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Zusammenfassung
Digitale Zwillinge, die aus dem Fertigungssektor stammen, haben begonnen, in gebaute
Infrastrukturen vorzudringen, da sie allen Beteiligten kontinuierlich erhebliche Vorteile
bieten können. In dieser Dissertation wird ein digitaler Zwilling als eine zweck-
gerichtete digitale Darstellung von Vermögenswerten oder Systemen definiert, die durch
regelmäßig übertragene Daten mit den entsprechenden physischen Anlagen oder Sys-
temen verbunden ist. Ein informationsreicher digitaler Zwilling einer Innenraumumge-
bung bezieht sich auf häufig aktualisierte digitale Modelle der Gebäude, die nicht nur
große raumbegrenzende Elemente, sondern auch kleine Elemente umfassen. Die zuge-
hörigen Informationen umfassen geometrische Informationen, Kategorieinformationen
und entsprechende Textinformationen.

Es ist von Vorteil, über einen informationsreichen digitalen Zwilling eines Gebäudes zu
verfügen, der den aktuellen Zustand des Objekts darstellt. Der Prozess der Erstellung
eines solchen digitalen Zwillings ist jedoch extrem zeitaufwändig und erfordert einen
sehr hohen menschlichen Aufwand, so dass die in die Erstellung eines digitalen Zwillings
investierten Kosten den potenziellen Nutzen, den er bieten kann, übersteigen. Diese
Arbeit zielt darauf ab, den menschlichen Aufwand in diesem Prozess zu reduzieren,
indem Methoden vorgeschlagen werden, die modernste Deep-Learning-Technologien zur
Automatisierung des Prozesses anwenden.

Der vorgeschlagene Gesamtansatz verwendet lasergestützte Punktwolken und Bilder als
Eingabe. Er beginnt mit der Segmentierung einer Punktwolke eines mehrstöckigen
Gebäudes in einzelne Stockwerke. Anschließend werden zwei verschiedene Ansätze für
Gebäude vorgeschlagen, je nachdem, ob sie die Manhattan-Welt-Annahme erfüllen oder
nicht. Beide Ansätze nutzen die semantischen Informationen, die durch Deep Learning
aus Punktwolken extrahiert werden. Die für Manhattan-World-Gebäude konzipierte
Void-Growing-Methode beginnt mit der Extraktion der Hohlräume innerhalb von Zim-
mern. Die raumbegrenzenden Elemente werden dann auf der Grundlage der extrahierten
Leerräume extrahiert. Für Gebäude, die die Manhattan-Welt-Annahme nicht erfüllen,
werden Ebenen in Punktwolken extrahiert, geschnitten und durch eine auf Energieopti-
mierung basierende Methode ausgewählt.

Der nächste Schritt ist die Rekonstruktion kleiner Objekte, wobei Bilder zur Verbesserung
der Ergebnisse verwendet werden, da die Erkennung kleiner Objekte in Bildern besser
ist als in Punktwolken. Die von der Kamera aufgenommenen Fotos können mit den von
einem Laser gescannten Punktwolken durch das photogrammetrische Verfahren registri-
ert werden, was bedeutet, dass die photogrammetrische Punktwolke als Brücke für die
Zusammenführung von Daten aus verschiedenen Quellen dient. Anschließend werden
moderne künstliche neuronale Netze zur Bildsegmentierung eingesetzt. Dann werden
die erkannten semantischen Informationen in den Bildern mit Hilfe der Kameramatrizen
aus dem photogrammetrischen Prozess auf die lasergescannten Punktwolken abgebildet.
Vordefinierte geometrische Primitive werden dann an die Punktcluster mit semantis-
chen Informationen angepasst und dem digitalen Zwilling als vereinfachte geometrische
Information hinzugefügt. Bei der Modellanreicherung werden moderne Deep-Learning-



Modelle zur Texterkennung auf die Bilder angewendet. Textinformationen, wie z. B.
Seriennummern von Objekten und Raumnummern, werden aus den Bildern extrahiert
und dann den rekonstruierten Objekten im 3D-Raum zugeordnet.

Zusammenfassend wird in dieser Arbeit ein Gesamtansatz zur Erstellung eines informa-
tionsreichen digitalen Zwillings von Gebäuden durch die Kombination von Objekterken-
nungsmethoden in 3D-Punktwolken und 2D-Bildern vorgestellt, der zu einer Endaus-
gabe führt, die große raumbegrenzende Elemente und kleine Objekte mit geometrischen
Informationen, Kategorieinformationen und Textinformationen enthält.



Abstract
Digital twins, deriving from the manufacturing sector, have been starting to penetrate
built environments because they can continuously provide substantial benefits to all
stakeholders. In this dissertation thesis, a digital twin is defined as a purpose-driven
digital representation of assets or systems, which is linked to the corresponding physical
asset or system by regularly-transferred data. An information-rich digital twin of an
indoor environment refers to frequently-updated digital models of the facility, which
includes not merely large space-bounding elements but also small elements. The related
information includes geometric information, category information, and corresponding
text information.

It is beneficial to have an information-rich digital twin of a building that represents
the current state of the asset. However, the process of creating such a digital twin is
extremely time-consuming and requires very high human effort, which makes the cost
invested in creating a digital twin exceed the potential benefits it can provide. This
thesis aims to reduce the human effort in this process by proposing methods that apply
state-of-the-art deep learning technologies to automate the process.

The overall proposed approach uses laser-scanned point clouds and images as input.
Firstly, it starts with segmenting a point cloud of a multi-storey building into individual
storeys. Subsequently, two different approaches are proposed for buildings depending
on whether they do or do not fulfil the Manhattan-world assumption. Both approaches
use the semantic information extracted by point cloud deep learning. The void-growing
method, designed for Manhattan-world buildings, starts with extracting the void spaces
inside rooms. Space-bounding elements are then extracted based on the extracted void
spaces. For buildings that do not fulfil the Manhattan-world assumption, planes in point
clouds are extracted, intersected, and selected by a method based on energy optimiza-
tion.

The next step is reconstructing small objects, where images are used to improve the
results based on the finding that recognition of small objects in images outperforms that
in point clouds. The photos taken by the camera can be registered with laser-scanned
point clouds by the photogrammetric process, which means the photogrammetric point
cloud works as a bridge to fuse data from different sources. Subsequently, state-of-the-art
artificial neural networks of image segmentation are implemented. Then the recognised
semantic information in the images is mapped to the laser-scanned point clouds by the
camera matrices from the photogrammetric process. Predefined geometric primitives are
then fitted to the point clusters with semantic information and added to the digital twin
as simplified geometric information. In model enrichment, state-of-the-art deep learning
models for text detection and recognition are applied to the images. Text information,
such as serial numbers of objects and room numbers, is extracted from images and then
mapped to the reconstructed objects in 3D space.

In conclusion, this thesis presents an overall approach to creating an information-rich
digital twin of buildings by combining the object detection methods in 3D point clouds



and 2D images, which results in the final output that contains large space-bounding
elements and small objects with geometric information, object category information,
and text information.
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Chapter 1

Introduction

This PhD thesis is about developing methods to create an information-rich digital twin
of indoor environments of buildings. In this thesis, a digital twin of the building is
defined as an updated digital representation of different categories of objects in the
indoor environment of the building throughout its life cycle. An information-rich digital
twin refers to a digital twin with more valuable information. Specifically speaking, the
final created information-rich digital twin in the thesis contains the following:

– detailed and simplified geometric information for various categories of objects in
buildings, from large space-bounding elements (like ceilings, walls, etc.) to small-
scale elements (such as Mechanical, Electrical, and Plumbing (MEP) elements).

– semantic information, including object categories and corresponding texts (for
example, text on door signs and object IDs).

The concept of the digital twin, deriving from the manufacturing sector, is usually
described as consisting of three parts: a physical entity part, a digital representation
part, and a linking between them. The number of publications in the engineering domain
with the key term "digital twin" in the last 20 years is illustrated in Figure 1.1. It is
obvious to see that the number of publications almost increases every year, and especially
exploded in the last five years. If looking into different branches in the engineering
domain, the increasing tendency stays the same, as shown in Figure 1.2. However, there
is not any commonly-agreed definition of digital twins in the built environment, despite
the fact that digital twins have been attracting increasing attention and investigation
in academia.
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Figure 1.1: Number of publications in engineering in last 20 years with keyword "digital twin" (data
source: https://app.dimensions.ai)
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1.1 Definitions of Digital Twins

Despite the increasing attention to digital twins, digital twins probably refer to different
concepts in different sectors. Meanwhile, even in the same field, there is also no guarantee
that researchers are discussing the "same" digital twin concept in their research. The
reason behind this is that the digital twin concept is comprehensive, which makes its
definition manifold. Some representative definitions are selected and listed in Table 1.1.
Almost all these definitions mention that three parts are essential: the physical model,
the digital representation, and the linking between these two parts. Apart from the three
key components, these definitions differentiate a bit in the physical model types, applied
domains, potential use cases, typical properties, etc. Therefore, it is hard to make a
unified definition that can cover or fit all the mentioned aspects in these definitions.
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author definition

Glaessgen and Stargel (2012) a digital twin is an integrated multiphysics, multiscale, probabilistic simulation of an as-built
vehicle or system that uses the best available physical models, sensor updates, fleet history, etc.,
to mirror the life of its corresponding flying twin.

Lee et al. (2015) coupled model of the real machine that operates in the cloud platform and simulates the health
condition with an integrated knowledge from both data-driven analytical algorithms as well as
other available physical knowledge.

Zhuang et al. (2017) a digital twin refers to the process and method of describing and modelling the characteristics,
behaviour, formation process, and performance of physical entity objects using digital technology.

Alam and El Saddik (2017) a digital twin is an exact cyber copy of a physical system that truly represents all of its function-
alities, which can be used for monitoring, diagnostics, and prognostics purposes.

Grieves and Vickers (2017) the digital twin is a set of virtual information constructs that fully describes a potential or actual
physical manufactured product from the micro atomic level to the macro geometrical level. at
its optimum, any information that could be obtained from inspecting a physically manufactured
product can be obtained from its digital twin.

Söderberg et al. (2017) using a digital copy of the physical system to perform real-time optimization.

Bachiega (2017) a digital twin is a real-time digital replica of a physical device.

Tao et al. (2018) digital twin is a real mapping of all components in the product life cycle using physical data,
virtual data, and interaction data between them.

Bolton et al. (2018) a dynamic virtual representation of a physical object or system across its life cycle, using real-time
data to enable understanding, learning, and reasoning.

El Saddik (2018) a digital twin is a digital replica of a living or non-living physical entity. By bridging the phys-
ical and the virtual world, data is transmitted seamlessly, allowing the virtual entity to exist
simultaneously with the physical entity.
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Introduction
Bolton et al. (2018) in the context of digital built Britain, a digital twin is a realistic digital representation of assets,

processes or systems in the built or natural environment.

Ayani et al. (2018) a digital twin is a multi-physics and multi-scale simulation model reflecting the corresponding
physical model, with emphasis on the promotion of DT high-fidelity simulation to the industry.

Brilakis et al. (2019) a digital twin is a digital replica of a physical built asset. what a digital twin should contain and
how it represents the physical asset are determined by its purpose. It should be updated regularly
in order to represent the current condition of the physical asset.

Liu et al. (2019) digital twins refer to virtual objects or a set of virtual things defined in the digital virtual space,
which has a mapping relationship with real things in the physical space.

Leng et al. (2019) a digital twin is an exact and real-time cyber copy of a physical manufacturing system that truly
represents all of its functionalities.

Borth et al. (2019) a digital twin is a connected and synchronised digital replica of physical assets which represent
both the elements and the dynamics of how systems and devices operate within their environment
and live throughout their life cycle.

Sacks et al. (2020) digital twin construction is a new mode for managing production in construction that leverages the
data streaming from a variety of site monitoring technologies and artificially intelligent functions
to provide accurate status information and to proactively analyse and optimize ongoing design,
planning, and production.

Aheleroff et al. (2021) a digital twin is a digital replica of a physical entity with the two-way dynamic mapping between
a physical object and its digital model, which has a structure of connected elements and meta-
information.

Fotland et al. (2020) a digital twin is a digital copy of a physical asset, collecting real-time data from the asset and
deriving information not being measured directly in the hardware.

Liu et al. (2021) a digital twin is a digital entity that reflects physical entity’s behaviour rule and keeps updating
through the whole life cycle
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Pan and Zhang (2021) digital twins refer to a mirror and digital depiction of the actual production process, which can im-
itate all aspects of physical processes under the integration of physical products, virtual products,
and relevant connection data.

VanDerHorn and Mahade-
van (2021)

a digital twin is a simulation process that makes full use of physical models, sensor updates,
operation and maintenance history and other data to integrate multi-disciplines, multi-physical
quantities, multi-scales, and multi-probabilities

Kamble et al. (2022) a digital twin is a digital counterpart of the physical systems based on a simulation that deals
with design systems and optimizes them for improved efficiency.

Table 1.1: Different definitions of digital twins
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Even if a comprehensive definition of digital twins that tries to include many aspects
from a different perspective is proposed, it is still doubtful whether it is realistic to use
the same definition in real use cases. It is almost impossible to create a digital twin that
covers all those potential aspects in the real world, which covers information from small-
scale components to larger ones, from objects to processes, from geometric representation
to semantic information, from object relations to their interactions, from real current
state to simulation results, etc. Therefore, the author states that one important property
that should be added to the definition of digital twins is "purpose-driven".

A purpose-driven digital twin means the digital twin should be defined according to the
purpose. Every time when we dive into the topic of digital twins, an essential point
that needs to be clarified is what purpose the digital twin is supposed to achieve. In
other words, a digital twin is not clearly defined without defining its purpose in advance.
Depending on differentiated purposes, the extremely broad concept of digital twins can
be scaled down in order to make a clear definition of the digital twin. Only when the
definition is clear enough to clarify the scope of the problem does it make sense to
work on the following topics, such as the contents that should be included, potential
technologies that could be applied, etc.

For example, suppose we want to create a digital twin whose purpose is indoor naviga-
tion. In that case, the possible definition could be "an updated digital indoor 3D model
that represents the current geometry of indoor space and contains important semantic
information that is valuable for navigation". Meanwhile, as the digital twin is designed
for indoor navigation, only reconstructing large-scale elements of the indoor environ-
ment (like walls, floors, staircases, etc.) should be enough. Extra work to reconstruct
smaller elements is probably not necessary in this case. In comparison with that, if we
want to build a digital twin that helps asset maintenance, these small scale-elements are
also important based on the fact that in the Repair and Maintenance (R&M) activities
of a facility, MEP costs usually constitute the largest share of total costs (Adán et al.,
2018). Therefore, a digital twin for facility maintenance would be more valuable if it
contains those elements that are frequently required in facility management processes.
Meanwhile, facility management involves more accurate data about floor plans, space
utilization, asset location, and technical plants (D’Urso, 2011). Text information such
as room numbers and serial numbers (IDs) next to assets that can identify the cor-
responding assets is very beneficial, especially when managing large facilities. These
objects should be linked with their object IDs or serial numbers if possible. In this case,
a digital twin for facility maintenance should be a regularly-updated digital 3D model
of the facility that contains the geometric and semantic information.

Besides "purpose-driven", another essential property of digital twins is to be regularly
updated throughout the life cycle of the physical asset. There are three terms that need
to be clarified. The term "updated" means that there must be data transfer between
the physical and digital parts, which is mentioned in all definitions of digital twins. The
term "regularly" indicates the updating frequency, which is determined by many factors
like the physical asset type, user requirements, cost budget, etc. For a digital twin
of roads that is used for autonomous driving, the updating frequency should be much
higher than the digital twin to maintain the relevant roads. In any case, the digital
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twin should be updated regularly to fulfil the corresponding requirements. "Life cycle"
indicates the time range that digital twins should be operated. For example, a digital
twin for a building should be created and updated in all the phases, which include
design, construction, operation, demolition, and waste treatment (Kotaji et al., 2003).

In summary, I define the digital twin in my thesis as follows:

The digital twin is a purpose-driven digital representation of assets or systems,
which is linked to the corresponding physical asset or system by regularly-
transferred data. More specifically, the digital twin of buildings refers to regularly-
updated 3D digital geometry representations of the facility that includes both
large-scale structural elements and small-scale elements, which are further en-
riched with semantic information.

The individual digital representation at every updating time that represents the condi-
tion of the facility at the corresponding time is called "digital twin status" in this thesis.
While a digital twin is supposed to represent a facility throughout its life cycle, it con-
sists of multiple digital twin statuses at an updated frequency throughout the time,
which is illustrated in Figure 1.3. It should be noted that geometry is an essential and
basic constitution of a digital twin of buildings upon which other information can be
built. In this case, a Building Information Modelling (BIM) model, which contains basic
geometric and semantic information, can be seen as a starting point for a digital twin.
More comparisons with regard to BIM and digital twins will be discussed in Section
1.1.1. Apart from the basic geometric and semantic information, the digital twin can
also be further enriched by other information (for example, text information) to make
it an information-rich digital twin. As mentioned above, the digital twin definition is
purpose-driven, which makes its content depend on the selected use cases. This thesis
focuses on the information-rich digital twin that is defined in this paragraph.

Figure 1.3: Digital twin consists of its individual status through life cycle
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1.1.1 Digital Twins and Building Information Modelling

When talking about digitisation in the Architecture, Engineering and Construction
(AEC) domain, one term cannot be ignored: Building Information Modelling (BIM),
which has strong relationships to the Digital Twin concept. There is not a commonly-
agreed answer to this question of "what is the difference between BIM and digital twins"
either.

Most researchers agree that a BIM model fulfils the definition of a digital model ac-
cording to the categorisation of Kritzinger et al. (2018): "A Digital Model is a digital
representation of an existing or planned physical object that does not use any form of
automated data exchange between the physical object and the digital object." While
the BIM methodology covers the design, construction and operation phases of a facility,
digital twins often include broader concepts that can focus on very large-scale facilities
and integrates information from other sectors. It can link the facility itself with many
other sectors or systems, such as water systems, waste systems, power systems, etc. A
digital twin provides the possibility to achieve information exchange among different
systems or sectors that we used to treat independently in the past. In addition, the
notion of constantly updating the model received much less attention than for Digital
Twins. As such, BIM can be seen as a concept fundamental for Digital Twins in the
Built Environment. In particular, research under the heading "Scan-to-BIM" (Collins
et al., 2022) (Bosché et al., 2015) (Bloch and Sacks, 2018) (Tuttas et al., 2017) is also
valuable and transferable in the process of creating digital twins of built environments.

Relevant information to enrich BIM models ranges from geometric changes in the build-
ing layout over monitoring the condition of structural components (degradation) to the
occupancy and usage information of individual rooms and spaces. Although the sensors
to be employed differ significantly, a digital twin should be based on integrating BIM
with Internet of Things (IoT) technology to allow seamless integration of various de-
vices and the data they produce. In this way, digital twins can be seen as BIM models
extended by means of capturing real-world data and feeding it back into the model, thus
closing the information loop as demanded by the digital twin concept.

1.2 Societal Problem Statement

A digital twin is valuable for all stakeholders in different aspects. In this section, the
benefits of having a digital twin and the difficulties of creating a digital twin are dis-
cussed.

1.2.1 Benefits of Digital Twins in Different Applications

As a valuable digital asset of the built environment, digital twins provide possibilities to
help all stakeholders with a variety of use cases, including construction progress mon-
itoring, facilities management and operation, asset condition monitoring, sustainable
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development, etc. Especially with regard to decision-making, digital twins benefit the
whole process by providing more reliable and useful information.

In this section, different applications and the corresponding benefits of digital twins
are discussed. Most applications based on digital twins can be performed throughout
the related asset’s life cycle. For historical assets which have been completed for many
years but do not yet have any digital records, digital twins can help to start and keep
a recording of their performance for better maintenance and renovation. For facilities
under construction at the current state, keeping digital twins dynamic and up-to-date
can perform the asset’s real-time progress monitoring, quality control, diagnostics, and
prognostics. In addition, digital twins can also be used in potential futures for capital
investment projects before the design and construction of the facility. It is efficient to
simulate the performance with its digital twin to assist decision and strategy-making in
various predictive scenarios.

As discussed in Section 1.1, one important characteristic of digital twins is purpose-
driven. How the physical and the digital twins are synchronized in real use cases should
depend on the purpose of the digital twin, which determines the content of digital twins,
like what elements and processes are digitalised, what level of detail the digital model
is required, how frequent the model is supposed to be updated, etc. As the concept
of digital twins is very broad, it is almost impossible to propose a precise and detailed
definition of a digital twin that aims to cover everything without thinking about its
purpose. Some potential applications of digital twins are discussed as follows.

Condition monitoring

A digital twin can be used to monitor the current condition of a facility. By capturing
geometric information by different sensors, the current condition can be visualized and
represented by digital twins. The geometry of facilities can be monitored by comparing
the current condition with previous asset conditions over time, which allows a digital
twin to give maintenance suggestions to the asset holders and managers.

Apart from monitoring the geometry change of an asset, large-scale complex systems, for
example, a sewer system of a city, can also be monitored by a digital twin. Predictive
maintenance operations can be utilized to identify potential blockages. Some values,
like the current state of flow in pipes, can be recorded and compared with the historical
values, which are able to predict or locate disruption locations in the system. The
predictive maintenance suggestions or alerts can be sent to facility managers to make a
more suitable and quick decision by data support.

Facility management

There is a very broad spectrum of facility management, which includes but is not limited
to operation management of Mechanical, electrical and plumbing (MEP) components
(Hu et al., 2016) (Cheng et al., 2020), internal environment monitoring (Cao et al., 2015)
(i.e. air quality), working productivity (Meerman et al., 2014), etc. With the increasing
adoption of the Internet of Things (IoT) and Artificial Intelligence (AI), facility manage-
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ment is becoming more and more intelligent. In addition, Augmented Reality (AR) and
Virtual Reality (VR) provide great potential to visualise the environment and improve
efficiency (Baek et al., 2019) (Chen et al., 2020) (Chen et al., 2021) (Zhang et al., 2020).

The concept of digital twins embeds almost all of these aspects in facility management.
Relevant objects and values are captured and represented in a detailed digital model
by capturing devices like laser scanners and cameras. For example, it is extremely
important to maintain fire safety equipment to guarantee the safe use of the facility.
Some common fire safety equipment is shown in Figure 1.4. In facility management, it
is very helpful to efficiently locate and reconstruct these devices in 3D space, especially in
the management of large facilities. In particular, only recognising the object categories
is not sufficient. It is necessary to identify the object to the "instance" level by linking
the object ID or serial number to its position. One example of the object IDs or serial
numbers is shown in Figure 1.4a, which are common in buildings nowadays.

(a) Smoke alarm (b) Fire alarm switch (c) Fire extinguisher

Figure 1.4: Fire safety equipment

Apart from the information that can be extracted with visual information, by applying
various IoT sensors such as thermometers, hygrometers, and carbon dioxide sensors,
different values (like temperature, humidity, and carbon dioxide level) that represent
internal environment conditions can be recorded and then updated in the digital model
regularly. AI-relevant technologies can be used to help the process of creating the initial
model as well as updating the model throughout a facility’s life cycle. Facility managers
can check the visually assistive information provided by AR and VR devices, which is
capable of lightening their workload. The digital-twin-centred concept is illustrated in
Figure 1.5.

Data are continuously accumulated throughout the life cycle of the asset in the update
process. But it needs to be noted that more data cannot always guarantee a better
representation of the facility. If we use the term "usability" to describe how accurate
and useful the data in a digital twin, it needs to be noticed that although the data are
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Figure 1.5: Digital twin for facility management

continuously added to the digital twin throughout the life cycle of a facility, the usability
of the digital twin would start to drop while the data are starting to be outdated.
Subsequently, usability starts to restore when the newly updated data flows into the
digital twin. This concept is illustrated in Figure 1.6.

In the process of creating digital twins, raw data is firstly captured by various sensors,
which makes the data flow from physical assets to a digital representation. The usability
status of digital twins is proceeded by accumulating the amount of data. Subsequently,
pre-processing technologies like denoising and registering are performed, which make
the data more mature by increasing its usability of data. Then data is further processed
by technologies like image segmentation, point cloud segmentation, geometry extrac-
tion, etc. Semantic and geometric information is added to the digital twin. At last,
depending on the requirements of different use cases, relevant information that helps in
the corresponding application is attached to the digital twin, which makes the digital
twin reach the required usability level of the use case.

Environment simulation

Designers and engineers can use digital twins in the renovation phase of a project.
Different scenarios can be simulated in a digital twin without modifying the real asset,
such as natural light design, artificial lighting, heating simulation, and so forth. By
only modifying facilities in the digital twin, how these changes would impact the above
factors without implementing the modifications in the real world can be predicted.
Similarly, by means of VR/AR devices, designers and customers can make use of the
digital twin to visualize their own designs and show these changes and modifications (like
lighting), which benefits the decision-making of renovation and makes communication
between designers and clients much easier. For instance, different lighting atmospheres
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Figure 1.6: Concept of usability changing for digital twin of facility management over time

are visualized, helping designers aesthetically assess the design and present the outcomes
of the setup to their clients. This can be seen as a very basic use case of a digital twin
to simulate the environment (Natephra et al., 2017).

1.2.2 Difficulties of Creating Digital Twins

Despite an information-rich digital twin being valuable for building management and
maintenance, few existing assets have one. There are mainly two reasons for this situa-
tion. The first one is that many buildings were constructed decades ago. There were no
authoring tools to construct a 3D digital model or the concept of a digital twin when
they were built. The other reason is that even though some new buildings have a digital
design model, this model was not updated when the asset was modified throughout the
lifecycle of the asset. Therefore, most buildings do not have any valuable digital twins.

However, the process of creating a valuable digital twin requires huge human effort.
Creating an information-rich digital twin of existing assets is a process that consists of
the following steps: a) capturing raw visual and spatial data in the form of RGB images
and laser-scanned point clouds; (2) detecting geometric objects and geometric relation-
ships of objects in the raw data. Step 1 of this process is significantly more automated
than step 2 and requires much fewer labour hours (Agapaki and Brilakis, 2021). The
cost and effort needed to complete step 2 for most assets appear to counteract the per-
ceived value of the resulting digital twin. Existing capturing technologies, such as laser
scanning and photogrammetry, make it possible to efficiently collect point clouds that
contain geometric information about the as-is state in the built environment. Compared
with acquisition time, it is much longer to extract and reconstruct a basic 3D model
that contains components like columns, slabs, and walls from the input point cloud.
The potential benefits of having a digital twin and the difficulties of creating one make
this domain need solutions to reduce the cost in this process.
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1.3 State of Practice

As discussed in the previous section 1.2.2, the process of creating a digital twin consists of
two steps, capturing raw data and detecting geometric objects with relationships. The
second step can be broken down into the detection of large objects (such as ceilings,
floors, and walls) and small objects (such as fire extinguishers and smoke alarms) by
their scale.

Some leading 3D Computer-Aided Design (CAD) vendors (like Autodesk, Bentley, and
ClearEdge3D) have developed software that has a variety of 3D modelling features,
which enable modelling large objects from point cloud data. According to the author’s
experience, it took around two hours to collect the point cloud in a working area of 20
rooms by using a NAVVIS scanner (https://www.navvis.com/). But one junior mod-
eller spent more than 80 hours modelling basic elements (ceilings, floors, walls, doors,
windows, stairs) in this area using Autodesk Revit software. In (Lu and Brilakis, 2019),
authors captured 10 bridges by the laser scanner and counted the as-is modelling time in
Autodesk Revit. The average as-is modelling time is around 28 hours, while the corre-
sponding capturing time is 2.82 hours. In (Agapaki et al., 2018), authors state that 64%
of person-hour savings can be achieved by using the state-of-the-art, semi-automated
commercial software EdgeWise (https://www.clearedge3d.com/edgewise/). But 2,382
manual labour hours are still needed to model an example of a small petrochemical
plant with 240,687 objects and 53,834 pipes. In summary, despite the fact that some
commercial software solutions can reduce the modelling time, it is still much higher
than the time for capturing, which makes the cost and effort to generate a digital model
exceed its benefits manually. Therefore, researchers are trying to automate the process
of digital twinning in built environments in order to reduce human effort.

Apart from large-scale elements, small objects, referring to elements that are smaller in
scale in comparison with structural elements (like walls, floors, and ceilings), are im-
portant in facility maintenance and management, such as fire safety equipment (smoke
alarms, fire extinguishers, fire alarm switches), electrical elements (light switches, light
fixtures, speakers), etc. In the Repair and Maintenance (R&M) activities of a building,
Mechanical, Electrical, and Plumbing (MEP) costs usually constitute the largest share
of total costs (Adán et al., 2018). Therefore, a building twin would be more valuable
if it were to contain those elements that are frequently required in facility management
processes. In addition, facility management involves more accurate data about floor
plans, space utilization, asset location, and technical plants (D’Urso, 2011). Text infor-
mation such as room numbers and serial numbers (IDs) next to assets that can identify
the corresponding assets (as shown in Figure 7.1) is very helpful, especially when man-
aging large facilities. These IDs exactly represent the corresponding object instances
in an asset and make the link between physical assets and digital twins much clearer.
Therefore, it is valuable to add the information to an enriched digital twin of buildings.
Unfortunately, this work is currently mostly manual work, and the author cannot find
software solutions to automate the process of enriching digital twins with small objects.
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1.4 Thesis Structure

In the thesis, in order to reduce the manual work in the process of creating digital twins
from collected raw data, the author presents a pipeline that automates the process.
More specifically, the thesis presents methods to extract relevant information from raw
data and subsequently generate a detailed 3D geometric model that is enriched with
semantic information (including text information and object IDs). An information-rich
digital twin that represents the condition of the facility at a specific time point can be
created by running through the proposed pipeline. By applying the pipeline to all data
captured throughout the time, the proposed pipeline provides the possibility to create
a digital twin representing the facility throughout its life cycle.

The rest of this thesis is organised as follows: The background, including the litera-
ture review, is presented in Chapter 2. The overall proposed solution for creating an
information-rich digital twin of an indoor environment is introduced in Chapter 3. Sub-
sequently, the proposed methods are presented in individual chapters in detail. The
method of segmenting the input point cloud of multi-storey buildings into different
storeys is shown in Chapter 4. Then the proposed approach for Manhattan-world in-
door environments is described in Chapter 5 (the Manhattan-world assumption states
that there is a predominance of a triple of mutually orthogonal directions in the environ-
ment (Coughlan and Yuille, 1999)). The author published this concept as a conference
paper (Pan et al., 2021) and the extended method as a journal paper (Pan et al., 2023).
The proposed approach for non-Manhattan-world indoor environments is described in
Chapter 6. The method that creates an information-rich digital twin of small objects
in indoor environments and enriches the digital twin with semantic information is pre-
sented in Chapter 7. The author published this method in a journal paper (Pan et al.,
2022) and its implementation improvement in a conference paper (Pan et al., 2022). Af-
ter introducing the methods in individual chapters, the overall research methodology is
presented in Chapter 8. At last, the results and conclusions of the thesis are summarised
in Chapter 9.
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Chapter 2

Background

Digital twins have been entering the conversation in the built environment as they can
continuously offer substantial value to all stakeholders. Especially the related technology
boom in the last years has started to make it possible to create and utilise digital twins
in practice in a much more efficient way. In this chapter, these digital-twin related
technologies are introduced in Section 2.1. The research gaps with regard to creating
digital twins from raw data are discussed in Section 2.2. The research questions and
hypotheses are summarised in Section 2.3.

2.1 State of the Art
In this section, various technologies that are used in the process of creating and utilis-
ing digital twins are discussed. Specifically, this section is organised as follows. Data
collection technologies that are widely used to capture environments in the process of
creating digital twins are introduced in Section 2.1.1. Data processing methods to pro-
cess captured raw data are discussed in Section 2.1.2. Previous research with regard
to creating digital twins of space-bounding elements (like ceilings, floors, and walls) is
introduced in Section 2.1.3. Methods with regard to reconstructing small objects in
indoor environments are discussed in Section 2.1.4. Technologies that are widely used
to visualise digital twins in different applications are presented in Section 2.1.5.

2.1.1 Technologies of Data Collection

The process of creating a digital twin starts with collecting relevant data from various
devices. The collected data can be used not only to create digital twins (if no digital
twins exist) but also to update digital twins (if there is one already). While different data
can be collected according to different user requirements, as digital twins are "purpose-
driven", geometric information of an asset is usually a basic but essential constitution of
a digital twin. In this section, capturing technologies to collect raw geometric data for
digital twins are introduced. Laser scanning and imaging technologies are two widely
used technologies to capture the geometric information of the environments.
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Laser Scanning
Terrestrial Laser Scanning (TLS), sometimes also called terrestrial Light Detection And
Ranging (LiDAR) or topographic LiDAR, is a basic technique to measure the location
and dimension of surfaces in 3D space by emitting laser pulses toward these surfaces
of objects. The data generated by these sensors can reflect the physical surfaces of
objects in the real world. However, the raw data provided by scanners is also discrete
due to the discrete laser beams. The output of laser scanners is point clouds which are
basically sets of points in 3D space. Each point is defined by three coordinates (x, y, z)
and additional information depending on the device used, which could contain intensity,
normal, colour information, etc.

Terrestrial laser scanners are often used to capture large outdoor spaces and indoor
environments because they are able to measure points from a long distance with high
precision. Compared with terrestrial laser scanners, which are usually heavy and need to
be fixed on a tripod, mobile scanners are usually smaller. A terrestrial laser scanner and
a mobile laser scanner are shown in Figure 2.1. While the capturing precision of mobile
laser scanners is usually lower than that of terrestrial laser scanners, the measuring speed
is much faster. Users can select different laser scanners according to their requirements,
such as measuring accuracy, measuring speed, and cost.

(a) Leica RTC360 laser scanner (b) GeoSLAM ZEB Go mobile laser scanner

Figure 2.1: Terrestrial laser scanner and mobile laser scanner

The working principle of a laser scanner can be briefly described as follows: the laser
scanner emits a beam of laser onto a rotating mirror that effectively covers the surround-
ing environment, capturing millions of discrete data points and producing detailed 3D
information about the surrounding surfaces. The distance between the surface and the
device can be computed by reflecting the laser beam back to the device. In general,
there are two methods for distance measurement in laser scanning technology: time of
flight and phase shift measurement. In the time of flight distance measurement, the
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distance between the sensor and the target can be described by the following equation
(Suchocki, 2020).

distance = c

2 ·∆t, (2.1)

where c is the speed of light between the device and the target, ∆t is the measured time
interval from emitting to receiving the light signal.

Apart from the time of flight technology, the phase shift measurement uses an amplitude-
modulated continuous sinusoidal laser beam. The distance can be computed by the
phase shift between the reference and return signals (Yoon et al., 2011) by the equation

distance = c

2 ·
φ

2πf
, (2.2)

where c is the light speed between the device and the target, φ is the phase shift, and
f is the modulation frequency.

Imaging

In contrast to laser scanning, which represents targets with three coordinates, imaging
usually produces a 2D visual representation, i.e., images. There are advantages of using
cameras to capture the indoor environment compared with using laser scanners. The
first one is that the capturing device is usually less expensive. A huge amount of different
camera options can be selected, and even modern cell phones nowadays also have good
camera lenses. The second advantage is that it requires much less learning time to use
cameras than using a scanner, which makes it possible for all stakeholders of the facility
to capture the current status of the asset. However, the 2D images contain only 2D
information. If we did not locate and record the camera position and orientation when
taking the image, the camera information, which is important to reconstruct the 3D
objects, cannot be found directly. In order to represent objects’ 3D information, like
locations and dimensions in 3D space, different approaches to processing images have
been proposed.

Photogrammetry is one category of these approaches that reconstructs 3D information
from 2D images. It is also called videogrammetry when capturing videos instead of
photos. Basically, a video can be seen as a set of photos taken with a given frequency.
The whole process consists of two steps: Structure from Motion (SfM) (Özyeşil et al.,
2017) and Multi-View Stereo (MVS) (Seitz et al., 2006). The input of SfM is a set of
overlapping images taken from different viewpoints. It starts with feature detection and
extraction through feature matching and geometric verification and then reconstructs
the object in 3D space, including the reconstructed intrinsic and extrinsic camera pa-
rameters of all images. MVS takes the output of SfM to compute depth and normal
information for pixels in all images and creates a dense point cloud of the scene. The
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performance of photogrammetry relies on detecting and matching feature points in im-
ages. It aims to find key points representing the same point in 3D space on different 2D
images.

Photogrammetric methods detect points where the colour changes, making the weakly
textured and homogeneous surfaces hard to reconstruct. However, weakly textured
surfaces are quite common in the indoor environment, like white wall surfaces. As
shown in Figure 2.2, the reconstructed photogrammetric point cloud for images taken
in a construction site is much denser and more complete than that using images taken
in the indoor environment, as there are almost no homogeneous areas in images of the
construction site. Although the reconstruction result of the indoor environment is not
as good as the outdoor environment, almost all the key feature points are found, i.e.,
boundary points of objects. The reconstructed 3D key points are able to show the
location and dimension of objects in the environment.
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(a) Photogrammetric point cloud of construction site (Braun et al., 2020)

(b) Photogrammetric point cloud of indoor space

Figure 2.2: Comparison between photogrammetric point clouds of weakly and strongly textured sur-
faces (Construction site: weakly textured; indoor space: strongly textured)
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2.1.2 Data Processing Methods

In this section, different technologies that are used to process the captured raw data and
extract useful information are discussed. As point clouds and images are two important
data sources for capturing the built environments, the methods here are also divided
into two categories. While point cloud processing methods (mainly focusing on methods
of segmentation) are introduced in Section 2.1.2, methods of processing images are
discussed in Section 2.1.2.

Point Cloud Segmentation

Point cloud segmentation is the process of grouping points into subsets (normally called
segments) characterized by having characteristics in common (Grilli et al., 2017). Some-
times, it can also be seen as an important pre-processing step, which aims to generate
different types of data that can be integrated into further processes such as classifi-
cation. Segmentation itself is formulated particularly as graph clustering in computer
vision (Douillard et al., 2011). Most methods of segmenting point clouds are developed
from segmenting 2D pictures. As shown in Figure 2.3, the author divides methods
of point cloud data segmentation roughly into five categories: edge-based approaches,
shape-based approaches, region-based approaches, graph-based approaches, and deep
learning approaches.

Figure 2.3: Different approaches to segment point clouds

Edge-based Approaches

As the name implies, edge-based approaches detect the edges of different regions to
create segmented point clouds. Two approaches are proposed to detect 3D range data:
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the line fitting approach and the surface normal approach (Bhanu et al., 1986). In the
line fitting approach, the unit direction vector from each point to its nearest neighbouring
points is calculated. If two direction vectors point in exactly opposite directions, these
two vectors lie in a straight line. If two or more than two straight lines are found within a
certain threshold, this point is not an edge point. If only one straight line is found, then
it is an edge point. In the surface normal approach, the change in the neighbourhood
of a point would be calculated. If the normal vectors change significantly, it means this
point is an edge point.

A scan line grouping technique is proposed to segment a range image into planar regions
(Jiang and Bunke, 1994). Then it is extended to both planar, and curved surfaces
(Jiang et al., 1996). A scan line segmentation first splits each scan line (or row of a
range image) into pieces and then merges these scan line segments with segments of
adjacent scan lines based on some similarity criteria. Another method that generates a
binary edge map based on the scan line grouping technique is designed to segment large
range images (Sappa and Devy, 2001). After generating the binary edge map, a contour
detection strategy is applied to extract the boundaries of surfaces. In this process, only
information in the binary edge map is used. In conclusion, edge-based approaches are
implemented firstly to locate edge points, then link them to obtain the contour that
defines each region. So, the main problem of these approaches occurs if some edges can
not be detected and no closed region can be created. In addition, all these approaches
are sensitive to the noise of data, which is quite common in point clouds.

Shape-based Approaches

Edge-based approaches attempt to find points in the point cloud that fit geometric
shapes. A well-known algorithm called RANdom SAmple Consensus (RANSAC) can
be used to detect geometric shapes like lines, circles, and planes in point clouds (Fis-
chler and Bolles, 1981). It selects a minimal initial data set and enlarges this set with
consistent data when possible. For example, when fitting a circle to a set of 2D points,
the RANSAC approach would select three points, calculate the centre and radius of
the implied circle, and count the number of points that are close enough to that circle.
If there are enough points that are closed enough to the circle, RANSAC calculates
the parameters of the circle now. That means some points of the circle are detected.
In conclusion, the RANSAC extracts shapes by randomly taking minimal sets from the
point data and constructing shape primitives. The resulting candidate shapes are tested
against all points in the data to determine how many points are well approximated by
the primitive. After a given number of trials, the shape which approximates the most
points can be extracted.

Many subsequent methods designed for different scenarios are developed. The RANSAC
is applied to detect cylinders in range images (Bolles and Fischler, 1981). Another
method to detect geometric primitives is proposed to process multiple range images
(Reisner-Kollmann and Maierhofer, 2012). It starts with generating a global graph
of sample points covering all input frames. Then, the RANSAC approach is imple-
mented iteratively, optimizing shape parameters. Besides applications in range images,
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RANSAC and Gaussian images are used to detect cylinders in point clouds (Chaperon
and Goulette, 2001). A large number of extensions of RANSAC have been proposed.
For example, MLESAC proposed a new score function, which chooses the solution that
maximizes the likelihood rather than just the number of inliers (Torr and Zisserman,
2000). This method improves the robustness of RANSAC. Another algorithm based on
RANSAC is used to detect basic shapes in unorganized point clouds (Schnabel et al.,
2007). It can detect surfaces composed of basic shapes like planes, spheres, cylinders,
cones, and tori. Furthermore, this algorithm is robust even in the presence of many
outliers and a high degree of noise.

Another RANSAC-based method that is designed to handle the data noise is proposed by
considering local and global relations simultaneously (Li et al., 2011). The whole process
from noisy input point data to the final reconstructed model contains several iterations
of RANSAC fitting and constrained optimization. Starting with a set of locally fitted
primitives based on RANSAC, relations across the primitives are progressively learned.
In each local RANSAC stage, a set of feasible relations are extracted from the possible
relations and then aligned to the input data. The global coupling corrects the primitives
obtained in the local RANSAC stage and brings them to precise global alignment.

The well-known Hough transform is used to detect lines and circles in 2D datasets. Sev-
eral variants of the Hough transform with respect to their applicability are evaluated to
detect planes in 3D point clouds (Borrmann et al., 2011). In 3D Hough transformation,
every non-vertical plane can be described with three coordinates in object space and
three parameters in parameter space. For example, in this equation, z = ax + by + c,
(x, y, z) denotes points in this plane and (a, b, c) denotes the plane parameters which
define the plane. That means every point (a, b, c) in the parameter domain corresponds
to a plane in the object space. So, the detection of planar surfaces starts from mapping
points to planes in the parameter domain. The position where most planes intersect in
the parameter domain describes the plane equation in the object domain. Normal vec-
tors can be used in Hough transform to accelerate the calculation. A plane in the object
domain can be completely defined by a point and the normal vector. So, the parameters
of this plane are mapped to a single point instead of a plane in the parameter domain.
The cost of computing can be reduced in this way.

Cylinders and spheres can also be detected by the Hough transform. A cylinder is
described by five parameters, and a sphere is described by four parameters. If normal
vector information is used, the dimension of the parameter domain can also be reduced.
Although the calculation of detecting cylinders and spheres is complex, the basic idea
is the same. They are all variants of the Hough transform for line detection.

Hough Transform and extended RANSAC algorithms are compared when detecting
3D building roof planes (Tarsha-Kurdi et al., 2007). In this application, RANSAC is
more efficient than the Hough Transform, and Hough Transform is very sensitive to the
segmentation parameter values. A method of using filtered normals and voxel growing is
proposed in (Deschaud and Goulette, 2010). The first step of this method is estimating
better normals in the point cloud data. The second step is to use a score function to
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estimate local planarity. Then the best local seed plane would be selected, and region
growing, which would be introduced later, is started.

In conclusion, model-based methods usually use purely mathematical principles so that
they are fast and robust with outliers. Even in most recent research, planar geometric
primitives are fitted by the RANSAC-based or Hough-transform-based methods.

Region-based Approaches

Region-based approaches combine nearby points that have similar properties to retrieve
isolated regions. The region growing method is proposed to segment images (Besl and
Jain, 1988). It starts by giving each pixel a label based on its value and the values of its
neighbouring pixels. This label can only take on values based on two surface-curvature
signs and indicates the qualitative shape of an approximating surface that best fits the
image data surrounding that point. After getting this surface type label image, iterative
region growing proceeds using the surface curvature sign to determine a surface type
label for each pixel.

The surface growing in point clouds is quite similar to the region growing in images. In
some literature, objects in point clouds are considered to be polyhedral. In that case, the
segmentation algorithms should determine planar surfaces. To apply surface growing,
the identification of seed surfaces and criteria for extending these surfaces should be
determined (Vosselman et al., 2004).

A surface growing method for airborne laser scanning that firstly picks a seed point
randomly and then examines the n nearest neighbouring points and whether they fulfil
certain criteria is proposed to segment buildings, and vegetation (Tóvári and Pfeifer,
2005). These criteria here include the similarity of normal vectors, the distance of the
candidate point to the adjusting plane, and the distance between the current point and
the candidate point. For terrestrial laser scanning, a surface growing method is used
to segment the building facade (Pu et al., 2006). The algorithm selects an arbitrary
unclassified point and tests if a minimum number of nearby points can be fitted to a
plane. If this is the case, these points constitute the seed surface. The region growing
starts from the seed surfaces based on some criteria, such as the distance to the seed
surface. An extended approach based on region growing is used to identify structural
components in synthetic scenes, as well as a collapsed bridge scene (Walsh et al., 2013).
It can locate elements of a collapsed bridge, such as piers and pier caps. But it can not
detect the edge between a pier and a pier cap, and key points for region growing are
selected manually actually.

A two-stage region growing method is proposed to segment objects, and architectural
components (Ning et al., 2009). The first-stage region growing, named rough segmen-
tation is used to extract main objects based on the consensus of the normal vector in
the same plane. The second-stage region growing, named detail segmentation, aims to
extract detailed information for components. Seed points for both stages need to be
selected manually. Another region-growing method based on geometrical continuities is
proposed for the robust segmentation of building point clouds. It requires a single input
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from the user on the desired level of abstraction (Dimitrov and Golparvar-Fard, 2015).
The most obvious improvement is that seed points here are selected adaptively.

In conclusion, region-based approaches are highly dependent on selected seed points and
the thresholds of similarity criteria. Furthermore, over- or under-segmentation problems
often occur in the result.

Graph-based Approaches

Graph-based approaches consider point clouds as graphs. A simple graph-based ap-
proach is considering each point in the data as a vertex and connections between pairs
of neighbouring points as edges. An algorithm based on pairwise region comparison is
firstly proposed to segment 2D images (Felzenszwalb and Huttenlocher, 2004). In this
algorithm, the pairwise region comparison considers the minimum weight edge between
two regions in measuring the difference between them. Thus two regions will be merged
even if there is a single low-weight edge between them.

A k-nearest neighbours graph is presented to represent the structure of the point cloud,
and the edges of this graph have weights that decrease with distance (Golovinskiy and
Funkhouser, 2009). This method assumes a background prior, adds constraints of hard
foreground, and finds the min-cut to compute a foreground and background segmenta-
tion. Strom et al. (2010) propose an algorithm for segmenting a coloured point cloud
derived from a laser scanner and a camera that combines the previous 2D segmentation
with spatial features such as surface normals. The experiment shows that it is more ro-
bust than segmenting either laser data alone or colour image alone. If there are not any
RGB scanners available, the co-registration process must be implemented to produce
the joint point cloud.

Many previous researchers combine graph-based methods with probabilistic models.
The idea of Conditional random field (CRF) (Lafferty et al., 2001) is firstly proposed
to segment and label sequence data. A method that is able to successfully segment
and label 3D point clouds is presented by defining classes of 3D geometric surfaces and
making use of contextual information using CRFs (Rusu et al., 2009). In this method, a
Fast Point Feature Histogram (FPFH) is proposed to create a feature space in which 3D
points lying on primitive geometric surfaces (e.g., planes, cylinders, spheres, etc.) can
be easily identified and labelled. The computational properties of this approach exhibit
a favourable integration for fast 3D classification of laser data.

Schoenberg et al. (2010) propose an algorithm is proposed to segment 3D points in dense
range data generated from the fusion of a single optical camera and a laser scanner. This
method uses Markov Random Field (MRF) to estimate a 3D point corresponding to
each image pixel. The fusion process is implemented by combining the capture of low-
resolution range images with the acquisition of registered high-resolution camera images
(Diebel and Thrun, 2006). The textured 3D dense point cloud is segmented based on
evidence of a boundary between regions of the textured point cloud. Clusters are discrim-
inated based on Euclidean distance, pixel intensity, and estimated surface normal using
a fast, deterministic, and near linear time segmentation algorithm. A simplified MRF
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model is used to segment facades of models, and it uses the contextual relations between
points, where the node potentials are calculated from point-wise classification results us-
ing some classifiers, such as Support Vector Machine (SVM) (Lu and Rasmussen, 2012).
Building roof contours are identified from among the above-ground objects by optimiz-
ing an MRF-based energy function that embodies roof contour attributes and spatial
constraints (Galvanin and Dal Poz, 2011). The optimal configuration of building roof
contours is found by minimizing the energy function using a simulated annealing algo-
rithm. In general, these methods show satisfactory performance by detecting building
facades and roof contours.

In conclusion, graph-based methods can segment complex scenes in different scenarios
with good results. In addition, it is possible to co-register data from sensors and camera
systems together which may potentially improve the segmentation performance by using
the more collected information.

Deep learning Approaches

Artificial Neural Networks (ANNs) are computer programs that aim to simulate the
way in which the human brain processes information (Agatonovic-Kustrin and Beres-
ford, 2000). The concept ANNs is proposed decades ago. With the popularity of deep
learning, ANNs have been mentioned and discussed more frequently in the last years
(Kim, 2017). As there are many neurons in our brain that can transmit and process
information, ANNs consist of lots of neurons (also called nodes) as well. Specifically,
some neurons constitute layers, and these layers constitute an ANN. As shown in Figure
2.4, input information goes into the input layer, through hidden layers, and ends at the
output layer.

Figure 2.4: Neural network with two hidden layers

There are two most common problems in deep learning: classification and regression.
In classification problems, the aim is to predict the classes to which the data belongs
based on a set of features present in the input data. In comparison, the goal of regression
problems is to predict or estimate a value rather than a class. While predicting unknown
labels is the classification problem in deep learning (Goodfellow et al., 2016), point cloud
segmentation can also be seen as a classification problem for each point in the point
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cloud. Therefore, many networks are designed to solve the classification problem and
segmentation problem in one architecture framework when processing point clouds.

Some neural networks work on voxel structure which requires point cloud voxelisation
first. Prokhorov (2010) uses 3D CNNs to solve a binary classification problem. Maturana
and Scherer (2015) proposed a more general network with 3D CNN architecture called
VoxNet to detect classes of objects for 3D point cloud data. The input of VoxNet is a
point cloud, and VoxNet aims to predict a class label for the input. A volumetric grid
that can represent spatial occupancy is calculated first and then applied to 3D CNNs.

Compared with methods requiring voxel input, many networks process point clouds as
input directly. The neural network architecture, PointNet, is the first network that is
directly proposed for 3D deep learning in the point cloud Qi et al. (2017). It takes point
clouds as input directly and outputs labels for the entire input or labels for each point.
The basic but novel idea of PointNet is to consider each point (x-, y-, z-coordinate)
independently at the first stage in the network. Apart from the three spatial coordinates
values (x,y,z), additional dimensions could be added by computing normals and other
local or global features. PointNet processes features of individual points independently
and extract global features of the entire point set. An improved network based on
PointNet considering spatial information of point sets called PointNet++ is proposed (Qi
et al., 2017). In PointNet++, the set of points is grouped into overlapping local regions
by the distance metric. Then local features are extracted by capturing fine geometric
structures from small neighbourhoods. These local features are grouped together into
larger units and processed to produce higher-level features.

Other approaches inspired by PointNet, which processes the point cloud directly, are
proposed to improve the performance. Dynamic graph CNN (Wang et al., 2019), differ-
ing from networks working on individual points like PointNet, constructs local geometric
structures by a local neighbourhood graph and applies convolution-like operations to the
graph. Its name "dynamic" means that compared with graph CNNs, the graph in this
model is not fixed but is dynamically updated after each layer of the network, thereby
performing convolutions not only in the metric neighbourhood but also in the semantic
one. Li et al. (2018) propose a novel convolution operator called χ- operator to extract
features from the point cloud.

Thomas et al. (2019) present another novel way to apply convolution operation in the
point cloud, which is called kernel point convolution. In this method, the convolution
operation is done in kernel points and points close to them, which is shown in Figure 2.5.
Hu et al. (2020) introduce a novel local feature aggregation module, which works faster in
large-scale point clouds. Fan et al. (2021) design a module that learns spatial contextual
features from the point cloud and embeds it in an encoder-decoder architecture. Qiu
et al. (2021) augment the local context of points and interpret the distinctness of the
points from multiple resolutions to achieve semantic segmentation. Some networks adapt
the transformer architecture (Vaswani et al., 2017) from natural language processing and
apply the idea in point cloud segmentation (Guo et al., 2021) (Zhao et al., 2021) (Engel
et al., 2021). These networks show that the transformer architecture is also powerful in
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point cloud processing. Perez-Perez et al. (2021) design a network for the Scan-to-BIM
process to segment the structural, architectural, and mechanical components.

Figure 2.5: Kernel point convolution operation (Thomas et al., 2019)

For point cloud segmentation of buildings, the Stanford 3D Indoor Scene (S3DIS) dataset
that contains point clouds of six areas of over 6, 000m2, is widely used to evaluate the
performance of different architectures (Armeni et al., 2016). The performance evaluation
of the above-mentioned architectures on the S3DIS dataset is collected and shown in
Table 2.1. It is obvious that most networks perform well for classes like ceiling, floor, and
wall, while the performance for other categories is not at the same level. For example,
if we use semantic information in reconstructing buildings, the predicted labels of a
ceiling class (Intersection over Union (IoU) around 90%) are more reliable than those
of a window class (IoU around 60%). Therefore, how to define and extract useful
information computed from neural networks is still an ongoing research topic.
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model mIoU ceil. wall floor wind. door colu. beam chair table book. sofa board clut.

PointNet (Qi
et al., 2017)

47.6 88.0 69.3 88.7 47.5 51.6 23.1 42.4 42.0 54.1 38.2 9.6 29.4 35.2

SPG (Landrieu
and Simonovsky,
2018)

62.1 89.9 76.4 95.1 55.3 68.4 47.1 62.8 73.5 69.2 63.2 45.9 8.7 52.9

RSNet (Huang
et al., 2018)

56.5 92.8 92.5 78.6 51.6 68.1 34.4 32.8 60.1 59.7 50.2 16.4 44.9 52.0

PointCNN (Li
et al., 2018)

65.4 94.8 75.8 97.3 58.4 57.2 51.7 63.3 71.6 69.1 39.1 61.2 52.2 58.6

KPConv
(Thomas et al.,
2019)

70.6 93.6 83.1 92.4 66.1 76.6 54.3 63.9 57.8 64.0 69.3 74.9 61.3 60.3

Point Trans-
former (Zhao
et al., 2021)

70.4 94.3 84.7 97.5 66.1 78.2 58.1 55.6 74.1 77.6 71.2 67.3 65.7 64.8

Table 2.1: Segmentation mean Intersection over Union (mIoU) on S3DIS dataset (evaluated with 6-fold cross-validation)
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In summary, occlusion caused by furniture occurs quite often in indoor environments,
which leads to geometry missing in point clouds. The majority of methods are sensitive
to occlusion because they only use geometric information in point clouds. They first
detect surfaces of elements in point clouds utilizing Hough transform (Adan and Huber,
2011), RANSAC (Wang et al., 2017) (Ochmann et al., 2019) (Murali et al., 2017), or
region growing (Xiong et al., 2013) (Mura et al., 2014) (Stambler and Huber, 2014).
When occlusions occur in the environment, the performance of these methods declines,
especially when there are complex rooms (like L-shape rooms and U-shape rooms) in the
point cloud. The main reason is that reconstructing surfaces solely based on geometric
information makes it hard to distinguish a large surface of furniture (like a cupboard
surface) from a relatively small wall surface. Semantic information extracted by deep
learning provides the possibility to improve the reconstruction. However, with regard
to applying 3D deep learning in the process of creating digital twins in practice, we still
need to extract useful and precise information from imprecise and redundant information
predicted by neural networks.

Image Processing Methods
In this section, methods extracting semantic information from images are introduced.
More specifically speaking, object detection methods and the methods of extracting text
information are reviewed.

Object Detection Networks and Transfer Learning

In computer vision, object detection refers to identifying an object and precisely es-
timating its location (Szegedy et al., 2013). One of the most widely used algorithms
in object detection is Region-based Convolutional Neural Network (RCNN) (Girshick
et al., 2014). In RCNN, regions of interest are identified first and then classified by
Convolutional Neural Network (CNN) to detect objects in the regions. Since original
RCNN is relatively slow, some variants of RCNN have been proposed, like fast-RCNN
(Girshick, 2015), mask-RCNN (He et al., 2017).

In the AEC domain, researchers have also applied and proposed different network archi-
tectures to achieve their research objectives, for example, defect and damage detection
((Jiang et al., 2021), (Tan et al., 2021), (Wu et al., 2021)), worker detection on con-
struction sites ((Jeelani et al., 2021), (Son and Kim, 2021), (Nath et al., 2020)).

A neural network can be trained from scratch on a specific dataset. However, in order to
achieve optimal results, it requires a large training set, as well as substantial processing
time (Kolar et al., 2018). Therefore, transfer learning (Pan and Yang, 2009) is proposed
to overcome the problems and improve performance. Transfer learning is a process
where a neural network is pre-trained on a related larger dataset and re-trained on a
user-specific dataset. Currently, there are several large, publicly available datasets that
are used to pre-train a neural network, such as ImageNet (Deng et al., 2009), which
contains more than one million images for training, the Pascal VOC 2012 dataset that
contains more than 20,000 images (Everingham et al., 2010), the COCO dataset contains
more than 300,000 images (Lin et al., 2014) with 2.5 million instances.
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Text Detection and Recognition

In a building, some elements contain texts and numbers that are also valuable for facility
management, such as room numbers on a door sign. In large facilities, entities of some
electrical elements (such as smoke alarms and emergency switches) usually have a unique
serial number in order to clearly label entities and make facility management more
efficient. It is also very helpful to attach this information to the objects in the building
twin, recognising and identifying objects at an instance level. There are usually two
steps to extract the information from images: text detection and text recognition.

With regard to text detection, neural networks that are used in object detection can
also be used to detect text in an image, such as Mask-RCNN (He et al., 2017) because
text area can also be considered a type of object. Researchers have also proposed neural
networks that aim to detect text in an image like (Long et al., 2018), (Wang et al.,
2019), (Wang et al., 2019), (Liao et al., 2020), (Zhu et al., 2021). These networks
were proposed to detect arbitrary-shaped text in an image and can be trained on large,
publicly available datasets like ImageNet (Deng et al., 2009).

With regard to text recognition, some neural networks have been proposed to recognise
regular and irregular text in an image, like (Shi et al., 2017), (Li et al., 2019), (Sheng
et al., 2019), (Yue et al., 2020). These networks can be trained on text image datasets,
such as the SynthText dataset (Gupta et al., 2016), which contains approximately 800
thousand synthetic scene-text images, the COCO-Text dataset (Veit et al., 2016) with
more than 60 thousand real images and around 239 thousand annotated text instances.

In the field of building reconstruction, only a few previous works deal with text detection
and recognition, and these focus on CAD drawings. In (Lu et al., 2020), the authors used
Optical Character Recognition (OCR) technology to extract text information from CAD
drawings and then added detected information to the as-is digital model of buildings. In
(Zhao et al., 2021), the authors applied OCR to extract the object information from the
images of structural drawings (i.e. grids, columns and beams) and generate Industry
Foundation Class (IFC) models for buildings.

2.1.3 Reconsruction of Space-bounding Elements

In this section, the state of the art in the process of creating digital twins of space-
bounding elements is discussed. In recent years, although some approaches have been
proposed to automate the process of reconstructing 3D models from the point cloud,
this topic is still solved only partially, and most previous work can be applied only to
specific types of buildings and is restricted to reconstructing specific kinds of objects.
This section is organised as the following four parts: single room reconstruction, recon-
struction of multiple rooms, reconstruction of multiple storeys, and reconstruction of
window/door openings.
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Single Room Reconstruction

Some approaches are proposed to reconstruct individual rooms. Budroni and Boehm
(2010) use plane sweeping to segment horizontal surfaces and vertical structures. Po-
sitions of the floor, ceilings, and walls are automatically detected. Then the 3D model
can be generated from the detected ground contours. Adan and Huber (2011) use a
histogram to determine surfaces of ceilings and floors and then use Hough transform
to detect wall surfaces. Xiong et al. (2013) propose a region growing method that is
applied to form different patches and implement a stacked learning approach to classify
the detected patches. As digital twin is more valuable in large facilities than in a single
room, and apparently, the process is much more complex for larger buildings as well,
more researchers focus on the reconstruction process for buildings with multiple rooms.

Multiple Rooms Reconstruction

More approaches aim to reconstruct multiple rooms. Sanchez and Zakhor (2012) pro-
pose an approach that employs principle component analysis and RANSAC to detect
large-scale architectural structures, such as ceilings and floors, as well as small-scale ar-
chitectural structures like staircases. In this approach, all points are classified into doors,
ceilings, walls, and remaining points. Monszpart et al. (2015) extract planar structures
in a point cloud that follows regularity constraints and then optimise the plane arrange-
ment. Authors use this approach to extract planes in many scenes, such as urban scenes,
the exterior and interior of buildings. Oesau et al. (2013) use horizontal slicing, and
volumetric-cell labelling is proposed to reconstruct watertight surface meshes. The bi-
nary labelling of the volumetric cells is formulated as energy minimisation and solved
by the graph-cut method.

Xiao and Furukawa (2014) propose a method named "inverse Constructive Solid Geom-
etry (CSG)" that detects planar surfaces and then fits the cuboid primitives to the point
cloud. Mura et al. (2014) use an approach based on the diffusion process of space par-
titioning. They extract patches using a simple region-growing process based on normal
deviation and plane offset. Wang et al. (2017) use Principal Component Analysis (PCA)
to estimate the normal for each point, RANSAC to fit linear primitives, and graph-cut
to identify walls. The proposed hierarchical clustering method can identify each room
without knowing the number of rooms. Murali et al. (2017) use the RANSAC-based
method to detect vertical and horizontal planes. Then they create a wall graph and fit
cuboids into rooms. (Ochmann et al., 2016) propose a method that explicitly represents
buildings as interconnected volumetric wall elements. They determine an optimal room
and wall layout by graph-cut-based multi-label energy minimisation.

Some approaches use prior knowledge explicitly to reconstruct walls and rooms. Stam-
bler and Huber (2014) propose the concept of the enclosure, reasoning that premises
rooms are cycles of walls enclosing free interior space. They use the region growing
method to segment the point clouds and simulated annealing to optimise rooms and
walls. Tran et al. (2019) use the shape grammar approach to model indoor environ-
ments. They generate 3D parametric models by placing cuboids into point clouds and
classifying them into elements and spaces. The wall candidates are obtained from pairs
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of adjacent peaks in the histogram of point coordinates. Truong-Hong and Lindenbergh
(2022) propose a method to extract elements like floors, ceiling slabs, columns and beams
by rough extracting the candidate points of the component and then fine-filtering the
surface points of the components from the construction site. As digital twins always
aim to reflect the current status of the whole building, some methods are proposed to
reconstruct multi-storey buildings.

Multi-storey reconstruction

Only a few methods target multi-storey buildings. Macher et al. (2017) propose a
semi-automatic reconstruction approach for multi-storey buildings. The automatic part
of their work is to segment the input data into sub-spaces (rooms) and planes. After
segmentation, the 3D geometry of the elements is translated to the BIM model manually.
Ochmann et al. (2019) reconstruct volumetric models of walls and slabs in multi-storey
buildings. Planes are detected first by employing RANSAC, and then the detected
planes are classified as horizontal slab surfaces and vertical wall surfaces. A 3D plane
arrangement is constructed by intersecting all planes, yielding a cell complex. An integer
linear programming approach, in which binary variables for each cell are interpreted as
room, outside, and wall, is used to find an optimal label for all cells.

Some of the literature mentioned above are collected in Table 2.2. In summary, most
approaches are not full-automatic, which means they still require human effort in the
process of reconstruction, And most of them are only relying on geometric information
only. The performance, when applied in the point cloud with a high occlusion level,
would decrease because of geometric information deletion caused by the occlusion of
furniture.

In summary, the methods of reconstructing space-bounding elements can be roughly di-
vided into two categories: bottom-up approach and top-down approach. In the bottom-
up approach, we start from the point level. By clustering and fitting, we can get surfaces
or clusters, and then get to the object level by recognising the objects. In the top-down
approach, we hypothesize that many infrastructure object classes (e.g. wall) are more
uniquely distinguishable through their pose and relationships to other objects than their
local features (e.g. plane, colour). In this case, a complete point cloud is segmented into
sections (e.g. vertical point clusters) and then into components (e.g. walls, windows,
doors).
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Table 2.2: Summary of the representative approaches in 3D building reconstruction

Task Method Type of reconstructed
model

Sensor Element

Buildings reconstruction
in urban scene (Vosselman
et al., 2001)

3D Hough transform and using ground
plan

planar-surface model
(Roofs and facades)

laser scan point

Floor plan reconstruction
(Okorn et al., 2010)

Line fitting by Hough transform Walls in 2D floor plan laser scan point

Floor plan reconstruction
(Liu et al., 2018)

PointNet with points, CNN with den-
sity images, CNN with RGB images

alls in the 2D floor plan
(Different rooms are la-
belled)

RGBD stream point, image

Planar reconstruction in
man-made scene (Monsz-
part et al., 2015)

Regular arrangement of planes Planar-surface model
(walls, stairways, chairs,
etc.)

laser scan point

Indoor scene reconstruc-
tion (Budroni and Boehm,
2010)

Plane sweeping method Extruding 2D contour to
3D model (walls for one
room)

laser scan point

Indoor scene reconstruc-
tion (Xiao and Furukawa,
2014)

Horizontal slicing 3D space sing Hough
transform to fit rectangle primitives
then generate 3D primitives

volumetric model (walls) laser scan voxel

Indoor scene reconstruc-
tion (Sanchez and Zakhor,
2012)

PCA and RANSAC Planar-surface model
(walls, floors, staircases)

laser scan point
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Indoor scene reconstruc-
tion under occlusion (Pre-
vitali et al., 2014)

RANSAC, labelling occlusion and
openings by Ray-tracing

planar-surface model
(walls, ceilings, floors)

laser scan voxel

Indoor scene reconstruc-
tion under occlusion
(Adan and Huber, 2011)

Hough transform, labelling occlu-
sion by ray-tracing, detecting opening
by SVM, reconstructing occlusion by
MRF

planar-surface model
(walls, ceilings, floors)

laser scan voxel

Indoor scene reconstruc-
tion under occlusion
(Xiong et al., 2013)

Getting patches by region growing, la-
belling patches by stacked learning, la-
belling occlusion by ray-tracing, detect-
ing opening by SVM, reconstructing
occlusion by MRF

planar-surface model
(walls, ceilings, floors)

laser scan voxel

Indoor scene reconstruc-
tion (Oesau et al., 2014)

Hough transform, graph-cut planar-surface model
(walls, ceilings, floors)

laser scan voxel

Indoor scene reconstruc-
tion (Turner et al., 2014)

Finding planes by PCA, labeling rooms
by graph-cut

planar-surface model
(walls, ceilings, floors)

laser scan voxel

Indoor scene reconstruc-
tion (Mura et al., 2014)

Extracting patches by region grow-
ing, generating walls by PCA, labelling
rooms by space diffusion

planar-surface model
(walls, ceilings, floors)

laser scan voxel

Indoor scene reconstruc-
tion (Wang et al., 2017)

Extracting primitives by RANSAC, la-
belling rooms by graph-cut, recon-
structing doors by ray-casting

planar-surface model
(walls, doors)

laser scan voxel

Indoor scene reconstruc-
tion (Murali et al., 2017)

Extracting planes by RANSAC, detect-
ing cuboids for rooms, matching door
models to empty space

planar-surface model
(ceilings, walls, doors)

laser scan point



2.1
State

ofthe
A

rt
37

Indoor scene reconstruc-
tion (Mura et al., 2016)

Fitting rectangles as shape proxies, de-
tecting components by graphs, recon-
structing rooms by MRF

planar-surface model
(slanted ceilings and
walls)

laser scan, RGBD voxel

Indoor scene reconstruc-
tion (Ambruş et al., 2017)

Detecting primitives by RANSAC, la-
belling rooms by energy minimization

2D floor plan (different
rooms are segmented and
labelled)

laser scan point, voxel

Indoor scene reconstruc-
tion (Stambler and Hu-
ber, 2014)

Region growing, reconstructing walls
by wall score, detecting doors by Hough
transform

Volumetric model (ceil-
ings, floors, walls, doors)

laser scan voxel

Indoor scene recon-
struction (Thomson and
Boehm, 2015)

Detecting planes by RANSAC, fitting
IFC walls to the detected planes

volumetric model (walls) laser scan voxel

Indoor scene reconstruc-
tion (Ochmann et al.,
2016)

RANSAC to detect planes, global opti-
mization of graphs

volumetric model (walls
including openings for one
storey)

laser scan voxel

Indoor scene reconstruc-
tion (Macher et al., 2017)

Detecting planes by RANSAC, gener-
ating components by prior knowledge

volumetric model (slabs,
walls for multi-storey
building)

laser scan point

Indoor scene reconstruc-
tion (Ochmann et al.,
2019)

Detecting planes by RANSAC, clus-
tering by Markov clustering, arranging
planes and labelling cells

volumetric model (slabs
and walls for multi-storey
buildings)

laser scan voxel

Construction site facade
reconstruction (Xu et al.,
2015)

Detecting planes by RANSAC, classi-
fying points by histogram and random
forest

planar-surface model
(tubes and toe boards)

Photogrammetry point
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Construction site facade
reconstruction (Xu et al.,
2018a)

Slicing planar surface to extract points,
extracting features by histogram

planar-surface model
(tubes, toeboards, decks)

photogrammetry point

Construction site facade
reconstruction, (Xu et al.,
2018b)

Geometric cues among voxels by proba-
bilistic model, clustering voxels to com-
ponents

planar-surface model photogrammetry,
laser scan

voxel
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Opening detection

When collecting data with a laser scanner in an indoor environment, doors are usually
opened. The transparent glasses of windows cannot be captured by a laser scanner. So,
there are usually door and window openings in existence in laser-scanned point clouds
of indoor environments. Some methods have been proposed to detect the openings in
point clouds. Mayer and Reznik (2005) interpret the building facade from images and
detect windows by predefined shape. Pu and Vosselman (2007) extract windows from
terrestrial point clouds of building facade by grouping points in planar segments and
then fitting rectangles to the boundary of hole points. In their following research (Pu and
Vosselman, 2009), prior knowledge such as the wall, opening and roof features’ sizes,
positions, orientations, and topology is used to recognise these objects. In Ripperda
(2008), the structure of facades is reconstructed by a facade grammar and a reversible
jump Markov Chain Monte Carlo process. Truong-Hong et al. (2013) propose a sample
method to categorise points as boundary or interior points based on an angle criterion.
Holes caused by occlusions are distinguished if they do not fit the predefined opening
dimensions. Haghighatgou et al. (2022) propose an approach that investigates the house
facade where openings have different shapes, sizes, and non-symmetrical positions. But
the occlusion holes having characteristics similar to window opening still cause problems
in the detection.

2.1.4 Reconstruction of Small Objects

Apart from space-bounding objects such as ceilings, floors and walls, an information-
rich digital twin of buildings should also contain other small but important objects,
for example, objects from the energy and fire-safety sub-systems such as smoke alarms,
emergency switches, etc. In the previous Section 2.1.3, the state of the art of recon-
structing structural elements (ceilings, floors, and walls) is discussed already. Compared
to structural elements in a building, other components are usually small in size and have
different geometry properties, which makes it hard to apply the same methods to detect
those small-scale elements. Therefore, 2D information from images and 3D informa-
tion from laser-scanned point clouds are connected and integrated into the proposed
approach. We believe that this combination provides a significant advantage over using
the laser-scanned point cloud alone, especially for detecting small-scale components in
a building. In addition, text information, including serial numbers and IDs, can also
be extracted from 2D images, and the detected information can be used to enrich the
digital twin further.

With regard to elements located on wall surfaces, such as sockets and light switches,
(Meeussen et al., 2010) designed a robot that can recognise doors, door handles, and
sockets to achieve the door task and plugging task. The electrical outlet pattern is
detected in camera images by feature detection, and a laser scanning sensor is used to
find the pose of a wall. In (Krispel et al., 2015), the authors detect light switches and
sockets in orthographic 2D images by a random forest classifier. They use a feature
descriptor pool to measure the probability of the detection. A method was designed
in (Kang et al., 2010) that allows a mobile robot to get on/off an elevator in a multi-
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storey building. An algorithm is presented for recognising elevator buttons, where the
input image is first converted to a binary image, and then the candidates of buttons
and floor numbers are filtered out and ambiguous candidates are rejected by applying a
neural network. While most of these methods are used to help robots recognise specific
objects in the environment and perform a given task, little work has been done in the
AEC domain. In (Adán et al., 2018), the authors proposed a method to detect objects
such as switches, ducts and signs in a coloured point cloud. Depending on whether the
objects have geometric discontinuities or colour discontinuities in the wall area, potential
regions of interest are computed in colour images and depth images with regard to the
wall plane, respectively. The region of interest is then matched to a predefined depth
model database and a predefined colour model database that contain object classes in
the scene.

With regard to elements mounted on the ceiling such as lighting, Kim et al. (2017a)
proposed a recognition method based on thermal-mapped point clouds for building
elements consisting of electrical systems and heating, ventilation, and air-conditioning
(HVAC) components. Assuming the temperatures of these elements are different from
other parts of the ceiling, the points of corresponding elements can be extracted from the
point cloud. (Kim et al., 2017b) used two steps to recognise objects in thermal-mapped
point clouds: segmentation with thermal information and classification with geometric
information. The target objects are light fixtures on the ceilings, monitors on the wall
and humans in the environment. In (Díaz-Vilariño et al., 2015), the authors extract
the ceiling plane first and then convert the laser-scanned point cloud to an image of the
ceiling. Fluorescent lighting and circular low-energy bulbs are detected from the image
by the Harris corner detector and Hough transformation. In (Puente et al., 2014), a
method to detect tunnel luminaires from the point cloud is proposed. In this approach,
they use assumptions that are only valid in the tunnel, for example, luminaires are
located at higher points at the side of the tunnel and have brighter colour patterns than
their surroundings. With regard to identifying pipes, Czerniawski et al. (2016) proposed
a method to detect pipe spools in a cluttered point cloud. The method used curvature
estimation, points clustering, and feature matching to extract pipe spool objects. In an
office building, pipes are rarely visible because they are usually located inside the walls
or behind suspended ceilings. In (Agapaki and Brilakis, 2020), the authors used deep
learning to detect and differentiate between different pipes in industrial facilities.

2.1.5 Digital Twin Visualisation

Nowadays, digital twins can be utilised by different technologies in various use cases.
Especially the adoption of Virtual Reality (VR) and Augmented Reality (AR) technolo-
gies provides the possibilities to improve the user experience when using the digital twin
in practice, for instance, design review, construction management and maintenance,
and environment simulation. In addition, with the help of VR/AR technologies, digital
twins of facilities can also be used in worker training, such as safety training and on-site
operator training. The corresponding use cases for VR/AR technologies are discussed
in the following sections.
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Virtual Reality

VR is based on a set of technologies that puts a person in a digital simulation of an
environment, which could be a simulation of the real world or just an imaginary en-
vironment. The VR devices make a simulated environment where the user is able to
interact with the environment. There are four different kinds of VR devices (Schiavi
et al., 2022):

– 3D Keyboard Mouse Screen (KMS), which comprises interaction with a keyboard
and a mouse through the PC interface (Imaizumi, 2017);

– VR CAVE, which is a large screen projected with a wide range of views (Goulding
et al., 2012);

– VR Standalone, which refers to the all-in-one headset which has built-in screens,
processors, and storage;

– VR tethered Head Mounted Display (HMD), which is connected to a computer.

VR technologies can be used to simulate the digital twin of different assets, which
makes it possible to achieve different tasks. For example, the distances of elements
in the simulated model can be measured. As shown in Figure 2.6a, a tethered Head
Mounted Display device is used to measure the space between model elements. Another
example is shown in Figure 2.6b, lighting simulation is achieved using a VR standalone
device.
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(a) Lighting simulation with VR device (Natephra et al., 2017)

(b) Distance measurement with VR device (Zaker and Coloma, 2018)

Figure 2.6: Example use cases with VR devices
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Augmented Reality

AR overlays 3D virtual content onto the environment in the real world, which makes
the user always see the real world. There are three categories of AR devices (Schiavi
et al., 2022):

– AR fixed, which refers to a system setup with a fixed camera that streams the real
world to a monitor with additional virtual elements (Xiang et al., 2019);

– AR mobile handheld, which refers to smartphones/tablets with AR marker-based
or AR Simultaneous Localization And Mapping (SLAM)-based solutions (Olbrich
et al., 2013);

– AR mobile smart glasses, which refers to devices that are optically transparent,
like Google Glasses, Microsoft HoloLens, or HMD on optical see-through mode
(Kivrak and Arslan, 2019).

Similar to VR technologies, AR technologies can also be applied in different use cases.
For example, it can be used in the field of quality control. An example is shown in Figure
2.7a, where inspections to identify a void at the wrong location in a reinforced concrete
wall before the concrete has been cast in the real world is achieved by an AR mobile
handheld device. Another example is shown in Figure 2.7b, where the AR technology
is used to review designs by projecting the 3D view from the 2D drawing.
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(a) Design reviewing with AR device (Zaki and Khalil, 2015)

(b) Quality control with AR device (Kwon et al., 2014)

Figure 2.7: Example use cases with AR devices



2.2 Research Gaps 45

2.2 Research Gaps
We summarise the research gaps in enriching a geometric digital twin of buildings as
follows:

– In the data capturing process, sometimes only one single file of point cloud data
for a multi-storey building with modern data capturing devices is generated nowa-
days. In this case, how to segment the point cloud of multi-storey buildings into
individual storeys.

– In indoor environments, occlusion caused by furniture occurs quite often, which
leads to geometry missing in point clouds. The majority of methods are sensitive
to occlusion, especially when there are complex rooms (like L-shape rooms and
U-shape rooms) in the point cloud.

– Artificial Intelligence (AI) has been penetrating the Architecture, Engineering and
Construction (AEC) domain in recent years and provides possibilities to reduce
human effort in the process of creating digital twins from a different perspective,
especially Deep Neural Network (DNN) (Krizhevsky et al., 2012) provides a differ-
ent and efficient solution to achieve point cloud semantic segmentation. However,
the question of how exactly to use AI techniques and their output results to accel-
erate and improve the process is still an ongoing topic. With regard to applying 3D
deep learning in the process of creating digital twins, it is not easy and clear how to
extract useful and precise information from imprecise and redundant information
predicted by neural networks.

– Buildings can be divided into two categories depending on whether they fulfil
the Manhattan-world assumption, there is still a lack of methods that provide
convincing results, especially for buildings that do not fulfil the Manhattan-world
assumption under occlusion.

– Previous work focuses solely on structural elements and does not consider other
smaller but valuable objects in a building. While some researchers detect geometric
and colour discontinuities to find specific classes of small objects in images, these
approaches do not apply AI-based methods to enhance performance. Moreover,
most previous works dealt with only some classes of objects, and there is still a
lack of comprehensive object categories when creating a building twin.

– Most previous work used only point clouds to achieve object detection and recon-
struction. Because methods of object detection in 2D images are more mature and
can provide better performance than those in 3D point clouds, there is a potential
performance improvement when concatenating the information from various input
sources.

– While text information attached to corresponding objects is also important in a
rich building twin, none of the previous works considered adding text information.
There is still a lack of creating a comprehensive information-rich building twin
with geometric and semantic information.
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2.3 Research Questions

Although an information-rich digital twin can benefit all stakeholders of the assets, there
are only a few built facilities with available basic geometric models. There are mainly
two reasons for this situation:

– many facilities were constructed years ago, and they have no pre-existing digital
models from when they were constructed;

– those assets with a digital design model are never updated through the life cycle
of the asset. Hence it is missing all asset modification information, dramatically
reducing the data reliability.

Current capturing technologies such as laser scanning or photogrammetry (capturing
technologies are discussed in Section 2.1.1 in detail) allow us to capture the geometric
data efficiently, but the process of creating a digital representation for different kinds of
objects from collected raw data is still time-consuming.

This PhD thesis aims to automate this process to reduce human effort in creating an
information-rich digital twin. The author separates the whole process into the following
sub-processes.

– Given a laser-scanned point cloud of a multi-storey building, segment it into several
point clouds of individual storeys.

– Given a point cloud of one single storey of a building, create a basic digital twin
that contains space-bounding elements of buildings.

– Given images taken in the same area, add small-scale but still important objects to
the created digital twin and further enrich it with useful text information extracted
from images.

Based on the process to create an information-rich digital twin, the author summarises
the research questions of the thesis as follows.

RQ1 As AI has been used to solve various problems in different domains in recent years
and provides possibilities to reduce human effort in many applications, how to
extract and select reliable information from AI approaches in processing point
cloud data.

RQ2 As there is usually strong occlusion (for example, caused by furniture) existing in
the indoor environment of buildings in the real world which causes some surfaces
of space-bounding elements to be missing or incomplete, how to improve the result
of extracting the target elements in an occluded environment.
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RQ3 As are two types of buildings depending on whether they fulfil the Manhattan-
world assumption, how to extract the space-bounding elements for buildings that
fulfil the assumption as well as those that do not.

RQ4 Based on the experiment result of point cloud segmentation where AI works better
for classes of large-scale objects (details can be found in Section 5.2), how to use
images as an additional data source (like images) to improve the reconstruction
result.

RQ5 As some text information (like object IDs) is useful in a digital twin of a building,
how to further enrich the digital twin with text information?
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Chapter 3

Proposed Solution

In this chapter, the overall proposed approaches to create an information-rich digital
twin are presented. This process can be roughly divided into the following steps:

– collect data with different capturing devices, like laser scanners and cameras.

– extract elements that bound individual spaces, like walls, ceilings, etc.

– detect and reconstruct small-scale objects like smoke alarms, light switches, etc.

– extract useful semantic information like object IDs, serial numbers, etc.

This thesis focuses on Step 2 to Step 4, and the first step of data collection is not in the
scope. Figure 3.1 illustrates the overall proposed pipeline. The input to the proposed
approach includes laser-scanned point clouds and images or videos captured in the same
environments. Both data sources (images and point clouds) are used in the proposed
approach. Laser-scanned point clouds are used as input to extract space-bounding
elements which are usually large structural elements that form spaces in a building. As
the detection results of detecting small elements in point clouds are as good as large
elements (shown in Section 7.2.2 in detail), images are used as the complementary data
source to detect and recognise small elements. After getting the labelled point clusters
with semantic information for space-bounding elements and small elements (the two
blocks on the top in Figure 3.1), simplified meshes are generated for those elements (the
block at the bottom). Subsequently, texts are detected and recognised to enrich the
created digital twin further.

The following parts of this chapter are organised as follows: The scope of the proposed
solution is shown in Section 3.1. The overall solution for the whole thesis is presented
in Section 3.2. The hypotheses are shown in Section 3.3.
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Figure 3.1: Proposed approach to create an information-rich digital twin
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3.1 Scope of the Thesis
As discussed in Section 1.1, the concept of the digital twin is manifold. In this thesis,
the proposed solution focuses on geometric and semantic information of different objects
in a building. The research scope of the thesis is also presented in three parts: object
categories, geometric information, and semantic information.

Object Category

With regard to categories of object classes, the following classes are considered in the
thesis:

– space-bounding objects, including floors, ceilings, and walls.

– enriched objects, including windows, doors, columns, light switches, emergency
switches, light fixtures, smoke alarms, escape signs, speakers, fire extinguishers,
sockets, pipes, boards, door signs, elevator buttons, and trash bins.

The objects that form spaces in a building are included (walls, ceilings, floors). In
addition, it also includes those objects that are important in facility maintenance and
management, such as fire safety equipment (smoke alarms, fire extinguishers, fire alarm
switches), electrical elements (light switches, light fixtures, speakers), etc.

Geometric Information

With regard to geometric information, the author considers detailed and simplified ge-
ometry for all objects. Both detailed and simplified geometric information is necessary
to fit various applications. Therefore, the author decides to keep both two versions in
the created output. While the detailed geometric information of one object is repre-
sented by the clustered point cloud for the object, the simplified geometric information
is represented by a simplified mesh model for the corresponding object.

Semantic Information

With regard to semantic information, the author refers to two different kinds of informa-
tion. The first one is the label of an object, which represents the object category. The
second kind of semantic information is the information detected and recognised from
texts (like object IDs, room numbers on the door sign, etc.), which is used to enrich the
created output of the solution further.

3.2 Overall Solution
This section presents the overall proposed solution to create an information-rich digital
twin. The input to the solution is the captured laser-scanned point cloud of a multi-
storey building and images of the corresponding environments. By running through
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the proposed pipeline, the output is the information-rich digital twin, which includes
both large-scale space-bounding elements and small elements, detailed and simplified
geometric information, and semantic information. The individual steps of the process
are presented later in the thesis, from Chapter 4 to Chapter 7. This whole process is
illustrated in Figure 3.2.

As shown in the figure, different methods are designed for two data sources. Given
the input of a laser-scanned point cloud of a multi-storey building, the first step is to
segment the point cloud into individual storeys (Chapter 4). Subsequently, semantic
segmentation is applied by deep learning on point clouds of individual storeys (Section
5.1.1). In this step, point clouds with predicted labels are generated. As the deep
learning on point cloud to recognise small-scale elements does not perform as well as
that to recognise large-scale elements (shown in Section 7.2.2 in detail), only predictions
on those space-bounding elements are used for the next steps. Depending on whether the
indoor environments fulfil the Manhattan-world assumption, two methods are proposed
for individual cases (Section 5.1.2 to 5.3 for environments that fulfil the assumption and
Chapter 6 for environments that do not fulfil the assumption). Simplified mesh models
of space-bounding elements are created for the environments at this step.

For the other input of images of the environments, semantic segmentation on images is
applied. The extracted information from images is then mapped to laser-scanned point
clouds of individual storeys. In this way, the semantic information is transferred from
the 2D image plane to the 3D space, and this process is presented from Section 7.1.1 to
7.1.5. Based on the extracted point clusters for small objects, pre-defined mesh models
are fitted to those clusters to get lightweight simplified mesh models (Section 7.1.6 to
7.1.7). As images and point clouds are already aligned together, other information in
images can be extracted from the 2D plane and mapped to the 3D space without much
extra effort. Texts (like object IDs, room numbers, etc.) next to objects in images are
detected, recognised, and then linked to the objects. This step is presented in Section
7.1.8.

The final output of the proposed solution contains extracted information from these
described steps. Roughly speaking, while the large-scale space-bounding elements are
extracted from laser-scanned point clouds, the small elements are extracted from im-
ages. The labels extracted from point clouds and images for different objects are se-
lected and combined together. These labels are considered semantic information in the
information-rich digital twin. The point clusters represent the detailed geometry of the
corresponding objects. Then simplified meshes reconstructed from point clouds and im-
ages are combined and represent the lightweight geometry of the environments. Extra
semantic information, recognised information from texts in images, is used to further
enrich the created output.

The individual steps are presented in the following chapters in detail. The proposed
approach to segment point cloud data of a multi-storey building into individual storeys
is presented in Chapter 4. While the method to reconstruct environments that fulfil the
Manhattan-world assumption is shown in Chapter 5, Chapter 6 presents the proposed
solution for buildings that do not fulfil the Manhattan-world assumption. The approach
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that combines 2D and 3D detection in images and point clouds to detect small-scale
objects is presented in Chapter 7.
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Figure 3.2: Diagram of the overall proposed solution
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3.3 Hypotheses

The hypotheses underlying this thesis are summarised as follows.

– Given a point cloud file of a multi-storey building, some features of points (such
as density) in the point cloud provide the possibility to segment the whole point
cloud into individual storeys.

– AI-based methods, especially deep learning on point clouds can improve the pro-
cess of reconstructing space-bounding elements in occluded indoor environments
that do or do not fulfil the Manhattan-world assumption.

– Apart from point clouds, images can be considered as an additional data source
that provides complementary information obtained by deep learning, adding small-
scale objects into the digital twin.

– By registering images with point clouds together, information recognised from
texts in images can be extracted and linked to corresponding elements.
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Chapter 4

Segmentation of multi-storey point
clouds into different storeys

In this chapter, point clouds captured in multi-storey buildings are segmented into
individual storeys. With modern laser scanners and the corresponding software, it is
possible to represent a multi-storey building with one single file of the point cloud. A
point cloud captured in a multi-storey building captured at the city centre campus at
the Technical University of Munich (TUM) by a Navvis 1 laser scanner is shown in
Figure 4.1.

There are several advantages of using one single file of a point cloud of buildings: 1) it can
show the structure of the whole building more clearly; 2) it is easier to share and transfer
data among all stakeholders of the facility with one single file. However, the hardware
requirements for visualising and processing large files are very high because the number
of points becomes very high. The point cloud shown in Figure 4.1 contains more than
300 million points. In addition, it is more complicated to extract useful information from
the more complicated 3D environment that consists of multiple storeys. Therefore, it is
very straightforward to propose segmenting the multi-storey point clouds into individual
storeys before any further point cloud processing steps. The problem is narrowed down
to process point clouds of individual storeys after applying the storey segmentation.

1www.navvis.com
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(a) Point cloud of multi-storey building

(b) Point cloud of a multi-storey building (remove front surfaces for better visualisation)

Figure 4.1: Point cloud of a multi-storey building captured at TUM city centre campus (data captured
by Baro Pfannenstein GmbH / Vokal + Partner Beratende Ingenieure mbB)

4.1 Proposed Methods and Experiments

In this chapter, the storey structure of buildings is divided into two categories: simple
structure and complicated structure. The simple structure of building storeys means
that the ceiling and floor height is identical for the whole storey. However, because of
indoor decoration, like different designs of suspending ceilings, the ceiling height could
be differentiated in one storey. For example, the ceiling height of an office could be
different from that of the hallway in an office building. Different methods are proposed
to segment the simple and complex storey structures.

4.1.1 Storey with Identical Ceiling Height

A part of a building with identical ceiling height is visualised in Figure 4.2. This part
of the point cloud is used as input to explain how to segment the multi-storey building
with a simple structure into individual storeys.
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Figure 4.2: Part of building with identical height for individual storeys

For buildings in which storeys have identical ceiling heights, the position of the ceiling
and floor of each storey can be identified clearly by analysing the z-coordinate of all
points. The positions where the ceiling and floor planes are located are usually signifi-
cantly higher in the distribution along the z-axis. In Figure 4.3, the point cloud for the
facility shown in Figure 4.2 is colour coded by the z-coordinate of the points is presented,
and the corresponding point distribution along the z-axis is illustrated. It is obvious to
see that there are, in total, six peaks in the distribution. In this case, these six peak
values in the z-axis are the height values for the floor of the ground floor, the ceiling of
the ground floor, the floor of the first floor, the ceiling of the first floor, the floor of the
second floor, and ceiling of the second floor. Different storeys can be segmented clearly
by these peak values in the z-axis.
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Figure 4.3: Point cloud distribution along its z-axis. The point distribution diagram shows six peak
values for three storeys, as each storey contains a ceiling and a floor peak value.

However, if the storey height is not the same for each individual storey, the same strategy
does not work. In Figure 4.4, the point distributions along the z-axis for multi-story
buildings with simple and complex storey structures are compared (for point clouds
shown in Figure 4.2 and Figure 4.1). The reason why the coordinate range number is
omitted is that only the distribution rather than the exact values is important here. It
can be seen that, unlike the distribution for simple storey structure, which has very clear
peak values (in this case, three pairs of peak values for three storeys), the peak values
in the distribution for complex storey structure are not clear and organised enough. It
is almost impossible to tell where these floor or ceiling planes are located. Therefore,
different strategies need to be applied to segment the point cloud with a more complex
storey structure.
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(a) Point distribution along the z-axis for simple structure (Peak values are clear in the distribution diagram)

(b) Point distribution along the z-axis for complex structure

Figure 4.4: Distribution comparison between multi-story buildings with simple and complex storey
structure

4.1.2 Storey with Varying Ceiling Heights

In this section, an approach that aims to segment multi-storey buildings with different
ceiling heights in individual storeys is proposed. It should be noticed that the approach
is under the assumption that the ceilings and floors in the environment are horizontal.
An example of a point cloud is shown in Figure 4.5, where the ceiling and floor heights
change in each storey.

Figure 4.5: Point cloud of building with different ceiling heights in individual storeys

Although the point distribution along the z-axis described in Section 4.1.1 for these
storeys is unclear, the local information along the z-axis is still valuable and can be
used to identify the horizontal planes that could separate floors and ceilings. In order
to extract the point height distribution along the z-axis in a local area (compared with
distribution for all points), a grid design where the grid size is not identical in three
directions is proposed. rx, ry, and rz are used to denote the grid length in the x-direction,
y-direction, and z-direction, respectively. As shown in Figure 4.6, the box sizes in the
x-direction and y-direction stay the same and are moderated to the value larger than
the size in the z-direction. The designed relationship among rx, ry, and rz are described
by the following equation:

rx = ry = n1 · rz, (4.1)
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where n1 is the ratio between the box length in the z-direction and the lengths in the
other two directions. The parameter study with regard to choosing n1 is discussed in
Section 4.2. All points in the point cloud are located in their corresponding grids. The
number of points inside each grid is counted, and the value is denoted by N . By this
kind of "thin" local box design, the points that belong to horizontal planes are located
in a grid with a relatively large N value and will subsequently be distinguished by the
value N .

Figure 4.6: Different grid size in three directions

The colour-coded point cloud (shown in Figure 4.5) based on different N values is
presented in Figure 4.7a. Meanwhile, the point distribution is illustrated in Figure 4.7b.
It can be seen that points which belong to the ceiling or floor can be distinguished from
other points in all storeys. And when looking into the distribution of all points, two
significant "clusters" can be found clearly (one for points belonging to the vertical plane
and one to the horizontal plane).

Subsequently, in order to filter the points which belong to the first cluster out, the
following condition is applied:

N <
Nmax1 + Nmax2

2 , (4.2)

where Nmax1 is the N value for the maximum value in the first cluster, and Nmax2 is the
N value for the maximum value in the second cluster, as marked in Figure 4.7b. The
filtered point cloud is shown in Figure 4.8a. It can be seen that points belonging to the
ceiling and floor can be extracted. Based on the prior knowledge that ceilings and floors
in multi-storey buildings always are vertically separated by each other, points belonging
to different storeys can be segmented accordingly (as marked by the red dashed lines).
The final result is illustrated in Figure 4.8c.
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(a) N value colour-coded point cloud

(b) Point distribution for N value

Figure 4.7: N value colour-coded point cloud and distribution
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(a) Front view of point cloud after filtering

(b) Input point cloud

(c) Storey segmentation result

Figure 4.8: Segment multi-storey point cloud by filtered points of horizontal plane
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4.2 Results and Conclusions

In order to segment horizontal planes, which could be ceilings and floors from the whole
point cloud, the local information is concatenated from the x- and y-direction by the
designed voxel length. In this section, different results of choosing different n1 values
are compared.

Some results of different point clouds are shown in Figure 4.9, 4.10, and 4.11. And the
corresponding original point clouds are presented in Figure 4.9a, 4.10a, 4.11a. It can be
seen that the point clouds of the first two examples are cleaner, and not much occlusion
or furniture exists. In this case, all chosen n1 values can provide good results to segment
the multi-storey point clouds. However, things get more complicated if some surfaces
of the furniture are horizontal. For example, the furniture surfaces are marked in red
circles in Figure 4.11. If only a small value is chosen (like n1 = 5), it is really hard to
distinguish the furniture surfaces from floor or ceiling surfaces. It is obvious to see that
the floor and ceiling surfaces are better recognised when increasing the n1 value.

The chosen value of n1 determines how much more local information you want to extract
from the horizontally neighbouring region than the vertically neighbouring region. For
point clouds without much occlusion or large horizontal surfaces of furniture, it is not
very strict to choose the range of n1. But for scenes with those surfaces which could
probably deteriorate the result, it is important to choose a proper value. If the value is
too small, it can not distinguish smaller furniture surfaces from all horizontal surfaces.
By enlarging the value, some horizontal surfaces of furniture can be filtered out. But in
the meantime, if the value is too large, some small surfaces of the ceiling or floor would
also be discarded.

In summary, point clouds of a multi-storey building are segmented into individual storeys
in this chapter. The proposed method can handle both simple structures (individual
floors have identical floor and ceiling heights) and complex structures (floor and ceil-
ing heights can be differentiated in an individual storey). In this way, the problem
can be narrowed to individual storeys, which reduces the complexity and benefits the
computing.



(a) Original point cloud

(b) Colour-coded point cloud with n1 = 5 (c) Filtered point cloud with n1 = 5

(d) Colour-coded point cloud with n1 = 10 (e) Filtered point cloud with n1 = 10

(f) Colour-coded point cloud with n1 = 15 (g) Filtered point cloud with n1 = 15

(h) Colour-coded point cloud with n1 = 20 (i) Filtered point cloud with n1 = 20

Figure 4.9: Storey segmenting results if different n1 values



(a) Original point cloud

(b) Colour-coded point cloud with n1 = 5 (c) Filtered point cloud with n1 = 5

(d) Colour-coded point cloud with n1 = 10 (e) Filtered point cloud with n1 = 10

(f) Colour-coded point cloud with n1 = 15 (g) Filtered point cloud with n1 = 15

(h) Colour-coded point cloud with n1 = 20 (i) Filtered point cloud with n1 = 20

Figure 4.10: Storey segmenting results if different n1 values



(a) Original point cloud

(b) Colour-coded point cloud with n1 = 5 (c) Filtered point cloud with n1 = 5

(d) Colour-coded point cloud with n1 = 10 (e) Filtered point cloud with n1 = 10

(f) Colour-coded point cloud with n1 = 15 (g) Filtered point cloud with n1 = 15

(h) Colour-coded point cloud with n1 = 20 (i) Filtered point cloud with n1 = 20

Figure 4.11: Storey segmenting results if different n1 values
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Chapter 5

Approach for Manhattan-world
Environments

In this chapter, an approach of reconstructing space-bounding elements of buildings that
fulfil the Manhattan-world assumption is proposed. The Manhattan-world assumption
states that there is a predominance of a triple of mutually orthogonal directions in the
environment (Coughlan and Yuille, 1999). This chapter is organised as follows: The
proposed approach is introduced in Section 5.1 in detail. The experiments and results
are presented in Section 5.2. Conclusions and discussions are presented in Section 5.3.

5.1 Proposed Approach

Instead of detecting surfaces in the point cloud first, the proposed approach aims to find
the largest void space volume inside each room. Based on the found void volumes, space-
bounding elements are reconstructed. Considering the void volumes at room level makes
it easier to distinguish the surfaces of building elements from the surfaces of furniture
in occluded indoor environments. Moreover, the detection process is improved, espe-
cially when adding semantic information from 3D deep learning. The overall proposed
approach is illustrated in Figure 5.1.
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Figure 5.1: Workflow of proposed approach

5.1.1 Point Cloud Segmentation by Deep Learning

Because some of the important information can be occluded in a building with a high
occlusion level, our proposed approach uses semantic information from deep learning is
used to enhance performance. As the results on the S3DIS dataset (Armeni et al., 2016)
are shown in Table 2.1, KPConv (Thomas et al., 2019) is one of the well-performing
neural networks for point cloud segmentation in the indoor environment. As the similar
indoor environment of our office building is captured, the author argues that KPconv
can also perform well in our dataset.

More information on the dataset preparation and the results of point cloud segmentation
are evaluated in Section 5.2.

5.1.2 Generating Seeds for Growing

In this step, the growing seeds for further steps are generated. The proposed method here
is under the Manhattan-world assumption. Firstly, the method performs the voxelisation
downsampling method to the point cloud with semantic information. All voxels in the
voxelisation process are stored, including void voxels and non-void voxels. While void
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voxels represent empty space in the point cloud, a non-void voxel means there are points
within the voxel. In order to find seed points for growing, all points that are predicted
as walls by deep learning in the previous section are projected to the XY plane after
the voxelisation downsampling. Subsequently, RANSAC is used to extract lines in the
XY plane. According to the Manhattan-world assumption (Coughlan and Yuille, 2000),
lines that are not parallel or perpendicular to X or Y coordinates are not extracted.

The next step is to extend the lines and calculate the intersecting points of these lines
to get polygons. Some points (like those on large vertical surfaces of furniture) could
also be predicted as wall points and projected on XY plane. Therefore, these polygons
are potential floor plan representations, not real floor plans. Then the centroids of these
polygons are computed subsequently and selected as the potential seed points in the
2D plane. In 3D space, a default value needs to be set for each potential seed point.
In the experiment, 1.5m is used as the Z coordinate for seed points. Because the aim
of the proposed approach is to grow a void space inside a room, the voxels of the seed
points should be void voxels. If not, the neighbouring voxels can be selected as seeds,
as in this step, seed points only need to be selected roughly. It is not necessary to
distinguish polygons from different rooms. As described later in the algorithm of the
growing method, if a seed point from a polygon is included in the grown space of another
seed, it will not grow from this point anymore. This process is illustrated in Figure 5.2.

(a) Input point cloud
(b) Point cloud with colour-coded semantic informa-

tion (walls: green)

(c) Extracted wall points (d) Wall points projected to 2D plane

(e) Line extraction by RANSAC and seed point selec-
tion (blue points are seed points, red points are
discarded because the polygon is too small to be
considered as a single room)

Figure 5.2: The process of generating seeds
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5.1.3 Growing from Each Seed

This part is the core of the proposed approach. As the aim is to find the largest void
space volume inside a room, the final void volume is supposed to meet two requirements:
a) it should enclose the points of furniture inside the room; b) it should not expand to
the outside through window and door openings.

In this step, the void-growing process is in a "cuboid" way. That means the void space is
grown from one seed (void voxel) in six directions (top, bottom, left, right, front, back).
Similar to the region growing approach, neighbours of the seed are checked to determine
whether they belong to the volume space at each step. In general, the growing process
and the 26 neighbours of one voxel in 6 directions are illustrated in Figure 5.3.

Figure 5.3: Proposed void growing process

It is vital to determine when to stop the growing process. One reason why the growing
process is done in a "cuboid" way is that in this growing way, it is straightforward to
check the frontiers in six directions during the growing process and use the information
on frontiers to determine whether it should stop growing in each direction. Two different
kinds of stopping conditions that determine when to stop growing are used: semantic
stopping condition and geometric stopping condition.

In the previous step, all voxels from the input point cloud are categorised into two classes:
void and non-void voxels. S is used to denote the set that contains all found seeds, and
the algorithm picks a seed from S until there are no non-used seeds. This process is
introduced as follows, and the pseudocode for the algorithm is shown in Algorithm 1:

– the algorithm checks whether the selected seed has been used before. If so, it
would delete this seed and pick another seed;

– the picked seed voxel is added to another set which is denoted by Nt . It represents
the seed set at step t. N0 denotes the initial set that contains only one seed from
S ;
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– for every seed voxel in Nt at step t, the algorithm finds its 26 neighbours. The
set that contains all neighbour voxels is denoted by P. It represents the potential
seeds for the next step. And I use N to represent the union of all previous seed
sets, from time step 0 to time step t;

– voxels that are already shown in N are removed from P;

– the algorithm checks whether it fulfils any of the stopping conditions on frontiers
(stopping conditions will be introduced later in this chapter). The set of these
voxels on the frontier is denoted by E . Only if it stops in all six directions, the
growing process would be stopped;

– voxels in E that belongs to the frontier of stopping directions are removed from
potential seed set P as it would not grow in the corresponding directions. More-
over, seed points from the previous step in this direction need to be added to the
new seed set of the next step. Otherwise, it cannot grow in this direction any-
more without the corresponding seeds. The newly generated seed set is denoted
by Nt+1 . Then go back to step 2);

Algorithmus 1 The void growing algorithm.
Input:
void voxels and non-void voxels of the point cloud;
initial seed, S ;
the stopping conditions, F();
functions to find all neighbors, α();
functions to get voxels on the frontier of any direction, β();
Initialize:
voxel list of void volume space in the point cloud, O ← ∅
Algorithm:
while S is not empty do

select one initial seed N0 from S
if N0 ∈ O then

while F(Nt) is not fulfilled in six directions do
find seeds’ 26 neighbours P ← α(Nt)
P ← P \ (P ∩O)
if F(P) is fulfilled in any direction then

find voxels in that direction E ← β(Nt)
get seeds for next round Nt+1 ← P \ E
Nt+1 ← Nt+1 ∪ β(Nt−1 )
O ← O ∪ Nt

end if
end while

end if
end while

How the growing process works when it grows to a plane is illustrated in Figure 5.4 for
an example. Here, the red voxels represent the non-void voxels that form a plane, while
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the blue voxels are the void voxels. In Figure 5.4a, when it grows to a position in the
bottom direction that has many non-void voxels (like the top surface of a desk), at this
step, the algorithm is not expected to know whether it grows to a desk surface or a floor
surface. So, it stops growing in the bottom direction and continues growing in the other
five directions. It will stop growing in the bottom direction until it does not meet the
stopping condition in this direction anymore (for example, in Figure 5.4c).

(a) Stop growing in the bottom di-
rection

(b) Continue growing in other direc-
tions

(c) Continue growing in bottom di-
rection

Figure 5.4: The first-level stopping condition

5.1.4 Stopping Conditions
In the proposed approach, the stopping conditions are defined to determine when to
stop the growing process in different directions separately. Despite the fact that the
semantic information predicted from deep learning is very valuable, it is not a perfect
result. Therefore, semantic information, as well as geometric information, is used as
the stopping conditions. In the growing process, the information on the frontier in each
direction is checked to determine whether it fulfils the stopping conditions at every step.

The basic idea is that the algorithm compares the ratio between the number of target
points of all directions at every step and a predefined threshold value T (in our exper-
iment, the default value is set T = 0.1 to make it does not neglect smaller non-void
surface). If the ratio is larger than the threshold T , as there is a relatively large number
of non-void voxels or there are some voxels with essential labels (like walls, windows,
etc.), the algorithm will stop growing in this direction in this step.

Semantic Stopping Conditions
In semantic stopping conditions, labels predicted by deep learning are considered. For
the top direction, a ratio value that is used to check whether it stops growing in this
direction is defined as follows:
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rtop = Pceiling/Qtop, (5.1)

where Pceiling denotes the number of voxels predicted as the ceiling in the top direction,
and Qtop is the number of nonvoid voxels in the top direction. If rtop > T , it means
there are a number of points predicted as ceiling and the algorithm would stop growing
in this direction at this step, and continues checking the stopping conditions in further
steps.

Similarly, for the bottom direction, a ratio value is defined as the stopping condition as
follows:

rbottom = Pfloor/Qbottom, (5.2)

where Pfloor denotes the number of voxels predicted as the floor in the bottom direction,
and Qbottom is the number of nonvoid voxels in the bottom direction.

For the other four directions (left, right, front, back) where windows and doors might
exist in these directions, the ratio value is defined slightly differently:

rother = (Pwall + Pwindow + Pdoor)/Qother, (5.3)

where Pwall, Pwindow, and Pdoor denotes the number of voxels predicted as wall, window,
and door in one of the other four directions, and Qother is the number of nonvoid voxels
in the same direction.

Geometric Stopping Conditions

As labels from deep learning are not always correct, it is helpful to consider other
information rather than relying solely on semantic information. In geometric stopping
conditions, the number of void and nonvoid voxels are considered. It aims to stop the
growing process where a plane exists, but the points on the plane are wrongly predicted
(for example, wall points are predicted as furniture points).

The ratio that determines whether it stops growing in one direction is defined as follows:

r = P/Q, (5.4)

where P denotes the number of nonvoid voxels in one direction, and Q is the number
of void voxels in the same direction. If r > T , it means there are a number of nonvoid
voxels; despite that no semantic information is available, the algorithm should stop
growing in this direction at this step and continues checking the stopping conditions in
further steps.

If any stopping condition (semantic or geometric) is fulfilled in one direction, it stops
growing in this direction and continues growing in other directions. Whether it stops
growing in one direction does not influence the growth in other directions, and it can still
enlarge the frontier of the stopped direction when continuing growing in other directions.
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That means in further steps if the stopping condition is not fulfilled anymore, it can
continue growing in this direction.

When it stops growing in all six directions, the result is supposed to be the void space,
whose top surface is the ceiling, the bottom surface is the floor, and the other four
surfaces are the wall surfaces. The growing results where it stops growing for one office
room are shown in Figure 5.5. It is obvious to see that all surfaces that form the void
space can be well detected.

(a) Input point cloud (b) Growing result where growing stops at room boundary

Figure 5.5: Growing result of an office

The surfaces where the algorithm stops growing in the bottom and top directions are
shown in Figure 5.6. In this figure, red points denote the centre points of void voxels; blue
points denote the centre points of voxels predicted as the ceiling; green points represent
the centre points of voxels predicted as the floor. The algorithm stops growing when it
grows to the ceiling and floor surfaces.

The surfaces where it stops growing in the other four directions are shown in Figure
5.7 and Figure 5.8. In these figures, red points denote the centre points of void voxels;
green points represent the centre points of voxels predicted as the wall. The algorithm
stops growing when it grows to wall surfaces, despite having door or window openings,
because the growth would be stopped if the semantic information of windows and doors
is found in the growing process. How to further extract door and window openings in
the wall is discussed in Section 5.1.5.
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(a) Top stopping surface (b) Bottom stopping surface

Figure 5.6: Stopping surfaces in the top and bottom directions (Red points denote the centre points
of void voxels; blue points denote the centre points of voxels predicted as the ceiling; green
points represent the centre points of voxels predicted as the floor class)

(a) Left stopping surface (b) Right stopping surface

Figure 5.7: Stopping surfaces in left and right directions (Red points denote the centre points of void
voxels; green points represent the centre points of voxels predicted as the wall; blue points
are the centre points of voxels predicted as the door class)
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(a) Front stopping surface (b) Back stopping surface

Figure 5.8: Stopping surfaces in front and back directions (Red points denote the centre points of
void voxels; green points represent the centre points of voxels predicted as the wall; blue
points are the centre points of voxels predicted as the window class)
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5.1.5 Detect Window and Door Openings

The patterns on frontiers in each direction when it stops growing are checked to identify
whether there are openings on the wall in the corresponding direction. When capturing
buildings with laser scanners, doors are usually open. This and the fact that the window
glass surfaces do not reflect the laser beam lead to the fact that windows and doors are
void areas without any points (like in Figure 5.9). As the proposed approach considers
void space inside the point cloud, it is convenient to check the void area on the wall
surfaces where the algorithm stops growing.

A wall surface with a door opening where it stops growing is shown in Figure 5.9. In this
figure, red points are the centre points of void voxels; green points represent the centre
points of non-void voxels predicted as the wall; blue points are the predicted door points.
It is obvious to see that in the marked area, there is a red rectangle (opening) surrounded
by blue points (door). Therefore, the door opening rectangle can be extracted by fitting
a minimum rectangle that encloses all the points of void voxels.

Figure 5.9: A wall surface with a door opening (Red points are the centre points of void voxels; green
points represent the centre points of non-void voxels predicted as the wall; blue points
are the predicted door points)

A wall surface with a window opening where it stops growing is shown in Figure 5.10. In
this figure, again, red points are the centre points of void voxels; green points represent
the centre points of voxels predicted as the wall; blue points are the predicted window
points. In the marked area, it is obvious that there is a red rectangle (opening) and
some window points at the boundary between wall points (green) and centre points of
void voxels (red).

However, it would cause a problem if those predicted door/window points were used to
extract a rectangle. As shown in Figure 5.9 and Figure 5.10, the predicted window and
door points are not perfect rectangles because many points are wrongly predicted as
other classes, and this would make the fitting result imprecise. The result for doors and
windows (mIoU around 44%) is worse than that of the other three elements (ceiling,
floor, and wall’s mIoU larger than 80%).
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Figure 5.10: A wall surface with a window opening (red points are the centre points of void voxels;
green points represent the centre points of voxels predicted as the wall; blue points are
the predicted window points)

Therefore, in our proposed approach, semantic information about doors and windows is
only used to check the existence of doors and windows, not used in the opening recon-
struction. Rectangles are extracted based on geometric information of the void space
inside walls under the assumption that all door and window openings are rectangles.

Semantic information from deep learning is quite helpful in distinguishing wall surfaces
and furniture surfaces, despite the fact that some furniture surfaces are sometimes very
large. These large furniture surfaces are quite hard to identify if using geometric in-
formation only. A large bookcase in front of a wall is shown in Figure 5.11. In this
figure, red points denote the wall behind the bookcase; blue points are predicted as a
bookshelf, while grey points next to the blue points are predicted as closet points. Al-
though the neural network model predicts the points of a bookcase into two classes, it is
understandable because closets and bookshelves are sometimes quite similar in real life.
But it does not mislabel points of furniture to points of the wall, which is important to
determine when to stop growing.

The process of fitting rectangles to find a window opening on the wall is illustrated in
Figure 5.12. In the plane where a window exists, the window opening should be close
to a rectangle, assuming all windows in the building are rectangles. Apart from the
window opening, if the wall is occluded by some furniture which is quite common in
the indoor environment, there would also be some furniture void voxels, as shown in
Figure 5.12b. But usually, these void spaces have different shapes from windows and
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Figure 5.11: The prediction of a bookcase in front of a wall. Points in different colours represent
different predicted classes.

doors. Moreover, on the boundary of the window void area and the wall area, there
are some points predicted as window points by deep learning, like the orange points
in 5.12c. The semantic information of window points can be used to distinguish the
void space of a window opening from that caused by furniture. Then all void voxels (as
shown in Figure 5.12d) in the plane are clustered into different point clusters based on
the Euclidean distances between a point to its neighbours, as shown in Figure 5.12e.
The next step is to remove the outliers in each cluster by applying the statistical outlier
removal filter in Point Cloud Library (Rusu and Cousins, 2011) (shown in Figure 5.12f).
At last, the minimal rectangle that can enclose all points in the cluster is fitted to the
point cluster, as shown in Figure 5.12g. Because the larger rectangle in Figure 5.12g
does not have any predicted window points on the boundary (not a window based on
semantic information) and the void points inside the rectangle do not form a rectangle
shape (not a window based on geometric information), the larger fitted rectangle can
be removed from a window opening directly. As the dimension of door and window
openings are relatively small compared with ceilings and walls, it is sensible to the voxel
size that we used to downsample the point cloud. The detected rectangles are fitted
again in the original input point cloud, as shown in Figure 5.12h. In the original point
cloud, the sides of rectangles are adjusted horizontally or vertically within a voxel range
until they fit the boundary of points and empty region.

The process of fitting rectangles to find a door opening on the wall is quite similar and
illustrated in Figure 5.13. The main difference is that some points that are predicted as
the door rather than the window are considered to detect the door opening.
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(a) A wall with a window in
original point cloud

(b) The plane where it
stops growing

(c) Nonvoid points (green:
wall; orange: window)

(d) Centre points of void
voxels on the plane

(e) Clusters of void vox-
els (two clusters are
marked)

(f) Clusters after removing
outliers

(g) Two fitted rectangles
(only smaller one is
window)

(h) Refined window in orig-
inal point cloud (red
rectangle)

Figure 5.12: The process of extracting a window opening

By considering whether there are window or door points on the boundary of the opening
area and wall area, an opening can be classified as a door or window opening. If
no semantic information is available, prior knowledge, such as that door openings are
usually connected to the floor surface, is used to identify door openings from window
openings.
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(a) A wall with a door in
original point cloud

(b) The plane where it
stops growing

(c) Nonvoid points (green:
wall; blue: door)

(d) Centre points of void
voxels on the plane

(e) Clusters of void vox-
els (three clusters are
found)

(f) Clusters after removing
outliers

(g) Three fitted rectangles
(only the right one is a
door)

(h) Refined door in original
point cloud (red rectan-
gle)

Figure 5.13: The process of extracting a window opening

5.1.6 Merge Connected Cuboids

From the previous steps, cuboids for void volume inside rooms are extracted from the
point cloud. Because there is at least one seed inside one room, one room could have
multiple cuboids from different seed points. This usually happens in some complex
rooms, like U-shape rooms, L-shape rooms, rooms with different ceiling heights, etc.
Therefore, these cuboids should be merged into one. There are two circumstances in
that two cuboids should be merged into one: a) one surface of a cuboid touches a surface
of another cuboid: b) two cuboids have overlapped space.

5.1.7 Extract Space-bounding Elements

In this step, elements are reconstructed from the cuboids generated from the last step.
Different strategies are used for different kinds of structural elements.

For ceilings, floors, and outer walls, it is common that only the inside surfaces are cap-
tured. For these elements that are only captured from one side, the surface where void
volumes stop growing is considered the inner surface of these elements. The thickness
of these elements is set to a default value because the information is not available in the
point cloud.

In contrast, both sides of the inner walls usually are scanned when collecting data inside
a building. That means two void cuboids are grown in the two adjacent rooms. The
space between two void cuboids is considered the inner wall (as shown in Figure 5.14).
The thickness of the inner wall is the distance between these two surfaces.

5.1.8 Extract Windows and Doors

In Section 5.1.5, the location and dimension of doors and windows can be extracted by
fitting rectangles under the assumption that all doors and windows in the building are
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Figure 5.14: One inner wall separates two adjacent volume spaces.

rectangles. Two rectangles extracted from the two sides of the wall should be identical
in an ideal case. However, it is almost impossible to fit two exactly identical rectangles
from the two sides. In order to get one rectangle that can represent the door or window
openings, a new rectangle is computed from two old rectangles, whose width and height
are the mean values of two old rectangles, and the new centre point is the middle point
of the two old centre points.

At last, the author applies a label refinement step based on the detected rectangles of
doors and windows. All points within the rectangles in the original point cloud are
labelled as door or window points.

5.2 Experiments and Results

The proposed approach is written in C++. Point Cloud Library (PCL) 1.9.1 (Rusu and
Cousins, 2011) and the Computational Geometry Algorithms Library (CGAL) 5.1 (The
CGAL Project, 2020) are used in the implementation.

The point cloud that is used in the reconstruction process in this chapter is a laser
scanning point cloud with 5mm resolution and captured in the office space at the Chair of
Computational Modelling and Simulation (CMS) at the Technical University of Munich
(TUM). This dataset is also the indoor environment of an office building, which is similar
to that of the S3DIS dataset. In this chapter, the dataset captured at TUM is called
the TUMCMS dataset in the following sections. The TUMCMS dataset is labelled
manually and split into the training and validation set (the training set is around 70%
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of the total area and the validation set is around 30%). Three training set settings
are made: trained on the S3DIS dataset only, TUMCMS training set only, as well as
S3DIS and TUMCMS training set. In addition, the author also shows the resulting
improvement when applying door and window points refinement described in Section
5.1.8 for two different models. The results of different models are listed in Table 5.1.
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model training set test set ceiling wall floor window door

KPConv TUMCMS(train) TUMCMS (test) 94.7 81.8 96.6 54.4 48.8

KPConv S3DIS TUMCMS (test) 93.6 73.9 88.3 15.3 17.3

KPConv S3DIS and TUMCMS (train) TUMCMS (test) 93.5 82.9 97.3 48.7 47.1

KPConv result refinement S3DIS and TUMCMS (train) TUMCMS (test) 93.5 82.7 97.2 68.4 60.2

PointTransformer S3DIS and TUMCMS (train) TUMCMS (test) 94.4 83.1 97.8 52.2 50.1

PointTransformer result refine-
ment

S3DIS and TUMCMS (train) TUMCMS (test) 94.4 83.0 97.7 70.2 64.4

Table 5.1: Segmentation IoUs on TUMCMS test set
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It is obvious to see that the model trained on both the S3DIS dataset and TUMCMS
training set performs best in wall and floor classes. However, it performs worse in
window class compared with training solely on the TUMCMS dataset. The main reason
is that two datasets are captured by different technologies (S3DIS used RGBD camera
and TUMCMS used laser scanner), which makes the property of point clouds non-
consistent for different objects. One example is shown in Figure 5.15. While windows in
the S3DIS dataset contain points and show outside scenes, windows in the TUMCMS
dataset have no points and are actually "void" on the wall. Therefore, adding TUMCMS
data to the training set can improve the result of the window class. In contrast, objects
like walls, ceilings, and floors in the two datasets are quite similar. Training on both
datasets can improve the performance of the network. By applying the window and
door refinement, the annotated result of points can be improved, which is an essential
part of the geometric digital twins that shows detailed geometric information.

(a) Window in S3DIS dataset (b) Window in TUMCMS dataset

Figure 5.15: Windows in S3DIS and TUMCMS dataset

The qualitative evaluation result on the part of the test set in the TUMCMS dataset is
illustrated 5.16. The extracted room spaces are illustrated in Figure 5.16b. Each colour
represents a void volume inside a room. It can be seen that not only standard cuboid
rooms but also complex rooms can be detected. For example, the hallway can be seen as
an L-Shape room. Furthermore, if focusing on the ceiling of the input cloud, the ceiling
heights of some rooms and the hallway are not identical because of suspended ceilings
which are quite common in the building industry nowadays. The different ceiling heights
in the input point cloud can be clearly identified in the grown void volumes. In Figure
5.16c, it can be seen that the alignment of reconstructed surfaces and the original point
cloud. The points representing the ceiling are removed to depict rooms of the input point
cloud more clearly. It is obvious that the shift is small, and the quantitative evaluation
is discussed later in this section. Based on the volume spaces found in previous steps,
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(a) Input point cloud (b) Colour-coded room space

(c) Extracted surfaces and original point cloud (d) Extracted mesh model

(e) Manually created model

Figure 5.16: Qualitative evaluation on TUMCMS test set

walls, floors, and ceilings can be extracted. In the experiment, if only one surface
of the elements is scanned, the default thickness of the element is set to 30cm. The
reconstructed 3D model created by the proposed approach and the BIM model created
manually are shown in Figure 5.16d and 5.16e.

In Figure 5.17, the points representing the ceiling are removed to depict rooms of the
input point cloud more clearly. It is evident to see that a gap separates two adjacent
room volumes. Moreover, the gaps between two adjacent rooms are supposed to be the
wall that separates these rooms.

As shown in Figure 5.16 and Figure 5.17, the void growing algorithm performs quite
well in our dataset, a typical indoor environment of offices with strong occlusion. The
author states that our algorithm could apply to other point clouds of buildings without
any modifications or with slight modifications. In most cases, if the buildings have
similar door and window openings, we can apply our approach directly to new datasets.
However, if the door and window openings have different shapes (like circles), the model
has never been trained on this kind of door and window. It is understandable that the
network cannot detect one type of element that it has never seen before. To find and fit
these doors and windows, we could enlarge the training set or just add other predefined
opening shapes as available prior knowledge.

By quantitative evaluation, the room areas in the TUMCMS test set are evaluated
by first comparing area values, absolute and relative deviation, overlapped area, and
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Figure 5.17: Input point cloud and void volumes inside rooms after removing ceilings

Intersection over Union (IoU) of individual rooms in Table 5.2. Basically, if using Ri to
denote the room space of the extracted method for room i and Si to denote the room
space of room i in the manually created BIM model, the IoU for the room i is computed
as

RoomIoU i = Ri ∩ Si

Ri ∪ Si

. (5.5)

The performance of choosing different voxel sizes is also compared in the table, and it
shows a smaller voxel size performs better than the larger one. In addition, the result
on another dataset is also evaluated, which is captured in a different office building at
the Technical University of Munich (TUM), as shown in Table 5.3, marked as Dataset
2. The input point cloud and corresponding created model of the approach for Dataset
2 are illustrated in Figure 5.18 for qualitative evaluation as well.

Figure 5.18: The input point cloud and corresponding created model of the approach for Dataset 2
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Table 5.2: Area comparison between the void-growing model and BIM model on TUMCMS test set

office No. voxel size (cm) void-growing (m2) BIM (m2) abs. dev. (m2) rel. dev. (% ) overlap area (m2) IoU (%)

office 1 5cm 46.62 49.22 2.60 5.28 45.55 94.24

office 2 5cm 26.15 26.82 0.67 2.50 25.85 93.15

office 3 5cm 23.30 24.11 0.80 3.32 23.13 92.15

office 4 5cm 25.20 25.88 0.68 2.63 24.92 95.03

office 5 5cm 23.75 25.20 1.45 5.75 23.23 94.58

office 6 5cm 23.75 24.90 1.15 4.62 23.12 93.18

office 1 3cm 47.69 49.22 1.53 3.11 46.90 94.74

office 2 3cm 26.35 26.82 0.47 1.75 26.22 74.02

office 3 3cm 23.64 24.11 0.47 1.95 23.48 92.78

office 4 3cm 25.30 25.88 0.58 2.24 25.20 94.64

office 5 3cm 23.82 25.20 1.38 5.48 23.41 95.23

office 6 3cm 24.10 24.90 0.80 3.21 23.85 93.54
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Table 5.3: Area comparison between the void-growing model and ground truth on Dataset 2 (5cm voxel size)

office No. void-growing (m2) BIM (m2) abs. dev. (m2) rel. dev. (% ) overlap area (m2) IoU (%)

office 1 17.75 18.79 1.04 5.53 17.02 93.29

office 2 26.46 28.56 2.10 7.35 25.88 92.55

office 3 21.65 22.87 1.22 5.33 20.03 91.06

office 4 22.58 23.36 0.78 3.34 21.56 93.74
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In addition, the thicknesses of some selected walls from the approach and manually
created model from two datasets are shown in Table 5.4. The proposed algorithm
could apply to other point clouds of buildings without any modifications or with slight
modifications. In most cases, if the buildings have similar door and window openings,
it can be applied directly to new datasets. However, if the door and window openings
have different shapes (like circles), the model has never been trained on this kind of
door and window. It is understandable that the network cannot detect elements that it
has never seen before. To find and fit these doors and windows, the training set can be
enlarged, or other predefined opening shapes can be used as available prior knowledge.
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Table 5.4: Wall thickness comparison between the void-growing model and BIM model of two
datasets with different voxel sizes

dataset
No. wall No. voxel size void-growing

(m) BIM (m) abs.
dev. (m)

rel.
dev. (% )

1 wall 1 5cm 0.20 0.17 0.03 17.6

1 wall 2 5cm 0.20 0.16 0.04 25.0

1 wall 3 5cm 0.15 0.14 0.01 7.1

1 wall 4 5cm 0.20 0.17 0.03 17.6

1 wall 5 5cm 0.20 0.17 0.03 17.6

1 wall 1 3cm 0.18 0.17 0.01 5.9

1 wall 2 3cm 0.18 0.16 0.02 12.5

1 wall 3 3cm 0.15 0.14 0.01 7.1

1 wall 4 3cm 0.18 0.17 0.01 5.9

1 wall 5 3cm 0.18 0.17 0.01 5.9

2 wall 1 5cm 0.20 0.21 0.01 4.8

2 wall 2 5cm 0.20 0.22 0.02 9.1

2 wall 3 5cm 0.20 0.18 0.02 11.1

2 wall 4 5cm 0.15 0.20 0.05 25.0

2 wall 1 3cm 0.18 0.21 0.03 14.3

2 wall 2 3cm 0.21 0.22 0.01 4.5

2 wall 3 3cm 0.18 0.18 0 0

2 wall 4 3cm 0.18 0.20 0.01 5.0
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5.3 Conclusions and Discussions

In conclusion, the chapter presents an automatic method that extracts void room space
inside rooms first. In addition, state-of-the-art deep learning technologies are added to
the initial void-growing method to improve the performance of extracting walls, ceilings,
and floors. Semantic information from deep learning is also used to extract doors and
windows. However, the window and door recognition by point cloud deep learning
is not improved when adding more training data from different sources. The final
digital twin includes point clusters with annotated semantic information, which shows
the detailed information of captured surfaces and a simplified mesh model of the space-
bounding elements. As the proposed method can automatically extract ceilings, walls
with doors and windows, and floors in both simple cuboid rooms and rooms with complex
structures, it can reduce a considerable amount of human effort to create a geometric
digital twin of buildings. Human modellers only need to check the correctness and
accuracy of the automatically created model and then add other objects into the model
depending on the requirements.

Most previous research starts with detecting elements by considering geometric infor-
mation only and subsequently extracting room information. However, geometric infor-
mation of target objects could be missing because of the occlusion, which makes these
methods perform worse in an occluded environment. The proposed method detects
spaces inside rooms first and then extracts building elements by considering geomet-
ric information and semantic information predicted from deep learning, which makes it
possible to distinguish wall surfaces from furniture surfaces in an occluded environment,
even when the furniture surfaces are large.

One limitation of the proposed method is that it needs to fulfil the Manhattan-world
assumption because the growing process is implemented in a "cuboid" way (as shown in
Section 5.1.3). The approach designed for non-Manhattan-world buildings is presented
in Chapter 6. In addition, the voxel size used in the downsampling process limits
the performance of the approach. When detecting objects with large dimensions, the
impact is insignificant. However, it becomes vital to determine the thickness of elements
because the thickness is usually not very large. Another limitation is that the proposed
approach is suitable for laser scanning point clouds but not for point clouds from an
RGBD camera because window openings in the point cloud are used to detect windows
and find the opening dimension and location of the windows. The window openings are
actually void in the laser scanning point cloud but not void in the point cloud captured
from the RGBD camera (as shown in 5.15).
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Chapter 6

Approach for non-Manhattan-world
environments

In the indoor environments of buildings, the elements that usually make an environment
a non-Manhattan-world are slanted ceilings or walls not-aligned to the x- or y-axis.
Some examples are shown in Figure 6.1a and 6.1b. In this chapter, the author proposed
an approach to reconstruct the indoor environments that do not fulfil the Manhattan-
world assumption. This chapter is organised as follows: The proposed approach is
shown in detail in Section 6.1. The experiments and results are presented in Section
6.2. Conclusions and discussions are shown in Section 6.3.

(a) Wall not aligned to x- or y-axis (b) Slanted ceiling

Figure 6.1: Elements that make environment non-Manhattan-world

6.1 Proposed Approach
In a non-Manhattan-world environment, the void spaces inside rooms are not cuboid
anymore, which makes the void-growing introduced in Chapter 5 not work. Those steps
that do not require Manhattan-world assumptions like 3D deep learning in Section 5.1.1
are still applied in the proposed approach. The overall pipeline of the proposed approach
is illustrated in Figure 6.2.
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Figure 6.2: Proposed pipeline for non-Manhattan world environment
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6.1.1 Point Cloud Segmentation by Deep Learning

As shown in Table 5.1, the prediction results by deep learning are relatively good for
large structural elements like ceilings, walls, and floors (IoU for ceiling points, wall
points, and floor points are around 90.4%, 83.0%, and 97.7% respectively), despite some
rooms do not follow the Manhattan-world assumption. This kind of reliable semantic
information is valuable and will be used in further processing steps.

In the training process of neural networks, there is no restriction of the Manhattan-
world assumption, and point clouds of rooms with slanted ceilings are also included in
the training set; the neural network can detect ceiling points not only for normal ceilings
but also for slanted ceilings. An example of point cloud segmentation result of a non-
Manhattan-world environment is shown in Figure 6.3. The original coloured point cloud
is shown in Figure 6.3a, and the corresponding segmentation result is shown in Figure
6.3b. It can be seen that although the indoor environment is not under the Manhattan-
world assumption, the slanted ceiling points and non-aligned wall points can be detected
well. This qualitative evaluation is consistent with the quantitative evaluation, which
presents the IoU values are not worse when applying the neural network model to a
non-Manhattan-world environment.

(a) Example of non-Manhattan environment
(b) Segmentation result of non-Manhattan environ-

ment

Figure 6.3: Example of non-Manhattan environment and its segmentation result

6.1.2 Plane Extraction

In this section, large planes in the point cloud are extracted. In an indoor environment
of a building, large planes are usually surfaces of structural building elements like walls,
ceilings, and floors, as well as surfaces of large furniture like bookshelves and cupboards.
Ideally, in this step, the goal is to extract all planes of structural elements and meanwhile
discard furniture planes. But this task is not easy, and the reasons behind that are listed
as follows: a) there are usually noisy points and outliers in the captured point clouds,
which have a negative influence on the plane extraction; b) furniture surfaces could also
be large so that it is not reliable to distinguish the surfaces based solely on the plane
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size; c) in the indoor environment of a building, there is occlusion which leads to some
incomplete planes. This is also a negative factor in plane extraction.

Therefore, the semantic information extracted from point cloud segmentation by deep
learning (in Section 6.1.1) is used to target these difficulties and benefit the plane extrac-
tion process. Neural networks can be used to target difficulties and improve the process.
If noisy points, outliers, and furniture points are labelled as irrelevant classes in the
training set when training a neural network model, these points can be distinguished
from the points of structural elements.

A variant of the RANSAC methods, the efficient RANSAC method (Schnabel et al.,
2007), is applied in this step. Basically, the RANSAC algorithm extracts different shapes
by randomly extracting point sets from the input point cloud and fitting corresponding
shape primitives. The typical RANSAC algorithm consists of the following steps: a)
select a point set from the input point cloud randomly; b) construct a geometric primitive
to the selected point set; c) count the number of inliers to the fitted shape. Inliers are
those points that are located within the error tolerance to the constructed shape in Step
c. These three steps are repeated a predefined number of times, and the fitted primitive
with the largest number of inliers is considered the extracted shape. The primitive with
the maximal inlier number is continuously extracted until the termination condition is
met. For example, the inlier number of the primitive with the largest number of inliers
is smaller than a user-defined value, or the number of used points is smaller than a pre-
defined threshold. However, it is not practical to apply basic RANSAC in large-scale
point clouds because testing all possible primitive candidates against the whole input
data in order to find the largest shape in a large amount of data is very slow. The
efficient RANSAC solves this problem by testing the primitive against subsets of the
input point cloud. The parameter study in the process of plane extraction by efficient
RANSAC is discussed in Section 6.2.1. The shape candidates are extracted until the
probability of missing the largest candidate is less than a pre-defined threshold. It
should be noticed that RANSAC extracts a plane and provides the plane equation

ax + by + cz + d = 0, (6.1)

where a, b, c, and d are the coefficients of the plane, which is computed by RANSAC. In
theory, these extracted planes by RANSAC are infinitely large. A bounding box which
encloses all points of the input point clouds is used as the boundary to crop these planes.

The planes extracted by efficient RANSAC and the corresponding point clouds are
presented in Figure 6.4. The original point cloud is shown in Figure 6.4a. The point
cloud of structural elements, which are filtered by the semantic information extracted
in Section 6.1.1, is illustrated in Figure 6.4b, where blue points are ceiling points, green
points are floor points, and red points are wall points. The extracted planes by efficient
RANSAC when inputting the point cloud of structural elements are presented in Figure
6.4c. It can be seen that surfaces of structural elements are extracted as planes, and the
plane locations fit the point cloud well.
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In comparison with the efficient RANSAC result of using extracted points of structural
elements, extracted planes using the original point cloud (shown in Figure 6.4a) as
input to efficient RANSAC are shown in Figure 6.5. It can be observed that the plane
extraction result of using points of structural elements is much cleaner than that of
using all points, which makes sense because irrelevant planes can be extracted as long
as enough supporting points are found by efficient RANSAC. The supporting points
of these irrelevant planes can be points of furniture, noisy points, and even points of
structural elements. By removing points of irrelevant classes, the extracted candidate
planes of structural elements are cleaner. The smaller number of plane candidates benefit
from further processing steps at the same time.
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(a) Input point cloud

(b) Extracted points of structural elements (blue points: ceiling, red points: wall, green points:
floor)

(c) Extracted planes of the point cloud (planes are set transparent for better visualisation)

Figure 6.4: Extracted planes by efficient RANSAC using points of structural elements
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Figure 6.5: Extracted planes by efficient RANSAC in original point cloud (input shown in Figure
6.4a). Compared with the extraction result of using points of structural elements in Figure
6.4c, the result of using the original point cloud contains more non-relevant planes.
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6.1.3 Candidate Plane Selection

In this step, the planes computed from the previous section are intersected to get indi-
vidual polygonal faces, which are considered the potential faces of structural elements.
As shown in Figure 6.6, large planes are over-segmented into different faces. These face
candidates are colour-coded, which means different colours represent different faces. In
order to select real faces of structural elements from all face candidates and inspired by
previous work (Ochmann et al. (2016), Ochmann et al. (2019), Nan and Wonka (2017)),
a binary linear programming problem is set up to get the final surface model.

Figure 6.6: Candidate faces by intersecting planes (different faces are colour-coded, and input point
cloud and planes are shown in Figure 6.4a)

As the candidate faces are gotten by intersecting planes, one large plane is over-
segmented into many small faces. Some of these small over-segmented planes are just
redundant faces which do not represent any faces of elements in the real 3D world. The
process of extracting intersected planes in the point cloud of an office is shown in Figure
6.7 for example. The original input point cloud, the colour-coded point cloud with se-
mantic information, and the extracted point cloud of structural elements are presented
in Figure 6.7a, Figure 6.7b, and Figure 6.7c, respectively. The four planes fitted by
efficient RANSAC for the points of the ceiling, floor, and walls are shown in Figure
6.7d. Two planes out of the four are selected and shown in Figure 6.7e. Intersecting two
planes results in four polygonal faces, as shown in Figure 6.7f.

The aim of this step is to select an optimal subset of all polygonal faces which can
represent the surfaces of structural elements. If no boundary conditions apply, any
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number of these four faces resulting from intersecting two planes can be selected as real
faces of elements. However, it needs to be considered whether these different selection
options make sense when they are used to represent the surfaces of elements in the real
world. In Figure 6.8, different circumstances of selecting four faces which are resulted
from intersecting two planes are illustrated. The colour of selected faces is set solid, while
the colour of unselected faces is set transparent. These circumstances are discussed here
to explore whether it could happen in a real environment represented by point clouds. In
Figure 6.8a, none of the four faces is selected. This circumstance could happen because
all planes are extended and over-segmented, which makes it quite normal that the faces
of two intersected planes do not represent any surfaces in the real world. Therefore, it
could happen in the real environment to select 0 face to represent the surface of elements.

In Figure 6.8b, one of the four faces is selected. This circumstance can not happen
because all elements captured in the point cloud are connected to others, which means
all surfaces of elements are bounded by the edges which are resulted from intersecting
with other elements. One single selected face could not represent any meaningful surfaces
of elements in the environment. Therefore, it does not make sense to select 1 face to
represent the surface of elements in the real environment.

In Figure 6.8c, two of the four faces are selected. This circumstance happens a lot in
the environment. For example, when two selected faces are not in the same plane, the
edge could be the intersection of two surfaces of intersected walls, while the selected
faces represent the corresponding two surfaces. Similarly, this circumstance also applies
to other intersections of surfaces, like ceiling and wall intersections, floor and wall in-
tersections, etc. In addition, if the two faces are in the same plane, this plane could be
the surface of elements, and the other two non-selected faces are just the extended parts
of other surfaces, which do not represent any surfaces of elements. Therefore, selecting
2 faces to represent the surfaces of elements can represent the element surfaces in the
point cloud.

In Figure 6.8d and Figure 6.8e, three and four of the four faces are selected. These
circumstances cannot happen in the point cloud. Firstly, in the point cloud captured by
the laser scanner, no points can be scanned behind the visible surfaces. If the number
of the selected faces is more than 2, one or two faces which should not be visible in
the real environment are added to the face subset to represent the surfaces of elements.
Secondly, all elements in the real world cannot be represented as just one surface, as
there is always thickness for objects. Even though some elements are captured just from
one side, the captured surfaces of elements in the real world are always bounded by
other surfaces. Three or four selected faces (shown in Figure 6.8e) of one edge cannot
represent any surfaces of elements that make sense in the environment. Therefore, it
cannot represent the surfaces of elements to select 3 and 4 faces. In summary, the
number of selected faces which are resulted from intersecting two planes can only be 0
and 2.
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(a) Input point cloud of office (two walls are removed
for better visualisation)

(b) Point cloud with colour-coded semantic informa-
tion (wall: red, floor: green, ceiling: blue, other
classes: other colours)

(c) Extracted Point cloud of structural elements
(class: wall, ceiling, floor)

(d) Four planes fitted by efficient RANSAC for points
of ceiling, floor, and walls

(e) Two intersected wall planes (f) Four faces (a, b, c, and d) resulting from intersect-
ing two planes

Figure 6.7: Example of extracting two intersected planes of walls in an office
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(a) None of four faces selected (all faces are set
transparent)

(b) One of four faces selected (the selected face
is solid, and the other three non-selected
faces are transparent)

(c) Two of four faces selected (the two selected faces are solid, and the other non-selected two are transparent)

(d) Three of four faces selected (the three se-
lected faces are solid, and the non-selected
one is transparent) (e) All four faces selected (all faces are set solid)

Figure 6.8: Different circumstances of selecting four faces resulted by intersecting two planes (selected
faces: solid, unselected faces: transparent)
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6.1.4 Energy Terms
Inspired by previous work (Nan and Wonka, 2017), the objective function consists of
two energy terms: data-fitting and model complexity.

Data-fitting term aims to describe how well the faces fit points in the point cloud. It
is defined to represent a confidence-weighted and label-weighted percentage of points
that do not support the final face reconstruction. The data-fitting term is shown by the
equation

Efitting = 1− 1
P

N∑
i=1

xi · F (fi) + 1
area(M)

N∑
i=1

xi · (area(fi)− area(Mα
i )), (6.2)

where Efitting is the energy term of data fitting, P is the number of points in the point
cloud, N is the number of face candidates, xi is the variable to represent whether the
candidate face fi is selected (xi = 1) or not selected (xi = 0), F (fi) is the confidence
function of selecting face fi. area(Mall), area(fi), and area(Mα

i ) represent the overall
surface area of the final model, the area of the candidate face fi, and the area of α-shape
mesh Mα

i of fi (α-shape is defined in (Kai and Da, 2021)). The confidence function F (fi)
is defined at each point and considers its local neighbourhood and label predicted by
deep learning as

F (fi) =
∑

distance(p,f)<σ

(1− distance(p, f)
σ

) ·G(p), (6.3)

where p is the point, f is the face, dist(p, f) is the distance between the point p and the
face f , σ is the threshold which determines whether the point is considered (only points
close to the plane are considered), and G(p) is the confidence function of the point cloud
at the point p, which is computed by examining the local covariance matrices defined
at the point p and its label predicted by deep learning. The function is defined as

G(p) = coef(p) · 1
3(

3∑
i=1

(1− 3λ1
i

λ1
i + λ2

i + λ3
i

) · λ
2
i

λ3
i

), (6.4)

where coef(p) is the label coefficient depending on the semantic label. In the experiment,
if the point p is predicted as structural elements coef(p) is set to 1, and coef(p) is set to
0.1 if the point is predicted as other classes. More discussions with regard to choosing
the coefficients are shown in Section 6.2.1. The second term 1

3(∑
i=1 3(1− 3λ1

λ1+λ2+λ3 ) · λ2

λ3

is from the previous work (Pauly et al., 2005), where λ1 ≤ λ2 ≤ λ3 are the three
eigenvalues of the covariance matrix. while the first term 1− 3λ1

λ1+λ2+λ3 shows the quality
of fitting a local tangent plane at the point p, the second term λ2

λ3 evaluates the local
sampling uniformity.

In summary, the data-fitting term favours faces that are close to the dense point regions
that are predicted as structural elements. Model complexity term aims to favour
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simple structures like large planes, which is proposed by (Nan and Wonka, 2017). It is
defined as follows:

Ecomplexity = 1
E

E∑
i=1

edge(ei), (6.5)

where E denotes the total number of plane intersections (number of edges), edge(ei) is
the variable that shows whether the edge of planes exists. edge(ei) will be set to 1 if
the faces connected to ei is not in the same plane, while edge(ei) will be set to 0 if the
faces connected to ei are coplanar.

6.1.5 Optimisation
The optimal subset of faces is obtained by minimising the weighted sum of the energy
terms under certain boundary conditions. The final term that needs to be optimised is

λfitting · Efitting + λcomplexity · Ecomplexity, (6.6)
where λfitting and λcomplexity are two weight coefficients for the two corresponding energy
terms.

The restrictions that need to be followed are as follows:

∑
i∈f(ei)

xj = 0 or 2, 1 ≤ i ≤ E, (6.7)

and

xi ∈ {0, 1}, 1 ≤ i ≤ N, (6.8)

where f(ei)xj is the number of faces that are connected to the edge ei. As discussed in
Section 6.1.3, this value can only be 0 or 2 to make the selected faces able to represent
surfaces of elements in point clouds. xi denotes whether the face i is selected. While xi

is the value of 1 if it is selected, it is 0 if not selected.

The problem defined here is a binary linear optimisation problem. The subset of selected
faces with the value xi = 1 is the optimised face model of the structural elements from
the input point cloud.

6.2 Experiments and Results
The implementation of extracting plane candidates in point clouds and selecting planes
of structural elements is written in C++ and uses the Computational Geometry Algo-
rithms Library (CGAL) (The CGAL Project, 2020) and Point Cloud Library (Rusu and
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Cousins, 2011). And some parts of the implementation code are based on the code by
Nan and Wonka (2017) in the CGAL library.

The result of the optimised plane selection of structural elements and the corresponding
input point cloud is shown in Figure 6.9. It can be seen that all surfaces are reconstructed
(including a slanted ceiling and a shifted wall inside one room).

In order to get better visualisation, part of the ceiling is removed in Figure 6.10a while
all ceiling is removed in Figure 6.10b. It is obvious to see that all inner walls are also
reconstructed well.

Another result of the non-Manhattan-world environment is shown in Figure 6.11. While
the input point cloud is shown in Figure 6.11a, the point cloud with semantic information
is shown in Figure 6.11b. The final created mesh model is shown in Figure 6.11c, where
the slanted ceilings and their connections to walls are well represented.
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(a) Input point cloud

(b) Optimised selected planes of structural elements

Figure 6.9: Plane selection result after optimisation (for each plane, when visualising from different
directions, the colours are set differently: one side blue, one side green)
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(a) Optimised Plane extraction result (Part of the ceiling is removed for better visualisation)

(b) Plane extraction result (all of the ceilings are removed for better visualisation)

Figure 6.10: Plane selection result of non-Manhattan environments
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(a) Input point cloud

(b) Point cloud with semantic information (different colours represent different classes)

(c) Point cloud with semantic information

Figure 6.11: Rerult of another non-Manhattan-world environment
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6.2.1 Parameter Study

Weighted Coefficients of Energy Terms
In Formula 6.6, λfitting and λcomplexity are two weight coefficients for the two correspond-
ing energy terms which have impacts on the final optimisation results. Different results
are shown from Figure A.1 to Figure A.4 (Figures can be found in Appendix A in order
to save space in the main text). It can be observed that when increasing the weight
coefficient of complexity, larger planes are extracted, which benefits the very large sur-
faces of walls. In the experiment, the λcomplexity range between 0.4 and 0.8 is suitable
for the point cloud.

Weighted Coefficients of Point Labels
In Equation 6.4, coef(p) is the label coefficient depending on the label. In the experi-
ment, if the point p is predicted as structural elements coef(p) is set to 1, and coef(p)
is set to 0.1 if the point is predicted as other classes. As the objective is to extract
the faces of structural elements, the coefficient for structural element classes should
be higher than that for other classes. Therefore, the coefficient for structural element
classes is kept to the value of 1 while the coefficient for other element classes is changed.
In this section, the results of choosing different coefficients are shown from Figure B.1
to Figure B.5 (Figures can be found in Appendix B in order to save space in the main
text).

It can be observed that with increasing the value of the coefficient for other classes, the
points predicted as other classes have a larger impact on the final optimised model. In
other words, some faces which do not belong to structural elements are included in the
final optimised model, which does not match the goal of this step (extracting surfaces
of structural elements). After analysing the results B.1 to Figure B.5, the author found
the suitable value for the coefficient is around 0.1.

In summary, an approach to reconstruct structural elements from laser-scanned point
clouds is proposed for non-Manhattan-World environments. Like the method proposed
for Manhattan-world environments, it starts with extracting semantic information from
3D deep learning. Subsequently, planes are fitted by efficient RANSAC and then inter-
sected to get over-segmented faces. Inspired by previous work (Ochmann et al. (2016),
Ochmann et al. (2019), Nan and Wonka (2017)), the author sets up a binary linear
programming problem to get the final surface model from intersected surfaces by con-
sidering both geometric information from point clouds and semantic information pre-
dicted by deep learning. As the steps to process raw data directly, like 3D deep learning
and plane extraction, do not require the Manhattan-world assumption, the proposed
automatic approach works and provides good results.

6.3 Conclusions and Discussions
In this chapter, an approach for reconstructing space-bounding elements for non-
Manhattan-world buildings from laser-scanned point clouds is proposed. The proposed
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method starts with the point cloud semantic segmentation by deep learning first. Sub-
sequently, planes are extracted from raw data and over-segmented into candidate faces.
Then the face selection for the surfaces of elements is achieved by an optimisation prob-
lem. The approach uses geometric information and the semantic information extracted
from neural networks because geometric information of space-bounding elements in the
point cloud could be missing because of the occlusion, which makes previous methods
perform worse in an occluded environment. By considering geometric information and
semantic information predicted from deep learning,

In conclusion, the final output of the method includes point clusters with annotated
semantic information, which shows the detailed information of captured surfaces and
a simplified mesh model of the space-bounding elements. The non-Manhattan-world
environments can be reconstructed well given a laser-scanned point cloud. However,
there are still some limitations to the approach. Firstly, the proposed approach uses
the prediction of deep learning as input, which makes its performance depend on the
performance of deep learning. In order to get a well-performed deep learning model, a
large amount of training data and complicated architecture designs are usually helpful.
Secondly, the proposed approach can only reconstruct non-Manhattan-world buildings
with planar surfaces. Curved surfaces are not considered in the method. At last, the
method still only focuses on the space-bounding elements in the indoor environment.
Other important elements are still missing, and the proposed method for these elements
is presented in Chapter 7.
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Chapter 7

Method to Enrich Digital Twins
with Small Elements

This chapter proposes a novel approach that processes information from images and
point clouds together to create an information-rich digital twin. The method focuses on
12 important and relatively small-scale elements (compared to walls, ceilings, and floors)
in buildings: light switches, emergency switches, light fixtures, smoke alarms, escape
signs, speakers, fire extinguishers, sockets, pipes, boards, door signs, elevator buttons,
trash bins. In this part, I propose a novel framework to enrich a geometric building twin
by fusing point cloud processing and object detection in images. The proposed method
of information enrichment can be used to complete as-built models generated by other
methods of creating geometric digital twins of space-bounding elements.

In particular, the proposed approach presents the following contributions:

– Because the performance of detecting small-scale elements directly in point clouds
is significantly lower than in images, unlike most previous methods that exclu-
sively use point clouds as input, the approach presented here extracts semantic
information from images by deep learning and then maps the extracted semantic
information to laser-scanned point clouds.

– While most of the previous approaches only detect primary elements (like ceilings,
walls, floor, windows and doors), the proposed method includes small but highly
relevant objects in the energy and the fire-safety sub-systems that are essential for
maintaining and monitoring buildings (like smoke alarms, emergency switches).

– In order to create an information-rich building twin, other useful information (text
and numbers) is detected in images by applying optical character recognition
(OCR) technologies to detect object IDs and recognise object instances. Some
examples of useful information in an indoor environment are shown in Figure 7.1.
The detected machine-encoded texts include the room number on the door sign,
as well as numbers or text corresponding to the detected objects, which helps to
identify the object instance in the physical asset.
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(a) Room number on door sign (b) Serial number on fire alarm switch (c) Serial number next to smoke alarm

Figure 7.1: Text information in building

This chapter is organised as follows: The proposed approach is introduced step by step in
Section 7.1. The experiments and results are presented in Section 7.2. The conclusions
and discussions are shown in Section 7.3.
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7.1 Proposed Approach

Basically, the proposed method creates an information-rich digital twin of small objects
in indoor environments and enriches the digital twin with semantic information. Specif-
ically, the process includes creating more categories of objects in the digital twins of
space-bounding elements in a building and adding relative text information to the final
output. The overall process of the proposed method is illustrated in Figure 7.2. The
inputs for the proposed method are point clouds acquired by laser scanners and videos
or images captured in the same building area. The outputs are point clusters with la-
bels and a mesh model for each element found. All points in one point cluster have an
identical label. The overall goal is to create a comprehensive digital building model rep-
resented by mesh geometry and enriched with semantic information about the detected
elements. To achieve this, information in 2D images is mapped onto a 3D laser-scanned
point cloud. The method starts by detecting objects in images or videos by applying
transfer learning technology. The next step is to construct a photogrammetric point
cloud and align this point cloud to the laser-scanned point cloud. Subsequently, the
semantic information from 2D images or videos is projected onto the 3D point cloud.
After finding a best-fitting label for each point, the output point clusters of different
objects can be obtained. In the final step, the author fits a pre-defined mesh model to
each found instance.
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Figure 7.2: The overall procedure of the proposed method
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7.1.1 Object Detection in Image

In this step, the method aims to detect the different objects from images or videos.
Recently, the DNN (Krizhevsky et al., 2012), especially the proposed architecture of
RCNN (Girshick et al., 2014), have proven effective in object detection in 2D images
(Zhao et al., 2019). But the author still needs to prepare his own dataset because those
publicly available datasets, such as Imagenet (Deng et al., 2009), one of the largest
online available image datasets, do not contain all of the categories the author needs.
Even if some of the target categories are present in Imagenet, such as fire alarms and
fire extinguishers, there are no labelled instances available. Therefore, it is not possible
to detect the target objects in images or videos that were captured in buildings by pub-
licly available pre-trained models because these models are trained on a dataset lacking
the categories required. The available networks must be re-trained for the application
domain. In the conducted research, the author prepared his own dataset by manually
labelling images that were captured in public buildings, more precisely office buildings
on the inner-city campus of the Technical University of Munich (TUM). It should be
noted that the images were not taken in the same building where the point clouds were
captured.

In practice, there is no required minimum number of images when training a neural
network. In Imagenet (Deng et al., 2009), categories like fire/smoke alarm and fire
bell contain hundreds of labelled images. If the author follows a similar setup in that
each category has hundreds of images, thousands of images are required for a dataset
with 12 classes, which leads to a huge amount of labelling work. Considering the vast
human effort to label these images manually, the author decided to use transfer learning
techniques. As its name implies, transfer learning (Pan and Yang, 2009) means using
the knowledge learned previously to solve new but related problems. When starting
with a pre-trained model that has already been trained on thousands of images, the
author does not need as many images as if training a network from scratch because the
model has already "seen" and "learnt" from lots of images. In these cases, the author
uses the pre-trained Mask-RCNN model (He et al., 2017) provided by Facebook (Wu
et al., 2019) that has been trained on the COCO dataset (more than 100k images) (Lin
et al., 2014).

Object detection in images results in finding a bounding box for a detected instance.
Obviously, some regions within the bounding box do not belong to this instance, espe-
cially when the object is not a rectangle or inclined in the image. Since the author wants
to map semantic information obtained in 2D images to the 3D point cloud in further
steps, the author needs to reduce this kind of error here and apply image segmentation
instead of instance detection. To this end, a variant of CNN called Mask RCNN (He
et al., 2017) that detects objects in images by generating a mask for each instance is
used. By doing so, a more precise contour of the object instance than the mere bounding
box can be found. Some results of image segmentation and bounding box prediction of
various objects are illustrated in Figure 7.3.
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Figure 7.3: Object detection result by image segmentation mask and bounding box
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7.1.2 Creating Photogrammetric Point Clouds

In (Braun and Borrmann, 2019), the author uses the photogrammetric point cloud to
connect images and Building Information Modeling (BIM) models. Similarly, in the
proposed approach, the photogrammetric point cloud acts as the bridge that connects
2D information in images with 3D information in the laser-scanned point cloud. In
the reconstruction process, the extrinsic and intrinsic camera parameter matrices are
estimated. Images or videos are supposed to be taken from different viewpoints within
the area and cover as much information as possible. In this approach, the author applies
COLMAP (Schönberger et al., 2016) (Schönberger and Frahm, 2016), an open-source
Structure-from-Motion (SfM) and Multi-View Stereo (MVS) software, to reconstruct
photogrammetric point clouds. The input of SfM is a set of overlapping images taken
from different viewpoints. It starts with feature detection and extraction, continues
with feature matching and geometric verification, and then reconstructs the object in
3D space, including the reconstructed intrinsic and extrinsic camera parameters of all
images. MVS takes the output of SfM to compute depth and normal information for
pixels in all images and creates a dense point cloud of the scene.

The estimated camera poses (position and orientation) of each image and the recon-
structed sparse photogrammetric point cloud are illustrated in Figure 7.4. As we can
see, the edges are reconstructed quite well, while the plane faces of elements like walls,
ceilings, and floors are missing. This is because almost no features can be detected and
extracted on these weakly textured surfaces, like a planar white wall, in the SfM process.
However, these weakly textured surfaces can be captured quite well by laser scanners.
This is one of the reasons why the author proposes the use of both laser-scanned point
clouds and images to create sufficiently detailed and complete digital twins. In this way,
all of the required information can be acquired by using both techniques to capture
buildings.
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(a) Camera poses in sparse model

(b) Reconstructed dense point cloud

Figure 7.4: Example of estimated camera poses and reconstructed point cloud

7.1.3 Point Clouds Alignment

Laser scanners measure the distance by transmitting light and sensing the return from
objects (Oguchi et al., 2011) so that laser-scanned point clouds represent the actual scale
of the environment. In contrast, photogrammetric point clouds extract information from
2D images – they do not represent the actual scale in world units unless additional infor-
mation is considered, such as the size of an object. To perform the necessary registration
of the two point clouds, the author aligns the photogrammetric point cloud with the
laser-scanned point cloud so that the photogrammetric point cloud also represents the
environment in its actual size.

The photogrammetric point cloud is transformed to the coordinate of the laser-scanned
point cloud by

Q = MP, (7.1)

where P denotes the point set of the photogrammetric point cloud, Q denotes the point
set of the photogrammetric point cloud transformed to the coordinate of the laser-
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scanned point cloud, M denotes the transformation matrix that transforms points from
the coordinate of the photogrammetric point cloud to the coordinate of the laser-scanned
point cloud.

4 × 4 transformation matrices are widely used to represent non-linear transformations
in 3D space. In this approach, two steps are used to determine the 4× 4 transformation
matrix: the rough alignment step and the refinement step. In the rough alignment
step, the author uses 4 pairs of points from the photogrammetric point cloud and laser-
scanned point cloud by using

[ q1 q2 q3 q4 ] = M1[ p1 p2 p3 p4 ]−1, (7.2)

where M1 denotes the roughly estimated transformation matrix from photogrammetric
point cloud coordinate to laser-scanned point cloud coordinate, p1 and q1, p2 and q2,
p3 and q3, p4 and q4 are four pairs of points in the photogrammetric point set P and
laser scanning point set Q.

In this step, the author only needs to select points roughly and get a rough alignment
result. These point pairs can be chosen at random and could be any key points in point
clouds, such as room and door corners, the centre of an object, etc. After rough align-
ment, the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992) is applied, to
refine the alignment and obtain the refinement transformation matrix M2. The overall
transformation matrix M can be computed by

M = M2M1. (7.3)

The photogrammetric point cloud can then be transformed to the coordinates of the
laser-scanned point cloud by applying Equation 7.1. This alignment process is illustrated
in Figure 7.5. When comparing the marked area in Figure 7.5c with that in Figure 7.5d,
it is clear that the refinement step improves the alignment result.
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(a) Four picked points in laser-scanned point cloud (b) Four picked points in photogrammetric point cloud

(c) Rough alignment result (Photogrammetric point cloud is
set to red colour)

(d) Refined alignment result (Photogrammetric point cloud
is set to red colour)

Figure 7.5: The alignment process of photogrammetric and laser-scanned point cloud

7.1.4 Find Visible Points in Images

In this step, what is determined is whether a point from the laser-scanned point cloud
is visible in each image that is used to reconstruct the photogrammetric point cloud.
Because the photogrammetric point cloud and the laser-scanned point cloud are aligned
already, the estimated parameters (extrinsic and intrinsic camera parameters) from the
reconstruction process are also mapped into 3D space. The extrinsic camera matrix
and intrinsic parameter matrix are known for each image or frame of a video. Based
on the matrices, which points are visible at each camera position and captured in the
corresponding image can be found.

As the transformation matrix that transforms points from a photogrammetric point
cloud coordinate to a laser-scanned point cloud coordinate is M, any point p =[
x0, y0, z0

]T
in the original laser-scanned point cloud S can be transformed to the coor-

dinate of the photogrammetric point cloud by

x1

y1

z1

d1


= M−1



x0

y0

z0

1


, (7.4)

where
[
x0, y0, z0, 1

]T

is the homogeneous coordinates of this point p, M−1 is the inverse

matrix of M, and
[
x1, y1, z1, d1

]T

is the new calculated homogeneous coordinates of
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the point in the coordinate of the photogrammetric point cloud. Normalization is then
applied by dividing each vector component by d1,

x2

y2

z2

1


= 1

d1



x1

y1

z1

d1


, (7.5)

where
[
x2, y2, z2, 1

]T

is the normalized homogeneous coordinate vector of point p in the
coordinate of photogrammetric point cloud.

The next step is to transform every point from the coordinate of the photogrammetric
point cloud to the camera coordinate of the image. In this chapter, the author uses N
to denote the whole image set that is used to reconstruct the photogrammetric point
cloud, ni to denote the ith image in the image set N. For one single image ni, Mi

ext and
Mi

int denote the corresponding camera extrinsic and intrinsic parameter matrices. The
extrinsic parameter matrix can be defined as

Mi
ext =

 Ri Ti

0 0 0 1

 , (7.6)

where Ri is the 3× 3 rotation matrix Ri =


ri

11 ri
12 ri

13

ri
21 ri

22 ri
23

ri
31 ri

32 ri
33

,

and Ti is the 3× 1 translation matrix Ti =


ti
1

ti
2

ti
3

 of the image ni.

The intrinsic parameter matrix can be represented by

Mi
int =


fx s cx

0 fy cy

0 0 1

 , (7.7)

where fx and fy are the effective focal length of the camera measured in units of image
pixels in the horizontal and vertical directions, cx and cy are the pixel coordinates of
the principal point. Additionally, s denotes the skew coefficient for the camera. This is
zero if the image axis is perpendicular to the image plane. It should be noticed that no
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distortion is assumed here. 3D points can be then transformed into camera coordinates
by 

x3

y3

z3

1


= Mi

ext



x2

y2

z2

1


=



ri
11 ri

12 ri
13 ti

1

ri
21 ri

22 ri
23 ti

2

ri
31 ri

32 ri
33 ti

3

0 0 0 1





x2

y2

z2

1


(7.8)

and subsequently transformed to the image plane by computing
x4

y4

z4

 = Mi
int


x3

y3

z3

 =


fx s cx

0 fy cy

0 0 1




x3

y3

z3

 , (7.9)

where x3, y3, z3 are coordinates in the camera coordinate, and x4, y4, z4 are the per-
spective projected coordinates on the image coordinate. By homogeneous coordinate
normalisation, the image coordinates of the projected point in the image plane can be
obtained: 

u

v

1

 = 1
z4


x4

y4

z4

 , (7.10)

where u and v are the pixel coordinates in the horizontal and vertical direction in the
image plane.

By using the Equations 7.4 to 7.10, all points in the original laser-scanned point cloud
can be projected into the image plane. However, there are points in the cloud that are
not in the field of view of the given camera pose and intrinsic parameters. Assuming
the dimension of the image in pixels is W × H, if a point (x0, y0, z0) in the original
laser-scanned point cloud and its projected point in the image plane (u, v) can be seen
in the image, the point should follow these conditions:

0 ≤ u ≤ W, 0 ≤ v ≤ H. (7.11)

The process of checking the visibility of laser-scanned points for one image is illustrated
in Figure 7.6. As we can see in subfigure 7.6d, the visible area shown in the laser-scanned
point cloud is identical to the image scene.

Up to this step, the visibility of a point is only determined by the camera parameters.
That means that as long as the points fulfil Condition 7.11, they are considered visible
points, which makes the camera see "through" the wall. As shown in Figure 7.7, it is
obvious that some points should not be visible, like points behind the surface of the
wall.
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(a) Image captured in part of hallway (b) Same area in laser-scanned point cloud

(c) Transform point cloud to camera frame (camera at
origin)

(d) Visible points from laser-scanned point cloud at cam-
era pose

Figure 7.6: Process of finding visible points in the image (the ceiling points in the point cloud are
removed for better visualisation)
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Figure 7.7: Top view of visible points at camera position in Figure 7.6. Points behind the wall (within
the red dash line) are actually not visible from the camera pose.
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The raycasting method (Roth, 1982) is used to remove those points that should not
be seen at the current camera position. However, rays might pass through the point
cloud without intersecting any points because point clouds are actually discrete points
in 3D space. Therefore, point clouds are usually voxelised before raycasting (Laine and
Karras, 2010). Figure 7.8 shows how raycasting works in a voxelised point cloud. Rays
shoot from the camera position to each point in the point cloud. While a dark blue
voxel means there are points within the voxel, a light blue voxel indicates no points in
the voxel. If a ray starting from the camera does not pass through any other dark blue
voxels, its target point is visible at the camera position. In contrast, if a ray passes
through at least one other dark voxel before reaching the target point, this target point
is occluded by other voxels in between.

Figure 7.8: Raycasting method in voxelised point cloud. There are points in dark blue voxels but no
points in light blue voxels. Rays of dotted lines starting from the camera intersect other
dark blue voxels before reaching the target voxel. These target voxels are occluded by
the voxels between the camera and themselves.

The remaining visible points after applying the raycasting method to the point cloud
are shown in Figure 7.9. In the raycasting process, the voxel size has an enormous
impact on performance. A further discussion on finding the best voxel size is presented
in Section 7.2.5.
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Figure 7.9: Apply raycasting to get visible points at camera position

7.1.5 Map 2D Semantic Information to 3D Space

In this step, the semantic information detected from 2D images or videos in Section 7.1.1
is mapped to the 3D space. The author uses Mask-RCNN (He et al., 2017) to detect
objects in images, and the result for each detected instance (like a board, a smoke alarm,
etc.) is a mask. The mask is a matrix that is exactly the same size as the input image
but has only two values, 0 and 1. While pixels with a value of 0 are the background,
pixels with a value of 1 are where the detected instance is located in the image. As
shown in Figure 7.10c, 7.10e, and 7.10g, when a mask is applied to an image, only the
image area that belongs to the detected area can be seen.

In the previous step, all visible points (x0, y0, z0) in 3D space are already transformed to
2D coordinates (u, v) in the image plane. At this step, it checks whether every point in
the image plane is in the predicted segmentation mask or the background area. Points
located in the instance mask of three categories are shown in Figure 7.10c, 7.10e, and
7.10g for example.

Because images/videos are used to reconstruct the photogrammetric point cloud, many
images have overlapping areas. In order to record semantic information from all images,
an M ×N matrix L is used to accumulate predicted information from all images, where
M denotes the number of categories and N denotes the number of points in the laser-
scanned point cloud. If the kth point’s projection in the image plane is within a mask
of category j, the term Lj,k in the matrix L would be increased by 1, where 1 ≤ j ≤M
and 1 ≤ j ≤ L.

One point in the laser-scanned point cloud is usually visible in multiple images, and
the predicted labels from these images might be different. Therefore, it is necessary to
retain all of the information and find the best-fitting label prediction for each point in
later steps. The pseudocode of the method proposed in Section 7.1.3 to 7.1.5 is shown
in Algorithm 2.
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Algorithmus 2 The mapping algorithm from 2D to 3D.
Input:
One point sk ∈ S, laser-scanned point cloud set S;
Image set used to reconstruct the photogrammetric point cloud N;
For image ni ∈ N, camera extrinsic and intrinsic parameter matrices Mi

ext and Mi
int;

Predicted segmentation mask mi
j ∈ Ki for image ni, category j, Ki denotes all pre-

dicted masks for image ni;
Transformation matrix from photogrammetric point cloud to laser-scanned point
cloud M;
Function to check whether a point is visible at a camera position α();
Function to check whether a point belongs to a mask β();
Initialize:
Matrix used to count labels for all points in point cloud L← O;
Algorithm:
for sk ∈ S do

Point in the coordinate of photogrammetric point cloud pk = M−1 × sk

for ni ∈ N do
Point in image plane ck = Mi

int ×Mi
ext × pk

if α(ck) is FALSE then
continue

end if
for mi

j ∈ Ki do
if β(ck) is TRUE then

count label j for point k once, Lj,k = Lj,k + 1
end if

end for
end for

end for
return L
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(a) Image segmentation result (b) Visible points for the camera

(c) A detected board instance (d) The board points in 3D

(e) A door sign in image (f) The door sign points in 3D

(g) A light switch in image (h) The light switch in 3D

Figure 7.10: Image segmentation masks and corresponding points in 3D of different instances
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7.1.6 Find Best-fitting Labels for Points

Given the results from previous steps, this step aims to find a best-fitting label for each
point in 3D from the M ×N label matrix L.

Two values are used to determine the best label for each point. For one point pi in the
laser-scanned point cloud, Ni is the number of images where the point can be seen, Lj,i

is the number of images where the point is within the predicted mask of category j. But
it should be noted that Ni is not equal to the sum of N j

i for all categories because a point
could also be located in the "background" area instead of the mask area. Therefore, the
author uses two values to represent how certain the label assigned to the ith point pi is:

Ui = max
1≤j≤M

Lj,i/Ni, (7.12)

Vi = max
1≤j≤M

Lj,i/
M∑

j=1
Lj,i. (7.13)

Because the pixels at the border of the predicted mask area can probably be mapped
to an object’s surrounding points that do not belong to the object (for example, some
points on the ceiling are predicted as points of a smoke alarm), these wrongly predicted
points need to be removed. Unlike the points of an object, these neighbouring points
do not appear in all images of the object. Moreover, some of them may only appear in
one image but are predicted as object points. Therefore, it is not enough to rely solely
on prediction accuracy from all images. The value Ui is used to filter the surrounding
points out and how it works is illustrated in Figure 7.11.

Figure 7.11a is a part of the point cloud that shows the ceiling and three kinds of
objects (lighting, speaker, smoke alarm) mounted to it from the bottom view. Figure
7.11b shows the distribution of Ui. Many points on the ceiling are predicted as a point
of the object because the prediction is mapped from 2D images that are taken from
different views.

Most of the surrounding points (ceiling points) are distributed in the low-value range of
Ui. Figure 7.12a and Figure 7.12b show the points left after filtering out those points
with the criteria Ui > 0.5 and Ui > 0.7. Objects’ points can be extracted from their
neighbouring points on the ceiling.

Unlike Ui, which aims to remove surrounding points of an object, Vi is used to show how
certain the method is when assigning a class label with a point. Figure 7.13a shows the
distribution of how certain the method is when assigning the label that occurs mostly as
the class of the point for the same area. In this case, it is quite certain that the assigned
labels are correct as most points are located in the range close to 1. Figure 7.13a shows
points in different colours according to their assigned labels.
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(a) Bottom view of a ceiling and mounted objects (red
box: lighting, yellow box: speaker, green box: smoke
alarm).

(b) Mapping prediction to point cloud and distribution of
Ui

Figure 7.11: The distribution of Ui for a part of the point cloud of a ceiling
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(a) Remaining point cloud after filtering Ui > 0.5 ) (b) Remaining point cloud after filtering Ui > 0.7)

Figure 7.12: The remaining point cloud by filtering out ceiling points)

(a) The distribution of Vi (assigning the corresponding
label in Vi to the point)

(b) Points of different classes (red: light, blue:
speaker, green: smoke alarm)

Figure 7.13: The distribution of Vi and the extracted points of different classes
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7.1.7 Fit Shape to Point Custers

In this step, the author wants to fit a geometric shape to each extracted point cluster.
Different object types are reconstructed by varying strategies.

For small objects mounted on the ceiling and wall (like smoke alarms, sockets, and
switches), the extracted point clusters from the previous section are projected on the
plane of the ceiling or wall. By then fitting simple geometric shapes (like circles and
rectangles) in the wall or ceiling plane, the location and size in the 2D plane can be
found. The reason that the author chooses to fit geometric shapes in 2D planes rather
than in 3D point clouds is:

– Some surfaces of the elements might not be captured when capturing buildings
with a laser scanner. It is hard to fit geometric shapes in the 3D point cloud
directly, especially for small elements (like smoke alarms) that lack points on their
surface.

– Some elements are commonly standardised elements (sockets, light switches, smoke
alarms) whose instances are identical across the entire facility. Fitting shapes in
the 2D plane can also reduce computing costs.

The random sample consensus (RANSAC) algorithm (Fischler and Bolles, 1981) is used
to fit circles for cylindrical objects (such as a light, speaker, smoke alarm) and rectangles
for "cuboid-like" objects (socket, switch, door sign, board, elevator button). Then the
next step is to extrude the 2D shapes from the wall or ceiling plane by default thickness
(if available) or estimate the thickness of the object in the 3D point cluster by finding
the maximum distance to the plane. The fitting circles of three classes of objects (light,
speaker, smoke alarm) on the ceiling plane are shown in Figure 7.14 and corresponding
extruded cylinders are shown in Figure 7.15 by way of example.

With regard to pipes and fire extinguishers that are usually cylindrical, RANSAC is used
to fit a cylinder to the point cluster and find its dimension and position. The extracted
cylinder of a fire extinguisher is illustrated in Figure, 7.16 for example. As shown in
Figure 7.16c, only one cylinder is reconstructed in this step, based on the major part of
the fire extinguisher body. A more detailed structure of the fire extinguisher body and
hose pipe would be ignored.
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(a) Bottom view of part of the ceiling (Red box: light-
ing, yellow box: speaker, green box: smoke alarm)

(b) Fitting result on ceiling plane (red: lighting, yel-
low: speaker, green: smoke alarm)

Figure 7.14: Bottom view of part of a ceiling and fitting result

(a) Part of a ceiling in 3D

(b) Fitting result in 3D (red: lighting, yellow: speaker, green: smoke alarm)

Figure 7.15: Part of a ceiling and fitting result in 3D
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(a) A fire extinguisher in point
cloud

(b) Point cluster of the fire extin-
guisher (c) Fit a cylinder to the cluster

Figure 7.16: Part of a ceiling and fitting result in 3D
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7.1.8 Text Detection and Recognition

In this step, text information attached to objects is extracted from images. As shown in
Figure 7.1, text information for facility management is available on or next to dedicated
objects in a building, like the room number on a door sign (shown in Figure 7.1a), the
serial number on an emergency switch (shown in Figure 7.1b), the serial number next to
a smoke alarm (shown in Figure 7.1c). Apart from detecting and recognising texts, the
aim of this step is also to link the detected information to the corresponding objects.

With regard to text detection, text can be located in the object area as well as next
to the object (like numbers next to the smoke alarm in Figure 7.1). No valid result
could be found for the second case if detecting text only within the object area. In
order to solve this problem, the predicted object area is enlarged by increasing its width
and length by 50%, assuming related texts to the object are within the enlarged region.
The text detection network model with differentiable binarization (Liao et al., 2020),
pre-trained on (Gupta et al., 2016), is applied within the enlarged area and outputs the
corresponding text bounding boxes.

With regard to text recognition, the text recognition network model for irregular text
(Li et al., 2019) is applied to detected text bounding boxes. The recognised text is
the information related to the corresponding object that contains or is close to the text
area. The text detection and recognition result of a door sign and an emergency switch
is illustrated in Figure 7.17. Most texts can be recognised correctly, especially those
numbers that are very useful for building management.

In summary, the input to the proposed processing pipeline are images/videos and point
clouds. Point clusters with semantic information are created by mapping semantic
information detected by deep learning to the 3D point cloud. The 3D mesh model is
reconstructed by fitting geometric shapes to point clusters and then enriched by useful
information that is valuable for maintaining the building by detecting and recognising
text information on or close to objects.

Although the network used in this chapter is designed and trained to work with multi-
oriented texts, the recognition result would suffer if texts were not horizontally-oriented.
Non-horizontally-oriented texts usually occur in the images of the ceiling because it is
hard to make sure the texts in all images are horizontally-oriented when holding a camera
to collect images. In order to solve this problem, the author inserts an intermediate step
between text detection and text recognition. In this step, the detected text bounding
box would be rotated to the position where its longer side is horizontal by assuming
texts are oriented along the longer side. Two angles (clockwise and counterclockwise)
can rotate the bounding box to the horizontal position and produce two new bounding
boxes. One of the angles would flip the text. The two new bounding boxes are then
the input for the text recognition step. The flipped texts can be discarded by the lower
prediction score, and the results are shown in Section 7.2.4.
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(a) Text detection result on door sign (b) Text recognition result on door sign

(c) Text detection result on emergency switch (d) Text recognition result on emergency switch

Figure 7.17: Text detection and recognition result

7.2 Experiments and Results

7.2.1 Implementation

The proposed approach is implemented in C++ and Python and is tested in the point
cloud collected in the Chair of Computational Modeling and Simulation at the Technical
University of Munich (TUM) with the help of NAVVIS (www.navvis.com). The anno-
tated dataset used for transfer learning contains more than 1000 instances, including
120 boards, 124 door signs, 34 elevator buttons, 52 emergency switches, 34 fire extin-
guishers, 30 escape signs, 357 lights, 94 light switches, 45 pipes, 137 smoke alarms, 123
sockets, and 91 speakers. These images were not taken in the same area of the building
where the point clouds were taken.

In point cloud processing, the PCL library (Rusu and Cousins, 2011) is used to im-
plement the proposed algorithm. Object detection in images is done with Detectron2
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Technology Language and library used automatic
or man-
ual

Object detection in image
by Transfer learning

Python, Detectron2 (Wu et al.,
2019)

automatic

Creating photogrammet-
ric point clouds

Python, COLMAP (Schön-
berger et al., 2016) (Schön-
berger and Frahm, 2016)

automatic

Point clouds alignment None manual

Extract visible points C++, PCL library (Rusu and
Cousins, 2011)

automatic

Map 2D information to 3D
space

C++ automatic

Find best-fitting labels C++ automatic

Fit shape to point clusters C++, PCL library (Rusu and
Cousins, 2011)

automatic

Text detection and recog-
nition

Python, MMOCR (Kuang
et al., 2021)

automatic

Table 7.1: Implementation details of each step

(Wu et al., 2019). In the experiment, the author uses the pre-trained Mask-RCNN
model (He et al., 2017) provided by Facebook (Wu et al., 2019) that has been trained
on the COCO dataset (more than 100k images) (Lin et al., 2014) and retrained on the
annotated dataset. The photogrammetric point cloud is created by using COLMAP
(Schönberger et al., 2016) (Schönberger and Frahm, 2016); text detection and recogni-
tion are implemented by means of the MMOCR tool (Kuang et al., 2021). The detailed
implementation information, including the used technologies and frameworks, is listed
in Table 7.1.

In this section, the author presents the results of the experiments from three aspects,
point cloud segmentation result, reconstruction result and, text recognition result.

7.2.2 Point Cloud Segmentation Result

In the proposed approach, 2D semantic information detected from images is mapped
to a 3D point cloud to identify the respective point clusters. The result is in the same
format as that of point cloud segmentation of 3D deep learning. The author compares
the segmentation results of the proposed approach with those of 3D deep learning. In
this regard, the S3DIS dataset (Armeni et al., 2016) contains the point cloud of the
indoor environment that is similar to the point cloud captured on the TUM campus. As
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Method mIoU

PointNet (Qi et al., 2017) 47.6

SPG (Landrieu and Simonovsky, 2018) 62.1

DGCNN (Wang et al., 2019) 56.1

RSNet (Huang et al., 2018) 56.5

PointCNN (Li et al., 2018) 65.4

KPConv (Thomas et al., 2019) 69.6

Point transformer (Zhao et al., 2021) 73.5

Table 7.2: Segmentation mIoUs on S3DIS dataset (evaluated with 6-fold cross-validation)

Model wall ceiling floor smoke
alarm

light

KPConv (3cm) 89.0 96.5 97.6 29.1 69.4

KPConv (5cm) 88.2 96.2 97.8 18.6 65.2

Table 7.3: Segmentation IoUs of related classes in the point cloud

shown in Table 7.2, KPConv (Thomas et al., 2019) is one of the best-performing network
architectures with the mean Intersection over Union (mIoU) around 70%. mIoU is a
common evaluation metric for semantic segmentation, and a higher value means a better
prediction result.

The author chooses KPConv for the experiments with the annotated laser-scanned point
clouds captured at TUM and considers these are the reference values for further com-
parisons. The model is trained with two different downsampling sizes: 3cm and 5cm.
It is plain to see that the performance for large objects (wall, ceiling, floor) is much
better than that for smaller objects. This result is consistent with that of the S3DIS
dataset (Armeni et al., 2016). For a small object like a smoke alarm, in particular,
the performance is quite low, which means the current state-of-the-art network is not
suitable for segmenting small objects. There are two possible explanations:

– the input point cloud resolution is too low for neural networks to understand small
objects;

– small objects have much fewer points compared to larger ones (like a ceiling, floor,
and wall), and the unequal class distribution means this has to be compensated
during training, which could sacrifice the performance of some classes.

The performance of the proposed approach for different classes is shown in Table 7.4.
As we can see, compared with the state-of-the-art network that only uses point clouds
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68.0 67.0 80.8 62.2 85.7 70.1 79.9 47.6 39.1 48.6 61.1 64.5

Table 7.4: Segmentation IoUs of small objects in test point cloud

as input, this approach with additional image input provides a significant improvement
in the common classes which are available in the image as well as the point cloud (smoke
alarm from 29.1% to 48.6%, light from 69.4% to 79.9%).

7.2.3 Reconstruction Result

One example of the information-rich digital twin that is created by applying the proposed
approach is illustrated in Figure 7.18. The digital twin is a comprehensive model which
includes geometric information (reconstructed 3D geometric models), and semantic in-
formation (point clusters of object instances with labels and useful text information).
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(a) Input point cloud (ceiling removed for visualisation)

(b) The created information-rich building twin

Figure 7.18: Input point cloud and the created elements of the building twin
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In Table 7.5, 7.6 and 7.7, the author compares the dimensions for some objects in three
categories from one area against the corresponding manually created model from the
laser-scanned point cloud. As most of the absolute deviations of the radius are less than
0.01m, the performance is quite good, given the resolution of the point cloud used is
0.005m. The relative deviations of smoke alarm diameters are relatively larger than
those of the other two classes because the smoke alarms are smaller, which means an
absolute deviation in a similar range results in a larger relative deviation value.
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No. radius ground
truth

deviation
(abs.)

deviation
(rel.% )

1 0.116 0.110 0.006 5.5

2 0.110 0.110 0 0

3 0.118 0.110 0.008 7.3

4 0.110 0.110 0 0

5 0.118 0.110 0.008 7.3

6 0.121 0.110 0.011 10.0

7 0.116 0.110 0.006 5.5

8 0.117 0.110 0.007 6.4

9 0.118 0.110 0.008 7.3

10 0.117 0.110 0.007 6.4

11 0.121 0.110 0.011 10.0

12 0.113 0.110 0.003 2.7

Table 7.5: Light radius comparison between model created from proposed approach and manually
created model: (m)

No. radius ground
truth

deviation
(abs.)

deviation
(rel.% )

1 0.072 0.070 0.002 2.9

2 0.063 0.070 0.007 10.0

3 0.068 0.070 0.002 2.9

4 0.073 0.070 0.003 4.3

Table 7.6: Speaker radius comparison between model created from the proposed approach and
manually created model: (m)
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No. radius ground
truth

deviation
(abs.)

deviation
(rel.% )

1 0.030 0.035 0.005 14.3

2 0.032 0.035 0.003 8.6

3 0.025 0.035 0.010 28.6

4 0.028 0.035 0.007 20.0

5 0.027 0.035 0.008 22.9

Table 7.7: Smoke alarm radius comparison between model created from proposed approach and
manually created model: (m)

7.2.4 Text Recognition Result

In the proposed experiments, the text recognition network model (Li et al., 2019) works
well if the text in an image is horizontally oriented and performs worse if the text is not
horizontal. The comparison of recognition results for texts attached to two objects is
shown in Figure 7.19.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.19: Comparison of recognition results between non- and horizontally-oriented text

In order to improve the recognition result, the author introduces a method of rotating
the detected bounding boxes in Section 7.1.8. The corresponding result is shown in
Figure 7.20, for example.

In order to discard the prediction of flipped texts, prediction scores are checked. The
recognised texts and corresponding prediction score of four horizontal bounding boxes
in Figure 7.20 are listed in Table 7.8. It is plain to see that two prediction scores
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(a) Two images of the same object
(b) Counterclockwise rotation to

horizontal position
(c) Clockwise rotation to horizontal

position

Figure 7.20: Rotating the detected box to horizontal position

Image Nr. Text Score

1 501529/01 0.99995

2 LO/SEZSLOS 0.78154

3 501529/01 0.99824

4 LO/62SLOS 0.84252

Table 7.8: Recognised text and prediction score

(Nr.2 and Nr.4) are significantly lower than the other two (Nr.1 and Nr.3), which means
the level of certainty is lower. And this lower prediction score comes from the flipped
text. Therefore, it is very easy to identify the correct direction of text by analysing
the prediction score. The texts from high score predictions are then chosen as the
extracted text information if these predictions provide identical results (as in Table 7.8,
where they both predict "501529/01"). If high-score predictions are in conflict with each
other, which usually happens when multiple images for the same object are available,
all predicted texts are stored with their prediction scores. So the final decision is left
up to the human user.

More results of recognising texts in the original and rotated text bounding box are shown
in Table 7.9, while the corresponding figures are shown from C.1 to C.3 in Appendix C.
It can be seen that in one image (Image 2), the prediction scores are significantly higher
than others, and the recognised texts are correct in this image as well.
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Image Nr. Text Score

1 Bunz 0.86509

1 perspy 0.71426

1 BIRTHDAY 0.90593

1 pecumy 0.73446

1 Yorkwood 0.77432

1 6012805 0.76081

2 Heizung 0.99508

2 Vorlauf 0.99984

2 heizung 0.99575

2 Rucklauf 0.99997

2 heizung 0.99994

2 Vorlauf 0.99904

3 Inorgin 0.47901

3 bunzlah 0.80703

3 ineptancy 0.56472

3 heinzi 0.66825

3 Iorasa 0.53956

3 BUNZIOH 0.83753

Table 7.9: Recognised text and prediction score of labels
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7.2.5 Parameter Study

In Section 7.1.4, the ray-casting method is used to remove points that should not be
visible at the given camera position. The aim of ray-casting is to make points visible
in the real world that can also be seen in the point cloud. At the same time, it should
not "look through" the wall either, seeing points that should be occluded. Therefore,
the voxel size in Figure 7.8 is essential.

Figure 7.21 shows a comparison of four different voxel sizes: 2mm, 5mm, 1cm, and 2cm.
As we can see, rays can still go through the wall with a resolution of 2mm and 5mm,
which makes the scene behind the wall visible. With a resolution of 2cm, the handrail
and its fence cause too much occlusion, making a relatively large part of the wall that
should not be occluded invisible. In this case, the voxel size of 1cm provides the best
result. Moreover, the test point cloud resolution is also 1cm in Figure 7.21. This is
not a coincidence, because a 1cm resolution point cloud means the distance between
neighbouring points is around 1cm. Therefore, it is appropriate that the voxel size
chosen for ray-casting is the same as the resolution of a point cloud so that rays do not
pass through a surface and at the same time avoid unnecessary occlusions.

(a) 2mm voxel size (b) 5mm voxel size

(c) 1cm voxel size (d) 2cm voxel size

Figure 7.21: Ray-casting result with different voxel sizes
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7.2.6 Discussions

The described approach until now is automatic except for the step to co-register pho-
togrammetric point cloud and laser-scanned point cloud, as shown in Table 7.1. This
process can be improved as well in order to get a fully automatic process.

In the proposed method, images taken by the DSLR camera are registered to the laser
scanning point cloud through the images taken by the laser scanner, which means an
extra data source (images taken by scanners) is required. Many modern laser scanners
can take images as well and the laser scanner used in this section is Leica RTC360 (as
shown in Figure 2.1a). Using Ic to denote the DSLR camera image set and Il to denote
the whole laser scanner image set that is used to reconstruct the photogrammetric point
cloud. For an image in camera image set mi ∈ Ic, Mi

ext and Mi
int denote the correspond-

ing camera extrinsic and intrinsic parameter matrices. These parameters are computed
by SfM from the previous step and are in the coordinate of the photogrammetric point
cloud. For an image in laser scanning image set ni ∈ Il, Ni

ext and Ni
int denote the

corresponding camera extrinsic and intrinsic parameter matrices that are computed by
SfM and referenced to the photogrammetric point cloud. Meanwhile, an image in laser
scanning image set ni ∈ Il also has the extrinsic and intrinsic parameters of the laser
scanner camera, referenced to the coordinate of the laser scanning coordinate, denoted
by Li

ext and Li
int. Therefore, the images taken by the laser scanner work as a ‘bridge’to

connect the photogrammetric and laser scanning point cloud. As shown in Figure 7.22,
the marked camera poses are images taken by the laser scanner and the rest are images
taken by DSLR images.

For images ni ∈ Il, camera positions in the photogrammetric and laser scanning point
cloud are available. By moving their centroids in the photogrammetric and laser scan-
ning coordinate to the origin, and applying singular value decomposition (SVD) to the
matrix of the product of the two position matrices, the translation matrix and rotation
matrix can be computed. In this chapter, the author uses M to denote the transfor-
mation matrix that transforms points from laser scanning point cloud coordinates to
photogrammetric point cloud coordinates. Any point p =

[
x0, y0, z0

]T
in the original

laser scanning point cloud S can be transformed to the coordinate of the photogram-
metric point cloud by 

x1

y1

z1

d1


= M−1



x0

y0

z0

1


, (7.14)

where
[
x0, y0, z0, 1

]T

is the origin homogeneous coordinates of this point p, M−1 is

the inverse matrix of M, and
[
x1, y1, z1, d1

]T

are the newly calculated homogeneous
coordinates of the point in the coordinates of the photogrammetric point cloud.
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Then normalization is applied by dividing each vector component by d1,

x2

y2

z2

1


= 1

d1



x1

y1

z1

d1


, (7.15)

where
[
x2, y2, z2, 1

]T

is the normalized homogeneous coordinate vector of point p in the
coordinate of photogrammetric point cloud.

By using the images taken by laser scanners, the manual co-registration step in the
pipeline can be implemented automatically. However, it requires that the laser scanner
has the function of taking images during the scanning process.
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(a) Camera poses in the sparse model (Camera poses marked with a circle are images taken by
the laser scanner, all others are taken by DSLR camera)

(b) Reconstructed dense point cloud (points on the front wall are removed for better visualisa-
tion)

Figure 7.22: Overview of computed camera poses and reconstructed point clouds
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7.3 Conclusions

As shown in Section 7.2, the proposed pipeline provides convincing results in creating
an information-rich digital twin of small objects from laser-scanned point clouds and
images. Meanwhile, the method could be applied to other facilities if the environment
is captured by a laser scanner and a camera. However, it should be noted that the pho-
togrammetric process only works if a sufficient amount of images were taken differently
from different viewpoints. It is hard to say the minimum required number of images
for the photogrammetric process because it depends on different aspects, such as the
facility size, the number of objects, the camera lens, etc. But according to the author’s
experience, more images from various viewpoints usually improve the reconstruction
result.

In addition, the author also tests the photogrammetric process with images and frames
extracted from videos. In the proposed experiment, photogrammetric point clouds cre-
ated by video frames are usually noisier than those from camera images. Furthermore,
a camera with a higher resolution and larger field of view can also contribute to a
higher-quality point cloud, which usually requires a longer computation time. As the
photogrammetric process is only used to register images to laser-scanned point clouds,
the strategies for increasing the quality of photogrammetric point clouds and reducing
the cost are not in the scope of this chapter.

If the photogrammetric process in the pipeline fails, all the other parts can still proceed.
However, an alternative way to provide a camera’s intrinsic and extrinsic parameters
should be included, for example, using the referenced images taken by modern laser
scanners that have cameras during data capturing, manually recording camera poses
and calibrating parameters.

Furthermore, there are still other limitations to the proposed method. Firstly, the
object detection step can provide good results for standard objects like fire extinguishers,
smoke alarms, etc. But it performs worse with objects that vary greatly in different
environments, such as lights on the ceiling. More training pictures are required to solve
this problem. Secondly, although the approach has already enlarged the number of
reconstructed categories in the indoor environment, many other objects are still missing,
such as desks, bookshelves, etc. These elements are also valuable for further enriching
the digital twin. As this method can be extended to a fully automatic method, and
human intervention is limited to data capture, it provides the possibility to generate
and update the model frequently at a low cost. In addition, the method of registering
2D images taken by a camera to the laser-scanned point cloud also can be extended to
registering images taken by other sensors, such as thermal cameras. In this case, the
digital twin can be further enriched with other information.
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Chapter 8

Implementation Details and
Experimental Setup

The implementation details and experimental setup of the overall proposed solution are
introduced in this chapter. The following parts of the chapter are organised as follows.
The implementation details are presented in Section 8.1. The input data are described
in Section 8.2. The designed data structure for the overall output is presented in Section
8.3.

8.1 Implementation Details

In this section, the implementation details of the overall proposed solution are presented.
The proposed approach is implemented in C++ and Python. With regard to point cloud
processing, the PCL library (Rusu and Cousins, 2011) and CGAL library (The CGAL
Project, 2020) are used to implement the proposed methods. Semantic segmentation
on the point cloud is implemented in Python, using the network architecture KPConv
(Thomas et al., 2019) and PointTransformer(Zhao et al., 2021). Object detection in im-
ages by 2D networks is achieved with the Framework Detectron2 (Wu et al., 2019). The
photogrammetric point cloud is created by using COLMAP (Schönberger et al., 2016)
(Schönberger and Frahm, 2016). Text detection and recognition are implemented by
means of the MMOCR (Kuang et al., 2021). The detailed implementation information,
including the sub-processes and used frameworks, is listed in Table 8.1.
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Subprocess Section in the
thesis

Language and library used

Segment point clouds of multi-
storey buildings into different
storeys

4 C++, PCL library (Rusu and
Cousins, 2011)

Point Cloud Segmentation by
Deep Learning

5.1.1 Python, KPConv (Thomas
et al., 2019), PointTransformer
(Zhao et al., 2021)

Reconstruct space-bounding
elements for buildings that
fulfil Manhattan-world as-
sumption

5.1.2 to 5.1.8 C++, PCL library

Reconstruct space-bounding
elements for buildings that
do not fulfil Manhattan-world
assumption

6 C++, CGAL library (The
CGAL Project, 2020)

Object detection in image by
Transfer learning

7.1.1 Python, Detectron2 (Wu et al.,
2019)

Creating photogrammetric
point clouds

7.1.2 Python, COLMAP (Schön-
berger et al., 2016; Schön-
berger and Frahm, 2016)

Map 2D information to 3D
space

7.1.3 to 7.1.6 C++

Fit shape to point clusters 7.1.7 C++, PCL library

Text detection and recognition 7.1.8 Python, MMOCR (Kuang
et al., 2021)

Table 8.1: Implementation details of all steps
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8.2 Data Description

In this section, all data used in the proposed solution are introduced. As presented in
the previous chapters in which two data sources are used: point clouds and images, this
section is separated into two parts as well.

8.2.1 Point Cloud Data

Point cloud data used in this thesis can be divided into two categories: point clouds to
train neural networks and point clouds of the environments to be reconstructed. The
author uses publicly available data to train neural networks and prepares self-annotated
data as well. S3DIS (Armeni et al., 2016) dataset that includes in total six areas of
the office building is included in the training set. The self-annotated dataset, named
TUMCMS set, consists of around 30 rooms and contains around 25 different classes,
including ceiling, door, elevator, exit signs, floor, light, smoke detector, wall, window,
radiator, beam, handrail, bookshelf, closet, desk, table, couch, chair, fire extinguisher,
dustbin, fan, monitor, clutter. It needs to be noted that not all categories labelled in
the dataset are reconstructed in the proposed solution. Object categories in the scope
of the thesis are introduced in Section 3.1. The point cloud of the indoor environment
to be reconstructed contains three storeys and is collected at Technical University as
well. The detailed comparison is listed in Table 8.2.

8.2.2 Image Data

Similar to point cloud data, the image data used in the implementation also can be
divided into two categories: images used to train the neural networks and images taken
in the environments to be reconstructed. The images used for transfer learning are
taken in a different building at the TUM city-centre campus and annotated manually.
The annotated dataset used for transfer learning contains more than 1000 instances,
including 120 boards, 124 door signs, 34 elevator buttons, 52 emergency switches, 34
fire extinguishers, 30 escape signs, 357 lights, 94 light switches, 45 pipes, 137 smoke

Dataset Environment specification Publicly
available?

Annotated?

S3DIS (Armeni
et al., 2016)

six areas of office building Yes Yes

TUMCMS around 30 rooms of office building No Yes

Multi-storey
building data at
TUM

three storeys of office building No No

Table 8.2: Point cloud data used in the implementation
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alarms, 123 sockets, and 91 speakers. In the experiment, the author uses the pre-
trained Mask-RCNN model (He et al., 2017) provided by Detectron2 (Wu et al., 2019)
that has been trained on the COCO dataset (more than 100k images) (Lin et al., 2014)
and retrained on the annotated dataset. These images were not taken in the same area
of the building where the point clouds were taken.

The images to reconstruct the elements in the environment are collected as images or
extracted from videos. For the process of reconstructing photogrammetric point cloud
7.1.2, around 300 images or frames from videos are used for one space, and 10 spaces
are captured in total.

8.3 Data Structure Design for Output

The proposed solution creates an information-rich digital twin that includes both space-
bounding elements and small-scale elements, detailed and simplified geometric informa-
tion, and semantic information of object classes and texts. In order to store the extracted
information and the corresponding relationships, the author presents a data structure
for the output of the overall proposed approach. The data structure is illustrated in
Figure 8.1.

As the whole method follows a "top-down" approach that starts from a multi-storey
building, through individual storeys and rooms, to individual elements, the designed
data structure follows the same logic. Basically, the whole building consists of multiple
storeys, and each storey contains a number of rooms. Subsequently, a room contains
various elements. The primary elements here means the space-bounding elements (like
walls, ceilings, floors) that are extracted in Chapter and Chapter 5 and Chapter 6, and
the secondary elements refer to the elements that are extracted in Chapter 7 (like smoke
alarms, light switches, etc.), which are associate with primary elements (for example, a
smoke alarm is mounted on the ceiling, and a light switch is usually mounted on the
wall).

As shown in Figure 8.1, storeys are linked to buildings through "building_id", rooms
are linked to buildings and storeys with "building_id" and "storey_id". In the ele-
ment level, primary elements are linked to buildings with "building_id", storeys with
"storey_id", and rooms with "room_id". Secondary elements are linked to buildings
with "building_id", storeys with "storey_id", rooms with "room_id", and primary ele-
ments with "primary_element_id" in the same manner.

Results of segmenting point clouds of multi-storey buildings into individual storeys (in
Chapter 4) are stored in the corresponding storeys under "pc_file", which contains the
path of the segmented point clouds. Results of segmenting point clouds of one storey
into individual rooms and then into space-bounding elements (in Chapter 5 and 6) are
stored in the corresponding storeys under "pc_file", which contains the path of the
segmented point clouds. The class information of elements is stored under "name", and
the corresponding simplified mesh file path is stored under "mesh_file". Results of the
method that combines object detection in images and point clouds (in Chapter 7) are
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Figure 8.1: Designed data structure

stored in "pc_file" and "mesh_file" under "secondary_elements". The extracted text
information like object IDs or serial numbers goes to the "text_information".

Currently, the designed structure can fulfil the requirements of the created information-
rich digital twin in the proposed solution. With regard to geometric information, the
detailed geometry is stored under "pc_file", and the simplified geometry is stored under
"mesh_file". With regard to semantic information, the extracted semantic information
of the object class is stored in "name", and the extracted semantic information of texts
is stored in "text". Objects are linked to buildings, storeys, rooms, and other objects to
represent relationships.

The data structure can also be extended to fulfil more use cases of digital twins. For
example, if other object categories in the buildings are required to enrich the created
digital twin further (like furniture), other classes can be added to the database (like
furniture). The corresponding objects of the classes can be linked to other objects using
the same logic. Furthermore, if more data from other sources should be included (like
thermal data), the thermal data and extracted information like temperature can be
considered as properties and then added to the corresponding objects.
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In summary, the designed data structure is capable of containing all the information
extracted in the whole approach, which can store the extracted point clusters, simplified
meshes, category labels, and text information. In addition, it still provides the possibility
to add more properties to each element to fit other digital twin use cases.
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Chapter 9

Results and Conclusions

In this chapter, the author presents the results and conclusions of the whole thesis.
More specifically, this chapter is organised as follows. The results and outcome analysis
of the overall proposed solution are presented in Section 9.1. The contributions and
limitations are discussed in Section 9.2. Last, the conclusions of the thesis are presented
in Section 9.1.

9.1 Results

The overall proposed solution is designed to create an information-rich digital twin that
includes both space-bounding elements and small-scale elements, detailed and simplified
geometric information, and semantic information (object classes and recognised texts).
The data flow that shows how sub-processes presented from Chapter 4 to 7 are combined
to get the final output of the information-rich digital twin is presented in Figure 9.1.
In this Figure, the green arrows represent the data flow between the sub-processes.
The red arrows represent how the point clusters of different objects representing the
detailed geometric information get to the final output. The point clusters with labels
extracted from two input sources (point clouds and images) are selected and combined
to show the detailed geometry of the environments. Subsequently, the purple arrows
represent how simplified mesh models that are created from corresponding point clusters
are gathered in the final output. The mesh models of small-scale objects are added to
the basic model of space-bounding elements. The orange arrow shows the extracted text
information extracted from images is included and associated with the corresponding
objects as well.
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Figure 9.1: Outline of the proposed solution with marked data flow (Green: data flow in sub-processes;
Red: data flow for detailed geometry; Purple: data flow for simplified geometry; Orange:
data flow for text information.)
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Examples of the final output that gathers all information are shown in Figure 9.2 and
Figure 9.3. The input point clouds are shown in Figure 9.2a and 9.3a. Given the input
point clouds and images taken in the same area, the detailed geometric information
of detected objects shown as point clusters of objects after running through the overall
proposed solution, which is shown in Figure 9.2b and 9.3b. These two figures are colour-
coded, which means different colours represent different categories of objects. The mesh
models showing the simplified geometric information are then extracted based on the
point clusters with labels. These mesh models are presented in Figure 9.2c and 9.3a,
which are colour-coded as well, where different colours represent different object classes.
At last, useful text information is also extracted as additional semantic information to
enrich the created model further. Figure 9.2d shows the extracted object ID next to
a smoke alarm can be extracted, and Figure 9.3d presents the recognised texts on a
door sign. These texts are linked to the corresponding objects and included in the final
output of an information-rich digital twin.

In summary, the overall proposed solution selects and combines the extracted infor-
mation in the sub-processes (from Chapter 4 to Chapter 6) of the overall presented
approach. The final created information-rich digital twin is then stored in the proposed
data structure (in Section 8.3).
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(a) Input point cloud with colour

(b) Point clusters with labels (Different colours represent different
classes)

(c) Mesh model (Different colours represent different classes)

(d) Recognised object ID linked with a smoke alarm

Figure 9.2: Information contained in the final output
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(a) Input point cloud with colour

(b) Point clusters with labels (Different colours represent different
classes)

(c) Mesh model (Different colours represent different classes)

(d) Recognised text on a door sign

Figure 9.3: Information contained in the final output
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9.2 Contributions and Limitations

As a valuable digital asset of the built environment, digital twins provide possibilities
to help all stakeholders of the facilities with a variety of use cases, including facili-
ties management and operation, asset condition monitoring, sustainable development,
construction progress monitoring, etc. Especially in the process of supporting decision-
making, digital twins benefit the whole process by providing more reliable and useful
information. In this thesis, a method to create an information-rich digital twin of
buildings from two different data sources (point clouds and photos), which provides
complementary information that could be achieved different reconstruction objectives,
is proposed.

The information-rich digital twins mainly contain the following constituents:

– the simplified geometric mesh model of different objects;

– point clusters with label information of corresponding objects;

– text information, including object IDs linked to objects.

Object categories include relatively large space-bounding elements and relatively small
objects.

The proposed overall method mainly includes the following steps:

– given a multi-storey point cloud of indoor environments as input, the point cloud
is segmented into individual storeys of point clouds;

– space-bounding elements are extracted and reconstructed directly from the laser-
scanned point cloud using geometric information and semantic information ex-
tracted by point cloud deep learning; depending on whether the point clouds fulfil
the Manhattan-world requirements or not, two different approaches are proposed;

– by object detection in 2D images and mapping from 2D image to 3D space, small
objects are extracted and reconstructed to enrich the digital twin of buildings; text
detection and recognition are performed to extract object IDs and other useful text
information to enrich the model further.

The key contributions of this thesis are summarised as follows:

– approaches for extracting space-bounding elements from point clouds of the envi-
ronments that do or do not fulfil the Manhattan-world assumption are presented;

– not only space-bounding elements but also smaller objects are reconstructed, which
increases the detected object categories of indoor environments;
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– deep learning is applied and merged in the approaches, and the extracted semantic
information is selected and then used to reconstruct the objects;

– apart from laser scanned point clouds, photos are used to extract semantic infor-
mation in 2D and then mapped to 3D to reconstruct smaller objects;

– text information is extracted by text detection and recognition technologies and
linked to the corresponding objects.

There are still limitations to the proposed solution:

– as deep learning on 3D point clouds is applied in the proposed solution, which
makes the performance of the proposed solution depends on deep learning. In
order to train a well-performed model, a large amount of annotated data and
computing power are required.

– more specifically, the proposed solution does not work for large curtain walls made
of glasses. These surfaces made of glasses are extremely hard to be captured in
data collection and difficult to be recognised in data processing as well.

– the proposed solution considers the objects in the scope shown in Section 3.1. The
existing object categories in a building in practice are much larger, which means
the created digital twin can still be continuously enriched with other small objects.

9.3 Conclusions and Future Work

The proposed approach uses point cloud data and images as input to create an
information-rich digital twin of indoor environments. The final output of the approach
contains geometric and semantic information for space-bounding elements and small el-
ements. The created digital twin can be used in applied in different aspects throughout
various assets’ life cycles. For historical assets which have been completed for many
years but do not yet have any digital records, the created digital twin can help to start
and keep a recording of their current conditions for making better decisions, especially in
facility maintenance and renovation. For those assets with available digital representa-
tions, the proposed approach provides the possibility to enrich the current digital model
with more useful information as well. Keeping the digital twin dynamic and up-to-date
can improve the asset’s real-time progress monitoring, quality control, diagnostics, and
prognostics for facilities. Furthermore, the created final output can also be used in cap-
ital investment projects before the design and construction of the facility. It is efficient
and convenient to simulate the performance with its digital twin to assist decision and
strategy-making in various predictive scenarios.

In addition, the proposed pipeline can be used not only to create digital twins from
scratch but also to update the available digital twin. And it is also not necessary to
start the approach always from the beginning. For example, if prior knowledge (like
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the space-bounding elements in the building do not change) is known in advance, it
is possible to collect image data and run the sub-processes designed for small objects
only. In this case, laser scanners are not even required. Instead, a much lighter photo-
capturing device like a camera or even a mobile phone can be used to collect data, which
could further reduce the cost of generating a model. This process is illustrated in Figure
9.4.

Figure 9.4: Updating digital twin can only use photos

In practice, the proposed approach can heavily reduce the human effort in the pro-
cess of reconstructing indoor environments from point clouds and photos. The human
modellers do not need to measure the locations and dimensions of elements in the envi-
ronments. Instead, they could just check the automatically created models and fix the
corresponding parts if errors or inconsistencies are found. The cost to create a digital
twin for indoor environments could be heavily reduced, which also provides the possi-
bility to digitise more facilities. These digital twins can be used in various use cases and
bring benefits to all stakeholders of the facility.

For the whole society, when more and more digital twins of various facilities are avail-
able, the current geometric conditions of these assets can be visually monitored. Fur-
thermore, by putting different kinds of sensors into the physical assets and updating
the corresponding data in digital twins, the data between digital and physical twins can
be linked effectively. This could be a starting point to make smart buildings or smart
cities. Decision-makers can effectively collect information for buildings and cities in the
digital twin.
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In conclusion, this thesis presents a pipeline to create an information-rich digital twin
from point clouds and photos, which reduces the human effort in the process of creating
digital twins. The approach starts with segmenting multi-storey point clouds into in-
dividual storeys, through space-bounding elements reconstruction, and ends with small
objects and text information detection. By combining information extracted by 2D deep
learning in images and 3D deep learning in point clouds, the complementary information
contained in photos and point clouds is used to create the final output model, which
contains simplified and detailed geometric information, object label information, and
useful text information. The proposed methods in the sub-processes of the proposed
approach can also be applied separately to different individual use cases. And the pro-
posed method of registering 2D images with 3D point clouds can also be extended to
register images from other sensors (like thermal images) to add more information to the
created digital twin.

In the future, some potential research topics in the following aspects could be conducted.
Firstly, more component categories could be considered, such as staircases, handrails,
furniture, etc. The digital twin can be further enriched by including more object classes.
Secondly, components with more complicated structures can be considered, for example,
curved walls and ceilings. At last, data from other sensors can also be included, such
as thermal sensors, which can enrich the information in digital twins. The multi-modal
data in digital twins can provide more potential use cases.
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Appendix A

Parameter study on coefficients of
energy terms in Section 6.2.1
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(a) Optimised Plane extraction result

(b) Optimised Plane extraction result(part of the ceiling is removed for better visualisation)

Figure A.1: Plane selection result of of setting λfitting = 0.6 and λcomplexity = 0.4
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(a) Optimised Plane extraction result

(b) Optimised Plane extraction result(part of the ceiling is removed for better visualisation)

Figure A.2: Plane selection result of of setting λfitting = 0.8 and λcomplexity = 0.2
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(a) Optimised Plane extraction result

(b) Optimised Plane extraction result(part of the ceiling is removed for better visualisation)

Figure A.3: Plane selection result of of setting λfitting = 0.5 and λcomplexity = 0.5
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(a) Optimised Plane extraction result

(b) Optimised Plane extraction result(part of the ceiling is removed for better visualisation)

Figure A.4: Plane selection result of of setting λfitting = 0.2 and λcomplexity = 0.8
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Appendix B

Parameter study on coefficients of
point labels in Section 6.2.1
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(a) Optimised Plane extraction result

(b) Optimised Plane extraction result(part of the ceiling is removed for better visualisation)

Figure B.1: Plane selection result of setting coefficient for the non-structural label to 0.1
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(a) Optimised Plane extraction result

(b) Optimised Plane extraction result(part of the ceiling is removed for better visualisation)

Figure B.2: Plane selection result of setting coefficient for the non-structural label to 0.2
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(a) Optimised Plane extraction result

(b) Optimised Plane extraction result(part of the ceiling is removed for better visualisation)

Figure B.3: Plane selection result of setting coefficient for the non-structural label to 0.3
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(a) Optimised Plane extraction result

(b) Optimised Plane extraction result(part of the ceiling is removed for better visualisation)

Figure B.4: Plane selection result of setting coefficient for the non-structural label to 0.4
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(a) Optimised Plane extraction result

(b) Optimised Plane extraction result(part of the ceiling is removed for better visualisation)

Figure B.5: Plane selection result of setting coefficient for the non-structural label to 0.5
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Appendix C

Text recognition result in Section
7.2.4
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