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Kurzfassung
Cholera, eine Infektionskrankheit welche durch das pathogene Bakterium Vibrio cholerae
verursacht wird, ist nach wie vor ein bedeutendes Problem für die Öffentliche Gesundheit.
Die Übertragungsdynamik der Krankheit erstreckt sich über mehrere miteinander ver-
knüpfte Skalen, vom einzelnen Individuum über die Bevölkerung bis hin zur Umwelt. Daher
gestaltet sich die Erfassung der Krankheitsdynamik durch herkömmliche immunologische
oder epidemiologische Modelle basierend auf einer einzigen Skala als schwierig. In die-
ser Arbeit entwickeln wir Multiskalenmodelle zur Untersuchung der Übertragungsdynamik
von Cholera. Zunächst stellen wir ein Modell vor, das die Krankheitsdynamiken durch die
Strukturierung eines epidemischen Modells mithilfe einer intraindividuellen Dynamik ver-
bindet. Hier stellt das System innerhalb des Wirts die Interaktion zwischen dem Erreger
und der Immunantwort dar. Annahmen bezüglich der Zeitskala werden getroffen, um die
Dynamik innerhalb des Wirts zu analysieren, und die Ergebnisse werden hochskaliert, um
das epidemische Modell zu strukturieren. Wir analysieren die Existenz und die Stabilität
der Gleichgewichtslösungen des epidemischen Modells mithilfe von Linearisierungstech-
niken und Halbgruppen- und Lyapunov-Argumenten. Im Anschluss entwickeln wir ein
verfeinertes Mehrskalenmodell, bei dem der Übergang von suszeptibel zu infiziert von der
Erregerbelastung im Wirt abhängig ist. Jeder suszeptiblen Person wird eine Erregerlast zu-
gewiesen, welche sich durch die Aufnahme von kontaminiertem Wasser (Booster-Ereignis),
die zu zufälligen Zeitpunkten erfolgt, erhöht und durch den Einsatz einer Immunreaktion
abnimmt. Durch die Skalierung dieser Dynamiken wird dann die suszeptible Populati-
on strukturiert. Sobald der Erreger einie kritische Schwelle innerhalb eines Individuums
überschreitet, wird der Übergang von suszeptibel zu infiziert ausgelöst. Für die Analy-
se wird ein Zeitskalenansatz gewählt, da angenommen wird, dass die Prozesse innerhalb
des Wirts schneller ablaufen, als die epidemische Dynamik. Auf der schnellen Zeitskala
wird die Existenz einer invarianten Verteilung der Erregerlast mithilfe von Halbgruppen-
methoden und Spektralanalyse gezeigt. Die Ergebnisse der Spektralanalyse werden dann
verwendet um das Mehrskalenmodell auf ein SIR-Modell in der langsamen Zeitskala zu
reduzieren. Außerdem werden numerische Simulationen zur Ermittlung des Langzeitver-
haltens durchgeführt. Schließlich entwickeln wir ein Multiskalenmodell, das die individuelle
Heterogenität der Wirte berücksichtigt. Dazu weisen wir jedem Individuum eine Erreger-
last zu, deren intrinsische Wachstumsrate vom Zustand des Darmmikrobioms abhängig ist.
Die Individuen nehmen den Erreger aus der Umwelt auf, und der Erreger wächst in der
Umwelt, nachdem sie ihn ausscheiden. Wir verwenden Entkopplungsannahmen, um das
Modell auf eine Erneuerungsgleichung zu reduzieren und analysieren das asymptotische
Verhalten mit Hilfe von Laplace-Transformationen.
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Abstract
Cholera, an infectious disease caused by the pathogenic Vibrio cholerae bacteria, remains
a significant public health concern. The transmission dynamics for the disease span multi-
ple interconnected scales, from within-individual to the population and the environment,
making it challenging for traditional single-scale immunological or epidemiological models
to capture the disease dynamics. In this thesis, we develop multi-scale models to study the
transmission dynamics of cholera. First, we present a model that links disease dynamics
by structuring the epidemic model using within-host immune dynamics. Here, the within-
host system depicts the interaction of the pathogen and the immune response. Time-scale
assumptions are used to analyze the within-host dynamics with the results scaled up to
structure the epidemic model. For the epidemic model, we analyze the existence and stabil-
ity of the equilibrium solutions through linearization techniques and the use of semigroup
and Lyapunov arguments. Next, we develop a refined multi-scale model where the tran-
sition from susceptible to infected is dependent on the within-host pathogen load. Here,
each susceptible person is assigned a pathogen load. The pathogen load increases through
the ingestion of contaminated water (booster event) that takes place at random times and
declines through the actions of the immune response. These dynamics are then scaled to
structure the susceptible population. The transition from susceptible to infected is trig-
gered when the pathogen exceeds the critical threshold. The within-host dynamics are
considered to occur faster than the epidemic dynamics and thus the analysis follows the
fast-slow approach. On the fast scale, the existence of pathogen load’s invariant distri-
bution is established through the use of semigroup methods and spectral analysis. The
results of the spectral analysis are then used to reduce the multi-scale model to a SIR
model on the slow scale and numerical simulations are conducted on the SIR model to
establish its long-term behavior. Finally, we develop a multi-scale model that accounts for
individual host heterogeneity. We do this by assigning each individual a pathogen load
whose intrinsic growth rate is dependent on the state of the gut microbiome. Individuals
ingest the pathogen from the environment, and the pathogen grows in the environment
after they shed it. We use decoupling properties to reduce the model to a renewal equation
and analyze the asymptotic behavior with the help of Laplace transforms.
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Chapter 1

Introduction

Infectious diseases are still a major cause of mortality and morbidity despite the advances
that have been made in medicine. The emergence of novel diseases such as Covid-19 and
the reemergence of old disease epidemics has further intensified the threat posed by these
diseases and highlighted the need for the development of proper strategies for management.
Mathematical modeling is one of the effective tools that has been used to understand the
dynamics of infectious diseases. The models describe the transmission principles, forecast
the future course of an epidemic, and assess the effectiveness of intervention strategies
[70, 58, 12]. Consequently, information derived from the models can be used to inform
policy decisions about health interventions.

Disease dynamics have largely been studied at two scales: immunological and epidemiolog-
ical. The epidemiological scale (between-host) is centered on disease transmission among
members of the host population [11, 99, 85], whereas the immunological scale (within-
host) considers infection dynamics within a single host [104, 8]. Traditionally, the two
scales have been modeled independently. However, the infection process spans multiple
scales: From the within-host scale to the between-host scale, and the environment among
others. Therefore, it is necessary to bridge the dynamics at multiple scales to comprehen-
sively describe the entire infection process. Additionally, models that link multiple scales
(multi-scale models) provide novel insights into disease mechanisms [19, 38, 74]. This ap-
plies particularly to cholera, an environmentally transmitted disease, whose transmission
dynamics evolve from complex within-host processes to between-host transmission with
interactions from the cholera pathogen in the environment. As such, in this thesis, we
develop multi-scale models to study the transmission dynamics of cholera.

The thesis is organized as follows: In this chapter, we give a biological introduction to
cholera and define some mathematical concepts that will be used later in the work.
In Chapter 2, we introduce the concept of multi-level epidemic modeling. We discuss the
underlying framework of each of the components of a multi-scale model. In Section 2.2, we
give a brief review of the notable literature on cholera modeling starting from the between-
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CHAPTER 1. INTRODUCTION 7

and within-host levels to the multi-scale level.
In Chapter 3, we formulate and analyze an immuno-epidemiological model that links the
within-host dynamics to the between-host dynamics of cholera through the within-host im-
mune response. To that end, we first derive a within-host model depicting the interaction
of the pathogen and the adaptive immune response. We take pathogen dynamics to be
faster than the immune response. Analysis through the separation of time scales allows us
to characterize a single infected individual by the state of the immune response. We then
scale up the dynamics of an individual infected person to construct an epidemic model in
which the infected population is structured by individual immunological dynamics. For
this physiologically structured epidemic model, we establish the existence of stationary
solutions and study their local asymptotic properties by utilizing linearization techniques
and semigroup arguments. Finally, in Section 3.4, we modify the epidemic model to in-
clude a maximum age for the bacteria and analyze the global asymptotic properties of
the resulting model. The underlying assumption of the work in this chapter is that one
infectious contact is enough to push contacts over the threshold.
In Chapter 4, we refine the underlying assumption in Chapter 3 to formulate a multi-
scale model where the transition from susceptible to infected occurs at a pathogen load-
dependent rate, that is, infection occurs when the pathogen load in an individual exceeds
the critical threshold. To do this, we assign a single susceptible individual with a pathogen
load that increases through the consumption of contaminated water (booster event) and
declines through immune responses. We also assign maximal and minimal times for booster
events and define the time since the last booster event. We then scale the dynamics of a
single susceptible person to build an epidemic model. In this model, the susceptible pop-
ulation is structured by the pathogen load and the time since the last booster event. By
considering population dynamics to be slower than within-host dynamics, we analyze the
pathogen load’s invariant distribution on a fast time scale. We utilize semigroup methods
and spectral analysis for the analysis. From the results of the spectral analysis, we reduce
the multi-scale model to a refined SIR model on a slow time scale. Finally, we perform
numerical simulations on the SIR model to study its long-term behavior.
In Chapter 5, we formulate a multi-scale model that captures the heterogeneity of indi-
vidual hosts. We do this by assigning an individual with a pathogen load whose intrinsic
growth is dependent on the nature of the gut microbiome. We also include an environ-
mental bacterial compartment that contributes to the within-host pathogen load through
ingestion and grows through shedding by individuals. The contact structure of the model
is only through a single compartment (the environmental bacterial compartment), and as
such, we use decoupling properties to reduce the model into a Volterra renewal equation
in the case where intrinsic pathogen growth is linear. Lastly, we analyze the asymptotic
behavior of the model with the help of Laplace transforms.
Finally, in Chapter 6 we give a discussion of the work and conclude the thesis.
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1.1 Biological Background of Cholera
Cholera, an acute diarrheal disease, affects millions of people worldwide with an estimated
1.4 − 3 million cholera cases and 21, 000 − 143, 000 related deaths reported yearly [109].
Sub-Saharan Africa and South-East Asia account for the majority of the cholera cases [2]
with lack of access to safe drinking water and improper sanitation being the drivers of the
disease. In this section, we give a brief overview of the disease.

1.1.1 History of Cholera
Cholera is an ancient disease. The earliest description of a disease resembling cholera
on the Indian subcontinent can be found in the Sanskrit text Sushruta Samhita written
around 500-400 B.C [25]. Modern accounts of the disease gained prominence in 1817 after
an outbreak in the Ganges river delta spread beyond the subcontinent of India. This was
considered to be the first cholera pandemic. Six cholera pandemics were recorded between
1817-1923 [50]. The ongoing (seventh) pandemic began in 1961 in Indonesia and has spread
to most parts of the world. The disease is now endemic predominantly in Africa and South
Asia [93].
The etiological agent responsible for cholera was identified in the 19th century [92]. The first
description of the agent was by Pacini in 1854. He found curved bacteria in the intestinal
contents of cholera victims that he named Vibrio cholera [53]. However, his initial discovery
was not recognized until later. In 1883, Robert Koch, who was studying cholera in Egypt,
demonstrated that the disease was caused by this comma-shaped organism that he referred
to as Kommabazillen. The subsequent name Vibrio comma was used for several years and
was later renamed Vibrio cholerae after the recognition of Pacini’s work [53].

1.1.2 Vibrio cholerae and the Aquatic Environment
Vibrio cholerae are curved, gram-negative bacteria that belong to the Vibrionaceae family
commonly found in estuaries and marine waters [50, 92]. The organism is classified into
serogroups based on the O antigen. There are over 200 serogroups. Out of these, only
the O1 and O139 cause cholera epidemics as they carry the genes encoding the cholera
toxin (CT) and the toxin co-regulated pilus (TCP) that are considered to be the virulence
factors for the disease [87, 66]. Infection with non-O1 and non-O139 serogroups is seen to
be less clinically significant [92]. The O1 serogroup is further subdivided into two biotypes:
Classical and El Tor. The Classical biotype is responsible for earlier pandemics while the
ongoing seventh pandemic is due to the El Tor biotype [87, 50]. It’s worth noting that not
all strains of the O1 and O139 serogroups cause cholera epidemics [53].

In marine ecosystems, V. cholerae attach themselves to various surfaces including plants,
zooplanktons, crustaceans, green algae, and insects. A co-relation between cholera out-
breaks and the seasonal occurrence of algae has been observed, even though this has not
been linked to the increase in toxigenic strains associated with cholera epidemics [92]. V.
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cholerae can survive environmental stressors including changes in water salinity, tempera-
ture, and nutrient deprivation through adaptive mechanisms that include transformation
into viable but non-culturable forms and attachment to biotic and abiotic forms as biofilms
[66]. This makes it possible for the bacteria to persist in the aquatic environment. The
ability of the bacteria to exist in a viable but non-cultural form contributes to seasonal
outbreaks of the disease. In such cases, the contribution from infected humans is not
necessary [25].

1.1.3 Transmission, Susceptibility, and Immunity
Pathogenic bacteria are transmitted to human hosts through the ingestion of contaminated
food and water. Direct human-to-human transmission through the fecal-oral route is also
possible, though uncommon [94].
Susceptibility to the disease depends on several host factors including genetics, nutrition
and the chemical state of the gut [87, 22]. Genetically, individuals with the O phenotype
that corresponds to the H antigen show a decreased risk of infection but an increased risk of
severe disease in case of infection [87, 63]. Nutritional factors such as deficiency of vitamin
A and Zinc, which are vital in mucosal immunity, increase the susceptibility to cholera
since they influence innate and adaptive immunity [44]. The chemical state of the gut,
defined by the gut microbiome, determines an individual’s susceptibility or resistance to
infection with a healthy microbiome community shown to induce resistance to the infection
[1].
Cholera infection induces immunity: Studies with North American volunteers have shown
that infection by V. cholerae induces protective immunity against subsequent infections.
Infection with the classical biotype offers 100% immunity while the El Tor biotype offers
90% immunity [87]. Immunity to infection can also result from vaccination. Three oral
vaccines: Dukoral, Shanchol, and Euvichol-Plus are available. However, they only offer
short-term immunity.[109].

1.1.4 Pathogenesis, Symptoms, and Treatment
The cholera pathogen has human and environmental phases in its life cycle (see Figure
(1.1) below). After ingestion, the bacteria must first survive the stomach acids before
penetrating the mucosal lining of the intestinal epithelial cells [92]. The majority of the
bacteria are killed by gastric acid in the stomach [50]. A high infectious dose of 106 − 1011

colony-forming units is required for infection because of the bacteria’s acid sensitivity [92].
The bacteria that survive adhere to the epithelial cells and colonize them leading to the
production of the cholera toxin [92]. The cholera toxin then sets off the onset of cholera
symptoms that include vomiting and acute watery diarrhea. These symptoms often occur
abruptly after the incubation period (18 hours-5 days). In cases of severe cholera, fluid loss
can lead to severe dehydration and death can occur within a few hours of the onset of the
symptoms [93]. Symptomatic and asymptomatic infected individuals shed the organisms
back into the environment. Passage of the bacteria through the gut transforms it into a
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hyperinfectious state. The hyperinfectious state is short-lived as the bacteria decay to a
less infectious state after some time [45]. A low infectious dose of freshly shed bacteria is
required to cause infection: The dose is 10-100 times lower than that of non-human shed
Vibrio [50].

Diarrhea

Fecal-oral 
transmission 
route

Ingestion of contaminated 
food and water

Environment Human
host

(Vibrio cholerae bacteria)
Naturally occuring
in aquatic environments

- Colonization of small intestines
- Secretion of cholera toxins
- Onset of cholera symptoms

Figure 1.1: The infection cycle of Vibrio cholerae.

The disease is managed with rehydration therapies. Milder cases are treated with Oral
Rehydration Solutions (ORS) that replace the fluid deficits and maintain hydration while
severe cases first require emergency intravenous polyelectrolyte solution for rehydration
followed by ORS to maintain hydration [93]. Symptomatic patients are also treated with
antibiotics to lessen diarrhea and shorten the infection period. The recovery period with-
out antibiotics (only rehydration) is 4-5 days, while the recovery period with the use of
antibiotics is 2-3 days. That said, widespread resistance to antibiotic treatment has also
been reported [93].

1.2 Mathematical Background
In this section, we give a brief overview of mathematical concepts that are used later in
the work. The definitions and theorems that are stated are derived from established work
found in the associated references.
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1.2.1 Fast-Slow Systems
The structure of a system of ordinary differential equations with fast and slow time-scale
variables is written as

dx

dt
= f(x, y)

dy

dt
= ϵg(x, y)

(1.2.1)

where ϵ is small and x ∈ Rn, y ∈ Rm [82]. Moreover, the x variable is referred to as the
fast variable while the y variable is referred to as the slow variable. Rescaling the time
such that τ = ϵt, gives the system

ϵ
dx

dτ
= f(x, y)

dy

dτ
= g(x, y).

(1.2.2)

We refer to t as the slow time scale and τ as the fast time scale.

The analysis of the fast-slow systems follows the singular perturbation theory. The general
idea behind it is that one can understand the behavior of the full system by studying the
two limiting subsystems.

Definition 1.2.1. [62] The system of ordinary differential equations derived by setting
ϵ = 0 on the fast time scale formulation (1.2.1) is called the fast subsystem, that is

dx

dt
= f(x, y)

dy

dt
= 0.

(1.2.3)

Definition 1.2.2. [62] The differential-algebraic equation derived by setting ϵ = 0 in the
slow time scale formulation (1.2.2) is called the slow subsystem, that is

0 = f(x, y)
dy

dτ
= g(x, y).

(1.2.4)

This subsystem is also referred to as the reduced problem.

Definition 1.2.3. The line of stationary points of the fast system f(x, y) = 0 is referred
to as the slow manifold [82] and the value ϵ = 0 is called the singular limit.

Generally, the solutions of the slow subsystem, which include the fast subsystem variables,
are used to approximate the long-term behavior of the original model.
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1.2.2 Semigroups
Definition 1.2.4. (a) A one-parameter family T (t), t ≥ 0 of bounded linear operators
from a Banach X to itself is called a semigroup of bounded linear operators on X if it
satisfies the following equations

1. T (0) = I

2. T (t+ s) = T (t)T (s) ∀ t, s ≥ 0.

(b) A semigroup of bounded linear operators T (t), t ≥ 0 on a Banach space X is called
uniformly continuous if

lim
t→0+

∥T (t) − I∥ = 0.

(c) The infinitesimal generator of a semigroup T (t) is the linear operator A defined by

Ax = lim
t→0+

T (t)x− x

t
= d+T (t)x

dt
|t=0 for x ∈ D(A)

with
D(A) = {x ∈ X : lim

t→0+

T (t)x− x

t
exists}

as the domain of A.

(d) A semigroup T (t), t ≥ 0 of bounded linear operators on a Banach space X is a strongly
continuous semigroup or simply a C0-semigroup if

lim
t→0+

T (t)x = x for all x ∈ X.

(e) A strongly continuous semigroup T (t) is called compact for t > t0 if T(t) is a compact
operator for every t > t0. T (t) is said to be compact if it is compact for all t > 0 [90,
Definitions 1.1, 2.1, 3.1].

Definition 1.2.5. A strongly continuous semigroup T (t), t > 0 is called eventually compact
if there exists t0 > 0 such that T (t0) is compact [35, Definition 4.23].

Definition 1.2.6. A strongly continuous semigroup T (t) is called quasi-compact if T (t) =
T1(t) +T2(t) with operator families T1(t), T2(t), such that ∥T1(t)∥ → 0 as t → ∞ and T2(t)
is eventually compact. That is, there exists t0 > 0 such that T2(t) is compact for all t > t0
[73].

Given A as the infinitesimal generator of a strongly continuous semigroup T (t) on a Banach
space X. Then for all x ∈ D(A), u(t) = T (t)x is the solution to the initial value problem

du

dt
= Au(t) for t ≥ 0

u(0) = x

Consequently, the semigroup theory is useful in the study of evolution problems which can
be written in terms of equation (1.2.5) [35].
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Theorem 1.2.1. Arzelà-Ascoli Theorem
Let K be a compact metric space and H be a bounded subset of the Banach space C(K), con-
tinuous functions over K with the supremum norm. Assume that H is uniformly equicon-
tinous, that is for all ϵ > 0 there exists δ > 0 such that

d(x1, x2) < δ implies that | f(x1) − f(x2) |< ϵ ∀ f ∈ H.

Then the closure of C(K) in H is compact [13, Theorem 4.25].

1.2.3 Spectral Theory
Let X be a complex topological space and T be a closed linear operator.

Definition 1.2.7. The resolvent set of T denoted by ρ(T ) is defined by

ρ(T ) = {λ ∈ C : λI − T is bijective from X onto X}.

The spectrum of T denoted by σ(T ) is the complement of the resolvent set, that is

σ(T ) = C\ρ(T ).

For λ ∈ ρ(T ) the operator R(λ, T ) = (λI − T )−1 : X maps to X is called the resolvent.
The point spectrum of T denoted by σp(T ) is the set of λ ∈ C for which λI − T is not
one-to-one. For λ in the point spectrum, the equation Tθ = λθ has a solution θ ̸= 0.
Consequently, λ is called the eigenvalue of T and θ is called the eigenvector of T . The null
space N(λI − T ) is called the eigenspace of T and its dimension is called the multiplicity
of λ.

The spectral radius of T denoted by r(T ) is defined by

r(T ) = sup{| λ |: λ ∈ σ(T )}.

The spectral radius is finite and satisfies r(T ) ≤ ∥T∥. (See e.g. [111, 29, 35]).

1.2.4 Laplace Transforms
Definition 1.2.8. Laplace Transform [48, 27, 30]
Let f(t) be a function defined on some interval 0 ≤ t < ∞. The Laplace transform f̂(λ)
of the function is defined by

L [f ] = f̂(λ) =
∫ ∞

0
eλtf(t)dt

granted that the integral exists. The Laplace integral is said to be absolutely convergent if

L [f ] = f̂(λ) = limω→∞

∫ ω

0
| eλtf(t) | dt

exists. The inverse Laplace transform denoted as L −[.] maps f̂ to f .
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Definition 1.2.9. A function f(t) is said to be of bounded exponential growth if there exist
constants c ∈ R, N > 0 and a > 0 such that

|f(t)| < Nect

for all t > a. If f(t) is a function of bounded exponential growth with∫ a

0
|f(t)|dt

existing and finite, then f̂(λ) exists for λ ∈ C and Re (λ) > c where Re (λ) is the real part
of λ ∈ C [41].

Functions of bounded exponential growth have Laplace transforms.

Proposition 1.2.1. Convolution of integral equations
Let f(t) and g(t) be Laplace transformable functions. Then, the convolution of the functions

H(t) = f ∗ g(t) =
∫ t

0
f(t)g(t− τ)dt for t ≥ 0

is also Laplace transformable and

F̂ (λ) = f̂(λ)ĝ(λ)

for Re (λ) > max{σf , σg} where σf , σg are the abscissa of convergence [48, Proposition
A.6].



Chapter 2

Multi-scale Epidemic Modeling and
Modeling of Cholera

2.1 Multi-scale Epidemic Modeling
Mathematical models of infectious diseases have been fundamental in generating a deep
understanding of disease dynamics, making predictions, and proposing optimal intervention
strategies for the control of diseases [70, 58]. Standard disease models restrict the dynamics
to a single scale with the most popular scales being the between-host scale and the within-
host scale [38, 5]. On the within-host (immunological) scale, the focus is on the evolution
of the infection within a single individual whereas the between-host (epidemiological) scale
is interested in the spread of the disease between individuals [37, 36]. Models that link the
two scales of infection and give rise to novel insights into disease dynamics are referred to
as multi-scale (immuno-epidemiological) models [38]. For some diseases like Dengue, where
the severity of the disease depends on the strength of the immune response, multi-scale
models become very handy. Other benefits that arise from the use of multi-level models
are: the models enable the prediction of epidemiological quantities such as the reproduction
number from the immunological processes, they explain the role of within-host dynamics on
pathogen evolution and data exist on both scales [74]. Multi-scale models usually consist
of three parts, namely, the between-host model, the within-host model, and the mechanism
of linkage. In the next sections, we give an overview of each of the components.

2.1.1 Epidemiological models
Models that describe disease dynamics in the population have evolved since the seminal
works of Kermack and McKendrick [59, 60]. The models subdivide the population into
several compartments that represent the state of individuals at a particular point in time.
A simple model, studied in depth by Kermack and McKendrick [59], that describes the
dynamics of an epidemic is the SIR model. The S denotes susceptible individuals (in-

15
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dividuals who are yet to be infected), I denotes infected individuals who are assumed to
be infectious and can spread the disease when they come in contact with susceptible indi-
viduals and R represents individuals who were previously infected but have recovered and
cannot be infected again. S(t), I(t), and R(t) are functions of time since the number of
persons in the classes changes with time. The total population N(t) is then taken to be
the sum of individuals from the three compartments, that is,

N(t) = S(t) + I(t) +R(t).

The flow diagram of such a model is shown in Figure 2.1.

Figure 2.1: A SIR model, the black arrows indicate the movement of individuals within
the classes.

The SIR model can be described by a system of ordinary differential equations that show
the changes in the different compartments with respect to time. The easiest way to formu-
late the equations for the model is to assume a closed population with no demography, that
is, there are no births or deaths taking place. In addition, recovered individuals become
permanently immune to the disease. An additional assumption could be homogeneous
mixing, where a person contacts other individuals in the population randomly. The SIR
model can then be described by the following equations

dS

dt
= −βSI

dI

dt
= βSI − γI (2.1.1)

dR

dt
= γI.

Here, β is the rate of infection, and subsequently, βSI is the number of individuals who get
infected per unit of time (incidence). The parameter γ is the rate of recovery/removal and
1
γ

gives the average infectious period. The infectious period can often be estimated from
epidemiological data. The SIR model (2.1.1), although simple in formulation, cannot be
solved explicitly. That is, the exact analytical expressions of the dynamics of S or I through
time cannot be obtained. Numerical methods and the visualization of phase portraits
are employed to gain insight into the dynamics. Even so, the SIR model can be used
to describe two qualitative epidemiological characteristics: (a) the threshold phenomenon,
which indicates whether an epidemic will spread or whether it will die out, and (b) epidemic
burnout, which describes factors that will lead to the breaking down of the transmission
chain.
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2.1.1.1 Threshold Condition

At the initial stage, we have S(0) number of susceptible. If a small number of infected
individuals are introduced to the population, we get from the system (2.1.1)

dI(t)
dt

∣∣∣∣∣
t=0

= I(0)(βS(0) − γ) =⇒ dI(t)
dt

∣∣∣∣∣
t=0

> 0 if βS(0)
γ

> 1. (2.1.2)

The value βS(0)
γ

is the threshold condition that determines if the disease will invade the
population or die out. The threshold condition is commonly referred to as the basic
reproduction number R0. The intuitive definition of the basic reproduction number is the
average number of secondary infections that result from the introduction of a single infected
individual into a purely susceptible population. The disease invades the population when
R0 > 1 and dies out when R0 < 1. In the case above, if we take the initial population to
be purely susceptible, that is S(0) = N then R0 = βN

γ
.

2.1.1.2 Final size of the epidemic

The long-term state of the system can be studied to get a view of how the infection breaks
down. We can leave out the dynamics of I in eq. (2.1.1) by dividing the equation for S
with R,

dS

dR
= −β

γ
S.

Integration of the equation yields

S = S(0)e− β
γ
R ≥ S(0)e− β

γ
N > 0. (2.1.3)

Note that S always remains positive and as such some susceptible individuals will always
manage to escape infection. This implies that an epidemic does not end because of the
total lack of susceptible individuals but due to the decline of infected persons. Since the
total population, N = S + I + R and the epidemic dies out when I = 0, the long-term
behavior of eq. (2.1.3) can be written as

S∞ = N −R∞ = S(0)e− β
γ
R∞ =⇒ N −R∞ − S(0)e− β

γ
R∞ = 0 (2.1.4)

where S∞ and R∞ denote the final proportion of susceptible and recovered persons respec-
tively. The quantity R∞ is equal to the total number of people that got infected during
the epidemic and is referred to as the final size of an epidemic. We can rewrite eq. (2.1.4)
to get the final size relation, that is

ln S∞

S(0) = β

γ
(N − S∞) = R0

(
1 − S∞

N

)
. (2.1.5)

The final size relation is an equation that relates the basic reproduction number to the
final size of the epidemic.
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2.1.1.3 Solving the Basic SIR Model

To solve the basic SIR model (2.1.1), we only consider the equation for S and I, since the
equation for R can be recovered from the relation N = S + I +R. That is,

dS

dt
= −βSI

dI

dt
= βSI − γI.

Therewith, we obtain

dI

dS
= −1 + γ

βS
.

We integrate the equation to get,

I(t) = I(0) + S(0) − S(t) + γ

β
ln
(S(t)
S(0)

)
.

The solution of I(t) cannot be evaluated explicitly, thus, numerical methods are used to
find an approximate solution. Figure 2.2 shows the behavior of the SIR model.

(a) (b)

Figure 2.2: Trajectories of the SIR model with different rates of recovery. In (a) β = 0.002,
γ = 0.5, S(0) = 999, I(0) = 1. In (b) β = 0.002, γ = 1, S(0) = 999, I(0) = 1.

The basic SIR model also referred to as the Kermack-McKendrick Model, is the prototype
for epidemic models. It can be expanded to include vital dynamics (deaths and births). A
relaxation of the assumption of permanent immunity gives rise to the Susceptible-Infected-
Recovered-Susceptible model (SIRS), where immunity wanes and the individual in the
recovered class becomes susceptible again. If there’s no immunity against the disease a
model with Susceptible-Infected-Susceptible classes (SIS model) is used to represent the
dynamics. For diseases with no recovery e.g HIV, a model with only susceptible and
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infected classes (SI model) is suitable for describing the dynamics. Other compartments
can be included in the SIR model to represent additional dynamics. These include exposed
or latent periods, treatment, symptomatic and asymptomatic infections, and quarantine
among others.

2.1.1.4 Structured Epidemic Model

In some instances, individual characteristics (physiological variables) such as size, age, and
status determine factors like birth, death, and growth rates. Epidemiological models based
on such individual characteristics are referred to as structured epidemic models [29, 26].
Partial differential equations are used to model structured populations with a continuous
state space of age or size. The earliest example of the inclusion of age structure in an
epidemic model is the McKendrick model of 1926 [75]. The Lotka-McKendrick equation is
the basic linear model that has been used to describe the evolution of age structure in a
population [48]. The model is defined by the following set of equations

∂p(a, t)
∂t

+ ∂p(a, t)
∂a

= −µ(a)p(a, t)

p(0, t) =
∫ ā

0
β(a)p(a, t)da = B(t) (2.1.6)

p(a, 0) = θ(a).

Here, p(a, t) is the population age density with the age a ∈ [0, ā] and time t > 0. The
population grows to a maximum age of ā with the fertility rate β(a) and mortality rate µ(a)
being age specific. The total number of newborns B(t) is the sum of births in the different
age classes and θ(a) is the initial age distribution. Some basic assumptions are usually
prescribed to the fertility and mortality functions to make them biologically relevant and
to allow for the mathematical treatment of the model. For the model (2.1.6), the vital
functions read as follows:

1. µ ∈ L1
loc[0, ā), µ(a) ≥ 0 a.e in [0, ā], and

∫ ā
0 µ(s)ds = +∞ such that no individual

survives past the maximal age ā.

2. β ∈ L∞(0, ā), 0 ≤ β(a) ≤ β+ a.e in [0, ā],

3. θ ∈ L1(0, ā), θ(a) ≥ 0 a.e in [0, ā].

Solving a Structured Epidemic Model

Several approaches can be used to solve the Lotka-McKendrick equation (2.1.6). One of
the approaches involves integrating the PDE along characteristic lines (using the method of
characteristics) to get the Volterra integral equation of the second kind (renewal equation)
[48, 29] defined as

B(t) = F (t) +
∫ t

0
K(t− a)B(a)da (2.1.7)
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where F , K are known functions. Analytical properties including the existence and unique-
ness of solutions can then be investigated using the renewal equation (2.1.7). The other
approach is the use of semigroup theory [49, 77, 68, 90].

Ultimately, in multi-scale modeling, the modeling framework at the epidemiological scale
depends on the epidemic model used. That is the epidemic model can take the form of
an ODE model, age-of-infection (nested) models, size-structured PDE models, or network
models [71].

2.1.2 Immunological models
Models at this scale are interested in the infection process within the host and as such,
they represent the interaction of the pathogen with the host replication machinery or with
the host immune defenses [74]. A basic within-host pathogen model contains certain basic
characteristics for the disease in question. However, the format of the basic model for
the different types of pathogens has very small variation [23]. Within-host models can
be classified into three groups: those depicting the pathogen reproduction process, those
showing the interaction of the pathogen with the immune responses, and those showing
both the reproduction process and the immune responses. The first two types are commonly
used in multi-scale modeling [74].

Models that describe the pathogen replication process show how a viral pathogen repro-
duces with the help of host cells (target cells). Such models, also referred to as TIV (Target
cells, Infected cells, Virus) models, are commonly used to describe the evolution of viral
diseases [96, 36, 64] (see Figure 2.3 below).

Target 
cells

Infected 
cells

Virus

Figure 2.3: A flow diagram for a TIV model depicting within-host dynamics.

Within-host models with immune responses consider either the innate or adaptive immune
responses that help eliminate the pathogen. A simple formulation of a within-host model
describing the interaction of the pathogen (P ) and adaptive immune response (B cells (B))
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is given by the following system of ordinary differential equations [74]

dP

dt
= γP (1 − P

K
) − δPB

dB

dt
= cP − µB.

(2.1.8)

Here, γ is the growth rate of the pathogen, K is the carrying capacity, δ is the killing rate of
the immune response, c is the activation rate of the immune response, and µ the clearance
of the immune response. The model (2.1.8) can be analyzed by finding equilibrium points
and their asymptotic behavior. The model has two equilibrium points

(P0, B0) = (0, 0) and (P ∗, B∗) =
(

γµK

γµ+ δcK
,

cγK

γµ+ δcK

)

and its dynamics are visualized in Figure 2.4 below. Figure 2.4a shows the chronic case
where the pathogen cannot be cleared by the immune response whereas Figure 2.4b shows
the case where the pathogen can eventually be cleared out.

(a) (b)

Figure 2.4: The changes in the pathogen load and immune response with respect to time.
The parameter values for (a) are γ = 1, δ = 0.2, c = 0.1, µ = 0.5, and K = 1000. The
parameter values for (b) are γ = 1, δ = 0.2, c = 0.1, µ = 0.0004 and K = 1000.

2.1.3 Linking Mechanisms
The linking mechanism establishes the connection of the within-host model to the between-
host model and vice versa. The models can be linked in three different ways: between-to-
within, within-to-between, or bidirectionally [21]. For deterministic models, the following
linkage frameworks have been developed [39].

1. Linking through nesting principles: This is achieved by connecting the dynamics of
the immunological to the epidemiological model by the use of a structural variable
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or a parameter of the between-host model. In the case of a structural variable, the
between-host model must be structured by the time since infection and this variable
is then used as an independent variable in the within-host model. In the case of
linking via parameters, parameters in the between-host model appear as functions
of the dependent variables of the within-host model. For instance, the between-host
transmission rate can be assumed to be a function of the within-host pathogen load
[15, 101].

2. Linking through developing an immunological inspired between-host model: In this
approach, a physiologically structured between-host model is developed, where the
physiological aspect is derived from the immunological properties, for example, the
immune response [72].

3. Linking through environmental contamination: For infections with free-living en-
vironmental pathogens, the dynamics at the environmental scale link the within
and between host systems. Typically, the host, pathogen, and environment inter-
act appropriately for the disease to occur, and the within-host, between-host, and
environment dynamics are assigned different time scales [37].

4. Linking through network modeling principles: In network modeling, individuals are
taken as nodes in a network. In this approach, the pathogen load of an individual is
linked with that of an adjacent individual in a randomly-distributed network [103].

Figure 2.5 below depicts an immuno-epidemiological model with linked between-and
within-host dynamics.

Between-hostWithin-host

Susceptible

Infected

Pathogen

Immune cells

Recovered

Figure 2.5: An immuno-epidemiological model.
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2.2 Modeling of Cholera
In this section, we give a brief review of some of the cholera models that have been devel-
oped at the between-host and within-host scales and at the multi-scale level. Cholera is an
environmentally transmitted disease. For an infection to occur, there should be adequate
interaction between the host, the pathogen, and the environment. Thus, its contact struc-
ture not only includes the interactions within the human population (direct) but also the
interaction with the environmental bacterial population (indirect). This makes its struc-
ture slightly different from the Kermark-McKendrick model where there is direct contact
between interacting populations.

2.2.1 Between-host Cholera Models
Mathematical modeling of cholera as an infectious disease has seen advancements in recent
years. Among the pioneering epidemic models for the disease was the model developed in
1979 by Capasso to describe the 1973 cholera epidemic in Italy [18]. The model comprised
two ordinary differential equations that represented the bacterial population in seawater
and the infected human population and formed a basis for the formulation of other cholera
models.
To study the role of the aquatic reservoir in the persistence of endemic cholera, Codeço
[24] extended the model by Capasso and Paveri-Fontana [18] by including the popula-
tion of susceptible individuals. The model was the first to apply the SIR compartmental
modeling approach to the study of the disease. It also elucidated the importance of the
environmental reservoir in disease transmission dynamics. Other models were then formu-
lated to explain different aspects of the disease.
To illustrate the importance of hyperinfectious cholera bacteria, Hartley et al. [45] extended
the model by Codeço [24] to include a transient hyperinfectious state of the bacteria in the
environment. The hyperinfectivity resulted from the passage of the V. cholerae bacteria
through the human gut. Bacteria in this hyperinfectious state, usually freshly shed, were
short-lived and degraded to a less infectious state after a few hours. They however had
a competitive advantage in that a lower infectious dose was required to cause infection.
Additionally, freshly shed vibrios were more likely to come into contact with humans than
bacteria in the environment. Hyperinfectivity of bacteria was seen as one of the causes of
the explosive nature of the disease.
Mukandavire et al. [81] simplified the model by Hartley et al. [45] by classifying the pathway
for transmission based on the infectiousness of the bacteria. The bacteria in the hyper-
infectious state were responsible for the human-human (fast) transmission of the disease,
while those in the less infectious state were responsible for the environment-human (slow)
transmission of the disease. The model was then used to estimate the prevalence of cholera
in Zimbabwe. The dual transmission pathways for the disease were also considered by Tien
and Earn [99].
Other aspects such as the role of human mobility in the spread of the disease and the effect
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of intervention strategies have been studied by [104, 69, 78, 85, 6]. Although most of the
models mentioned above are non-structured (ODE) models, structured epidemic models
for the disease have been advanced in [11, 65].
Between-host cholera models provide effective approximations of the epidemic process.
Non-structured models are also comparatively easier to analyze. However, the underly-
ing biochemical mechanisms that shape the infectiousness of individuals are ignored thus
providing a drawback to the consideration of models at only this scale.

2.2.2 Within-host Cholera Models
Fewer within-host cholera models have been developed in comparison to epidemic models.
Wang and Wang [106] formulated deterministic and stochastic versions of a within-host
cholera model to study the interactions between cholera bacteria and viruses (phages).
The bacteria ingested from the environment (environmental vibrios) were transformed into
highly infectious human vibrios through interaction with cholera phages (virus). They
derived conditions in which human vibrios would grow and lead to cholera infection. In
addition, they derived conditions in which human vibrios would not grow and ingested
environmental vibrios would not lead to cholera infection. The model was later extended
by [8] to include immune responses.
A limitation of single-scale within-host or between-host cholera models is that they cannot
comprehensively describe the infection process. This is because the spread and transmis-
sion of the disease are linked to the infectiousness of an individual, which consequently
depends on the pathogen load. Thus, host-pathogen interactions within an individual
greatly influence the transmission of the disease at the population level.

2.2.3 Multi-scale Cholera Models
Recent advances have been made in the multi-scale modeling of cholera. To our knowledge,
the first attempt to develop a multi-scale model was made by Wang and Wang [105]. The
within-host model depicts the evolution of highly infectious human vibrios in the body
whereas the between-host model is a SIR system that includes a compartment for envi-
ronmental bacteria. The highly infectious human vibrios contribute to the environmental
growth of bacteria as well as disease transmission among humans, providing a linkage be-
tween the two scales. The within-host dynamics are taken to occur at a faster time scale
(hours) in comparison to the between-host dynamics (months) allowing the use of fast-slow
analysis for a detailed study of the dynamics at each scale. The advantage of the model
is that it allows for the linkage of the two systems. A drawback of the model is that
the within-host system takes a single ordinary differential equation form and thus fails to
account for other biological processes in the body which are significant in the infection
process. Subsequently, the physiological characteristics of individual hosts are assumed
to be homogeneously distributed thus not accounting for heterogeneity that occurs from
person to person caused by factors such as differences in susceptibility.
The work in [105] is extended by Ratchford and Wang [91]. This is done through the
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inclusion of a compartment for viruses and immune responses in the within-host model.
This allows for a more detailed examination of the dynamics of disease within a host. The
complete model is decoupled into three subsystems, with the between-host system being
on the intermediate time scale, the environmental pathogen on the slow time scale, and
the within-host dynamics on the fast time scale. The separation of time scales allows for a
detailed study of the asymptotic behavior of the models at each scale. The results indicate
that the basic reproduction number is dependent on both the direct and indirect transmis-
sion pathways of the disease. However, similar to [105] the model assumes homogeneity in
the individual hosts.
The nesting approach is used in [15] to couple the within-host and between-host dynamics
of cholera via the infection age of individuals. Subsequently, the between-host parame-
ters: direct transmission rate, death, recovery, and shedding rates, explicitly depend on
the within-individual pathogen load and immune strength. Consequently, within-host im-
munopathology is seen to contribute to disease transmission risk at the population level.
An advantage of the nested approach is that it helps to account for different infection states
of the individual and their contribution to disease transmission. A limitation of the model
is that the between-host dynamics have no impact on the within-host dynamics which is
not realistic for environmentally driven diseases. For instance, bacterial concentrations in
the environment can influence the evolution of pathogens within a human host. Subse-
quently, the severity of the disease depends on the inoculum [40], which may depend on
the disease transmission route.

Based on the existing models, in the next chapters, we aim to develop multi-scale mod-
els that allow for some level of heterogeneity in individuals by structuring the epidemic
models using within-host immunological properties. Subsequently, we will also introduce
heterogeneity caused by differences in susceptibility in a single individual host.



Chapter 3

Linking the Dynamics through
Immune Responses

In this chapter, we make the first attempt at formulating an immuno-epidemiological model
to link the dynamics of cholera. We begin with a single individual and formulate an
immunological (within-host) model that depicts the interaction of the cholera pathogen
with the immune response. We distinguish pathogen dynamics from immune response
dynamics by assigning different time scales. This turns out to also be mathematically
convenient as it allows for the use of the fast-slow approach in the analysis. From the
results of the fast-slow analysis, we can follow the fate of an infected individual such
that we can characterize the individual by the state of their immune response. We then
scale up the dynamics of a single infected person to the population. It is logical that we
structure the infected population by the state of the immune response. The epidemiological
model (between-host) is a size-structured model that considers human population dynamics
as well as the dynamics of bacteria in the environment. Using the standard theory of
structured models [48, 29, 26, 108], we analyze the epidemiological model to determine the
long-term behavior of solutions. We then modify the epidemiological model to include a
maximum age for the bacteria. We establish the global stability of the modified model
and finally show the equivalence of the adjusted model to the original model. Parts of this
section are available in the preprint [83].

3.1 The Within-host Model
We aim to construct a model that outlines the interaction of cholera pathogens with im-
mune responses within an individual. We follow a similar approach described in [74]. In
our case, we consider the growth of the pathogen to be influenced by Allee effects. Allee
effects depict the co-relation between population size and fitness of a species [32, 3]. Pop-
ulations exhibiting this effect show reduced growth at low pathogen densities. The effects
are classified as strong if they result in a critical population density and weak if they don’t

26
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result in a critical density [32]. We consider the case of strong Allee effects and assume that
the Vibrio pathogens grow above a critical density for infection to occur. This turns out to
be biologically relevant since microbial populations with quorum sensing mechanisms such
as Vibrio cholerae bacteria have been shown to exhibit Allee effects [56, 51]. Subsequently,
cholera bacteria, ingested from the environment, must first penetrate the mucus lining of
the intestinal epithelial cells and escape the innate immunity defenses to be able to prolif-
erate [92, 4]. At low densities, the innate immune responses can fight off the bacteria, and
therefore a high infectious dose of 108 −1011 cells is required for the bacteria to colonize the
small intestines and cause infection [87]. With that in mind, we formulate the within-host
model. We consider that after ingestion of bacteria, an individual has a pathogen load P
that interacts with the adaptive immune response W , that is,

dP

dt
= αP (1 − P

K
)(P − β) − γP − δPW

dW

dt
= ε(κP − cW ).

(3.1.1)

To generate the Allee effect, we use a cubic growth term for the pathogen where α is the
intrinsic growth rate, β is the critical density (Allee threshold) below which the pathogen
has reduced growth rates and K is the carrying capacity. The pathogen is removed through
natural death at rate γ and through clearance by the immune response at rate δ. The
immune response is activated in the presence of the pathogen at rate κ and self-deactivated
at rate c. Adaptive immune responses are known to be slower to respond to pathogens than
innate responses [20]. As such, we consider that the pathogen grows at a much faster rate
than the immune response. We therefore explicitly distinguish pathogen dynamics from
immune responses by prescribing different time scales. The parameter ε ≪ 1 is the time
scale parameter that represents the slow time scale of the immune response. This turns
out to be mathematically convenient for analysis. Time-scale separation methods have
become common in the study of biological systems after their advancement through the
work of FitzHugh and Nagumo [82, 62]. The analysis of the resulting systems (fast and slow
systems) involves splitting the full system into smaller subsystems, the fast system and the
slow system, and analyzing the dynamics separately (see Section 1.2.1 for an introduction).
The approach has been used to analyze biological systems in [82, 62, 36, 10]. Next, we
follow the same procedure for the analysis of the within-host model.

3.2 Time-scale Analysis
Pathogen dynamics and the dynamics of the immune response occur on separate time
scales. The pathogen load is considered to grow on a fast time scale while the immune
response grows on a slow time scale. We split the system (3.1.1) into fast and slow systems
and analyze the dynamics of each system.
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3.2.1 Fast System
We consider the pathogen load P to be the fast variable. On the fast time scale, the
immune response W does not change. Therefore, we let W be constant and only consider
the change in the pathogen load. For ε → 0, the fast system is given by

dW

dt
= 0

dP

dt
= αP (1 − P

K
)(P − β) − γP − δPW.

(3.2.1)

The trajectories of the fast system tend to stationary points as seen in the next proposition.

Proposition 3.2.1. System (3.2.1) exhibits three branches of stationary states: One trivial
uninfected branch (W, 0) and two infected branches (W,P1,2) with

P1,2 =
α(β +K) ±

√
α2(β +K)2 − 4αK(αβ + γ + δW )

2α

which exist for α ≥ α0 = 4K(γ+δW )
(β−K)2 .

The trivial and the upper infected branches are locally asymptotically stable, while the lower
infected branch is unstable. At α = α0 a saddle-node bifurcation takes place.

Note that we can represent the infected branches by (W,P ) = (ϕ(P ), P ) with

ϕ(P ) = α

δ
(1 − P

K
)(P − β) − γ

δ

as can be seen in the proof below.

Proof. As dW
dt

= 0,W is fixed. We only consider dP
dt

for a given W ∈ R+. To find the
equilibrium points, we set the right-hand side of system (3.2.1) to zero

0 =
(
α(1 − P

K
)(P − β) − γ − δW

)
P. (3.2.2)

Equation (3.2.2) defines the slow manifold (see Definition 1.2.3) of the system which can
also be expressed as

{P = 0} ∪ {ϕ(P ) = W} (3.2.3)

where ϕ(P ) = α
δ
(1 − P

K
)(P − β) − γ

δ
}. We let

f(P,W ) = αP (1 − P

K
)(P − β) − γP − δPW

such that dP
dt

= f(P,W ). Then, the line P = 0 is the infection-free equilibrium and for any
point P0 = (0,W ) on the line,

∂

∂P
f(P0) = −(αβ + γ + δW ) < 0, (3.2.4)
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thus, the infection-free equilibrium point is locally asymptotically stable. The curve ϕ(P )
yields the non-trivial equilibrium. We can rewrite it as

0 = αP 2 − α(β +K)P + (γ + δW + αβ)K

P1,2 =
α(β +K) ±

√
α2(β +K)2 − 4αK(αβ + γ + δW )

2α . (3.2.5)

It then follows that two positive non-trivial stationary points P1,2 exist whenever

α ≥ α0 = 4K(γ + δW )
(β −K)2 .

A saddle-node bifurcation (fixed point created and destroyed) occurs at the point α = α0.
Moreover, the stability of the non-trivial equilibrium point is a direct consequence of f(P )
being a polynomial of the third order. The upper branch of ϕ(P ) is therefore stable while
the lower branch is unstable.

Next, we study the slow system. The slow system gives us a reduced problem from which
generalizations about the complete system can be made.

3.2.2 Slow System
We consider the immune response W to be the slow variable. Denoting the slow time scale
as τ , i.e. τ = εt, we express the slow system dynamics as

ε
dP

dτ
= αP (1 − P

K
)(P − β) − γP − δPW

dW

dτ
= κP − cW.

On the singular limit, the system reduces to

0 = αP (1 − P

K
)(P − β) − γP − δPW (3.2.6)

dW

dt
= κP − cW. (3.2.7)

Notice that eq. (3.2.6) is the slow manifold of the fast system (3.2.1). We sketch the slow
manifold in Figure 3.1a below. We take the upper branch of the slow manifold (ϕ(P )) to
represent the fate of an infected individual (infected branch) and the lower branch (P = 0)
to represent the recovery process (recovered branch). On the fast scale (Figure 3.1b), the
fast dynamics drive the trajectories towards the recovered branch and the upper segment
of the infected branch since both are stable. We then use eq. (3.2.7), where P is now given
in terms of W , to investigate what happens to the stable branches of the slow manifold.
The line Ẇ = κP − cW = 0 (from eq. (3.2.7)) intimates the direction of movement on the
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(a) Slow manifold (b) Fast dynamics

Figure 3.1: The slow manifold and the trajectories on the fast scale. The blue arrows
represent the direction of movement of the trajectories on the fast scale.

manifold, that is if movement is to the left or right of the manifold.
On the slow scale, solutions below the line Ẇ = 0, that is on the recovered branch, move

to the left towards the origin (P,W ) = (0, 0), which is a locally stable fixed point while
solutions above the line move to the right (Figure 3.2a).
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(a) Slow system (b) Fast-slow system

Figure 3.2: Trajectories on the slow scale and the full system. The blue arrows represent
movement on the fast scale, the red arrows represent movement on the slow scale and the
black arrows represent the movement of the trajectories in the full system.

We observe some minimum pathogen threshold dynamics in Figure 3.2a. Note that we
only consider the case where c

κ
is small enough that {κP = cW} ∩ {W = ϕ(P )} = ∅, that

is, there is no chronic infection stationary state.

Since the slow system can be used to make generalizations about the full within-host
system (3.1.1), we conclude the infection process by shifting our attention to the infected
branch of the slow manifold (ϕ(P )). We discuss this below in more detail. The infection
starts once the pathogen threshold is surpassed. As shown in Figure 3.2b solutions on
the upper stable branch of the infected manifold are driven to the right until the tip of
the manifold is reached. At this point, due to the lower branch of ϕ(P ) being unstable,
movement along the manifold is inhibited and the fast dynamics force a jump into the
recovered branch (P = 0) of the manifold which is also stable. The immune response is
heightened during the infection process. Consequently, the state of the immune response
at the start of infection is different from that at the point of recovery. We note the state
of the immune response at different points. We let the immune response at the start of
infection be W = 0 = W ∗

0 and at the point of recovery (where the jump to the recovered
branch takes place) be W = W0. It then follows that we can describe the dynamics of the
immune response by

dW

dt
= κϕ−1(W ) − cW = g(W ) (3.2.8)

where the function ϕ−1(W ) comes from W = ϕ(P ) being a stationary solution (see eq.
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(3.2.3). We take note that the dynamics of P can be recovered from the equation and
describe the function g(W ) to be the growth rate of the immune response. That is

g(W ) = κϕ−1(W ) − cW, Ẇ = g(W ), W ∈ [0,W0]. (3.2.9)

Additionally, we have g(W ) > 0 for all W ∈ [0,W0] such that the immune response grows
with time. We can now describe the dynamics within a single infected person in terms of the
immune response. We note that at the beginning of an infection, the state of the immune
response is denoted by W ∗

0 (W ∗
0 = 0), and at the point of recovery it is denoted by W0.

Notice that we only focus on immunity changes along the infected branch. For the recovery
branch P = 0, we simply note that the response declines exponentially. For simplicity, we
refer to the state of the immune response as immune status. In the next section, we scale
up the dynamics within a single infected individual to structure the infected population.

3.3 Between-Host Model
We derive the between-host model based on immunological properties. It turns out that a
structured epidemiological model naturally emerges from within-host dynamics. The use
of physiologically structured models to study populations has been advanced by the work
of Metz and Diekmann [77], Diekmann et al. [29], Cushing [26], Magal and Ruan [68]. The
structuring variables include age, size, immunity, and many others. In Angulo et al. [7],
Martcheva and Pilyugin [72] immunological variables are used to structure the population.
Similarly, using the immune status, we formulate the between-host model. We consider a
population made up of Susceptible S, Infected I, and Immune V individuals and include
an additional compartment B to represent the bacterial concentration in the environment.
Susceptible individuals are recruited into the population at rate r and removed by natural
death at rate µ1. Individuals in the infected class are structured by their within-host
immune status such that the total infected population

I(t) =
∫ W0

0
i(t,W ) dW,

where i(t,W ) is the density of infected individuals with immune status W . Transmission
of the disease occurs through the consumption of contaminated food and water (indirect)
and human-human contact (direct) [45]. As such, we take both transmission pathways
into account by assigning a rate βh as the direct transmission rate and βe as the indirect
transmission rate. We consider the infectivity of an infectious person to be dependent on
the within-host pathogen load P . Given that the pathogen load is influenced by the state
of immune response along the way addressed in Section 3.2, we take P = P (W ). Therefore,
the force of infection in directly transmitted cases is proportional to the pathogen load.
Natural death removes infected individuals at a rate of µ2(W ), and recovery occurs when
immunity builds to the point where the pathogens are eliminated from the body. The
recovery rate at that point is given as g(W0). Immunity wanes at a rate of ρ such that



CHAPTER 3. LINKING THE DYNAMICS THROUGH IMMUNE RESPONSES 33

an immune individual becomes susceptible once again. Immune individuals are further
removed through natural death at rate µ3. The bacteria in the environment grow through
shedding by infected individuals. Shedding, which occurs at rate ξ(W ), is proportional
to the pathogen load in an infected individual. The bacteria decay at rate σ. Figure 3.3
illustrates the flow in the between-host model.

s V

 

B

 

 

ξ(W)
μ (W)

σ

ρ

r

1

β + β  
I(t,W)

g(W )

μ μ 2 3

0e h

Figure 3.3: Model flow diagram

All in all, the between-host model reads,

dS(t)
dt

= r − µ1S(t) − S(t)
∫ W0

0
βhP (W )i(t,W )dW − βeS(t)B(t)

+ρV (t)
∂ti(t,W ) + ∂W (g(W )i(t,W )) = −µ2(W )i(t,W )

g(0)i(t, 0) = S(t)
∫ W0

0
βhP (W )i(t,W )dW + βeS(t)B(t) (3.3.1)

dV (t)
dt

= g(W0)i(t,W0) − ρV (t) − µ3V (t)

dB(t)
dt

=
∫ W0

0
ξ(W )P (W )i(t,W )dW − σB(t),

with initial conditions S(0) = S0, V (0) = V0, B(0) = B0, i(0,W ) = Φ(W ), and
g(W ) is defined in equation (3.2.9).

3.3.1 Existence and Uniqueness of Solutions
The standard approach for showing the existence and uniqueness of solutions for structured
models such as system (3.3.1) is to first transform the PDE problem into a renewal equation
by integration along the characteristic curves. Thereafter, the ODEs are rewritten in terms
of the renewal equation and finally fixed point theorems are applied to the resulting system
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to show the existence and uniqueness of solutions [16, 61]. Similarly, we integrate the initial
and boundary value problem for i along the characteristics.

Proposition 3.3.1. Assume i(t, 0) is given, the solution of the PDE in the system (3.3.1)
with the initial and boundary conditions is given by

i(t,W ) =

Φ(G−1(G(W ) − t))g(G−1(G(W )−t))
g(W ) e

−
∫W

G−1(G(W )−t)
µ2(τ)
g(τ) dτ W ≥ 0

H(t−G(W )) 1
g(W )e

−
∫W

0
µ2(τ)
g(τ) dτ W < 0,

with G(W ) =
∫ dW
g(W ) and H(t) = g(0)i(t, 0).

Proof. We rewrite the PDE in system (3.3.1) as

∂ti(t,W ) + g(W )∂W i(t,W ) = −µ2(W )i(t,W ) − g
′(W )i(t,W ).

The characteristic curves of the PDE are given by

dt

ds
= 1, dW

ds
= g(W ), dz

ds
= −(µ2(W ) + g

′(W ))z.

We solve the ODE’s to get,

dt

ds
= 1 =⇒ t = s+ c0,

dW

ds
= G(W ) =⇒ dW

g(W ) = ds =⇒ G(W ) = s+G(c1) =⇒ W = G−1(s+G(c1)),

dz

z
= −(µ2(W ) + g

′(W ))ds =⇒ z = z(0)e−
∫ s

0 µ2(W )+g′ (W )ds′

=⇒ z = z(0)e−
∫ s

0 µ2(G−1(s′+G(c1))+g′ (G−1(s′+G(c1))ds′

where c0 and c1 are arbitrary constants, z(0) = i(c0, c1) and the function G(W ) =
∫ dW
g(W ) .

Along the initial conditions, that is i(0,W ) = Φ(W ), we obtain

t = s,

W = G−1(t+G(c1)) =⇒ c1 = G−1(G(W ) − t)

and

i(t,W ) = Φ(G−1(G(W ) − t)e−
∫ t

0 µ2(G−1(s′+G(W )−t))+g′ (G−1(s′+G(W )−t)ds′
. (3.3.2)

We simplify the above equation by letting τ = G−1(s′ +G(W ) − t), that is

G(τ) = s′ +G(W ) − t) =⇒
∫ dτ

g(τ) = s′ +G(W ) − t thus ds′ = dτ

g(τ)
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such that

i(t,W ) = Φ(G−1(G(W ) − t)e−
∫W

G−1(G(W )−t)
µ2(τ)

g(τ
+ g

′
(τ)

g(τ) dτ .

Thus for 0 ≤ t ≤ G(W ), W ≥ 0, we obtain the solution along the initial conditions as

i(t,W ) = Φ(G−1(G(W ) − t))g(G
−1(G(W ) − t))
g(W ) e

−
∫W

G−1(G(W )−t)
µ2(τ)
g(τ) dτ.

Similarly, we look for solutions along the boundary. For the sake of convenience, we denote
the boundary condition as H(t) = g(0)i(t, 0) = S(t)

∫W0
0 βhP (W )i(t,W )dW + βeS(t)B(t).

For t > G(W ), W < 0 we obtain the appropriate integral along the boundary. That is

t = s+ c0, G(W ) = s, z = z(0)e−
∫ G(W )

0 µ2(G−1(s′))+g′ (G−1(s′))ds′

such that

i(t,W ) = H(t−G(W ))e−
∫ G(W )

0 µ2(G−1(s′))+g′ (G−1(s′))ds′

= H(t−G(W ))e−
∫W

0
µ2(τ)
g(τ) + g

′
(τ)

g(τ) dτ = H(t−G(W )) 1
g(W )e

−
∫W

0
µ2(τ)
g(τ) dτ.

Thus, the complete solution of the PDE in system (3.3.1) with the initial and boundary
conditions is given as

i(t,W ) =

Φ(G−1(G(W ) − t))g(G−1(G(W )−t))
g(W ) e

−
∫W

G−1(G(W )−t)
µ2(τ)
g(τ) dτ W ≥ 0

H(t−G(W )) 1
g(W )e

−
∫W

0
µ2(τ)
g(τ) dτ W < 0.

(3.3.3)

Now that we have the solution of i(t,W ) along the characteristics, the next steps for
showing the existence and uniqueness of solutions, which we don’t go into detail, can be
evaluated similarly to [16, 108, 61, 55].

3.3.2 Basic Reproduction Number and Stability of the DFE
The basic reproduction number R0 is defined as the expected number of secondary in-
fections produced when a single infected person is introduced into a purely susceptible
population [28]. It is clear that a trivial disease-free equilibrium (DFE) for system (3.3.1)
given by E0 = (S∗

0 , 0, 0, 0) where S∗
0 = r

µ1
always exists. In this section, we investigate

the local stability of the DFE by linearizing the system (3.3.1) around the disease-free
equilibrium. In so doing, we derive the threshold condition for the spread of the disease
that we consider to be the basic reproduction number. We note that we consider stability
analysis with respect to the point spectrum. This is generally a sufficient condition for
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linear stability analysis, that is, we presume that the point spectrum is contained in the
left half plane Re(z) < 0 (see [49, Section 3.1.2]). To complete the proof of local stability
we will need to show the connection between the roots of the characteristic equation and
the stability of the equilibrium. For the PDE model, we only have information on the
eigenvalues of the generator of the semigroup associated with the linear perturbed system
and not the semigroup itself. Compact, eventually compact, and quasi-compact semigroups
(see Section 1.2.2) relate the eigenvalues of the generator to the long-term behavior of the
semigroup [73]. The following theorem suffices to complete the proof of local stability for
stationary solutions.

Theorem 3.3.1. [73, Theorem B.1] Let T (t) be a quasi-compact C0- semigroup and A be
its infinitesimal generator. Then eδ̄t∥T (t)∥ → 0 as t → ∞ for some δ̄ > 0 if and only if
all eigenvalues of A have strictly negative real parts.

Later, we use the Lyapunov approach to prove the global stability of the appropriate
stationary solutions.

Theorem 3.3.2. The disease-free equilibrium is locally asymptotically stable when R0 < 1
and unstable if R0 > 1, where

R0 = rβh
µ1

∫ W0

0

P (W )
g(W ) e

−
∫W

0
µ2(τ)
g(τ) dτdW + rβe

µ1

∫ W0

0

ξ(W )
σ

P (W )
g(W ) e

−
∫W

0
µ2(τ)
g(τ) dτdW. (3.3.4)

Proof. We let S(t) = S∗
0 + x(t), i(t,W ) = i1(t,W ), V = y(t) and B = z(t) where x(t),

i1(t,W ), y(t) and z(t) are the perturbation variables and S∗
0 is the trivial equilibrium point.

We substitute these expressions in the system (3.3.1) to get

dx(t)
dt

= r − µ1(S∗
0 + x(t)) − (S∗

0 + x(t))
∫ ∞

0
βhP (W )i1(t,W )dW

− βe(S∗
0 + x(t))z(t) + ρ(V ∗ + y(t))

∂ti1(t,W ) + ∂w(g(W )i1(t,W )) = −µ2(W )i1(t,W ))

g(0)i1(t, 0) = (S∗
0 + x(t))

∫ ∞

0
βhP (W )i1(t,W )dW + βe(S∗

0 + x(t))z(t)

dy(t)
dt

= g(W0)i1(t,W0) − ρ(V ∗ + y(t)) − µ3(V ∗ + y(t)) (3.3.5)

dz(t)
dt

=
∫ ∞

0
ξ(W )P (W )i1(t,W )dW − σz(t).
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Multiplying through by the perturbation terms yields

dx(t)
dt

= r − µ1S
∗
0 − µ1x(t) − S∗

0

∫ ∞

0
βhP (W )i1(t,W )dW

−x(t)
∫ ∞

0
βhP (W )i1(t,W )dW − βeS

∗
0z(t) − βex(t)z(t)

+ρV ∗ + ρy(t)
∂ti1(t,W ) + ∂w(g(W )i1(t,W )) = −µ2(W )i1(t,W ))

g(0)i1(t, 0) = S∗
0

∫ ∞

0
βhP (W )i1(t,W )dW + x(t)

∫ ∞

0
βhP (W )i1(t,W )dW

+ βeS
∗
0z(t) + βex(t)z(t)

dy(t)
dt

= g(W0)i1(t,W0) − ρV ∗ − py(t) − µ3V
∗ − µ3y(t)

dz(t)
dt

=
∫ ∞

0
ξ(W )P (W )i1(t,W )dW − σz(t).

We simplify the model by neglecting quadratic perturbation terms that we assume to be
much smaller than the perturbations. We, therefore, get the linearized system

dx(t)
dt

= −µ1x(t) − S∗
0

∫ W0

0
βhP (W )i1(t,W ) dW − βeS

∗
0z(t)

+ρy(t)
∂ti1(t,W ) + ∂W (g(W )i1(t,W )) = −µ2(W )i1(t,W )

g(0)i1(t, 0) = S∗
0

∫ W0

0
βhP (W )i1(t,W )dW + βeS

∗
0z(t) (3.3.6)

dy(t)
dt

= g(W0)i1(t,W0) − ρy(t) − µ3y(t)

dz(t)
dt

=
∫ W0

0
ξ(W )P (W )i1(t,W ) dW − σz(t).

Next, we analyze the stability of the linearized system to determine the long-term behavior
of the solutions. Since the system is linear, we expect the solutions to be exponential.
Thus, we look for solutions of the form x(t) = x̄eλt, i1(t,W ) = ī1(W )eλt, y(t) = ȳeλt,
z(t) = z̄eλt where x̄, ī1(W ), ȳ, z̄ and λ are to be determined. The λ represents an eigenvalue.
Substituting the appropriate formulation in system (3.3.6) gives us the eigenvalue problem

λx̄ = −µ1x̄− S∗
0

∫ W0

0
βhP (W )ī1(W )dW − βeS

∗
0 z̄ + ρȳ

∂W (g(W )ī1(W )) = −(µ2(W ) + λ)ī1(W )

g(0)ī1(0) = S∗
0

∫ W0

0
βhP (W )ī1(W )dW + βeS

∗
0 z̄ (3.3.7)

λȳ = g(W0)ī1(W0) − ρȳ − µ3ȳ

λz̄ =
∫ W0

0
ξ(W )P (W )ī1(W )dW − σz̄.
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We are now interested in obtaining an equation in terms of λ (characteristic equation), We
need to eliminate x̄, ī1(W ), ȳ, z̄ to achieve this. We start by solving the second equation
in system (3.3.7)

g
′(W )ī1(W ) + g(W )dī1(W )

dW
= −(µ2(W ) + λ)ī1(W )

dī1(W )
dW

= −(µ2(W ) + λ+ g
′(W )

g(W ) ī1(W )

ī1(W ) = ī1(0)e−
∫W

0
µ2(τ)+λ

g(τ) dτe−
∫W

0
g

′
(τ)

g(τ) dτ

ī1(W ) = ī1(0)g(0)
g(W ) e−

∫W

0
µ2(τ)+λ

g(τ) dτ .

Substituting ī1(W ) in the the fifth equation of system (3.3.7) enables us to express z̄ as

z̄ = ī1(0)g(0)
λ+ σ

∫ W0

0
ξ(W )P (W )

g(W ) e
−
∫W

0the

µ2(τ)+λ

g(τ) dτdW.

We take the expression of z̄ and ī1(W ) and substitute it into the third equation of system
(3.3.7) to get

g(0)ī1(0) = S∗
0 ī1(0)g(0)

[
βh

∫ W0

0

P (W )
g(W ) e

−
∫W

0
µ2(τ)+λ

g(τ) dτdW

+ βe
λ+ σ

∫ W0

0
ξ(W )P (W )

g(W ) e
−
∫W

0
µ2(τ)+λ

g(τ) dτdW

]
. (3.3.8)

Respectively, we obtain the characteristic equation for λ: G(λ) = 1 with

G(λ) = S∗
0

[ ∫ W0

0
βh
P (W )
g(W ) e

−
∫W

0
µ2(τ)+λ

g(τ) dτdW + βe
λ+ σ

∫ W0

0
ξ(W )P (W )

g(W ) e
−
∫W

0
µ2(τ)+λ

g(τ) dτdW

]
.

(3.3.9)
We then check the roots of the characteristic equation to deduce stability. The DFE is
stable if the roots of the characteristic equation have negative real parts and it’s unstable
otherwise.
A non-zero solution to eq. (3.3.8) exists only if there is a number λ ∈ R such that
G(λ) = 1. Differentiating equation (3.3.9) with respect to λ yields G′(λ) < 0 and thus
G(λ) is a strictly decreasing function, additionally, limλ→∞ G(λ) = 0. If λ̂ is a unique real
solution of eq. (3.3.9) then λ̂ > 0 provided G(0) > 1 and λ̂ < 0 provided G(0) < 1.
We can let H = S∗

0βh
P (W )
g(W ) e

−
∫W

0
µ2(τ)
g(τ) dτ and J = S∗

0βeσ(W )P (W )
g(W ) e

−
∫W

0
µ2(τ)
g(τ) dτ such that

G(λ) =
∫ W0

0
He−

∫W

0
λ

g(τ)dτdW + 1
λ+ σ

∫ W0

0
Je−

∫W

0
λ

g(τ)dτdW.
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Suppose G(0) < 1 and λ = a ± bi is a complex solution to equation (3.3.9) with a ≥ 0.
Then,

| G(λ) | = |
∫ ∞

0
He−

∫W

0
λ

g(τ)dτdW + 1
λ+ σ

∫ ∞

0
Je−

∫W

0
λ

g(τ)dτdW |

= |
∫ ∞

0
He−

∫W

0
a±bi
g(τ) dτdW + 1

a± bi+ σ

∫ ∞

0
Je−

∫W

0
a±bi
g(τ) dτdW |

≤
∫ ∞

0
H | e−

∫W

0
a±bi
g(τ) dτ | dW + 1

| a± bi+ σ |

∫ ∞

0
J | e−

∫W

0
a±bi
g(τ) dτ | dW

=
∫ ∞

0
H | e−

∫W

0
a±bi
g(τ) dτ | dW + 1√

(a+ σ)2 + b2

∫ ∞

0
J | e−

∫W

0
a±bi
g(τ) dτ | dW

≤
∫ W0

0
He−

∫W

0
a

g(τ)dτdW + 1
(a+ σ)

∫ W0

0
J e−

∫W

0
a

g(τ)dτdW = G(a) ≤ G(0) < 1.

It follows then that equation (3.3.9) has a complex solution λ = a ± ib if a < 0, that is,
every solution of eq. (3.3.9) must have a negative real part. We consider G(0) = 1 to be
the threshold condition for the stability of the disease-free equilibrium. According to [28]
this can be defined as the basic reproduction number, that is G(0) = R0 where

R0 = rβh
µ1

∫ W0

0

P (W )
g(W ) e

−
∫W

0
µ2(τ)
g(τ) dτdW + rβe

µ1

∫ W0

0

ξ(W )
σ

P (W )
g(W ) e

−
∫W

0
µ2(τ)
g(τ) dτdW.

By Theorem 3.3.1 the disease-free equilibrium is locally asymptotically stable.

We can interpret the basic reproduction number to be the total infectivity given by

R0 = Rd + Ri

Rd = rβh
µ1

∫ W0

0

P (W )
g(W ) e

−
∫W

0
µ2(τ)
g(τ) dτdW, Ri = rβe

µ1

∫ W0

0

ξ(W )
σ

P (W )
g(W ) e

−
∫W

0
µ2(τ)
g(τ) dτdW.

Rd represents the new infections occurring due to direct contact with an infected individual
while Ri are the infections resulting from consumption of contaminated water containing
bacteria shed to the environment by infected individuals.

3.3.3 Existence of the Endemic Equilibrium
Proposition 3.3.2. A unique positive endemic equilibrium of system (3.3.1) given by
E∗ = (S∗, i∗(W ), V ∗, B∗) exists if R0 > 1.
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Proof. The endemic equilibrium satisfies the following equations

0 = r − µ1S
∗ − S∗

∫ W0

0
βhP (W )i∗(W )dW − βeS

∗B∗ + ρV ∗

∂W (g(W )i∗(W )) = −µ2(W )i∗(W )

g(0)i∗(0) = S∗
∫ W0

0
βhP (W )i∗(W )dW + βeS

∗B∗ (3.3.10)

0 = g(W0)i∗(W0) − ρV ∗ − µ3V
∗

0 =
∫ W0

0
ξ(W )P (W )i∗(W )dW − σB∗.

Solving the second equation of system (3.3.10) yields i∗(W ) = i∗(0)g(0)
g(W ) e−

∫W

0
µ2(τ)
g(τ) dτ .

We let π(W ) = 1
g(W )e

−
∫W

0
µ2(τ)
g(τ) dτ and rewrite

i∗(W ) = i∗(0)g(0)π(W ).

Substituting i∗(W ) to the fourth and fifth equations of system (3.3.10) gives

B∗ = i∗(0)g(0)
∫ W0

0

ξ(W )
σ

P (W )π(W )dW, V ∗ = g(W0)i∗(0)g(0)π(W0)
(ρ+ µ3)

.

Plugging i∗(W ) and B∗ into the boundary equation of system (3.3.10) yields

S∗ = 1∫W0
0 βhP (W )π(W )dW +

∫W0
0 βe

ξ(W )
σ
P (W )π(W )dW

.

To find the value of i∗(0), we use the first equation of system (3.3.10), that can be rewritten
as

r − µ1S
∗ − g(0)i∗(0) + ρV ∗ = 0. (3.3.11)

Notice that S∗ can be expressed in terms of R0, that is S∗ = r
µ1R0

. Substituting S∗ and
V ∗ in eq. (3.3.11) yields

r − r

R0
− g(0)i∗(0) + i∗(0)g(0)ρg(W0)π(W0)

(ρ+ µ3)
= 0.

Thus, i∗(0) =
r(1− 1

R0
)

g(0)(1− ρg(W0)π(W0)
(ρ+µ3) )

. We can then express

i∗(W ) =
r(1 − 1

R0
)

(1 − ρg(W0)π(W0)
(ρ+µ3) )

π(W ). (3.3.12)

Since ρg(W0)π(W0)
(ρ+µ3) = ρe

−
∫W

0
µ2(τ)
g(τ) dτ

(ρ+µ3) < 1, the denominator in eq. (3.3.12) is positive. i∗(W ) is
only positive if R0 > 1, thus, the endemic equilibrium E∗ = (S∗, i∗(W ), V ∗, B∗) exists only
if R0 > 1.
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3.3.4 Local Stability of the Endemic Equilibrium
We assume that R0 > 1 and linearize system (3.3.1) around the endemic equilibrium.
We start by introducing perturbation terms, that is let S(t) = S∗ + x(t), i(t,W ) =
i∗(W ) + i1(t,W ), V = V ∗ + y(t) and B = B∗ + z(t). We substitute these expressions in
system (3.3.1), simplify using the set of equations in system (3.3.10) and neglect quadratic
perturbation terms to get the linearized system

dx(t)
dt

= −µ1x(t) − S∗
∫ W0

0
βhP (W )i1(t,W )dW − x(t)

∫ W0

0
βhP (W )i∗(W )d(W )

−βeS∗z(t) − βeB
∗x(t) + ρy(t)

∂ti1(t,W ) + ∂W (g(W )i1(t,W )) = −µ2(W )i1(t,W )

g(0)i1(t, 0) = S∗
∫ W0

0
βhP (W )i1(t,W )dW + x(t)

∫ W0

0
βhP (W )i∗(W )d(W ) (3.3.13)

+βeS∗z(t) + βeB
∗x(t)

dy(t)
dt

= g(W0)i1(t,W0) − ρy(t) − µ3y(t)

dz(t)
dt

=
∫ W0

0
ξ(W )P (W )i1(t,W )dW − σz(t).

We then look for solutions of the form x(t) = xeλt, i1(t, w) = i1(W )eλt, y(t) = yeλt, z(t) =
zeλt. Substituting the appropriate formulation in system (3.3.13) yields the eigenvalue
problem

λx = −µ1x− S∗
∫ W0

0
βhP (W )i1(W )dW − x

∫ W0

0
βhP (W )i∗(W )d(W )

−βeS∗z − βeB
∗x+ ρy

∂W (g(W )i1(W )) = −(µ2(W ) + λ)i1(W )

g(0)i1(0) = S∗
∫ W0

0
βhP (W )i1(W )dW + x

∫ W0

0
βhP (W )i∗(W )d(W ) (3.3.14)

+βeS∗z + βeB
∗x

λy = g(W0)i1(W0) − ρy − µ3y

λz =
∫ W0

0
ξ(W )P (W )i1(W )dW − σz.

We solve for x, y and z in system (3.3.14) to get

x = ρg(W0)i1(W0) − g(0)i1(0)(λ+ ρ+ µ3)
(λ+ ρ+ µ3)(λ+ µ1)

, y = g(W0)i1(W0)
λ+ ρ+ µ3

,

z = 1
λ+ σ

∫ W0

0
ξ(W )P (W )i1(W )dW.

The solution to the PDE in system (3.3.14) yields

i1(W ) = i1(0)g(0)π1(W )e−
∫W

0
λ

g(τ)dτ , π1(W ) = 1
g(W )e

−
∫W

0
µ2(τ)
g(τ) dτ .
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Denoting K =
∫W0

0 βhP (W )i∗(W )d(W ) and substituting x, y, z and i1(W ) in the third
equation of system (3.3.14) gives the characteristic equation

1 = S∗
∫ W0

0
βhP (W )π1(W )e−

∫W

0
λ

g(τ)dτdW + βeS
∗

λ+ σ

∫ W0

0
ξ(W )P (W )π1(W )e−

∫W

0
λ

g(τ)dτdW

+
(K + βeB

∗)
(
ρg(W0)π1(W0)e−

∫W

0
λ

g(τ)dτ
)

(λ+ ρ+ µ3)(λ+ µ1)
− K + βeB

∗

λ+ µ1
.

We can rewrite this equation as
λ+ µ1 +K + βeB

∗

λ+ µ1
= S∗

∫ W0

0
βhP (W )π1(W )e−

∫W

0
λ

g(τ)dτdW

+ βeS
∗

λ+ σ

∫ W0

0
ξ(W )P (W )π1(W )e−

∫W

0
λ

g(τ)dτdW

+
(K + βeB

∗)
(
ρg(W0)π1(W0)e−

∫W

0
λ

g(τ)dτ
)

(λ+ ρ+ µ3)(λ+ µ1)
. (3.3.15)

Studies have shown that a cholera infection confers immunity against subsequent infection
[87]. We consider the case of a single cholera epidemic, where most individuals become
immune such that the loss of immunity is negligible. We show that the endemic equilibrium
is asymptotically stable.

Theorem 3.3.3. Given no loss of immunity (ρ = 0), the endemic equilibrium is locally
asymptotically stable if R0 > 1.

Proof. Considering no loss of immunity, the characteristic equation (3.3.15) reduces to
λ+ µ1 +K + βeB

∗

λ+ µ1
= S∗

∫ W0

0
βhP (W )π1(W )e−

∫W

0
λ

g(τ)dτdW

+ βeS
∗

λ+ σ

∫ W0

0
ξ(W )P (W )π1(W )e−

∫W

0
λ

g(τ)dτdW. (3.3.16)

If we let λ = a+ ib and assume that a ≥ 0, then for R(λ) ≥ 0 the left hand side of equation
(3.3.16) gives

| λ+ µ1 +K + βeB
∗

λ+ µ1
|=

√
(a+ µ1 +K + βeB∗)2 + b2√

(a+ µ1)2 + b2
> 1,

while for a ≥ 0 the right hand side yields

| S∗
∫ W0

0
βhP (W )π1(W )e−

∫W

0
λ

g(τ)dτdW + βeS
∗

λ+ σ

∫ W0

0
ξ(W )P (W )π1(W )e−

∫W

0
λ

g(τ)dτdW |

≤ S∗
∫ W0

0
βhP (W )π1(W ) | e−

∫W

0
λ

g(τ)dτ | dW + βeS
∗

| λ+ σ |

∫ W0

0
ξ(W )P (W )π1(W ) | e−

∫W

0
λ

g(τ)dτ | dW

≤ S∗
∫ W0

0
βhP (W )π1(W )e−

∫W

0
a

g(τ)dτdW + βeS
∗

σ

∫ W0

0
ξ(W )P (W )π1(W )e−

∫W

0
a

g(τ)dτdW

≤ S∗
∫ W0

0
βhP (W )π1(W )dW + βeS

∗

σ

∫ W0

0
ξ(W )P (W )π1(W )dW = S∗R0µ1

r
= 1.



CHAPTER 3. LINKING THE DYNAMICS THROUGH IMMUNE RESPONSES 43

Thus, given λ with R(λ) ≥ 0, the left side of equation (3.3.16) is strictly greater than one
while the right side of equation (3.3.16) is strictly less than one, which is a contradiction.
Therefore, any λ with non-negative real parts can not satisfy the characteristic equation.
By Theorem 3.3.1 the endemic equilibrium is locally asymptotically stable.

3.4 Modified Between-host Model
In this section, we modify the between-host model (3.3.1) by assuming permanent im-
munity and assigning an age structure to the bacteria in the environment, that is,
B(t) =

∫ ā
0 b(t, a)da. We consider this to be more realistic and biologically meaningful.

See Remark 3.4.1 below. We use the methods from Meehan et al. [76] to check for the
global stability of the equilibrium points of the modified model and give conditions in which
the modified model is equivalent to the original model. The modified model is described
by

dS(t)
dt

= r − µ1S(t) − S(t)F (t)

∂ti(t,W ) + ∂W (g(W )i(t,W )) = −µ2(W )i(t,W )
g(0)i(t, 0) = S(t)F (t) (3.4.1)

(∂t + ∂a)b(t, a) = −σb(t, a)

b(t, 0) =
∫ W0

0
ξ(W )P (W )i(t,W )dW

S(0) = S0 V (0) = V0, b(0, a) = β(a), i(0,W ) = Φ(W ),

where the force of infection F (t) =
∫W0

0 βhP (W )i(t,W )dW +
∫∞

0 βe(a)b(t, a)da.

Assumption 3.4.1. The rate of environmental transmission of bacteria βe(a) has compact
support for a ∈ [0, ā] such that βe(a) ≥ 0 for a ∈ [0, ā] and zero elsewhere.

Remark 3.4.1. Assumption 3.4.1 is based on the premise that bacteria shed into the
environment are in a hyperinfectious state and only decay into a less infectious state over
time [45]. Therefore, bacteria that contribute to the infection process are considered to be
young. If we assign a maximal age ā to the bacteria, we expect that bacteria with age ā > 0
will have no contribution to the infection process.

3.4.1 Global Stability of Equilibrium Points
With Assumption 3.4.1 in mind, we turn to check the global stability of the equilibrium
points of the model (3.4.1). We follow the approach used by Meehan et al. [76] for systems
of renewal equations. First, we give a summary of their work.
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Meehan et al. [76] describe a susceptible class experiencing a force of infection F (t) as

dS(t)
dt

= λ− µ1S(t) − S(t)F (t)

F (t) =
∫ τ̄

0
A(τ)S(t− τ)F (t− τ)dτ,

(3.4.2)

where A(τ) is the contribution of individuals infected for time τ to the force of infection
and the infectivity kernel A ≥ 0. Two assumptions are prescribed to the system, that is,
the maximal age of infection τ̄ < ∞, and the infection confers permanent immunity. Using
Lyapunov functionals, they conclude from the integral form, with compact support of the
integral kernel, the global stability of the DFE when R0 ≤ 1 and the global stability of the
endemic equilibrium when R0 > 1. We state the associated theorems below.

Theorem 3.4.1. [76, Theorem 1] The infection-free equilibrium point P0 of the system
(3.4.2) is globally asymptotically stable in an infinite dimensional phase space Ω for R0 ≤ 1.
However, if R0 > 1, solutions of (3.4.2) starting sufficiently close to P0 in Ω leave a
neighborhood of P0, except those starting within the boundary region ∂Ω which approach
P0.

Theorem 3.4.2. [76, Theorem 2] If R0 > 1, there is a unique endemic equilibrium P̄
which is globally asymptotically stable in Ω (for initial conditions away from the boundary
region ∂Ω).

We aim to reformulate system (3.4.1) in terms of these results to establish global stability.

Theorem 3.4.3. Given Assumption 3.4.1, the infection-free equilibrium and endemic equi-
librium of the system (3.4.1) are globally asymptotically stable when R0 ≤ 1 and R0 > 1
respectively.

Proof. We aim to rewrite F (t) as F (t) =
∫ τ̄

0 A(τ)S(t − τ)F (t − τ)dτ . Similar to what is
done in Proposition 3.3.1, we can define

i(t,W ) =

S(t−G(W ))F (t−G(W )) 1
g(W )e

−
∫W

0
µ2(W ′)
g(W ′) dW

′
W ≤ W0

0 W > W0.
(3.4.3)

Using the method of characteristics we solve the boundary value problem for b(t, a). That
is, the characteristic curves are given by

dt

ds
= 1, da

ds
= 1, dz

ds
= −σz.

Solving the curves with the boundary conditions gives,

t = s+ t0, a = s, z = b(t0, 0)e−σs

b(t, a) = b(t− a, 0)e−σa (3.4.4)

= e−σa
∫ W0

0
ξ(W )P (W )i(t− a,W )dW.
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We substitute the value of i from equation (3.4.3) in b(t, a) to obtain

b(t, a) = e−σa
∫ W0

0
ξ(W )P (W )S(t− a−G(W ))F (t− a−G(W )) 1

g(W )e
−
∫W

0
µ2(W ′)
g(W ′) dW

′
dW.

To find the total bacterial concentration, we integrate b(t, a) over a and obtain the integral
equation

B(t) =
∫ ā

0
b(t, a)da =

∫ ā

0
e−σa

∫ W0

0

ξ(W )P (W )
g(W ) S(t− a−G(W ))F (t− a−G(W ))

·e−
∫W

0
µ2(W ′)
g(W ′) dW

′
dWda.

We then find the bacterial contribution to the force of infection. Recall that G(W ) =∫ dW
g(W ). If we let a+G(W ) = θ then dθ = 1

g(W )dW and

∫ ā

0
βe(a)b(t, a)da =

∫ ā

0
βe(a)e−σa

∫ a+G(W0)

a+G(0)
ξ(G−1(θ − a))P (G−1(θ − a))S(t− θ)

·F (t− θ)e−
∫ G−1(θ−a)

0
µ2(W ′)
g(W ′) dW

′
dθda,

=
∫ ā+G(W0)

G(0)
Ke(θ)S(t− θ)F (t− θ)dθ.

with (see Figure 3.4)

Ke(θ) =



∫ θ−G(0)
0 βe(a)e−σaξ(G−1(θ − a))P (G−1(θ − a))e−

∫ G−1(θ−a)
0

µ2(W ′)
g(W ′) dW

′
da

for θ ∈ (G(0), G(W0))∫ θ−G(0)
θ−G(W0) βe(a)e−σaξ(G−1(θ − a))P (G−1(θ − a)e−

∫ G−1(θ−a)
0

µ2(W ′)
g(W ′) dW

′
da

for θ ∈ (G(W0), ā+G(0)∫ ā
θ−G(W0) βe(a)e−σaξ(G−1(θ − a))P (G−1(θ − a)e−

∫ G−1(θ−a)
0

µ2(W ′)
g(W ′) dW

′
da

for θ ∈ (ā+G(0), ā+G(W0)).

Now that we have the force of infection from indirect transmission, we evaluate the same
for the case of direct transmission. This yields∫ W0

0
βhP (W )i(t,W )dW =

∫ W0

0
βhP (W )S(t−G(W ))F (t−G(W )) 1

g(W )e
−
∫W

0
µ2(W ′)
g(W ′) dW

′
dW.

If we let τ = G(W )
∫ W0

0
βhP (W )i(t,W )dW =

∫ G(W0)

G(0)
Kh(τ)S(t− τ)F (t− τ)dτ
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Figure 3.4: Change of the order of integration.

with
Kh(τ) = βhP (G−1(τ))e−

∫ G−1(τ)
0

µ2(W ′)
g(W ′) dW

′
.

We can then write the total force of infection as

F (t) =
∫ W0

0
βhP (W )i(t,W )dW +

∫ ∞

0
βe(a)b(t, a)da

=
∫ G(W0)

G(0)
Kh(τ)S(t− τ)F (t− τ)dτ +

∫ ā+G(W0)

G(0)
Ke(θ)S(t− θ)F (t− θ)dθ

=
∫ ā+G(W0)

G(0)
A(W )S(t−W )F (t−W )dW,

where

A(W ) =
Kh(W ) +Ke(W ) W ≤ G(W0)
Ke(W ) G(W0) < W ≤ ā+G(W0).

The susceptible class of system (3.4.1) is now described by the system

dS(t)
dt

= r − µ1S(t) − S(t)F (t)

F (t) =
∫ W0

0
A(W )S(t−W )F (t−W )dW.

From the results of Meehan et al. [76], the disease-free equilibrium and the endemic equi-
librium of the above system are globally asymptotically stable when R0 ≤ 1 and R0 > 1
respectively.

We next check the equivalence of the two models.

Proposition 3.4.1. The original model (3.3.1) is equivalent to the modified model (3.4.1)
whenever ā → ∞.
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Proof. Recall that, B(t) =
∫ ā

0 b(t, a)da. From equation (3.4.4) we find b(t, a) = b(t −
a, 0)e−σa. We define

φ(a) =
e−σa for a ∈ [0, ā]

0 for a > ā

such that b(t, a) = b(t− a, 0)φ(a). For simplicity, we write b(t− a, 0) = b(t− a) then,

dB(t)
dt

= d

dt

∫ ā

0
b(t− a)φ(a)da = −

∫ ā

0

(
d

da
b(t− a)

)
φ(a)da.

Integrating by parts yields

dB(t)
dt

= −φ(a)b(t− a) |ā0 +
∫ ā

0
φ′(a)b(t− a)da

= −φ(ā)b(t− ā) + b(t) − σ
∫ ā

0
φ(a)b(t− a)da = b(t) − σB(t) − φ(ā)b(t− ā)

=
∫ W0

0
ξ(W )P (W )i(t,W )dW − σB(t) − φ(ā)b(t− ā). (3.4.5)

For ā → ∞

dB(t)
dt

=
∫ W0

0
ξ(W )P (W )i(t,W )dW − σB(t). (3.4.6)

Brauer et al. [11] has examined the global stability of systems similar to (3.4.1) for the
case g(W ) = 1. Although the case of waning immunity has not been considered, analysis
of models with waning immunity can be viewed in Barbarossa and Röst [9], Nakata et al.
[86].

3.5 Summary
We have presented a within-host model in which pathogen growth is denoted by a cubic
term. We have been able to characterize a single infected individual by the state of his
immune response. We find that, unlike other within-host cholera models, our modeling
approach allows for the possibility of recovery as the pathogen is cleared from the body
after a finite time. Subsequently, we have also found that a minimum pathogen load is
required to activate an immune response reinforcing the ideas behind the critical infectious
dose needed for infection.
The results from the within-host analysis have allowed us to structure the epidemic model
on immune properties. The resulting epidemic model has an advantage over standard SIR-
type models in that immunological variables can determine the ability of the disease to
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spread. For instance, a sustained immune response within the host could alter the time
course of an infection in the population. Therefore, disease spread is not just a consequence
of epidemiological factors but also of immunological factors. Using the basic reproduction
number of the model, we can estimate the contribution of bacteria from the environment
and human-human contribution to the infection process. We have shown that for the DFE,
the disease will be eradicated if R0 < 1 and persist otherwise. We have considered the case
where there is no loss of immunity and outlined the conditions for the local stability of the
endemic equilibrium. Further, for the modified model we have shown global stability for
both the disease-free and endemic equilibrium.
In the study, one infectious contact is assumed to bring the contacts over the threshold.
This is not the case when an individual has a sub-critical pathogen load. We will consider
the sub-critical case in the next chapter of the thesis.



Chapter 4

Multi-scale to SIR model using First
Principles

In this chapter, we take up recent ideas on multi-scale modeling and return to first principles
to derive a refined model of the within and between-host dynamics of cholera. The aim
is to introduce a model structure that is closer to the immunological and environmental
processes associated with the disease. We also aim to provide a rigorous way for the analysis
of such a model structure. We formulate the model by explicitly addressing the pathogen
level in susceptible individuals. This sounds contradictory at first glance since susceptible
individuals are usually thought to be pathogen-free. However, in some instances, the
consumption of contaminated food and water does not immediately trigger infection. This
is because cholera infection only occurs when the pathogen load of an individual exceeds
a critical threshold [87, 95] (which varies from individual to individual, e.g., caused by
differences in the gut microbiome [1, 22]). That is, individuals take up V. cholerae, but
the innate immune system fights off and eliminates the bacteria as long as the critical
pathogen threshold is not exceeded. Furthermore, laboratory experiments on mice show
that a moderate increase in the infectious dose leads to an increase in the pathogen burden
over time (with a time scale of approximately 12 h) [40], and not to infection. We are thus
led to a model, where the susceptible are structured by their pathogen load. The transition
into the infected class happens at a rate dependent on the pathogen load. This step allows
for a better connection between the within- and between-host dynamics, as the somewhat
arbitrary distinction between a susceptible person and an infected person is softened.

Mathematically, the model structure resembles that of fragmentation–aggregation equa-
tions: we have a time-continuous process of pathogen clearance (we assume that pathogens
are degraded at a constant rate within a host), and at randomly distributed times, by food
uptake, we have booster events that instantaneously increase the pathogen load. Accord-
ingly, the analysis of the invariant distribution for the pathogen load follows the theory
developed for aggregation–fragmentation equations, particularly for cell division, developed
in the 1980s by Heijmans, Gyllenberg, and others [46, 47], which was later extended, e.g.,

49
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by Doumic and others [31, 17, 97, 98]. The understanding of the pathogen load’s invariant
distribution and the assumption of a time scale separation then allows the reduction of the
rather complex multi-scale model to a population-level only model, where the incidence
term assumes a form derived from the multi-scale model. We then analyze the resultant
model numerically. This chapter is based on the work published in [84].

4.1 Model Description
We subdivide the human population into three compartments that represent susceptible
(S), infected (I), and recovered (R) individuals. Additionally, we have a compartment
for the bacterial concentration in the environment B. The pathogen (Vibrio cholerae)
can survive and reproduce in the environment without interaction with human hosts. We
simply assume an environmental pathogen production rate a and a pathogen death rate
σ. As a detailed model of the pathogen’s life cycle is out of the scope of the present work,
we focus on the human population.

We are interested in a model connecting the within-host level with the population level.
Therefore, we assign each susceptible person a pathogen load P . Although transmission can
take place directly through person-to-person contact, we only consider the case of indirect
transmission since direct transmission has been shown to be rare [94]. That is, we consider
that contact with contaminated food (booster event) increases the pathogen load of an
individual at the rate ψB. We assume that food uptake does not take place completely
at random, that is, there is some minimal and maximal time between uptake events, and
as such, we also take the time since the last booster event τ into account. We can now
describe the susceptible class S = S(t, τ, P ) such that the class is structured according
to the pathogen load and the time since the last uptake event. It becomes apparent that
this structure is not only more realistic but also mathematically convenient. We model the
timing of booster events by the rate ρ(τ), which we will discuss below in more detail.

It is well known that a critical pathogen load is required for a cholera infection to occur
[80, 87]. Under sub-critical pathogen levels, the innate immune system is able to control
the pathogens. We take that into account by defining a clearance rate γ for the within-
host pathogens. To be precise, within a single susceptible individual, we have an interplay
between the booster event and the degradation of pathogens, which establishes a stochastic
process as shown in Figure 4.1. Experiments done on mice with a moderate pathogen level
show the exact kind of decline in the pathogen load addressed by this sub-model for the
susceptible [40]. Furthermore, the infection rate β is a function depending on the pathogen
load, β = β(P ). Here, β(P ) = 0 if the pathogen load is sub-critical. β only becomes
positive if the pathogen load P exceeds some value and persons with such a high pathogen
load are transferred to the infected class. An infected individual sheds pathogens into the
environment at rate ξ and recovers at the rate α. We now define some assumptions for the
model.
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Figure 4.1: Time course of the pathogen load within a single susceptible individual: booster
events (uptake of pathogens) instantaneously increase the load, in-between two booster
events the immune system leads to an exponential decrease in pathogens. The time between
two booster events is given by i.i.d. random variable T . ψB = 1 is taken constant here,
the initial time span is dismissed as a burn-in phase s.t. time runs here from 2970 to 3010.

• Recovered individuals become immune and stay immune. The time scale of our model
covers months, which corresponds to the time scale of one cholera epidemic, and not
years, where recovered individuals become susceptible once again.

• The dynamics at the population level are slow while the within-individual pathogen
dynamics are fast. A typical cholera epidemic has a time scale of weeks or months,
while the time between two booster events is rather hours, and accordingly, the time
scale of the native immune event to handle the ingested pathogens is the same as
the time scale for the uptake events (otherwise the pathogens would accumulate and
eventually an infection would be inevitable).

From the second assumption, we can now distinguish the dynamics within the host and
at the population level by considering time scales. The time scale parameter ϵ is used to
express slow dynamics. Figure 4.2 depicts the movement between the different compart-
ments.



CHAPTER 4. MULTI-SCALE TO SIR MODEL USING FIRST PRINCIPLES 52

I R

 

B

 

 

ξ

α

ɑ σ

β(P)
S(t,𝜏,P)

Figure 4.2: Model flow diagram at population level

All in all, the model reads

∂tS(t, τ, P ) + ∂τS(t, τ, P ) + ∂P (−γPS(t, τ, P )) = −ρ(τ)S(t, τ, P ) − ϵβ(P )S(t, τ, P )

S(t, 0, P ) =
∫ τ̂

τ̌
ρ(τ)S(t, τ, P − ψB)dτ

S(t, τ, P ) = 0 for P < 0 (4.1.1)

İ =
∫ ∞

0

∫ τ̂

τ̌
ϵβ(P )S(t, τ, P )dτdP − ϵαI

Ṙ = ϵαI

Ḃ = ϵ(a+ ξI − σB)
S(0, τ, P ) = S0(τ, P ), I(0) = I0, R(0) = R0, B(0) = B0.

The boundary condition S(t, 0, P ) defines the pathogen density in the susceptible class right
after a booster event. The time since the last booster event τ is zero since the booster
event has just occurred, and the delay term P − ψB implies that the boosted individuals
had a lower pathogen load before the jump.
Now that we have defined the model equations, we turn to discuss a central aspect, the
timing of booster events coded by ρ(τ). The idea is that beneath our deterministic model,
there is an underlying stochastic process describing the uptake of pathogens. We will
later use this idea to formulate a numerical method to obtain a stationary solution to
our model. The time between two booster events is i.i.d. as a random variable T with
probability density φ(t) ∈ C1(R+). That is, P (T < τ) =

∫ τ
0 φ(τ) dt. We assume that there

is a minimal time τ̌ > 0 between two booster events, P (T < τ̌) = 0, as well as a maximal
time τ̂ > τ̌ , P (T < τ̂) = 1. Therefore,

φ(τ) = 0 for τ ∈ [0, τ̌) ∪ (τ̂ ,∞),
∫ τ̂

τ̌
φ(τ) dτ = 1. (4.1.2)
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These assumptions are sensible given the application, and, as we shall see, are also con-
venient for the analysis of the model. We next show that ρ(τ) can be defined in terms of
φ(τ).

Proposition 4.1.1. The parameter ρ(τ) in the model (4.1.1) is the hazard rate defined by
φ(τ), that is

ρ(τ) = φ(τ)
1 −

∫ τ
0 φ(s) ds.

Proof. Given ρ(τ) as the timing of a booster event, the time distribution of the booster
event φ(τ) can be taken as the arrival time of the process, that is,

φ(τ) = ρ(τ)e−
∫ τ

0 ρ(s) ds

∫∞
0 ρ(τ ′)e−

∫ τ ′

0 ρ(s) dsdτ ′
.

We aim at an expression of ρ(τ) in terms of φ(τ). We solve the denominator to get∫ ∞

0
ρ(τ ′)e−

∫ τ ′

0 ρ(s)dsdτ ′ = −
∫ ∞

0

d

dτ ′ e
−
∫ τ ′

0 ρ(s)dsdτ ′ = 1 − e−
∫∞

0 ρ(s)ds = c

such that φ(τ) = ρ(τ)e−
∫ τ

0
ρ(s) ds

c
. Taking c = 1

φ(τ) = ρ(τ)e−
∫ τ

0 ρ(s) ds.

Integrating both sides∫ τ

0
φ(s)ds =

∫ τ

0
− d

ds
e−
∫ s

0 ρ(η) dηds = 1 − e−
∫ τ

0 ρ(η)dη

1 −
∫ τ

0
φ(s)ds = e−

∫ τ

0 ρ(η)dη.

We can rewrite the equation as∫ τ

0
ρ(η)dη = − ln

(
1 −

∫ τ

0
φ(s)ds

)
.

Differentiating both sides gives

ρ(τ) = φ(τ)
1 −

∫ τ
0 φ(s)ds.

Thus the parameter ρ(τ) in system (4.1.1)is the hazard rate defined by φ(τ).

We superimpose several rather technical assumptions on the hazard rate.
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Assumption 4.1.1. The hazard rate ρ(τ) = φ(τ)
1−
∫ τ

0 φ(s) ds stems from a distribution φ(τ) ∈
C1(R+), where φ satisfies eq. (4.1.2). We also assume that

(a) lim
τ→τ̂

∫ τ

0
ρ(τ) dτ = ∞, (b) sup

τ∈[0,τ̂ ]
ρ(τ)e−

∫ τ

0 ρ(s) ds < ∞, lim
τ→τ̂

ρ(τ)e−
∫ τ

0 ρ(s) ds = 0.

(c)
∫ τ̂

τ̌
ρ2(τ) e−

∫ τ

0 ρ(s) ds dτ < ∞, (d)
∫ τ̂

τ̌
|ρ′(τ)| e−

∫ τ

0 ρ(s) ds dτ < ∞.

We show that these assumptions are satisfied by a wide range of random variables T (resp.
their distribution φ).

Proposition 4.1.2. Let φ ∈ C1([0, τ̂)), supp(φ) ⊂ [τ̌ , τ̂ ],
∫ τ̂

0 φ(s) ds = 1, and assume that
there is z ∈ C1(R+) and m > 0 such that φ(τ) = z(τ)(τ̂ − τ)m. Then, the hazard rate ρ(τ)
satisfies Assumption 4.1.1.

Proof. The conditions in eq. (4.1.2) are obviously satisfied. We now show (a)-(d) from
Assumption 4.1.1.
(a) ∫ τ

0
ρ(τ)dτ =

∫ τ

0

φ(τ)
1 −

∫ τ
0 φ(s)dsdτ = − ln

(
1 −

∫ τ

0
φ(s)ds

)
implies that limτ→τ̂

∫ τ
0 ρ(τ)dτ = ∞.

(b) Note that the function ρ(τ)e−
∫ τ

0 ρ(s) ds is continuous for τ < τ̂ . If we can show that
this function converges to 0 for τ → τ̂ , it is already bounded (sup(. . .) < ∞). We use the
formula derived in (a) and obtain

lim
τ→τ̂

ρ(τ)e−
∫ τ

0 ρ(s) ds = lim
τ→τ̂

φ(τ)
1 −

∫ τ
0 φ(s)ds e

−
∫ τ

0
d

ds

(
−ln
(

1−
∫ s

0 φ(τ ′)dτ ′
))

ds

= lim
τ→τ̂

φ(τ)
1 −

∫ τ
0 φ(s)ds

(
1 −

∫ τ

0
φ(s)ds

)
= lim

τ→τ̂
φ(τ) = 0.

∫ τ̂

τ̌
ρ2(τ)e−

∫ τ

0 ρ(s)dsdτ =
∫ τ̂

τ̌

(
φ(τ)

1 −
∫ τ

0 φ(s)ds

)2 (
1 −

∫ τ

0
φ(s)ds

)
dτ =

∫ τ̂

τ̌

φ2(τ)
1 −

∫ τ
0 φ(s)dsdτ.

We discuss the asymptotic of the integrand for τ → τ̂ for the case φ(τ) = z(τ)(τ̂ − τ)m for
some smooth z(τ). For the denominator, we obtain

1 −
∫ τ

0
φ(s)ds =

∫ τ̂

τ̌
φ(s)ds =

∫ τ̂

τ̌
z(τ) (τ̂ − s)mds = O((τ̂ − s)m+1).

Therewith,
φ2(τ)

1 −
∫ τ

0 φ(s)ds = O((τ̂ − s)2m)
O((τ̂ − s)m+1) = O((τ̂ − s)m−1)
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which is integrable, as we assume m > 0.
(d) Note that

∫ τ̂

τ̌
| ρ′(τ) | e−

∫ τ

0 ρ(s)dsdτ =
∫ τ̂

τ̌

∣∣∣∣∣ ddτ
(

φ(τ)
1 −

∫ τ
0 φ(s)ds

)∣∣∣∣∣
(

1 −
∫ τ

0
φ(s)ds

)
dτ

≤
∫ τ̂

τ̌
|φ′(τ)| dτ +

∫ τ̂

τ̌

φ2(τ)
1 −

∫ τ
0 φ(s)dsdτ

which is integrable, as seen previously.

4.2 Pathogen Distribution for Constant Environmen-
tal Pathogen Load

What follows next is an analysis of the pathogen distribution S(t, τ, P ). We do this by
studying the reduced model of the system (4.1.1). To reduce the model, we take ϵ to zero
such that no new infections are occurring and assume that the environmental pathogen
load B is constant. That is, we consider

∂tS(t, τ, P ) + ∂τS(t, τ, P ) + ∂P (−γPS(t, τ, P )) = −ρ(τ)S(t, τ, P )

S(t, 0, P ) = g(t, P ) =
∫ τ̂

τ̌
ρ(τ)S(t, τ, P − ψB)dτ (4.2.1)

S(0, τ, P ) = S0(τ, P )

for B > 0 given, fixed. This section aims to show that there is a stationary solution of
eq. (4.2.1) (the invariant distribution of the underlying stochastic model) and that any
non-negative initial condition eventually tends to this solution. Thereto, we first show
that eq. (4.2.1) defines a strongly continuous and eventually compact semigroup, and then
inspect the spectrum of the infinitesimal generator of this semigroup (see Section 1.2.2
for definitions). As we will find out, the generator has an eigenvalue 0 (caused by mass
conservation), which is dominant. The non-local term in the boundary condition (a jump
of B by a booster event) is not completely straightforward to handle.

Mathematically, this semigroup is close to systems describing cell division, or more gen-
erally, aggregation-fragmentation equations. In aggregation-fragmentation equations, en-
tities grow and are reduced by sudden nonlocal fragmentation events, but in our case,
the continuous degradation of the immune system decreases P , but the sudden disruptive
nonlocal events (booster events) increase P . This is the difference between aggregation-
fragmentation equations and our model. However, for the analysis, we mostly follow the
strategy used for those equations developed by Heijmans, Gyllenberg and others [43, 47, 46],
and advanced in recent years [31, 17].

We adapt the methods above to address a technical problem that arises in the analysis:
the lack of strong positivity. That is, we find a compact interval [P∗, P

∗], with P∗ and P ∗
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as the lower and upper bounds of the pathogen respectively, for the pathogen load right
after a booster event happens. However, the probability mass is zero at the boundary
of this interval. To solve this, we need to first regularize the problem before using the
standard arguments. Additional effort is necessary if we pass to the limit and de-regularize
the operators again, to ensure that the desired results remain valid in the limit.

4.2.1 Existence of the Semigroup
Below, using the methods of characteristics, we show that there is a bounded region Ω,
such that the semigroup defined by eq. (4.2.1) has the space of continuous functions C0(Ω)
as an invariant function space. We thus work with the state space E = C0(Ω). For now,
we take Ω for granted, and define the operator A : D(A) ⊂ E → E as

Aϕ(τ, P ) = −∂τϕ(τ, P ) − ∂P (−γPϕ(τ, P )) − ρ(τ)ϕ(τ, P ) ∀ϕ ∈ D(A)

D(A) = {ϕ(τ, P )|ϕ,Aϕ ∈ E, ϕ(0, τ) =
∫ τ̂

τ̌
ρ(τ)ϕ(τ, P − ψB)dτ}.

(4.2.2)

We rewrite eq. (4.2.1) as an abstract Cauchy equation (with the understanding that S(t) ∈
E).

d

dt
S(t) = AS(t), S(0) = S0.

We next show that the operator A is the infinitesimal generator of a strongly continuous
semigroup {T (t)|t ≥ 0} on E. As is usual for this kind of equation [68], the construction of
the existence of the semigroup is based on the method of characteristics. The characteristic
curves of eq. (4.2.1) are given by

dt

ds
= 1, dτ

ds
= 1, dP

ds
= −γP, dz

ds
= −(ρ(τ) − γ)z.

For t < τ < τ̌ , we obtain the solution by a pure transport of the initial conditions along
the characteristics,

t = τ, τ = s+ τ0, P = P0e
−γs, z = S0(τ0, P0)e−

∫ s

0 ρ(s+τ0)−γds.

S(t, τ, P ) = S0(τ − t, Peγτ )e−
∫ τ

τ−t
ρ(τ ′)−γdτ ′

.

Therewith, for t < τ̌ , we obtain the boundary values S(t, 0, P ) by an appropriate integral
over S0,

g(t, P ) =
∫ τ̂

τ̌
ρ(τ)S(t, τ, P − ψB)dτ

=
∫ τ̂

τ̌
ρ(τ ′)S0(τ ′ − t, (P − ψB)eγτ ′)e−

∫ τ ′

τ ′−t
ρ(τ ′′)−γdτ ′′

dτ ′ (4.2.3)
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such that we are also able to define S(t, τ, P ) for τ < t < τ̌ . That is,

t = τ + t0, τ = s, P = P0e
−γs, z = S(t0, 0, P0)e−

∫ s

0 ρ(τ ′)−γdτ ′
,

S(t, τ, P ) = S(t− τ, 0, P eγτ )e−
∫ τ

0 ρ(τ ′)−γdτ ′ = g(t− τ, Peγτ )e−
∫ τ

0 ρ(τ ′)−γdτ ′

=
∫ τ̂

τ̌
ρ(τ ′)S0(τ + τ ′ − t, (Peγτ − ψB)eγτ ′)e−

∫ τ ′

τ+τ ′−t
ρ(τ ′′)−γdτ ′′

dτe−
∫ τ

0 ρ(τ ′)−γdτ ′
.

Combining the two observations, we are able to explicitly define the semigroup for 0 ≤ t ≤
τ̌ ,

T (t)S0(τ, P )

=


S0(τ − t, Peγτ )e−

∫ τ

τ−t
ρ(τ ′)−γdτ ′

t ≥ τ∫ τ̂
τ̌ ρ(τ ′)S0(τ + τ ′ − t, (Peγτ − ψB)eγτ ′)e−

∫ τ ′

τ+τ ′−t
ρ(τ ′′)−γdτ ′′

dτe−
∫ τ

0 ρ(τ ′)−γdτ ′
t < τ.

(4.2.4)

We have an explicit representation of the semigroup for t ∈ [0, τ̌ ]. The condition for
strong continuity immediately follows from this representation. We extend that definition
to t ≥ 0. For t = nτ̌ + δ (where 0 ≤ δ < τ̌ and n ∈ N0), we define T (t)S0 = T (τ̌)nT (δ)S0.
The following theorem is a consequence of the results above.

Theorem 4.2.1. Equation (4.2.1) defines a strongly continuous semigroup T (t) on
C0([0, τ̂ ] × R+).

As indicated above, the state space (τ, P ) ∈ [0, τ̂ ] × R+ is possible but too large, as for
P ≫ 1, the degradation is faster than the boosting and thus the mass of the solution
will eventually collect in the bounded region Ω constructed below, which turns out to be
invariant under the within-host pathogen dynamics.

We obtain an upper bound P ∗ for the pathogen load right after a booster event (τ = 0):
starting at (τ, P ) = (0, P ∗), the characteristic originating in this point is given by P (τ) =
P ∗ e−γτ . The minimal time interval to the next booster event might take place is τ̌ , such
that P ∗ = P ∗ e−γτ̌ + ψB and

P ∗ = ψB

1 − e−γτ̌ . (4.2.5)

We also introduce a minimal pathogen load P∗ right after a booster event in the same way:
now we consider booster events happening at the maximal time span τ̂ , such that

P∗ = ψB

1 − e−γτ̂ . (4.2.6)

Therewith, we can define the invariant region Ω, bounded above and below by the charac-
teristic starting in (τ, P ) = (0, P ∗), respectively, in (τ, P ) = (0, P∗), and extending to the
right up to τ̂ (see Figure 4.3).
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Figure 4.3: Shape of Ω: The upper and lower bound of Ω are given by characteristic curves,
originating in (0, P ∗) and (0, P∗). The points P ∗ resp. P∗ are constructed in such a way
that the characteristics hit (τ̌ , P ∗ − ψB) resp. (τ̂ , P∗ − ψB).

Corollary 4.2.1. Let

Ω = {(τ, P ) | 0 ≤ τ ≤ τ̂ , P∗ e
−γ τ ≤ P ≤ P ∗ e−γ τ}. (4.2.7)

If S0 ∈ C0([0, τ̂ ] × R+), supp(S0) ⊂ Ω, then for all t ≥ 0 supp(T (t)S0) ⊂ Ω, such that (in
slight abuse of notation) T (t)(C0(Ω)) ⊂ C0(Ω).

Note that in the representation of T (t) given by eq. (4.2.4) the integral extends over values
(τ, P ) outside of Ω, where the solution S(t, τ, P ) is consequently zero. From now on, we
consider the semigroup to be acting on E = C0(Ω).

Theorem 4.2.2. If t > 3τ̂ , the semigroup T (t) is compact.

Proof. If t > τ̂ , the booster event has already occurred, we have

S(t, τ, P ) = g(t− τ, Peγτ ) e−
∫ τ

0 ρ(τ ′)−γdτ ′

such that,
S(t, τ, P − ψB) = g(t− τ, (P − ψB )eγτ ) e−

∫ τ

0 ρ(τ ′)−γdτ ′

and therefore

g(t, P ) =
∫ τ̂

τ̌
ρ(τ)S(t, τ, P − ψB) dτ =

∫ τ̂

τ̌
g(t− τ, (P − ψB)eγτ ) ρ(τ)e−

∫ τ

0 ρ(τ ′)−γdτ ′
dτ.

Assuming t > 2τ̂ , we iterate twice to express the boundary value g(t, P ) as an integral over
the boundary value at earlier times.
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We already know that g(t, P ) =
∫ τ̂
τ̌ g(t− τ ′, (P − ψB) eγτ

′) ρ(τ ′)e−
∫ τ ′

0 ρ(s)−γdsdτ ′ and thus,

g(t− τ, (P − ψB)eγτ ) =
∫ τ̂

τ̌
g(t− τ − τ ′, ((P − ψB)eγτ − ψB) eγτ

′) ρ(τ ′)e−
∫ τ ′

0 ρ(s)−γdsdτ ′

which yields

g(t, P )

=
∫ τ̂

τ̌

(∫ τ̂

τ̌
g(t− τ − τ ′, ((P − ψB)eγτ − ψB)eγτ ′)ρ(τ ′)e−

∫ τ ′

0 ρ(s′)−γds′
dτ ′
)
ρ(τ)e−

∫ τ

0 ρ(s)−γdsdτ

=
∫ τ̂

τ̌

∫ τ̂

τ̌
g(t− τ − τ ′, ((P − ψB)eγτ − ψB) eγτ

′) ρ(τ ′)e−
∫ τ ′

0 ρ(s′)−γds′
ρ(τ)e−

∫ τ

0 ρ(s)−γdsdτ ′dτ.

To transform the integral, we let

u = t− τ − τ ′ (4.2.8)
v = ((P − ψB)eγτ − ψB)eγτ ′ = (P − ψB)er(τ+τ ′) − ψBerτ

′

thus

v = (P − ψB)er(t−u) − ψBerτ
′ (4.2.9)

erτ
′ = (P − ψB)er(t−u) − v

ψB
, τ ′ = τ ′(u, v; t, P ) = 1

γ
ln
(

(P − ψB)er(t−u) − v

ψB

)
(4.2.10)

and therefore
τ = τ(u, v; t, P ) = t− u− τ ′(u, v; t, P ). (4.2.11)

Then, we find the derivatives of τ(u, v; t, P ) and τ ′(u, v; t, P ) with respect to t and P .

∂tτ
′(u, v; t, P ) = 1

r

(
γψB(P − ψB)er(t−u)

ψB((P − ψB)er(t−u) − v)

)
= (P − ψB)er(t−u)

(P − ψB)er(t−u) − v
.

Since (P − ψB)er(t−u) − v = erτ
′ , ∂tτ ′(u, v; t, P ) will be bounded for all feasible values of

u, v, t, P .

∂P τ
′(u, v; t, P ) = 1

r

(
ψBer(t−u)

ψB((P − ψB)er(t−u) − v)

)
= 1
γ

(
er(t−u)

(P − ψB)er(t−u) − v)

)
.

This derivative is also bounded. Thus, τ ′(u, v; t, P ) is bounded in C1 with regard to t and
P .
Since τ(u, v; t, P ) = t− u− τ ′(u, v; t, P ), the function τ(u, v; t, P ) = t− u− τ ′(u, v; t, P ) is
C1 with regard to t and P .
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Transformation of the integral domain: The integral domain reads (τ, τ ′) ∈ [τ̌ , τ̂ ] × [τ̌ , τ̂ ].
Due t0 eq. (4.2.8)

t− 2τ̌ ≤ u ≤ t− 2τ̂ .

Furthermore, for a given v, we have according to eq. (4.2.9)

v ∈ [(P − ψB)eγ(t−u) − ψBeγτ̌ , (P − ψB)eγ(t−u) − ψBeγτ̂ ]

which implies that the integral boundaries transform to
∫ τ̂

τ̌

∫ τ̂

τ̌

(
....

)
dτ ′dτ =

∫ t−2τ̂

t−2τ̌

∫ (P−ψB)eγ(t−u)−ψBeγτ̂

(P−ψB)eγ(t−u)−ψBeγτ̌

(
....

)
| det ∂(τ, τ ′)

∂(u, v) |dudv.

Transformation of the infinitesimal: From eqs. (4.2.10) and (4.2.11),

τ(u, v; t, P ) = t− u− τ ′(u, v; t, P )

τ ′(u, v; t, P ) = 1
γ

ln
(

(P − ψB)er(t−u) − v

ψB

)
.

We find the Jacobian of τ(u, v; t, P ) and τ ′(u, v; t, P ) with regard to u and v. Therefore,
we first consider their derivatives.

∂uτ
′(u, v; t, P ) = −(P − ψB)eγ(t−u)

(P − ψB)eγ(t−u) − v

∂vτ
′(u, v; t, P ) = −1

r
(
(P − ψB)eγ(t−u) − v

)
∂uτ(u, v; t, P ) = −1 − ∂uτ

′(u, v; t, P )
∂uτ(u, v; t, P ) = −∂uτ ′(u, v; t, P ).

All four derivatives are C1 with regard to t and P . Thus, the determinant of the Jacobian
also

| det J(u, v; t, P )| = | det
(
∂uτ(u, v; t, P ) ∂vτ(u, v; t, P )
∂uτ

′(u, v; t, P ) ∂vτ
′(u, v; t, P )

)
|

is in C1 with regard to t and P . Taking all the elements together we obtain

g(t, P )

=
∫ τ̂

τ̌

∫ τ̂

τ̌
ρ(τ ′)g(t− τ − τ ′, ((P − ψB)eγτ − ψB)eγτ ′)e−

∫ τ ′

0 ρ(s′)−γds′
ρ(τ)e−

∫ τ

0 ρ(s)−γdsdτ ′dτ

=
∫ t−2τ̂

t−2τ̌

∫ (P−ψB)eγ(t−u)−ψBeγτ̂

(P−ψB)eγ(t−u)−ψBeγτ̌
ρ(τ ′(u, v; t, P ))g(u, v)e−

∫ τ ′(u,v;t,P )
0 ρ(s′)−γds′

ρ(τ(u, v; t, P ))e
∫ τ(u,v;t,P )

0 ρ(s)−γds| det J(u, v; t, P )|dudv.
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As the derivative of t and P no longer acts on g(.) and all the expressions are C1 with
regard to t and P , for t̄ > 2τ̂ , we can obtain an estimate of the form

∥g(t, P )∥C1([2τ̂ ,t̄ ]×[0,P ∗]) ≤ C( t̄ )∥g(t, P )∥C0([0,t̄ ]×[0,P ∗])

≤ C( t̄ )∥TtS0∥C0([0,t̄ ],C0(Ω)) ≤ C( t̄ )∥S0∥C0(Ω).

That is, the boundary conditions are smooth for t > 2τ̂ , and as the transport of the
boundary conditions into the region Ω is also smooth this inequality implies for t > 3τ̂ that

∥TtS0∥C0([3τ̂ ,t̄],C1(Ω)) ≤ C( t̄ )∥S0∥C0(Ω).

Note that for t > 3τ̂ , the integral extends to S0. Therefore, the semigroup is eventually
compact by Arzelà–Ascoli.

4.2.2 Stationary Solution and Spectral Gap
After establishing the semigroup, we now turn to the spectrum of the infinitesimal gener-
ator. For this, we follow once more the standard approach [43, 47, 46]: We first convert
the eigenvalue problem into a fixed point equation, then analyze the fixed point operator
(we derive suitable a priori estimates to show compactness), and use the theory of positive
operators (Krein-Rutman) to obtain information about eigenvalues and particularly the
dominant eigenvalue. The problem herein is that we will not find a strongly positive fixed
point operator, and as such, we will have to first regularize our operator before applying
the Krein-Rutman theory and related ideas. Afterwards, we will check that the results
hold for the de-regularized operator.

However, the existence of a stationary solution is simply a consequence of mass conserva-
tion, which implies that f0 = 1 is an adjoint eigenfunction for eigenvalue 0. Compactness
properties imply that there is also an eigenfunction for eigenvalue zero [111]. The involving
part is to establish a spectral gap leading to a spectral decomposition of the underlying
Banach space and the stability of the stationary solution [108].

4.2.2.1 Eigenvalues and Fixed Point Operator

To check for the existence of solutions, we consider the eigenvalue problem associated with
eq. (4.2.1),

∂τS + ∂P (−γPS) = −(λ+ ρ(τ))S (4.2.12)

S(0, P ) = g(P ) =
∫ ∞

0
ρ(τ)S(τ, P − ψB) dτ.

In the same way as above (equation (4.2.3)), we use the method of characteristics to
transform eq. (4.2.12) into a linear integral operator. We obtain

S(0, P ) =
∫ τ̂

τ̌
S(0, (P − ψB)eγτ ) eγτρ(τ) e−

∫ τ

0 (λ+ρ(s))ds dτ.
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Note that we know that Ω is invariant for the semigroup, such that supp(S(0, P )) ⊂
[P∗, P

∗]. We are led to the definition of an operator Kλ. The kernel of this operator
eγτρ(τ) e−

∫ τ

0 (λ+ρ(s))ds is integrable due to Assumption 4.1.1(b). We also know that Ω is
invariant for the semigroup, such that supp(Kλ[S(0, P )]) ⊂ [P∗, P

∗]. The integral itself
extends over points outside of Ω, where consequently S(0, P ) = 0.

Definition 4.2.1. Let Kλ : C0[P∗, P
∗] → C0[P∗, P

∗] be defined by

Kλ[g](P ) =
∫ τ̂

τ̌
g((P − ψB)eγτ ) eγτ ρ(τ) e−

∫ τ

0 λ+ρ(s)ds dτ. (4.2.13)

The integral bounds of K are τ̌ and τ̂ , with the understanding that g = 0 if (P − ψB)eγτ
is outside of [P∗, P

∗] (see also Figure 4.3). To be more precise, we can define τ(P ) and
τ(P ) (see also Proposition 4.2.2) such that

Kλ[g](P ) =
∫ τ(P )

τ(P )
g((P − ψB)eγτ ) eγτ ρ(τ) e−

∫ τ

0 λ+ρ(s) ds dτ.

Particularly, τ(P ) = τ(P ) for P ∈ {P∗, P
∗}, such that for all g ∈ C0([P∗, P

∗])

Kλ[g](P∗) = Kλ[g](P ∗) = 0 (4.2.14)

which leads to technical difficulties as this equation shows that Kλ is not strictly positive.

Corollary 4.2.2. An eigenfunction of eq. (4.2.12) for eigenvalue λ is a fixed point of Kλ.
Particularly, a stationary solution of eq. (4.2.1) is a fixed point of K0.

4.2.2.2 A Priori Estimates

We shall use the following a priori estimates to show compactness of the operator Kλ.
The first statement of the next proposition is basically a fact that the semigroup is mass-
preserving.

Proposition 4.2.1. (a) For g ∈ L∞(P∗, P
∗), g ≥ 0, we find

∥K0[g]∥L1(P∗,P ∗) = ∥g∥L1(P∗,P ∗).

(b) If g ∈ C0[P∗, P
∗], then Kλ[g] ∈ C0[P∗, P

∗], and there is c = c(λ) > 0 such that

∥Kλ[g]∥C0[P∗,P ∗] ≤ c ∥g∥C0[P∗,P ∗].

Proof. (a) Note that the integrand is non-negative for g ≥ 0. Thus,∫ P ∗

P∗
K0[g](P ) dP =

∫ P ∗

P∗

∫ τ̂

τ̌
g((P − ψB) eγτ ) eγτ ρ(τ) e−

∫ τ

0 ρ(s) ds dτ dP

=
∫ τ̂

τ̌

∫ P ∗

P∗
g((P − ψB) eγτ ) dP eγτ ρ(τ) e−

∫ τ

0 ρ(s) ds dτ
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where we have exchanged the integrals with the understanding (as above) that g becomes
zero outside of [P∗, P

∗]. We now change the integration variable, x = (P − ψB)eγτ . For
any τ ∈ (τ̌ , τ̂), we have

(P∗ − ψB)eγτ = P∗ e
−γ(τ̂−τ) < P∗ and (P ∗ − ψB)eγτ = P ∗ e−γ(τ̌−τ) > P ∗

such that
∫ P ∗

P∗ g((P −B) eγτ ) eγτdP =
∫ P ∗

P∗ g(x) dx and we proceed∫ P ∗

P∗
K0[g](P ) dP =

∫ τ̂

τ̌

∫ P ∗

P∗
g(x) dx ρ(τ) e−

∫ τ

0 ρ(s) ds dτ

= ∥g∥L1(P∗,P ∗)

∫ τ̂

τ̌
ρ(τ) e−

∫ τ

0 ρ(s) ds dτ = ∥g∥L1(P∗,P ∗).

(b) If g ∈ C0[B,P ∗], then K̂λ[g] is continuous for any P ∈ [P∗, P
∗], as the integral kernel

is smooth. The a priori estimate follows as before,

|Kλ[g](P )| ≤
∫ τ̂

τ̌
|g((P − ψB) eγτ )| eγτ ρ(τ) e−

∫ τ

0 λ+ρ(s) ds dτ

≤ C(λ)
∫ τ̂

τ̌
eγτ ρ(τ) e−

∫ τ

0 ρ(s) ds dτ∥g∥C0[P∗,P ∗] ≤ c(λ) ∥g∥C0[P∗,P ∗].

Based on this observation, we obtain a proper C0,1 estimate from which we deduce com-
pactness by the Arzelà–Ascoli theorem.

Proposition 4.2.2. There is a c > 0 such that ∥Kλ[g]∥C0,1[P∗,P ∗] ≤ c ∥g∥C0[P∗,P ∗]. The
operator Kλ : C0[P∗, P

∗] → C0[P∗, P
∗] is compact.

Proof. We already know that ∥Kλ[g]∥C0[P∗,P ∗] ≤ c(λ) ∥g∥C0[P∗,P ∗]. We now estimate
| d
dP
Kλ[g](P )| by ∥g∥C0[P∗,P ∗].

Here, we need to use the correct boundaries in the integral defining Kλ[g](P ) (until now,
we have simply stated that g becomes zero if the argument is outside [P∗, P

∗]). For a given
P , we compute the τ -value, where the upper (lower) boundary of Ω hits P − ψB. For the
upper bound, we have

P − ψB = P ∗ e−γτ ⇔ τ = 1
γ

ln
(

P ∗

P − ψB

)
.

The intersection with the lower boundary has the same expression where we use P∗ instead
of P ∗. Accordingly, we define

τ(P ) =
{ 1

γ
ln(P ∗/(P − ψB)) for P > ψB + P ∗e−γτ̂

τ̂ else

τ(P ) =
{ 1

γ
ln(P∗/(P − ψB)) for P < ψB + P∗e

−γτ̌

τ̌ else .
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Note that τ and τ are Lipschitz continuous and the derivative is zero for the constant part,
respectively,

τ ′(P ) = τ ′(P ) = −1
γ(P − ψB)

in the non-constant part. As P ≥ P∗ > ψB, the derivative is bounded. With these
preliminaries, we can now start to estimate.∣∣∣∣∣ ddP Kλ[g](P )

∣∣∣∣∣ =
∣∣∣∣∣ ddP

∫ τ̂

τ̌
g((P − ψB) eγτ ) eγτ ρ(τ) e−

∫ τ

0 λ+ρ(s) ds dτ

∣∣∣∣∣
=

∣∣∣∣∣ ddP
∫ τ(P )

τ(P )
g((P − ψB) eγτ ) eγτ ρ(τ) e−

∫ τ

0 λ+ρ(s) ds dτ

∣∣∣∣∣
≤

∣∣∣∣∣g((P − ψB) eγτ(P )) eγτ(P ) ρ(τ(P )) e−
∫ τ(P )

0 λ+ρ(s) ds τ ′(P )
∣∣∣∣∣

+
∣∣∣∣∣g((P − ψB) eγτ(P )) eγτ(P ) ρ(τ(P )) e−

∫ τ(P )
0 λ+ρ(s) ds τ ′(P )

∣∣∣∣∣
+
∣∣∣∣∣
∫ τ(P )

τ(P )
g′((P − ψB) eγτ ) e2γτ ρ(τ) e−

∫ τ

0 λ+ρ(s) ds dτ

∣∣∣∣∣.
We estimate the three terms, one after the other. For the first term,∣∣∣∣∣g((P − ψB) eγτ(P )) eγτ(P ) ρ(τ(P )) e−

∫ τ(P )
0 λ+ρ(s) ds τ ′(P )

∣∣∣∣∣
≤ ∥g∥C0[P∗,P ∗] e

γτ̂ max{1, eℜ(λ) τ̂} ρ(τ̂)e−
∫ τ(P )

0 ρ(s) ds |τ ′(P )| ≤ C(λ) ∥g∥C0[P∗,P ∗]

as τ(P ) is Lipschitz-continuous and ρ(τ) e−
∫ τ

0 ρ(s) ds is bounded (Assumption 4.1.1). Simi-
larly, for the second term,∣∣∣∣∣g((P − ψB) eγτ(P )) eγτ(P ) ρ(τ(P )) e−

∫ τ(P )
0 λ+ρ(s) ds τ ′(P )

∣∣∣∣∣ ≤ C(λ) ∥g∥C0[P∗,P ∗].

For the third term, we integrate by parts and proceed∫ τ(P )

τ(P )
g′((P − ψB) eγτ ) e2γτ ρ(τ) e−

∫ τ

0 λ+ρ(s) ds dτ

= 1
γ(P − ψB)

∫ τ(P )

τ(P )
eγτ ρ(τ) e−

∫ τ

0 λ+ρ(s) ds d

dτ
g((P − ψB) eγτ ) dτ

= 1
γ(P − ψB) e

γτ(P ) ρ(τ(P )) e−
∫ τ(P )

0 λ+ρ(s) ds g((P − ψB) eγτ(P ))

− 1
γ(P − ψB) e

γτ(P ) ρ(τ(P )) e−
∫ τ(P )

0 λ+ρ(s) ds g((P − ψB) eγτ(P ))

− 1
γ(P − ψB)

∫ τ(P )

τ(P )
g((P − ψB)eγτ ) d

dτ

(
eγτ ρ(τ) e−

∫ τ

0 λ+ρ(s) ds
)
dτ.
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We again estimate the three terms, where the first two terms follow the same scheme as
above,∣∣∣∣∣ 1

γ(P − ψB) e
γτ(P ) ρ(τ(P )) e−

∫ τ(P )
0 λ+ρ(s) ds g((P − ψB) eγτ(P ))

∣∣∣∣∣ ≤ C(λ) ∥g∥C0[P∗,P ∗]

(note that P −ψB ≥ P∗ −ψB > 0) and similarly for the second term. For the third term,
we remark∫ τ(P )

τ(P )

∣∣∣∣∣ ddτ
(
e(γ−λ)τ ρ(τ) e−

∫ τ

0 ρ(s) ds
)∣∣∣∣∣ dτ

≤ (γ + |λ|)e(γ+|ℜ(λ)|)τ̂
∫ τ(P )

τ(P )
ρ(τ) e−

∫ τ

0 ρ(s) ds dτ + e(γ+|ℜ(λ)|)τ̂
∫ τ(P )

τ(P )
|ρ′(τ)| e−

∫ τ

0 ρ(s) ds dτ

+e(γ+|ℜ(λ)|)τ̂
∫ τ(P )

τ(P )
ρ2(τ) e−

∫ τ

0 ρ(s) ds dτ.

Due to Assumption 4.1.1, all three integrals are finite. Hence,∣∣∣∣∣ 1
γ(P − ψB)

∫ τ(P )

τ(P )
g(P − ψB) d

dτ

(
eγτ ρ(τ) e−

∫ τ

0 λ+ρ(s) ds
)
dτ

∣∣∣∣∣ ≤ C(λ)∥g∥C0[P∗,P ∗].

Therewith, the C0,1 estimate for Kλ is established, and the compactness is a consequence
of the Arzelà-Ascoli theorem.

4.2.2.3 Regularized Operator

The Perron-Frobenius theory of positive operators will be useful in the proof of the existence
of a dominant eigenvalue. Below, we give a summary of ideas and results derived from the
theorem [47, 49].

Definition 4.2.2. Positive Linear Operators
Let E be a Banach space and E∗ be its dual, that is, E∗ is the space of all linear functionals
on E. We denote the value h ∈ E∗ at Ψ ∈ E as < h,Ψ >. A closed subset F ⊂ E is called
a cone if the following conditions are satisfied:

1. F + F ⊂ F

2. λF ⊂ F if λ ≥ 0

3. F ∩ (−F ) = {0}

4. F ̸= {0}.

With regard to the cone F , we say x ≤ y if and only if y − x ∈ F and x < y if
y − x ∈ F+ := \F{0}. The cone F is called a total cone if the set {Ψ − Φ : Ψ,Φ ∈ F} is
dense in E. The cone F is said to be a solid cone if it has a non-empty interior F o. We
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note that x ≪ y if y − x ∈ F o. The dual cone F ∗ is by definition a subset of E∗ composed
of all positive linear functionals, that is h ∈ F ∗ if and only if h ∈ E∗ with ⟨h,Ψ⟩ ≥ 0 for
all Ψ ∈ F . A positive linear functional h ∈ F ∗ is said to be strictly positive if ⟨h,Ψ⟩ > 0
for all Ψ ∈ F+. Let B(E) be a set of bounded linear operators of E onto E, that is
B(E) : E → E, an operator T ∈ B(E) is said to be positive with respect to the cone F
if T (F ) ⊂ F and strictly positive if T (F+) ⊂ F+. The spectral radius of T ∈ B(E) is
denoted by r(T ).

The Krein-Rutman theorem below (Theorems 4.2.3 and 4.2.4) is an extension of the Perron-
Frobenius theorem to infinite dimensional Banach spaces.

Theorem 4.2.3 (Krein–Rutman Theorem, [49]). Let S be a total cone, K : S → S be
a compact positive linear operator and r(K) > 0. Then, r(K) is an eigenvalue of S that
corresponds to a positive eigenvector Ψ ∈ S+.

Theorem 4.2.4 ([49]). Let S be a solid cone and K : S → S be a compact strongly positive
linear operator. Then,

1. r(K) > 0, r(K) is a simple eigenvalue with an eigenvector in the non-empty interior
So and no other eigenvalue has a positive eigenvector;

2. | λ |< r(K) ∀ eigenvalues, λ ̸= r(K).

Furthermore, the following theorem is well known (e.g., [33, Proposition 1.4]).

Theorem 4.2.5. If Ki are linear positive operators on the same Banach space and K1 ≤
K2, then ∥K1∥ ≤ ∥K2∥ and r(K1) ≤ r(K2).

Regularized Operator Kε
λ We regularize the integral operator by replacing Kλ with a

convex combination of Kλ and a strictly positive rank 1 operator, which also preserves the
L1 norm of positive functions.

Definition 4.2.3. Let Q : C0[P∗, P
∗] → C0[P∗, P

∗] be the rank-1 operator

Q[g] = 1
P ∗ − P∗

∫ P ∗

P∗
g(τ)dτ (4.2.15)

For ε ∈ [0, 1], introduce Kε
λ : C0[P∗, P

∗] → C0[P∗, P
∗] by

Kε
λ[g] = (1 − ε)Kλ[g] + εQ[g]. (4.2.16)

Furthermore, we introduce

Λε = {λ ∈ C | ∃g ∈ C([P∗, P
∗],C) : Kε

λ[g] = g}.

From the definition and our knowledge about Kλ, we immediately obtain the follow-
ing corollary.
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Corollary 4.2.3. (a) For ε ∈ [0, 1], λ ∈ C the operator Kε
λ is compact, and for ε ∈ (0, 1),

λ ∈ R strongly positive;
(b) The map (λ, ε) → Kε

λ is continuous with regard to the operator norm;
(c) Furthermore, for g ≥ 0, we have

∥Kε
0 [g]∥L1(P∗,P ∗) = ∥g∥L1(P∗,P ∗).

The adjoint eigenfunction of Kε
0 for eigenvalue 1 is f ε0 = 1, independently on ε ∈ [0, 1].

Note that Λ0 coincides with the point spectrum of the infinitesimal generator.

Eigenvalues Later, we will show that the semigroup has a non-negative stationary so-
lution, that is, that K0 has a fixed point. To prepare for that result, we show that our
regularized operator Kε

0 already has a positive fixed point.

Theorem 4.2.6. For λ = 0, Kϵ
λ has a fixed point for all ε ∈ [0, 1], which is positive for

ε ∈ (0, 1].

Proof. Corollary 4.2.3 indicates that there is an adjoint eigenfunction ofKϵ
0 for eigenvalue 1,

which implies using the compactness of the operator that there also is an eigenfunction
for this eigenvalue. For ε > 0, the Krein-Rutman theorem implies the positivity of the
eigenfunction.

4.2.2.4 De-Regularization and Spectral Gap

Uniqueness of the Fixed Point for λ = 0 Note that the next theorem looks like
the Krein-Rutman Theorem. However, as K0 is not strictly positive, we need to prove
the theorem via approximations of Kλ by Kε

λ. Particularly, for λ = 0, we already know
that there is an eigenfunction. The additional information in this special case is the non-
negativity of the eigenfunction.

Theorem 4.2.7. For λ ∈ R, the spectral radius of Kλ is an eigenvalue with a positive
eigenfunction. Particularly, K0 has a non-negative fixed point and spectral radius 1.

Proof. There are positive functions gελ ∈ C0[P∗, P
∗] with Kλ[gελ] = gελ (Theorem 4.2.6),

that is,
gελ(P ) = (1 − ε)Kλ[gελ](P ) + εQ[gελ].

Let λ ∈ R be arbitrary, fixed. We normalize the eigenfunction to ∥gελ∥L1(P∗,P ∗) = 1. Due to
Assumption 4.1.1(b), the function ρ(τ) e−

∫ τ

0 ρ(s)ds is bounded (supremum finite), such that

Kλ[gελ](P ) ≤ C
∫ τ̂

τ̌
g((P − ψB)eγτ ) e(γ−λ)τ dτ ≤ C∥gε∥L1(P∗,P ∗) = C.

and
∥gελ∥C0[P∗,P ∗] = ∥Kλ[gελ]∥C0[P∗,P ∗] ≤ (1 − ε) + ε.
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The C0 norm of the family B = {gελ | ε ∈ (0, 1)} is uniformly bounded. Then, the set K0[B]
is also bounded in C0,1 and relatively compact in C0, such that we find a subsequence gεn

λ

in C0, εn → 0 for n → 0, that converges in C0 to a function gλ ∈ C0. As gελ ≥ 0, also
gλ ≥ 0. We need to exclude that gλ = 0.

As the topology C0 is stronger than the L1 topology, the sequence also converges in L1,
and hence, (the L1 norm of gελ is 1) also ∥gλ∥L1(P∗,P ∗) = 1, such that gλ ̸≡ 0. Additionally,
from continuity, Kλ[gλ] = gλ. With that, we establish the existence of a non-negative fixed
point.

The function gλ is also an eigenfunction for the spectral radius of Kλ: Kλ is the limit
of the family Kε

λ of compact operators depending (with regard to the operator norm)
continuously on ε; as Kε

λ[gλ] = r(Kε
λ)gελ, this equation carries over to ε = 0. For λ = 0 we

have r(Kε
0) = 1 and thus also r(K0) = 1.

Then, we ensure that the fixed point of the K0 solution is still unique, as it is for Kε
0 for

ε > 0. Since we used the limit ε → 0 to construct a fixed point, it is not clear if possibly two
eigenvalues merged in the eigenvalue 1, such that we have a higher dimensional eigenspace.
Ultimately, we use the knowledge that the underlying stochastic process mixes well enough
to prevent a non-unique invariant measure.

Proposition 4.2.3. If the space of fixed points of K0 has at least dimension 2, then there
is a fixed point that changes sign.

Proof. Assume there are two different fixed points g1, g2 which are independent (no α, β ∈
R, |α| + |β| > 0 and αg1 + βg2 = 0). Both functions are non-zero; without restriction,
both are non-negative (otherwise, we are done). Furthermore, again without restriction,
∥gi∥L1 = 1.

Consider g = g1 − g2 ̸≡ 0 as g1 ̸= g2. g is again a fixed point. If g assumes positive and
negative values, we are done. Otherwise, either g ≥ 0 or g ≤ 0.
If g ≥ 0, then

g1 ≥ g2 ≥ 0.

As gi ≥ 0, gi ∈ C0, and the L1-norm of g1 and g2 are equal, we conclude that g1 = g2,
which is a contradiction. The second case g ≤ 0 gives us a contradiction by the parallel
argument.

The next proposition is a way to express that the underlying Markov process is well mixing.

Lemma 4.2.1. Let g ≥ 0, p0 ∈ supp(g). Then, for n ∈ N and λ ∈ R

supp(Kn
λ [g]) ⊃ [(1 − e−kγτ̂ )P∗ + e−kγτ̂ p0, (1 − e−kγτ̌ )P ∗ + e−kγτ̌ p0].



CHAPTER 4. MULTI-SCALE TO SIR MODEL USING FIRST PRINCIPLES 69

Proof. Let p0 ∈ supp(g). Then, {P ∈ [P∗, P
∗] : ∃τ ∈ [τ̌ , τ̂ ] : (P − ψB)eγτ = p0} ⊂

supp(Kλ[g]). That is,

[ψB + e−γτ̂ p0, ψB + e−γτ̌ p0] ∩ [P∗, P
∗] ⊂ supp(Kλ[g]).

With the same argument, we find

[ψB + ψBe−γτ̂ + e−2γτ̂ p0, ψ B + ψBe−γτ̌ + e−2γτ̌ p0] ∩ [P∗, P
∗] ⊂ supp(K2

λ[g])

and if we iterate k times with operator K,

[ak, bk] ⊂ supp(Kk
λ [g])

where

ak =
k−1∑
ℓ=0

ψB e−ℓ γτ̂ + e−kγτ̂ p0 = ψB
1 − e−k γτ̂

1 − e− γτ̂
+ e−kγτ̂ p0 = (1 − e−kγτ̂ )P∗ + e−kγτ̂ p0

bk =
k−1∑
ℓ=0

ψB e−ℓ γτ̌ + e−kγτ̌ p0 = ψB
1 − e−k γτ̌

1 − e− γτ̌
+ e−kγτ̌ p0 = (1 − e−kγτ̌ )P ∗ + e−kγτ̌ p0.

The boundaries of the interval we obtained is a convex combination between p0 and P∗
(resp. P ∗). We find that the support of any positive function expands under iteration with
K, and becomes [P∗, P

∗] after an infinite number of iterations. Unfortunately, the operator
is not strictly positive, as Kλ[g](P∗) = Kλ[g](P ∗) = 0, and thus, for point measures µ with
supp(µ) ⊂ {P∗, P

∗}, the pairing ⟨µ,Kn
λ [g]⟩ = 0 for all n ∈ N . In contrast, the proposition

indicates that Kλ is semi-supporting in the L2-setting.

Theorem 4.2.8. The eigenspace of K0 for eigenvalue 1 is one-dimensional.

Proof. If this is not the case, we have an eigenfunction g ∈ C0 that changes sign (Propo-
sition 4.2.3). That is, we find two non-negative functions g± ∈ C0, both not identically
zero, with

g = g+ − g−, supp(g+) ∩ supp(g−) = ∅, supp(g+), supp(g−) ̸= ∅.

As K0 is linear,
K0[g+] −K0[g−] = K[g] = g = g+ − g−.

Furthermore, as g± ≥ 0, we know that
∫ P ∗

P∗ K0[g±](P ) dP =
∫ P ∗

P∗ g±(P ) dP .

Let us focus on g+. We know that the support of g+ is strictly smaller than [P∗, P
∗], as

supp(g−) ̸= ∅. We also know that (Lemma 4.2.1) supp(K0[g+]) is strictly larger than that
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of g+. As the integral of g+ is preserved by K0, it is not possible that g+ ≤ K0[g+]. There
is x0 ∈ supp(g+) with

g+(x0) > K0[g+](x0).

Note that g(x0) = g+(x0) as x0 ∈ supp(g+). Therewith,

g+(x0) > K0[g+](x0) ≥ K0[g+](x0) −K0[g−](x0) = K0[g](x0) = g(x0) = g+(x0)

which is a contradiction.

Spectral Gap In the last part of this section, we establish the spectral gap. We do that
in two steps: First, we establish the dominance of the eigenvalue λd = 0 in Λ0, then we
exclude that the real parts of a sequence of elements in Λ0 can approximate λd = 0.

For a general real λ, we first show that the spectral radius of Kλ is always larger zero.

Lemma 4.2.2. For λ ∈ R arbitrary fixed, we find that r(Kλ) > 0.

Proof. We use Theorem 4.2.5, and construct a positive operator K̃ which yields a lower
bound for r(Kλ). Thereto, we rewrite Kλ as

Kλ[g](P ) =
∫ τ̂

τ̌
g((P − ψB)eγτ ) eγτ ρ(τ) e−

∫ τ

0 λ+ρ(s) ds dτ

= 1
γ(P − ψB)

∫ min{(P−ψB)eγτ̂ ,P ∗}

max{(P−ψB)eγτ̌ ,P∗}
g(x) ρ(τ(x;P )) e−

∫ τ(x;P )
0 λ+ρ(s) ds dx

with
x = (P − ψB)eγτ ⇔ τ = τ(x;P ) = 1

γ
ln
(

x

P − ψB

)
.

Now we check for points in [P∗, P
∗] that are in the integration region

[max{(P − ψB)eγτ̌ , P∗},min{(P − ψB)eγτ̂ , P ∗}]

and where the integral weight is strictly positive, that is, τ(x;P ) ∈ (τ̌ , τ̂). Simple compu-
tations show that for P∗ < P < P ∗, both conditions are given. Choose P = (P∗ + P ∗)/2
as a reference point. Then, there are δ1, δ2 > 0 such that

Kλ[g](P ) ≥
∫ P+δ1

P−δ1
g(x) δ2 dx =: K̃[g](P ).

Hence, r(Kλ) ≥ r(K̃λ). As K̃[g] is a positive rank one operator (compact) with eigen-
function g(x) = χ[P−δ1,P+δ1](P ) (this is the only eigenfunction for an eigenvalue ̸= 0), the
spectral radius (and only positive eigenvalue) is given by r(K̃) = 2δ1 δ2 > 0.
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Proposition 4.2.4. For λ ∈ R, the operator Kλ has a fixed point if and only if λ = 0.
Furthermore, r(Kλ) is strictly decreasing in λ.

Proof. We already know that r(K0) = 1. Furthermore, the eigenfunction gλ and the adjoint
eigenfunction fλ of Kλ for eigenvalue r(Kλ) are non-negative. Due to Lemma 4.2.1, gλ > 0
in the open interval (P∗, P

∗). If the support of fλ is a subset of {P∗, P
∗}, then there are

a, b ∈ R such that

⟨fλ, Kλ[f ](P )⟩ = aKλ[g](P∗) + bKλ[g](P ∗) = 0

according to eq. (4.2.14). That is, in this case, fλ is an adjoint eigenfunction for eigenvalue
0, which contradicts the fact that ρ(Kλ) > 0 (Lemma 4.2.2). Thus, the intersection of
(P∗, P

∗) and the support of fλ is non-void, and hence ⟨fλ, gµ⟩ > 0 for all λ, µ ∈ R.

Now, we use an argument by Heijmans [46]: Let λ, µ ∈ R, λ > µ and g non-negative.

Kµ[g](P ) =
∫ τ̂

τ̌
g((P − ψB)eγτ ) eγτ ρ(τ)e−

∫ τ

0 µ+ρ(s)dsdτ

≥ e(λ−µ)τ̌
∫ τ̂

τ̌
g((P − ψB)eγτ ) eγτ ρ(τ)e−

∫ τ

0 λ+ρ(s)dsdτ = e(λ−µ)τ̌Kλ[g](P )

Taking g = gµ, we obtain r(Kµ) gµ(P ) = Kµ[gµ](P ) ≥ e(λ−µ)τ̌Kλ[gµ](P ). If we take the
duality pairing with the positive eigenfunctional fλ on both sides, and use that ⟨fλ, gµ⟩ > 0,
we obtain

r(Km) ≥ e(λ−m)τ̌r(Kλ)

Hence, λ → r(Kλ) is continuous and strictly decreasing on R.

Theorem 4.2.9. If λ ∈ Λ0, λ ̸= λd = 0, then Reλ < λd = 0.

Proof. We basically adapt the argument [46, Theorem 6.13]. Suppose that λ ∈ Λ0 and
there is a corresponding eigenfunction gλ ∈ C0([P∗, P

∗],C) such that Kλ[gλ] = gλ. Then,

|gλ| = |Kλ[gλ]| =
∣∣∣∣∣
∫ τ̂

τ̌
gλ((P − ψB)eγτ ) ρ(τ)eγτe−

∫ τ

0 λ+ρ(s)dsdτ

∣∣∣∣∣
≤

∫ τ̂

τ̌
|gλ((P − ψB)eγτ )| eγτ ρ(τ)e−

∫ τ

0 ℜ(λ)+ρ(s)dsdτ = Kℜ(λ)[|gλ|].

If we iterate with Kℜ(λ), we obtain for n ∈ N

Kn
ℜ(λ)[|gλ|] ≤ Kn+1

ℜ(λ)[|gλ|].

Now, we know that there is a non-negative eigenfunctional fℜ(λ) corresponding to the
eigenvalue r(Kℜ(λ)) of Kℜ(λ). We know (by the argument in the proof of Proposition 4.2.4)
that the support of fℜ(λ) has a non-zero intersection with (P∗, P

∗).

⟨fℜ(λ), K
n
ℜ(λ)[|gλ|]⟩ ≤ ⟨fℜ(λ), K

n+1
ℜ(λ)|gλ|⟩ = r(Kε

ℜ(λ))⟨fℜ(λ), K
n
ℜ(λ)[|gλ|]⟩.
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For a sufficiently large n, due to the expansion property of the support under iteration with
Kℜ(λ) (Lemma 4.2.1), we can ensure that ⟨fℜ(λ), K

n
ℜ(λ)[|gλ|]⟩ > 0, and thus, r(Kε

ℜ(λ)) ≥ 1.
Since r(Kε

λ), λ ∈ R is a non-increasing function (Lemma 4.2.1) and r(Kε
λd

) = 1, it implies
that ℜ(λ) ≤ λd.

Suppose λ = λd + iη ∈ Λ0, we show that η = 0. As ℜ(λ) = λd, we proceed

|g| = |Kλ[g]| =
∣∣∣∣∣
∫ τ̂

τ̌
g((P − ψB)eγτ ) eγτ ρ(τ)e−

∫ τ

0 λ+ρ(s)dsdτ

∣∣∣∣∣
≤

∫ τ̂

τ̌
|g((P − ψB)eγτ )| eγτ ρ(τ)e−

∫ τ

0 ℜ(λ)+ρ(s)dsdτ = Kε
λd

[|g|],

that is, Kλd
[|g|] ≥ |g|. Assume that Kλd

[|g|] > |g|. As we know that the adjoint eigenvalue
of Kλd

(recall λd = 0) for eigenvalue 1 is f0 = 1 (identical 1 on [P∗, P
∗], see Corollary

4.2.3), we have
⟨1, |g|⟩ = ⟨1, Kλd

[|g|]⟩ > ⟨1, |g|⟩
which is a contradiction. Thus, Kλd

[|g|] = |g|.

If we let gd to be the eigenfunction corresponding to the eigenvalue r(Kλd
) = 1, we can

write that |g| = cgd for some constant c which we may assume to be one (the eigenspace of
Kλd

for eigenvalue 1 is one-dimensional, Theorem 4.2.8). Hence g(P ) = gd(P )eiζ(p) for some
real-valued function ζ(P ). If we substitute this relation into |Kλ[g]| = |g| = gp = Kλd

[gd],
we obtain ∫ τ̂

τ̌
gd((P − ψB)eγτ ) eγτ ρ(τ)e−

∫ τ

0 λd+ρ(s)dsdτ

=
∣∣∣∣∣
∫ τ̂

τ̌
gd((P − ψB)eγτ ) eγτ eiζ(p) ρ(τ)e−

∫ τ

0 λd+iη+ρ(s)dsdτ

∣∣∣∣∣.
From [47, Lemma 6.12], there exists a constant b ∈ C, |b| = 1 such that ζ(P ) − ητ = b.
Substituting this relation in Kλ[g] = g, we obtain

eib
∫ τ̂

τ̌
ρ(τ)gd[(P − ψB)eγτ ]eγτe−

∫ τ

0 λd+ρ(s)dsdτ = gd(p)eiζ(p).

Thus, eibKλd
[gd](P ) = gd(P )eiζ(P ), which in turn implies b = ζ(P ), such that η = 0. Hence,

there is no element with real part λd apart from λd itself.

We then show that the spectral gap follows from an argument by Gyllenberg and Heij-
mans [43].

Theorem 4.2.10. There exists δ > 0, such that for all λ ∈ Λ0, λ ̸= λd = 0, it is true that

ℜ(λ) < λd − δ = −δ.
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Proof. We know that the desired inequality is true for δ = 0. If no such δ > 0 exists, then
there is a sequence of elements λn ∈ Λ0 with ℜ(λn) → λd = 0. For each λn, there is a
fixed point gn of Kλn , which in turn defines an eigenfunction Sn(τ, P ) of eq. (4.2.2). This
eigenfunction is also an eigenfunction of Tt for eigenvalue eλn t. As the real values of λn
converge to λd = 0, the spectrum of the operator Tt has a finite accumulation point. Since
Tt is compact for t > 3τ̂ (Theorem 4.2.2), that is impossible.

From here, as it is standard for the analysis of aggregation-fragmentation equa-
tions [79, 107, 43], a result by Webb [108, 107] immediately implies information about
the asymptotic behavior of the semigroup: the underlying Banach space can be decom-
posed by a spectral projection into the eigenspace of the dominant eigenvalue 0, and a
remaining part. If Σ is the stationary solution, then (as 1 is the adjoint eigenfunction),
the spectral projector is given by Π[f ] = ⟨1, f⟩ Σ. The remaining part (I − Π)[TtS0] will
tend to zero for t → ∞. To sum it up, we find:

Theorem 4.2.11. Let Σ ∈ C0(Ω) denote the non-negative stationary solution of
eq. (4.2.1), normalized to ∥Σ∥L1(Ω) = 1. Consider T (t)S0 for a non-negative, non-trivial
initial condition S0 ∈ C0(Ω). Then, with R̃(t) = (I − Π)[T (t)S0],

T (t)S0 = Σ ⟨1, S0⟩ + R̃(t)

and R̃(t) → 0 for t → ∞ exponentially fast in C0.

4.3 Reduced Model
We use the theory from Section 4.2 above to reduce the dimension of the model, and
investigate the behavior of the resulting equations by numerical simulation.

4.3.1 Fast-Slow Analysis
We intend to use the singular perturbation theory (see Section 1.2.1). As above, we rewrite
the semigroup as d

dt
S = AS. Then, there is a stationary solution Σ(τ, P ) ∈ C0(Ω) (an

eigenfunction of A for eigenvalue 0). Please note that the generator A depends on the
environmental pathogen load B (which we take to be fixed for the moment), such that the
eigenfunction Σ also depends on B. The adjoint eigenfunction is simply Σ∗(τ, P ) = 1, as
the semigroup is mass-preserving,

d

dt

∫
Ω

Σ∗(τ, P )S(t, τ, P ) d(τ, P ) = d

dt

∫
Ω
S(t, τ, P ) d(τ, P ) = 0.

Then, Σ and Σ∗ are the right and left eigenfunctions of A for eigenvalue 0. Note that
Σ∗(τ, P ) = 1 is independent of B.
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We define the spectral projector Πf(τ, P ) = Σ(τ, P ;B)
∫

Ω f(τ, P ) d(τ, P ) = Σ ⟨1, f⟩. Then,
AΠ = ΠA and

d

dt
ΠS = AΠS = AΣ ⟨1, S⟩ = 0, d

dt
(I − Π)S = A(I − Π)S.

The definition of the projector Π implies that

ΠS(t, τ, P ) = Σ(τ, P ;B) s(t) with s(t) =
∫

Ω
S(t, τ, P ) d(τ, P ).

We use these two projectors to define a new coordinate system that disentangles the slow
and fast dynamics, S = ΠS + (I − Π)S = Σ s + (I − Π)S. Until now, the considerations
have been made under the assumption that B is fixed. Even if B (slowly) varies with
time, we can still use these new coordinates, but now the projectors Π and (I − Π) do not
commute with the time derivative. In the case of I − Π, we simply use the chain rule and
the fact that B′ scales with O(ϵ) to obtain

(I − Π) d
dt
S = d

dt
((I − Π)S) + O(ϵ).

Hence, multiplying the first model equation d
dt
S = AS − ϵ β(P )S by (I − Π) from the left

yields
d

dt
(I − Π)S = A(I − Π)S − ϵ(I − Π)[β(P ) (Σs+ (I − Π)S)] + O(ϵ).

In the case of Π, we look slightly more closely, using the fact that the left eigenfunction
Σ∗ = 1 does not depend on B, such that

Π d

dt
S(t, τ, P ) = Σ(τ, P )

∫
Ω

d

dt
S(t, τ, P ) d(τ, P ) = Σ(τ, P ) d

dt
s(t).

If we integrate this equation over Ω, we have∫
Ω

Π d

dt
S(t, τ, P ) d(τ, P ) = d

dt
s(t).

That is, multiplying d
dt
S = AS − ϵ βS by Π from the left, and integrating over gives us an

equation for s(t) (recall ΠA = 0)

d

dt
s(t) = −ϵ s(t)

∫
Ω
β(P ) Σ(τ, P ;B) d(τ, P ) − ϵ ⟨1, β(P ) (I − Π)S⟩.
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All in all, our model becomes

d

dt
s(t) = −ϵ s(t)

∫
Ω
β(P ) Σ(τ, P ;B) d(τ, P ) − ϵ ⟨1, β(P ) (I − Π)S⟩

d

dt
(I − Π)S = A(I − Π)S − ϵ(I − Π)[β(P ) (ΠS + (I − Π)S)] + O(ϵ)

d

dt
I = ϵ

∫
Ω
β(P ) (Σ(τ, P ;B) s(t) + (I − Π)S) dP dτ − ϵαI

d

dt
R = ϵ αI

d

dt
B = ϵ (a+ ξI − σB).

That is, only (I − Π)S is the fast variable, while all other variables are slow.
Fast system. If we take ϵ = 0, we find for the fast variable,

d

dt
(I − Π)S = A(I − Π)S.

Due to the spectral gap, we know that (I − Π)S → 0. Therefore, (I − Π)S = 0 forms the
slow manifold.
Slow system. Now we use the slow time T = ϵt, and the result for the slow manifold,
and obtain the reduced model

d

dT
s = −s

∫
Ω
β(P ) Σ(τ, P ;B) d(τ, P ) (4.3.1)

d

dT
I = s

∫
Ω
β(P ) Σ(τ, P ;B)d(τ, P ) − αI (4.3.2)

d

dT
R = αI (4.3.3)

d

dT
B = a+ ξI − σB. (4.3.4)

The model suggests that the distribution of the susceptible population is always in its
(quasi) steady state, and hence the force of infection becomes

∫
Ω β(P ) Σ(τ, P ;B) d(τ, P ).

4.3.2 Behavior of the Reduced Model: A Simulation Study
We show the dependency of Σ on B.

Lemma 4.3.1. If Σ(τ, P ) is a stationary solution of eq. (4.2.1) for ψB = 1 with∫
Ω Σ d(τ, P ) = 1, then

S(τ, P ;B) = 1
ψB

Σ(τ, P/(ψB))

is a stationary solution for a given value of ψB with
∫

Ω S(τ, P ;B) d(τ, P ) = 1.
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Proof. We suppress the multiplicative factor 1
ψB

that only ensures that the norm is pre-
served. Let P̃ = P/(ψB),

∂τS + ∂P (−γPS) = ∂

∂τ
Σ(τ, P/(ψB)) + ∂

∂P
(−γPΣ(τ, P/(ψB)))

= ∂

∂τ
Σ(τ, P̃ ) + ∂

∂P̃
(−γP̃Σ(τ, P̃ ))

= −ρ(τ)Σ(τ, P/(ψB)) = −ρ(τ)S(τ, P ;B),

and for the boundary value we obtain∫ τ̂

τ̌
ρ(τ)S(τ, (P − ψB);B) dτ =

∫ τ̂

τ̌
ρ(τ)Σ(τ, (P − ψB)/ψB) dτ = Σ(0, P̃ ) = S(0, P ;B).

As we are not interested in S(τ, P ), but only in the marginal distribution
∫
S(τ, P ) dτ , it

is convenient to use the underlying stochastic process to obtain a numerical approximation
of the function (kind of Monte-Carlo integration): we determine the realizations of the
random variable T that is distributed according to the time between two booster events.
To keep things simple, we use a uniform distribution on [τ̌ , τ̂ ]. With this aspect, it is
straightforward to compute a realization of the time course of the pathogen load Pt (also
see Figure 4.1). After dismissing a burn-in phase, we sample at discrete time points the
values of Pt; the histogram of those values is proportional to

∫
S(τ, P ) dτ (see Figure 4.4).

The transition from susceptible to infected corresponds to massive replication of pathogens,
which (at a short time scale), cannot be controlled anymore by the immune system. A
branching process, extending from the subcritical to the supercritical parameter range, can
function as a toy model for that process. Inspired by that idea, we use the probability of
taking off for a branching process as β(P ) and define β(P ) = β0 max{0, 1 − π0/P} (Fig-
ure 4.4). With these two components and equipped with Lemma 4.3.1, we can determine
the incidence’s dependency on B. As we have a SIR model, we have no stationary solu-
tions to address. However, if we assume that the class of susceptible is reduced relatively
slowly, we can identify parameter combinations where infections take off: given that a and
I, the environmental pathogen load B asymptotically tends to

B = (a+ ξI)/σ.

If we feed this pathogen level into the incidence, we obtain for the r.h.s. of I ′

F (a, I) = s
∫

Ω
β(P ) Σ(τ, P ;B)d(τ, P )

∣∣∣∣∣
(a+ξI)/σ

− αI.
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**

Figure 4.4: Black: equilibrium solution Σ(P ) =
∫
S(τ, P ) dτ (T is assumed to be uniformly

distributed between τ̌ = 2, τ̂ = 10, ψB = 1, γ = 0.2). The support of that function is
in the interval [P∗, P

∗], as expected. Gray: β(P ) = β0 max{0, 1 − π0/P}, where we use
π0 = 3 and (for this figure) β0 = 1.

The incidence grows if F (a, I) > 0, and decreases if F (a, I) < 0. We need to emphasize
that, here, we use a kind of quasi-steady state for B. In more realistic cases, B and I
will change on similar time scales, such that F (I, a) mainly yields a heuristic about the
behavior to expect, and not a rigorous threshold argument.

Although cholera is the infection that inspired this model, we are more interested in the
model structure than in realistic parameters. Therefore, we do not even try to determine
parameters suited for cholera but focus on the discussion of the model for a fairly arbitrary
set of parameters (see Appendix A.1), which then yield Figure 4.5. On the left side of the
figure, we find a structure resembling typical bistable behavior. This is not a coincidence:
If a is small, without additional shedding by infected individuals, the pathogen load in the
environment is too small to trigger an epidemic. However, for a certain parameter range
of a, positive feedback (infected shed pathogens which in turn additionally infect further
individuals) can trigger an epidemic: If I is small, the incidence stays low, if I is large,
the number of infections increases further. Only if a is large, such that the pathogen load
in the environment becomes supercritical, can an epidemic happen without a considerable
number of initial infections.

Accordingly, for the three scenarios shown on the right in Figure 4.5, all parameters are
fixed except a, and I(0) = B(0) = 0 in all cases. For the chosen parameter values,
we observe that there is a threshold value of a between 20.5 and 20.8, which determines
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Figure 4.5: Left: I ′ = F (a, I), right: three simulations differing in the choice of a. Black:
I(t), gray: B(t)/20 (B is scaled to be comparable with the prevalence). Parameter values
are given in the Appendix A.1.

whether an epidemic can take place. For example, for smaller a(a = 15), the pathogen
load tends to a positive equilibrium, while the incidence is identically zero. The pathogen
cannot accumulate sufficiently high in the susceptible host to trigger an infection. If we
further increase a (a = 20.5), then we again have a positive equilibrium (approximately)
for the bacterial compartment, but now there is also a small but positive incidence. The
pathogen concentration is large enough to trigger infections occasionally, but we are still
in a region, where this small incidence is not able to cause a larger outbreak. Only if we
further increase a (a = 20.8), then we reach the situation where an epidemic takes place:
in the initial time interval, the bacteria reach a plateau, where they are able to increase
the prevalence to a certain level. Then, the combined pathogen load due to natural sources
(described by a) and shedding is able to trigger the positive feedback, and we obtain a
steep increase in the prevalence.

This model behavior can be compared with the incidence of cholera: due to the life cycle
of V. cholerae, their abundance undergoes seasonal changes, which can be modeled by the
different values of a. If they are barely present, the incidence of cholera is zero. However,
there are also situations where we have a low, fluctuating incidence and there are distinct
outbreaks of larger cholera epidemics. The reason for these different figures is still under
discussion, but the main idea is the change of V. cholerae abundance, as our model also
seems to hint.

It might also be interesting that at least some cholera epidemics share in the onset the
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sharp increase in cases, followed by a low decline, e.g., the outbreak in Katsina (Nigeria)
in 1982 [102]. An interpretation might be that the pathogen load rapidly increases to a
high level, resulting in an increase in prevalence. In contrast to SIR-type models, where
the increase is stopped by the depletion of the susceptible class, we rather find here a
saturation in the incidence function: also, if B becomes arbitrarily large, the force of
infection

∫
Ω β(P ) Σ(τ, P ;B)d(τ, P ) stays bounded (β(P ) is bounded). This property of our

model’s force of infection is in line with other model approaches [24, 45].

4.4 Summary
We have formulated a multi-scale model where the transition from the susceptible to the
infected class is dependent on the within-host pathogen load. This has relaxed the dis-
tinction between a susceptible and an infected person. We considered the within-host
dynamics to follow a type of velocity-jump process where the jumps are fostered by the in-
gestion of bacteria from the environment (booster events). We then focused on sub-critical
dynamics, which is the case where the pathogen load is below the critical threshold. We
took population dynamics to occur on a slower time scale in comparison to within-host
dynamics and used semigroup methods and spectral theory to show the existence of the
pathogen load’s invariant solution on the fast-time scale. We then used the results obtained
from the spectral analysis to reduce the dimension of the original multi-scale model on the
slow time scale to a SIR model. Numerical simulations done on the SIR model revealed
parameter regions where either no cholera cases happened, where cholera was present at a
low prevalence, and where a full-blown cholera epidemic took off. Lastly, we also derived
an incidence term for the model.
In this chapter, we assume that individual hosts have the same within-host characteristics.
We will consider heterogeneity within an individual host in the next chapter.



Chapter 5

Heterogeneity in the Within-Host
Model

In this chapter, we aim to study the effects of introducing heterogeneity in the within-
host model. Individuals in any given population exhibit distinct characteristics, so it
is sensible to include a heterogeneous structure in modeling the dynamics. Structured
models are most commonly used to represent population heterogeneity. Simplifications
of the somewhat tedious analysis that is associated with structured models can be made
by describing the structure of a population by the variation in the population parameters
(parametric heterogeneity) such as the birth rate and susceptibility to a disease [54, 57].
That is, parameters are set to be invariant over time in an individual, but they vary
from person to person. Models that include parametric heterogeneity help account for the
ecological and evolutionary dynamics of a population [89, 34]. For cholera, studies have
shown that factors such as host genetics, nutrition, and the chemical state of the gut can
affect an individual’s susceptibility to the disease [1, 22, 87]. Thus, we propose a model for
the disease that accounts for heterogeneity in the susceptibility to the disease within the
host. Each individual is assigned a pathogen load whose intrinsic growth depends on the
state of the gut microbiome. The individual ingests the pathogen from the environment
(consumption of contaminated water) while the pathogen in the environment grows as a
result of shedding by individuals. We analyze the asymptotic behavior of the model using
Laplace transforms. It is usually difficult to analyze parametric heterogeneous models with
direct interactions. In our model, the contact happens through a single compartment (the
environmental bacterial compartment B), that is an individual ingests the pathogen from
B and excretes it back into B. Thus, individuals decouple given B. This can be used to
get an efficient method to analyze the model.

80
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5.1 Model Structure
We consider the bacterial concentration in the environment B and assign each individual
a pathogen load p that is obtained through the ingestion of environmental bacteria at rate
κ. We take the intrinsic growth of the pathogen to be dependent on the state of the gut
microbiome. That is, research has shown that differences in the gut microbiome, which
varies from person to person, drive an individual’s susceptibility or resistance to a cholera
infection [1, 22, 110]. Therefore, we denote the state of the gut microbiome by ω, ω ∈ [0, 1]
such that the density of the pathogen load for an individual with microbiome state ω
at time t is given by p(t, ω). The intrinsic growth rate of the pathogen is then given as
g(p(t, ω), ω). The pathogen is removed from the body through bacterial death or shedding
at rate γ. In the environment, the bacteria grow through shedding by individuals at rate
ξ and decay at rate δ. All in all, the model reads

dp(t, ω)
dt

= κB + g(p(t, ω), ω) − γp(t, ω),
dB

dt
=
∫ 1

0
ξp(t, ω)φ(ω)dω − δB,

(5.1.1)

where the initial conditions are p(0, ω) = p0(ω), B(0) = B0 and φ(ω) is taken as a density
function.

5.2 Analysis of the Model: Linear Case
We aim to first check the fundamental properties of the model and then use the properties
as the basis for the evaluation of more complex cases of the model. To that effect, we
consider the case where the intrinsic growth rate of the pathogen is represented by a linear
term, that is g(p(t, ω), ω) = α(ω)p(t, ω) such that

dp(t, ω)
dt

= κB + α(ω)p(t, ω) − γp(t, ω),
dB

dt
=
∫ 1

0
ξp(t, ω)φ(ω)dω − δB.

(5.2.1)

We expect that these results are interesting also in the context of non-linear models as
some kind of linearization will most likely lead to a structure that classically resembles the
equations we analyze in the present section. However, exploring this idea will not be part of
the present thesis. The common strategy for evaluating epidemic models with parametric
heterogeneity is to reduce the heterogeneous model to a homogeneous model where the
variables are moments of corresponding distributions, and then analyze the resulting system
(usually a low dimensional system of ODEs) [89, 88]. Such heterogeneous models assume
that the population is closed and the contact process of interacting populations is defined
by mass action kinetics (direct interactions). The contact structure in our model is slightly
different in that bacteria from the environment are ingested and contribute to pathogen
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dynamics within the host. The same is shed back into the environment to contribute
to pathogen dynamics outside the host. Thus, the connection is only made through the
B compartment. Consequently, in the analysis, we intend to reduce the model (5.2.1)
to a linear renewal equation representing the environmental bacterial population with the
knowledge that individual pathogen dynamics can be derived from the bacterial population
in the environment.

For the analysis, we let γ − α(ω) = a(ω) and reformulate the model (5.2.1) in terms of a
linear Volterra equation (see Section 2.1.1.4 for definition) whose existence and uniqueness
can easily be verified. We then derive the expression for the reproduction number, which
is useful in determining the long-term behavior of the model, with the help of Laplace
transforms. We work with the assumption that α ∈ L∞(0, 1) and a− ≤ a(ω) ≤ a+ for
some a− ≤ 0, a+ > 0. We will use the basic linear theory used for structured models in
our analysis. Some significant theorems derived from the theory will be summarized in the
next sections.

5.2.1 Renewal Equation
Proposition 5.2.1. Suppose B(0) is given, system (5.1.1) corresponds to the abstract
renewal equation

B(t) = G(t) +m
∫ t

0
K(t− s)B(s)ds

with G(t) = B(0)e−δt +
∫ t

0 ξF (τ)e−δ(t−τ)dτ, K(t − s) = e−δ(t−s)H(t − s), m = ξκ

and F (t) =
∫ 1

0 φ(ω)p0(ω)e−
∫ t

0 a(ω)dtdω, H(t − s) =
∫ t−s

0 e−δθT (θ)dθ, T (t − s) =∫ 1
0 φ(ω)e−

∫ t

s
a(ω)dτdω.

Proof. We assume that B(0) is given, let γ−α(ω) = a(ω) and solve for p(t, ω). By variation
of constants

p(t, ω) = p0(ω)e−
∫ t

0 a(ω)dt + κ
∫ t

0
B(s)e−

∫ t

s
a(ω)dτds.

Plugging p(t, ω) in the equation of Ḃ in system (5.1.1) yields

dB

dt
=

∫ 1

0
ξφ(ω)

(
p0(ω)e−

∫ t

0 a(ω)dt + κ
∫ t

0
B(s)e−

∫ t

s
a(ω)dτds

)
dω − δB

= ξ
∫ 1

0
φ(ω)p0(ω)e−

∫ t

0 a(ω)dtdω + ξκ
∫ t

0

(∫ 1

0
φ(ω)e−

∫ t

s
a(ω)dτdω

)
B(s)ds− δB.

Thus
dB

dt
= ξF (t) + ξκ

∫ t

0
T (t− s)B(s)ds− δB (5.2.2)

with
F (t) =

∫ 1

0
φ(ω)p0(ω)e−

∫ t

0 a(ω)dtdω, T (t− s) =
∫ 1

0
φ(ω)e−

∫ t

s
a(ω)dτdω.
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We then integrate eq. (5.2.2) by variation of constants to get the equation for B, that is

B = B0e
−δt +

∫ t

0
e−δ(t−τ)

(
ξF (τ) + ξκ

∫ τ

0
T (τ − s)B(s)ds

)
dτ

= B0e
−δt +

∫ t

0
ξF (τ)e−δ(t−τ)dτ + ξκ

∫ t

0

∫ τ

0
e−δ(t−τ)T (τ − s)B(s)dsdτ.

We focus on the last term of the expression. Changing the integration variables yields

ξκ
∫ t

0

∫ τ

0
e−δ(t−τ)T (τ − s)B(s)dsdτ = ξκ

∫ t

0

(∫ t

s
e−δ(t−τ)T (τ − s)dτ

)
B(s)ds.

If we let θ = τ − s, then dθ = dτ and

ξκ
∫ t

0

∫ τ

0
e−δ(t−τ)T (τ − s)B(s)dsdτ = ξκ

∫ t

0

(∫ t−s

0
e−δ(t−(θ+s))T (θ)dθ

)
B(s)ds

= ξκ
∫ t

0

(
e−δ(t−s)

∫ t−s

0
e−δθT (θ)dθ

)
B(s)ds

=
∫ t

0
ξκe−δ(t−s)H(t− s)B(s)ds.

with H(t− s) =
∫ t−s

0 e−δθT (θ)dθ.

The concentration of bacteria in the environment can now be written as

B(t) = B0e
−δt +

∫ t

0
ξF (τ)e−δ(t−τ)dτ +

∫ t

0
ξκe−δ(t−s)H(t− s)B(s)ds. (5.2.3)

We rewrite eq. (5.2.3) to obtain the Volterra renewal equation

B(t) = G(t) +m
∫ t

0
K(t− s)B(s)ds (5.2.4)

where G(t) = B0e
−δt +

∫ t
0 ξF (τ)e−δ(t−τ)dτ , K(t− s) = e−δ(t−s)H(t− s) and m = ξκ.

5.2.2 Existence of Solutions
Equation (5.2.4) is the standard Volterra equation addressed in [48, 27, 64]. The usual
approach to establishing the existence of solutions to eq. (5.2.4) is to construct Picard
iterations and show the convergence of the sequence of Picard iterations, then apply Gron-
wall’s lemma to demonstrate that the solution is unique. We do not show the explicit proof
of existence and uniqueness here but refer the reader to [48, Theorem 2.1] for a similar
proof.
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5.2.3 Asymptotic behaviour
We now investigate the asymptotic behavior of B which is the solution of the renewal
equation (5.2.4). We use the theory on Laplace transformations (see Section 1.2.4 for defi-
nitions) to establish the asymptotic behavior. To do this, we first show that the functions
G and K are Laplace transformable, then rewrite the Laplace transform of B as a convo-
lution and lastly determine the asymptotic behavior of B by investigating the singularities
of its Laplace transform. Below, we summarize the theorems derived from the basic linear
theory of age-structured models that we use in the analysis.

Theorem 5.2.1. [48, Theorem 2.6] Let the basic assumptions of the age-structured model
(2.1.6) be satisfied. Then, the equation K̂(λ) = 1 has one and only one real solution α∗,
which is a simple root. Moreover

• α∗ < 0 if and only if
∫∞

0 K(t)dt < 1,

• any other solution α to K̂(λ) = 1 satisfies Re (α) < α∗,

• within any strip σ1 < Re (λ) < σ2 in the complex plane, there is a finite number of
roots of K̂(λ) = 1 .

Theorem 5.2.2. [48, Theorem 2.7] Let the basic assumptions of the age-structured model
(2.1.6) be satisfied and let α∗ be the only real root of K̂(λ) = 1, guaranteed by Theorem
5.2.1. Then, the solution B to the renewal equation B(t) = F (t) +

∫ t
0 K(t − s)B(s)ds has

the following form
B(t) = b0e

α∗t(1 + Ω(t))
where b0 ≥ 0 and limt→+∞ Ω(t) = 0.

In the next proposition, we show that the functions G and K are Laplace transformable.

Proposition 5.2.2. There exists c1 and c2 in R such that | G(t) |≤ M1e
c1t and | K(t) |≤

M2e
c2t where M1,M2 are constants and t ≥ 0.

Proof. The function G(t) = B0e
−δt +

∫ t
0 ξF (τ)e−δ(t−τ)dτ, F (t) =∫ 1

0 φ(ω)p0(ω)e−
∫ t

0 a(ω)dtdω Then,

| F (t) | = |
∫ 1

0
φ(ω)p0(ω)e−

∫ t

0 a(ω)dtdω |

≤
∫ 1

0
φ(ω)p0(ω) | e−

∫ t

0 a(ω)dt | dω =
∫ 1

0
φ(ω)p0(ω)e|a+|tdω ≤ c̄e|a+|t ≤ c̄.

and

G(t) ≤ B0e
−δt + c̄ξ

∫ t

0
e−δ(t−τ)dτ = B0e

−δt + c̄ξe−δt
∫ t

0
eδτdτ = B0e

−δt + c̄ξ

δ
e−δt(eδt − 1)

G(t) ≤ B0e
−δt − c̄ξ

δ
e−δt = (B0 − c̄ξ

δ
)e−δt
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Thus | G(t) |≤ M1e
c1t where M1 = B0 + c̄ξ

δ
and c1 = δ.

The function K(t) = e−δtH(t) with H(t) =
∫ t

0 e
−δθT (θ)dθ. Similar to what is done to the

function F (t) above, we get | T (t) |≤ c̄1 such that

H(t) ≤ c̄1

∫ t

0
e−δθdθ = c̄1

δ
(1 − e−δt) ≤ c̄1

δ
.

Thus K(t) ≤ e−δt c̄1
δ

and | K(t) |≤ M2e
c2t with M1 = c̄1

δ
and c2 = δ.

By Proposition 5.2.2 the function B is now Laplace transformable and can be written in
terms of a Laplace convolution. That is

B(t) = G(t) +m
∫ t

0
K(t− s)B(s)ds

B̂(λ) = Ĝ(λ) +mK̂(λ)B̂(λ) =⇒ B̂(λ) = Ĝ(λ)
1 −mK̂(λ)

We rewrite B̂(λ) as

B̂(λ) = Ĝ(λ) + mK̂(λ)
1 −mK̂(λ)

Ĝ(λ). (5.2.5)

From eq. (5.2.5) B̂(λ) is meromorphic, that is, it has no singularities other than poles, and
its poles are among the roots λ of the equation

mK̂(λ) = 1 (5.2.6)

We refer to eq. (5.2.6) as the characteristic equation. From Theorem 5.2.2, the integral
equation (5.2.4) has a solution of the form

B(t) = B0e
ν∗t(1 + Ω(t)), B0 ≥ 0, lim

t→+∞
Ω(t) = 0, Ω(t) ∈ C0(R+) (5.2.7)

where ν∗ is the intrinsic Malthusian parameter of the bacterial population that determines
the growth or reduction of the bacterial population. We relate the Malthusian parameter
and the value mK̂(0) using the following lemma.

Lemma 5.2.1. Given the operator ν∗ from eq. (5.2.7), the following relation holds

ν∗ < 1 if mK̂(0) < 1
ν∗ = 1 if mK̂(0) = 1
ν∗ > 1 if mK̂(0) > 1.

Thus, we can conjecture the basic reproduction number as R0 = mK̂(0).
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5.3 Summary
We have formulated a model where individual host heterogeneity is taken into account by
the dependence of the intrinsic pathogen growth rate on the state of the gut microbiome.
Pathogens within the host are acquired through the ingestion of environmental pathogens
while environmental pathogens grow through shedding by individuals. The contact struc-
ture of the model is thus a single compartment, unlike other models with parametric
heterogeneity. We have considered the simple case where the intrinsic pathogen growth
rate is linear and using decoupling assumptions reduced the model to a Volterra equation.
Finally, we analyzed the asymptotic properties of the equation and derived an expression
for the reproduction number with the help of Laplace transforms.



Chapter 6

Discussion and Conclusion

6.1 Discussion
In this thesis, we have formulated different models to link the within-host and between-
host dynamics of cholera. In Chapter 3, we developed a multi-scale model for cholera by
structuring the epidemic model using within-host immune dynamics. The immunological
model considered the interaction between the pathogen and the adaptive immune response.
Through the separation of time scales, we analyzed the dynamics within the host, with
pathogen dynamics being considered to change faster than the immune response. From the
slow system dynamics, we were able to characterize a single infected individual by the state
of their immune response. We then scaled up the dynamics of a single infected individual
to structure the infected population based on within-host immune dynamics. We showed
the existence of equilibrium points and derived the expression for the basic reproduction
number, which was the threshold condition for the spread of the disease. We analyzed the
local stability of the equilibrium points using linearization techniques. We then modified
the between-host model to include a maximum age for the bacteria and used Lyapunov
results from Meehan et al. [76] to establish the global stability of the equilibrium points
for the modified model. Finally, we showed the conditions for equivalence of the original
to the modified model.

The work has advanced the use of methods in physiologically structured population mod-
els [42, 29, 7, 72] in the study of cholera and other diseases. In our case, the growth of
the immune response is the velocity vector that describes the changes in the physiological
variable. Similar to [105, 91], the model has provided a structure for utilizing the separa-
tion of time-scale methods derived from singular perturbation theory [82, 62] to simplify
the analysis of disease dynamics. Unlike other within-host cholera models, our modeling
approach allows for the possibility of recovery since the pathogen can be cleared after a
finite time. Subsequently, the minimum pathogen threshold dynamics for activation of the
immune response align with experimental studies that show that a critical infectious dose is
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required for the infection [40]. The basic reproduction number R0 of the model represents
the contribution of the bacteria from the environment (indirect-transmission route) and the
human-human (direct transmission) contribution to the infection process, a result that is
consistent with single scale models for the disease [81, 99]. This suggests that a reduction in
the reproduction number might be enhanced by intervention strategies targeting pathogen
eradication at both human and environmental levels as seen in [104, 78]. However, the
dependence of R0 on immunological variables illustrates the difference between the model
and the fore-mentioned models. For the DFE, the disease would be eradicated if R0 < 1
and persist otherwise. A unique endemic equilibrium existed when R0 > 1 and in the case
of no loss of immunity, the endemic equilibrium was locally asymptotically stable. For
the modified epidemic model, both the DFE and the endemic equilibrium were globally
asymptotically stable.
We have been able to able to get an appropriate formulation of the I dynamics taking into
account the within-host dynamics. However, an appropriate formulation of the influence
of population-level interactions on the within-host pathogen load is lacking. For instance,
studies have shown that environmental vibrios shape the infectious dose depending on their
nature (hyperinfectious or less infectious) [45, 87, 92] which in turn can affect within-host
pathogen evolution. This contribution of environmental vibrios to the within-host process
is neglected in the model. Additionally, the underlying assumption of the work is that
one infectious contact is enough to push contacts over the threshold. However, a criti-
cal pathogen threshold should be exceeded for the infection to occur and for subcritical
pathogen loads one infectious contact may not be enough. We address these issues in the
next model (Chapter 4).

In Chapter 4 of the thesis, we first developed a multi-scale model (taking into account the
shortcomings of the previous model) and then used first principles to reduce the dimension
of the model to a SIR model. This was a novel framework for linking the within-host
and between-host dynamics of cholera and the rigorous mathematical analysis that we
provided could be applied to other multi-scale disease models. We did this by assigning each
susceptible individual with a pathogen load that grew through the uptake of contaminated
food and water from the environment (booster event) and declined between two booster
events through elimination by the immune system. The transition from the susceptible
to the infected class took place at a certain pathogen-load-dependent rate. This rate was
only positive if a critical pathogen threshold was surpassed. Furthermore, we assumed
population dynamics to happen on a slower time scale than within-host dynamics. We
analyzed the model on a fast time scale and showed the existence of an invariant solution.
We did this by constructing a semigroup of the model and analyzing the spectrum of its
infinitesimal generator. We then used the results obtained from the spectral analysis to
reduce the dimension of the original multi-scale model on the slow time scale to a SIR
model and performed numerical simulations on the resulting model.

Similar to the previous model and other multi-scale models for environmentally driven
diseases [105, 91, 37] separation of time scales allowed the simplification of the analysis
and more so the reduction of the model to a lower dimension. Further, the work provided
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a mathematical framework for utilizing the methods used in aggregation-fragmentation
models [47, 97] in the analysis of multi-scale disease models. The interplay between the
booster events and the immune responses when the pathogen load is sub-critical can be
compared to the mechanisms of integrate and fire neural models, which have been used
before to address the spread of infections [100, 67]. The underlying mechanism of our
model was a velocity-jump process, where the jumps were fostered by booster events.
Velocity-jump processes are close to age-structured models, as both consist of a transport
equation with a non-local term. This non-local term, however, is focused at age 0 in age-
structured models (the boundary condition—which can be newborns or new infections in
other cases—addresses age zero, see, e.g., [14, 52]), but is distributed over all states in
velocity-jump processes [42]. With that, velocity-jump processes are often more complex
to analyze [31, 98]. The numerical simulations showed three different parameter regions
for the infection dynamics: In the first region, the V. cholerae bacteria were present in
the environment but there were no cholera cases (incidence is zero); in the next region,
few cholera cases would arise once in a while (the incidence was low such that larger
outbreaks could not occur), and in the third parameter region, a full outbreak of the
disease could be observed. Through the results of these simulations, we can qualitatively
explain the different outcomes that occur when the disease is introduced into a region. The
abundance of bacteria in the environment was seen as a driving force in the occurrence of an
epidemic. This was in line with other studies [24] that highlight the role of environmental
reservoirs in the infection process. The incidence term derived from our model was close
to other saturated incidence terms used for the disease [24, 45, 81]. These terms have been
found to be more realistic in modeling the dynamics. However, our incidence can drop to
zero if the pathogen levels are low, in contrast with other models that maintain positive
values. Moreover, the incidence term still does not adequately capture the transition from
susceptible to infected based on the dynamics within the host.

In the two previous models, we introduced heterogeneity in the multi-scale models by
structuring the epidemic model by within-host dynamics. In chapter 5 of the thesis, we used
a different approach to address heterogeneity. Here, the nature of the gut microbiome of
an individual led to differences in susceptibility to the disease, resulting in heterogeneity in
the model. We only considered the interaction between the pathogen load in an individual
and the pathogen in the environment. We assigned each individual a pathogen load that
was ingested from the environment and grew intrinsically at a rate dependent on the state
of the gut microbiome. The growth of environmental bacteria was due to the shedding of
bacteria by individuals. In the simple case, we analyzed the model with a linear intrinsic
pathogen growth rate. Since the contact structure was through a single compartment (the
environmental bacteria), we used decoupling properties to reduce the model to a linear
renewal equation. Finally, we analyzed the asymptotic properties of the model with the
help of Laplace transforms.

The work provides a framework for modeling parametric heterogeneity in within-host
cholera models that can be applied to other diseases. Unlike the models in [89, 88],
which use moment-generating functions in the analysis, the contact pattern in our model
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is through a single compartment and that allows us to use decoupling properties in the
mathematical analysis. The renewal equation resulting from the reduction of the model
is similar to that of age-structured epidemic models [64, 49, 48], though in our case it is
related to the environmental bacterial population rather than the total number of births.
Although we have only looked at the case where the intrinsic pathogen growth rate is lin-
ear, we intend to explore other cases that can allow us to appropriately define individuals
in susceptible or infected states.

6.2 Conclusion
Mathematical models have played an effective role in deepening the understanding of in-
fectious disease dynamics. From explaining transmission phenomena to forecasting future
risks and advising on intervention strategies, the benefits of the models cannot be under-
stated. For diseases like cholera, where the infection starts in an individual and spreads to
the population, all while interacting with the environment, robust models are needed to
gain insights into the dynamics. Multi-scale modeling has been seen as an effective method
for obtaining novel insights into transmission dynamics at different scales.

In this thesis, we have presented three different approaches to modeling the dynamics
of cholera on multiple scales. In Chapters 3 and 4, we used physiologically structured
variables to link the within and between-host dynamics and provided the mathematical
theory for the analysis of such models. In Chapter 4, we provided the theory for refining
multi-scale models using first principles. Lastly, in Chapter 5, we introduced heterogeneity
in an individual which is a close representation of what happens in the population. In all
the approaches, the epidemic model utilizes a special structure that includes the bacterial
compartment in the environment which is different from standard SIR models.

Although the work has advanced the mathematical theory for multi-scale modeling of
cholera models, the principal difficulty is still formulating an appropriate incidence term
for the transition from susceptible to infected states based on within-host dynamics. This
is an area that can be explored further to create robust models. Other areas of the work
that can be extended include: The model in Chapter 3 can be extended by performing an
elasticity analysis on the reproduction number to test its dependence on the immunological
parameters.
In Chapter 4, we were interested in model structure and mathematical theory, thus the
parameters used in numerical simulations were not specific to cholera. Parameters derived
from empirical findings or parameter estimation studies could be used to make the model
more sophisticated.
A non-linear pathogen growth rate can be considered in Chapter 5, for instance, a cubic
growth term, to create a distinction between an infected host and a susceptible host based
on the pathogen load.
Further research opportunities to be explored in multi-scale cholera modeling, include the
two-way coupling of disease dynamics: within-to-between and between-to-within.
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Appendix

A.1 Parameter values for Figure (4.5)
We again emphasize that we did not try to obtain realistic parameter values for cholera, as
the aim of the work was to make a proposal for a modeling approach, and the analysis of
this approach. For Figure (4.5), we used the following, rather arbitrary parameter values.

Parameter Value
τ̌ 2
τ̂ 10
γ 0.2
α 12
ξ 2000
σ 10

β(P ) β0 max{0, 1 − π0/P}
β0 0.01
π0 3

s(0) 100
I(0), B(0) 0

Table A.1: Parameter values.
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The infectious dose shapes vibrio cholerae within-host dynamics. Msystems, 6(6):
e00659–21, 2021.

[41] Urs Graf. Applied Laplace transforms and z-transforms for scientists and engineers:
a computational approach using a Mathematica package. Birkhäuser, 2012.
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