Dallas, |hpc
TX|accelerates.

ala cmg through Persistent Work-
yuted Actor Model lerary

Motivation and Project Overview

« Motivation stems from Invasive Computing’

« Dynamic resource allocation and deallocation

« Provides explicit handles to specify resource requirements

desired or required in different phases of execution

« Usage of actors to facilitate the specification of requirements

Typical tiled invasic architecture — image from (2)

« Use UPC++ to shift from embedded to HPC applications
« Development of an UPC++ based actor framework3 4
« Extension of the framework to enable migration of actors for

asynchronous workload balancing

(1) https://www.invasic.de/

(2) https://link.springer.com/chapter/10.1007/978-3-030-47487-4_9

(3) https://github.com/TUM-15/Actor-UPCXX

(4) Pdppl, A.; Baden S.; Bader, M.: A UPC++ Actor Library and Its Evaluation On a Shallow Water Proxy Application, PAW-ATM 2019

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 2

https://www.invasic.de/
https://link.springer.com/chapter/10.1007/978-3-030-47487-4_9
https://github.com/TUM-I5/Actor-UPCXX
https://mediatum.ub.tum.de/doc/1520197/1520197.pdf

UPC++1

« Asynchronous Partitioned Global Address Space (APGAS) Model

» Designed for writing efficient, scalable parallel programs on distributed-
memory parallel computers?

« Key communication facilities in UPC++ are one-sided Remote Memory

Access (RMA) and Remote Procedure Call (RPC) . -

1
Shared | Shared | Shared | Shared
SobaLECHIRES apace Segment | Segment | Segment | Segment

 Focused on maximizing scalability

Private Private Private Private

. . . Segment Segment Segment Segment
« Communication operations are asynchronous
Rank 0 Rank 1 Rank 2 Rank 3
« Uses GASNet? for communication across a wide variety of platforms PGAS Memory Model ~ image from (2)

(1) https:/bitbucket.org/berkeleylab/upcxx/wiki/Home

(2) https://upcxx.Ibl.gov/docs/html/quide.html
(3) https://gasnet.lbl.gov/

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 3

https://bitbucket.org/berkeleylab/upcxx/wiki/Home
https://upcxx.lbl.gov/docs/html/guide.html
https://gasnet.lbl.gov/

Actor-UPCXX

« Actor encapsulates specific functionality, data and behavior

« |s an object that is identified by its unique name and assigned to a part of the parallel
simulation

« Actor and its data can be serialized for sending it to another rank using UPC++

« Connections of actors are saved in a global graph structure that is replicated on every
rank in Actor-UPCXX

« Communication through one-sided asynchronous messages

» Facilitate actors for dynamic load balancing

Rank n : Rank m Rank n ; Rank m
| I
3:LP l I 4:LP
' ; 2:LPC 2:RPC_ '
Al GO OEmA2 AlDNEN A2
e 5 () . ! Daad

(a) A write call from actor Al residing on rank n to actor A2 on (b) A read call from actor A1 residing on rank n to actor A2 on rank
rank m. m.

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 4

Load Balancing Strategies by Migration of Actors

« Two strategies: actor stealing and actor offloading
« Actor stealing: underloaded rank chooses rank to steal an actor
« Actor offloading: rank that detects an imbalance may decide to offload an actor to a rank that is
underloaded
« Both migration strategies perform every action through asynchronous calls (RPCs)
« Actor stealing strategy is further divided into
* Global vs. Local: specifies the set of remote ranks which can be stolen

« Random vs. Busy: specifies the type of polling which is applied to the set of remote ranks

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 5

Global Actor Stealing Strategies

Rank 3 Rank 2
100 Units spent 150 Units spent Rank 3 Rank 2
executing actors executing actors
Rank 1
Rank 0 A el Rank 0 Rank 1
executing actors

Area of stealable actors Area of stealable actors
Global-busy: steals an actor Global-random: steals an actor
from the rank that has spent from any rank without limitations

the most time executing actors

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 6

Local Actor Stealing Strategies

Rank 3 Rank 2
100 Units spent 150 Units spent Rank 3 Rank 2
executing actors executing actors
Rank 1
Rank 0 LTS ey i Rank 0 Rank 1
executing actors

Area of stealable actors Area of stealable actors
Local-busy: steals an actor Local-random: steals any
from a neighboring rank that has neighboring actor from one
spent the most time executing actors of the neighboring ranks

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 7

Pond — A Shallow Water Proxy Application

« Uses Actor-UPCXX as actor library

* Implements finite volume solvers which

solves the shallow water equations

« Pond organizes the 2D Cartesian discretization grid as patches

« Every patch is assigned to an actor permanently

« Example grid decomposed into four patches

» Cells of the patches are marked in blue ¢

« Ghost layers (in red) are used to synchronize data between patches

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Pond — A Shallow Water Proxy Application

0 Pond Rank ‘]
» Update the cells in the ghost layer according to boundary i, :
conditions or with values communicated by neighbor patches ¢ | 2=

-
-~
-
-

« For each edge compute approximate fluxes between the

10"

1.6

et ladd

16 32 64 128
Number of Nodes

« Update the cell quantities using the net updates Wezak scaling of Pond — image from (1)

adjacent cells

-

Flop/s cf. SWE

« Accumulate the fluxes as net updates

« Ghost cell values are updated by sending one-sided
messages between Pond’s actors

« Lazy activation: patches are only activated when a

propagating wave enters the patch

lllustration of lazy activation — image from (2)

(1) Pdppl, A.; Baden S.; Bader, M.: A UPC++ Actor Library and Its Evaluation On a Shallow Water Proxy Application

(2) https:/invasic.informatik.uni-erlangen.de/en/tp_a4_Phlll.php

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 9

https://mediatum.ub.tum.de/doc/1520197/1520197.pdf
https://invasic.informatik.uni-erlangen.de/en/tp_a4_PhIII.php

Evaluation: Comparison of Load Balancing Strategies

o Performed on CoolMUC-2
Cluster hosted by the Leibniz

1. Static workload: 18000 X 18000 grid divided into 250 X 250 patches Supercomputing Center (LRZ)’

o Equipped with 28-way Intel

with 1 patch per actor Xeon E5-2690 v3 compute
nodes and FDR14 Infiniband

2. Node slowdown: 18000 x 18000 grid divided into 250 x 250 patches interconnect

. o UPC++ version used is
with 1 patch per actor 2022.03.0.
3. Lazy activation: 36000 x 36000 grid divided into 250 x 250 patches JPer, and Ador URGRX were

with 1 patch per actor

« Load balancing strategies have been compared using the scenarios

compiled with the Intel oneAPI
compilers 2
o OpenMPI v4.1.2 and HWLoc

« All scenarios are strong scaling tests 2.6.0 are used by the
communication backend of
* All scenarios use the same solver UPC++

0 GASNet-EX for the job launch

(1) https://doku.lrz.de/display/PUBLIC/Linux+Cluster

(2) https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 10

https://doku.lrz.de/display/PUBLIC/Linux+Cluster
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html

Evaluation: Lazy Activation Scenario — Speedup

* Workload is determined by the evolving solution
« Actors are activated as waves enter their patch

« Static: no actor migrations

800
<
so4 0| === Static ©
----- Global-random o 600
Global-busy by
S 400
40 - Local-random 3
Local-busy et
—w— Offloading £ 200
Ideal LB <
30 A 0
S 16 24 32
°)
o I
% € 515 EEl Static
20 - g B Global-random
('z Global-busy
% 0.10 Local-random
10 4] Local-busy
@
¢ 0.05
o)
3
0 -
. . : . . : . S 0.00 L= . — ; -
1 2 4 8 16 24 32 °© 1 2 4 8 16 24 32
Node count (28 ranks per node) Node count (28 ranks per node)

Folie 11

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario — Load Distribution

Static Static
3000 A 3000 A
2500 A 2500 A
% %
© 2000 A © 2000 A
) @
o o
S 1500 A 8 1500 A
&) &)
S S
o (9]
<C 1000 A < 1000 A
500 A 500 -
0 = T T T T 0 = T T T
0 50 100 150 200 100 150 200
Rank-id Rank-id
At 180 seconds At 720 seconds

Folie 12

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario — Load Distribution

Global-random

3000 A

2500 A

2000 A

1500 A

Actor cost per rank

1000 A

500 -

100 150
Rank-id
At 180 seconds

200

Actor cost per rank

Global-random

3000 A

2500 A

2000 A

1500 A

1000 A

500 -

-
.50 - 100
Rank-id

At 720 seconds

150

200

Folie 13

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario — Load Distribution

Global-busy

3000 A

2500 A

2000 A

1500 A

Actor cost per rank

1000 A

500 -

0 50 100 150
Rank-id

At 180 seconds

200

Actor cost per rank

Global-busy

3000 A

2500 A

2000 A

1500 A

1000 A

500 -

50

100
Rank-id
At 720 seconds

150

200

Folie 14

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario — Load Distribution

Local-random

3000 A

2500 A

2000 A

1500 A

Actor cost per rank

1000 A

500 -

0 50 100 150
Rank-id

At 180 seconds

200

Actor cost per rank

Local-random

3000 A

2500 A

2000 A

1500 A

1000 A

500 -

50

100
Rank-id
At 720 seconds

150

200

Folie 15

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario — Load Distribution

Local-busy

3000 A

2500 A

2000 A

1500 A

Actor cost per rank

1000 A

500 -

0 50 100 150
Rank-id

At 180 seconds

200

Actor cost per rank

Local-busy

3000 A

2500 A

2000 A

1500 A

1000 A

500 -

50

100
Rank-id

At 720 seconds

150

200

Folie 16

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario — Load Distribution

Offloading Offloading

3000 - 3000 -

2500 A 2500
= =

© 2000 A © 2000 A
))
o o

% 1500 - 2 1500 -
(9] 9]
S S
9]

< 1000 - < 1000 -

500 A 500 A

0 = T T T T 0 a T T T
0 50 100 150 200 0 50 100 150 200
Rank-id Rank-id
At 180 seconds At 720 seconds

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 17

Acknowledgements

« This research was funded by the German

esearch Foundation

(DFG, Deutsche Forschungsgemeinschaft
roject number 14671743,

RR 89 Invasive Computing

. e would like to thank

has been of great help during this

research and

Philipp Samfass for his advice, which

A UPC++ Actor Library and Its Evaluation
On a Shallow Water Proxy Application

Alexander Péppl
of Inf

Technical University of Munich
Munich, Germany
poeppl @in.um.de

Scott Baden
c Research Division
Lawrence Berkeley National Laboratory
Department of Computer Science and Engineering
University of California, San Diego

Michael Bader
Department of Informatics
Technical University of Munich
Munich, Germany
bader@in.tum.de

baden@ucsd.edu

Abstract—Programmability is one of the key challenges of
Exascale Computing. Using the actor model for distributed
computations may be one solution. The actor nwdtl separates
computation from communication while s

offer their expected performance. Currently, many applications
still follow the Bulk Synchronous Parallel (BSP) model, with
clearly defined phases for computation, communication and
The most widely used approach here is to

lap. Each actor possesses specified
publish and receive information. Computations are undertaken
based on the data available on these channels. We present a
library that implements this programming model using UPC++,
a PGAS library, and evaluate three different parallelization
strategies, one based on rank-sequential exccution, one based
on multiple threads in a rank, and one based on OpenMP
tasks. In an evaluation of our library using shallow water proxy
applications, our solution compar -ably against an earlier
implementation based on X10, and a ‘approach.

Index Terms—Actor-based computation, tsunami simulation,
programming models, PGAS

INTRODUCTION

use MPI for inter-node communication and parallelization, and
OpenMP for the on-node parallelization. The BSP approach
enables a clear separation of concems, but the structure,
especially with the synchronization step at the end may be too
rigid to obtain the best performance. As the number of nodes
increases, so will the difficulty of maintaining the pure BSP
model, and therefore the burden to the application programmer.
A promising model is the Partitioned Global Address

) g model [2]. This model assumes

arate physical

as they no longer need to think about in terms of

With this work, we d the and usabil-
ity benefits of using the actor model for classical HPC. We will
introduce an actor model based on the FunState [1] approach,
and its implementation as a library in UPC++. There, we will

message-passing. but can access data on remote ranks directly.
Another promising model is the task-based programming model

3. Here, the programmer specifies pieces of computation
and as tasks, and also their dependencies.

for the actor library. We apply the actor model o a tsunami
simulation proxy application, and compare its performance
against our prior application SWE-X10 based on actorX 10,
an X10 implementation of our actor library, and SWE, the
original tsunami application using MPI and OpenMP with the
BSP approach for parallelization. We show that our solution
higher ina weak scaling
and also a significantly better performance with a lower
per-core computational load compared to SWE-X10. We also
demonstrate a clear performance benefit compared to SWE.

tes

I1. MOTIVATION AND RELATED WORK

‘The imminent arrival of exascale computing introduced the
debate on how to program these machines so that they can
©2019 IEEE. Personal use of this material fi
nust be Illiuu)ul for all nlhu us in any current or futur dia
luding reprinin materal for advertising o promotional
porposes craog e colleciv wocks, o esal or ecitribacion 1o ervers
o lst, oc reuse of any copyrighted compoaent of this work in other works.

permitted. Permissio

978-1-5386-5541-218/531.00 ©2019 IEE

Afterwards, the resulting task graph is handed to a scheduling
system that schedules them onto available computing resources.
This model has been implemented in OpenMP [4] and also
in runtime systems, for example in StarPU, which enables
distributed task scheduling onto heterogeneous machines [5].
or the AllScale project [6], which aims to separate the
specification of parallelism from its low-level management on
the target hardware. Task-based parallelism has been employed
successfully in complex applications, for example in the Uintah
application framework [7].

In the Invasive Computing project’, w
approaches to use future, parallel and heterogeneous computers
[8]. Most of the research is focused around the project’s
own hardware archi a
Multiprocessor System-on-Chip (MPSoC). This architecture
features multiple smaller groups of CPU cores (called tiles)
that share a cache hierarchy and a memory. The different
tiles are connected using a Network-on-Chip. There are
different types of tiles, such as tiles containing normal CPU

hap/iwwwinvasic.de

Asynchronous Workload Balancing through
Persistent Work-Stealing and Offloading for a
Distributed Actor Model Library

Yakup Budanaz
Department of Informatics

Mario Wille
of Inf

Michael Bader

Technical University of Munich
Garching, Germany
yakup budanaz@tum de

Abstract—With dynami ibalances cumd by both software
and ever more complex hardware, and runtime

Technical University of Munich
Garching, Germany
mario.wille@tum.de

of Inf

Technical University of Munich
Garching, Germany
bader@in.tum.de

dynamically the processing capabilities of each compute node

systems must adapt to dynamic load imbalances. We present a
dlﬂ'usm -based, reactive, fully asynchronous, and decentralized
istributed actor library. With the

mmms below expectati ns in o presented test c

lex ctors,
lnhuud. Pmmzm. Offloading, LK» Llhnln

L. INTRODUCTION

Numerics of modern scientific applications introduce dy-
namic workload imbalances. Static mapping of the workload
to compute nodes will fall short due to runtime deviations,
and dynamic balancing of the workload is fundamental to
minimize the time-to-solution and to not waste available re-
sources [1]. For example, in adaptive mesh refinement (AMR,
eg.. [21-{4]). the accuracy of the solution will be adapted
for certain regions, dynamically changing the workload in
each refinement. In particle simulations, spatial domain de-
composition will lead to imbalances when the domain is not
homogeneous [S]. Vacuum regions will result in imbalances
in workload, and the decomposition of the particles has to
be dynamically changed to adapt for best performance. State-
space search problems including unbalanced tree search, SAT,
and N-Queens are often irregular and show

may differ. variability due to hard-
ware, as reported in [8], can severely impede scalability
Even without faulty hardware run-to-run variability caused
by the hardware [9] provides another reason why applications
and runtimes need to dynamically migrate workload between
compute nodes.

We implement a fully decentralized asynchronous reactive
dynamic workload balancing feature for the distributed ac-
tor model library Actor-UPCXX', implemented with Unified
Parallel C++ (UPC++) [10]. UPC++ is a C++ library that
implements the asynchronous partitioned global address space
model (APGAS). It provides one-sided remote pur and remote
get operations, and functions that can be executed on remote
UPC++ ranks® called remote procedure calls (RPC). The
actor model [11] is an asynchronous message-driven model
of concurrent computation, where the actor is the universal
primitive model. Actors do not share their state (ie., any
simulation data), but communicate only through asynchronous
one-sided messages. The messages sent are limited in size
and the received messages are stored in buffers until their
recipient consumes them. Discrete states of actors prevent data
races and side effects, enabling the actor model for distributed
computing. Various industry-oriented implementations of the
actor model are already in use, such as Erlang [12] and the
Co++ Actor Framework [13]. The actor model is also a popular
choice in network frameworks such as the Akka framework
for Scala and Orleans [14], the framework for Net. Charm++
[15] impl a model similar to the actor

workloads [6]. and therefore dynamic and predictive workload
balancing is mandatory to maintain high performance.

In this work, we consider a solver for the shallow water
equations (SWE) that avoids unnecessary computation by
lazily activating patches of the computational grid only when a
propagating wave enters the patch, thus dynamically c}
the workload with each increment of the simulation time [7]

Workload imbalance can also be caused by the hardware,
for example with features like dynamic voltage and frequency
scaling (DVFS), where the frequency of the CPU is adapted

model and is being used in high-performance systems.

We present a simple diffusion-based approach [16, e.g.] for
dynamic workload balancing in Actor-UPCXX and support
both stealing and offloading of the workload, by persistently
transferring actors between compute nodes. Actor stealing is
based on work stealing [17, e.g.], where underloaded ranks
steal actors from their overloaded neighbors; actor offfoad-

&

| Available under GPL at hitps//github.comyTUM-1S/Actoe- UP
2From hereon. we just refer 1o UPC++ ranks as ranks

Alexander Poppl for laying the
foundations with Actor-UPCXX and Pond

Folie 18

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Conclusion

« Fully asynchronous and decentralized dynamic workload balancing scheme

« UPC++ accelerates the implementation of the migration strategies

« UPC++ allows easy implementation of serialization to migrate actors

« Asynchronous nature of UPC++ enables the implementation of actor migration as a chain of
RPCs

« Implemented strategies for dynamic load balancing improve runtime in predictable and
unpredictable load imbalances

* Achieve speedup of up to 400% compared to the static base case with no actor migration

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 19

Backup Slides

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 20

Evaluation: Static Workload Scenario — Speedup

 Initial workload distribution of the actors modeled as a graph partitioning problem

« Static mapping of actors to compute nodes is calculated with METIS'

200 A
X
76-69%] : c
30 4 —== Static g 150 -
--e-- Global-random]
Global-busy g
25 4 Local-random 5 1001
(o]
+- Local-busy -
—«— Offloading 2 50
20 A é
S 0-
o 16 24 32
$ 15 8
f=3 g‘ Il Static
10 - & 0.25 1 B Global-random
@©
— Global-busy
o 0.20
% Local-random
5 1 E 0.15 A i m Local-busy
7
9 0.10 -
0 O
T T T T T T T a 0.05
1 2 4 8 16 24 32 S 5.00

1 2 4 8 16 24 32
Node count (28 ranks per node)

Node count (28 ranks per node)

(1) http://qlaros.dtc.umn.edu/gkhome/metis/metis/overview

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 21

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Evaluation: Node Slowdown Scenario — Speedup

 Atrtificial scenario to test the performance under unpredictable workload imbalance

* A subset of ranks is slowed down artificially

200 A
V4
5
= 150 +
]
—=— Static 3
il --e-- Global-random § 100~
Global-busy "
25 - Local-random ,8 50 A
Local-busy <
—— Offloading 0
20 A Ideal LB 24 32
(%]
Q +J
3 P 3 EEm Static
o 15 4 /. @ 0.25 -
3 P 2 B Global-random
@ 7 % 0.20 - Global-busy
% i Local-random
E 0.15 - ! Local-busy
= N
4 0.10 1
9] |
8.22 o
B 2 0.05 1 ‘ L .)
o0 \2 000 = T T .Ii T T - T P
1 2 4 8 16 24 32 1 2 4 8 16 24 32
Node count (28 ranks per node)

Node count (28 ranks per node)

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022 Folie 22

