, and qij ≥ 0 are called the transition

jump rates from i to j if i ̸= j. We denote the value of the solution process at time
t ∈ R≥0 by π(t), and refer to π as the switching process.

We assume that Π is ergodic. The ergodicity of Π implies that there exists a unique
stationary distribution denoted by ϱs = (ϱs1, . . . , ϱsP), such that for any i, j ∈ P:

lim
t→∞

P(π(t+ h) = j|π(t) = i) = ϱsj . (4.3)

43



Chapter 4 Compositional Abstraction of Interconnected Systems with Variable Topology

We also assume that π̂(·, 0) = π(0) is measurable in trivial sigma-algebra F0. Let {Tk},
k ∈ N, be the sequence of times at which switching occurs. The sojourn time Sj (the time
to stay in a mode) in each state j ∈ P is exponentially distributed with mean θj =

1
|qjj | ,

i.e. P(Sj ≤ z) = 1 − e
− z

θj , for any z ∈ R>0. In addition, the sequence {Tk+1 − Tk},
where k ∈ N, is a collection of independent random variables and is independent of the
switching process π.

4.2.2 Interconnected System

We now show how a switching stochastic hybrid system is induced by the interconnection
of stochastic hybrid subsystems via a switched interconnection topology governed by a
continuous-time Markov chain as in Definition 4.2.2.

Definition 4.2.3. Consider N ∈ N≥1 stochastic hybrid subsystems

Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi, ρi,Rq1i ,Rq2i , h1i, h2i),

where i ∈ [1;N ]. Consider a continuous-time Markov chain Π = (P,Q), as in Definition
4.2.2, with P = {1, . . . ,P}, and switching process π. Consider a set of interconnection
matrices M = {M1, . . . ,MP}, where each matrix Mi, i ∈ [1;P], defines the coupling of
these subsystems. The interconnected switching stochastic hybrid system1

Σ = (Rn,Rm,U ,P, π, f, σ, ρ,Rq, h),

denoted by IMπ (Σ1, . . . ,ΣN ), follows by n =
∑N

i=1 ni,m =
∑N

i=1mi, q =
∑N

i=1 q1i, and
the function

f(x, u, p) := [f1(x1, u1, w1); . . . ; fN (xN , uN , wN )], (4.4)

σ(x) := [σ1(x1); . . . ;σN (xN )], (4.5)

ρ(x) := [ρ1(x1); . . . ; ρN (xN )], (4.6)

h(x) := [h11(x1); . . . ;h1N (xN )], (4.7)

where u = [u1; . . . ;uN ], x = [x1; . . . ;xN ] and the internal variables are constrained by

[w1; . . . ;wN ] =Mp[h21(x1); . . . ;h2N (xN )], (4.8)

for any p ∈ P, where p is determined by the switching process π.

In the next section, we address the problem of constructing an abstraction of a switch-
ing stochastic hybrid system by introducing a Lyapunov-like function which is used to
establish a quantitative bound between the output of the abstraction and the concrete
system.

1see Definition 2.5.4 for the definition
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4.2.3 Certificates for Abstraction for Networks with Randomly Switched
Topologies

In the following subsection, we introduce the notion of stochastic simulation function
used to relate two switching stochastic hybrid systems. This notion is similar to the one
introduced in Definition 3.2.5, but adapted for switching stochastic hybrid systems.

4.2.3.1 Stochastic Simulation Function

Definition 4.2.4. Let Π = (P,Q) be a continuous-time
Markov chain with switching process π. Let

Σ = (Rn,Rm,U ,P, π, f, σ, ρ,Rq, h),

and
Σ̂ = (Rn̂,Rm̂, Û ,P, π, f̂ , σ̂, ρ̂,Rq, ĥ),

be two switching stochastic hybrid systems as in Definition 2.5.4. A function V : Rn ×
Rn̂ × P → R≥0 is called a stochastic simulation function in the second moment2 (SSF-
M2), from Σ̂ to Σ if V (·, ·, j) : Rn × Rn̂ → R≥0 is twice continuously differentiable, it
has a polynomial growth rate ∀j ∈ P, and there exist a convex function α ∈ K∞, concave
function ψext ∈ K∞ ∪ {0}, and positive constant κ, such that ∀x ∈ Rn, ∀x̂ ∈ Rn̂, and
∀j ∈ P, one has

α(∥h(x)− ĥ(x̂)∥2) ≤ V (x, x̂, j), (4.9)

and ∀j ∈ P, ∀x ∈ Rn, ∀x̂ ∈ Rn̂, and ∀û ∈ Rm̂ ∃u ∈ Rm such that:

LV (x, x̂, j) ≤ −κV (x, x̂, j) + ψext(∥û∥2). (4.10)

We say that a switching stochastic hybrid system Σ̂ is approximately simulated by a
switching stochastic hybrid system Σ if there exists an SSF-M2 V from Σ̂ to Σ. We call
Σ̂ (possibly with n̂ < n) an abstraction of Σ.
The next theorem shows the importance of the existence of an SSF-M2 by quantifying

the error between the output trajectories of Σ and those of its abstraction Σ̂.

Theorem 4.2.5. Let Π = (P,Q) be a continuous-time Markov chain with switching
process π. Let us consider two switching stochastic hybrid systems

Σ = (Rn,Rm,U ,P, π, f, σ, ρ,Rq, h),

and
Σ̂ = (Rn̂,Rm̂, Û ,P, π, f̂ , σ̂, ρ̂,Rq, ĥ).

Suppose V is an SSF-M2 from Σ̂ to Σ. Then, there exists a KL function β and a function
γext ∈ K∞ ∪ {0} such that for any random variables a and â that are F0-measurable,

2We use the term second moment because the stochastic simulation function is used to quantify the
square of the norm of the error between output trajectories of Σ and Σ̂ (see Theorem 4.2.5).
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and for any υ̂ ∈ Û there exists υ ∈ U such that the following inequality holds for any
t ∈ R≥0:

E[∥ζaυ(t)−ζ̂âυ̂(t)∥2]≤β(E[V (a, â, π(0))], t)+γext(E[∥υ̂∥2∞]). (4.11)

Proof. Note that inequality (4.10) can be written in the so-called implication form, i.e.,
∀x ∈ Rn,∀x̂ ∈ Rn̂, ∀û ∈ Rm̂,∃u ∈ Rm such that

LV (x, x̂, j) ≤ −λ0V (x, x̂, j), whenever V (x, x̂, j) > ψext(∥û∥2)
ϵ0

, (4.12)

for some 0 < ϵ0 < κ, where λ0 = κ− ϵ0.
For any r ∈ R≥0, we define the following set

B̄(r) :=

[x; x̂] ∈ Rn × Rn̂
∣∣∣∣∣
∥[x; x̂]∥ ≤ α∗

where α∗ =
sup
j∈P

sup
V (y,ŷ,j)=r

∥[y; ŷ]∥

 . (4.13)

We define the following functions

c1(r) := sup
(x,x̂,j)∈B̄(r)×P

LV (x, x̂, j), (4.14)

and

c2(r) := λ0

(
sup

(x,x̂,j)∈B̄(r)×P

V (x, x̂, j)

)
. (4.15)

When [x; x̂] ∈ B̄(ρ(∥û∥2)), where ρ(r) := ψext(r)
ϵ0

, it follows that

LV (x, x̂, j) ≤ c1(ρ(∥û∥2)), (4.16)

and therefore one can write

LV (x, x̂, j)IB̄(ρ(∥û∥2))([x; x̂]) ≤
(
c1(ρ(∥û∥2))

)
IB̄(ρ(∥û∥2))([x; x̂]), (4.17)

for any x ∈ Rn, x̂ ∈ Rn̂, j ∈ P. From (4.12), one can readily write

LV (x, x̂, j)
(
1− IB̄(ρ(∥û∥2))([x; x̂])

)
≤ −λ0V (x, x̂, j)

(
1− IB̄(ρ(∥û∥2))([x; x̂])

)
. (4.18)

Therefore, one has

LV (x, x̂, j) ≤ −λ0V (x, x̂, j) + C(ρ(∥û∥2))IB̄(ρ(∥û∥2))([x; x̂]), (4.19)

for any x ∈ Rn, x̂ ∈ Rn̂, j ∈ P, where C(r) := c1(r) + c2(r). Inequality (4.19) has a form
similar to inequality (3.52) in [Cha07]. Following the subsequent arguments in the proof
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of Theorem 3.29 in[Cha07], one can use Ito’s formula, Doob’s optional sampling theorem
[GS20], the monotone convergence theorem [KS88], and Fatou’s lemma [Rud87] to state
that there exists a concave function ϑ ∈ K∞ such that for any υ̂ ∈ Û there exists υ ∈ U
such that the following inequality holds for any t ∈ R≥0:

E[V (ξ(t), ξ̂(t), π(t))] ≤ e−λ0tV (ξ(0), ξ̂(0), π(0)) +
ϑ(ρ(∥υ̂∥2∞))

λ0
. (4.20)

Using the convexity of α in inequality (4.9) and Jensen’s inequality [Rud87], we obtain
the following inequality which holds for any t ∈ R≥0

E[∥ζaυ(t)−ζ̂âυ̂(t)∥2] ≤ β(E[V (a, â, π(0))], t) + γext(E[∥υ̂∥2∞]), (4.21)

where the functions β and γext are defined as

β(r, s) := α−1(2re−λ0s),

γext(r) := α−1

(
2

λ0
ϑ

(
ψext(r)

ϵ0

))
. (4.22)

Finding such a stochastic simulation function between a high-dimensional switching
stochastic hybrid system (e.g. one induced by the interconnection of large number of
subsystems) and a candidate abstraction can be difficult. To circumvent this problem,
we adopt a bottom-up approach by utilizing a local certificate, namely stochastic storage
function similar to the one defined in Definition 2.5.1, to relate each (stochastic hybrid)
subsystem with its respective abstraction. Later, in Section 4.2.4, we derive conditions
under which one can compositionally construct a stochastic simulation function between
the concrete interconnected system and the interconnection of abstractions of subsystems
from these local certificates.

4.2.3.2 Stochastic Storage Function

To relate two stochastic hybrid subsystems, we recall the notion of stochastic storage
function from Definition 2.5.1, adapted from the notion of storage functions from dissi-
pativity theory [AMP16]. The notion we introduce here is similar to the one defined in
Definition 2.5.1, with the restriction that the joint dissipativity properties are defined
with respect to a static map, instead of a dynamic map, whose input is the (internal)
inputs and outputs of the subsystems and their abstractions.

Definition 4.2.6. Let

Σ = (Rn,Rm,Rp,U ,W, f, σ, ρ,Rq1 ,Rq2 , h1, h2),

and

Σ̂ = (Rn̂,Rm̂,Rp̂, Û , Ŵ, f̂ , σ̂, ρ̂,Rq1 ,Rq̂2 , ĥ1, ĥ2),
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be two stochastic hybrid systems as in Definition 2.5.1 with the same external output
space dimension, and with solution processes ξ and ξ̂, respectively. A twice continuously
differentiable function S : Rn×Rn̂ → R≥0 is called a stochastic storage function from Σ̂
to Σ in the second moment (SStF-M2), if it has polynomial growth rate and if there exist
convex function α ∈ K∞, concave function ψext ∈ K∞ ∪ {0}, some positive constant κ,
some matrices W, Ŵ , and H of appropriate dimensions, and some symmetric matrix X
of appropriate dimension with conformal block partitions Xij , i, j ∈ [1; 2], with X22 ⪯ 0,
such that ∀x ∈ Rn and ∀x̂ ∈ Rn̂, one has

α(∥h1(x)− ĥ1(x̂)∥2) ≤ S(x, x̂), (4.23)

and for any x ∈ Rn, x̂ ∈ Rn̂, and û ∈ Rm̂ there exists u ∈ Rm such that for any ŵ ∈ Rp̂
and any w ∈ Rp, one obtains

LS(x, x̂) ≤ −κS(x, x̂) + ψext(∥û∥2) (4.24)

+

[
Ww − Ŵ ŵ

h2(x)−Hĥ2(x̂)

]T [
X11 X12

X21 X22

] [
Ww − Ŵ ŵ

h2(x)−Hĥ2(x̂)

]
.

Condition (4.24) implies the existence of a function u = k(x, x̂, û) to choose u for any
x, x̂, and û. We call this function an interface function. The stochastic hybrid system Σ̂
(possibly with n̂ < n) is called an abstraction of Σ.

4.2.4 Compositionality Result

The next theorem, inspired by Theorem 7 in [AZ17a] and adapted to account for ran-
domly switched topologies, provides a compositional approach on the construction of
abstractions of networks of stochastic hybrid systems under randomly switched topolo-
gies.
Assume we are given N stochastic hybrid subsystems

Σi = (Rni ,Rmi ,Rpi ,Ui,Wi, fi, σi, ρi,Rq1i ,Rq2i , h1i, h2i)

together with their corresponding abstractions

Σ̂i = (Rn̂i ,Rm̂i ,Rp̂i , Ûi, Ŵi, f̂i, σ̂i, ρ̂i,Rq1i ,Rq̂2i , ĥ1i, ĥ2i),

and with SStF-M2 Si from Σ̂i to Σ. We use Wi, Ŵi, Hi, and Xi to denote the corre-
sponding matrices appearing in Definition 4.2.6.

Theorem 4.2.7. Consider an interconnected switching
stochastic hybrid system Σ = IMπ (Σ1, . . . ,ΣN ) induced by N ∈ N≥1 stochastic hybrid
subsystems Σi, a set of interconnection matrices M = {M1, . . . ,MP}, and a continuous-
time Markov chain Π = (P,Q) governing the switching between the interconnection
topologies with associated stochastic process π. More specifically, the interconnection
topology at any time t ∈ R≥0 is given by Mπ(t). Suppose each subsystem Σi admits an

abstraction Σ̂i with the corresponding SStF-M2 Si. If there exists a finite set of matrices
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M̂ = {M̂1, . . . , M̂P} of appropriate dimension such that for each j ∈ [1;P] the matrix
(in)equalities [

WMj

Iq̃

]T
X(µj

1X1, . . . , µ
j
NXN )

[
WMj

Iq̃

]
⪯ 0, (4.25)

WMjH = ŴM̂j , (4.26)

are satisfied for some µji > 0, i ∈ [1;N ], where q̃ =
∑N

i=1 q2i and

W = diag(W1, . . . ,WN ), Ŵ = diag(Ŵ1, . . . , ŴN ),

H = diag(H1, . . . ,HN ),

X(µj
1X1, . . . , µ

j
NXN ) =

µj
1X

11
1 µj

1X
12
1

. . .
. . .

µj
NX

11
N µj

NX
12
N

µj
1X

21
1 µj

1X
22
1

. . .
. . .

µj
NX

21
N µj

NX
22
N


,

(4.27)

then

V (x, x̂, j) :=
N∑
i=1

µjiSi(xi, x̂i),

is an SSF-M2 from the interconnected switching stochastic hybrid system Σ̂ := IM̂π (Σ̂1, . . . , Σ̂N ),
with the interconnection topology at time t ∈ R≥0 given by M̂π(t), to Σ.

Proof. First we show that inequality (4.9) holds for some convex K∞ function α. For
any x = [x1; . . . ;xN ] ∈ Rn, x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂, and j ∈ P, one gets:

∥h(x)− ĥ(x̂)∥2 ≤
N∑
i=1

∥h1i(xi)− ĥ1i(x̂i)∥2

≤
N∑
i=1

α−1
i (Si(xi, x̂i)) ≤ αj(V (x, x̂, j)),

where αj is a K∞ function defined as

αj(s) :=

max
s⃗≥0

∑N
i=1 α

−1
i (si)

s.t. µTj s⃗ = s,
(4.28)

where s⃗ = [s1; . . . ; sN ] ∈ RN and µj = [µj1; . . . ;µ
j
N ]. Since αj ∈ K∞ are concave functions

as argued in [ZRE17], there exists a concave function α ∈ K∞ such that αj ≤ α ∀j ∈ P.
By defining α = α−1 which is a convex K∞ function, one obtains
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LV (x, x̂, j) =

N∑
i=1

µj
iLSi(xi, x̂i)

≤
N∑
i=1

µj
i

(
− κiSi(xi, x̂i) + ψiext(∥ûi∥2) +

[
Wiwi − Ŵiŵi

h2i(xi)−Hiĥ2i(x̂i)

]T [
X11

i X12
i

X21
i X22

i

] [
Wiwi − Ŵiŵi

h2i(xi)−Hiĥ2i(x̂i)

])

≤
N∑
i=1

−µj
iκiSi(xi, x̂i) +

N∑
i=1

µj
iψiext(∥ûi∥2)

+


W

w1

...
wN

− Ŵ

 ŵ1

...
ŵN


h1(x1)−H1ĥ21(x̂1)

...

h2N (xN )−HN ĥ2N (x̂N )



T

X(µj
1X1, . . . , µ

j
NXN )


W

w1

...
wN

− Ŵ

 ŵ1

...
ŵN


h1(x1)−H1ĥ21(x̂1)

...

h2N (xN )−HN ĥ2N (x̂N )


≤

N∑
i=1

−µj
iκiSi(xi, x̂i) +

N∑
i=1

µj
iψiext(∥ûi∥2)

+

 h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )


T [

WMj

Iq̃

]T
X(µj

1X1, . . . , µ
j
NXN )

[
WMj

Iq̃

] h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )


≤ −κV (x, x̂, j) + ψext(∥û∥2). (4.29)

α(∥h1(x)− ĥ1(x̂)∥2) ≤ V (x, x̂, j),

satisfying inequality (4.9). Now we show inequality (4.10). Consider any x = [x1; . . . ;xN ] ∈
Rn, x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂, û = [û1; . . . ; ûN ] ∈ Rm̂ and j ∈ P. For any i ∈ [1;N ], there
exists ui ∈ Rmi , consequently, a vector u = [u1; . . . ;uN ] ∈ Rm, satisfying (4.63) for
each pair of subsystems Σi and Σ̂i with the internal inputs given by [w1; . . . ;wN ] =
Mj [h21(x1); . . . ;h2N (xN )] and [ŵ1; . . . ; ŵN ] = M̂j [ĥ21(x̂1); . . . ; ĥ2N (x̂N )]. We consider
the infinitesimal generator of function V and employ conditions (4.25) and (4.26) which
result in the chain of inequalities (4.29). In (4.29) the constant κ = min

i∈[1;N ]
κi and the

function ψext ∈ K∞ ∪ {0} is defined as the following. Consider K∞ ∪ {0} functions

ψjext(s) :=

max
s⃗≥0

∑N
i=1 µ

j
iψiext(si)

s.t. ∥s⃗∥ ≤ s.

Let us recall that by assumption functions ψiext ∀i ∈ [1;N ] are concave functions. Thus,
function ψjext above defines a perturbation function which is a concave one; see [BV04]
for further details. Since ψjext ∈ K∞ ∪ {0} are concave functions, there exists a concave
function ψext ∈ K∞ ∪ {0} such that ψjext ≤ ψext ∀j ∈ P. Hence, we conclude that V is
an SSF-M2 function from Σ̂ to Σ.
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In the next section, we provide a result for compositional construction of abstractions
under compositionality conditions which are weaker than the ones given in Theorem
4.2.7.

4.2.5 Weaker Compositionality Conditions

In this section, we consider an interconnection of a specific class of stochastic hybrid
systems called jump linear stochastic systems (JLSS).

4.2.5.1 Jump Linear Stochastic Systems

In a JLSS, the drift, diffusion, reset, and output functions are given as:

dξ(t) = (Aξ(t) +Bυ(t) +Dω(t))dt+ Eξ(t)dWt+

r̃∑
i=1

Fiξ(t)dP
i
t ,

ζ1(t) = C1ξ(t),

ζ2(t) = C2ξ(t), (4.30)

where A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×p, E ∈ Rn×n, Fi ∈ Rn×n, ∀i ∈ [1; r̃], C1 ∈ Rq1×n,
and C2 ∈ Rq2×n. We use the tuple

Σ = (A,B,C1, C2, D,E,F),

where F = {F1, . . . , Fr̃}, to refer to the class of system of the form (4.30).
We now we recall the result from [AZ17a] which shows that the function

S(x, x̂) = (x− Px̂)TΦ(x− Px̂), (4.31)

where Φ ∈ Rn×n is a positive definite matrix and P ∈ Rn×n, is a SStF-M2 function from
an abstraction Σ̂ to the concrete JLSS Σ under some conditions. We first require the
following assumption on the concrete system Σ.

Assumption 4.2.8. Let Σ = (A,B,C1, C2, D,E,F). Assume that for some constant
κ̂ ∈ R>0, there exist matrices Φ ≻ 0,K, Z,W,X11, X12, X21, and X22 ⪯ 0 of appropriate
dimensions such that the following matrix (in)equalities hold:[

∆ ΦZ
ZTΦ 0

]
⪯
[
−κ̂Φ+ CT2 X

22C2 CT2 X
21

X12C2 X11

]
, (4.32)

D = ZW, (4.33)

where

∆ := (A+BK +

r̃∑
j=1

λiFi)
TΦ+ Φ(A+BK +

r̃∑
i=1

λiFi) (4.34)

+ ETΦE +
r̃∑
i=1

λiF
T
i ΦFi. (4.35)
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We now recall a result from [AZ17a] showing that S is a SStF-M2 function from an
abstraction Σ̂ to the concrete JLSS Σ

Theorem 4.2.9. Let Σ = (A,B,C1, C2, D,E,F), and Σ̂ = (Â, B̂, Ĉ1, Ĉ2, D̂, Ê, F̂) with
same external output dimension. Suppose Assumption 4.2.8 holds and there exist ma-
trices Q, H, and Ŵ of appropriate dimensions such that:

AP = PÂ−BQ (4.36a)

C1P = Ĉ1 (4.36b)

X12C2P = X12HĈ2 (4.36c)

X22C2P = X22HĈ2 (4.36d)

PD̂ = ZŴ (4.36e)

EP = PÊ (4.36f)

FiP = PF̂i ∀i ∈ [1; r̃]. (4.36g)

Then function S defined in (4.31) is a SStF-M2 function from Σ̂ to Σ.

Proof. The proof can be found in [AZ17a] and is omitted here.

4.2.5.2 Feasibility of matrix inequality (4.32)

In this subsection, we discuss the feasibility of matrix inequality (4.32) appearing in
Assumption 4.2.8. For the restricted case ofX12 = X21 = 0, X22 = −I∗, andX11 = 1

γ̃2
I∗

for some γ̃ > 0, where 0 denotes the zero matrix and I∗ the identity matrix of appropriate
dimensions, the matrix inequality (4.32) reduces to

(A+BK +
r̃∑
j=1

λiFi)
TΦ+ Φ(A+BK +

r̃∑
i=1

λiFi)

+ ETΦE +

r̃∑
i=1

λiF
T
i ΦFi + κ̂Φ+ CT2 C2 + γ̃2ΦZZTΦ ⪯ 0. (4.37)

Suppose we can find a matrix K such that the matrix pair (A+ BK,Z) is controllable
and the matrix pair (C2, A + BK) is observable, then by virtue of an extension of the
Positive Real Lemma for stochastic systems [RH16] to jump linear stochastic systems,
condition (4.37) means that the system

dξ(t) = (Aξ(t) +Bυ(t) + Zω(t))dt+ Eξ(t)dWt +
r̃∑
i=1

Fiξ(t)dP
i
t , (4.38)

ζ(t) = C2ξ(t), (4.39)

can be enforced stochastically exponentially nonexpansive (see Section IV in [RH16] for a
definition) under a linear control law υ = Kξ. Thus the feasibility of the restricted version
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of the matrix inequality in Assumption 4.2.8 is dual to the problem wherein the system
(4.39) is enforced stochastically exponentially nonexpansive by a linear control law. For
deterministic systems, the analogue of enforcing stochastic exponential nonexpansivity
is the finite L2 gain assignment problem [AMP16]. In the context of observer design
and observer based control, the feasibility of those dual control problems have been
investigated for several physical problems in [Sch04], [FA03], and [Arc+03].

4.2.5.3 Weaker Compositionality Conditions for Interconnected JLSSs

We now present the main result in this section which provides sufficient conditions
under which compositional abstraction of networks of JLSSs under randomly switched
topologies can be constructed with weaker compositionality conditions.
Assume we are given N JLSSs

Σi = (Ai, Bi, C1i, C2i, Di, Ei,Fi),

where Ai ∈ Rni×ni , Bi ∈ Rni×mi , Di ∈ Rni×pi , Ei ∈ Rni×ni , Fi = {F1i, . . . , Fr̃i}, C1i ∈
Rq1i×ni , C2i ∈ Rq2i×ni together with their corresponding abstractions

Σ̂i = (Âi, B̂i, Ĉ1i, Ĉ2i, D̂i, Êi, F̂i),

where Âi ∈ Rn̂i×n̂i , B̂i ∈ Rn̂i×m̂i , D̂i ∈ Rn̂i×p̂i , Êi ∈ Rn̂i×n̂i , F̂i = {F̂1i, . . . , F̂r̃i}, Ĉ1i ∈
Rq1i×n̂i , Ĉ2i ∈ Rq̂2i×n̂i , and with SStF-M2

Si(xi, x̂i) = (xi − Pix̂i)
TΦi(xi − Pix̂i), (4.40)

from Σ̂i to Σi, i ∈ [1;N ], where Pi ∈ Rni×n̂i and Φi ∈ Rni×ni . We use αi, ψiext, κi, Wi,
Ŵi, Hi, andXi to denote the corresponding functions, constants, and matrices appearing
in Definition 4.2.6.

We consider an interconnected switching stochastic hybrid system Σ = IMπ (Σ1, . . . ,ΣN )
induced by N ∈ N≥1 JLSSs Σi, a set of interconnection matrices

M = {M1, . . . ,MP},

and a continuous-time Markov chain Π = (P,Q) with associated stochastic process
π governing the switching of the interconnection topologies. In order to derive the
compositionality result, we first require the following two assumptions:

Assumption 4.2.10. Functions Si given in (4.40) are SStF-M2 from Σ̂i to Σi with
ψiext ≡ 0 (i.e. the zero function) in (4.24), ∀i ∈ [1;N ].

Assumption 4.2.10 is not very restrictive and has been shown to be satisfied for various
case studies in [AZ19; ZA17; Lav19].

Assumption 4.2.11. There exist constants κuj ∈ R≥0, µ
j
i ∈ R>0,∀i ∈ [1;N ], ∀j ∈ P,

and matrices M̂={M̂1, . . . , M̂P} of appropriate dimensions such that following (in)equalities
hold

CT2

[
WMj

Iq̃

]T
X(µj1X1, . . . , µ

j
NXN )

[
WMj

Iq̃

]
C2 ≤ κujΦ, (4.41)
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WMjH = ŴM̂j , (4.42)

where

W = diag(W1, . . . ,WN ), Ŵ = diag(Ŵ1, . . . , ŴN ),

H = diag(H1, . . . ,HN ),

X(µj1X1, . . . , µ
j
NXN ) =

µj1X
11
1 µj1X

12
1

. . .
. . .

µjNX
11
N µjNX

12
N

µj1X
21
1 µj1X

22
1

. . .
. . .

µjNX
21
N µjNX

22
N


,

(4.43)

q̃ =
∑N

i=1 q2i, Φ = diag{Φ1, . . . ,ΦN}, and C2 = diag{C21, . . . , C2N}.
Now we present the main result of this section wherein we provide sufficient conditions

to quantify the error between the output trajectories of the interconnected system and
that of its abstraction under weaker conditions (4.41).

Theorem 4.2.12. Consider an interconnected switching stochastic hybrid system Σ =
IMπ (Σ1, . . . ,ΣN ) induced by N ∈ N≥1 JLSSs Σi, a set of interconnection matrices
M = {M1, . . . ,MP}, and a continuous-time Markov chain Π = (P,Q) with associated
stochastic process π governing the switching of the interconnection topologies. Specif-
ically, the interconnection topology at any time t ∈ R≥0 is given by Mπ(t). Suppose
Assumptions 4.2.10, 4.2.11, and the following inequality holds:

c̃q̄

(
κ̃θ̂u

1− κ̃θ̂u
d̃+ 1

)(
κ̃θ̂u

1− κ̃θ̂u
+ 1

)
− κ̃s − q̌ < 0,

(4.44)

where κ̃ = κ̃s + κ̃u,

κ̃s :=

0, if #Ss = 0,

min
j∈Ss

{κ− κuj}, otherwise,

κ̃u :=

0, if #Su = 0,

max
j∈Su

{κuj − κ}, otherwise,
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κ = min
i∈[1;N ]

κi, Su = {j ∈ P : κuj − κ ≥ 0}, Ss = P\Su, q̄ = max
i∈P

|qii|, d̃ =
∑
i∈Su

ϱsi,

q̌ = {max
i,j∈P

qij , i ∈ Su, j ∈ Ss}, θ̂u = max
i∈Su

θi, and

c̃ := max

{
1 + ϵ,

(
max

l,m∈P,i∈[1;N ]

{
µli
µmi

})}
, (4.45)

for some ϵ > 0. Then, there exists a KL function β such that for any random variables
a and â that are F0-measurable, and for any υ̂ ∈ Û there exists υ ∈ U such that the
following inequality holds for any t ∈ R≥0:

E[∥ζaυ(t)− ζ̂âυ̂(t)∥2] ≤ β(V (a, â, π(0)), t), (4.46)

where

V (x, x̂, j) :=
N∑
i=1

µjiSi(xi, x̂i). (4.47)

Proof. For any x = [x1; . . . ;xN ] ∈ Rn, x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂, and j ∈ P, one gets:

∥h(x)− ĥ(x̂)∥2 ≤
N∑
i=1

∥h1i(xi)− ĥ1i(x̂i)∥2

≤
N∑
i=1

α−1
i (Si(xi, x̂i)) ≤ αj(V (x, x̂, j)),

where αj is a K∞ function defined as

αj(s) :=

max
s⃗≥0

∑N
i=1 α

−1
i (si)

s.t. µTj s⃗ = s,
(4.48)

where s⃗ = [s1; . . . ; sN ] ∈ RN≥0 and µj = [µj1; . . . ;µ
j
N ]. Since αj ∈ K∞ are concave

functions due to convexity of αi as argued in [ZRE17], there exists a concave function
α ∈ K∞ such that αj ≤ α ∀j ∈ P. By defining α = α−1 which is a convex K∞ function,
one obtains

α(∥h1(x)− ĥ1(x̂)∥2) ≤ V (x, x̂, j). (4.49)

Similarly, one can show that for any x = [x1; . . . ;xN ] ∈ Rn, x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂ and
j ∈ P, the infinitesimal generator of V satisfies the series of inequalities given in (4.50).
Now, for all x = [x1; . . . ;xN ] ∈ Rn, x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂, and j, k ∈ P, V satisfies the
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Chapter 4 Compositional Abstraction of Interconnected Systems with Variable Topology

LV (x, x̂, j) =

N∑
i=1

µj
iLSi(xi, x̂i)

≤
N∑
i=1

µj
i

(
− κiSi(xi, x̂i) +

[
Wiwi − Ŵiŵi

C2ixi −HiĈ2ix̂i

]T [
X11

i X12
i

X21
i X22

i

] [
Wiwi − Ŵiŵi

C2ixi −HiĈ2ix̂i

])

=

N∑
i=1

−µj
iκiSi(xi, x̂i) +


W

w1

...
wN

− Ŵ

 ŵ1

...
ŵN


C21x1 −H1Ĉ21x̂1

...

C2NxN −HN Ĉ2N x̂N



T

X(µj
1X1, . . . , µ

j
NXN )


W

w1

...
wN

− Ŵ

 ŵ1

...
ŵN


C1x1 −H1Ĉ21x̂1

...

C2NxN −HN Ĉ2N x̂N


=

N∑
i=1

−µj
iκiSi(xi, x̂i)

+

 C21x1 −H1Ĉ21x̂1
...

C2NxN −HN Ĉ2N x̂N


T [

WMj

Iq̃

]T
X(µj

1X1, . . . , µ
j
NXN )

[
WMj

Iq̃

] C21x1 −H1Ĉ21x̂1
...

C2NxN −HN Ĉ2N x̂N


=

N∑
i=1

−µj
iκiSi(xi, x̂i)

+

 x1 − P1x̂1
...

xN − PN x̂N


T

CT
2

[
WMj

Iq̃

]T
X(µj

1X1, . . . , µ
j
NXN )

[
WMj

Iq̃

]
C2

 x1 − P1x̂1
...

xN − PN x̂N


≤ −κ̃sV (x, x̂, j)ISs

(j) + κ̃uV (x, x̂, j)ISu
(j). (4.50)

following inequality:

V (x, x̂, j) =

N∑
i=1

µjiSi(xi, x̂i)

≤
(

max
l,m∈P,i∈[1;N ]

{
µli
µmi

}) N∑
i=1

µki Si(xi, x̂i)

=

(
max

l,m∈P,i∈[1;N ]

{
µli
µmi

})
V (x, x̂, k)

≤ c̃V (x, x̂, k), (4.51)

where c̃ is defined in (4.45). Using Lemmas 3.4 and 3.5 in [WZ17], it can be shown that
for any random variables a and â that are F0-measurable, and for any υ̂ ∈ Û there exists
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4.2 Interconnected Stochastic Hybrid System with Randomly Switched Topologies

υ ∈ U such that for any t ∈ R≥0, one has:

E[V (ξaυ(t), ξ̂âυ̂(t), π(t))] ≤ V (a, â, π(0))eχt, (4.52)

where

χ = c̃q̄

(
κ̃θ̂u

1− κ̃θ̂u
d̃+ 1

)(
κ̃θ̂u

1− κ̃θ̂u
+ 1

)
− κ̃s − q̌.

Using (4.49) and Jensen’s inequality [Rud87], one can show that the following inequality
holds for any t ∈ R≥0:

E[∥ζaυ(t)− ζ̂âυ̂(t)∥2] ≤ α−1
(
V (a, â, π(0))eχt

)
. (4.53)

Due to the assumption that χ < 0 from (4.44), inequality (4.46) is satisfied with β(r, t) =
α−1(reχt),∀r ∈ R≥0, t ∈ R≥0, which concludes the proof.

Remark 4.2.13. The matrix inequality (4.41) is linear with respect to the decision
variables κuj and µj = [µj1; . . . ;µ

j
N ], j ∈ P. The matrix equality (4.42) is linear in the

decision variables M̂j , j ∈ P, and can readily be solved using optimization tools such as
Yalmip [Lof04].

Remark 4.2.14. Condition (4.41) is similar to the linear matrix inequality (LMI) in
[AMP16] as a compositional stability condition based on dissipativity theory. It is shown
in [AMP16] that this condition can hold independently of the number of subsystems in
many physical applications with certain interconnection topologies, e.g., skew symmetric
interconnection.

4.2.6 Example

In the following example we consider an interconnected system with randomly switched
topologies for which an abstraction cannot be constructed compositionally using the
conditions in Theorem 4.2.7, but can be constructed using the weaker conditions in
Theorem 4.2.12.

Consider an interconnection of N ∈ N JLSSs Σi, i ∈ [1;N ], where each Σi is given by

Σi = (0ni , Ini , C1i, Ini , Ini , ϖIni , τIni),

where ϖ ∈ R>0, τ ∈ R>0, and C1i ∈ Rq1i×ni . The dynamics of each Σi are given by:

Σi :


dξi(t) = (ωi(t) + υi(t))dt+ϖξi(t)dWt + τξi(t)dPt,

ζ1i(t) = C1iξi(t),

ζ2i(t) = ξi(t).
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Assume the rate of the Poisson process Pt is λ. We consider a set of two interconnection
topologies M = {M1,M2} given by:

M1 =
2

n


0 1 . . . . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

. . .
. . .

...
1 . . . . . . 1 0

 ,

M2 =



−2 1 0 0 . . . 1
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

. . .
. . .

1 0 0 . . . 1 −2


, (4.54)

where n =
N∑
i=1

ni. We consider a Markov chain Π = (P,Q), with P = {1, 2} and

Q =

[
−0.1 0.1
0.01 −0.01

]
,

with the switching process π, governing the switching between matrices M1 and M2.
The interconnected switching stochastic hybrid system is denoted by IMπ (Σ1, . . . ,ΣN ).
We consider a scalar JLSS abstraction

Σ̂i = (0, 1, C1i1⃗ni , 1, 1, ϖ, τ).

The function Si(xi, x̂i) = (xi − 1⃗ni x̂i)
T (xi − 1⃗ni x̂i) is an SStF-M2 from Σ̂i to Σi, ∀i ∈

[1;N ], with the following parameters:

κi = 2χ̃− 2λτ −ϖ2 − λτ2,Wi = Ini , X
11
i = 0ni , (4.55)

X22
i = 0ni , X

12
i = X21

i = Ini , Hi = Ŵi = 1⃗ni , (4.56)

for some χ̃ > λτ + ϖ2

2 + λτ2

2 , and with αi(r) =
1

λmax(CT
1iC1i)

r, and ψiext(r) = 0, ∀r ∈ R≥0.

Input ui ∈ Rni is given via the interface function

ui = −χ̃(xi − 1⃗ni x̂i) + 1⃗ni ûi. (4.57)

In this example, we choose N = 3, ni = 50, C1i = [1 0 . . . 0], ∀i ∈ [1;N ], ϖ = 0.3,
τ = 0.03, χ̃ = 0.6, and λ = 1. Note that for the interconnection matrix M1, the
condition (4.25) in Theorem 4.2.7 cannot be satisfied for any µ1i ∈ R≥0, i ∈ [1;N ].
Therefore, we resort to the weaker conditions in Theorem 4.2.12 to solve this example.
We select µj1 = · · · = µjN = 1 for every j ∈ {1, 2}. We determine the smallest constants
κuj ≥ 0, j ∈ [1; 2], satisfying (4.41), which results in κu1 = 3.9733 and κu2 = 0. It can
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4.2 Interconnected Stochastic Hybrid System with Randomly Switched Topologies

Figure 4.2: A realization of the output trajectories of the concrete (blue) and abstract (red)

interconnected stochastic hybrid systems with switched topologies (ζ(t) and ζ̂(t)
respectively). The yellow boxes indicate the two targets T1 and T2. The start
points of the trajectories are indicated by the pentagram markers.

be readily verified that conditions (4.42) and (4.44) in Theorem 4.2.12 are satisfied with
c̃ = 1 + ϵ, where ϵ = 0.01, and a set of interconnection matrices M̂ = {M̂1, M̂2}, where

M̂1 =
2

n

49 50 50
50 49 50
50 50 49

 , M̂2 =

−2 1 1
1 −2 1
1 1 −2

 . (4.58)

4.2.6.1 Controller synthesis

In this sub-section we synthesize a controller for the abstract interconnected switching

stochastic hybrid system Σ̂ = IM̂π (Σ̂1, . . . , Σ̂N ) to enforce a given specification, and then
refine the designed controller to the interconnected switching stochastic hybrid system
Σ = IMπ (Σ1, . . . ,ΣN ). First, we consider the randomly switched interconnected system

Σ̃ = IM̂π (Σ̃1, . . . , Σ̃N ), wherein each Σ̃i, i ∈ [1;N ], results from Σ̂i by setting the diffusion
and reset terms to zero. It can be shown that the function

Ṽ (x̂, x̃) =

[
x̂
x̃

]T
M̃

[
x̂
x̃

]
,

is an SSF-M2 from Σ̃ to Σ̂ with the interface function

û = ũ, (4.59)
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Figure 4.3: An approximation of E[∥ζ(t)− ζ̂(t)∥2] using empirical mean based on 100 realiza-
tions and the theoretical upper bound obtained from (4.46) with β(r, t) = re−1.1517t.

where û=[û1; · · · ; ûN ], ũ=[ũ1; · · · ; ũN ], x̂=[x̂1; · · · ; x̂N ], x̃=[x̃1; · · · ; x̃N ], and

M̃ =



0.159 0.135 0.135 0.128 0.128 0.128
0.135 0.159 0.135 0.128 0.128 0.128
0.135 0.135 0.159 0.128 0.128 0.128
0.128 0.128 0.128 0.158 0.134 0.134
0.128 0.128 0.128 0.134 0.158 0.134
0.128 0.128 0.128 0.134 0.134 0.158

 . (4.60)

We synthesize a controller using toolbox SCOTS [RZ16] to enforce the following linear
temporal logic specification [BK08] over the outputs of Σ̃:

Ψ = □S ∧□♢T1 ∧□♢T2. (4.61)

The property Ψ can be interpreted as follows: the output trajectory ζ̃ of the closed
loop system evolves inside the set S, and visits Ti, i ∈ [1; 2], infinitely often, indicated
with yellow boxes in Figure 4.2. The sets S, T1, and T2 are given by: S = [−5, 5]3,
T1 = [1.6, 2.4]3, and T2 = [−2.4,−1.6]3. We use (4.57) and (4.59) to generate the corre-
sponding input enforcing this specification over the original system Σ. Figure 4.2 shows a
realization of output trajectories Σ and Σ̂ started from ζ(0) = [2.0058; 4.0060; 0.1030] and
ζ̂(0) = [2.1058; 4.1060; 0.2030], respectively. Figure 4.3 shows a comparison of the theo-
retical upper bound and the empirical average (using 100 realizations) of E[∥ζ(t)−ζ̂(t)∥2].
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4.3 Interconnected Control Systems with Dynamic Interconnection Topology

4.3 Interconnected Control Systems with Dynamic
Interconnection Topology

In this section, we derive conditions under which compositional abstractions of networks
of deterministic control systems, interconnected via some dynamic interconnection topol-
ogy, can be constructed using the dynamic interconnection and joint dissipativity-type
properties of subsystems and their abstractions. We provide an example to illustrate
the effectiveness of the proposed dissipativity-type compositional reasoning by reducing
a 150-dimensional nonlinear system to a 3-dimensional one.

4.3.1 Storage Function

In this section, we introduce a notion of so-called storage function to relate two control
systems, which is a deterministic analogue of the notion of stochastic storage function
introduced in Definition 4.2.6 for stochastic hybrid systems.

Definition 4.3.1. Let

D = (Rn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2),

and

D̂ = (Rn̂,Rm̂,Rp̂, Û , Ŵ, f̂ ,Rq1 ,Rq̂2 , ĥ1, ĥ2),

be two control subsystems as in (2.2), with the same external output space dimension. A
continuously differentiable function V : Rn×Rn̂ → R≥0 is called a storage function from
D̂ to D, if there exist functions α, η ∈ K∞, ψext ∈ K∞∪{0}, some matricesW, Ŵ , and H
of appropriate dimensions, and some symmetric matrix X of appropriate dimension with
conformal block partitions Xij , i, j ∈ [1; 2], such that for any x ∈ Rn and any x̂ ∈ Rn̂,
one has

α(∥h1(x)− ĥ1(x̂)∥) ≤ V (x, x̂), (4.62)

and ∀x ∈ Rn, ∀x̂ ∈ Rn̂, ∀û ∈ Rm̂, ∃u ∈ Rm, such that ∀ŵ ∈ Rp̂ ∀w ∈ Rp, one obtains

∇V (x, x̂)T
[
f(x, u, w)

f̂(x̂, û, ŵ)

]
≤ −η(V (x, x̂)) + ψext(∥û∥) + zT

[
X11 X12

X21 X22

]
z, (4.63)

where

z =

[
Ww − Ŵ ŵ

h2(x)−Hĥ2(x̂)

]
. (4.64)

Condition (4.63) implies the existence of an interface function u = kt(x, x̂, û) to choose
u for any x, x̂, and û.
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4.3.2 Simulation Function

We now recall the notion of simulation functions introduced in [GP09] used to relate
two control systems without internal inputs and outputs. This notion of simulation
function which is a deterministic analogue of the notion of stochastic simulation function
introduced in Definition 4.2.4.

Definition 4.3.2. Let D = (Rn,Rm,U , f,Rq, h) and D̂ = (Rn̂,Rm̂, Û , f̂ ,Rq, ĥ), be two
interconnected control systems. A continuously differentiable function V : Rn × Rn̂ →
R≥0 is called a simulation function from D̂ to D if there exist α, η ∈ K∞ and ρext ∈
K∞ ∪ {0} such that for any x ∈ Rn, x̂ ∈ Rn̂, one has

α(∥h(x)− ĥ(x̂)∥) ≤ V (x, x̂), (4.65)

and ∀x ∈ Rn,∀x̂ ∈ Rn̂, ∀û ∈ Rm̂, ∃u ∈ Rm such that

∇V (x, x̂)T
[
f(x, u)

f̂(x̂, û)

]
≤ −η(V (x, x̂)) + ρext(∥û∥). (4.66)

The next theorem, borrowed from [ZA17], shows the importance of the existence of
a simulation function by quantifying the error between the output behaviours of D and
the ones of its abstraction D̂.

Theorem 4.3.3. Let D = (Rn,Rm,U , f,Rq, h), and D̂ = (Rn̂,Rm̂, Û , f̂ ,Rq, ĥ). Suppose
V is a simulation function from D̂ to D. Then, there exists a KL function ϑ such that
for any x ∈ Rn, x̂ ∈ Rn̂, υ̂ ∈ Û , there exists υ ∈ U such that the following inequality
holds for any t ∈ R≥0:

∥ζxυ(t)− ζ̂x̂υ̂(t)∥ ≤ α−1(2ϑ (V (x, x̂), t)) + α−1(2η−1(2ρext(∥υ̂∥∞))). (4.67)

Remark 4.3.4. If functions α and η in Definition 4.3.2 satisfy the triangle inequality,
then one can drop coefficients 2 in inequality (4.67) to get a less conservative upper
bound.

4.3.3 Interconnected Systems under Dynamic Interconnection Topology

Here, we define interconnected control systems under dynamic interconnection topology.

Definition 4.3.5. Consider N ∈ N≥1 control subsystems

Di = (Rni ,Rmi ,Rpi ,Ui,Wi, fi,Rq1i ,Rq2i , h1i, h2i),

where i ∈ [1;N ], and a so-called interconnection system

Do = (Rno ,Rmo ,Uo, fo,Rqo , ho, hou), (4.68)
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Figure 4.4: Interconnected control system under dynamic interconnection topology

where, for any xo ∈ Rno , uo ∈ Rmo,

fo(xo, uo) := Aoxo +Bouo,

ho(xo) := Coxo,

hou(uo) := Douo, (4.69)

for some matrices Ao, Bo, Co, and Do of appropriate dimensions, qo =
∑N

i=1 pi, and

mo =
∑N

i=1 q2i. The interconnected control system

D = (Rn,Rm,U , f̃ ,Rq, h),

denoted by IDo(D1, . . . ,DN ), follows by n =
∑N

i=1 ni + no,m =
∑N

i=1mi, q =
∑N

i=1 q1i,
and the functions

f̃(x, xo, u) =

[
[f1(x1, u1, w1); . . . ; fN (xN , uN , wN )]

fo(xo, uo)

]
, (4.70)

h(x) = [h11(x); . . . ;h1N (xN )], (4.71)

where u = [u1; . . . ;uN ], x = [x1; . . . ;xN ], and with the internal inputs equal to the output
of Do, i.e. [w1; . . . ;wN ] = ho(xo) + hou(uo), and the input of Do equal to the internal
outputs, i.e. uo = [h21(x1); . . . ;h2N (xN )].

Figure 4.4 illustrates such an interconnected system under dynamic interconnection
topology.

4.3.4 Compositionality Result

The next theorem provides a compositional approach on the construction of abstractions
of dynamically interconnected networks of control systems.
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[
CTo CoAo +ATo C

T
o Co CTo CoBo

BT
o C

T
o Co 0∗

]
+

[
WCo WDo

0∗ I∗

]T
X(µ1X1, . . . , µNXN )

[
WCo WDo

0∗ I∗

]
⪯

[
−κoCTo Co 0∗

0∗ 0∗

]
(4.72)

Theorem 4.3.6. Consider an interconnected control system D = (Rn,Rm,U , f,Rq, h),
induced by N ∈ N control subsystems Di as in (2.2), and the interconnection system Do

as in (4.68). Suppose each subsystem admits an abstraction D̂i with the corresponding
storage function Vi. If there exist µi > 0, i ∈ [1;N ], and positive constant κo such that
the inequality3 (4.72) and the following equalities

CoΠÂo = CoAoΠ,

CoΠB̂o = CoBoH,

ŴD̂o =WDoH,

Ŵ Ĉo =WCoΠ, (4.73)

hold for some matrices Âo, B̂o, Ĉo, D̂o, and Π of appropriate dimensions, where

W = diag(W1, . . . ,WN ), Ŵ = diag(Ŵ1, . . . , ŴN ),

H = diag(H1, . . . ,HN ), (4.74)

X(µ1X1, . . . , µNXN ) =

µ1X
11
1 µ1X

12
1

. . .
. . .

µNX
11
N µ12NX

12
N

µ1X
21
1 µ1X

22
1

. . .
. . .

µNX
21
N µ22NX

22
N


, (4.75)

then

V (x, xo, x̂, x̂o) = V̄ (x, x̂) + Vo(xo, x̂o), (4.76)

is a simulation function from D̂ = ID̂o
(D̂1, . . . , D̂N ) to D = IDo(D1, . . . ,DN ), where

V̄ (x, x̂) =
∑N

i=1 µiVi(xi, x̂i), Vo(xo, x̂o) = (xo −Πx̂o)
TCTo Co(xo −Πx̂o) and

D̂o = (Rn̂o ,Rm̂o , Ûo, f̂o,Rq̂o , ĥo, ĥou),
3Matrices 0∗ and I∗ in (4.72) represent zero and identity matrices of appropriate dimensions, respec-
tively.
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where, for any x̂o ∈ Rn̂o and any ûo ∈ Rm̂o,

f̂(x̂o, ûo) := Âox̂o + B̂oûo, (4.77)

ĥo(x̂o) := Ĉox̂o, (4.78)

ĥou(ûo) := D̂oûo. (4.79)

Proof. First we show that inequality (4.65) holds for some K∞ function α. For any
x = [x1; . . . ;xN ] ∈ Rn, and x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂, one gets:

∥h(x)− ĥ(x̂)∥2 ≤
N∑
i=1

∥h1i(xi)− ĥ1i(x̂i)∥2

≤
N∑
i=1

α−1
i (Vi(xi, x̂i)) ≤ α(V̄ (x, x̂)),

where α is a K∞ function defined as

α(s) :=

max
s⃗≥0

∑N
i=1 α

−1
i (si)

s.t. µT s⃗ = s,
(4.80)

where4 s⃗ = [s1; . . . ; sN ] ∈ RN and µ = [µ1; . . . ;µN ]. By defining K∞ function α(s) =
α−1(s),∀s ∈ R≥0, one obtains ∀x ∈ Rn, ∀x̂ ∈ Rn̂, ∀xo ∈ Rno , ∀x̂o ∈ Rn̂o ,

α(∥h(x)− ĥ(x̂)∥2) ≤ V̄ (x, x̂) ≤ V̄ (x, x̂) + Vo(xo, x̂o)

= V (x, xo, x̂, x̂o), (4.81)

hence satisfying inequality (4.65). Now we prove inequality (4.66). Consider any x =
[x1; . . . ;xN ] ∈ Rn, x̂ = [x̂1; . . . ; x̂N ] ∈ Rn̂, and û = [û1; . . . ; ûN ] ∈ Rm̂. For any i ∈
[1;N ], there exists ui ∈ Rmi , consequently, a vector u = [u1; . . . ;uN ] ∈ Rm, satisfying
(4.63) for each pair of Di and D̂i, with the internal inputs given by the outputs of the
interconnection systems Do and D̂o, respectively, i.e.

[w1; . . . ;wN ] = ho(xo) + hou(uo),

[ŵ1; . . . ; ŵN ] = ĥo(x̂o) + ĥou(ûo),

where the inputs to Do and D̂o are the internal outputs of the subsystems Di and D̂i,
respectively, i.e.

uo = [h21(x1); . . . ;h2N (xN )],

ûo = [ĥ21(x̂1); . . . ; ĥ2N (x̂N )].

4We interpret inequality s⃗ ≥ 0 component-wise.
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We employ the conditions in (4.72) and (4.73), which results in the chain of inequalities
in (4.84), where the functions η ∈ K∞, and ψext ∈ K∞ ∪ {0} are defined as

η(s) :=

 min
[s⃗;so]≥0

∑N
i=1 µiηi(si) + κoso

s.t. µT s⃗+ so = s,
(4.82)

ψext(s) :=

max
s⃗≥0

∑N
i=1 µiψiext(si)

s.t. µT s⃗ = s.
(4.83)

Hence we conclude that V is a simulation function from D̂ to D.

Remark 4.3.7. Note that the case of static interconnection and its associated conditions
presented in [ZA17] can readily be recovered by the results here if Co is equal to the zero
matrix and Do is equal to the static interconnection matrix (values of Ao and Bo become
irrelevant since xo does not affect the internal input to D).

In the next section, we provide a practical example for compositional abstraction of
an interconnected system with dynamic interconnection topology.

4.3.5 Case Study - Electrical Network

Consider n first order resistance-capacitance (R-C) circuits, interconnected via resistance-
inductance (R-L) series branches. The i-th R-C circuit has the dynamics given by:

v̇ci = − 1

RiCi
vci +

1

RiCi
vsi +

1

Ci
w̃i, (4.85)

where i ∈ [1;n], vsi ∈ R represents the input source voltage (external input), vci ∈ R
the voltage across capacitor, Ci the capacitance, Ri the resistance, and w̃i ∈ R the total
current inflow from other R-L branches connected to the R-C circuit. Assuming identical
values of the resistance and inductance in all R-L branches, one can write the dynamics
of the total current inflow for the i-th R-C circuit as:

˙̃wi = aoiw̃i + boiv, (4.86)

where v = [vc1 ; . . . ; vcn ], and aoi ∈ R, and boi ∈ R1×n represent the parameters of
dynamics of the R-L series branch(es) connected to the i-th R-C circuit. We consider
the above interconnected system as an interconnection of N concrete subsystems Di,
i ∈ [1;N ], wherein each subsystem Di is formed by clustering ni R-C circuits (ni ≤
n). Each subsystem, Di = (Ai, Bi, C1i, Ini, Ini, 1⃗ni, 1⃗

T
ni, φ), generates a scalar (external)

output. We also add a nonlinearity belonging to the class of nonlinearities characterized
by (3.27). We have:

Di :


ξ̇i = Aiξi +Biui +Diwi + 1⃗niφ(⃗1

T
niξi),

ζ1i = C1iξi,

ζ2i = ξi,
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4.3 Interconnected Control Systems with Dynamic Interconnection Topology

where ξi = Liv, Li := [ei1; . . . ; eini ], eij ∈ R1×n is a row vector whose k-th element is
defined as

e
(k)
ij =

{
1 if k-th R-C circuit is part of the i-th cluster

0 otherwise,
(4.87)

Ai, Bi, Di ∈ Rni×ni are readily obtained from (4.85), C1i ∈ R1×ni , ui = Livs, vs =
[vs1 ; . . . ; vsn ], wi = Liw̃ , w̃ = [w̃1; . . . ; w̃n], and φ : R → R is defined as

φ(x) = sin(x).

The dynamic of the interconnection topology Do is given by

Do :

{
ẋo = Aoxo +Bov

yo = Coxo +Dov,

where Ao = diag(ao1 , . . . , aon), Bo = [bo1 ; . . . ; bon ], Co = In, and Do = 0n. We aggregate
each Di into a scalar abstraction D̂i = (Âi, B̂i, Ĉ1i, 1, 1, 1, 1, φ) given by the following
dynamics

D̂i :


˙̂
ξi = Âiξ̂i + B̂iûi + ŵi + φ(ξ̂i),

ζ̂1i = Ĉ1iξ̂i,

ζ̂2i = ξ̂i,

where Âi satisfies Ai1⃗ni = 1⃗niÂi, B̂i is chosen arbitrarily (in this example we choose
B̂i = 1), Ĉ1i = C1i1⃗ni . For Rj = Cj = 1 in (4.85), ∀j ∈ [1;n], it can be verified that

the function Vi(xi, x̂i) = (xi − 1⃗ni x̂i)
T (xi − 1⃗ni x̂i) (i.e. M̂i = Ini , Pi = 1⃗ni) is a storage

function from D̂i to Di, with the following parameters

Wi = Ini , X
11
i = 0ni , X

22
i = −2Ini ,

X12
i = X21

i = Ini , Hi = Ŵi = 1⃗ni , (4.88)

and with αi(r) =
1

λmax(CT
1iC1i)

r2, ηi(r) = 2r, ψiext(r) = 0,∀r ∈ R≥0. We use the following

interface function to select ui ∈ Rni for any xi ∈ Rni , x̂i ∈ R, ûi ∈ R:

ui = −2(xi − 1⃗ni x̂i) + 1⃗ni ûi − 1⃗niφ(⃗1
T
ni
xi) + 1⃗niφ(x̂i).

By selecting µ1 = · · · = µN = 1, the function V (x, xo, x̂, x̂o) =
∑N

i=1 µiVi(xi, x̂i) +
(xo − Πx̂o)

T (xo − Πx̂o), where Π = diag(⃗1n1 , . . . , 1⃗nN ), is a simulation function from
D̂ to D, where D̂ is the interconnection of the abstract subsystems with the dynamic
interconnection topology D̂o satisfying conditions (4.72) and (4.73). For this example,
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Chapter 4 Compositional Abstraction of Interconnected Systems with Variable Topology

we choose C1i =
[
1 0 . . . 0

]
, and the dynamic interconnection system as follows

Ao = −3In

Bo =



−2 1 0 0 . . . 1
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

. . .
. . .

1 0 0 . . . 1 −2


. (4.89)

For this dynamic interconnection, there always exists D̂o satisfying conditions (4.72) and
(4.73) for any even n. Using (4.73), the abstract interconnection system is given by

Âo = −3IN , B̂o =

−2 1 1
1 −2 1
1 1 −2

 , Ĉo = IN , D̂o = 0N . (4.90)

For the sake of simulation, we choose N = 3, n = 150, and ni = 50,∀i ∈ [1;N ]. The
simulation results are shown in Figures 4.5 and 4.6. The initial condition of ξi is chosen
as
[
1 0 . . . 0

]
, while ξ̂i, xo, and x̂o are initialized from zero. The input to the abstract

interconnected system D̂ is chosen as υ̂(t) =
[
10 cos(t) 10 sin(2t) 10 cos(4t)

]T
.

4.4 Summary

In this chapter, we provided sufficient conditions to construct compositional abstractions
of interconnected systems consisting of stochastic hybrid sub-systems interconnected via
randomly switched topologies. We also provided a weaker version of those conditions,
which allows for construction of such abstractions for a broader set of interconnected
systems. We illustrate the effectiveness of the proposed results by designing a controller
enforcing some complex properties over the interconnected abstraction and then refining
it back to the original interconnected system.
Additionally, we derived conditions under which compositional abstractions of net-

works of control systems under dynamic interconnection topologies can be constructed
using abstractions of subsystems. We showed the effectiveness of the results on a 150-
dimensional network of R-C circuits by reducing it to a 3-dimensional abstraction.
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4.4 Summary

V̇ (x, xo, x̂, x̂o) =

N∑
i=1

µiV̇i(xi, x̂i) + 2(xo −Πx̂o)
TCT

o Co(ẋo −Π ˙̂xo)

≤
N∑
i=1

µi

(
− ηi(Vi(xi, x̂i)) + ψiext(∥ûi∥) +

[
Wiwi − Ŵiŵi

h2i(xi)−Hiĥ2i(x̂i)

]T [
X11

i X12
i

X21
i X22

i

] [
Wiwi − Ŵiŵi

h2i(xi)−Hiĥ2i(x̂i)

])
+ 2(xo −Πx̂o)

TCT
o Co(Aoxo +Bouo −ΠÂox̂o −ΠB̂oûo)

=

N∑
i=1

−µiηi(Vi(xi, x̂i)) +

N∑
i=1

µiψiext(∥ûi∥)

+



W

w1

...
wN

− Ŵ

 ŵ1

...
ŵN




h1(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )





T

X(µ1X1, . . . , µNXN )


∗


+ 2(xo −Πx̂o)

TCT
o Co(Aoxo +Bouo −AoΠx̂o −BoHûo)

=

N∑
i=1

−µiηi(Vi(xi, x̂i)) +
N∑
i=1

µiψiext(∥ûi∥)

+


WCoxo +WDouo − Ŵ Ĉox̂o − Ŵ D̂oûo

h1(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )




T

X(µ1X1, . . . , µNXN )

∗


+ 2(xo −Πx̂o)
TCT

o Co(Aoxo +Bouo −AoΠx̂o −BoHûo)

≤ −
N∑
i=1

µiηi(Vi(xi, x̂i)) + ψext(∥û∥)

+


xo −Πx̂o

h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )




T [
WCo WDo

0∗ I∗

]T
X(µ1X1, . . . , µNXN )

[
WCo WDo

0∗ I∗

]∗


+


xo −Πx̂o

h21(x1)−H1ĥ21(x̂1)
...

h2N (xN )−HN ĥ2N (x̂N )




T [
CT

o CoAo +AT
o C

T
o Co CT

o CoBo

BT
o C

T
o Co 0∗

]∗


≤ −
N∑
i=1

µiηi(Vi(xi, x̂i))− κo(xo −Πx̂o)
TCT

o Co(xo −Πx̂o) + ψext(∥û∥)

= −
N∑
i=1

µiηi(Vi(xi, x̂i))− κoVo(xo, x̂o) + ψext(∥û∥)

≤ −η(V (x, xo, x̂, x̂o)) + ψext(∥û∥) (4.84)
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Figure 4.5: Evolution of the external outputs of the concrete and abstract interconnected sys-
tems.
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Figure 4.6: The evolution of the norm of error, i.e. ∥ζ1(t)− ζ̂1(t))∥, along with the theoretical
bound given in (4.67).
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Chapter 5

Compositional Abstraction of
Interconnected Systems over Riemannian
Manifolds

5.1 Introduction

All the results in the previous chapters for constructing (reduced-order) abstractions con-
sider systems evolving over Euclidean spaces. The state-space of many systems constitute
Riemannian manifolds [BL04], and consequently their analysis requires techniques from
differential geometry [Tar+13]. Robotic manipulators, rotating bodies, rolling disks,
etc. are examples of such systems found in many mechanical settings [BL04]. A simple
example of Riemannian manifold is illustrated in Figure 5.1. This necessitates a gener-
alization of various notions employed for compositional construction of abstractions for
interconnected systems introduced in previous chapters (e.g., notions quantifying close-
ness of output trajectories between the concrete system and its abstraction) to systems
defined over Riemannian manifolds.

5.1.1 Contribution

In this chapter, we propose two techniques for compositional construction of abstractions
for interconnected control systems evolving over smooth Riemannian manifolds.

In the first approach, we provide a small-gain type condition that enables the con-
struction of an abstraction for the interconnected control system compositionally. We
employ a notion of so-called manifold simulation function, constructed using a (pseudo)
Riemannian metric defined over the tangent bundle of the state space, to quantify the
error between concrete interconnected control systems and their approximations. Given

1

Figure 5.1: Example of a smooth Riemannian manifold - Unit Sphere embedded in R3: M2 =
S2 = {x ∈ R3 : ∥x∥ = 1}

71
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a network of control subsystems and the manifold simulation functions between them
and their abstractions, we derive sufficient conditions based on small-gain type reasoning
[DRW07], guaranteeing that a network of abstractions quantitatively approximates the
original network of concrete subsystems.

In the second approach, we introduce a notion of so-called differential storage func-
tions, adopted from the notion of differential storage functions introduced in the context
of differential dissipativity [FS13], describing joint differential dissipativity properties of
control subsystems and their abstractions. Given a network of control subsystems and
the differential storage functions between them and their abstractions, we derive suffi-
cient conditions based on the interconnection topology, guaranteeing that a network of
abstractions quantitatively approximates the original network of concrete subsystems.

5.2 Variational and Augmented Control Systems

In this section, we introduce two notions of which will serve as ingredients to develop
abstractions of control systems evolving over Riemannian manifolds.

Definition 5.2.1. Given any control system over Riemannian manifold

S = (Mn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2),

the variational control system of S is given by the tuple

δS = (T Mn,Rm,Rp,U ,W, δf,Rq1 ,Rq2 , δh1, δh2),

where for every [x; δx] ∈ T Mn, u ∈ Rm, δu ∈ Rm, w ∈ Rp, and δw ∈ Rp:

δf(x, δx, u, δu, w, δw) :=
∂f

∂x
(x, u, w)δx+

∂f

∂u
(x, u, w)δu+

∂f

∂w
(x, u, w)δw

δh1(x, δx) :=
∂h1
∂x

(x)δx

δh2(x, δx) :=
∂h2
∂x

(x)δx. (5.1)

We can define a similar notion for a control system without internal outputs as follows.

Definition 5.2.2. Given any

S = (Mn,Rm,Rp,U ,W, f,Rq, h),

the variational control system of S is given by the tuple

δS = (T Mn,Rm,Rp,U ,W, δf,Rq, δh),

where for every [x; δx] ∈ T Mn, u ∈ Rm, δu ∈ Rm, w ∈ Rp, and δw ∈ Rp:

δf(x, δx, u, δu, w, δw) :=
∂f

∂x
(x, u, w)δx+

∂f

∂u
(x, u, w)δu+

∂f

∂w
(x, u, w)δw

δh(x, δx) :=
∂h

∂x
(x)δx. (5.2)
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The variational control system of S = (Mn,Rm,U , f,Rq, h) can be defined in a similar
manner.
We now introduce the notion of augmented control systems.

Definition 5.2.3. Let

S = (Mn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2),

and
Ŝ = (Mn̂,Rm̂,Rp̂, Û , Ŵ, f̂ ,Rq1 ,Rq̂2 , ĥ1, ĥ2),

be two control subsystems with the same external output space dimension. We define the
augmented system

S̃ = (Mñ,Rm̃,Rp̃, Ũ , W̃, f̃ ,Rq1 ,Rq̃2 , h̃1, h̃2),

where Mñ = Mn×Mn̂, Ũ = U × Û , W̃ = W×Ŵ, m̃ = m+ m̂, p̃ = p+ p̂, q̃2 = q2+ q̂2,
and for each x ∈ Mn, x̂ ∈ Mn̂, u ∈ Rm, û ∈ Rm̂, w ∈ Rp, and ŵ ∈ Rp̂:

f̃(x̃, ũ, w̃) :=

[
f(x, u, w)

f̂(x̂, û, ŵ)

]
,

h̃1(x̃) := h1(x)− ĥ1(x̂),

h̃2(x̃) :=

[
h2(x)

ĥ2(x̂)

]
, (5.3)

where x̃ = [x; x̂], ũ = [u; û], and w̃ = [w; ŵ].

For a control system without internal outputs, we can a define a similar notion as
follows.

Definition 5.2.4. Let

S = (Mn,Rm,Rp,U ,W, f,Rq, h),

and
Ŝ = (Mn̂,Rm̂,Rp̂, Û , Ŵ, f̂ ,Rq, ĥ),

be two control systems with the same output space dimension. We define the augmented
system

S̃ = (Mñ,Rm̃,Rp̃, Ũ , W̃, f̃ ,Rq, h̃),

where Mñ = Mn×Mn̂, Ũ = U × Û , W̃ = W×Ŵ, m̃ = m+ m̂, p̃ = p+ p̂, and for each
x ∈ Mn, x̂ ∈ Mn̂, u ∈ Rm, û ∈ Rm̂, w ∈ Rp, and ŵ ∈ Rp̂:

f̃(x̃, ũ, w̃) :=

[
f(x, u, w)

f̂(x̂, û, ŵ)

]
,

h̃(x̃) := h(x)− ĥ(x̂), (5.4)

where x̃ = [x; x̂], ũ = [u; û], and w̃ = [w; ŵ].
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For a control system without internal inputs and outputs, we can a define a similar
notion as follows.

Definition 5.2.5. Let S = (Mn,Rm,U , f,Rq, h) and Ŝ = (Mn̂,Rm̂, Û , f̂ ,Rq, ĥ) be two
control systems with the same output space dimension. We define the augmented system
S̃ = (Mñ,Rm̃, Ũ , f̃ ,Rq, h̃), where Mñ = Mn ×Mn̂, Ũ = U × Û , m̃ = m + m̂, and for
each x ∈ Mn, x̂ ∈ Mn̂, u ∈ Rm, and û ∈ Rm̂:

f̃(x̃, ũ) :=

[
f(x, u)

f̂(x̂, û)

]
,

h̃(x̃) := h(x)− ĥ(x̂), (5.5)

where x̃ = [x; x̂], and ũ = [u; û].

5.3 Certificate of Abstraction

In this section, we introduce a notion used to formally relate a control system over
Riemannian manifold and its abstraction.

5.3.1 Manifold Simulation Function

In this subsection, we introduce a notion of manifold simulation function, which is used
to quantify the closeness of output trajectories of the concrete systems and the ones of
their abstractions.

Definition 5.3.1. Consider two control subsystems

S = (Mn,Rm,Rp,U ,W, f,Rq, h)

and
Ŝ = (Mn̂,Rm̂,Rp̂, Û , Ŵ, f̂ ,Rq, ĥ)

with the same output space dimension and the corresponding augmented system

S̃ = (Mñ,Rm̃,Rp̃, Ũ , W̃, f̃ ,Rq, h̃)

as in Definition 5.2.4. Let

δS̃ = (T Mñ,Rm̃,Rp̃, Ũ , W̃, δf̃ ,Rq, δh̃)

be the variational control system of S̃ as defined in Definition 5.2.2. Suppose there exists
some positive constants α and λ, a matrix valued function G : Mñ → Rñ×ñ such that
G(x̃) is a positive (semi) definite matrix for all x̃ ∈ Mñ, functions ψext ∈ K∞ ∪ {0},
ψint ∈ K∞ ∪ {0} and a continuously differentiable function1 k : Mñ × Rm̂ × Rp → Rm
which satisfies k(0, 0, 0) = 0, such that the following two conditions hold:2

1We refer to k as the interface map.
2Here, for brevity, we do not write the arguments of the partial derivatives explicitly.
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� For any x̃ ∈ Mñ:

G(x̃) ⪰ α

(
∂h̃

∂x̃

)T (
∂h̃

∂x̃

)
. (5.6)

� For any [x̃; δx̃] ∈ T Mñ, û ∈ Rm̂, δû ∈ Rm̂, ŵ ∈ Rp̂, δŵ ∈ Rp̂, if we choose u using
the map u = k(x̃, û, ŵ), then for all w ∈ Rp, δw ∈ Rp:

δx̃T

(
∂f̃

∂x̃

T

G(x̃) +G(x̃)
∂f̃

∂x̃
+
∂G

∂x̃
f̃(x̃, ũ, w̃)

)
δx̃

+ 2δw̃T
∂f̃

∂w̃

T

G(x̃)δx̃+ 2δũT
∂f̃

∂ũ

T

G(x̃)δx̃

≤ −λδx̃TG(x̃)δx̃+ ψint(∥δw − δŵ∥) + ψext(∥δû∥), (5.7)

where, δũ = [δu; δû], δu = ∂k
∂x̃δx̃+ ∂k

∂ûδû+ ∂k
∂ŵδŵ, w̃ = [w; ŵ], and δw̃ = [δw; δŵ].

then

VG(x̃) = inf
γ̃∈Γ(x̃,0)

∫ 1

0

∂

∂s
γ̃(s)TG(γ̃(s))

∂

∂s
γ̃(s)ds, (5.8)

is called a manifold simulation function from Ŝ to S with respect to the (pseudo) Rie-
mannian structure G. We call Ŝ (preferably with n̂ < n) an abstraction of S if there
exists a manifold simulation function from Ŝ to S.

We study interconnected control systems without internal inputs and outputs, result-
ing from the interconnection of control subsystems having both internal and external
signals. Thus we modify the above definition for systems without internal inputs and
outputs as follows:

Definition 5.3.2. Let
S = (Mn,Rm,U , f,Rq, h)

and
Ŝ = (Mn̂,Rm̂, Û , f̂ ,Rq, ĥ),

be two control systems without internal inputs and outputs and let

S̃ = (Mñ,Rm̃, Ũ , f̃ ,Rq, h̃)

be the corresponding augmented control system as defined in Definition 5.2.5. Let

δS̃ = (T Mñ,Rm̃, Ũ , δf̃ ,Rq, δh̃)

be the variational control system of S̃. Suppose there exist some positive constants α
and λ, some function ψext ∈ K∞ ∪ {0}, some matrix valued function G : Mñ → Rñ×ñ,
where G(x̃) is a positive (semi) definite matrix for each x̃ ∈ Mñ, and a continuously
differentiable function k : Mñ × Rm̂ → Rm which satisfies k(0, 0) = 0, such that the
following two conditions hold:
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� For all x̃ ∈ Mñ:

G(x̃) ⪰ α

(
∂h̃

∂x̃

)T (
∂h̃

∂x̃

)
. (5.9)

� For any [x̃; δx̃] ∈ T Mñ, û ∈ Rm̂, and δû ∈ Rm̂, if we select u using the map
u = k(x̃, û):

δx̃T

(
∂f̃

∂x̃

T

G(x̃) +G(x̃)
∂f̃

∂x̃
+
∂G

∂x̃
f̃(x̃, ũ)

)
δx̃+ 2δũT

∂f̃

∂ũ

T

G(x̃)δx̃

≤ −λδx̃TG(x̃)δx̃+ ψext(∥δû∥), (5.10)

where δũ = [δu; δû], and δu = ∂k
∂x̃δx̃+ ∂k

∂ûδû,

then

VG(x̃) = inf
γ̃∈Γ(x̃,0)

∫ 1

0

∂

∂s
γ̃(s)TG(γ̃(s))

∂

∂s
γ̃(s)ds, (5.11)

is called a manifold simulation function from Ŝ to S with respect to the (pseudo) Rie-
mannian structure G.

The next theorem shows the usefulness of the existence of a manifold simulation
function in quantifying the closeness of two control subsystems.

Theorem 5.3.3. Consider two control systems S = (Mn,Rm,U , f,Rq, h) and Ŝ =
(Mn̂,Rm̂, Û , f̂ ,Rq, ĥ). Suppose VG, associated with the (pseudo) Riemannian structure
G, is a manifold simulation function from Ŝ to S, and k is the associated interface
map, then there exists β ∈ KL, and ψ̄ext ∈ K∞ ∪ {0} such that for any x ∈ Rn, x̂ ∈ Rn̂,
υ̂ ∈ Û , if we choose υ ∈ U using the interface map k, then the following inequality holds
for any t ∈ R≥0:

∥ζxυ(t)− ζ̂x̂υ̂(t)∥ ≤ β(VG(x, x̂), t) + ψ̄ext(∥υ̂∥∞). (5.12)

Proof. Consider two points x̃ = [x; x̂] ∈ Mñ and 0 ∈ Mñ, and a geodesic χ : [0, 1] → Rñ,
with respect to the (pseudo) Riemannian structure G, such that χ(0) = 0, and χ(1) = x̃.
The energy functional corresponding to this geodesic is given by

VG(x̃) = EG(x̃, 0) =

∫ 1

0

∂

∂s
χ(s)TG(χ(s))

∂

∂s
χ(s)ds. (5.13)

Let ξ̃x̃ν̃ = [ξxν ; ξ̂x̂ν̂ ] be the solution trajectory of S̃ for any initial condition x̃ ∈ Mñ,
and under the input trajectory ν̃ = [ν; ν̂], where ν(t) = k(ξ̃x̃ν̃(t), ν̂(t)), for all t ∈ R≥0,
for any ν̂ ∈ Û .

For a fixed t ∈ R≥0, consider the straight line η̂(s, t) = sν̂(t) in s, where s ∈ [0, 1].
For any fixed t ∈ R≥0, the curve η̂(·, t) : [0, 1] → Rm̂ is a geodesic, with respect to the
Euclidean metric, on Rm̂ joining η̂(0, t) = 0 and η̂(1, t) = ν̂(t).
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For any s ∈ [0, 1], let ϕ̃(s, ·) : R≥0 → Rñ be the solution trajectory of S̃ from initial

condition χ(s) under the input η̃(s, ·), where η̃(s, t) =

[
k(ϕ̃(s, t), η̂(s, t))

η̂(s, t)

]
,∀t ∈ R≥0.

Note that ϕ̃(0, t) = 0, and ϕ̃(1, t) = ξ̃x̃ν̃(t).
For brevity, we denote ∂

∂s ϕ̃(s, t) =: w̃(s, t). Note that

∂

∂t
w̃(s, t) =

∂2

∂t∂s
ϕ̃(s, t) =

∂2

∂s∂t
ϕ̃(s, t)

=
∂

∂s
f̃(ϕ̃(s, t), η̃(s, t)) =

∂f̃

∂x̃

∂

∂s
ϕ̃(s, t) +

∂f̃

∂ũ

∂

∂s
η̃(s, t)

=
∂f̃

∂x̃
w̃(s, t) +

∂f̃

∂ũ

[
∂k
∂x̃ w̃(s, t) +

∂k
∂û ν̂(t)

ν̂(t)

]
. (5.14)

Define

l(t) =

∫ 1

0
w̃(s, t)TG(ϕ(s, t))w̃(s, t)ds, (5.15)

i.e. l(t) is the energy functional of the curve ϕ̃(·, t), with respect to G. We have

d

dt
l(t) =

∫ 1

0

∂

∂t
w̃(s, t)TG(ϕ̃(s, t))w̃(s, t)ds

=

∫ 1

0
w̃T

(
∂f̃

∂x̃

T

G+G
∂f̃

∂x̃
+
∂G

∂x̃
f

)
w̃ds

+ 2

∫ 1

0

[
∂k
∂x̃ w̃ + ∂k

∂û ν̂
ν̂

]T
∂f̃

∂ũ

T

Gw̃ds, (5.16)

where, again, we have dropped explicit arguments for clarity in the last expression. From
(5.10), one has:

d

dt
l(t) ≤ −λ

∫ 1

0
w̃(s, t)TG(ϕ̃(s, t))w̃(s, t)ds+

∫ 1

0
ψext

(∣∣∣∣∣∣∣∣∂η̂(s, t)∂s

∣∣∣∣∣∣∣∣) ds
≤ −λ

∫ 1

0
w̃(s, t)TG(ϕ̃(s, t))w̃(s, t)ds+ ψext(∥ν̂(t)∥)

∫ 1

0
ds

≤ −λl(t) + ψext(∥ν̂∥∞). (5.17)

It follows from the comparison lemma [Kha96] that

l(t) ≤ e−λtl(0) +
1

λ
ψext(∥ν̂∥∞). (5.18)

Note that l(0) = VG(ξxν(0), ξ̂x̂ν̂(0)) = VG(x̃). Now using the fact that for any t ∈ R≥0,
l(t) is not necessarily the minimum energy functional corresponding to a geodesic because
ϕ̃(s, t) is not necessarily a geodesic, i.e. VG(ξxν(t), ξ̂x̂ν̂(t)) ≤ l(t), one has:

VG(ξxν(t), ξ̂x̂ν̂(t)) ≤ e−λtVG(ξxν(0), ξ̂x̂ν̂(0)) +
1

λ
ψext(∥ν̂∥∞). (5.19)
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For every x ∈ Rn, x̂ ∈ Rn̂, we use (5.9) and the Schwarz inequality to obtain:

α∥h(x)− ĥ(x̂)∥2 = α∥h̃(x̃)∥2

≤ α

∫ 1

0

√
∂

∂s
χ(s)T

∂h̃

∂x̃
(χ(s))T

∂h̃

∂x̃
(χ(s))

∂

∂s
χ(s)ds

2

≤

(∫ 1

0

√
∂

∂s
χ(s)TG(χ(s))

∂

∂s
χ(s)ds

)2

≤
∫ 1

0

∂

∂s
χ(s)TG(χ(s))

∂

∂s
χ(s)ds = VG(x̃), (5.20)

where x̃ = [x; x̂]. Combining (5.20) with (5.19), one can conclude that (5.12) is satisfied

with β(r, s) =
√

r
αe

−λ
2
s and ψ̄ext(r) =

√
1
αλψext(r), ∀s, r ∈ R≥0.

5.4 Compositional Abstraction: Small-gain Approach

In the next subsection we first provide a definition of interconnected control systems
over Riemannian manifolds. We then provide small-gain type conditions under which
we can construct abstractions of interconnected control systems in a compositional way.

5.4.1 Interconnected systems

Here, we define the interconnection between the control subsystems by defining the rela-
tionship between the outputs and internal inputs. Consider N ∈ N≥1 control subsystems

Si = (Mni ,R
mi ,Rpi ,Ui,Wi, fi,Rqi , hi),

i ∈ [1;N ], with partitioned internal inputs and outputs

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ], wij ∈ Rpij

yi = [yi1; . . . ; yi(i−1); yi(i+1); . . . ; yiN ], yij ∈ Rqij (5.21)

and the internal output function

hi = [hi1; . . . ;hi(i−1);hi(i+1); . . . ;hiN ]. (5.22)

We interpret the outputs yii as external ones, whereas the outputs yij with i ̸= j are
internal ones which are used to define the interconnected control system. In particular,
we assume that the dimension of wij is equal to the dimension of yji i.e. the following
dimension constraints hold:

pij = qji, ∀i, j ∈ [1;N ], i ̸= j. (5.23)

If there is no connection from the control system Si to Sj , then we assume that the
connecting output function is identically zero for all arguments i.e. hij ≡ 0. Now we
provide the definition of the interconnected control system.
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Definition 5.4.1. Consider N ∈ N≥1 control subsystems

Si = (Mni ,R
mi ,Rpi ,Ui,Wi, fi,Rqi , hi),

i ∈ [1;N ], with the input-output configuration given by (5.21), (5.22) and (5.23). The
interconnected control system

S = (Mn,Rm,U , f,Rq, h),

denoted by I(S1, . . . ,SN ), follows by Mn = ΠNi=1Mni, m =
∑N

i=1mi, q =
∑N

i=1 qii and
the functions

f(x, u) =
[
f1(x1, u1, w1); . . . ; fN (xN , uN , wN )

]
, (5.24)

h(x) = [h1(x); . . . ;hN (xN )], (5.25)

where u = [u1; . . . ;uN ], x = [x1; . . . ;xN ], and the interconnection variables constrained
by wij = yji, for all i, j ∈ [1;N ], i ̸= j.

5.4.2 Small-gain Compositionality Result

In this section we provide sufficient conditions under which an interconnection of ab-
stractions of control systems, is an abstraction of the original interconnected system.
We assume that we are given N ∈ N control systems

Si = (Mni ,R
mi ,Rpi ,Ui,Wi, fi,Rqi , hi),

where i ∈ [1;N ], together with the corresponding abstractions

Ŝi = (Mn̂i
,Rm̂i ,Rpi , Ûi, Ŵi, f̂i,Rqi , ĥi),

where i ∈ [1;N ] and with manifold simulation function VGi , associated with the (pseudo)
Riemannian structure Gi, from Ŝi to Si. We use αi, λi, ψiext, and ψiint to denote the
corresponding constants and functions appearing in Definition 5.3.1. We require the
following assumptions in order to provide the compositionality result:

Assumption 5.4.2. For any i, j ∈ [1;N ], i ̸= j, there exists a positive constant δij such
that for any s ∈ R≥0:

hji ≡ 0 =⇒ δij = 0 and (5.26)

hji ̸≡ 0 =⇒ ψiint

(
(N − 1)

√
s

αj

)
≤ δijs. (5.27)

For notational simplicity we define the matrix ∆ ∈ RN×N with its components given
by ∆ii = 0 for i ∈ [1;N ] and ∆ij = δij for i, j ∈ [1;N ], i ̸= j. The next theorem provides
a compositionality approach on the construction of abstractions of interconnected control
systems and that of the corresponding simulation functions.
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Theorem 5.4.3. Consider the interconnected control system S = I(S1, . . . ,SN ), in-
duced by N control subsystems Si. Suppose each subsystem Si admits an abstraction
Ŝi with the corresponding simulation function VGi with respect to (pseudo) Riemannian
metric Gi. If Assumption 5.4.2 holds and there exists a vector µ = [µ1; . . . ;µN ], where
µi ≥ 1 ∀i ∈ [1;N ], such that the inequality

µT (−Λ +∆) < 0 (5.28)

is satisfied3, where Λ = diag{λ1, . . . , λN}, then

VG(x̃) = inf
γ̃∈Γ(x̃,0)

∫ 1

0
γ̃′(s)TG(γ̃(s))γ̃′(s)ds, (5.29)

is a manifold simulation function from the interconnected control system Ŝ = I(Ŝ1, . . . , ŜN )
to S, where

G(x̃) =


µ1G1(x̃1) 0 . . . 0

0 µ2G2(x̃2) 0
...

. . .
...

0 . . . 0 µNGN (x̃N )

 , (5.30)

x̃ = [x̃1; . . . ; x̃N ], and x̃i = [xi; x̂i] ∈ Mni ×Mn̂i
∀i ∈ [1;N ].

Proof. For any xi ∈ Mni , and x̂i ∈ Mn̂i
, i ∈ [1;N ], define

h̃(x̃) :=

 h̃1(x̃1)...

h̃N (x̃N )

 :=

 h1(x1)− ĥ1(x̂1)
...

hN (xN )− ĥN (x̂N )

 , (5.31)

where x̃ = [x̃1; . . . ; x̃N ], and x̃i = [xi; x̂i], ∀i ∈ [1;N ]. One has:

∂h̃

∂x̃
(x̃) =


∂h̃1
∂x̃1

(x̃1) 0 . . . 0

0 ∂h̃2
∂x̃2

(x̃2) . . . 0
...

. . .
...

0 . . . 0 ∂h̃N
∂x̃N

(x̃N )

 , (5.32)

3We interpret the inequality component-wise i.e. for x ∈ RN we have x < 0 iff every entry xi < 0, i ∈
{1, . . . , N}
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and

α

(
∂h̃

∂x̃

)T
∂h̃

∂x̃

⪯ diag

α1

(
∂h̃1
∂x̃1

)T
∂h̃1
∂x̃1

, . . . , αN

(
∂h̃N
∂x̃N

)T
∂h̃N
∂x̃N


⪯


µ1G1(x̃1) 0 . . . 0

0 µ2G2(x̃2) 0
...

. . .
...

0 . . . 0 µNGN (x̃N )

 = G(x̃), (5.33)

where α = min{α1, . . . , αN}. Thus, the condition (5.9) is satisfied with α = α. Now
we prove inequality (5.10). For all i ∈ [1;N ], consider any x̃i = [xi; x̂i] ∈ Mni ×Mn̂i

,
δxi = [δxi; δx̂i] ∈ TxiMni × Tx̂iMn̂i

, ûi ∈ Rm̂i , and any δûi ∈ Rm̂i . Under the map
ui = ki(x̃i, ûi, ŵi), (5.10) is satisfied for each pair of subsystems Si and Ŝi, with the
internal inputs given by wij = yji = hji(xj), and ŵij = ŷji = ĥji(x̂j). The corresponding

differential internal inputs are given δwij = δyji =
∂hji
∂xj

δxj , and δŵij = δŷji =
∂ĥji
∂x̂j

δx̂j .

We consider the time derivative of the function S(x̃, δx̃) = δx̃TG(x̃)δx̃ along the solution
trajectory and employ the conditions (5.28) which results in the chain of inequalities
(5.34), where we use the triangle inequality and the following inequality [Kel14]

ψiint(r1 + · · ·+ rN−1) ≤
N−1∑
i=1

ψiint((N − 1)ri). (5.35)

We define the vector δû = [δû1; . . . ; δûN ], and the function

ψext(s) :=

max
s⃗≥0

∑N
i=1 µiψiext(si)

s.t. ∥s⃗∥ = s.
,

where s⃗ = [s1; . . . ; sN ] ∈ RN , ψext ∈ K∞ ∪ {0}. Therefore, one has:

Ṡ ≤ −λδx̃TG(x̃)δx̃+ ψext(∥δû∥), (5.36)

where λ is the minimum element of the vector

−µT (−Λ +∆),

which satisfies inequality (5.10) with ψint ≡ 0. Hence we conclude that

V (x, x̂) = inf
γ̃∈Γ(x̃,0)

∫ 1

0
γ̃′(s)TG(γ̃(s))γ̃′(s)ds, (5.37)

is a manifold simulation function from Ŝ to S.
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Ṡ =
d

dt
µi

N∑
i=1

δx̃Ti Gi(x̃i)δx̃i ≤
N∑
i=1

µi
(
−λiδx̃Ti Gi(x̃i)δx̃i + ψiext(∥δûi∥) + ψiint(∥δwi − δŵi∥)

)
≤

N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +
N∑

j=1,j ̸=i
ψiint

(
(N − 1)∥δwij − δŵij∥

)+

N∑
i=1

µiψiext(∥δûi∥)

=
N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +
N∑

j=1,j ̸=i
ψiint

(
(N − 1)∥δyji − δŷji∥

)+
N∑
i=1

µiψiext(∥δûi∥)

=
N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +
N∑

j=1,j ̸=i
ψiint

(
(N − 1)

∣∣∣∣∣
∣∣∣∣∣∂hj∂xj

δxj −
∂ĥj
∂x̂j

δx̂j

∣∣∣∣∣
∣∣∣∣∣
)

+
N∑
i=1

µiψiext(∥δûi∥)

≤
N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +
N∑

j=1,j ̸=i
ψiint

(
(N − 1)

∣∣∣∣∣
∣∣∣∣∣∂h̃j∂x̃j

δx̃j

∣∣∣∣∣
∣∣∣∣∣
)+

N∑
i=1

µiψiext(∥δûi∥)

≤
N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +
N∑

j=1,j ̸=i
ψiint

(
1

√
αj

(N − 1)
√
δx̃Tj Gj(x̃j)δx̃j

)
+

N∑
i=1

µiψiext(∥δûi∥)

≤
N∑
i=1

µi

−λiδx̃Ti Gi(x̃i)δx̃i +
N∑

j=1,j ̸=i
δijδx̃

T
j Gj(x̃j)δx̃j

+
N∑
i=1

µiψiext(∥δûi∥)

= µT (−Λ +∆)[δx̃T1G(x̃1)δx̃1; . . . ; δx̃
T
NG(x̃N )δx̃N ] +

N∑
i=1

µiψiext(∥δûi∥) (5.34)

5.5 Compositional Abstraction: Dissipativity Approach

5.5.1 Differential Storage Function

In this section, we introduce a notion of so-called differential storage functions, adapted
from the notion of differential storage function introduced in [FS13] in the context of
differential dissipativity.

Definition 5.5.1. Consider two control subsystems

S = (Mn,Rm,Rp,U ,W, f,Rq1 ,Rq2 , h1, h2)
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and
Ŝ = (Mn̂,Rm̂,Rp̂, Û , Ŵ, f̂ ,Rq1 ,Rq̂2 , ĥ1, ĥ2)

and the corresponding augmented system

S̃ = (Mñ,Rm̃,Rp̃, Ũ , W̃, f̃ ,Rq1 ,Rq̃2 , h̃1, h̃2)

as in Definition 5.2.3. Let

δS̃ = (T Mñ,Rm̃,Rp̃, Ũ , W̃, δf̃ ,Rq1 ,Rq̃2 , δh̃1, δh̃2)

be the variational control system of S̃ as defined in Definition 5.2.1. Suppose there
exists some positive constants α and λ, a matrix valued function G : Mñ → Rñ×ñ,
such that G(x̃) is a positive (semi) definite matrix for all x̃ ∈ Mñ, some matrices
W , Ŵ ,Xij , i, j ∈ [1; 2], of appropriate dimensions, a function ψext ∈ K∞ ∪ {0} and a
continuously differentiable function k : Mñ×Rm̂ → Rm which satisfies k(0, 0) = 0, such
that the following two conditions hold:

� For any x̃ ∈ Mñ:

G(x̃) ⪰ α

(
∂h̃1
∂x̃

)T (
∂h̃1
∂x̃

)
. (5.38)

� For any [x̃; δx̃] ∈ T Mñ, û ∈ Rm̂, and δû ∈ Rm̂, if we choose u using the map
u = k(x̃, û), then for any w̃ ∈ Rp̃, and any δw̃ ∈ Rp̃:

δx̃T

(
∂f̃

∂x̃

T

G(x̃) +G(x̃)
∂f̃

∂x̃
+
∂G

∂x̃
f̃(x̃, ũ, w̃)

)
δx̃

+ 2δw̃T
∂f̃

∂w̃

T

G(x̃)δx̃+ 2δũT
∂f̃

∂ũ

T

G(x̃)δx̃

≤ −λδx̃TG(x̃)δx̃+

[
Wδw − Ŵ δŵ
δy2 −Hδŷ2

]T [
X11 X12

X21 X22

] [
Wδw − Ŵ δŵ
δy2 −Hδŷ2

]
+ ψext(∥δû∥), (5.39)

where δy2 =
∂h2(x)
∂x δx, δŷ2 =

∂ĥ2(x̂)
∂x̂ δx̂, δũ = [δu; δû], and δu = ∂k

∂x̃δx̃+ ∂k
∂ûδû.

Then S(x̃, δx̃) = δx̃TG(x̃)δx̃ is a differential storage function from Ŝ to S. We call Ŝ
(preferably with n̂ < n) an abstraction of S if there exists a differential storage function
from Ŝ to S.

Remark 5.5.2. For linear subsystems, one can use the differential storage function
given by

S(x̃, δx̃) = δx̃T

[
M̂ −M̂P

−P T M̂ P T M̂P

]
δx̃,

where M̂ ∈ Rn×n is a positive definite matrix, and P ∈ Rn×n̂, satisfying the conditions
given in [ZA17] together with the associated linear interface map, for the construction
of abstractions of subsystems.
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5.5.2 Interconnected Systems

Here we define the interconnected system consisting of control subsystems interconnected
via a constant interconnection topology.

Definition 5.5.3. Consider N ∈ N≥1 control subsystems

Si = (Mni ,R
mi ,Rpi ,Ui,Wi, fi,Rq1i ,Rq2i , h1i, h2i),

where i ∈ [1;N ], and an interconnection matrix M of appropriate dimension defining the
coupling of these subsystems. The interconnected control system S = (Mn,Rm,U , f,Rq, h)
denoted by I(S1, . . . ,SN ), follows by Mn = ΠNi=1Mni, m =

∑N
i=1mi, q =

∑N
i=1 q1i, and

the functions

f(x, u) =
[
f1(x1, u1, w1); . . . ; fN (xN , uN , wN )

]
, (5.40)

h(x) = [h11(x); . . . ;h1N (xN )], (5.41)

where u = [u1; . . . ;uN ], x = [x1; . . . ;xN ], and with the internal inputs constrained by

[w1; . . . ;wN ] =M [h21(x1); . . . ;h2N (xN )].

5.5.3 Compositionality Result

In the next theorem, we derive sufficient conditions under which an interconnection of
abstractions of control subsystems, interconnected via another (possibly simpler) inter-
connection topology, is an abstraction of the original interconnected system.

Theorem 5.5.4. Consider the interconnected control system S = I(S1, . . . ,SN ), in-
duced by N control subsystems and a coupling matrix M . Suppose each subsystem Si

admits an abstraction Ŝi with a corresponding differential storage function Si. If there
exists µi ≥ 1 and the matrix M̂ such that the following matrix (in)equalities hold:[

WM
Iq̄

]T
X(µ1X1, . . . , µNXN )

[
WM
Iq̄

]
⪯ 0, (5.42)

WMH = ŴM̂, (5.43)

where q̄ =
∑N

i=1 q2i and

W = diag(W1, . . . ,WN ), Ŵ = diag(Ŵ1, . . . , ŴN ),

H = diag(H1, . . . ,HN ), (5.44)

X(µ1X1, . . . , µNXN ) =

µ1X
11
1 µ1X

12
1

. . .
. . .

µNX
11
N µNX

12
N

µ1X
21
1 µ1X

22
1

. . .
. . .

µNX
21
N µNX

22
N


, (5.45)
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then

VG(x̃) = inf
γ̃∈Γ(x̃,0)

∫ 1

0

∂

∂s
γ̃(s)TG(γ̃(s))

∂

∂s
γ̃(s)ds, (5.46)

is a manifold simulation function from the interconnected control system Ŝ = I(Ŝ1, . . . , ŜN )
with coupling matrix M̂ to S, where

G(x̃) =


µ1G1(x̃1) 0 . . . 0

0 µ2G2(x̃2) 0
...

. . .
...

0 . . . 0 µNGN (x̃N )

 , (5.47)

x̃ = [x̃1; . . . ; x̃N ], and x̃i = [xi; x̂i] ∈ Mni ×Mn̂i
∀i ∈ [1;N ].

Proof. For any xi ∈ Mni , and x̂i ∈ Mn̂i
, i ∈ [1;N ], define

h̃(x̃) :=

 h̃1(x̃1)...

h̃N (x̃N )

 :=

 h11(x1)− ĥ11(x̂1)
...

h1N (xN )− ĥ1N (x̂N )

 , (5.48)

where x̃ = [x̃1; . . . ; x̃N ], and x̃i = [xi; x̂i] ∀i ∈ [1;N ]. One has:

∂h̃

∂x̃
(x̃) =


∂h̃1
∂x̃1

(x̃1) 0 . . . 0

0 ∂h̃2
∂x̃2

(x̃2) . . . 0
...

. . .
...

0 . . . 0 ∂h̃N
∂x̃N

(x̃N )

 , (5.49)

and

α

(
∂h̃

∂x̃

)T
∂h̃

∂x̃

⪯ diag

α1

(
∂h̃1
∂x̃1

)T
∂h̃1
∂x̃1

, . . . , αN

(
∂h̃N
∂x̃N

)T
∂h̃N
∂x̃N


⪯


µ1G1(x̃1) 0 . . . 0

0 µ2G2(x̃2) 0
...

. . .
...

0 . . . 0 µNGN (x̃N )

 = G(x̃), (5.50)

where α = min{α1, . . . , αN}. Thus, the condition (5.9) is satisfied with α = α. Now
we prove inequality (5.10). For all i ∈ [1;N ], consider any x̃i = [xi; x̂i] ∈ Mni ×Mn̂i

,
any δxi = [δxi; δx̂i] ∈ TxiMni × Tx̂iMn̂i

, any ûi ∈ Rm̂i , and any δûi ∈ Rm̂i . Under the
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map ui = ki(x̃i, ûi), (5.39) is satisfied for each pair of subsystems Si and Ŝi, with the
internal inputs given by [w1; . . . ;wN ] = M [h21(x1); . . . ;h2N (xN )], and [ŵ1; . . . ; ŵN ] =
M̂ [ĥ21(x̂1); . . . ; ĥ2N (x̂N )]. The corresponding differential internal inputs are given by

[δw1; . . . ; δwN ] =M

[
∂h21
∂x1

δx1; . . . ;
∂h2N
∂xN

δxN

]
,

and

[δŵ1; . . . ; δŵN ] = M̂

[
∂ĥ21
∂x̂1

δx̂1; . . . ;
∂ĥ2N
∂x̂N

δx̂N

]
.

We consider the time derivative of the function S(x̃, δx̃) = δx̃TG(x̃)δx̃, where x̃ =
[x̃1; . . . ; x̃N ] and δx̃ = [δx̃1; . . . ; δx̃N ], along the solution trajectory and employ con-
ditions (4.25) and (4.26) which results in the chain of inequalities (5.55), where λ =

min{λ1, . . . , λN}, δy2i = ∂h2i
∂xi

δxi, and δŷ2i =
∂ĥ2i
∂x̂i

δx̂i, ∀i ∈ [1;N ]. Using (5.55), and by
defining the vector δû = [δû1; . . . ; δûN ], and the function

ψext(s) :=

max
s⃗≥0

∑N
i=1 µiψiext(si)

s.t. ∥s⃗∥ = s
,

where s⃗ = [s1; . . . ; sN ] and ψext ∈ K∞ ∪ {0}, we arrive at the following inequality:

Ṡ ≤ −λδx̃TG(x̃)δx̃+ ψext(∥δû∥), (5.51)

which satisfies inequality (5.10). Hence we conclude that

VG(x̃) = inf
γ̃∈Γ(x̃,0)

∫ 1

0
γ̃′(s)TG(γ̃(s))γ̃′(s)ds, (5.52)

is a manifold simulation function from Ŝ to S, with respect to G.

In the next section, we provide an example to illustrate the effectiveness of the pro-
posed differential dissipativity-type compositional reasoning for interconnected control
systems over Riemannian manifolds.

5.6 Example

Consider an interconnection of N ∈ N subsystems Si, i ∈ [1;N ], where each Si is given
by Si = (Sni ,Rni ,Rni ,Ui,Wi, fi,R,Rni , h1i, h2i), where for each θi = [θi1; . . . ; θini ] ∈
Sni , ui ∈ Rni , wi ∈ Rni :

fi(θi, ui, wi) :=
1

ni


∑ni

k=1 sin(θik − θi1)
...∑ni

k=1 sin(θik − θini)

+ wi + ui,

h1i(θi) := θi1

h2i(θi) := θi. (5.53)
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Ṡ =
d

dt

N∑
i=1

µiδx̃
T
i Gi(x̃i)δx̃i

≤
N∑
i=1

−λiµiδx̃
T
i Gi(x̃i)δx̃i +

N∑
i=1

µiψiext(∥δûi∥)

+


W

 δw1

...
δwN

− Ŵ

 δŵ1

...
δŵN


δy21 −H1δŷ21

...
δy2N −HNδŷ2N



T

X(µ1X1, . . . , µNXN )


W

 δw1

...
δwN

− Ŵ

 δŵ1

...
δŵN


δy21 −H1δŷ21

...
δy2N −HNδŷ2N


(5.54)

≤ −λ
N∑
i=1

µiδx̃
T
i Gi(x̃i)δx̃i +

N∑
i=1

µiψiext(∥δûi∥)

+

 δy21 −H1δŷ21
...

δy2N −HNδŷ2N


T [

WM
Iq̄

]T
X(µ1X1, . . . , µNXN )

[
WM
Iq̄

] δy21 −H1δŷ21
...

δy2N −HNδŷ2N


≤ −λ

N∑
i=1

µiδx̃
T
i Gi(x̃i)δx̃i +

N∑
i=1

µiψiext(∥δûi∥) (5.55)

δfi(θi, δθi, ui,δui, wi, δwi)

:=


− 1
ni
Σni
k=1 cos(θik − θi1)

1
ni

cos(θi2 − θi1) . . . 1
ni

cos(θini − θi1)
1
ni

cos(θi1 − θi2) − 1
ni
Σni
k=1 cos(θik − θi2) . . .

...
. . .

...
1
ni

cos(θi1 − θini) . . . − 1
ni
Σni
k=1 cos(θik − θini)


 δθi1...
δθini


+ δwi + δui

δh1i(θi, δθi) := δθi1

δh2i(θi, δθi) := δθi (5.56)

The variational control system of Si is given by the tuple

δSi = (Sni × Rni ,Rni ,Rni ,Ui,Wi, δfi,R,Rni , δh1i, δh2i),

where for each [θi; δθi] ∈ Sni × Rni , ui ∈ Rni , δui ∈ Rni , wi ∈ Rni , and δwi ∈ Rni ,
δfi, δh1i, and δh2i are defined in (5.56). We assume that the interconnection topology is
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given by

M =



−2 1 0 0 . . . 1
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

. . .
. . .

1 0 0 . . . 1 −2


. (5.57)

For each Si, we consider that the abstract subsystems are given by the tuple Ŝi =
(S,R,R, Ûi, Ŵi, f̂i,R,R, 1, 1), where for each θ̂i ∈ S, ûi ∈ R, and ŵi ∈ R:

f̂i(θ̂i, ûi, ŵi) = − 1

ni
sin(θ̂i) + ŵi + ûi. (5.58)

The variational control system of Ŝi is given by δŜi = (S×R,R,R, Ûi, Ŵi, δf̂i,R,R, δĥ1i, δĥ2i),
where for each [θ̂i; δθ̂i] ∈ S×R, ûi ∈ R, δûi ∈ R, ŵi ∈ R, and δŵi ∈ R, δf̂i, δĥ1i, and δĥ2i
are given by:

δf̂i(θ̂i, δθ̂i, ûi, δûi, ŵi, δŵi) := − 1

ni
cos(θ̂i)δθ̂i + δŵi + δûi

δĥ1i(θ̂i, δθ̂i) := δθ̂i

δĥ2i(θ̂i, δθ̂i) := δθ̂i. (5.59)

Consider the following differential storage function with constant pseudo Riemannian
structure:

Si(δθi, δθ̂i) =
[
δθi1 . . . δθini δθ̂i

]
Gi


δθi1
...

δθini

δθ̂i

 , (5.60)

where

Gi =


1 0 . . . −1
0 1 . . . −1
...

. . .

−1 −1 . . . ni

 . (5.61)

For each i ∈ [1;N ], we choose ui = [ui1; . . . ;uini ] ∈ Rni according to the following
interface map:

uij = − 1

ni
Σni
k=1 sin(θik − θij)−

1

2ni
θij −

1

ni
sin(θ̂i)

+
1

2ni
θ̂i + ûi, (5.62)
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where uij represents the j-th element of the vector ui, and θij represents the j-th element
of the vector θi, j = [1;ni]. It can be shown that Si is a differential storage function
from Ŝi to Si with the following parameters

Wi = Ini , Ŵi = 1⃗ni , Hi = 1⃗ni , X
11
i = X22

i = 0ni ,

X12
i = X21

i = Ini , αi = 1, λi =
1

ni
, ψiext = 0, (5.63)

where 0 represents the zero function. By selecting µ1 = · · · = µN = 1, and M̂ appropri-
ately, it can be shown that (5.42) and (5.43) are satisfied and therefore one can conclude
that

VG(θ̃) = inf
γ̃∈Γ(θ̃,0)

∫ 1

0

∂

∂s
γ̃(s)TG

∂

∂s
γ̃(s)ds, (5.64)

where θ̃ = [θ1; θ̂1; . . . ; θN , θ̂N ], θi ∈ Sni , θ̂i ∈ S, ∀i = [1;N ], and

G = diag(G1, . . . , GN ), (5.65)

is a simulation function, with respect to G, from I(Ŝ1, . . . ŜN ) to I(S1, . . . ,SN ), with
the interconnection matrix for Ŝ given by M̂ . For example, for N = 3, ni = 50,∀i =
[1;N ], (i.e. M ∈ R150×150), one can choose

M̂ =

−2 1 1
1 −2 1
1 1 −2

 . (5.66)

5.7 Summary

In this chapter, using tools from differential geometry, we derived sufficient compositional
conditions under which abstractions of interconnected systems evolving on smooth Rie-
mannian manifolds can be constructed. We used two different approaches. In the first
approach, we derived sufficient conditions based on small-gain type reasoning under
which abstractions of interconnected systems evolving on smooth Riemannian manifolds
can be constructed compositionally. In the second approach, we used notions from dis-
sipativity theory to derive conditions for compositional abstraction of interconnected
systems over smooth Riemannian manifolds. One advantage of dissipativity approach
over the small-gain one is that the interconnection topology of the concrete and abstract
networks need not be the same. In the small-gain formulation, the topology of both
concrete and abstract networks have to be the same. This provides an additional degree
of freedom for compositional construction of abstraction for such networks using the
dissipativity approach.
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Chapter 6

Conclusion & Outlook

6.1 Conclusion

Constructing reduced-order models (i.e., infinite abstractions) for a complex system,
when considered as a monolithic entity, poses a challenging task. In this dissertation,
we addressed this challenge by capitalizing on the fact that many large-scale complex
systems could be seen as interconnected systems comprised of smaller subsystems. This
motivated a compositional approach for constructing abstractions, where abstractions of
the concrete systems could be created by utilizing the abstractions of smaller subsystems.

Chapter 3 of the dissertation focused on establishing conditions for constructing com-
positional abstractions of networks of stochastic hybrid systems. The framework involved
using the interconnection topology and joint dissipativity-type properties of subsystems
and their abstractions. The resulting abstraction, potentially with a lower dimension,
can substitute the original system in controller synthesis.

In Chapter 4, the dissertation addressed scenarios where the interconnection topology
in networks is not fixed. This was relevant in realistic situations where the interconnec-
tion topology might change due to factors like communication loss between robot agents
or failure of switching lines in an electric distribution grid.

The dissertation extended its scope to systems evolving over Riemannian manifolds
in Chapter 5. Recognizing that the state-space of many systems exhibited such geom-
etry, the analysis incorporated tools from differential geometry. Two approaches were
proposed for the compositional construction of infinite abstractions for interconnected
control systems on smooth Riemannian manifolds. The first approach introduced a
small-gain type condition facilitating the compositional construction of abstractions for
interconnected control systems. The second approach utilized dissipativity theory to
derive conditions for constructing compositional abstractions based on the interconnec-
tion topology and joint differential dissipativity-type properties of subsystems and their
respective abstractions.

6.2 Recommendations for Future Research

In this section, we discuss some topics that could be considered as potential future
research directions:
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� Model reduction for unknown nonlinear control systems. All techniques
for constructing reduced-order models (i.e., infinite abstractions) in this disserta-
tion require a mathematical model of the concrete subsystem derived from physics-
based first principles, which may not be available in practice. One potential future
direction is to develop schemes for constructing abstraction of nonlinear control
systems with unknown dynamics. In this regard, in a preliminary work in [AZ],
we introduced a technique to construct such abstractions for a class of discrete-
time control systems with partially unknown dynamics. This approach consists of
two main ingredients, namely, active subspace identification [CDW14; Con15] and
Gaussian Process (GP) regression [WR06]. This technique consists of using data
sampled from the concrete system to find a lower dimensional subspace of its state
space (which we call the active subspace), and constructing an abstraction can-
didate using GP regression. We derive sufficient conditions under which the GP
candidate is shown to be the abstraction of the original system while quantifying
the error bound between the output of the abstraction and that of the concrete
system. Extending this preliminary result to a broader class of non-linear sys-
tems, stochastic systems and fully unknown systems are also potential directions
for future research.

� Compositional abstraction of networks of cyber-physical systems with
unknown interconnection topology. The techniques presented in this disser-
tation for compositional abstraction of networks of cyber-physical systems assume
full knowledge of the interconnection topology of the network. In many real world
scenarios, even if the dynamics of the subsystems of the network is known, the in-
terconnection topology may not be fully known. One potential research direction
is to develop techniques for compositional abstraction of interconnected systems
with (partially) unknown topologies. In this regard, we propose two potential ap-
proaches. In the first approach, one may investigate some recent techniques devel-
oped in [DG20; Bla+17b; Bla+17a] in the context of topology-independent robust
stability of networked systems, and adapt them for deriving topology-independent
conditions for constructing abstractions in a compositional manner. Specifically,
one may investigate how the compositionality conditions in (3.15) and (3.16) can be
replaced by ones that are topology-independent. In the second potential approach,
one may utilize machine learning techniques to learn/identify the unknown inter-
connection topology. In this regard, one may utilize data samples generated from
the interconnected system to learn the interconnection topology, similar to tech-
niques presented in [Pu+21; Fra+19; CWZ20]. The compositionality conditions in
(3.15) and (3.16) will need to be modified to accommodate for the out-of-sample
generalization error between the learned topology and the actual one.

� Relaxed geometric conditions for construction of abstractions of stochas-
tic hybrid systems. Current approaches to constructing abstractions for stochas-
tic hybrid systems rely on geometric conditions (as in (3.4.9)-(3.4.11)) or, in the
case of an interconnected stochastic hybrid system, a condition on the intercon-
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nection topology (as in (3.15)-(3.16)). Since these conditions are not always satis-
fiable, one potential research direction is to relax these restrictions on the choice
of abstractions, by opting to select ones which nearly satisfy such conditions.

� Construction of finite abstraction of dynamical systems evolving over
Riemannian manifolds. In order to synthesize a controller to enforce complex
specifications (e.g., ones expressed as LTL) over dynamical systems, one promis-
ing approach is symbolic control. In this approach, first a finite abstraction of the
original system, with discrete state and input sets, is constructed. After construct-
ing the finite abstraction of the original system, one synthesizes a controller for
the finite abstraction to satisfy the complex specifications using algorithmic tech-
niques from computer science [BK08], and finally refine the controller to that for
the original system. To the best of the author’s knowledge, there is no work for the
construction of finite abstractions for systems evolving over Riemannian manifolds.
Hence, one potential research direction is to develop techniques for construction of
finite abstractions for systems evolving over Riemannian manifolds.

� Compositional abstraction of networks of stochastic systems evolving
over Riemannian manifolds. Another potential research directions is extend-
ing the techniques in Chapter 5 for compositional abstraction of deterministic
system over Riemannian manifolds to stochastic systems over Riemannian man-
ifolds. In this regard, one may investigate the methods for analysis of solution
flows of stochastic systems, posed as Ito‘s stochastic differential equations, over
a Riemannian manifold identified through a suitably constructed metric [Hsu02;
MR22].
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