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Abstract

An omnipresent conflict in aircraft design optimization is the need for fast yet accurate analysis tools. For a
broad search in a design space, a trade-off is required. One approach is to perform the broad search using
low-fidelity methods and to perform higher-fidelity calculations only at a few design points. The knowledge
gained at these higher-fidelity data points can be formulated as correction factors which are to be applied
to the low-fidelity methods to approximate the higher-fidelity results. This paper explores the potential to
transfer this knowledge across the entire design space considered, focusing on aerodynamic calculations and
mass estimates of a scaled UAV wing. The paper presents curve fits which reveal relationships between
the correction factors and specific aircraft parameters. On top of that, adaption-based multi-fidelity modeling
with a successively increasing number of higher-fidelity samples is applied, in order to explore the potential
for automatic, successive knowledge build-up and transfer. The results of the study indicate the feasibility
of gradual knowledge build-up and transfer for the considered correction factors. Predictions seem to be
possible with high accuracy already on the basis of a few higher-fidelity data points. Furthermore, the study
addresses two issues in the context of the application of multi-fidelity methods to the problem at hand. The
first issue is that, to date, there is a lack of designated semi-empiric wing mass estimation methods for the
UAV class in question. The study uses semi-empiric formulas from other aircraft classes and demonstrates
that the associated correction factors can be related to specific aircraft parameters. The second issue refers
to the accuracy of the higher-fidelity model. Typically, multi-fidelity models try to approximate the higher-fidelity
solution as accurate as possible. However, the "higher-fidelity" model itself is again only an estimation of the
real behavior, and may yield physically inexplicable results. This paper presents an approach, which does
not approximate the higher-fidelity aerodynamic data itself. Instead, it approximates a fit of the higher-fidelity
aerodynamic polar, which incorporates a-priori knowledge about the expected shape of the polar.
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1. Introduction
Aircraft design optimization is a very time-consuming task as it involves a high number of system
model evaluations. This requires fast system models. Typically, low-fidelity methods are used which
are often semi-empiric estimations that capture the basic impact of the main design drivers. However,
the simplified models can represent physics only to a limited extent. On the other hand, higher-fidelity
methods, which represent physics more accurately, are computationally more expensive and there-
fore, not appropriate for an extensive search of a design space. One approach to combine the
advantages of both is multi-fidelity modeling. Here, many samples are evaluated using the computa-
tionally inexpensive low-fidelity models. The results provide information about the principal trends of
the underlying system behavior. Additionally, a few samples are evaluated by means of higher-fidelity
models. These provide information about how the low-fidelity model needs to be adapted in order to
approximate the higher-fidelity results. Eventually, the results obtained from both fidelity sources are
combined into one final prediction model.
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The first part of this paper presents the outcomes of the initial efforts to understand how and where
in the design space the low-fidelity results tend to deviate from the higher-fidelity results. For this pur-
pose, relationships between individual aircraft parameters and the obtained correction factors were
studied in a first step. Relatively simple relationships were found which are presented in the form of
curve fits in section 6.. Since the computational effort of the higher-fidelity methods applied in this aca-
demic example is still manageable, a Latin Hypercube Sample of the design space was generated
and both low-fidelity and higher-fidelity methods were applied to all sample points. This allowed to
generate sufficient sample points to perform well-informed manual curve fitting.

Even though manual curve fitting was successfully applied in this study, is has several drawbacks.
Manual curve fitting is laborious and only a limited number of parameters can be visualized in a 3D
representation at the same time. Indeed, more than two parameters may be included in the fit, but
the engineer needs to postulate the final form of the fit equation. That is, a-priori knowledge is re-
quired about the interlinked effects of multiple parameters. However, this a-priori knowledge may not
always be available. For instance, in this study, it is not known a-priori on which aircraft parameters
the correction factors depend and whether there are interlinked dependencies between them. When
no a-priori knowledge is available more sophisticated methods must be sought. Furthermore, manual
curve fitting is not suited to be used inside an automated design optimization process as it requires
a human in-the-loop. In summary, whereas manual curve fitting allows to get insight into simple rela-
tionships, it struggles when the relationships get more complex, more dimensions are involved, and
no a-priori knowledge is available.

Non-parametric machine learning (ML) provides a means to overcome the disadvantages of curve
fitting outlined above. It allows to perform curve fitting in a more generic, high-dimensional space with-
out the need for a-priori knowledge about the impact of specific parameters on the output parameter.
Adaption-based multi-fidelity modeling can be combined with various machine learning techniques.
A machine learning model can be trained to predict the adaptive corrections which need to be applied
on available low-fidelity results to approximate the associated higher-fidelity solutions.

Usually, a design is subject to many changes during the entire design process. This applies not
only to the initial optimization phase but also later when, for instance, requirements are changed
and the design may need to be re-evaluated and re-sized. This means, higher-fidelity analyses
are typically not performed once at the beginning of an aircraft design project, but rather gradually
as the design evolves and gets more and more refined. A multi-fidelity optimization approach should
therefore incorporate a successive inclusion of higher-fidelity data points, as performed by [1] and [2].

The second part of this paper will apply adaption-based multi-fidelity modeling to the aerodynamic
calculations and mass estimates of a scaled UAV wing. The approach includes a supervised ma-
chine learning model, which gradually learns the correction factors between the low-fidelity and the
higher-fidelity models, based on a successively increasing set of higher-fidelity samples.

In summary, the goals of this study are:

• Explore relationships between correction factors and aircraft parameters

• Investigate the usability of non-dedicated wing mass estimation methods for the UAV class
considered

• Prevent unquestioned imitation of higher-fidelity aerodynamic results; provide a method with a
postulated extent to which the lower-fidelity results are to be corrected

• Investigate potential for automated knowledge transfer during successive knowledge build-up

In the multi-fidelity context, levels of fidelity are always defined relative to each other. That is, one
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Table 1 – Parameter space considered in this study.

Parameter Lower boundary Upper boundary Unit
Wing aspect ratio AR 5 15 −
Wing reference area Sre f 0.2 3.0 m2

Design airspeed Vdesign 15 30 ms−1

Design altitude above MSL hdesign 0 5000 m

level is denoted as "low-fidelity", and the the other level as "higher-fidelity", regardless of the ac-
tual physical level of fidelity of the associated tools. In this study, the physical level of fidelity of the
"higher-fidelity" methods applied is actually medium. From now on, the two levels are referred to as
"low-fidelity" and "medium-fidelity".

The next section introduces the scalable wing geometry and the parameter space considered in
this study. Section 3.briefly presents the tools used for wing aerodynamic calculations. Section 4.

outlines the wing mass estimation methods used. Following completion, section 5. presents the
determination of the correction factors. The obtained curve fits are presented in section 6.. Section 7.

briefly describes the machine learning techniques used. The setup for the gradual training of the
ML models is presented in section 8.and the results are shown in section 9.. Finally, a conclusion and
outlook are provided in sections 10.and 11., respectively.

2. Wing Geometry Used and Parameter Space Considered for the Analyses
The basic wing planform used for this study is depicted in Fig. 1. Two differently scaled versions are
illustrated. The scaling of the wing is performed based on specified values of the wing reference area
Sre f and the aspect ratio AR. During the scaling of the wing, other wing parameters such as taper ratio,
sweep of the leading edge, dihedral, twist, etc. are held constant. The wing area and aspect ratio are

(a) Sre f = 1.0m2 and AR = 15; top view (b) Sre f = 1.5m2 and AR = 8; top view

(c) Sre f = 1.0m2 and AR = 15; front view (d) Sre f = 1.5m2 and AR = 8; front view

Figure 1 – Wing planform scaled according to different values for Sre f and AR.

two of the four parameters which define the parameter space considered in this study. The remaining
parameters are the design airspeed Vdesign and the design altitude hdesign. Whereas Sre f and AR have
a direct influence on the wing geometry, Vdesign and hdesign have an impact on the operating conditions,
in particular, on the Reynolds number. The boundaries of the entire considered parameter space are
shown in Table 1. In order to obtain samples which are well distributed across the entire parameter
space, a Latin Hypercube Sampling (LHS) with 500 samples was performed. Samples resulting in
operating Reynolds numbers which lie outside the region of available airfoil data were discarded.
After this, 450 samples remained. For each sample, the basic wing planform from Figure 1 was
scaled according to the values of Sre f and AR of the associated sample.

3. Wing Aerodynamic Calculation Methods Applied
This section introduces the methods used for the calculation of the wing aerodynamics. First, the
medium-fidelity tool is briefly presented. Following completion, the low-fidelity formulas are provided.
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3.1 Medium-Fidelity Wing Aerodynamics Calculations
The medium-fidelity tool used for aerodynamic calculations is PAWAT (Propeller and Wing Aerody-
namics Tool) [3, 4], which is based on a modified three-dimensional lifting line theory. Classical
lifting line theory uses the two-dimensional Kutta-Joukowski law. In contrast, PAWAT applies a three-
dimensional vortex lifting law, which is an adaption described by [5]. PAWAT requires airfoil data which
must be calculated beforehand, e.g., by means of XFOIL [6]. The aerodynamic airfoil data needs to
be provided in the form of multidimensional data tables, which depend on the angle of attack, the
Reynolds number, the Mach number, and the flap deflection angle. PAWAT can handle nonlinear and
viscous airfoil data.

For further information regarding theory and implementation of PAWAT, the reader is referred to [3]
and [4].
The aerodynamic panel data obtained by means of PAWAT are required by the medium-fidelity tool
used for the wing mass calculation.

3.2 Low-Fidelity Wing Aerodynamics Calculations
The low-fidelity wing aerodynamic calculations are based on simple assumptions for the aerodynamic
polars. The cL over α curve of the wing is assumed to have a linear slope. The lift curve slope cLα is
obtained by means of a semi-empiric formula provided by [7]:

cLα =
a0 ·AR

a0
π
+

√(
AR

cosΛ50

)2
+
(a0

π

)2 − (AR ·Ma)2

·
(

1
57.3

)
(1)

where Λ50 is the sweep angle at the half chord line in degrees and AR the aspect ratio. Since no
compressibility effects are considered, Ma in Eq. 1 is set to zero. Furthermore, a0 is obtained from
thin airfoil theory, which yields a0 = 2π. The lift polar is approximated by a linear expression as a
function of the angle of attack α:

cL(α) = cLα · (α −αcL,0) (2)

where αcL,0 denotes the angle of attack at zero lift. According to [8], αcL,0 is equal to the airfoil’s zero
lift angle of attack at the underlying Reynolds number. The airfoil data for various Reynolds numbers
is obtained by means of XFOIL [6].

The drag polar of the wing is approximated as a quadratic parabola (k2 is set to 1 for the low-fidelity
polar estimation), as a function of cL:

cD = cD0 + k1 · c2
L +(k2 −1) · cL (3)

where cD0 is the wing’s zero lift drag coefficient. According to [8], cD0 can be approximated as the
airfoil’s zero lift drag coefficient cd0, which is obtained from the airfoil data. The factor k1 in Eq. 3 is
obtained by:

k1 =
1

π ·AR · e
(4)

where e is the oswald factor which is assumed to be 0.98 in this study. The use of the term (k2 − 1)
instead of just k2 is due to numerical reasons and serves to avoid division by zero in the implemented
code. For the low-fidelity polar estimation, k2 is set to 1. Hence, Eq. 3 describes a symmetric polar.

4. Wing Mass Estimation Methods Applied
This section presents the wing mass estimation methods used in this study. First, the medium-fidelity
tool is introduced. Following completion, two semi-empiric formulas are presented.
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Figure 2 – Schematic build up of a hollow moulded wing [9].

Figure 3 – Wing spar gemetry [9].

4.1 Medium-Fidelity Wing Mass Estimates
The medium-fidelity wing mass estimation method was developed by [9]. It can be used to calculate
the mass of a hollow moulded wing, as depicted in Fig. 2. The main components of the wing are a
sandwich shell, a main spar and additional webs. Whereas the shell is designed to carry the torsion
load, the main spar is assumed to carry the entire bending load. The carbon layer of the shell is sized
based on a method developed by [10]. The equation for the thickness dimensioning of the carbon
layer at the root chord is:

tcarbonlayer =
Mt ·b ·U

8 ·φ ·G ·A
(5)

where Mt denotes the torsion moment at the root chord, b the span, U the circumference of the root
airfoil chord, A the surface area of the root airfoil chord, G the shear modulus, and φ the twist angle.
The carbon layer thickness obtained is rounded up to the next available fabric thickness.

The method [9] used for the sizing of the spar is based on [11]. The calculation bases on the wing
spar geometry depicted in Fig. 3. The thickness ts of the spar caps is set equal to the sandwich core
thickness. The sandwich core material thickness, the width of the wing closing web, the area mass of
the cover and the inner sandwich layer are not sized by the method. These parameters are assumed
to be fixed. The spar cap width is calculated by:

ws =
6 ·Mb ·H

σb · (H3 −h3)
(6)

where Mb is the bending moment and σb the maximum allowable bending stress. The spar cap width
is determined for every wing section.

The spar’s shear web is composed of balsa wood, which is coated with glass fiber in ±45° orien-
tation. The shear load is carried by the glass fiber coating. The area weight of the glass fiber fabric
for each side of the web is determined by:

ms =
Q

g · kτ ·h
(7)

5



Knowledge Transfer during the Analysis of Scaled UAV Wings

where Q is the shear force and g the acceleration due to gravity. The factor kτ is a generalized dimen-
sioning parameter for E-glass fabric. Based on [12] and in accordance with [9], kτ is set to 10km.

The final wing mass mwing,Roessler also includes estimates of the required glue and paint mass. A
manufacturing skill factor is included, which has an influence on the amount of glue needed and the
fiber volume coefficient obtained.

For more information regarding the medium-fidelity wing mass estimation method, the reader is re-
ferred to [9].

4.2 Low-Fidelity Wing Mass Estimates
No semi-empiric wing mass estimation formula was found, which has been developed specifically
for the UAV class considered in this study (< 50kg). Hence, formulas, which have originally been
developed for other aircraft classes, are used and compared in this study. The first low-fidelity wing
mass estimation method used in this paper is given by [13]:

mwing,Gundlach = 0.0038 · (NZ ·mTO)
1.06 ·AR0.38 ·S0.25

re f · (1+λ )0.21 · (t/c)−0.14
root [kg] (8)

where NZ denotes the ultimate load factor, mTO the maximum takeoff mass in kg, AR the aspect ratio,
Sre f the wing reference area in m2, λ the taper ratio, and (t/c)root the thickness to chord ratio at the
wing root. The equation was derived based on sailplanes ranging from 250 to 889kg.

The second wing mass estimation formula considered in this paper is provided by [14]:

mwing,Raymer = 0.036 ·S0.758
re f ·m0.0035

f uel ·
(

AR
cos2 Λ25%

)0.6

·qc
0.006 ·λ 0.04 ·

(
100 · t/c
cosΛ25%

)−0.3

· (NZ ·mTO)
0.49 [lb]

(9)
where Sre f denotes the wing reference area in ft2, AR the aspect ratio, qc the dynamic pressure at
cruise in lb ft−2, λ the wing taper ratio, t/c the thickness-to-chord ratio, NZ the ultimate load factor,
and mTO the flight design gross weight in lb. According to [14], the equation is applicable to general
aviation aircraft. As the wing in this study does not carry any fuel, m f uel in Eq. 9 is set to 1 so its effect
is ignored. Since the wing planform of this study has multiple wing segments with individual sweeps,
a surrogate sweep angle needs to be determined for the entire wing so it can be inserted in Eq. 9.
For this purpose, a weighted average value is determined according to:

Λ̄25% =
bsegment ·Λ25%,segment

b
(10)

where b denotes the span of a segment or of the entire wing, respectively. There may be several
ways to determine a surrogate sweep for a wing with multiple individually swept segments. Indeed,
the formula used to calculate this sweep may affect the accuracy of the estimation obtained by Eq. 9.
However, in the context of this study, it is irrelevant how the surrogate sweep is determined. A different
method to determine Λ̄25% will just result in different correction factors. The correction factors basically
correct the error Eq. 9 makes with regard to the medium-fidelity tool. Errors which are artificially
introduced in Eq. 9 (e.g., inaccurate Λ̄25%, use of Λ̄50% instead of Λ̄25%, inserting mTO in kg instead
of lb,...) are just additional errors to be corrected by the correction factors. However, the calculation
of the surrogate sweep must be consistent throughout the determination and usage of the correction
factors.

5. Determination of the Correction Factors
A very popular adaption-based multi-fidelity method is the multiplicative scaling approach as pre-
sented in [15]. In this approach, correction factors are obtained by the fraction of medium-fidelity (in-
dex PAWAT) and low-fidelity solution (index LF) as a function of x = {x1, ...xp}, which contains the
constellation of the p input variables:

β (x) =
yPAWAT(x)

yLF(x)
(11)
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For any given x, the scaling function β (x) specifies how the low-fidelity solution needs to be corrected
to obtain the corresponding medium-fidelity solution.

To estimate β (x) at points where it has not been calculated, various options are possible. [15] propose
a sensitivity-based approach, where the correction factors are assumed to vary linearly in space. [16]
and [17] demonstrated the inclusion of second-order information to approximate the scaling function.
This paper, however, will apply more generic methods from the field of supervised machine learn-
ing to predict the correction factors at arbitrary points in the design space. A comparison of three
machine learning methods is carried out: decision tree ensembles, support vector machines and
Gaussian process regression. The latter has already been used in the context of variable fidelity
optimization, e.g., in [18–20].

For the wing aerodynamic calculations, the multiplicative scaling approach presented above is modi-
fied. It is important to emphasize that the medium-fidelity solutions are not the all-encompassing truth
but rather just a more accurate estimation of the real behavior. This estimation may still be inaccurate,
e.g., due to numerical instabilities which occurred during the calculations, which is a common issue
in aerodynamic analyses. Therefore, an unquestioned approximation of the medium-fidelity solutions
is not always desirable. In fact, the engineer must be well aware of the extent to which a correction of
the low-fidelity results is actually appropriate. In line with this motivation, a different approach is cho-
sen for the multi-fidelity modeling of the wing aerodynamics. For the approach to be suitable within
automated analyses, it is important that no human in-the-loop is needed to decide to what extent
the low-fidelity solutions shall be adjusted. The approach proposed in this paper does not approxi-
mate every single data point of the higher-fidelity aerodynamic polars. Instead, it first postulates the
mathematical form of the expected lift polar to be the same as in the low-fidelity estimation:

cL f it,PAWAT = β1 · cLα · (α −β2 ·αcL,0) (12)

Then, this postulated equation is fitted on the data obtained by PAWAT to determine the unknown
parameters β1 and β2. These parameters basically specify how the initial estimations for cLα and αcL,0

need to be corrected.

For the drag polar, the procedure is similar. A general non-symmetric quadratic polar is postulated:

cD f it,PAWAT = β3 · cD0 +β4 · k1 ·C2
L +(β5 · k2 −1) · cL (13)

and the unknown parameters β3 to β5 are determined by fitting Eq. 13 to the data obtained by PAWAT.
The parameters β3 to β5 define how the initial estimations for cD0, k1 and k2 need to be corrected.

Figure 4 illustrates the concept of fitting the postulated aerodynamic polar equations to the data
obtained from PAWAT.

The wing mass correction factors are obtained by means of the unmodified multiplicative scaling
approach. The correction factors are given by:

β6,Gundlach =
masswing,Roessler

masswing,Gundlach
(14)

β6,Raymer =
masswing,Roessler

masswing,Raymer
(15)

The next section presents the correction factors for all wings, that have been designed according
to the samples introduced in section 2..

6. Curve-Fits of the Correction Factors
This section presents the results for the correction factors, which were obtained for various wing de-
signs. Figure 5 shows the fits obtained for the aerodynamic correction factors β1 to β5. Very good
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Figure 4 – Concept of fitting polars with postulated shapes to the data obtained from PAWAT.

fits were obtained for β1, β2, β4 and β5. For β1 and β2, some data points needed to be excluded in
order to obtain clean fits. Consequently, the fits are not valid in the regions where the data points
were excluded (Re < 1.7×105 for β1 and Re < 3.2×105 for β2). For β3, no fit was found. However, in
the region 2.8×105 < Re < 7.2×105, β3 can be approximated as 1. Apparently, for Reynolds numbers
below and above this interval, assuming cD0 = cd0 as in Eq. 3 results in a considerable error with
regard to the results obtained by PAWAT. Obviously, at these Reynolds numbers, some effects are
not captured by solely looking at the 2D airfoil data, which is retrieved using the Reynolds number at
the mean aerodynamic chord of the wing.

The equations for the fits of the aerodynamic correction factors are:

β1 = 0.1612 ·Re0.1666 ·AR−0.1225 −3.342×10−7 ·Re+0.00756 ·AR (16)

β2 = 0.8061+1.894×108 ·Re−1.594 (17)

β4 = 9.791 ·Re−0.2238 ·AR0.8243 +5.929×10−7 ·Re−0.1948 ·AR (18)

β5 = 0.8993 ·Re0.007461 ·AR−0.00243 (19)

Figure 6 shows the fits obtained for the wing mass correction factors β6,Gundlach and β6,Raymer. Very
good fits were obtained for both β6,Gundlach and β6,Raymer. This shows that either of the methods can
be used for the considered wing planform; a correction of the low-fidelity predictions appears to be
simply predictable based on Sre f and Vdesign.

The equations for the fits of the wing mass correction factors are:

β6,Gundlach = 0.6111+0.002931 ·V 1.965
design ·S1.403

re f (20)

β6,Raymer = 0.5505+0.0002084 ·V 2.479
design ·S0.9715

re f (21)

7. Machine Learning Models Applied
This section provides a brief description of the machine learning methods applied and is mostly
adapted from [21–24].

The goal of supervised machine learning for regression applications is to build a model which ac-
curately makes predictions about the value of a continuous variable (response variable) based on
provided input variables, denoted as predictors or features. The space defined by the predictors is
called predictor space. A point in this space is called sample. Samples with associated responses
used for the training of a model define the training data set.
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(a) Fit for β1, with excluded data points;
Adjusted R2 = 0.9702, MSE = 1.87×10−5.
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]

correction factors obtained
data points excluded from the fit

(b) Fit for β2, with excluded data points;
Adjusted R2 = 0.9913, MSE = 3.31×10−5.
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correction factors obtained

(c) No fit found for β3, however, for
2.8×105 < Re < 7.2×105, β3 can be

approximated as 1.

(d) Fit for β4; Adjusted R2 = 0.9829,
MSE = 3.0×10−3.

(e) Fit for β5; Adjusted R2 = 0.9690,
MSE = 2.9×10−7.

Figure 5 – Fits obtained for the aerodynamic correction factors β1 to β5. In the fit for β1, data points
with Re < 1.7×105 were excluded. In the fit for β2, data points with Re < 3.2×105 were excluded. For

β3, no fit was obtained.
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(a) Fit for β6,Gundlach; Adjusted R2 = 0.9126,
MSE = 3.6×10−1.

(b) Fit for β6,Raymer; Adjusted R2 = 0.9056,
MSE = 2.4×10−2.

Figure 6 – Fits obtained for the wing mass correction factors β6,Gundlach and β6,Raymer.

To mitigate overfitting, i.e., the lack of generalizability of a model to previously unseen data, 5-fold
cross-validation is used in this study. In k-fold cross-validation, the training data is randomly split into
k data sets (folds) of approximately equal size. The model is trained k times; each time a different
combination of k− 1 data sets is used for the model training. The respective remaining data set is
used as a validation data set. In this manner, 5 different values of the model error are obtained. The
model error is assessed by the mean squared error (MSE):

MSE =
1
N

N

∑
i=1

(yi − f̂ (xi))
2 (22)

where f̂ (xi) denotes the predicted response for the ith sample, yi the corresponding true response
and N the total number of used samples. By averaging the 5 MSE values obtained through cross-
validation, an estimate of the model error on new, unseen data is obtained.

The hyperparameters of the used machine learning methods are tuned by means of Bayesian opti-
mization. As an acquisition function, we use the expected improvement at a certain point given the
posterior distribution of the MSE. The Bayesian optimization stops after 30 iterations.

7.1 Decision Tree Ensembles
In decision trees, the model is built by splitting the predictor space into multiple regions. Each region
is assigned a designated response value, which equals the mean of all training samples belonging
to that region. The location of a split is denoted as node. The terminal nodes are called leaves.
The decision where to split the predictor space is based on recursive binary splitting. This top-down
approach successively divides the predictor space into pairs of regions [21]:

R1( j,s) = {X |X j < s} and R2( j,s) = {X |X j ≥ s} (23)

where X j denotes the jth predictor, and s the cutpoint along that predictor. A split is performed at that
j and s which lead to the greatest reduction in MSE, i.e., minimize the equation

NR1

N ∑
i: xi∈R1( j,s)

(yi − ŷR1)
2 +

NR2

N ∑
i: xi∈R2( j,s)

(yi − ŷR2)
2 (24)

Here, a sample is denoted by xi and its true response by yi. NR j is the number of samples belonging to
the jth region, and N the total number of samples. ŷR1 is the mean response for the training samples
in R1( j,s), and ŷR2 the mean response for the training samples in R2( j,s).

To counteract overfitting we apply three different methods to combine multiple decision trees into
one final regression model [22, 25, 26].
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7.1.1 Bagging
One method to combine multiple trees into one model is bootstrap aggregation (bagging). Here, many
subsets (bootstrapped training sets) of the training data are drawn via sampling with replacement.
An individual tree is fit on each bootstrapped subset. Final predictions are obtained by averaging the
predictions of all individual trees. [21]

7.1.2 Random Forests
Random forests are an extension of bagged trees. In bagged trees, all p predictors are available
to the algorithm at each split. In random forests, on the other hand, the algorithm may only use a
random subset of m predictors, where m∈1, ..., p. [21]

7.1.3 Boosting
In boosted trees, individual trees are built sequentially. Each tree learns from the errors made by
the respective previous tree(s). The procedure stops when a defined number of trees has been built.
The final model is a combination of all single trees. The boosting algorithm used in this study is
LSBoost. [21]

7.1.4 Tree Ensembles - Considered Hyperparameters
The tree ensemble hyperparamters considered in this paper are:

• Ensemble aggregation method — bagged/random forest, or LSBoost

• Number of trees — ∈ [10,500]

• Learning rate (only for LSBoost) — ∈ [1×10−3,1]

• Minimum leaf size — ∈ [1,max(2,⌊(number of samples/2)⌋)]

• Maximum number of splits — ∈ [1,max(2,number of samples−1)]

• Number of predictors to sample — ∈ [1,max(2,number of predictors)]

7.2 Support Vector Machines
In order to use Support Vector Machines (SVMs) for regression based on a set of samples x, a linear
hyperplane is constructed [21]:

f (x) = xT w+w0 (25)

which is as "flat" as possible, i.e. the norm of the fitting coefficients ||w||2 should be minimized.
Furthermore, the absolute error of the model should be less or equal than a threshold ε [22]:

|(yn − f (xn))| ≤ ε (26)

where xn is a given sample with response yn. The value of ε defines a range around the prediction
function f (x) in which errors are tolerated. This range is called ε-insensitive tube. Only absolute
errors that lie outside this tube cause a penalty in the model. This penalty is represented by the slack
variable ξ which denotes an error’s deviation from the tube. Even though the model allows such
deviations, they are to be minimized. Consequently, the objective function for SVM regression can be
written as [27]:

J(w) =
1
2
||w||2 +C

N

∑
n=1

|ξn| (27)

subject to [27]:
∀n : |yn − (xT

n w+w0)| ≤ ε + |ξn| (28)

The constant C is a positive numeric value that determines the trade-off between the flatness of f (x)
and the amount up to which errors larger than ε are tolerated. An increase in C leads to a higher
penalty for the errors ξ [23].
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This optimization problem is solved in its Lagrangian formulation. Non-negative multipliers αn and α∗
n

are introduced for each sample xn. The problem is solved by minimizing [22]:

L(α) =
1
2

N

∑
i=1

N

∑
j=1

(αi −α
∗
i )(α j −α

∗
j )G(xi,x j)+ ε

N

∑
i=1

(αi +α
∗
i )−

N

∑
i=1

yi(αi −α
∗
i ) (29)

subject to [23]:
N

∑
n=1

(αn −α
∗
n ) = 0

∀n : 0 ≤ αn ≤C

∀n : 0 ≤ α
∗
n ≤C

(30)

The Gram matrix G(xi,x j) is obtained based on the chosen kernel function. The kernel enlarges the
predictor space by including certain functions or combinations built from the predictors.

The resulting solution function to make predictions is [22]:

f (x) =
N

∑
n=1

(αn −α
∗
n )G(xn,x)+w0 (31)

where the parameter w0 is determined by exploiting the Karush-Kuhn-Tucker conditions [28, 29].

7.2.1 SVMs - Considered Hyperparameters
The SVM hyperparamters considered in this paper are:

• C — ∈ [1×10−3,1×103]

• ε — ∈ [1×10−3,1×102] · iqr(Y )/1.349; iqr(Y ): interquartile range of the response Y

• Kernel function — gaussian, linear, or polynomial

• Polynomial kernel function order (only for polynomial kernel) — ∈ [2,4]

7.3 Gaussian Processes
We define a Gaussian process (GP) [24]:

f (x)∼ GP(m(x),k(x,x′)) (32)

with mean function m(x) [24]:
m(x) = E[ f (x)] (33)

and covariance function (kernel) [24]:

k(x,x′) =Cov( f (x), f (x′)) = E[( f (x)−m(x))− ( f (x′)−m(x′))] (34)

The kernel functions considered in this study are specified in the next subsection.

We choose a zero mean function and add a set of basis functions that transform the original fea-
ture vector x into a new feature vector h(x). We obtain the regression model [24]:

g(x) = h(x)T w+ f (x) (35)

with w being a vector of basis function coefficients and f (x) a Gaussian process:

f (x)∼ GP(0,k(x,x′)) (36)

The considered basis functions are provided in the next subsection.

We augment the model to also consider Gaussian noise in the data and obtain the Gaussian process
regression model [24]:

P(yi| f (xi),xi)∼ N(yi|h(xi)
T w+ f (xi),σ

2
n ) (37)

with the noise variance σ2
n .
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7.3.1 GPs - Considered Hyperparameters
The GP hyperparameters used in this paper are:

• Basis function — none, constant, linear, or pure quadratic

• Kernel function with kernel hyperparameters— exponential, matern, or rational quadratic

• Initial value for the noise standard deviation σn — ∈ [1×10−4,max(1×10−3,10 ·σ(y))]

8. Setup for the Gradual Training
The goal of this study is to investigate the feasibility of automatic gradual knowledge build-up and
transfer for various correction factors. For this purpose, the size of the training data set is increased
gradually. To exclude cold-starts, the analysis considers a minimum training set size of 5. A portion of
20 % of the available 450 samples were excluded from the training set for testing. Consequently, the
gradual training started with 5 samples and stopped with (1− 0.2) · 450 = 360 samples. The perfor-
mance of the machine learning models is sensitive to the samples included in the training, especially
at small numbers of included training samples. A disadvantageous distribution of training samples
may not allow to capture the behavior of the response in all dimensions of the predictor space. In
order to mitigate the dependency on the actually included training samples, the random splitting into
training set and complementary test set was repeated 10 times. Independent gradual training and
hyperparameter tuning was performed on each of the 10 training sets. In this manner, 10 different
model performances were obtained after each gradual training step. To obtain an overall performance
at each gradual training step, the median MSE of all 10 trainings was evaluated. The used predic-
tors are the parameters from Table 1. Additionally, the wing’s Reynolds number is included, as it
represents the operating condition of a wing.

9. Results of the Gradual Training
This section presents the results of the gradual training, which was carried out as described above.
Figure 7 displays the gradual training of different machine learning models for the prediction of the
correction factors β1 −β4. The lower border of the greyed-out areas in the left plots of Fig. 7 marks
the loss (MSE) which is obtained by the associated curve fits from Fig. 5. In contrast to the ML
models, the curve fits were generated using all available 450 samples. Furthermore, the MSE of the
ML models is evaluated on previously unseen data, whereas the MSE of the curve fits is evaluated
on the very same data that was used for training. Moreover, in some curve fits, some data points
were excluded from the fits, because they were not compatible with the simple fit equations obtained.
Consequently, the comparison of the MSEs between curve fit and ML model is disadvantageous for
the ML models. However, the comparison still allows a conservative estimation of whether the ML
model yields smaller losses than the curve fit.

The left plot in Fig. 7 a) shows the loss obtained in the prediction of β1. At the starting conditions
with 5 training samples, all ML models present a median MSE of less than 1.0×10−3. With increasing
training set size, the GP model presents the fastest decrease in loss. Furthermore, the GP model
achieves a smaller loss than the corresponding curve fit after only approximately 50 included training
samples. The ensemble and SVM models, on the other hand, do not yield smaller losses than the
associated curve fit throughout the entire gradual training. The time needed for training and optimiza-
tion of the ML models for each training set size is presented on the right side of Fig. 7 a). The shortest
times are achieved by the GP model. The time of the GP model demonstrates a non-linear increase
with the number of included samples. At a large training set size, its training time is close to the one
of the ensemble model. The time of the ensemble model is rather insensitive to the training set size.
The SVM time shows an approximate linear increase with an increasing number of included train-
ing samples. Up to a training set size of about 100, the SVM time is between the ensemble and the
GP model. Above this number, the SVM model requires the longest time for training and optimization.

Figure 7 b) illustrates the gradual training for the prediction of β2. All models start with a loss of
less than 1.0× 10−2 at a training set size of 5. As before, the GP model demonstrates the steepest
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Figure 7 – Loss (MSE) and required training time for β1 −β4 using different machine learning models
and a gradually increasing training data set size. The plots are the median of 10 runs with individual,

random training sets.
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decrease in loss with increasing training set size. Also, it is the only model that achieves a smaller
loss than the corresponding curve fit. The times required for training and optimization are similar to
the case of β1.

Figure 7 c) displays the gradual training for the prediction of β3. No greyed-out area is included in
Fig. 7. This is because no fit was found in Fig. 5 for β3. The only statement that could be made was
that β3 can be estimated to 1 in the range of 2.8×105 < Re < 7.2×105. In Fig. 7 c), all models demon-
strate a median MSE of slightly greater than 1.0×10−1 at starting conditions with 5 included training
samples. The loss of the SVM model is not reduced significantly with increasing size of the training
set. The ensemble method yields a reduced loss only above approximately 100 included samples.
The GP model presents a reduced loss after about 50 included samples. In general, it achieves the
smallest loss throughout the entire gradual training. The training and optimization times are similar
to the previous cases.

Figure 7 d) presents the gradual training for the prediction of β4. All models begin with a median
MSE of approximately 1.0× 10−1 at starting conditions with 5 included training samples. The GP
model shows the strongest decrease in loss with increasing number of training samples. The loss
of the SVM model is mostly between that of the GP and the ensemble models. After only abut 25
included samples, the GP model yields a smaller loss than the associated curve fit. The SVM model
follows after about 50 samples but shows considerable oscillations in the loss when more samples
are included. Because of these oscillations, the SVM model occasionally yields a higher loss than
the associated curve fit for training set sizes greater than 50. The training and optimization times are
similar to the previous cases.

Figure 8 a) shows the gradual training for the prediction of β5. All models begin with a median MSE of
approximately 1.0×10−5 at starting conditions with 5 included training samples. The loss decreases
fastest in the GP model, followed by the SVM and then the ensemble model. The models demon-
strate a very strong initial decrease in loss but nearly stagnate, with some fluctuations, for training set
sizes greater than about 100. The only model that occasionally yields smaller losses than the curve
fit is the GP model. The training and optimization times are similar to the previous cases.

Figure 8 b) depicts the gradual training for the prediction of β6,Gundlach. All models begin with a median
MSE of about 5.0× 10−1 at starting conditions with 5 included training samples. Again, the loss de-
creases fastest in the GP model, followed by the SVM and then the ensemble model. The GP model
achieves a smaller loss than the corresponding curve fit after only approximately 25 included train-
ing samples. The SVM model follows with slightly more included samples and the ensemble model
requires approximately 100 samples. In general, the smallest loss throughout the entire gradual train-
ing is obtained by the GP model. The training and optimization times are similar to the previous cases.

Figure 8 c) shows the gradual training for the prediction of β6,Raymer. The results regarding the loss and
time are similar to the results obtained for β6,Gundlach. The left plot shows an offset towards smaller
losses compared to β6,Gundlach. However, as can be seen in Fig. 6, the range of the response is also
much smaller for β6,Raymer compared to β6,Gundlach.

10. Conclusion
This study addressed several issues regarding automated stepwise knowledge build-up and transfer
during the analysis of scaled UAV wings. The first part of the study presents the modeling methods
for the wing aerodynamic calculations and the wing mass estimation, which form the basis of this
work. For each discipline, methods of two different levels of fidelity are introduced.

Correction factors are determined which specify how the low-fidelity results need to be adjusted
to approximate the higher-fidelity results. Curve fits are developed to identify relationships between
the correction factors obtained and certain aircraft parameters.
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Figure 8 – Loss (MSE) and required training time for β5, β6,Gundlach and β6,Raymer using different
machine learning models and a gradually increasing training data set size. The plots are the median

of 10 runs with individual, random training sets.
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For the corrections of the aerodynamic results, an approach is presented that prevents unconditional
imitation of the higher-fidelity results. This is desirable, as the "higher-fidelity" results themselves may
be inaccurate due to, e.g., incorrect airfoil input data. Also, numerical issues may lead to physically
inexplicable results obtained by the higher-fidelity tool. Instead of unconditionally approximating the
higher-fidelity aerodynamic results, the approach incorporates a-priori knowledge about the expected
shape of the aerodynamic polars. The approach does not require a human in-the-loop to decide to
what extent the low-fidelity results are to be adjusted.

No low-fidelity methods were found that were specifically developed for the wing mass estimation
of the considered UAV class. Instead, formulas provided by [13] and [14], originally developed for
other classes of aircraft, are used to estimate wing mass. Whereas the methods fail to accurately
predict wing mass, simple curve fits are obtained, which describe how the results need to be adjusted
to obtain the higher-fidelity results. This suggests that, even though the formulas are not eligible to
the UAV class in question in terms of absolute accuracy, they still seem to contain valid information
about how wing mass tends to change with certain parameters.

The last part of the paper investigates the feasibility of automatically and gradually creating a knowl-
edge base, which can be used to make predictions about the value of the considered correction
factors based on given parameters. For this purpose, different machine learning techniques were ap-
plied: tree ensembles, support vector machines, and Gaussian processes. The models were trained
in a stepwise manner. At the beginning, only 5 data points were included in the training. Step by step,
additional training points were included. For each training set size, the different ML models were
trained, the hyperparameters were optimized, and the model performance was evaluated on a test
set, which was unseen by the models during training. The test set remained the same for all training
set sizes. This allows to compare the results among each other and to track the actual improvement
of a given model as the training set size increases. The model performance was evaluated on the
basis of the mean squared error (MSE) on the test set. In general, the different ML models show
a rapid decrease in MSE as the training set size is started to increase. Overall, the Gaussian pro-
cess model shows not only the fastest decrease in MSE but also the lowest MSEs in general. For
most of the correction factors, the Gaussian process model requires less than 50 training samples
to yield smaller MSEs than the corresponding manually generated curve fits, which are based on
450 samples. Furthermore, the time needed for training and hyperparamter optimization is lowest
for the Gaussian process model. At the maximum number of considered training samples (360), the
Gaussian process model requires only about one minute for training and hyperparamter optimization.

11. Outlook
This paper indicates the general feasibility of successive automated knowledge build-up and transfer
during the design of a UAV. The feasibility is manifested in the small errors obtained by the Gaussian
process models (even with small training sets), paired with short times needed for training and hyper-
parameter optimization.

The next step is the implementation of the approach into a design optimization process, where the
knowledge about the correction factors is successively gained and re-used as the optimization pro-
gresses.
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