
Technische Universität München

TUM School of Computation, Information and Technology

Causal Inference of Extremes:

Recursive Max-Linear Models Under Observational Noise

Johannes Ernst-Emanuel Buck

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Matthias Scherer

Prüfer*innen der Dissertation:
1. Prof. Dr. Claudia Klüppelberg
2. Prof. Dr. Carlos Enrique Améndola Cerón,

Technische Universität Berlin

Die Dissertation wurde am 24.01.2023 bei der Technischen Universität München
eingereicht und durch die TUM School of Computation, Information and Technology am
16.03.2023 angenommen.

Abstract

Recursive max-linear models have gained increasing interest for modeling extremal
dependence. The causal structure of such models is represented by a Bayesian net-
work, where node variables are defined as a max-linear function of parental node
variables and an independent innovation. In this dissertation, we study recursive
max-linear models under observational noise. Particularly, we are interested in struc-
tural properties and causal inference of noisy max-linear models.

In Chapter 1, we introduce recursive max-linear models and summarize important
concepts that are useful throughout the dissertation. For ease of reading, we also
summarize the main results of each of the following chapters.

In Chapter 2, we investigate the influence of recursive max-linear models under prop-
agating, one-sided noise. We study structural properties and prove that the minimum
DAG that preserves the distribution remains unchanged. Moreover, if we use a mini-
mum ratio estimator for the ML coefficient matrix, which determines the dependence
structure of the graph, we can show that this estimator at the left limit of support
is completely determined by the distribution of the noise variables up to a positive
constant. If the noise terms are regularly varying, we show that the estimated ML
coefficient matrix derived from minimum ratios converges to a matrix of independent
Weibull entries after proper centering and rescaling. This extends previous results
about the minimum ratio estimator.

In Chapter 3, we introduce QTree , a novel technique to learn root-directed spanning
trees, a special class of Bayesian networks. Inspired but not strictly limited to max-
linear networks, the QTree algorithm uses a pair-wise score for nodes based on a lower
quantile gap to measure the concentration of the distribution around its minimum.
Then, we use Chu–Liu/Edmonds’ algorithm to find the root-directed spanning tree of
minimum score. We also introduce a parameter selection method based on bootstrap
aggregation. Applied to various data sets of river discharge data, the algorithm
strongly outperforms existing state-of-the-art methods. If the data follows a noisy
recursive max-linear model, under a mild assumption on the noise tail, we show
asymptotic consistency of the estimated root-directed spanning tree.

In Chapter 4, we introduce a machine learning approach to learn Bayesian networks
from extreme data. Based on gradient descent, we find the parameters that opti-
mally fit extreme data to a max-linear model. Using existing literature, we take a
characterization of acyclicity in terms of a smooth function to ensure that the so-
lution is supported on a Bayesian network. We show asymptotic consistency under
mild assumptions and illustrate the performance in a simulation study as well as two
real-world data sets: data on river discharges from Chapter 2 and data on foreign
exchange rates.

iii

Zusammenfassung

Rekursive max-lineare Modelle haben zunehmendes Interesse zur Modellierung ex-
tremaler Abhängigkeit geweckt. Die kausale Struktur solcher Modelle wird durch
ein Bayes’sches Netzwerk dargestellt, in dem Knotenvariablen als eine max-lineare
Funktion von übergeordneten Knotenvariablen und einer unabhängigen Innovation
definiert sind. In dieser Dissertation untersuchen wir rekursive max-lineare Modelle
unter Beobachtungsrauschen. Insbesondere sind wir an strukturellen Eigenschaften
und kausaler Inferenz verrauschter max-linearer Modelle interessiert.

In Kapitel 1 führen wir rekursive max-lineare Modelle ein und fassen wichtige Konzepte
zusammen, die für die gesamte Dissertation nützlich sind. Zur besseren Lesbarkeit
fassen wir auch die wichtigsten Ergebnisse der folgenden Kapitel zusammen.

In Kapitel 2 untersuchen wir den Einfluss rekursiver max-linearer Modelle unter
einseitigem Rauschen. Wir untersuchen strukturelle Eigenschaften und beweisen,
dass der minimale DAG DB, der die Verteilung erhält, unverändert bleibt. Danach
verwenden wir einen Minimum-Ratio-Schätzer für die ML-Koeffizientenmatrix, die
die Abhängigkeitsstruktur des Graphen bestimmt. Damit können wir zeigen, dass
dieser Schätzer an dem linken Limit des Trägers vollständig durch die Verteilung
der Rauschvariablen bis zu einer positiven Konstante bestimmt wird. Wenn die
Rauschterme regulär variieren, zeigen wir, dass die geschätzte ML-Koeffizientenmatrix,
basierend auf dem Minimum-Ratio-Schätzer nach ordnungsgemäßer Zentrierung und
Skalierung zu einer Matrix unabhängiger Weibull-Einträge konvergiert. Dies erweitert
frühere Ergebnisse über den Minimum-Ratio-Schätzer.

In Kapitel 3 stellen wir QTree vor, eine neuartige Technik zum Erlernen wurzel-
gerichteter Spannbäume, einer speziellen Klasse von Bayes’schen Netzen. Inspiriert,
aber nicht auf max-lineare Netzwerke beschränkt, verwendet der QTree -Algorithmus
einen paarweisen Score für Knoten basierend auf der Dispersion im unteren Quantil,
um die Konzentration der Verteilung an ihrem Minimum zu messen. Danach wenden
wir Chu-Liu/Edmonds Algorithmus an, um den wurzelgerichteten Spannbaum mit
minimalem Score zu finden. Wir führen auch eine Parameterauswahlmethode ein,
die auf Bootstrap-Aggregation basiert. Angewendet auf verschiedene Datensätze von
Flussabflussdaten übertrifft der Algorithmus bestehende State-of-the-Art-Methoden.
Wenn die Daten einem verrauschten rekursiven max-linearen Modell folgen, zeigen
wir unter einer milden Annahme des Rauschterms die asymptotische Konsistenz des
geschätzten wurzelgerichteten Spannbaums T̂ .

In Kapitel 4 stellen wir einen Ansatz vor, der auf Machine Learning beruht, um
Bayes’sche Netze aus extremen Daten zu lernen. Basierend auf dem Gradienten-
verfahren finden wir die Parameter, die extreme Daten optimal an ein max-lineares
Modell anpassen. Unter Verwendung vorhandener Literatur nutzen wir eine Charak-
terisierung der Azyklizität im Sinne einer glatten Funktion, um sicherzustellen, dass

v

Zusammenfassung

die Lösung auf einem Bayes’schen Netzwerk unterstützt wird. Wir zeigen die asymp-
totische Konsistenz unter milden Annahmen und veranschaulichen die Leistung in
einer Simulationsstudie sowie an zwei realen Datensätzen: Daten zu Flussabflüssen
aus Kapitel 2 und Daten zu Wechselkursen.

vi

Acknowledgement

I would like to thank everyone that has accompanied me on this journey.

First and foremost my supervisor, Claudia Klüppelberg, for introducing me to this
research topic, for guiding, motivating, mentoring, and, if necessary, to bring me back
to the right track. My gratitude also goes to the Chair of Mathematical Statistics
and every former and current member I met along the way for creating an open
environment of fruitful discussions that helped to spark new ideas and exchange
knowledge.

A special thanks goes to Ngoc Tran for enlightening discussions and constructive
feedback which greatly helped me to progress in this thesis. Also, her hospitality
during my stay at UT Austin was greatly appreciated.

I would like to thank the Hanns Seidel Foundation for not just financially support-
ing me but also for promoting a network for exchanging ideas and meeting people
from various different fields. I would also like to thank them for their guidance and
conceptual support.

Finally, I would like to thank my family, particularly my mother, for always support-
ing, helping, and believing in me.

vii

Contents

Abstract iii

Zusammenfassung v

Acknowledgement vii

List of Figures xi

List of Tables xiii

Notation and Acronyms xv

1 Introduction 1

2 Recursive max-linear models with propagating noise 7

2.1 Introduction . 7

2.2 Preliminaries — Recursive max-linear models 10

2.2.1 Graph terminology . 10

2.2.2 Recursive max-linear models 10

2.2.3 Minimum domain of attraction and regular variation 12

2.3 Recursive ML model with propagating noise 14

2.3.1 Definitions and representations 14

2.3.2 Paths classification and graph reduction in the noisy model . . 16

2.3.3 Distributions of component ratios of the noisy model 19

2.4 Identification and estimation . 21

2.4.1 Identifiability of the model . 21

2.4.2 Known DAG structure with unknown edge weights 22

2.4.3 Known topological order . 22

2.4.4 Unknown DAG and unknown topological order 23

2.4.5 Strong consistence of B̂ and learning the minimum ML DAG DB 25

2.5 Asymptotic distribution of the minimum ratio estimators 27

2.6 Data analysis and simulation study . 28

2.6.1 Data example . 28

2.6.2 Simulation study . 32

2.7 Supplementary Material . 35

2.7.1 Proofs of Section 2.3 . 35

2.7.2 Proofs of Section 2.4 . 51

2.7.3 Proofs of Section 2.5 . 52

ix

Contents

3 Estimating a Directed Tree for Extremes 57
3.1 Introduction . 57

3.1.1 The Extremal River Problem 58
3.1.2 Main contributions and structure of the chapter 59

3.2 The algorithm . 61
3.2.1 The data generation model . 61
3.2.2 Intuition of QTree . 62
3.2.3 The QTree Algorithm . 62

3.2.3.1 Theoretical properties of QTree 64
3.2.4 Parameter tuning by bootstrap aggegation 66

3.3 Data description . 69
3.3.1 The Upper Danube network . 69
3.3.2 The Lower Colorado network in Texas 70

3.4 Results . 72
3.4.1 Results of auto-tuned QTree for all river networks 72
3.4.2 Comparison to other scores in the literature 74

3.5 A small simulation study . 80
3.6 Summary . 83
3.7 Supplementary Material . 84

3.7.1 Proof of the complexity of QTree 84
3.7.2 Proof of the Consistency Theorem 85

3.7.2.1 Proof of Theorem 3.2.4 for the lower quantile gap . . 87
3.7.2.1 Proof of Theorem 3.2.4 for the quantile-to-mean gap . 95

3.7.3 Supplementary Figures . 96

4 Learning Bayesian Networks from Extreme Data 101
4.1 Introduction . 101
4.2 Recursive Max-Linear Models . 103

4.2.1 Learning general max-linear Bayesian Networks 105
4.2.2 Setting up the optimization problem 106

4.2.2.1 On parameters and missing values 111
4.2.3 Tuning the parameters . 112

4.3 Data Application . 114
4.3.1 Application I: Simulation Study 114
4.3.2 Application II: Foreign Exchange Rates 116
4.3.3 Application III: Upper Danube Basin 118

4.4 Asymptotics . 120

Bibliography 124

x

List of Figures

2.1 Illustration of possible critical path realizations (I) 19
2.2 Illustration of possible critical path realizations (II) 20
2.3 Estimated DAG of dietary supplement data 30
2.4 Dietary supplement data: bivariate extremes 31

3.1 Illustration of the prepcrocessing method of QTree to amplify the con-
centration around the minimum . 63

3.2 Mean error of QTree for increasing sample size 66
3.3 Map of the Upper Danube Basin . 70
3.4 Typical discharge at various nodes along the Lower Colorado 71
3.5 Map of the Top, Middle and Bottom sectors of the Lower Colorado . . 72
3.6 Estimated Danube network . 74
3.7 Estimated Top and Middle sectors of the Lower Colorado network . . 75
3.8 Estimated Bottom and trimmed Bottom sectors of the Lower Colorado

network . 76
3.9 Estimated Danube network for α = 0.75 77
3.10 Illustration of the parameter selection for the Upper Danube 78
3.11 Performance comparison to other methods in the literature 78
3.14 Convergence of QTree in the simulation study 82
3.12 nSHD of QTree in the simulation study, setting (I) 83
3.13 TPR of QTree in the simulation study, setting (I) 84
3.15 Illustration for the proof of consistency of QTree (I) 89
3.16 Illustration for the proof of consistency of QTree (I) 92
3.17 Illustration for the proof of consistency of QTree (I) 92
3.18 Illustration of the parameter selection for the Top sector of the Lower

Colorado network . 97
3.19 Illustration of the parameter selection for the Middle sector of the

Lower Colorado network . 97
3.20 Illustration of the parameter selection for the Bottom sector of the

Lower Colorado network . 98
3.21 Illustration of the parameter selection for the trimmed Bottom sector

of the Lower Colorado network . 98
3.22 nSHD of QTree in the simulation study, setting (II) 99
3.23 TPR of QTree in the simulation study, setting (II) 99
3.24 nSHD of QTree in the simulation study, setting (III) 100
3.25 TPR of QTree in the simulation study, setting (III) 100

4.1 Estimated dependence structure exchange rates 117
4.2 Illustration of the parameter selection for MLDAG 119

xi

List of Tables

2.1 Empirical success probability of Algorithm 1 in the simulation study . 32
2.2 Empirical bias in the simulation study 33
2.3 Empirical standard deviation in the simulation study 34
2.4 Empirical RMSE in the simulation study 35

3.1 Number of nodes, observations and percentage of missing data for all
river networks . 73

3.2 Optimal parameters α∗ selected by QTree 73
3.3 Performance metrics for auto-tuned QTree 74
3.4 Performance metrics for other method in the literature (I) 79
3.5 Performance metrics for other method in the literature (II) 79
3.6 Performance metrics for QTree . 80
3.7 Performance metrics for other method in the literature (III) 80

4.1 Performance metrics for MLDAG in the simulation study (I) 115
4.2 Performance metrics for MLDAG in the simulation study (II) 115
4.3 Currency codes for various exchange rates 116
4.4 Performance metrics for MLDAG on the Upper Danube 119

xiii

Notation and Acronyms

∨
k∈S k Maximum over all elements in S.∧
k∈S k Minimum over all elements in S.

An(i) Set of ancestors of i, including i.
an(i) Set of ancestors of i, excluding i.

B ML coefficient matrix/Kleene-star matrix.

C Edge weight matrix.
C∗ ML coefficient matrix/Kleene-star matrix.

DAG Directed Acyclic Graph.
DB Minimum ML DAG.
de(i) Set of descendants of i, excluding i.

FDR False Discovery Rate.
FPR False Positive Rate.

ML Max-Linear.

nSHD Normalized Structural Hamming Distance.

pa(i) Set of parents of i.

supp(X) Support of X.

TPR True Positive Rate.

xv

Chapter 1

Introduction

In this thesis, we investigate recursive max-linear (ML) models under observational
noise. We first introduce the key concepts that we are going to use subsequently. A
recursive ML model is of the form

Xi =
∨

j∈pa(i)

cijXj ∨ Zi, i = 1, . . . , d (1.1)

where the dependence structure between random variables is represented by a DAG
D := (V,E) with node set V := {1, . . . , d} and edge set E = E(D) ⊆ V ×V , and each
variable Xi for i ∈ V has a representation in terms of ML functions of its parental
nodes pa(i) = {j ∈ V : (j, i) ∈ E} and an independent innovation Zi. The model
has been defined first in Gissibl and Klüppelberg [2018] and subsequently considered
in the literature as a tool for modeling extremal dependence(Buck and Klüppelberg
[2021], Gissibl and Klüppelberg [2018], Gissibl et al. [2018, 2021], Klüppelberg and
Krali [2021], Tran et al. [2021]).

Observe that recursive ML models are a special class of recursive structural equation
models (SEM), where Xi is given as a function fi of its parental nodes Xpa(i) and an
independent innovation Zi, i.e.

Xi = fi(Xpa(i), Zi), i = 1, . . . , d.

The edge weight matrix C = (cij)d×d is generally not identifiable, see Example 4.3.1
in Gissibl et al. [2021]. Therefore, for a path p = [j = k0 → k1 → . . .→ kn = i] from
j to i, we define the path weight

dij(p) :=

n−1∏
l=0

ckl+1kl . (1.2)

Denoting the set of all paths from j to i by Pij , we introduce the ML coefficient
matrix B := (bij)d×d as

bij :=
∨
p∈Pij

dij(p) for j ∈ an(i), bii = 1, and bij = 0 for j ∈ V \An(i). (1.3)

Here, an(i) denotes the set of ancestors of i, i.e. an(i) = {j ∈ V : Pij ̸= ∅} and
An(i) = an(i)∪{i}. Then, (1.1) can be written in terms of the ML coefficient matrix
as

Xi =
∨

j∈An(i)

bjiZj , i = 1, . . . , d. (1.4)

1

Chapter 1 Introduction

Unlike the edge weight matrix C, the ML coefficient matrix is identifiable (see The-
orem 3.1. in Gissibl et al. [2021]). In tropical algebra, the ML coefficient matrix
is also known as the Kleene star matrix and is usually denoted by C∗. Within this
dissertation, we will use the two terms interchangeably.

Given equation (1.2), we can see that B is solely determined by edge weights cji
that are part of a max-weighted path. For this reason, we call a path p from j to i
critical, if dij(p) = bij . Edge weights that are not part of any max-weighted path are
redundant as they do not contribute to the distribution. This motivates the minimum
ML DAG DB given as

DB = (V,EB) :=
(
V,
{
(j, i) ∈ E : bij >

∨
k∈de(j)∩pa(i)

bkjbik

})
,

where de(j) denotes the set of descendants, i.e. de(j) = {k ∈ V : Pkj ̸= ∅}. Since the
Kleene star matrix B solely determines the dependence structure of a recursive ML
model, estimation of B became a central interest in research. Mainly two approaches
have been considered. The first involves the estimation of scaling parameters. For a
regularly varying vector X that follows a recursive ML model and 1 ≤ j, i ≤ d define
the scaling parameters

σ2ij =

∫
Θd−1

+

ωiωjdHx(ω), ω = (ω1, . . . , ωd) ∈ Θd−1
+ .

Here, X is multivariate regularly varying, HX is the spectral measure, Θd−1
+ is the

positive unit sphere and (R,ω) is the polar representation ofX, i.e. ωi = Xi/R. Then,
by a connection between σ2ij and B, it is possible to estimate the scaling parameters
and then to recursively estimate B. For more information, see Klüppelberg and
Krali [2021]. However, the method bears significant drawbacks. First, the approach
requires knowledge of a topological order of the nodes, i.e. an order of nodes π such
that π(j) < π(i) for all (j, i) ∈ E which needs to be estimated separately. Moreover,
consistency can only be guaranteed for a recursive ML model not polluted with any
noise.

The second approach is based on pairwise minimum ratios. Observe that (1.4) is
equivalent to

Xi =
∨

j∈An(i)

bijXj , i = 1, . . . , d,

see e.g. (4.8). Therefore, Xi/Xj is lower bounded by bij > 0 if and only if j ∈ An(i).
Moreover, it is easy to verify, that for an i.i.d. sample {x1, . . . , xn}, the estimator

n∧
t=1

xti/x
t
j

converges almost surely to bij for n→ ∞. Indeed, Gissibl et al. [2021] show that a ver-
sion of this estimator is the generalized maximum likelihood estimator in the sense of
Kiefer and Wolfowitz [1956]. However, also this approach has serious setbacks. Sim-
ilarly to the first approach, the minimum ratio is sensitive towards misspecifications

2

and consistency can only be guaranteed for a recursive ML model not polluted with
any noise.

In recent years, recursive max-linear experienced increasing interest in the literature.
In Klüppelberg and Sönmez [2022], the authors propose an extension of recursive
max-linear models by introducing them on the oriented square lattice Z2. In a first
step, for two points j = (j1, j2) and i = (i1, i2) ∈ Z2, the authors assume an edge
j → i, whenever the Manhattan metric δ(j, i) = |i1− j1|+ |i2− j2| is equal to one and
i1 − j1 ≥ 0 and i2 − j2 ≥ 0. This introduces a special class of recursive ML models
that is supported on Bayesian networks with an infinite number of nodes.

In a next step, the authors introduce a model where the edge set is determined by
a realization of a sequence of i.i.d. Bernoulli random variables making the graph
itself random. Then, they study basic properties, particularly the probability of
independence for pairs of nodes.

In Hollering and Sullivant [2021], the authors consider a special class of discrete
max-linear models where edge weights cij are equal to one for all (j, i) ∈ E and the
innovations Z1, . . . , Zd are k-state discrete random variables. The authors investi-
gate structural properties and show that these models are isomorphic to conjunctive
Bayesian network models.

In Améndola et al. [2022], the authors investigate conditional independence relations
for recursive ML models. They propose ∗-separation for max-linear models, an alter-
native to the standard d-separation.

For a max-linear network over a DAG D = (V,E) and subsets, I, J,K ⊆ V , the
authors show that if I |= ∗J |K, then XI |= XJ |XK . Moreover, in Améndola et al.
[2021], the authors show that ∗-separation and d-separation induce the same Markov
equivalence classes on a DAG D.

Finally, in Asenova and Segers [2022], the authors show that max-linear models are
identifiable for a special class of Bayesian networks which they refer to as trees of
transitive tournaments.

This thesis builds upon the estimation of recursive ML models. In particular, we are
interested how to extend the existing literature to learn recursive max-linear noise
under observational noise. We will now briefly address the approach and scope of
each of the three following chapters.

Chapter 2: Recursive max-linear models with propagating
noise

In Chapter 2, we are going to investigate the influence of propagating one-sided noise.
We call a vector U ∈ Rd+ a recursive ML vector with propagating noise on a DAG
D = (V,E), if

Ui :=
(∨
j∈pa(i)

cijUj ∨ Zi
)
εi, i ∈ 1, . . . , d, (1.5)

3

Chapter 1 Introduction

with edge weight matrix C := (cij1pa(i)(j))d×d. Observe that we use U instead of
X to better distinguish the progagating noise model from the original model. The
noise variables ε1, . . . , εd are i.i.d. and atom-free random variables with εi ≥ 1 and
unbounded above for all i ∈ V , and independent of the innovations vector Z :=
(Z1, . . . , Zd).

This setting has interesting structural features. For the noise-free model, bij is defined
as the maximum path weight from j to i, see (1.3). However, for propagating noise,
the maximum path weight becomes random and different paths can become critical,
depending on the realization. This gives the motivation to define possible critical path
realizations.

However, interestingly, the minimum DAG DB, i.e. the minimum DAG that preserves
the distribution remains unchanged. Moreover, even though there might be many
possible critical paths, up to a constant the left limit of support of a ratio Ui/Uj is
entirely determined by the path dij(p) where dij(p) = bij . For this reason, given a
regular variation condition, we prove that the estimated Kleene star matrix B̂ derived
from minimum ratios decomposes and, hence, converges to a matrix of independent
Weibull entries after proper centering and rescaling, see Theorem 2.5.2.

As for the estimation, we consider three settings.

(1) All ancestral relations are known; i.e., we know the set of edges E, hence the
DAG. This might be the case when modeling networks that contain natural
information about edges. The problem then reduces to finding appropriate
estimates b̂ij for j ∈ an(i).

(2) The ancestral relations are unknown; however, we know a topological order of
the nodes. Then, in contrast to setting 1, we need to decide if a path from j to
i with j < i exists.

(3) Neither the underlying DAG nor a topological order of the nodes is known.

For each setting, we provide algorithms to ensure a consistent estimator. We show
its performance in a simulation study as well as a real-world data set on dietary
supplements.

Chapter 3: Estimating a Directed Tree for Extremes

While Chapter 2 gives interesting insights into the properties of recursive ML models,
the minimum ratio estimator is very sensitive to misspecifications and, therefore, often
not applicable to causal inference. In Chapter 3, we introduce QTree , a simple and
efficient algorithm to learn a graph over the class of root-directed spanning trees. A
root-directed spanning tree T = (V,E) is a directed graph such that each node i ∈ V
except the root r has exactly one child, the root r has none, and there is a path from
every node i ̸= r to r.

For the theoretical properties of the algorithm, particularly the proof of consistency,
we assume that the data follows a recursive ML model. The idea is to introduce a
measure of concentration between ratios of random variables. This idea, however,
applies for a wide variety of SEMs such that the algorithm is inspired but generally

4

not limited to recursive ML models. Moreover, for numerical stability and unlike in
Chapter 2, we work with the logarithm of the extreme data. Therefore, the equivalent
log model is given as

Xi =
∨

j∈pa(i)

(cij +Xj) ∨ Zi, cij , Zi ∈ R, i ∈ V. (1.6)

Our aim is to learn T from an i.i.d. sample X = {x1+ε1, . . . , xn+εn} ∈ Rd, where the
xi are generated via (1.6), and the εt are independent noise variables in Rd. Similarly
to the minimum-difference estimator, the approach relies on pairwise observations.
In the first step, we define the pairwise sample Xij as

Xij(α) := {xi − xj : x ∈ X , xj > QXj (α)}, (1.7)

where QXj (α) is the α-th quantile of the empirical distribution of X in the j-th
coordinate. An illustration of the resulting distribution can be found in Figure 3.1.
By restricting to such observations where Xj is large, we filter for strong signals such
that the noise is small relative to the signal.

Given pairwise samples Xij(α), we propose the following score

wij(r) :=
(
µ(Xij(α))−QXij(α)(r)

)2
,

where r ∈ (0, 1) is a fixed, small empirical quantile and µ(Xij(α)) the empirical mean.
Here, the mean works as a normalization, and the strict minimum is replaced by a
small quantile level α. For this reason, the scores can be seen as a generalization of
the minimum-difference estimator.

We apply the algorithm to four data sets of river discharge data, the Upper Danube
Basin and three parts of the Lower Colorado River in Texas. A separation of the
Lower Colorado River is necessary due to dams dividing the network. Compared
to state-of-the-art methods, we get highly significant results, uniformly outperform-
ing all algorithms. We also suggest a stabilizing subsampling procedure for the two
parameters (α, r). Assuming that the noise follows a light tail, we prove asymp-
totic consistency of the estimated root-directed spanning tree T under a max-linear
network.

Finally, we also conduct a simulation study to show that QTree is robust with re-
spect to different dependence structures (given by edge weights) and different node
distributions entailed from different innovation distributions.

Chapter 4: Learning Bayesian Networks from Extreme Data

Inspired by the success in Chapter 3, we want to extend the theory of QTree . Par-
ticularly, the assumption of an underlying root-directed spanning tree is strict and
often does not hold.

In Chapter 4, we introduce a machine learning approach to learn recursive ML models
without any assumption on the class of Bayesian network. This work improves upon

5

Chapter 1 Introduction

the previous chapter by introducing a novel estimator based on the optimization
framework of Zheng et al. [2018]. The authors achieve a novel characterization of
acyclicity in terms of a smooth function

tr(exp(C ◦ C)),

where ◦ is the Hadamard product, tr(A) denotes the trace and exp(A) is the matrix
exponential of A. A matrix C ∈ Rd×d is supported on a Bayesian network if and only
if the upper expression equals d.

Using this result, we introduce an optimization framework to estimate the Kleene star
matrix defined in (1.3) that best fits the data. Moreover, we show that the recursive
ML model can be seen as a special case of a max-out network. We can therefore write
recursive max-linear models in terms of a neural network and use gradient descent to
find the estimator that best fits the data.

We call this algorithm MLDAG and we also introduce a subsampling procedure to
automatically choose the set of parameters. We apply the estimator to the data
set of river discharges of the Upper Danube Basin which we already considered in
Chapter 3, leading to competitive results. We also apply the algorithm to data on
foreign exchange rates in terms of the British Pound sterling leading to a sensible
estimation of the causal structure.

Finally, for an i.i.d. sample X = {x1 + ε1, . . . , xn + εn} in Rd, where the xi are
generated via (1.6), and the εt are independent noise variables in Rd, under some
mild assumption, we prove the asymptotic consistency of the estimator.

Each chapter of the thesis is based on a paper or a manuscript that is very close to
being submitted:

Chapter 2 J. Buck and C. Klüppelberg. Recursive max-linear models with propa-
gating noise. Electronic Journal of Statistics, 15(2):4770 – 4822, 2021.
doi: 10.1214/21-EJS1903.

Chapter 3 N. M. Tran, J. Buck, and C. Klüppelberg. Estimating a directed tree
for extremes, arXiv preprint: 2102.06197, Revision under review at
The Journal of the Royal Statistical Society, Series B, 2021

Chapter 4 J. Buck and N. M. Tran. Learning Bayesian Networks from Extreme
Data. In preparation, 2023.

Each chapter is self-contained, i.e. it contains an introduction which introduces the
necessary notation, methodology and literature to understand the respective chapter.
Different notations, abbreviations, and model assumptions on a recursive ML model
seem reasonable in different settings; therefore, they might differ from chapter to
chapter.

6

Chapter 2

Recursive max-linear models with
propagating noise

2.1 Introduction

Graphical modeling has shown to be a powerful tool for understanding causal de-
pendencies in a multivariate random vector. However, most models are linear and
limited to discrete or Gaussian distributions (see e.g. Koller and Friedman [2009]
and Lauritzen [1996]). Such models lead to severe underestimation of large risks and,
therefore, are not suitable in the context of extreme risk assessment. First examples
combining extreme value methods with graphical models include flooding in river
networks (Engelke and Hitz [2020]), financial risk (Einmahl et al. [2017], Klüppelberg
and Krali [2021]), and nutrients (Klüppelberg and Krali [2021]).

We consider the class of recursive max-linear (ML) models, which has been defined
in Gissibl and Klüppelberg [2018]. A recursive ML model is defined by a structural
equation model (SEM) of the form

Xi =
∨

j∈pa(i)

cijXj ∨ Zi, i = 1, . . . , d (2.1)

where the dependence structure between random variables is represented by a DAG
D := (V,E) with node set V := {1, . . . , d} and edge set E = E(D) ⊆ V ×V , and each
variable Xi for i ∈ V has a representation in terms of ML functions of its parental
nodes pa(i) = {j ∈ V : (j, i) ∈ E} and an independent innovation Zi.

Both, SEMs (e.g. Bollen [1989], Pearl [2009]) and directed graphical models (e.g.
Koller and Friedman [2009], Lauritzen [1996], Spirtes et al. [2000]) are well-established
models and widely used to understand causality.

ML models similar to (2.1) have been proposed and studied in a time series context
(e.g. Davis and Resnick [1989]), in terms of moving maxima processes (e.g. Hall et al.
[2002]), or as tropical models in algebra (e.g. Joswig [2020], Maclagan and Sturmfels
[2015]) with applications to various optimization problems (e.g. Baccelli et al. [1992],
Butkovič [2010], Tran and Yu [2019]).

As shown in Klüppelberg and Lauritzen [2020], recursive ML models respect the basic
Markov properties associated with DAGs (e.g. Lauritzen [2001], Lauritzen et al. [1990]).

7

Chapter 2 Recursive max-linear models with propagating noise

Moreover, the equation system (2.1) has the solution

Xi =
∨

j∈pa(i)

bijZj , i = 1, . . . , d, (2.2)

with ML coefficient matrix (also known as Kleene star matrix) B := (bij)d×d, see
Butkovič [2010], Corollary 1.6.16. Unlike the edge weight matrix C = (cij)d×d, B
is identifiable and completely determines the distribution of X := (X1, . . . , Xd) (see
Gissibl et al. [2021], Theorem 1). Also, B is idempotent with respect to the tropical
matrix multiplication defined in (2.9) below, and defines a graphical model on a
DAG with node set V and an edge j → i whenever there is a path from j to i in D.
Furthermore, Gissibl et al. [2021] proposes a minimum ratio estimator for B, which
itself is idempotent, and is a generalized maximum likelihood estimator in the sense
of Kiefer and Wolfowitz [1956].

The model (2.1) states that an extreme node observation Xi in the DAG is either the
result of a large external innovation Zi, or the weighted maximum of observations from
the parent nodes of i in D. As we see from the solution (2.2), all past innovations drive
this observation. Our aim is to generalize this rather restricted recursive structure as
to allow for certain observation errors, independent of this model.

More precisely, we extend the original model (2.1) by allowing for multiplicative
observation errors and define

Ui =
(∨
j∈pa(i)

cijUj ∨ Zi
)
εi, i = 1, . . . , d, (2.3)

with εi ≥ 1 and i.i.d. for i = 1, . . . , d. By taking advantage of tropical algebra, we
present in Theorem 2.3.2 a solution of (2.3) which represents each node variable Ui
in terms of a ML function of its ancestral nodes and an independent innovation Zi
given by

Ui =
∨

j∈an(i)∪{i}

b̄ijZj , i = 1, . . . , d,

where an(i) denotes the ancestors of i and b̄ij are random variables involving the edge
weights and the noise variables.

It comes as no surprise that the true DAG and edge weights for a recursive ML
model with propagating noise inherit the non-identifiability property from the non-
noisy model. However, as we will prove in Section 2.4, the ML coefficient matrix
B = (bij)d×d remains identifiable in spite of the observational noise and even if we
do not know the underlying DAG.

To link up our new model (2.3) with existing literature, observe that a log-transformation
of (2.3) yields

Ũi =
∨

j∈pa(i)

(c̃ij + Ũj) ∨ Z̃i + ε̃i, i = 1, . . . , d (2.4)

with ε̃i ≥ 0. However, due to the maximum operator, the class of max-linear models
is highly non-smooth such that most standard methods do not apply. For every
j ∈ pa(i), the difference Ũi − Ũj is lower-bounded by c̃ij and

P(Ũi − Ũj ≤ c̃ij + x | Ũi = c̃ij + Ũj + ε̃i) = P(ε̃i ≤ x).

8

2.1 Introduction

Example 1.2.2 of Butkovič [2010] might then serve as motivating example for model
(2.4). Assume that i is a priority flight and there are several feeder flights to i. Assume
that the departure of a feeder flight j is delayed by Ũj , and there are passengers, who
have to catch flight i. Moreover, let c̃ij be the departure time of flight i minus
arrival time of flight j minus transit time according to schedule. There may be a
further delay Z̃i of flight i caused by non-connecting passengers. Assuming that
flight i also waits for such non-connecting passengers, the delay of flight i is given by
Ũi =

∨
j∈pa(i)(c̃ij + Ũj)∨ Z̃i. Some other delays are independent of possible passenger

delays like bad weather conditions, delayed start clearance etc. Then we find exactly
model (2.4), the max-linear model with positive noise.

The estimation of (linear) functions with one-sided errors has been considered in the
literature before. For instance, in Hall and Van Keilegom [2009] and Jirak et al.
[2014] observations are given by Yj = f(Xj) + εj for j = 1, . . . , n with observation
errors εj > 0, with density given conditionally or unconditionally on Xj = x, and f
describes some frontier or boundary curve, which has to be estimated. To present an
archetypical example, consider the linear regression problem stated in Smith [1985]
and Smith [1994] as Yi = β + εi for i = 1, . . . , n and observation errors, which have
density g(x) ∼ αcxα−1 as x ↓ 0 for α, c > 0. In these papers, the focus is on the
non-regular case, when α < 2. Then β can be estimated by the sample minimum Y1,n
which has a Weibull limit law:

lim
n→∞

P
(
(nc)−1/α(Y1,n − β0) ≤ x

)
= 1− exp(−x−α), 0 < x <∞. (2.5)

The work in Smith [1985] has been used in Davis and McCormick [1989] to estimate
the coefficient ϕ of a first order autoregressive time series with positive innovations.
They propose the minimum ratio estimator ϕ̂ =

∧n
j=1Xj/Xj−1 and show in their

Corollary 2.4 that it also has a Weibull limit law similar to (2.5).

In our model (2.3) we find two interpretations for the noise variables. Firstly, in the
log-transformed version (2.4), we consider a ML model as baseline model, which is
observed with some additive noise. A second representation is given in Corollary 2.3.3
below, where the edge and path weights become noisy by the noise variables. This
gives rise to the interpretation that we observe the model parameters with noise
similarly as in the regression examples above. As a consequence, a path from j
to i realizing the ML coefficient bij is no longer deterministic but depends on the
individual realizations of the noise variables. However, in Theorem 2.3.12 we show
that at the left limit of support the distribution of the ratio of two model components
is determined by all noise variables along the path between the two nodes. Assuming
noise variables with regularly varying distribution in their left limit of support, we
propose a minimum ratio estimator and show in Theorem 2.5.2 that the estimated ML
coefficient matrix converges to a matrix of independent Weibull entries after proper
centering and rescaling.

The chapter is organized as follows. In Section 2.2, we summarize the properties of
recursive ML models as defined in (2.1) and state the most important results relevant
for this chapter. In Section 2.3 we consider the extension of the recursive ML model
given in (2.3), which we coin the max-linear model with propagating noise and present
its solution and the main properties of this new model. In Section 2.4 we address
the identifiability of the ML model with propagating noise. Similarly as in (2.5) we

9

Chapter 2 Recursive max-linear models with propagating noise

suggest minimum ratio estimators for the model parameters B. In Section 2.5 we
assume regular variation of the noise variables. Under this assumption, we show that
the minimum ratios are asymptotically independent and Weibull distributed. Finally,
in Section 2.6, we provide a data example and apply the theory that we have derived
in the previous sections. All proofs are postponed to a section of Supplementary
Material.

Throughout we use the following notation. R+ = (0,∞) and R+ = [0,∞), x ∧ y =
min{x, y} and x ∨ y = max{x, y} with

∧
i∈∅ xi = ∞ and

∨
i∈∅ xi = 0 for xi ∈ R+.

Bold letters denote vectors and matrices, e.g. Id denotes the d × d identity matrix.
Moreover, all vectors are column vectors unless stated otherwise. For two functions
f, g we write f(x) ∼ g(x) as x ↓ c if limx↓c f(x)/g(x) = 1 and 1 denotes the indicator
function. For a random variable Y with distribution function FY , the symbol F←Y
denotes its quantile function.

2.2 Preliminaries — Recursive max-linear models

2.2.1 Graph terminology

We use the same graph notation as in Gissibl and Klüppelberg [2018]. A directed
graph is a pair (V,E) of a node set V = {1, . . . , d} and an edge set E = {j → i :
i, j ∈ V, i ̸= j}. A node j is called a parent of i if j → i ∈ E and write (j, i) ∈ E. A
(directed) path from j to i is a sequence of distinct nodes [j = k0, k1, . . . , kn = i] such
that kr−1 → kr for each r ∈ {1, . . . , n}, and a directed cycle is a path where j = i. A
node j is called an ancestor of i, if there exists a path from j to i, then i is called a
descendant of j. The node sets pa(i), an(i) and de(i) denote the parents, ancestors,
and the descendants of node i, respectively, and we abbreviate An(i) := an(i) ∪ {i}.

Finally, for a path p = [k0, k1, . . . , kn] we define the node set on the path (excluding
the initial node) by Sp := {k1, . . . , kn} and its path length by |Sp|.

Throughout this chapter D = (V,E) is a directed acyclic graph (DAG), and we recall
that a complete DAG is a complete graph with directed edges.

A matrix C ∈ Rd×d+ defines a weighted directed graph, where j → i ∈ D if and only if
its edge weight cij is positive. The path weight of a path in D is then the product of
its edge weights.

For a DAG D on V with edge weight matrix C, its reachability DAG is defined as
a DAG on V having edge j → i if and only if D has a path from j → i; moreover,
B represents the edge weight matrix of the reachability DAG. We call B the ML
coefficient matrix and remark that it is a weighted reachability matrix for D.

2.2.2 Recursive max-linear models

We first formally introduce the class of recursive ML models and state their most
important results for this chapter. Let D = (V,E) be a DAG. Then a random vector
X := (X1, . . . , Xd) is a recursive max-linear vector or follows a max-linear Bayesian

10

2.2 Preliminaries — Recursive max-linear models

network on D if

Xi :=
∨

j∈pa(i)

cijXj ∨ Zi, i ∈ 1, . . . , d, (2.6)

with positive edge weights cij for i ∈ V and j ∈ pa(i), and independent positive
random variables Z1, . . . , Zd with support R+ and atom-free distributions. We shall
refer to Z := (Z1, . . . , Zd) as the vector of innovations.

For a path p = [j = k0 → k1 → . . .→ kn = i] from j to i we define the path weight

dij(p) :=
n−1∏
l=0

ckl+1kl . (2.7)

Denoting the set of all paths from j to i by Pij , we define the ML coefficient matrix
B = (bij)d×d of X with entries

bij :=
∨
p∈Pij

dij(p) for j ∈ an(i), bii = 1, and bij = 0 for j ∈ V \An(i).

The components of X can also be expressed as ML functions of their ancestral inno-
vations and an independent one; the corresponding ML coefficients are the entries of
B:

Xi =
∨

j∈An(i)

bijZj , i ∈ 1, . . . , d, (2.8)

which can be shown by a path analysis as in Theorem 2.2 in Gissibl and Klüppelberg
[2018] or by tropical algebra as in (2.11) below, and as we explain now.

For two non-negative matrices F and G, where the number of columns in F is equal
to the number of rows in G, we define the matrix product ⊙ : Rm×n+ ×Rn×p+ → Rm×p+

by

(F = (fij)m×n,G = (gij)n×p) 7→ F ⊙G :=
(n∨
k=1

fikgkj

)
m×p

. (2.9)

The triple (R+,∨, ·), is an idempotent semiring with 0 as 0-element and 1 as 1-element
and the operation ⊙ is therefore a matrix product over this semiring; see for example
Butkovič [2010]. Denoting by M all d× d matrices with non-negative entries and by
∨ the componentwise maximum between two matrices, (M,∨,⊙) is also a semiring
with the null matrix as 0-element and the d× d identity matrix Id as 1-element.

The matrix product ⊙ allows us to represent the ML coefficient matrix B of X
in terms of the edge weight matrix C := (cij1pa(i)(j))d×d of D, since (2.6) can be
rewritten as

X = (C ⊙X) ∨Z (2.10)

with unique solution (equivalent to (2.8)) given by

B = (Id ∨C)⊙(d−1) =

d−1∨
k=0

C⊙k, X = B ⊙Z, (2.11)

11

Chapter 2 Recursive max-linear models with propagating noise

where B is the Kleene star matrix and A⊙0 = Id and A⊙k = A⊙(k−1) ⊙ A for

A ∈ Rd×d+ and k ∈ N; see Proposition 1.6.15 of Butkovič [2010] as well as Theorem 2.4
and Corollary 2.5 of Gissibl and Klüppelberg [2018]. For more information on the
max-times (tropical) algebra in ML models, see Section 2.2 in Améndola et al. [2022].

We have seen that a recursive ML vector X has two representations, one in terms of
parental nodesXj and edge weights cij and another in terms of innovations Zj and ML
coefficients bij . However, while the ML coefficient matrix B of X is identifiable from
the distribution of X, the edge weight matrix C is generally not, see Theorem 5.4(b)
in Gissibl and Klüppelberg [2018]. Theorem 5.3 in that paper and Theorem 2 in
Gissibl et al. [2021] show that an edge with edge weight cij is identifiable from B if
and only if it is the unique path from j to i with dij(p) = bij .

For a recursive ML vector X on a DAG D = (V,E) and ML coefficient matrix B this
result leads to the following definition.

Definition 2.2.1. Let X ∈ Rd+ be a recursive ML vector on the DAG D = (V,E)
with ML coefficient matrix B. We define the minimum ML DAG of X as

DB = (V,EB) :=
(
V,
{
(j, i) ∈ E : bij >

∨
k∈de(j)∩pa(i)

bkjbik
bkk

})
.

Moreover, it has been shown that the support of a ratio of components of a recursive
ML vector X satisfies

supp(Xi/Xj) =

[bij ,∞) for j ∈ an(i),

[0, 1/bji] for i ∈ an(j),

{1} for i = j,

R+ otherwise,

(2.12)

with P(Xi/Xj = bij) > 0 for all j ∈ an(i); see Lemma 1 of Gissibl et al. [2021]. Hence,

for a given i.i.d. sample X1, . . . ,Xn from X define a minimum ratio estimator B̂ of
B by b̂ij :=

∧n
k=1(X

k
i /X

k
j) for i, j ∈ V . Moreover, when the DAG D is known, we

define B0 by

B0 = (B0(i, j))d×d :=
(n∧
k=1

Xk
i

Xk
j

1pa(i)(j)
)
d×d

and set B̂ = (Id ∨B0)
⊙(d−1).

Theorem 4 of Gissibl et al. [2021] ensures that B̂ is a generalized maximum likelihood
estimate (GMLE) in the sense of Kiefer and Wolfowitz [1956].

2.2.3 Minimum domain of attraction and regular variation

Introducing propagating noise into the recursive ML model will smooth out the
atoms in (2.12). The minimum ratio estimators will still estimate the left endpoints
B = (bij) and we will be able to provide distributional limit results. These will be
based on minimum domain of attraction results and regular variation. Extreme value
theory is more focused nowadays on running maximima (e.g. Embrechts et al. [1997]),
but results for running minima are obtained by noting that

∧n
i=1 Yi = −

∨n
i=1(−Yi).

12

2.2 Preliminaries — Recursive max-linear models

From this we obtain that the family of Weibull distributions are limit distributions
of running minima of i.i.d. random variables, see equation (2.14).

Definition 2.2.2. A positive random variable Ψα is Weibull distributed with left
endpoint xL > −∞, shape α > 0 and scale s > 0 and we write Y ∼ Weibull(α, xL, s)
if the distribution function of Y is given by

Ψα,xL,s(x) = 1− exp

(
−
(
x− xL
s

)α)
, x ≥ xL.

Random variables, whose running minima have such a Weibull limit satisfy certain
conditions. Here the following definition is essential and we refer to Bingham et al.
[1987] for details.

Definition 2.2.3. Let Y be a random variable with distribution function F and left
endpoint xL. Then we call Y or F regularly varying at xL with exponent α > 0, if

lim
t↓0

F (xL + tx)

F (xL + t)
= xα, x > 0. (2.13)

We abbreviate this by Y ∈ RV xL
α or F ∈ RV xL

α , respectively. We also note that
Y ∈ RV xL

α is equivalent to Y − xL ∈ RV 0
α .

Then, adapting Theorem 3.3.12 of Embrechts et al. [1997] to the minimum of i.i.d.
random variables X1, . . . , Xd with distribution function F , we obtain

∃(an > 0) s.t.
1

an

(n∧
i=1

Xi − xL

)
d→ Ψα, n→ ∞

⇐⇒ xL > −∞, F (xL + ·) ∈ RV 0
α . (2.14)

Let ε be a random variable with left endpoint xL = 1, and ε̃ := ln(ε). Then for x > 0,

lim
t↓0

P (ln(ε) ≤ tx)

P (ln(ε) ≤ t)
= lim

t↓0

P (ε ≤ etx)

P (ε ≤ et)
= lim

t↓0

P (ε− 1 ≤ tx(1 + o(1))

P (ε− 1 ≤ t(1 + o(1))

= lim
t↓0

P (ε− 1 ≤ tx)

P (ε− 1 ≤ t)
, (2.15)

such that ε ∈ RV 1
α if and only if ε̃ ∈ RV 0

α . Two relevant families of distribution
functions are given in the next example.

Example 2.2.4. (a) [Weibull distribution] Let ε̃ have distribution function as in
Definition 2.2.2 with xL = 0. Then by a l’Hospital argument,

lim
t↓0

Ψα,s(tx)

Ψα,s(t)
= xα,

which implies that ε̃ ∈ RV 0
α and ε ∈ RV 1

α .

(b) [Gamma distribution] Let ε̃ have density g(x) = λαe−λxxα−1/Γ(α) for x > 0
and parameters λ > 0, α > 0. Then by a l’Hospital argument,

lim
t↓0

G(tx)

G(t)
= lim

t↓0

e−λtxtα−1xα

e−λttα−1
= xα, x > 0,

which implies that ε̃ ∈ RV 0
α and ε ∈ RV 1

α . □

13

Chapter 2 Recursive max-linear models with propagating noise

We provide here also some preliminary results.

Proposition 2.2.5 (Karamata’s Tauberian Theorem 1.7.1, Bingham et al. [1987]).
Let U be a non-decreasing function on R with U(x) = 0 for all x < 0, and Laplace-
Stieltjes transform Û(s) =

∫
[0,∞) e

−sx

dU(x) <∞ for all large s. For l ∈ RV∞0 and c ≥ 0, ρ ≥ 0, the following are equivalent

U(x) ∼ cxρl(1/x)/Γ(1 + p), x ↓ 0

Û(s) ∼ cs−ρl(s), s→ ∞. (2.16)

From this, we obtain the following corollary.

Corollary 2.2.6. 1. Let X ∈ RV 0
α1
, Y ∈ RV 0

α2
be independent, then X + Y ∈

RV 0
α1+α2

,

2. Let X,Y ≥ 1 be independent and such that X̃ = ln(X) ∈ RV 0
α1
, Ỹ = ln(Y) ∈

RV 0
α2
. Then (XY − 1) ∈ RV 0

α1+α2
.

Proof of Corollary 2.2.6 (a) We use Proposition 2.2.5 a) for U being FX or
FY , the distribution function of X or Y , respectively. Since the Laplace-Stieltjes
transforms F̂X(s) =

∫
[0,∞) e

−sxdFX(x) ≤ 1 and F̂Y (s) =
∫
[0,∞) e

−sxdFY (x) ≤ 1 for all

s ≥ 0, by Proposition 2.2.5, they are both regularly varying at∞ in the sense of (2.16);
i.e., F̂X ∈ RV∞α1

, F̂Y ∈ RV∞α2
. By independence, the convolution theorem for Laplace-

Stieltjes transforms gives F̂X+Y (s) = F̂X(s)F̂Y (s) and, therefore, F̂X+Y ∈ RV∞α1+α2
.

Applying again Proposition 2.2.5 we find that X1 +X2 ∈ RV 0
α1+α2

.
(b) This follows from a Taylor expansion. □

2.3 Recursive ML model with propagating noise

In this section we define the recursive ML model with propagating noise, present
structural results, investigate which properties of the non-noisy model prevail, and
derive distributional results for component ratios of the model in preparation for the
structure learning results to follow.

2.3.1 Definitions and representations

Definition 2.3.1. A vector U ∈ Rd+ is a recursive ML vector with propagating noise
on a DAG D = (V,E), if

Ui :=
(∨
j∈pa(i)

cijUj ∨ Zi
)
εi, i ∈ 1, . . . , d, (2.17)

with edge weight matrixC := (cij1pa(i)(j))d×d. The noise variables ε1, . . . , εd are i.i.d.
and atom-free random variables with εi ≥ 1 and unbounded above for all i ∈ V , and
independent of the innovations vector Z := (Z1, . . . , Zd). For simplicity, we denote
by ε a generic noise variable and by Z a generic innovation.

Although the noise variables act on the observations, formally we can view them as
random scalings of edge weights. More precisely, for a path p = [j = k0 → k1 → . . .→

14

2.3 Recursive ML model with propagating noise

kn = i] from j to i we define the random path weight d̄ij similarly to the definition of
dij in (2.7) as

d̄ij(p) := εj

n−1∏
l=0

ckl+1klεkl+1
= dij(p)εj

n−1∏
l=0

εkl+1
. (2.18)

If we define the random edge weight matrix

C̄ = (c̄ij)d×d := (cijεi1pa(i)(j))d×d (2.19)

we can rewrite (2.18) as

d̄ij(p) := εj

n−1∏
l=0

c̄kl+1kl

for every path p = [j = k0 → k1 → . . . → kn = i] from j to i. Hence, we can view
the noise variables as random scalings for the edge weights cij . Since ε ≥ 1, the edge
weights cij of the non-noisy model are lower bounds for the random edge-weights c̄ij
of the propagating noise model.

Again denoting the set of all paths from j to i by Pij , we define the random ML
coefficient matrix B̄ = (b̄ij)d×d of U with entries

b̄ij :=
∨
p∈Pij

d̄ij(p) for j ∈ an(i), b̄ii = εi, and b̄ij = 0 for j ∈ V \An(i).

(2.20)

We next show that there exists a solution of (2.17) in terms of the ancestral innova-
tions Z and B̄. All proofs of this section are postponed to Section 2.7.1.

Theorem 2.3.2. Let U ∈ Rd+ be a recursive ML vector with propagating noise on a
DAG D as in (2.17). Define (Ed)d×d as the diagonal matrix given by

Ed(i, i) = εi for i ∈ V and Ed(i, j) = 0 for i, j ∈ V and i ̸= j.

We rewrite (2.17) in matrix form by means of the matrix multiplication (2.9) as

U = Ed ⊙
(
C ⊙U ∨Z

)
.

Then U has a unique solution in terms of the tropical matrix multiplication with
random matrix B̄ given by

B̄ = (Id ∨ C̄)⊙(d−1) ⊙Ed, U = B̄ ⊙Z, (2.21)

with C̄ as defined in (2.19).

Since b̄ij = 0 whenever j ̸∈ An(i), the representation (2.21) can be rewritten as
follows.

Corollary 2.3.3. Let U be as in Theorem 2.3.2 and b̄ij be the random ML coefficients
defined in (2.20). Then (2.21) is equivalent to

Ui =
∨

j∈An(i)

b̄ijZj , i ∈ 1, . . . , d. (2.22)

15

Chapter 2 Recursive max-linear models with propagating noise

Note that the definition in (2.17) is equivalent to

Ui = Ũi εi with Ũi :=
∨

j∈pa(i)

cijUj ∨ Zi, i ∈ 1, . . . , d. (2.23)

Since B is idempotent, the solution of X as in (2.11) can also be written as X = B⊙
X. This is no longer the case for the solution U in (2.21). However, from the above
result we can compute the following representation, which is used in Definition 2.3.5(e)
below.

Corollary 2.3.4. Let U and b̄ij be as in Corollary 2.3.3. Then (2.22) is equivalent
to

Ui =
∨

j∈An(i)

b̄ijŨj , i = 1, . . . , d, (2.24)

with Ũj as in (2.23).

2.3.2 Paths classification and graph reduction in the noisy model

We define critical and generic paths which play an essential role for the distributional
properties of the model. Similarly as shown for the non-noisy model in Section 5
of Gissibl and Klüppelberg [2018], the vector U may also be a recursive ML model
on a subgraph of D. This subgraph depends on the ML coefficients, which are now
random. Hence, we start by comparing the ML coefficient matrices B and B̄ of the
non-noisy and noisy models.

Definition 2.3.5. Let D be a DAG with edge weight matrix C and let B be the
corresponding ML coefficient matrix (i.e., the Kleene star of C). Let p be a path
from j to i with node set Sp.

(a) p is called a (non-random) critical path if dij(p) = bij .

(b) p is called a generic path if it is the only path satisfying dij(p) = bij .

(c) We call C generic, if two nodes are connected by at most one critical path.

(d) For a fixed ω ∈ Ω, we call p a random critical path if d̄ij(p) = b̄ij .

(e) p is called a possible critical path realization, if Ui = Ujdij(p)
∏
k∈Sp

εk =

Ũj d̄ij(p) happens with positive probability.

Remark 2.3.6. We have defined a non-random critical path and a random critical
path. We want to emphasize, however, that while the first path property is simply
inherited from C via B, the second one is inherited from C and the noise variables.
We also note that by continuity of the innovations and the noise variables, any random
critical path between a pair of nodes must be a.s. unique, although it may vary with
the realizations of the noise variables.

We explain the model and the notions of Definition 2.3.5 in an example.

Example 2.3.7. Consider the DAG:

16

2.3 Recursive ML model with propagating noise

1 2 3

Then, C is generic if and only if c31 ̸= c21c32. Moreover, we have

U3 = (c̄31 ∨ c̄21c̄32)ε1Z1 ∨ c̄32ε2Z2 ∨ ε3Z3,

with c̄ij = cijεi as defined in (2.19).

Now assume that c31 > c21c32. In that case, [1 → 3] is the critical path, while the path
[1 → 2 → 3] is not critical. However, P(c̄31 < c̄21c̄32) = P(ε2 > c31/(c21c32)) > 0.
If P(c̄31 > c̄21c̄32), then the edge 1 → 3 is random critical, otherwise 1 → 2 → 3 is
random critical. Since both paths can be random critical with positive probability, all
paths in D can be possible critical path realizations.

In contrast, if c31 < c21c32 we have P(c̄31 > c̄21c̄32) = P(ε2 < c31/(c21c32)) = 0. In
this case, the path [1 → 3] can be random critical only on a null set and therefore
[1 → 3] is not a possible critical path realization.

This illustrates that a path p from j to i with path weight dij(p) < bij may as well
contribute to the distribution of Ui. However, an edge p = [j → i] with dij(p) < bij is
still not identifiable and does not change the distribution of U .

Recall from (2.11) and (2.21) that

X = B ⊙Z and U = B̄ ⊙Z.

We present some useful properties of B and B̄ providing a link between the noisy
and non-noisy model as defined in (2.6) and (2.17), respectively. Such properties
have been shown for B in Gissibl [2018], Gissibl and Klüppelberg [2018], Gissibl
et al. [2021], and we investigate here which of them remain valid for B̄.

Lemma 2.3.8. Let U ∈ Rd+ be a recursive ML vector with propagating noise on a
DAG D as defined in (2.17) with B and B̄ defined in (2.11) and (2.21), respectively.
Then the following assertions hold:

1. b̄ij =
∨
k∈V

b̄kj b̄ik

b̄kk
≥

∨
k∈de(j)∩an(i)

b̄kj b̄ik

b̄kk
, where the inequality is strict, whenever

the random critical path from j to i is the edge j → i, or j = i.

2. There exists some path p := [j → . . . → k → . . . → i] from j to i that passes
through k such that

d̄ij(p) = b̄ij if and only if b̄ij =
b̄kj b̄ik

b̄kk
.

3.
Ui
Uj

≥ b̄ij

b̄jj
≥ bij with bij = 0 for j /∈ An(i)

17

Chapter 2 Recursive max-linear models with propagating noise

4. supp(Ui/Uj) =

[bij ,∞) for j ∈ an(i),

[0, 1/bji] for i ∈ an(j),

{1} for i = j,

R+ otherwise.

Moreover, for j ̸= i, neither the distribution of Ui/Uj nor the distribution of
Uj/Ui have any atoms.

5. If bij =
∨

k∈de(j)∩an(i)

bkjbik
bkk

, then b̄ij =
∨

k∈de(j)∩an(i)

b̄kj b̄ik
b̄kk

.

6. If bij >
∨

k∈de(j)∩an(i)

bkjbik
bkk

and de(j) ∩ an(i) ̸= ∅, then

P
(
b̄ij >

∨
k∈de(j)∩an(i)

b̄kj b̄ik

b̄kk

)
> 0 and P

(
b̄ij =

∨
k∈de(j)∩an(i)

b̄kj b̄ik

b̄kk

)
> 0.

Definition 5.1 of Gissibl and Klüppelberg [2018] presents the smallest subgraph of D
such that X is a recursive ML model on this DAG as

DB = (V,E) :=

V,{(j, i) ∈ E : bii >
∨

k∈de(j)∩pa(i)

bkjbik
bkk

} .

This means that DB contains an edge j → i of D if and only if this edge is the only
critical path from j → i in D.

Lemma 2.3.8 b) and f) motivate the following definition as the random analog of DB.

Definition 2.3.9. Let U ∈ Rd+ be a recursive ML vector with propagating noise on
the DAG D = (V,E) as defined in (2.17). Then we define the minimum ML DAG
D̄B as

D̄B = (V, Ē) :=

V,{(j, i) ∈ E : P
(
b̄ij >

∨
k∈de(j)∩pa(i)

b̄kj b̄ik

b̄kk

)
> 0

} .

This means that D̄B contains an edge j → i of D if and only if this edge is a possible
critical path realization from j → i in D.

In addition, applying first Lemma 2.3.8 e) and f), and in the second part Lemma 2.3.8
b) yields the following result.

Corollary 2.3.10. Let X ∈ Rd+ be a recursive ML vector on a DAG D = (V,E)
as defined in (2.6) and U ∈ Rd+ be a recursive ML vector with propagating noise as
defined in (2.17) on the same DAG D with the same edge weight matrix C. Then

DB = D̄B,

which is the smallest DAG that preserves the distributions of X and of U .

We will henceforth only use the term DB.

The next lemma summarizes properties of possible critical path realizations from
Definition 2.3.5(e).

18

2.3 Recursive ML model with propagating noise

Lemma 2.3.11. Let U ∈ Rd+ be a recursive ML vector with propagating noise on a
DAG D as defined in (2.17). Then the following assertions hold:

1. A path p = [j = k0 → . . . → kn = i] in D is a possible critical path realization
from j to i if and only if all edges of p belong to the minimum ML DAG DB.

2. Let p1 and p2 be two possible critical path realizations from j to i and from l to
m, respectively. Then{

Ui = Ujdij(p1)
∏
k∈Sp1

εk, Um = Uldml(p2)
∏
k∈Sp2

εk

}
(2.25)

has positive probability if and only if Sp1 ∩ Sp2 = ∅, or for every r ∈ Sp1 ∩ Sp2
the sub-path of p1 from j to r is a sub-path of p2 or the sub-path of p2 from l to
r is a sub-path of p1.

We illustrate part b) with Figure 2.1 and Figure 2.2.

j k5 k6 ik4

l

m

k7

k2 k3

k8

k1

Figure 2.1: Both dashed paths p1 := [j → k5 → k6 → i] and p2 := [l → k4 → j → k5 →
k6 → m] can be possible critical path realizations from the same realized noise
variables along the nodes.

2.3.3 Distributions of component ratios of the noisy model

The next result is important as it not only helps us to understand the model better,
but is also an important step for learning the model.

Theorem 2.3.12. Let U ∈ Rd+ be a recursive ML vector with propagating noise on
a DAG D as defined in (2.17). Suppose that pmax := [j = k0 → · · · → kn = i] is
generic. Let Spmax = {k1, . . . , kn} be the set of nodes on pmax. Then

P
(
Ui
Uj

≤ bijx

)
∼ P

(∏
k∈Spmax

εk ≤ x,
Ui
Uj

= bij
∏

k∈Spmax

εk

)
∼ cP

(∏
k∈Spmax

εk ≤ x

)
, x ↓ 1,

for some constant c ∈ (0, 1).

Remark 2.3.13. If the distributions of the noise variables and the innovations as
well as the path weights of the underlying DAG D are given, the constant c in Theo-
rem 2.3.12 can be calculated explicitly.

19

Chapter 2 Recursive max-linear models with propagating noise

j k5 k6 ik4

l

m

k7

k2 k3

k8

k1

Figure 2.2: Both dashed paths p1 := [j → k5 → k6 → i] and p2 := [l → k5 → k6 → m] can
only on a null-set be possible critical path realizations from the same realized
noise variables along the nodes.

Theorem 2.3.12 also shows that, while a path p from j to i with dij(p) < bij can
contribute to the distribution of U (as we have seen in Example 2.3.7), they influence
the distribution of Ui/Uj at their left limit of support only by the constant c ∈ (0, 1).

We now extend the result to situations with several critical paths.

Corollary 2.3.14. Let U be as in Theorem 2.3.12. Suppose that exactly the paths
p1, . . . , pn from j to i are critical; i.e., dij(p1) = . . . = dij(pn) = bij. Then

P
(Ui
Uj

≤ bijx
)
∼ cP

(⋂
p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x
})

, x ↓ 1,

for some constant c ∈ (0, 1).

For simplicity, we assume from now on that C is generic in the sense of Defini-
tion 2.3.5. However, we want to remark that all such results can be extended to the
case of several non-random critical paths between two nodes. The proofs of such
results work similarly as the proof of Corollary 2.3.14.

We continue with another consequence of Theorem 2.3.12.

Corollary 2.3.15. Let U be as in Theorem 2.3.12 and suppose that p := [j = k0 →
· · · → kn = i] is generic. Let U1, . . . ,Un for n ∈ N be an i.i.d. sample from U .
Then, for the same constant c ∈ (0, 1) as in Theorem 2.3.12, we have

P
(n∧
k=0

Uki
Ukj

≤ bijx
)
∼ c nP

(n∏
i=1

εki ≤ x

)
, x ↓ 1.

We conclude this section by extending Theorem 2.3.12 to multivariate distributions,
which is an important structural result of the new model. We only formulate and
prove the bivariate case, the general case is then obvious. Recall that in Lemma 2.3.11
we gave a necessary and sufficient condition for (2.26) below.

Theorem 2.3.16. Let U ∈ Rd+ be a recursive ML vector with propagating noise on
a DAG D as defined in (2.17). Suppose generic paths p1 from j to i and p2 from l to
m. Assume that

P
(
Ui = Ujbij

∏
k∈Sp1

εk, Um = Ulbml
∏
k∈Sp2

εk

)
> 0. (2.26)

20

2.4 Identification and estimation

Then

P
(
Ui
Uj

≤ bijx1,
Um
Ul

≤ bmlx2

)
∼ cP

(∏
k∈Sp1

εk ≤ x1,
∏
k∈Sp2

εk ≤ x2

)
∼P
(∏
k∈Sp1

εk ≤ x1,
∏
k∈Sp2

εk ≤ x2,
Ui
Uj

= bij
∏
k∈Sp1

εk,
Um
Ul

= bml
∏
k∈Sp2

εk

)
,

for x1, x2 ↓ 1 and some constant c ∈ (0, 1).

2.4 Identification and estimation

We first address the question of identifiability of B from the distribution of U . In
particular, we are going to show that even though innovations and noise variables are
generally not identifiable, B remains identifiable also in the propagating noise model.

We discuss three settings (1)-(3) below. For each setting, we propose an appropriate
minimum ratio estimator forB. Afterwards, we will show the almost sure convergence
of each of the estimators.

2.4.1 Identifiability of the model

In this section we discuss the question of identifiability of the DAG D and the edge
weights C of a ML model with recursive noise from the distribution of U . As we
have already seen in Example 2.3.7, the true DAG D and the edge weight matrix C
underlying U in representation (2.17) are generally not identifiable from the distribu-
tion of U . The smallest DAG with a chance to be identified from the distribution of
U is the minimum ML DAG D̄B of Definition 2.3.9, which in turn can be identified
from B by Corollary 2.3.10.

By the equivalence of DB and D̄B, Theorem 2 in Gissibl et al. [2021] also holds for
the propagating noise model defined in (2.17), i.e., the theorem defines the class of
DAGs that preserve the distribution of U . As by Lemma 2.3.8 d) the ML coefficients
are limits of supports of component ratios of U , the following is immediate.

Corollary 2.4.1. Let U ∈ Rd+ be a recursive ML model with propagating noise on a
DAG D as defined in (2.17). Then the ML coefficient matrix B is identifiable from
the distribution of U .

Since we can identify B from the distribution of U , we can also identify the minimum
ML DAG DB from Definition 2.2.1 (which by Definition 2.3.9 and Corollary 2.3.10
is the minimum DAG preserving the distribution of U). Therefore, since ε ≥ 1,
Theorem 2 of Gissibl et al. [2021] also holds for the propagating noise model as
defined in (2.17). Therefore, as exemplified in Example 2.3.7, we can identify the
class of all DAGs and edge weights that could have generated U .

However, unlike for the non-noisy model, we can generally not identify innovations
or noise variables. To see this assume a source node Ui in a DAG D such that
an(i) = ∅. If U follows a recursive ML model with propagating noise, then Ui := Ziεi.
In particular, we can not identify Zi or εi.

21

Chapter 2 Recursive max-linear models with propagating noise

When estimating a recursive ML model with propagating noise, we distinguish be-
tween three settings. We point out that all algorithms below work equally, if the data
is generated from a noise-free max-linear model as defined in (2.6).

(1) All ancestral relations are known; i.e., we know the set of edges E, hence the
DAG. This might be the case when modeling networks that contain natural
information about edges. The problem then reduces to finding appropriate
estimates b̂ij for j ∈ an(i).

(2) The ancestral relations are unknown; however, we know a topological order of
the nodes. Then, in contrast to setting 1, we need to decide if a path from j to
i with j < i exists.

(3) Neither the underlying DAG nor a topological order of the nodes is known.
Then we need to find a topological order of the nodes and proceed then as in
setting 2.

We next want to estimate B for each of the three settings (1)-(3).

2.4.2 Known DAG structure with unknown edge weights

Given an i.i.d. sample U1, . . . ,Un from a recursive ML model with propagating noise
on a known DAG D as defined in (2.17) and knowing all ancestral relations of D, we
could choose the simple estimate

B̌ := (b̌ij)d×d =
(n∧
k=1

Uki
Ukj

1An(i)(j)
)
d×d

. (2.27)

However, as in the non-noisy model, the estimate (2.27) may not define any recursive
ML model on the given DAG D, cf. Example 3 of Gissibl et al. [2021].

We use instead

B0 = (B0(i, j))d×d :=
(n∧
k=1

Uki
Ukj

1pa(i)(j)
)
d×d

and set B̂ = (Id ∨B0)
⊙(d−1).

(2.28)

Applying Lemma 2 in Gissibl et al. [2021] to B0, the estimator B̂ yields a valid
estimate of the given DAG in the sense that B̂ defines a recursive ML model and
for any pair (j, i) ̸∈ E(D) we have b̂ij =

∨
k∈{1,...,d}\{j,i} b̂kj b̂ik. Moreover, by the

idempotency of B̂ and Lemma 2.3.8 c), similarly to the non-noisy model, it also
holds that

bij ≤ b̂ij ≤ b̌ij , j ∈ an(i). (2.29)

2.4.3 Known topological order

Given an i.i.d. sample U1, . . . ,Un ∈ Rd+ from a recursive ML model with propagating
noise without knowing D, but knowing the topological order of nodes, we adapt the

22

2.4 Identification and estimation

estimator (2.27) to this situation and define

B̂ := (b̂ij)d×d =
(n∧
k=1

Uki
Ukj

1(j<i)

)
d×d

. (2.30)

2.4.4 Unknown DAG and unknown topological order

Given an i.i.d. sample U1, . . . ,Un ∈ Rd+ from a recursive ML model with propagating
noise without knowing D or the topological order, we will recover a topological order
first and then proceed as in Section 2.4.3.

Estimating the topological order of an underlying DAG is often done by learning
algorithms that successively identify source nodes and succeeding generations. For
additive models, usually regression techniques are applied (see e.g. Chen et al. [2019]
or Peters et al. [2014]). In the recursive ML model, the noise is not additive and
the model is highly non-linear. Hence, such regression methods cannot be applied.
However, under the condition of multivariate regular variation, the paper Klüppelberg
and Krali [2021] suggests a learning algorithm for the model without noise as given in
(2.1). We propose a different approach, which to the best of our knowledge has not
been considered in the literature before. It applies to the propagating noise model
without any distributional assumptions on the innovations and noise variables and
learns the DAG by using minimum ratios. We first consider the matrix of all minimum
ratios given by

B̌ := (b̌ij)d×d =
(n∧
k=1

Uki
Ukj

)
d×d

. (2.31)

Let Π denote the set of all topological orders of V . Furthermore, denote an equivalence
class of topological orders induced by the underlying (unknown) DAG D = (V,E) by

RD := {π ∈ Π : π(j) < π(i) for all (j, i) ∈ E}. (2.32)

By Lemma 2.3.8 d), b̌ij is lower bounded by bij for j ∈ an(i) and b̌ij → 0 a.s. as
n→ ∞ for j ̸∈ An(i). This is a direct result from Lemma 2.3.8 c) and the fact that
the minimum is non-increasing. Hence, for any π ∈ RD it holds that b̌ij → 0 a.s. as
n→ ∞ whenever π(j) > π(i). Therefore, also

max
(j,i)∈V×V :
π(j)>π(i)

b̌ij → 0 a.s. for n→ ∞. (2.33)

In contrast, for any π ̸∈ RD, there is a pair of nodes (j, i) such that bij > 0 although
π(j) > π(i). For this reason,

max
(j,i)∈V×V :
π(j)>π(i)

b̌ij → cπ > 0 a.s. for n→ ∞. (2.34)

As a consequence, for a given topological order π, by (2.33) and (2.34), the maximum
converges almost surely to zero if and only if π ∈ RD. Hence we propose a topological

23

Chapter 2 Recursive max-linear models with propagating noise

order that minimizes this expression, i.e.,

argmin
π∈Π

max
(j,i)∈V×V :
π(j)>π(i)

b̌ij . (2.35)

A topological order found by (2.35) generally is not unique. Algorithm 1 returns a
unique topological order for any fixed estimated matrix B̌.

Algorithm 1 Estimating a topological order

Input: A matrix of minimum ratios B̌ as in (2.31)
Output: An estimated topological order π̂

1: Set Ď = (V,E) with V = {1, . . . , d} and E = ∅.
2: Set S := {(j, i) ∈ V × V : j ̸= i} and sort the elements (j, i) of S by the size of
b̌ij from large to small.

3: for (j, i) in S do
4: if i ̸∈ an(j) in Ď then
5: E = E ∪ (j, i)
6: end if
7: end for
8: return the topological order π̂ of the DAG Ď

Proposition 2.4.2. Algorithm 1 solves the optimization problem in equation (2.35).

Proof. Let π be the topological order from Algorithm 1 and denote by S(π) the
objective function in (2.35). Algorithm 1 sorts all pairs (j, i) by the size of b̌ij and
draws an edge from j to i whenever there is no path from i to j. Now consider the first
pair (j, i) in the algorithm where we do not draw an edge since i ∈ an(j). Consider a
permutation π′ that is obtained by exchanging the order of nodes i and j in π. Since
there exists already a path from i to j, it follows that S(π) ≤ S(π′).

The DAG Ď constructed in Algorithm 1 works as an auxiliary instrument to infer a
topological order. Observe that Ď is a complete DAG, with directed edges between
every node pair in V and, hence, there is a unique topological order representing Ď.
Moreover, since we sort the weights by size, the algorithm solves (2.35) in an optimal
way for given B̌. At first sight the algorithm bears some similarity to Kruskal’s
classical algorithm for finding a minimum spanning tree; see Kruskal [1956]. However,
Algorithm 1 works with directed edges and, of course, the optimization problem itself
is very different.

Adding an edge and checking the presence of a path between any pair of nodes both
can be implemented in O(d) amortized complexity (see Italiano [1986]). Hence, since
S as computed in line 2 of Algorithm 1 contains d(d − 1) pairs of nodes, we have
an overall amortized complexity of O(d3). After Algorithm 1, we can again use the
minimum ratio estimator

B̂ := (b̂ij)d×d =
(n∧
k=1

Uki
Ukj

1(π̂(j)<π̂(i))

)
d×d

. (2.36)

24

2.4 Identification and estimation

2.4.5 Strong consistence of B̂ and learning the minimum ML DAG DB

We first want to formally state the a.s. convergence of the proposed estimators for the
ML coefficient matrix B. Afterwards, we discuss how to learn the minimum ML DAG
DB. The proofs of Proposition 2.4.3 and Lemma 2.4.4 can be found in Section 2.7.2.

Proposition 2.4.3. Let U ∈ Rd+ be a recursive ML vector with propagating noise
as defined in (2.17) and let U1, . . . ,Un ∈ Rd+ be an i.i.d. sample from U . Then the
estimates (2.28), (2.30) and (2.36) of B are strongly consistent, i.e., it holds a.s. for
n→ ∞ that

b̂ij −→ bij for j ∈ an(i), b̂ii = 1, and b̂ij −→ 0 for j ∈ V \An(i).

In Sections 2.4.2-2.4.4 we have been discussing how to estimate B under the settings
(1)-(3). However, as we know from Corollary 2.3.10, only critical edges ofD contribute
to the distribution of U . Asymptotically, we can almost surely identify DB since there
is an edge j → i in DB if and only if bij > bkjbik for all k ∈ de(j) ∩ an(i).

However, in real life we estimate the edges of DB for a finite data set. Since∧n
k=1(U

k
i /U

k
j) > 0 holds for all n ∈ N and all i, j ∈ V , the estimators (2.30) or

(2.36) would result in a matrix representing a complete DAG.

Since small estimated values b̂ij may well be 0 in the true model, we use a threshold

δ1 > 0 with the aim to set an estimator b̂ij < δ1 equal to 0. However, setting single

values b̂ij := 0 may destroy the idempotency of B̂ since idempotency requires for any
triple of nodes (j, k, i),

b̂kj b̂ik =
n∧
t=1

U tk
U tj

n∧
t=1

U ti
U tk

≤
n∧
t=1

U tk
U tj

U ti
U tk

= b̂ij . (2.37)

For the estimates however, it might be possible that b̂ij < δ1, while b̂lj > δ1 and

b̂il > δ1. In this case, setting b̂ij = 0 would result in b̂ij < b̂lj b̂il violating (2.37). To

preserve the idempotency of B̂ while setting some small values to 0, we propose a
simple adapted thresholding algorithm.

Lemma 2.4.4. Algorithm 2 with threshold δ1 > 0 outputs an idempotent matrix, i.e.,
B̂⊙ B̂ = B̂ and there is no other idempotent matrix B′ such that b′ij = b̂ij whenever

b̂ij > δ1 that contains more zero entries than B̂.

Remark 2.4.5. If we choose δ1 ≤ min{b̌ij : j < i} no entry is set to 0, and if
δ1 > max{b̌ij : j < i} all entries are set to 0 except for the diagonal. So in the first
case, we obtain the complete DAG and in the second case the DAG consists of isolated
nodes only.

In order to estimate the minimum ML DAG DB it is not sufficient to decide if a path
from j to i exists, i.e., if bij > 0. We need in particular to decide if the edge j → i
belongs to DB. By continuity of the noise variables we may observe for the estimated
path weights

b̂ij > b̂lj b̂il

25

Chapter 2 Recursive max-linear models with propagating noise

Algorithm 2 Thresholding while maintaining idempotency

Input: A (known or estimated) topological order π : 1, . . . , d and an idempotent
estimate B̂ as in (2.30) or (2.36) and a threshold value δ1 > 0 Output: An
idempotent estimate B̂

1: E := {(j, i) ∈ V × V : sgn(b̂ij) = 1 and i ̸= j}
2: D := (V,E)
3: S := {(j, i) ∈ E : 0 < b̂ij < δ1}
4: Sort the pairs (j, i) in S by the distance i− j from low to high
5: for (j, i) in S do
6: if (j − i) == 1 then
7: b̂ij = 0
8: end if
9: if for every l with j < l < i: (j, l) or (l, i) ∈ S then

10: b̂ij = 0
11: else
12: S = S \ {(j, i)}
13: end if
14: end for
15: return B̂

even if bij = bljbil. However, by Proposition 2.4.3, in this situation the difference

(b̂ij − b̂lj b̂il) → 0 a.s. as n → ∞. Therefore, we introduce another threshold δ2 > 0
enforcing an edge in DB if this difference is greater than δ2. In Theorem 2.3.12
we have seen that the distribution of the ratio P(Ui/Uj ≤ bijx) is asymptotically
determined by P(

∏
k∈Sp

εk − 1 ≤ x) for x ↓ 0. Hence, the rate of convergence of

(b̂ij − b̂lj b̂il) depends crucially on the path length m = |Sp|. Ideally, we therefore
choose δ2 = δ2(n,m) depending not only on the sample size n, but also on the path
length m.

More precisely, since F←∑
k∈Sp

ε̃k
(1/n) ∼ F←∏

k∈Sp
εk−1(1/n) (see Theorem 2.5.2 and its

proof below), and assuming thatC is generic, we find that Algorithm 3 asymptotically
identifies DB, if

F←∑
k∈Sp

ε̃k
(1/n) = o(δ2(n,m)) for n→ ∞.

In real life we do not know the number of critical edges in either of the three settings.
We distinguish between setting (1) and settings (2)-(3) and propose Algorithm 3 with
δ2(m) := δ2(n,m), i.e., for a fixed sample size n we focus on the path length m. For
setting (1) we do know the underlying unweighted DAG D. Therefore, we do not need
to decide whether some small value b̂ij corresponds to a path from j to i. However,
we do not know the minimum ML DAG DB such that we would apply Algorithm 3 to
estimate DB. For settings (2) and (3) we would apply first Algorithm 2 and afterwards
Algorithm 3.

To further illustrate this, observe the diagram below. In setting 3, we start with B̌,
while in setting 2 with B̂ and for setting 1, we start with B̃.

26

2.5 Asymptotic distribution of the minimum ratio estimators

B̌
Alg. 1−−−−→ π̂

(2.36)−−−→ B̂; (π̂, B̂)
Alg. 2−−−−→ B̃; (π̂, B̃)

Alg. 3−−−−→ DB̃

Algorithm 3 Approximating max-weighted paths

Input: Threshold sequences δ2(1), . . . , δ2(d) and settings
(1): a known underlying DAG D := (V,E) and an estimate B̂ as in (2.28), or
(2-3): a (known or estimated) topological order π : 1, . . . , d and a thresholded matrix
B̂ obtained from Algorithm 2.

Output: An estimated minimum DAG DB̂ = (V,EB̂)

EB̂ := ∅ and DB̂ := (V,EB̂)
(1): S := {(j, i) ∈ V × V : j ∈ pa(i)} and infer a topological order π : 1, . . . , d
from D
(2)-(3): S := {(j, i) ∈ V × V : j < i}
Sort pairs (j, i) in S by their distance (i − j) according to the topological order
from low to high
for (j, i) in S do

if ∃ path p from j to i in DB̂ then

Set m as the maximum path length in DB̂

Set l := argmaxl∈V \{j,i}
(
b̌lj b̌il

)
if (b̌ij − b̌lj b̌il) > δ2(m) then

EB̂ := EB̂ ∪ {(j, i)}
end if

else
if b̌ij > 0 then

EB̂ := EB̂ ∪ {(j, i)}
end if

end if
end for
return DB̂ = (V,EB̂)

In the next section we derive the asymptotic distribution of the estimators.

2.5 Asymptotic distribution of the minimum ratio estimators

With the goal of proving asymptotic distributional properties of the minimum ratio
estimators for the different settings (1)-(3), we require regular variation of the noise
variable ε in its left endpoint. Under this condition we first prove that also the
minimum ratio estimators

∧n
k=1(U

k
i /U

k
j) are regularly varying. Moreover, we show

that their joint limit distribution is the product of Weibull distributions. In this
section we assume C is generic in the sense of Definition 2.3.5. The results can be
extended to a non-generic model by similar methods as used in Corollary 2.3.14.

In what follows we assume that the random variables ε̃i := ln(εi) > 0 for i = 1, . . . , d
are i.i.d. regularly varying at zero with exponent α > 0 and recall from Corol-
lary 2.2.6(b) that this is equivalent to (ε− 1) ∈ RV 0

α or ε ∈ RV 1
α .

27

Chapter 2 Recursive max-linear models with propagating noise

We first prove that ln(Ui/Uj) − ln(bij) is regularly varying at zero which will be a
consequence of Theorem 2.3.12. In this auxiliary result as well as in the theorems
below we need that C is generic. Further, for a path p we denote by ζ(p) = |Sp| its
path length.

Lemma 2.5.1. Let U ∈ Rd+ be a recursive ML vector with propagating noise on a
DAG D as defined in (2.17) and assume that the path p := [j → . . .→ i] from j to i
is generic. If ln(ε) ∈ RV 0

α , then ln(Ui/Uj)− ln(bij) ∈ RV 0
ζ(p)α.

The following is the main result of this section and describes the asymptotic distri-
bution of the minimum ratio estimator B̂ from (2.36). In particular, it shows that
its entries are asymptotically independent.

Theorem 2.5.2. Let U ∈ Rd+ be a recursive ML vector with propagating noise as
defined in (2.17). Assume that C is generic and that ε̃ = ln(ε) ∈ RV 0

α . For every

path pij from j to i and node set Spij choose a
(ij)
n ∼ F←∑

k∈Spij
ε̃k
(1/n) as n→ ∞. If

U1, . . . ,Un is an i.i.d. sample from U , then

lim
n→∞

P

(
1

a
(ij)
n bij

(n∧
k=1

Uki
Ukj

− bij

)
≤ xij ∀(j, i) ∈ V × V with bij > 0

)
=

∏
(j,i)∈V×V :

bij>0

Ψ
ζ(pij)α,(c(ij))

1/(ζ(pij)α) (xij) , xij > 0,

where c(ij) ∈ (0, 1) is defined as in Theorem 2.3.12.

If we know the minimum ML DAG DB = (V,E(DB)), it is preferable to estimate bij
as in (2.28). Then Theorem 2.5.2 reduces as follows.

Corollary 2.5.3. Let the assumptions of Theorem 2.5.2 hold and assume that the
minimum ML DAG DB(V,E(DB)) is known. Then

lim
n→∞

P

(
1

aijn bij

(n∧
k=1

Uki
Ukj

− bij

)
≤ xij ∀(j, i) ∈ E(DB)

)
=

∏
(j,i)∈E(DB)

Ψα,(c(ij))1/α (xij) , xij > 0.

2.6 Data analysis and simulation study

We want to apply the methods that we have developed over the past sections and
consider a data example. For a quality assessment we also perform a simulation study.

2.6.1 Data example

We consider dietary supplement data of n = 8327 independent interviews taken from
the NHANES report for the year 2015-2016, which is available at
https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DR1TOT I.XPT. They have
been part of a questionnaire as to “What We Eat in America”, which recorded the

28

https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/DR1TOT_I.XPT

2.6 Data analysis and simulation study

food and beverage consumed by all participants during the 24 hours period prior to
the interview. The data contains 168 food components with the object of estimating
the total intake of calories, macro and micro nutrients from foods and beverages.
More details can be found on the website.

In Janßen and Wan [2020], the data set has been considered in terms of an adapted k-
means clustering algorithm for extremal observations. Moreover, assuming a recursive
ML model and standardizing the marginal data to regular variation at ∞ with α =
2, Klüppelberg and Krali [2021] investigated the causal relationship between four
nutrients using a different estimation method based on scalings.

In our data example we consider the same four nutrients, namely vitamin A (DR1TVARA),
α-carotene (DR1TACAR), β-carotene (DR1TBCAR) and lutein+zeaxanthin (DR1TLZ)
as in Klüppelberg and Krali [2021]. We abbreviate them by VA, AC, BC and LZ. In
order to make results comparable to those of Klüppelberg and Krali [2021], we also
use the empirical integral transform to standardize the data to Fréchet(2) margins
(see e.g. Beirlant et al. [2004], p. 381) by setting for i = 1, 2, 3, 4,

Uli :=
(
− log

(1

n+ 1

n∑
j=1

1{Ūji≤Ūli}

))−1/2
, l = 1, . . . , n = 8327,

where multiple ranks are uniformly randomly ordered.

We first consider the full matrix of minimum ratios B̌ = (b̌ij)d×d with b̌ij =
∧n
t=1(X

t
i/X

t
j)

given by
VA AC BC LZ

1 0.146 0.321 0.132 V A

0.014 1 0.010 0.007 AC
0.011 0.177 1 0.168 BC
0.007 0.019 0.025 1 LZ

We next apply Algorithm 1 to obtain an estimated topological order π̂ := (AC,LZ,BC, V A).
First we want to assess the quality of the estimated topological order π̂, which also
supports or contradicts the model assumption of a Bayesian network. Motivated by
the coefficient R2 of determination in regression we define the following.

Definition 2.6.1. For a given topological order π and an estimator B̌ of the ML
coefficient matrix we define the ML coefficient of determination

Rmax(π) =

∑
(j,i)∈V×V :
π(j)<π(i)

b̌ij

∑
(j,i)∈V×V :

j ̸=i

b̌ij
.

The coefficient Rmax(π) can take any value in the interval [0, 1]. Large Rmax(π)
supports the hypothesis that the underlying graph is a DAG and the estimated topo-
logical order lies in the equivalence class of topological orders defined in (2.32).

In our data example, we have Rmax(π̂) = 0.929, strongly supporting the hypothesis
of a recursive ML model. Now using the estimator (2.36), and applying Algorithms 2

29

Chapter 2 Recursive max-linear models with propagating noise

and 3 with δ1 = 0.02 and δ2(k) = 0.02 for k ∈ {1, 2, 3}, we get the estimated minimum

ML DAG DB̂ and ML coefficient matrix B̂, where we sorted the matrix according to
π̂. These are shown in Figure 2.3.

AC

LZBC

VA

B̂ =

AC LZ BC VA

1 0 0 0 AC
0 1 0 0 LZ

0.177 0.168 1 0 BC
0.146 0.132 0.321 1 VA

(2.38)

Figure 2.3: Estimated minimum ML DAG DB̂ with estimated ML coefficient matrix B̂.

Observe that, since we estimate the edge from AC to LZ to be absent, there are two
possible topological orders.

From the estimates we observe that both, α-carotene and β-carotene lead to high
amounts of vitamin A. This is in line with our expectation since β-carotene is a
precursor to vitamin A and can be converted by β-carotene 15,15’-monoxygenase
by many animals including humans. Similarly, also α-carotene can be converted to
vitamin A. However, it is only half as active as β-carotene which explains that the
edge weight from α-carotene to vitamin A is approximately half compared to the edge
weight from β-carotene to vitamin A (0.146 compared to 0.321). Moreover, we can
see that high amounts of lutein+zeaxanthin also lead to high amounts of β-carotene
and high amounts of α-carotene also lead to high amounts of β-carotene. However,
we did not find a significant connection between α-carotene and lutein+zeaxanthin.
Observe that Klüppelberg and Krali [2021] inferred the same topological order, yet
with one additional edge from α-carotene to lutein+zeaxanthin. However, it is also
the edge with the smallest estimated edge weight. Similarly as in Klüppelberg and
Krali [2021], we plot bivariate extremes in Figure 2.4 to underline our finding. The
first 5 plots in Figure 2.4 look rather similar. For every large value of the substance
on the vertical axis, we can see a large value of the substance on the horizontal axis.
Moreover, these observations are shaped closely to a line. In contrast, a large value
of the substance on the horizontal axis might as well coincide with a small value of
the substance on the vertical axis. Therefore, e.g. a high amount of α-carotene leads
to a high amount of vitamin A but a high amount of vitamin A does not necessarily
lead to a high amount of α-carotene. This also supports that the dependence is not
mutual and hence we can model it by a DAG. The same can be seen for any pair
given in the plots 1-5. Moreover, since parts of the observations are shaped closely
along a line, which we would expect for a recursive ML model, we can conclude that
the recursive ML model fits the data very well.

The sixth plot is different from the other 5 plots, since for most large observations of
α-carotene the level of lutein+zeaxanthin is not increased as most large observations
in lutein+zeaxanthin do also not result in a high level of α-carotene. Therefore, the
two substances do not seem to affect each other and we rightly concluded that there
is no edge.

30

2.6 Data analysis and simulation study

Figure 2.4: The empirical bivariate extremes (25 largest observations).

31

Chapter 2 Recursive max-linear models with propagating noise

Sample Size Correct Runs(1) Correct Runs(2) Correct Runs(3)

50 555 946 998
200 995 1000 1000
500 1000 1000 1000
1000 1000 1000 1000

Table 2.1: Empirical success probability for estimated topological order being in the equiv-
alence class of topological orders for (1) No noise, (2): Gamma(1,2), (3);
Gamma(2,2).

2.6.2 Simulation study

We want to illustrate the effect of observational noise in the ML model. We simulate
recursive ML vectors with propagating noise, where the innovations Z1, . . . , Z4 are
Fréchet(2) distributed and we use the estimated B̂ from (2.38) from the data analysis
above for the ML coefficient matrix B. Moreover, we simulate three different sce-
narios. In the first scenario, we assume the non-noisy model as given in (2.1), while
for the second scenario we choose the propagating noise model with a medium sized
noise and in the third setting we choose a noise variable which is stochastically larger.
The scenarios are given as follows:

(1) No noise
(2) ln(εi) ∼ Gamma(λ = 1, α = 2) for i ∈ {1, 2, 3, 4}, which corresponds to E(εi) =

2
(3) ln(εi) ∼ Gamma(λ = 2, α = 2) for i ∈ {1, 2, 3, 4}, which corresponds to E(εi) =

4

We assume to have no information on the underlying DAG and we only consider
the quality of the estimator b̌ij given in (2.31). We choose the sample sizes n ∈
{50, 200, 500, 1000} and 1000 simulation runs for each sample size. We first assess the
success probabilities for Algorithm 1. Table 2.1 shows that the topological order can
be correctly estimated even for small sample sizes. Moreover, the number of correct
runs increases for larger noise variables. This is expected since the noise variables
are one-sided. Therefore, for a path p from j to i the ratio Ui/Uj ≥ dij(p)

∏
k∈Sp

εk
increases, while the ratio Uj/Ui ≤ 1/(dij(p)

∏
k∈Sp

εk) decreases. Therefore, it is
easier to identify the paths in D for larger noise.

Next, we want to assess the quality of the estimated ML coefficient matrix B̌. To do
so, for every pair (j, i) with bij > 0 and every simulation run k ∈ {1, . . . , 1000}, we
denote the minimum ratio estimator given in (2.31) by b̌kij .

32

2.6 Data analysis and simulation study

We consider the empirical RMSE, standard deviation and bias for each bij > 0 in
each model (1)-(3). In what follows we compare the three classical quantities

bias(b̌ij) :=
1

1000

1000∑
k=1

b̌kij − bij , (2.39)

SD(b̌ij) :=

√√√√ 1

1000

1000∑
k=1

(b̌kij − b̌ij)2 with b̌ij =
1

1000

1000∑
k=1

b̌kij , (2.40)

RMSE(b̌ij) :=

√√√√ 1

1000

1000∑
k=1

(b̌kij − bij)2, (2.41)

All three quantities are comparatively small even for small sample sizes and decrease
whenever the sample size increases. Moreover, they are larger in the propagating
noise model and larger noise terms also increase the three quantities. This is in line
with what we can expect from the model as noise terms increase the ratios Ui/Uj
and hence also increase the minimum ratio estimator. On the other hand, recall from
above that with increasing noise the estimation of the DAG improves.

Sample Size Edge Edge Weight Bias(1) Bias(2) Bias(3)

50 AC → BC 0.177 0.012 0.020 0.046
50 AC → V A 0.146 0.028 0.029 0.063
50 LZ → BC 0.168 0.013 0.020 0.045
50 LZ → V A 0.132 0.027 0.029 0.064
50 BC → V A 0.321 0 0.014 0.053
200 AC → BC 0.177 0 0.005 0.019
200 AC → V A 0.146 0 0.007 0.026
200 LZ → BC 0.168 0 0.005 0.020
200 LZ → V A 0.132 0.001 0.007 0.026
200 BC → V A 0.321 0 0.004 0.023
500 AC → BC 0.177 0 0.002 0.012
500 AC → V A 0.146 0 0.003 0.016
500 LZ → BC 0.168 0 0.002 0.012
500 LZ → V A 0.132 0 0.003 0.016
500 BC → V A 0.321 0 0.001 0.015
1000 AC → BC 0.177 0 0.001 0.008
1000 AC → V A 0.146 0 0.001 0.011
1000 LZ → BC 0.168 0 0.001 0.008
1000 LZ → V A 0.132 0 0.001 0.010
1000 BC → V A 0.321 0 0.001 0.010

Table 2.2: Empirical Bias (2.39) for (1): No noise, (2): Gamma(1,2), (3): Gamma(2,2)

33

Chapter 2 Recursive max-linear models with propagating noise

Sample Size Edge Edge Weight Std(1) Std(2) Std(3)

50 AC → BC 0.177 0.031 0.023 0.031
50 AC → V A 0.146 0.046 0.033 0.041
50 LZ → BC 0.168 0.031 0.022 0.031
50 LZ → V A 0.132 0.046 0.033 0.043
50 BC → V A 0.321 0.006 0.015 0.031
200 AC → BC 0.177 0.001 0.005 0.011
200 AC → V A 0.146 0.002 0.006 0.015
200 LZ → BC 0.168 0.002 0.005 0.012
200 LZ → V A 0.132 0.005 0.008 0.017
200 BC → V A 0.321 0 0.004 0.013
500 AC → BC 0.177 0 0.002 0.007
500 AC → V A 0.146 0 0.003 0.009
500 LZ → BC 0.168 0 0.002 0.007
500 LZ → V A 0.132 0.001 0.003 0.009
500 BC → V A 0.321 0 0.001 0.008
1000 AC → BC 0.177 0 0.001 0.004
1000 AC → V A 0.146 0 0.001 0.006
1000 LZ → BC 0.168 0 0.001 0.004
1000 LZ → V A 0.132 0 0.001 0.006
1000 BC → V A 0.321 0 0.001 0.005

Table 2.3: Empirical Standard Deviation (2.40) for (1): No noise, (2): Gamma(1,2), (3):
Gamma(2,2)

34

2.7 Supplementary Material

Sample Size Edge Edge Weight RMSE(1) RMSE(2) RMSE(3)

50 AC → BC 0.177 0.033 0.030 0.056
50 AC → V A 0.146 0.054 0.044 0.075
50 LZ → BC 0.168 0.033 0.029 0.054
50 LZ → V A 0.132 0.053 0.044 0.077
50 BC → V A 0.321 0.006 0.021 0.061
200 AC → BC 0.177 0.001 0.007 0.023
200 AC → V A 0.146 0.002 0.009 0.030
200 LZ → BC 0.168 0.002 0.007 0.023
200 LZ → V A 0.132 0.006 0.011 0.031
200 BC → V A 0.321 0 0.005 0.027
500 AC → BC 0.177 0 0.003 0.014
500 AC → V A 0.146 0 0.004 0.018
500 LZ → BC 0.168 0 0.003 0.014
500 LZ → V A 0.132 0.001 0.004 0.018
500 BC → V A 0.321 0 0.002 0.017
1000 AC → BC 0.177 0 0.001 0.090
1000 AC → V A 0.146 0 0.002 0.120
1000 LZ → BC 0.168 0 0.001 0.090
1000 LZ → V A 0.132 0 0.002 0.012
1000 BC → V A 0.321 0 0.001 0.011

Table 2.4: Empirical RMSE (2.41) for (1): No noise, (2): Gamma(1,2), (3): Gamma(2,2)

2.7 Supplementary Material

2.7.1 Proofs of Section 2.3

Proof of Theorem 2.3.2 Rewrite (2.17) in matrix form by means of the tropical
matrix multiplication (2.9) as

U = Ed ⊙
(
C ⊙U ∨Z

)
.

The associative law implies

U = (Ed ⊙C ⊙U) ∨ (Ed ⊙Z) ⇔ U = (C̄ ⊙U) ∨ Z̄, (2.42)

with C̄ = Ed ⊙ C, which is identical to (2.19), and Z̄ = Ed ⊙ Z. The right-most
equation in (2.42) is of the same form as the non-noisy model in (2.10), so that
analogously to its solution given in (2.11), we get the solution

B∗ = (Id ∨ C̄)⊙(d−1), U = B∗ ⊙ Z̄ = B∗ ⊙Ed ⊙Z,

where B∗ is the Kleene star matrix of C̄. Therefore, defining B̄ = B∗ ⊙ Ed yields
the result. □

Proof of Corollary 2.3.4 From (2.22) and the continuity of Z and ε we have

Ui =
∨

j∈An(i)

b̄ijZj = b̄ikZk (2.43)

35

Chapter 2 Recursive max-linear models with propagating noise

for some unique k ∈ An(i). We want to show that this implies Ui = b̄ikŨk, i.e.,
Ũk = Zk. Applying first (2.23), then (2.22) and finally (2.20), we obtain

Ũk =
Uk
εk

=

∨
l∈An(k) b̄klZl

εk
≥ b̄kkZk

εk
= Zk.

Now assume that Ũk > Zk. Then there exists an l ∈ an(k) ⊂ An(i) with b̄klZl > εkZk.
Note also that the maximum random path weight from l to i must be greater or equal
than the maximum random path weight from l to i passing through node k. These
two facts lead to

Ui =
∨

j∈An(i)

b̄ijZj ≥ b̄ilZl ≥
b̄klb̄ik
εk

Zl > b̄ikZk,

The above inequality, however, contradicts (2.43). Therefore, since k ∈ An(i), we
have

Ui ≤
∨

j∈An(i)

b̄ijŨj .

Now assume that Ui < ∨j∈An(i)b̄ijŨj . Then, with the same arguments as above,
Ui < ∨j∈An(i)b̄ijZj which is a contradiction. □

Proof of Lemma 2.3.8 (a) We first assume that j = i. Since D is a DAG,
de(i) ∩ pa(i) = ∅ and b̄kib̄ik = 0 for all k ̸= i. Therefore, the equality holds and the
inequality is equivalent to b̄ii ≥ 0 which obviously holds.

Next, assume j ̸= i and j ̸∈ an(i). Then by (2.20) b̄ij = 0 and there is no path from j
to i. Therefore, de(j)∩pa(i) = ∅. Hence, the right-hand side of the inequality equals
zero. Moreover, the equality holds as well, otherwise b̄kj > 0 and b̄ik > 0 for some
k ∈ V and therefore, by (2.20) there would be a path from j to k and from k to i
which contradicts j ̸∈ an(i).

For j ∈ pa(i) with de(j) ∩ pa(i) = ∅, the critical path must be the edge j → i since

it is the only path from j to i. Furthermore, the equality b̄ij =
b̄kj b̄ik
b̄kk

holds for k = i

and k = j while for all k ̸∈ {i, j} it must hold that
b̄kj b̄ik
b̄kk

= 0. Therefore, the equality

holds. Moreover, the right-hand side of the inequality again equals zero and we have
strict inequality.

Now assume j ∈ an(i) and de(j) ∩ pa(i) ̸= ∅. Then for every path p = [j = k0 →
k1 → . . .→ kn = i] with n ≥ 2 from j to i and every km ∈ {k1, . . . , kn−1}, by (2.18),

d̄ij(p) = εj

n−1∏
l=0

ckl+1klεkl+1

=
εj
∏m−1
l=0 ckl+1klεkl+1

· εkm
∏n−1
l=m ckl+1klεkl+1

εkm

=
d̄kmj(p1)d̄ikm(p2)

b̄kmkm
, (2.44)

with p1 = [j = k0 → k1 → . . . → km] and p2 = [km → . . . → kn = i], where in the
last step we have used that εkm = b̄kmkm . Therefore, for the random critical path p

36

2.7 Supplementary Material

with b̄ij = d̄ij(p) it holds that every sub-path of this path is itself critical, otherwise
we could find a path of larger random path weight by replacing the sub-path by a
path of larger random weight. It follows that

b̄ij ≥
∨

k∈de(j)∩an(i)

b̄kj b̄ik

b̄kk

with equality whenever the critical path p from j to i contains a node k ∈ de(j)∩an(i).
Since for k = i or k = j we have b̄ij =

b̄kj b̄ik
b̄kk

and for k ∈ V \
(
(an(i) ∩ de(j)) ∪ {j, i}

)
we have

b̄kj b̄ik
b̄kk

= 0, the equality holds as well.

(b) First assume that there is a path p := [j → . . .→ k → . . .→ i] with d̄ij(p) = b̄ij .

Then by (2.44) we have b̄ij =
d̄kj(p1)d̄ik(p2)

b̄kk
. Now every sub-path of a random critical

path must be itself critical, as explained in the proof of part a). Hence, b̄kj = d̄kj(p1)

and b̄ik = d̄ik(p2) and for this reason b̄ij =
b̄kj b̄ik
b̄kk

.

In contrast, let d̄ij(p) < b̄ij for all p ∈ Pikj , where Pikj denotes all paths from j to i
that pass through k. Now choose p1 = [j → . . . → k] and p2 = [k → . . . → i] such
that d̄kj(p1) = b̄kj and d̄ik(p2) = b̄ik. Then, for the path p ∈ Pikj that results from
concatenation of p1 and p2 we have by (2.20)

b̄ij > d̄ij(p) =
b̄kj b̄ik

b̄kk
,

which proves the reverse direction.

(c) For j = i the inequality obviously holds, since bii = 1. If j ̸∈ An(i), then by
definition b̄ij = bij = 0 and b̄jj = εj ≥ 1. Therefore, the inequality is equivalent to
Ui/Uj ≥ 0, which is true. Now let j ∈ an(i). Then by (2.18) and (2.20) the center
ratio can be written as

b̄ij

b̄jj
:=

∨
p∈Pij

d̄ij(p)

b̄jj
=
∨
p∈Pij

dij(p)
n−1∏
l=0

εkl+1
≥
∨
p∈Pij

dij(p) = bij , (2.45)

since b̄jj = εj and εi ≥ 1. Now we use (2.24) and obtain by (2.45)

Ui
Uj

=

∨
k∈An(i) b̄ikŨk

Uj
≥ b̄ijŨj

Uj
=
b̄ijUj
εjUj

=
b̄ij

b̄jj
≥ bij .

(d) We first prove by contradiction that there is no lower bound for Ui/Uj of larger
value than the one given in part (c). Assume j ∈ an(i) and there is a lower bound
c > bij . Since Z1, . . . , Zd are i.i.d., every innovation Zl can realize the maximum with
positive probability, such that for every l ∈ An(j),

P
({
Uj =

∨
k∈An(j)

b̄jkZk = b̄jlZl

}
∩
{
Ui =

∨
k∈An(i)

b̄ikZk = b̄ilZl

})
> 0. (2.46)

Hence, without loss of generality we assume that this holds for l = j. Denote the
random critical path p := [j = k0 → . . . → kn = i] such that d̄ij(p) = b̄ij . Then, it

37

Chapter 2 Recursive max-linear models with propagating noise

follows on the event in (2.46) with l = j from (2.18) that

P
(
Ui
Uj

< c

)
= P

(
b̄ij

b̄jj
< c

)
= P

(
εjdij(p)

∏n−1
l=0 εkl+1

εj
< c

)

= P

(
dij(p)

n−1∏
l=0

εkl+1
< c

)
> 0,

since dij(p) ≤ bij < c and ε ≥ 1. Hence, c is no lower bound and together with part
c) this entails the support for j ∈ an(i).

Now assume j ̸∈ An(i) such that bij = 0. Assume that Ui/Uj is lower bounded by
some c > 0. Then by (2.22),

Ui
Uj

≥ c ⇔
∨

k∈An(i)

b̄ikZk ≥ c
∨

k∈An(j)

b̄jkZk,

which is equivalent to∨
k∈An(i)

b̄ikZk ≥ c
(∨
k∈An(i)∩An(j)

b̄jkZk ∨
∨

k∈An(j)\An(i)

b̄jkZk

)
.

Therefore, it holds in particular, that∨
k∈An(i)

b̄ikZk ≥ c b̄jlZl (2.47)

for every l ∈ An(j) \ An(i). This set is non-empty since j ̸∈ An(i), so it contains at
least j. However, since the innovation and the noise variables are all independent and
unbounded above, we have for every l ∈ An(j) \An(i)

P
(
Zl ≥

∨
k∈An(i) b̄ikZk

c b̄jl

)
> 0,

contradicting (2.47) and, hence, the assumption of a lower positive bound c for Ui/Uj .

The upper interval limits of Ui/Uj for j ∈ an(i) and and j ̸∈ An(i) follow from
changing the roles of i and j. For j ̸= i, the ratio Ui/Uj always contains εi or εj and
both random variables are atom-free and independent of all innovations Z1, . . . , Zd
and εk for k ̸= i and k ̸= j. Therefore, the ratio inherits the continuity of the noise
variables and part d) follows.

(e) For j = i we have bij = 1 ̸= 0 =
∨
k∈de(j)∩an(i)

bkjbik
bkk

. If j ̸∈ An(i) we have

bij = b̄ij = 0 by (2.20).

Next assume that j ∈ an(i), and bij =
∨
k∈de(j)∩an(i)

bkjbik
bkk

̸= 0. Then there is a
path p = [j = k0 → k1 → . . . → kn = i] from j to i with non-random path weight
dij(p) = bij , which is not the edge j → i.

For a contradiction, assume that b̄ij >
∨
k∈de(j)∩an(i)

b̄kj b̄ik
b̄kk

. This is equivalent to the

edge j → i being the random critical path. However, every path p ∈ Pij has random
path weight, which depends on both noise variables εi and εj , so in particular, the

38

2.7 Supplementary Material

non-random critical path p = [j = k0 → k1 → . . . → kn = i] from j to i with path
weight dij(p) = bij is one of these paths. Therefore, by (2.18) and since bij > cij , the
random path weight of p is

d̄ij(p) = bijεj

n−1∏
l=0

εkl+1
≥ bijεjεi > cijεjεi = b̄ij ,

where we have used that ε ≥ 1. This is a contradiction and hence b̄ij =
∨
k∈de(j)∩an(i)

b̄kj b̄ik
b̄kk

.

(f) The assumptions bij >
∨
k∈de(j)∩an(i)

bkjbik
bkk

and de(j) ∩ an(i) ̸= ∅ are equivalent
to the edge pmax = [j → i] being the only non-random critical path.

Let p′ = [j = k0 → k1 → . . .→ kn = i] ̸= pmax be the path such that
∨
p∈Pij\{pmax} d̄ij(p) =

d̄ij(p
′). Then

∨
p∈Pij\{pmax}

d̄ij(p) = d̄ij(p
′) =

∨
k∈de(j)∩an(i)

b̄kj b̄ik

b̄kk
,

otherwise we can construct a path of larger random path weight from j to i passing
through k as explained in the proof of part a). First assume that b̄ij = d̄ij(pmax).

Then, b̄ij >
∨
k∈de(j)∩an(i)

b̄kj b̄ik
b̄kk

and de(j)∩an(i) ̸= ∅ is by (2.18) and (2.20) equivalent
to

b̄ij > d̄ij(p
′) = εiεjdij(p

′)

n−2∏
l=0

εkl+1
⇐⇒ bij

dij(p′)
>

n−2∏
l=0

εkl+1
. (2.48)

Since ε ≥ 1, also bij/dij(p
′) > 1. Hence, the event given by (2.48) has positive

probability which is however, strictly smaller than one, since the noise variables do

not have an upper bound. Therefore, since b̄ij ≥
∨
k∈de(j)∩an(i)

b̄kj b̄ik
b̄kk

, by part a), the

complementary event {
b̄ij =

∨
k∈de(j)∩an(i)

b̄kj b̄ik

b̄kk

}
is also having positive probability. □

Proof of Lemma 2.3.11 (a) Suppose there is an edge kl → kl+1 in p such
that ckl+1kl ̸∈ DB. Then, de(j) ∩ an(i) ̸= ∅ and by Lemma 2.3.8 e) P(b̄kl+1kl =
ckl+1klεklεkl+1

) = 0, so we can replace the edge kl → kl+1 by some other path to get a
new path from j to i of larger random path weight than p. Hence, p is not a possible
critical path realization. The same argument can be used for the reverse.

(b) First consider ¬(Sp1 ∩Sp2 = ∅ or for every r ∈ Sp1 ∩Sp2 the sub-path of p1 from
j to r is a sub-path of p2 or the sub-path of p2 from l to r is a sub-path of p1). Then
there exists some node r ∈ Sp1 ∩Sp2 such that p1 = [j → . . .→ s→ r → . . .→ i] and
p2 = [l → . . . → t → r → . . . → m] with s ̸= t. Denote by p11 := [j → . . . → s] the
sub-path of p1 from j to s. We want to show by contradiction that the event (2.25)
has probability zero. Therefore, we consider the subset of Ω such that (2.25) holds
and show that it is a null-set. Since on this subset, p1 is the random critical path

and passes through s, by Lemma 2.3.8 b) we have b̄ij =
b̄sj b̄is
b̄ss

and Us = Uj b̄sj/εj =

39

Chapter 2 Recursive max-linear models with propagating noise

Ujdsj(p11)
∏
k∈Sp11

εk. With the same argument it also holds that b̄ij =
b̄rj b̄ir
b̄rr

and

Ur = Uj b̄rj/εj = Ujdsj(p11)
∏
k∈Sp11

εkcrsεr. Hence, it must holds that Ur = Uscrsεr.

By the same arguments, we also must have Ur = Utcrtεr, which together leads to

Uscrs = Utcrt.

This is by (2.20) and (2.22) equivalent to

crs
∨

l∈An(s)

εl
∨
p∈Psl

dsl(p)
∏
k∈Sp

εkZl = crt
∨

l∈An(t)

εl
∨
p∈Ptl

dtl(p)
∏
k∈Sp

εkZl.

Now since D is acyclic, there cannot be a path from s to t and from t to s; so without
loss of generality we can assume that there is no path from t to s. However, the
right-hand side of the equation always contains εt which is not part of the left-hand
side. Since Z1, . . . , Zd as well as ε1, . . . , εi are atom-free and independent random
variables, this can only happen on a null-set.

Next consider the reverse, i.e., Sp1 ∩ Sp2 = ∅ or for every r ∈ Sp1 ∩ Sp2 the sub-path
of p1 from j to r is a sub-path of p2 or the sub-path of p2 from l to r is a sub-path
of p1.

If Sp1 ∩ Sp2 = ∅, then the probability of (2.25) is obviously positive. Without loss
of generality we now assume that for every r ∈ Sp1 ∩ Sp2 the sub-path of p2 from l
to r is a sub-path of p1. We now define r to be the last common node of the two
paths p1 and p2. Then, p1 and p2 induce the paths p′ = [j → . . . → l → . . . r],
p′′ = [r → . . .→ i] and p′′′ = [r → . . .→ m]. Then{

Ui = Ujdij(p1)
∏
k∈Sp1

εk, Um = Uldml(p2)
∏
k∈Sp2

εk

}
=
{
Ur = Ujdrj(p

′)
∏
k∈Sp′

εk, Ui = Urdir(p
′′)
∏
k∈Sp′′

εk, Um = Urdmr(p
′′′)
∏
k∈Sp′′

εk

}
,

which has positive probability, since Sp′ ∩ Sp′′ ∩ Sp′′′ = ∅. □

Proof of Theorem 2.3.12 By the law of total probability we have for x ≥ 1,

I(x) := P
(Ui
Uj

≤ bijx
)
= P

(Ui
Uj

≤ bijx, Ui = Ũj b̄ij

)
+ P

(Ui
Uj

≤ bijx, Ui ̸= Ũj b̄ij

)
=: I1(x) + I2(x)

We denote all paths from j to i by Pij = {p1, . . . , pr, pmax}. There are two situations,
either r = 0 (where we interpret the above set of paths as {pmax}), or r ≥ 1. We
first give a proof for r ≥ 1. We start with I1(x). Since pmax is generic, every path
p ̸= pmax from j to i has non-random edge weight dij(p) < bij . Therefore, with (2.23)
in the first line, (2.20) in the third and (2.18) in the last, we have for x > 1,

I1(x) = P(Ui/(Ũjεj) ≤ bijx, Ui = Ũj b̄ij)

= P(b̄ij/εj ≤ bijx, Ui = Ũj b̄ij)

= P
(∨
p∈Pij

d̄ij(p)/εj ≤ bijx, Ui = Ũj b̄ij

)
= P

(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx, Ui = Ũj b̄ij

)
. (2.49)

40

2.7 Supplementary Material

By definition of b̄ij in (2.20), there is a path p ∈ {pmax, p1, . . . , pr} such that d̄ij(p) =
b̄ij and by continuity of ε the probability that multiple paths satisfy the equation is
equal to 0. Therefore, again applying the law of total probability, we find

I1(x) = P
(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx, d̄ij(pmax) = b̄ij , Ui = Ũj b̄ij

)
(2.50)

+ P
(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx,
∨

p∈{p1,...,pr}

d̄ij(p) = b̄ij , Ui = Ũj b̄ij

)
= P

(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx, d̄ij(pmax) = b̄ij , Ui = Ũj b̄ij

)

+

r∑
s=1

P
(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx, d̄ij(ps) = b̄ij , Ui = Ũj b̄ij

)
=: I11(x) + I12(x).

We first find upper and lower bounds for I11(x). We denote by Pijk all paths from k
to i which pass through j. Using the simple identity

{z1 ∨ z2 ≤ a, z1 ∨ z2 = z1} = {z1 ≤ a, z2 ≤ z1}, (2.51)

(2.20) and (2.22) imply

{ ∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx
}⋂{

d̄ij(pmax) = b̄ij

}⋂{
Ui = Ũj b̄ij

}
(2.52)

=
{ ∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ d̄ij(pmax)
}⋂{

d̄ij(pmax) ≤ bijx
}⋂{

Ui = Ũj b̄ij

}
=
{ ∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bij
∏

k∈Spmax

εk

}⋂{ ∏
k∈Spmax

εk ≤ x
}⋂{

Ui = Ũj b̄ij

}
=

⋂
p∈Pij\{pmax}

{ ∏
k∈Sp

εk ≤
bij

dij(p)

∏
k∈Spmax

εk

}⋂{ ∏
k∈Spmax

εk ≤ x
}⋂

⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈Sp∪{l}

εkZl ≤ bij
∏

k∈Spmax

εk
∨

l∈An(j)

b̄jlZl

}}
. (2.53)

41

Chapter 2 Recursive max-linear models with propagating noise

Cancelling all noise variables possible, and since ε > 1, we find a lower bound

I11(x) = P
(⋂
p∈Pij\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤
bij

dij(p)

∏
k∈Spmax\Sp

εk

}⋂
{ ∏
k∈Spmax

εk ≤ x
}⋂ ⋂

l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈(Sp∪{l})\Spmax

εkZl

≤ bij
∏

k∈Spmax\(Sp∪{l})

εk
∨

l∈An(j)

b̄jlZl

}})
(2.54)

≥ P
(⋂
p∈Pij\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤
bij

dij(p)

}⋂{ ∏
k∈Spmax

εk ≤ x
}⋂

⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bij
∨

l∈An(j)

b̄jlZl

}})
= P

(⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bij
∨

l∈An(j)

b̄jlZl

}}
⋂ ⋂

p∈Pij\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤
bij

dij(p)

})
P
(∏
k∈Spmax

εk ≤ x
)

=: c1 P
(∏
k∈Spmax

εk ≤ x
)
,

for some constant c1 ∈ [0, 1] by independence of the noise variables.

We show that c1 > 0. To do so, recall that bij/dij(p) > 1 for every p ̸= pmax.
Therefore, since {p ∈ Pij \ {pmax}} ≠ ∅ and ε > 1,

P
(⋂
p∈Pij\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤
bij

dij(p)

})
> 0. (2.55)

Next, we want to show that also

P
(⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bij
∨

l∈An(j)

b̄jlZl

}})
> 0. (2.56)

For this, observe that the left-hand side of the inequality in (2.56) does not contain
Zj , since all paths from j to i pass through j. Since b̄jl and the left-hand side of the
inequality in (2.56) is independent of Zj for all l ∈ {1, . . . , d} and Zj has unbounded
support, Zj can become arbitrarily large with positive probability such that (2.56)
holds.

The intersection of the two events has also positive probability since (2.55) is inde-
pendent of Zj . This implies that c1 > 0 and a positive lower bound for I11(x).

To get an upper bound, observe that ε ≥ 1 and, hence, for every set Sp we have{
εk : k ∈ Spmax and

∏
k∈Spmax

εk ≤ x
}
⊆
{
εk : k ∈ Spmax and

∏
k∈Spmax\Sp

εk ≤ x
}
.

42

2.7 Supplementary Material

Therefore, starting with (2.54) we find the upper bound

I11(x) ≤ P
(⋂
p∈Pij\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤
bij

dij(p)
x
}⋂{ ∏

k∈Spmax

εk ≤ x
}⋂

⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bijx
∨

l∈An(j)

b̄jlZl

}})
= P

(⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bijx
∨

l∈An(j)

b̄jlZl

}}
⋂ ⋂

p∈Pij\{pmax}

{ ∏
k∈Sp\Spmax

εk ≤
bij

dij(p)
x
})

P
(∏
k∈Spmax

εk ≤ x
)

= c2(x)P
(∏
k∈Spmax

εk ≤ x
)
. (2.57)

Since the innovations and the noise variables are atom-free, it follows that limx↓1 c2(x) =
c1 and, therefore,

I11(x) ∼ c1 P
(∏
k∈Spmax

εk ≤ x
)
, x ↓ 1. (2.58)

We next show that I12(x) = o(I11(x)) as x ↓ 1. We have for each summand m ∈
{1, . . . , r}, using the simple identity (2.51) to obtain the third line,

P
(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx, d̄ij(pm) = b̄ij , Ui = Ũj b̄ij

)
≤ P

(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx, d̄ij(pm) = b̄ij

)
= P

(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ d̄ij(pm), d̄ij(pm) ≤ bijx
)

= P
(⋂
p∈Pij\{pm}

{ ∏
k∈Sp

εk ≤
dij(pm)

dij(p)

∏
k∈Spm

εk

}⋂{ ∏
k∈Spm

εk ≤
bijx

dij(pm)

})
≤ P

({ ∏
k∈Spmax

εk ≤
dij(pm)

bij

∏
k∈Spm

εk

}⋂{ ∏
k∈Spm

εk ≤
bijx

dij(pm)

})
(2.59)

Now the first event rewrites as { bij
dij(pm)

∏
k∈Spmax

εk ≤
∏
k∈Spm

εk} ⊆ { bij
dij(pm) ≤∏

k∈Spm
εk}, since ε > 1. Moreover,

{ ∏
k∈Spmax

εk ≤
dij(pm)

bij

∏
k∈Spm

εk

}⋂{ ∏
k∈Spm

εk ≤
bijx

dij(pm)

}
⊆
{ ∏
k∈Spmax

εk ≤ x
}
.

Hence,

(2.59) ≤ P
({ ∏

k∈Spmax

εk ≤ x
}⋂{ ∏

k∈Spm

εk ∈
[

bij
dij(pm)

,
bijx

dij(pm)

]})
,

43

Chapter 2 Recursive max-linear models with propagating noise

Moreover, since ε ≥ 1, we have for every subset S ⊆ Spmax that 1 ≤
∏
k∈S εk ≤ x,

whenever 1 ≤
∏
k∈Spmax

εk ≤ x. Therefore, for another node set S̃ with S ∩ S̃ = ∅ we
have ∏

k∈S
εk
∏
k∈S̃

εk ∈ [a, b] ⇒
∏
k∈S̃

εk ∈ [a/x, b]. (2.60)

Finally, since d̄ij(pm) = b̄ij and dij(pm) < dij(pmax) we have Spm \ Spmax ̸= ∅. In
total, we obtain

(2.59) ≤ P
({ ∏

k∈Spmax

εk ≤ x
}⋂{ ∏

k∈Spm

εk ∈
[

bij
dij(pm)

,
bijx

dij(pm)

]})
≤ P

(∏
k∈Spmax

εk ≤ x
)
P
(∏
k∈Spm\Spmax

εk ∈
[

bij
xdij(pm)

,
bijx

dij(pm)

])
= P

(∏
k∈Spmax

εk ≤ x
)
o(1), x ↓ 1,

as the interval in the second probability gets arbitrarily small and the distribution
of ε is atom-free. Comparing this upper bound with (2.58) we can see that every
summand of I12(x) is negligible with respect to I11(x) as x ↓ 1. Since there are only
finitely many nodes and hence finitely many paths from j to i, we have proved that
I12(x) = o(I11(x)) as x ↓ 1. Hence,

I1(x) ∼ c1 P
(∏
k∈Spmax

εk ≤ x
)
, x ↓ 1. (2.61)

Next, we assume that r = 0, i.e., that there is only one path pmax from j to i. Then
from (2.50) we find that I1(x) = I11(x) and simplifies (2.54) to

I1(x) = P
({ ∏

k∈Spmax

εk ≤ x
}⋂

⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈Sp∪{l}

εkZl ≤ bij
∏

k∈Spmax

εk
∨

l∈An(j)

b̄jlZl

}})
≥ P

({ ∏
k∈Spmax

εk ≤ x
}⋂

⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bij
∨

l∈An(j)

b̄jlZl

}})
= P

(⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bij
∨

l∈An(j)

b̄jlZl

}})
P
(∏
k∈Spmax

εk ≤ x
)
= c1 P

(∏
k∈Spmax

εk ≤ x
)

for c1 > 0. On the other hand,

I1(x) ≤ P
(⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈(Sp∪{l})\Spmax

εkZl ≤ bijx
∨

l∈An(j)

b̄jlZl

}})
P
(∏
k∈Spmax

εk ≤ x
)
= c2(x) P

(∏
k∈Spmax

εk ≤ x
)
,

44

2.7 Supplementary Material

and, since Z and ε are atom-free it again follows that limx↓1 c2(x) = c1 and therefore
(2.61) holds also for r = 0.

We next show that I2(x) = o(I1(x)) as x ↓ 1. Since I12(x) = o(I11(x) as x ↓ 1, we
can and do assume that

b̄ij = bijεj
∏

k∈Spmax

εk. (2.62)

Moreover, since for all paths p ∈ Pijl we have l ∈ An(i) if and only if l ∈ An(j),

Ui =
∨

l∈An(i)

∨
p∈Pil\Pijl

dil(p)
∏

k∈Sp∪{l}

εkZl ∨
∨

l∈An(j)

∨
p∈Pijl

dil(p)
∏

k∈Sp∪{l}

εkZl

=
∨

l∈An(i)

∨
p∈Pil\Pijl

dil(p)
∏

k∈Sp∪{l}

εkZl ∨ bij
∏

k∈Spmax

εkUj

by (2.62). If
∨
l∈An(i)

∨
p∈Pil\Pijl

dil(p)
∏
k∈Sp∪{l} εkZl > bij

∏
k∈Spmax

εkUj , then it fol-

lows that

Ui =
∨

l∈An(i)

∨
p∈Pil\Pijl

dil(p)
∏

k∈Sp∪{l}

εkZl. (2.63)

Moreover, it holds by (2.24), (2.20) and (2.18)

Ui =
∨

k∈An(i)

b̄ikŨk ≥ b̄ijŨj ≥ bij
∏

k∈Spmax

εkUj . (2.64)

Hence, Ui/Uj ≤ bijx implies that
∏
k∈Spmax

εk ≤ x. Therefore, using (2.23), (2.63)

and (2.62) we get

I2(x) = P
(Ui
Uj

≤ bijx, Ui > Ũj b̄ij

)
= P

(
Ui ∈ (Ũj b̄ij , Ũjεjbijx]

)
≤ P

({ ∏
k∈Spmax

εk ≤ x
}⋂

{ ∨
l∈An(i)

∨
p∈Pil\Pijl

dil(p)
∏

k∈Sp∪{l}

εkZl ∈
(
bijŨjεj

∏
k∈Spmax

εk, bijŨjεjx
]})

≤ P
({ ∏

k∈Spmax

εk ≤ x
}⋂

{ ∨
l∈An(i)

∨
p∈Pil\Pijl

dil(p)
∏

k∈Sp∪{l}

εkZl ∈
(
bijŨjεj , bijŨjεjx

]})
,

45

Chapter 2 Recursive max-linear models with propagating noise

since ε ≥ 1. Using that Uj = Ũjεj and j ̸∈ Spmax and the same argument as in (2.60),
we get

I2(x) ≤ P
({ ∏

k∈Spmax

εk ≤ x
}⋂

{ ∨
l∈An(i)

∨
p∈Pil\Pijl

dil(p)
∏

k∈(Sp∪{l})\Spmax

εkZl ∈

(
bijŨjεj
x

, bijŨjεjx

]})
= P

({ ∏
k∈Spmax

εk ≤ x
})

P
({ ∨

l∈An(i)

∨
p∈Pil\Pijl

dil(p)

εj

∏
k∈(Sp∪{l})\Spmax

εkZl ∈
(bijŨj

x
, bijŨjx

]})
,

since D being acyclic implies that Ũj and εj are independent of εk for every k ∈ Spmax .
For x ↓ 1 the interval in the second probability gets arbitrarily small. Since the
distribution of the noise-variables is atom-free and the left-hand side contains εj that
is not included in Ũj , this probability tends to zero as x ↓ 1. Comparing this upper
bound with (2.61) we can see that I2(x) = o(I1(x)) as x ↓ 1. Since I12(x) = o(I11(x)),
we have

I(x) ∼ I1(x) ∼ I11(x) ∼ c1 P
(∏
k∈Spmax

εk ≤ x
)
, x ↓ 1, (2.65)

holds, where the last asymptotic equivalence follows from (2.61). Moreover, we have
by (2.50), using (2.18),(2.20) and (2.23),

I(x) ∼ I11(x) = P
(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx, d̄ij(pmax) = b̄ij , Ui = Ũj b̄ij

)
= P

(
d̄ij(pmax)/εj ≤ bijx, Ui = Ũj d̄ij(pmax)

)
= P

(∏
k∈Spmax

εk ≤ x, Ui = Ujbij
∏

k∈Spmax

εk

)
, x ↓ 1, (2.66)

which, together with (2.65), proves the result. □

Proof of Corollary 2.3.14. We first show the result for Pij \ {p1, . . . , pn} ≠ ∅,
i.e., there exists a path p from j to i with dij < bij . We start as in the proof of
Theorem 2.3.12 for x ≥ 1

I(x) = I1(x) + I2(x)

46

2.7 Supplementary Material

and similarly to (2.49), we again apply the law of total probability to I1(x)

I1(x) = P
(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx, Ui = Ũj b̄ij

)
= P

(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx,
∨

p∈{p1,...,pn}

d̄ij(p) = b̄ij , Ui = Ũj b̄ij

)
+ P

(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx,
∨

p∈Pij\{p1,...,pn}

d̄ij(p) = b̄ij , Ui = Ũj b̄ij

)
= P

(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx,
∨

p∈Pij\{p1,...,pn}

d̄ij(p) ≤

∨
p∈{p1,...,pn}

d̄ij(p), Ui = Ũj b̄ij

)
+ P

(∨
p∈Pij

dij(p)
∏
k∈Sp

εk ≤ bijx,

∨
p∈Pij\{p1,...,pn}

d̄ij(p) >
∨

p∈{p1,...,pn}

d̄ij(p), Ui = Ũj b̄ij

)
=: Ĩ11(x) + Ĩ12(x).

With the same arguments as in the proof of Theorem 2.3.12 we find upper and lower
bounds for Ĩ11(x). Analogously to (2.53) and (2.54) we find

Ĩ11(x) = P
(⋂
p∈Pij\{p1,...,pn}

{ ∏
k∈Sp

εk ≤
bij

dij(p)

∨
p̃∈{p1,...,pn}

∏
k∈Sp̃

εk

}⋂
⋂

p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x

}⋂ ⋂
l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈Sp∪{l}

εkZl ≤

bij
∨

p̃∈{p1,...,pn}

∏
k∈Sp̃

εk
∨

l∈An(j)

b̄jlZl

}})
≥ P

(⋂
p∈Pij\{p1,...,pn}

{ ∏
k∈Sp\(∪ni=1Spi)

εk ≤
bij

dij(p)

}⋂ ⋂
p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x

}
⋂ ⋂

l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈Sp∪{l}\(∪ni=1Spi)

εkZl ≤ bij
∨

l∈An(j)

b̄jlZl

}})
= c1 P

(⋂
p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x
})

and analogously to (2.57) we have

Ĩ11(x) ≤ P
(⋂
p∈Pij\{p1,...,pn}

{ ∏
k∈Sp\(∪ni=1Spi)

εk ≤
bij

dij(p)
x
}⋂

⋂
p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x

}
⋂ ⋂

l∈An(i)

{ ⋂
p∈Pil\Pijl

{
dil(p)

∏
k∈Sp∪{l}\(∪ni=1Spi)

εkZl ≤ bijx
∨

l∈An(j)

b̄jlZl

}})
= c2(x) P

(⋂
p∈{p1,...,pn}

{ ∏
k∈Sp

εk ≤ x
})

47

Chapter 2 Recursive max-linear models with propagating noise

With the same arguments as in the previous proof, we can show that c1 ∈ (0, 1) and
c2(x) → c1 for x ↓ 1 and Ĩ12(x) = o(Ĩ11(x)) and I2(x) = o(I1(x)). Hence, the result
follows. If Pij \ {p1, . . . , pn} = ∅ the result follows analogously. □

Proof of Corollary 2.3.15 From Theorem 2.3.12 we have as x ↓ 1,

P
(n∧
k=0

Uki
Ukj

≤ bijx
)
= 1−

(
1− P

(Ui
Uj

≤ bijx
))n

= 1−
(
1− c(1 + o(1))P

(∏
k∈Sp

εk ≤ x
))n

= 1−
n∑
k=0

(
n

k

)(
− c(1 + o(1))P

(∏
k∈Sp

εk ≤ x
))k

∼ c nP
(n∏
i=1

εki ≤ x

)
,

where we have used the binomial theorem and the fact that the summands for k ≥ 2
are negligible when n is fixed. □

Proof of Theorem 2.3.16. We give a proof for Pij \{p1} ≠ ∅ and Pml \{p2} ≠ ∅,
i.e., p1 and p2 are not the only paths from j to i and from l to m, respectively. All
other cases follow analogously. By the law of total probability, we have

P
(Ui
Uj

≤ bijx1,
Um
Ul

≤ bmlx2

)
= P

(∏
k∈Sp1

εk ≤ x1,
∏
k∈Sp2

εk ≤ x2, Ui = Ujbij
∏
k∈Sp1

εk, Um = Ulbml
∏
k∈Sp2

εk

)
+ P

(∏
k∈Sp1

εk ≤ x1,
Um
Ul

≤ bmlx2, Ui = Ujbij
∏
k∈Sp1

εk, Um ̸= Ulbml
∏
k∈Sp2

εk

)
+ P

(Ui
Uj

≤ bijx1,
∏
k∈Sp2

εk ≤ x2, Ui ̸= Ujbij
∏
k∈Sp1

εk, Um = Ulbml
∏
k∈Sp2

εk

)
+ P

(Ui
Uj

≤ bijx1,
Um
Ul

≤ bmlx2, Ui ̸= Ujbij
∏
k∈Sp1

εk, Um ̸= Ulbml
∏
k∈Sp2

εk

)
=: I1(x1, x2) + I2(x1, x2) + I3(x1, x2) + I4(x1, x2)

We first consider I1(x1, x2). Observe that for I11(x) defined in (2.50) we have by
(2.66)

I11(x) = P
(∏
k∈Spmax

εk ≤ x, Ui = Ujbij
∏

k∈Spmax

εk

)

and hence, I1(x1, x2) is the bivariate extension to I11(x). For this reason, we can
follow the proof of Theorem 2.3.12 at (2.52), we again find upper and lower bounds

48

2.7 Supplementary Material

based on the decomposition

{ ∨
p∈Pij\{p1}

∏
k∈Sp

εk ≤ bij
dij(p)

∏
k∈Sp1

εk

}⋂{ ∨
p∈Pml\{p2}

∏
k∈Sp

εk ≤ bml

dml(p)

∏
k∈Sp2

εk

}⋂
{ ∏

k∈Sp1

εk ≤ x1

}⋂ ⋂
n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈Sp∪{n}

εkZn ≤

bij
∏

k∈Sp1

εk
∨

n∈An(j)

b̄jnZn

}}⋂{ ∏
k∈Sp2

εk ≤ x2

}⋂
⋂

n∈An(m)

{ ⋂
p∈Pmn\Pmln

{
dmn(p)

∏
k∈Sp∪{n}

εkZn ≤ bml

∏
k∈Sp2

εk
∨

n∈An(l)

b̄lnZn

}}
.

Now for three paths p, p1 and p2 and a node i we denote

Sp+i\p1+p2 := (Sp ∪ {i}) \ (Sp1 ∪ Sp2) and Sp\p1+p2 := Sp \ (Sp1 ∪ Sp2).

On the set {
∏
k∈Sp1

εk ≤ x1} ∩ {
∏
k∈Sp2

εk ≤ x2} we have for x1, x2 > 1, since ε > 1,

{ ∨
p∈Pij\{p1}

∏
k∈Sp

εk ≤
bij

dij(p)

∏
k∈Sp1

εk

}
=
{ ∨
p∈Pij\{p1}

∏
k∈Sp\Sp1

εk ≤
bij

dij(p)

∏
k∈Sp1\Sp

εk

}
⊇
{ ∨
p∈Pij\{p1}

∏
k∈Sp\Sp1

εk ≤
bij

dij(p)

}
⊇
{ ∨
p∈Pij\{p1}

∏
k∈Sp\p1+p2

εk ≤
bij

dij(p)x2

}

as well as

⋂
n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈Sp∪{n}

εkZn ≤ bij
∏
k∈Sp1

εk
∨

n∈An(j)

b̄jnZn

}}
=

⋂
n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈(Sp∪{n})\Sp1

εkZn ≤ bij
∏

k∈Sp1\Sp

εk

∨
n∈An(j)

b̄jnZn

}}
⊇

⋂
n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈(Sp∪{n})\Sp1

εkZn ≤

bij
∨

n∈An(j)

∨
p̃∈Pjn

djn(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}
⊇

⋂
n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈Sp+n\p1+p2

εkZn ≤

bij
x2

∨
n∈An(j)

∨
p̃∈Pjn

djn(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}
.

49

Chapter 2 Recursive max-linear models with propagating noise

Therefore,

I1(x1, x2) ≥ P
({ ∨

p∈Pij\{p1}

∏
k∈Sp\p1+p2

εk ≤
bij

dij(p)x2

}⋂{ ∨
p∈Pml\{p1}

∏
k∈Sp\p1+p2

εk ≤
bml

dml(p)x1

}⋂ ⋂
n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈Sp+n\p1+p2

εkZn ≤ bij
x2

∨
n∈An(j)∨

p̃∈Pjn

djn(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}⋂ ⋂
n∈An(m)

{ ⋂
p∈Pmn\Pmln

{
dmn(p)

∏
k∈Sp+n\p1+p2

εkZn ≤ bml
x1

∨
n∈An(l)

∨
p̃∈Pln

dln(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}
⋂{ ∏

k∈Sp1

εk ≤ x1

}⋂{ ∏
k∈Sp2

εk ≤ x2

})
=: c3(x1, x2) P

({ ∏
k∈Sp1

εk ≤ x1

}⋂{ ∏
k∈Sp2

εk ≤ x2

})
.

For an upper bound, observe that on {
∏
k∈Sp1

εk ≤ x1} ∩ {
∏
k∈Sp2

εk ≤ x2} we have

{ ∨
p∈Pij\{p1}

∏
k∈Sp

εk ≤
bij

dij(p)

∏
k∈Sp1

εk

}
=
{ ∨
p∈Pij\{p1}

∏
k∈Sp\Sp1

εk ≤
bij

dij(p)∏
k∈Sp1\Sp

εk

}
⊆
{ ∨
p∈Pij\{p1}

∏
k∈Sp\Sp1

εk ≤
bijx1
dij(p)

}
⊆
{ ∨
p∈Pij\{p1}

∏
k∈Sp\p1+p2

εk ≤
bijx1
dij(p)

}
as well as ⋂

n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈Sp∪{n}

εkZn ≤ bij
∏
k∈Sp1

εk
∨

n∈An(j)

b̄jnZn

}}
⊆

⋂
n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈(Sp∪{n})\Sp1

εkZn ≤

bijx1x2
∨

n∈An(j)

∨
p̃∈Pjn

djn(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}
⊆

⋂
n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈Sp+n\p1+p2

εkZn ≤

bijx1x2
∨

n∈An(j)

∨
p̃∈Pjn

djn(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}
.

For this reason,

I1(x1, x2) ≤ c4(x1, x2) P
({ ∏

k∈Sp1

εk ≤ x1

}⋂{ ∏
k∈Sp2

εk ≤ x2

})
,

50

2.7 Supplementary Material

with

c4(x1, x2) := P
({ ∨

p∈Pij\{p1}

∏
k∈Sp\p1+p2

εk ≤
bijx1
dij(p)

}⋂{ ∨
p∈Pml\{p1}

∏
k∈Sp\p1+p2

εk ≤
bmlx2
dml(p)

}⋂ ⋂
n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈Sp+n\p1+p2

εkZn ≤ bijx1x2

∨
n∈An(j)

∨
p̃∈Pjn

djn(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}⋂ ⋂
n∈An(m)

{ ⋂
p∈Pmn\Pmln

{
dmn(p)

∏
k∈Sp+n\p1+p2

εkZn ≤ bmlx1x2
∨

n∈An(l)

∨
p̃∈Pln

dln(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}})
.

Since all random variables are continuous, c4(x1, x2) tends to c3(x1, x2) for x1, x2 ↓ 1,
and

c3(x1, x2) ≤ c ≤ c4(x1, x2)

with

c := P
({ ∨

p∈Pij\{p1}

∏
k∈Sp\p1+p2

εk ≤
bij

dij(p)

}⋂{ ∨
p∈Pml\{p1}

∏
k∈Sp\p1+p2

εk ≤

bml
dml(p)

}⋂ ⋂
n∈An(i)

{ ⋂
p∈Pin\Pijn

{
din(p)

∏
k∈Sp+n\p1+p2

εkZn ≤ bij
∨

n∈An(j)

∨
p̃∈Pjn

djn(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}}⋂ ⋂
n∈An(m)

{ ⋂
p∈Pmn\Pmln

{
dmn(p)

∏
k∈Sp+n\p1+p2

εkZn

≤ bml
∨

n∈An(l)

∨
p̃∈Pln

dln(p̃)
∏

k∈Sp̃+n\p1+p2

εkZn

}})
.

Since i ̸= m we can use the same arguments as for c1 in the proof of Theorem 2.3.12
to show that c > 0. Therefore, we only need to show that Ii(x1, x2) = o(I1(x1, x2))
for i ∈ {2, 3, 4}. It is obvious that I2(x1, x2) = o(I1(x1, x2)) implies the other two
cases. Using the same arguments from the proof of Theorem 2.3.12 regarding I2(x) =
o(I1(x)) and I12(x) = o(I11)(x), the result follows. □

2.7.2 Proofs of Section 2.4

Proof of Proposition 2.4.3 We first consider the convergence of the simple
minimum ratio

∧n
k=1(U

k
i /U

k
j). For j = i the result is obvious. Moreover, for j ∈ an(i)

we have with Lemma 2.3.8 d), for x > 0,

lim
n→∞

P
(∣∣∣ n∧

k=1

Uki
Ukj

− bij

∣∣∣ > x
)
= lim

n→∞

(
P
(Ui
Uj

− bij > x
))n

= 0,

showing that the minimum ratio converges for n → ∞ in probability to bij . Since∧n
k=1 U

k
i /U

k
j is non-increasing, it converges almost surely. For j ̸∈ an(i) we have

bij = 0 and the same result holds. Therefore, the estimators (2.27), (2.30) and (2.31)

51

Chapter 2 Recursive max-linear models with propagating noise

converge almost surely. Considering the inequality (2.29) for the estimator (2.28),
this estimator as well converges almost surely. Finally using (2.33) and (2.34), the
same also holds for the estimator (2.36). □

Proof of Lemma 2.4.4 Assume first that the output B̂ is not idempotent. Then
there exists an entry b̂ij in B̂ such that b̂ij < b̂kj b̂ik. Therefore, since the input matrix

B̌ is idempotent, we have b̂ij = 0 while b̂kj > 0 and b̂ik > 0. This is a contradiction
to the if-condition on line 9 in the algorithm.

Now assume that there is an idempotent matrix B′ that preserves all values that are
larger than δ1 but contains more zero entries. Then there is an entry b′ij such that

b′ij = 0 while b̂ij > 0. Since b̂ij > 0 there must be some k ∈ {j + 1, . . . , i − 1} such

that b̂kj ̸∈ S and b̂ik ̸∈ S, otherwise we would have set b̂ij equal to zero. Because we
sort pairs (j, i) by distance and (j, k) and (k, i) both have smaller distance it must
also hold that both, b̂kj and b̂ik are strictly greater than zero. In comparison, since
B′ is idempotent, either b′kj or b

′
ik is equal to zero.

Therefore, we have b′kj = 0 while b̂kj > 0 or b′ik = 0 while b̂ik > 0. In both cases, the
distance compared to the pair (j, i) is decreased. Repeating this argument we can
assume that (j − i) = 1. This, however, leads to a contradiction since b̂ij is set to
zero for all pairs (j, i) of distance one if b̌ij < δ1. □

2.7.3 Proofs of Section 2.5

Proof of Lemma 2.5.1 By Theorem 2.3.12 we get for x ↓ 1,

lim
t↓0

P(ln(Ui/Uj)− ln(bij) ≤ tx)

P(ln(Ui/Uj)− ln(bij) ≤ t)
= lim

t↓0

P(Ui/Uj ≤ bij exp(tx))

P(Ui/Uj ≤ bij exp(t))

= lim
t↓0

c P
(∏

k∈Sp
εk ≤ exp(tx)

)
c P
(∏

k∈Sp
εk ≤ exp(t)

) = lim
t↓0

P
(∑

k∈Sp
ln(εk) ≤ tx

)
P
(∑

k∈Sp
ln(εk) ≤ t

) = xζ(p)α

for ζ(p) = |Sp| by Corollary 2.2.6 a) and the fact that ln(εk) ∈ RV 0
α . □

For the proof of Theorem 2.5.2 we need the following distribution family.

Definition 2.7.1. A positive random variable Y is Fréchet distributed with shape
α > 0 and scale s > 0 and we write Y ∼ Fréchet(α, s) if the distribution function of
Y is given by

Φα,s(x) = exp

(
−
(x
s

)−α)
, x > 0.

The proof of Theorem 2.5.2 is divided into a proof of the one-dimensional marginal
limit distributions, followed by the proof of the multidimensional result. We start
with the one-dimensional limits.

Proposition 2.7.2. Let U be a recursive ML vector with propagating noise on a
DAG D as defined in (2.17) and assume that the path p := [j → · · · → i] from j

52

2.7 Supplementary Material

to i is generic. Assume further that ε̃ = ln(ε) ∈ RV 0
α . For the node set Sp choose

an ∼ F←∑
k∈Sp

ε̃k
(1/n) as n→ ∞. Let U1, . . . ,Un be an i.i.d. sample from U . Then

lim
n→∞

P

(
1

anbij

(n∧
k=1

Uki /U
k
j − bij

)
≤ x

)
= Ψ(ζ(p)α,c1/(ζ(p)α))(x), x > 0,

for the same constant c as in Theorem 2.3.12, and Ψα,s denotes the Weibull distri-
bution from Definition 2.2.2 with xL = 0.

Proof. Define X := ln(Ui/Uj) − ln(bij) with distribution function FX . Then by
Lemma 2.5.1, X ∈ RV 0

ζ(p)α, which implies that 1/X ∈ RV∞ζ(p)α. Using e.g. Theo-

rem 3.3.7 of Embrechts et al. [1997], for

a1/X(n) ∼ F←1/X(1− 1/n) ∼ 1/F←X (1/n) → ∞, n→ ∞, (2.67)

we get

lim
n→∞

P
(n∨
k=1

(1

X

)k
≤ a1/X(n)x

)
= lim

n→∞
P
(n∧
k=1

Xk ≥ 1

a1/X(n)x

)
= Φζ(p)α,1(x), x > 0,

which implies by the continuity of X,

lim
n→∞

P
(n∧
k=1

Xk ≤ x

a1/X(n)

)
= 1− Φζ(p)α,1(1/x), x > 0. (2.68)

Choose now

ãn ∼ F←X (1/n) ∼ 1/a1/X(n) ↓ 0, n→ ∞. (2.69)

Hence, we have with (2.68) and (2.69) by Lemma 2.5.1,

lim
n→∞

P
(1

ãn

(n∧
k=1

ln(Uki /U
k
j)− ln(bij)

)
≤ x

)
= 1− Φζ(p)α,1(1/x), x > 0. (2.70)

Recall from Theorem 2.3.12 and the regular variation of ε̃, that for the same c as
defined in Theorem 2.3.12 we have

FX(x) ∼ c P
(∑
k∈Sp

ε̃k ≤ x
)
∼ P

(∑
k∈Sp

ε̃k ≤ xc1/(ζ(p)α)
)

= F∑
k∈Sp

ε̃k(xc
1/(ζ(p)α)), x ↓ 0,

which implies that 1/n ∼ FX(ãn) ∼ F∑
k∈Sp

ε̃k(ãnc
1/(ζ(p)α)). For the generalized

inverses this implies that

ãn ∼ F←X (1/n) ∼ c−1/(ζ(p)α)F←∑
k∈Sp

ε̃k
(1/n) ∼ c−1/(ζ(p)α)an, n→ ∞.

From this we find

P
(1

ãn

(n∧
k=1

ln(Uki /U
k
j)− ln(bij)

)
≤ x

)
= P

(n∧
k=1

Uki /U
k
j ≤ exp(ãnx)bij

)
, x > 0.

53

Chapter 2 Recursive max-linear models with propagating noise

A Taylor expansion around 0 yields exp(ãnx) = 1+ ãnx(1+ o(1)) as n→ ∞, because
ãn ↓ 0. Since for x > 0,

lim
n→∞

P
(1

ãnbij

(n∧
k=1

Uki /U
k
j − bij

)
≤ x

)
= lim

n→∞
P
(1

anbij

(n∧
k=1

Uki /U
k
j − bij

)
≤ c1/(ζ(p)α)x

)
,

we obtain with (2.70)

lim
n→∞

P
(1

anbij

(n∧
k=1

Uki /U
k
j − bij

)
≤ x

)
= 1− Φζ(p)α,c−1/(ζ(p)α)(1/x)

= Ψζ(p)α,c1/(ζ(p)α)(x),

which proves the assertion.

Now we can prove Theorem 2.5.2.

Proof of Theorem 2.5.2 As we shall find asymptotic independence of estimates
between different node pairs, it suffices to prove the bivariate result.

We first simplify notation as follows. Assume pairs of nodes (j, i) ̸= (l,m) and
denote the generic paths p1 = pij with node set Sp1 and p2 = pml with node set Sp2 ,

respectively. Further denote a1n = a
(ij)
n and a2n = a

(ml)
n .

By Proposition 2.7.2 we have

lim
n→∞

P
(1

a1nbij

(n∧
k=1

Uki /U
k
j − bij

)
≥ x1

)
= Φ

ζ(p1)α,c
−1/(ζ(p1)α)
1

(1/x1)

= exp
(
− x

ζ(p1)α
1

c1

)
,

for x1 > 0. Since limn→∞(1 − a
n)
n = exp(−a) for a ∈ R, we get by independence of

the ratios Uki /U
k
j for k = 1, . . . , n as n→ ∞,

P
(1

a1nbij

(
Ui/Uj − bij

)
≤ x1

)
=
x
ζ(p1)α
1

c1n
(1 + o(1)), x1 > 0. (2.71)

With the same argument, we have

P
(1

a2nbml

(
Um/Ul − bml

)
≤ x2

)
=
x
ζ(p2)α
2

c2n
(1 + o(1)), x2 > 0. (2.72)

Therefore, we have on the one hand

lim
n→∞

P
(1

a1nbij

n∧
k=1

(
Uki /U

k
j − bij

)
≥ x1

)
P
(1

a2nbml

n∧
k=1

(
Ukm/U

k
l − bml

)
≥ x2

)
= exp

(
− x

ζ(p1)α
1

c1

)
exp

(
− x

ζ(p2)α
2

c2

)
= exp

(
− x

ζ(p1)α
1

c1
− x

ζ(p2)α
2

c2

)
, x1, x2 > 0,

(2.73)

54

2.7 Supplementary Material

whereas, on the other hand, we have by independence of the bivariate ratios (Uki /U
k
j , U

k
m/U

k
l)

for k = 1, . . . , n,

lim
n→∞

P
(1

a1nbij

n∧
k=1

(
Uki /U

k
j − bij

)
≥ x1,

1

a2nbml

n∧
k=1

(
Ukm/U

k
l − bml

)
≥ x2

)
= lim

n→∞

{
P
(1

a1nbij

(
Uki /U

k
j − bij

)
≥ x1,

1

a2nbml

(
Ukm/U

k
l − bml

)
≥ x2

)}n
= lim

n→∞

{
1− P

(1

a1nbij

(
Ui/Uj − bij

)
≤ x1

)
− P

(1

a2nbml

(
Um/Ul − bml

)
≤ x2

)
+ P

(1

a1nbij

(
Ui/Uj − bij

)
≤ x1,

1

a2nbml

(
Um/Ul − bml

)
≤ x2

)}n
. (2.74)

By (2.64) we have Ui ≥ bij
∏
k∈Sp1

εkUj and Um ≥ bml
∏
k∈Sp2

εkUl, which implies

P
(1

a1nbij

(
Ui/Uj − bij

)
≤ x1,

1

a2nbml

(
Um/Ul − bml

)
≤ x2

)
(2.75)

≤ P
(1

a1n

(∏
k∈Sp1

εk − 1
)
≤ x1,

1

a2n

(∏
k∈Sp2

εk − 1
)
≤ x2

)
.

Since (j, i) ̸= (l,m), either Sp1 \Sp2 ̸= ∅ or Sp2 \Sp1 ̸= ∅ and without loss of generality,
we assume Sp2 \ Sp1 ̸= ∅. Since ε ≥ 1 and all εk are independent, we get

(2.75) ≤ P
(1

a1n

(∏
k∈Sp1

εk − 1
)
≤ x1,

1

a2n

(∏
k∈Sp2\Sp1

εk − 1
)
≤ x2

)
= P

(1

a1n

(∏
k∈Sp1

εk − 1
)
≤ x1

)
P
(1

a2n

(∏
k∈Sp2\Sp1

εk − 1
)
≤ x2

)
. (2.76)

By Corollary 2.2.6 b) we know that (
∏
k∈Sp1

εk − 1) ∈ RV 0
ζ(p1)α

. Moreover, observe

that by a Taylor expansion we have a1n ∼ F←∑
k∈Sp

ε̃k
(1/n) ∼ F←∏

k∈Sp
εk−1(1/n) as

n → ∞. Therefore, by Theorem 3.3.7 of Embrechts et al. [1997] as in the proof of
Proposition 2.7.2, similarly to (2.70), it holds that

lim
n→∞

P
(1

a1n

(n∧
t=1

∏
k∈Sp1

εtk − 1
)
≥ x1

)
= Φζ(p1)α,1(1/x1)

= exp
(
− x

ζ(p1)α
1

)
, x1 > 0.

We proceed as in (2.71) and (2.72) to obtain as n→ ∞

P
(1

a1n

(∏
k∈Sp1

εk − 1
)
≤ x1

)
=
(xζ(p1)α1

n

)
(1 + o(1)), x1 > 0. (2.77)

Moreover, since Sp2 \ Sp1 ̸= ∅, ε is atom-free and a2n → 0 as n→ ∞, we have

P
(1

a2n

(∏
k∈Sp2\Sp1

εk − 1
)
≤ x2

)
= o(1), x2 > 0. (2.78)

55

Chapter 2 Recursive max-linear models with propagating noise

Therefore, we have by (2.76), (2.77) and (2.78)

(2.75) =
(xζ(p1)α1

n

)
(1 + o(1))o(1), x1, x2 > 0.

Comparing this with (2.71) and (2.72), we find that the last term in (2.74) is negligible.
Hence, we obtain

lim
n→∞

P
(1

a1nbij

n∧
k=1

(
Uki /U

k
j − bij

)
≥ x1,

1

a2nbml

n∧
k=1

(
Ukm/U

k
l − bml

)
≥ x2

)
= lim
n→∞

(
1− x

ζ(p1)α
1

c1n
(1 + o(1))− x

ζ(p2)α
2

c2n
(1 + o(1))

)n
= exp

(
− x

ζ(p1)α
1

c1
− x

ζ(p2)α
2

c2

)
.

Comparing this to (2.73) yields the result.

□

56

Chapter 3

Estimating a Directed Tree for Extremes

3.1 Introduction

Causal inference from extremes aims to discover cause and effect relations between
large observed values of random variables. To understand causality of high risk vari-
ables is much needed as rare events like environmental or financial risks are often
cascading through a network. Pollutants can propagate through an unseen under-
ground waterway, causing extreme measurements at multiple locations [Leigh et al.,
2019]. Credit markets might fail due to some endogenous systemic risk propagation
[Rochet and Tirole, 1996]. However, it is not immediately obvious how to extend the
past decades of work on causal inference [Bollen, 1989, Drton and Maathuis, 2017,
Lauritzen, 1996, Maathuis et al., 2019, Pearl, 2009, Spirtes et al., 2000] for Gaussian
and discrete distributions to extreme values. Since the focus is on maxima rather
than averages, correlations or other bivariate measures of dependence in the center
of the distribution are replaced by extreme dependence measures [Coles et al., 1999,
Engelke and Volgushev, 2020, Larsson and Resnick, 2012, Sibuya, 1960], which are
often difficult to estimate from limited data.

These extreme dependence measures are derived through asymptotic theory from
generalized extreme value distributions—modeling sample extremes—or generalized
Pareto distributions—modeling excesses over high thresholds. Textbook treatments
can be found in [Beirlant et al., 2004, Coles et al., 2001, De Haan and Ferreira, 2007,
Resnick, 1987, 2007]. A very readable review paper is Davison and Huser [2015].
The development of graphical models for extremes follows these two approaches.
Max-linear causal graphical models or max-linear Bayesian networks are motivated
by extreme value distributions, which are max-stable (closed with respect to taking
maxima). Introduced in Gissibl and Klüppelberg [2018], they are defined via a max-
linear recursively defined structural equation models on a directed acyclic graph (see
Pearl et al. [2009]). Each node represents a positive random variable defined as a
weighted maximum of its parent variables and an independent innovation. The mul-
tivariate distribution of a max-linear vector is not restricted to a Fréchet distribution;
indeed the independent innovations can have arbitrary continuous distributions. The
emphasis of the model is on its structure given by a directed graph. Nonparametric
statistical inference aims at identifying the directed graphical structure regardless of
the node distributions.

Engelke and Hitz [2020], on the other hand, define a new extreme conditional de-
pendence concept for multivariate Pareto distributions and use this concept to define

57

Chapter 3 Estimating a Directed Tree for Extremes

extreme graphical models similarly as the classical concept for densities. The mul-
tivariate distribution determines the model and has to be specified for statistical
inference. Here the multivariate Hüsler-Reiss distribution plays a prominent role;
see Asenova et al. [2021], Asenova and Segers [2022], Engelke and Volgushev [2020],
Engelke et al. [2021], Hu et al. [2022], Rötter et al. [2022].

Motivated by extreme value theory, it is not surprising that max-linear Bayesian
networks have been mostly investigated for heavy-tailed innovations: [Einmahl et al.,
2017, Section 3.3] consider tail dependence functions for i.i.d. Fréchet innovations.
Gissibl et al. [2018] investigate tail dependence for i.i.d. regularly varying innovations,
and Klüppelberg and Krali [2021] the scaling properties of the same model. Asenova
et al. [2021] and Segers [2019] investigate regularly varying Markov trees, and more
recently, Asenova and Segers [2022] investigate a new max-linear graphical model on
trees of transitive tournaments.

3.1.1 The Extremal River Problem

The relevance of extremal graphical models for multivariate distributions has been
validated on several data sets, prominently on the Upper Danube river network. The
goal is to recover a river network from only extreme flow measured at a set V of
stations, without any information on the stations’ location. We refer to it as the
Extremal River Problem. Here, the true river network serves as the ‘gold standard’,
allowing one to verify the performance of the proposed estimator. Success in solving
the Extreme River Problem can translate to new solutions to the contaminant tracing
challenge in hydrology [Leigh et al., 2019, McGrane, 2016, Rodriguez-Perez et al.,
2020, Ver Hoef and Peterson, 2010, Ver Hoef et al., 2006, Wolf et al., 2012]. There, one
needs an inexpensive method to trace pollutants or chemical constituents transported
by a complex and unknown underground waterway that is prohibitive to model or
survey with traditional fluid mechanics methods [Anderson et al., 2015]. Recent
advances point towards an imminent data explosion [Bartos et al., 2018, Mao et al.,
2019], where pollutants exceeding certain thresholds can be detected via a sensor
network. Thus, contaminant tracing with sensors data is a version of the Extremal
River Problem without the gold standard, where the network is truly unknown.

The Extremal River Problem with test data given by river discharges of the Upper
Danube river network has proven to be challenging and very stimulating for extreme
value theory, with each paper taking a different technique. The data have been pre-
processed in Asadi et al. [2015] and are available in the R package graphicalExtremes
[Engelke et al., 2019].

The preprocessed data have been analyzed in a number of publications with focus
on modeling extreme dependence: flow- and spatial dependence [Asadi et al., 2015]
and undirected graphical models for extremes [Engelke and Hitz, 2020, Engelke et al.,
2021, Hu et al., 2022, Gong et al., 2022, Rötter et al., 2022]. In a first paper, En-
gelke and Hitz [2020] returned a highly accurate but undirected graph, followed by
publications using new models and applying different methods for reconstructing the
undirected graph.

58

3.1 Introduction

Our focus is on causality in extremes, modelled by a directed tree; hence, a large
value at node j causes a large value at node i, whenever there is an edge from j to i.
Similar problems have also been considered modeling causal extreme dependence by
expected quantile scores in [Mhalla et al., 2020] and by causal dependence coefficients
in [Gnecco et al., 2021]. Gnecco et al. [2021] correctly recovered the causal order of
12 nodes out of 31, but did not learn the entire river network, while Mhalla et al.
[2020] focused on flow-connections and did well at detecting nodes connected by a
directed path; see Figure 7 in Mhalla et al. [2020]. These two publications have
slightly different notions of causality; we discuss this in Section 4.

3.1.2 Main contributions and structure of the chapter

The novelty of this chapter lies in several directions.

1. We suggest a new algorithm QTree to recover causality in extremes, where
causality is modelled by a directed tree. The advantage of the proposed max-
linear Bayesian tree is a structural model, which does not require to specify
multivariate distributions. Moreover, no normalization of the data to standard
Fréchet or Gumbel is needed.

2. The QTree algorithm estimates a pair-wise score matrixW , and applies Chu–Liu/-
Edmonds’ algorithm to output a root-directed spanning tree of optimum score.
The algorithm is simple, using properties of a max-linear Bayesian tree, and has
a stabilizing subsampling procedure that is based on bootstrap aggregation.

3. We prove strong consistency of the estimated trees in an extreme value setting
with possible noise as the sample size tends to infinity. This proof is based on
a new variational argument to account for noise in the data.

4. We analyze three new data sets from the Lower Colorado river network in
Texas. We also show by a simulation study that QTree is robust with respect
to different dependence structures (given by edge-weights) and different node
distributions entailed from different innovation distributions.

QTree performs extremely well on real-world data sets. Algorithm 5 achieves almost
perfect recovery of the Upper Danube network. In addition to the Upper Danube,
we further test QTree on three sectors of the Lower Colorado river network in Texas.
These are much more challenging data sets. The Colorado river network suffers
from severe drought, extreme flooding, and sensors failure, with up to 36.9% missing
data (the Upper Danube has none). These challenges make recovering the Lower
Colorado network much closer to the trace contaminant challenge. Remarkably, on
all three sectors of the Lower Colorado, QTree Algorithm 5 also achieves almost
perfect recovery (cf. Section 3.4).

Beyond hydrology, QTree can be applied to cause and effect detection in every high
risk problem assuming that the network is a root-directed tree. At a high level,
QTree aims to fit a max-linear Bayesian tree to the data. Max-linear Bayesian net-
works have recently emerged as a suitable directed graphical model for causality in
extremes [Améndola et al., 2022, Buck and Klüppelberg, 2021, Gissibl, 2018, Gissibl
and Klüppelberg, 2018], however, existing methods for learning them aim to learn

59

Chapter 3 Estimating a Directed Tree for Extremes

the model parameters and thus are highly sensitive to model misspecifications; see
Buck and Klüppelberg [2021], Gissibl [2018], Gissibl et al. [2021]; Gissibl et al. [2018],
Klüppelberg and Krali [2021], Klüppelberg and Lauritzen [2020]. In particular, they
do not perform well on the Upper Danube data set. In contrast, QTree relies on
qualitative aspects of the max-linear Bayesian network model to score each potential
edge independently, and then applies Chu–Liu/Edmonds’ algorithm to return an op-
timal root-directed spanning tree; see e.g. Gabow et al. [1986], Section 3. We detail
the algorithm and the intuition behind it in Section 3.2. Note that QTree heavily
relies on the assumption that there are sufficiently many extreme observations, and
that the signal has heavier tail than the noise. Assuming that the data come from
a noisy max-linear Bayesian network with appropriate signal-to-noise ratio, we prove
that the tree output by QTree is strongly consistent (cf. Theorem 3.2.4).

QTree is very flexible, has only two tuning parameters, and is very efficient. It runs
in time O(n|V |2), where n is the number of observations and |V | is the number of
nodes. QTree maximizes the information available from missing data since at each
step it only utilizes the data projected onto two coordinates. QTree is implemented
as a plug-and-play package in Python [Tran, 2021] at

https://github.com/princengoc/qtree

which includes all data and codes to produce the results and figures in this chapter.

This chapter is organized as follows. We introduce QTree (Algorithm 4) and auto-tuned
QTree (Algorithm 5) in Section 3.2 and discuss its intuition supported by prelimi-
nary simulation results. In Section 3.3, we present the data sets, discuss their specific
challenges and describe the data preprocessing steps. In Section 3.4, we present the
estimation results of QTree and analyze the performance of the automated parame-
ter selection. Here we also compare different algorithms in the literature with ours.
In Section 3.5, we test the limits of QTree by a small simulation study. Section
3.6 concludes with a summary. The section of Supplementary Material includes the
proof of the Consistency Theorem (Theorem 3.2.4) as well as supplemental figures to
Sections 3.4 and Section 3.5.

Notations. Estimators are compared based on standard metrics in causal inference
[Zheng et al., 2018]: normalized structural Hamming distance (nSHD), false discovery
rate (FDR), false positive rate (FPR), and true positive rate (TPR). All of these
metrics lie between 0 and 1. We recall their definitions here. Let G be the true graph
and Ĝ an estimated graph. The structural Hamming distance SHD(G, Ĝ) between G
and Ĝ is the minimum number of edge additions, deletions and reversals to obtain G
from Ĝ. Denote E(G) and E(Ĝ) the set of edges in G and Ĝ, respectively. Note that
|E(Ĝ) \ E(G)| is the number of edges in Ĝ that are not in G, while |E(Ĝ) ∩ E(G)| is
the number of correctly estimated edges. We then have

nSHD(Ĝ,G) := SHD(Ĝ,G)
|E(Ĝ)|+ |E(G)|

, FDR(Ĝ,G) := |E(Ĝ) \ E(G)|
|E(Ĝ)|

, (3.1)

FPR(Ĝ,G) := |E(Ĝ) \ E(G)|
|V | × (|V | − 1)− |E(G)|

, TPR(Ĝ,G) := |E(Ĝ) ∩ E(G)|
|E(G)|

.

The performance of an algorithm is better the smaller the first three metrics are and
the larger TPR is. We shall use this throughout Section 3.4.

60

https://github.com/princengoc/qtree

3.2 The algorithm

3.2 The algorithm

3.2.1 The data generation model

Throughout we assume data on a root-directed spanning tree T on V nodes. That
is, each node i ∈ V except the root r has exactly one child, the root r has none,
and there is a path from every node i ̸= r to r. In the Extremal River Problem, our
goal is to recover the unknown T from extreme discharges Xi at nodes i ∈ V . Our
starting point is the max-linear Bayesian network [Gissibl and Klüppelberg, 2018], a
model for risk propagation in a directed acyclic graph. When the graph is a tree T ,
then the model is defined as

Xi =
∨

j:j→i∈T
cijXj ∨ Zi, cij , Zi > 0, i ∈ V. (3.2)

Here the Zi, called innovations, are independent with support R+ and have atom-
free distributions. The model says that each edge j → i in T has a weight cij > 0,
interpreted as some measure of the flow rate from j to i, and an extreme discharge
at i is either the result of an unknown external input Zi (e.g. heavy rainfall), or it is
the maximum of weighted discharges Zj from an ancestral node j of i.

Here, the root-directed tree T describes the causal structure in the data. The Ex-
tremal River Problem aims at finding this tree from extreme observations only. In-
deed, in Tran [2022], Section 2.1 it is shown that for the Upper Danube data also a
naive algorithm based on the pairwise correlation matrix as score matrix performs
well, whereas for the Lower Colorado data it returns a less precise tree. So this is
an example, where the extremes contain more causal information than the average
observations.

QTree can, however, also solve a slightly more general problem. Assume that the tree
structure is only in the extremes, whereas ”average” data follow a different model. It
can also happen that only data from certain nodes follow a heavy-tailed distribution
(able to model extreme events, while other nodes are negligible from an extreme value
point of view; see e.g. Embrechts et al. [1997], De Haan and Ferreira [2007], Resnick
[1987, 2007]). Then it may well be possible that the causality in the extremes can be
modeled by a tree on a subset of nodes.

For numerical stability, we prefer to work with the logarithm of the extreme data.
To avoid new symbols, we keep the same notation, so the max-linear Bayesian tree
becomes

Xi =
∨

j:j→i∈T
(cij +Xj) ∨ Zi, cij , Zi ∈ R, i ∈ V. (3.3)

We further assume that data is corrupted with independent noise in each coordinate.
The Extremal River Problem thus becomes the following.

The Extremal River Problem. Given n observations X = {x1 +
ε1, . . . , xn + εn} in RV , where the xi are generated via (3.3), and the εi
are independent noise variables in RV , find T .

We stress that the root-directed tree assumption is different from the usual tree in
Bayesian networks, where each child has at most one parent. Learning the single-

61

Chapter 3 Estimating a Directed Tree for Extremes

parent tree can be done with the message passing algorithm, which recursively iden-
tifies the parent of a node through likelihood calculations [Wainwright and Jordan,
2008]. This strategy does not work for the root-directed tree, since each child can
have multiple parents.

3.2.2 Intuition of QTree

In general, learning Bayesian networks with more than one parent is NP-hard, see
[Chickering, 1996]. However, learning the max-linear Bayesian network from i.i.d.
noise-free observations is solvable in time O(|V |2n) with O(|V |(log(|V |))2) observa-
tions (cf. Lemma 3.7.1 in Section3.7). Here is the intuition.

Fix an edge j → i and consider the noise-free model (3.3). If for an observation
x ∈ RV the value at j causes that at i, then xi = cij + xj . If j does not cause i, then
xi > cij + xj . Over n independent observations, if the value at j causes the value
at i at least twice, then the distribution of xi − xj has an atom at its left-end point.
Repeating this argument shows that if j causes k and k causes i, then one also has
xi − xj = cik + ckj . That is, if the sample X is noise-free, the empirical distribution
of

Xij := {xi − xj : x ∈ X} (3.4)

has for sufficiently many observations multiple values at the minimum of its support
if and only if j ⇝ i. Thus, with enough observations, one can recover the directed
path j ⇝ i, from which T can be uniquely constructed as it is a root-directed tree.

QTree exploits the above intuition and makes it work under the presence of noise.
Consider an ordered pair of nodes (j, i) ∈ V . If the noise at i is small relative to the
signal at j, one can expect a concentration near the minimum of Xij if and only if
j ⇝ i. This is the intuition of QTree . While we have no control over the noise, one
way to obtain ‘strong signals xj ’ is to replace (3.4) by the set

Xij(α) := {xi − xj : x ∈ X , xj > QXj (α)}, (3.5)

where QXj (α) is the α-th quantile of the empirical distribution of X in the j-th
coordinate. For α > 0, this amounts to a transformation of Xij that amplifies its
concentration near the minimum, at the cost of keeping only a fraction of the available
observations (cf. Figure 3.1).

3.2.3 The QTree Algorithm

The QTree Algorithm 4 computes independently for each potential edge j → i a score
wij , seen as a measure of concentration of Xij(α) near its minimum, then outputs
a minimum directed spanning tree of the graph G with scores W = (wij). The
idea is that at each node j, data would show the highest concentration at the true
edge among all edges from some parent of j to j. Theorem 3.2.4 proves this for the
Gumbel-Gaussian noise model; see around (3.9). The default concentration measure
for QTree is the empirical quantile-to-mean gap

wij(r) :=
1

nij

(
E(Xij(α))−QXij(α)(r)

)2
, (3.6)

62

3.2 The algorithm

Figure 3.1: For the simple graph 1 → 2 with c21 = log(0.5) = −0.69 and normal centered
noise with standard deviation 0.5: First row: Histograms of the observations
X21 as in (3.4) (left) and truncated observations X21(0.8) as in (3.5). In most
cases, for X21(0.8) depicted in the right-hand figure, a large value for x2 is
realised from a large value of x1, hence the increasing symmetry around c21.
Second row: Histograms of the observations X12 and X12(0.8) corresponding
to the reversely directed edge. For X12(0.8) depicted in the right-hand figure,
a large value x2 is realised either from large x1 or from a large innovation Z2,
giving the bimodal distribution. The vertical lines show the position of the atom
in the noise-free distribution, i.e. log(0.5) in the first row and − log(0.5) in the
second row.

where E is the empirical mean, Q is the empirical quantile, r ∈ (0, 1) is a small
quantile level and nij = |Xij(α)| is the number of observations in the set Xij(α)
defined in (3.5). The normalization factor nij only matters when missing values
are unevenly distributed across pairs, such as for the Lower Colorado network (cf.
Section 3.3.2). Then, pairs with fewer observations get a relative penalty in the
concentration estimate to account for larger variability in sample quantile estimates
due to a small sample size. If no missing values are present, as is the case with the
Upper Danube network, then nij = n · (1 − α) for all pairs (i, j) and the algorithm
would return the exact same tree T̂ as if the concentration measure was defined
without dividing by nij .

We note that there are other choices for a concentration measure, such as the empirical
lower quantile gap,

wij(r, r) :=
1

nij

(
QXij(α)(r)−QXij(α)(r)

)2
, (3.7)

where 0 < r < r < 1 is a fixed pair of quantile levels. If r is small, then wij(r, r) is a
local measure of concentration in the lower tail of Xij(α). Note that, if the number of
observations is small, then r cannot be too small, so the two empirical concentration

63

Chapter 3 Estimating a Directed Tree for Extremes

measures are in fact rather similar on a real data set. In practice, the lower quantile
gap has one more parameter to tune, and thus we choose the quantile-to-mean gap
as our default.

Remark 3.2.1. Observe that both concentration measures, (3.6) and (3.7), are trans-
lation invariant. Consequently, considering log data, both measures are invariant to
scaling.

Algorithm 4 QTree for fixed parameters

Parameters: r ∈ (0, 1), α ∈ [0, 1).
Input: data X = {x1, . . . , xn} ⊂ RV .
Output: a root-directed spanning tree T̂ on V .

1: for j → i, j, i ∈ V, j ̸= i do
2: Compute wij(r) by (3.6).
3: end for
4: Compute T̂ := minimum root-directed spanning tree on the directed graph

(V,G) with score matrix W = (wij(r)) ∈ RV×V with Chu–Liu/Edmonds’
algorithm with variable root.

5: Return T̂

Remark 3.2.2. Given a score matrix W (equivalently a bidirected graph) and a
unique root (the initial node), Chu–Liu/Edmonds’ algorithm (see Gabow et al. [1986]
and Grötschel et al. [1988], Sections 7.2 and 8.4 for more background) finds a mini-
mum directed spanning tree; i.e., a network of minimum score with

∑
j:j→i∈T̂ wij(r)

as small as possible. As we want a minimum root-directed spanning tree, we sim-
ply reverse edge directions. Moreover, we run the algorithm for every possible node
as root, and take a tree with minimum score. Finally, provided that all scores are
different, the algorithm finds a unique minimum root-directed spanning tree.

3.2.3.1 Theoretical properties of QTree

We prove consistency of Algorithm 1 under natural conditions on the distribution
of the innovations. We focus on the structural tree model of a max-linear Bayesian
network as introduced in Gissibl et al. [2018] taking i.i.d. innovations with Frechét
distribution function P (Zi ≤ x) = e−x

−α
, x > 0, for α > 0. Then, using the solution

of (3.2) given in Theorem 2.2 of Gissibl and Klüppelberg [2018], by max-stability
(e.g. Embrechts et al. [1997], Section 3.2), X is multivariate Fréchet distributed with
marginals as in Proposition A.2 of Gissibl et al. [2018]):

P (Xi ≤ x) = exp{−(xiµi)
−α}, x > 0,

for µi =
(∑

j:j⇝i,j=i cji
α
)−1/α

. Taking logarithms of the Xi is equivalent to taking

logarithms of the innovations Zi with P (log(Zi) ≤ x) = exp{−e−x/β}, x ∈ R, for
β := 1/α > 0. This results in a Gumbel model

P (Xi ≤ x) = exp{−e−(x−µi)/β}, x ∈ R.

Therefore, for log data, the Xi are Gumbel(β, µi) distributed with scale β := 1/α and
location µi.

64

3.2 The algorithm

Instead of taking the logarithmic analog of a Generalised Fréchet model as often done
in the literature, we prefer instead to add a small independent noise to the max-linear
Bayesian tree model (3.3) with Gumbel(β, 0) innovations. This motivates the noise
model

Xi =
(∨
j:j→i∈T

(cij +Xj) ∨ Zi
)
+ εi, cij , Zi, εi ∈ R, i ∈ V. (3.8)

with the following innovation-noise distributions:

Gumbel-Gaussian noise model. For i ∈ V , the innovations Zi are i.i.d.
Gumbel(β, 0), the noise variables εi are i.i.d. with symmetric, light-tailed
density fε satisfying

fε(x) ∼ e−Kx
p
as x→ ∞, (3.9)

for some p > 1 and γ,K > 0 and the derivative of fε exists in the tail
region. Throughout, for two functions a, b, positive in their right tails, we
write a(x) ∼ b(x) as x → ∞ for limx→∞ a(x)/b(x) = c, where c > 0 is
some arbitrary constant.

Remark 3.2.3. The density fε in (3.9) belongs to a special class of light-tailed densi-
ties whose convolution tail can be derived asymptotically [Balkema et al., 1993]. The
family includes the Gaussian (p = 2), and though it is strictly more general than the
Gaussian, we follow Balkema et al. [1993], and call our noise model Gumbel-Gaussian
for ease of reference. Condition (3.9) guarantees that the upper tail of εi−εj is lighter
than that of Zi − Zj (cf. Lemma 3.7.6 in Section 3.7).

Theorem (3.2.4) below, proved in Section 3.7.2, says that under the Gumbel-Gaussian
noise model, both quantile-to-mean and lower quantile gap produce together with
Chu-Liu/Edmonds’ algorithm strongly consistent estimators for the true root-directed
spanning tree T for appropriate choice of parameters. Simulation results (cf. Fig-
ure 3.2) indicate that the error scales as O(1/n) for any fixed graph size |V | = d. In
particular, for a large graph with d = 100, QTree only needs n = 200 observations to
bring the metrics nSHD to less than 5% and TPR to more than 95%; see definitions
in (3.1).

We are now ready to state our main theorem. Observe that while α as in (3.5) is
an important tuning parameter, asymptotically it does not matter as the consistency
holds for α = 0; i.e., by taking the full set of observations.

Theorem 3.2.4 (Consistency Theorem). Assume the Gumbel-Gaussian noise model
(3.8) with distributions specified above.
(a) There exists an r∗ > 0 such that for any pair 0 < r < r < r∗, the QTree
algorithm with score matrix W = (wij) defined by the lower quantile gap wij(r, r) in
(3.7) returns a strongly consistent estimator for the tree T as the sample size n→ ∞.
(b) There exists an r∗ > 0 such that for any 0 < r < r∗, the QTree algorithm with
score matrix W = (wij) defined by the quantile-to-mean gap wij(r) in (3.6) returns a
strongly consistent estimator for the tree T as the sample size n→ ∞.

Remark 3.2.5. [When QTree may fail] To understand why a condition like (3.9) is
necessary, suppose that V = {1, 2} and that the true graph is 1 → 2. Let F21 be the
distribution function of (ε2 − ε1) + (Z2 − Z1) ∨ c21. The lower tail of F21 essentially

65

Chapter 3 Estimating a Directed Tree for Extremes

Figure 3.2: 1/(mean errors) vs. number of observations n for different graph sizes d =
30, 50, 100. We simulated 100 root-directed spanning trees as described in Sec-
tion 3.5, where we use the Gumbel-Gaussian setting (1). Then we applied QTree
Algorithm 1 with quantile-to-mean gap (3.7) with r = 0.05 and α = 0 to esti-
mate the true (simulated) tree, and computed the average error as measured by
1-TPR (left) and nSHD (right) given in (3.1).

is the lower tail of (ε2 − ε1), while the upper tail is essentially the upper tail of the
convolution (ε2 − ε1) + (Z2 − Z1), which is dominated by the signal (Z2 − Z1) if it is
the heavier tail, and otherwise it is dominated by the noise (ε2 − ε1). Since (ε2 − ε1)
has symmetric distribution, if the noise term dominates the distribution, w12 ≈ w21

and it would be impossible to distinguish the edge 1 → 2 from the edge 2 → 1. If the
signal dominates, the asymmetry between the lower and upper tails of F12 lends us
the crucial inequality to distinct between the two graphs as illustrated in Figure 3.1.

The argument extends to d > 2 for a graph with only one directed path. Then it is
not possible to distinguish the direction from a symmetric score matrix. However,
for a realistic matrix with real-valued entries, Chu–Liu/Edmonds’ algorithm outputs
an approximately correct root-directed tree. Intuitively, reversing every edge direction
gives the same score but is generally not a root-directed tree. □

3.2.4 Parameter tuning by bootstrap aggegation

Algorithm 4 has two parameters: the quantile r ∈ (0, 1) and the cut-off quantile
α ∈ (0, 1). If data comes from a noise-free max-linear Bayesian tree, then we should
select r = 0 as small as possible, 1−α = 1, and fit QTree on all of the available data
X . However, due to the presence of noise, setting r too small and 1 − α too large
would make the estimator volatile to large values of the noise variables.

In this section, we propose in a first step a subsampling procedure to stabilize the
tree estimator of Algorithm 4 and, in a second step, automatically choose r and α in
QTree . This results in Algorithm 5, which we also refer to as auto-tuned QTree .

The basic idea is to run an algorithm on multiple subsets of the data, and then
average the resulting estimator. This subsampling approach is also called bootstrap
aggregation or bagging; see [James et al., 2013, Section 8.2.1] and [Politis et al., 1999]
for a variety of subsampling procedures. Since QTree outputs a directed tree as its
estimator, which is a combinatorial object, one cannot simply take the average of
their adjacency matrices, as that would not produce a tree. Instead, we see the set of

66

3.2 The algorithm

Algorithm 5 Auto-tuned QTree

Parameters: subsampling fraction f ∈ [0, 1], number of subsamples m ∈ N, a set of
parameters Θ = {(r, α)} ⊂ [0, 1)2 to search over.
Input: data X = {x1, . . . , xn} ⊂ RV .
Output: the optimal parameter (r∗, α∗) ∈ Θ and the corresponding root-directed
spanning tree T̂max on V .

1: for (r, α) ∈ Θ do
2: for ℓ = 1, . . . ,m do
3: Sample without replacement a random subset X ℓ of n · f observations

from X .
4: Let T ℓ be the output of QTree (r, α) fitted on X ℓ.
5: end for
6: Let T(r, α) = {T ℓ : ℓ = 1, . . . ,m}
7: Compute S(T(r, α)) by (3.12).
8: Compute E(T(r, α)) as the maximum root-directed spanning tree of
S(T(r, α)) per Lemma 3.2.7.

9: Compute Var(T(r, α)) by (3.11)
10: end for
11: Define (r∗, α∗) := argmin{Var(T(r, α)) : (r, α) ∈ Θ}.
12: Return the optimal pair (r∗, α∗) and T̂max := E(T(r∗, α∗)).

output trees as a distribution over trees. Then, we solve a second problem, namely, to
find the centroid tree E(T) of this distribution, defined as that tree which minimizes
the expected Hamming distance to a typical tree (cf. Definition 3.2.6). Lemma
3.2.7 below proves that the centroid can be computed with another application of
Chu–Liu/Edmonds’ algorithm. This ensures that the estimator produced by auto-
tuned QTree can be computed quickly (cf. Lemma 3.2.8).

Our key indicator for model performance is variability in the estimated tree, that
is, whether the tree T̂ and its reachability graph R̂ output by QTree would change
significantly if we fit it to different subsamples of the data. Here, we denote the
reachability graph R̂ of T̂ as the graph that results from drawing an edge between a
pair (j, i) whenever there is path from j to i in T̂ . We propose the following definition
of variability for a distribution of root-directed spanning trees.

Definition 3.2.6. Let V be a set of nodes and T = {T 1, . . . , T m} a collection of
root-directed spanning trees on V , and let R = {R1, . . . ,Rm} be their corresponding
reachability graphs. The centroid of T, denoted E(T), is the root-directed spanning
tree on V that minimizes the sum of normalized structural Hamming distances dH
defined in (3.1) as follows:

E(T) := arg min
T ∈Ψ

m∑
i=1

dH(T , T i), (3.10)

where Ψ is the space of root-directed spanning trees on V .

Let E(R) denote the reachability graph of E(T). Let eT be the number of edges of
E(T), and eR be the number of edges of E(R), respectively. We define the variability

67

Chapter 3 Estimating a Directed Tree for Extremes

of T, denoted Var(T), as

Var(T) :=
1

eT

1

m

m∑
i=1

dH(T i, E(T)) +
1

eR

1

m

m∑
i=1

dH(Ri, E(R)). (3.11)

Involving the Hamming distance of the reachability graphs in (3.11) penalizes the
situation where T i and E(T) differ in a few edges low down in the tree, for example, if
they have different roots. Such a difference would lead to a small structural Hamming
distance between the two trees, but a large structural Hamming distance between their
reachability graphs, and in particular, very different river networks.

The following lemma says that E(T) is a maximum root-directed spanning tree of
a particular graph with score matrix S(T) that measures the stability among the
trees in T. In particular, E(T) can be computed using Chu–Liu/Edmonds’ algorithm
(choosing the root realizing the minimum score), and thus Var(T) can be computed
in polynomial time.

Lemma 3.2.7. Let V be a set of nodes and T = {T 1, . . . , T m} a collection of root-
directed spanning trees on V . Define the stability score matrix S := S(T) ∈ Rd×d≥0
by

sij := S(T)ij := #{T ∈ T : j → i ∈ T }. (3.12)

Suppose that the maximum root-directed spanning tree Tmax of the graph on V with
score matrix S(T) is unique. Then E(T) = Tmax.

Proof. Identify a root-directed tree T with the vector T = (Tuv) ∈ {0, 1}|V |2−|V |.
Write 1 = (1uv) for the all-one vector of the same dimension. Let T ′ ∈ Ψ be any
root-directed spanning tree on V . Our goal is to show that

m∑
i=1

dH(T ′, T i) ≥
m∑
i=1

dH(Tmax, T i),

which would establish that Tmax = E(T) by (3.10). Indeed,

m∑
i=1

dH(T ′, T i) =

m∑
i=1

∑
u,v∈V :u̸=v

1{T ′uv ̸= T iuv} =
∑

u,v∈V :u̸=v

m∑
i=1

1{T ′uv ̸= T iuv}

=
∑

u,v∈V :u̸=v

(suv1u→v/∈T ′ + (m− suv)1u→v∈T ′)

=− 2⟨S, T ′⟩+ ⟨S,1⟩+ ⟨m1, T ′⟩ where ⟨·, ·⟩ denotes the Frobenius inner product

=− 2⟨S, T ′⟩+ ⟨S,1⟩+m(d− 1) since T ′ as root-directed spanning tree has d− 1 edges

≥− 2⟨S, Tmax⟩+ ⟨S,1⟩+m(d− 1)⟩ by definition of Tmax

=− 2⟨S, Tmax⟩+ ⟨S,1⟩+ ⟨m1, Tmax⟩⟩ since Tmax is a spanning tree on V

=

m∑
i=1

dH(Tmax, T i).

68

3.3 Data description

As shown in Lemma 3.7.2 of Section 3.7, Algorithm 4 runs in time O(|V |2n). The
quadratic dependence on |V | and linear dependence on n is optimal, since it takes
O(|V |2n) just to compute pairwise statistics such as the concentration measures in
(3.6) or (3.7) for every pair of nodes. Similarly, the runtime of Algorithm 5 (auto-
tuned QTree) also has optimal runtime, which scales linearly with the number of
repetitions m and the size of the parameter grid |Θ|.

Lemma 3.2.8. The auto-tuned QTree Algorithm 5 has complexity O(|V |2nm|Θ|).

Proof. For each pair (r, α) ∈ Θ, step 3 takes O(mn) and step 4 takes O(|V |2nm)
by Lemma 3.7.2 in Section 3.7. Step 6 takes O(m|V |2), and step 7 takes O(|V |2) by
Chu–Liu/Edmonds’ Algorithm. Computing the reachability graph for a root-directed
tree on |V | nodes takes O(|V |), so step 8 takes O(m|V |2), since for each of the m
trees in T we need to compute its structural Hamming distance from the estimated
tree E(T). So, for each pair (r, α) ∈ Θ, steps 3 to 8 take O(|V |2nm) time. Thus
overall, the algorithmic complexity is O(|V |2nm|Θ|).

3.3 Data description

We focus on river discharge data in two river networks, the Upper Danube net-
work with data from Bavaria, Germany, and the Lower Colorado network in Texas,
USA. Large flood events are classical examples for high risk analysis. The Danube
data as well as the data of all three sectors of the Colorado are available in the
Python package QTree (Tran [2021]). The Danube data are available in the R pack-
age graphicalExtremes (Engelke et al. [2019]).

In general, river discharges across a set of stations is recorded multiple times per
hour and some preprocessing is needed to turn the raw data into independent ex-
treme discharge data. This was detailed in Asadi et al. [2015] for the Danube data;
cf. Figure 3.3. We follow their procedure (descibed in Section 3.3.1) with slight mod-
ifications for the Colorado data (descibed Section 3.3.2).

3.3.1 The Upper Danube network

The Danube network data consist of measurements collected at d = 31 gauging
stations over 50 years from 1960 to 2009 by the Bavarian Environmental Agency
(http:www.gkd.bayern.de). Preprocessing the data, Asadi et al. [2015] first take
daily mean values in each time series. The idea is then to find non-overlapping time
windows of p days, centered around the observation of maximal rank across all series.
For the Danube, the authors choose p = 9 days (±4 days around the observation
of maximal rank). For each time series, they then take the maximum within the
given time window, delete the data of this window, and proceed until no window of
p consecutive days remains. In order to reduce temporal non-stationarities and the
effect of snow melt, only the months June, July and August are considered. This
results in n = 428 observations from a d = 31-dimensional random vector whose
i-th entry corresponds to the maximum water discharge at the i-th station, observed
within a 9-day window where at least one station witnessed a large discharge value;
these observations are assumed to be independent.

69

http:www.gkd.bayern.de

Chapter 3 Estimating a Directed Tree for Extremes

Figure 3.3: Topographic map of the Upper Danube Basin, showing sites of the 31 gauging
stations along the Danube and its tributaries.

3.3.2 The Lower Colorado network in Texas

This section describes the new data set of the Lower Colorado river network in Texas
collected by the Lower Colorado River Authority (LCRA, https://www.lcra.org/)
and details the preprocessing.

The Lower Colorado is one of the major rivers in Texas. Flowing through major popu-
lation centers such as Austin, the state capital of Texas, flood and drought mitigation
in the Lower Colorado Basin is of prominent interest. A particularly challenging fea-
ture of the Lower Colorado is prolonged drought (discharge of 0) followed by flash
flooding which can damage sensors, resulting in loss of data over multiple days (cf.
Figure 3.4). This makes the Lower Colorado data much more challenging than the
Danube data.

The river discharges at the Lower Colorado network, measured in cubic feet per
second (cfs), are collected multiple times per day at a total of 104 stations around
the Colorado River and its tributaries in Texas from the 1st of December 1991 to
the 14th of April 2020 (10,363 days); see Figure 3.5. We do not take into account
5 nodes of the Blanco River and San Bernand River, which are not flow-connected
to the Lower Colorado River, and also 21 nodes with zero observations. Moreover,
we exclude the nodes 5476, 5634, 5635, 6397, and 6533 as they are located close to
hydropower plants. This gives a total of 73 nodes.

Another problem occurs, because in the Lower Colorado Basin, multiple dams cut
off the river into disjoint sectors [Lower Colorado River Authority (LCRA), Accessed
August 2020]. Thus, we split the river network such that in each section, we get
the largest set of nodes where (i) no node is within 10km of a major dam, (ii) all
nodes are connected, and (iii) for each pair (j, i) of this subset, there are at least
1000 pairwise daily observations, which is 9.6% of the total amount of 10,363 days
available. Criterion (iii) ensures that among the given pairs of nodes, any possible
causal relation can be discovered, and not be affected by the lack of concurrent data.

70

https://www.lcra.org/

3.3 Data description

Figure 3.4: Typical discharge at various nodes around one flood event on the Lower Col-
orado. The vertical lines mark a time window of p = 17× 12h or p = 8.5 days.
Dots denote the 12-hour maximum water discharges. In nodes 3,4 and 6, the
thick dot denotes the peak discharge during this window. For node 5, the sen-
sor did not function during this entire time period, so the peak for node 5 is
recorded as missing. Node 3 has a median discharge of only 15 cfs and is hence
mostly drained over the entire period (1991 to 2020, 10,363 days), but the water
flow regularly aggregates to over 16,000 cfs within a very short period of time.

This results in 42 nodes divided into three sectors, which we call the Top, Middle and
Bottom sectors of the Lower Colorado with 9, 12 and 21 nodes, respectively. From
here on we treat these three sectors as three separated, unrelated data sets.

In contrast to the Danube network with snow melt and seasonal periodicity, we can
and do take all data of the 12 months into account. We observe further that, by the
special weather conditions, flood events can last as little as a few hours. Therefore, in
contrast to Asadi et al. [2015], who take daily time slots, we take 12-hour time slots.
As a first step, we take maxima of each 12-hour time slot to retain the knowledge
about large possible peaks and such periods where no data are collected. In a second
step we then take ±8 12-hour time slot around the time-slots with the observation of
maximal rank resulting in a time window of p=8.5 days; see Figure 3.4. We take the
most conservative approach to missing data, namely, if node i has any missing data
during the considered time window, then its maximum discharge over this window
is labeled as missing (cf. Figure 3.4). This is because a sensor can break before the
river reaches peak discharge and for practical reasons can only be replaced after the
flood event is over [Lower Colorado River Authority (LCRA), 2020], and thus the
sensor potentially did not measure the largest possible water discharge that occurred
at node i. This results in the Top sector having 9 nodes, 975 observations, 18%
missing data; the Middle sector has 12 nodes, 972 observations, 27% missing data.
The Bottom sector is most challenging, for it has the most nodes (21 nodes), 961
observations, the highest amount of missing data (37 %), and many nodes around
the city of Austin with only a few miles apart from each other. In the Bottom sector
there are many nodes with a very small number of observations due to the many
missing observations, and we create a new data set by excluding all nodes with less
than 150 observations and refer to them as Bottom150.

71

Chapter 3 Estimating a Directed Tree for Extremes

Figure 3.5: Topographic maps of the Top, Middle and Bottom sectors (arranged clockwise)
of the Lower Colorado network, showing sites of the gauging stations along the
Colorado River and its tributaries. We treat them as three unrelated data sets.

The close proximity of nodes induces strong spatial dependence even among nodes
that are not flow-connected, making it potentially more challenging to recover the true
network. A summary of the abailable data for each data set is given in Table 3.1.

3.4 Results

3.4.1 Results of auto-tuned QTree for all river networks

For each of the four river networks (Danube, Top, Middle and Bottom sectors of the
Colorado), we ran auto-tuned QTree (Algorithm 5) with fixed r = 0.05, subsampling
rate f = 0.75, and number of repetitions m = 1000 to choose the tuning parameter
α automatically from {0.7, 0.725, 0.75, , . . . , 0.9}. The optimal parameters α∗ selected
by QTree for these networks are shown in Table 3.2.

Figures 3.6—3.8 show the estimated trees of the Danube, Top, Middle and Bottom
sectors of the Colorado, respectively. We do two estimated-vs-true comparisons:

72

3.4 Results

Table 3.1: Number of nodes d, number of observations n and percentage of missing data
used for the algorithmic reconstruction of the river network.

Danube Top Middle Bottom Bottom150

d 31 9 12 21 16

n 428 975 972 961 961

% 0% 18% 27% 37% 22%

Table 3.2: Optimal parameters α∗ selected by QTree using grid search with subsampling.

Danube Top Middle Bottom Bottom150

α∗ 0.775 0.825 0.75 0.85 0.725

one for the tree, and one for its reachability graph. The four metrics we use are
normalized Structural Hamming Distance (nSHD), False Discovery Rate (FDR) and
False Positive Rate (FPR) and True Positive Rate (TPR), defined in (3.1). Table 3.3
gives all performance metrics over all data sets. We recall that the performance of
an algorithm is better the smaller the first three metrics are and the larger TPR is.
QTree performs very well across all data sets, with nSHD and FDR ranging from
10-20%, FPR close to 0, and TPR around 80-90%. For the reachability graph, the
statistics are even better: nSHD, FPR and FDR are below 9% and TPR is over 87%.
In other words, a wrongly estimated edge directs rather from an ancestor (which is
not a parent) to a child (flow-connection is preserved), than a spurious edge (an edge
which contradicts flow-connection). The number of missing edges are determined by
the fact that a tree has exactly d− 1 edges.

Figure 3.8(top) visualizes the estimation of the Bottom sector of the Colorado. As
expected, this data set is the most challenging due to large portions of missing data
and the clustering of nodes around the city of Austin. Nevertheless, even for this
data set the estimated tree has only two spurious edges, between 6537 and 24 and
between 42 and 5525. Both of these node pairs are physically close. All the remaining
wrongly estimated edges are flow-connected.

We note that the majority of errors made by QTree involves nodes with less than
150 observations (which are the nodes 5525, 5450, 5423, 5435 and 5524). This is not
at all surprising. The model was fitted to only 75% of the data, and the optimally
chosen α∗ is 0.85, which means that for each edge involving one of the above nodes,
the number of observations available to QTree is at most 150× 0.75× 0.15 = 14. To
check the hypothesis that this threshold is too small for QTree to perform reliably,
we excluded all nodes with less than 150 observations and refitted QTree on the
remaining 16 nodes (Bottom150). The result depicted in Figure 3.8(bottom) shows
significant improvements. This manifests another desirable feature of QTree , namely,
that it relies on local (pairwise) estimation, and thus changes to the node set in one
part of the tree do not affect the estimated network elsewhere.

As expected from a statistical estimation procedure, the statistical choice of the pa-
rameter selection by QTree does not always output the best result on every data set.
However, it fails only by very few edges to the graph estimated with the best choice

73

Chapter 3 Estimating a Directed Tree for Extremes

Table 3.3: Metrics nSHD, FPR, FDR and TPR for QTree . Numbers display the respective
metric for the pair (T , T̂) and numbers in brackets for the pair (R, R̂) of their
respective reachability graphs.

Danube
Colorado

Top Middle Bottom Bottom150

nSHD 0.18(0.09) 0.13(0.02) 0.09(0.06) 0.45(0.15) 0.10(0.12)
FPR 0.01(0.02) 0.04(0.00) 0.02(0.04) 0.05(0.03) 0.02(0.02)
FDR 0.20(0.05) 0.13(0.00) 0.09(0.10) 0.50(0.02) 0.13(0.02)
TPR 0.80(0.87) 0.88(0.95) 0.90(1.00) 0.50(0.74) 0.87(0.78)

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 23 24 20 21 22

30 31 25 26 27

16 17 18 19

28 29

e = j i : e ∈ T̂ ∩ T

e = j i : e ∈ T̂ ∩ R \ T

e = j i : e ∈ T̂ \ R

e = j i : e ∈ T \ T̂

Figure 3.6: Danube river network, estimated by QTree vs. true. Solid (green) edges are
correct. Dashed (green) edges are not in the tree but in the reachability graph,
that is, the causal direction or flow-connection is correct. Squiggly (red) edges
are spurious (neither in the tree nor in the reachability graph). Dotted (black)
edges are in the true tree, but not in the estimated tree. QTree outputs a tree
with only six wrongly estimated edges, four of them flow-connected and one path
skipping a single node (the edge 8 → 6 skips node 7). Two edges are spurious.

of parameters. For example, for the Danube the parameter α = 0.75 (instead of the
optimal α∗ = 0.775) would have lead to a better result (cf. Figure 3.9). Also for the
Top Colorado, α = 0.9 would have given perfect recovery of the true network; this is
clear as all four metrics become optimal (Figure 3.18 of of Section 3.7).

In summary, on all four data sets considered, QTree performed well for nodes with a
sufficient number of observations as becomes obvious from Figure 3.8(top) and (bot-
tom). The estimated optimal parameter α∗ is either the best one (i.e., the correspond-
ing estimated tree is best across all α) (Top and Bottom sectors of the Colorado), or
such that it is within one to two wrong edges of the best one (Danube and Top sector
of the Colorado). The method can handle data with missing observations and close
spatial proximity between nodes.

3.4.2 Comparison to other scores in the literature

We compare QTree and auto-tuned QTree with existing algorithms for extremal
causal estimation in the literature. To this end, we first define the scores and sum-

74

3.4 Results

1925 7 1277 3

6 2

5 4

1666

10 9 8 2193

2435 2313

2443 2399

2498 2424

2616

2625

2616

2498

0

200

400

600

800

1,000

Figure 3.7: Top (left) and Middle (right) sectors of the Colorado network, estimated by
QTree vs. true. Node colors represent the amount of available data after taking
care of missing data. Arrows are as described in Figure 3.6. Both estimated
networks only contain one single wrongly estimated edge. Top: one edge wrong
but flow-connected; Middle: one edge spurious.

marize them in score matrices. We utilize the empirical versions of the following
extreme dependence measures, where we also include the quantile-to-mean gap for
comparison:

1. The empirical quantile-to-mean gap as in (3.6) for fixed (r, α) = (0.05, 0.9). We
fix r = 0.05 as we have used this throughout, and α = 0.9 as an arbitrary
parameter.

2. The causal tail coefficient Γij = limu→1 E[Fi(Xi) | Fj(Xj) > u] [Gnecco et al.,
2021, eq. (3)]. Observe that in Gnecco et al. [2021], the algorithm EASE outputs
from the estimated score matrix Γ an estimated causal order of the set of nodes,
not a directed graph.

3. The causal score Sext
ij is based on expected quantile scores [Mhalla et al., 2020,

eq. (15)].1 The goal of the authors is to discover causality in a directed graph
modelled by flow-connection. The scores Sext

ij satisfy Sext
ji +Sext

ij = 1 and an ex-
treme observation at node j causes an extreme observation at node i, whenever
Sext
ij > 0.5. The authors propose a bootstrap method to generate 95% confi-

dence bounds to guarantee that the score is larger than 0.5. All these scores are
interpreted as directed edges between nodes. Also for the tree example of the
Danube data treated in Section 5 of the paper (cf. Figure 7). The algorithm
CausEV outputs flow-connections induced by all scores larger than 0.5. Thus,
their causal edges rather resemble the edges in the reachability graph of the
tree.

1We want to thank Linda Mhalla for helping us to set up the CausEv implementation.

75

Chapter 3 Estimating a Directed Tree for Extremes

6537 24 6377 23 22 42 5525 21 5450 5423 38

43 5523 39 5435 19 4595

44 40

41

5524

0

200

400

600

800

1,000

6537 24 6377 23 22 42 21 39

43

44

5523 40

38

19

41

4595

0

200

400

600

800

1,000

Figure 3.8: Bottom sector of the Colorado network (Bottom and Bottom150), estimated
by QTree vs. true. Top Figure: Bottom, based on all 21 nodes, QTree outputs
a tree with ten wrongly estimated edges, eight of them flow-connected, two
spurious edges pointing in the wrong direction. Bottom Figure: Bottom150,
based on 16 nodes, after removing nodes with less than 150 observations. There
are only two wrongly estimated edges, one flow-connected, one spurious edge
pointing in the wrong direction. Compared to the Bottom sector, this is a
significant improvement. Node colors represent the amount of available data
after taking care of missing data. Arrows are as described in Figure 3.6

.

76

3.4 Results

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 23 24 20 21 22

30 31 25 26 27

16 17 18 19

28 29

QTree

nSHD 0.13(0.06)

FPR 0.01(0.01)

FDR 0.13(0.02)

TPR 0.87(0.90)

Figure 3.9: Danube river network, estimated by QTree vs. true for α = 0.75. Compared
to Figure 3.6, the edges 15 → 14 and 14 → 2 are here correctly estimated. Also
the performance measures at the right bottom of the figure compare favourably
to those in the first row of Table 3.3.

4. The tail dependence coefficient χij = limu→1 P (Fi(Xi) > u | Fj(Xj) > u),
also called extremal correlation. It goes back to Sibuya [1960]; see also [Coles
et al., 1999]. We add this dependence measure in our comparison as it is the
classic one, having been used for more than 60 years in multivariate extreme
value statistics. Theoretical properties of the tail dependence coefficient in a
max-linear Bayesian network have been investigated in Gissibl et al. [2018]. It
has values in [0, 1] and a large value of χij indicate strong extreme dependence.
Its empirical estimator takes u large, but finite, and our estimator is based
on 10% of the data (corresponding to α = 0.9 in (a)). The paper Engelke
and Volgushev [2020] uses χ and two related measures on p. 14, the extremal
correlation, the extremal variogram and the combined extremal variogram for
estimating undirected trees with Prim’s algorithm Prim [1957].

The scores discussed (b)-(d) have not been used to estimate a directed tree, but as
they are all pair-wise scores, their respective estimated matrices can serve as input
for Chu–Liu/Edmonds’ algorithm. This gives a fair comparison, as we use then
for all scores the knowledge that the true graph is a root-directed spanning tree.
A few words on the estimation of the matrices Γ and Sext are necessary to fully
understand the estimation procedure. For better comparability, we estimate the
score matrix Γ also for the declustered Danube data. For the causal score Sext

ij we
recall that a spanning tree with d nodes has exactly d − 1 edges, which are taken
by Chu–Liu/Edmonds’ algorithm as large as possible under the restriction that the
outcome is a spanning tree. The estimated root-directed spanning tree has smallest
score of 0.5183, thus, it is above 0.5, so all directions are causal in the sense of Mhalla
et al. [2020]. While the matrix χ is symmetric, causal inference is possible with
Chu–Liu/Edmonds’ algorithm. This is because reversing every edge direction gives
the same score but is generally not a root-directed spanning tree; see Remark 3.2.5.
Finally, we keep all tuning parameters used for Γij and Sext

ij the same as in the
respective papers.

77

Chapter 3 Estimating a Directed Tree for Extremes

Figure 3.10: Metrics nSHD, TPR, FDR and FPR for the output T̂α of the steps of
auto-tuned QTree for varying parameter α for the Danube network. We
subsample 75% of the data 1000 times. For each α we fit QTree on these
subsamples to obtain 1000 estimated trees Tα := {T̂ 1

α , . . . , T̂ 1000
α } (Step 5 of

Algorithm 2). The metrics of (T̂ ℓ
α , T) and (R̂ℓ

α,R) are represented in boxplots,
one for the tree (blue) and one for the reachability graph (green). The blue and
green dots present the four metrics for the centroid E(Tα) (Step 7 of Algorithm
2) and its reachability graph. The lines are interpolations for better visibility,
solid blue for the tree and dashed green for the reachability graph. The chosen
α∗ is the parameter with the least variablity in Tα (Step 9 of Algorithm 2),
indicated by a red vertical line.

Figure 3.11: Performance metric nSHD for all five data sets and scores vs. QTree :
auto-tuned QTree , QTree , Sext as in Mhalla et al. [2020], Γ as in Gnecco
et al. [2021] and χ as in Sibuya [1960]. Solid lines display the respective met-
rics for the pair (T , T̂) and dashed lines for the pair (R, R̂) of their respective
reachability graphs. Black lines are used for auto-tuned QTree , magenta lines
for QTree , red lines for Sext, blue lines for Γ and green lines for χ.

78

3.4 Results

Table 3.4: Metrics nSHD, FPR, FDR and TPR for the simple QTree Algorithm 4 with
α = 0.9. Numbers display the metrics for the pair (T , T̂) and numbers in brackets
for the pair (R, R̂) of their respective reachability graphs.

Danube
Colorado

Top Middle Bottom Bottom150

nSHD 0.35(0.25) 0.13(0.02) 0.27(0.11) 0.48(0.57) 0.23(0.26)
FPR 0.01(0.02) 0.02(0.00) 0.02(0.03) 0.03(0.15) 0.02(0.01)
FDR 0.40(0.14) 0.13(0.00) 0.27(0.19) 0.60(0.58) 0.27(0.02)
TPR 0.60(0.64) 0.88(0.95) 0.72(1.00) 0.40(0.23) 0.73(0.59)

Table 3.5: Metrics nSHD, FPR, FDR and TPR presented as in Table 3.3 for the max-
imum root-directed spanning tree estimated by Chu–Liu/Edmonds’ algorithm
with score matrix Γ as in Gnecco et al. [2021], eq. (8).

Danube
Colorado

Top Middle Bottom Bottom150

nSHD 0.53(0.58) 0.25(0.42) 0.45(0.17) 0.60(0.71) 0.53(0.67)
FPR 0.02(0.18) 0.05(0.12) 0.04(0.03) 0.04(0.17) 0.04(0.27)
FDR 0.73(0.71) 0.38(0.40) 0.45(0.21) 0.70(0.78) 0.67(0.83)
TPR 0.27(0.37) 0.63(0.43) 0.55(0.88) 0.30(0.10) 0.33(0.12)

Hence, our comparison is two-fold.

1. We compare the new score of a quantile-to-mean gap with other scores from
the literature.

2. We compare QTree with auto-tuned QTree assessing the benefit of the stabi-
lizing subsampling procedure.

Tables 3.5, 3.6 and 3.7 present the metrics nSHD, FPR, FDR and TPR based on the
three scores (b)—(d) and for each data set previously considered. Comparing the met-
rics with those of QTree in Table 3.4, we find for the Danube network a comparably
weak performance for all three alternative scores. Among the three scores, χ performs
best, followed by Γ. We visualize our findings from Table 3.3 and Tables 3.4—3.7 for
nSHD in Figure 3.11.

Solid lines present nSHD for the estimated tree vs. true tree. We find that auto-tuned
QTree (black line) is uniformly best over all data sets, followed by QTree . We con-
clude that the stabilizing subsampling procedure of auto-tuned QTree improves the
estimated tree. Even for the Top Colorado network, where α = 0.9 is optimal, the
nSHD is still positive for QTree whereas for auto-tuned QTree , nSHD is equal to
zero and the estimated tree is equal to the true one. For all Colorado sectors, Γ fol-
lows next, χ is surprisingly successful for the Danube, but not for any of the Colorado
sectors. Sext does not perform well in any tree recovery, but this was also not the
goal of Mhalla et al. [2020]

Dashed lines present nSHD for the reachability matrix of the estimated trees vs. true.
Here auto-tuned QTree and QTree give the same answers as for the trees above. The
blue dashes line representing Γ is only moderately worse than the magenta line for

79

Chapter 3 Estimating a Directed Tree for Extremes

Table 3.6: Metrics nSHD, FPR, FDR and TPR presented as in Table 3.3 for the max-
imum root-directed spanning tree estimated by Chu–Liu/Edmonds’ algorithm
with score matrix Sext as in Mhalla et al. [2020], eq. (15).

Danube
Colorado

Top Middle Bottom Bottom150

nSHD 0.88(0.60) 0.63(0.36) 0.73(0.41) 0.95(0.75) 0.80(0.65)
FPR 0.03(0.10) 0.08(0.18) 0.07(0.12) 0.05(0.12) 0.05(0.17)
FDR 0.90(0.60) 0.63(0.43) 0.73(0.52) 0.95(0.68) 0.80(0.68)
TPR 0.10(0.33) 0.38(0.57) 0.27(0.76) 0.05(0.12) 0.20(0.17)

Table 3.7: Metrics nSHD, FPR, FDR and TPR presented as in Table 3.3 for the max-
imum root-directed spanning tree estimated by Chu–Liu/Edmonds’ algorithm
with score matrix χ as in Sibuya [1960] or Coles et al. [1999].

Danube
Colorado

Top Middle Bottom Bottom150

nSHD 0.35(0.54) 0.50(0.26) 0.77(0.78) 0.92(0.54) 0.80(0.51)
FPR 0.02(0.21) 0.06(0.25) 0.07(0.33) 0.05(0.27) 0.06(0.30)
FDR 0.47(0.69) 0.50(0.45) 0.82(0.93) 0.95(0.69) 0.87(0.69)
TPR 0.53(0.48) 0.50(0.76) 0.18(0.18) 0.05(0.26) 0.13(0.28)

QTree for the Middle and Bottom sector of the Colorado. χ is worst for the Middle
Colorado, for the Danube and the other sectors of the Colorado it performs better
than Γ and Sext.

We conclude that for the Danube as well as for the various sectors of the Colorado,
auto-tuned QTree outperforms uniformly all algorithms without the stabilizing sub-
sampling procedure; see Figure 3.11. Moreover, the QTree score outperforms the
other scores when applying Chu-Liu/Edmonds’ algorithm, therefore we conclude that
the quantile-to-mean gap (3.6) is superior to the other scores on all data sets consid-
ered.

3.5 A small simulation study

Our main result, Theorem 1 ensures strong consistency of the output trees of QTree
when the sample size n tends to infinity. In this section we show the quality of QTree
through the two metrics nSHD and TPR for varying n and d by a small simulation
study.

We generate data X from a max-linear Bayesian tree as defined in equation (3.3) with
|V | = d nodes. For each node i, we calculate the sample standard deviation σ̂Xi of
(X1

i , . . . , X
n
i) and take the sample median σ̂ over all nodes 1, . . . , d. We then generate

i.i.d. normally distributed noise variables εti with mean zero and standard deviation
k · σ̂ for i ∈ V and t = 1, . . . , n. For the noise-to-signal ratio k, we choose k = 30%.

We generate root-directed spanning trees as follows. We first generate a random
undirected spanning of size d using the graph generators module networkX (Release

80

3.5 A small simulation study

2.8.8) in Python [Hagberg et al., 2008]. We then choose the root node uniformly
at random which uniquely determines the root-directed spanning tree. Finally, we
assign edge weights cij independently.

For the distributions of the innovations Z1, . . . , Zd and the edge weights cij , we con-
sider the following three settings:

(1) Innovations Z1, . . . , Zd are independent Gumbel(1, 0) distributed and for every
edge, we draw an edge weight cij from the interval [log(0.1), log(1)] uniformly.
We refer to this as the standard Gumbel setting.

(2) Innovations Z1, . . . , Zd are independent Gumbel(1, 0) distributed and for every
edge, we draw an edge weight cij from the interval [log(0.1), log(0.3)] uniformly.
We refer to this as the weak dependence setting.

(3) 50% of the innovations Z1, . . . , Zd are Gumbel(1, 0) and 50% are N (0, 1). For
every edge, we also draw an edge weight cij from the interval [log(0.1), log(1)]
uniformly. We refer to this as the mixed distribution setting.

For the score, we take the quantile-to-mean gap as in (3.6) (normalization by nij is
not needed in a simulation setting) given by

wij(r) :=
(
E(Xij(α))−Qχij(α)

(r)
)2

and apply the QTree Algorithm 4 with parameters r = 0.05 and α = 0; we re-
mark that a sensitivity analysis has shown that altering r influences the results only
insignificantly.

We use graph sizes d = 10, 30, 50, 100 and 100 repetitions. For each repetition, we
calculate the normalized Structural Hamming Distance (nSHD) and the True Positive
Rate (TPR), and then take the mean over all 100 repetitions. For definitions of these
metrics, see equation (3.1). Observe that both metrics are normalized to lie in the
interval [0, 1] and for nSHD smaller values are better, whereas for TPR larger values
are better.

As QTree performs so well not only on simple data like those from the Danube
network, but also on all sectors of the Colorado network, we guess that it is fairly
robust towards the strength of dependence, given by the cij and even different node
distributions. The weak dependence setting (2) should manifest whether QTree is
also able to recover the underlying network if the dependence given by the weights
cij is much much smaller. We want to quantify robustness towards node distributions
with the mixed distribution setting (3).

Figures 3.12 and 3.13 depict the mean nSHD and TPR standard Gumbel setting (1)
and all four graph sizes. Both metrics quickly tend to zero, respectively one, as the
sample sizes n increase. Moreover, comparing the four subfigures for a fixed sample
size n, the metrics perform only slightly worse for increasing graph size d.

Figures 3.22 and 3.23 in Section 3.7.3 depict the mean nSHD and TPR for the weak
dependence setting (2) and all four graph sizes. Again, both metrics quickly tends to
zero, respectively one. In comparison to the previous setting (1), it performs slightly
worse.

81

Chapter 3 Estimating a Directed Tree for Extremes

Figures 3.24 and 3.25 in Section 3.7.3 depict the mean nSHD and TPR for the mixed
distribution setting (3) and all four graph sizes. Despite the different distributions of
the innovations, both metrics quickly tend to zero, respectively one. The performance
compared to settings (1) and (2) is expectedly worse, however, less than perhaps could
be expected.

The decrease in performance for increasing graph size d is presented in Figure 3.14,
where we plot the minimum amount of data n needed to reach a mean nSHD of 10%.
The first observation is that larger networks need a larger sample size to reach a nSHD
below 10%. Since larger networks have more opportunities for a wrongly estimated
causal influence, this is in line with what we expect. Moreover, the standard Gumbel
setting (1) converges much faster than both other settings. Although the weights cij
of setting (2) are in general much smaller than the weights of setting (1), only for a
very large graph, substantially more data are needed to reach the lower bound for the
nSHD. This implies that the smaller dependence impacts the estimation for a small
graph only moderately, but for a larger graph more data are required. The mixed
distribution setting (3), however, requires for increasing sample size substantially
more data. This is also in line with our expectation as this makes the discrimination
between signal and noise more difficult.

To summarize the results of our simulation study, QTree is sensitive to weaker depen-
dence, but much more sensitive to the tail behavior of innovations/noise distributions.

We conclude that QTree works for sufficiently many observations very well even for
limited data, across different dependence structures in the tree, and different distri-
butions at the nodes.

Figure 3.14: Minimum amount of observations needed to reach a mean nSHD of 10%. Blue
line for the standard Gumbel setting (1), green line for the weak dependence
setting (2), and red line for the mixed distribution setting (3). For the standard
Gumbel setting (1) and its weak dependence version (2), increasing the graph
size d, the amount of data needed only increases moderately to reach the same
level of performance. The mixed distribution setting (2) requires for increasing
sample size substantially more data.

82

3.6 Summary

Figure 3.12: Mean nSHD for the standard Gumbel setting (1) and graph size d = 10 (top
left), d = 30 (top right), d = 50 (bottom left), d = 100 (bottom right) and
noise-to-signal ratio k = 30%. Solid lines denote the metric for the pair (T , T̂)
while dashed lines denote the metric for its reachability pair (R, R̂). For all
graph sizes, the nSHD quickly converges to 0 as n increases. Increasing the
graph size only moderately decreases the performance.

3.6 Summary

In this chapter, we proposed auto-tuned QTree , a new algorithmic solution to the
Extremal River Problem—a benchmark problem for causal inference in extremes—
combining the benefits of a new score matrix as input to Chu-Liu/Edmonds’ algorithm
with a stabilizing subsampling procedure. We also presented three new data sets
of the Lower Colorado network for the Extremal River Problem, which are more
challenging than the by now classic Upper Danube network data due to a large fraction
of missing data and close spatial proximity between nodes. Across all four data
sets, auto-tuned QTree performed very well, indeed better than previous state-of-
the-art results. Our plug-and-play Python implementation in Tran [2021] can fit
QTree on ten thousand observations in the range of 10 to 30 nodes on a personal
laptop within half an hour. We proved that for a max-linear Bayesian network with
Gumbel-Gaussian distributions for innovations and noise, the tree outputs of QTree
are strongly consistent as the number of observations tends to infinity. Open research
directions include (i) generalizations to learning directed acyclic graphs, (ii) better
subsampling procedures with theoretical guarantees, and (iii) have the algorithm
output a distribution over possible root-directed trees instead of a single best tree.

83

Chapter 3 Estimating a Directed Tree for Extremes

Figure 3.13: Mean TPR for the standard Gumbel setting (1) and graph size d = 10 (top
left), d = 30 (top right), d = 50 (bottom left), d = 100 (bottom right) and
noise-to-signal ratio k = 30%. Solid lines denote the metric for the pair (T , T̂)
while dashed lines denote the metric for its reachability pair (R, R̂). For all
graph sizes, the TPR quickly converges to 1 as n increases. Increasing the
graph size only moderately decreases the performance.

3.7 Supplementary Material

3.7.1 Proof of the complexity of QTree

We work with the solution of the max-linear Bayesian network on a tree T = (V,E)
defined in eq. (3.3) [Baccelli et al., 1992, §3]; [Gissibl and Klüppelberg, 2018, The-
orem 2.2]. Let C∗ = (c∗ij) be the matrix of longest paths, also known as the Kleene
star of C = (cij). Then

Xi =
∨

j:j⇝i∈T
(c∗ij + Zj), c∗ij , Zij ∈ R, i ∈ V. (3.13)

If there is no path j ⇝ i, then, by definition, c∗ij := −∞.

Lemma 3.7.1 concerns the noise-free case, and Lemma 3.7.2 concerns the noisy case.

Lemma 3.7.1. Let X = {x1, . . . , xn} be i.i.d. observations from the max-linear model
given by (3.13), not corrupted with noise. Assume that the Zi are independent and
have continuous distributions. Define

ĉij = min
x∈X

(xi − xj). (3.14)

Suppose that for each edge j → i such that cij > −∞, there exist at least two
observations x ∈ X where j causes i. Then C∗ can be uniquely recovered from Ĉ

84

3.7 Supplementary Material

since

ĉij = c∗ij ⇐⇒ min in (3.14) is achieved at least twice. (3.15)

In particular, C∗ can be computed in time O(|V |2n). If for every node, each of the
parents is independently and equally likely to be the one that achieves the maximum,
then the matrix C∗ is recovered exactly for n = O(|V |(log(|V |))2).

Proof. Since a root-directed spanning tree has at most one path between any pair of
nodes (j, i) we have for an edge j → i that c∗ij = cij . Furthermore, as indicated at
the beginning of Section 3.2.2, if for an observation x the value at j causes that at i,
then xi = c∗ij + xj . If j does not cause i, then xi > c∗ij + xj . Rearranging motivates
the estimator (3.14) with properties as stated in [Gissibl et al., 2021, Proposition 1].
Equation (3.15) follows from [Gissibl et al., 2021, Lemma 1].

Now we prove the complexity claim. Since there are O(|V |2) many edges, and for each
edge we need O(n) operations to compute the minimum in (3.14), the complexity is
O(|V |2n). The number of observations needed, so that each edge is seen at least twice,
is a variant of coupon-collecting [Boneh and Hofri, 1997, Boneh and Papanicolaou,
1996], where each node must collect two coupons (parents) among its set of parents.
Since the nodes are collecting the coupons simultaneously, by the union bound, the
number of observations needed is at most log(|V |) times the number of observations
needed for the node with highest degree to collect all of its coupons, which in turn is
O(|V | log(|V |)).

Lemma 3.7.2 (Complexity of QTree). QTree Algorithm 1 runs in time O(|V |2n).

Proof. For each pair i, j ∈ V, i ̸= j, to estimate wij , one needs to compute the α-th
quantile of Xj , the r-th quantile and the mean of Xij(α). Since α and r are fixed in
advance, the empirical quantiles can be computed in time O(n), see Musser [1997]. As
there are O(|V |2) pairs, computing W = (wij) takes O(|V |2n). Chu–Liu/Edmonds’
algorithm runs on the complete bidirected graph supported by W , and thus takes
O(|V |2), see Gabow et al. [1986]. So the complexity of QTree is O(|V |2n + |V |2) =
O(|V |2n).

3.7.2 Proof of the Consistency Theorem

In this section, we prove Theorem 3.2.4, which we recall here for ease of reference.

Gumbel-Gaussian noise model. For i ∈ V , the innovations Zi are i.i.d.
Gumbel(β, 0) (location 0 and scale β), the independent noise variables εi
are i.i.d. with symmetric, light-tailed density fε satisfying

fε(x) ∼ e−Kx
p
as x→ ∞, (3.16)

for some p > 1 and γ,K > 0 and the derivative of fε exists in the tail
region. Throughout, for two functions a, b, positive in their right tails, we
write a(x) ∼ b(x) as x → ∞ for limx→∞ a(x)/b(x) = c, where c > 0 is
some arbitrary constant.

85

Chapter 3 Estimating a Directed Tree for Extremes

Theorem 3.7.3 (Theorem 3.2.4). Assume the Gumbel-Gaussian noise model.
(a) There exists an r∗ > 0 such that for any pair 0 < r < r < r∗, the QTree algorithm
with score matrix W = (wij) defined as the lower quantile gap

wij(r, r) :=
1

nij

(
QXij(α)(r)−QXij(α)(r)

)2
(3.17)

returns a strongly consistent estimator for the tree T as the sample size n→ ∞.
(b) There exists an r∗ > 0 such that for any 0 < r < r∗, the QTree algorithm with
score matrix W = (wij) defined as the quantile-to-mean gap

wij(r) :=
1

nij

(
E(Xij(α))−QXij(α)(r)

)2
(3.18)

returns a strongly consistent estimator for the tree T as the sample size n→ ∞.

The proof of this theorem comes in a series of steps. Moreover, for simplicity, we
omit the normalization by nij and the squaring in (3.17) and (3.18) as this leaves the
proof unchanged. Also we set in the proof α = 0.

As a preliminary result, Lemma 3.7.4 identifies a set of ‘good’ deterministic input
matrices W = (wij), where if we apply the QTree algorithm to such an input, then
it returns the true tree T exactly. The proof then reduces to the problem of proving
that as n → ∞, the matrices Wn derived from data converge a.s. to a ‘good’ W .
Intuitively, W is ‘good’ if for each node j, the weight wij is smallest when i is the
child of j. For the root we have a special explicit condition. For each fixed j, we split
the set of node pairs {(j, i) : j, i ∈ V, i ̸= j} into three scenarios:

� j ⇝ i, that is, i is a descendant j in the true tree,

� i⇝ j, that is, i is an ancestor of j in the true tree, and

� i ̸∼ j, that is, i is neither of the above.

We first consider the case whereW = (wij) is the matrix of lower quantile gaps (3.17)
of the true distribution. Note that this W is no longer random. The goal is to show
that if the true quantiles are known, then one can choose the parameters (r, r) such
that W is good.

Next Proposition 3.7.5 gives an explicit representation for wij in each of the three
scenarios above as the lower quantile gap of a certain family of distributions (F b : b ∈
R), parametrized by a single parameter b, one value for each edge j → i. Then, we use
a calculus of variation argument to detail how wij changes as b varies. This allows
us to show (cf. Corollary 3.7.8 and Lemma 3.7.9) that among the three scenarios
above, there exist some choices of quantile levels (r, r) such that for any fixed j, wij
is smallest when i is the child of j in the true tree. A separate argument is made for
the root. Thus, this proves that if the true quantiles are known, then the resulting
W is good.

Finally, we invoke the fact that the empirical quantiles converge a.s. to the true
quantiles as n → ∞, and thus the empirical wij are a.s. close to the true ones. A
union bound over the d nodes of the graph thus says that, the empirical Wn is a.s.
‘good’ as n → ∞, and thus proves the Consistency Theorem for the lower quantile
gap.

86

3.7 Supplementary Material

The proof for the quantile-to-mean gap is similar, with Proposition 3.7.11 playing the
role of Proposition 3.7.5.

Lemma 3.7.4 (A criterion for ‘good’ inputs W). Let W = (wij) be a score matrix
such that each true edge j → i ∈ T satisfies

wij < wi′j for all i′ ∈ V, i′ ̸= i, j, (3.19)

and in addition, the true root i∗ satisfies

min
i′
wi′i∗ > max

i,j:j→i
wij . (3.20)

Then the QTree algorithm applied to input W returns the true tree T .

Proof. QTree applies Chu–Liu/Edmonds’ algorithm to find a minimum directed span-
ning tree from the complete graph with score matrix W , and returns that tree. We
shall prove that under the conditions (3.19) and (3.20) on W , Chu–Liu/Edmonds’
algorithm would converge after one iteration and returns the true tree T . Indeed,
let G denote the graph that consists of the smallest outgoing edge at each node. By
(3.19), G = T ∪ i∗ → i′ for some node i′ ∈ V . By Chu–Liu/Edmonds’ algorithm, the
minimum spanning tree Tw is a subset of G. In particular, Tw is a minimum spanning
tree of G. By (3.20), edge i∗ → i′ is the maximal edge. Since it belongs to the unique
cycle in G, deleting this edge would yield the minimum directed spanning tree of G.
Therefore Tw = T .

3.7.2.1 Proof of Theorem 3.2.4 for the lower quantile gap

For known quantiles, W is ‘good’ for appropriate choices of (r, r)

In this subsection we work with the lower quantile gap matrixW = (wij) derived from
the true quantiles of the distributions of Xi−Xj under the Gumbel-Gaussian model,
for some quantile levels (r, r). The goal is to show that there exist some appropriate
choices of (r, r) such that the resulting W is ‘good’, that is, it satisfies Lemma 3.7.4.

The first main result is Proposition 3.7.5, which gives an explicit representation for
wij in the three scenarios. We start with the necessary definitions to state it.

Recall the definition of C∗ from the beginning of Section 1. Since the true graph is a
tree, if j ⇝ i, there is a unique directed path from j to i. Let c̄ij denote the sum of
all the edges along this unique path. Path uniqueness implies that c̄ij = c∗ij and C∗

is transitive, i.e. c∗ij = c∗ik + c∗kj if j ⇝ k ⇝ i. Thus, by the Helmholtz decomposition
on graphs [Lim, 2015, equation 2.6], c∗ij is an edge flow. That is, there exists a unique

t∗ ∈ Rd with t∗1 = 0 such that for all j → i ∈ G,

c∗ij = t∗i − t∗j . (3.21)

For each i ∈ V , define the constant

θi :=
∑
k⇝i

exp(−t∗k/β). (3.22)

87

Chapter 3 Estimating a Directed Tree for Extremes

For b ∈ R ∪ {−∞}, define the random variable

ξb := (εi − εj) + ((Zi − Zj) ∨ b) (3.23)

with the convention that ξ−∞ := (εi− εj)+ (Zi−Zj). Let F b denote the distribution
function of ξb and qr(F

b) the r-th quantile of F b for r ∈ (0, 1). These quantities
are deterministic and do not depend on i, j since by assumption, εi, εj are i.i.d. and
Zi, Zj are i.i.d.

Proposition 3.7.5. Assume the Gumbel-Gaussian model. Fix 0 < r < r < 1. Let
wij = wij(r, r) be the lower quantile gap (3.17). Fix j ∈ V . For i ∈ V, i ̸= j, we have
three cases.

(1) If j ⇝ i, then wij = qr(F
b)− qr(F

b) for b = β(log θj − log(θi − θj)).

(2) If j ̸∼ i, then wij = qr(F
b)− qr(F

b) for b = −∞.

(3) If i⇝ j, then wij = q1−r(F
b)− q1−r(F

b) for b = β(log θi − log(θj − θi)).

Proof. We first consider the noise-free case. Observe that by (3.23) ξb simplifies to
(Zi−Zj)∨b. Therefore, it is sufficient to prove that wij equals the lower quantile gap
of (Zi−Zj)∨ b. For i ∈ V , let X̄i := Xi− t∗i . Then X̄i− X̄j is a constant translation
of Xi −Xj , so the lower quantile gap of the two corresponding distributions are the
same. In other words, it is sufficient to prove the Proposition for X̄ instead of X.
Let Z̄i := Zi − t∗i . Then

X̄i = Xi − t∗i =
∨
j:j⇝i

(c∗ij + Zj)− t∗i by (3.13)

=
∨
j:j⇝i

(t∗i − t∗j + Zj)− t∗i by (3.21)

=
∨
j:j⇝i

Z̄j . (3.24)

For each ordered pair (i, j), define

Si = Z̄i ∨
∨

i′ ̸=i,i′⇝i,i′ ̸⇝j
Z̄i′ Sj = Z̄j ∨

∨
j′ ̸=j,j′⇝j

Z̄i′ (3.25)

In Figure 3.15 we illustrate the two index sets of the random variables Si and Sj .

By definition, Si and Sj are independent. Since Z̄i’s are translated independent
Gumbel(β) by assumption, standard properties of the Gumbel(β) distribution yield
that Si and Sj are also translated independent Gumbel(β). The exact constants of
translation depend on the relation between i and j, as this dictates the definition of
Si and Sj . Now we consider the three cases. In the first case, j ⇝ i. Then, (3.24)
implies X̄i = Si ∨ Sj and X̄j = Sj .

88

3.7 Supplementary Material

i′1 i′2 i′3 j′1 j′2 j′3

i j

Figure 3.15: Illustration of the index sets of Si and Sj for an ordered pair (i, j). The index
set for Si includes besides i also i′1, . . . , i

′
3 and all nodes on the paths j ⇝ i

(excluding j), i′k ⇝ i for k = 1, . . . , 3, while the index set for Sj includes
j, j′1, . . . , j

′
3 and all nodes on the paths j′k ⇝ j for k = 1, . . . , 3.

A short computation yields Si
d
= Zi + β log(θi − θj), Sj

d
= Zj + β log θj . Therefore,

denoting
d
= equality in distribution,

X̄i − X̄j = (Si ∨ Sj)− Sj = (Si − Sj) ∨ 0

d
= (Zi − Zj − β(log θj − log(θi − θj))) ∨ 0

= ((Zi − Zj) ∨ β(log θj − log(θi − θj)))− β(log θj − log(θi − θj))

= ((Zi − Zj) ∨ b)− β(log θj − log(θi − θj)),

where b = β(log θj−log(θi−θj)). Since β(log θj−log(θi−θj)) is a translation constant,
the quantile gap of X̄i−X̄j is equal to the quantile gap of (Zi−Zj)∨b. This concludes
the case j ⇝ i. Computations for the third case, i ⇝ j, is similar, with the role of i
and j reversed, r is replaced by 1− r, and r is replaced by 1− r. For the second case,

i ̸∼ j, then X̄i=Si, X̄j=Sj , where Sj
d
= β log θj + Zj and Si

d
= β log θi + Zi. Then

X̄i − X̄j = Si − Sj
d
= Zi − Zj + β(log θi − log θj).

Since β(log θi − log θj) is a translation constant, the quantile gap of X̄i − X̄j is equal
to the quantile gap of Zi − Zj , as claimed.

How the lower quantile gap wij varies with b

Now, we aim to show through a variational argument that under the Gumbel-Gaussian
assumption, among the three scenarios of Proposition 3.7.5, wij is smallest when it
falls in a subset of case (1), namely, j → i. We first give an overview. By Proposition
3.7.5, the lower quantile gaps wij in cases (1) and (2) are all of the form q(b, r)−q(b, r)
for some constant b = b(i, j). In particular, for fixed j, b(i, j) is largest when j → i.
Lemma 3.7.7 says that one can choose the quantile levels (r, r) such that q(b, r)−q(b, r)
is monotone increasing as a function of b on a large interval. Corollary 3.7.8 then
shows that a good choice can be made so that for each fixed j, the quantile gap is
smallest for the edge from j to its child ch(j). Case (3) of Proposition 3.7.5, where
i is an ancestor of j, is handled by Lemma 3.7.9. The Gumbel-Gaussian assumption
comes in through Lemma 3.7.6, which is a technical result that gives an explicit form
for the density of the noise differences η := εi−εj . Intuitively, it shows that under the
Gumbel-Gaussian model, the tail of η is lighter than the tail of the signal differences
Zi − Zj . This is a key observation exploited in the proofs.

89

Chapter 3 Estimating a Directed Tree for Extremes

Lemma 3.7.6. Under the Gumbel-Gaussian model, for any pair of nodes i, j ∈ V, i ̸=
j, ξ := Zi − Zj has density

fξ(x) =
ex/β

β(1 + ex/β)2
∼ 1

β
e−x/β as x→ ∞, (3.26)

and η := εi − εj has density

fη(x) ∼ x1−p/2 e−Kx
p
as x→ ∞. (3.27)

Proof. Computing the convolution integral yields

P(Zi − Zj > x) =
1

1 + ex/β
, x ∈ R, (3.28)

and taking the derivative gives the first statement. For the second statement, the
density fε is a density with Gaussian tail in the sense of Balkema et al. [1993]:

f(x) ∼ γ(x)e−ψ(x) as x→ ∞,

for constants γ and ψ(x) = Kxp. The asymptotic form of fη follows by Laplace’s
integration principle as shown in [Balkema et al., 1993, page 2].

Since fε is differentiable in the tail, fη is also differentiable in the tail, and differen-
tiation of (3.27) yields the following formula for the derivative:

f ′η(x) ∼ fη(x)
(
−Kpxp−1 + (1− p/2)x−1

)
(3.29)

For functions with two arguments, let ∂1 denotes the derivative in the first argument,
∂2 denotes the derivative in the second argument, ∂212 := ∂1∂2 denote the mixed second
derivatives and so forth. Define the functions H : R × R → [0, 1], q : R × [0, 1] → R
by

H(b, a) = P (ξb ≤ a), q(b, r) = r-th quantile of ξb.

Lemma 3.7.7. Under the Gumbel-Gaussian model, for each finite constant B, there
exists some r∗ = r∗(B) ∈ (0, 1) such that

∂212q(b, r) < 0 for all r ∈ (0, r∗), b ≤ B.

Equivalently, for any pair (r, r) such that 0 < r < r < r∗ and any pair (b′, b) such
that b′ < b ≤ B,

q(b, r)− q(b, r) < q(b′, r)− q(b′, r). (3.30)

Proof. By definition,
H(b, q(b, r)) = r. (3.31)

We take derivatives of both sides, first with respect to r, then to b. Note that functions
and derivatives of H are always evaluated at (b, q(b, r)) while those of q are evaluated
at (b, r), so we suppress them in the notations. Differentiate both sides sof (3.31)
with respect to r gives

∂2H · ∂2q = 1. (3.32)

90

3.7 Supplementary Material

Now, differentiating both sides of (3.31) with respect to b, we get

∂

∂b
H1(b, q(b, r)) = ∂1H + ∂2H · ∂1q = 0,

therefore,

∂1q =
−∂1H
∂2H

. (3.33)

Differentiate (3.32) with respect to b using implicit differentiation and chain rules, we
get

0 =
∂

∂b
(∂2H · ∂2q) =

∂

∂b
(∂2H(b, q(b, r)) · ∂2q + ∂2H · ∂212q

= (∂212H + ∂222H · ∂1q) · ∂2q + ∂2H · ∂212q

=
∂212H − ∂222H · ∂1H∂2H

∂2H
+ ∂2H · ∂212q by (3.32) and (3.33).

(3.34)

Rearranging the last equation gives

∂212q =
∂222H · ∂1H − ∂212H · ∂2H

(∂2H)3
. (3.35)

For fixed b, by definition of H, ∂2H is the density of ξb, so ∂2H > 0. So ∂212q(b, r) < 0
if and only if

(∂222H∂1H − ∂212H∂2H)(b, q(b, r)) < 0. (3.36)

Now we compute each of the terms ∂2H, ∂1H, ∂
2
12H and ∂222H in the LHS of (3.36)

explicitly in terms of the density fη of the noise difference η = εi − εj . Note that
ξb = η + (ξ ∨ b) where ξ := Zi − Zj . Then we have for ε > 0 (see Fig. (a))

H(b+ ε, a)−H(b, a) = P(η + ξ ∨ (b+ ε) ≤ a)− P(η + ξ ∨ b ≤ a)

=

0 if ξ > b+ ε,
P(η + b+ ε ≤ a)− P(η + b ≤ a) if ξ ≤ b (light shaded),
P(η + b+ ε ≤ a)− P(η + ξ ≤ a) if b ≤ ξ ≤ b+ ε (dark shaded).

Since η and ξ are independent, this implies

H(b+ ε, a)−H(b, a) = −P(ξ ≤ b)P(a− b− ε ≤ η ≤ a− b) +O(ε2). (3.37)

Hence,

∂1H(b, a) = lim
ε↓0

H(b+ ε, a)−H(b, a)

ε
= −P(ξ ≤ b)fη(a− b). (3.38)

A similar calculation gives (see Fig. (b))

∂2H(b, a) = lim
ε↓0

H(b, a+ ε)−H(b, a)

ε
= P(ξ ≤ b)fη(a− b) +

∫ ∞
b

fη(a− x)fξ(x) dx

=: (−∂1H +A)(b, a). (3.39)

91

Chapter 3 Estimating a Directed Tree for Extremes

Figure 3.16: H(b + ε, a) − H(b, a) is the
probability that (ξ, η) lies in
the shaded regions (light +
dark shaded)

Figure 3.17: H(b, a + ε) − H(b, a) is the
probability that (ξ, η) lies in
the shaded region (light +
dark shaded)

Thus,

∂212H(b, a) = −P(ξ ≤ b)f ′η(a− b),

∂222H(b, a) = P(ξ ≤ b)f ′η(a− b) +

∫ ∞
b

f ′η(a− x)fξ(x) dx

= −∂212H(b, a) +

∫ ∞
b

f ′η(a− x)fξ(x) dx.

= (−∂212H +Aa)(b, a).

Now we have

(∂222H∂1H − ∂212H∂2H)(b, a) = (Aa∂1H −A∂212H)(b, a)

=P(ξ ≤ b)

(
−fη(a− b)

∫ ∞
b

f ′η(a− x)fξ(x) dx+ f ′η(a− b)

∫ ∞
b

fη(a− x)fξ(x) dx

)
.

Thus, (3.36) holds if and only if

−fη(q(b, r)−b)
∫ ∞
b

f ′η(q(b, r)−x)fξ(x) dx+f ′η(q(b, r)−b)
∫ ∞
b

fη(q(b, r)−x)fξ(x) dx < 0.

(3.40)
Now we need to show that for each constant B, there exists an r∗(B) > 0 such that
for all r < r∗ and b ≤ B, (3.40) holds. Fix the constant B. Since the noise ε has
no upper bound, η and hence ξb have unbounded support below. For each fixed b,
q(b, r) → −∞ as r ↓ 0. Therefore, there exists some sufficiently small r∗ > 0 such
that for all r < r∗, q(b, r)− b is a large negative number. Fix such an r∗. Therefore,
for all x > b, q(b, r) − x is a large negative number. This allows us to use Lemma
3.7.6 to make the LHS of (3.40) explicit. In particular, by (3.27), as t→ ∞,

fη(t) = K1t
1−p/2e−Kt

p
(1 + o(1)), f ′η(t) = fη(t)

(
−Kptp−1 + (1− p/2)t−1

)
(1 + o(1)).

(3.41)

92

3.7 Supplementary Material

Setting t = |x − q(b, r)| and use the fact that fη is symmetric, fη(q(b, r) − x) =
fη(|x− q(b, r)|), we have

− fη(q(b, r)− b)

∫ ∞
b

f ′η(q(b, r)− x)fξ(x) dx+ f ′η(q(b, r)− b)

∫ ∞
b

fη(q(b, r)− x)fξ(x) dx

=fη(q(b, r)− b)

∫ ∞
b

[−Kp(x− q(b, r))p−1 + (1− p/2)(x− q(b, r))−1]fη(q(b, r)− x)fξ(x) dx

+ [Kp(b− q(b, r))p−1 − (1− p/2)(b− q(b, r))−1]fη(q(b, r)− b)

∫ ∞
b

fη(q(b, r)− x)fξ(x) dx

=fη(q(b, r)− b)

∫ ∞
b

A(x)fη(q(b, r)− x)fξ(x) dx,

where

A(x) =
(
Kp[(b−q(b, r))p−1−(x−q(b, r))p−1]−(1−p/2)[(b−q(b, r))−1−(x−q(b, r))−1]

)
.

If p ∈ (1, 2], since x > b, the first term (b−q(b, r))p−1−(x−q(b, r))p−1 and the second
term −(1 − p/2)[(b − q(b, r))−1 − (x − q(b, r))−1] are both negative. If p > 2, since
x > b ≫ q(b, r) the first term (b − q(b, r))p−1 − (x − q(b, r))p−1 is a large negative
number. Since q(b, r) is a large negative number, b−q(b, r) is a large positive number,
so (b−q(b, r))−1, (x−q(b, r))p−1 < 1. Thus |(1−p/2)[(b−q(b, r))−1−(x−q(b, r))−1]| ≤
|1−p/2|. For this reason, A(x) < 0 for all p > 1, x > b, while fη, fξ > 0 everywhere as
they are densities. Thus the integral is negative, that is, (3.40) holds for all r ∈ (0, r∗)
and b ≤ B, as needed.

Below we denote ch(j) the child of node j.

Corollary 3.7.8. Under the Gumbel-Gaussian model, there exists an r∗1 > 0 such
that: for all 0 < r < r < r∗1, for all j ∈ V and for all i′ ∈ V, i′ ̸= j, ch(j) and either
j ⇝ i′ or j ̸∼ i′, then

wch(j) j < wi′j .

Proof. It is sufficient to show that the above holds with some constant r∗(j) for each
fixed j, then set r∗1 = minj r

∗(j). Fix j and i′ as stated. Let b∗ := β(log θj −
log(θch(j) − θj)), and let r∗(j) be the constant r∗ that works for B = b∗ in Lemma
3.7.7. By Proposition 3.7.5,

wch(j) j = q(b∗, r)− q(b∗, r).

Now we consider two cases.
Case 1: i′ is a descendant of j, that is, j ⇝ i′. Then by Proposition 3.7.5,

wji′ = q(b, r)− q(b, r)

where b = β(log θj − log(θi′ − θj)). But since i
′ ̸= ch(j), i′ must be a descendant of i

as well. By definition of θ’s in (3.22), i⇝ i′ implies θi′ > θi. Therefore, b < b∗, so by
(3.30), wij < wi′j . This concludes case 1.
Case 2: j ̸∼ i′. Then by Proposition 3.7.5,

wi′j = q(−∞, r)− q(−∞, r).

Since −∞ < b∗, so by (3.30), wij < wi′j . This concludes case 2.

93

Chapter 3 Estimating a Directed Tree for Extremes

Lemma 3.7.9. There exists some r∗2 > 0 such that for all 0 < r < r < r∗2, for all
j ∈ V , i′ ⇝ j implies

q(b, r)− q(b, r) < q(b′, 1− r)− q(b′, 1− r), (3.42)

where b = β(log θj − log(θch(j) − θj)) and b
′ = β(log θi′ − log(θj − θi′)). In particular,

if i′ ⇝ j, then for all quantile levels r, r such that 0 < r < r < r∗2,

wch(j) j < wi′j . (3.43)

Proof. It is sufficient to prove that (3.42) holds for each fixed j with some constant
r∗2(j), and then set r∗2 = minj r

∗
2(j). Fix j. First, we do some manipulations on (3.42)

to relate it to the partial derivatives of H. Define

B := {β(log θj − log(θi − θj)) : i, j ∈ V, j ⇝ i}. (3.44)

Note that (3.42) is equivalent to

∂2q(b, r) < ∂2q(b
′, 1− r) for all r ∈ (0, r∗2) and for all b, b′ ∈ B. (3.45)

By (3.32), we have

∂2q(b, r)− ∂2q(b
′, 1− r) =

1

∂2H(b, q(b, r))
− 1

∂2H(b′, q(b′, 1− r))
.

By (3.39), ∂2H > 0 point-wise, thus our goal now is to show that for sufficiently small
r,

∂2H(b′, q(b′, 1− r))− ∂2H(b, q(b, r))<0 (3.46)

for all b, b′ ∈ B, that is, some finite set of constants.We shall do this by writing ∂2H
in terms of the tail densities fη and fξ using (3.39), then apply Lemma 3.7.6. Indeed,
by (3.39),

∂2H(b′, a) = P(ξ ≤ b′)fη(a− b′) +

∫ ∞
b′

fη(a− x)fξ(x) dx

By Lemma 3.7.6, fξ has heavier tail than fη, so for a → ∞, the main contribution
from

∫∞
b′ fη(a − x)fξ(x) dx comes from fξ(a). That is, for large a, there exists some

constant b1 > 0 such that

∂2H(b′, a) > b1fξ(a). (3.47)

Now we consider ∂2H(b,−a). From (3.39),

∂2H(b,−a) = P(ξ ≤ b)fη(−a− b) +

∫ ∞
b

fη(−a− x)fξ(x) dx.

Again, for large a

fη(−a− x) < fη(−a− b) for all x > b.

Therefore, we can bound the second term above as∫ ∞
b

fη(−a− x)fξ(x) dx < fη(−a− b)

∫ ∞
b

fξ(x) dx = fη(−a− b)P(ξ > b).

94

3.7 Supplementary Material

Adding in the first term, we get that for large a,

∂2H(b,−a) < fη(−a− b)

Combining this with (3.47) and noting that ∂2H(b, a) is just the density fξb(a) of ξb,
we get

fξb(−a) = O(fξb′ (a)) (3.48)

for all b, b′ ∈ B and a large. Now ∂2H(b, q(b, r)) is just the slope of the cdf of fξb at its
r-th quantile. Therefore, for r small, by (3.48), ∂2H(b′, q(b′, 1− r)) < ∂2H(b, q(b, r))
which proves (3.46) and thus completes the proof of (3.42). The last statement follows
from Proposition 3.7.5, case (3).

Corollary 3.7.10. If the true quantiles are known, then there exist some choices of
(r, r) such that the lower quantile gap matrixW satisfies the conditions of Lemma 3.7.4,
that is, (3.19) and (3.20).

Proof. Set r∗ = min(r∗1, r
∗
2) where r

∗
1 comes from Corollary 3.7.8, and r∗2 comes from

Lemma 3.7.9. Let (r, r) be any pair such that 0 < r < r < r∗, and let W be the
corresponding lower quantile gap matrix with the true quantiles. Then (3.20) holds
because of (3.43) and the fact that for the root r of the root-directed spanning tree,
i′ ⇝ r holds for every i′ ̸= r. Corollary 3.7.8 and Lemma 3.7.9 together guarantee
that (3.19) is satisfied for W .

Proof of Theorem 3.2.4 for the lower quantile gap

Fix (r, r) such that Corollary 3.7.10 holds, and let W be the corresponding lower
quantile gap matrix derived from the true quantiles. Let Wn be the lower quantile
gap matrix derived from an empirical distribution with sample size n. Note that the
set of ‘good’ matrices, that is, those that satisfy Lemma 3.7.4, is an open polyhedral
cone in the space of matrices Rd×d, since the conditions of ‘goodness’ is a set of linear
inequalities. By Corollary 3.7.10, W is a point inside this cone. Recall that empirical
quantiles converge a.s. as n→ ∞ to the true ones for continuous limit distributions,
hence, also the empirically-derived lower quantile gap converges a.s.. By a union
bound over the d2 − d possible edge pairs (i, j), for any metric D (e.g. induced by
a matrix norm), we thus have D(Wn,W) → 0 a.s. The Consistency Theorem then
follows from Lemma 3.7.4.

3.7.2.1 Proof of Theorem 3.2.4 for the quantile-to-mean gap

Our proof follows the same structure as the previous proof, but the calculations in all
steps are a bit simpler, since there is only one quantile parameter to deal with. First,
expectation is linear, so we work with empirical means X̄i for i ∈ V and mention
in passing that they converge a.s. to the true mean as n → ∞. The analog of
Proposition 3.7.5 is the following.

Proposition 3.7.11. Fix r ∈ [0, 1), and let wij be the quantile-to-mean gap (3.18).
Assume the Gumbel-Gaussian model. Then

95

Chapter 3 Estimating a Directed Tree for Extremes

(1) If j ⇝ i, then wij = −qr(ξb) where b = β(log θj − log(θi − θj)).

(2) If j ̸∼ i, then wij = −qr(ξb) where b = −∞.

(3) If i⇝ j, then wij = q1−r(ξ
b) where b = β(log θi − log(θj − θi)).

Instead of a lengthy proof of the analog of Proposition 3.7.5 by duplicating arguments,
we provide some informal reasoning. We check that our quantile-to-mean gaps wij
satisfy the inequalities of Corollary 3.7.8 and Lemma 3.7.9 by first checking the noise-
free case, where εi ≡ εj ≡ 0. We consider the three cases of Proposition 3.7.11.

1. If j ⇝ i. Then ξb has a left-most atom at b = β(log θj − log(θi − θj)), so for
sufficiently small r, wij = −b. This is minimal when i is a direct descendant of
j. So Corollary 3.7.8 for the case j ⇝ i holds in the noise-free case.

2. If j ̸∼ i. Then ξb has no left-most atom, so as r ↓ 0, qr(ξ
b) → −∞, so wij → ∞.

So Corollary 3.7.8 also holds in the noise-free case for the remaining case, j ̸∼ i.

3. If i ⇝ j. Then ξb has a left-most atom, but no right-most atom. Again, as
r ↓ 0, q1−r(ξ

b) → ∞, so wij → ∞. Thus, Lemma 3.7.9 holds in the noise-free
case.

Now we consider the effect of noise. We send r ↓ 0. As long as η := εi− εj has lighter
tail than Zi − Zj , as guaranteed by Lemma 3.7.6, then we have the following.

� In case (1), qr(ξ
b) is dominated by the lower tail of η.

� In case (2), qr(ξ
b) is dominated by the lower tail of Zi − Zj and, in particular,

is going to −∞ at a faster rate than case (1).

� In case (3), q1−r(ξ
b) is dominated by the upper tail of Zi−Zj , and in particular,

is going to ∞ at a faster rate than case (1).

This domination calculation is the same calculation done in the proof of Lemma 3.7.9.
The above says that for fixed j, for small enough r, the minimum of {wij : i ̸= j, i ∈ V }
lies in case (1). Within case (1), we want to make sure that, if wij is smallest, then i
is the child of j. Indeed, write

ξb = εi − εj + ξ′ij

where ξ′ij = (Zi−Zj)∨(β(log θj−log(θi−θj))). For fixed j, (ξ′ij : j ⇝ i) is a particular
family of distribution indexed by i. By a decoupling argument, it is sufficient to show
that qr(ξ

′
ij) is smallest when i is the child of j. But this reduces to the noise-free

case, which we already proved above. This finishes the proof of Theorem 3.2.4 for the
quantile-to-mean gap.

3.7.3 Supplementary Figures

Below we present the figures analogous to Figure 3.10 for the different data sets of
the Colorado river network.

96

3.7 Supplementary Material

Figure 3.18: Metrics nSHD, TPR, FDR and FPR for the Top sector of the Colorado network
and varying parameters α. For detailed explanations see Figure 3.10.

Figure 3.19: Metrics nSHD, TPR, FDR and FPR for the Middle sector of the Colorado
network and varying parameters α. For detailed explanations see Figure 3.10.

97

Chapter 3 Estimating a Directed Tree for Extremes

Figure 3.20: Metrics nSHD, TPR, FDR and FPR for the Bottom sector of the Colorado
network and varying parameters α. For detailed explanations see Figure 3.10.

Figure 3.21: Metrics nSHD, TPR, FDR and FPR for Bottom150 of the Colorado network
and varying parameters α. For detailed explanations see Figure 3.10.

Below we visualize the performance measures nSHD and TPR as defined in (3.1) from
simulations of settings (2) and (3) of Section 3.5.

98

3.7 Supplementary Material

Figure 3.22: Mean nSHD for the weak dependence setting (2) and different graph sizes. For
detailed explanations, see Figure 3.12.

Figure 3.23: Mean TPR for the weak dependence (2) and different graph sizes. For detailed
explanations, see Figure 3.13.

99

Chapter 3 Estimating a Directed Tree for Extremes

Figure 3.24: Mean nSHD for the mixed distribution setting (3) and different graph sizes.
For detailed explanations, see Figure 3.12.

Figure 3.25: Mean TPR for the mixed distribution setting (3) and different graph sizes. For
detailed explanations, see Figure 3.13.

100

Chapter 4

Learning Bayesian Networks from Extreme
Data

4.1 Introduction

Graphical models have gained a wide interest in modeling causal dependence in a
multivariate random vector. Bayesian networks, also known as directed acyclic graphs
(DAGs) have been of particular interest in research as it allows for the factorization of
the joint probability of all random variables into a product of conditional distributions,
see e.g. Pearl [2009].

However, most models have been limited to discrete or Gaussian distributions(see e.g.
Koller and Friedman [2009] and Lauritzen [1996]). Such models are unsuitable for
extreme value analysis and often lead to a severe underestimation of risk. To overcome
this problem, extreme dependence measures have been proposed that focus on maxima
rather than the center of the distribution (Beirlant et al. [2004], De Haan and Ferreira
[2007], Resnick [2007]). Still, the combinatorial explosion in the joint likelihood makes
them often intractable to fit on larger data sets. In recent years, max-linear models
have gained a wider interest in the literature for modeling extremal dependence (Buck
and Klüppelberg [2021], Gissibl and Klüppelberg [2018], Gissibl et al. [2018, 2021],
Klüppelberg and Krali [2021], Tran et al. [2021]). However, methods for learning
them remain scarce. They often assume noise-free observations (Gissibl et al. [2021],
Klüppelberg and Krali [2021]) or one-sided noise (Buck and Klüppelberg [2021]).
This makes them highly sensitive to model misspecifications and, thus, often cannot
be applied to real-world data sets. Recently, Tran et al. [2021] have proposed a new
estimator for learning max-linear Bayesian networks. The method relies on a score
between ordered pairs of vertices and uses a measure of concentration to estimate
Bayesian networks. The authors apply the score to the Extremal River Problem,
which seeks to recover the underlying river network based on extreme discharges
along a set of stations only (Gnecco et al. [2021], Mhalla et al. [2020], Tran et al.
[2021]). The algorithm in Tran et al. [2021] strongly outperforms all state-of-the-art
methods. However, the method has serious drawbacks: it is limited to recovering
root-directed spanning trees, a special class of Bayesian networks, and cannot be
applied to general Bayesian networks. Moreover, the scores are only a measure of
concentration and lack interpretation.

This work improves upon this by introducing a novel estimator based on the op-
timization framework of Zheng et al. [2018]. Although learning arbitrary Bayesian
networks is NP-complete as it scales super exponentially with the number of nodes

101

Chapter 4 Learning Bayesian Networks from Extreme Data

(cf. Chickering [1996]), the authors achieved a novel characterization of acyclicity in
terms of the smooth function tr(exp(C ◦C)), where ◦ is the Hadamard product, tr(A)
denotes the trace and exp(A) is the matrix exponential of A.

A matrix C ∈ Rd×d is supported on a Bayesian network if and only if the upper
expression equals d. In this chapter, we are going to adapt max-linear models to the
upper optimization framework. We are going to show that max-linear models are a
special case of max-out networks (Goodfellow et al. [2013]) that can be learned in
terms of a neural network. For a noisy sample Y , we seek to optimize

Ĉ∗ := argmin
A∈Rd×d

A Kleene star matrix

∥(A⊕ Ỹ) ∨ Y − Y ∥1 − λf(A), (4.1)

where a Kleene star matrix is the transitive closure of the underlying edge weight
matrix C, Ỹ is a preprocessed version of Y , ⊕ denotes the tropical matrix multipli-
cation, λ > 0 is a tuning parameter and f is a regularization term. All the terms
will be defined later. Throughout the chapter, for a matrix A := (aij)d×d, we use the
regularization term

f(A) = log

 ∑
i,j=1,...,d

exp(aji)

even though other regularization terms work equally.

Neural networks are a standard tool for learning graphical models (Johnson et al.
[2016], Jordan [1999], Yoon et al. [2019]). However, with respect to causal inference in
extremes, literature is more scarce. The algorithm learns the model based only on the
upper tail of the distribution in order to recover the extremal dependence structure.
It is very flexible and has only two tuning parameters. We implemented it as a
plug-and-play package in Python at https://github.com/johanneseebuck/mldag,
which includes all data and codes to produce the results and figures in this chapter.
Moreover, we suggest an automated parameter-tuning procedure based on resampling.
We get good results for simulated, noisy data (cf. Table 4.1 and 4.2) as well as two
real-world data sets.

The novelty of this chapter lies in several directions.

1. We suggest a new algorithm to recover causality in extremes. The algorithm is
the first to estimate noisy max-linear Bayesian networks without very specific
assumptions on the Bayesian network [Tran et al., 2021] or the noise distribu-
tion [Buck and Klüppelberg, 2021]. The algorithm implements the max-linear
network as a max-out network and uses gradient descent and backpropagation
to iteratively determine the optimal solution.

2. We prove the consistency of the estimated DAG in an extreme value setting
with possible noise as the sample size tends to infinity.

3. We show by a simulation study that the algorithm is robust with respect to
different dependence structures and model misspecifications.

The chapter is organized as follows. In Section 4.2, we recall max-linear models and
introduce Algorithm 6, respectively Algorithm 7 with automated parameter selection.

102

https://github.com/johanneseebuck/mldag

4.2 Recursive Max-Linear Models

In Section 4.3, we give estimation results for the algorithm for noisy simulations and
two real-world data sets. Finally, Section 4.4 concludes the chapter with a proof of
consistency (cf. Theorem 4.4.1).

Throughout we use the following notation. For a directed, acyclic graph D = (V,E),
also known as a Bayesian network, the node sets pa(i), an(i) and de(i) denote the
parents, ancestors, and the descendants of node i, respectively, and we abbreviate
An(i) := an(i) ∪ {i}.

Unless stated otherwise, d stands for the number of nodes in the graph while n
stands for the number of observations in a sample. A matrix C ∈ R̄d×d defines a
weighted directed graph, where j → i ∈ D if and only if its edge weight cij is positive
(respectively greater than negative infinity when taking the logarithm).

For random variables, we use uppercase variables and for observations we use lower-
case variables. We use X to refer to a sample X := {x1, . . . , xn} ∈ Rd. If necessary
for matrix multiplication, we also collect X in a matrix X ∈ Rd×n. For a matrix
A = (aij)d×n we denote

∥A∥1 =
∑

i=1,...,d
j=1,...,n

|aij |/n. (4.2)

Finally, we introduce the following standard metrics for causal inference in graphs:
normalized Structural Hamming Distance(nSHD) and True Positive Rate(TPR) as
follows. Let D be the true graph and D̂ be the estimated graph. The structural
Hamming distance SHD(D, D̂) between D and D̂ is the minimum number of edge
additions, deletions, and reversals to obtain D from D̂. Denote E(D) and E(D̂) the
set of edges in D and D̂, respectively. We then have

nSHD(D̂,D) :=
SHD(D̂,D)

|E(D̂)|+ |E(D)|
, TPR(D̂,D) :=

|E(D̂) ∩ E(D)|
|E(D)|

. (4.3)

4.2 Recursive Max-Linear Models

The recursive max-linear model was first defined by Gissibl and Klüppelberg [2018]
and studied in Améndola et al. [2021, 2022], Asenova and Segers [2022], Buck and
Klüppelberg [2021], Gissibl and Klüppelberg [2018], Gissibl et al. [2018, 2021], Tran
et al. [2021] as a model for extreme value analysis.

For numerical stability, in practice, one often works with the logarithm of the ex-
tremes. We, therefore, work with the equivalent log-version of this model given as

Xi =
∨

j∈pa(i)

(cij +Xj) ∨ Zi, i ∈ V, (4.4)

with edge weights cik ∈ R for i ∈ V and k ∈ pa(i), and i.i.d. random variables
Z1, . . . , Zd with support R and atom-free distributions. For this chapter, we assume
that C is supported on a Bayesian network, i.e. the graph D = (V,E) that results

103

Chapter 4 Learning Bayesian Networks from Extreme Data

from drawing an edge j → i whenever cij > −∞ contains no cycles. For a path
p = [j = k0 → k1 → . . .→ kn = i] from j to i we define the path weight

dij(p) :=

n−1∑
l=0

ckl+1kl . (4.5)

Denoting the set of all paths from j to i by Pij , we define the Kleene star matrix
C∗ = (c∗ij)d×d of X with entries

c∗ij :=
∨
p∈Pij

dij(p) for j ∈ an(i), c∗ii = 0, and c∗ij = −∞ for j ∈ V \An(i).

(4.6)

It is possible to write the model in terms of the Kleene star matrix C∗ := (c∗ij)d×d as

Xi =
∨

j∈An(i)

(c∗ij + Zj), i = 1, . . . , d. (4.7)

Observe that an alternative representation is given by

Xi =
∨

j∈An(i)

(c∗ij +Xj), i = 1, . . . , d, (4.8)

see Buck and Klüppelberg [2021], Corollary 3.4. From (4.8), it follows immediately
that the distribution of Xi −Xj is lower bounded by c∗ij > −∞ if and only if there

is a path from j to i. For a sample X := {x1, . . . , xn} ∈ Rd, this motivates the
minimum-difference estimator given by

ĉ∗ij :=
n∧
t=1

(xti − xtj), (i, j) ∈ d× d. (4.9)

If data is generated by a max-linear model without noise, a version of this estimator
converges almost surely and is the generalized maximum likelihood estimator in the
sense of Kiefer and Wolfowitz [1956], see Gissibl et al. [2021].

However, literature on estimating max-linear models under observational noise re-
mains scarce. For the equivalent non-logarithmic model, Buck and Klüppelberg [2021]
showed that for one-sided noise and some regular variation condition, the minimum-
difference estimator Ĉ∗ = (ĉ∗ij)d×d converges to a matrix of independent Weibull
entries. Nevertheless, if Xi is polluted by some (two-sided) additive noise εi ∈ R for
i = 1, . . . , d, then the minimum-difference estimator might diverge even if j ⇝ i, i.e.
there is a path from j to i. Another problem is that despite asymptotic consistency,
for a finite sample, it might not be directly obvious which edges to include when using
a minimum-difference estimator as in (4.9). To overcome this problem, Tran et al.
[2021] recently suggested an extension of the minimum-difference estimator. This
approach relies, similarly to the minimum-difference estimator, on pairwise observa-
tions. In the first step, for a pair (j, i) only these observations, where xj exceeds a
certain quantile threshold α are used. Therefore, Tran et al. [2021] define the pairwise
sample Xij as

Xij(α) := {xi − xj : x ∈ X , xj > QXj (α)}, (4.10)

104

4.2 Recursive Max-Linear Models

where QXj (α) is the α-th quantile of the empirical distribution of X in the j-th coor-
dinate. The aim is to filter the impact of noise and get more meaningful observations
by only taking samples where Xj is large. For such observations, the signal is strong
and, therefore, the noise is small relative to the signal.

Given pairwise samples Xij(α), the authors propose the following score

wij(r) :=
(
µ(Xij(α))−QXij(α)(r)

)2
, (4.11)

where r ∈ (0, 1) is a fixed, small empirical quantile and µ(Xij(α)) the empirical
mean. Now observe that for r = 0, this is equal to (µ(Xij(α)) − min(Xij(α)))2 =
(−min(X̄ij(α)))2, where X̄ij is Xij normalized by its mean. For this reason, the
scores can be seen as a generalization of the minimum-difference estimator.

Applied to the Extremal River Problem, i.e. the task to recover a river network from
only extreme flow measured at a set V of stations, the authors apply Chu–Liu/Edmonds’
algorithm to find the minimum root-directed spanning tree. This yields highly sig-
nificant results for various river networks with True Positive Rate at around 80% on
average, outperforming existing methods, see Tran et al. [2021]. However, if the un-
derlying network is not a root-directed spanning tree, Chu–Liu/Edmonds’ algorithm
cannot be applied and, therefore, the decision on what edges to include is far less ob-
vious. Moreover, only looking at bivariate data does not give the possibility to learn
the model as a whole but only information about the pairwise connection of variables.
This bears the risk that wrong conclusions are drawn as strong causality from j to
i might be caused only by a confounder k. Finally, the scores lack an interpretation
and cannot be interpreted as estimates of the Kleene star matrix C∗.

4.2.1 Learning general max-linear Bayesian Networks

We introduce a novel way to learn max-linear Bayesian networks under observational
noise. The idea is based on multivariate linear regression [Montgomery et al., 2021].
However, tropical matrix multiplication replaces the usual matrix multiplication. Fur-
thermore, we use a machine-learning approach and Zheng et al. [2018], a technique
to turn the DAG constraint into a continuous optimization problem.

When estimating the underlying Bayesian network, we have the possibility to either
estimate the edge weight matrix C as in (4.4) or the Kleene star matrix C∗ as in
equation (4.7), which acts as a weighted reachability matrix. However, max-linear
models have the property that the edge weight matrix C is generally not identifiable,
see Example 3.2. in Gissibl et al. [2021]. Though, the max-linear model is uniquely
determined by C∗, see equation (4.7). For this reason, in the subsequent chapter, we
focus on recovering the Kleene star matrix C∗.

Let X := (X1, . . . , Xd) follow a recursive max-linear model as in (4.7). We define the
noisy max-linear model as

Yi :=
∨

j∈An(i)

(c∗ij + Zj) + εi = Xi + εi, i = 1, . . . , d, (4.12)

with εi ∈ R and i.i.d. for i = 1, . . . , d. Then, by (4.8), since the noise is not

propagating and ε1, . . . , εd are i.i.d., Yi−
∨
j∈An(i)(c

∗
ij+Yj)

d
≈ (εi−εj). Therefore, the

105

Chapter 4 Learning Bayesian Networks from Extreme Data

noise becomes small relative to the signal, whenever we filter for large observations.
Thus, for a given sample Y := {y1, . . . , yn} ∈ Rd from a noisy max-linear model
and any node i ∈ {1, . . . , d}, we want to keep those observations in {y1i , . . . , yni } as
explanatory variables that exceed a certain α-quantile. If yti is below the threshold, the
observation is dominated by noise and, hence, unsuitable to serve as an explanatory
variable. However, it might still be useful as a response variable. More precisely, if
ytj is large but yti is small, it is less likely that j is an ancestor of i.

For this reason, the need arises for generating two different data sets, one as explana-
tory and one as response variables. For the explanatory variables, we look at the
univariate quantiles and set those below the quantile equal to negative infinity. This
will ensure that these observations will not be used in the estimation later. More
precisely, we define Ỹ := {ỹ1, . . . , ỹn} ∈ Rd with

ỹtj := ytj if ytj > QYj (α), and ỹtj = −∞ otherwise. (4.13)

as the data set of explanatory variables. The original data set Y then serves as the
data set of response variables. Observe that this can result in observations ỹt =
(−∞, . . . ,−∞). This means that at time t, no suitable, extreme measurement that
exceeded the chosen quantile was recorded for any given node. Therefore, we lack a
suitable explanatory variable and we delete this observation in Ỹ and Y.

4.2.2 Setting up the optimization problem

We first introduce tropical matrix multiplication. To do so, recall the noise-free max-
linear model from equation (4.8). We can write it in terms of a matrix product ⊕.
For two non-negative matrices F and G, where the number of columns in F is equal
to the number of rows in G, we define the matrix product ⊕ : Rm×n×Rn×p → Rm×p

by

(F = (fij)m×n, G = (gij)n×p) 7→ F ⊕G :=
(n∨
k=1

fkj + gik

)
m×p

. (4.14)

The triple (R,∨,+), is an idempotent semiring with −∞ as 0-element and 0 as 1-
element and the operation ⊕ is therefore a matrix product over this semiring; see for
example Butkovič [2010]. We can rewrite (4.8) to obtain

X = C∗ ⊕X.

For this reason, for a given sample Y := {y1, . . . , yn} ∈ Rd from a noisy max-linear
model, denoting by Y ∈ Rd×n the matrix of observations, we use

Ĉ∗ := argmin
A∈Rd×d

A Kleene star matrix

∥(A⊕ Ỹ) ∨ Y − Y ∥p. (4.15)

We want to quickly discuss the upper expression. As explained in (4.13), we separate
Y into a matrix of explanatory variables Ỹ and a set of response variables Y . More-
over, for the noise-free case, it holds that X = C∗⊕X, so it makes sense to minimize
∥Ĉ∗ ⊕ Ỹ − Y ∥. This, however, penalizes also the upper tail. Considering equation

106

4.2 Recursive Max-Linear Models

(4.4), a large value of Xi can be driven by a parent of i but also by an exogenous
innovation Zi. For this reason, we only penalize the left tail which results in (4.15).

For simplicity, we take the norm defined in (4.2) with p = 1. Other matrix norms
are possible and lead to similar results. Observe that max-linear models as defined
in (4.8) are a special case of max-out networks, see Goodfellow et al. [2013]. Given
an input X ∈ Rd a max-out layer implements the function

hi(x) =

d∨
j=1

XT ·Wij + bij ,

where Wi,j ∈ Rd and bij ∈ R. Setting Wij = (0, . . . , 0, 1
jth entry

, 0, . . . , 0), renaming

hi(x) to Xi and bij = c∗ij , this leads to

Xi =
d∨
j=1

(Xj + c∗ij),

which matches with (4.8) since c∗ij = −∞ if j ̸∈ An(i). However, one needs to note
that, unlike max-linear models, max-out networks are used as an activation function
for a hidden layer in a neural network. Therefore, max-out networks are used to learn
some output Y from input X. The exact weights, however, lack interpretation. In
our case, however, the estimate Ĉ∗ is the estimated Kleene star matrix and gives an
interpretation of how risk propagates through a Bayesian network. Also the optimiza-
tion term is different. Still, the connection helps us to solve the problem efficiently
by constructing a neural network and using gradient descent. However, observe that
ĉ∗ii = 0 for i = 1, . . . , d and ĉ∗ij = −∞ for i ̸= j satisfies the definition of a Kleene star
matrix by (4.6). Thus, it leads to the optimal score of zero.

For this reason, we need to add a regularization term. While most models rather suffer
from overfitting than underfitting, the inherent problem is the same. However, instead
of adding the regularization term, we simply subtract the regularization term. This
encourages more complex solutions and prevents us from choosing the trivial solution
of a graph with only isolated nodes.

For the regularization f , we would like to use a simple ℓ1 regularization. However,
observe that

∑
i,j=1,...,d aij = −∞, whenever there exists at least one aij = −∞. This,

however, is true whenever A is supported on a DAG. Therefore, we need to slightly
modify the penalty such that we take the following regularization function

f(A) = log

 ∑
i,j=1,...,d

exp(aij)

 . (4.16)

While other regularization terms are generally possible, the chosen f is easy to use
and has the following desirable features.

(a) f : A→ R is a function that assigns a real value to any d× d matrix

(b) f is increasing in every argument, i.e. if akl = ãkl for any ordered pair (k, l) ̸=
(j, i) and aji < ãji, then f(A) < f(Ã).

107

Chapter 4 Learning Bayesian Networks from Extreme Data

(c) Any permutation of values gives the same value, i.e. if Ã is a permutation of
A, then f(A) = f(Ã).

(d) f(A) = −∞ if and only if all values in A equal −∞

(e) The derivative of f exists and its marginals ∂
∂aij

f(A) are upper-bounded.

For the noise variables ε1, . . . , εd, it is common to assume continuous, symmetric,
light-tailed density fε given by

fε(x) ∼ e−Kx
p
as x→ ∞, (4.17)

for some p > 1 and γ,K > 0. Then we have additionally

(f)

lim
aij→−∞

P(εj − εi ≥ −aij + c)
/ ∂

∂aij
f(A) → 0,

for any fixed constant c.

We can see that (f) holds by applying L’Hôpital’s rule and

lim
aij→−∞

∂

∂aij
f(A) =

{
1
b exp(x), if akl > −∞ for some ordered pair (k, l) ̸= (j, i)

1, else.

for b :=
∑

(k,l)∈(d×d)
(k,l)̸=(j,i)

exp(alk) and

fεi−εj (x) ∼ x1−p/2 e−Kx
p
as x→ ∞. (4.18)

Therefore, adding the regularization term to (4.15), we optimization problem be-
comes:

Ĉ∗ := argmin
A∈Rd×d

A Kleene star matrix

∥(A⊕ Ỹ) ∨ Y − Y ∥1 − λf(A), (4.19)

where the parameter λ > 0 acts as a tuning parameter. However, it seems not obvious
how to minimize the upper expression over the class of Kleene star matrices. In order
for A to be a Kleene star matrix, it needs to be i) supported on a DAG, ii) aii = 0
for i = 1, . . . , d, and iii) A is idempotent, i.e. aij ≤ aik + akj for any triple of nodes
(j, k, i), where properties ii) and iii) follows by definition in (4.6).

While learning general Bayesian networks is NP-complete [Chickering, 1996] as the
space of DAGs is exponential in the number of nodes, we can write the constraint in
terms of a continuous optimization problem, as given in the subsequent lemma.

Lemma 4.2.1 (Theorem 1, Zheng et al. [2018]). A matrix A ∈ Rd×d is supported on
a Bayesian network if and only if

h(A) := tr(exp(A ◦A))− d = 0

where ◦ is the Hadamard product, tr(A) denotes the trace and exp(A) is the matrix
exponential of A.

108

4.2 Recursive Max-Linear Models

Regarding the idempotency as given in iii), observe that by Theorem 2.4. respectively
Corollary 2.5. in Gissibl and Klüppelberg [2018] it holds that

C∗ := log(I) ∨ C⊕(d−1),

where I is the d× d identity matrix, A⊕i := A⊕ . . .⊕A︸ ︷︷ ︸
i times

and C is defined as in (4.4).

For this reason, defining C̃ := (c̃ij)d×d with

c̃ij := cij for j ̸= i, c̃ii = 0,

we have
C∗ := C̃⊕(d−1),

We can use this equation in our forward function to ensure the idempotency of C∗.
More precisely, we fix aii = 0 for i = 1, . . . , d such that our estimation problem (4.19)
becomes

Ĉ∗ := argmin
A∈Rd×d

A supported on DAG

∥(A⊕(d−1) ⊕ Ỹ) ∨ Y − Y ∥1 − λf(A), (4.20)

Algorithm 6 MLDAG , fixed parameters

Parameters: Intensity λ > 0, quantile level α ∈ [0, 1), and penalty function f .
Input: Data Y = {y1, . . . , yn} ∈ Rd stored as a matrix Y ∈ Rd×n.
Output: A Kleene star matrix Ĉ∗.

1: Calculate Ỹ as in (4.13).
2: Assign ĉ∗ii := 0 for i = 1, . . . , d and assign equal starting values ĉ∗ij for i ̸= j.

3: Solve Ĉ∗ := argmin
A∈Rd×d

A supported on DAG

∥(A⊕(d−1) ⊕ Ỹ) ∨ Y − Y ∥1 − λf(A).

4: Use 2-means clustering to divide all values ĉ∗ij > −∞ into two groups
5: Set ĉ∗ij = −∞ whenever ĉij belongs to the group of smaller means.

6: Return the Kleene star matrix of Ĉ∗.

These ideas are summarized in Algorithm 6. We address the algorithm:

1. In order to solve the optimization problem in line 4, we use the torch package
in python. We define a max-linear model as a torch neural network, where for
inputs Ỹ and Y , the forward function calculates (A⊕(d−1) ⊕ Ỹ) ∨ Y . Then, the
loss function implements ∥(A⊕(d−1)⊕Ỹ)∨Y −Y ∥1 and we add the regularization
term. To ensure that A is supported on a DAG, we use Lemma 4.2.1. This is
done by augmented Lagrangian, see e.g. Chapter 2.1. in Bertsekas [2014]. We
then use backpropagation [Goodfellow et al., 2016, Chapter 2, Section 6.5] to
automatically calculate the gradient, where we use the torch optimizer SGD.

2. Line 5 and 6 are optional. However, if we do not do this, we will obtain a
complete DAG, i.e. a DAG with d(d − 1)/2 edges. In general, we expect the
values of Ĉ∗ to separate into a group of strong signals which are characterized by
large values ĉ∗ij and a group of spurious edges that are very small. To successfully

109

Chapter 4 Learning Bayesian Networks from Extreme Data

identify and separate these two groups, we apply 2-means clustering to these
values and set all values equal to zero that belong to the second group. k-means
clustering is a classification algorithm that is standard in machine learning. It
aims at creating a partition into k sets such that the mean squared deviation
of each value to its mean is minimized. For more information, see MacQueen
[1967]. Since this might violate the idempotency, we return the Kleene star
matrix of Ĉ∗ in line 7.

Before discussing the choice of parameters, we want to illustrate the optimization
problem with an example.

Example 4.2.2. In this example we want to illustrate three things:

1. A⊕(d−1) as in Algorithm 6 is a Kleene star matrix as defined in (4.6).

2. If Ĉ∗ is the solution of line 3 in Algorithm 6, then Ĉ∗ is already a Kleene star
matrix.

3. Ĉ∗ gives an estimate about the weights C∗. Particularly, if c∗ij increases, then
ĉ∗ij increases as well.

To do so, consider the DAG D:

1 2 3

We assume that c21 = c32 = log(0.5) ≈ −0.69. For the edge c31 we consider two
scenarios: i) c31 = log(0.2) ≈ −1.61 and ii) c31 = log(0.5) ≈ −0.69. Then by (4.6),
we have

C∗1 =

 0 −∞ −∞
log(0.5) 0 −∞

log(0.5) + log(0.5) log(0.5) 0

 C∗2 =

 0 −∞ −∞
log(0.5) 0 −∞
log(0.5) log(0.5) 0

Now let us assume that Y ∈ Rd is an observation from a noisy recursive max-linear
model as in (4.12), i.e. Y = X + ε = (X1 + ε1, X2 + ε2, X3 + ε3) with the underlying
DAG D as described above. We then have

A⊕(2) =

 0 a12 ∨ (a32 + a13) a13 ∨ (a23 + a12)
a21 ∨ (a31 + a23) 0 a23 ∨ (a13 + a21)
a31 ∨ (a21 + a32) a32 ∨ (a12 + a31) 0

Now looking at the entries of A⊕(2), we can see that each entry is the maximum path
weight of the Kleene star matrix, see definition (4.6). For example, a path from 1
to 2 can be either the direct edge a12 or the directed path a31 + a23. Therefore, we

have A
⊕(2)
21 = a21 ∨ (a31 + a23). Hence, we can see that A⊕(2) is indeed idempotent.

Now let Ĉ∗ solve the problem as in line 4 of Algorithm 6. Then it also holds that
ĉ∗21 ≥ ĉ∗31 + ĉ∗23. This is because if ĉ∗21 < ĉ∗31 + ĉ∗23, then setting ĉ∗21 = ĉ∗31 + ĉ∗23 gives
the same result for Ĉ∗⊕(2). However, by feature (b) of the regularization term, this
increases the regularization and, since we take the negative, would lead to a smaller
score. Note that ĉ∗21 is also present in other entries but since Ĉ∗ is supported on a
DAG, we can recursively use this argument to validate that Ĉ∗ is indeed idempotent.

110

4.2 Recursive Max-Linear Models

Finally, we want to return to the two scenarios introduced before. We wish to give an
intuition that for scenario ii), the estimated value ĉ∗31 is larger compared to scenario
i) since c∗31 is larger as well. For illustration, we need to make a few simplifying
assumptions. Let us first assume that α = 0. Then, (Ĉ∗⊕(d−1)⊕Ỹ)∨Y = Ĉ∗⊕(d−1)⊕Y
and we have

∥(Ĉ∗⊕(d−1) ⊕ Ỹ) ∨ Y − Y ∥1
=Y1 ∨ (ĉ∗12 ∨ (ĉ∗32 + ĉ∗13) + Y2) ∨ (ĉ∗13 ∨ (ĉ∗23 + ĉ∗12) + Y3 − Y1

+(ĉ∗21 ∨ (ĉ∗31 + ĉ∗23) + Y1) ∨ Y2 ∨ (ĉ∗23 ∨ (ĉ∗13 + ĉ∗21) + Y3)− Y2

+(ĉ∗31 ∨ (ĉ∗21 + ĉ∗32) + Y1) ∨ (ĉ∗32 ∨ (ĉ∗12 + ĉ∗31) + Y2) ∨ Y3 − Y3

Now since c∗23 = −∞, let us assume that ĉ∗23 = −∞. Then, the upper sum differs
between the two scenarios only in the last term

(ĉ∗31 ∨ (ĉ∗21 + ĉ∗32) + Y1) ∨ (ĉ∗32 ∨ (ĉ∗12 + ĉ∗31) + Y2) ∨ Y3 − Y3

Now if X3 = X1 + c∗31, then this simplifies to

(ĉ∗31 ∨ (ĉ∗21 + ĉ∗32) +X1 + ε1) ∨ (ĉ∗32 ∨ (ĉ∗12 + ĉ∗31) + Y2) ∨ (X1 + c∗31 + ε3)− (X1 + c∗31 + ε3)

Now depending on c∗31, the probability

P ((ĉ∗31 ∨ (ĉ∗21 + ĉ∗32) + ε1) ∨ (ĉ∗32 ∨ (ĉ∗12 + ĉ∗31) + Y2 −X1) ≥ (c∗31 + ε3))

gets smaller if c∗31 increases. Therefore, asymptotically, ∥(Ĉ∗⊕(d−1) ⊕ Ỹ) ∨ Y − Y ∥1
becomes smaller for scenario ii) over scenario i). Since we increase ĉ∗31 as long as
the regularization term decreases the score more than ∥(Ĉ∗⊕(d−1) ⊕ Ỹ) ∨ Y − Y ∥1
increases it, ĉ∗31 will be larger in scenario ii). We want to quickly illustrate this with a
simulation. From the DAG D, we generate a sample from a noisy recursive max-linear
model as in (4.12) where Z1, . . . , Zd are i.i.d. Gumbel(1) and the noise is normally
distributed with noise-to-signal ratio 30% (i.e. the noise has 30% of the standard
deviation of the noise-free sample X). We generate n = 100 observations and run
Algorithm 6 with standard parameters λ = 0.3 and α = 0.8 to calculate the estimated
Kleene star matrix Ĉ∗. We repeat this 100 times and build the mean value in each
entry across all 100 repetitions. The result is given as

Ĉ∗1 =

 0 −∞ −∞
−1.04 0 −∞
−1.48 −1.08 0

 Ĉ∗2 =

 0 −∞ −∞
−1.15 0 −∞
−0.93 −0.95 0

Observe that −1.48 < −0.93, so in scenario ii) we correctly estimate ĉ∗31 significantly
larger. Overall, the result resembles the underlying DAG D well, see C∗1 and C∗2 .

4.2.2.1 On parameters and missing values

We now want to briefly discuss the choice of potential parameters. For the parameters
α, only values in [0, 1] are possible. If the data comes from a max-linear Bayesian
network without noise, then we should choose α = 0 as it will give us the maximum
number of observations. On the other hand, the larger α is chosen, the smaller the

111

Chapter 4 Learning Bayesian Networks from Extreme Data

influence of the light-tailed noise variables relative to the signal. We, therefore, have a
trade-off between the number of observations and the significance of each observation.
Typically, we want values for α ≥ 0.75.

For λ, we have

E
(

∂

∂âij
∥(A⊕(d−1) ⊕ Ỹ) ∨ Y − Y ∥1

)

≥ P

aij + Ỹj >
∨

k∈V \{j}

aik + Ỹk ∨ Yi

 ∈ [0, 1].

Contrarily, ∂
∂aij

f(A) ≤ 1 For this reason, only values λ ∈ [0, 1) are useful with typical

values ranging at λ ≤ 0.5.

Another challenge is missing values in the sample. It is possible that some stations
do not have measurements for the entire period of the sample. This can be because
sensors break or because not every node has the time data range of recordings. In
case we do not observe a value for node i at point t, we can not use them either
as an explanatory or as a response variable. For this reason, we first calculate Ỹ as
defined in (4.13), ignoring all missing values. Next, we replace missing values in Ỹ by
negative infinity and missing values in Y by a very large positive number. This way,
missing values are not used and do not interfere with the estimation of parameters.

4.2.3 Tuning the parameters

To automatically tune the parameters, we use a subsampling procedure, which is
standard in the literature, see e.g. James et al. [2013]. We search on a grid of
possible values for α and λ. For each combination of parameters, estimate the DAG.
Then resample the data ns times with replacement. For each of the ns resulting
samples, estimate the resulting DAG for each combination of parameters and choose
the combination with the lowest normalized structural Hamming distance(nSHD) to
the DAG estimated with the original sample. We formally note down this idea in
Algorithm 7.

Remark 4.2.3. Utilizing the idempotency of C∗ comes with a computational price.
If we minimize

∥(A⊕(d−1) ⊕ S̃) ∨ S − S∥1 (4.21)

as in line 8 of Algorithm 7, the backpropagation becomes computationally significantly
more expensive compared to the much simpler task of minimizing

∥(A⊕ S̃) ∨ S − S∥1. (4.22)

Therefore, it is often advisable in Algorithm 7 to use (4.21) for the original data set
Y , while for the resampled data Y1, . . . , Yns, we use (4.22) to save computation time.
This will lead to very similar results and significantly reduces computation time.

112

4.2 Recursive Max-Linear Models

Algorithm 7 MLDAGwith automated parameter selection

Parameters: Intensities {λ1, . . . , λnλ
} > 0, quantile levels {α1, . . . , αnα} ∈ [0, 1),

penalty function f and resample rate ns.
Input: Data Y = {y1, . . . , yn} ∈ Rd stored as a matrix Y ∈ Rd×n.
Output: A Kleene star matrix Ĉ∗.

1: Generate resampled data Y1, . . . , Yns ∈ Rd×n with replacement.
2: for S in (Y, Y1, . . . , Yns) do
3: for α in α1, . . . , αnα do
4: Calculate S̃ as in (4.13).
5: for λ in λ1, . . . , λnλ

do
6: Assign ĉ∗ii := −∞ for i = 1, . . . , d and assign equal starting values ĉ∗ij

for i ̸= j.
7: Solve Ĉ∗ = argmin

A∈Rd×d

A supported on DAG

∥(A⊕(d−1) ⊕ S̃) ∨ S − S∥1 − λf(A).

8: Use 2-means clustering to divide all values ĉ∗ij > −∞ of Ĉ∗ into two
groups

9: Set ĉ∗ij = −∞ whenever ĉij belongs to the group of smaller means and

update Ĉ∗ by its Kleene star matrix using (4.6).
10: end for
11: end for
12: end for
13: For each pair of parameters (λ, α), calculate the mean normalized Structural

Hamming distance between Ĉ∗ and Ĉ∗1 , . . . , Ĉ
∗
ns
, where Ĉ∗ is the estimate from

data (Y, Ỹ) and Ĉ∗k the estimate from data (Yk, Ỹk) for k = 1, . . . , ns
14: Choose the set of parameters (λopt, αopt) with the lowest mean normalized

Structural Hamming distance
15: Choose Ĉ∗ to be the result for sample (Y, Ỹ) and parameters (λopt, αopt).
16: Return Ĉ∗ and parameters (λopt, αopt).

113

Chapter 4 Learning Bayesian Networks from Extreme Data

4.3 Data Application

We want to investigate the performance of the estimator by conducting a simulation
study and apply the theory to real-world data sets.

4.3.1 Application I: Simulation Study

We conduct a simulation study to test the quality of the estimator. Particularly, we
are interested in the overall performance and breaking points of the estimator. To do
so, we consider Bayesian networks with number of nodes d ∈ {10, 20, 30}. For each
d, we generate a directed Erdős–Rényi-graph G with probability p = 30% of drawing
an edge and then delete all values of the lower triangle resulting in a DAG D. For
each edge in D, we assign a random edge weight drawn from a uniform distribution
U [0.1, 1] which results in an edge weight matrix C ∈ Rd×d upon which we calculate
the Kleene star matrix C∗.

We then define X as in (4.7) by

Xi =
∨

j∈An(i)

c∗ij + Zj , i = 1, . . . , d. (4.23)

We also consider an additive model, i.e.

Xi =
∑

j∈An(i)

c∗ij + Zj , i = 1, . . . , d, (4.24)

to test for robustness in the presence of misspecifications in the model. We consider
sample sizes n ∈ {50, 100, 250, 500}. For each n, we generate vectors z1, . . . , zd ∈ Rn of
innovations drawn from a Fréchet distribution with shape 1 and scale uniformly drawn
from U [0.1, 1], i.e. z1, . . . , zd differ in distribution by a different and randomly chosen
scale parameter. This ensures that nodes with many ancestors do not necessarily
have larger observations. Finally, as we work with the logarithmized version of the
max-linear model, we take the log of the Kleene star matrix C∗ and z1, . . . , zd and
calculate X = {x1, . . . , xn} as in (4.23), respectively (4.24) which we each collect in
a matrix X ∈ Rd×n.

For both models, we calculate the empirical standard deviation of X1, . . . , Xd ∈ Rn,
calculate the mean σX over all standard deviations, and then set Y := X + E , where
E = (εij)n×d with mutually independent entries εij ∼ N (0, rσX). Here, r denotes the
noise-to-signal ratio and we take values r ∈ {0.1, 0.3, 0.5}.

For each setting, we use Algorithm 6 with standard parameters α = 0.8 and λ = 0.3
to estimate the Kleene star matrix C∗. Changing the setting does not alter the results
very much. Moreover, we use (4.22) to save computation time, see Remark 4.2.3. We
repeat this step ns = 100 times and for each setting, we calculate the nSHD and
TPR to the true DAG D as defined in (4.3) and then take the mean across all ns
estimations. The results can be found in Table 4.1 and Table 4.2.

In Table 4.1, we see the results for data generated by a max-linear model as in
(4.23) polluted with noise. The estimator performs reliably with estimates quickly
converging to the true underlying network. For the smallest noise-to-signal ratio of

114

4.3 Data Application

r 10% 30% 50%

n 50 100 250 500 50 100 250 500 50 100 250 500

d = 10
nSHD 0.21 0.11 0.05 0.03 0.15 0.09 0.05 0.03 0.21 0.15 0.11 0.07

TPR 0.85 0.93 0.97 0.98 0.94 0.97 0.98 0.99 0.88 0.92 0.93 0.95

d = 20
nSHD 0.19 0.13 0.04 0.02 0.14 0.09 0.06 0.03 0.18 0.14 0.10 0.08

TPR 0.89 0.93 0.99 0.99 0.92 0.96 0.99 0.99 0.88 0.91 0.95 0.96

d = 30
nSHD 0.17 0.13 0.07 0.04 0.14 0.11 0.07 0.04 0.16 0.13 0.09 0.07

TPR 0.89 0.95 0.97 0.97 0.92 0.96 0.98 0.99 0.92 0.94 0.95 0.97

Table 4.1: Normalized Structural Hamming Distance (first row) and True Positive Rate
(second row) as defined in (4.3) for various number of nodes d, sample sizes n
and noise-to-signal ratios r and X generated as in (4.23). Colors illustrate the
estimation quality of results (from yellow to green). The estimator performs
reliably even for small data sets and converges to the underlying network.

r 10% 30% 50%

n 50 100 250 500 50 100 250 500 50 100 250 500

d = 10
nSHD 0.16 0.09 0.04 0.03 0.15 0.10 0.05 0.04 0.20 0.15 0.11 0.08

TPR 0.90 0.97 0.99 1.00 0.94 0.97 0.98 0.99 0.88 0.92 0.92 0.94

d = 20
nSHD 0.15 0.10 0.06 0.03 0.15 0.11 0.08 0.05 0.18 0.16 0.12 0.10

TPR 0.88 0.95 0.99 1.00 0.88 0.94 0.98 0.99 0.84 0.86 0.92 0.93

d = 30
nSHD 0.14 0.10 0.06 0.04 0.14 0.11 0.08 0.06 0.16 0.13 0.11 0.09

TPR 0.89 0.96 0.98 0.99 0.92 0.94 0.97 0.99 0.88 0.90 0.91 0.93

Table 4.2: Normalized Structural Hamming Distance (first row) and True Positive
Rate(second row) as defined in (4.3) for various number of nodes d, sample sizes
n and noise-to-signal ratios r and X generated as in (4.24). Colors illustrate the
estimation quality of results (from yellow to green). Despite the misspecification,
the estimator performs reliably even for small data sets and converges to the
underlying network. However, the performance is slightly worse than the model
that is not misspecified, see 4.1.

10%, results are even good for very small sample sizes. For example, for n = 50, we
still reach a nSHD and TPR between 0.17 and 0.21, respectively 0.85 and 0.89. As
the noise gets heavier, accuracy expectedly decreases. However, even for a noise-to-
signal ratio of 50% and n = 50 observations, we reach a similar performance if the
number of observations is small. However, the convergence generally is slower. An
interesting observation is that an increase in the number of nodes leads to a slightly
better estimation. This can be explained by the graph generation. For a pair of nodes
(j, i), we have a 30% chance of drawing an edge between the two nodes. However,

115

Chapter 4 Learning Bayesian Networks from Extreme Data

Code Foreign Exchange Rate (into GBP) Code Foreign Exchange Rate (into GBP)

AUS Australian Dollar MYS Malaysian Ringgit
CAN Canadian Dollar NOR Norwegian Krone
CHE Swiss Franc NZL New Zealand Dollar
CHN Chinese Yuan POL Polish Zloty
CZE Czech Koruna RUS Russian Ruble
DNK Danish Crown SAU Saudi Riyal
EUR Euro SGP Singapore Dollar
HKG Hong Kong Dollar SWE Swedish Krona
HUN Hungarian Forint THA Thai Baht
IND Indian Rupee TUR Turkish Lira
ISR Israeli Shekel TWN Taiwan Dollar
JPN Japanese Yen USA US Dollar
KOR South Korean Won ZAF South African Rand

Table 4.3: Currency codes and the respective currency, measured as foreign exchange rate
into British Pound sterling.

when calculating the Kleene star matrix C∗, we obtain a denser matrix C∗ if the
number of nodes increases.

As for the model defined in (4.24), the estimator surprisingly performs very well, on
par with data from the max-linear model. For smaller sample sizes, the estimator
often performs better, however, the convergence is often slower, especially for noise-
to-signal ratio 50%. Overall, the good results illustrate the robustness in terms of
misspecifications. We, therefore, conclude that the estimator performs well even
under large misspecifications and the presence of significant noise.

4.3.2 Application II: Foreign Exchange Rates

We have seen that the estimator performs reliably even under strong noise and mis-
specified models. Motivated by this success, we also want to illustrate the performance
of the proposed methodology on foreign exchange rates of d = 26 currencies expressed
in terms of the British Pound sterling. Although the assumption that foreign exchange
rates follow a DAG might be unrealistic, the example allows for an easy and intuitive
interpretation of the estimation result. The data has been first considered in Engelke
and Volgushev [2020] and further studied in Engelke et al. [2021].

The data ranges from the 1st of October 2005 to the 30th of September 2020, result-
ing in n = 3790 observations. To eliminate the temporal dependence, Engelke and
Volgushev [2020] first preprocess the data. They take log returns and then fit each
univariate series to a ARMA-GARCH process, taking absolute values of the stan-
dardized filtered returns. For more information, see Engelke and Volgushev [2020].
Observe that taking absolute values leads to considering both tails. We run Algo-
rithm 7 with λ ∈ {0.3, 0.35, 0.4, 0.45, 0.5}, α = 0.8 and resample rate ns = 100.
Moreover, we follow Remark 4.2.3.

In order to illustrate the estimation results, we do not plot the entire DAG D̂ that
results from Algorithm 7. Instead, we draw only the 50 largest weights ĉ∗ij of Ĉ

∗. This
leads to a better interpretation as otherwise, the overload of ancestral relations would
make the graphic interpretation of the result very difficult. Moreover, the thickness
of an edge j → i illustrates the weight ĉ∗ij , where thicker edges mean larger weight ĉ∗ij .

116

4.3 Data Application

DNK EUR

CZE CHE

SWE

NOR

POL

HUN

CHN TWN SGP SAU HKG USA

IND THA ISR MYS

JPN KOR CAN RUS

AUS

NZL

TUR

ZAF

Figure 4.1: 50 largest weights of Ĉ∗ based on Algorithm 7 with λ ∈ {0.3, 0.35, 0.4, 0.45, 0.5},
α = 0.8 and ns = 100. The algorithm chooses λ = 0.45 as the optimal weight.
The thickness of an edge illustrates its respective estimated weight, i.e. the larger
the estimated weight, the thicker the edge. The 26 nodes separate into three
clusters. The first cluster is strictly European and connected with the second
cluster by only a single edge. The third cluster is the smallest one, containing
only New Zealand and Australia. There are 2 nodes that are isolated, i.e. none
of the 50 largest weights in Ĉ∗ connect with any of the two nodes.

The result can be found in Figure 4.1. A table of the currency codes can be found in
Table 4.3.

We can see that the 50 largest weights of Ĉ∗ divide the set of currencies into three
clusters. The first cluster is a purely European cluster, consisting of the currencies of
Hungary, Poland, the Euro area, Denmark, the Czech Republic, Switzerland, Norway,
and Sweden. Out of the mentioned currencies, the Euro is by far the most traded
currency. Therefore, one expects that the Euro also rather impacts other European
currencies than being impacted by them. This exact phenomenon can be seen in
the estimation result. While EUR has only outgoing edges within the cluster, other
smaller currencies like HUN, NOR, CZE, and CHE have only incoming edges. It
also seems reasonable that Poland and Hungary and Sweden and Norway share a
connection as they share close ties by spatial proximity. A little surprising, however,
is the strong role of the Danish currency in this cluster.

Moving to the second cluster, we can see that the only connection is the one between
the currency of China and the Euro area. This makes sense, considering that China
is one of Europe’s largest suppliers of manufactured goods. Within the second clus-
ter, only the currencies of Singapore, the United States, Saudi Arabia, China, Hong
Kong, and Taiwan have outgoing edges. Moreover, the only two currencies with only
outgoing edges are the currencies of Saudi Arabia and Hong Kong. This makes a lot
of sense. For Saudi Arabia, its economy is extremely dependent on sales of fossil fuels.
Therefore, the currency serves as a good indicator for the world’s economic sentiment.

117

Chapter 4 Learning Bayesian Networks from Extreme Data

Similarly, also Singapore and Hong Kong are good indicators for the world’s economic
sentiment as they are both highly developed free-market economies with almost free
port trade and very strong financial markets. It is also reasonable to assume that the
US and Chinese currencies impact other currencies. The United States is the world’s
largest economy and its currency is by far the most traded in the world. China, on
the other hand, became the 2nd largest economy in the second quarter of 2010 and
world’s largest producer of manufactured goods in 2011. Finally, with Taiwan being
the world market leader in the semiconductor industry, one can also argue that its
currency is an indicator for the economic sentiment of the world. Therefore, it is rea-
sonable, that these currencies impact the currencies of Thailand, Israel and Malaysia,
though it is a bit surprising for India. As for Japan, there are two incoming edges
from China And Hong Kong which can be explained well by spatial proximity and
economic ties. The edge from Taiwan to Korea, Canada, and Russia, however, is
surprising.

The third cluster is the smallest containing only the currencies of Australia and New
Zealand. Nevertheless, for obvious reasons, it seems very logical that the currency of
Australia impacts the one from New Zealand. The only two isolated edges are the
currencies of Turkey and South Africa. Considering that both currencies depreciated
massively in the considered time span, this is not surprising.

Finally, the three thickest edges are the one between the currencies of Saudi Arabia
and China, China and USA, and USA and Myanmar. We interpret it in the sense that
China as a country of manufacturing are very sensitive to the economic sentiment of
the world. Also, the United States as the biggest importer of Chinese goods naturally
share a strong connection. The strong connection between the USA and Malaysia,
however, is surprising. Comparing the overall result with Engelke and Volgushev
[2020], we can see that many connections coincide. However, one needs to note that
their result is inherently different as the authors estimate a minimum spanning tree.

4.3.3 Application III: Upper Danube Basin

The river network of the Upper Danube consists of 31 measuring points along the
Danube basin and its tributaries. This data set was considered first in Asadi et al.
[2015] and subsequently considered in research [Engelke and Hitz, 2020, Gnecco et al.,
2021, Mhalla et al., 2020, Tran et al., 2021]. The data set ranges from 1960–2009 and
Asadi et al. [2015] suggest a declustering approach to generate a data set of 428
supposedly independent observations. For more information on the Upper Danube
data set, see Asadi et al. [2015].

We use MLDAGwith automated parameter selection as described in Algorithm 7 with
λ ∈ {0.3, 0.35, 0.4, 0.45, 0.5} and α = 0.8. An analysis has shown that the result does
not vary on α very much. We use ns = 100 resamples Y1, . . . , Y100. Moreover, we
follow Remark 4.2.3.

Since the true DAG D is known, we output the results in terms of the nSHD and TPR
as in the simulation study. For a definition, see (4.3). We also compare the estimator
with automated QTreewhich uses the pair-wise score matrix as defined in (4.11) and
applies Chu-Liu/Edmonds’ algorithm. For more information, see Tran et al. [2021].

118

4.3 Data Application

Figure 4.2: Metrics nSHD and TPR as defined in (4.3) for the outputs of MLDAG as in Al-
gorithm 7 for varying parameters λ and the Danube network. The figure has two
x-axes. The green line together with the left axis shows the nSHD for (D̂λ,D)
while the blue line together with the right axis shows the TPR for (D̂λ,D).
To choose λ, we sample with replacement and repeated this 100 times, creating
100 data sets. For each λ, we fit MLDAG on these data sets to obtain 100 esti-
mated DAGs and compute the nSHD between (D̂λ and the 100 DAGs (presented
as boxplots, using the left axis). We choose the parameter λ where the mean
nSHD between (D̂α and the 100 DAGs is minimized(red, vertical line).

Since QTree estimates the graph and not its reachability, we compare MLDAG to the
reachability graph of QTree . The results can be found in Table 4.4. We can see
that while QTreehas a nSHD of just 9%, MLDAG is significantly higher at 37%. Since
both algorithms are developed around max-linear models, we conclude that the DAG
assumption significantly helps to recover the network. Interestingly, however, the
TPR for MLDAG is almost perfect at 98%, significantly higher than the one of QTree .
This shows that MLDAG is very successful in recovering ancestral relations but often
fails in separating the set of ancestral relations from the set of spurious edges.

Finally, we want to assess the parameter selection. This is done in Figure 4.2. Observe
that the green line together with the left axis shows the nSHD for (D̂λ,D) while the
blue line together with the right axis shows the TPR for (D̂λ,D). We can see that for
the chosen parameter λopt = 0.3, the nSHD is lowest while the TPR is highest. For
this reason, on the considered data set, the parameter selection chooses the optimal
parameter.

nSHD TPR

MLDAG 0.37 0.98

QTree 0.09 0.87

Table 4.4: Normalized Structural Hamming Distance(nSHD) and True Positive Rate(TPR)
as defined in (4.3) for the Danube and the estimator as in Algorithm 7 with
alpha = 0.8 and λ ∈ {0.3, 0.35, 0.4, 0.45, 0.5}. The third column displays the λ
chosen in the parameter selection. The TPR is close to 1, suggesting that we
recover almost every edge of the underlying network. However, with nSHD at
0.42, we can see that the number of ancestral relations in D exceeds the number
of ancestral relations in D.

119

Chapter 4 Learning Bayesian Networks from Extreme Data

4.4 Asymptotics

We are now ready to state the main theorem which ensures asymptotic consistency.
Observe that restricting to large values as in (4.13) ensures that the data approxi-
mately follows a recursive ML model. As for asymptotics, we can just prove the case
of α = 0.

Theorem 4.4.1. Let Y be a noisy max-linear model from a DAG D as in (4.12) with
a given i.i.d. sample Y := {y1, . . . , yn} ∈ Rd. Let the regularization term f satisfy
properties (a)-(f) and let both, the innovations Z1, . . . , Zd and ε1, . . . , εd be i.i.d. with
continuous densities and

lim
x→∞

fεi−εj (x)/fZi(x+ c) → 0, (4.25)

where c > 0 is an arbitrary constant.

Moreover, assume that D is neither the empty nor the complete DAG, i.e. it has more
than 0 and less than d(d− 1)/2 ancestral relations. Then, there exists some λ∗ such
that for any 0 < λ ≤ λ∗ and α = 0, Algorithm 6 returns a consistent estimator, i.e.
ĉ∗ij > −∞ if and only if c∗ij > −∞ as the sample size n→ ∞.

Proof. We start by considering the empirical terms. Let us define g : A→ ∥A⊕ Y −
Y ∥1. We first consider the term

∥A⊕ Y − Y ∥1 − λf(A) = g(A)− λf(A). (4.26)

Recall that by (4.2), we have

g(A) = ∥A⊕ Y − Y ∥1 =
1

n

n∑
t=1

d∑
i=1

(
d∨

k=1

(aik + Y t
k)− Y t

i).

We are interested in the partial derivative with respect to aij of the upper expression.
Observe that for an observation t ∈ {1, . . . , n}, it holds that

∂

∂aij

d∨
k=1

(aik + ytk)− yti =

1, if aij + ytj >

d∨
k=1
k ̸=j

(aik + Y t
k)

0, if aij + ytj <
d∨

k=1
k ̸=j

(aik + ytk).

(4.27)

However, if aij + Y t
j =

∨
k=1,...,d
k ̸=j

(aik + Y t
k), then the partial derivative with respect

to aij does not exist since the left and the right partial derivative do not match.
However, we will just work with the right partial derivative and shortly refer to it as
the partial derivative.

We also consider the partial derivative of f with respect to aij . Since the partial
derivative of f exists and is upper bounded by condition (e), for any ε > 0 we have
a λ∗ > 0 such that for all 0 < λ ≤ λ∗

∂

∂aij
λ f(A) ≤ ε. (4.28)

120

4.4 Asymptotics

Now observe that when increasing aij , the value of (4.26) gets smaller if and only if

∂

∂aij
g(A) <

∂

∂aij
λf(A).

For this reason, using (4.28), for any arbitrarily chosen threshold aTij , for a sufficiently
large sample size n, we can find a λ∗ > 0 sufficiently small, such that

∂

∂aij
λf(A) <

∂

∂aij
g(A), (4.29)

whenever aij ≥ aTij and for all 0 < λ ≤ λ∗. For this reason, for the matrix A that

minimizes (4.26), by choosing λ∗ sufficiently small, we can assume aij < aTij and since

aTij is arbitrary, without loss of generality we can assume aij to be arbitrarily small.
Repeating this argument, we can assume the same for any ordered pair of nodes (j, i).

Now let us assume that there is a path from j to i in D. Then, observing (4.27) and
(4.12) and ∨

k=1,...,d
k ̸=j

(aik + ytk) =
∨

k=1,...,d
k ̸=j,i

(aik + ytk) ∨ yti ,

we have

∂

∂aij
∥A⊕ Y − Y ∥1 =

1

n

n∑
t=1

1

(
aij + ytj ≥

∨
k=1,...,d
k ̸=j,i

(aik + ytk) ∨ yti
)

≤ 1

n

n∑
t=1

1
(
aij + ytj ≥ yti

)

≤ 1

n

n∑
t=1

1
(
aij + xtj + εtj ≥ xtj + c∗ij + εti

)
=

1

n

n∑
t=1

1
(
εtj − εti ≥ c∗ij − aij

)
→ P(εj − εi ≥ c∗ij − aij) as n→ ∞, (4.30)

where we used the law of large numbers in the last line.

Contrarily, if j is not an ancestor of i, then j ∈ An(j) \ An(i). Moreover, recall that
by (4.29) and the subsequent text, we can assume aik to be arbitrarily small for any
ordered pair (k, i). For this reason, by (4.12) we get

∂

∂aij
∥A⊕ Y − Y ∥1 =

1

n

n∑
t=1

1

(
aij + ytj ≥

∨
k=1,...,d
k ̸=j,i

(aik + ytk) ∨ yti
)

≥ 1

n

n∑
t=1

1
(
aij + ytj ≥ yti + ε

)

=
1

n

n∑
t=1

1

aij + ∨
k∈An(j)

c∗jk + ztk + εtj ≥
∨

k∈An(i)

c∗ik + ztk + εti + ε

≥ 1

n

n∑
t=1

1

aij + ztj + εtj ≥
∨

k∈An(i)

c∗ik + ztk + εti + ε

→ P

Zj −
 ∨
k∈An(i)

c∗ik + Zk + εti

+ εtj ≥ −aij + ε

121

Chapter 4 Learning Bayesian Networks from Extreme Data

for some constant ε that is independent of aij . Now observe that for any independent
random variables X and Y with P(Y ≥ 0) > 0, it holds that for some c > 0

P(X + Y ≥ x) = P(X + Y ≥ x ∩ Y ≥ 0) + P(X + Y ≥ x ∩ Y < 0)

≥ P(X + Y ≥ x ∩ Y ≥ 0) ≥ P (X ≥ x ∩ Y ≥ 0) = c P (X ≥ x).

Therefore, using this argument twice, first for Y := (
∨

k∈An(i)

c∗ik + Zk + εti) and then

repeating the argument for Y := εi, we have

P
(
Zj −

(∨
k∈An(i)

c∗ik + Zk + εti
)
+ εtj ≥ −aij + ε

)
≥ c P (Zj ≥ −aij + ε) as n→ ∞, (4.31)

where c > 0 is some constant independent of aij and the choice of λ. Now let (j, i)
and (k, l) be arbitrary pair of nodes with j ̸= i, k ̸= l and j ∈ An(i) and k ̸∈ An(l).
Then, comparing (4.30) and (4.31) and considering (4.25), we can see that

∂

∂alk
∥A⊕ Y − Y ∥1

/ ∂

∂aij
∥A⊕ Y − Y ∥1 → 0 for n→ ∞,

for alk = a∗ij + c and aij → −∞ with c > 0 an arbitrary, fixed constant. At the same
time, by condition (f) of the regularization term and (4.30), we have

∂

∂aij
∥A⊕ Y − Y ∥1/

∂

∂aij
f(C∗) → 0 for n→ ∞,

and aij → −∞. Since by (4.29) and the subsequent text, we can assume aij to be
arbitrarily small. For every δ > 0, we can find λ∗ such that (4.26) has minimum
solution A with

min
(j,i)∈d×d
j∈An(i)

aij > max
(j,i)∈d×d
j ̸∈An(i)

aij + δ (4.32)

for any fixed λ with 0 < λ ≤ λ∗ and n→ ∞. Since α = 0, Ỹ = Y , where Ỹ is defined
as in (4.13). Therefore, moving to the original optimization problem

argmin
A∈Rd×d

∥(A⊕(d−1) ⊕ Ỹ) ∨ Y − Y ∥1 − λf(A)

as given in line 4 of 6, iteratively applying the previous arguments, as n→ ∞, (4.32)
holds equally for the upper expression.

Finally, we apply a 2-mean clustering approach in line 5 of Algorithm 6, i.e. we seek
to find sets S := {S1, S2} with respective means µ1 and µ2 ∈ R such that

argmin
S

2∑
i=1

∑
x∈Si

(x− µi)
2. (4.33)

Since the DAG D is neither complete nor isolated, the two sets are not empty and⋃
(j,i)∈d×d
j∈An(i)

aij and
⋃

(j,i)∈d×d
j ̸∈An(i)

aij diverge and, hence, for λ∗ sufficiently small and all 0 <

λ ≤ λ∗, as n → ∞, (4.33) splits the two groups correctly. Therefore, as n → ∞, the
estimator is consistent.

122

4.4 Asymptotics

Corollary 4.4.2. If the innovations are Gumbel, the noise is as in (4.17) and f is
chosen as in (4.16), then the condition for the theorem is satisfied.

Proof. We already discussed that for f as in (4.16) and the noise as in (4.17), condi-
tions (a)-(f) are satisfied, see (4.16) and the subsequent text. Therefore, we only need
to show (4.25). However, by (4.18) and comparing it with the density of the Gumbel
distribution, we see immediately that the noise has lighter tail and, therefore, (4.25)
holds.

123

Bibliography

C. Améndola, B. Hollering, S. Sullivant, and N. Tran. Markov equivalence of max-
linear bayesian networks. In Uncertainty in Artificial Intelligence, pages 1746–1755.
PMLR, 2021.

C. Améndola, C. Klüppelberg, S. Lauritzen, and N. M. Tran. Conditional indepen-
dence in max-linear Bayesian networks. The Annals of Applied Probability, 32(1):
1 – 45, 2022.

M. P. Anderson, W. W. Woessner, and R. J. Hunt. Applied Groundwater Modeling:
Simulation of Flow and Advective Transport. Academic Press, 2015.

P. Asadi, A. C. Davison, and S. Engelke. Extremes on river networks. The Annals of
Applied Statistics, 9(4):2023–2050, 2015.

S. Asenova and J. Segers. Max-linear graphical models with heavy-tailed factors on
trees of transitive tournaments. arXiv preprint arXiv: 2209.14938, 2022.

S. Asenova, G. Mazo, and J. Segers. Inference on extremal dependence in the domain
of attraction of a structured hüsler–reiss distribution motivated by a markov tree
with latent variables. Extremes, 24:461 – 500, 2021.

F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and linearity:
an algebra for discrete event systems. John Wiley & Sons Ltd, 1992.

A. Balkema, C. Klüppelberg, and S. Resnick. Densities with Gaussian tails. Proceed-
ings of the London Mathematical Society, 66(3):568–588, 1993.

M. Bartos, B. Wong, and B. Kerkez. Open storm: a complete framework for sens-
ing and control of urban watersheds. Environmental Science: Water Research &
Technology, 4(3):346–358, 2018.

J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. Statistics of Extremes: Theory
and Applications. Wiley, Chichester, 2004.

D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014.

N. Bingham, C. Goldie, and J. Teugels. Regular Variation. Cambridge University
Press, Cambridge, 1987.

K. A. Bollen. Structural Equations with Latent Variables. Wiley, New York, 1989.

A. Boneh and M. Hofri. The coupon-collector problem revisited—a survey of en-
gineering problems and computational methods. Stochastic Models, 13(1):39–66,
1997.

124

BIBLIOGRAPHY

S. Boneh and V. G. Papanicolaou. General asymptotic estimates for the coupon
collector problem. Journal of Computational and Applied Mathematics, 67(2):277–
289, 1996.

J. Buck and C. Klüppelberg. Recursive max-linear models with propagating noise.
Electronic Journal of Statistics, 15(2):4770 – 4822, 2021.

P. Butkovič. Max-linear Systems: Theory and Algorithms. Springer, London, 2010.

W. Chen, M. Drton, and Y. Wang. On causal discovery with equal variance assump-
tion. Biometrika, 106(4):973–980, 2019.

D. M. Chickering. Learning Bayesian networks is np-complete. In Learning from
data, pages 121–130. Springer, 1996.

S. Coles, J. Heffernan, and J. Tawn. Dependence measures for extreme value analyses.
Extremes, 2(4):339–365, 1999.

S. Coles, J. Bawa, L. Trenner, and P. Dorazio. An Introduction to Statistical Modeling
of Extreme Values. Springer, 2001.

R. Davis and W. McCormick. Estimation for first-order autoregressive processes with
positive or bounded innovations. Stoch. Proc. Appl., 31:237–250, 1989.

R. Davis and S. Resnick. Basic properties and prediction of max-arma processes.
Advances in Applied Probability, 21(4):781–803, 1989.

A. C. Davison and R. Huser. Statistics of extremes. Annual Review of Statistics and
its Application, 2:203–235, 2015.

L. De Haan and A. Ferreira. Extreme value theory: an introduction. Springer Science
& Business Media, 2007.

M. T. Drton and M. H. Maathuis. Structure learning in graphical modeling. Annual
Review of Statistics and Its Application, 4(3):365–393, 2017.

J. H. J. Einmahl, A. Kiriliouk, and J. Segers. A continuous updating weighted least
squares estimator of tail dependence in high dimensions. Extremes, 21:205 – 233,
2017.

P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for In-
surance and Finance. Springer, Berlin, 1997.

S. Engelke and A. Hitz. Graphical models for extremes. JRSS B, 82:871–932, 2020.

S. Engelke and S. Volgushev. Structure learning for extremal tree models. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 84:2055 – 2087,
2020.

S. Engelke, A. S. Hitz, and N. Gnecco. graphicalExtremes: Statistical Methodology
for Graphical Extreme Value Models, 2019. URL https://CRAN.R-project.org

/package=graphicalExtremes. R package version 0.1.0.

125

https://CRAN.R-project.org/package=graphicalExtremes
https://CRAN.R-project.org/package=graphicalExtremes

BIBLIOGRAPHY

S. Engelke, M. Lalancette, and S. Volgushev. Learning extremal graphical structures
in high dimensions. arXiv preprint arXiv: 2111.00840, 2021.

H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan. Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica, 6(2):
109–122, 1986.

N. Gissibl. Graphical Modeling of Extremes: Max-linear Models on Directed Acyclic
Graphs. Ph.D. thesis, Technical University of Munich, 2018.

N. Gissibl and C. Klüppelberg. Max-linear models on directed acyclic graphs.
Bernoulli, 24(4A):2693–2720, 2018.

N. Gissibl, C. Klüppelberg, and M. Otto. Tail dependence of recursive max-linear
models with regularly varying noise variables. Econometrics and Statistics, 6:149
– 167, 2018.

N. Gissibl, C. Klüppelberg, and S. Lauritzen. Identifiability and estimation of recur-
sive max-linear models. Scandinavian Journal of Statistics, 48(1):188–211, 2021.
doi: 10.1111/sjos.12446.

N. Gnecco, N. Meinshausen, J. Peters, and S. Engelke. Causal discovery in heavy-
tailed models. Annals of Statistics, to appear, 2021.

Y. Gong, P. Zhong, T. Opitz, and R. Huser. Partial tail-correlation coefficient applied
to extremal-network learning. arXiv preprint arXiv: 2210.07351, 2022.

I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. 30th International Conference on Machine Learning, ICML 2013, 1302,
02 2013.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg, 1988.

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics,
and function using networkX. In G. Varoquaux, T. Vaught, and J. Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA
USA, 2008.

P. Hall and I. Van Keilegom. Nonparametric “regression” when errors are positioned
at end-points. Bernoulli, 15(3):614–633, 2009.

P. Hall, L. Peng, and Q. Yao. Moving-maximum models for extrema of time series.
Journal of Statistical Planning and Inference, 103:51–63, 04 2002.

B. Hollering and S. Sullivant. Discrete max-linear bayesian networks. Algebraic
Statistics, 12:213–225, 12 2021. doi: 10.2140/astat.2021.12.213.

S. Hu, Z. Peng, and J. Segers. Modelling multivariate extreme value distriubtions via
markov trees. arXiv preprint arXiv: 2208.02627, 2022.

126

BIBLIOGRAPHY

G. Italiano. Amortized efficiency of a path retrieval data structure. Theoretical
Computer Science, 48(3):273–281, 1986.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical
Learning: with Applications in R. Springer, 2013.

A. Janßen and P. Wan. k-means clustering of extremes. Electronic Journal of Statis-
tics, 14(1):1211 – 1233, 2020.

M. Jirak, A. Meister, and M. Reiss. Adaptive function estimation in nonparametric
regression with one-sided errors. Annals of Statistics, 42(5):1970–2002, 2014.

M. J. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta.
Composing graphical models with neural networks for structured representations
and fast inference. Advances in neural information processing systems, 29, 2016.

M. I. Jordan. Learning in graphical models. MIT press, 1999.

M. Joswig. Essentials of Tropical Combinatorics. Springer-Verlag, Heidelberg, New
York, 2020.

J. Kiefer and J. Wolfowitz. Consistency of the maximum likelihood estimator in
the presence of infinitely many incidental parameters. Annals of Mathematical
Statistics, 27(4):887–906, 1956.

C. Klüppelberg and M. Krali. Estimating an extreme Bayesian net-
work via scalings. Journal of Multivariate Analysis, 181:104672, 2021.
doi.org/10.1016/j.jmva.2020.104672.

C. Klüppelberg and S. Lauritzen. Bayesian networks for max-linear models. In
F. Biagini, G. Kauermann, and T. Meyer-Brandis, editors, Network Science - An
Aerial View from Different Perspectives. Springer, 2020.

C. Klüppelberg and E. Sönmez. Max-linear models in random environment. Journal
of Multivariate Analysis, 190:104999, 03 2022. doi: 10.1016/j.jmva.2022.104999.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge, Massachusetts, 2009.

J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

M. Larsson and S. I. Resnick. Extremal dependence measure and extremogram: the
regularly varying case. Extremes, 15:231–256, 2012.

S. Lauritzen. Graphical Models. Clarendon Press, Oxford, United Kingdom, 1996.

S. Lauritzen. Causal inference from graphical models. In Complex Stochastic Systems,
pages 63–107. Chapman and Hall/CRC Press, London/Boca Raton, 2001.

S. Lauritzen, A. P. Dawid, B. N. Larsen, and H.-G. Leimer. Independence properties
of directed Markov fields. Networks, 20(5):491–505, 1990.

127

BIBLIOGRAPHY

C. Leigh, O. Alsibai, R. J. Hyndman, S. Kandanaarachchi, O. C. King, J. M. McGree,
J. S. Catherine Neelamraju, P. D. Talagala, R. D. Turner, K. Mengersen, and
E. E. Peterson. A framework for automated anomaly detection in high frequency
water-quality data from in situ sensors. Science of The Total Environment, 664(5):
885–898, 2019.

L.-H. Lim. Hodge Laplacians on graphs. SIAM Review, 62(3):685–715, 2015.

Lower Colorado River Authority (LCRA). Private correspondence, 2020.

Lower Colorado River Authority (LCRA). Highland lakes and dams, Accessed August
2020. https://www.lcra.org/water/dams-and-lakes.

M. Maathuis, M. Drton, S. Lauritzen, and M. Wainwright, editors. Handbook of
Graphical Models. Chapman & Hall/CRC, 2019.

D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry. Graduate Stud-
ies in Mathematics, Vol. 161. American Mathematical Society, Providence, Rhode
Island, 2015.

J. MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley
Symp. Math. Statist. Probability, pages 281–297, 1967.

F. Mao, K. Khamis, S. Krause, J. Clark, and D. M. Hannah. Low-cost environmental
sensor networks: recent advances and future directions. Frontiers in Earth Science,
7:221, 2019.

S. J. McGrane. Impacts of urbanisation on hydrological and water quality dynamics,
and urban water management: a review. Hydrological Sciences Journal, 61(13):
2295–2311, 2016.

L. Mhalla, V. Chavez-Demoulin, and D. J. Dupuis. Causal mechanism of extreme
river discharges in the upper danube basin network. Journal of the Royal Statistical
Society: Series C, 69(4):741–764, 2020.

D. C. Montgomery, E. A. Peck, and G. G. Vining. Introduction to linear regression
analysis. John Wiley & Sons, 2021.

D. R. Musser. Introspective sorting and selection algorithms. Software: Practice and
Experience, 27(8):983–993, 1997.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
Cambridge, 2nd edition, 2009.

J. Pearl et al. Causal inference in statistics: An overview. Statistics surveys, 3:96–146,
2009.

J. Peters, J. Mooij, D. Janzing, and B. Schölkopf. Causal discovery with continuous
additive noise models. Journal of Machine Learning Research, 15:2009–2053, 2014.

D. Politis, J. Romano, and M. Wolf. Subsampling. Springer, New York, 1999.

R. Prim. Shortest connection networks and some generalizations. Bell System Tech-
nical Journal, 35:1389–1401, 1957.

128

https://www.lcra.org/water/dams-and-lakes

BIBLIOGRAPHY

S. I. Resnick. Extreme Values, Regular Variation, and Point Processes. Springer,
New York, 1987.

S. I. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer,
New York, 2007.

J.-C. Rochet and J. Tirole. Interbank lending and systemic risk. Journal of Money,
Credit and Banking, 28(4):733–762, 1996.

J. Rodriguez-Perez, C. Leigh, B. Liquet, C. Kermorvant, E. Peterson, D. Sous, and
K. Mengersen. Detecting technical anomalies in high-frequency water-quality data
using artificial neural networks. Environmental Science & Technology, 54(21):
13719–13730, 2020.

F. Rötter, S. Engelke, and P. Zwiernik. Total positivity in multivariate extremes.
arXiv preprint arXiv: 2112.14727, 2022.

J. Segers. One- versus multi-component regular variation and extremes of Markov
trees. Advances in Applied Probability, 52:855 – 878, 2019.

M. Sibuya. Bivariate extreme statistics. Annals of the Institute of Statistical Mathe-
matics, 11(2):195–210, 1960.

R. Smith. Maximum likelihood estimation in a class of nonregular cases. Biometrika,
72(1):67–90, 1985.

R. Smith. Nonregular regression. Biometrika, 81(1):173–183, 1994.

P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman. Causation, Prediction,
and Search. MIT press, 2000.

N. Tran. The tropical geometry of causal inference for extremes. arXiv preprint
arXiv: 2207.10227, 2022.

N. Tran and J. Yu. Product-mix auctions and tropical geometry. Mathematics of
Operations Research, 44(4):1396–1411, 2019. doi: 10.1287/moor.2018.0975.

N. M. Tran. QTree Python Implementation. https://github.com/princengoc/qt
ree, 2021.

N. M. Tran, J. Buck, and C. Klüppelberg. Estimating a directed tree for extremes.
arXiv preprint: 2102.06197, 2021.

J. M. Ver Hoef and E. Peterson. A moving average approach for spatial statistical
models of stream networks. Journal of the American Statistical Association, 105
(489):6–18, 2010.

J. M. Ver Hoef, E. Peterson, and D. Theobald. Spatial statistical models that use
flow and stream distance. Environmental and Ecological Statistics, 13(4):449–464,
2006.

M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and
Variational Inference. Now Publishers Inc, 2008.

129

https://github.com/princengoc/qtree
https://github.com/princengoc/qtree

BIBLIOGRAPHY

L. Wolf, C. Zwiener, and M. Zemann. Tracking artificial sweeteners and pharmaceu-
ticals introduced into urban groundwater by leaking sewer networks. Science of
The Total Environment, 430:8–19, 2012. doi: https://doi.org/10.1016/j.scitotenv.
2012.04.059.

K. Yoon, R. Liao, Y. Xiong, L. Zhang, E. Fetaya, R. Urtasun, R. Zemel, and
X. Pitkow. Inference in probabilistic graphical models by graph neural networks.
In 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pages
868–875. IEEE, 2019.

X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing. DAGs with NO TEARS:
Continuous optimization for structure learning. In Advances in Neural Information
Processing Systems, volume 31, pages 9472–9483. Curran Associates, Inc., 2018.

130

	Abstract
	Zusammenfassung
	Acknowledgement
	List of Figures
	List of Tables
	Notation and Acronyms
	Introduction
	Recursive max-linear models with propagating noise
	Introduction
	Preliminaries — Recursive max-linear models
	Graph terminology
	Recursive max-linear models
	Minimum domain of attraction and regular variation

	Recursive ML model with propagating noise
	Definitions and representations
	Paths classification and graph reduction in the noisy model
	Distributions of component ratios of the noisy model

	Identification and estimation
	Identifiability of the model
	Known DAG structure with unknown edge weights
	Known topological order
	Unknown DAG and unknown topological order
	Strong consistence of B and learning the minimum ML DAG D

	Asymptotic distribution of the minimum ratio estimators
	Data analysis and simulation study
	Data example
	Simulation study

	Supplementary Material
	Proofs of Section 2.3
	Proofs of Section 2.4
	Proofs of Section 2.5

	Estimating a Directed Tree for Extremes
	Introduction
	The Extremal River Problem
	Main contributions and structure of the chapter

	The algorithm
	The data generation model
	Intuition of QTree
	The QTree Algorithm
	Theoretical properties of QTree

	Parameter tuning by bootstrap aggegation

	Data description
	The Upper Danube network
	The Lower Colorado network in Texas

	Results
	Results of auto-tuned QTree for all river networks
	 Comparison to other scores in the literature

	 A small simulation study
	Summary
	Supplementary Material
	Proof of the complexity of QTree
	Proof of the Consistency Theorem
	Proof of Theorem 3.2.4 for the lower quantile gap
	Proof of Theorem 3.2.4 for the quantile-to-mean gap

	Supplementary Figures

	Learning Bayesian Networks from Extreme Data
	Introduction
	Recursive Max-Linear Models
	Learning general max-linear Bayesian Networks
	Setting up the optimization problem
	On parameters and missing values

	Tuning the parameters

	Data Application
	Application I: Simulation Study
	Application II: Foreign Exchange Rates
	Application III: Upper Danube Basin

	Asymptotics

	Bibliography

