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Abstract

Vine Copulas are popular dependence models that provide flexible multivariate distri-
bution classes by representing a joint distribution as univariate margins plus bivariate
copulas characterizing the dependence structures. Sometimes, one is interested in
sampling conditional values from those vine copula distributions. If, for any given
R-vine, all required components for the conditional distribution are given directly in
the representation of the vine, the conditional density can be determined easily. Other
conditional densities, however, cannot be expressed because parts of the formula are
not given and thus direct sampling from such conditional distribution can be hard.
A feasible way to sample from conditional distributions like this is to use a Markov
chain Monte Carlo (MCMC) approach, concretely an extension of the Hamiltonian
Monte Carlo (HMC) algorithm – the No-U-Turn Sampler that is implemented in the
probabilistic programming language Stan. By using that, we take advantage of the
need for only proportional densities. By performing various simulation setups, we test
whether the sampler proposed by M.Sc. Ariane Hanebeck is correctly sampling from
any conditional vine copula distribution. Moreover, we apply the proposed sampler for
the analysis of the Uranium data set.
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1. Copula Theory

In this chapter, following Czado (2019), we introduce univariate and multivariate
distributions, the concept of copulas and present several copula examples.

1.1. Univariate and Multivariate Distributions

A univariate distribution is a probability distribution of a single random variable.
Random variables are generally denoted by capital letters and realizations of the
random variables by small letters, i.e. we write X = x. We use the letter F for
the distribution function and f for the corresponding density function. This density
function always exists, since we consider only absolutely continuous distributions. We
now introduce one example of a univariate distribution, the normal distribution. The
illustration of its density for different parameters is given in Fig. 1.1.

Example 1.1 (Univariate normal distribution (Czado, 2019)). The density of a univariate
normal distribution with mean µ ∈ R and variance σ2 > 0 is given by

f (x; µ, σ2) =
1√

2πσ2
exp

{
− 1

σ2 (x− µ)2
}

.

We denote a random variable X with a normal distribution with mean µ and variance σ2 by
X ∼ N (µ, σ2). The distribution N (0, 1) is called standard normal distribution.

One of the problems which can be considered is that the parameters of the distribution
function of a random variable X are unknown and need to be estimated. One way to
do the estimation is to use a parametric model for X with a parametric vector θ ∈ Θ, i.e.
X ∼ f (·; θ), where Θ is the corresponding parameter space. The estimation is based on
a sample x1, . . . , xn of independent identically distributed (i.i.d.) observations of X and
the parameter vector θ is often estimated by the maximum likelihood method

θ̂ := arg max
θ∈Θ

n

∏
i=1

f (·; θ).

1



1. Copula Theory
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Figure 1.1.: Examples of univariate normal densities.

So, for the distribution function F(·; θ) we have the estimation F(·; θ̂).
If one does not want to make the assumption of a parametric model, the empirical

distribution function is often used.

Definition 1.2 (Univariate empirical distribution function (Czado, 2019)). Let x1, . . . , xn

be an i.i.d. sample from a distribution function F, then the empirical distribution function is
defined as

F̂(x) :=
1

n + 1

n

∑
i=1

1{xi≤x},

for all x.

Remark 1.3. Division by n + 1 instead of n is used to avoid boundary problems of F̂(x).

Another way to estimate the distribution without the assumption of a parametric model
is by kernel density estimation (Parzen, 1962).

Definition 1.4 (Kernel density estimation (Parzen, 1962)). Let x1, . . . , xn be i.i.d samples
drawn from a univariate distribution F with a density f at any given point x. The kernel
density estimator of f is given by

f̂h(x) =
1

nh

n

∑
j=1

K
(

x− xj

h

)
,

2



1. Copula Theory

where K is the kernel, a symmetric density function, and h > 0 is a smoothing parameter.
Usually, K(x) = φ(x) is chosen, where φ is the standard normal density function, i.e. a
Gaussian kernel.

Remark 1.5 (Role of the smoothing parameter h). The smoothing parameter h, or also
called bandwidth, effects the shape of the corresponding estimator. A badly chosen value may
lead to undesired change of the density, therefore a proper choice is a crucial problem. If the
bandwidth is small, the estimator is under-smoothed with high variability. On the other hand, if
the value is huge, the estimator will be over-smoothed and far from the true function.

We demonstrate the effect in an example. We sampled n = 5000 i.i.d. samples from the
N (0, 1) distribution and compared the maximum likelihood estimation (MLE) with the kernel
density estimation based on the sample with bandwidth h = 50 and h = 0.1. The effect on the
density shape can be seen in Fig. 1.2.
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Figure 1.2.: Comparison of the maximum likelihood estimation (MLE) with the kernel
density estimation with bandwidth h = 50 and bandwidth h = 0.1. The samples were
drawn from N (0, 1) distribution.

Now, we continue with multivariate distributions, which model the behaviour of
several random variables. In this case, we distinguish between marginal, joint, and
conditional distributions, which emerge from the multivariate distribution. For each of
them, we use the following notation:
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1. Copula Theory

Definition 1.6 (Marginal, joint, and conditional distributions (Czado, 2019)). For a
d-variate random vector X = (X1, . . . , Xd)

T, we define the following notations.

• Marginal distribution and density function of Xj: Fj(xj) and f j(xj), for j = 1, . . . , d.

• Joint distribution and density function of X: F(x1, . . . , xd) and f j(x1, . . . , xd).

• Conditional distribution and density function of Xj given Xk: Fj|k(xj|xk) and f j|k(xj|xk),
for j 6= k.

Since we later use them, we introduce two examples of bivariate distributions, the
bivariate normal and the bivariate Student’s t distribution.

Example 1.7 (Bivariate normal distribution (Czado, 2019)). The density of the bivariate
normal distribution with mean vector µ = (µ1, µ2)T ∈ R2 and positive definite covariance
matrix Σ = (σij)i,j=1,2 ∈ R2x2 is given by

f (x; µ, Σ) =
1

2π
|Σ|−1/2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

In particular E(Xi) = µi and Cov(Xi, Xj) = σij for all i, j = 1, 2, where σij is the (i, j)th
element of the matrix Σ, and |Σ| denotes the determinant of the matrix Σ. We denote a random
vector X = (X1, X2)T with a bivariate normal distribution with mean vector µ and covariance
Σ by X ∼ N2(µ, Σ).

Example 1.8 (Bivariate Student’s t distribution (Czado, 2019)). The density of the bivariate
Student’s t distribution with ν > 0 degrees of freedom (df), mean vector µ = (µ1, µ2)T ∈ R2

and symmetric, positive definite scale parameter matrix Σ = (ρij)i,j=1,2 ∈ R2x2 is given as

f (x; ν, µ, Σ) =
Γ( ν+2

2 )

Γ( ν
2 )(νπ)

|Σ|−1/2
{

1 +
1
ν
(x− µ)TΣ−1(x− µ)

}− ν+2
2

.

The matrix Σ is the correlation matrix of X, i.e. Cor(Xi, Xj) = ρij. We denote a random vector
X = (X1, X2)T with a bivariate Student’s t distribution with ν degrees of freedom, mean vector
µ and scale parameter matrix Σ by X ∼ t2(ν, µ, Σ).

If parametric assumptions are to be avoided again, we can use a multivariate empirical
distribution or a multivariate kernel density estimation.

4



1. Copula Theory

Definition 1.9 (Multivariate empirical distribution (Czado, 2019)). Let xi = (xi1, . . . , xid)

be an i.i.d. sample of size n from the d-dimensional distribution F, then the multivariate
empirical distribution function is defined as

F̂(x1, . . . , xd) :=
1

n + 1

n

∑
i=1

1{xi1≤x1,...,xid≤xd},

for all x := (x1, . . . , xd)
T ∈ Rd.

Definition 1.10 (Multivariate kernel density estimation (Duong, 2016)).
Let xi = (xi1, . . . , xid) be an i.i.d. sample of size n drawn from the d-dimensional distribution
F with a density f , then the kernel density estimator is defined to be

f̂H(x) =
1
n

n

∑
i=1

KH(x− xi),

where again K is the kernel, a symmetric multivariate density function, and H is a smoothing
d ∗ d parameter matrix, which is symmetric and positive definite. The scaled kernel is defined
as KH(x) = |H|−1/2K(H−1/2x). For the kernel function K the standard multivariate normal
kernel is often used.

In spite of the kernel density estimation being an important technique in multivariate
data analysis, its performance worsens with high dimensional data as shown in Huber
(1985). This phenomenon is called "curse of dimensionality".

Further, in order to characterize the dependence between multiple random variables,
we need to standardize them. For this purpose, we use the probability integral transform
for the margins.

Definition 1.11 (Probability integral transform (Czado, 2019)). If X ∼ F is a continuous
random variable and x is an observed value of X, then the transformation u := F(x) is called
probability integral transform (PIT) at x.

Remark 1.12 (Distribution of the probability integral transform (Czado, 2019)). If X ∼ F,
then U := F(X) is uniformly distributed, since

P(U ≤ u) = P(F(X) ≤ u) = P(X ≤ F−1(u)) = F(F−1(u)) = u

holds for every u ∈ [0, 1].

By using the probability integral transform, we can transform the set of random
variables (X1, . . . , Xd) from the original (x-) scale to (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)),
the so-called copula scale (u-scale).

5



1. Copula Theory

1.2. Concept of a Copula

The copula approach to multivariate data allows individual modelling of marginal
distributions. The dependence between the components is thus separated from the
margins. To see if there is any dependence between the random variables, we standard-
ize them using the probability integral transform for each margin and obtain uniform
marginal distributions. The dependence of these marginally standardized random
variables is then modeled by a corresponding joint distribution function called copula.

Definition 1.13 (Copula (Czado, 2019)). A d-dimensional copula C is a multivariate distri-
bution function on the d dimensional hypercube [0, 1]d with uniformly distributed marginals.

Definition 1.14 (Copula density (Czado, 2019)). The corresponding copula density for an
absolutely continuous copula C, denoted by c, can be obtained by partial differentiation, i.e.:

c(u1, . . . , ud) :=
∂d

∂u1 . . . ∂ud
C(u1, . . . ud)

for all u in [0, 1]d.

One of the central results in the theory of copulas is Sklar’s Theorem, which was
first published in Sklar (1959). Sklar showed that any multivariate distribution can be
represented in terms of their marginal distributions and a corresponding copula. The
proof of this theorem can be found in Nelsen (2007).

Theorem 1.15 (Sklar’s Theorem (Czado, 2019)). Let X be a d-dimensional random vector
with joint distribution function F and marginal distribution functions Fi for i = 1, . . . , d. Then
the joint distribution function can be expressed as

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

with associated density or probability mass function

f (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) f1(x1) . . . fd(xd)

for some d-dimensional copula C with copula density c. For absolutely continuous distributions,
the copula C is unique.

The inverse also holds: the copula corresponding to a multivariate distribution function F
with marginal distribution functions Fi for i = 1, . . . , d can be expressed as

C(u1, . . . , ud) = F(F−1
1 (u1), . . . , F−1

d (ud))

6



1. Copula Theory

and its copula density or probability mass function is determined by

c(u1, . . . , ud) =
f (F−1

1 (u1), . . . , F−1
d (ud))

f1(F−1
1 (u1)) . . . fd(F−1

d (ud))
.

Thanks to Sklar’s Theorem, we are able to express conditional density and distri-
bution functions of bivariate distributions by an associated bivariate copula and a
marginal density.

Lemma 1.16 (Conditional densities and distributions functions of bivariate distributions
in terms of their copula (Czado, 2019, p. 20, Lemma 1.15)). The conditional density and
distribution function can be rewritten as

f1|2(x1|x2) = c12(F1(x1), F2(x2)) f1(x1)

F1|2(x1|x2) =
∂

∂u2
C12(F1(x1), u2)|u2=F2(x2)

=:
∂

∂F2(x2)
C12(F1(x1), F2(x2))

Proof. Using the definition of a conditional density and Sklar’s Theorem 1.15, we have

f1|2(x1|x2) =
f12(x1,x2)

f2(x2)

=
c12(F1(x1), F2(x2)) f1(x1) f2(x2)

f2(x2)

= c12(F1(x1), F2(x2)) f1(x1)

=
∂2C12(u1, u2)

∂u1∂u2
|u1=F1(x1),u2=F2(x2)

∂u1

∂x1

=
∂

∂u2

(
∂

∂x1
C12(F1(x1), u2)

)
|u2=F2(x2).

Using the last expression for f1|2(x1|x2), we can prove the part about the conditional
distribution function

F1|2(x1|x2) =
∫ x1

−∞

∂

∂u2

(
∂

∂z1
C12(F1(z1), u2)

)
|u2=F2(x2)dz1

=
∂

∂u2

(∫ x1

−∞

∂

∂z1
C12(F1(z1), u2)dz1

)
|u2=F2(x2)

=
∂

∂u2
C12(F1(x1), u2)|u2=F2(x2).

7



1. Copula Theory

By applying Lemma 1.16 to the bivariate copula distribution C12, we get

C1|2(u1|u2) =
∂

∂u2
C12(u1, u2) ∀u1 ∈ [0, 1]. (1.1)

In this case, the conditional distribution and density are denoted by C1|2 and c1|2,
respectively. It is now possible to obtain the relationship between C1|2 and F1|2 as

F1|2(x1|x2) =
∂

∂u2
C12(F1(x1), u2)|u2=F2(x2) = C1|2(F1(x1)|F2(x2)). (1.2)

Using Eq. (1.2), we obtain the link between the inverse functions of the conditional
distribution functions:

F−1
1|2 (u1|x2) = F−1

1 (C−1
1|2(u1|F2(x2))) for a fixed value x2.

The conditional distribution function C1|2 from Eq. (1.1) associated with a copula is also
denoted as an h-function.

Definition 1.17 (h-functions of bivariate copulas (Czado, 2019)). The h-functions corre-
sponding to a bivariate copula C12 are defined for all (u1, u2) ∈ [0, 1]2 as

h1|2(u1|u2) :=
∂

∂u2
C12(u1, u2),

h2|1(u2|u1) :=
∂

∂u1
C12(u1, u2).

1.3. Bivariate Copulas

There are three main classes of copulas according to how they were constructed, ellipti-
cal, Archimedean and extreme-value copulas. Before we present some of the bivariate
copula examples, we introduce a dependence measure to evaluate the dependence
between two random variables. There exist several measures, but we will mention one
of those that are rank-based, can be expressed in terms of their associated copula, and
therefore does not depend on the marginal distributions.

Kendall’s tau is defined as the probability of concordance minus the probability of
discordance of two random variables X1 and X2 and is denoted by τ.

Definition 1.18 (Kendall’s tau (Czado, 2019)). The Kendall’s τ between the continuous
random variables X1 and X2 is defined as

τ(X1, X2) = P((X11 − X21)(X12 − X22) > 0)− P((X11 − X21)(X12 − X22) < 0),

8



1. Copula Theory

where (X11, X12) and (X21, X22) are i.i.d. copies of (X1, X2).

Definition 1.19 (Concordant, discordant, and extra pairs (Czado, 2019)). The pair (xi, xj)

is called

• concordant if the ordering in x1 := (xi1, xj1) is the same as in x2 := (xi2, xj2), i.e.
xi1 < xj1 and xi2 < xj2 holds or xi1 > xj1 and xi2 > xj2 holds,

• discordant if the ordering in x1 is opposite to the ordering of x2, i.e. xi1 < xj1 and
xi2 > xj2 holds or xi1 > xj1 and xi2 < xj2 holds,

• extra x1 pair if xi1 = xj1 holds,

• extra x2 pair if xi2 = xj2 holds.

Since Kendall’s τ is independent of the marginal distribution, it depends exclusively
on the associated copula.

Definition 1.20 (Kendall’s τ expressed in terms of the copula (Czado, 2019)). Let
(X1, X2) be continuous random variables, then Kendall’s τ can be expressed as

τ = 4
∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1.

Now, we present several examples from the mentioned copula classes. They are
characterized by the copula family and the corresponding parameter. First, we start
with the independence copula, since it does not belong to any of the classes.

Example 1.21 (Bivariate independence copula). Consider two independent random variables
Uj ∼ U[0, 1], j = 1, 2. The joint distribution of (U1, U2) is the independence copula with
distribution given by

C(u1, u2) = u1u2.

1.3.1. Elliptical Copulas

By applying the probability integral transform to the margins of elliptical distributions,
elliptical copulas appear.

9



1. Copula Theory

Example 1.22 (Bivariate Gaussian copula (Czado, 2019)). The bivariate Gaussian copula
can be constructed using a bivariate normal distribution with zero mean vector, unit variances,
and correlation ρ and applying the inverse statement of Sklar’s Theorem 1.15 to obtain

C(u1, u2; ρ) = Φ2(Φ−1(u1), Φ−1(u2); ρ),

where Φ(·) corresponds to the distribution function of a standard normal N (0, 1) distribution
and Φ2(·, ·; ρ) is the bivariate normal distribution function with zero means, unit variances,
and correlation ρ.

Example 1.23 (Bivariate Student t copula (Czado, 2019)). The bivariate Student’s t copula
can be constructed using a bivariate Student’s t distribution and is given as

C(u1, u2; R, ν) = TR,ν(T−1
ν (u1), T−1

ν (u2)),

where TR,ν denotes the distribution function of the bivariate standard Student’s t distribution
with scale parameter matrix R ∈ [−1, 1]2x2 and ν degrees of freedom. Further T−1

ν denotes the
inverse of the distribution function Tν of the univariate standard Student’s t distribution with ν

degrees of freedom.

1.3.2. Archimedean Copulas

Another class of copulas is constructed using generator functions and is called Archime-
dean copulas.

Definition 1.24 (Bivariate Archimedean copulas (Czado, 2019)). Let Ω be the set of all
continuous, strictly monotone decreasing, and convex functions ϕ : I → [0, ∞] with ϕ(1) = 0.
Let ϕ ∈ Ω, then

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2))

is a copula. C is called a bivariate Archimedean copula with generator ϕ. Here ϕ[−1] is the
pseudo-inverse of ϕ, which is defined as ϕ[−1] : [0, ∞]→ [0, 1] with

ϕ[−1](t) :=

ϕ−1(t), 0 ≤ t ≤ ϕ(0)

0, ϕ(0) ≤ t ≤ ∞.

Now, we show examples of parametric bivariate Archimedean copulas with a single
parameter.

10



1. Copula Theory

Example 1.25 (Parametric bivariate Archimedean copulas with a single parameter
(Czado, 2019)).

• Clayton copula
C(u1, u2) = (u−δ

1 + u−δ
2 − 1)−

1
δ ,

where the parameter δ : 0 < δ < ∞ controls the degree of dependence. When δ→ ∞, full
dependence is obtained. On the other hand, independence is obtained, when δ→ 0.

• Gumbel copula

C(u1, u2) = exp [−{(− ln u1)
δ + (− ln u2)

δ} 1
δ ],

where δ : δ ≥ 1 is the parameter of dependence. Full dependence is obtained when δ→ ∞,
while when δ = 1, we have independence.

• Frank copula

C(u1, u2) = −
1
δ

ln
(

1
1− e−δ

[(1− e−δ)− (1− e−δu1)(1− e−δu2)]

)
,

where the parameter δ can take values [−∞, ∞]\{0}. Independence corresponds to
δ→ 0+.

• Joe copula

C(u1, u2) = 1−
(
(1− u1)

δ + (1− u2)
δ − (1− u1)

δ(1− u2)
δ
) 1

δ
,

where δ ≥ 1. δ = 1 corresponds to independence.

Moreover, there are also Archimedean copulas with two parameters, for example the
following ones.

Example 1.26 (Parametric bivariate Archimedean copulas with two parameters (Czado,
2019)).

• BB1 copula

C(u1, u2; θ, δ) =
(

1 + [(u−θ
1 − 1)δ + (u−θ

2 − 1)δ]
1
δ

)− 1
θ

,

where the parameters are δ ≥ 1, θ > 0. For δ → 1+ and θ → 0+, the independence
copula arises.

11



1. Copula Theory

• BB7 copula

C(u1, u2; θ, δ) = 1−
(

1− [(1− (1− u1)
θ)−δ + (1− (1− u2)

θ)−δ − 1]−
1
δ

) 1
θ

,

where δ > 0 and θ ≥ 1. Independence is obtained when δ = 0 and θ = 1.

Remark 1.27 (Visualization and variable scales (Czado, 2019)). A good visualization tool
for bivariate copula density is the normalized bivariate copula contour plot. For that we consider
the transformation to a bivariate distribution with a density g(z1, z2) and normal N (0, 1)
margins. So, it gives us three variables scales:

• x-scale: original scale (X1, X2) with density f (x1, x2),

• u-scale: copula scale (U1, U2), where Ui := Fi(Xi) and copula density c(u1, u2), and

• z-scale: marginal normalized scale (Z1, Z2), where Zi := Φ−1(Ui) = Φ−1(Fi(Xi)) for
i = 1, 2 with density

g(z1, z2) = c(Φ(z1), Φ(z2))φ(z1)φ(z2).

Here Φ(·) and φ(·) are the distribution and density function of a N (0, 1) variable.

To visualize the copula density, we use contours of the function g(z1, z2), i.e. g(z1, z2) = k for
different values of k. In Fig. 1.3 we show samples of the copula of size n = 500 together with
the normalized contour plots of their density.

1.3.3. Rotated Copulas

In order to extend the range of dependence, we can use the counterclockwise rotations
of the copula density c(·, ·), as in Czado (2019), defined by

• 90◦ : c90(u1, u2) := c(1− u1, u2),

• 180◦ : c180(u1, u2) := c(1− u1, 1− u2),

• 270◦ : c270(u1, u2) := c(u1, 1− u2).

The term rotation is here used in the context of copula density and does not correspond
to rotations of the random vector (U1, U2). As an example, all rotations of the Clayton
copula density are illustrated in Fig. 1.4 using normalized contour plots.
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Figure 1.3.: Visualization: First column: Gaussian copula with τ = 0.6, second column:
Student’s t copula with ν = 2 and τ = 0.3, third column: Clayton copula with τ = 0.5,
and fourth column: Frank copula with τ = 0.42. Top row: normalized bivariate copula
contours, bottom row: pairs plots of a random sample (u1, u2) on the copula scale.
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Figure 1.4.: Rotations: Normalized contour plots of Clayton rotations: First column: 0◦

rotation (τ = 0.6), second column: 90◦ rotation (τ = −0.6), third column: 180◦ rotation
(τ = 0.6), and fourth column: 270◦ rotation (τ = −0.6).
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2. Regular Vines

The aim of this chapter is to show the construction of multivariate distributions using
the building blocks which we defined in the previous chapter, the bivariate pair copulas.
To realize such constructions, conditioning is used. We present now the approach
developed by Bedford and Cooke (2002), in which the pair copula constructions are
expressed in terms of density functions.

2.1. Regular Vine Tree Sequence

First we present the necessary graph theory to then introduce the concept of a regular
vine tree structure.

Definition 2.1 (Graph, path, cycle, tree (Czado, 2019)).

• A graph is a pair G = (N, E) of sets such that E ⊆ {{x, y} : x, y ∈ N}. The elements
of E and N are called edges and nodes, respectively. The number of neighbors of a node
v ∈ N is the degree of v, denoted by d(v).

• A path is a graph P = (N, E) with node set N = {v0, v1, . . . , vk} and edges E =

{{v0, v1}, {v1, v2}, . . . , {vk−1, vk}}. A graph G is called connected if any two of its
nodes are linked by a path in G.

• A cycle is a path with v0 = vk.

• A tree is a graph T = (N, E) for which holds: any two nodes of T are connected by a
unique path in T, T is minimally connected (i.e. T is connected but T− e is disconnected
for every edge e ∈ E) and T is maximally acyclic (i.e. T contains no cycle but T + {x, y}
does for any two non-adjacent (not connected by an edge) nodes x, y ∈ N).

Based on the graph theory, a regular vine tree structure can be defined.
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2. Regular Vines

Definition 2.2 (Regular (R-) vine tree sequence (Czado, 2019)). The set of trees V =

(T1, . . . , Td−1) is a regular vine tree sequence on d elements if:

1. Each tree Tj = (Nj, Ej) is connected, i.e. for all nodes a, b ∈ Tj, j = 1, . . . , d− 1, there
exists a path n1, . . . , nk ⊂ Nj with a = n1, b = nk.

2. T1 is a tree with node set N1 = {1, . . . , d} and edge set E1.

3. For j ≥ 2, Tj is a tree with node set Nj = Ej−1 and edge set Ej.

4. For j = 2, . . . , d− 1 and {a, b} ∈ Ej it must hold that |a ∩ b| = 1.

Remark 2.3 (Proximity condition (Czado, 2019)). Property 4. is called the proximity
condition. It ensured that if there is an edge e connecting a and b in tree Tj, j ≥ 2, then a and b
(which are edges in Tj−1) must share a common node in Tj−1.

Now, we introduce a simple edge notation for a regular vine tree sequence and for
the later regular vine construction of multivariate distributions.

Definition 2.4 (Complete union, conditioning set and conditioned sets (Czado, 2019)).
For any edge e ∈ Ei we define the sets

• complete union Ae of the edge e

Ae := {j ∈ N1|∃e1 ∈ E1, . . . , ei−1 ∈ Ei−1 such that j ∈ e1 ∈ · · · ∈ ei−1 ∈ e} ,

• conditioning set De of an edge e = {a, b}

De := Aa ∩ Ab,

• conditioned sets Ce,a and Ce,b

Ce,a := Aa\De,

Ce,b := Ab\De,

Ce := Ce,a ∪ Ce,b.

We will abbreviate each edge e = (Ce,a, Ce,b; De) in the vine tree sequence by

e = (a(e), b(e); D(e)).
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2. Regular Vines

Further, we consider two important sub-classes of R-vine tree sequences, drawable
(D-) vine and canonical (C-) vine tree sequence.

Definition 2.5 (D-vine tree sequence, C-vine tree sequence (Czado, 2019)). A regular
vine tree sequence V = (T1, . . . , Td−1) is called

• D-vine tree sequence if for each node n ∈ Ni we have |{e ∈ Ei|n ∈ e}| ≤ 2.

• C-vine tree sequence if in each tree Ti there is one node n ∈ Ni such that |{e ∈ Ei|n ∈
e}| = d− i. Such a node is called the root node of tree Ti.

Remark 2.6 (Proximity condition on C- and D-vine tree sequences (Czado, 2019)). For a
D-vine tree sequence the proximity condition of Definition 2.2 induces that once tree T1 is fixed
all other trees T2 to Td−1 are determined. For a C-vine tree sequence the proximity condition
allows to choose d− i + 1 different root nodes in tree Ti for i = 1 . . . , d− 1.

Figure 2.1.: 4-dimensional C-vine tree structure.

Example 2.7 (Example of C-vine tree sequence in 4 dimensions). An example of a C-vine
tree sequence in 4 dimensions can be seen in Fig. 2.1. The specific root order in this case is
4, 14, 12; 4. We could have also chosen 13; 4 in tree T3.

Example 2.8 (Example of D-vine tree sequence in 4 dimensions). An example of a D-vine
tree sequence in 4 dimensions can be seen in Fig. 2.2.
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2. Regular Vines

Figure 2.2.: 4-dimensional D-vine tree structure.

2.1.1. Representing Regular Vines Using Regular Vine Matrices

In order to work with arbitrary R-vines, we need a way to store the tree sequence in
the computer. Assume the vine tree structure {a(e), b(e); D(e) | e ∈ Tj, j = 1, . . . , d}. Its
associated indices are stored in an upper or lower triangular matrix.

Definition 2.9 (Regular vine matrix (Czado, 2019)). Let M be an upper triangular matrix
with entries mi,j for i ≤ j. The elements mi,j can have values between 1 to d. A matrix M is
called a regular vine matrix, if it satisfies the following conditions:

1. {m1,i, . . . , mi,i} ⊂ {m1,j, . . . , mj,j} for 1 ≤ i < j ≤ d (The entries of a specific column
are also contained in all columns right of this column.)

2. mi,i /∈ {m1,i−1, . . . , mi−1,i−1} (The diagonal entry of a column does not appear in any
column further to the left.)

3. For i = 3, . . . , d and k = 1, . . . , i− 1 there exist (j, `) with j < i and ` < j such that

{mk,i, {m1,i, . . . , mk−1,i}} = {mj,j, {m1,j, . . . , m`,j}} or

{mk,i, {m1,i, . . . , mk−1,i}} = {m`,j, {m1,j, . . . , m`−1,j, mj,j}}.

There exists a bijection between regular vine trees and regular vine matrices, which
is shown with this definition. The last assumption of the definition is the analogue of
the proximity condition for regular vine trees. The algorithms for computing a regular
vine matrix or constructing a tree sequence from an R-vine matrix can be found in
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2. Regular Vines

Stöber and Czado (2017). We present the algorithm for computing the R-vine matrix in
Algorithm 1. Moreover, we illustrate the algorithm in an example.

Algorithm 1 Computing a regular vine matrix for a regular vine tree sequence V
(Czado, 2019)

The input of the algorithm is a regular vine tree sequence V = (T1, . . . , Td−1) and the
output will be a regular vine matrix M.
X ← {}
for i = d, . . . , 3 do

Choose x, x̃, D with x̃ /∈ X and |D| = i− 2 such that there is an edge e with
Ce = {x, x̃}, De = D
mi,i ← x, mi−1,i ← x̃
for k = i− 2, . . . , 1 do

Choose x̃ such that there is an edge e with Ce = {x, x̃} and |D| = k− 1
mk,i ← x̃

end for
X ← X ∪ {x}

end for
Choose x, x̃ ∈ {1, . . . , d}\X
m2,2 ← x, m1,2 ← x̃, m1,1 ← x̃
M← (mk,i|k = 1, . . . , d, k ≤ i)
return M

Example 2.10 (Construction of a regular vine matrix for the vine tree sequence from
Example 2.7 shown in Fig. 2.1). In the first step we choose one of the entries of the conditioned
set of the single edge in the last tree T3, i.e. 2 or 3 from edge 2, 3; 1, 4, and put it in the lower
right corner of a d-dimensional matrix.

Selecting for example the element 3 we write down all indices that are in the conditioned set
of an edge together with 3 (bolded in Fig. 2.3). These are the numbers 2, 1, 4. We order them in
this way, since 2 occurs in T3, 1 in T2 and 4 in T1. Choosing 3 together with such a number and
the numbers above this entry identifies a particular edge in the vine tree sequence. For instance
the entries 3 and 1 and the entry 4 above in the last column of the matrix on the left panel in
Fig. 2.3 identifies the edge 1, 3; 4. You can see it highlighted with orange colour. In summary,
by the last column the edge 2, 3; 4, the edge 1, 3; 4 and the edge 3, 4 are identified. Generally, we
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2. Regular Vines

Figure 2.3.: R-vine matrix: Construction of the last column of the R-vine matrix
corresponding to Example 2.7.

order the entries of conditioning and conditioned set in increasing order.
Therefore, in the last column of matrix M all pair copula terms characterizing the dependence

of X3 on X1, X2, X4 are stored. Now, we remove all nodes and edges of the vine tree sequence
that contain the index 3. These are the ones we have just recorded into the matrix and we end
up with the following reduced vine tree sequence given in Fig. 2.4.

With this second vine tree sequence we redo the procedure above, selecting for instance 2 in
tree T2 of Fig. 2.4. and putting it as a diagonal element of the second last column of the matrix.
We add the entries which are in the conditioned sets with 2 ordered by the tree level they are
occurring in, and fill the matrix as shown on the left panel of Fig. 2.4. The selected nodes in the
second last column are then removed.

These steps are repeated until all nodes of the original vine tree sequence have been removed,
resulting in the final regular vine matrix, which is:

4 4 4 4
1 1 1

2 2
3

.

Once a regular vine tree sequence is given, we can always determine an R-vine
matrix. It is possible also to consider the reverse problem, drawing the associated
R-vine tree sequence from a given R-vine matrix. This algorithm inverts the procedure
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2. Regular Vines

Figure 2.4.: R-vine matrix: Construction of the second last column (left panel) and the
reduced vine sequence (right panel) after the first step of constructing the regular vine
matrix.

in Algorithm 1 by adding for each identified edge from the R-vine matrix the associated
nodes and edges, and can be found in Stöber and Czado (2017).

Remark 2.11 (Non-uniqueness of the R-vine matrix (Czado, 2019)). Since at each step
you can choose between the two elements of the conditioned set, the resulting R-vine matrix is
not unique. However, it encodes all edges in a vine tree sequence and thus is highly useful for
statistical programming with regular vines.

2.2. Regular Vine Distributions and Copulas

In order to introduce the regular vine distributions and densities, we first present
the notion of copulas associated with bivariate conditional distributions in contrast
to bivariate conditional distributions on the copula scale. Moreover, we show the
evaluation of conditional distribution functions, which will be required in R-vine
densities.

Definition 2.12 (Copulas associated with bivariate conditional distributions (Czado,
2019)). Let (X1, . . . , Xd) be a set of random variables.

• Let D be a set of indices from {1, . . . , d} not including i and j. The copula associated
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with the bivariate conditional distribution of (Xi, Xj) given that XD = xd is denoted by
Cij;D(·, ·; xD).

• In contrast, the conditional distribution function of (Ui, Uj) given UD = uD is expressed
as Cij|D(·, ·; uD) with bivariate density function cij|D(·, ·; uD).

• For distinct indices i, j and D := {i1, . . . , ik} with i < j and i1 < · · · < ik we use the
abbreviation

ci,j;D := ci,j;D(Fi|D(xi|xD), Fj|D(xj|xD); xD). (2.1)

Definition 2.13 (h-functions associated with the pair copula (Kraus and Czado, 2017a)).
Given the pair copula Cij;D corresponding to the specific edge in a regular vine tree sequence,
i, j /∈ D, the h-functions are given by

hi|j;D(ui|uj) =
∂Cij;D(ui, uj)

∂uj
= Ci|j;D(ui|uj),

hj|i;D(uj|ui) =
∂Cij;D(ui, uj)

∂ui
= Cj|i;D(uj|ui).

Theorem 2.14 (Recursion for conditional distribution functions (Kraus and Czado,
2017a)). Let l ∈ D and D−l := D\{l}. Then

Ci|D(ui|uD) = hi|l;D−l
(Ci|D−l

(ui|uD−l )|Cl|D−l
(ul |uD−l )),

where for i, j /∈ D, i < j, hi|j;D(u|v) and hj|i;D(v|u) are the h-functions associated with the
pair-copula Cij;D.

Proof. This result follows directly from the chain rule of differentiation and was first
stated in Joe (1996).

Now, when all needed definitions and notations are introduced, we can move on and
present the regular vine distributions and densities.

Definition 2.15 (Regular vine distribution (Czado, 2019)). The joint distribution F for
the d-dimensional random vector X = (X1, . . . , Xd) has a regular vine distribution, if we can
specify a triplet (F ,V ,B) such that:

1. Marginal distributions: F = (F1, . . . , Fd) is a vector of continuous invertible marginal
distribution functions, representing the marginal distribution functions of the random
variable Xi, i = 1, . . . , d.
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2. Regular vine tree sequence: V is an R-vine tree sequence on d elements.

3. Bivariate copulas: The set B = {Ce|e ∈ Ei; i = 1, . . . , d − 1}, where Ce is a
symmetric bivariate copula with density. Here Ei is the edge set of tree Ti in the R-vine
tree sequence V .

4. Relationship between R-vine tree sequence V and the set B of bivariate copulas:
For each e ∈ Ei, i = 1, . . . , d − 1, e = {a, b}, Ce is the copula associated with the
conditional distribution Xa(e) and Xb(e) given XD(e) = xD(e). Further Ce(·, ·) does not
depend on the specific value of xD(e).

Remark 2.16 (Simplifying assumption for regular vine distributions (Czado, 2019)). The
assumption in Definition 2.15 that the bivariate copulas Ce(·, ·) do not depend on the specific
value of xD(e) is called the simplifying assumption.
The simplifying assumption is satisfied when for any xD

ci,j;D(ui, uj; xD) = ci,j;D(ui, uj) for ui ∈ [0, 1], uj ∈ [0, 1]

holds. In the following we always assume that the simplifying assumption is satisfied.

Definition 2.17 (Pair copula and copula density associated with edge e (Czado, 2019)).
We will denote the copula Ce corresponding to the edge e by Ca(e),b(e);D(e) and the corresponding
density by ca(e),b(e);D(e), respectively.

The R-vine triplet (F ,V ,B) with properties 1.− 3. of Definition 2.15 can be uniquely
linked to a d-dimensional distribution F, which was showed by Bedford and Cooke
(2002). From these the associated joint density can always be constructed.

Definition 2.18 (Regular vine density (Czado, 2019)). Let (X1, . . . , Xd) be a set of variables
with d-dimensional regular vine distribution F1,...,d. A joint density f1,...,d is constructed as

f1,...,d(x1, . . . , xd) = f1(x1) . . . fd(xd)

d−1

∏
i=1

∏
e∈Ei

ca(e)b(e);D(e)(Fa(e)|D(e)(xa(e)|xD(e)), Fb(e)|D(e)(xb(e)|xD(e)))

and for each e ∈ Ei, i = 1, . . . , d− 1 with e = {a, b} we have for the distribution of Xa(e) and
Xb(e) given XD(e) = xD(e)

Fa(e)b(e)|D(e)(xa(e), xb(e)|xD(e)) = Ce(Fa(e)|D(e)(xa(e)|xD(e)), Fb(e)|D(e)(xb(e)|xD(e))).

Further the one dimensional margins of F are given by Fi(xi), i = 1, . . . , d.
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Remark 2.19 (Regular vine copula density). The joint density of the d-dimensional regular
vine distribution on the copula scale is given by

c(u1, . . . , ud) =
d−1

∏
i=1

∏
e∈Ei

ca(e)b(e);D(e)(Ca(e)|D(e)(ua(e)|uD(e)), Cb(e)|D(e)(ub(e)|uD(e))), (2.2)

where all margins are uniformly distributed on [0, 1]. The term Ck(e)|D(e) denotes the conditional
distribution of Uk(e) given UD(e) = uD(e). This conditional function can also be identified by
an h-function. For this assume that k(e) = i, D(e) = j ∪ D, then

Ck(e)|D(e) = Ci|j∪D = hi|j;D

holds. The density in Eq. (2.2) is a d-variate copula and is called a regular vine copula.

Definition 2.20 (Drawable (D-) vine density (Czado, 2019)). Let (X1, . . . , Xd) be a set
of variables with d-dimensional drawable vine distribution F1,...,d. The joint density f1,...,d is
decomposed as

f1,...,d(x1, . . . , xd) =
d

∏
k=1

fk(xk)
d−1

∏
j=1

d−j

∏
i=1

ci,(i+j);(i+1),...,(i+j−1),

where we used the abbreviation introduced in Eq. (2.1)

Example 2.21 (Example of an R-vine distribution in 4 dimensions). The R-vine density
corresponding to the R-vine tree structure given in Fig. 2.1 is

f1234(x1, . . . , x4) = f1(x1) f2(x2) f3(x3) f4(x4)

· c1,4(F1(x1), F4(x4)) · c2,4(F2(x2), F4(x4)) · c3,4(F3(x3), F4(x4))

· c1,2;4(F1|4(x1|x4), F2|4(x2|x4)) · c1,3;4(F1|4(x1|x4), F3|4(x3|x4))

· c2,3;1,4(F2|14(x2|x1, x4), F3|14(x3|x1, x4)),

where we assume that the simplifying assumption of Remark 2.16 holds.
The joint density of the corresponding regular vine copula is

c1234(u1, . . . , u4) =c1,4(u1, u4) · c2,4(u2, u4) · c3,4(u3, u4)

· c1,2;4(C1|4(u1|u4), C2|4(u2|u4)) · c1,3;4(C1|4(u1|u4), C3|4(u3|u4))

· c2,3;1,4(C2|14(u2|u1, u4), C3|14(u3|u1, u4)).
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Example 2.22 (Evaluation of C2|14 and C2|134). Considering the R-vine tree structure from
Fig. 2.1 and assuming the simplifying assumption, thanks to the Theorem 2.14 we have

C2|14(u2|u1, u4) = h2|1;4(C2|4(u2|u4) | C1|4(u1|u4))

= h2|1;4(h2|4(u2|u4) | h1|4(u1|u4)),

and

C2|134(u2|u1, u3, u4) = h2|3;14(C2|14(u2|u1, u4) | C3|14(u3|u1, u4))

= h2|3;14(h2|1;4(C2|4(u2|u4) | C1|4(u1|u4)) |
h3|1;4(C3|4(u3|u4) | C1|4(u1|u4)))

= h2|3;14(h2|1;4(h2|4(u2|u4) | h1|4(u1|u4)) |
h3|1;4(h3|4(u3|u4) | h1|4(u1|u4))).

Note that we used only h-functions of pair copulas associated with the edges specified in the
vine tree structure from Fig. 2.1.

2.3. Conditional Regular Vine Distributions

In the previous sections the construction of multivariate distributions using pair copulas
is described. The aim of this thesis is to sample from and analyze conditional vine
copula distributions and from now on we deal with distributions of variables on the
copula scale.

Assume we have random variables U = (U1, . . . Ud)
T with regular vine distribution,

whose joint density is given in Eq. (2.2). Further assume subsets C1 = {C1,1, . . . , C1,k}
and C2 = {C2,1, . . . C2,`} of C = {1, . . . , d} with C1 ∩ C2 = ∅ and C1 ∪ C2 = C. The
cardinalities of the subsets C1 and C2 are |C1| = k and |C2| = `, respectively. We want
to analyze the distribution of (UC1 |UC2 = uC2) where UC1 = (UC1,1 , . . . , UC1,k)

T and
UC2 = (UC2,1 , . . . , UC2,`)

T.
However, sometimes it is hard to determine the conditional density because not

all required components in the representation of the vine are given directly. We
demonstrate this problem in an example.

Example 2.23 (Determining conditional density from given vine tree structure). Looking
for instance at the 3-dimensional vine given in Fig. 2.5, we can see that the density of (U1|U2 =

u2, U3 = u3) is of the form
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Figure 2.5.: 3-dimensional vine tree structure with copula density given by
c123(u1, u2, u3) = c13;2(h1|2(u1|u2), h3|2(u3|u2))c12(u1, u2)c23(u2, u3).

c1|23(u1|u2, u3) = c13;2(h1|2(u1|u2), h3|2(u3|u2))c12(u1, u2). (2.3)

When using the representation of the vine tree structure given in Fig. 2.5, all components of this
equation are known. The density of (U3|U1 = u1, U2 = u2) can be expressed in a similar form.
On the other hand, when we try to write the density of (U2|U1 = u1, U3 = u3) we either get

c2|13(u2|u1, u3) = c12;3(h1|3(u1|u3), h2|3(u2|u3))c23(u2, u3) (2.4)

or
c2|13(u2|u1, u3) = c23;1(h2|1(u2|u1), h3|1(u3|u1))c12(u1, u2). (2.5)

But this cannot be expressed with the representation given in Fig. 2.5 that is chosen for this
copula since c12;3 and c23;1 do not occur directly in the 3-dimensional copula representation.

Generally, for any given R-vine, the density of (UC1 |UC2 = uC2) can be expressed
directly provided we have all the components as seen by Eq. (2.3) in Example 2.23, or
by using integration and thus as follows

cC1|C2
(uC1 |uC2) =

c(uC1 , uC2)

c(uC2)
=

c(u)∫
[0,1]k c(u)duC1,1 . . . duC1,k

,

where uC1 ∈ [0, 1]k, uC2 ∈ [0, 1]`. This needs to be used for Eq. (2.4) and Eq. (2.5) in
Example 2.23. The similar problem occurs with the distribution functions.

The idea is now to take the advantage of the fact that

cC1|C2
(uC1 |uC2) =

c(uC1 , uC2)

c(uC2)
∝ c(uC1 , uC2) = c(u). (2.6)
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2. Regular Vines

Here we fix the values for uC2 and use the joint density c(u) given in Eq. (2.2) as a
function of uC1 alone to sample from the conditional density.

For this purpose, M.Sc. Ariane Hanebeck wrote a program in Stan’s probabilistic
programming language (Stan Development Team, 2012), which uses a Markov chain
Monte Carlo (MCMC) approach, concretely the extension of Hamiltonian Monte Carlo
approach - the NO-U-Turn Sampler algorithm to sample from the conditional densities.
Since Stan can deal with proportional densities, this joint density c(u) can be used
to sample from the density of (UC1 |UC2 = uC2). We talk about these concepts in the
following chapters.
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3. Hamiltonian Monte Carlo

One way how to sample from a probability distribution is to use Markov Chain Monte
Carlo (MCMC) methods. For more details about Markov Chains and MCMC methods
see Robert et al. (1999) and Meyn and Tweedie (2012). The desired distribution to
sample from is in this case a stationary limiting distribution of the constructed Markov
Chain. Two basic methods belong to this class, namely Gibbs sampling and the
Metropolis-Hastings (MH) algorithm. We start with a brief description of the MH
algorithm as the Hamiltonian Monte Carlo (HMC) algorithm is built on a similar
concept. We continue with the HMC algorithm, as this one we use for sampling from
conditional vine copula distributions. A useful extension to the HMC is the so called
No-U-Turn sampler (NUTS), which is together with the HMC implemented in the
programming language Stan (Stan Development Team, 2012). This chapter is based on
Neal et al. (2011), Betancourt (2017) and Thomas and Tu (2021).

3.1. Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm produces a sequence of values that form
a Markov Chain. Proposals are generated from a specified proposal function and
accepted as a new value in the chain with some probability. This is done in such a
way that it ensures that the stationary distribution of the chain is the desired one. The
proposal density function is denoted by q(θ|θ(r−1)) and there are variety of proposal
types that can be used. Among them random walk proposals are the most common
choice. This density is conditioned on the previous value θ(r−1). The algorithm is
presented in Algorithm 2.
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3. Hamiltonian Monte Carlo

Algorithm 2 Metropolis-Hastings algorithm (Thomas and Tu, 2021)

Choose initial values θ(0)

for r = 1, . . . , R do
Generate a proposal θ

′
from the proposal density q(θ|θ(r−1))

u← U[0, 1]

Set α = min
(

1, π(θ
′
)q(θ(r−1)|θ′ )

π(θ(r−1))q(θ′ |θ(r−1))

)
If α < u, then θ(r) ← θ

′
. Otherwise θ(r) ← θ(r−1)

end for
return θ(1), . . . , θ(R)

3.2. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo is an MCMC algorithm that improves the efficiency of MH
by using the first order gradient information to guide better proposal generation.

Idea

The idea is to construct an artificial physical system that describes the movements of a
particle following the Hamiltonian dynamics. Assume that the negative log-density of
the desired function has a shape as the curve in Fig. 3.1. The particle moves on this
friction-less curve. It often visits the bottom parts, the region of high density values,
and occasionally visits the upper parts on both sides with lower density values. In
mechanics, these movements are described by the Hamiltonian equations, where the
location of the particle is given by the potential and kinetic energy.

The state of this system is composed of the position q(t) of the particle at time t and
its momentum p(t), with potential energy U(q(t)) and kinetic energy K(p(t)). Both
q(t) and p(t) are d-dimensional vectors and the system is described by the total energy,
a function of both of them, called Hamiltonian: H(q(t), p(t)) = U(q(t))+K(p(t)). The
position q(t) corresponds to the variable of interest and the potential energy U(q(t))
to minus the log probability density of these variables, i.e. U(q(t)) := −log( f (q(t))).
Momentum variables p(t) are introduced artificially, just in order to use it to simulate
q(t). We typically assume p(t) ∼ Nd(0, M), where M is a user specified covariance
matrix, assumed to be diagonal. Under this formulation we can express the Hamiltonian
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3. Hamiltonian Monte Carlo

as following

H(q(t), p(t)) = −log( f (q(t))) +
1
2

p(t)TM−1p(t). (3.1)

Figure 3.1.: Movement of a particle on a friction-less curve. The picture is taken from
Thomas and Tu (2021).

Hamiltonian Equations

To determine the trajectories we utilize the Hamiltonian equations. They determine
how q(t) and p(t) change over time t using the partial derivatives of the Hamiltonian
H(q(t), p(t)):

dqi(t)
dt

=
∂H(t)

∂pi
= [M−1p(t)]i (3.2)

dpi(t)
dt

= −∂H(t)
∂qi

= −∂U(t)
∂qi

, (3.3)

for i = 1, . . . , d. ∂U
∂qi

is the gradient of the log-density. A path of (q, p) is defined by the
solution to this Hamiltonian equations. Then we can sample a value q from this path
within an MCMC iteration.

Leapfrog Method

To solve the system of differential equations given in Eq. (3.2) and Eq. (3.3) is usually
neither easy nor possible. By iterative approximation we can find a solution at each
time t. For this we use the Leapfrog method. Assume that M is a diagonal matrix
with diagonal entries m1, . . . , md and ε a discrete step-size. The state at time t + ε is
approximated by:
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3. Hamiltonian Monte Carlo

pi(t + ε/2) = pi(t)−
ε

2
d

dqi
U(q(t))

qi(t + ε) = qi(t) + ε
pi(t + ε/2)

mi

pi(t + ε) = pi(t + ε/2)− ε

2
d

dqi
U(q(t + ε)),

for i = 1, . . . , d.
For HMC, to move a sufficient distance to the next proposal, several Leapfrog steps L

are required. L is, therefore, a parameter representing the number of steps.

Algorithm

First, we specify the corresponding energy function H(q(t), p(t)), the Hamiltonian,
given in Eq. (3.1). Then we specify the initial values q(0) and p(0). An MCMC update
is obtained as following:

• We sample the parameter p from the multivariate normal distribution with zero
mean vector and covariance matrix M.

• We perform a Metropolis update: We simulate L steps of Hamiltonian dynamics
from the current state (q, p) with the step-size ε using the Leapfrog method. We
obtain a proposal (q

′
, p
′
) and accept it with Metropolis acceptance probability

min
(

1, exp(−H(q
′
, p
′
) + H(q, p))

)
.

3.3. No-U-Turn Sampler

In standard HMC, the user needs to specify two tuning parameters, the step-size ε and
the number of Leapfrog steps L. The performance of the algorithm is sensitive to the
choice of this parameters and a bad choice may lead in poor efficiency.

If L is too small, we end up close to the previous iterate. If, on the other hand, L is
too large, the algorithm may do too much work for one iteration and loop the trajectory
back. If the step-size ε is too small, too many small steps will be taken resulting in long
simulation times. On the contrary, if ε is too large, too many proposals may be rejected
due to inaccuracy.
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3. Hamiltonian Monte Carlo

In order to eliminate the need to hand-tune these parameters, Hoffman et al. (2014)
proposed an extension to the HMC algorithm, the No-U-Turn sampler (NUTS) that
automatically and adaptively selects these tuning parameters.

To choose the number of L steps during the dynamics, the algorithm looks at whether
the distance between the proposal θ

′
and the initial value of θ still increases or it starts

to decrease, i.e. the proposal starts to make a U-turn and moves back towards θ.
Therefore, in each iteration, the L steps are obtained until a U-turn and the new state is
randomly chosen from the subset of the states visited during the Leapfrog method.

The step-size ε is updated during the burn-in period using stochastic optimization
with an adaptation of the primal-dual algorithm.

In Stan (Stan Development Team, 2012), this No-U-Turn sampler is implemented,
making it easier for the user to work with. During the Leapfrog steps, Stan uses
automatic differentiation to compute gradients.
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4. Statistical Testing

In this chapter, we explain the main concepts of statistical testing and present several
statistical methods and tests we later use in a simulation study.

4.1. Brief Introduction to Hypotheses Testing

Following Casella and Berger (2021), we introduce concepts such as hypotheses, statis-
tical testing and p-value. We start with the definition of a sample.

Definition 4.1 (Sample (Casella and Berger, 2021)). The random variables X1, . . . , Xn are
called a random sample of size n from the population f if X1, . . . , Xn are i.i.d. random variables
with probability density function or probability mass function f .

Suppose we have such a sample from a population. We formulate a hypothesis, a
statement about the population, which we subsequently want to test. The goal of the
hypothesis test (statistical test) is to decide which of the two complementary hypotheses
are true, based on the sample from the population.

Definition 4.2 (Hypotheses (Casella and Berger, 2021)). The two complementary hypotheses
in a hypotheses testing problem are called null hypothesis and alternative hypothesis. They are
denoted by H0 and H1, respectively.

Example 4.3 (Format of the hypotheses (Casella and Berger, 2021)). If θ denotes a
population parameter, the general format of the null and alternative hypotheses is H0 : θ ∈ Θ0

and H1 : θ ∈ Θc
0, where Θ0 is some subset of the parameter space and Θc

0 is its complement.
For example, if θ denotes the average height of 30 year-old men and the current standpoint is
170 cm, an experimenter might be interested in testing H0 : θ = 170 versus H1 : θ 6= 170.

After observing the sample, the experimenter must decide either to accept H0 as true
or to reject H0 as false and decide H1 is true. Typically, a hypothesis test is specified in
terms of a test statistic W(X1, . . . , Xn) = W(X), a function of the sample. And thus, the
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4. Statistical Testing

test is performed using the test statistic, i.e. it is a base for the conclusion of the test
to reject or fail to reject H0. It can be, for instance, the sample mean and in that case
W(X) = X̄ is the test statistic.

The subset of a sample space for which H0 will be rejected is called rejection region.
There are several ways how to choose test statistics and rejection regions, such as
Likelihood ratio tests, Bayesian tests, and other. Generally, the tests and rejection rules
are constructed that they control error probabilities.

There are two types of errors the hypothesis test can make, Type I Error and Type II
Error. If θ ∈ Θ0 and thus H0 is true, but the test incorrectly decides to reject H0, then
the test makes a Type I Error. If, on the other hand, θ ∈ Θc

0 and thus H1 is true, but
the test decides to accept H0, it makes a Type II Error. In Table 4.1 both situations are
depicted.

Decision

Accept H0 Reject H0

Truth
H0 Correct decision Type I Error
H1 Type II Error Correct decision

Table 4.1.: Two types of errors in hypothesis testing, Type I and Type II Error.

Suppose R denotes the rejection region for a test. Then for θ ∈ Θ0, the test makes a
mistake when X ∈ R, so the probability of a Type I Error is Pθ(X ∈ R). For θ ∈ Θc

0, the
probability of a Type II Error is Pθ(X ∈ Rc) = 1− Pθ(X ∈ R). The test with its rejection
rule is designed to control the probability of Type I Error, so that Pθ(X ∈ R) ≤ α holds.
α is also called the level of significance of the test and is usually set to α = 0.05. If α

is small, the decision to reject H0 is fairly convincing, on the other hand, if α is large,
the decision to reject H0 is not that convincing, since the test has a large probability of
making that decision incorrectly.

Another way of evaluating and reporting the results of a test is by a p-value.

Definition 4.4 (Valid p-value (Casella and Berger, 2021)). A p-value p(X) is a test statistic
satisfying 0 ≤ p(x) ≤ 1 for every sample point x. Small values of p(X) give evidence that H1

is true. A p-value is valid if, for every θ ∈ Θ0 and every 0 ≤ α ≤ 1,

Pθ(p(X) ≤ α) ≤ α. (4.1)
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If p(X) is a valid p-value, we can construct a level α test based on p(X). Because of
Eq. (4.1), the test that rejects H0 if and only if p(X) ≤ α is a test with the level of
significance α. The most common way to define a p-value can be seen in Theorem 4.5.

Theorem 4.5 (Casella and Berger, 2021, p. 397, Theorem 8.3.27). Let W(X) be a test
statistic such that large values of W give evidence that H1 is true. For each sample point x,
define

p(x) = sup
θ∈Θ0

Pθ(W(X) ≥W(x)).

Then, p(X) is a valid p-value.

Proof. The proof can be found on p. 397 in Casella and Berger (2021).

In other words, the p-value is the probability, assuming that H0 is true, of obtaining
a test statistic value at least as extreme as the result actually observed. If the p-value
is lower than the chosen significance threshold α (equivalently, if the observed test
statistic is in the rejection region), we say that the H0 is rejected at the significance
level α. To the contrary, if the p-value is greater then the chosen significance threshold
(equivalently, if the observed test statistic is outside the rejection region), then the H0 is
not rejected.

4.2. Statistical Methods

First we present two specific statistical tests and procedure for solving the multiple
comparisons problem and subsequently introduce two useful transformations.

In order to measure if a point sample x1, . . . , xn arises from a specified theoretical
distribution, a goodness-of-fit test statistics is used. One of the most popular ones is a
non-parametric test called Kolmogorov-Smirnov test. The test statistics together with
its asymptotic distribution under the null hypothesis were published in Kolmogorov
(1933), while a table of the distribution was published in Smirnov (1939). The test is
implemented in R programming language as ks.test().

Definition 4.6 (Kolmogorov-Smirnov test (Dimitrova et al., 2020)). Given a sample
x1, . . . , xn of i.i.d random variables with empirical distribution function Fn defined in Defini-
tion 1.2, and a reference probability distribution function F, consider a problem of testing

H0 : Fn can be approximated by F
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H1 : Fn cannot be approximated by F.

The test statistic quantifies a distance between empirical distribution function Fn(x) and the
cumulative distribution function of the reference distribution, and is defined as

Tn = sup
x
|Fn(x)− F(x)|.

Under the null hypothesis, if F is continuous,
√

nTn converges to the Kolmogorov distribution,
which does not depend on the unknown F. The null hypothesis is rejected at significance level α

if
Tn ≥ Kα.

The critical values Kα can be found in the table by Smirnov (1948).

Another necessary non-parametric test is a correlation test, available in R as cor.test().
With method set to "kendall", we test the hypothesis that the Kendall’s Tau coefficient
defined in Definition 1.18 is equal to zero. This statistical hypothesis test is used to
establish whether two variables may be considered as statistically dependent.

Definition 4.7 (Bivariate dependence test based on Kendall’s τ (Hollander et al., 2013)).
Let (x1, y1), . . . , (xn, yn) be a set of i.i.d. observations of the random variables X and Y.
Consider a problem of testing

H0 : τ = 0 vs. H1 : τ 6= 0,

where Kendall’s τ is defined in Definition 1.18.
The Kendall sample correlation statistic K is computed as follows. Using Definition 1.19, let

Nc be the number of concordant pairs, Nd be the number of discordant pairs and (n
2) be the total

number of pairs, in which n is the sample size. Then the test statistic is

K =
Nc − Nd

(n
2)

.

The null hypothesis is rejected at significance level α if

|K| ≥ k1−α/2.

It is a two-sided symmetric test with α/2 probability in each tail of the null distribution of K.
The values of k1−α/2 are found using the R command qKendall. For less than 50 paired samples,
an exact p-value of the test is computed this way, on the other hand, for larger samples, the test
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statistic is the estimate scaled to zero mean and unit variance, and a normal approximation is
utilized. Under the null, the expected value and variance of K are

E0(K) = 0

and
var0(K) =

2(2n + 5)
9n(n− 1)

,

respectively. The standardized version of K is

K∗ =
K− E0(K)√

var0(K)
.

When H0 is true, as n goes to infinity, K∗ has approximately N (0, 1) distribution. The null
hypothesis is rejected at significance level α if√

9n(n− 1)
2(2n + 5)

|K∗| ≥ z1−α/2,

where zβ is the β quantile of a standard normal distribution.
These procedures are used when allowing for no ties in X or Y observations. When there are

ties, i.e. extra pairs from Definition 1.19, the test statistics K needs to be adjusted to it, as well
as its variance. Details on this modification can be found in Hollander et al. (2013).

In a case when we need to perform simultaneously multiple tests, which are not
able to be combined into single test, we can run into a problem called "multiple
comparisons problem" as explained in Lehmann et al. (2005). Let us consider the
problem of simultaneously testing a finite number of hypothesis Hi (i = 1, . . . , m).
If we test each hypothesis at level α, the probability of one or more false rejections
quickly increases with m. Therefore we need to look at the requirement that when
testing several hypothesis, the probability of one or more false rejections do not exceed
a given threshold. And such probability is called family-wise error rate (FWER). One
of the procedures that control FWER is Bonferroni procedure, in which the cut-off for
p-values is adjusted to α/m, where m is the number of simultaneous hypotheses.

Theorem 4.8 (Bonferroni procedure (Lehmann et al., 2005, p. 350, Theorem 9.1.1)). If,
for i = 1, . . . , m, hypothesis Hi is rejected when p-value p̂i ≤ α/m, then the FWER for the
simultaneous testing of H1, . . . , Hm satisfies FWER ≤ α.
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Proof. Suppose hypotheses Hi with i ∈ I are true and the remainder false, with |I|
denoting the cardinality of I. Further assume that p̂i is a p-value for testing Hi. From
the Bonferroni inequality it follows that:

FWER = P{reject any Hi with i ∈ I at level α/m} ≤
≤ ∑

i∈I
P{reject Hi at level α/m} =

= ∑
i∈I

P{ p̂i ≤
α

m
} ≤ ∑

i∈I

α

m
= |I| α

m
≤ α.

Now, we present two transformations, which help us to compare the sample with a
reference distribution. In order to test how the sample agrees with the distribution we
use the above mentioned Kolmogorov-Smirnov test. However, it is difficult to use the
ks.test() for the vine copula distributions we are dealing with in this thesis. For this, we
use the fact, that if a sample comes from the desired distribution, applying probability
integral transform, shown in Definition 1.11, should result in uniformly distributed
data. And therefore we can compare the transformed data with uniform distribution.
However, in more than one dimension, a univariate probability integral transform is
not sufficient and for this reason we present Rosenblatt transformation by Rosenblatt
(1952).

Definition 4.9 (Rosenblatt transformation (Rosenblatt, 1952)). Let X = (X1, . . . , Xk)
T be a

random vector with distribution function F(x1, . . . , xk). Let z = (z1, . . . , zk) = T(x1, . . . , xk),
where T is the transformation considered. Then T is given by

z1 = P{X1 ≤ x1} = F1(x1),

z2 = P{X2 ≤ x2|X1 = x1} = F2(x2|x1),
...

zk = P{Xk ≤ xk|Xk−1 = xk−1, . . . , X1 = x1} = Fk(xk|xk−1, . . . , x1).

Then, the random vector Z = T(X) is uniformly distributed on the k-dimensional hypercube,
i.e. Z1, . . . , Zk are uniformly and independently distributed on [0, 1].

Remark 4.10 (Inverse Rosenblatt transformation (Rosenblatt, 1952)). The inverse operation

X1 = F−1
1 (Z1), X2 = F−1

2 (Z2|Z1), . . . , Xk = F−1
k (Zk|Zk−1. . . . , Z1)
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can be used to simulate from a multivariate distribution. For any distribution F, if Z is a vector
of independent random variables, X = T−1(Z) has a distribution F.

The second transformation is the transformation from the copula scale (u-scale) to
the z-scale, which we can use together with kernel density estimation. The reason for
using it is that in spite of the kernel density estimation being a well-established non-
parametric tool, it can face bias and consistency issues at the boundaries of the support,
as mentioned for instance in Nagler et al. (2017). Therefore, we use a transformation
trick. Assume we have a random variable on a u-scale U ∼ FU and transform it to
the z-scale: Z = Φ−1(U), (U = Φ(Z)). Since the function Φ−1 is increasing, the
distribution of Z = Φ−1(U) is given by

FZ(z) = P(Z ≤ z) = P(Φ−1(U) ≤ z) = P(U ≤ Φ(z)) = FU(Φ(z))

and the density by

fZ(z) = F′Z(z) =
d
dz

FU(Φ(z)) = fU(Φ(z))
d
dz

Φ(z) = fU(Φ(z))φ(z),

which implies
fZ(z)
φ(z)

= fU(Φ(z)).

Here Φ(.) and φ(.) are the distribution and density functions of a N (0, 1) variable. So
it holds that

fZ(Φ−1(u))
φ(Φ−1(u))

= fU(u). (4.2)

Consider a random sample u(i), i = 1, . . . , n, whose density is to be estimated. Then the
transformed z(i) = Φ−1(u(i)) is supported on the full R. In this domain, kernel density
estimators do not suffer from any boundary problems. Therefore we use the kernel
density estimate f̂Z based on z1, . . . , zn and scale it back according to Eq. (4.2) to get
the density estimate ˆfU . As a result we have

ˆfU(u) :=
f̂Z(Φ−1(u))
φ(Φ−1(u))

. (4.3)

In the bivariate case, it is known, that for Z = T(U), i.e. Zj = Tj(U1, U2), j = 1, 2, it
holds that

fU(u1, u2) = fZ(T1(u1, u2), T2(u1, u2)) |det(dT)|,
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where

dT =

[
∂T1
∂u1

∂T1
∂u2

∂T2
∂u1

∂T2
∂u2

]
.

So, in our case Zj = Φ−1(Uj), j = 1, 2, we have

fU(u1, u2) = fZ(Φ−1(u1), Φ−1(u2)) |det(dT)|,

with

dT =

[
∂Φ−1(u1)

∂u1

∂Φ−1(u1)
∂u2

∂Φ−1(u2)
∂u1

∂Φ−1(u2)
∂u2

]
=

[
1

φ(Φ−1(u1))
0

0 1
φ(Φ−1(u2))

]
,

and
|det(dT)| =

∣∣∣∣ 1
φ(Φ−1(u1))φ(Φ−1(u2))

∣∣∣∣ .

The resulting equation is therefore

fU(u1, u2) :=
fZ(Φ−1(u1), Φ−1(u2))

|φ(Φ−1(u1))φ(Φ−1(u2))|
. (4.4)

Since the φ(·) function returns positive values we can omit the absolute value. Consider
now a random sample (u(i)

1 , u(i)
2 ), i = 1, . . . , n, whose joint density is to be estimated.

The transformed (z(i)1 , z(i)2 ) = (Φ−1(u(i)
1 ), Φ−1(u(i)

2 )) are supported on the full R2. We
again use the kernel density estimate f̂Z based on (z(i)1 , z(i)2 ), i = 1, . . . , n and scale it
back according to Eq. (4.4) to get the density estimate f̂U. As a result we have

f̂U(u1, u2) :=
f̂Z(Φ−1(u1), Φ−1(u2))

φ(Φ−1(u1))φ(Φ−1(u2))
. (4.5)

Note here that our u does not have a bivariate uniform distribution, therefore this z
is not normally distributed. Nevertheless, we call it u-scale and z-scale, since u ∈ [0, 1]2

and z ∈ [−∞, ∞]2, respectively. The same holds for the univariate case.
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Now, having all the required theory for this chapter presented, we can describe our
implementation. First we noted that HMC only requires to know the desired limiting
density up to a normalizing constant. In Eq. (2.6) we noted further that every conditional
density is proportional to the joint density, i.e., we can use the joint copula density c(u)
for fixed values uC2 to sample from the density of (UC1 |UC2 = uC2) using Stan (Stan
Development Team, 2012). Since the No-U-Turn sampler, which is implemented in
Stan, is the extension of the Hamiltonian Monte Carlo algorithm, it possesses the same
property of needing the density just up to the normalizing constant.

For this we used and adapted a prototype program written by M.Sc. Ariane Hanebeck.
It is a mixture of R- and Stan-code. Since Stan (Stan Development Team, 2012) is a
C++ library, the R package rstan provides RStan (Stan Development Team, 2020), the R
interface to Stan, which enables one to write Stan code within RStudio, fit Stan models,
sample and access the outputs conveniently from R (R Core Team, 2019). For further
details about how to work with Stan and operate its interfaces see the Stan’s website
www.mc-stan.org.

The following approach for using Stan via rstan is used. We represent the statistical
model by writing its log density (up to an normalizing constant) using the Stan language
in a separate file with a .stan extension. After that, the file with the Stan model is
loaded into R as an instance of stanmodel class which can be passed to the rstan

function sampling. Our sampler combines all these steps and the code is inspired and
uses functions and items from R package VineCopula (Nagler et al., 2021).

In the following sections we present the documentation of the proposed sampler,
together with its structure and detailed description of the R- and Stan- part of the code.
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5.1. Documentation

Description

This function simulates from a given conditional vine-copula distribution using an
extension of the Hamiltonian Monte Carlo algorithm - the No-U-Turn sampler.

Usage

sample_from_conditional(N, RVM, indexcon, ucon, burnin, thin, ...)

Arguments

N Desired final number of simulated observations.
RVM An RVineMatrix() object containing the information of the R-vine copula

model.
indexcon Vector (1, . . . , d), where the indices from the conditioned set C1 are set

to FALSE (the ones desired to be sampled).
ucon Vector of conditioning values. For the variables with the indices in

the conditioning set C2, the values are set. For the variables with the
indices in the conditioned set C1, FALSE is set.

burnin The number of first samples/iterations that are discarded (not included
in N). The default value is 1000.

thin A positive integer specifying the period for saving samples. The default
value is 10, since with this value the sampler is correctly sampling,
which is also proved in the Simulation Study chapter. The argument N
is the final number, so there is no need to adjust for thinning.

... Possibility to set seed.

Value

The sampler returns an object of class stanfit, containing the simulated data from the
given conditional vine-copula distribution and summary statistics (e.g. Rhat or effective
sample size). Both can be extracted using the stanfit class’s methods.
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Details

We have a d-dimensional vine-copula distribution characterized by an R-vine structure
and corresponding pair copula families and parameters and would like to sample from
(UC1 |UC2 = uC2), where C1 and C2 are subsets of C = {1, . . . , d} with C1 ∩ C2 = ∅ and
C1 ∪ C2 = C. C1 is the conditioned set of indices and C2 the conditioning set. First we
define the desired R-vine with the help of the function RVineMatrix that belongs to
the VineCopula package (Nagler et al., 2021) by combining R-vine matrix, family and
parameter matrices into an RVineMatrix object. Second, the needed inputs indexcon
and ucon are set. Indexcon represents a vector of indices in which the indices belonging
to the conditioned set are replaced by FALSE, those are the indices of variables we
would like to sample. On the other hand, ucon represents a vector of values for the
conditioning variables in the conditioning set and similarly the indices from conditioned
set are specified by FALSE, see Example. The returned object of the sampler is an object
of class stanfit. By using the rstan function extract, we are able to obtain the samples.

References

Nagler et al. (2021).

Example

As an example consider a 5-dimensional vine-copula distribution and we would like
to sample from (U2, U4|U1 = 0.7, U3 = 0.2, U5 = 0.35). The conditioned set of indices
is {2, 4}, therefore replaced by FALSE in indexcon and ucon. For the conditioning
set {1, 3, 5}, the values for corresponding conditioning variables are set in ucon. We
specify all inputs as following and sample using the function. In Fig. 5.1 we can see the
trees corresponding to the following R-vine structure as well as the scatter plot of the
sampled u2 and u4 values.

#R-vine tree structure matrix

Matrix = c(5, 2, 3, 1, 4,

0, 2, 3, 4, 1,

0, 0, 3, 4, 1,

0, 0, 0, 4, 1,
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0, 0, 0, 0, 1)

Matrix = matrix(Matrix, 5, 5)

#R-vine pair-copula family matrix

family = c(0, 10, 38, 4, 13,

0, 0, 16, 7, 114,

0, 0, 0, 4, 40,

0, 0, 0, 0, 124,

0, 0, 0, 0, 0)

family = matrix(family, 5, 5)

#R-vine pair-copula parameter matrices

par = c(0, 1.2, -6, 1.5, 2,

0, 0, 1.1, 1.6, 1.9,

0, 0, 0, 1.9, -5,

0, 0, 0, 0, -4.8,

0, 0, 0, 0, 0)

par = matrix(par, 5, 5)

par2 = c(0, 1, -8, 1.5, 3.9,

0, 0, 1.1, 1.6, 0.9,

0, 0, 0, 1.9, -0.5,

0, 0, 0, 0, 0.8,

0, 0, 0, 0, 0)

par2 = matrix(par2, 5, 5)

#RVineMatrix object

RVM = RVineMatrix(Matrix = Matrix, family = family, par = par,

par2 = par2, names = c("U1", "U2", "U3", "U4", "U5"))

#Conditioning variables and values

indexcon = c(1,FALSE,3,FALSE,5)

ucon = c(0.7,FALSE,0.2,FALSE,0.35)
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#Simulate a 2-dimensional sample of size 200 from the conditional

vine-copula distribution

simdata = sample_from_conditional(2000, RVM, indexcon, ucon, burnin=1000,

thin = 10, seed = 555)

#Extract samples for (U2, U4), U2 samples as the first dimension, and U4

the second

u2samples = extract(simdata,permute=FALSE)[,1,1]

u4samples = extract(simdata,permute=FALSE)[,1,2]

Figure 5.1.: The upper left panel shows the scatter plot of (u2, u4|u1 = 0.7, u3 = 0.2, u5 =

0.35) samples, with sample size 200. The remaining panels show the vine trees and
pair copula families of the corresponding 5-dimensional R-vine structure.
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5.2. Structure

The HMC algorithm together with the No-U-Turn sampler need, in order to sample, the
target density to be expressed in form of the log-likelihood function. The log-likelihood
is expressed as

` := ln

(
N

∏
i=1

c(ui)

)
,

for u1, . . . , uN independent samples from c(·). However, in our program, we do
not have any data samples, so here N = 1. Our data is, for instance, in the form
u = (0.7, u2, 0.2, u4, 0.35) and Stan samples from u2 and u4, given that u1 = 0.7,
u3 = 0.2 and u5 = 0.35. Therefore, we just have the logarithm of its vine density as

` := ln (c(u)) = ln

(
d−1

∏
i=1

∏
e∈Ei

ca(e)b(e);D(e)(Ca(e)|D(e)(ua(e)|uD(e)), Cb(e)|D(e)(ub(e)|uD(e)))

)

=
d−1

∑
i=1

∑
e∈Ei

ln
(

ca(e)b(e);D(e)(Ca(e)|D(e)(ua(e)|uD(e)), Cb(e)|D(e)(ub(e)|uD(e)))
)

.

This log-density can be calculated like in the function RVineLogLik from the package
VineCopula (Nagler et al., 2021). This function is composed of two parts. First, the
arguments are preprocessed and all necessary parameters are extracted from the
RVineMatrix object. Then, these parameters are given to the function VineLogLikRvine2,
which computes the log-likelihood. For detailed code, see the source of the two
functions, for example, in the GitHub repository of the VineCopula package, which can
be found on https://github.com/tnagler/VineCopula. We also follow this two-step
approach, meaning the parameters that are given to Stan are extracted and processed
in R, and then the log-likelihood is calculated in Stan in the form of the function
VineLogLikRvine2. In the STAN file, this VineLogLikRvine2 function together with
other important functions needed to compute the log-likelihood are copied from the
VineCopula package (Nagler et al., 2021) and adjusted to the Stan language and rules.

The STAN file is composed of 4 blocks, namely functions, data, parameters and
model. In the function-definition block, all own functions can be defined. In our case,
it consists of all important functions needed to compute the log-likelihood as well as
the function VineLogLikRvine2 itself, which computes it. The data block is used for
declaration of variables for the model, that are read in as data. In our program, this
data, such as pair copula families and parameters, dimensions and many more, are
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sent to the Stan from R. In the parameters block, the declared variables are the ones
being sampled by Stan’s sampler NUTS, and thus UC1 . And finally, the model block is
where the log probability function is defined.

The R file consists of needed libraries/packages, necessary pre-processing functions
and the main function sample_from_conditional. In the function the different param-
eters/inputs are processed and modified in order to be inserted as data to the STAN.
Likewise, the parameters for STAN are specified and finally the sampling from Stan is
called.

5.3. R-part

In this section we take a closer look on the R-part of the code. At the beginning, the
required packages need to be loaded, namely rstan (Stan Development Team, 2020)
and VineCopula (Nagler et al., 2021).

Next, pre-processing functions need to be defined, from which we mention, for
example, normalizeRVineMatrix. Since our sampler is based on the functions from
VineCopula package and RVineMatrix needs to have a specific shape, we need to flip
the matrix similarly as in the VineCopula package and we do it by using this function,
which can be found, for instance, in the GitHub repository of the VineCopula package
(https://github.com/tnagler/VineCopula). The R-vine matrix is permuted to achieve
a natural ordering (i.e. diag(RVM$Matrix) == d:1)

The main part is the sample_from_conditional function, which is called by the user
and returns the samples. The function is shown in Listing 5.1 and we now describe its
parts.

First, we set default values for burn-in and thin. We use thin=10, since this thinning
value is used and tested in simulation study. We extract the length of the u vector and
the dimensions of conditioned set C1 (the ones we want to sample) and conditioning
set C2 into d1 and d2, respectively. Then, our STAN file is loaded as an instance of
stanmodel class. So far, we have two almost identical files, one for sampling from
one-dimensional conditional distributions and one for multi-dimensional. The main
difference lies in the parameters block, where it is not possible to distinguish between
cases by the if function, and it is important for Stan whether the parameters of interest
is a vector or a scalar. We talk about this more in the STAN part. And last but not least,
the R-vine matrix is normalized if necessary, and whether the normalization is done is

46

https://github.com/tnagler/VineCopula


5. Developed STAN Program

saved in the dataflip variable.
Second, the data and parameters for STAN are defined, and Stan is called to sample.

All important inputs such as pair copula families, parameters, structure and etc. are
extracted from RVineMatrix object and processed. Besides that, additional matrices re-
quired internally for evaluating the density and etc., such as MaxMat, CondDistr&direct
and CondDistr&indirect are prepared in the same way as in the VineCopula package.
All of these inputs, together with indexcon and ucon vectors are inserted into STAN as
the data list. We will see later that this data list matches with the variable declaration
in data block in the STAN file. For the conditioned variables UC1 , which we would
like to sample and are called ucalculate, the initial values are specified. Furthermore,
parameters for sampling are determined. These include number of iterations, burn-in,
chains, cores and the control parameters of the sampler’s behaviour. Having all of
this done, we can insert everything into STAN and sample by calling the sampling

method. The function returns an instance of stanfit class, from which the samples can
be extracted.

Listing 5.1: Code for sample_from_conditional function.

sample_from_conditional=function(N,RVM,indexcon,ucon,burnin,thin,...)

{

#default values for burnin and thin

if(missing(burnin)){

burnin = 1000

}

if(missing(thin)){

thin = 10

}

#extracting the dimensions

d=length(indexcon)

d1=length(which(indexcon==FALSE))

d2=d-d1

#loading STAN

if (d1==1){
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STAN = stan_model(file=’STAN.stan’)

}else{

STAN = stan_model(file=’STAN2.stan’)

}

#normalizing RVineMatrix - needed in VineCopula package

dataflip=0

o <- diag(RVM$Matrix)

if (any(o != length(o):1)) {

oldRVM <- RVM

RVM <- normalizeRVineMatrix(RVM)

dataflip=1

}

#############

##From the VineCopula package: the different parameters/inputs we

##need to compute log-lik in STAN - inserted into STAN as data

#############

T=1

w1 <- as.vector(RVM$family)

w1[is.na(w1)] <- 0

th <- as.vector(RVM$par)

th[is.na(th)] <- 0

th2 <- as.vector(RVM$par2)

th2[is.na(th2)] <- 0

condirect <- as.vector(as.numeric(RVM$CondDistr$direct))

conindirect <- as.vector(as.numeric(RVM$CondDistr$indirect))

maxmat <- as.vector(RVM$MaxMat)

matri <- as.vector(RVM$Matrix)

matri[is.na(matri)] <- 0

maxmat[is.na(maxmat)] <- 0

condirect[is.na(condirect)] <- 0

conindirect[is.na(conindirect)] <- 0
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#insert all inputs into the list of data

data_stan_u_2=list(T=T, dataflip=as.integer(dataflip), d=d,

o=as.integer(o), d1=d1, d2=d2, family=as.integer(w1),

maxmat=as.integer(maxmat),matri=as.integer(matri),

condirect=as.integer(condirect),

conindirect=as.integer(conindirect),

par=as.double(th),par2=as.double(th2),

indexcon=indexcon, ucon=ucon)

#initial values for the conditioned variables

init_list_u_2=list(list(ucalculate=rep(0.5,d1)))

#############

## The parameters for the STAN-program

#############

It=N*thin

iter_u_2=It+burnin

burnin_u_2=burnin

chains_u_2=1

cores_u_2=1

adapt_delta_u_2=0.8 #0.85

max_treedepth_u_2=10 #15

#############

##Sample from STAN

#############

fit_u_2=sampling(STAN,iter=iter_u_2,warmup=burnin_u_2,chains=chains_u_2,

cores=cores_u_2,data=data_stan_u_2,init=init_list_u_2,

control=list(adapt_delta=adapt_delta_u_2,

max_treedepth=max_treedepth_u_2),

thin=thin, ...)
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return(fit_u_2)

}

5.4. Stan-part

As presented in the structure section, the STAN file consists of 4 blocks (functions, data,
parameters and model) and we describe them more in this section. In Listing 5.2 we
see the overall structure of our STAN file.

Listing 5.2: Structure of a general Stan file (Stan Development Team, 2012).

functions {

// ... function declarations and definitions ...

}

data {

// ... declarations ...

}

parameters {

// ... declarations ...

}

model {

// ... declarations ... statements ...

}

Function-definition Block

All important functions needed to compute the log-likelihood are placed here. The
summary and description is presented in Table 5.1. The functions are copied from
the VineCopula package and adjusted to the Stan language. For their source code
see GitHub repository of the package, as mentioned before. As a reminder, the log-
likelihood is expressed as

` :=
d−1

∑
i=1

∑
e∈Ei

ln
(

ca(e)b(e);D(e)(Ca(e)|D(e)(ua(e)|uD(e)), Cb(e)|D(e)(ub(e)|uD(e)))
)

(5.1)
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Function Description

LL() Function to compute log-likelihood for bivariate copulas.
For every type of copula, independent, Gaussian, Clayton
etc., there is a definition how to compute its log-likelihood.
Two cases are treated, namely 0◦ and 180◦ rotations.

LL_mod2() Extension of the LL() function. In the case of 0◦ and 180◦

rotations, it calls LL() directly. On the other hand, if 90◦

and 270◦ rotations of copulas are needed, it changes the
arguments and parameters accordingly and calls LL().

Hfunc() Function to compute h-function of corresponding copula
(similar approach as LL() function). Again two cases are
treated, namely 0◦ and 180◦ rotations. Since the h-functions
are not symmetric for some copulas, both cases need to
be implemented. In Hfunc1(), we condition on the second
variable, i.e. h(u1|u2), and in Hfunc2() we condition on the
first one, i.e. h(u2|u1).

Hfunc1() h(u1|u2) - In the case of 0◦ and 180◦ rotations, it calls
Hfunc() directly. On the other hand, if 90◦ and 270◦ ro-
tations of copulas are needed, it changes the arguments and
parameters accordingly and calls Hfunc(). All rotations of
Tawn copulas are treated here, without using Hfunc().

Hfunc2() h(u2|u1) - Same as Hfunc1() with interchanged arguments.
VineLogLikRvine2() Main function of the file. It takes as input all necessary

data for computing log-density. The log-density is cal-
culated by summing up all individual parts, namely the
log-likelihoods of copulas as in Eq. (5.1). The copulas are
stacked with corresponding h-functions. It calls LL_mod2()

as well as Hfunc1() and Hfunc2() functions. It returns the
final log-density.

helping functions Various different functions that help to compute the log-
likelihood for bivariate copulas and h-functions. They are
used in LL() or Hfunc(), mainly for Tawn and BB copulas.

Table 5.1.: Summary and description of the different functions defined in the function-
definition block.
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So far, Student’s t copula does not work in our sampler, i.e. is not implemented
in the functions above. The reason for it is that t-copula is computed using quantile
function, which is not defined in Stan. However, we are now in process of implementing
solutions to this issue.

Data Block

In this block variables needed for the model are declared. These are the ones that are
processed in R and forwarded into STAN as data. The data is then used by the function
computing log-likelihood in the model block. The code for the data block is presented
in Listing 5.3. The individual variables are explained in Table 5.2.

Listing 5.3: Code for the data block.

data{

int T; //T=1

int dataflip;

int d;

int o[d];

int d1;

int d2;

int family[d*d];

int maxmat[d*d];

int matri[d*d];

int condirect[d*d];

int conindirect[d*d];

vector[d*d] par;

vector[d*d] par2;

vector[d] indexcon;

vector<lower=0, upper=1>[d] ucon;

}
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Variable Description

T Sample size in the log-likelihood formula. Since we have only log of
the density and no samples, T=1.

dataflip Value 1 or 0 meaning whether the R-vine matrix is normalized (1) or
not (0)

d dimension of the vine model, d=d1+d2
o the original ordering of the R-vine matrix diagonal - before normaliz-

ing
d1 cardinality of conditioned set
d2 cardinality of the conditioning set
family copulas’ families
maxmat internal helping matrix
matri R-vine structure (R-vine matrix)
condirect internal helping matrix
conindirect internal helping matrix
par copulas’ parameters
par2 copulas’ parameters 2
indexcon vector of indices
ucon vector of conditional values (values are constrained on [0,1])

Table 5.2.: Description of the variables declared in the data block.

Parameters Block

This block contains parameters of the model, the variables which are sampled by Stan.
In our case, it is uC1 denoted in the code as ucalculate. In Listing 5.4, the code for
the parameters block is presented. As mentioned before, in the parameters block no
decision-making statements are allowed. Therefore, we declare 1-dimensional variable
(in STAN.stan file) as written in the first line of the code for parameters block. In the
multi-dimensional case, we declare d1-dimensional variable (in STAN2.stan file) as
written in the note of the code. Values of both variables are constrained on [0,1].
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Listing 5.4: Code for the parameters block.

parameters{

real<lower=0, upper=1> ucalculate;

//vector<lower=0, upper=1>[d1] ucalculate;

}

Model Block

The last block is a model where we define the log probability function. The function
is assigned to target, and in our case it is the output from VineLogLikRvine2 function.
The code for this block is shown in Listing 5.5.

Listing 5.5: Stan code of the model block for conditional sampling from a vine copula.

model{

// Declaration of variables

vector[d] daten;

vector[d] datennew;

vector[d] check;

int k;

// Searching for the index i in indexcon and filling the daten variable

// with conditioning values

for(i in 1:d)

{

for(j in 1:d)

{

if(indexcon[j]==i)

{

daten[i]=ucon[j];

check[i]=1;

}

}

}
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// Searching for the empty parts of the daten variable and filling with

// conditioned variables / their initial values

// In a multidimensional conditional density case, we need to use vector

// of ucalculate as in the note below

k=1;

for (i in 1:d)

{

if(check[i]!=1)

{

daten[i]=ucalculate; // daten[i]=ucalculate[k]; - multidim. case

k=k+1;

}

else{

k=k;

}

}

// If the R-vine matrix is permuted, we need to permute the data as well

if(dataflip==1){

for(i in 1:d){

datennew[i]=daten[o[d+1-i]];

}

}

else{

datennew=daten;

}

// log-density computed in VineLogLikRvine2 as the target

target += VineLogLikRvine2(T, d, family, maxmat, matri, condirect,

conindirect, par, par2, datennew);

}
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5.5. Computational Time

To sample from Stan requires some time, which depends on the dimension of the entire
vine model, on the dimension of the distribution we are sampling from, as well as
on the number of samples we wish to get. In this thesis, we sample from univariate
and bivariate conditional distributions having three, five and seven dimensional vine
copula models. The desired sample size is 1000, 5000 and 10000. The summary of
the time required for sampling is presented in Table 5.3. The sampling is done using
RStudio at LRZ server (specification: RStudio Server 2022.02.1 with R 4.2.0). For each
of the 18 situations we sample 100 times and present the mean of the times required for
sampling. Note that when sampling we use thinning, with thin=10. So the real number
of sampled observations is 10 times higher.

Dimension of vine model
d=3 d=5 d=7

univariate conditional
n = 1000 1.10 s 1.84 s 4.65 s
n = 5000 4.22 s 8.20 s 21.14 s

distribution n = 10000 9.59 s 15.80 s s 41.97 s

bivariate conditional
n = 1000 1.84 s 2.59 s 7.25 s
n = 5000 7.76 s 11.87 s 33.32 s

distribution n = 10000 15.94 s 24.26 s 65.76 s

Table 5.3.: The time required to sample from STAN using the RStudio at LRZ server.
Sampling is done from univariate and bivariate distributions with sample sizes 1000,
5000 and 10000 having 3, 5 and 7-dimensional vine models. The table presents the
average computation time over 100 iterations. The burn-in used is 1000 and is not
included in the sample size.

56



6. Simulation Study

In this chapter, we test if our proposed STAN program correctly samples from the
desired density by investigating its performance in simulation setups.

Assume that the random variables U = (U1, . . . Ud)
T follow regular vine copula distri-

bution in d-dimensions. Recall the subsets C1 = {C1,1, . . . , C1,k} and C2 = {C2,1, . . . C2,`}
of C = {1, . . . , d} with C1 ∩ C2 = ∅ and C1 ∪ C2 = C. The proposed program sam-
ples from the distribution of (UC1 |UC2 = uC2) where UC1 = (UC1,1 , . . . , UC1,k)

T and
UC2 = (UC2,1 , . . . , UC2,`)

T.
We start with sampling from D-vine copula distributions. For d = 3 and d = 5, the

D-vine tree structures look as in Fig. 6.1 and Fig. 6.2, respectively. Later we perform
sampling from one specific R-vine, whose tree structure looks as in Fig. 6.3.

Figure 6.1.: 3-dimensional D-vine tree structure used in simulation study.

Figure 6.2.: 5-dimensional D-vine tree structure used in simulation study.
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Figure 6.3.: 5-dimensional R-vine tree structure used in simulation study.

We divide this chapter into two sections. In the first one we present the sampling
from univariate conditional distributions, i.e. |C1| = k = 1, |C2| = ` = d− 1, and in the
second one the bivariate conditional distributions, i.e. |C1| = k = 2 and |C2| = ` = d− 2

6.1. Case I: Sampling from Univariate Cond. Distribution
Functions Arising from a Vine Copula

Simulation Setup

Starting with the univariate conditional distributions, we choose the simulation setups
such that we cover large number of possibilities. We distinguish between distributions,
whose conditional density is easily expressed without integration and whose density
cannot be expressed without integration as in Example 2.23. The dimension d is set
here to 3 and 5, and we cover D-vine tree structure as well as one specific R-vine. The
summary of the studied simulation setups is shown in Table 6.1. In every simulation
setup we sample n = 1000, 5000 and 10000 samples with 3 different sets of conditioning
values, namely their distance from a central vector uc := (0.5, 0.5, . . . , 0.5) ∈ Rd

being extremely low, medium and extremely large, resulting in 9 different scenarios
summarized in Table 6.2. All computations are conducted using programming language
R (R Core Team, 2019). In the following, we first introduce the approach and then
present the results.

First we specify pair copula families and parameters for the vines associated with
the specific vine tree structure.
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Setup Vine d Density availability Conditioned, conditioning set
1 D 3 T C1 = {1}, C2 = {2, 3}
2 D 3 F C1 = {2}, C2 = {1, 3}
3 D 5 T C1 = {1}, C2 = {2, 3, 4, 5}
4 D 5 F C1 = {2}, C2 = {1, 3, 4, 5}
5 R 5 T C1 = {5}, C2 = {1, 2, 3, 4}
6 R 5 F C1 = {2}, C2 = {1, 3, 4, 5}

Table 6.1.: Selected simulation setups in sampling from univariate conditional distri-
butions. Density availability means whether we can express the conditional density
without integration, hence true or false. In conditioning and conditioned set we show
the chosen conditioning and conditioned variables.

Conditioning values
low medium large

Number of samples
n = 1000

9 conditioning value scenariosn = 5000
n = 10000

Table 6.2.: Choice of conditioning values for each simulation setup.

Choosing the Conditioning Values

For the selection of the conditioning values for all simulations we proceed as fol-
lows. Using the rvinecopulib package (Nagler and Vatter, 2021), we sample ur :=
(ur1, ur2, . . . , urd)

T, r = 1, . . . , R, where R = 1000 from the specified vine copula distribu-
tion. We compute the Euclidean distance to the central vector uc, e(ur) := ||(ur − uc)||22
for each copula observation vector, so we get e = (e(u1), . . . , e(uR))

T ∈ RR. Let qα(e)
be α-quantile of e, we find the sample iteration rα such that urα has e(urα) = qα(e). In
other words, we want to find the iteration number rα such that the Euclidean distance
of this observation from the central vector uc is the α-quantile of the vector e. In
sampling from univariate conditional distribution, we choose α = 0.05, 0.5, 0.95. In
particular we call the conditioning values for α = 0.05 low, the one for α = 0.5 medium
and α = 0.95 large. We are now interested in sampling from UC1 |UC2 = uC2

rα
, where

uC2
rα

= (urα,C2,1 , . . . , urα,C2,`)
T.
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Sampling

We can now proceed to sampling from the conditional distributions. Since the sample
drawn from the developed STAN program is serially dependent we use thinning. That
means, after obtaining the sampled values from the program we choose every xth

iteration as a valid sample and discard the rest. Our selected thinning is 10. Therefore
we draw a sample of size n = 10000, 50000, 100000 for UC1 |UC2 = uC2

rα
and pick every

10th iteration to obtain the samples of size n = 1000, 5000, 10000. We denote the
sampled values by ui(u

C2
rα
), i = 1, . . . , n.

Density Estimation

Further we examine first whether the samples are from the desired distribution visually
and then we use statistical performance measures. In order to compare the true theoret-
ical conditional density of UC1 |UC2 = uC2

rα
with an estimate based on the sample ui(u

C2
rα
),

i = 1, . . . , n, we use kernel density estimation. We can then plot the theoretical density
together with the estimated densities for the samples with sizes n = 1000, 5000, 10000.
For this we use the transformation trick, i.e. we transform the samples to the z-scale,
estimate the density and scale it back as shown in Eq. (4.3).

Performance Measures

To measure the goodness-of-fit, we use the Kolmogorov-Smirnov test defined in Def-
inition 4.6. In the univariate conditional case, we first apply the probability inte-
gral transform on the samples ui(u

C2
rα
), i = 1, . . . , n and obtain transformed data

vi(u
C2
rα
) := F(ui(u

C2
rα
)|UC2 = uC2

rα
). We then test whether the transformed data vi(u

C2
rα
) are

uniformly distributed using Kolmogorov-Smirnov test and by examining the associated
p-values.

6.2. Results - Case I

In this section we present sampling results from all 6 simulation setups shown in
Table 6.1. To conduct the simulation study we perform the sampling for a specific
distribution many times and check if in any event the samples are from the desired
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distribution. The chosen number of simulations is N = 100 resulting in 100 goodness-
of-fit tests.

Setup 1: D-vine, d=3, conditional density expressed without integration

In this setup we use the vine tree structure from Fig. 6.1. We are sampling from the
distribution of (U1|U2 = u2, U3 = u3). The conditional density and distribution are

c1|23(u1|u2, u3) =
c123

c23
=

c1,2c2,3c1,3;2

c2,3
= c1,2(u1, u2) · c1,3;2(C1|2(u1|u2), C3|2(u3|u2)),

C1|23(u1|u2, u3) = h1|3;2(h1|2(u1|u2) | h3|2(u3|u2)).

The chosen pair copula families and parameters for this setup are shown in Fig. 6.4.
Every row corresponds to a different example with four copula specifications being
examined.

After performing 100 sampling simulations, we compare the true theoretical density
with the estimated densities of the samples with sizes n = 1000, 5000, 10000. The
comparison of densities for low conditioning values is shown in Fig. 6.5. The rows
correspond to different specifications and columns to different iterations, i.e. we show
3 out of 100 iterations to compare the densities. Below each iteration plot, we present
the values of conditioning variables. The comparison of densities for medium and large
conditioning values are shown in Fig. 6.6 and Fig. 6.7, respectively.

For every sampling simulation we perform the goodness-of-fit test. The percentage
of tests for uniform distributions that would be rejected by Kolmogorov-Smirnov test
at significance level α = 5%, assuming low conditional values, is presented for every
specification and sample size in the third column of Table 6.3. In the subsequent
columns we present minimal and maximal value of various measures and that is the p-
value of the Kolmogorov-Smirnov test, the effective sample size and R̂. In the following
we denote this kind of a table as a table of results. The table of results for medium and
large conditioning values are presented in Table 6.4 and Table 6.5, respectively.

In Appendix A we present, in detail, further results and plots for the Specification 1
of this Simulation Setup.
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6. Simulation Study

Figure 6.4.: Pair copula families and contour plots of the chosen distribution examples in
the Simulation Setup 1. First two columns depict the copula families with corresponding
Kendall’s τ parameter and the third one the pair copula contour plots on the z-scale.
Each row corresponds to a different D-vine copula specification.
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Figure 6.5.: Comparison of densities for Simulation Setup 1 with low conditioning
values. Rows correspond to the 4 specifications shown in Fig. 6.4 and columns to
3 chosen simulation iterations out of 100. The true theoretical density is compared
to kernel density estimates based on samples with sizes n = 1000, 5000, 10000 as
seen in the legend in the upper left corner. Beneath each plot we show the values of
conditioning variables.
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Figure 6.6.: Comparison of densities for Simulation Setup 1 with medium conditioning
values. Rows correspond to the 4 specifications shown in Fig. 6.4 and columns to 3
chosen simulation iterations out of 100.
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Figure 6.7.: Comparison of densities for Simulation Setup 1 with large conditioning
values. Rows correspond to the 4 specifications shown in Fig. 6.4 and columns to 3
chosen simulation iterations out of 100.
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Rejected p-value Eff. s. size R-hat
tests min max min max min max

Specification 1
n=1000 4% 0.001 0.997 0.690 1.160 0.999 1.006
n=5000 1% 0.049 0.997 0.844 1.083 1.000 1.002
n=10000 5% 0.002 0.992 0.853 1.050 1.000 1.001

Specification 2
n=1000 9% 0.002 0.998 0.758 1.157 0.999 1.007
n=5000 0% 0.068 0.997 0.845 1.106 1.000 1.001
n=10000 7% 0.013 0.989 0.907 1.039 1.000 1.000

Specification 3
n=1000 6% 0.008 0.996 0.717 1.132 0.999 1.004
n=5000 7% 0.001 0.998 0.834 1.072 1.000 1.001
n=10000 3% 0.007 0.993 0.907 1.050 1.000 1.001

Specification 4
n=1000 2% 0.022 0.992 0.698 1.137 0.999 1.008
n=5000 3% 0.019 0.996 0.800 1.084 1.000 1.002
n=10000 2% 0.024 0.985 0.861 1.056 1.000 1.001

Table 6.3.: Table of results for Simulation Setup 1 with low conditioning values.

Rejected p-value Eff. s. size R-hat
tests min max min max min max

Specification 1
n=1000 4% 0.008 0.986 0.688 1.127 0.999 1.005
n=5000 3% 0.021 0.965 0.813 1.064 1.000 1.001
n=10000 8% 0.000 0.993 0.888 1.048 1.000 1.000

Specification 2
n=1000 8% 0.000 1.000 0.605 1.181 0.999 1.003
n=5000 3% 0.016 0.984 0.874 1.070 1.000 1.002
n=10000 6% 0.014 0.990 0.902 1.069 1.000 1.001

Specification 3
n=1000 5% 0.029 0.988 0.749 1.221 0.999 1.008
n=5000 4% 0.016 0.993 0.855 1.065 1.000 1.001
n=10000 8% 0.011 0.997 0.853 1.054 1.000 1.001

Specification 4
n=1000 6% 0.011 0.991 0.666 1.176 0.999 1.004
n=5000 3% 0.004 0.998 0.782 1.074 1.000 1.002
n=10000 5% 0.017 0.947 0.900 1.028 1.000 1.000

Table 6.4.: Table of results for Simulation Setup 1 with medium conditioning values.
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Rejected p-value Eff. s. size R-hat
tests min max min max min max

Specification 1
n=1000 8% 0.006 1.000 0.644 1.210 0.999 1.015
n=5000 7% 0.002 0.991 0.821 1.082 1.000 1.002
n=10000 5% 0.017 0.976 0.890 1.057 1.000 1.001

Specification 2
n=1000 6% 0.021 0.993 0.711 1.154 0.999 1.007
n=5000 2% 0.000 0.997 0.916 1.051 1.000 1.001
n=10000 6% 0.028 0.972 0.891 1.053 1.000 1.001

Specification 3
n=1000 9% 0.000 0.984 0.533 1.110 0.999 1.007
n=5000 6% 0.006 0.997 0.821 1.053 1.000 1.002
n=10000 3% 0.000 0.994 0.854 1.030 1.000 1.001

Specification 4
n=1000 2% 0.016 0.995 0.749 1.148 0.999 1.007
n=5000 7% 0.019 0.995 0.859 1.073 1.000 1.001
n=10000 5% 0.000 1.000 0.848 1.045 1.000 1.001

Table 6.5.: Table of results for Simulation Setup 1 with large conditioning values.

Setup 2: D-vine, d=3, conditional density expressed with integration

In this setup we use the same vine tree structure as in the previous setup. We are
sampling from the distribution of (U2|U1 = u1, U3 = u3), however in this case the
density is not available without numerical integration. The conditional density and
distribution are

c2|13(u2|u1, u3) =
c123

c13
=

c123(u1, u2, u3)∫ 1
0 c123(u1, t2, u3)dt2

,

C2|13(u2|u1, u3) =
∫ u2

0
c2|13dx2 =

∫ u2

0

c123(u1, x2, u3)∫ 1
0 c123(u1, t2, u3)dt2

dx2.
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For this setup, the chosen pair copula families and parameters are shown in Fig. 6.8.
Similarly, every row corresponds to a different example with two D-vine copula
specifications.

Figure 6.8.: Pair copula families and contour plots of the chosen D-vine copula specifi-
cations in the Simulation Setup 2.

68



6. Simulation Study

The comparison of densities for low, medium and large conditioning values are
shown in Fig. 6.9., Fig. 6.10 and Fig. 6.11, respectively. The table of results for low,
medium and large conditioning values are presented in Table 6.6, Table 6.7 and Table 6.8,
respectively.

0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

u1 = 0.58 , u3 = 0.51
u2

c(
u 2

 | 
u 1

 , 
u 3

)

True
n=1000
n=5000
n=10000

0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

u1 = 0.58 , u3 = 0.51
u2

c(
u 2

 | 
u 1

 , 
u 3

)

0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

u1 = 0.58 , u3 = 0.51
u2

c(
u 2

 | 
u 1

 , 
u 3

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

u1 = 0.61 , u3 = 0.46
u2

c(
u 2

 | 
u 1

 , 
u 3

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

u1 = 0.61 , u3 = 0.46
u2

c(
u 2

 | 
u 1

 , 
u 3

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

u1 = 0.61 , u3 = 0.46
u2

c(
u 2

 | 
u 1

 , 
u 3

)

Figure 6.9.: Comparison of densities for Simulation Setup 2 with low conditioning
values. Rows correspond to the 2 specifications shown in Fig. 6.8 and columns to 3
chosen simulation iterations out of 100.

Rejected p-value Eff. s. size R-hat
tests min max min max min max

Specification 1
n=1000 6% 0.023 0.981 0.756 1.158 0.999 1.006
n=5000 5% 0.006 0.999 0.870 1.062 1.000 1.002
n=10000 6% 0.004 0.989 0.838 1.045 1.000 1.001

Specification 2
n=1000 6% 0.014 0.990 0.777 1.213 0.999 1.005
n=5000 1% 0.028 0.992 0.883 1.067 1.000 1.001
n=10000 6% 0.003 0.999 0.788 1.053 1.000 1.001

Table 6.6.: Table of results for Simulation Setup 2 with low conditioning values.

69



6. Simulation Study

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
1

2
3

4

u1 = 0.61 , u3 = 0.83
u2

c(
u 2

 | 
u 1

 , 
u 3

)

True
n=1000
n=5000
n=10000

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
1

2
3

4

u1 = 0.61 , u3 = 0.83
u2

c(
u 2

 | 
u 1

 , 
u 3

)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
1

2
3

4

u1 = 0.61 , u3 = 0.83
u2

c(
u 2

 | 
u 1

 , 
u 3

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

u1 = 0.28 , u3 = 0.18
u2

c(
u 2

 | 
u 1

 , 
u 3

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

u1 = 0.28 , u3 = 0.18
u2

c(
u 2

 | 
u 1

 , 
u 3

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

u1 = 0.28 , u3 = 0.18
u2

c(
u 2

 | 
u 1

 , 
u 3

)
Figure 6.10.: Comparison of densities for Simulation Setup 2 with medium condition-
ing values. Rows correspond to the 2 specifications shown in Fig. 6.8 and columns to 3
chosen simulation iterations out of 100.

Rejected p-value Eff. s. size R-hat
tests min max min max min max

Specification 1
n=1000 3% 0.040 0.984 0.768 1.121 0.999 1.008
n=5000 7% 0.007 0.986 0.863 1.069 1.000 1.002
n=10000 4% 0.001 0.988 0.879 1.031 1.000 1.001

Specification 2
n=1000 3% 0.025 1.000 0.695 1.141 0.999 1.007
n=5000 7% 0.021 0.985 0.847 1.060 1.000 1.001
n=10000 6% 0.006 0.996 0.814 1.045 1.000 1.001

Table 6.7.: Table of results for Simulation Setup 2 with medium conditioning values.
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Figure 6.11.: Comparison of densities for Simulation Setup 2 with large conditioning
values. Rows correspond to the 2 specifications shown in Fig. 6.8 and columns to 3
chosen simulation iterations out of 100.

Rejected p-value Eff. s. size R-hat
tests min max min max min max

Specification 1
n=1000 4% 0.013 0.989 0.717 1.160 0.999 1.004
n=5000 4% 0.012 0.959 0.786 1.057 1.000 1.002
n=10000 7% 0.005 0.992 0.886 1.043 1.000 1.001

Specification 2
n=1000 6% 0.006 0.980 0.733 1.201 0.999 1.005
n=5000 5% 0.003 0.983 0.840 1.075 1.000 1.001
n=10000 0% 0.059 0.995 0.886 1.034 1.000 1.000

Table 6.8.: Table of results for Simulation Setup 2 with large conditioning values.
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6. Simulation Study

Setup 3: D-vine, d=5, conditional density expressed without integration

In this setup we use the vine tree structure from Fig. 6.2. We are sampling from the
distribution of (U1|U2 = u2, . . . , U5 = u5). The conditional density and distribution are

c1|2345(u1|u2, u3, u4, u5) =
c12345

c2345
=

c1,2c2,3c3,4c4,5c1,3;2c2,4;3c3,5;4c1,4;2,3c2,5;3,4c1,5;2,3,4

c2,3c3,4c4,5c2,4;3c3,5;4c2,5;3,4
=

= c1,2(u1, u2) · c1,3;2(C1|2(u1|u2), C3|2(u3|u2))

· c1,4;2,3(C1|23(u1|u2, u3), C4|23(u4|u2, u3))

· c1,5;2,3,4(C1|234(u1|u2, u3, u4), C5|234(u5|u2, u3, u4)),

C1|2345(u1|u2, u3, u4, u5) = h1|5;234(C1|234 | C5|234),

where
C1|234 = h1|4;23(C1|23 | C4|23)

C5|234 = h5|2;34(C5|34 | C2|34)

C1|23 = h1|3;2(h1|2(u1|u2) | h3|2(u3|u2))

C4|23 = h4|2;3(h4|3(u4|u3) | h2|3(u2|u3))

C5|34 = h5|3;4(h5|4(u5|u4) | h3|4(u3|u4))

C2|34 = h2|4;3(h2|3(u2|u3) | h4|3(u4|u3)).
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6. Simulation Study

In this setup we look at one D-vine specification. Its chosen pair copula families and
parameters can be seen in Fig. 6.12.

Figure 6.12.: Pair copula families and contour plots of the chosen D-vine specification
in the Simulation Setup 3. First panel depicts the pair copula contour plots on the
z-scale, and the remaining panels the D-vine tree structure with the copula families
and corresponding Kendall’s τ parameter.
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6. Simulation Study

The comparison of densities for low, medium and large conditioning values are
shown together in Fig. 6.13. The table of results for low, medium and large conditioning
values are presented together in Table 6.9.
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Figure 6.13.: Comparison of densities for Simulation Setup 3. For the chosen vine
specification, each column shows the plot of one chosen iteration out of 100. The rows
correspond to different conditioning values with order low, medium and large.
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Conditioning Rejected p-value Eff. s. size R-hat
values tests min max min max min max

low
n=1000 5% 0.009 0.998 0.727 1.195 0.999 1.007
n=5000 2% 0.019 0.978 0.804 1.049 1.000 1.001
n=10000 5% 0.009 0.999 0.874 1.053 1.000 1.000

medium
n=1000 4% 0.006 0.999 0.687 1.157 0.999 1.006
n=5000 5% 0.004 0.984 0.816 1.063 1.000 1.001
n=10000 2% 0.014 0.999 0.903 1.030 1.000 1.001

large
n=1000 2% 0.009 0.998 0.719 1.184 0.999 1.007
n=5000 8% 0.013 0.990 0.846 1.071 1.000 1.001
n=10000 4% 0.021 0.999 0.852 1.070 1.000 1.001

Table 6.9.: Table of results for Simulation Setup 3.

Setup 4: D-vine, d=5, conditional density expressed with integration

In this setup we use the same vine tree structure as in the previous one. We are
sampling from the distribution of (U2|U1 = u1, U3 = u3, . . . , U5 = u5), however in this
case the density is not available without numerical integration. The conditional density
and distribution are

c2|1345(u2|u1, u3, u4, u5) =
c12345

c1345
=

c12345(u1, u2, u3, u4, u5)∫ 1
0 c12345(u1, t2, u3, u4, u5)dt2

,

C2|1345(u2|u1, u3, u4, u5) =
∫ u2

0
c2|1345dx2 =

∫ u2

0

c12345(u1, x2, u3, u4, u5)∫ 1
0 c12345(u1, t2, u3, u4, u5)dt2

dx2.
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6. Simulation Study

The pair copula families and parameters chosen for one D-vine specification are
shown in Fig. 6.14.

Figure 6.14.: Pair copula families and contour plots of the chosen D-vine specification
in the Simulation Setup 4.
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6. Simulation Study

The comparison of densities for low, medium and large conditioning values are
shown in Fig. 6.15. The table of results is presented in Table 6.10.
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Figure 6.15.: Comparison of densities for Simulation Setup 4. For the chosen vine
specification, each column shows the plot of one chosen iteration out of 100. The rows
correspond to different conditioning values with order low, medium and large.
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Conditioning Rejected p-value Eff. s. size R-hat
values tests min max min max min max

low
n=1000 6% 0.000 0.998 0.733 1.136 0.999 1.006
n=5000 4% 0.006 0.999 0.839 1.094 1.000 1.001
n=10000 5% 0.022 0.992 0.888 1.040 1.000 1.001

medium
n=1000 4% 0.002 0.999 0.718 1.156 0.999 1.006
n=5000 4% 0.010 0.999 0.904 1.070 1.000 1.001
n=10000 6% 0.003 0.995 0.885 1.044 1.000 1.001

large
n=1000 5% 0.003 0.995 0.693 1.193 0.999 1.006
n=5000 6% 0.006 0.976 0.851 1.073 1.000 1.002
n=10000 4% 0.014 0.998 0.859 1.041 1.000 1.001

Table 6.10.: Table of results for Simulation Setup 4.

Setup 5: R-vine, d=5, conditional density expressed without integration

In this setup we use the vine tree structure from Fig. 6.3. We are sampling from the
distribution of (U5|U1 = u1, . . . , U4 = u4). The conditional density and distribution are

c5|1234(u5|u1, u2, u3, u4) =
c12345

c1234
=

c1,5c1,4c2,4c3,4c4,5;1c1,2;4c1,3;4c3,5;1,4c2,3;1,4c2,5;1,3,4

c1,4c2,4c3,4c1,2;4c1,3;4c2,3;1,4
=

= c1,5(u1, u5) · c4,5;1(C4|1(u4|u1), C5|1(u5|u1))

· c3,5;1,4(C3|14(u3|u1, u4), C5|14(u5|u1, u4))

· c2,5;1,3,4(C2|134(u2|u1, u3, u4), C5|134(u5|u1, u3, u4)),

C5|1234(u5|u1, u2, u3, u4) = h5|2;134(C5|134 | C2|134),

where
C5|134 = h5|3;14(C5|14 | C3|14)

C2|134 = h2|3;14(C2|14 | C3|14)

C5|14 = h5|4;1(h5|1(u5|u1) | h4|1(u4|u1))

C3|14 = h3|1;4(h3|4(u3|u4) | h1|4(u1|u4))

C2|14 = h2|1;4(h2|4(u2|u4) | h1|4(u1|u4)).
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6. Simulation Study

In this setup we look at one R-vine specification. Its chosen pair copula families and
parameters can be seen in Fig. 6.16.

Figure 6.16.: Pair copula families and contour plots of the chosen R-vine specification
in the Simulation Setup 5.
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6. Simulation Study

The comparison of densities for low, medium and large conditioning values are
shown in Fig. 6.17. The table of results is presented in Table 6.11.
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Figure 6.17.: Comparison of densities for Simulation Setup 5. For the chosen vine
specification, each column shows the plot of one chosen iteration out of 100. The rows
correspond to different conditioning values with order low, medium and large.
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Conditioning Rejected p-value Eff. s. size R-hat
values tests min max min max min max

low
n=1000 3% 0.019 0.997 0.656 1.178 0.999 1.004
n=5000 5% 0.010 0.995 0.865 1.067 1.000 1.001
n=10000 5% 0.004 0.992 0.888 1.042 1.000 1.001

medium
n=1000 10% 0.010 0.999 0.754 1.137 0.999 1.010
n=5000 7% 0.003 1.000 0.865 1.069 1.000 1.001
n=10000 8% 0.001 1.000 0.818 1.041 1.000 1.001

large
n=1000 3% 0.016 0.993 0.631 1.161 0.999 1.008
n=5000 5% 0.002 0.997 0.886 1.053 1.000 1.001
n=10000 3% 0.011 0.985 0.858 1.047 1.000 1.001

Table 6.11.: Table of results for Simulation Setup 5.

Setup 6: R-vine, d=5, conditional density expressed with integration

In this setup we use the same vine tree structure as in the previous one. We are
sampling from the distribution of (U2|U1 = u1, U3 = u3, . . . , U5 = u5), however in
this case the density is not available without integration. The conditional density and
distribution are

c2|1345(u2|u1, u3, u4, u5) =
c12345

c1345
=

c12345(u1, u2, u3, u4, u5)∫ 1
0 c12345(u1, t2, u3, u4, u5)dt2

,

C2|1345(u2|u1, u3, u4, u5) =
∫ u2

0
c2|1345dx2 =

∫ u2

0

c12345(u1, x2, u3, u4, u5)∫ 1
0 c12345(u1, t2, u3, u4, u5)dt2

dx2.
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6. Simulation Study

The pair copula families and parameters chosen for one R-vine specification are
shown in Fig. 6.18.

Figure 6.18.: Pair copula families and contour plots of the chosen R-vine specification
in the Simulation Setup 6.
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6. Simulation Study

The comparison of densities for low, medium and large conditioning values are
shown in Fig. 6.19. The table of results is presented in Table 6.12.
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Figure 6.19.: Comparison of densities for Simulation Setup 6. For the chosen vine
specification, each column shows the plot of one chosen iteration out of 100. The rows
correspond to different conditioning values with order low, medium and large.
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Conditioning Rejected p-value Eff. s. size R-hat
values tests min max min max min max

low
n=1000 4% 0.001 0.991 0.784 1.184 0.999 1.006
n=5000 3% 0.003 0.998 0.852 1.054 1.000 1.002
n=10000 6% 0.002 0.997 0.901 1.034 1.000 1.000

medium
n=1000 1% 0.044 0.995 0.738 1.159 0.999 1.005
n=5000 3% 0.015 0.981 0.869 1.077 1.000 1.002
n=10000 3% 0.000 0.991 0.796 1.054 1.000 1.000

large
n=1000 4% 0.023 0.991 0.775 1.174 0.999 1.008
n=5000 5% 0.005 1.000 0.835 1.078 1.000 1.001
n=10000 7% 0.003 0.998 0.890 1.053 1.000 1.001

Table 6.12.: Table of results for Simulation Setup 6.
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6.3. Case II: Sampling from Bivariate Cond. Distribution
Functions Arising from a Vine Copula

Simulation Setup

We continue the simulation study with bivariate conditional distributions. Similarly,
as in the univariate case, we look at D-vine tree structure as well as one specific R-
vine, conditional densities easily expressed without integration as well as ones that
cannot be expressed without integration. The dimension d is set here to 3 and 5,
and in every simulation setup we sample n = 1000, 5000 and 10000 samples with
3 different sets of conditioning values, likewise their distance from a central vector
uc := (0.5, 0.5, . . . , 0.5) ∈ Rd being extremely low, medium and extremely large. The
summary of the studied simulation setups is shown in Table 6.13. In the following, we
first introduce the approach and then present the results.

First we specify pair copula families and parameters for the vines associated with
the specific vine tree structure.

Setup Vine d Density availability Conditioned, conditioning set
1 D 3 T C1 = {1, 2}, C2 = {3}
2 D 5 F C1 = {2, 4}, C2 = {1, 3, 5}
3 R 5 F C1 = {2, 4}, C2 = {1, 3, 5}

Table 6.13.: Selected simulation setups in sampling from bivariate conditional distri-
butions. Density availability means whether we can express the conditional density
without integration, hence true or false. In conditioning and conditioned set we show
the chosen conditioning and conditioned variables.

Choosing the Conditioning Values

The selection of the conditioning values for all simulations is the same as in the
univariate case. In contrast with the univariate case, in sampling from bivariate
conditional distribution we choose α = 0.05, 0.5, 0.85. Likewise, we call the conditioning
values for α = 0.05 low, the one for α = 0.5 medium and α = 0.85 large. The reason
for the alteration in this case is that the conditioning values from the α = 0.95 quantile
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are so extreme, that in the distribution there is extreme tail dependence. We are now
interested in sampling from UC1 |UC2 = uC2

rα
, where uC2

rα
= (urα,C2,1 , . . . , urα,C2,`)

T.

Sampling

The sampling is performed exactly the same way as in the previous case. We denote
the sampled values by ui(u

C2
rα
), i = 1, . . . , n.

Density Estimation

For examining visually whether the samples are from the desired distribution we use
kernel density estimation and compare the plot of the estimated density with the plot of
the true one. During the estimation, we use the transformation trick, i.e. we transform
the samples to the z-scale, estimate the bivariate density and scale it back as shown in
Eq. (4.5). We do it for all sample sizes n = 1000, 5000 and 10000.

Performance Measures

To measure the goodness-of-fit, we perform similar testing as in the univariate case.
However, in the bivariate conditional case we cannot use the probability integral
transform, therefore we use the Rosenblatt transformation defined in Definition 4.9. We
apply the transformation on the samples ui(u

C2
rα
), i = 1, . . . , n and obtain

vm
i1 = FC11|C2

(ui1(uC2
rα
)|uC2

rα
),

vc
i2 = FC12|C11,C2

(ui2(uC2
rα
)|ui1(uC2

rα
), uC2

rα
),

or the other order of variables

vm
i2 = FC12|C2

(ui2(uC2
rα
)|uC2

rα
),

vc
i1 = FC11|C12,C2

(ui1(uC2
rα
)|ui2(uC2

rα
), uC2

rα
).

The pair {vm
i1, vc

i2} or {vc
i1, vm

i2} have then bivariate independent uniform distributions.
After obtaining vm

i1, vc
i2, vc

i1 and vm
i2, we test if the pairs {vm

i1, vc
i2} and {vc

i1, vm
i2} are inde-

pendent uniformly distributed. To test for uniform distributions we use Kolmogorov-
Smirnov test. In order to test both pairs for independence, we use bivariate dependence
test defined in Definition 4.7. In total, we perform 6 tests summarized in Table 6.14.
Since we perform more than one test on one bivariate sample, we use Bonferroni
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correction to avoid multiple testing problem. The significance cut-off is now set to
α/6 = 0.05/6 = 0.0083, where 6 is the number of tests performed. We reject that the
sample is from the desired distribution if at least one p-value out of six is below this
threshold.

Number Variable(s) Name of the test Test for
1 vm

i1 Kolmogorov-Smirnov test uniform distribution
2 vc

i2 Kolmogorov-Smirnov test uniform distribution
3 vc

i1 Kolmogorov-Smirnov test uniform distribution
4 vm

i2 Kolmogorov-Smirnov test uniform distribution
5 {vm

i1, vc
i2} Bivariate dependence test independence

6 {vc
i1, vm

i2} Bivariate dependence test independence

Table 6.14.: List of the tests performed in order to measure the goodness-of-fit of the
sample ui(u

C2
rα
), i = 1, . . . , n.

6.4. Results - Case II

In this section we present sampling results for bivariate case for all 3 simulation setups
shown in Table 6.13. The chosen number of simulations is N = 100 resulting in 100
performance measures each consisting of 6 tests summarized in Table 6.14.

Setup 1: D-vine, d=3

In this setup we use the vine tree structure from Fig. 6.1. We are sampling from the
distribution of (U1, U2|U3 = u3). The conditional density is

c12|3(u1, u2|u3) =
c123

c3
=

c123

1
= c123(u1, u2, u3),
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and the Rosenblatt transformation is expressed as

vm
1 = C(u1|u3) =

∫ u1

0
c(a1|u3)da1 =

∫ u1

0

c(a1, u3)

c(u3)
da1 =

∫ u1

0

c(a1, u3)

1
da1 =

=
∫ u1

0

∫ 1

0
c(a1, a2, u3)da2da1,

vc
2 = C(u2|u1, u3) =

∫ u2

0
c(a2|u1, u3)da2 =

∫ u2

0

c(u1, a2, u3)

c(u1, u3)
da2 =

∫ u2
0 c(u1, a2, u3)da2∫ 1
0 c(u1, a2, u3)da2

and

vm
2 = C(u2|u3) =

∫ u2

0
c(a2|u3)da2 =

∫ u2

0

c(a2, u3)

c(u3)
da2 =

∫ u2

0

c(a2, u3)

1
da2 =

=
∫ u2

0

∫ 1

0
c(a1, a2, u3)da1da2,

vc
1 = C(u1|u2, u3) = h1|3;2(h1|2(u1|u2) | h3|2(u3|u2)).

In this setup we look at one D-vine specification. Its chosen pair copula families and
parameters can be seen in Fig. 6.20.

Figure 6.20.: Pair copula families and contour plots of the chosen D-vine specification
in the bivariate Simulation Setup 1. First two columns depict the copula families with
corresponding Kendall’s τ parameter and the third one the pair copula contour plots
on the z-scale.

Since in the bivariate case we cannot combine the estimated densities and the true
one into one plot, we first present the true conditional density. We then continue with
3 simulation iterations of estimated conditional densities of samples of sizes n = 1000,
5000 and 10000. Finally, we present the comparisons of the contour plots of the true
and estimated densities. We do this for all 3 types of conditioning values.
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The true conditional density with low conditioning value is shown in Fig. 6.21, the
estimated densities in Fig. 6.22 and the comparison of contour plots in Fig. 6.23.

Figure 6.21.: True bivariate conditional density with low conditioning value in Simula-
tion Setup 1.
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Figure 6.22.: Estimated densities with low conditioning value for Simulation Setup 1.
For the chosen vine specification, each column shows the plot of one chosen iteration.
The rows correspond to different sample sizes with order n = 1000, 5000 and 10000.
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Figure 6.23.: Comparison of estimated densities and the true density with low con-
ditioning value for Simulation Setup 1. Each column shows the plot for one chosen
iteration. The rows correspond to different sample sizes with order n = 1000, 5000 and
10000.
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The true conditional density with medium conditioning value is shown in Fig. 6.24,
the estimated densities in Fig. 6.25 and the comparison of contour plots in Fig. 6.26.

Figure 6.24.: True bivariate conditional density with medium conditioning value in
Simulation Setup 1.
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Figure 6.25.: Estimated densities with medium conditioning value for Simulation
Setup 1. For the chosen vine specification, each column shows the plot of one chosen
iteration. The rows correspond to different sample sizes with order n = 1000, 5000 and
10000.
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Figure 6.26.: Comparison of estimated densities and the true density with medium
conditioning value for Simulation Setup 1. Each column shows the plot for one chosen
iteration. The rows correspond to different sample sizes with order n = 1000, 5000 and
10000.
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The true conditional density with large conditioning value is shown in Fig. 6.27, the
estimated densities in Fig. 6.28 and the comparison of contour plots in Fig. 6.29.

Figure 6.27.: True bivariate conditional density with large conditioning value in Simu-
lation Setup 1.
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Figure 6.28.: Estimated densities with large conditioning value for Simulation Setup 1.
For the chosen vine specification, each column shows the plot of one chosen iteration.
The rows correspond to different sample sizes with order n = 1000, 5000 and 10000.
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Figure 6.29.: Comparison of estimated densities and the true density with large con-
ditioning value for Simulation Setup 1. Each column shows the plot for one chosen
iteration. The rows correspond to different sample sizes with order n = 1000, 5000 and
10000.

The table of performance measure results for low, medium and large conditioning
values are presented in Table 6.15. For every conditioning value and sample size, the
percentage of iterations that would be rejected after the Bonferroni correction at 5%
level is shown.
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Conditioning value
Low Medium Large

n=1000 3% 5% 5%
n=5000 3% 7% 6%
n=10000 6% 8% 5%

Table 6.15.: Table of results for bivariate Simulation Setup 1. The percentage of iterations
that would be rejected after the Bonferroni correction at 5% level is shown for samples
of sizes n = 1000, 5000, 10000, and low, medium and large conditioning values.

Setup 2: D-vine, d=5, conditional density expressed with integration

In this setup we use the vine tree structure from Fig. 6.2. We are sampling from the
distribution of (U2, U4|U1 = u1, U3 = u3, U5 = u5), however in this case the density is
not available without numerical integration. The conditional density is

c24|135(u2, u4|u1, u3, u5) =
c12345

c135
=

c12345(u1, u2, u3, u4, u5)∫ 1
0

∫ 1
0 c12345(u1, a2, u3, a4, u5)da2da4

,

and the Rosenblatt transformation is given as

vm
2 = C(u2|u1, u3, u5) =

∫ u2

0
c(a2|u1, u3, u5)da2 =

∫ u2

0

c(u1, a2, u3, u5)

c(u1, u3, u5)
da2 =

=

∫ u2
0

∫ 1
0 c(u1, a2, u3, a4, u5)da4da2∫ 1

0

∫ 1
0 c(u1, a2, u3, a4, u5)da2da4

,

vc
4 = C(u4|u1, u2, u3, u5) =

∫ u4

0
c(a4|u1, u2, u3, u5)da4 =

=
∫ u4

0

c(u1, u2, u3, a4, u5)

c(u1, u2, u3, u5)
da4 =

∫ u4
0 c(u1, u2, u3, a4, u5)da4∫ 1
0 c(u1, u2, u3, a4, u5)da4

and

vm
4 = C(u4|u1, u3, u5) =

∫ u4

0
c(a4|u1, u3, u5)da4 =

∫ u4

0

c(u1, u3, a4, u5)

c(u1, u3, u5)
da4 =

=

∫ u4
0

∫ 1
0 c(u1, a2, u3, a4, u5)da2da4∫ 1

0

∫ 1
0 c(u1, a2, u3, a4, u5)da2da4

,
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vc
2 = C(u2|u1, u3, u4, u5) =

∫ u2

0
c(a2|u1, u3, u4, u5)da2 =

=
∫ u2

0

c(u1, a2, u3, u4, u5)

c(u1, u3, u4, u5)
da2 =

∫ u2
0 c(u1, a2, u3, u4, u5)da2∫ 1
0 c(u1, a2, u3, u4, u5)da2

.

In this setup we look at one D-vine specification. Its chosen pair copula families and
parameters can be seen in Fig. 6.30.

Figure 6.30.: Pair copula families and contour plots of the chosen D-vine specification
in the bivariate Simulation Setup 2. First panel depicts the pair copula contour plots on
the z-scale, and the remaining panels the D-vine tree structure with the copula families
and corresponding Kendall’s τ parameter.
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The true conditional density with low conditioning values is shown in Fig. 6.31, the
estimated densities in Fig. 6.32 and the comparison of contour plots in Fig. 6.33.

Figure 6.31.: True bivariate conditional density with low conditioning values in Simu-
lation Setup 2.
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Figure 6.32.: Estimated densities with low conditioning values for Simulation Setup 2.
For the chosen vine specification, each column shows the plot of one chosen iteration.
The rows correspond to different sample sizes with order n = 1000, 5000 and 10000.
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Figure 6.33.: Comparison of estimated densities and the true density with low con-
ditioning values for Simulation Setup 2. Each column shows the plot for one chosen
iteration. The rows correspond to different sample sizes with order n = 1000, 5000 and
10000.
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The true conditional density with medium conditioning values is shown in Fig. 6.34,
the estimated densities in Fig. 6.35 and the comparison of contour plots in Fig. 6.36.

Figure 6.34.: True bivariate conditional density with medium conditioning values in
Simulation Setup 2.
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Figure 6.35.: Estimated densities with medium conditioning values for Simulation
Setup 2. For the chosen vine specification, each column shows the plot of one chosen
iteration. The rows correspond to different sample sizes with order n = 1000, 5000 and
10000.
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Figure 6.36.: Comparison of estimated densities and the true density with medium
conditioning values for Simulation Setup 2. Each column shows the plot for one
chosen iteration. The rows correspond to different sample sizes with order n = 1000,
5000 and 10000.
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The true conditional density with large conditioning values is shown in Fig. 6.37, the
estimated densities in Fig. 6.38 and the comparison of contour plots in Fig. 6.39.

Figure 6.37.: True bivariate conditional density with large conditioning values in
Simulation Setup 2.
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Figure 6.38.: Estimated densities with large conditioning values for Simulation Setup
2. For the chosen vine specification, each column shows the plot of one chosen iteration.
The rows correspond to different sample sizes with order n = 1000, 5000 and 10000.
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Figure 6.39.: Comparison of estimated densities and the true density with large con-
ditioning values for Simulation Setup 2. Each column shows the plot for one chosen
iteration. The rows correspond to different sample sizes with order n = 1000, 5000 and
10000.
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The table of results for low, medium and large conditioning values are presented
together in Table 6.16.

Conditioning value
Low Medium Large

n=1000 2% 3 % 1%
n=5000 4% 2 % 3%
n=10000 3% 4% 2%

Table 6.16.: Table of results for bivariate Simulation Setup 2. The percentage of iterations
that would be rejected after the Bonferroni correction at 5% level is shown for samples
of sizes n = 1000, 5000, 10000, and low, medium and large conditioning values.

Setup 3: R-vine, d=5, conditional density expressed with integration

In this setup we use the vine tree structure from Fig. 6.3. We are sampling from the
distribution of (U2, U4|U1 = u1, U3 = u3, U5 = u5), in this case the density is again not
available without numerical integration. The conditional density and the Rosenblatt
transformation are expressed the same way as in the Setup 2.
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6. Simulation Study

Here we look at one R-vine specification. Its chosen pair copula families and
parameters can be seen in Fig. 6.40.

Figure 6.40.: Pair copula families and contour plots of the chosen R-vine specification
in the bivariate Simulation Setup 3. First panel depicts the pair copula contour plots on
the z-scale, and the remaining panels the R-vine tree structure with the copula families
and corresponding Kendall’s τ parameter.
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6. Simulation Study

The true conditional density with low conditioning values is shown in Fig. 6.41, the
estimated densities in Fig. 6.42 and the comparison of contour plots in Fig. 6.43.

Figure 6.41.: True bivariate conditional density with low conditioning values in Simu-
lation Setup 3.
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Figure 6.42.: Estimated densities with low conditioning values for Simulation Setup 3.
For the chosen vine specification, each column shows the plot of one chosen iteration.
The rows correspond to different sample sizes with order n = 1000, 5000 and 10000.
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Figure 6.43.: Comparison of estimated densities and the true density with low con-
ditioning values for Simulation Setup 3. Each column shows the plot for one chosen
iteration. The rows correspond to different sample sizes with order n = 1000, 5000 and
10000.
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The true conditional density with medium conditioning values is shown in Fig. 6.44,
the estimated densities in Fig. 6.45 and the comparison of contour plots in Fig. 6.46.

Figure 6.44.: True bivariate conditional density with medium conditioning values in
Simulation Setup 3.
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Figure 6.45.: Estimated densities with medium conditioning values for Simulation
Setup 3. For the chosen vine specification, each column shows the plot of one chosen
iteration. The rows correspond to different sample sizes with order n = 1000, 5000 and
10000.
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Figure 6.46.: Comparison of estimated densities and the true density with medium
conditioning values for Simulation Setup 3. Each column shows the plot for one
chosen iteration. The rows correspond to different sample sizes with order n = 1000,
5000 and 10000.
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The true conditional density with large conditioning values is shown in Fig. 6.47, the
estimated densities in Fig. 6.48 and the comparison of contour plots in Fig. 6.49.

Figure 6.47.: True bivariate conditional density with large conditioning values in
Simulation Setup 3.
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Figure 6.48.: Estimated densities with large conditioning values for Simulation Setup
3. For the chosen vine specification, each column shows the plot of one chosen iteration.
The rows correspond to different sample sizes with order n = 1000, 5000 and 10000.
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Figure 6.49.: Comparison of estimated densities and the true density with large con-
ditioning values for Simulation Setup 3. Each column shows the plot for one chosen
iteration. The rows correspond to different sample sizes with order n = 1000, 5000 and
10000.
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The table of results for low, medium and large conditioning values are presented
together in Table 6.17.

Conditioning value
Low Medium Large

n=1000 2% 0% 1%
n=5000 3% 4% 5%
n=10000 5% 4% 3%

Table 6.17.: Table of results for bivariate Simulation Setup 3. The percentage of iterations
that would be rejected after the Bonferroni correction at 5% level is shown for samples
of sizes n = 1000, 5000, 10000, and low, medium and large conditioning values.
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7. Application on Uranium Data Set

In this chapter, we are going to apply our proposed sampler for the analysis of a hydro-
geochemical data set, which consists of N = 655 observations of log-concentrations of
the seven chemicals Uranium (U), Lithium (Li), Cobalt (Co), Potassium (K), Cesium
(Cs), Scandium (Sc), and Titanium (Ti) taken from river near Grand Junction, Colorado.
The data set can be found in the R package copula (Hofert et al., 2020).

In order to assess the extent of uranium potential in the United States, the hydrogeo-
chemical stream and sediment reconnaissance (HSSR) project has been created in the
U.S Department of Energy, as stated in Cook and Johnson (1981). Water samples over a
fairly fine grid (one per 4 km2 in the contiguous states and one per 10 km2 in Alaska)
were collected and analysed to determine the concentrations of various chemicals. Since
the data set consists of only samples taken from the quadrangle in Colorado, it is only
a small subset of the whole data collected in the program. In order to get help with
the analysis, the program funded the works Cook and Johnson (1981) and Cook and
Johnson (1986), in which the data set is first mentioned and analysed. Their main
interest was to find replacement to multivariate normal distributions when modelling
multivariate data, since some data does not have to have either normal margins or
the dependence between the correlated variables may deviate from the one in normal
distributions. This was also the case for the uranium data set, even though logarithms
of the concentrations were used to improve joint normality. The examination of scatter
plots in the uranium data set suggested that the underlying contours are not elliptically
symmetric, therefore the assumption of joint normality may not be appropriate and
other joint distributions should be considered.

First, we look at the subset of the seven chemicals, namely the three chemicals Cobalt
(Co), Scandium (Sc), Titanium (Ti) and use univariate and bivariate sampling. Later we
analyze the whole set with all seven chemicals.

In order to use our proposed sampler, we need to transform the variables from
x-scale to the u-scale, sample with our program and transform it back to the x-scale.
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7. Application on Uranium Data Set

For this we use the expression of the conditional quantile function from Kraus and
Czado (2017b). The conditional quantile function for α ∈ (0, 1) is

F−1
Y|X1,...,Xd

(α|x1, . . . , xd) = F−1
Y (C−1

V|U1,...,Ud
(α|u1, . . . , ud)), (7.1)

where Y ∼ FY and Xj ∼ Fj, j = 1, . . . , d and the probability integral transform V :=
FY(Y) and Uj := Fj(Xj) for j = 1, . . . , d is used.

Imagine we have variables X1, X2, X3 and fit a vine copula model to it. We are
interested in obtaining a sample x(r)1 (x2, x3) ∼ F1|23(·|X2 = x2, X3 = x3). We use the
probability integral transform Uj = Fj(Xj), j = 2, 3 to come to the u-scale. We sample
with our proposed program from U1|U2, U3 and obtain u(r)

1 (u2, u3) ∼ C1|23(·|U2 =

u2, U3 = u3). We can obtain x(r)1 (x2, x3) using Eq. (7.1) as follows

x(r)1 (x2, x3) = F−1
1|23(v

(r)
1 |x2, x3) = F−1

1 (C−1
1|23(v

(r)
1 |u2, u3)) = F−1

1 (u(r)
1 (u2, u3)),

where v(r)1 = C1|23(u
(r)
1 (u2, u3)|u2, u3) ∼ U[0, 1].

For the bivariate case we use the inverse Rosenblatt transformation. Now we are
interested in obtaining x(r)1 , x(r)2 |x3 ∼ F12|3(·, ·|X3 = x3). We use probability integral
transform Uj = Fj(Xj), j = 3 to transfer the conditioning value x3 to the u-scale.
We sample with our proposed program from U1, U2|U3 and obtain (u(r)

1 , u(r)
2 |u3) ∼

C12|3(·, ·|U3 = u3). We can obtain (x(r)1 , x(r)2 |x3) using the Eq. (7.1) and the inverse
Rosenblatt as follows

x(r)2 = F−1
2|3 (v

(r)
2 |x3) = F−1

2 (C−1
2|3(v

(r)
2 |u3)) = F−1

2 (u(r)
2 ),

x(r)1 = F−1
1|23(v

(r)
1 |x

(r)
2 , x3) = F−1

1 (C−1
1|23(v

(r)
1 |u

(r)
2 , u3)) = F−1

1 (u(r)
1 ),

where (v(r)1 , v(r)2 ) ∼ U[0, 1]2, since v(r)2 = C2|3(u
(r)
2 |u3) and v(r)1 = C1|23(u

(r)
1 |u

(r)
2 , u3).

7.1. Three Dimensional Analysis

First we start with only three chemicals Cobalt (Co), Scandium (Sc) and Titanium (Ti).
In Table 7.1 we can see the summary of the three variables. After transforming the data
to the copula scale by applying the probability integral transform using the probability
distribution function of kernel density estimation, we show the pairwise scatter plot in
Fig. 7.1.
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7. Application on Uranium Data Set

Co Sc Ti
min 0.568 0.322 2.847

5% quantile 0.820 0.763 3.381
mean 1.028 1.022 3.673

95% quantile 1.243 1.320 3.993
max 1.450 1.459 4.368

Table 7.1.: Summary of the three chem-
icals Co, Sc and Ti.

Co

z1

z 2

z1

z 2

0.54

Sc

z1

z 2

0.36

0.44

Ti

Figure 7.1.: Pairwise scatter plot of the
three chemicals Co, Sc and Ti on the
u-scale and normalized contour plots.

For the analysis we use the vine tree structure selected by an algorithm that was
proposed by Kraus and Czado (2017c). The algorithm selects tree structures focused on
producing simplified vine copulas for which the simplifying assumption is violated as
little as possible. Chosen are edges (Co,Sc) and (Co,Ti) corresponding to pair copulas
cCo,Sc and cCo,Ti for the first tree, and cSc,Ti;Co in the second tree. The resulting structure
is a D-vine: Sc-Co-Ti. The log-likelihood of this model is 433.06, AIC = -854.13 and BIC
= -827.22. The fitted pair-copulas are displayed in Table 7.2.

edge cop par par2 τ

Co,Sc t 0.73 8.36 0.53
Co,Ti Tawn2_180 1.82 0.56 0.31

Sc,Ti;Co BB7 1.45 0.2 0.26

Table 7.2.: Fitted pair copulas for the selected vine tree structure in three dimensional
case.

Since our program cannot sample from t-copulas yet, we use for cCo,Sc a Gaussian
copula with the parameter 0.73. The final pair copula families used and its contour
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7. Application on Uranium Data Set

plots are displayed in Fig. 7.2.

Figure 7.2.: Used vine tree structure and pair copula families, together with its contour
plots. (1 = Co, 2 = Sc, 3 = Ti).

Univariate Conditional Sampling

Here we sample from univariate conditional distributions. We are interested in sam-
pling from and expressing the distribution of (XCo|XSc = xSc, XTi = xTi), (XSc|XCo =

xCo, XTi = xTi) and (XTi|XCo = xCo, XSc = xSc), respectively. For the conditioning
variables we choose low, medium and large values. Low values correspond to the 5%
quantile, medium to the mean and large to the 95% quantile from the summary table
shown in Table 7.1. We present the values in Table 7.3. Moreover, in Fig. 7.3 we show
using the scatter plots, where the values are located.

We transform the variables from the x-scale to the u-scale with the probability integral
transform, sample with our program, transform the variables back to the x-scale as
described in the beginning of this chapter and plot the densities and distributions
obtained by kernel density estimation. The densities together with the distributions are
displayed in Fig. 7.4. We can see from the plot that with a change in the conditioning
values, there is not only a change in the mean but also in the shape of the distribution,
as seen for example, in the last row of the figure.
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7. Application on Uranium Data Set

Conditioning values Variables Values used

low
(XCo, XSc) xCo = 0.820, xSc = 0.763
(XCo, XTi) xCo = 0.820, xTi = 3.381
(XSc, XTi) xSc = 0.763, xTi = 3.381

medium
(XCo, XSc) xCo = 1.028, xSc = 1.022
(XCo, XTi) xCo = 1.028, xTi = 3.673
(XSc, XTi) xSc = 1.022, xTi = 3.673

large
(XCo, XSc) xCo = 1.243, xSc = 1.320
(XCo, XTi) xCo = 1.243, xTi = 3.993
(XSc, XTi) xSc = 1.320, xTi = 3.993

Table 7.3.: The values used for conditioning variables in univariate conditional sampling
in 3 dimensions.
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Figure 7.3.: Pair plots of the conditioning variables on the x-scale (first row) and on the
u-scale (second row). Low conditioning values are depicted in green, medium in blue
and large in red.
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Figure 7.4.: Estimated densities and distribution functions in the three dimensional
case. The rows correspond to different conditional density and distribution, in order
(XCo|XSc = xSc, XTi = xTi), (XSc|XCo = xCo, XTi = xTi) and (XTi|XCo = xCo, XSc = xSc).
First column corresponds to density function, the second to distribution function. In
each plot the densities and distributions for low, medium and large conditioning values
are displayed together. The sample size is n = 10000, not including burn-in..
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Bivariate Conditional Sampling

Here we sample from bivariate conditional distributions. We are interested in knowing
the distribution and sampling from (XCo, XSc|XTi = xTi). For the conditioning variable
we choose low, medium and large value. Low value corresponds to the 5% quantile,
medium to the mean and large to the 95% quantile from the summary table shown
in Table 7.1, i.e. the values for XTi are xTi = 3.381 as low, xTi = 3.673 as medium and
xTi = 3.993 as large. The densities together with the contour plots are displayed in
Fig. 7.5.

xTi = 3.38
xCo

x S
c

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

xTi = 3.67
xCo

x S
c

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

xTi = 3.99
xCo

x S
c

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Figure 7.5.: Estimated densities and its contour plots for the distribution of
(XCo, XSc|XTi = xTi). The columns correspond to different conditioning value in
order low, medium and large. First row corresponds to density function, the second to
contour plot. The sample size is n = 10000.

Conditional Kendall’s τ Associated with D-vine Sc-Co-Ti

We would like to see whether the chosen tree structure Sc-Co-Ti with its fitted pair
copulas comply with the simplifying assumption for cSc,Ti;Co. We want to show that
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the conditional copula cSc,Ti;Co(CSc|Co(uSc|uCo), CTi|Co(uTi|uCo); uCo) does not depend
on a value uCo, i.e. we can write cSc,Ti;Co(CSc|Co(uSc|uCo), CTi|Co(uTi|uCo)) and thus the
dependence between USc and UTi is not changing with the value of UCo. We show this
by estimating the Kendall’s Tau τSc,Ti|Co for different conditioning value of Co.

Under the simplifying assumption τ̂Sc,Ti|Co = 0.26, taken from Table 7.2. To observe
the change, we compute the average of estimates of τSc,Ti|Co together with its 90 %
confidence intervals at 31 equally spaced grid points in the range of xCo by sampling
n = 1000 samples from (USc, UTi|UCo) R = 100 times using HMC.

First, we define 31 equally spaced grid points xg
Co, g = 1, . . . , 31 in the range of

xCo. In order to estimate F̂Co we use the kernel density estimation based on xCo from
the data. With its help, we transform the grid points xg

Co by the probability integral
transform to ug

Co, i.e. ug
Co := F̂Co(xg

Co), g = 1, . . . , 31. For every grid point we sample
n = 1000 samples from (USc, UTi|UCo = ug

Co) R = 100 times using HMC and obtain
100 estimates of Kendall’s Tau τ̂Sc,Ti|Co, from which we compute the average and a 90
% confidence interval. The confidence interval is constructed by picking the 0.05 and
the 0.95 empirical quantile as lower and upper limit among the 100 replications. The
results are shown in the left panel of Fig. 7.6.

However, we would like to see the implication of using the simplified vine copula
on the conditional τCo,Ti|Sc and τCo,Sc|Ti. We estimate all Taus in the same way as
described on τSc,Ti|Co above. In order to obtain the estimates τ̂Co,Ti|Sc and τ̂Co,Sc|Ti under
the simplifying assumption, we need to fit the model to the vine tree structure in which
the edge in the last tree is (Co, Ti; Sc) and (Co, Sc; Ti), respectively. The resulting fits
together with the estimated Kendall’s Tau are presented in Table 7.4. Thus, under
simplifying assumption τ̂Co,Ti|Sc = 0.08 and τ̂Co,Sc|Ti = 0.42. The results for τCo,Ti|Sc and
τCo,Sc|Ti are plotted in the middle and right panel of Fig. 7.6, respectively.

edge cop par par2 τ

Sc,Co t 0.73 8.36 0.53
Sc,Ti t 0.62 6.35 0.43

Co,Ti;Sc t 0.12 6.22 0.08

edge cop par par2 τ

Ti,Sc t 0.62 6.35 0.43
Ti,Co Tawn 180 1.82 0.56 0.31

Sc,Co;Ti t 0.61 12.00 0.42

Table 7.4.: Fitted models in order to obtain the estimates of Kendall’s Tau under the
simplifying assumption. The model Co-Sc-Ti on the left shows τ̂Co,Ti|Sc = 0.08 under
the simplifying assumption and model Co-Ti-Sc on the right shows τ̂Co,Sc|Ti = 0.42.
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Figure 7.6.: Changes of Kendall’s Tau in three dimensions. The 90% confidence interval
together with the average of the estimates are shown in columns for τSc,Ti|Co, τCo,Ti|Sc

and τCo,Sc|Ti, respectively.

Comparison to Acar et al. (2012)

Acar et al. (2012) investigated if the simplifying assumption is appropriate in these 3-
dimensional vine constructions using a local linear estimation together with a bootstrap
method in order to get the confidence intervals. To build their models, they assumed
that each pair of variables can be modeled by a Student’s t copula, computed the
conditional pseudo observations using h-functions of that t copula and fitted the pair
copula in the last tree according to the joint behavior of those conditional pseudo
observations. They studied two models, which are summarized in Table 7.5. They were
interested in estimating τCo,Ti|Sc and τCo,Sc|Ti for different conditioning values of Sc and
Ti, respectively.

edge cop par par2 τ

Sc,Co t 0.73 8.36 0.53
Sc,Ti t 0.62 6.35 0.43

Co,Ti;Sc F 0.72 - 0.08

edge cop par par2 τ

Ti,Sc t 0.62 6.35 0.43
Ti,Co t 0.52 7.91 0.35

Co,Sc;Ti Gum 1.65 - 0.39

Table 7.5.: Two fitted models Acar et al. (2012) used. They investigated the changes of
τCo,Ti|Sc in the left model (model 1) and of τCo,Sc|Ti in the right model (model 2). The
comparison was made with the estimates under the simplifying assumption depicted
in the tables by blue colour.
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Unfortunately, we cannot use the same models and sample from UCo, UTi|USc and
UCo, USc|UTi, since we would sample from the densities where the simplifying assump-
tion is already assumed. Therefore, we use the vine tree structure we are interested in,
the structure we use in this chapter and was proposed by Kraus and Czado (2017c).
However, we fit different pair copulas as before so the model is as similar as possible to
the ones by Acar et al. (2012). We likewise assume that each pair of variables can be
modeled by a Student’s t copula in the first tree and fit only the copula in the last tree.
The resulting model is shown in Table 7.6. We again use Gaussian copulas instead of
t-copulas.

edge cop par par2 τ

Co,Sc t 0.73 8.36 0.53
Co,Ti t 0.52 7.91 0.35

Ti,Sc;Co BB7 1.45 0.20 0.26

Table 7.6.: The most similar model with the vine tree structure from Kraus and Czado
(2017c). The changes of Kendall’s Tau in this model are used as a comparison to the
changes of Kendall’s Tau done in the work by Acar et al. (2012).

We can now compare the Kendall’s Tau changes in the Acar et al. (2012) to the changes
in Kendall’s Tau estimates using the samples sampled by our proposed program. The
comparisons are presented in Fig. 7.7. The first row corresponds to τCo,Ti|Sc, where our
estimates (left panel) are compared to Acar et al. (2012) (right panel) in which they
used the model 1. The second row corresponds to τCo,Sc|Ti, where our estimates (left
panel) are compared to Acar et al. (2012) (right panel) in which they used the model 2.
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Figure 7.7.: Comparison of the estimates of τCo,Ti|Sc (top row) and τCo,Sc|Ti (bottom row)
from Acar et al. (2012) (right) with the ones obtained by sampling from the proposed
program (left).

7.2. Seven Dimensional Analysis

In this section we continue with all seven chemicals and their summary can be seen
in Table 7.7. After transforming the data to the copula scale by applying the proba-
bility integral transform using the probability distribution function of kernel density
estimation, we show the pairwise scatter plot in Fig. 7.8.
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U Li Co K Cs Sc Ti
min 0.146 0.602 0.568 3.263 1.114 0.322 2.847

5% quantile 0.431 1.079 0.820 3.998 1.713 0.763 3.381
mean 0.854 1.499 1.028 4.223 2.042 1.022 3.673

95% quantile 1.541 1.834 1.243 4.396 2.470 1.320 3.993
max 2.136 2.182 1.450 4.572 2.801 1.459 4.368

Table 7.7.: Summary measures for each of the seven chemicals (min, 5% quantile, mean,
95% quantile, max).
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Figure 7.8.: Pairwise scatter plot of the seven chemicals on the u-scale and normalized
contour plots.
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For the analysis, we use three different vine tree structures, D-vine, C-vine and
R-vine. The first one, denoted as Vine 1, is constructed from the 3-dimensional vine
tree structure proposed by Kraus and Czado (2017c), which we mention in the previous
section, and thus Sc-Co-Ti. We intend to build a D-vine, so we gradually add one other
variable (chemical), that has the highest Kendall’s Tau with the one of the variables
already in the vine tree structure, with the position at the edge. After obtaining the
whole D-vine structure we fit the pair copulas. Again, all fitted t-copulas have the
second parameter above 5 and are replaced with Gaussian copulas. The resulting
structure together with the pair copula families and their contour plots are shown in
Fig. 7.9, Table 7.8 and Fig. 7.10. The variables Co, Sc, Ti have in 7-dimensional case
numbers 3, 6, 7, respectively. So the starting structure Sc-Co-Ti is 6-3-7.

Figure 7.9.: Vine 1: Contour plots of the pair copulas used in 7-dimensional D-vine
structure. (1 = U, 2 = Li, 3 = Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).
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tree edge family cop par par2 tau
1 4,1 114 Tawn180 1.75 0.27 0.17
1 1,5 5 F 5.23 0.00 0.47
1 5,7 10 BB8 1.90 0.97 0.30
1 7,3 114 Tawn180 1.82 0.56 0.31
1 3,6 2 t 0.73 8.36 0.53
1 6,2 214 Tawn2 180 1.28 0.30 0.10
2 4,5;1 20 SBB8 1.35 0.92 0.11
2 1,7;5 2 t -0.17 6.62 -0.11
2 5,3;7 2 t 0.00 8.34 0.00
2 7,6;3 9 BB7 1.45 0.20 0.26
2 3,2;6 2 t -0.15 17.36 -0.10
3 4,7;1,5 2 t -0.05 5.75 -0.03
3 1,3;5,7 26 J90 -1.19 0.00 -0.10
3 5,6;7,3 114 Tawn180 1.33 0.16 0.08
3 7,2;3,6 2 t -0.09 10.25 -0.06
4 4,3;1,5,7 30 BB8 90 -1.41 -0.91 -0.13
4 1,6;5,7,3 36 J270 -1.05 0.00 -0.03
4 5,2;7,3,6 14 SG 1.06 0.00 0.06
5 4,6;1,5,7,3 30 BB8 90 -1.39 -0.89 -0.11
5 1,2;5,7,3,6 5 F 0.72 0.00 0.08
6 4,2;1,5,7,3,6 3 C 0.20 0.00 0.09

Table 7.8.: Vine 1: Fitted pair copulas for the D-vine tree structure in seven dimensional
case. (1 = U, 2 = Li, 3 = Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).
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Figure 7.10.: Vine 1: 7-dimensional D-vine tree structure and pair copula families used.
(1 = U, 2 = Li, 3 = Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).
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The second one, denoted as Vine 2, is selected by algorithm that was proposed by
Kraus and Czado (2017c) as the one, for which the simplifying assumption is violated as
little as possible. The resulting vine tree structure is a C-vine. All fitted t-copulas have
the second parameter above 5 and are replaced with Gaussian copulas. The structure
together with the pair copula families and their contour plots are shown in Fig. 7.11,
Table 7.9 and Fig. 7.12.

Figure 7.11.: Vine 2: Contour plots of the pair copulas used in 7-dimensional C-vine
structure, selected by algorithm proposed by Kraus and Czado (2017c). (1 = U, 2 = Li, 3
= Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).
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tree edge family cop par par2 tau
1 5,7 19 SBB7 1.11 0.77 0.31
1 5,4 214 Tawn2_180 1.58 0.40 0.20
1 5,3 114 Tawn180 1.55 0.37 0.18
1 5,2 14 SG 1.13 0.00 0.11
1 5,1 5 F 5.24 0.00 0.47
1 5,6 114 Tawn180 1.88 0.43 0.26
2 7,4;5 2 t -0.08 5.40 -0.05
2 7,3;5 2 t 0.47 6.87 0.31
2 7,2;5 2 t -0.05 11.48 -0.03
2 7,1;5 2 t -0.17 8.35 -0.11
2 7,6;5 2 t 0.56 5.41 0.38
3 4,3;7,5 2 t -0.23 11.45 -0.15
3 4,2;7,5 16 SJ 1.15 0.00 0.08
3 4,1;7,5 1 N 0.13 0.00 0.09
3 4,6;7,5 30 BB8_90 -1.83 -0.87 -0.20
4 3,2;4,7,5 0 I 0.00 0.00 0.00
4 3,1;4,7,5 36 J270 -1.16 0.00 -0.09
4 3,6;4,7,5 7 BB1 0.19 1.42 0.36
5 2,1;3,4,7,5 5 F 0.59 0.00 0.07
5 2,6;3,4,7,5 20 SBB8 1.81 0.81 0.17
6 1,6;2,3,4,7,5 36 J270 -1.05 0.00 -0.03

Table 7.9.: Vine 2: Fitted pair copulas for the C-vine tree structure in seven dimensional
case. (1 = U, 2 = Li, 3 = Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).
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Figure 7.12.: Vine 2: 7-dimensional C-vine tree structure and pair copula families used.
(1 = U, 2 = Li, 3 = Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).
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The last one, denoted as Vine 3, is similarly as Vine 1 constructed from the 3-
dimensional vine tree structure proposed by Kraus and Czado (2017c), the structure
Sc-Co-Ti (6-3-7). We intend to build an R-vine, so we gradually add one other variable
(chemical), that has the highest Kendall’s Tau with the one of the variables already
in the vine tree structure. However, this time we consider all variables already in
the structure not only the ones at the edge. Since the first tree does not determine
the following trees as in D-vine, we proceed as follows. After obtaining the first tree,
we fit its pair copulas and compute the conditional pseudo observations using the
h-functions of the respective copulas. We build the edge between the pairs with the
highest conditional Kendall’s Tau. We approach similarly after obtaining the second
tree. The third tree is already a D-vine, which determines the following trees. Again,
all fitted t-copulas have the second parameter above 5 and are replaced with Gaussian
copulas. The resulting structure together with the pair copula families and their contour
plots are shown in Fig. 7.13, Table 7.10 and Fig. 7.14.

Figure 7.13.: Vine 3: Contour plots of the pair copulas used in 7-dimensional R-vine
structure. (1 = U, 2 = Li, 3 = Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).
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tree edge family cop par par2 tau
1 1,5 5 F 5.23 0.00 0.47
1 1,2 5 F 1.19 0.00 0.13
1 5,4 214 Tawn2_180 1.59 0.40 0.20
1 5,7 10 BB8 1.90 0.97 0.30
1 7,3 114 Tawn180 1.82 0.56 0.31
1 3,6 2 t 0.73 8.36 0.53
2 5,2;1 16 SJ 1.08 0.00 0.04
2 1,4;5 214 Tawn2_180 1.85 0.13 0.10
2 1,7;5 2 t -0.17 6.62 -0.11
2 5,3;7 2 t 0.00 8.34 0.00
2 7,6;3 9 BB7 1.45 0.20 0.26
3 2,4;1,5 16 SJ 1.12 0.00 0.06
3 2,7;1,5 2 t -0.03 12.36 -0.02
3 1,3;5,7 26 J90 -1.19 0.00 -0.10
3 5,6;7,3 114 Tawn180 1.33 0.16 0.08
4 4,7;2,1,5 2 t -0.06 6.21 -0.04
4 2,3;1,5,7 0 I 0.00 0.00 0.00
4 1,6;5,7,3 36 J270 -1.05 0.00 -0.03
5 4,3;2,1,5,7 24 G90 -1.15 0.00 -0.13
5 2,6;1,5,7,3 20 SBB8 1.58 0.89 0.16
6 4,6;2,1,5,7,3 37 BB1_270 -0.19 -1.06 -0.14

Table 7.10.: Vine 3: Fitted pair copulas for the R-vine tree structure in seven dimensional
case. (1 = U, 2 = Li, 3 = Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).

140



7. Application on Uranium Data Set

Figure 7.14.: Vine 3: 7-dimensional R-vine tree structure and pair copula families used.
(1 = U, 2 = Li, 3 = Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).
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In Table 7.11 we see the comparison of the three models, D-vine, C-vine and R-vine.

type AIC BIC log-lik
Vine 1 D -1732.91 -1571.46 902.45
Vine 2 C -1813.44 -1665.45 939.72
Vine 3 R -1782.18 -1634.18 924.09

Table 7.11.: Comparison of three models, D-vine, C-vine, R-vine in terms of AIC, BIC
and log-likelihood.

Univariate Conditional Sampling

In this part we sample from the univariate distributions using the 7-dimensional D-vine,
C-vine and R-vine structure. We are interested in sampling from and expressing the
distribution of

1. (XU |XLi = xLi, XCo = xCo, XK = xK, XCs = xCs, XSc = xSc, XTi = xTi),

2. (XSc|XU = xU , XLi = xLi, XCo = xCo, XK = xK, XCs = xCs, XTi = xTi)

3. (XTi|XU = xU , XLi = xLi, XCo = xCo, XK = xK, XCs = xCs, XSc = xSc).

These distributions are chosen, since none of them can be expressed directly when using
Vine 1 (D-vine). On the other hand, in Vine 2 (C-vine) all of them can be expressed
directly and in Vine 3 (R-vine) only the second one can be expressed directly.

For the conditioning variables we choose low, medium and large values. Low values
correspond to 5% quantile, medium to mean and large to 95% quantile from the
summary table shown in Table 7.7. We present the values in Table 7.12.
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F Values used

1
low xLi = 1.079, xCo = 0.820, xK = 3.998, xCs = 1.713, xSc = 0.763, xTi = 3.381
med. xLi = 1.499, xCo = 1.028, xK = 4.223, xCs = 2.042, xSc = 1.022, xTi = 3.673
lar. xLi = 1.834, xCo = 1.243, xK = 4.396, xCs = 2.470, xSc = 1.320, xTi = 3.993

2
low xU = 0.431, xLi = 1.079, xCo = 0.820, xK = 3.998, xCs = 1.713, xTi = 3.381
med. xU = 0.854, xLi = 1.499, xCo = 1.028, xK = 4.223, xCs = 2.042, xTi = 3.673
lar. xU = 1.541, xLi = 1.834, xCo = 1.243, xK = 4.396, xCs = 2.470, xTi = 3.993

3
low xU = 0.431, xLi = 1.079, xCo = 0.820, xK = 3.998, xCs = 1.713, xSc = 0.763
med. xU = 0.854, xLi = 1.499, xCo = 1.028, xK = 4.223, xCs = 2.042, xSc = 1.022
lar. xU = 1.541, xLi = 1.834, xCo = 1.243, xK = 4.396, xCs = 2.470, xSc = 1.320

Table 7.12.: The values used for conditioning variables in univariate conditional sam-
pling in 7 dimensions.

As in the three dimensional case, we transform the variables from x-scale to the
u-scale with probability integral transform, sample with our program, transform the
variables back to the x-scale as explained in the beginning of this chapter and plot
the densities and distributions obtained by kernel density estimation. The densities
together with the distributions for all three types of vines are displayed in Fig. 7.15 for
the first conditional distribution, in Fig. 7.16 for the second conditional distribution and
in Fig. 7.17 for the third conditional distribution. We can again see from the plots that
with a change in the conditioning values, there is not only a change in the mean but
also in the shape of the distribution.
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Figure 7.15.: Estimated densities and distribution functions in the seven dimensional
case of (XU |XLi = xLi, XCo = xCo, XK = xK, XCs = xCs, XSc = xSc, XTi = xTi). The
rows correspond to different vine with order D-vine, C-vine and R-vine. First column
corresponds to density function, the second to distribution function. In each plot the
densities and distributions for low, medium and large conditioning values are displayed
together. The sample size is n = 10000.
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Figure 7.16.: Estimated densities and distribution functions in the seven dimensional
case of (XSc|XU = xU , XLi = xLi, XCo = xCo, XK = xK, XCs = xCs, XTi = xTi). The
rows correspond to different vine with order D-vine, C-vine and R-vine. First column
corresponds to density function, the second to distribution function. In each plot the
densities and distributions for low, medium and large conditioning values are displayed
together. The sample size is n = 10000.
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Figure 7.17.: Estimated densities and distribution functions in the seven dimensional
case of (XTi|XU = xU , XLi = xLi, XCo = xCo, XK = xK, XCs = xCs, XSc = xSc). The
rows correspond to different vine with order D-vine, C-vine and R-vine. First column
corresponds to density function, the second to distribution function. In each plot the
densities and distributions for low, medium and large conditioning values are displayed
together. The sample size is n = 10000.
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Bivariate Conditional Sampling

Here we sample from the bivariate distribution using the 7-dimensional D-vine, C-vine
and R-vine structure. We are interested in knowing the distribution and sampling from
(XCo, XSc|XU = xU , XLi = xLi, XK = xK, XCs = xCs, XTi = xTi). For the conditioning
variables we choose low, medium and large values as in the previous part. We present
the values in Table 7.13.

Conditioning setup Conditioning values used
low xU = 0.431, xLi = 1.079, xK = 3.998, xCs = 1.713, xTi = 3.381
medium xU = 0.854, xLi = 1.499, xK = 4.223, xCs = 2.042, xTi = 3.673
large xU = 1.541, xLi = 1.834, xK = 4.396, xCs = 2.470, xTi = 3.993

Table 7.13.: The values used for conditioning variables in bivariate conditional sampling
in 7 dimensions.

The densities for all three types of vines are displayed in Fig. 7.18 and the contour plots
in Fig. 7.19
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Figure 7.18.: Estimated densities for the distribution of (XCo, XSc|XU = xU , XLi =

xLi, XK = xK, XCs = xCs, XTi = xTi) for D-vine, C-vine and R-vine, in rows. The
columns correspond to different conditioning values in order low, medium and large.
The sample size is n = 10000.
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Figure 7.19.: Contour plots of estimated densities of (XCo, XSc|XU = xU , XLi = xLi, XK =

xK, XCs = xCs, XTi = xTi) for D-vine (top row), C-vine (middle row) and R-vine (bottom
row). The columns correspond to different conditioning values: low (left column),
medium (middle column) and large (right column). The sample size is n = 10000.

Effect of Conditioning Values of a Single Covariate on a Conditional
Kendall’s Tau, where all Other Covariates are Chosen to be Low, Medium
and Large Values

Moreover, we would like to see how the conditional Kendall’s Tau is changing
when changing the values of different conditioning variables. We are interested in
τCo,Sc|U,Li,K,Cs,Ti. Under the simplifying assumption τ̂Co,Sc|U,Li,K,Cs,Ti = 0.37, i.e. we first
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choose an R-vine model in which the edge in the last tree is (Co, Sc; U, Li, K, Cs, Ti) and
then compute the estimation of the Kendall’s Tau. The model is presented in Table 7.14
and its vine tree structure in Fig. 7.20. This estimate of Tau will be depicted in the plots
by black line. We start with changing the values for XU having the values for remaining
conditioning variables low, medium and large. We repeat this for the other 4 variables
(XLi, XK, XCs, XTi).

tree edge family cop par par2 tau
1 6,7 2 t 0.62 6.35 0.43
1 7,5 10 BB8 1.90 0.97 0.30
1 5,4 214 Tawn2_180 1.59 0.40 0.20
1 4,2 16 SJ 1.19 0.00 0.10
1 2,1 5 F 1.19 0.00 0.13
1 1,3 2 t 0.09 3.87 0.06
2 6,5;7 214 Tawn2_180 1.54 0.21 0.12
2 7,4;5 2 t -0.09 6.32 -0.06
2 5,2;4 14 SG 1.09 0.00 0.08
2 4,1;2 114 Tawn180 1.64 0.28 0.16
2 2,3;1 0 I 0.00 0.00 0.00
3 6,4;7,5 40 BB8_270 -1.82 -0.86 -0.20
3 7,2;5,4 2 t -0.04 10.63 -0.03
3 5,1;4,2 5 F 4.54 0.00 0.42
3 4,3;2,1 30 BB8_90 -1.25 -0.97 -0.10
4 6,2;7,5,4 20 SBB8 1.96 0.74 0.16
4 7,1;5,4,2 2 t -0.15 11.86 -0.10
4 5,3;4,2,1 4 G 1.23 0.00 0.19
5 6,1;7,5,4,2 36 J270 -1.12 0.00 -0.06
5 7,3;5,4,2,1 5 F 3.06 0.00 0.31
6 6,3;7,5,4,2,1 2 t 0.55 14.33 0.37

Table 7.14.: Fitted model in order to obtain the estimate of Kendall’s Tau under the
simplifying assumption. The model shows τ̂Co,Sc|U,Li,K,Cs,Ti = 0.37 under the simplifying
assumption. The value is used for comparison with the changes in Kendall’s Tau when
changing the conditioning variables. (1 = U, 2 = Li, 3 = Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).
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Figure 7.20.: Vine tree structure and pair copula families used in the model fitted in
order to obtain the Kendall’s Tau τ̂Co,Sc|U,Li,K,Cs,Ti under the simplifying assumption. (1
= U, 2 = Li, 3 = Co, 4 = K, 5 = Cs, 6 = Sc, 7 = Ti).

The approach is the same as in the 3-dimensional case. To assess how the conditional
Kendall’s Tau changes when changing the conditional variables, we compute the
average of estimates of τCo,Sc|U,Li,K,Cs,Ti together with its 90 % confidence intervals at 31
equally spaced grid points in the range of e.g. xU by sampling n = 1000 samples from
(UCo, USc|UU , ULi, UK, UCs, UTi) R = 100 times using HMC. The remaining conditioning
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variables have low, medium or large values. We summarize the values in Table 7.15.

Changing Values for remaining conditioning variables

XU

low xLi = 1.079, xK = 3.998, xCs = 1.713, xTi = 3.381
medium xLi = 1.499, xK = 4.223, xCs = 2.042, xTi = 3.673
large xLi = 1.834, xK = 4.396, xCs = 2.470, xTi = 3.993

XLi

low xU = 0.431, xK = 3.998, xCs = 1.713, xTi = 3.381
medium xU = 0.854, xK = 4.223, xCs = 2.042, xTi = 3.673
large xU = 1.541, xK = 4.396, xCs = 2.470, xTi = 3.993

XK

low xU = 0.431, xLi = 1.079, xCs = 1.713, xTi = 3.381
medium xU = 0.854, xLi = 1.499, xCs = 2.042, xTi = 3.673
large xU = 1.541, xLi = 1.834, xCs = 2.470, xTi = 3.993

XCs

low xU = 0.431, xLi = 1.079, xK = 3.998, xTi = 3.381
medium xU = 0.854, xLi = 1.499, xK = 4.223, xTi = 3.673
large xU = 1.541, xLi = 1.834, xK = 4.396, xTi = 3.993

XTi

low xU = 0.431, xLi = 1.079, xK = 3.998, xCs = 1.713
medium xU = 0.854, xLi = 1.499, xK = 4.223, xCs = 2.042
large xU = 1.541, xLi = 1.834, xK = 4.396, xCs = 2.470

Table 7.15.: Summary of the values for the conditioning variables when studying the
change of conditional Kendall’s Tau. In the first column the variable that is changing is
shown. In the third one we present the values for the remaining variables in case of
low, medium and large setup.

We present how the estimates τ̂Co,Sc|U,Li,K,Cs,Ti change when changing the conditioning
variable XU , XLi, XK, XCs in Fig. 7.21. When changing the conditioning variable XTi,
we can compare the results in 7 dimensions with the 3-dimensional one from previous
subsection. We present the results of τ̂Co,Sc|Ti together with the ones of τ̂Co,Sc|U,Li,K,Cs,Ti

for D-vine, C-vine and R-vine together in Fig. 7.22. In the 3-dimensional case we
do not have any other conditional variables than XTi, therefore there is not any low,
medium and large case. From both figures it can be seen, that the C-vine structure was
really constructed so that the simplifying assumption is violated as little as possible,
since there are some Kendall’s Taus that are not varying much with the change in the
conditioning variables.
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Figure 7.21.: Change of Kendall’s Tau when changing a single variable with all other
variables being set to low, medium and large values. The 90% confidence interval
together with the average of the estimates are shown for τCo,Sc|U,Li,K,Cs,Ti. In rows,
different conditioning variable is changing, in order XU , XLi, XK, XCS. In columns,
different vine is used, D-vine (left), C-vine (middle) and R-vine (right). In every plot
the results for low, medium and large conditioning values is compared with the one
under the simplifying assumption τ̂Co,Sc|U,Li,K,Cs,Ti = 0.37 (black line).
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Figure 7.22.: Change of Kendall’s Tau in seven dimensions compared to the three-
dimensional one. The 90% confidence interval together with the average of the estimates
are shown for τCo,Sc|Ti in the upper left corner and for τCo,Sc|U,Li,K,Cs,Ti in the remaining
parts. Different vines are used in seven-dimensional case, D-vine (upper right), C-vine
(lower left) and R-vine (lower right). In every plot the results for low, medium and
large conditioning values are compared (except of the 3-dim. case in which there
is not any low, medium, large case) with the one under the simplifying assumption
τ̂Co,Sc|U,Li,K,Cs,Ti = 0.37 (black line).
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A. Further Plots from the Simulation Study

The following additional plots and results are related to the Specification 1 shown in
the first row of Fig. 6.4 in the Simulation Setup 1.

A.1. Estimation of Cumulative Distribution Functions

Not only the conditional density function can be compared, but also cumulative
distribution functions. In this section we compare the true theoretical cumulative
distribution function of UC1 |UC2 = uC2

rα
with an estimate based on the sample ui(u

C2
rα
),

i = 1, . . . , n. We use again the kernel estimation together with the transformation trick
as in the density estimation in Simulation Study, however, this time we estimate the
probability distribution function. In the following figures, we, likewise, compare the
estimates of samples with sizes n = 1000, 5000, 10000. The comparison of distributions
are shown in Fig. A.1.
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Figure A.1.: Comparison of distribution functions for the Specification 1 in Simulation
Setup 1. Columns correspond to 3 chosen iterations out of 100 and rows to different
conditioning values, in order low, medium and large. The true theoretical distribution
is compared to kernel estimates based on samples with sizes n = 1000, 5000, 10000 as
seen in the legend in the upper left corner. Beneath each plot we show the values of
conditioning variables.
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A. Further Plots from the Simulation Study

A.2. Histograms of Values Transformed by Probability Integral
Transform

In the Simulation Study, to measure the goodness-of-fit, we use the Kolmogorov-
Smirnov test to assess whether the transformed data vi(u

C2
rα
) := F(ui(u

C2
rα
)|UC2 = uC2

rα
),

in which ui(u
C2
rα
), i = 1, . . . , n are the samples, are uniformly distributed. However, this

can be assessed also visually by means of histograms. The histograms are approximate
representations of distributions and the one for uniformly distributed data has the bars
almost exactly the same height.

We present the histograms given different conditioning values as well as different
sample sizes. The histograms of transformed values vi(u

C2
rα
) of samples with sizes

n = 1000, 5000 and 10000 are shown in Fig. A.2, Fig. A.3 and Fig. A.4, respectively.
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Figure A.2.: Histograms of transformed values vi(u
C2
rα
) of samples with size n = 1000

for the Specification 1 in Simulation Setup 1. Columns correspond to 3 chosen iterations
out of 100 and rows to different conditioning values, in order low, medium and large.
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Figure A.3.: Histograms of transformed values vi(u
C2
rα
) of samples with size n = 5000

for the Specification 1 in Simulation Setup 1. Columns correspond to 3 chosen iterations
out of 100 and rows to different conditioning values, in order low, medium and large.
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Figure A.4.: Histograms of transformed values vi(u
C2
rα
) of samples with size n = 10000

for the Specification 1 in Simulation Setup 1. Columns correspond to 3 chosen iterations
out of 100 and rows to different conditioning values, in order low, medium and large.
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