
Asynchronous Workload Balancing through Persistent Work-
Stealing and Offloading for a Distributed Actor Model Library

Yakup Budanaz, Mario Wille, and Michael Bader

Technical University of Munich
School of Computation, Information and Technology – Department of Computer Science

Motivation and Project Overview

Folie 2

• Motivation stems from Invasive Computing1

• Dynamic resource allocation and deallocation

• Provides explicit handles to specify resource requirements

desired or required in different phases of execution

• Usage of actors to facilitate the specification of requirements

• Use UPC++ to shift from embedded to HPC applications

• Development of an UPC++ based actor framework3 4

• Extension of the framework to enable migration of actors for

asynchronous workload balancing
(1) https://www.invasic.de/

(2) https://link.springer.com/chapter/10.1007/978-3-030-47487-4_9

(3) https://github.com/TUM-I5/Actor-UPCXX

(4) Pöppl, A.; Baden S.; Bader, M.: A UPC++ Actor Library and Its Evaluation On a Shallow Water Proxy Application, PAW-ATM 2019

Typical tiled invasic architecture – image from (2)

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

https://www.invasic.de/
https://link.springer.com/chapter/10.1007/978-3-030-47487-4_9
https://github.com/TUM-I5/Actor-UPCXX
https://mediatum.ub.tum.de/doc/1520197/1520197.pdf

UPC++1

Folie 3

• Asynchronous Partitioned Global Address Space (APGAS) Model

• Designed for writing efficient, scalable parallel programs on distributed-

memory parallel computers2

• Key communication facilities in UPC++ are one-sided Remote Memory

Access (RMA) and Remote Procedure Call (RPC)

• Focused on maximizing scalability

• Communication operations are asynchronous

• Uses GASNet3 for communication across a wide variety of platforms

(1) https://bitbucket.org/berkeleylab/upcxx/wiki/Home

(2) https://upcxx.lbl.gov/docs/html/guide.html

(3) https://gasnet.lbl.gov/

PGAS Memory Model – image from (2)

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

https://bitbucket.org/berkeleylab/upcxx/wiki/Home
https://upcxx.lbl.gov/docs/html/guide.html
https://gasnet.lbl.gov/

Actor-UPCXX

Folie 4

• Actor encapsulates specific functionality, data and behavior

• Is an object that is identified by its unique name and assigned to a part of the parallel

simulation

• Actor and its data can be serialized for sending it to another rank using UPC++

• Connections of actors are saved in a global graph structure that is replicated on every

rank in Actor-UPCXX

• Communication through one-sided asynchronous messages

Ø Facilitate actors for dynamic load balancing

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Load Balancing Strategies by Migration of Actors

Folie 5

• Two strategies: actor stealing and actor offloading

• Actor stealing: underloaded rank chooses rank to steal an actor

• Actor offloading: rank that detects an imbalance may decide to offload an actor to a rank that is

underloaded

• Both migration strategies perform every action through asynchronous calls (RPCs)

• Actor stealing strategy is further divided into

• Global vs. Local: specifies the set of remote ranks which can be stolen

• Random vs. Busy: specifies the type of polling which is applied to the set of remote ranks

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Global Actor Stealing Strategies

Folie 6

Global-busy: steals an actor Global-random: steals an actor

from the rank that has spent from any rank without limitations

the most time executing actors

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Local Actor Stealing Strategies

Folie 7

Local-busy: steals an actor Local-random: steals any

from a neighboring rank that has neighboring actor from one

spent the most time executing actors of the neighboring ranks

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Pond – A Shallow Water Proxy Application

Folie 8

• Uses Actor-UPCXX as actor library

• Implements finite volume solvers which

solves the shallow water equations

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

• Pond organizes the 2D Cartesian discretization grid as patches

• Every patch is assigned to an actor permanently

• Example grid decomposed into four patches

• Cells of the patches are marked in blue

• Ghost layers (in red) are used to synchronize data between patches

Pond – A Shallow Water Proxy Application

Folie 9

• Update the cells in the ghost layer according to boundary

conditions or with values communicated by neighbor patches

• For each edge compute approximate fluxes between the

adjacent cells

• Accumulate the fluxes as net updates

• Update the cell quantities using the net updates

• Ghost cell values are updated by sending one-sided

messages between Pond’s actors

(1) Pöppl, A.; Baden S.; Bader, M.: A UPC++ Actor Library and Its Evaluation On a Shallow Water Proxy Application

(2) https://invasic.informatik.uni-erlangen.de/en/tp_a4_PhIII.php

Illustration of lazy activation – image from (2)

Weak scaling of Pond – image from (1)

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

• Lazy activation: patches are only activated when a

propagating wave enters the patch

https://mediatum.ub.tum.de/doc/1520197/1520197.pdf
https://invasic.informatik.uni-erlangen.de/en/tp_a4_PhIII.php

Evaluation: Comparison of Load Balancing Strategies

Folie 10

• Load balancing strategies have been compared using the scenarios

1. Static workload: 18000 × 18000 grid divided into 250 × 250 patches

with 1 patch per actor

2. Node slowdown: 18000 × 18000 grid divided into 250 × 250 patches

with 1 patch per actor

3. Lazy activation: 36000 × 36000 grid divided into 250 × 250 patches

with 1 patch per actor

• All scenarios are strong scaling tests

• All scenarios use the same solver

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

(1) https://doku.lrz.de/display/PUBLIC/Linux+Cluster

(2) https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html

o Performed on CoolMUC-2

Cluster hosted by the Leibniz

Supercomputing Center (LRZ)1

o Equipped with 28-way Intel

Xeon E5-2690 v3 compute

nodes and FDR14 Infiniband

interconnect

o UPC++ version used is

2022.03.0.

o UPC++, and Actor-UPCXX were

compiled with the Intel oneAPI

compilers 2

o OpenMPI v4.1.2 and HWLoc

2.6.0 are used by the

communication backend of

UPC++

o GASNet-EX for the job launch

https://doku.lrz.de/display/PUBLIC/Linux+Cluster
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html

Evaluation: Lazy Activation Scenario – Speedup

Folie 11

• Workload is determined by the evolving solution

• Actors are activated as waves enter their patch

• Static: no actor migrations

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario – Load Distribution

Folie 12Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario – Load Distribution

Folie 13Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario – Load Distribution

Folie 14Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario – Load Distribution

Folie 15Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario – Load Distribution

Folie 16Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Lazy Activation Scenario – Load Distribution

Folie 17Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Acknowledgements

Folie 18

• This research was funded by the German

Research Foundation

(DFG, Deutsche Forschungsgemeinschaft),

Project number 14671743,

TRR 89 Invasive Computing

• We would like to thank

• Philipp Samfass for his advice, which

has been of great help during this

research and

• Alexander Pöppl for laying the

foundations with Actor-UPCXX and Pond

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Conclusion

Folie 19

• Fully asynchronous and decentralized dynamic workload balancing scheme

• UPC++ accelerates the implementation of the migration strategies

• UPC++ allows easy implementation of serialization to migrate actors

• Asynchronous nature of UPC++ enables the implementation of actor migration as a chain of

RPCs

• Implemented strategies for dynamic load balancing improve runtime in predictable and

unpredictable load imbalances

• Achieve speedup of up to 400% compared to the static base case with no actor migration

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Backup Slides

Folie 20Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

Evaluation: Static Workload Scenario – Speedup

Folie 21

• Initial workload distribution of the actors modeled as a graph partitioning problem

• Static mapping of actors to compute nodes is calculated with METIS1

(1) http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Evaluation: Node Slowdown Scenario – Speedup

Folie 22

• Artificial scenario to test the performance under unpredictable workload imbalance

• A subset of ranks is slowed down artificially

Mario Wille | Asynchronous Workload Balancing | PAW-ATM 2022

