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Abstract 

This thesis investigates the mechanical behavior and planning methods for transformable light-

weight structures. In scope are spatial grid structures for support, that perform semi-compliant 

transformations, including both rigid-body and compliant mechanisms. These structures are 

based on quadrilateral grids of initially straight, partly compliant beams, that are coupled by 

hinges. 

The aim is to understand the geometric and mechanical interrelations for practical use. This 

work looks for conceptual, mechanical, and constructive approaches as well as suitable 

planning methods. 

The state of the art presents the theoretical, constructive, and architectural basis, and 

describes adapted methods for modeling and simulation, that are applied in this work. 

A series of mechanical studies forms the theoretical framework. Firstly, all relevant 

components and parameters are displayed. The decisive kinematic, kinetic, and static 

phenomena and relations are elaborated using analytical and computational analyses: These 

include the orthogonal deflection and force ratios of kinematic grids, the spatial transformability 

and morphology of semi-compliant systems, the inner energetic proportions during 

transformation, as well as decisive static, global and local stiffness proportions. The 

parameters of compliant grid structures are referred to individual characteristics. Physical 

model studies show the conceptual, morphological, and mechanical freedom of design and 

demonstrate general feasibility. 

The architectural implementation involves conflictive mechanical requirements and 

parameters. These are revealed, and appropriate strategies for an iterative planning process 

is developed. Several case studies inform this development in a “Research by Design”-

process, that introduces constructive requirements. Firstly, the one-time erection of asymptotic 

gridshells is in scope. 

The Kinetic Umbrella marks the first reversible transformable structure of its kind. Actuated by 

a cable pulley system, the compliant grid structure made of GFRP lamellas deploys from a 

bundled, closed shape into an open umbrella. This project demonstrates the feasibility at 

architectural scale and shows mechanical and constructive challenges and potentials. The 

mechanical findings and planning methods are fully incorporated and validated in this project. 

This work determines fundamental mechanical phenomena of semi-compliant, doubly curved 

grid structures and presents useful engineering strategies for practical use. Thereby, this work 

provides a comprehensive basis for the development of semi-compliant support structures for 

architectural use. 

 

 

  



 

Zusammenfassung 

Diese Arbeit untersucht das mechanische Verhalten und Planungsmethoden 

transformierbarer Tragstrukturen für den Leichtbau. Gegenstand sind räumliche 

Gitterstrukturen mit der Fähigkeit zur teilnachgiebigen Formänderung, welche sowohl starr-

körper Mechanismen als auch nachgiebige Mechanismen vereinen. Im Fokus stehen 

vorwiegend vierseitige Gitter aus geraden, und axial eingeschränkt nachgiebigen Stäben, 

welche untereinander gelenkig gekoppelt sind.  

Ziel ist es, die geometrischen und mechanischen Zusammenhänge dieser Tragsysteme zu 

verstehen, und für die Anwendung zu erschließen. Gesucht werden konzeptionelle, 

mechanische und konstruktive Lösungsansätze, sowie geeignete Planungsmethoden. 

Der Stand der Technik bildet die theoretische, konstruktive und architektonische Grundlage. 

Zudem werden angepasste Methoden der Modellbildung und Simulation beschrieben, welche 

hier zum Einsatz kommen. 

Eine Reihe mechanischer Studien bildet das theoretische Rahmenwerk. Zunächst werden alle 

relevanten Komponenten und Parameter systematisch aufbereitet. Mittels analytischer und 

computergestützter Untersuchungen werden wesentliche kinematische, kinetische und 

statische Phänomene und Zusammenhänge ausgearbeitet: Diese umfassen die orthogonalen 

Verschiebungs- und Kraftverhältnisse kinematischer Gitter, die räumliche Transformierbarkeit 

und Morphologie teilnachgiebiger Systeme, die inneren energetischen Verhältnisse bei der 

Formänderung, sowie wesentliche statische, lokale und globale Steifigkeitsverhältnisse. Den 

unterschiedlichen Systemparameter werden dabei individuelle Eigenschaften zugeordnet. 

Physische Modellentwürfe zeigen den konzeptionellen, morphologischen und mechanischen 

Gestaltungsspielraum und die generelle physikalische Umsetzbarkeit. 

Für die bautechnische Umsetzung im architektonischen Maßstab werden die teils 

gegensätzlichen mechanischen Anforderungen und Zielgrößen hergeleitet und entsprechende 

Strategien für einen iterativen Planungsprozess entwickelt. Mehrere Fallstudien begleiten 

diese Entwicklung In einem „Research by Design“-Prozess, wobei auch konstruktive 

Anforderungen einfließen. Dabei stehen die einmalige Formänderung und Statik 

asymptotischer Gitterschalen im Fokus. 

Der „Kinetic Umbrella“ hingegen ist die erste reversibel wandelbare Konstruktion ihrer Art. 

Angetrieben durch ein Seilzugsystem entfaltet sich die nachgiebige Gitterstruktur aus GFK-

Lamellen von einer gebündelten, geschlossenen Form in einen offenen Schirm. Dieses Projekt 

demonstriert die Umsetzbarkeit solcher Systeme im architektonischen Maßstab und zeigt die 

mechanischen und konstruktiven Herausforderungen und Potenziale auf. Die theoretischen 

Erkenntnisse und Planungsmethoden sind in diesem Projekt gänzlich umgesetzt und validiert. 

Diese Arbeit erfasst grundlegende mechanische Aspekte teilnachgiebiger, gekrümmter Gitter. 

Für die Praxis werden umfassende ingenieursmäßige Arbeitsstrategien aufgezeigt. Damit 

bildet diese Arbeit eine belastbare Grundlage für die Entwicklung teilelastischer 

Gitterstrukturen für das Bauwesen.  
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Figure 1 The Kinetic Umbrella inside view 
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1 INTRODUCTION 

This thesis is written at the Technical University of Munich, at the Chair of Structural Design, 

led by Prof. Dr.-Ing R. Barthel, and later at the followed professorship of Prof. Dr. P. D’Acunto. 

It was conducted between 2017 and 2022. The topic of compliant grid structures and 

mechanisms emerged from extensive work in the field of formfinding and parametric modeling, 

and in collaboration with Prof. Dr.-Ing. Eike Schling, investigating asymptotic gridshells. 

Object of this research are smooth transformable grid structures. These systems combine 

compliant deformation and kinematic freedom to perform fluent transformations of doubly 

curved shapes. This mechanical concept is applied to an architectural environment, including 

its scale, constructive criteria, and structural requirements on load-bearing. 

The technical challenges for this structural innovation are to manage several complexities: the 

geometry of doubly curved grids structures, the integration of mechanical systems, the spatial 

transformation and its progression, and the constructive implementation.  

How to meet these challenges? The first step is to capture the current state of the art, to identify 

relevant fundamentals, methods and developments, and potential interrelations (chapter 2). 

The second step is to formulate the structural problem and investigate key phenomena to 

provide a theoretical base (chapter 3). The last step is the architectural implementation 

including the development of design strategies, verified in physical case studies (chapter 4). 

Motivation 

Structural transformability is a powerful quality, potentially useful in any field, application, or 

scale, and has always fascinated engineers and designers. However, the benefits of 

transformability conflict with the mechanical complexity associated. If complex geometries are 

to be transformed using conventional rigid-body mechanisms, hinges or sliding devices, the 

constructive effort may outbalance the benefits of transformability. This conflict motivates the 

idea of compliant mechanisms, that operate without friction and with less components. At small 

objects scale, compliant mechanisms are part of our everyday life. 

The idea of transformability in an architectural context expands the design space of architects. 

It allows differing functions at different times, or adaption to user’s needs. Technical 

development in the field of transformability supports this idea. Moreover, structural 

transformability can be a part of the construction process and support rapid erection or packing 

for mobile structures. 

This work deals with doubly curved grid structures, also called gridshells, considering a 

specified load-bearing behavior. These structures are classified as lightweight structures, 

known for remarkable efficiency and architectural quality. An advanced type utilizes elastic 

deformation to generate curvature: Strained gridshells. This concept simplifies the constructive 

and fabrication effort. 

In the field of differential geometry, findings have revealed geometrical transformability of 

networks on smooth surfaces with constrained geometric parameters, and these relationships 
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were brought in context with mechanical constraints of grid structures. The topic of compliant 

grid structures picks up on these findings. It combines the potentials of compliant mechanisms, 

grid structures, and transformability. 

However, compliant mechanisms require sophisticated engineering strategies. The balance of 

geometry and force requires computer aided design tools and coordinated workflows. The 

increase of computational abilities in the past decades has now prepared the path for such 

systems, to be integrated in the build environment. 

Objective 

This research aims to develop compliant grid structures for architectural implementation and 

use. Therefore, full understanding of the geometric and mechanical phenomena is essential. 

This includes the morphology of such systems and the internal progression of forces, stresses, 

and energies. Furthermore, this theoretical understanding must be applicable in terms of 

suitable engineering workflows, strategies, and tools, that handle the systems complexity. It is 

a major goal of this work, to provide such solutions. 

Several research questions arise for compliant grid structures and inherent mechanisms: 

• What are the components and parameters? 

• Which elastic mechanisms are suitable for grid structures? 

• Which geometric principles apply and what shapes can be generated? 

• How do such mechanisms perform mechanically, and how are they controlled? 

• How are such mechanisms designed, model and simulated? 

• How do requirements of transformability and load-bearing interrelate? 

• Which architectural scales are suitable for implementation? 

Methodology 

The substantial research is conducted in chapter 3 and  4, using the following methodology: 

Chapter 3 involves both deductive and inductive approaches. The deductive character results 

from geometric relations, provided by differential geometry. Findings in this field are used as a 

starting point for mechanical implementation. The inductive approach is used in various 

analyses. Selected mechanical systems are simulated or physically modeled to test and derive 

decisive relations and behavior patterns or to verify morphological expectations. 

Chapter 4 follows a “Research by Design” strategy. During various case studies, decisive 

parameters, criteria, and requirements are identified and an engineering process is developed 

iteratively. The physical outcome of these case studies is furthermore verifying theoretical 

expectations. 
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Structure 

This thesis is organized in five chapters. Framed by an introduction (chapter 1) and a summary 

(chapter 5), the actual content is given in chapters 2, 3 and 4, that represent basis, theory, and 

practice. These chapters are further subdivided into 11 sections in total, that are organized 

using subordinated numbering. 

Chapter 2 displays the state of art. It bundles geometric and mechanical fundamentals  in the 

first sections (2.1, 2.2), displays methods for modeling and simulation that are used in this work 

(section 2.3), and provides insight into the research environment and associated developments 

(section 2.4).  

Chapter 3 contributes a theoretical basis to design and simulate semi-compliant grids. The 

structural components of semi-compliant grid structures are defined in section 3.1. In various 

analyses, associated kinematic and kinetic phenomena are investigated to reveal specific 

geometric and mechanical interrelations (section 3.2). The third section (3.3) investigates the 

structural performance at static states. In the last section (3.4), four physical designs at model 

scale are analyzed regarding its components and performance. 

Chapter 4 contributes practical design strategies. The first section (4.1) presents key aspects 

of engineering semi-compliant grid structures. The second section (4.2) gives insight to build 

asymptotic gridshells, erected using semi-compliant mechanisms. The last section (4.3) 

presents the Kinetic Umbrella, a deployable semi-compliant grid structure at architectural 

scale. 

Tools 

The tools used in this work involve physical testing models and computational modeling and 

simulation software: 

Multiple strip models are extensively used for mechanical explorations and testing (see section 

3.4 and 4.3.3). These models are mostly built from thin laminated timber sheets that are laser 

cut and plug connected at nodes. Other models made from GFRP utilize extruded profiles, 

manually prepared. Various models include 3D-printed plastic details (Formlabs 

Stereolithography) (see section 2.3.3).  

For computational analyses, the following software products are used: 

• Parametric 3D modeling: Rhino6/7 by McNeel, Grasshopper 

• Isogeometric Analysis: Carat++ by TUM / KIWI (Grasshopper Plugin by str.ucture GmbH) 

• Finite Element Methods: R-FEM 5 by Dlubal Software GmbH 
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Terminology 

Several technical terms used may allow differing interpretations or detailed specifications. The 

following list includes some terms with distinct specifications, valid for this work:  

 

Compliancy Property of a structural element that is a necessary condition for 

mechanisms, to perform intended, large elastic deformations. 

Deflection Elastic deformation caused by loads and gravity. In addition to the 

intentional change of geometry by mechanisms, deflections can also 

occur unintentionally, and are usually minimized by design measures 

to ensure the integrity of mechanisms. 

Deformation Change of shape, involving purely elastic strain. 

Deployment Structural transformation from a packed into a service state. 

Grid Structure A load-bearing system of beams (members), that is referenced to a 

surface. The load-bearing performance may include grillage like 

and/or shell like behavior. 

Mechanism A transformable system, that has a function and performs in a 

controlled way. Inherent transformations are reactions to actuations. 

Morphology Change of shape in a transformation process, or the collective 

geometric spectrum within a transformation. 

Transformation Change of the state of a structural system including geometrical and 

mechanical change 
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https://www.youtube.com/watch?v=A9y3NXbm79c
https://www.brandl-eitensheim.de/
https://vimeo.com/622507372
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Assembly and Construction: Josef Eglseder, Anne Ambrosy, Clemens Lindner Laura Lehle, Martina 

Gruzlewski, Gabriele Felici, Desiré Agostini, Davide Binci, Aida Domingo 
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with master students in an architectural design studio at the TUM. This studio was supervised 

by Jonas Schikore in 2019. The following projects contributed: 

The Active Grillage by Fredrik Justnes (Acknowledgement Stuttgarter Leichtbaupreis 2019) 

The Sail by Barbara van Waarden 

The Blooming Flower by Chiara Saccomanno and Noemi Thierens 

The EXX-Dome by Alberto Ortensi (1. Price Competition Online Campus 2020) 

 

  

https://vimeo.com/782482342?embedded=true&source=video_title&owner=1281389
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Figure 2 The Hoberman Sphere 
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2 STATE OF THE ART 

This chapter includes the current state of art that directly relates to this work. It is subdivided 

into the following sections:  

• Section 2.1 presents the geometric fundamentals related to surface-based networks. 

• Section 2.2 explains the mechanical fundamentals with focus on large elastic beam 

deformation and nonlinear behavior.  

• Section 2.3 describes methods of modeling and simulation, that are applied in this work. 

• Section 2.4 presents preparatory research and developments in the field of structural 

engineering and architecture. 
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2.1 Geometric Fundamentals 

This work is deals with grid structures based on surface embedded networks. The following 

sections describe the basic geometric components such as points, curves and surfaces, and 

the characteristics of surface embedded curves and networks, that represent the geometric 

reference of the compliant grid structures. Special attention is given to the geometric definitions 

of curvature, which is later related to compliant bending. 

2.1.1 Points and Curves 

Points are infinitely small and have no own characteristics except its position in space. A point 

is the basic element in geometry. 

Curves describe a continues and infinite number of points, or a trace of a moving point in 

space. In general, there are smooth and discrete curves. Smooth curves are crucial for this 

work, as these are referred to continues beams in a mechanical context. Discrete curves 

(Polygons) are used to approximate smooth curves in conventional numerical methods (see 

section 2.3.2 p.33).  

The parameter 𝑡 is conventionally used to define any position along the curve. The Frenet-

Serret-frame (TNB-frame) is a powerful apparatus to handle the curves curvature. It can be set 

up at any point of the curve and it is defined by the curves tangent t, normal n, and bi-normal 

vector b. The curvature 𝜅(𝑡) at any location 𝑡 can be expressed by the curvature-circle with 

radius 𝑟(𝑡): 

𝑟(𝑡) =
1

𝜅(𝑡)
 Equation 1 

The circle of curvature is located within the n-t-plane. Figure 3 shows an arbitrary spatial curve 

with the curvature circle and the Frenet-Serret-frame applied at parameter 𝑡.  

 
Figure 3 The Frenet-Serret-frame on an arbitrary curve at parameter t 

Note, for straight lines (or polygon curves) this frame remains undefined, as curvature for frame 

orientation does not exist.  

 c

 

 

r

t



11 

2.1.2 Smooth Surfaces 

Smooth surfaces are two-dimensional spaces that are differentiable in mathematical context. 

The surface parameters (U,V) can be used to allocate any position on the surface. At any 

location, the normal vector n exists, that is perpendicular to the surface, or its local tangential 

plane.  

Normal Curvature 

The surface’s normal curvature can be measured at any point on the surface, in any direction. 

The principal curvatures are the minimum and maximum curvatures, always given in 

perpendicular directions k1 and k2. Figure 4 illustrates an arbitrary surface with two embedded 

points, one at a synclastic (positive) surface area, one at an anticlastic (negative) area. 

 
Figure 4 Smooth surface, normal vectors and tangential planes, and principal curvature directions and curvature-circle at a 
positively (P1) and negatively curved position on the surface (P2) 

The Gaussian curvature 𝐾 and mean curvature 𝐻 are fundamental quantities of curved 

surfaces, defined at any point using the principal curvatures: 

𝐾 = 𝜅1 ∙  𝜅2 ; 𝐻 = 
1

2
(𝜅1 + 𝜅2) Equation 2 

If 𝜅1and 𝜅2 are of same sign, the Gaussian curvature becomes positive and the surface is 

synclastic. If both are of opposite sign, the Gaussian curvature is negative and the surface is 

anticlastic. Accordingly, the curvature circles of the principal curvatures are located at same 

side (see Figure 4, P1) or opposite side of the surface (P2). Surfaces with zero Gaussian 

curvature are developable.  

The Gaussian curvature is used for classification of grid structures (see section 3.1.1), and for 

geometric analyses in section 3.2.2. 
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Types 

There are numerous types of smooth surfaces, that can be classified according to their 

geometric or even physical qualities:  

• Traditional surfaces are generated using simple geometric operations (e.g., translation 

or rotation of curves)  

• Free-form surfaces require more complex geometric operations, but they allow high 

flexibility to designers. A network of control points defines these surfaces. Bezier-, B-

splines, and NURBS-surfaces are commonly used. 

• Physical surfaces also follow geometric constraints. However, they are related to physical 

phenomena that occur naturally, such as soap-films (minimal surfaces) or hanging shapes. 

A selection and detailed descriptions are given in Figure 5, set up by Schling, 2018 (based on 

Bentley et al., 2007 and Barthel, 2019). 

 
Figure 5 Overview of surface classes (Schling, 2018, p. 12)  
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Topology 

 
Figure 6 Surface topologies: Exemplary homeomorphisms of different topologies: a) Disc surface (one edge), b) Disc with one 
hole (two edges), c) Closed surface (zero edges and holes) 

The typology of surfaces addresses the existence of boundaries and holes, their configuration 

and number. The topology has an impact on the continuous deformability of surfaces in a 

mathematical context. Two surfaces are topologically identical (or homeomorphic), if they can 

be deformed to match each other by stretching or changing curvature only, without cutting or 

seaming edges (Kinsey, 1993).  

Deformation 

 

Figure 7 Inextensional surface deformation: a) deformation of a deployable surface, b) deformation of a doubly curved surface 

Another characteristic regarding surface deformation addresses the change of the surface’s 

curvature and/or area. In this work, a specific distinction is relevant: There is extensional and 

inextensional surface deformation, referred to local changes of area. These terms have a 

mechanical background. They are used to describe shell deformation (Chris Williams, 2014, 

p. 25), involving stretching or bending only.  

Extensional deformations are shown in Figure 6. These include area and curvature changes.  

Inextensional deformations involve curvature change only and may apply to single or doubly 

curved surfaces. The term “developable” relates to surfaces that inextensionally deform into 

planar states. Such surfaces have zero Gaussian curvature. Figure 7 shows inextensional 

deformations of a developable (a) and doubly curved surface (b). 

 )  ) c)
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developable
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2.1.3 Curves on Surfaces 

For a curve embedded in a surface, the Darboux-frame provides another powerful apparatus, 

that orientates the curves to the surface normal. This orthogonal system is defined by the 

curves tangent t, the surface normal ns, and the bi-normal u, located in the tangential plane. 

Accordingly, the three curvatures geodesic torsion 𝜏𝑔, geodesic curvature 𝜅𝑔 and normal 

curvature 𝜅𝑛 can be measured. 

 
Figure 8: Curve embedded in a surface, the Darboux-frame and curvature-circles of the geodesic and normal curvature. For 
comparison, the TNB-Frame is also shown (pale colors) 

There are several approaches to create surface embedded curves with different references 

used for the definition.  

 
Figure 9 Selected types of definition for curves on surfaces: a) Intersection curves, b) Surface parameter curves, c) Normal 
curvature orientated curves (Principal curvature lines and Asymptotic Curves), d) Geodesic curve 
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Some basic types are presented below and illustrated in Figure 9: 

• Intersection curves are defined by intersecting surfaces or planes, hence, an external 

reference object. Projections of curves onto surfaces also match this group (e.g. when the 

projection is interpreted as intersection of the surface with the extrusion of the curve). 

• Surface parameter curves are defined by functions of the surface parameters (U,V). With 

constant surface parameter, these are called Isocurves. The UV-system can be used for 

the definition of freeform curves on surfaces. 

• Normal curvature orientated curves are paths on surfaces that are oriented towards the 

surface’s curvature field   

Principal curvature lines follow the directions of the surface’s principal curvatures. They 

can be found on any smooth surface, and the pair of curves given for a point on the surface 

is always orthogonal. The geodesic torsion is zero. 

Asymptotic curves define the path of zero normal curvature. This pair of curves are found 

on anticlastic surfaces only. The curves become orthogonal on surfaces with zero mean 

curvature (minimal surfaces). The direction of zero normal curvature 𝜅𝑛 = 0  on a given 

point on a surface can be derived from the principal curvatures 𝜅1and 𝜅2, using a basic 

formula: 

𝜅𝑛(𝜇) = 𝜅1(cos 𝜇)2 ∙  𝜅2(sin 𝜇)2   Equation 3 

(𝜇 is the deviation angle between the principal curvature direction and the direction looked at) 

• Geodesic curvature orientated curves are not driven by the surface’s normal curvature 

field, but by an initial direction and a geodesic curvature constraint. Geodesic curves (or 

geodesics) have zero geodesic curvature. They are equivalent to straight lines on a planar 

surface or the shortest connection between two points on a surface. 

Smooth Networks on Surfaces 

Networks describe a set of curves (or lines) and their intersections (nodes). In context with 

surfaces, networks can be described as segmentation of surfaces. This work focusses on 

smooth networks with traversal nodes, meaning that the networks’ smooth curves are passing 

continuously through nodes without any kinks or endings within the surface. 

Among infinite strategies to generate networks on surfaces, some common types and 

characteristics in an architectural or structural context are summarized in the following: 

In general, there are regular patterns of faces and/or nodes (valance) or irregular 

configurations. The connectivity of networks is also called topology. Figure 10 shows an 

exemplary selection of network typologies. 
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Figure 10 Selection of different network topologies 

The edges of equilateral networks are of same length. Quadrilateral nets of this kind are also 

called Chebyshev nets can be constructed on smooth spatial surfaces using two initial, 

intersecting curves. 
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2.2 Mechanical Fundamentals 

This chapter provides mechanical fundamentals, focusing on Elastostatics of beams, stability, 

and large bending deformations. There is a lot of literature that describes these fundamentals. 

For detailed descriptions, the reader is be referred to Dankert & Dankert, 2006 or Pflüger, 

1964. 

2.2.1 Elasticity 

Linear elastic deformation is a reversible deformation with a constant stress 𝜎 to strain 𝜀 

relation. Hookes Law relates elastic strain to stresses via the Modulus of Elasticity 𝐸: 

𝐸 =
𝜎

𝜀
 Equation 4 

In analogy, the Modulus of Shear 𝐺 is defined by shear 𝜏 and distortion 𝛾: 

𝐺 =
𝜏

𝛾
 Equation 5 

For linear elastic, isotropic materials, Modulus of Elasticity and Shear are coupled by the 

Poisson's ratio 𝜈: 

𝜈 =
𝐸

2𝐺
− 1 Equation 6 

There is a multitude of material parameters, well adapted to individual material characteristics. 

For each material type, specific parameters, boundaries, and evaluation methods have been 

developed. However, all solid materials show elastic behavior in general, although the range 

is limited, and the distribution may not be linear. Depending on a brittle or ductile material 

behavior, the material either fails or yields after crossing the materials “elastic” strength. Figure 

11 shows simplified diagrams of the linear elastic stress-strain relations and its boundaries. 

 
Figure 11 Simplified Stress-Strain-Graph of ductile (left) and brittle(right) material behavior 

In this work, the elastic boundaries are expressed by the maximum elastic strain 𝜀𝜎𝑅𝑑,𝑚𝑎𝑥
, 

furthermore called “strain at failure” and the maximum elastic stress 𝜎𝑅𝑑
1 , furthermore called 

“strength” of material. These boundaries define the materials elastic capacity. They are 

coupled by  ooke’s  aw.  

 
1 For simplification, if not explicitly defined, there is no differentiation between the compressive or tensile strength. 
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2.2.2 Bending 

Bending of beams describes the elastic portion of curvature, caused by moments acting 

perpendicular to the local beam axis. Based on the assumptions of Bernoulli and Euler1, 

presuming that the profile planes of bent beams remain perpendicular to the beam’s axis, the 

curvature-strain relation can be derived geometrically. Figure 12 shows a schematic 

description of bending related geometric definitions. 

 
Figure 12 Geometric relation of bending radius and profile strain 

The curvature 𝜅 of an originally straight beam refers to the neutral fiber of the profile. The 

bending radius describes the inverse value:  

𝜅𝑦 =
1

𝑟0
 Equation 7 

All fibers with distance 𝑧 from the neutral fibre hold the curvature radius 𝑟(𝑧)  =  𝑟0 + 𝑧. Radius 

and arclength are in linear relationship 𝑈 = 2𝜋𝑟. Accordingly, across the profile’s height ℎ, 

strain 𝜀𝑧 is linearly distributed: 

𝜀(𝑧) =
𝑧

𝑟0
= 𝜅𝑦𝑧 Equation 8 

With the Elastic Modulus 𝐸, normal stresses 𝜎 result to: 

𝜎(𝑧) = 𝐸𝜅𝑦𝑧 Equation 9 

From this stress distribution, the bending moment can be derived by integrating all fibers’ 

stresses, multiplied by their lever arm: 

𝑀𝑦 = ∫ 𝜎(𝑧)𝑧 𝑑𝐴
𝐴

= 𝐸𝜅𝑦  ∫ 𝑧2 𝑑𝐴
𝐴

 Equation 10 

 

The moment of inertia 𝐼 might be interpreted as auxiliary quantity to describe the profiles 

stiffness geometrically. It results from the integration of all lever arms squared across the 

profile area. 

 
1 These assumptions go back to the work of Various members of the Bernoulli Family (e.g.: Jakob B. 1655-1705; Johan I B. 1667-
1748) and Leonhard Euler (1707 – 1783). The first formulations go back to Jakob Bernoulli. 
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𝐼𝑦 = ∫ 𝑧2 𝑑𝐴
𝐴

 Equation 11  

Inserted to Equation 10, we receive: 

𝑀𝑦 =  𝐸𝐼𝑦𝜅𝑦 Equation 12  

Combining Equation 9 and Equation 12 results in the stress distribution in dependence of the 

applied bending moment: 

𝜎(𝑧) = 
𝑀𝑦

𝐼𝑌
𝑧 Equation 13  

The maximum stress can be calculated using the section modulus 𝑊𝑦, an auxiliary quantity 

based on Equation 13, with the maximum distance |𝑒𝑚𝑎𝑥| inserted for 𝑧: 

𝜎𝑚𝑎𝑥 = 
𝑀𝑦

𝐼𝑌
|𝑒𝑚𝑎𝑥| =  

𝑀𝑦

𝑊𝑌
 ;  𝑊𝑌 = 

𝐼𝑦
|𝑒𝑚𝑎𝑥|

  Equation 14  

Considering biaxial bending, strains and stresses are superimposed.  

Note, the profile axes defined must not necessarily align with the principal bending axes. Figure 

12 shows the profile axes (𝑦, 𝑧) and the principal bending axes (𝜉, 𝜂) of this asymmetric section. 

2.2.3 Torsion 

The theory of torsion requires more complex mechanical models compared to bending. Torsion 

involves multiple mechanical effects, both generating shear and normal stresses. The internal 

torsional moment caused by an external load  𝑀𝑇 is split into portions accordingly: 

𝑀𝑇 = ∑ 𝑀
𝑥

= 𝑀𝑥,𝑆𝑡.𝑉.𝑇. + 𝑀𝑥,𝑊𝑎𝑟𝑝𝑖𝑛𝑔 𝑇. + 𝑀𝑥,𝐻𝑒𝑙𝑖𝑥 𝑇.  Equation 15  

This section gives an overview on St. Venant (𝑀𝑥,𝑆𝑡.𝑉.𝑇.), warping (𝑀𝑥,𝑊𝑎𝑟𝑝𝑖𝑛𝑔 𝑇.) and helix 

torsion (𝑀𝑥,𝐻𝑒𝑙𝑖𝑥 𝑇.). While St. Venant torsion generates shear stresses in theory, warping and 

helix torsion are additionally activating normal stresses. Note, warping torsion is not occurring 

in this work, as the preconditions for this phenomena are not fulfilled. 

St. Venant Torsion 

According to the theory of St. Venant, torsional moments are transferred via a closed flow of 

shear stresses across the profile, and shear distortions result in a twist. In analogy to bending 

(see Equation 12), the relation of twist 𝜅𝑥, St. Venant torsional moment 𝑀𝑥,𝑆𝑡.𝑉. and the torsional 

moment of inertia 𝐼𝑇 is given by the equation: 

𝑀𝑥,𝑆𝑡.𝑉. =  𝐺𝐼𝑇𝜅𝑥 Equation 16  

However, the distribution of torsional shear stresses and hereby the torsional moment of inertia 

depend on the profile type. This results from the necessity of a closed shear flow and a 

nonlinear distribution of shear stresses accordingly. A major distinction can be made between 

“full”, “closed thin-walled” or “open thin-walled” profiles. Among various profile shapes within 
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these types, the following formulas describe the profile’s shear for circular profiles exemplarily. 

 

   

 

a) Full profile b) Closed thin-walled profile c) Open thin-walled profile  

𝜏𝑚𝑎𝑥 =  16
𝑀𝑥,𝑆𝑡.𝑉.

𝜋𝑑3
 𝜏𝑚𝑎𝑥 =  2

𝑀𝑥,𝑆𝑡.𝑉.

𝜋𝑑2𝑡
 𝜏𝑚𝑎𝑥 =  2

𝑀𝑥,𝑆𝑡.𝑉.

𝜋𝑑𝑡2
 Equation 17 

 Note: 
𝜋𝑑2

4
 = inner profile Area    

𝐼𝑇 = 𝐼𝑃 =
𝜋

32
𝑑4 𝐼𝑇 = 𝐼𝑃 ≈

𝜋

4
𝑑3𝑡 𝐼𝑇 ≈ 

𝜋

3
𝑑𝑡3 Equation 18 

 For t << d Valid for a small slot within profile. 
 

Full profiles’ torsional shear stresses increase with the distance to the center of rotation. For 

circular sections, the stress distribution is linear. For any others, an analogy helps to 

understand the distribution: Considering a soap film across the profile section, with constant 

inner “air” pressure, the soap-film would bulge out of plane and form a hill. The torsional shear 

stresses are then proportional to the hill’s gradient and the torsional moment of inertia is 

proportional to the hills volume. The calculation of maximum shear and moment of inertia are 

rather time-consuming and various approximations for simple profile shapes are provided in 

literature (see Equation 17 and Equation 18). 

Closed thin-walled profiles have a circumferential flow of stresses. They can be solved using 

the  redt’s formulas. Approximately, the stresses in the profile walls are constant across the 

thickness. The maximum stress occurs at the thinnest region of the profile wall. The profiles 

enclosed section area is a decisive magnitude for the torsional behavior. 

Open thin-walled profiles the torsional shear flow turns at the wall’s edges. This results in an 

approximately linear distribution of shear stresses across the walls thickness. This distribution 

causes a comparatively low stiffness. In contrast to closed thin-walled profiles, the maximum 

shear occurs on the thickest profile wall. 

The differences in torsional stiffness of full, closed, or open thin-walled profiles are shown in 

Equation 18. E.g.: The torsional moment if inertia for the thin-walled closed profile in a cubic 

function of the diameter, for the open version, it is a cubic function of thickness. These 

differences are potentials to modify the torsional stiffness. 
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Helix Torsion 

 
Figure 13 Helix stress distribution of a beam (Lamella) with 180° twist: a) The beam is fixed in length: The length of the center 
line remains, the edge fibers are stretched, only tension occurs b) The beam is not fixed in length: The central area is 
compressed, the edge fibers are stretched, tensile and compressive stresses are in equilibrium 

The concept of helix torsion (Lumpe & Gensichen, 2014) follows the geometric model of a 

twisted beam with fibers following a helix curve around the beam’s longitudinal axis 

accordingly. Hereby, deviations in fiber lengths arise, which are equalized by strain and 

corresponding stresses. If the twisted beam is constrained in length, all fibers, except the fiber 

on the rotational axis must elongate (Figure 13a). If the beam is free to change length, internal 

compressive stresses occur, to create an equilibrium. The total length is shortened. The 

“neutral fiber” is then in between the central rotation axis and the outer fiber. This theory is 

described using the following formulas: 

The elongation 𝜀𝑥,𝐻 due to helix torsion in fibers with distance 𝑟 to the rotational axis 

(longitudinal axis) is expressed in a quadratic function: 

𝜀𝑥,𝐻 = 
1

2
𝑟2𝜅𝑥

2 Equation 19 

For small twists, this effect is neglectable. For large twists of profiles with large polar moment 

of inertia, the internal torsional moment due to helix stresses becomes significant: 

𝑀𝑥,𝐻 = 
1

2
𝐸𝐾𝑟𝜅𝑥

3 Equation 20 

The auxiliary quantity 𝐾𝑟 describes the “reduced” helix area moment. It integrates an 

adjustment of the original helix area moment to achieve an equilibrium of total tensile and 

compressive stresses across the profile (Figure 13b). 

𝐾𝑟 =  𝐼𝑟−𝑖𝑝
2𝐼𝑝 

With 𝑖𝑝 is the radius of inertia. 

Equation 21 

The helix area moment is biquadratic: 

𝐼𝑟 = ∫ 𝑟4 𝑑𝐴 =  ∫ ∫ (𝑦2 + 𝑧2)2𝑑𝑦𝑑𝑥
𝑦𝑧𝐴

 Equation 22 

The normal stresses due to helix torsion result to: 

𝜎𝑥,𝐻 (𝑥,𝑦,𝑧) = 
1

2
𝐸(𝑦2 + 𝑧2 − 𝑖𝑝

2)𝜅𝑥
2 Equation 23 
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The minimum and maximum stresses result to: 

  

𝜎𝑥,𝐻,𝑚𝑖𝑛 = −
1

2
𝐸𝑖𝑝

2𝜅𝑥
2     ;     𝜎𝑥,𝐻,𝑚𝑎𝑥 = −

1

2
𝐸(𝑟𝑚𝑎𝑥

2 − 𝑖𝑝
2)𝜅𝑥

2 Equation 24 

There are additional effects and stresses in the context of helix torsion, e.g., shear stresses, 

whenever helix stresses are not constant, or coactions of normal forces, etc. In this work, we 

set these effects aside, as they are expected to be of neglectable impact. 

The theory of helix torsion is simplified for the case of lamella profiles in section 4.1.2 p.112. 

Furthermore, helix torsion is considered within the build case studies in section 4.2 and 4.3. In 

section 4.2.2 p.128, the proportions of helix torsion and St. Venant torsion are displayed in a 

case study for the specific profile used. 

Warping Torsion 

Warping is an out of plane deformation of the profile. Whether warping occurs, depends on the 

profile geometry and the support condition. Warping torsion causes shear and normal stresses. 

It is usually referred to thin-walled profiles. 

 
Figure 14 Thin-walled profile shapes that can activate a pair of forces (left) or not (right) 

For the phenomena of warping torsion, the following preconditions must be fulfilled: 

• The profile activates a pair forces. These are thin-walled profiles with straight parts that 

intersect in more than one point (e.g., H-profiles, Z-profiles, etc.). Such profiles include at 

least two flanges, stiff enough to generate a pair of forces to act on torsional moments (see 

Figure 14). 

• Warp stresses are activated, if warp is restrained or if the torsional moment is not constant 

along the beam. If not, warping occurs without generating warp stresses, as the profile is 

“free to warp”. 

• The theory of warping torsion is limited to small twists. 

If warping stresses are activated, the torsional moment applied to a beam is split into portions 

of St. Venant and warping Torsion. 

The theory of warping torsion is rather complex and associated to structural steelwork. In this 

work, it is not relevant, as the profiles used do not activate warping torsion. 

  

pair of forces possible

  

pair of forces not possible
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2.2.4 Energy 

The law of energy conservation is of fundamental significance for physical relations in general. 

It interconnects various subareas of physics. Work or energy 𝛱 in general mechanics is be 

described as the product of force 𝐹  and path 𝑢: 

𝛱 = 𝐹𝑢 Equation 25 

In the context of this work, strain and potential energy are used to describe the kinetic behavior, 

and further explained: 

Potential Energy 

Kinetic structures exposed to gravity may change their potential energy to large extends during 

transformation. The basic expression is: 

𝛱𝑝𝑜𝑡 = 𝑚𝑔ℎ Equation 26 

This linear relation is displayed in Figure 15. The mass 𝑚 and gravity constant 𝑔 result to the 

constant force 𝐺, equal to the opposing, external force 𝐹, considering static equilibrium. The 

potential energy Π𝑝𝑜𝑡 (shaded area) is linearly dependent on the elevation height ℎ. 

 
Figure 15 The relation of potential energy, height, and gravity 

Strain Energy 

Strain energy Π𝑖 is stored by elastic deformation (strain 𝜀 and distortion 𝛾) under stress. It 

results from the elastic and shear moduli 𝐸 and 𝐺 and the deformations respectively: 

𝛱𝑖 = 𝐸
1

2
∫ 𝜀2 𝑑𝑉 + 𝐺

1

2
∫  𝛾2 𝑑𝑉

𝑉𝑉

 

                    strain                               distortion 

Equation 27 

In elastostatics, energy methods are applied to solve indeterminate systems. Strain energy is 

induced by external work Π𝑒. It is the product of 𝐹 and its path or a moment 𝑀 and a rotation 

𝜑 performed respectively: 

 

Π𝑒 = ∫ 𝐹 𝑑𝑢

𝑢

+ ∫ 𝑀 𝑑𝜑

𝜑

 

                      force                    moment 

Equation 28 

The energy theorem provides the basic equation: 

Π𝑖 = Π𝑒 Equation 29 
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The quadratic character can be explained using the prevalent analogy to springs. The internal 

force 𝑆 of a spring is proportional to its deflection (using the spring constant 𝐶), and equal to 

the opposing external force 𝐹, considering static equilibrium. In Figure 16, the linear relation of 

deflection and force are displayed in a graph. The stored strain energy Π𝑖 is represented by 

the shaded area underneath. Strain energy is in a quadratic dependency on deflections 𝑑𝑢. 

Note, there is a direct analog of springs and beams  The spring constant refers to the beam’s 

stiffness. 

 
Figure 16 The relation of Stiffness and strain energy and the analogy of springs and beams. 

The strain energy, stored by “Euler- ernoulli”-beam is decomposable into directional portions 

of normal- and shear forces, bending and torsion. From the internal forces, it results to: 

 

𝛱𝑖 =
1

2
[∫

𝑁2

𝐸𝐴2
+ 𝑘𝑦

𝑄𝑦
2

𝐺𝐴
+ 𝑘𝑧

𝑄𝑧
2

𝐺𝐴
+

𝑀𝑡
2

𝐺𝐼𝑇
+

𝑀𝑦
2

𝐸𝐼𝑦
+

𝑀𝑧
2

𝐸𝐼𝑧
𝑐

 𝑑𝑠]   
Equation 30 

normal force                    shear force                 torsion               bending 

              with: 𝑘𝑦 =
𝐴

𝐼𝑧
2 ∫

𝑆𝑧
2

ℎ2𝐴
𝑑𝐴 , 𝑘𝑧 =

𝐴

𝐼𝑧
2 ∫

𝑆𝑧
2

𝑏2𝐴
𝑑𝐴 

For long beams (𝑙 ≫ ℎ), portions due to shear are neglectable, and for large bending, portions 

from normal forces become neglectable. This assumption simplifies the energy term: 

𝛱𝑖 =
1

2
[∫

𝑀𝑡
2

𝐺𝐼𝑇
+

𝑀𝑦
2

𝐸𝐼𝑦
+

𝑀𝑧
2

𝐸𝐼𝑧
𝑐

 𝑑𝑠]   Equation 31 

Using Equation 12, this term can be expressed using the beam’s curvature of deformations:  

𝛱𝑖 =
1

2
[𝐺𝐼𝑇 ∫ 𝜅𝑥

2 𝑑𝑠 + 𝐸𝐼𝑦 ∫ 𝜅𝑦
2 𝑑𝑠

𝑐

+ 𝐸𝐼𝑧 ∫ 𝜅𝑧
2 𝑑𝑠

𝑐𝑐

]  Equation 32 

                   twist    bending 

For large twists, strain energy due to helix torsion (section 2.2.3) becomes significant (Schikore 

et al., 2019). 

Π𝑖,𝐻𝑒𝑙𝑖𝑥−𝑇𝑜𝑟𝑠𝑖𝑜𝑛 =
1

18
𝐸𝐼𝑟  ∫ 𝜅𝑥

4

𝑐

 𝑑𝑠  Equation 33 

Equation 32 is then supplanted by strain energy through helix torsion: 

𝛱𝑖 =
1

2
[
1

9
𝐸𝐼𝑟  ∫ 𝜅𝑥

4

𝑐

 𝑑𝑠 + 𝐺𝐼𝑇 ∫ 𝜅𝑥
2 𝑑𝑠 + 𝐸𝐼𝑦 ∫ 𝜅𝑦

2 𝑑𝑠

𝑐

+ 𝐸𝐼𝑧 ∫ 𝜅𝑧
2 𝑑𝑠

𝑐𝑐

]   Equation 34 

                                  twist                          bending 
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2.2.5 Stiffness 

Stiffness describes the relation between force and deformation. The stiffness of a structural 

system involves some distinguished phenomena, relevant for large deformations: 

 
Figure 17 Characteristics of stiffness: a) Linear beam stiffness for small deflections b) Nonlinear stiffness under large deformations 
c) Stress stiffening effect of an initially stressed beam 

• Elastic stiffness of beams involves material (see section 2.2.1) and profile stiffness (e.g., 

Area,  oment of Inertia).  or a linear elastic material, the “elastic stiffness” in a static 

system remains constant. This context can be illustrated using the analogy of beams and 

a spring. The spring constant 𝐶 can be referred to a beam’s stiffness and length 

parameters. It is derived using the strain energy (see 2.2.4). Considering small deflections, 

the beam in Figure 17a can be replaced by linear springs.  

• Geometric stiffness involves the nonlinear effect of deformations. It depends on load and 

geometry of a structure. While tension forces in general increase geometric stiffness, it is 

lowered by compressive forces (Lienhard, 2014). Figure 17b shows a largely deformed 

cantilever. The stiffness of this setup becomes dependent on the current state of 

deformation and calculations of 3rd order become necessary.  

• Stress stiffening occurs if internal stresses are already present when additional loads are 

applied. This effect is coherent with a linear, initially deflected spring. Any further deflection 

requires higher forces as if the deflection was measured starting from an unstressed spring. 

This directly relates to the work and strain energy involved (see 2.2.4). 

Compliant grid structures are characterized by large deformations and initial strains. Through 

this, nonlinear effects and stress stiffening are likely and considered within nonlinear numerical 

simulation methods (see section 2.3.2).  

Stress stiffening is identified for elastically curved grid members in section 3.3.2. 
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2.2.6 Stability 

Stability problems are cases of ambiguity. These occur, when for a system in static equilibrium, 

another, neighboring equilibrium exists. These phenomena typically occur in systems under 

compression, as these may pose various deformation modes. However, there are different 

types of stability problems, as shown exemplarily in Figure 18. 

 
Figure 18 Basic types of stability problems (Pflüger, 1964, p. 27) 

The load-displacement graphs illustrate the problems:  

a) represents the “normal” case. There is only one equilibrium state for a given load.  

b) shows a typical buckling problem. When a critical load is reached, the system is indifferent 

and when further loaded, the system becomes instable. Any disturbance will cause a 

transition into a secondary equilibrium state. In practice, such disturbances might be 

imperfections or lateral loads. The problem shown can be referred to the well-known critical 

“Euler”-load 𝐹𝑐𝑟𝑖𝑡.: 

𝐹𝑐𝑟𝑖𝑡. =
𝐸𝐼𝜋2

𝑠𝑘
2   Equation 35 

This formula includes the buckling length 𝑠𝑘 that indicates the shape of deformation mode. 

Note, that several buckling modes are theoretically possible, but only the first one is likely, 

as modes of higher order involve higher strain energy. 

c) shows a “snap through”-problem. When a critical load is reached, the system is indifferent, 

and further loading leads to a sudden, inevitable conversion of the system. 

d) Shows a special case that is classified as “kinematic” in 1st order static analysis. The 

unloaded state is indifferent.   

Simple stability problems can be solved using the equilibrium methods on a deformed system. 

Also energy methods are used (Lehmann, 1985, p. 262). For complex problems, numerical 

calculations (e.g., FEM) of 3rd order are commonly used. 

Investigations in section 3.3.2 identify the critical “Euler”-load and snap through phenomena 

within compliant grid structures. Furthermore, buckling refers to the next section (2.2.7): The 

Elastica curve can be referred to a beam in a post buckled state. 
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2.2.7 The Elastica Curve 

The Elastica curve represents the shape of a bent beam under given geometric constraints. It 

has fascinated famous scientists since centuries, such as Galileo, Bernoulli, Euler and others 

(Levien, 2008). 

 

Figure 19 Historical developments of the Elastica curve: a) The Elastica problem posed by James Bernoulli 1691, b) Family of 
Elastica curves by L. Euler 1744, c) Experimental apparatus for measuring the Elastica by Max Born 1906 (Levien, 2008) 

Figure 19 shows three investigations on the elastic curve exemplarily, from James Bernoulli in 

the 17th century to Max Borns studies at the beginning 20th century. Today, the Elastica can be 

simulated using numerical methods. 

Central issue is finding a curve that minimizes strain energy under given constraints. Assuming 

that axial compression and shear energy portions are neglectable, and the beams stiffness is 

constant along the beam, in a 2D space, the strain energy from Equation 30 is reduced to: 

𝛱𝑖 =
1

2
𝐸𝐼 ∫ 𝜅2 𝑑𝑠

𝑐

  Equation 36 

The equilibrium shape of minimal strain energy is found when the integrated curvature-squared 

(∫ 𝜅2 𝑑𝑠
𝑐

) is minimal. The problem becomes purely geometrical. 

For given constraints, several equilibrium states can be found. States of higher order may be 

instable as they involve higher total strain energy. There is an analogy to eigenvalue problems 

and buckling shapes, as these possess various solutions. However, this cannot be 

generalized.  

In the following, a progressive simulation1 of two modes of the Elastica on a largely 

compressed two-span beam is performed exemplarily to track basic phenomena (Figure 20). 

The simulation path-controlled. Shape, force, and strain energy are tracked.  

  

 
1 The simulation is performed using Isogeometric Analysis (see section 2.3.2 ). To induce deformation, small imperfections are 
installed. 

c) )  )
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This progression displays some crucial phenomena of large bending deformations, regarding 

large bending, ambiguity, and non-linearity: 

1) Marks the range before buckling (axial deformation only). The systems stiffness is constant 

(see also Figure 17a), until a critical load is reached. The critical loads for a first and second 

eigenmode according to the “Euler”-load (Equation 49) are mapped in the diagram1. In 

conventional engineering, this load is referred to the beam’s resistance against buckling. 

2) Shows a state of larger deformation. The system’s relation of load and displacement is 

non-linear, rising for both modes. The second modes energy level is higher, and thus it is 

more unlikely. 

3) Marks another critical state of the second mode. Any further loading (in case of a force-

controlled system) would result in a sudden “snap-through”  see also Figure 18b). Mode 1 

does not feature this stability phenomena (there is no other deformation mode involving 

less strain energy) 

4) Shows a change in sign for the load in mode 2. It is a state in unstable equilibrium in a local 

energy maximum. External forces are not necessary to hold this deformation (apart from 

the support forces).  

5) At this state, both modes are equal in strain energy. In both modes a double-drop-like 

shape emerges. In mode 1 the signs are opposite, in mode 2, both drops are of same 

curvature sign. For mode 1, this state is the global energy maximum. For mode 2, this state 

is a local energy minimum (in the range of deflection shown). 

The multispan beam is used as reference system for local investigations of compliant grid 

members in this work (see section 3.3.2). 

 

 
1 For the first mode, the buckling length 𝑠𝑘 = 𝑙; For the second mode, the buckling length 𝑠𝑘 = 0,7𝑙 is used. 
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Figure 20 Numerical simulation of an Elastica curve (two modes) 
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2.3 Modelling and Simulation 

Models are crucial for the design, analysis, evaluation, fabrication, and assembly of structures. 

The following sections describes novel developments in geometric and mechanical modeling 

and simulation, both physical and digital, and suitable for spatial grids involving large 

deformation. The methods presented in this section are extensively used for investigations in 

sections 3.2 and 3.3, and furthermore part of the computer aided engineering process 

developed in section 4.1.4.  

2.3.1 Computational Modelling 

This chapter describes the fundamental representation of curved objects in Computer Aided 

Design (CAD) and gives insight to the powerful tools of computational modeling. Lastly, the 

important role of geometric modelling for the comprehensive engineering process is 

highlighted. 

Geometric Objects in CAD 

The basic geometric ob ects in  AD are points, curves  or lines) and surfaces.  or the ob ect’s 

descriptions, there are various approaches and options provided by CAD software. 

Points are commonly defined by Euclidean X,Y and Z-coordinates. Furthermore, cylindrical, 

or spherical coordinates are used. The result, a location in space, is the same. 

Curves are defined using various descriptions available with distinct qualities. Different types 

of description may not be able to perfectly describe the same geometry, but at least provide 

an approximation. A fundamental distinction is between discrete and smooth (continues) 

curves. While discrete curves in CAD are polygons, smooth curves are mostly described by 

Non-Uniform Rational B-Splines (NURBS), which became standard for CAD systems 

(Borrmann et al., 2015, p. 37). The curve is defined by control points and a polynomial degree 

sets the continuity of the curve1. Figure 21 illustrates the description of a NURBS with 

polynomial degree 3 and polygonised curve, both using 7 points for definition. 

 
Figure 21 Spatial NURBS (left) and polygonised curve (right) described by 7 points 

Surfaces are described analogous, but two-dimensional. NURBS-surfaces are described by a 

control net, and meshes are described by points and edges. 

Volumes are usually described using Boundary Representation (B-Rep). In this method, a set 

of boundary surfaces describes a closed volume. 

 
1 Note, the polygonised curve matches a NURBS of polynomial degree 1. 
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Generation of Curvature Lines on Surfaces 

Curvature lines are paths on surfaces, following curvature constraints (Darboux-Frame, see 

chapter 2.1.3). For the determination of these curves, algorithms are necessary, which are not 

yet standard in conventional CAD applications.  

Working on asymptotic networks, E. Schling developed an algorithm applicable in the 

Rhino/Grasshopper environment. The algorithm iteratively finds the zero normal curvature 

direction and follows this, walking in small steps across the surface. Later, Oberbichler, 2021 

published the plugin BOWERBIRD (Oberbichler, 2021), giving users even more flexibility for 

the design of various curvature orientated curves on surfaces. The latter method is used in this 

work. 

Parametric and adaptive Modelling 

Parametric modelling is an important trend in the building sector. Geometric objects can be 

defined using selected object parameters and dependencies between them. These 

dependencies need to be programmed. Parametric models are flexible and able to quickly 

adapt to changing key inputs, without large modelling effort (Borrmann et al., 2015).  

Figure 22 gives an example: A 2D-square is defined using three different parametric 

descriptions (parameter sets) with varying number of necessary inputs (blue). From those 

inputs, the geometry is generated by programmed operations. For less inputs, the design 

space of the geometric objects decreases. 

 
Figure 22 Exemplary parametric definition inputs of a 2D-square: a) Definition of 4 corner points, b) Definition of center point, 
width and height, c) Definition of corner edge length 

Further nesting of parametric objects allows complex adaptive models that are extremely 

useful for repetitive geometric models. 

Modern structural analysis software also includes the parametrization of structural parameters 

such as support constraints, stiffness parameters, etc. This allows complex structural models 

and optimization algorithms for specific goals.  

Visual Programming 

The definition of parametric models requires programming. This is conventionally done using 

appropriate scripting. The language Python, exemplarily, is widely used for geometric scripts, 

and some geometric modelling software offer interfaces to script software specific commands. 

This applies also to numerical software for static analysis. SOFiSTiK1 exemplarily, includes an 

own syntax to create parametric structural models.  

 
1 SOFiSTiK is a commercial FEM software 

c) )  )
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In the past decades, a more intuitive process for scripting was developed: Visual programming 

provides a graphically represented script  also called “definition”), in which parameters, 

objects, computational operations and the data flow are displayed graphically. 

Figure 23 shows exemplarily the graphic definition of a parametric square in the visual 

programming environment of the 3D-modelling software Rhino/Grasshopper1. Closed 

operations are displayed as “components”  grey boxes) and data is passed in-between using 

wires. 

 

Figure 23 Visual Programming Interface: The parametric definition of a square (According to Figure 22c) in the visual 
 ro r    n   nt rf c  of    no Gr    o   r. Fro   n  n ut   n t    r   t r “ ”     qu r     modelled. 

Computer Aided Design (CAD) in the Engineering Workflow 

In the last decades, the importance of CAD in engineering and design processes increased 

rapidly, together with the fast-developing Information Technology (IT). Nowadays, CAD does 

not only support geometric modelling as a separated task. Furthermore, CAD connects to 

several engineering tasks, including physics, mechanics, visualization, data management and 

so on, with geometry as common denominator. In the Building Industry, this led to the 

development of Building Information Modelling (BIM), a comprehensive approach, to 

interconnect various disciplines in the whole lifecycle of buildings, from planning to demolition. 

 

Figure 24 Role of geometric modelling in Computer Aided Systems (CAD) (Bi, 2020) 

Figure 24 displays the role of geometric modelling within computer aided design processes. 

The geometric representation provides the basis for several design tasks: 

“ […] For example, virtual geometric models can be used by computer graphics to visualize the 

designs before physical products are made. Engineering drawings needed in manufacturing 

processes can be directly generated from solid models of products, and all of the annotations relating 

to dimensioning and tolerance can be included in the drawings. If a product is a machine with relative 

 
1 Rhino is a commercial 3D modelling software, and Grasshopper is a plugin for visual programming. For Grasshopper, again, 
various plugins are available, and many are open source.  
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motions among system components, a motion study can be defined upon the computer aided design 

(CAD) model to investigate the relations of driving forces and motions. In addition, engineering 

 n       c n      rfor     t  n   t    of t    ro uct      n  roc   . […]“ (Bi, 2020, p. 37) 

For highly iterative and interdependent design processes, a fluid workflow becomes essential. 

This led to novel developments of CAD integrated design tools and cycles. Exemplarily, 

Goldbach & Bletzinger, 2019 proposed a design cycle for membrane structures. Included are 

various tasks such as the definition of constraints, formfinding, structural analysis and the 

cutting pattern generation. In the parametric environment of Rhino/Grasshopper, all these 

tasks are connected in a fluid data stream (Goldbach & Bletzinger, 2019). 

This work uses a similar approach that adapts to compliant grid structures (see section 4.1.4 

and 4.3.2). 

2.3.2 Numerical Methods 

Numerical methods are widely used for mechanical analysis. These are based on mechanical 

models, translated into equation systems, and solved by algorithms (solvers).  

The structural analysis of actively bent structures requires some rather sophisticated 

approaches:  

In a classical “f  w   ”-approach, the simulation starts from an initially unstressed state, 

iteratively applying loads or displacements and couplings. This method may lead to a complex 

simulation process, but potentially covers the whole assembly stepwise. 

In the “       ”-approach, the input geometry is already bent, and residual stresses, derived 

from the curved geometry are applied. For complex active bending structures with coupled 

elements, this approach simplifies the analysis, as the simulation process from an unstressed 

and possibly uncoupled setup into a largely bent and coupled configuration is skipped.  

In the following, two “inverse” approaches are described   ne is based on the conventional 

Finite Element Method (FEM), the other is based on Isogeometric Analysis (IGA). These 

methods have been presented in Schikore et al., 2020 and Anna Maria Bauer, 2020. 

FEM “       ” 

 

Figure 25 Computational steps of the FEM-inverse Method (Schikore et al., 2020, p. 114) 

FEM software applications are well developed, and became standard in commercial structural 

engineering. They offer user friendly modelling, stable numerical solving and even integrate 

national standards for buildings. Within FEM, curved beams are often approximated by 

polygons, but also curved elements are formulated. 
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To calculate a bent beam from an arbitrary deformed state, the following steps are computed: 

First, an arbitrary input curve is defined (system curve). The length of this curve needs be of 

an unstressed state. This curve is discretized to a polygon, and each segment orientated in 

twist. At all kinks, the angle and twist are measured, and applied as local rotations to reset the 

kinks. In spatial cases, all three local angles of the polygon’s kinks need to be considered 

respectively. When computing equilibrium, the natural shape emerges. 

All other elements, supports, loads, etc. of the calculation model are treated in a conventional 

way. This workflow allows the use of conventional FEM-software and therefore gives access 

to well developed software features, especially valuable for practical applications. 

Note: This approach can be interpreted as a special assembly method. E.g.: Instead of 

deforming a continues straight beam into a constrained shape, the beam is divided into pieces, 

attached to final constraints (supports or couplings) and rigidly reconnected. 

IGA “       ” 

In IGA, curves are not polygonised, but represented by NURBS. Similar to the FEM-inverse 

approach, also IGA can be performed using initially bent geometry inputs. The internal 

moments are computed by the curvature and torsion of the curve, and the geometrically 

nonlinear problem is then solved like the conventional FEM approach. This method was 

developed by Anna M. Bauer (Anna M. Bauer et al., 2019; Anna Maria Bauer, 2020). 

 

Figure 26 Computational steps of the IGA-inverse Method (Schikore et al., 2020, p. 114) 

IGA allows a more fluent workflow when working with smooth curves, since the NURBS curves 

from CAD are directly used in the analysis as inputs and results. 
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2.3.3 Physical Modelling Techniques 

 

Figure 27 Physical models for structural investigation: a) Hanging model of the Multihalle Mannheim (Photo: Uwe Dettmas; 
Kleefisch-Jobst, 2017), b) 3D-printed supports for investigations on geodesic mechanisms (Pillwein & Musialski, 2021), c) Laser 
cut lamellas for asymptotic lamella grid models 

Physical models are an inherent part in structural research, used for experimental 

investigations, for validation and demonstration. Models of structural applications are usually 

of smaller scale and thus the miniaturization of components is required. Furthermore, scaling 

leads to decisive effects in the mechanical behavior and cannot be ignored. 

Besides traditional handcraft techniques, in the past decades, some novel fabrication 

techniques have been developed to create small, individualized components, based on digital 

input data. Most relevant in context of this work is laser cutting and 3D-printing. The 

advantages of these are the fast fabrication, the direct integration into the digital design 

workflow, and small tolerances. 

Laser cutting allows the fabrication of planar elements from steel, timber, or specific plastics. 

3D-printing is nowadays a substantial technique for individual manufacturing in many design 

fields. There is a wide range of materials, being integrated in 3D-printing technologies, such 

as various kinds of plastic, metals, ceramics, concrete, clay, etc. 

This work includes model studies where lamella profiles are laser cut and details are made of 

3D printed (stereolithography) plastic components (see section 3.4 and 4.3.3) 

Figure 27 shows the hanging model for the Multihalle Mannheim (see section 2.4.6 p.46), made 

of metal components (a), a compliant gridshell model with 3D-printed plastic supports (b) and 

laser cut timber lamellas with individualized slots (c).  
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2.4 Research and Developments 

This section includes selected findings and developments from related research areas. The 

content results from extensive literature review on scientific publications, mainly published in 

the last decades. The following topics provide an overview on related geometric, mechanical, 

and architectural fields. 

2.4.1 Networks in Architectural Geometry 

Although geometry has always been an inherent part of architecture, the geometric and 

constructive complexity in modern architecture, and novel numerical methods have formed a 

new research area:  

“[…] On      to   co  o   t    k n   nto   nuf ctur       n      ro        ro r  t   u  ort 

structures, meet structural constraints and last, but not least make sure that the cost does not become 

excessive. Many of these practically highly important problems are actually of a geometric nature and 

thus the architectural application attracted the attention of the geometric modeling and geometry 

processing community. This research area is now called Architectural Geometry.” (Pottmann et al., 

2015) 

The architectural possibilities for design are extended using freeform, doubly curved surfaces, 

and curvature allows shell-like behavior. Structurally, these are often realized as gridshells or 

grillages, which poses design questions about network layout, face planarity, constructive 

implementation and component fabrication, which are closely connected. 

Eike Schling systematically analyzed geometric parameters of selected networks, allocated 

constructive strategies of built gridshells, and derived novel ones (Schling, 2018). 

Repetitive Parameters of Curved Support Structures 

 

Figure 28 Geometric parameters of discrete and/or smooth networks (Schling, 2018, p. 53) 

According to the theoretical framework for curved support structures given by Schling, 2018, 

key parameters at node, edge and face can be determined (displayed in Figure 28). A 

characterization of networks can be derived by a qualitative evaluation of these parameters. 

E.g.  The parameter is “null”, “constant”, or “variable”.  

Accordingly, constructive strategies are applied to meet the geometric characteristics. E.g.: A 

variable intersection angle at node can be implemented using a hinge, variable curvature can 
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be implemented using curved prefabrication, or elastic deformation, some geometric relations 

can be handled by tolerances. 

In an analysis of repetition, build structures or structures from novel geometric investigations, 

curved grid structures can be evaluated regarding these parameters and constructive or 

geometric strategies. 

Strips on Smooth Curvature Networks 

 

Figure 29 Smooth networks with biaxially curved curves: a) Geodesic network, b) Principal-Curvature Network, c) Asymptotic 
Network (Schling, Hitrec, & Barthel, 2018) 

Networks that are geometrically derived using zero curvature constraints can be matched with 

(nearly) developable strips (Chengcheng Tang et al., 2016). Some basic examples are given 

in Figure 29. For each of these networks, one of three curvature quantities is zero (Darboux-

Frame, see chapter 2.1.3 ).  

Figure 29a shows a geodesic network on a both syn-, and anticlastic surface. The curves have 

zero geodesic curvature, and the strips are initially straight. Figure 29b shows a principal 

curvature network with no geodesic torsion. Note, the strips have normal curvature and thus 

are precurved. Figure 29c shows an asymptotic network on an anticlastic surface with zero 

normal curvature. The strips are initially straight. 

In his dissertation, Schling, 2018 contributes the approach of geometrically and mechanically 

superimposed strained lamella gridshells: 

“[…] We focus on the use of straight, bendable strips to construct strained lamella gridshells and 

demonstrate the mathematical background and physical application of such designs. […]” (Schling, 

2018, p. 160) 
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2.4.2 Transformable Structures 

Structural transformability in architecture is commonly interpreted as a reversible process. It is 

used for various applications and functions: Convertible building skins (roofs, facades – 

adaption to user’s needs), Erection of structures1 (as part of the construction process), Mobile 

(deployable) structures (packing and transportation), Adaptive structures (geometric adaption 

to varying loads), Convertible bridges on water routes (adaption traffic). 

Literature provides numerous characteristics of transformable structures to be possibly used 

for classification  Šl ivić et al., 2021). For a wide overview on this topic, the reader is referred 

to Schikore, 2022. In the following, three basic classification principles are described, that also 

apply to compliant grid structures, the scope of this work. 

Geometry of Movement and Structural Type 

 
Figure 30 Classification Matrices of transformable structures (suggested by Blümel, 1972) 

A classification principle, set up by the former Institute of lightweight Structures in Stuttgart 

(Blümel, 1972, pp. 44–45) organizes entire structures according to the structural type (e.g. rigid 

structures or membranes), the type of movement (rolling, folding, bunching, etc.), and the path 

of transformation (linear, circular, etc.).  

 
1 Note: Erection in this context does not include the assembly, but structural forming. 
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Figure 30 shows various combinations. This collection is limited to systems involving 

membranes or stiff components, but the principles are potentially applicable to other structural 

types. 

Types of Mechanisms 

The expression “mechanism” is widely spread in any fields. In general, it describes a system 

of action and reaction. In a mechanical context, mechanisms are processes, involving time, 

states, controlled motion of parts and actuators. There is a large variety of mechanical 

approaches in the field of transformable structures, that may be classified into three main 

classes (based on Novacki, 2014): Rigid, compliant and soft. 

 

Figure 31 Classification of mechanisms for transformable structures (Novacki, 2014, extended by J. Schikore) 

• Rigid mechanisms are compound by stiff elements. Transformability is achieved by hinges 

or through addition. Such types are widely used and well developed. Transformations 

follow kinematic principles and can be described by geometric operations only. 

• Compliant mechanisms transform using controlled elastic deformation and thus require 

the consideration of forces. Spiral or leaf springs are commonly used as controlled “path-

force”-devices. In the last decades, compliant mechanisms are continuously developed 

and thus can be found in various applications. They offer advantages high precision, low 

weight, low friction, low part count, the ability to miniaturize, etc. (Howell, 2001). 

• Soft mechanisms take advantage of the softness of textiles or cables and stiffen through 

tension. 

Transformable structures may include various types of mechanisms. Such “hybrids” are 

common (e.g., springs assembled within rigid-link structures). Hybrid configurations of hinged, 

compliant beams are furthermore called “semi-compliant”. In Figure 32, an exemplary version 

of a simple mechanism using the folding, compliant, and semi-compliant approach are shown. 

 

Figure 32 Folding (a), compliant (c), and hybrid configuration (b) of a two-beam-mechanism (based on Lienhard, 2014, p. 15) 
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2.4.3 Scissor Systems 

 

Figure 33 Architectural scissor systems: a) The movable Theatre concept, presented by Emilio Pérez Piñero in 1961 (Fernández-
Serrano)  ) T   “Ir   Do  ” Mo       00      uck Ho  r  n  99  (Hoberman, 1993) , c) A deployable roof for the San Pablo 
Olympics Swimming Pool in Seville by F. Escrig in Seville 1996 (Kassabian et al., 1999) 

Scissors, in a structural context, are rigid body systems of intersecting bars, linked by a pivot. 

Configurations of scissor chains and grids allows complex and spatial transformations.  

The kinematics of scissors is integrated in the structural transformations of semi-compliant 

grids, treated in this work. The architectural context of the research conducted in this field also 

applies to compliant structures. 

The utilization of scissors can be traced back for centuries. This mechanism is found in notes 

from Leonardo da Vinci (Escrig, 1996). In 1631, it was utilized by Christoph Scheiner for a 

copying device (von Braunmühl, 1891). The basic mechanism of a scissor unit is referred to a 

pantograph mechanism. This mechanical principle was brought into architecture in 1961, when 

Emilio Pérez Piñero, a Spanish architect, presented the famous “ ovable Theatre”, a concept 

for a deployable and mobile roof structure (Fernández-Serrano). In the past decades, this field 

has been extensively investigated by the research groups related to the engineers and 

scientists Sergio Pellegrino, Felix Escrig and Chuck Hoberman.  

Figure 33 shows some well-known examples developed by the engineers mentioned: The 

Movable Theater by Emilio P. Pinero (a) was supposed to open from a truck. It marks a famous 

milestone in this research field. The Iris Dome by Chuck Hoberman (b) is a mechanical survey. 

The geometric principle is picked up in section 3.4.4 (A closer look at this approach follows on 

p. 42). Figure 33c shows a deployable roof for a swimming pool in Seville by Felix Escrig (c) 

at packed and deployed state. This project shows the potentials of scissors at architectural 

scale. 
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Geometric Basics 

There are two basic groups of scissor units: Those with straight, and those with angulated legs. 

The lengths of the scissor’s legs offer extensive possibilities to guide and control the 

transformation path of scissor systems.  

 
Figure 34 A selection of straight and angled scissor chains in different transformation states 

Figure 34 shows a selection of scissor chains using repetitive units with straight or angled 

scissor legs, equal or unequal leg length. Their transformation paths are linear or curved. 

These diagrams also display the range of transformability, considering that the scissors’ legs 

do not overwind (locking at 0° leg-angle). 

Scissor Systems are often used to pack structures. The ability to fully retract can be satisfied 

for scissor chains with straight legs using a simple geometric condition: 

𝑙′𝑖 + 𝑘′𝑖 = 𝑙′𝑖+1 + 𝑘′𝑖+1  Equation 37 

 
Figure 35 Arbitrary scissor chain using units with straight legs  
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Rotational Scissor Grids 

Chuck Hoberman demonstrated the potentials of scissor grids to generate rotational symmetric 

deployable grid structures with the Iris Dome (Figure 33b). These structures consist of coupled, 

angulated scissor chains. At couplings (hubs), these systems require multiaxial hinges. Figure 

36 shows the structures details, implemented for a demonstrator exhibited at the MoMA1 in 

1994, with angulated scissors, and hubs with four rotational axes. 

 
Figure 36 Detail view of the Iris Dome model, exhibited in 1994 at Museum of Modern Art in New York (Photo: Mali Olatunji, 
Museum of Modern Art Archives, 1994) 

Later, Krishnan & Li, 2019 investigated geometric design strategies for axisymmetric spatial 

structures using planar angulated members. Emerging shapes and their morphology can be 

controlled using the geometric parameters of scissor units and the grid density. Their work 

underlines the spectrum of possible shapes for deployable structures of this kind. Figure 37 

shows exemplary shapes that can be configured. These include synclastic, developable, or 

anticlastic shapes. 

 

Figure 37 Rotational symmetric shapes of scissor grids on a synclastic (top), developable (middle), and anticlastic (bottom) 
r f r nc   urf c  “D   o   nt   qu nc  for fu    co   ct for  ” (Krishnan & Li, 2019) 

The concept of rotational scissor grids is picked up in a design study in section 3.4.4.  

 
1 The Museum of Modern Art in New York, US 
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2.4.4 Bending-Active Structures 

 

Figure 38 Built bending-active Structures, designed using varying approaches: a) Mudhif house in Southern Iraq. The building 
technic is still used today (Lienhard, 2014, p. 53), t        n    “      or”-based, b) Multihalle Mannheim build 1974, designed 
using a geometry based approach (Burkhardt & Bächer, 1978), c) The AA/ETH-Pavilion build 2011 at the ETH, designed using 
the integral approach (D'Acunto & Kotnik, 2013) 

Bending-active describes an approach of elastic formation, applicable to various structural 

types. The term has been defined by Julian Lienhard: 

“B n  n -active structures are structural systems that include curved beam or shell elements which 

     t   r   o  tr  on t       t c   for  t on fro   n  n t       tr    t or    n r conf  ur t on. […] 

Bending- ct     tructur    r  un  r too  to     n    ro c  r t  r t  n       t nct  tructur   t   !” 

(Lienhard, 2014, p. 13) 

There is differentiation of three design approaches for bending-active Structures: 

• “In   behavior-based    ro c    n  n      n t      u     ntu t     ; t      t  ’    o  tr  

and structural behavior is studied empirically. Material limitations are tested physically. 

• In a geometry-based    ro c  t      t  ’    o  tr      r   f n         on  n   t c   

geometry or experimental form-finding methods, both of which are used as a controlled 

means to approximate the actual bending geometry. Material limitations are considered 

analytically based on moment curvature relation. 

• In an integral approach the elastic bending deformation is analyzed through numerical 

form finding, which enables full control of material behavior-based geometry. Material  

characteristics and li  t t on   r   nc u     n t   nu  r c    n        o   .” (Lienhard, 

2014, p. 50) 

Designing bending-active structures requires careful consideration of deformability and load-

bearing capacities, which are opposing characteristics. This leads to a paradox, that underlies 

all bending-active structures. The induced residual stresses affect the load-bearing behavior 

in terms of capacity and stiffness. Whether these effects are advantageous or not, depends on 

the specific configuration of initial prestress, external loads, and geometry. Activating stress-

stiffening effects is a key strategy to create structurally sound systems (Lienhard, 2014, p. 141) 

The compliant structures in scope of this work can be classified as bending-active structures, 

designed using both geometry-based (initial design), and integral approaches (transformation). 



44 

2.4.5 Compliant Mechanisms 

 

Figure 39 Various applications of compliant mechanisms: a) Compliant catapult, sketched by Leonardo da Vinci (Howell, 2001, 
p. 9), b) In  t n  on     for  t on of t   “  r n -B ck   f  ctor” u    for t   M-SAT2 satellite (Tan & Pellegrino, 2006)  c) 
Thematic Pavilion at the Expo 2012 in South Korea by SOMA architects and Knippers Helbig (Schleicher, 2016, p. 48) 

Compliant mechanisms are part of our everyday life. Larry L. Howell, a famous researcher in 

this field, gives a far-reaching definition: 

“If  o  t  n    n   to  o    t  t       nt to  o  t  n  t    co     nt. If t   fl       t  t  t    o    t to 

  n     o        t to  cco        o  t  n  u  fu   t  n  t      co     nt   c  n   .” (Howell, 2001) 

Compliant mechanisms are widely found in nature, and for humans, the use reaches back to 

ancient times (e.g., compliant scissors or bow and arrow). Today, various small tools take 

advantage of such mechanisms (e.g., plastic clips). Larger applications are found in notes from 

Leonardo da Vinci (Figure 39a), and compliant mechanisms are used for deployment in space. 

The M-SAT2 satellite uses a compliant spring-back Reflector (see Figure 39b). In architecture, 

only few applications exist, and the development started at beginning of the 21st century. The 

Thematic Pavilion is built or the EXPO 2012 in South Korea (SOMA Architects and Knippers 

Helbig engineers) has a kinetic façade with GFRP-panels that open through controlled buckling 

(Figure 39c). 

Compliant mechanisms hold various advantages, compared to traditional rigid mechanisms: 

• Low number of components (no hinges with bolts, etc.) 

• Low maintenance (no friction – no need for lubricants) 

• Strain energy integration (advantages of energy storage, e.g., spring back) 

• Possibilities of miniaturization and mass production (3D- printing or plastic casting) 

The design of compliant mechanisms requires careful synthesis of freedom and constraint in 

terms of elastic stiffness. 

 

 

  

c) )  )
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2.4.6 (Strained) Gridshells and Erection in Architecture  

Gridshells are a special type of shell structures, that, unlike continues shells, are compound 

by a grid of beams, and strained gridshells are a subtype of those, and they relate to bending-

active structures (see chapter 2.4.4). Elisa L. Hernández provides a clear definition with validity 

to this work: 

“[…] The definition of elastic gridshell corresponds to a shell structure composed of a single- or multi-

layer grid of continuous profiles, which are initially straight and will be progressively bent until 

achieving an architecturally and structurally satisfactory geometry. This form-giving bending process 

induces important residual stresses on the grid profiles; reason why these structures are also known 

    tr  n    r        ” (Hernandez, 2016) 

Gridshells, and especially strained gridshells, are a niche in architecture. The main advantage 

is to generate doubly curved shell structures from initially straight elements. The main 

challenge relates to the paradox for bending-active structures: to manage stiffness, load-

bearing and deformability.  

Another challenge addresses the erection process. Mostly, the entire gridshells, or patches, 

are transformed from a flat assembly state into special shapes. The emerging shapes are 

either formfound in advance or predefined and adjusted by supports and bracings. Gregory 

Quinn defines four practical erection strategies, if the grid is assembled flat  “ ift up”, “Push 

up”, “Ease-down” and “Inflate” (Quinn, 2018b, 13–24). 

 

 

Figure 40  r ct on  tr t      for  tr  n    r         fro  f  t to    t     “ u   u !  “ u   u ”  “      o n”  n   nf  t  (based on 
(Quinn, 2018b, p. 13) 

The following sections address built structures, starting from early steel structures designed 

by Vladimir Šuchov, followed by strained timber gridshells, and temporary structures made 

from GFRP. 

Š      ’ S     S          

 

Figure 41 Steel gridshells from Vladimir Šuchov: a) Hyperboloid shaped Water Tower in Niznij Novgotod with twisted L-profiles 
(Beckh, 2012) b) Workshop in Vyksa (RU 1897) (Picture in public domain, taken from MARCH, 2020) 

  u   u    u   u         o n   nfl t  
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Vladimir Šuchov was a pioneer in gridshell design in the 19th century. His work is not typically 

referred to strained gridshells, but elastic deformation was at least partly applied in assembly. 

In numerous hyperbolic lattice structures (towers), straight L-profiles are twisted to align the 

profiles’ orientations at the grid’s nodes. This deformation  twist) in this case was not used to 

shape the global geometry, but rather to satisfy constructive criteria (see Figure 41a).  

The workshop in Vyksa is a doubly curved gridshell and marks a milestone in lightweight 

structures in general. The structural drawings and geometric investigations imply, that the 

profiles were most likely fabricated planar and deformed to fit the complex spatial geometry 

(Beckh, 2012; Schling & Barthel, 2021). 

Strained Timber Gridshells 

 

Figure 42 Strained timber Gridshells: a) Multihalle Mannheim (GER, 1974, Architect: Mutchler&Partner, Engineering: Ove-
Arup&Partner and Frei Otto), b) Weald and Downland Museum (Johnson, 2002) c) The Savill Building (b, c: Du Peloux de Saint 
Romain, 2017). 

In the 20th century, the German engineer and scientist Frei Otto investigated strained timber 

gridshells. The Multihalle Mannheim, a prominent milestone for gridshells in architecture, was 

designed and built in  9   for the “ undesgartenschau”  see Figure 41a). This project involved 

extensive research in formfinding, load-bearing and construction (Burkhardt & Bächer, 1978). 

It inspires engineers and architects up to the present. Later examples for strained timber 

gridshells are the Weald and Downland Museum (Figure 41b, 2002, UK, Architect: E. 

Cullinan, Eng.: Buro Happold, UK), or the Savill Building (Figure 41c, 2006, Architect: Glenn 

Howells, Eng.: Buro Happold, UK). 

The Multihalle Mannheim is explained more detailed: The roof has a funicular, formfound 

shape and spans up to 60m. The equilateral grid (50cm mesh) is compound out of layered, 

square timber profiles (50x50mm, hemlock fir). The structure is stiffened by diagonal steel 

bracings and covered by a PVC membrane. Figure 43a shows the complete building, covering 

7500m2. 

The grid of the Multihalle Mannheim was assembled flat and could be packed. After placing 

the grid, it was erected following a “push-up”-strategy, using temporary stands (see Figure 43 

b-e). Once shaped into the desired funicular geometry, the supports were fixed, the nodes 

(scissor hinges) were tied, and the bracing was attached (Figure 43b). Thereby, the geometry 

was locked, and the stiffness of the double layered members was activated. 
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Figure 43 The Multihall Mannheim: a) Night view of the building b) Node detail, c) Packed  timber grid (Kleefisch-Jobst, 2017), d) 
Placing of flat grid, partly lifted, e) Lifting grid using temporary stands (Source.a,b,d,e:  Burkhardt & Bächer, 1978) 

GFRP Gridshells 

Novel developments of the past years show the potentials of GFRP to create ultralight strained 

gridshells. 

The Soliday Forum in Paris (June 2011) was a temporary gridshell, designed by UR Navier, 

Ecole des Ponts (Paris) and T/E/S/S atelier d'ingénierie, and covered 300 m2. The triangulated, 

three-layered grid is made of GFRP-tubes (D=41,7 mm), that are laterally clamped. The 

erection process refers to the Multihalle Mannheim, but a crane was able to lift the lightweight 

structure. Figure 44 shows the building and construction on site. 

 

Figure 44 Gridshell at the Soliday Festival: a) View from outside, b) Inside view, c) Detail view d) Flat Assembly of the equilateral 
grid (two layers), e) Pull-up erection of the quadrilateral grid, f) Bracing (triangulation) at final geometry with third layer of GFRP 
tubes (TESS, 2011). 



48 

Another approach for gridshell erection was investigated by Gregory Quinn: In this method, a 

cushion is inflated to push the flat grid structure into spatial shape. After inflation, the grid 

structure is fixed to its supports and the cushion can be removed. This concept has been 

proven by various prototypes. Figure 45 show the SheltAir pavilion, erected in Berlin in 2018. 

 

Figure 45 SheltAir Pavilion, erected using inflation: a) Outside view, b) Interior view, c) Flat assembly state, d) Inflation using 
cushion for erection, e) fixed and supported grid, the cushion is removed. (Quinn, 2018a) 

The last example is a patented, vegetated grid structure, developed at the ENPC1 in France 

(Bavarel et al., 2020). The structure can be placed as “garden furniture”. The Corolle is made 

of 18 mm circular GFRP profiles and has a diameter of 8 m. The grid structure is based on a 

Chebyshev net.  The structure is assembled flat and bound into a cylindric shape. Pulling the 

edge nodes downward, the structure transforms into a funnel shape. At desired shape, the 

structure is locked using bracings. Figure 46 shows the key steps from assembly to use. 

 

Figure 46 Funnel shaped gridshell for the support of climbing plants (ENPC, 2020) 

The geometric and mechanical concept of the Corolle is similar to the Kinetic Umbrella, a 

practical case study in section 4.3. 

  

 
1 École Nationale des Ponts et Chaussées (Grande école in Champs-sur-Marne, France) 
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2.4.7 Research on Compliant Grid Transformation 

The transformation of compliant grids has been investigated on different levels, from 

differential geometry to numerical calculations and physical research. In the following, selected 

investigations, that highly relate to this work are briefly summarized. 

The work of S. Finsterwalder: “M c    c   R     o s of S  f c  D fo m   o ” 

 

Table 1 Four selected cases of network deformability investigated by S. Finsterwalder. (Figures/drawings are taken from 
Finsterwalder, 1899) 

The deformation of networks in a geometric context describes changes of curvature and/or 

curve lengths, without topological changes. Fundamental relations on such deformations, 

combining geometric and mechanical aspects have been studied by Sebastian Finsterwalder 

in the 19th century (Finsterwalder, 1899). He describes the deformability of various networks 

with specific geometric constraints regarding curvature or nodal degree of freedom. 

Furthermore, geometric constraints are allocated to mechanical limitations, e.g., introducing 

lamella profiles as mechanical equivalent for uniaxial zero-curvature preservation or thin 

circular sections as capable for free biaxial bending and torsion. A selection of four cases, 

individual characteristics, constraints, and deformation restrictions are summarized in Table 1 

exemplarily.  

The significance of S. Finsterwalders work lies in the correlation of differential geometry, 

kinematics, and kinetics of grid structures, that opens new perspectives and potential 

applications. 
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Self-Shaping Gridshells 

In the past decade, various research groups picked up the topic of deployable and self-shaping 

grid structures. In the following paragraphs, some highly related projects are summarized 

exemplarily: 

In 2014, a flat collapsible geodesic mechanism was applied for a demonstrator at architectural 

scale. The “ eula”-pavilion, exemplarily, is an anticlastic geodesic gridshell, and the shape 

emerges naturally when deployed from an initially planar state (Soriano et al., 2019, p. 1896). 

 
Figure 47 Erection of the "Neula"-pavilion in 2014 by Scientists of the UPC and CODA1(Photo: Andrés Flajszer) 

Scientists at the UPC (LiTA)2 in investigated “G-Shells”, grids of “flat” orientated lamellas on 

geodesic networks. These structures are restrained in deformability due to their members 

strong axis. Soriano et al., 2019 categori es such mechanisms into “pantograph”   D), 

“geodesic”   D) and “flat collapsible geodesic”  or “ -Shells”)   D to  D). 

 
Figure 48 Physical models displaying the subcategorization of deployable geodesic grid systems (Soriano et al., 2019, p. 1897) 

In    9, scientists at the EP   in Swit erland introduced “X-shells” as new class of deployable 

structures. These comprise grids with compliant beams and hinged joints. Using numerical 

optimization, deployable configurations were found, and the diversity of such structures was 

displayed. Emerging shapes are controlled by the grid layout and stiffness parameters 

(Panetta et al., 2019). 

 

 
1 CODA is an engineering firm in Barcelona working closely together with the UPC. 

2 T   “  TA”    t   “   or tor  of Inno  t on  n  T c no o    n Arc  t ctur ”  t t   Po  t c n c Un   r  t  of   t  on  . 
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Figure 49 Actuation into spatial of an "X-Shell" (Panetta et al., 2019) 

In 2020, researchers at TU-Wien published digital methods and algorithms to find flat geodesic 

configurations that deploy into predefined design surfaces (Pillwein, Leimer, et al., 2020; 

Pillwein & Musialski, 2021). On a free-form surface, a quadrilateral patch is defined, and using 

algorithms, the patch is filled with a quadrilateral geodesic network. The deployment is based 

on the changing angle �̅� → 𝛼, and requires additional translational DoFs (notches in the 

physical model, see Figure 50b). 

 

Figure 50 Physical model showing a) Flat to spatial deployment of a geodesic grid, b) Notches, necessary to provide a 
translational DoF at nodes to allow transformation (Pillwein, Kübert, et al., 2020) 

Deformation with Constant Normal Curvature 

In 2018, the deformability of networks with constant normal curvature was identified and 

numerically simulated by the research group of Helmut Pottmann (Schling, Kilian, et al., 2018). 

Figure 51 shows three states of deformation. 

 

Figure 51 Paper model of the deformation of a rotational network with constant normal curvature (Schling, Kilian, et al., 2018). 
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Bundled quadrilateral Gridshells  

 

Figure 52 Bundlable Gridshells: Bundable mesh on a design surface, relaxed and loaded gridshell, and bundled states 

In 2022, Xavier Tellier (EPNC Paris) developed a novel approach to find spatial quadrilateral 

grid layouts on design surfaces, that can be fully packed into a bundle. The criteria for fully 

closing scissor chains, described by F. Escrig (see Figure 35 and Equation 37) are applied to 

smoothly curved spatial networks on surfaces. This property is generally valid for any 

Chebychev net. An exemplary network on a given design surface, the mechanically relaxed 

and loaded (self-weight) gridshell, and two possible bundled states are shown in Figure 52. 
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Summary and Research Gap 

The presented topics include the research areas of architectural geometry, transformable, 

scissor, compliant, active bending and strained or self-shaping structures. These topics have 

a common ground but originate from different perspectives. All topics involve transformation. 

Specific types of mechanisms are found in any transformable support structures: Rigid-body, 

compliant or soft mechanisms. Furthermore, transformable structures can be classified by the 

type of movement and the path of transformation These basic classifications may be referred 

to grid structures. 

Scissor systems were developed that allow grid transformation, following geometric design 

rules. These systems involve rigid-body mechanisms (section2.4.3). The question arises, to 

what extend scissor systems can be combined with compliant mechanisms? 

Architectural geometry provides approaches to design smooth strained gridshells (section 

2.4.1). A selection of build strained gridshells demonstrates feasibility and quality at 

architectural scale (section 2.4.6). Strained gridshells can be seen as bending-active 

structures, as elastic deformation is used for shaping (section 2.4.4). The process of erection 

of these structures can be interpreted as a semi-compliant mechanism (section 2.4.5). 

However, the erection involves transformation as part of the construction process only, and 

the transformation is barely constrained. The question arises, how semi-compliant grid 

transformation can be constrained to generate controlled transformations? 

Several research groups investigated compliant grid structures, developing self-shaping grid 

structures. The increasing interest in this research field underlines the significance and 

potentials of such mechanisms and structures. However, this topic is still in its infancy. 

The research presented in section 2.4.7 was conducted parallel to this work. The numerous 

approaches for specific mechanisms, aiming at selected structural parameters and behaviors 

are not embedded in a comprehensive theoretical framework.  

All research subjects involve quadrilateral grids with uniaxial hinges and compliant members. 

However, essential kinematics of quads or uniaxial hinges, or the internal energy balances 

throughout transformation of compliant members remain unclear. 

A focus is given on geodesic networks and inherent compliancy. The general transformability 

of asymptotic configurations is identified but barely investigated. 

A large research gap opens for practical implementation. The research briefly presented 

remains on a theoretical, morphological level, with only few prototypes that take the step 

forward into application and architectural scale. The challenges of suitable engineering 

workflows, dimensioning with the stiffness paradox, constructive implementation and actuation 

remain rather unexplored. The question arises: Are compliant grid structures generally feasibly 

at architectural scale? 
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Figure 53 Actuation model detail for the Hotel Intergroup 
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3 MECHANICAL STUDIES 

This chapter investigates geometric and mechanical characteristics, and the performance of 

semi-compliant structures as both static, and transformable structures.  It is subdivided into 

the following sections:  

• Section 3.1 provides a framework to classify compliant grid structures and refers the scope 

of this work to this framework. It defines the research object. 

• Section 3.2 reveals basic kinematic rules of quadrilateral grid cells and the kinetic 

performance of structures with restricted compliancy in three transformation analyses. 

These analyses aim to systematically clarify the transformation process in morphology, 

kinematics, and kinetics. It introduces the curvature-square analysis as a method to 

evaluate the internal kinetic relations of transformation. 

• Section 3.3 investigates global stiffness and local stability in a static analysis. This section 

aims at load-bearing, necessary at both static service states and throughout 

transformations. These investigations reveal decisive local and global phenomena 

regarding stiffness and stability. 

• Section 3.4 includes physical model studies of compliant grid structures developed in a 

design studio. Four exemplary designs are classified according to the framework of section 

3.1. Furthermore, the mechanical approaches that were developed in a creative process 

are analyzed. 

  



56 

3.1 Research Object 

In the first part of this section, the structural components and related parameters of semi-

compliant grid structures are systematically displayed, providing a framework for classification. 

Secondly, the scope of this work is defined within this framework. 

3.1.1 Structural Components 

 

Figure 54 Schematic overview on structural components and characteristics of semi-compliant grid structures 

Semi-compliant grid structures show distinct geometric and mechanical characteristics. In the 

following sections, key components are systematically described and classified. This 

comprehensive description reveals the total design spectrum of such structures as a 

combination of its component parameters. Figure 54 displays those components in a 

schematic overview. 

Note, these parameters do not aim to give a full and detailed description of compliant 

structures, but help to provide classification of full systems. 

Surface 

The reference surface is the geometric basis for grid structures treated in this work. 

Fundamental types of doubly curved surfaces are shown in section 2.1.2 (Figure 5). Other 

distinctions address curvature and topology.  

The key characteristics/parameters are summarized below: 

• TYPE:  ruled, rotational, freeform, … 

• CURVATURE:  e.g. Gaussian curv.: zero, negative, positive (syn.- and/or anticlastic) 

• TOPOLOGY: zero (closed), one, two, … closed edge loops 
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Network (Layout) 

Networks on smooth surfaces are a collection of curves, which follow distinct definitions. In 

section 2.1.3, some basic types of definitions are displayed. A distinction is made between 

curves defined by an external geometric reference (e.g. intersecting surfaces or planes, “free-

form” curve on surface), or curves that are driven by the internal surface’s parameters (e.g. 

curvature orientated paths). Other basic characteristics are the curvature and topology of the 

network. 

The key characteristics/parameters are summarized below: 

• REFERENCE: external (e.g., intersecting objects), surface, curve 

• CURVATURE:  from Darboux-, or Frenet-Serret-Frame: zero, constant, variable 

• TOPOLOGY: quadrilateral, triangulated, irregular, … 

Beams (Orientation and Compliancy) 

The beam’s system curves are given by the network  layout). In context with compliant grids, 

beams are decisively characterized by their orientation and local compliancy. 

The orientation of beams defines the beams torsion. Besides a variable (free) orientation, 

beams may be aligned to distinct references. Again, a reference can be taken from: an external 

object (e.g. global orientation or orientation to a point in space), the reference surface (e.g. the 

surface normal vector – the Darboux-Frame), or the curve itself (e.g. the curves curvature 

vector – the Frenet-Serret-Frame).  

 
Figure 55 Three different references for a beam’  orientation. The blue curves mark the beam system lines. The strips display 
the different orientations: a) global orientation (global z-vector), b) Surface orientation (normal vector, see section 2.1.2), c) curve 
orientation (bi-normal vector orientation, see section 2.1.1) 

Another parameter is the beams compliancy, defined by the beams local stiffnesses. There 

are three orthonormal components of bending stiffness, refereed to the beam’s axes (𝐸𝐼𝑇, 𝐸𝐼𝑦, 

𝐸𝐼𝑧). The relation of these affects the compliant morphology and can be used for control. The 

deformability can be “restricted” to selected axial components, using relatively high axial 

stiffness where no compliant deformation is desired. In terms of compliant functionality, a 

general distinction between rigid and compliant behavior is used. This leads to various 

combinations of axial compliancy (Table 2). 

The beams may involve an initial curvature, that is present in an unstressed state. This initial 

curvature may apply to either rigid or compliant beam axes. 
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Compliancy 𝑮𝑰𝒕 𝑬𝑰𝒚 𝑬𝑰𝒛 Section Geometry Example 

No compliancy 
No Bending/Torsion 
(rigid) 

r r r large circular section 

Uniaxial 
compliancy 

Torsion only c r r 
T-section / L-section (warp-
free open thin profiles) 

Uniaxial Bending  
(no Torsion) 

r c r 

geometrically infeasible 
r r c 

Biaxial  

compliancy 

Biaxial Bending  
(no Torsion) 

r c c 

Uniaxial Bending and 
Torsion 

c r c 
Lamella section 

c c r 

Triaxial 
compliancy 

Bending and Torsion c c c Small circular section 

Table 2  o   n tor c  of r     or co     nt           (“r”   r      “c”   co     nt) 

The key characteristics/parameters are summarized below: 

• ORIENTATION: external (e.g., intersecting objects), surface, curve 

• TORSION:  zero, constant, variable / smooth, discrete 

• COMPLIANCY: rigid, compliant (x,y,z) 

• INIT. CURV:   zero, constant, variable / smooth, discrete 

Hinges 

The grids’ hinges are located the intersection points of the beam system lines. Their degree of 

freedom defines the kinematic quality of semi-compliant grid structures. However, there is a 

large spectrum for the setup of hinges, regarding axial orientation and topology. 

 
Figure 56 Exemplary rotational axis orientations at a traversal node: a) Externally (globally) orientated axis, b) Axis aligned with 
surface normal, c) Axis aligned to system curve tangent. 

Generally, there are six possible DoFs in 3D space for a given object: three rotational axes 

and three translational directions. Grid structures are characterized by system curve 

intersections, and thus, any kinematic translation, disjointing these intersections, violates this 

character. Consequently, any translational freedom, normal to the grids reference plane at 

intersection is invalid. The only translational DoF, that does not violate this boundary condition 

are translations in the beam’s local x-axes, also referred to “sliding” hinges. Rotational Do s 

do not violate the network’s intersecting character.  

Rotational axes can be chosen freely and exemplarily reference to external objects, global 

vectors, surface normal (Darboux-Frame), or local beam axes. Figure 56 shows three 

examples of rotational axis orientation: global vector, surface normal and curve tangent. 

X
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In total, there are four applicable DoFs left: Three rotational DoFs, and the longitudinal beam 

translation (sliding). From those optional DoFs, many combinations can be assembled: 

Uniaxial or multiaxial rotational hinges, with or without sliding freedoms. 

Another key quality of hinges is their topology (also called connectivity), that defines, which 

members at intersection are connected by which DoF. The topology becomes significant, when 

more than two members are connected at nodes (e.g. triangulated networks of smooth curves). 

The key characteristics/parameters are summarized below: 

• DoF:  rotational, sliding 

• ORIENTATION: external (e.g.: global vector), reference surface, curve 

• TOPOLOGY:  connectivity of freedom and constraints between members (valance > 2) 

Supports 

Supports are part of any structural system. In semi-compliant grid structures, they are part of 

the mechanism to restrict and control the global transformability and thus influence the 

mechanisms performance. Supports may block rotation or translation in suitable directions.  

The key characteristics/parameters are summarized below: 

• CONSTRAINT: rotational, translational 

• AXIAL REF.: external object: Vector, Surface, Curve 

Actuation 

Actuation systems set transformable structures in motion. For this process, mechanical energy 

must be induced (or released). In the context of semi-compliant grid structures at architectural 

scale, the following portions of energy may compound this energy: 

• lifting structural mass (potential energy) 

• deform compliant members (strain energy) 

• overcome friction (friction energy) 

• accelerating structural mass (kinetic energy) 

Figure 57 shows an abstract mechanical model that includes forces that relate to these 

portions. Two cases display different movement scenarios. The actuation force results from 

the equilibrium condition. 

F𝑆𝑡𝑟𝑎𝑖𝑛 + F𝑆𝑒𝑙𝑓−𝑤𝑒𝑖𝑔ℎ𝑡 + F𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + F𝐴𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 = 0 Equation 38 

Note, forces due to friction change according to the direction of movement, and thus, the 

direction of movement has an impact on the force equilibrium. The kinetic energy due to 

acceleration is not considered here, as these are assumed to be neglectable for the scope of 

this work. 
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Figure 57 Abstract mechanical model of a compliant system. Forces are displayed for two directions of movement. 

Actuation can be controlled via two principles: In a path controlled actuation, a defined path or 

displacement (or rotation) per time is applied. The force adapts to this constraint. In a force 

controlled actuation, a defined force (or moment) per time is applied. The displacement (or 

rotation) is corresponding. However, the functionality of compliant grid structures is to perform 

geometric transformations, and thus, only path controlled actuations are reasonable. 

A distinction is made for the references of actuation systems: The internal actuation integrates 

the actuation system in the grid structure and follows its movement (e.g. cable systems as part 

of the grid structure, or nodal rotational actuation). The external actuation applies 

displacements following an external path (e.g. moving selected nodes along a predefined 

path). 

Throughout transformation, the actuation force may change its direction, a decisive quality that 

may impact the devices used for actuation. E.g.: Cables only perform in tension, and thus are 

not able to change in force direction. This quality is described by either uni- or bidirectional 

actuation. 

The key characteristics/parameters are summarized below: 

• ACT.REF.: internal/external 

• DIRECTION: unidirectional, bidirectional 

Locking 

Transformable structures serve as static structures at predefined states of geometric 

transformation (service states). At these states, the structures might be exposed to additional 

loads and locked accordingly. Locking systems have two basic functions:  

• Limitation of transformation: The transformation is geometrically limited to a predefined 

transformation domain.  

• Service load-bearing: At service state, additional loads may require a structural 

reconfiguration for load-bearing. 

Locking is a geometric constraint, in which displacements or rotations are limited. In context of 

semi-compliant grid structures, there are two basic reference types in analogy to actuation 

movement  orce Diagram

 
  ,Support)
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systems: Internal locking systems are integrated in the grid structure and lock at predefined 

states (e.g. cable activation within the grid structure, or nodal rotational locking at prescribed 

angles). External locking systems utilize external supports (e.g. locking selected nodes at 

predefined states) 

The key characteristics/parameters are summarized below: 

• CONSTRAINT: rotational (angular limitation), translational (distance limitation) 

• LOCK REF.: internal, external 

3.1.2 Structural Scope of Analysis 

The structural components described in section 3.1.1 allow manifold configurations that 

possibly suit a semi-compliant mechanism. However, the structural research of this work 

focusses on a narrow subset of those, that geometrically and structurally refer to strained 

gridshells and related research (see section 2.4).  

In scope of this work are structures with the following characteristics: 

• All grid structures are based on quadrilateral networks (section  2.1.3). 

• All beam orientations align with the reference surface’s normal (section  2.1.2). 

• All beams are straight in an unstressed (undeformed) state.1 

• All hinges are uniaxial and align with the reference surface’s normal. 

• All profiles are either compliant or rigid (not deformable) in bending/torsion.  

• All beams with rigid axes follow corresponding zero-curvature paths (section 2.4.1). 

Further restrictions, that relate to the transformation processes: 

• Forces due to acceleration (inertial forces) are not part of this work. These are assumed to 

be very small (low accelerations). 

• All transformations relate to homeomorphisms: The grids reference surfaces change shape 

only in curvature and area, not in topology (see 2.1.2 p.13). 

  

 
1 An exception is given in section 3.4.1, t   “Active Grillage”      n of F. Ju tn    o    nc u    r -curved members to tune the 
natural state of the structure. 
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These limitations are furthermore summarized in Table 3, addressing the structural 

components, characteristics and parameters described in section 3.1.1.  

Component Parameter Scope 

SURFACE 

TYPE ruled, rotational, freeform 

CURVATURE Gaussian curv.: zero, negative, positive, pos. and negative 

TOPOLOGY one and two edge surfaces 

NETWORK 

REFERENCE surface curvature (Darboux-Frame) 

CURVATURE zero and variable curvature components (Darboux-Frame) 

TOPOLOGY quadrilateral 

BEAMS 

ORIENTATION 

network Alignment (Darboux-Frame) 

TWIST 

COMPLIANCY uni-, bi- and triaxial compliancy 

INIT. CURVATURE zero (no initial curvature) 

HINGES 

DoF rotational 

ORIENTATION surface normal 

TOPOLOGY (bilateral connections only) 

SUPPORTS 

CONSTRAINT translational 

AXIAL REF. global vectors 

ACTUATION 

ACT.REF. internal, external 

DIRECTION uni-, bidirectional 

LOCKING 

CONSTRAINT translational (distance limitation) 

LOCK REF. internal, external 

Table 3 Parameter Scope of Investigation (grey: Qualities that are not varying in this work) 
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3.2 Transformation Analyses 

Semi-compliant transformations involve both kinematic rotations or translations and compliant 

beam deformation. Among a large spectrum of possible structures and transformations, this 

section investigates selected structural systems using analytical methods and numerical 

simulation.  

Section 3.2.1 treats purely kinematic rigid body transformations at unit cell, and grid level. Parts 

of this content is published by Schling et al., 2021. 

Section 3.2.2 reveals and validates basic expectations on grid transformability of structures 

with restricted compliancy. Geometric characteristics are compared with the results of 

mechanical simulations.  

Section 3.2.3 characterizes selected types of semi-compliant systems regarding their kinetic 

behavior. In this context, the curvature-square analysis is proposed. Parts of this content is 

published by Schikore et al., 2020. 

3.2.1 Rigid-Body Transformation 

This section investigates the two-dimensional kinematic transformation of quadrilateral, kite-

shaped unit cells. In scope are translational relations that result from the cells shape and 

orientation in principal coordinate system (X,Y). The kinematic performances and orthogonal 

force relations of the unit cells relocate in entire grid structures. From this perspective, the 

intersection angles of quadrilateral grid structures define the normal force relations within the 

grid. In context to actuation, this angle acts like a gear box.  

Unit Cell Kinematics 

 
Figure 58 Four basic cases A,B,C and D of a quadrilateral unit cell regarding angular orientation towards the direction of actuation 

Figure 58 shows four basic cases of unit cells (A, B, C and D) with varying intersection angles 

(corner angles) and orientations in a principal coordinate system. The parallel pairs of cell 

edges represent the smooth networks curve families (yellow and green). For a given 

displacement 𝑑𝑢𝑥, the orthogonal displacement  𝑑𝑢𝑦 is derived from the initial setup, described 

by the angles between the respective cell edges (curve families) and the principal coordinate 
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axis Y. The edges in these basic setups are: 

A) parallel to the principal axes. 

B) symmetrical to the principal axes and the angles  

C) asymmetrical with opposite angular signs (contrary directed). 

D) asymmetrical with equal angular signs (equally directed). 

With given angles between edge and principal axis 𝛼 and 𝛽, the relation between infinitesimal 

translations in X and Y direction is given by: 

d𝑢𝑦 = −
sin 𝛽

cos 𝛼
d𝑢𝑥  Equation 39 

Due to the angular sum in a quad, 𝛼 and 𝛽 are limited: 

|𝛼| + |𝛽| ≤ 180°  Equation 40 

Based on Equation 39, the following relations result with respect to cases A-D: 

A) The system is in equilibrium and does not move. 

d𝑢𝑦 = 0 ; d𝑢𝑥 = 0 Equation 41 

         with: 𝛼 ≤  𝜋 2⁄  and 𝛽 =  0 

B) The relation in Equation 39 can be simplified by the tangent. The infinitesimal 

displacements 𝑑𝑢𝑦 and 𝑑𝑢𝑥 are always of opposite sign. Compression in Y-direction always 

leads to expansion in X-direction. 

d𝑢𝑦 = tan 𝛼 d𝑢𝑥  or d𝑢𝑦 = −tan 𝛽 d𝑢𝑥 Equation 42 

         with: 𝛼 = −𝛽 

C) The infinitesimal displacements 𝑑𝑢𝑦 and 𝑑𝑢𝑥 are always of opposite sign. Compression in 

Y-direction always leads to expansion in X-direction. 

D) The infinitesimal displacements 𝑑𝑢𝑦 and 𝑑𝑢𝑥 are always of equal sign. Expansion in Y-

direction always leads to expansion in X-direction. The structure is “auxetic”. 

Grid Transformation 

The kinematic relations shown for unit cells in the section above can be transferred to grids of 

straight members. Figure 59 shows grid layouts on a squared region with the geometric 

characteristics of cases A-D (see Figure 58). In a kinematic analysis these grids are 

transformed, applying a defined displacement in one principal axis (in Figure 59 the “vertical” 

axis). The grids are either compressed (red) or expanded (blue), if kinematically possible, and 

the transformed geometries are evaluated. 
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Figure 59 Kinematic transformation of a quadratic grid section. The grids are orientated towards the actuation direction according 
to four basic cases (see Figure 58) 

The transformed grid regions show the following geometric characteristics: 

A) The grid is in equilibrium. In this case, the grid is not expanding or compressed in X-

direction. Expansion in Y-direction is not possible. However, compression in Y-direction is 

possible if the grid is shearing. 

B) Compression in Y-direction leads to expansion in X-direction and vice versa. There is no 

shear. 

C) If compressed in Y-direction, the grid expands in X-direction and vice versa. In addition, 

there is shear transformation. 

D) The grid is either compressed or expanded in both directions, showing an auxetic behavior. 

Additionally, the grid is shearing. 

These observations match with the unit cells kinematic behavior, as these represent a 

repetition of cells. 

The kinematic relation also applies for static equilibrium. If the infinitesimal displacements 𝑑𝑢𝑦 

and 𝑑𝑢𝑥 are replaced by forces 𝐹𝑦 and 𝐹𝑥 in a static system, the relation of forces results to: 

F𝑦 = −
sin 𝛽

cos 𝛼
F𝑥   Equation 43 
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Conclusion 

The layout of grid structures defines the intersection angles. For quadrilateral grids, these 

angles are the decisive parameter for the kinematic performance. The unit cell can be used to 

describe the kinematic relations of lateral extension and contraction. This ratio is expressed by 

a simple equation (see Equation 39).  

Four basic cell configurations are identified that that show distinct kinematic qualities regarding 

their lateral extension: Case A is in equilibrium and does not generate movement. Case B and 

C cause lateral extension. C and D include additional shear. Case D shows an unusual 

characteristic: The cell (or grid) shows an auxetic behavior (extension leads to lateral 

extension). These characteristics can be shown at the unit cell and at entire grid configurations 

(see Figure 59). 

The kinematic relations directly express the static force relations within the grid, and thus 

influences the actuation and static performance. From this perspective, the intersection angle 

(the network layout) can be used as a design parameter.  

Although these are purely kinematic relations, they are likely to exist also within compliant, 

curved configurations, that also (at least partly) perform through axial forces. 
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3.2.2 Semi-Compliant Transformation 

This section investigates the spectrum of semi-compliant transformability. In scope are grid 

structures with restricted beam compliancy (see section 3.1.1 p.58). Non-compliant beam axes 

are assumed rigid, as their deformations are small and not part of the shape transformation. 

These grids include tri-, bi- or uniaxially compliant members, and their spectrum of morphology 

decreases in this order (e.g.: beams that are fully compliant have a larger spectrum of 

morphology than beams with only one compliant axis). The term morphology in this context 

describes all shapes that emerge within a transformation process.  

Restrictions in axial compliancy create morphological subsets: The spectrum of uniaxially 

compliant morphologies is a subset of biaxially compliant morphologies, and biaxially 

compliant morphologies are a subset of triaxially morphologies.  

 
Figure 60 Subsets in the morphological spectrum of semi-compliant grid structures with restricted compliancy 

In the following analysis, a simple structural setup is chosen, and differing configurations of 

local compliancy are applied. The grid structure’s transformations are simulated using selected 

nodal actuations or by eigenmode analyses, and the emerging curvatures are compared to 

geometric expectations. 

This analysis aims to verify geometric expectations using mechanical simulations and to test 

the structures qualities to be actuated. Furthermore, it reveals the morphological spectrum. 

Investigation Setup 

The different levels and types of beam compliancy are numerically analyzed using a simple 

structural study-setup: A planar, squared, equilateral grid structure with four supports located 

in the middle of the grids’ edges, that only allow central sliding. All connections are uniaxial 

hinges, with a rotational axis normal to the planar grid. The setup of supports is chosen to 

create an important characteristic: The system locks a kinematic collapse but allows a large 

spectrum of transformations. The simulated transformed morphologies are then compared to 

geometric expectations. Figure 61 shows the structural system. 

 
Figure 61 Structural system used for numerical investigations of tri-, bi- and uniaxially compliant morphologies 

Triaxial Compliancy 

If beams are fully compliant in bending and torsion, they can be deformed to match any smooth 

curve on a surface. Hence, grid structures of triaxial compliancy can be transformed into 

arbitrary smooth shapes. Such transformation is simulated by lifting five nodes of the above-

described study-setup exemplarily. Figure 62 shows the actuation setup, transformed 
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structure, and Gaussian curvature of the transformed reference surface. 

 

Figure 62 Arbitrary transformation of a planar equilateral grid structure with triaxial beam compliancy: a) Structural setup, b) 
Transformed grid structure, c) Gaussian curvature of reference surface 

the Gaussian curvature of the reference surfaces is measured. The surface is colored using a 

normalized range from -1 (blue) to 1 (red). The transformed reference surface shows, that both 

anticlastic (negative) and synclastic (positive) curvatures result at different regions. 

Note, this type of semi-compliant transformation is applied on various doubly curved strained 

gridshells, such as the Multihalle Mannheim (see chapter 2.4.6). In this case, the grid was 

pushed into a previously defined hanging shape, and locked when shaped as planned. 

Biaxial Compliancy 

The morphological spectrum is restricted, if only two beam axes are compliant: bending, and/or 

torsion. The study-setup is transformed into spatial by lifting two grid corners only.  

There are fundamental geometric relations of smooth equilateral networks with zero curvature 

constraints and their reference surfaces (see section 2.4.1 and Schling, Hitrec, & Barthel, 

2018). The following geometric expectations on transformability can be stated for three 

possible cases regarding biaxial compliancy: 

A) Biaxial Bending:  𝐸𝐼𝑦; 𝐸𝐼𝑧  ≪  𝐸𝐼𝑇 (mechanically limited profile constraint) 

A beam, without torsion, mapped and orientated on a smooth surface matches a principal 

curvature line. Any curve on a sphere has zero geodesic torsion, and equilateral networks 

on spheres exist. Any resulting spatial reference surface must be spherical. 

B) Bending and torsion:  𝐸𝐼𝑇; 𝐸𝐼𝑧  ≪  𝐸𝐼𝑦 (e.g., “upright” lamella) 

The “upright” lamella, mapped and orientated on a smooth surface matches an asymptotic 

curve. At any transformed state, the network of system curves must represent an 

asymptotic network, possible only on anticlastic surfaces. Furthermore, equilateral 

asymptotic networks exist on pseudospheres (const. neg. gaussian curvature), which 

must be the resulting spatial reference surface. 

C) Bending and torsion: 𝐸𝐼𝑇; 𝐸𝐼𝑦 ≪ 𝐸𝐼𝑧 (e.g., “flat” lamella) 

The “flat” lamella, mapped and orientated on a smooth surface matches a geodesic curve. 

As only developable surfaces allow equilateral geodesic networks, the resulting reference 

surface must be developable. Note, this is only the case for the equilateral layout. The 

design spectrum of geodesic curves is high, and spatial, non-developable transformations 

are generally possible (see section 2.4.7). 

 )  ) c)
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Figure 63 Gaussian curvature analysis of deformed equilateral grids with varying local stiffness relations (Cases A, B and C) 

Figure 63 shows the transformations of all three cases. From the transformed grids, the 

reference surfaces are approximated (using the network of system curves) and validated to 

meet the geometric expectations above. For all cases, the Gaussian curvature of the reference 

surfaces is measured, providing a clear geometric verification: 

A) The Gauss. curv. is constantly positive at all states. The morphology is spherical. 

B) The Gauss. curv. is constantly negative at all states. The morphology is pseudospherical. 

C) The Gauss. curv. is constantly zero at all states. The morphology is developable. 

The geometric expectations are met, as structural transformability matches geometric 

constraints. These transformations were actuated by the displacement of two nodes only, 

affecting the entire structure in the presumed way. 

Note, profiles with biaxial compliancy are not generally possible. Compliancy in bending and 

torsion can be easily accomplished by a lamella profile. However, a profile that bends but does 

not allow torsion are geometrically difficult. 

Uniaxial Compliancy 

The analysis of uniaxial compliancy is performed using an eigenmode analysis (instead of 

prescribed nodal deflections). This method is chosen, because these structures are expected 

to show low morphological freedom, and through the eigenmode analysis, these modes can 

be identified. Three cases are analyzed, and the following morphological expectations are 

stated: 

A) Compliant bending in local y-direction: 𝐸𝐼𝑦 ≪  𝐸𝐼𝑧, 𝐺𝐼𝑡 

Any transformed grid and its related network (system-curves) must only show normal 

curvature and remain equilateral. Both conditions are satisfied only on cylindrical surfaces, 

a subset of developable surfaces. 

 )  )A)  I    I  GIt  I   GIt   I  I   GIt   I  I    I  GIt  I   GIt   I 
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B) Compliant bending in local z-direction: 𝐸𝐼𝑧 ≪ 𝐸𝐼𝑦, 𝐺𝐼𝑡 

There is no rotational freedom, either kinematic or compliant, that allows rotations out of 

the initial planar configuration. Any transformation must remain planar. 

C) Compliant torsion in local x-direction: 𝐺𝐼𝑡 ≪ 𝐸𝐼𝑦, 𝐸𝐼𝑧 

There is no equilateral network known on a smooth surface, that consists of straight lines. 

Note, it does exist on a hyperbolic paraboloid and on a hyperboloid (non-equilateral). 

Figure 64 shows the initial structural setups of case A, B and C and the first eigenmode of each 

case.  

 

Figure 64 Eigenmode analysis of uniaxially compliant planar, equilateral grid structures. The first Eigenmode (bottom) displays 
on   o       “     ” tr n for  t on.  ot   T          r     u                  or “cro  ” profiles, which do not represent the 
stiffness relations (especially the large torsional stiffness) of this study. 

The eigenmode analysis verifies the geometric expectations. Case A shows a cylindric 

(developable) surface in its first eigenmode. Case B shows a planar distortion. For case C, 

global transformability could not be found involving compliant torsion only. 

However, a spatial configuration, that allows transformations for torsional only cases is well 

known: Grids of this quality must be based on the rulings either hyperbolic paraboloids or 

hyperboloids. 

 
Figure 65 Parametric model of a hyperbolic paraboloid and a hyperboloid. Any state can be parameterised by a single geometric 
parameter. 
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If torsion is ignored, and joints are fully rotational, the transformability can be described using 

simple geometric approaches (Maden et al., 2015). Every transformation state can be referred 

to a single geometric parameter. One approach has been described by Thomas Oberbichler 

(Schikore et al., 2020), which is briefly described. Figure 65 shows the parametric model. 

Every state of the hyperbolic paraboloid shaped grid can be referenced to the projected angle 

𝛼. The four corner points are then given by the following formula: 

A1,2 = [0 ± 𝑑 sin (
𝛼

2
)

1

2
√𝐿2 − 𝑑2] ; B1,2 = [∓𝑑 cos (

𝛼

2
) 0 −

1

2
√𝐿2 − 𝑑2] Equation 44 

Every state of the hyperboloid shaped grid can be referenced to the radius 𝑟. The end points 

of a single element are then given by the following formula: 

A,B = [∓𝑟 sin 𝛼 𝑟 cos 𝛼 ∓
1

2
√𝐿2 − 4 𝑟2  sin2 𝛼]   Equation 45 

The network is then generated by rotationally copying and mirroring. 

At any transformed state, the reference surfaces remain double ruled. 

Considering a system with uniaxial hinges and compliant torsion, this torsion can be computed 

geometrically. Then, the profiles torsion (or orientation) is defined using the reference surfaces 

normal. This case is further part of the curvature-square analysis in section 3.2.3. 

Note, profiles with uniaxial compliancy are geometrically difficult. The only reasonable type is 

compliancy in torsion, that can be generated by open, thin-walled profiles (e.g.: cross profile) 

Conclusion 

The geometric expectations for all semi-compliant equilateral grid structures are fulfilled. This 

verification underlines the suitability of geometrically derived assumptions on structural 

morphology, not only for selected states, but for entire transformations. 

Triaxial compliancy enables a large spectrum of shapes. The geometric expectations on these 

are not constrained, and thus, specific design shapes cannot be induced by singular actuation. 

However, built examples have shown the potentials of full compliancy, at least for the erection 

of gridshells. 

For grids with biaxially compliant members, the expected transformations could be initiated via 

singular actuations at two nodes only. This shows that local actuations can be transmitted 

within the structure to generate global effects, a key criterion for mechanisms in general.  

Uniaxial compliancy enables limited morphology. On section level, uniaxial compliancy is hard 

to generate. 

However, there is still a wide spectrum of global transformability. Exemplarily, transformations 

shown for uniaxial compliancy (see Figure 64) are also valid for biaxially compliant structures, 

as these represent a morphological subset. 

Altogether, the cases of biaxial compliancy (B, C) and uniaxial compliancy (C) on doubly ruled 

surfaces show the greatest potentials in their abilities to be punctually actuated and regarding 

geometric feasibility at section level. These are further investigated (section 3.2.3).  
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3.2.3 Curvature-Square Analysis 

This section introduces the integrated curvature-square value as an important quantity to 

evaluate and design semi-compliant mechanisms. Tracked throughout transformation, the 

curvature-square values give insight into internal energy balances (curvature-square graphs). 

The concept of this analysis and some basic examples are described in this section. The 

curvature-square analysis has been further used for the evaluation of various asymptotic 

structures by Schling & Schikore, 2022. 

Mechanical Background 

As shown in section 2.2.4, the curvature-square value is the geometric factor of the strain 

energy term, while the beam stiffness parameters (𝐸𝐼𝑦/𝑧 , 𝐺𝐼𝑡) represent mechanical factors. 

When a semi-compliant transformation is simulated, the integrated curvature-square value can 

be mapped throughout transformation, for each beam axis separately. The progression of 

curvature-square can be expressed as a function of transformed state, described by the 

parameter 𝑡. The internal strain energy, given by Equation 32 becomes then: 

𝛱𝑖(𝑡) =  
1

2
𝐺𝐼𝑇 (∫ 𝜅𝑥

2 𝑑𝑠

𝑐

)

(𝑡)

+   
1

2
𝐸𝐼𝑦 (∫ 𝜅𝑦

2 𝑑𝑠

𝑐

)

(𝑡)

+   
1

2
𝐸𝐼𝑧 (∫ 𝜅𝑧

2 𝑑𝑠

𝑐

)

(𝑡)

 Equation 46 

Each portion (colored in Equation 46) can be displayed in a curvature-square-graph, providing 

valuable insight into the internal strain energy progression. This analysis is particularly useful 

for profile dimensioning and to design the kinetic performance, if a basic condition is satisfied:  

The geometric transformation in semi-compliant mechanisms must not depend on the stiffness 

ratios of the compliant beams’ axes, and rigid beam axes do not cause significant strain 

energy. 

In this regard, the semi-compliant system must be constrained accordingly, either by internal 

restrictions in compliancy, or by external constraints and supports. If this is not the case, and 

the curvature-square progression does depend on the beam’s stiffness parameters, and 

dimensioning becomes a more iterative process. 

Investigation Setup 

In the following analysis, six exemplary semi-compliant structures are numerically simulated, 

and the curvature-square is tracked. The systematic selection of structural configurations used 

in this analysis is based on previously shown literature research, and morphological analysis 

(section 3.2.2). In scope are spatial configurations with restricted beam compliancy, realizable 

on profile level. These are torsional only (uniaxial) and torsional with bending (biaxial) profiles, 

represented by “cross”- and “lamella”-profiles respectively. Geometrically, these Grids are 

based on the following network types: 

• Rulings (straight lines only on double ruled surfaces) 

• Geodesic curves (on both syn- and anticlastic surface parts) 

• Asymptotic curves (on anticlastic surfaces only) 
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Each network type is referenced to two surface topologies: open and rotational surfaces (see 

also section 2.1.2, p.13). Figure 66 gives an overview on the selected input networks and their 

categorization.  

 
Figure 66 Overview on basic semi-compliant grid setups. 

The transformation of each grid structure is simulated using external actuation of selected 

nodes (e.g. edge nodes, corner nodes). The actuation is path controlled. The dimensions 

drawn into Figure 67 and Figure 68 also mark the positions of actuation. All simulations are 

performed in the integrated parametric environment (Rhino/Grasshopper – see also 2.3.1).  

Structures with biaxial compliancy (uniaxial bending + torsion) are simulated using the IGA-

inverse method (see 2.3.2). The axial beam stiffness parameters are derived from a lamella 

type section with Poisson’s ratio 𝜐 = 0. The relation is set to: 

𝐸𝐼𝑅𝑖𝑔𝑖𝑑 / 𝐺𝐼𝑇,𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡 / 𝐸𝐼𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡= 2500 / 2 / 1 

Several transformed states, the actuated dimensions, and curvature-square graphs are 

displayed in Figure 67 and Figure 68. Possibly “natural” states  states of minimum strain 

energy) are marked blue. Note, that curvature-square graphs are normalized to reach 1,0 at 

maximum for each curve. This normalization is applied for a qualitative analysis of the kinetic 

performance.  
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Results and Observations 

In the following, actuation, morphology, and kinetic transformation are briefly described for 

each simulation. The range of potential natural states is marked blue. 

Open surfaces: 

• Double ruled (hyperbolic paraboloid): The grid structure is based on the rulings of a 

hyperbolic paraboloid. The transformation is simulated using the geometric rules described 

in section 3.2.2, p.70. The total integrated curvature-square value is tracked in respect to 

the edge corner distance 𝑑>0. The geometric character of a hyperbolic paraboloid remains 

at any state. 

When the structure “folds”  𝑑 → 0), the curvature-square increases, as torsion concentrates 

in the folding line. At 𝑑 = 0, the curvature-square would be infinite. The state 𝑑 = 0 also 

marks a geometric limitation, as the corner intersection angle becomes zero.  

• Geodesic disc: The geodesic network is generated on a double symmetric freeform 

surface with both syn- and anticlastic regions.  The transformation is numerically simulated 

applying prescribed displacements 𝑑 at two internal nodes. The transformation is limited 

when first nodes show an intersection angle of zero. 

The grid performs a spatial, doubly curved transformation. Both bending and torsion find 

an energetic minimum at the same state, in which corner angles are equal. Consequently, 

the natural state cannot be manipulated by profile choice. 

• Asymptotic disc: The grid structure is again based on the rulings of a hyperbolic 

paraboloid. The transformation is actuated by distance control between opposing grid 

corners. From the initial hyperbolic paraboloid shape, the distance is shortened to 40% or 

elongated until the grid becomes flat. 

The grid structure performs a spatial, doubly curved transformation with a purely anticlastic 

reference surface at any state. The minima of bending and torsion are at differing states. 

Consequently, the natural state of this structure can be manipulated by the choice of the 

beams’ compliant stiffness parameters (ratio 𝐸𝐼𝑧/𝐺𝐼𝑇). 
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Figure 67 Curvature-square analysis on open surfaces  
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Rotational surfaces: (All structures investigated here are rotationally symmetric) 

• Double ruled (Hyperboloid): The grid structure is based on the rulings of a hyperboloid. 

The transformation is simulated using the geometric rules described in section 3.2.2, p.70. 

The total integrated curvature-square value is tracked in respect to the diameter 𝑑 > 0. The 

geometry of a hyperboloid remains at any state. 

Again, when the structure “folds”, the curvature-square increases, as torsion concentrates 

in the folding line. In a totally flat state, torsion would become infinite.  

• Geodesic: The geodesic network is generated on a rotational symmetric surface with both 

syn- and anticlastic regions. A single geodesic was drawn from top to bottom and copied 

and mirrored rotationally.  The transformation is numerically simulated applying prescribed 

diameter 𝑑 of nodes located in the middle of the structure (black lines Figure 68). The 

transformation is limited when the first nodes show an intersection angle of zero.  

The grid performs a spatial, doubly curved transformation. The rotational symmetry 

remains. Both bending and torsion find an energy minimum at the linear, bundled state, 

and both are increasing when deployed. Consequently, the natural state of this structure 

cannot be manipulated by profile choice. 

• Asymptotic: The reference network is generated on a rotational symmetric anticlastic 

surface. The distance between top and bottom edge nodes is controlled to actuate the 

transformation (𝑙𝐵𝑒𝑎𝑚 > 𝑑 ≥ 0). The bottom edge is fixed in location. 

The grid structure performs a spatial, doubly curved transformation with a purely anticlastic 

reference surface at any spatial state. The minima of bending and torsion are at differing 

states. Consequently, the natural state of this structure can be manipulated by the choice 

of the beams’ compliant stiffness parameters  ratio 𝐸𝐼𝑦/𝐺𝐼𝑡).  

Note, all structures can be bundled into a linear state. For rotationally symmetric structures, 

this in line with the retractability requirement for scissor chains (Equation 37, p. 41). 

Conclusion 

The curvature-square analysis gives insight into the internal balance of strain energy portions 

and their progression. It reveals possibly “natural” states of minimum strain energy, and how 

profile stiffness ratios can influence the internal strain energy balance. 

The “double ruled” structures have their strain energy minimum at bundled state (hyperboloid) 

or at  𝑑 = 𝑑′ (hyperbolic paraboloid). 

The natural state of structure with two compliant axes is potentially dependent of the compliant 

stiffness ratios. Some structures show an increase (or decrease) of both torsion and bending 

when transformed. Their natural state of equilibrium cannot be modified by tuning the compliant 

axes bending stiffnesses. Other structures show countering curvature-square graphs. Their 

natural state can be modified. 

The curvature-square analysis can be used for beam dimensioning as part of an iterative 

engineering process (see section 4.1.4 p.120) 
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Figure 68 Curvature-square analysis on rotational surfaces 
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3.3 Static Analyses 

This section addresses the static performance, that might be part of the transformation 

process, but rather relates to states of service, that potentially require higher load-bearing 

capacities. In this context, it is crucial to differentiate between stiffness that refers to the 

compliant function and stiffness referred to load-bearing. The former is discussed in section 

3.2, the latter is addressed in this section. 

The static analyses investigate global and local stiffness. Global stiffness (section 3.3.1) 

involves global buckling shapes, and local stiffness (section 3.3.2) addresses internodal 

buckling. These analyses aim at stiffness ratios, rather than at absolute results. Thus, findings 

have a qualitative character. 

3.3.1 Global Stiffness 

The global stiffness of a grid structure is influenced by all structural parameters listed in section 

3.1.1. The scope of this investigation is narrowed down to asymptotic and geodesic grid 

structures with uniaxial hinges.  

Strategies for locking or stiffening address internal constraints (e.g., locking node angles or 

bracing), or external constraints (support conditions). The question arises: Which strategies 

are suitable for either geodesic or asymptotic configurations? How effective are these 

strategies? The following investigation evaluates the stiffness of geodesic and asymptotic grid 

structures with varying in- and external constraints, using natural resonance as indicator. 

Investigation Setup 

A doubly ruled network of a hyperbolic paraboloid is used, and lamella profiles are applied in 

both “upright” and “flat” orientation. The resulting grids each represent a geodesic and 

asymptotic semi-compliant grid structure. The fact, that both grids are based on the same 

network, allows comparisons that exclude influences of the global shape or layout. The profiles 

orientation is the only differing parameter. The comparison covers three configurations: The 

grid structure is 

A) supported at the full surrounding edges. 

B) supported only at the corners. The edges are free. 

C) supported only at the corners and braced. The edges are free. 

The eigenmode analysis is a widespread method to evaluate structural stiffness. Eigenmodes 

reveal potential deformation shapes and dedicated eigenfrequencies represent a reference 

value to quantify the structural stiffness. This analysis is performed using conventional FEM1. 

The first three modes and frequencies are compared in quality and proportion. The average 

eigenfrequency of the first three modes is used as reference for comparison. Figure 69 shows 

the setup und detailed results.  

 
1 The structural analysis software RFEM 5 and the plugin RF-DYNAM Pro w t  t   “  nc o ”-Method are used. The lamella 
dimensions are t/h = 2/100 mm; Bracing: D = 8 mm (compression and tension) Material E = 21000 kN/cm2 ɣ=78,5 kN/m3 
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Results 

 

Figure 69 Global natural eigenmodes and eigenfrequencies of a HP-grid structure with each asymptotic and geodesic beam 
orientation. Shown are the first three eigenmodes and -frequencies for different setups: A) Full support of grid edges (hinged), 
B) Supports only at corner points (hinges), and C) Su  ort      n c    “C”   t      t on    r c n . 
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Observations 

The following observations are pointed out: 

A)  oth the geodesic and the asymptotic configuration show eigenmodes “out of plane”. 

Deflections largely occur in directions normal to the reference surface. The average 

eigenfrequency of the asymptotic configuration is about 3,3 times higher than the 

geodesic’s frequency. The full edge supported configurations shows the highest 

frequencies in the overall comparison. 

B) The deformations of the asymptotic configuration are predominantly “in plane” in all three 

modes and the geodesics are “out of plane”. The average eigenfrequency of the asymptotic 

configuration is about  ,  times higher than the geodesic’s frequency. The corner 

supported configurations shows the lowest frequencies in the overall comparison. 

C) The first three eigenmodes of the braced asymptotic configurations are divers. There is no 

clear “in”- or “out of plane” deformation observable. The geodesic configurations modes 

are clearly “out of plane” with shape analogies to configuration “b”  without bracing) and 

the eigenfrequencies of the braced und unbraced geodesic configurations are almost 

equal. The average eigenfrequency of the asymptotic modes is 28,6 times higher the 

geodesics frequency. 

Conclusion 

From those results, the following statements are indicated: 

• Asymptotic configurations are globally stiffer compared to the equivalent geodesic 

configuration. 

• Asymptotic configurations globally tend to deform “in plane” and geodesic configurations 

tend to deform “out of plane”. 

• Asymptotic configurations can be effectively stiffened using either external or internal 

constraints. For geodesic configurations, the potentials of stiffening are less, and internal 

constraints (bracing in this case) are almost non-effective. This can be explained by the 

fact, that a geodesic configuration already includes “in-plane” stiffness  compared to the 

asymptotic orientation), and internal constraints in a grid structure have primary effects on 

the “in-plane” stiffness. 

In general, the global stiffness also indicates global stability. In this context, the 

eigenfrequencies indicate resistance in terms of global stability phenomena and the natural 

eigenmodes indicate buckling modes. 
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3.3.2 Local Stiffness 

The stiffness and non-linearity of initially bent gid members are affected by various local 

parameters: curvature, internodal spacing, beam stiffness and residual stress. Under 

compression, stability phenomena are likely, and the elastically curved members can be 

characteri ed as “post-buckled”  see section 2.2.7). This problem is highly non-linear and 

involves various states of ambiguity (stability problems). Numerical analysis, preferably of 3rd 

order are suitable to handle this problem. Figure 70 shows selected local deformations at the 

Inside/Out research pavilion, both in 3rd order simulation and in reality. 

 
Figure 70 Local deformations of the Inside\Out Pavilion: a) FEM 3rd order numerical simulation results scaled 10x, b) Deformation 
on built structure 

The question arises: Is it possible to generalize the local buckling performance using local 

parameters such as curvature and internodal spacing (grid density)? If answered, this may 

allow early dimensioning of profile and grid density for practical engineering. And furthermore: 

How does curvature in context with internodal spacing and prestress affect the non-linear 

performance and to what extend does the critical “Euler”-load refer to curved configurations?  

The following investigation aims at local phenomena regarding load-displacement progression 

and deformation modes. The local situation is abstracted by a single compressed, cuved, 

multispan beam and systematically investigated using varying parameters. 

Investigation Setup 

In this investigation, curved grid members under compression are simulated, and the 

deformation and the load-displacement progression are tracked (analogous to section 2.2.7, 

p.29). Abstracted, 2D systems are used to represent single grid members. A set of five beams 

with varying curvature is chosen. These are punctually supported orthogonal to its axis. Figure 

71 displays the abstractions with different constant radii and internodal spacing and gives an 

overview on all simulated configurations. These structural systems represent any type of 

compliant member, either asymptotic, geodesic, freeform, or others, that include curvature.  

The assessment is carried out using numerical simulations1. Supports are applied according 

to Figure 71, but fixed at one end, the other end is loaded axially. These setups are considered 

for two cases each: Bent into curvature (initially stressed), or initially curved (unstressed). 

 
1 For this investigation, IGA is used according to chapter 2.3.2. 
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Figure 71 Schematic overview of the analyzed structural systems (cases) and parameters 

This investigation aims at ratios and qualitative findings. The following numbers describe the 

setup and proportions: 

Total length:  𝑙 = 1 

No. of spans:  𝑛 = 5 (10)  

Internodal spacing: 𝑙𝑖 = 0,2 (0,1)  

Radii:   𝑅𝐸) = 0,2 ; 𝑅𝐷) = 0,5;  𝑅𝐶)𝐶′) = 1,0 ; 𝑅𝐵) = 2,0; 𝑅𝐴)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = ∞  

In a second set, the internodal spacing is halved (the number of spans/supports is doubled). 

Note, configuration c’ shows a variation in which the beams curvature is switched in the middle. 

The systems are loaded via prescribed tangential displacement of 𝑢 = 0,05 at the beams ends.  

Deformation and force are tracked along this progressive displacement.  

Figure 72 displays the deformations of the initially stressed beams with internodal spacing 𝑙𝑖 =

0,2. In Figure 73, the load-displacement graphs of all configurations are graphed. 

Straight configurations serve as references (see Figure 72 case A). The first three deformation 

modes and critical loads are assessed via an eigenmode-analysis1. The first eigenmode refers 

to a buckling length equal to the internodal spacing (antimetric waved mode) and to the 

corresponding critical “Euler”-load 𝐹𝑐𝑟𝑖𝑡.1𝑠𝑡,   𝑙𝑖=0,2 (see Equation 35 in section 2.2.6). The 

buckling modes and critical loads of the straight reference setup are displayed within the 

diagram in Figure 73. The first “Euler”-load of the reference beam with halved internodal 

spacing results to: 

𝐹𝑐𝑟𝑖𝑡.1𝑠𝑡,   𝑙𝑖=0,1 =  4 𝐹𝑐𝑟𝑖𝑡.1𝑠𝑡,   𝑙𝑖=0,2 Equation 47 

 
1 The eigenmode-analysis is performed using IGA (KIWI) 
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Results 

 

Figure 72 D for  t on of con t nt   cur          un  r co  r    on. A          r  of        n t  “ ”   t      r  n  cu  r 
regular spaced supports. The cases differ in curvature: A) Straight Beam (Reference Beam) with 1st, 2nd and 3rd buckling modes, 
B-E) Varying Radii: 2 / 1 / 0,5 / 0,2 ,  ’) Radius 1 with changing curvature direction at the beams middle point 
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Observations 

The simulation results provide the following characteristics1: 

B) [R=2,0] The deformations of the stressed configuration show two modes. In the 

beginning, the deformation relates to the 3rd, and later to the 1st buckling mode of the 

reference system. Again, this matches with the load-displacement graphs, as they 

converge to related critical loads respectively. 

C) [R=1,0] The performance shows qualitative similarities to case “D”, but the stiffness until 

the critical reference load is reached is higher. Differently, the graphs show 

discontinuities especially in case of smaller internodal spacing 𝑙𝑖 = 0,1. The stressed 

configuration with 𝑙𝑖 = 0,2 converges almost exactly to the critical reference load. With 

𝑙𝑖 = 0,1, there is a slight increase of force after 𝐹𝑐𝑟𝑖𝑡.1𝑠𝑡 is reached. 

C') [R=1,0] This variation of case “C” includes a switch in curvature direction. The 

deformations of the stressed configuration relate to the 2nd reference buckling mode in 

the beginning, and to the 1st eigenmode in the later progression of displacement. This 

change in mode matches with the convergency to the 2nd critical reference load, the 

discontinuity, and an ongoing convergency to the 1st critical load. The unstressed 

variation performs smooth without any discontinuities. Within the 1st mode (in the later 

progression of the displacement), case “C’” performs almost equivalent to case “C”.  

D) [R=0,5] The beams deformation mode matches the first buckling mode of the reference 

beam (antimetric waved mode). Both initially stressed and unstressed versions converge 

to the reference load but decline slightly compared to the previous radius applied, after 

turning points are reached. The stiffness is higher than observed for the smaller radius in 

case “E”. The unstressed version converges smoothly, while the stressed version shows 

a rather sharp kink when the critical reference load is reached. The configuration with 

halved internodal spacing performs qualitatively analogous. 

E) [R=0,2] The beam bulges in all spans into outside direction of the circular setup. This 

deformation does not match any of the first three reference buckling modes displayed in 

Figure 72 case “A”. The force applied increases until a turning point is reached at 

𝐹~0,7𝐹𝑐𝑟𝑖𝑡.1𝑠𝑡,   𝑙𝑖=0,2. The unstressed version performs similar, but force reaches only 

𝐹~0,45𝐹𝑐𝑟𝑖𝑡.1𝑠𝑡,   𝑙𝑖=0,2 , at larger displacement, providing less stiffness (gradient of the 

load-displacement graph). The configuration with halved internodal spacing performs 

qualitatively analogous, but the forces of both initially stressed and unstressed versions 

are closer to the reference buckling loads. 

 
1 The deformation shapes are evaluated only for the initially stressed set with internodal spacing 𝑙𝑖 = 0,2.  
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Conclusion 

The observations above, lead to the following generalized statements for curved members 

under compression: 

• Elastically bent members are stiffer than initially unstressed curved members. This is 

presumably due to stress stiffening effects (see section 2.2.5). 

• There are stability problems that involve both critical load problems and snap through 

phenomena (see section 2.2.6). 

• Initially unstressed curved members show less discontinuities and appear smoother in their 

load-displacement behavior. So far, there is no clear explanation for this phenomenon. 

• Curvature does not necessarily decrease the member’s critical load. There is a range in 

curvature, in which load capacities are equal to the critical loads of straight members. When 

a certain curvature limit is exceeded, the members do not reach that critical load. This 

phenomenon appears regardless of internodal spacing.  

• The buckling modes of straight multispan beams can be allocated to deformation modes 

of curved beams. This also applies to the related critical loads. In some cases, curved 

members deform into modes of higher order and thus allow higher loads than the first 

critical loads. However, such states are ambiguous. Snap through effects between those 

modes are likely.  

• The critical “Euler”-load with a buckling length equal to the internodal span provides a 

reasonable magnitude to approximate the curved members load capacity: 

𝐹𝑐𝑟𝑖𝑡.~
𝐸𝐼𝜋2

𝑙𝑖
2   Equation 48 

However, this simplification is limited to lower curvatures. Further research is required to 

identify those limitations precisely. 

• With respect to the relevance of the “Euler”-load as reference, the internodal spacing, and 

indirectly the density of a grid has a nearby quadratic impact on load-bearing capacities. 
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3.4 Physical Model Studies 

This section investigates the results of an architectural design studio of master students 

conducted in 2019 at the Chair of Structural Design (Prof. Rainer Barthel) and supervised by 

Jonas Schikore. This studio interconnected teaching and research.  

The task was to create an architectural idea and a mechanical concept for a compliant grid 

structure, that had to be implemented in a medium scale model (~ 1,5 mx1,5 m). The structural 

concepts are inspired by literature review (see section 2.4). All profiles used are biaxially 

compliant (uniaxial bending and torsion, see section 3.1.1, p.57). 

In the following sections, four designs are analyzed and discussed regarding geometry, 

morphology, and mechanical concept and performance. These analyses systematically cover 

the components used (section 3.1.1): Surface, Network, Beams, Hinges, Supports, Actuation 

and Locking. In section 3.4.5, the analyzed designs are systematically compared and 

evaluated. 

 
Figure 74 Overview on four selected design studies (Photos by student designers) 

Figure 74 shows the four selected designs (A-D), that are shortly introduced below: 

A -  Asymptotic Discs: The Active Grillage by Fredrik Justnes is based on an asymptotic 

network on a disc surface. (Section 3.4.1) 

B -  Rotational Geodesics: The Blooming Flower by Chiara Saccomanno and Noemi Thierens 

is based on a geodesic network on a rotational surface. (Section 3.4.2) 

C -  Deployable Strips: The Sail by Barbara van Waarden is based on a geodesic network on 

a partly developable free-form surface. (Section 3.4.3) 

D -  Scissor Dome: The EXX-Dome by Alberto Ortensi combines compliant deformation and 

scissor chains. (Section 3.4.4) 

All models are geometrically planned and designed using digital design tools such as 

Rhino/Grasshopper (see section 2.3.1), and the physical implementation utilized digitally 

referred fabrication techniques, such as laser cutting and 3D-printing (see section 2.3.3). 

These methods and tools allowed to handle complex geometries from planning to fabrication. 
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3.4.1 A - Asymptotic Discs 

 

Figure 75 The "Active Grillage" is an asymptotic grid structure with pre-curved lamellas. The structure is actuated from nearby 
f  t  nto    t    u  n  c        ) “  o   ”  t t    ) “O  n”  t t   c) To        ro r    on of tr n for  t on  (Design and Photo: 
Fredrik Justnes) 

This design aims architecturally on a deployable roof structure, that allows additive modular 

extension. The structure consists of six equal asymptotic grid modules, each based on an 

Enneper surface. The mechanical goal is the transformation from a nearby flat into a spatial 

state.  

The project was honored at the Stuttgarter Leichtbau Preis in 2019. 
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Geometry and Morphology 

The initial design shape is an Enneper surface, representing an “open” state, and the 

asymptotic network is derived from this surface. The use of this surface type for an asymptotic 

lamella structure has been described by Schling et al., 2017. The Enneper surface used is a 

minimal surface and double symmetric. Figure 76 shows the design process from surface to 

grid. 

From the Enneper shaped grid (Figure 76b)., a near-by flat state that has been numerically 

derived1. The network is cut at all edges to create a planar edge at closed state (Figure 76c). 

This allows a closed repetition of modules, a valuable quality for transformable roof structures. 

The network includes two central asymptotic curves that remain straight and only involve 

torsion (marked green in Figure 76). Figure 76d and e show the cut grid at “closed” and “open” 

states. 

 
Figure 76 Design process: a) Design of an Enneper surface and asymptotic network. b) Implementation of lamella profiles in 
asymptotic curve network, c) F  tt n n  of  r    tructur   nto “c o   ”  t t  u  n        f       u  t on  (Gr    o   r K ngaroo), 
and cutting grid using a cube volume, d) Cut grid at flat (closed) state, e) Cut grid at spatial (open) state (Illustration based on 
Fredrik Justnes 2019) 

Mechanical Components and Performance 

The “upright” lamella profiles allow biaxial compliancy in bending and torsion, that relates to 

section 3.2.2 case “ ”. To manipulate the natural state of the structure, all beams include 

constant initial curvature in their compliant bending axis (z-axis). This initial curvature promotes 

a flat natural state, which simplifies the actuation system to perform unidirectional. 

 
1 In this design, the numerical simulation tool Grasshopper/Kangaroo has been used flatten the grid. 

 )  )

c)  )

 )

Actuation  able

Support Structure
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Figure 77 Details of the Active Grillage model: a) Hinge connection using slots, b) Supporting metal tube c) Actuation cables at 
central pole. (Design and Photo: Fredrik Justnes) 

The rotational freedom at the hinges is implemented using slots that are laser cut at node 

locations. The lamellas are interlocking in one grid layer. This connection leads to collision 

when intersection angles are close to 0° or 180°. Tolerances in the slots extend the rotational 

range. Figure 77a shows the slotted connection.  

Each module is supported at two straight metal pipes that span horizontally and orthogonal. 

The tubes are placed on the central lines that are geometrically part of the network (marked 

green in Figure 76, Figure 77b). The compliant grid rotates on these rigid tubes that represent 

the primary structure. 

Actuation and Locking 

When the squared grid module transforms, two edges move up, and two move downwards. 

This mechanism is actuated via four cables for each module, running from the center to the 

grid’s corners. The cables follow the grid diagonally.  ne pair of cables in attached above the 

grid, and another below, according to the grid’s curvature outside.  ereby the tensioned cable 

remains in contact with the grid structure. Figure 77c shows the actuation cables running along 

the grid. 

 
Figure 78 Schematic mechanical model of t   “Act    Gr      ”  nc u  n  r     nt forc    n   qu    r u  

During transformation, the structural mass of the grid is partly lifted and lowered in a balancing 

ratio. The center of gravity remains at constant height, and thus, no potential energy must be 

induced. The internal strain energy pushes the structure in its natural, horizontal state. This is 

the dominant force in this system. For actuation, friction at cable guidance must be overcome. 

The actuation cable also inherits the function of mechanic locking, staying in tension at every 

state. Figure 78 shows a schematic, mechanical model of the structure’s transformation and a 

qualitative force diagram as defined in section 3.1.1. 

movement

winch lock

winch lock

 orce Diagram

 
El. strain

    

 
 riction, cable

 
Act.
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3.4.2 B - Rotational Geodesics 

 
Figure 79 The Blooming Flower, a geodesic rotational grid structure: a) Open (bulgy) state – side and top view, b) Closed (slender) 
state, c) Details at support, locking cable (white) and supporting elastic actuation cables (black) (Photo: C. Saccomanno, N. 
Thierens) 

The Blooming Flower is a synclastic geodesic grid structure that transforms from a slender into 

a bulgy shaped space. The architectural idea is a transformable space that provides volume 

whenever used. 

Geometry and Morphology 

The morphological concept goes back to the geometric deformability of geodesic rotational 

networks, described by S. Finsterwalder (see section 2.4.7 p. 49, Table 1, column B). However, 

the meridian curve family in this design is left out. Quadrilateral networks of this kind are 

generated through copying geodesic curves on a rotational surface around its rotational axis.  

The geodesic network layout owns an important characteristic: The initial surface marks the 

closed state, and the grid requires mechanical capacities to expand and increase its radius to 

create volume. If the geodesics are nearby horizontal in the closed state, the radial expansion 

is almost at its limit. Hence, the geodesics are orientated nearby vertical at the closed, initial 

design state, to allow radial expansion. 
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Mechanical Components and Performance 

The “flat” lamella profiles allow biaxial compliancy in bending and torsion, that relates to section 

3.2.2 case “C”, and to the structure investigated in the curvature-square analysis (section 

3.2.3). The lamellas are made of straight timber strips, perforated at nodes to implement simple 

scissor hinges using bolted connections. The lateral (double layered) configuration allows 

theoretically infinite rotation (see section 4.1.4, p.113).  

The grid structure is supported at the bottom node row with biaxial rotational hinges (Figure 

79c). This configuration of rotational axes at supports ensures the orientation of the lamellas 

to remain normal to the reference surface but allows scissor like kinematics and adaption to 

other rotational symmetric states of transformation. However, the support row does not allow 

changes in base radius and thereby conflicts with necessary freedom in transformation, as 

demonstrated in the testing model shown in Figure 81. 

The transformed, “open” state (Figure 79b) shows the expected increase in radius and volume. 

However, the bottom part shows concentrated curvature at the first node row (from bottom). 

This discontinuity is supposed to be an effect of locally increased beam stiffness at bottom part 

and the locking of the base radius. 

Actuation and Locking 

The mechanism is actuated using four cables following the rhombi’s diagonals, in meridian 

direction. A circular cable net is highly elastic in tension throughout all states, narrowing the 

grid into a slender state. The meridian cables can be retracted to enforce a bulgy shape. The 

transformation is locked, when additional, non-elastic horizontal cables (see Figure 79c, white 

cables) are activated at “open” state. When reaching the closed state, locking is integrated in 

the winch, and thus part of the actuation system. 

The curvature-square analysis in section 3.2.3 implies, that the natural state of geodesic 

rotational grid structures is found at “closed” state (linear packed state). The curvature-square 

becomes minimal when the structure in bundled. Even though, this model does not match the 

mechanical configuration investigated in section 3.2.3, the structure tends to take shape of the 

slender state. However, the structural mass is working against, and the circular elastic cable 

additionally push the structure into the slender shape. This allows the use of actuation cables, 

as these only act in tension, and thus only apply for either closing or opening actuation. 

(unidirectional actuation) 

Although, friction is not measured in this model, two basic sources of friction are likely: First, 

the hinges at nodes show contact surfaces that likely generate friction. Secondly, the actuation 

cables are sliding at connections. 
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Figure 80 Schematic mechanical of t   “B oo  n  F o  r”  nc u  n  r     nt forc    n   qu    r u . 

Figure 80 shows the schematic mechanical model of the structure’s transformation and a 

qualitative force diagram as defined in section 3.1.1. 

Advanced Studies 

 
Figure 81 Physical model and three states of deformation of a rotational geodesic grid structure. The surface of this demonstration 
includes both synclastic and anticlastic surface areas. 

This setup was furthermore demonstrated by Maria Rau and Sarah Sandzek in a physical 

model study1. Figure 81 shows a rotational geodesic model to test the performance of both 

anticlastic and synclastic surface areas during transformation. The grid could be actuated by 

hand. Top and base radii change during transformation. The “natural” state is the bundled state 

(not perfectly reached due to collision within the model). 

 

 

 

  

 
1 This investigation was conducted at the Profe  or     of  tructur   D    n (Prof. P  r u    D’Acunto)  n  0    n  n  rc  t ctur   
master course. This topic was supervised by Jonas Schikore 
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3.4.3 C - Developable Strips 

 
Figure 82 The Sail, a geodesic grid structure on three partly developable surfaces: a) View at static, locked state, b) Grid structure 
before actuation (erection), c) Erected Grid structure (Photos: Barbara van Waarden) 

The Sail, designed by Barbara van Waarden is a set of three nested quadrilateral geodesic 

grid structures. The architectural idea is to create a shelter like space for open fires, made from 

bamboo strips. The mechanical concept of transformation aims at one-time erection. 

Geometry and Morphology 

The reference surfaces of three nested grid structures are double symmetric. The initial free-

form-design surfaces represents the erected state. The surfaces were designed using lofted 

nurbs, creating three closed loops.  

The mechanical concept for transformation utili es “inextensional” deformation of the shell-like 

grid structure (see section 2.1.2, Figure 7, p.13). This phenomenon of elastic shell deformation 

appears on developable surfaces or areas near to free edges. Double curvature reduces such 

deformation freedoms. Figure 83 shows preliminary explorations on transformability using 

entirely developable, cylindric strips.  
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Figure 83 Preliminary model to explore the compliant transformation of deployable strips. (Photo: Barbara van Waarden) 

In an advanced design step, the reference surfaces were modelled using computational tools, 

and double curvature was systematically generated at chosen surface parts. Figure 84 shows 

the Gaussian curvature of the design surfaces, that are the basis for geodesic network 

generation. The green areas are developable. 

 
Figure 84 G u    n cur  tur  (nor       ) of t   t r   n  t   r f r nc   urf c   of t   “    ” 

The developable surface parts aim to promote “inextensional” deformability. The doubly curved 

parts aim to provide shell-like stiffness. 

On these surfaces, quadrilateral geodesic networks form the geometric basis for the grid 

structure. Together with the edge beams, the grid becomes triangulated at edges. When 

deformed, the grid’s intersection angles do not change. 

Mechanical Components and Performance 

 
Figure 85 D t     of t   “    ” Gr          ) T    no     t   t r           conn ct on   )       plate for actuation and support, c) 
Additional structs for erected state 

The geodesic grid is made by “flat” orientated lamella profiles  related to section 3.2.2 case 

“C”). The lamellas are made of laser cut timber strips, marked at nodes to implement bolted, 

lateral connections, that are furthermore tied to create rigid connections (Figure 85a). 
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The structure is connected to two rigid plates at the bottom part (Figure 85b). When erected, 

these plates are fixed to the ground. Before, they serve for actuation (erection).  At final state, 

additional struts are implemented for support (Figure 85c). 

Actuation and Locking 

In this design, actuation and locking are part of an erection process, that is non reversible. The 

transformation is actuated applying external force. The rigid plates at the bottom perform a 

rotation and slide inwards. These plates actuate all three grid modules synchronous. Figure 

82b and c show how these plates are manually moved. The doubly curved caps of the grid are 

thereby lifted from an upright position into a more horizontal, sheltering state. (Synclastic areas, 

see Figure 84 – red area). This requires induction of potential work, as the structural mass 

must be lifted.  ote  There is no rotation at the grid’s nodes, and thus, no friction. Although not 

measured, the grid’s members curvature in the erected state appears higher than in the initial 

state. This implies, that additional strain energy must be induced for erection. 

The plates moved for actuation are fixed for locking at erected state and remain as supports 

together with the additional struts.  

 

Figure 86  c    t c   c  n c   of t   “    ”  nc u  n  r     nt forc    n   qu    r u  

An abstracted mechanical model according to the definition in section 3.1.1 is shown in Figure 

86. The actuation force must overcome both structural self-weight and elastic strain, but no 

friction. 

 

 

  

 
  ,Support)

 
 

movement  orce Diagram

contact
lock

 
Actuation
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3.4.4 D - Scissor Dome 

 

Figure 87 The EXX-dome, designed by Alberto Ortensi. The structure is actuated by highly elastic, (horizontally) and retractable 
cables (meridian): a) Open state, b) Closed state. 

The EXX-Dome was designed by Alberto Ortensi. The architectural intention is to create a 

deployable dome shaped roof structure that can open like a blossom. This design won the 

Competitionline Campus price in 2020. 

The mechanical concept picks up the geometric approach of angulated scissor grids (see 

chapter 2.4.3), but integrates compliant mechanisms: The Iris Dome, a project supported by 

Chuck Hoberman (see chapter 2.4.3, Figure 33b) represents the purely kinematic reference. 

The Iris Dome required multiaxial hinges to generate a rigid body mechanism. In this semi-

compliant version, the rotational degrees of freedom at hinges are replaced by biaxially 

compliant (bending and torsion) members. Thus, the number of rotational freedoms at hinges 

is reduced. 
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Geometry and Morphology 

The EXX-Dome is a rotational symmetric structure. It is compound by 12 rotationally coupled 

linear scissor chains forming a scissor grid.  

The goal in transformation was to create a closed synclastic state, and an open state, that 

must not necessarily fully retract the structure, but opens the vertically projected space 

underneath. 

The “open” geometry was used as a starting point for morphological development. In various 

physical and numerical explorations, different scissor units were applied to varying “open” 

surfaces, and the “closed” states were determined: 

 
Figure 88 Physical Exploration of rotational symmetric scissor grids using angulated units on a cylindric reference surface. 

Figure 88 shows an example of a physical study: On a cylindric reference surfaces 

 representing the “open state”), angulated scissor units are applied. The structure transforms 

into a dome-shape. 

 

Figure 89 Numerical investigation and formfinding of a suitable scissor setup for an open to close shape transformation. 

Figure 89 shows a numerical study: This simplified simulation uses non-compliant members 

and multiaxial hinges (this is a purely kinematic mechanism). This approach was used to 

quickly test scissor chain setups and their morphology1. It transforms into a dome-like closed 

state. The mechanism in this simulation was actuated using prescribed displacements at the 

bottom row (marked blue). 

Based on this, the final configuration was developed, that is based on a conically open surface. 

Figure 87 shows both open (a) and closed (b) state of the final model.   

 
1This simplified simulation was performed using R-FEM5. 
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Mechanical Components and Performance 

 
Figure 90 Details of the EXX-Dome: a) Uniaxial hinge at scissor unit pivots, b) Uniaxial hinge for at coupling of scissor chains, c) 
Uniaxial hinge at support connection. (Photo: Martina Schikore) 

The grid’s scissor units are made of “flat” orientated, laser cut, angulated timber strips. These 

allow compliant torsion and uniaxial bending. Through their strong axis, these strips transfer 

shear forces (and dedicated bending moments) within the scissor chain. 

There are two types of hinges within the grid structure: The first represents the pivot connection 

within scissor units (Figure 90a). The second is located at nodes where scissor chains are 

coupled (Figure 90b) and connects four beams with rotational freedom each. 

The bottom row of the grid are single beams. These members provide necessary freedom for 

the scissor chains to perform radial changes and connect the scissor system to the base 

supports. These supports are fixed and uniaxially rotational (Figure 90c). 

The transformation performs as expected, following the simulated geometry. However, after 

multiple cycles of actuation, the timber lamellas start creeping under compression, and local 

buckling emerges. This phenomenon underlines the mechanical challenges between 

necessary compliancy and buckling failure. 

Actuation 

 
Figure 91 Components for actuation: actuation and pretensioning cables at open and closed state. 

The mechanism is actuated using two cable sets following the rhombi’s diagonals. The 

horizontal cables are highly elastic and in tension throughout all states. Their tension activates 

closing the structures. The meridian cables can be retracted to open the dome shaped grid 

(see Figure 91). The mechanical system can be abstracted equally to the Blooming Flower’  

model (see section 3.4.2, Figure 80).  

 )

elastic pretensioning cable

actuation cable

biaxially compliant scissor
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3.4.5 Summary and Conclusion 

The physical model designs shown and analyzed in previous sections were developed in a 

creative, experimental process. The following statements summarize decisive characteristics 

and creative developments from a mechanical perspective: 

• All designs and transformations originate from an initial design state. The transformed 

states were found using both computational simulation and physical testing. 

• All grid transformations are successfully actuated at only few locations, underlining the 

structures’ qualities to perform controlled transformations (self-shaping quality) 

• Models A, B and C demonstrate the physical transformability of the semi-compliant grid 

structures discussed in section 3.2.2 (biaxial compliancy). 

• Model D demonstrates the physical transformability of a semi-compliant version of the 

concept of the Iris Dome (see section 2.4.3 p.42), using lamella profiles (with biaxial 

compliancy) and reduced nodal DoFs. 

• Model A includes asymptotic grids that are cut at edges to allow a closed pattern of 

modules at closed state. This cutting is not in conflict with the structure’s transformability. 

 ence, the networks’ edges must not follow the networks’ curves. 

• Model B is fixed at the base in radial translation, and thus violates the transformation of 

rotational geodesic grids, involving radii changes at all locations. Furthermore, the grid 

members at the bottom part are thicker and stiffer. Thus, the transformed state shows 

concentrated curvature and appears distorted at the bottom. 

• Models A, B and D use cables for actuation. To ensure tension at all states, two strategies 

were used to modify the structures’ natural states, to always counter the cable’s tension  

In model A, the natural state is modified providing initial curvature in the members 

compliant axes. In models B and D, the natural state is modified using highly elastic cables. 

• Model C aims at one-time transformation (erection). Thus, an external actuation is 

reasonable, e.g. a crane or lifting device. At final state, locking is realized by additional 

supports. 

The presented designs are evaluated regarding their components according to section 3.1.1. 

Table 4 gives a comparative overview. 

  



101 

Comp. Parameter 

    

S
U

R
F

A
C

E
 

TYPE disc rotational freeform rotational 

CURV. negative positive variable zero / positive 

TOP. 1 edge (disc) 2 edges (rot.) 2 edges 2 edges (rot.) 

N
E

T
W

O
R

K
 REF. surface (Darboux-Frame) 

CUR. 𝑘𝑛 = 0 (asymptotic) 𝑘𝑔 = 0 (geodesic) 

TOP. quadrilateral 

B
E

A
M

S
 

ORIENT. surface normal 

TWIST Variable / smooth 

COMPL. 
(x/y/z) 

c / c / r  c / r / c  

INIT. CURV. 𝑘𝑧,𝑖𝑛𝑖𝑡. = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑘𝑥,𝑦,𝑧,𝑖𝑛𝑖𝑡. = 0 

H
IN

G
E

S
 

DoF rotational (1 DoF) rigid rotational (1 DoF) 

ORIENT. surface normal alignment 

TOP. bilateral 
bilateral (pivot) / 

quadrilateral (hubs) 

S
U

P
P

O
R

T
S

 

CONSTR. fully fixed translation, uniaxial in rotation 

AX. REF. surface 

A
C

T
U

A
T

IO
N

 

ACT.REF. internal internal external internal 

DIRECTION unidirectional bidirectional unidirectional bidirectional 

L
O

C
K

IN
G

 

CONSTR. Translational (distance limitation) 

LOCK REF. internal internal external internal 

Table 4 Structural parameters of analyzed physical model designs (comparison) 
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Figure 92 Kinetic Umbrella top view (open) 
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4 ARCHITECTURAL IMPLEMENTATION 

This chapter aims at the utilization and realization of semi-compliant grid structures for 

architectural uses. In various case studies, key challenges are identified, and suitable 

engineering processes are developed. The chapter is subdivided into the following sections: 

• Section 4.1 reveals requirements, strategies and workflows for structural engineering 

that address dimensioning and constructive implementation. 

• Section 4.2 displays three case studies on asymptotic gridshells, where semi-compliant 

transformation was used for erection. The experiences gained by these built projects are 

incorporates in section 4.1. 

• Section 4.3 presents the Kinetic Umbrella. This built project takes the step forward to 

incorporate reversible transformability and thus implements the findings of previous 

chapters. 
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4.1 Structural Engineering 

The challenge of structural engineering is the implementation of architectural concepts into the 

build environment. Safety, serviceability, material efficiency and feasibility are main goals. 

When these goals are competing, iterative engineering workflows become inevitable. The 

development of compliant systems at architectural scale requires an extended consideration 

of multiple interacting parameters and effects. The complexity of such mechanical problems 

leads to additional constraints and an even more iterative character in engineering, compared 

to conventional static support structures or rigid-body mechanisms.  

The following sections describe decisive engineering requirements, parameters, relations and 

performances at material, profile, global and local structural level. Furthermore, constructive 

criteria are systematically revealed. The last section describes the engineering and modelling 

process, organized in an iterative workflow. 

4.1.1 Requirements and Beam Parameters 

Structural design starts with user requirements, to be translated into mechanical qualities and 

parameter goals. In the following, basic requirements, and their parameter allocations in the 

context of compliant beams are described. In scope are the most essential relations among 

many secondary mechanical aspects. 

 
Figure 93 Connectivity and targets of structural requirements and material parameters 

Safety and serviceability represent decisive user needs. For conventional structures, these 

refer to load-bearing capacity and deflection resistance respectively. However, compliant 

structures involve additional technical requirements, raised by the additional tasks to 

transform. Such structures require deformability to allow transformation, besides resistance on 

external loads. Also, deformability aims on resistance against collapse (when elastically 
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deforming) and thus aims on safety needs.  

Within serviceability, there are limitations for deflections, and for compliant structures in 

addition, the ability to actuate. This requirement addresses the energy input and usability in 

terms of transformability. 

The mechanical behavior of beams is described using appropriate material and profile 

parameters. These form an inseparable unit in terms of beam characteristics, engineering, and 

dimensioning. However, the profile dimensions represent the geometric component, the 

material parameters introduce stress relations and limitations. Out of many, the most decisive 

for compliant structure design can be named:  

Key Material parameters are:  

- Elastic and shear strength "𝜎𝑅𝑑"/ "𝜏𝑅𝑑" (limit stress of elastic material behavior),  

- Elastic and shear modulus "𝐸" / "𝐺" (stiffness) 

- Specific weight "𝛾" 

Key Profile parameters are:  

- Eccentricity "𝑒𝑚𝑎𝑥" (max. dimension from the profiles center to edge - perpendicular to 

a bending axis. This parameter also relates to the auxiliary quantity “section modulus 

"𝑊𝑦/𝑧/𝑡") 

- Area "𝐴" 

- Moment of inertia "𝐼𝑦/𝑧/𝑡" 

Requirements of compliant systems can be allocated to beam parameters. Figure 93 provides 

a connectivity diagram of requirements (top block) and beam parameters (bottom block)1. The 

requirements of conventional only (black) and/or of compliant structures (blue) in addition, refer 

to parameter goals (e.g. high material strength). The diagram shows multiple relations and 

even contrary parameter goals. 

In the following sections, these structural requirements are described briefly, and dedicated 

beam parameters are precisely identified: 

Load-bearing 

Requirements on load-bearing adress the material strength, section modulus and area. It is a 

fundamental mechanical design goal to keep stresses below material capacities. Out of 

Equation 14, the bending moment capacity is raised by a high moment of inertia and a low 

maximum leverarm |𝑒𝑚𝑎𝑥|. 

𝑀𝑦,𝑅𝑑 = 𝜎𝑅𝑑𝑊𝑦 =
𝜎𝑅𝑑𝐼𝑦

|𝑒𝑧,𝑚𝑎𝑥|
 ;  𝑀𝑧,𝑅𝑑 =

𝜎𝑅𝑑𝐼𝑧

|𝑒𝑦,𝑚𝑎𝑥|
 Equation 49 

Load-bearing also relates to stability problems and thus refers to the beam’s stiffness 𝐸𝐼. 

 
1 Note, that the relations displayed are to be considered according to local orientations. E.g.: Deformability requirements bending 
   r      t    rof   ’    r   t r  r f rr   to t     n  n      . 
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Deformability 

Deformability is gained by strain. The limitation of strain 𝜀(𝜎𝑅𝑑) and shear distortion 𝛾(𝜏𝑅𝑑) is 

expressed as follows: 

𝜀(𝜎𝑅𝑑) =
𝜎𝑅𝑑

𝐸
 ; 𝛾(𝜏𝑅𝑑) =

𝜏𝑅𝑑

𝐺
 Equation 50 

In this context, a low material stiffness and high strength are beneficial to raise deformability. 

With a given material and strain at failure 𝜀(𝜎𝑅𝑑), deformability (bending) can be raised 

geometrically by lowering the profiles maximum distance from the neutral fiber axis to the 

profile edge |𝑒𝑦,𝑧 ,𝑚𝑎𝑥|. Based on Equation 7, the possible curvature through elastic 

deformation results to: 

𝜅𝑦,𝑚𝑎𝑥 =
𝜀(𝜎𝑅𝑑)

|𝑒𝑧,𝑚𝑎𝑥|
 ;  𝜅𝑧,𝑚𝑎𝑥 =

𝜀(𝜎𝑅𝑑)

|𝑒𝑦,𝑚𝑎𝑥|
 Equation 51 

Equation 51 shows the linear relationship between bending deformability and the profiles 

dimensions. 

Torsional deformations and internal stresses are highly dependent on the type of profile. As 

described in section 2.2.3, torsion leads to multiple mechanical effects: 

For St. Venant torsion, the maximum possible twist is limited by shear strength. For a circular 

full, closed, and open thin-walled profile exemplarily, the limit twist is given by substitution of 

Equation 17 into Equation 16: 

   

 

a) Full circular profile b) Closed thin-walled tube profile c) Open thin-walled profiles  

𝜅𝑥,𝑚𝑎𝑥 =  2
𝛾

(𝜏𝑅𝑑)

𝑑
 𝜅𝑥,𝑚𝑎𝑥 =  2

𝛾
(𝜏𝑅𝑑)

𝑑
 𝜅𝑥,𝑚𝑎𝑥 = 

3

2

𝛾
(𝜏𝑅𝑑)

𝑡
 Equation 52 

From  Equation 52, some decisive relationships between torsional deformability and profile 

dimensions can be deduced   or a given material and its specific “distortion at failure” 𝛾(𝜏𝑅𝑑), 

there is a linear relationship between the maximum possible twist 𝜅𝑥,𝑚𝑎𝑥 and profile 

dimensions. In analogy to bending deformability, the profile stiffness is not directly significant. 

A full circular profile and a thin-walled tube of same diameter allow the same twist. For open 

(thin-walled) profiles, the thickness becomes significant, while the “global” dimension - in this 

case the diameter 𝑑 - become irrelevant for torsional deformability. 

Deflection and Buckling Resistance 

Deflections and buckling are undesired deformations, to be counteracted by stiffness on both 

material and profile side, raising the elastic or shear modulus 𝐸/𝐺 or moment of inertia 𝐼𝑥,𝑦,𝑧 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



107 

respectively. Furthermore, low self-weight is likely advantageous. 

Ability to Actuate 

Any actuation system performs according to the systems total energy level during 

transformation. Compliant Systems include strain energy, which is either released or induced 

throughout transformation. Additionally, the potential energy, given by the total mass of the 

system and its height, is possibly changing during transformation. These energy components 

address the materials stiffness (modulus of elasticity / shear) and specific material weight 

respectively. It depends on the compliant system, whether a high or low stiffness or material 

weight is beneficial in terms of actuation. The internal energy level and the actuation system 

must be designed to fit each other.  

The internal strain energy can be used to balance the total energy level by counteracting the 

potential energy component. In other words: The energy, necessary to move the structures 

mass (potential energy) might be taken from the stored strain energy. For such strategies, high 

energy capacities are useful. The potential energy capacity is linearly dependent on the mass 

and accordingly the specific weight. The materials strain energy capacity can be referred to 

the maximum material strain energy density. 

𝑚𝑎𝑥. 𝑠𝑡𝑟𝑎𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
1

2𝐸
∙  𝜎𝑅𝑑

2  Equation 53 

The energy density maximum for shear deformations can be set up accordingly: 

𝑚𝑎𝑥. 𝑠ℎ𝑒𝑎𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
1

2𝐺
∙  𝜏𝑅𝑑

2  Equation 54 

Equation 53 and Equation 54 show, that the materials capacity to store strain energy is 

increases by a high strength and low modulus of elasticity/shear. The latter is less intuitive. 
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4.1.2 Dimensioning with the Stiffness Paradox 

This section provides relations strategies for compliant profile dimensioning and material 

choice.  The opposing requirements of high stiffness and deformability are creating a design 

goal paraoxon (Lienhard, 2014, p. 141). The beams stiffness results from the product of 

material and section stiffness (𝐸𝐼). These parameters are linked by deformability requirements 

and cannot be treated separately. 

Strategies and Relations for Beam Profile Design 

The static analysis in section 3.3.2, and the requirements in section 4.1.1 distinguish the 

relevance of stiffness for compliant structures. This section reveals theoretical strategies for 

beam design, considering both load-bearing, and deformability requirements. These strategies 

are based on beam parameter interrelations and involve specific modifications of material 

and/or profile parameters. 

To explain these strategies, a simple design situation is proposed: A beam with given 

dimensions (squared profile 𝑤0 = ℎ0) and material (𝐸0, 𝜎𝑅𝑑,0) is chosen as a starting point. The 

beams deformability (𝜅𝑦,𝑚𝑎𝑥) and mass (profile area 𝐴, 𝛾) are chosen to be fixed 

characteristics. The intention is to increase the beams deflection resistance and stability 

performance (stiffness 𝐸𝐼) by a factor 𝑓 , without changing the beams deformability and mass. 

Four strategies are elaborated. Table 5 displays these strategies and includes the parameter 

factors referred to the stiffness factor 𝑓. 

 
Table 5 Stiffness optimization strategies and their factors on beam parameters. Factors marked blue are overall goals (All profiles 
displayed exemplary with f = 1,5) 

In the following, the parameter interrelations in these strategies are described in more detail: 
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A) Increase material strength and elastic modulus (proportionally):  

In conventional engineering, it is an intuitive method to increase the beams stiffness, using 

material alternatives with higher modulus of elasticity. For compliant structures, this might 

conflict with necessary capacities on deformation. In consequence, the material strength 

must be increased proportionally to preserve possible strain at failure. An increase of both 

𝐸0 and  𝜎𝑅𝑑,0 is proportional to the beams increase of stiffness.  

 

B) Increase material strength and profile height:  

Higher material strengths allow larger strains at failure. In consequence, the profile height 

ℎ can be adapted (increased), and deformability requirements are still fulfilled, with 

increasing effect on profile stiffness. Note, an increase of strength has a quadratic impact 

on the possible stiffness increase. 

C) Increase profile stiffness (moment if inertia) and preserve material:  

The profile stiffness can be raised, shifting material close to the strain limitations, where 

 |𝑒𝑚𝑎𝑥| is given by the deformability constraint. There is an analogy to conventional profile 

design (thinking of H-Profiles in steel structures exemplarily, where profile material is 

placed at flanges, to generate high moments of inertia).  

Theoretically, the beams stiffness can be increased by max. factor 3 using this strategy (All 

material placed at maximum eccentricity line). However, this profile would then have infinite 

width, thus, something in between is reasonable. 

D) Lowering material stiffness to create higher profile stiffness:  

In this rather unintuitive strategy, a material with lower elastic modulus is used. Hereby, 

strain at failure is increased.  In consequence, the profile height  ℎ can be raised and 

deformability remains (see also Equation 55). Due to the cubic effect on the profile stiffness 

(Moment of Inertia 𝐼), raising this dimension, the loss of material stiffness can be 

overcompensated. However, the modification of material stiffness requires preservation of 

strength. 

There are further strategies possible, and some of the explained ones may be combined 

(E.g.: ” ”&”D”, “A”&” ”, etc.). 

Material Design 

Elasticity generally applies to any solid material. For conventional building projects, stiff 

materials with high strength are preferred in a mechanical context, to minimize material input. 

However, only few building materials are generally suitable for structures involving large 

deformations, e.g., so called “bending-active” (see section 2.4.4)  or “kinetic” structures. The 

material families timber (incl. bamboo), metal and reinforced plastics are particularly promising 

in regard to their deformability (Lienhard, 2014, p. 33).  

However, it can be questioned, which material allows the largest beam stiffness for given 

bending radii? There is no general answer valid for any type of profile, but the material strain 

at failure already provides a useful performance index to evaluate the materials deformability. 
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Julian Lienhard used Ashby-diagrams1 to map materials according to their elastic modulus and 

strength. He identified strain at failure values, suitable for bending-active and kinetic structures. 

However, this index informs about deformability only, and not about the beam’s total stiffness. 

To evaluate the materials regarding beam deformability and stiffness, the simple case of a 

bent plate leads to a helpful indication, especially when using lamella profiles. In the following, 

a material index is derived that quantifies the potential of a material to design beams with 

maximum stiffness for elastically curved beams. Figure 94 displays the model for this 

derivation. 

 

Figure 94 Mechanical model to identify the decisive material index for bent beams with potentially high stiffness. 

The beam stiffness 𝐸𝐼𝑦 can be expressed in dependency of the maximum possible height ℎ𝑚𝑎𝑥 

, the corresponding material values 𝐸 and 𝜎𝑅𝑑, and the curvature applied 𝜅. 

From Equation 50 and Equation 51 we receive a maximum possible height ℎ𝑚𝑎𝑥: 

ℎ𝑚𝑎𝑥 =
2𝜎𝑅𝑑

𝐸𝜅
 Equation 55 

The maximum moment of inertia 𝐼𝑦 for a unit strip with ℎ𝑚𝑎𝑥 results to: 

𝐼𝑦,ℎ𝑚𝑎𝑥 =
ℎ𝑚𝑎𝑥

3

12
=

2𝜎𝑅𝑑
3

3𝐸3𝜅3
 Equation 56 

The potential beam stiffness 𝐸𝐼𝑦 for a given curvature 𝜅 results to: 

𝐸𝐼𝑦,ℎmax =
2

3𝜅3
∙
𝜎𝑅𝑑

3

𝐸2
 Equation 57 

The quotient, marked blue, represents the decisive material index to evaluate the potential 

stiffness of initially bent beams, when the maximum possible height is applied. In Figure 95, 

the Ashby-Diagram, set up by Julian Lienhard is shown. The index lines (blue) of the potential 

stiffness are added for selected case studies (see chapter 4.2 and 4.3). 

Timber, metal, and fiber reinforced polymers (GFRP) provide stiffness potentials, raising in this 

order. However, Hardwoods do meet or even exceed stiffness potentials of lower steel grades. 

The potential of GFRP, used for the Kinetic Umbrella (see chapter 4.3) is about 100 times 

higher than Steel S355, used for the Hotel Intergroup (chapter 4.2). 

Assuming, that the critical Euler-load (Equation 35) is the decisive quantity for structural 

 
1 Ashley-Diagrams (or Ashley Plots) are material charts to map materials within a two-dimensional property space. These charts 
help to choose materials for specifically defined mechanical requirements and goals Ashby (2011). 
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integrity, and maximum possible profile dimensions are applied (Equation 55), then the 

quotient of Equation 57 is directly proportional to the beams compressive resistance. 

 

Figure 95 Strength vs. elastic modulus-Chart by J. Lienhard (Lienhard, 2014, p. 34). Additionally, the Index lines for potential 
      t ffn    for     t c     cur           r   nc u    (  rk     u  for t   “Hot   Int r rou ”  “A    tot c T    r V u t”  and 
“K n t c U  r    ”  roj ct. 
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The Lamella Profile 

Lamella sections are particularly useful for both asymptotic and geodesic configurations, as 

these hold biaxial compliancy in bending and torsion. 

The lamella profile is characterized by large differences in local bending stiffness and 

consequently useful to activate bending deformations in weak axis direction. Additionally, 

lamella profiles are “open” without effects of warping torsion, but potentially sensitive for helix 

torsion effects. Lamella profiles are defined by two dimensions (ℎ ≫ 𝑡). The stiffness ratios 

(moment of inertia) can be derived analytically: 

The moments of inertia result to: 

𝐼𝑡 (𝑆𝑡.𝑉.) =
1

3
ℎ𝑡3 ;  𝐼𝑦 =

1

12
𝑡ℎ3 ;  𝐼𝑧 =

1

12
ℎ𝑡3 Equation 58 

The ratios of moments of inertia result to: 

𝐼𝑦

𝐼𝑧
= (

ℎ

𝑡
)

2

 ;  
𝐼𝑦

𝐼𝑡
=

1

4
(
ℎ

𝑡
)

2

  ;  
𝐼𝑧
𝐼𝑡

=
1

4
 Equation 59 

These ratios can be applied to perform idealized transformation analysis, as placeholders for 

planning states before detailed profile dimensioning. 

If the local curvatures of a lamella are known, maximum stresses result to: 

𝜎(𝜅𝑦) = 
1

2
𝐸ℎ𝜅𝑦 ;  𝜎(𝜅𝑧) =  

1

2
𝐸𝑡𝜅𝑧 ;  𝜏(𝜅𝑥) = 

3

2
𝐺𝑡𝜅𝑥 Equation 60 

The normal strains and stresses induced by helix torsion relate to the radius 𝑟. A general 

description for the helix torsion is given in chapter 2.2.3. For lamella profiles (ℎ ≫ 𝑡), this radius 

is approximately equal to 𝑧 (see Figure 96). 

𝑟~|𝑧| Equation 61 

 
Figure 96 Parameter definition of the lamella profile (ℎ ≫ 𝑡) 

The maximum stresses can be simplified as described by Schikore et al., 2019, p. 809: 

𝜎𝑥,𝐻𝑒𝑙𝑖𝑥−𝑠𝑡𝑟𝑎𝑖𝑛(𝜅𝑥) =
1

12
𝐸ℎ2𝜅𝑥

2 Equation 62 

The helix-area-moment and polar area moment for lamella profiles (ℎ ≫ 𝑡) results to: 

𝐼𝑟 = ∫ 𝑟4𝑑𝐴 ~ 

𝐴

 𝑡 ∫ 𝑧4𝑑𝑧 =
𝑡ℎ5

80
 ;  𝐼𝑝~𝐼𝑦

ℎ/2

−ℎ/2

=
𝑡ℎ3

12
 Equation 63 

The reduced helix-area-moment results to: 

𝐾𝑟~ 0,00694̅ 𝑡ℎ5 Equation 64 
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4.1.3 Constructive criteria 

Constructive criteria define any build object. These are restrictions due to collision, 

constructional feasibility, fabrication limitations, etc. These criteria may result in eccentricities, 

tolerances, local discontinuities, additional components, etc. 

In the following, some key criteria, regarding beam profiles, grid layering and offsets, nodes 

and hinges, and local weakening are described, that must be clarified for structural 

implementation. 

Beams and Profiles 

Profile dimensions are defined by the beams kinetic and static requirements. However, 

additional criteria result from constructive aspects: 

• Any profile and material refers to specific fabrication methods and its limitations. 

Exemplarily, GRP profiles have a minimum wall thickness, resulting from the extrusion 

process and fiber insertion. Furthermore, the length of continuous beams is restricted by 

fabrication limitations. 

• Beams are interconnected and secondary structures are attached. Details for connection 

may require minimum wall thicknesses, edge distances, feasibility for mounting, etc. In this 

context, connectivity may become a decisive criterion for profile design. This refers 

particularly to the type of nodes, hinges, or secondary components. 

Offsets and Grid Layering 

Offset objects have constant spacing to their original object. For gris structures, two types of 

offset curves are common: One is an offset in the surface normal direction (Layering), another 

in bi-normal direction (see Darboux-Frame section 2.1.3). In Figure 97, two types of offset 

curves on a surface are displayed. 

 

Figure 97 Offsets of an arbitrary curve on a surface: a) layering – offset in surface normal direction, b) offset in curves (Darboux- 
Frame) tangent normal direction 

Based on a reference surface, offset surfaces (surfaces with a constant distance in surface 

normal direction) can be used to assign structural components. Grid structures may be 

separated into layers to solve collisions or allow beams passing through the structure. This 

concept is particularly relevant for strained grids structures, where the use of initially straight 

elements is advantageous, and smooth curvatures are desired. 
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Layering may also affect kinematic limitations at hinged intersections. Considering two hinged 

beams in different layers, infinite rotations are theoretically possible without collision. 

Figure 98 shows some exemplary configurations of a grid with two beam families (green and 

blue) and a bracing layer exemplarily. The number of possible configurations rises with number 

of layers.  

 

Figure 98 Exemplary normal offset configurations of double and triple layered grids 

Another possible offset direction is in bi-normal direction of the initial curve on surface (Figure 

97b). Such offset curves are nearly on surface, considering small offsets. These offsets might 

be applied to solve collisions with nodes’ detail components, or to generate multi-layered 

profiles, exemplarily. 

 

Figure 99 Exemplary bi-normal-offset configurations of single and doubled grid members 

Figure 99 shows three configurations of bi-normal offsets at a grid node, either applied to 

beams, bracings, or both. These offsets result from dissolved beams or bracings, often 

symmetrically, to avoid moments caused by eccentricities.  

Using layers and offsets results to various geometric deviations with respect to the initial 

surface or single layered setup. This also applies to offset curves on surface. The deviation in 

length of the offset curves results from the curvature of initial curves and surfaces1: 

The length deviation can be derived using the same geometric approaches that are used to 

 
1 Note, for a curve on a plane, both offset types do not involve changes in length. 
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determine bending (Euler-Bernoulli-Beam, see Figure 12) and helix torsional stresses (see 

Figure 13). There is an analogous relation between curvature related elongation of beam fibers 

and length deviations of offset curves. Hence, the fibers of a curved beam are geometrically 

equal to offset curves. In this analogy, the initial curve relates to the “neutral” fiber, and offset 

curves relate to stretched or compressed fibers. 

The offsets described above are orientated on the Darboux-Frame. Length deviations due to 

normal and geodesic curvature are proportional (linear) to the offset distance. Changes due to 

geodesic torsion are in quadratic relation. 

The offset curves’ elongation 𝜀𝑜 due to normal or geodesic curvature with an offset 𝑜 in surface 

normal direction is deduced from Equation 8: 

𝜀𝑜 = 𝜅𝑛/𝑔 𝑜 Equation 65 

The offset curve’s elongation 𝜀 due to geodesic torsion is deduced from Equation 19: 

𝜀𝑜 =  
1

2
𝑜2𝜏𝑥

2 Equation 66 

Using offsets is a constructive strategy for the design of semi-compliant grid structures. 

However, the geometry of offset curves may differ in length and curvature. Deviations might 

be relatively small and could be handled by tolerances. In any case, the impact on the 

structures kinetic and static behavior must be evaluated. 

Nodes and Hinges 

The design of grid nodes involves the grid members (to be connected) and additional, 

connective components, that generate appropriate degrees of freedom (e.g., hinges). Nodes 

can be classified as either central or lateral, according to the member’s position.  

 
Figure 100 Schematic concept of a a) Central, and b) Lateral connection 

The previous section describes some strategies for lateral configurations, that allow beams to 

pass through. The connective component must “bridge” eccentricities between members. In a 

central node, the grid members must be divided to avoid collision, and the connective 

component must additionally “bridge” those division, within members. Figure 100 shows a 

completely central configuration (a), and a lateral configuration in both normal and bi-normal 

direction (b). 
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Note, there are two basic geometric approaches for lateral configurations, regarding bi-normal 

offsets: 

 
Figure 101 Concepts for lateral node configurations: a) Eccentric connective component, b) Eccentric grid member 

The first concept preserves the initial network curves as beam centerlines, and the connective 

component is places eccentric (Figure 101a). In the second concept, the beams’ centerlines 

are offset with preserved connective components at network intersections (Figure 101b). 

Both concepts avoid collision of beams and connective components. If the connective 

component is hinged, both geometric configurations affect the local kinematic performance, as 

rotational poles are modified. Such effects need to be considered in planning. 

Local beam discontinuities 

Grid structures incorporate multiple nodes, and secondary components may require further 

connections. Such details involve additional components and/or perforations. Figure 102 

shows some basic component types schematically: clamps, adapters, bolts, slots, or butt 

joints. Joint details may compound various of these basic types. 

 
Figure 102 Basic types of joint components with differing effects on the beams local stiffness and load capacity. 

Any connection or perforation placed on beams leads to local discontinuities regarding 

stiffness and load capacity. Slots or additive components exemplarily are influencing the 

beams mechanical performance locally, even beyond the geometrical position of the 

discontinuity.  

If bending or torsional deformation are geometrically predetermined, stiffness and bending 

stress are interdependent and need to be considered, and eventually minimized. The local 

discontinuity can be either softer, equally stiff, or stiffer than the beam itself. On bent beams, 

this leads to a discontinuous curvature, but not to a discontinues bending moment. However, 

when the global stiffness of the beam including all local discontinuities is changed, the global, 

continuous bending moment is changes accordingly. The length of discontinuities is decisive 

for the change in global beam stiffness and bending moment. Consider, an infinitesimal short 

discontinuity with infinite local stiffness will not affect the bending performance. And further: An 

infinitesimal short perforation of a beam (softening) leads to larges strains only in a short area, 

 )
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that does not affect the global shape of the bent beam (The stiffness of a very short but soft 

beam segment is high due to the short length). Figure 103 shows the results of a numerical 

analysis of a circular bent beams (blue) with local stiffness discontinuities (yellow).  

 
Figure 103 Local stiffness discontinuities on a circular bent beam. The length of the discontinuity is changed from 1% to 10% to 
50% of the total beam length (rows). The local stiffness is either softened to 10% (left column) or stiffened to 1000% of the beam 
stiffness (right column). The results shown are calculated using the IGA inverse method. 

The curvature concentrates in areas of relative softness, that are either located in areas of 

softer discontinuities (left column) or beam segments (right column). With increasing length of 

discontinuities, the polygonising effect is rising. The constant bending moment is affected, too. 

It is either de- or increasing according to the global beam stiffness. 

From those mechanical relations, practically relevant statements can be summarized: 

• If the stiffness of bent beams is discontinuous for a short range only, both shape and 

bending moment are barely affected. However, the load-bearing capacity of the 

discontinuity needs to be verified. Example: Perforations such as slots or holes are short. 

On a bent beam, the perforated areas need to resist the same bending or torsional 

moments as unperforated areas. This is a matter of strength, not of stiffness. 

• If the stiffness of bent beams is discontinuous for a larger range, both shape and bending 

moment are affected. Softer discontinuities (e.g., long notches) accumulate curvature 

locally, leading to globally lower bending moments. Stiff discontinuities, such as additive 

components, plates, etc. lead to a shift of curvature into remaining beam segments. 

Bending or torsional moments are rising, including the stress on additive components.  
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4.1.4 The Engineering Process 

The development of the engineering process for load-bearing structures began centuries ago 

and is still ongoing with rising project complexity. Structural engineering is a process. It is 

characterized as an “ t r t       n   c optimization with increasing concretion and changing 

 o     n     c ntr    n  ron  nt” (Ihde, 2018). With each iteration, the structure becomes less 

abstract, and more specific. Iterations are necessary to handle various dependencies that exist 

throughout the planning sub-processes. This is a general characteristic of structural 

engineering, that becomes even more significant for compliant structures with their additional 

requirements (see 4.1.1). 

For the design of compliant grid structures, an iterative workflow is developed in course with 

the case studies shown in chapter 4.2 and 4.3. Key processes and data are organized in an 

integrated parametric modelling process to efficiently handle the highly iterative character (see 

chapter 2.3.1). Although the key processes are organized linearly, variable recursive steps are 

possible and necessary. According to the specific project, the order of processes may even 

vary. Each process generates data, to be evaluated and integrated into a model environment 

that integrates and couples geometric and mechanical models. This design process is inspired 

by the “ AD-integrated Parametric Design  ycle for Structural  embranes”, mentioned in 

chapter 2.3.1. 

In the following, key processes, data, and referred models are described chronologically. A 

systematic overview on this workflow is given in Figure 104. 
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Figure 104 Engineering workflow split into process, data, and model integration lane. 

 

 inetic
Stresses

Ad .  rid
Sequence

       
  

Ideal  rid
Sequence

     f        
         A       

evaluation

evaluation

evaluation

evaluation

evaluation

evaluation

       
         A       

S     
         A       

            
        

 echanical
 onstraints

Initial
 etwork

Reference
Surface

Residual
Stresses

Static
Stresses

External
 oads

 eom.
Plans

Erection
Plan

Pro le
Param.

 at.
Param.

Static M D  

 numerical)

       

 inetic Transf. M D  

 numerical)

Ideal Transf. M D  

 numerical)

init. System M D  

 geometric)

Draft

 onstruction Plan

 onstruction M D  

 geometric)

Start

End

Excentr.Details

Arch.

Scenario

    M     I                 

 eom.

Draft

      
I       G       

    
            

            
         A       

 
 
 
 
  
 
 M

 
 
 
  
E
 
 
  
 
 
 
 
 
 

Actuation
 onstraints

Arretation
 onstraints

ideal mech.
 onstraints



120 

Concept 

In this first step, an architectural idea is developed that takes advantage of semi-compliant grid 

mechanisms. This architectural scenario goes with a geometric draft of the structure and a 

proposed transformation.  This concept includes the type of kinetic grid transformability and 

hereby, mechanical constraints are defined at an early planning state. 

Formfinding 

Based on conceptual drafts, the reference surface of the curve network, that defines the grid 

structure needs to be generated. The surface can be defined using geometric operations 

according to the surface type (e.g., curve rotation for a rotational surface), or using numerical 

operations for surfaces such as minimal surfaces, hanging shapes, that involve superior 

geometric constraints (e.g., constant gaussian curvature). Based on this, the network can be 

found using again geometric operations (e.g., surface-plane intersection) or numerical 

operations for curves that involve superior geometric constraints (e.g., curvature networks). In 

addition, the networks density or specific curve locations need to be defined. 

The reference surface and referred network are components of the geometric “Initial System 

 odel”. 

Transformation Design and Analysis 

This process aims to find an ideal transformation sequence. Therefore, a numerical simulation 

is performed. The “initial System  odel” is supplemented with ideal mechanical constraints. 

Although this sequence involves kinetic transformation behavior, mechanical constraints are 

defined in a relative context. Using numerical methods, such as FEM or IGA, geometric 

constraints such as zero curvature can be expressed with relative high stiffness exemplarily. 

The transformation can be controlled via predefined displacements. Such simulations are 

performed in section 3.2.2 and 3.2.3. From the resulting ideal transformation sequence 

valuable geometric information can be derived: The curvature-square progression and 

maximum curvature values are decisive for beam dimensioning. 

The ideal transformation sequence is part of the “Ideal Transformation  odel”. In a coupled 

model environment, it is connected to the “Initial System  odel”, and thus, can be efficiently 

updated. This model provides preliminary insight into the system’s transformation. 

Beam Dimensioning 

In this process, the beams are dimensioned on section level, aiming at requirements on 

deformability and stiffness only. In contrast to conventional beam dimensioning, where internal 

forces and bending moments are to be resisted, this dimensioning aims to accommodate 

maximum curvatures (deformations) within transformation. Some strategies and relations are 

given in section 4.1.2. It is crucial, that beam’s local stiffness relations meet the proposed 

mechanical concept. 

To allow additional stresses, e.g., due to normal forces in a static state and stresses due to 

external loads, additional profile capacities are necessary.  
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 urthermore, the strain energy progression can be “tuned” approximately, using the curvature-

square diagram from the ideal transformation sequence. This is relevant for the design of 

actuation. 

The process of beam dimensioning at section level can be performed analytically and does not 

involve any specific model. However, the resulting profile and its’ dimensions are part of the 

geometric “ onstruction  odel”. 

Constructive Design and Analysis 

Constructive criteria may influence the kinetic behavior of semi-compliant grid mechanisms. 

Especially the design of node details may involve eccentricities or lead to kinematic limitations. 

This planning process cannot be automated. It involves conceptual development at detail level. 

Some concepts are given in section 4.1.3.  

With resulting eccentricities, the “Initial System  odel” and “Ideal Transformation  odel” can 

be updated, and detailed components can be integrated in the “ onstruction  odel”.  ote, 

that if the “ onstruction  odel” is parametrically adaptive to the ideal transformation sequence, 

collision checks are possible. 

Kinetic Design and Analysis 

This process aims to comprehensively simulate the structure’s transformation with respect to 

applied profiles, materials, self-weights, details, and actuation. The “ inetic  odel” is based 

on the “Ideal  inetic  odel”, but specific profile and material parameters are applied. It allows 

precise numerical simulation and testing of various actuation concepts. The kinetic behavior is 

analy ed, including normal forces and stability effects. Deflections or deviations from the “ideal 

 inetic  odel” are evaluated.  

Static Design and Analysis 

Transformable structures in architecture serve as static structures at specific states, in which 

mechanical constraints are active for locking. In these states the structure is exposed to 

external loads such as wind, snow, or other service loads. The static design and analysis is 

analogous to conventional engineering of load-bearing structures.  rom the “ inetic 

Transformation  odel” specific static states are extracted and the additional locking 

constraints and external loads are be applied. The load-bearing behavior is analyzed, stresses 

and stability phenomena are evaluated. 

Construction Planning 

Basis of the construction planning is the “ onstruction  odel”.  rom this model, fabrication 

data and construction plans are extracted, and the assembly process is developed. 
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4.2 Case studies on Asymptotic Gridshell Erection 

Semi-Compliant mechanisms can be utilized to erect strained gridshells. The spatial, doubly 

curved geometry of gridshells can be incorporated within the structure, and thus, substitutes 

complex formwork. Asymptotic gridshells allow the erection from a planar state. 

In the following sections, three projects are presented that incorporate the erection of 

asymptotic gridshells from a planar state with focus on key facts and aspects regarding 

construction, kinetic behavior, and numerical analysis. 

4.2.1 The Inside\Out Pavilion 

The Inside\Out pavilion is located at the campus of the Technical University of Munich (TUM). 

It was built in 2017 and serves as a research pavilion as part of Eike Schling’s studies on 

repetitive structures. The modelling and design were supported by Denis Hitrec. The authors 

personal involvement included the static analysis and consultations for detail development. 

The construction was intensively supported by BRANDL metal manufacturer. This project is 

well published (Schikore et al., 2020; Schling, 2018; Schling et al., 2017; Schling, Kilian, et al., 

2018).  

Design and Construction 

 
Figure 105 The inside\Out pavilion at TUM Campus, Munich: a) View of the pavilion, b) Node detail, c) Free edge beam and c) 
Singularity (Photos: Felix Noe) 

The Inside\Out pavilion is built from straight, slotted stainless steel lamellas (100x1,5 mm), 

paired in one layer, and eccentrically braced by cables. Figure 105a shows the pavilion and 

details. The gridshell is based on a minimal surface, which incorporates an asymptotic network 

with nodes of 90 degree. The reference surface is a cutout from a modified catenoid, and the 

asymptotic network incorporates two singularities.  
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Structural Analysis 

The static analysis required some unusual approaches. Due to the geometric complexity of the 

actively bent grid, the simulation from an initially straight and unstressed configuration would 

involve extensive effort regarding mechanical modelling. Such approach would require an 

additive simulation, where each member is separately deformed an attached to the structure. 

This problem motivated the development of the inverse FEM, described in section 2.3.2. The 

conventional FEM Software used1, features dimensioning or loading tools, that are practically 

valuable for static analysis:  

 

Figure 106 F M “ n  r  ”    u  t on of t   In    \Out pavilion: Residual normal and shear stresses caused by bending and 
torsion 

Figure 106 shows the residual normal stresses and St. Venant torsional shear stresses. For 

the stainless steel used, the strength of a standard reference steel S235 (𝜎𝑅𝑑  = 23,5 kN/cm2) 

is used to evaluate the static performance. The maximum utilization of normal stresses 

 
1 For this project, R-FEM 5 was used. 
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(residual stresses) due to deformation results to ~80 %, and shear stresses are utilized by a 

maximum of about 99 %. However, these maxima occur on singular spots only and 

plastification is accepted to a very limited extend. Note, that bending and torsion are reciprocal. 

Positions of large bending involve low torsion and the other way round. The average utilization 

due to elastic deformation is in a range of 25 % for both normal and shear stresses at the 

lamellas’ surfaces. The FEM analysis also features plastification at the nodes. At these 

positions, the internal bending moment is limited to the plastic resistance of the halved lamella 

profile. This potentially allows kinks and the redistribution of loads through plastification to be 

displayed in the simulation. However, these effects turned out to be neglectable as occurred 

on few slots only. 

In the FEM calculations, normal stresses due to helix torsion (see section 2.2.3) are not 

included. Manual calculation for a maximum twist of 64 °/m results to normal tensile stresses 

at the lamella edges of 22,0 kN/cm2 that utilize 93 % of the material capacity. Again, 

plastification is accepted to a limited extend (Schling, 2018, p. 155). 

For this project, the kinetic performance during transformation from flat to spatial was not 

numerically simulated and transformability was physically explored on site. 

Assembly and Erection 

 
Figure 107 Curved segments of the Inside/Out Pavilion. The segments are assembled flat and pushed into spatial shape following 
the design shape naturally. (Photo: Top left and bottom: Eike Schling, Top right: Andrea Schmidt) 

The method of shaping used is the  rst architectural application of a semi-compliant 

mechanism for an asymptotic grid. The slotted nodes act as uniaxial hinges to allow 

transformation. The kinetic behavior shows similar characteristics to the open asymptotic 

structures (see section 3.2.2, p.68, 3.2.3 and 3.4.1). The mechanism was used to prefabricate 

nine curved segments, that were assembled  at, hoisted onto suitable supports and deformed 

by hand. The designed shape emerges naturally, and at  nal position, the structure is locked. 

Figure 107 shows the construction and segment deformation. The kinetic performance in this 

project motivated further research, including this work.  
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4.2.2 Hotel Intergroup Canopy 

The Hotel Intergroup in Ingolstadt was completed in December 2019. The entrance canopy 

is the first commercial asymptotic gridshell. It was designed by Eike Schling and engineered 

by Jonas Schikore, including dimensioning, official proof of stability and erection simulation 

and planning. The project was managed, consulted and constructed by BRANDL metal 

manufacturer. There are few publications referring to this building (Anna Maria Bauer, 2020; 

Schikore et al., 2019; Schikore et al., 2020).  

Design and Construction 

 
Figure 108 The Hotel Intergroup canopy (before membrane assembly): a) Front view b, c) Edge beam detail, d) Concrete 
foundation 

Figure 108 shows the structure just after placement on site. The canopy is compounded by 

four symmetric leaf-like, framed grid-segments (a). The grid is bounded by a rectangular frame 

on top, that adapts to the entrance courtyard (b, c). At the bottom, the structure is supported 

by two slender concrete foundations (d).  

The design of the funnel shaped grid structure requires careful geometric modelling of the 

reference surface with its connected asymptotic network. The geometric modelling was 

performed iteratively by Eike Schling until geometric design criteria were fulfilled. The design 

goal was a horizontal finish of the grid in the top part, a smooth and elegant curvature of the 

surface and a rather vertical directed network at the bottom. Edge details and additional 

constructive components adapt to this geometry. The key modelling steps are shown for a 

single segment in Figure 109. 
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Figure 109 G o  tr c  o    n  of t   Hot   Int r rou    no  . T   “D    n  urf c ”    t   r f r nc   urf c  for t        tot c 
network and lamella orientation. The frame and additional components are adapted. 

The complete canopy covers a rectangular area of 42,5 m2 at a height of 3,7 m. The steel 

structure is composed by 2,5x100 mm stainless steel lamellas that are framed by a steel box 

profile that integrates water drainage. The lamellas are slotted at nodes to a allow a single-

layered configuration. After assembly and erecting, the slots were welded. The top frame 

anchors a PVC membrane that is tensioned using a steel arch tube. The arches ends are 

connected by a tensioning cable used to elastically lift the arch through bending like a bow 

string. The lamella grid is made of stainless steel, comparable to S355 in strength. Figure 110 

shows the structural components and dimensions. 

 

Figure 110 Structure of the Hotel Intergroup canopy: a) structural components, b) dimensions 
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Structural Analysis 

In context with this project, analytical and specified numerical calculations were applied to 

predict and evaluate residual stresses and strain energy through deformation, the erection 

process, and the static performance. The numerical methods are based on both conventional 

FEM and IGA. Detailed descriptions of the methods used for the following investigations are 

given in section 2.3.2 and various publications (Anna Maria Bauer, 2020; Schikore et al., 2019).  

 
Figure 111 Backwards simulation of the canopy segment erection using IGA "inverse" method and shell elements. 

In the first step, the transformation into a flat configuration is simulated and tested. Through 

this analysis, transformability was evaluated and decisive curvatures and twists at all states of 

erection are identified for dimensioning. Furthermore, the flat configuration informs the 

assembly. In practice, the lamella grid was transformed upside down by lifting three nodes at 

the canopies bottom in upward direction. The slotted connections were acting as uniaxial 

hinges. However, the simulation was performed in backwards direction, starting from the 

deformed state.  

The IGA-“inverse” method with shell elements was used for this simulation (Anna M. Bauer et 

al., 2019). First, the residual stresses, computed by the shell’s curvature, are applied. Then, 

without fixed edges, the vertical position of three nodes is released stepwise until the grid is 

planar. Figure 111 shows the simulation setup and result. The spatial (initial) state shows the 

highest curvatures and twists within the transformation process. The max. geodesic curvature 

𝜅𝑔,𝑚𝑎𝑥 is 72 °/m and the max. geodesic torsion 𝜏𝑔,𝑚𝑎𝑥  is 55 °/m. 

It is a decisive design goal, to create smooth curvature, and thus, plastification was avoided or 

at least, kept under control. The slotted connections at nodes are most likely to plasticize, and 

detailed investigations on this are necessary. However, the slotted discontinuities are small, 

and thus the bending moment and curvature is barely affected, assuming, that also the slotted 

areas are within the elastic range (see section 4.1.3, p.116). This allows a simplified check on 

plastification: Using Equation 12 with 𝜅𝑔,𝑚𝑎𝑥 , the max. bending moment at not perforated beam 

segments results to 3,3 kNcm. At slotted areas, this bending moment exceeds the elastic 

bending capacities, and the beam plasticizes, and causes kinks. However, this plastification 

only occurs at few nodes and is accepted. Thinner lamellas were not chosen due to difficulties 

for welding and higher risk of stability failure. This compromise underlines the thin line for 

dimensioning compliant steel grids. 
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Figure 112 Analytical investigation: a) Geodesic torsion of the asymptotic network, and torsional moment and strain energy 
portions due to St. Venant Torsion and helix torsion for a 2,5x100 mm steel lamella profile (Schikore et al., 2019) b) Numerical 
simulation using IGA-inverse method for shell elements 

The spatial transformation was analyzed with special focus on torsional stresses, moments, 

and energies, that are compound by shear and longitudinal stress due to St. Venant torsion 

and helix torsion effects respectively. The question arose, to what extend lamella torsion 

influences the erection process, e.g.: How the grid must be constrained and fixed for erection?  

The influence and portions of torsion can be determined using analytical calculations described 

in section 2.2.3. For the Hotel Intergroup and the lamella profiles used, the geodesic torsion, 

the torsional moments and strain energy are displayed in Figure 112a. The maximum torsion 

of 55 °/m results to a torsional moment of 5,37 kNcm, and 24 % refer to helix torsion. For 

torsional strain energy, helix torsion makes a portion of 14% of the total torsional energy (86 

% St. Venant). As these ratios may not be neglected, a novel “inverse” approach was used to 

consider helix torsion within numerical investigations for erection (Anna M. Bauer et al., 2019). 

Shell elements were used to determine the normal stress distribution across the lamella profile 

due to helix torsion. Figure 112b shows the normal stresses at neutral layer at final state with 

a fixed frame1. 

The final static analysis was performed using conventional FEM2. In this state, the grids nodes 

are rigid, as the slots were welded. Residual stresses are considered according to the “inverse” 

FEM-method (section 2.3.2). This analysis includes external loads such as snow, wind, etc., 

and the results were used for official approval. Note, helix stresses are not displayed in this 

method and must be considered externally (manually). 

  

 
1 Note, the stresses displayed are at the inner layer and thus exclude stresses due to weak axis bending 
2 Dlubal R-FEM5 
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Assembly and Erection 

 

Figure 113 Erection the Hotel Intergroup canopy: a) Pull up of a grid segment, b) Assembly of edge components, c) Framed 
segment in final shape, c) Lift and transportation of the full steel structure 

The segments were designed for an inverted “pull-up” strategy and assembled separately. The 

stainless-steel lamellas were interlaced via slots and temporarily secured with brackets (Figure 

113b). Each segment was then pulled-up by a crane into its design shape. This process 

originates to an inverted hanging model but involves a compliant mechanism. In shape, the 

grid was  tted within a rigid steel frame and then welded at each  oint (Schikore et al., 2020). 

The four segments were  nally assembled on site to become one structural unit. The steel 

structure is  tted with two arch supported membranes on top. Figure 113a shows the assembly 

and the erection process with a similar strategy to the Inside\Out pavilion. After welding and 

edge assembly, each segment becomes a stable unit (c). The final steelwork was mounted in 

one piece (d). 
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4.2.3 Asymptotic Timber Vault 

 
Figure 114 The Asymptotic Geodesic Timber Vault: a) View of the structure without cladding, b) Top view, (asymptotic curve set), 
c) D t           of t    r   (   )   nc u  n       tot c (“u r   t”)           n    o    c  (“f  t”)           )      n  t    r   
structure from flat to spatial. e) Prefabricated curved, doubled lamellas. 
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The Asymptotic Geodesic Timber Vault in Munich was conducted in 2022 at the 

Kreativquartier in Munich. The project is led by Eike Schling and Zongshuai Wan in a 

collaboration of the Hongkong University and the TUM  Prof. Pierluigi D’Acunto). Jonas 

Schikore was incorporated in a consulting role. The project was part of the educational master 

program (architectural). 

Three modules are arranged to create an accessible pavilion.  The combination of anticlastic 

patches creates the impression of a vault-like, synclastic structure (Figure 114a,b).  

The modules are made from double layered timber lamellas (ash). The timber web 

systematically combines both asymptotic and geodesic curves. The resulting web is 

triangulated. All members and components are assembled completely lateral (Figure 114c, 

see also section 4.1.3, Figure 100b). 

During construction, the asymptotic paired and curves beams are mounted planar on the 

ground. The shape emerges naturally when the grid is lifted and carefully pushed into shape 

(Figure 114c). The spatial geometry is locked when the geodesic, triangulating set of lamellas 

are attached.  

The Asymptotic Timber Vault involves several engineering strategies, discussed in previous 

sections:  

• With the set of geodesics, the buckling length is halved, thus rising local buckling capacities 

(see section 3.3.2). 

• The grid structure combines layering in surface normal direction (three layers, two 

asymptotic layers and one geodesic layer in between), and offsets in bi-normal direction 

(doubled lamellas). Thus, continuous members are possible (see section 4.1.3, p.113). 

• The grid members are interconnected using adapters and eccentric bolts. Thus, the impact 

of discontinuities is kept minimal (see section 4.1.3, p. 116) 

• The edge beams and geodesics are locking the grid in its final shape. This can be referred 

to “internal” locking. The actuation, however, is performed manually by hand, and can be 

referred to “external” actuation. This is typical for non-reversible mechanism, used for 

erection. 

The grid is transformed from flat to spatial, using initially curved, double layered members. This 

incorporates stiffness, that allows only limited deformation. Furthermore, the nodes are not 

ideal hinges. However, the transformation performs, as only limited curvature changes are 

necessary, and the bolted connections include tolerances.  

This project demonstrates the usability of timber tor this structural type. The combination of 

asymptotic and geodesic curves marks a novel geometric approach. The transformability of 

this combination is hereby tested practically, but not fully investigated in theory. 
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4.3 The Kinetic Umbrella 

 

Figure 115 Side- and topview fro  o  n (  ft) to c o     t t  (r   t) of t   “K n t c U  r    ”  t t   Kr  t  qu rt  r Mun c . 
(Photos: Martina Schikore) 

https://vimeo.com/622507372
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The Kinetic Umbrella is a transformable grid structure located at the Kreativquartier in Munich. 

It is placed at an outdoor cultural event space and used for shading. The structure is a research 

pro ect following the principles of “Research by Design” 1. The goal of this project is the 

architectural implementation of semi-compliant grid mechanisms at architectural scale. The 

kinetic structure is derived from the theoretical framework described in chapter 3. The rotational 

asymptotic grid structure is covered with an adaptive shading system. It performs a reversible 

semi-compliant transformation from a slender cylindric (closed) to a open funnel shape 

whenever needed. Figure 115 shows the structure and the different states of transformation. 

The following sections provide insight into the developments and final solutions from basic 

concept to detailing in an iterative process, followed by investigations to evaluate tolerances 

in geometry and force distribution: 

Section 4.3.1 describes concept and components. 

Section 4.3.2 displays the digital planning workflow. 

Section 4.3.3 shows physical models used within the development and their contribution. 

Section 4.3.4 gives deep insight into decisive engineering problems and solutions. 

Section 4.3.5 displays the process of assembly and erection. 

Section 4.3.6 compares measurements and simulation for validation. 

The Kinetic Umbrella was managed, designed, and engineered by Jonas Schikore. The project 

was further supported and consulted by Prof. Rainer Barthel, Prof. Eike Schling and Prof. 

Pierluigi D’Acunto. The physical modeling was extensively supported by Fabian Matella 

(Student assistant) and the cover system was developed together with Clemens Lindner and 

Tao Sun, as part of their architectural bachelor thesis. The construction of the steel parts and 

the erection (lift up) was conducted and sponsored by the steel manufacturer BRANDL. Other 

sponsors are GEPOTEX GmbH (textile fibers) and FACTUREE cwmk GmbH (aluminum 

components at nodes). On site, the assembly was supported by a team of students and 

assistants: Merlin Bieling, Frederic Chovghi, Sebastian Dietrich, Sebastian Hoyer, Clemens 

Lindner, Maria Rau, Fabian Matella, Sanziana Maximeasa, Sarah Sendzek, Tao Sun, Frauke 

Wilken 

  

 
1 T   t r  „     rc     D    n“ goes back to the Faculty of Architecture in Delft (Technische Universiteit Delft (2001))  

 



134 

4.3.1 Design and Construction 

This section shows the basic concept of the Kinetic Umbrella and systematically describes all 

structural components. 

Concept 

The general idea of an umbrella, to protect from sun or rain, goes back to ancient times 

(Sangster, 1871). Structurally, umbrellas are characterized by a central pole, where the 

structure is supported. Umbrellas may be classified by their portability or their ability to deploy. 

There is a wide range in sizing, and there are various mechanical approaches for deployment. 

(Figure 116: e.g.: transformable membrane, inflatable, and “origami”-folding).  

 
Figure 116 Various Umbrellas utilizing different mechanical approaches: a) Umbrellas by Frei Otto at the Bundesgartenschau 
Köln 1971, Photo: Atelier Frei Otto Warmbronn b) Inflatable Umbrellas World Expo, Osaka 1970 (Blümel, 1972) c) Umbrella Study 
using origami folding (Jaksch & Sedlak, 2011) 

The Kinetic Umbrella provides an alternative solution regarding the type of mechanism: A semi-

compliant mechanism of a rotational asymptotic grid structure, fixed at the bottoms circular 

edge. The open funnel shape can be “packed” to a slender bundle. The design is guided by 

various criteria  The structure doesn’t aim at a specific location and thus represents a “stand-

alone” ob ect in an architectural sense. The  mbrella fits into medium si e courtyards and 

provides space for a small group of people underneath. Furthermore, the grid structure fits 

onto standard transportation vehicles or into standard containers. A rather small base radius 

is considered to minimize the space taken by the structure on site, but still providing stability. 

The Kinetic Umbrella is a movable structure. Accordingly, it is supported via movable weights 

to prevent from tilting, rather than fixed ground connections. 

 

Figure 117 Visualization of the Kinetic Umbrella conceptual design at open, intermediate, and closed state (Vis.: E. Schling) 
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Components Overview 

The components of the Kinetic Umbrella can be assigned to basic functions: The double 

layered lamella grid structure serves as load-bearing structure. Its structural parameters define 

the transformation. The attached textile cover provides shadow and adapts to the grid 

structure’s transformation. Three circular fixed cables are locking the transformation at open 

state. The transformation as actuated by an additional circular cable, led down to a winch. The 

steel base connects the structure via uniaxial hinges to the concrete bodies, that resist global 

tilting. Timber panels covering the concrete bodies and steel base provide sitting 

accommodation. Figure 118 gives an overview on the components.  

 
Figure 118 Overview of the components of the Kinetic Umbrella. (Visualization by S. Maximeasa and M. Bieling) 

Dimensions 

The Kinetic Umbrella has a diameter of 7,6 m and a height of 3,8 m at open state. Closed, the 

structure is transformed to a slender bundle of 6,8 m height and 0,8 m diameter. Dimensions 

are shown in Figure 120.  

When the umbrella opens, the area of the reference surface increases from 12,8 m2 to 50,9 

m2 (~400 %), and at open state, an area of 41 m2 is covered (projected area).  
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The following table lists the components masses: 

Component Mass per unit Pieces/dimension Total mass [kg] 

Textiles 3,7g/m 3017,8 m 11,12  

Textile connection plates / bolts - - ~ 2  

GFRP lamella profile 1,116 kg/m 182,94 m 204,17 

Standard node 0,412 kg/p 192 p. 79,1 

Ring cables 0,0350 kg/m 45,27 m 1,6 

Actuation cable 0,0643 kg/m (max) 28 m 1,8 

Add. Cable/Actuation components - - ~ 5 

Total (umbrella structure)   305 

Steel structure base 7,85 t/m3 0,03 m3 235 

Timber cladding - - ~ 70  

Reinf. Concrete base 2,4 t/m3 1,414m3 3394 

Total (base)   3699 

Total    4004 

Table 6 component masses of the Kinetic Umbrella 

Grid Structure 

  

Figure 119 Grid Structure of the Kinetic Umbrella: a) Detailed view - The bolts are eccentric b) The double layered lamella grid 

The grid is compound of 32 8x80 mm white GFRP lamella profiles of 571 cm length each. 

These extruded profiles are UV-resistant. The system is rotational symmetric, and all profiles 

are equal in length and node positions. The grid structure is double layered (in surface normal 

direction), and the rotational axis of the hinged nodes is eccentric to allow continues profiles.  

The node consists of aluminum connectors that are fixed to the lamellas using M6 screws. The 

profiles are perforated by 4 holes (screws) of 6mm diameter to provide double sided aluminum 

connectors (adapters, see section 4.1.3, p.116) with clamping effect. These connectors guide 

eccentric M10 bolts with sleeve bearings to allow rotation and to provide a connection for 

additional components such as bracing cables or the actuation system.  
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Figure 120 Global dimensions of the "Kinetic Umbrella": side view (top), top view (bottom), at open (left), and closed state (right) 
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Cover System 

  

Figure 121 Textile cover system layout: a) Pattern (top view) b) Open pantograph cell c) Aluminum profile with slots for fiber 
guidance d) Pantograph transformation of a unit cell with textile strips attached from open to close (left to right) 

The structure is covered by an adaptive shading system. The development of this system is 

scope of the bachelor thesis of C. Lindner and T. Sun (Lindner & Sun, 2021).  

A set of textile strips follows the grid’s transformation as these are aligned with the outer set of 

lamellas. The custom made1 textile fibers of 5mm width are UV-resistant, hydrophobic, and 

elastic to a small extend. They are fixed on aluminum profiles, attached to the inner lamella 

set. These aluminum profiles are positioned eccentric to the lamella profiles, but centric to the 

hinge axes at the nodes (Figure 121). The fibers follow the pantograph transformation of the 

unit cells. This configuration allows the use of textiles without folding or overlapping 

mechanisms. As the strips are guided along the asymptotic path, change in length during 

transformation only occurs due to tolerances and are neglectable. 

The fiber layout follows a parametric pattern. This principle allows to fully control density and 

shading quality. 

Actuation and Locking System 

Due to self-weight, the umbrella is pushed into its open state (see section 4.3.4, p.149). The 

transformation is controlled via a cable system that ties the structure together at closed state 

and can be released for opening. The cable is winded on a winch located at the umbrellas 

base (Figure 122a) and guided (b) to a circular cable ring in the top part of the structure (d, e). 

In this ring, the cable runs in two parallel lines to decrease the cable force (c) (pully tackle). 

 
1 The strips are sponsored, designed, and fabricated by GEPOTEX GmbH, Emskirchen (GER) 
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Figure 122 Cable System for actuation: a) Winch at the base, b) Cable guiding at the grid structure following a lamella to reach 
the upper cable ring, c) Double pulley for the circular cable guide at an upper grid area d) Location of the actuation cable from top 
view, e) Inside view with locking and actuation cables at closed state, f) Connection of locking cables at nodes 

At open state, the transformation is locked by three circular cables of 3 mm diameter, fixed at 

each node in rows 8,10, and 12 (Figure 122f). Closed, the umbrella is tied by the actuation 

cable, that is held by the worm gear of the winch. Additionally, an external belt can be attached 

for shutter holdback. 

Support (Base) 

 
Figure 123 Base of the Kinetic Umbrella: a) Concrete bodies and stees support, b) Grid support detail (hinge) 

The Kinetic Umbrella is a movable structure and its base can be possibly dissambled and 

transported. Four concrete bodies prevent the structure from titling in case of horizontal loads. 

A steel structure, fixed on top of the concrete provides precise support connections for the grid 

structure. Figure 123 shows the concrete and steel base (a) and grid connection detail (b). At 

the supports, the lamellas ends are rigidly fixed, but the support allows uniaxial rotation. 

The base structure is designed to serve as sitting accommodation, covered with timber.  
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4.3.2 Digital Modelling 

Digital models and tools are necessary to handle the highly interdependent design and iterative 

engineering steps, as shown in section 4.1.4. In the following, the essential models for planning 

and analysis are described. Figure 124 gives an overview of these models and modelling 

steps. 

The Initial Geometric Model includes the geometric design of the grid at open service state 

(Figure 124a-c). The reference surface describes the most essential initial design parameters, 

from where the grid layout and any transformed states are derived using geometric operations 

or mechanical simulations. For the Kinetic Umbrella, a funnel shaped (anticlastic) rotational 

surface is defined by a rotated curve, (Figure 124a). An asymptotic curve can be found on the 

reference surface using appropriate algorithms1 (Figure 124b). On a rotational symmetric 

surface, an asymptotic network can easily be generated by using simple rotational copy and 

mirror operations. The orientation of the grid members based on asymptotic curves can be 

either derived by the curve’s curvature or by the reference surface normal, as these matches. 

The network’s density is the only design parameter in this step (Figure 124c).  

Network and orientation are the geometric base for the ideal and kinetic transformation 

models (System lines and profile orientation).  Adding hinges (DoFs), support conditions, 

eccentricities and profile parameters completes the mechanical model that was used for ideal 

transformation and kinetic analysis using IGA. (Figure 124d+e). 

The Static Model was setup using conventional FEM. To generate the FEM-model, the Initial 

Geometric Model was meshed, and all mechanical constrains were defined. The analysis was 

performed for the open state only, as this is the decisive state regarding wind (Figure 124f). 

Finally, the geometric Construction Model is completed with details and additional 

components to provide plans for construction (Figure 124g). 

 
1 E.g.: The Rhino/Grassho   r P u  n “Bo  r  r ”    T o    O  r  c   r (Oberbichler (2021) 
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Figure 124 Digital modelling process 
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4.3.3 Physical Modeling 

The development of the Kinetic Umbrella went along with various physical models in different 

scales. These models were used to test the global kinetic behavior and to identify technical 

challenges. All models are made from GFRP. 

Model 1:10 (Concept) 

 
Figure 125 Model 1:10 of the Kinetic Umbrella with centric hinge axis. 

The first model build is in a 1:10 scale using 8x1 mm lamellas and it is based on a preliminary 

geometry to test transformation in general. Figure 125a shows the model at closed, 

intermediate (natural) and open state.  

This model proved fluent transformation by actuating two nodes only. This confirms the 

restriction of the transformation to its predicted path and the quality of the mechanism. The 

model is double layered and centric hinges are used (Figure 125b). 

Model 1:3 (Kinetic Performance, Offsets and Actuation) 

The second model was built at 1:3 scale, with a height of ~2 m (Figure 126). The reference 

surface (including the asymptotic network) and the eccentricities at the nodes exactly reflect 

the proportions of the built Structure. The model was used to successfully test the performance 

with eccentricities and to provide an experimental playground for testing actuation or cover 

systems. The circular cable configuration (see also Figure 136, p. 150) performed fluently, 

actuated by hand.  
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Figure 126 Model 1:3 of the Kinetic Umbrella with eccentric nodes and final geometry: a) closed (left) to open (right) state of 
transformation (Photo: F. Matella), b) node detail (left), cable actuation for testing (middle) and supports with uniaxial hinges. 

Model 1:1 (Details) 

 
Figure 127 Unit cell Model: a) pantograph mechanism of the textile adaptive shading system b) detailed construction model c) 
spacer for eccentric aluminum profile positioning, (Model Setup and Photo: C. Lindner and Tao Sun) 

Several detailed models in scale 1:1 were used to test the assembly, collision, and local 

performance. The unit-cell-model in Figure 127 tested the nodes and cover systems 

performance during transformation (see Figure 121d). This model revealed important collision 

issues regarding the node kinematics and cover system, caused by eccentricities. As a result, 

the textile strips for shading are located with distinct distance to the nodes, and they offset in 

bi-normal direction (Figure 127c, and see section 4.1.3 for offset description). 
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4.3.4 Engineering the Kinetic Umbrella  

The engineering process of the Kinetic Umbrella refers to the workflow described in section 

4.1.4. Various analytical and numerical calculations, and model studies were performed 

iteratively with the goal to find a suitable geometry, profile, actuation system, and suitable 

details.  

In the following, the key processes and their results are described. These are not clearly 

divided in practice, as they are highly interdependent. 

Mechanical Concept and Design 

Umbrellas are characterized by a central support and free edges. The ability to deploy refers 

to the vertically projected area underneath. The rotational types of semi-compliant grid 

mechanisms provide useful morphologies and promising kinetic characteristics for this 

application. For the Kinetic Umbrella, the rotational “asymptotic” setup was chosen because of 

two key advantages against the “double ruled” or “geodesic” setup  

• The base circle must not transform synchronic to the top circle and thus allows fixed 

supports at the base. This constraint restricts the deformability. Furthermore, sliding 

supports are complex devices and more difficult to handle. 

• The “upright” lamella orientation is suitable to stabili e free edges  see section 3.3.1), which 

suits to umbrella geometries. 

The Kinetic Umbrella was designed from its open state. The rotational surface is defined by 

rotation of a “design”-curve. Asymptotic networks were analyzed in real time using a parametric 

workflow, by modification of the “design”-curve. 

The following geometric criteria were set for the initial network design: 

• The global proportions must show architectural qualities. 

• The open shape must provide reasonable distance to accommodate people sitting or 

standing underneath. 

• The min. and maximum density need to stay in a reasonable ratio. Small internodal 

distances may lead to constructive problems and large distances may cause buckling. A 

higher density at the base area is in line with higher normal forces due to self-weight. 

• The number of nodes must be in reasonable relation the structure. 

• The beams curvatures and twists must stay in a reasonable range to allow elastic 

deformation. 

• The grid’s members must be inclined at any location to generate resistance against global 

torsional deflections. 

Figure 128 shows three exemplary design variations of the initial, open state. 
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Figure 128 Variations of asymptotic networks defined by a rotated "design"-curve (blue): a) Waisted shape, b) Conical base shape 
with curvature concentrated at the top area, c) Vertical and straight start of the "design"-curve at the base. 

The waisted surface in Figure 128a results to a dense network at the bottom area and 

numerous nodes. In contrast, the variation in Figure 128b results to a more spacious network, 

but architecturally, an overwhelming impression. Figure 128c shows a design with reasonable 

density and proportions. In this variation, the ”design”-curve is vertical and has no curvature at 

the bottom, which results to a surface of zero gaussian curvature (developable) at the bottom, 

and consequently, the asymptotic curves start in the same (vertical) direction, with no 

horizontal component. 

 
Figure 129 Final reference surface and asymptotic network layout 

Figure 129 shows the final reference surface and network layout, that satisfies all design 

criteria mentioned, similar to the variation in Figure 128c, but with an intersection angle 𝜑 > 0 

at the bottom, and horizontal force components at any location of the grid. 

This study shows the impact of the initial shape on several design criteria. It underlines the 

importance of parametric workflows to allow iterative design loops, that run from shaping the 

initial reference surface to detailed design. 

Transformation Design and Analysis 

The transformation of the Kinetic Umbrella was simulated using ideal mechanical parameters 

for the grid members. The initial, one-layered grid without any offsets and a lamella ratio of h/t 

= 100/1 was used in this preliminary transformation analysis using IGA (section 2.3.2, p.34). 

The actuation for this simulation was applied according to the “central” configuration (see 

Figure 136). 

 
Figure 130  Curvature analysis of the Kinetic Umbrella at all transformation states: a) Geodesic torsion, b) Normal curvature, c) 
Geodesic curvature 
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Due to rotational symmetry, this analysis is valid for all grid members. The local curvatures of 

a single grid member are displayed in Figure 130 throughout transformation. 

Note, there is normal curvature measured, that does not match with the asymptotic definition. 

However, the value is very small and results from a given stiffness in this axis, which is not 

infinite but high in relation. Nevertheless, the value is later applied for predimensioning. 

The curvature-square analysis maps valuable information regarding the internal kinetic 

performance during transformation. Figure 131 shows the curvature-square graphs (top) and 

the graph of the height of the gravity center (bottom). The outer Diameter 𝑑 of the Umbrella 

used as a reference parameter to allocate transformation states. 

 
Figure 131 Graphs showing the curvature-square (top) and height of gravity center (bottom) of the Kinetic Umbrella during 
transformation. 

Th graphs show opposing minima. The self-weight will pull the Umbrella into an open state 

(bottom, grey). The curvature-square graphs reveal that the torsional energy decreases in 

either open or closed state (blue), and weak axis bending finds its minimum somewhere in 

between (red). Strong axis bending is nearly non-existent. 
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Beam (Pre-) Dimensioning 

For kinetic grid structures, profile dimensioning is a decisive step at early planning state. 

Besides load-bearing, the beams must perform and resist elastic deformation, and the 

transformation must be handled by an actuation system (see section 4.1.1, p.120).  

For the Kinetic Umbrella, single lamella profiles made of GFRP were chosen. The GFRP-

profiles are produced by FIBROLUX1. The following characteristic values are provided by the 

producer and used for structural analysis: 

Stiffness    

Elastic Modulus for Bending 𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔,𝑐 2500 kN/cm2 

Elastic Shear Modulus 𝐺𝑐 280 kN/cm2 

Strength    

Bending strength 𝑓𝑏𝑒𝑛𝑑𝑖𝑛𝑔,𝑐 40 kN/cm2 

Shear strength 𝜏𝑐 3 kN/cm2 

For preliminary dimensioning, the maximum values of the curvature analysis are used. With 

the 80x8mm GFRP profile, the following maximum stresses occur: 

shear stress due to 𝜅𝑥 (St. V.) 𝜏𝜅𝑥 (Equation 16) 1,9 kN/cm2 (63%) 

normal stress due to 𝜅𝑦 𝜎𝜅𝑦 (Equation 9) 0,2 kN/cm2  

normal stress due to 𝜅𝑧 𝜎𝜅𝑧 (Equation 9) 4,9 kN/cm2  

normal stress due to 𝜅𝑦+𝜅𝑧 𝜎𝜅𝑦+𝑧  5,1 kN/cm2 (10%) 

This preliminary analysis of stresses shows, that for additional loads, 90% of normal stress 

capacities and 37% of shear stress capacities are hold available.  

These values do not include effects due to helix torsion. However, the impact of helix torsion 

on this profile can be analyzed. Figure 132 shows the impact for twists up to 90°. The torsional 

moment and energy portions caused by helix torsion effects are very low in this comparison 

(~3-4%) and are neglected for further analysis and dimensioning. 

 
Figure 132 Impact of helix torsion on the profiles of the Kinetic Umbrella: a) Section b) Torsional moment due to St. Venant and 
helix torsion, c) Strain energy for a lamella of 1 m length 

The beams stiffness is relevant for the actuation of the umbrella and the profile shape defines 

constructive solutions. In this context, the beams profile and material choice remain issues 

throughout the complete engineering processes.  

 
1 Fibrolux GmbH, Hessenstr. 18, 65719 Hofheim – Wallau, Germany 
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Constructive Design 

This planning step looks at detailed constructive criteria and solutions, especially those, that 

have an impact on the systems kinetics (see section 4.1.4, p.121). 

The development of profile, node, layering, or offsets is highly interdependent. The grid of the 

Kinetic Umbrella has internodal spacings of 22,2 cm in its most dense area at the bottom. This 

rather dense grid does not suit for nodes where profiles are cut and attached to a connective 

component, as such connections need space along the beam. In this case, the design focused 

on lateral solutions to allow continuous profiles. 

 
Figure 133 Alternative, central nodes with hollow or split profiles: a) Slotted hollow section (high Iz), b) C-profile (low Iz), c) Double 
layered profile 

Figure 133 shows profile and node solutions that allow a central rotational axis with only 

minimal profile perforation. Using hollow profiles or C-Profiles (Figure 133a, b) allows rotational 

hinges just by drilling holes. In Figure 133c, the profile is split in two lamellas and a connective 

component is used as bolt sleeve. These solutions hold constructive advantages. However, 

such profiles are potentially stiffer and bearing of holes have a weakening effect. 

 
Figure 134 Grid node: a) 1:1 Model of the hinged node, b) Disassembled joint 

An eccentric solution, in contrast, disconnects profile dimensioning and constructive aspects, 

as the connective component (bolt) must not stay within profile. Figure 134 shows the node 

with 12 mm eccentric bolt and all components. This offset follows the geometric design 

principle of eccentric lamellas, and nodes placed at the original, ideal network intersection 

(according to Figure 101b, p.116). The two lamella layers have an offset of 85mm using 80x8 

mm lamella profiles. These offsets influence the kinetic performance and must be considered 

in further analysis. 
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Kinetic Design and Analysis 

The kinetic analysis aims to fully understand and control the transformation process, with 

respect to any geometric constraints, offsets, beam parameters and the actuation system (see 

section 4.1.4, p.121) 

The analysis of internal energy based on the ideal transformation analysis (curvature-square 

and height of gravity center) gives an approximation of the kinetic performance. The curvature-

square values are simply multiplied by the beam’s stiffness parameter  𝐸𝐼) and the height of 

the gravity centre is multiplied by the profiles specific weight. Figure 135 shows the graph of 

strain, potential and the total energy when the Kinetic Umbrella opens. Note, that for the 

potential energy shown here, only the mass of the grid members, and no additional 

components are considered. 

 

Figure 135 Strain, potential and total Energy Graph of a single 8x80 GFRP Lamella profile during transformation 

The graphs show, that using the 80x8 mm GFRP profiles, self-weight is dominant. The total 

energy graph (Figure 135, black graph) is decreasing and the umbrella opens naturally. To 

close the umbrella, energy input is needed. 

There are multiple options to actuate the system. Distances can be controlled either by a cable 

(tension only) or by an electric linear actuator exemplarily. The required force is furthermore 

called “actuation”-force. Three basic geometric approaches with specific characteristics 

regarding the kinetic performance of actuation were identified for rotational symmetric grids: 

the “central”, “meridian” and “circular” configuration. Potentially, also others, or combinations 

are possible. Figure 136a shows these three configurations applied at node 11 of the Kinetic 

Umbrella. 

In the “central” configuration, the distance to a central point located at the rotational symmetry 

axis of the grid is controlled. Note, that this configuration cannot be integrated within the grid 

structure, as an external point is connected. The “meridian” path is planar on a vertical plane. 

Note, this path is a geodesic curve and represents one of two “diagonal” paths of the 

asymptotic network. The “circular” configuration represents the other “diagonal” path. The 

circle is horizontally planar and embedded into the grid. 
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Figure 136 B   c conf  ur t on  of  ctu t on    t    on t   K n t c U  r       ) “C ntr    “  r    n”  n  “c rcu  r”   tu   ) 
G o  tr c  n       of t   tr n for  t on of t   K n t c U  r      tot      t nc  of t       c conf  ur t on  “c ntr  ”  “  r    n” 
 n  “c rcu  r”          t no      fro  t   K n t c U  r     

The geometric analysis of path-controlled configurations of the actuation system gives some 

valuable indications for the design. The work to be done to close the umbrella can be carried 

out by actuation of long distances and low force or short distances with high forces (see 

Equation 29). The graphs in Figure 136b describe the total length of the three basic 

configurations at any state of transformation. A low gradient means low change in length and 

thus high actuation forces. 

The “central” configuration  green) shows the largest change in length from start to the end of 

transformation, indicating low forces consequently. The length is increasing with lowering 

energy level (while opening), and the other way round. This indicates tensile forces, that allow 

the use of a cable system accordingly. The gradient (indicating force) is lower at the open state 

(t=0) and higher at the closed state. This does not coincide with the potential energy gradient 

referred to the gravity-center-height graph. In other words: This configuration is not effective, 

where needed, as the “gear-transmission”-ratio is inverted. The system performs like a car, 

driving horizontally at low gear and driving up a hill on a high gear. 

The length at the “meridian” configuration is decreasing while the potential energy is lowering, 

and increasing, while the energy level is rising (closing). This actuation must work in 

compression, and thus involves the use of linear compressive actuators. The gradient (change 

in total length) is smaller compared to the “central” configuration, and higher forces are 

expected accordingly. The gradients of the potential energy (height of center of gravity) and 

actuation length coincide, which may pose a general advantage using actuators rated for 

constant force. 
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The “circular” setup involves tensile forces. The total change in length is similar to the 

“meridian” configuration and the gradient characteristics are similar to the “central” 

configuration. Although these characteristics are not ideal, the circular setup was chosen, as 

a simple cable system, attached to the grid can be used (internal actuation). To decrease the 

cable force (and actuation force), a circular pully system was developed. In this system, the 

cable ring and thus the length of cable to be actuated is doubled, which results in half the 

actuation force. Figure 137a,b show the principle of the pulley system and the application at 

the Kinetic Umbrella. Figure 137c shows the cable force taken from the numerical analysis 

(IGA). At open state, the force is increasing as expected from geometric investigation in Figure 

136b, when the cable is released. 

 
Figure 137 Circular cable system: a) Cable pully principle, b) Circular pulley configuration of the actuation cable, c) Cable force 
during transformation from closed to open 

Note, apart from the shown configurations, there are numerous geometric possibilities for path-

controlled systems: These could be assigned to other or more node rows, or geometric 

configurations can be combined. 

The shown analyses underline the significance of the geometric and kinetic progression for 

further engineering: The energy progression is a decisive criterion for the actuation concept. It 

defines, where energy must be induced and clarifies whether compressive or tensile systems 

are suitable, or if the actuation is uni- or bidirectional (section 3.1.1, p.59).  

The morphological sequence (geometric progression) is used to analyze various concepts of 

path-controlled actuation systems, without the necessity of numerical simulations for each 

variation. This allows quick conceptual decisions. 

The fact, that the energy level of the structure is lowering when opening is beneficial as this 

allows a unidirectional system. Together with the “circular”, path-controlled concept, a cable 

system is possible.  

 c
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Static Analysis 

This planning step looks at the closed and open service state (see section 4.1.4, p.121). In 

these, the structure must resist conventional external loads, such as wind. The goal is to prove 

load-bearing at these states. For this, static analysis was performed using the “inverse”  E  

method1. The open state was modelled and analyzed analogous to the case studies shown in 

section 4.2. The analysis of the closed state is not shown here, as this state is not decisive. 

The following investigations and results focus on the external load cases self-weight (SW) and 

Wind (W) in addition, which is applied as a globally projected line load 0,05 kN/m at all grid 

members. Prestress due to bending and torsion is present at all load cases. Note, a critical 

state is analyzed, where locking cables are not activated, and the structure is tied by the 

actuation cable only (representing a worst-case scenario). The calculations are run in theory 

of 3rd order. Given the results in Figure 139, some decisive observations and interpretations 

can be stated: 

• The maximum stresses within the grid structure (SW:4,8 ; SW+W: 5,5 kN/cm2) lead to an 

utilization of 14 % regarding material strength. The load case Self-Weight (including 

residual stresses) causes 87 % of the absolute, maximum utilization in load case SW+W.  

• Under self-weight, the grid structure is under axial compression, under wind, tensile forces 

occur at the side facing the wind. The normal forces within the grid structure increase at 

the bottom, where maxima are reached (SW -0,33 kN ; SW+W: -1,35 kN). The load case 

Self-Weight causes 19% of the absolute, maximum normal force.  

The relation of forces and stresses at different load cases leads to the following interpretation: 

The grid structures stresses are predominantly caused by initial deformation. Globally, load-

bearing works through axial grid forces. In consequence, further analysis aims on stability: 

In calculations, run in theory 3rd order, nonlinear behavior is generally considered, and stability 

failure can be derived. However, a simplified investigation provides a backup for stability 

evaluation. According to section 3.3.2, the critical Euler-Load provides a useful indication for 

the axial load capacity in compression. In this investigation, only internodal spacing is 

considered. Figure 138 shows all internodal spacings and the calculated critical Euler-Load as 

a reference capacity. These values underline the sensitive effect of internodal spacing on the 

compressive capacity and stability can be stated as decisive failure effect. The critical Euler-

loads are not exceeded. 

 

Figure 138 Critical Euler Load as reference indication for the load-bearing capacity at each internodal segment 

 
1 Dlubal R-FEM 5, see also section 2.3.2, p.34 
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Figure 139 FEM-analysis: Stresses and normal forces of the Kinetic Umbrella for Self-Weight (SW) and additional Wind (W) 
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Construction Planning 

This planning step aims to provide strategies and data for assembly and erection (see also 

section 4.1.4, p.121). 

The Construction Model was set up including all details. From this geometric 3D-model, all 

plans for workshop and fabrications are derived. Figure 141 gives an overview on key plans 

and details relevant for the construction. These can be separated into a falsework plan for the 

grid assembly, drill plan for the lamellas (a set of distances to define the node locations), steel 

table plans (laser data and assembly/welding instruction), and concrete base plans (formwork 

planning). 

Figure 140 shows the drill plan used to fabricate all lamellas. The distance set given in this 

single drill plan defines the complete special shape of the structure (due to rotational 

symmetry). Along the single lamella, all 13 nodes are numbered. 

 

 

Figure 140 Drill plan valid for all lamellas 

The assembly of the grid structure requires a falsework. The idea was to assembly the grid 

structure horizontally (see also Figure 142f), by placing the lamellas of the inner layer of the 

grid into slots of a circular falsework. For this, a specific state (nearby the closed state) was 

chosen, and the geometry of this state was taken from the digital model (Figure 141a). Two 

circular plates were positioned in the grid structure to collide with the inner grid layer, but not 

with node details (Figure 141c). These plates were supposed to be slotted to easily place the 

inner grid layer into position, and later attach the outer layer.  

The steel table is welded together from 5 to 15 mm laser cut steel plates. The laser data is 

shown in Figure 141e. The in-situ concrete base underneath was poured into timber formwork, 

shown in Figure 141d. 

The Construction Model helped to avoid mistakes when these components were brought 

together. It gives clear insight into potential collisions or reveals other potential problems.  
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Figure 141 Overview on key construction plans: a) Grid structure in state for horizontal assembly, b) Drill plan for lamellas, c) 
Saw plan falsework for grid assembly, d) Concrete formwork and steel table detail, e) Data for laser cutting (steel base)  
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4.3.5 Assembly and Erection 

The construction process of the Kinetic Umbrella lasted about two months. The following   

descriptions give insight into the construction process chronologically. The pictures in Figure 

142 illustrate this process.  

The base includes concrete weights at the bottom, a steel table as structural support for the 

grid structure, and timber covers for sitting accommodations. The concrete was poured on site, 

directly from a concrete mixer into the timber formwork (Figure 142a). The steel table was 

welded together by the steel manufacturer BRANDL1 and mounted on top of the concrete 

bodies (b).   

The grid structure is made of 32 GFRP lamellas, produced by FIBROLUX2 and delivered in 

a single package. Figure 142c shows the lamella material used in total. The lamellas were 

drilled according to the drill plan (see Figure 140), and the aluminum connectors were attached. 

All lamellas are equally prefabricated using a full table drilling template (d).    

The grid was assembled in a spatial, nearby closed state. A falsework was used (see Figure 

141a) to successively insert the inner layer first, and then attach the outer grid layer (e,f). Note, 

the lamellas must be bent and twisted for assembly. This requires some force that could be 

managed by hand. Large timber forks were used to induce twist and bending when connecting 

the grids nodes. 

 

The locking cables and support connectors were already mounted in the assembly state.  

The erection was performed using a crane. The grid structure was transported horizontally in 

its mobile falsework and lifted at selected nodes. This falsework kept the grid structure at the 

supports in correct position (radius) to mount the lifted grid onto the steel base (g). Once 

connected, the timber falsework was removed, and the structure secured with a temporary belt 

until the actuation cable was threaded and connected to the winch at the base.  

The cover system was prepared in advance. All aluminum profiles tor textile guiding (see 

section 4.3.1, p.138) were milled, and trimmed textile fibers were prepared (h). The profiles 

and fibers were mounted onto the grid structure by hand (i).  

Finally, the timber cover was attached to concrete and steel parts of the base.  

Conclusion 

The assembly and erection process were performed without notable disruptions. However, the 

major challenges were to keep tolerances of the grid structure at a small level and to mount 

the lamellas at an initially stressed state. The tolerance could be faced by a precise template 

for prefabricating the lamellas.  

For mounting, it was necessary to access the structure inside, which was possible due to the 

steel table design with openings. 

 
1 BRANDL Eitensheim (Germany) , www.brandl-eitensheim.de 
2 FIBROLUX GmbH (Germany), www. Fibrolux.com 
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Figure 142 Fabrication, assembly, and erection of the Kinetic Umbrella: a) Pouring concrete base, b) Placing steel base, c) 
Lamellas ready for prefabrication d) Prefabrication of lamella beams (drilling holes for connective components), e) Connecting 
grid members in falsework f) Assembly of grid structure horizontally in falsework g) Lift-up and connection of grid structure to 
base, h) Prepared textiles for the cover system, i) Mounting of textiles (cover system), j) Placing timber at base for sitting 
accommodation. 
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4.3.6 Geometric and Kinetic Validation 

 
Figure 143 Measurements at the Kinetic Umbrella: a) Setup of lasers scan, b) Force meter interconnected at actuation cable 

The design and engineering of the Kinetic Umbrella involved several simulations to predict the 

transformation in both geometric and kinetic quantities. After the Structure has been 

completed, measurements were taken to validate the simulation results. The geometry was 

measured using a 3D lasers scan, and the actuation force was measured using a force meter 

(Figure 143). In the following, the scanned geometry and measured forces are compared with 

simulation results. 

Geometry Validation 

The data received from the laser scan and the simulated geometry of the kinetic transformation 

analysis are overlayed using CAD. The scanned geometry was aligned with the steel base 

structure of the 3D-model, as this component is built in high precision and therefor provides a 

reasonable reference. A transformation state of the 3D-model was chosen to receive a state 

of “best fit” at the grid structures top and deviations are measured at selected positions. Figure 

144 shows various views of the geometry overlay. Deviations are measured up to 20 mm. 

Although deviations of 20mm are much in conventional building, for a transformable lightweight 

structure, this value is satisfactory. Geometric deviations might be caused by tolerances in 

drilling and hinges, by not perfectly adjusted locking cables, or by deviations in load 

assumptions (self-weight). The latter is less likely, as masses were carefully recorded. 
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Figure 144 Overlay laser scan (original color) and simulated geometry (blue) (IGA, self-weight) 
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Force Validation 

The tension at the actuation cable was measured at 22 transformation states with an 

interconnected force meter (Figure 143b). Each measurement was done twice: Once when 

winding (closing) and another when unwinding (opening) the actuation cable. These two 

measurements differ considerably, and the only reasonable explanation for this difference is 

friction. To understand these effects, a simplified but distinguished model of force components 

is set up schematically. In this model, forces either work opening or closing, and the following 

assumptions are made: 

• At any specific state of transformation, forces due to self-weight and strain are not 

dependent on the direction of transformation (opening or closing). Hence, accelerations 

are ignored. 

Forces due to self-weight and strain are nonlinear throughout transformation (see also 

section 4.3.4 Friction always works in opposite transformation direction. 

• Friction is caused at two positions: At hinges (nodes) and at the actuation cable (pulleys). 

Friction at node rotation does not depend in quantity on the transformation direction and 

friction at the actuation cable depends on the actuation cable force, which does depend on 

the transformation direction, due to involved hinge friction (at nodes). 

• The friction at the cable is linear dependent on the actuation force via the friction constant 

𝜇, to be set. This friction is generated, where the actuation cable runs downwards to the 

base via sliding guidance. The force in the cable ring at the top is not influenced by friction. 

This model, together with measurements and friction-free simulation results, allows to back-

calculate friction to its components. Figure 145a shows the abstracted actuation model at 

winding and unwinding process (see also section 3.1.1. for model definition). On the right, the 

equilibrium of both situations is shown in a force diagram. This model is used to evaluate the 

forces measured. In Figure 145b, several forces are mapped along transformation. The 

horizontal axis in this graph describes the length of winded/unwinded actuation cable. The 

measured values (dots) are approximated via polynomial regression (dotted blue curve). The 

force in the cable ring 𝐹𝑅𝑖𝑛𝑔 is calculated using the friction coefficient 𝜇: 

𝐹𝑅𝑖𝑛𝑔 = (1 − 𝜇)𝐹𝐴𝑐𝑡. Equation 67 

Because friction at hinges is equal in absolute quantity for winding and unwinding, the friction-

free force in the cable ring lies exactly in between the winding and unwinding values. This 

friction-free value of the cable-ring force is compared with simulation results from the kinetic 

transformation analysis (4.3.4, also free of friction) and the friction coefficient 𝜇 can be set to 

achieve best fit. Here, the value of 𝜇 = 0,2 is set.  

The simulated values (green curve) fit well together with the measured and back-calculated 

values (black curve) of the cable ring force. Deviations occur, at nearby closed states. These 

deviations are likely due to inaccurate measurements of low forces and other, smaller friction 

effects that become sensible at states of low actuation forces (<0,15 kN). However, with these 

results, the numerical simulations can be validated. 
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Figure 145 Force validation: a) Abstracted actuation mode, b) measured actuation, ring and simulated forces (bottom) 

For the Kinetic Umbrella, friction has a noticeable impact on internal forces, especially on the 

actuation system. At open state, the real forces including friction are doubled, and when 

opening, the real forces are only one third due to friction compared to the results of numerical 

investigations. 
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Figure 146 Kinetic Umbrella (closed) 
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5 SUMMARY AND CONCLUSION 

This work reveals the morphologies and the kinetic performance of semi-compliant grid 

structures with restricted compliancy, using both physical and computational modeling and 

simulation. Supported by various case studies, novel approaches and engineering strategies 

are developed and applied to implement semi-compliant grid structures at architectural scale.  

5.1 Results and Significance 

In the following, key results, interpretations, and the scientific significance are summarized, 

following the structure of this work. 

2 STATE OF THE ART 

This chapter aims to provide decisive fundamentals and to give an overview on the related 

research environment.  

Section 2.1 recaps geometric fundamentals. It orientates at basic geometric objects, from 

points to networks on surfaces. Decisive geometric parameters of these objects are specified.  

Section 2.2 recaps mechanical fundamentals of elastic beam deformation and related strain 

energy, on both profile and beam element level. Furthermore, the basic phenomena of large 

elastic deformations are described.  

Section 2.3 provides an overview on computational and physical modeling techniques, used 

in this work. These are generally suitable for the design and analysis of semi-compliant grid 

structures. The focus lies on computational, parametric modeling methods, that support the 

iterative character in the design of such structures. 

In Section 2.4, selected topics of research and development are presented, that highly relate 

to this work. The selection includes the research areas of architectural geometry, 

transformable, compliant, or active bending structures. A selection of build strained gridshells 

shows the current state of development at architectural scale. These topics have a large 

common ground but originate from different perspectives. Finally, the research environment of 

compliant grid transformations is displayed, and research gaps identified. 
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3 MECHANICAL STUDIES 

This chapter discovers geometric-mechanical relations of semi-compliant grid structures in 

various physical and computational analyses. 

Section 3.1 describes the anatomy of the research object, the structural components of semi-

compliant grid structures and thus provides a structural framework. Furthermore, the structural 

scope for subsequent investigations is defined: Quadrilateral grid structures on smooth 

surfaces with restricted beam compliancy and uniaxial hinges at intersections.  

Section 3.2 includes a kinematic (rigid body), and two kinetic transformation analyses: 

The kinematic analysis (section 3.2.1) investigates rigid-body transformations of four two-

dimensional cutouts of quadrilateral grid structures. Each cutout represents a basic case of 

how members can be orientated to an induced, directed deflection. The ratio of orthogonal 

compression and extension is geometrically derived. Grid layouts that are not symmetric to an 

induced compression/extension also involve shear-like transformation. If both grid member 

families are sloped in the same direction in a qualitative sense, an auxetic behavior appears. 

In a nutshell: This study reveals a simple geometric relation, that in its basis also applies to 

semi-compliant grid transformation. It describes the “lateral strain” of such structures on a 

macro structural level, using trigonometric formulas. Although these are purely kinematic 

relations, they are likely to exist also within compliant, curved configurations, that also (at least 

partly) perform through axial forces. 

The kinematic relations directly express the static force relations within the grid, and thus 

influences the actuation and static performance. From this perspective, the intersection angle 

(the network layout) can be used as a design parameter.  

The first kinetic analysis systematically investigates the morphology and transformability of 

semi-compliant grid structures with varying axial compliancy. This analysis is carried out using 

numerical simulations of an equilateral, flat grid structure, supported at four points, and 

transformed into spatial. The reference surfaces of the transformed grids are then analyzed 

regarding shape and curvature. This investigation covers three types: triaxial, biaxial, and 

uniaxial compliancy of the grid’s members. Simulations involve either path-controlled 

deflections or eigenmode analyses, depending on the suitability for this investigation. The 

following is stated: 

• Triaxial compliancy: The grid is transformed by controlled displacements at selected nodes. 

This grid type allows full adaptivity to any doubly curved smooth surfaces. This is in line 

with common practice in strained gridshell erection. However, this freedom of shape comes 

with a low controllability of the transformation, and such grids need to be physically forced 

at multiple positions to reach into desired shapes. 

• Biaxial compliancy: There are three possibilities to configure biaxial compliancy, each has 

one axis rigid, the other two compliant. The simulations run for all configurations and two 

corner nodes are displaced to force a spatial transformation. All transformed shapes show 

constant gaussian curvature on their reference surfaces. However, their sign is 

characteristic: If torsion is rigid, the reference surface is synclastic and spherical. If bending 

at normal axis is rigid, the curvature is constantly negative, and thereby pseudospherical. 
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If the bi-normal axis is rigid, the reference surface’s Gaussian curvature is zero, and 

thereby developable (Note, only valid for equilateral geodesic grids). 

These observations are in line with geometric expectations for equilateral networks on 

curved surfaces. The simulations show that these shapes can be generated mechanically 

in a fluent transformation process, and that this transformation can be induced by local 

actuation, a crucial quality and requirement for the applicability of mechanisms. 

• Uniaxial compliancy: There are three possibilities to configure uniaxial compliancy, each 

has one axis compliant, the other two rigid. This type is analyzed not by forced 

displacements, but through an eigenmode analysis. The following is observed: If only 

torsion is compliant, there is no global transformation possible (except for non-equilateral 

grids, e.g.: rulings of a hyperbolic paraboloid). If bending at bi-normal axis is compliant 

(creating normal curvature), the transformed shapes are developable. If only normal axes 

are compliant (creating geodesic curvature), the transformed shapes remain planar. 

These observations are also in line with geometric expectations for equilateral networks on 

surfaces. The high level of restriction in transformability is a beneficial quality for shape 

control, but the spectrum of shapes is low. The equilateral setup does not allow any doubly 

curved transformation. 

The geometric expectations for all semi-compliant equilateral grid structures are fulfilled. This 

verification underlines the suitability of geometrically derived assumptions on structural 

morphology, not only for selected states, but for entire transformations. 

However, there is still a wide spectrum of global transformability. Exemplarily, transformations 

shown for uniaxial compliancy (see Figure 64) are also valid for biaxially compliant structures, 

as these represent a morphological subset. 

Altogether, the cases of biaxial compliancy (section 3.2.2, B and C) and uniaxial compliancy 

(C) on doubly ruled surfaces show the greatest potentials in their abilities to be punctually 

actuated and regarding geometric feasibility at section level. These are further investigated. 

The second kinetic analysis (section 3.2.3) aims at the progression of internal strain energy. 

The systems chosen for this analysis, and their axial compliancy, are mechanically feasible in 

terms of profile stiffness ratios. The analysis includes lamella grids (biaxial compliancy - 

bending and torsion) and cross-sections (uniaxial compliancy – torsion only).  For each type 

an open and rotational grid structure is modeled, and transformations are simulated. The 

internal strain energy progression, apportioned into its axial components is tracked using the 

integrated curvature-square value, representing the geometric factor of the strain energy term.  

The curvature-square analysis gives insight into the internal balance of strain energy portions 

and their progression. It reveals possibly “natural” states of minimum strain energy, and how 

local profile stiffness ratios can influence the internal strain energy balance. The curvature-

square graphs are mapped for bending and torsion separately to provide a clear differentiation.  

The “double ruled” structures show distinct strain energy minima (natural states), e.g., at 

bundled state or for the hyperbolic paraboloid. 

The natural state of structures with two compliant axes potentially depends on the compliant 
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stiffness ratios. Some structures show an increase (or decrease) of both torsion and bending 

when transformed. Their “natural” state of equilibrium cannot be modified by tuning the 

compliant axes bending stiffnesses. Other structures show countering curvature-square 

graphs. Their natural state can be modified accordingly. 

The curvature-square analysis can be used for beam dimensioning as part of an iterative 

engineering process (see section 4.1.4 p.120). The curvature-square progression is 

specifically useful for kinetic morphologies that do not depend on local stiffness ratios, or at 

least, when dependencies are neglectable. This is the case for highly constraint structures, 

either by internal stiffnesses or constraints (e.g., stiff bending axes or limited DoF at hinges), 

or by external constraints (supports, etc.). Once determined, the graphs depict the unique 

kinetic behavior of a specific setup. It is the kinetic fingerprint of a compliant grid mechanism. 

Section 3.3 investigates the performance of semi-compliant grid structures in a static, locked 

state in two numerical studies, aiming on global and local stiffness:  

The first study compares the global stiffness of grids with biaxial profile compliancy, 

represented by lamella profiles with “upright” or “flat” orientation, when different locking 

principles are applied. Each configuration is locked using either a full edge support, four single 

corner supports, or corner supports combined with internal bracings. The stiffness of these 

structures is evaluated in an analysis of eigenfrequencies. The following is concluded: The 

“upright” lamella configuration leads to higher “out-of-plane” stiffness, whereas the “flat” 

orientation leads to higher “in-plane” stiffness. The “upright” configurations show higher global 

stiffnesses in all tested setups, and, in contrast to a “flat” orientation, their in-pane-softness 

can be effectively countered using “in-plane” bracing systems.  

In general, the global stiffness also indicates global stability. In this context, the 

eigenfrequencies indicate resistance in terms of global stability phenomena and the modal 

shapes refer to buckling modes. 

The second study aims on the local performance of curved compliant beams under 

compression. Elastically curved multi-span beams with varying constant radii and varying 

internodal spacing (span) are compressed in a numerical simulation, and the load-

displacement paths are systematically recorded and evaluated. It is shown that the 

performance of curved members relates to the behavior of a straight, multi-span reference 

configuration. The shapes of deformation in curved configurations relate to buckling modes of 

straight multi-span beams and the resistance relates to critical buckling loads. The simulations 

show snap-through phenomena in between deformation modes, until the first buckling mode 

of a multi-span beam (Euler-case 2) appears. These findings support a simplified and early 

evaluation of the local capacities in terms of stability, using the simple critical Euler-load for 

early pre-dimensioning of profiles or grid density. 

Section 3.4 includes physical model explorations on semi-compliant transformability, 

morphology, and actuation. Investigated are selected systems based on asymptotic networks, 

rotational geodesic systems, and rotational scissor systems. Their transformability was 

explored in a design studio, including actuation systems. These designs were successfully 

implemented at model scale. Finally, the designs were compared regarding their components 

based on Section 3.1. and evaluated in key statements. 
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4 ARCHITECTURAL IMPLEMENTATION 

This chapter includes engineering strategies, dimensioning aspects, and design methods. 

These are developed and applied in various case studies at architectural scale. All built 

structures are dealing with asymptotic grid structures. 

Section 4.1 extracts decisive requirements and parameters for dimensioning in context with 

the stiffness paradox, that compliant structures hold in general, and interconnects these. The 

ability to actuate and to deform are presented as additional basic user requirements, that 

emerge specifically for compliant structures. The complexity of these competing requirements 

is displayed and dissolved.  

The stiffness paraoxon marks a special challenge for compliant structures. However, in section 

4.1.2 detailed strategies for dimensioning are provided to tackle this problem, either on profile 

geometry level or at material level. It is shown how geometric profile modifications impact the 

beams deformability and stiffness. Furthermore, a decisive material index is revealed, that 

quantifies the material’s potential to create elastically curved beams with maximum stiffness. 

Constructive criteria are elaborated systematically, aiming at offsets, layering and 

discontinuities. The principles of offsetting as a constructive strategy and the geometric 

consequences are shown. Furthermore, the effect of local discontinuities in elastically curved 

members is elaborated and quantified. The length and stiffness of discontinuities are decisive 

for their impact. 

All requirements and criteria are considered in an overall engineering process, that includes 

key processes: “Concept”, “Formfinding”, “Transformation Design and Analysis”, “Beam 

Dimensioning”, “Constructive Design and Analysis”, “Kinetic Design and Analysis”, “Static 

Design and Analysis”, and “Construction Planning”. These processes are integrated in an 

iterative workflow and connected via a coupled digital model environment. This engineering 

workflow is developed to manage the complexity of compliant grid structures. 

Section 4.2 gives insight into three case studies, that utilize semi-compliant transformation for 

asymptotic gridshell erection. These projects supported the developments of section 4.1 and 

demonstrate feasibility of semi-compliant transformation at architectural scale. 

Three projects are presented:  

The Inside/Out pavilion marks the initial motivation for this topic. The erection of this structure 

utilized the constrained transformability of asymptotic steel patches and demonstrated the 

potentials. Furthermore, the FEM-inverse method was developed to analyze the static 

performance. 

The Hotel Intergroup Canopy is the first commercial asymptotic steel structure. In this project, 

the kinetic performance when the grid structure transforms from flat to spatial was planned 

using novel simulation methods (IGA). The effect of helix torsion is analyzed in detail, as these 

depict a relevant portion. 

The Asymptotic Geodesic Timber Vault is the latest project. It demonstrates the feasibility of 

timber for structures of this kind. The erection was performed similar to the Inside/Out pavilion, 

although, this structure has some geometric features: In addition to an asymptotic grid 
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structure, is includes geodesic members (flat orientated timber lamellas).  

Transformability in all these build structures emerges from tolerances at the nodes and other 

connections. 

Section 4.3 describes the development and realization of the Kinetic Umbrella, a reversibly 

transformable asymptotic grid structure. This case study includes detailed kinetic analyses and 

introduces GFRP to this kind of transformable structures.  

The Kinetic Umbrella is a rotationally symmetric structure of 8 m diameter that can be closed 

to a slender cylindric shape. The base of this structure serves as sitting accommodation, and 

the compliant grid structure is covered with an adaptive shading system. The Kinetic Umbrella 

can be opened using a winch at the base of the structure. 

The grid structure is double layered, and the lamellas are coupled with lateral connective 

components, hence, the structure involves offsets, considered in simulation, but with 

neglectable impacts on the kinetic performance. 

The whole design and development of this project was performed in a coupled digital model 

environment, including a high level of parametrization. Simulations are run with using the IGA 

inverse approach. Detailing was integrated in this workflow. 

Various physical models were used at three different scales (1:10/1:3/1;1) for the development. 

These models tested effects and feasibility of the basic morphological concept, offsets, and 

other geometric-mechanic characteristics. The 1:10 model demonstrated the mechanical 

quality, as the grid could be transformed by actuation of two nodes only (by hand). The 1:3 

model showed that eccentricities and offsets do not essentially manipulate the kinetic 

performance. The 1:1 model was used for practical prototyping, to test the node, cover system, 

and assembly. 

The engineering of the Kinetic Umbrella utilized the theory described in chapter 3. The 

characteristics of structures with biaxial compliancy are beneficial for the application of semi-

compliant mechanisms, as they are constrained and restricted in deformability, and thus pose 

stiffness. Asymptotic grids tend to show beneficial stiffnesses at free edges (section 3.3.1). 

The curvature-square analysis reveals the kinetic character of this structural system. The state 

of minimum strain energy is theoretically adjustable using profile stiffness modification, but 

using reasonable sections and materials, strain energy is dominated by bending, and the 

minimum energy state is in between open and close. However, the self-weight pulls the 

structure down to the open state, and thus, actuation becomes unidirectional.  

The simulated morphology (sequence of states) was used to quickly derive mechanical 

concepts for actuation. The “circular” cable configuration was used, as this allows an internal 

actuation system. Furthermore, a circular pulley system was developed to manipulate cable 

forces (and cable friction). 

The static analysis verified the safety of decisive load cases. The FEM-“inverse” approach was 

used again and matched with the critical Euler-load using internodal spacings as buckling 

length. This approach relates to section 3.3.2, where the analogies are revealed. 

The structure was assembled and erected without notable disruptions. However, the major 
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challenges were to keep tolerances of the grid structure at a small level and to mount the 

lamellas at an initially stressed state. The tolerance could be faced by a precise template for 

prefabricating the lamellas. For the assembly of the grid structure, large timber forks were used 

to induce twist and bending when connecting the grids nodes. 

The internal forces and the physical state of the Kinetic Umbrella throughout transformation 

are compared with simulation results, and thus, used engineering approaches are verified. The 

deviations in geometry and force are in a reasonable range and give confidence to the methods 

used. 

The Kinetic Umbrella is the first reversible compliant grid structure of this kind. It demonstrates 

the architectural and mechanical potentials given by this constructive approach and shows 

how the complexity of designing compliant grid structures can be handled. 

 

5.2 Final Reflection 

This thesis supports a novel type of transformable structure: the semi-compliant grid. These 

structures allow spatial transformations of doubly curved, smooth surface like structures. 

Compliant, kinematic, and ridged components are strategically combined to create feasible 

mechanisms. Findings in differential and architectural geometry provide a fundamental basis, 

and novel computational methods are necessary for the development of such systems. 

This work systematically classifies semi-compliant grid structures and identifies its decisive 

parameters, geometric characteristics, kinematic relations, static, and kinetic behavior 

patterns. These explorations informed novel computational approaches and methods. 

The challenge of semi-compliant grid structures lies in the implementation at architectural 

scale. This thesis provides a systematic engineering workflow that guides from initial design to 

service of structure.  The various case studies did not only support these developments, but 

also demonstrate the concept and feasibility of semi-compliant grid structures in architecture. 
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5.3 Future Research 

The implementation of compliant grid structures in architecture involves multiple and diverse 

competences. Potentials for future developments are found in any related field: 

• Architecture: Transformable structures pose a niche in architecture. Nevertheless, their 

potentials are high for multifunctional buildings or adaptive building components, as these 

provide another dimension: time. The concept of semi-compliant grid structures is new in 

this field, but in future, architects may integrate such systems into their designs. Currently, 

architects and clients show increasing interest in transformable lightweight structures in 

context with climate change, urban heat islands, urban greening, etc. 

• Morphology: The morphologies and grid configurations treated in this work represent a 

sample of possible systems. The parameter-set and combinatorics suggests that there is 

a wide spectrum of shapes to be discovered. This includes exemplarily modifications in 

nodal DoFs or rotational axis orientations, non-constant beam stiffnesses or inclined, 

global, or other beam orientations, non-traversal, or angulated nodes, such as used for 

scissor-systems, etc. 

Such explorations can be performed using numerical simulations, but also differential 

geometry poses great potentials to systematically discover further network morphologies 

that can be translated into mechanical systems. 

• Material: The elastic capacities and parameters of compliant beams are dominantly limited 

and constrained by material parameters. Conventional material developments aim at high 

strength and stiffness. Compliant systems however aim at high maximum strain. 

Composite materials have shown high potentials in this characteristic, but specific research 

and development in this direction is still not present.  

Furthermore, such material developments may include aspects of sustainability. Natural 

materials, known for their sustainability, such as bamboo or timber products show great 

mechanical potentials for compliant structures. 

• Computational Methods: The analyses and developments presented in this work 

involved extensive computational modeling and simulation. In this course, new techniques 

were developed: The Bowerbird Tool by T. Oberbicher (Oberbichler, 2021) supports the 

design of curvature networks.  ovel coupling types and the “inverse” method used in IGA 

were developed by Anna M. Bauer (Anna Maria Bauer, 2020). These tools are important 

to support a fluent workflow. However, they can be improved, simplified, and extended. 

• Scale: In this work, the semi-compliant grid structure was brought into the architectural 

environment for medium size structures. However, the mechanical concept is transferable 

to other mechanical fields and other applications, and generally not bound to any scale. 

The use for smaller applications, or devices might even be more likely, as self-weight does 

less impact the systems kinetic performance. 

• Details and Cover: The Node, support, or actuation details and systems leave great 

potentials for further development and commercial use. Especially suitable, closed cover 

systems are not yet developed.  
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Nomenclature 

This list includes the most fundamental signs and quantities. 

 

Curves 

𝜅 Curvature [𝑚−1] 

𝜏 Twist [𝑚−1] 

r Radius of curvature [𝑚] 

 

t Tangent vector  

nc Normal vector   

b Bi-normal vector  

 

t Curve parameter  

 

Surfaces 

𝜅1 Max. principal surface curvature [𝑚−1] 

𝜅2 Min.  principal surface curvature [𝑚−1] 

𝐾 Gaussian curvature [𝑚−2] 

𝐻 Mean  curvature [𝑚−1] 

 

k1 Max. principal surface curvature vector  

k2 Min.  principal surface curvature vector  

ns Surface Normal vector  
   

U / V Surface parameter  

 

Curve on Surface 

𝜅𝑛 Normal curvature [𝑚−1] 

𝜅𝑔 Geodesic curvature [𝑚−1] 

𝜏𝑔 Geodesic torsion [𝑚−1] 

   

t Tangent vector  

ns Normal vector   

u Bi-normal vector  
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Geometric Profile Quantities 

𝑤, ℎ, 𝑡, 𝑑 Profile dimensions (width, height, thickness, diameter) [𝑐𝑚] 

𝑒 eccentricity [𝑐𝑚] 

𝐴 Profile area [𝑐𝑚2] 

𝑊𝑇/𝑦/𝑧 Sectional Moment (torsional, around y/z-axis) [𝑐𝑚3] 

𝐼𝑇/𝑦/𝑧 Moment on Inertia (torsional, around y/z-axis) [𝑐𝑚4] 

𝐼𝑃 Polar Moment of Inertia [𝑐𝑚4] 

𝐼𝑟 Helix area moment [𝑐𝑚4] 

 

Mechanical Profile Quantities 

𝑁, 𝑉𝑦/𝑧 Internal forces (normal force, shear force) [𝑘𝑁] 

𝑀𝑇/𝑦/𝑧 Internal moments [𝑘𝑁𝑐𝑚] 

𝜎 Internal normal stress [𝑘𝑁/𝑐𝑚2] 

𝜏𝑦/𝑧 Internal shear stress [𝑘𝑁/𝑐𝑚2] 

   

𝜀, 𝛾 Normal strain / shear distortion [−] 

𝜅𝑥/𝑦/𝑧 Twist / curvature due to torsion / bending [𝑐𝑚−1] 

 

Energy 

𝛱𝑖 Internal strain energy [𝑘𝑁𝑐𝑚] 

𝛱𝑒 External Work [𝑘𝑁𝑐𝑚] 

𝛱𝑝𝑜𝑡. Potential energy [𝑘𝑁𝑐𝑚] 

 

Material 

𝐸 Elastic Modulus [𝑘𝑁/𝑐𝑚2] 

𝐺 Shear Modulus [𝑘𝑁/𝑐𝑚2] 

𝜈 Poisson ratio [−] 

   

𝜎𝑅𝑑 Strength (limit of linear elastic stress) [𝑘𝑁/𝑐𝑚2] 

𝜏𝑅𝑑 Shear strength (limit of linear elastic shear stress) [𝑘𝑁/𝑐𝑚2] 

   

   

Abbreviations 

This list includes all abbreviations used in this work. 

 

DoF Degree of Freedom 

SLS Scissor Like Systems 

IGA Isogeometric Analysis 

FEM Finite Element Method  
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