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Abstract

In the face of global climate change and other environmental pollution, sustainable, green,
carbon-free, and low-pollution development is necessary and urgent. To this end, society re-
quires large-scale and multi-faceted innovation and technological change, in the energy sector
and beyond. This thesis examines magnitudes and drivers of green technological change for key
energy technologies and manufacturing. Its findings indicate the benefits of more differentiated
system modeling for better policy recommendations and provide further energy and innovation

policy guidance toward a sustainable and green economy.

The first part estimates robust learning rates for onshore wind energy in Europe using a multi-
factor learning curve model. Learning rates strongly depend on the measure of technological
change as onshore wind has seen quality improvements in terms of capacity factor that are re-
flected in significant learning in levelized cost of electricity but not in upfront investment costs.
Moreover, patents and public research and development expenses as measures of knowledge yield
similar results but the latter are much more sensitive to small changes in the specification. The
second part leverages on project-level total system price data for distributed battery storage
to estimate the effect of learning and further technical change determinants. The results show
that end-user prices benefit from much lower learning effects than previously reported for bat-
tery stacks. Instead, scale effects and limited competition strongly influence prices. The third
part investigates the role of labor unions toward more sustainable manufacturing. It finds that
facilities increase toxic waste releases but reduce toxic waste handling after unionization. The
findings highlight the conflicts between different stakeholders groups that local pollution affecting

multiple stakeholders cannot remedy alone.
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1 Introduction

1.1 Introduction: Sustainability and Technological Progress

Our planet and its ecosystems are struggling with anthropogenic effects like global warming due
to carbon emissions or environmental pollution from manufacturing waste (IPCC, 2021). These
adverse consequences might cause even greater havoc when combined, as tragically illustrated
by the massive fish mortality in the Polish-German part of the river Oder. As a consequence
of toxic substances produced by an algae bloom in August 2022, approximately 200 to 400
tons of fish died, representing up to 50% of total fish or up to four times as much as caught
annually. The occurrence of these algae has likely resulted from an unfortunate combination of
high temperatures, extremely low water levels, and (illegally) discharged industrial waste (IGB,

2022a,b, RBB, 2022).

Despite calls for more “sustainability” from all kinds of actors! over the last couple of decades,
problematic global greenhouse gas concentrations in 2021 are higher than ever before (Blunden
and Boyer, 2022). Moreover, all kinds of manufacturing emissions and other sources of pollution

are still sizeable across nations (Keiser and Shapiro, 2019, EC, 2022, WHO, 2022, EPA, 2022d).

"[Sustainable] development [...] meets the needs of the present without compromising the ability
of future generations to meet their own needs.”

— Brundtland Report Our Common Future, 1987

The United Nations propose 17 Sustainable Development Goals (SDGs) to achieve significant
progress on various sustainability dimensions, e.g. peoples’ health, education, the economy,

and the environment (UN, 2015b). The focus of this thesis are components and interactions

!'Examples include the United Nations, the Business Roundtable with its 2019 statement on the new purpose
of corporations, signed by 181 CEOs (Business Roundtable, 2019), asset management giant Blackrock (Fink,
2020), and the labor for sustainability network (LNS, 2016).

1



1 Introduction 2

of the SDGs related to the decarbonization of energy and industrial sustainability, one of six
SDG transformations proposed by Sachs et al. (2019). Central to operationalizing this SDG
transformation are carbon-free electricity as well as reducing air, land, and water pollution

(Sachs et al., 2019).2

Another important international policy step toward more sustainability is the Paris Agreement
in which the Parties of the United Nations consent on limiting global warming to well below
2 °C and ideally 1.5 °C (UN, 2015a). As such, there are partial synergies with environment-
related SDGs but the Paris Agreement is legally binding. Specifically, nations are required to
submit Nationally Determined Contributions, i.e. actions and direct strategies for reducing their
greenhouse gas emissions. While the original national targets under the Paris Agreement imply
an improvement to previous efforts, they are not on track to keep even the 2 °C threshold (Rogelj
et al., 2016, Armstrong McKay et al., 2022). Scientists warn that surpassing the temperature
targets (potentially already the 1.5 °C target) increases the risks of reaching climate tipping
points that trigger self-reinforcing and likely catastrophic climate change effects (Rockstrom

et al., 2009, Steffen et al., 2018, Armstrong McKay et al., 2022).

"[Climate change] is the number one issue facing humanity. And it is the number one issue for
me."

— Joe Biden, President, United States of America

To avoid a climate disaster and achieve the political targets of the Paris Agreement and the
SDGs, innovation and technological progress are essential (Geels et al., 2017, Stern, 2022). How-
ever, market failures restrain technological progress in general and “clean”, i.e. environmentally
sustainable technological progress in particular (Jaffe et al., 2005) Consequently, policymakers
have adopted support policies like supply-side research grants and demand-side renewable en-
ergy feed-in tariffs. Moreover, regulating hazardous substances and pricing negative externalities
from economic activity are further means to level the playing field between clean and incum-
bent “dirty” technologies. “Making the price right” potentially represents economics’ greatest
contribution to environmental protection (Stavins, 2011) but there is an ongoing broad need for
economists (and social scientists in general) to address the urgent climate change challenge be-

cause of its radical socio-economic consequences (Grundmann, 2016, Hong et al., 2020). Accurate

2Within these transformations and across the 17 SDGs, goals not necessarily reinforce each other but can even
have negative interactions with other goals. For instance, achieving universal electricity access by means of
burning fossil fuels counteracts decarbonization and health goals (Nilsson et al., 2016).
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economic modeling of climate change and technological progress that considers its multi-faceted,

interdependent nature, market imperfections, and uncertainty is still in its infancy (Stern, 2022).

In this thesis, we?

aim to improve our understanding of drivers of low carbon and low pollution
technological progress. We also investigate the dynamics of technological progress for key energy
technologies to inform policymakers as well as researchers that model future optimal technology
mix in our energy or power system (and thus advise on current investment priorities). More-
over, we shed light on the roles of different actors toward more sustainability and how interests
of selected actors shape technological progress. Throughout the thesis, we employ statistical
and econometric techniques in order to present quantitative results. While some of our data
and estimation results are specific to onshore wind and distributed battery storage, technologi-

cal progress for other technologies is arguably subject to similar driving forces and underlying

mechanisms.

The introduction to this thesis proceeds as follows. In the next section, we provide a brief
characterization of climate change and climate change mitigation, highlighting its relation to
clean manufacturing and the importance of technological progress. Next, we explore different
approaches to modeling and measuring technological change. Then, we discuss drivers of innova-
tion and technological change. To showcase progress for key technologies, we continue with data
from the electricity sector. Lastly, we introduce the specific research questions, research designs
and results of the subsequent chapters. These chapters are based on papers published in or
submitted to peer-reviewed academic journals. Thus, each chapter also represents a stand-alone

essay with an individual contribution.

1.2 Background: Climate Change and Pollution

1.2.1 Facets and Effects

Climate change is real. Global average surface temperatures in 2020 have increased by 1.09 °C
relative to pre-industrial levels (IPCC, 2021). The temperature increase and related changes in
climatic conditions result from increasing concentrations of greenhouse gases like carbon dioxide
(CO2), methane (CHy), and nitrous oxide (N2O) (Blunden and Boyer, 2022, IPCC, 2021). Re-

lated climatic changes encompass, i.a., ocean acidification due to anthropogenic CO5 emissions,

3For the sake of consistency and inclusion, the author uses the first person plural throughout this thesis.
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a retreat of arctic sea ice, and melting glaciers. Moreover, although it is important to differen-
tiate weather and climate (e.g. Kew et al., 2021), extreme weather events such as heat waves,

droughts, and heavy precipitation become more likely and more severe (IPCC, 2021).

“The alarm bells are deafening, and the evidence is irrefutable: greenhouse gas emissions from
fossil fuel burning and deforestation are choking our planet and putting billions of people at
immediate risk.”

— Antonio Guterres, Secretary-General, United Nations

The likelihood for compound extreme events, e.g. simultaneous heatwaves and droughts or
wildfires also increases (Goss et al., 2020). These extreme weather events are already happening
in 2022 (and before), at extreme dimensions and on a global level (IPCC, 2021). For instance,
Southern China has experienced one of the most extreme heatwaves ever recorded, combined
with an extreme drought (CMA, 2022). Similarly, heatwaves and droughts have extraordinarily
affected many parts of Europe in August 2022, with 64% of the area being on a warning or alert
scale according to the Combined Drought Indicator (Toreti et al., 2022). Dry soils and vegetation
also relate to increasingly severe wildfires, e.g. in Spain in 2022, and the risk of flooding when
dry and compacted soils cannot absorb heavy rainfall. Moreover, such feedback effects cause
additional greenhouse gases, e.g. from wildfires and thawing of permafrost soils, that aggravate

climate change (IPCC, 2021).

Furthermore, climate change threatens biodiversity of species and ecosystems, from bumble bees
to coral reefs (Donner et al., 2005, Soroye et al., 2020). The negative effect of climate change
can significantly add to further human-induced pressures such as land use changes (Halsch et al.,

2021).

Finally, scientists increasingly reveal multi-faceted socio-economic consequences of climate change.
Excess mortality (Vicedo-Cabrera et al., 2021), agricultural and human productivity losses (Dell
et al., 2012, Graff Zivin and Neidell, 2014, Ortiz-Bobea et al., 2021), increasing energy demand
(van Ruijven et al., 2019), financial instability (Lamperti et al., 2019), and crime imply sig-
nificant costs for economies (Hsiang et al., 2017). In addition, climate change widens global

inequality (Dell et al., 2012, Diffenbaugh and Burke, 2019).

As mentioned in the SDGs, sustainability not only refers to combating climate change, but
also to maintaining or restoring a low-pollution environment. Yet, despite improvements in

some industrial nations, pollution of land, rivers and air, e.g. due to manufacturing activities,
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agriculture, or burning of fossil fuels, continues to be problematic and costly (Schwarzenbach
et al., 2010, Keiser and Shapiro, 2019, WHO, 2022). Key air pollutants are particulate matter,
sulfur dioxide, nitrogen dioxide, ground-level ozone, lead, and carbon monoxide (EPA, 2022b).
The underlying list of more or less toxic chemicals, metals, and other elements is substantially

longer, as 86,000 US Toxic Substances Control Act chemicals alone exemplify (EPA, 2022a).

Scholars find that environmental pollution also causes some similar detrimental effects as climate
change, i.a. worse health levels (Currie et al., 2015, Schlenker and Walker, 2016, Deryugina et al.,
2019), declining productivity (Graff Zivin and Neidell, 2012, Chang et al., 2016, He et al., 2019),
and departures of skilled employees from firms (Levine et al., 2020, Xue et al., 2021). Moreover,
recent research increasingly identifies interregional and trans-boundary negative pollution effects,
both directly through atmospheric particle transport and indirectly through trade (Zhang et al.,
2017, Dedoussi et al., 2020). In the future, climate change might aggravate some of these effects

through its impact on air pollution (Silva et al., 2017).

"We must treat climate change as an immediate threat, just as we must treat the connected crises
of nature and biodiversity loss, and pollution and waste, as immediate threats.”

— Inger Andersen, Executive Director, United Nations Environment Program

In sum, climate change and pollution pose major challenges for sustainability on the local,
regional, and global level. The underlying sources and atmospheric properties of corresponding
emissions greatly overlap (von Schneidemesser et al., 2015). This linkage also offers potential for

mitigating both challenges at the same time.

1.2.2 Mitigation of Climate Change and Pollution

Fortunately, the list of climate change mitigation measures is long and diverse. The subsequent
paragraph describes selected opportunities for reducing greenhouse gas (and potentially other)
emissions but is by no means exhaustive. First behavioral changes of society at a large scale have
huge potential. For instance, such behavioral changes entail dietary habits — e.g. consuming
less animal protein, and beef in particular (Poore and Nemecek, 2018, Humpendoder et al., 2022,
Sun et al., 2022) — as well as mobility — e.g. increasing bicycle use worldwide to the levels of
current frontrunner countries like Denmark (Chen et al., 2022). Second, leveraging nature-based
solutions like afforestation, protection of wetlands, restoration of coastal ecosystems, and other

sustainable (agricultural) land use practices do not only address mitigation of carbon emissions



1 Introduction 6

but offer substantial co-benefits of reducing air pollution, filtering water, or increasing resilience
to climate change (Griscom et al., 2017, Cook-Patton et al., 2020, Seddon et al., 2020, Behrer
and Lobell, 2022). 4

40
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FIGURE 1.1: Sector Emissions in IEA Net Zero Energy System Scenario.
Notes: Data and projections are from the net zero energy system scenario by the International Energy Agency
(IEA, 2021).

Third, climate change mitigation requires a global reduction and ultimate phase-out of fossil
fuels as energy source combined with energy-efficiency efforts, rather sooner than later. In
recent years, the use of energy has accounted for approximately three quarters of greenhouse
gas emissions and up to 90% of CO4 emissions annually (Giitschow et al., 2021, IEA, 2021). As
shown in Figure 1.1, energy-related CO5 emissions amount to 33.9 Gt, with 40 % attributable
to the power sector, 25% to industry, 21 % to transport, and 9% to buildings. In a net-zero
scenario compatible with the 1.5 °C target, this composition changes dramatically in the years
and decades to come. By massively increasing renewable energy generation capacity, primarily
wind and solar photovoltaics (PV), the power sector has to reduce emissions by 57% until 2030
and another 64% until 2035. Transport and industry decarbonize at a lower pace because not all
necessary technologies are already commercially available. Consequently, the industrial sector

will overtake the power sector as largest CO2 emitter in this net-zero scenario (IEA, 2021).

4The contribution to climate change mitigation of these nature-based solutions is potentially large: Roe et al.
(2019) project a mitigation potential of up to 15 Gt CO; equivalents per year, corresponding to 30% of the
required mitigation.
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It is important to note that the sectors and their mitigation potential are highly linked. Specif-
ically, decarbonizing power generation soon and rapidly has spillover effects into transport and
buildings where electrification is a critical component to decarbonization. Some necessary tech-
nologies like electric vehicles and heat pumps are increasingly adopted but there is an ongoing
need for technological progress, market scale-up, grid flexibility incentives, and complementary
infrastructure to further improve economics (Barnes and Bhagavathy, 2020, Ruhnau et al., 2020,

Mauler et al., 2021, Renaldi et al., 2021, Thomafen et al., 2021, Ziegler et al., 2021).

In addition, electrification represents one piece of the puzzle toward more sustainable industries
and industrial decarbonization. However, new technologies and manufacturing processes are
necessary (Miller et al., 2021, Vogl et al., 2021). Even if technology and processes advance
as predicted, some industries like metal production continue to remain hard to abate. When
produced more climate-friendly and environment-friendly, corresponding manufactured goods
will become considerably more expensive while arguably still threatening compliance even with
the 2 °C target. Consequently, downstream mitigation measures like lowering consumption
and improving recycling rates need to complement previously mentioned technology and fuel
choices (Fan and Friedmann, 2021, Vogl et al., 2021, Yokoi et al., 2022). Many mitigation
measures related to energy decarbonization imply significant environmental co-benefits, e.g. in
terms of air quality improvements through less toxic pollution (Nemet et al., 2010, Driscoll
et al., 2015). Additional measures for specifically mitigating manufacturing pollution include
good operational practices, e.g. better inventory management or substitution of chemicals, and
redesigning products to either make toxic materials obsolete or to improve recyclability (e.g.

Ranson et al., 2015).

Taken together, these measures illustrate that climate change mitigation is a global task across
sectors and actors. Importantly, projections of mitigation potentials partially rely on substantial
technological product and process improvements. In the next section, we characterize green®

technological progress from an economic perspective.

5We use green and clean interchangeably.
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1.3 Green Technological Progress

1.3.1 Background, Modeling, and Measurement

Technological progress and innovation are and will be crucial in slowing and halting climate
change. However, sustainable, clean innovations replacing incumbent dirty technologies face two
market failures related to the public good natures of environmental protection and knowledge
(Jaffe et al., 2005, Stavins, 2011). Pollution from dirty technologies is a negative externality,
imposing significant costs on society as illustrated by the consequences of climate change and
environmental pollution in section 1.2.1. Knowledge creation generates positive externalities
because other parties than the knowledge creator can typically capture returns to knowledge,
i.e. there is limited appropriability even in the presence of intellectual property rights (e.g.

Romer, 1986).

Consequently, free markets fail to provide the social optimum of environmental protection and
innovation which calls on regulators to step in. The first-best policy to address the negative
externality of any kind of pollution is a Pigouvian tax that puts a price tag on pollution, thereby
internalizing the externality (Pigou, 1920, Stiglitz, 2019). In the context of climate change, sev-
eral countries started to introduce carbon taxes as a means for converging to market outcomes
based on “true”, i.e. societal costs. As an alternative, although arguably less effective strat-
egy, cap-and-trade mechanisms have evolved that regulate the quantity rather than the price of
emissions (Nordhaus, 2007, Green, 2021). Examples include the EU Emissions Trading System,
and, recently launched in 2021, China’s national carbon market.® Regardless of the exact in-
strument to correct for negative carbon externalities, prices have mostly been below scientific
calculations. Hence carbon prices only have had a limited steering effect in the past (e.g. Eller-
man et al., 2016, Green, 2021), although there is positive evidence from China’s regional carbon

markets (Cui et al., 2021).7

5The described dual externality and policy measures to address them extend to other greenhouse gases and
pollutants as well. For instance, a US cap-and-trade program regulates sulfur dioxide and nitrogen oxides, now
as part of the Cross-State Air Pollution Rule (EPA, 2022c).

"Scholars typically derive the price of carbon in integrated assessment models (IAM) as the “social cost of carbon”.
Calculated social costs of carbon span a wide range of USD 43 to USD 279 per ton of CO2 for 2020, e.g. due
to diverging discount rates, factor productivity assumptions, and target temperatures (Gillingham et al., 2018,
Nordhaus, 2019). The value of IAMs is discussed controversially (e.g. Pindyck, 2013, 2017, Weyant, 2017). An
alternative approach based on expert elicitation provides a best estimate of USD 80 to USD 100 per ton of CO4
(Pindyck, 2019).



1 Introduction 9

While carbon pricing can incentivize innovation (Aghion et al., 2016, Calel and Dechezlepretre,
2016), governments can also directly address underinvestment in knowledge resulting from its
positive externalities by means of research and development (R&D) subsidies or other support
policies. Combining carbon pricing with R&D support significantly amplifies its innovation and

climate change mitigation impact (Acemoglu et al., 2012, 2016, Aghion et al., 2016).8

How could such policies look like in practice and how do they impact climate, the economy
or specific sectors such as the energy sector in the future? These are among the questions
for which integrated assessment models (IAM) and other climate or energy policy models can
provide guidance. Technological change in these models, as mentioned before, is one key pa-
rameter. The first wave of general economic growth models implements technological change
as an exogeneous parameter, typically influenced by time (e.g Solow, 1956). Since policies can
not influence technological change within these models, more recently developed growth models
include technological change as an endogeneous parameter (Arrow, 1962, Romer, 1986, 1990).
Thus, feedback processes are included such that technological progress calculates as a function

of knowledge or experience accumulation.

“IEndogeni[z[ing innovation in large-scale models is important for deriving policy-relevant con-
clusions.”

— Grubb et al. (2021)

Very different model types, including IAMs, can endogeneously represent technological change
but the associated levels of detail and modeling choices depend on model scope and complexity
(Gillingham et al., 2008, Louwen et al., 2020). Hence, the type of the model partially determines
how technological progress can be implemented. An approach commonly used in holistic, high-
level models like TAMs draws on common measures for innovation or knowledge. These entail,
most importantly, R&D expenses (or investment) as input-oriented measures of innovation or

patents as an output-oriented measure of innovation.

A different approach that lends itself especially to implementation of endogeneous technological

change in more detailed energy or electricity sector models with a detailed set of technologies,

8Similarly, endorsing further policies — e.g. renewable energy generation quotas and subsidies in the context of
electricity markets — might further optimize the policy portfolio that is superior to single policies (Fischer and
Newell, 2008).



1 Introduction 10

follows the famous learning curve concept (Wright, 1936, Arrow, 1962). The next section intro-

duces learning curves in detail. ©

1.3.2 The Learning Curve, Extensions, and Drawbacks

In the learning curve approach, technological progress results from previous experience with the
technology through learning by doing (LBD). Originally, Wright (1936) measured technological
progress as labor cost and experience as the quantity of manufactured airplanes (specifically

airframes). He formulates the basic one-factor learning curve as a power law

TC =TCy* Q" (1.1)

that is typically log-transformed, to

Ln(TC)=TCy+ B*In(Q) +¢, (1.2)

assuming a multiplicative error term e. The learning elasticity S then translates into the learning
rate as 1 — 27 which indicates the percentage change in the technological change measure T'C
associated with a doubling in the quantity Q. Wright (1936) calculates a learning rate of 20%

for airplanes.

The basic learning curve theory has seen many extensions and modifications over time. For
instance, modifications of the functional form entail S-shaped or plateau learning curves but the
original log-log learning curve dominates the literature to date (e.g. Yelle, 1979, Yeh and Rubin,
2012). ' Moreover, researchers extend its scope from a single manufacturing process to firms
to entire industries while using cost, price, or performance as proxy for technological change,
amongst others. A popular example is the experience curve by the Boston Consulting Group,

which relates industry experience to technology cost for competition analysis and firm strategy

9The price-induced representation constitutes another approach to model endogeneous technological change. In
this approach, an increase in price of one production factor, e.g. energy, induces innovation away from this
factor, e.g. via energy-efficiency (Popp, 2002, Gillingham et al., 2008).

108everal similar models for projecting future technology costs exist that are, however, not learning curves. The
arguably most famous one is Moore’s law which implies that technology costs fall exponentially over time
(Moore, 1965). Nagy et al. (2013) test the power of these models and finds Wright’s law, i.e. the learning
curve, to be most accurate, closely followed by Moore’s law.
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11 Another well-known example is the two-

development (Boston Consulting Group, 1968).
factor learning curve where technological progress occurs through LBD, proxied by experience,
and learning by searching (LBS), proxied by knowledge accumulation (Kouvaritakis et al., 2000,

Isoard and Soria, 2001, Jamasb, 2007). Such extensions of the learning curve aim at disentangling

learning by doing effects from other drivers of technological change.

Despite its widespread use, basic learning curves have several drawbacks. First, learning curves
generally lack causality and correlations might be spurious (Gillingham et al., 2008, Witajewski-
Baltvilks et al., 2015, Odam and de Vries, 2020), even though lagged experience can at least
mitigate reverse causality concerns. Second, basic learning curves typically suffer from omitted
variable bias, i.e. inconsistent regression coefficients, as learning is not the only driver of techno-
logical change (Nemet, 2006, S6derholm and Sundqvist, 2007). Multi-factor models accounting
for multiple learning challenges and other controls can mitigate omitted variable concerns. For
system modeling, both drawbacks are less important as long as the underlying relationships

continue into the future.

This implicit assumption of learning curves — i.e. the past being informative for future devel-
opment — also implies that modeling of breakthrough innovations or discontinuities in general
is difficult (Nemet, 2006, Farmer and Lafond, 2016). Expert elicitation as an alternative ap-
proach could potentially inform on such discontinuities. Yet, the performance of learning curves
is superior to these approaches (Meng et al., 2021). Nevertheless, a combination of the different
methods, be it expert elicitation or bottom-up cost modeling with or without related technol-
ogy data, likely improves understanding of technological change and surrounding uncertainties
(Kavlak et al., 2018, Beiter et al., 2021, Trancik, 2021). An additional benefit of such com-
parisons is to address the high sensitivities of learning rates to data and assumptions (Nemet,
2006, Soderholm and Sundqvist, 2007, Lindman and Séderholm, 2012, Williams et al., 2017).
Testing for sensitivity of learning rates can also be performed within a learning curve analysis,
e.g. by reporting errors, checking for robustness, or otherwise estimating a distribution of future
technology costs (van Sark, 2008, Farmer and Lafond, 2016, Lafond et al., 2018, Bavafa and Jo-

nasson, 2021). Such testing should also include an investigation of potential changes in “quality”

"'The terms learning curve and experience curve are not used consistently in the literature (e.g. Junginger et al.,
2005, Rubin et al., 2015, Schmidt et al., 2017). From section 2 on, we refer to learning curves when modeling
technological change with a cost or performance measure and to experience curves when using a price measure,
following Schmidt et al. (2017). Subsequently described extensions and shortcomings generally apply to learning
and experience curves.
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that learning curve models based on costs often do not account for (Clarke et al., 2006, Coulomb

and Neuhoff, 2006, Nemet, 2006, Ziegler and Trancik, 2021).

Finally, learning curves, and experience curves in particular, are agnostic about the actors behind
cost reductions. For instance, industry experience curves assume homogeneous spillovers where
experience from one firm factors into a joint experience stock of the entire industry. However,
spillovers might be heterogeneous, e.g. depending on a firm’s absorptive capacity or geographic

proximity (Nemet, 2006, Anderson et al., 2019).

Despite these drawbacks, learning curves are a flexible method for estimation of technological
change and its endogeneous implementation in complex system models. Moreover, disentangling
learning by doing effects from other drivers of technological change, and thereby also mitigating

omitted variable bias, is possible by extending the basic learning curve model.

1.3.3 Drivers of Green Technological Progress

Learning by doing, i.e. learning from prior experience, is the core driver of technological change in
the learning curve model. Clearly, other factors also drive technological change and understand-
ing these underlying factors is highly relevant for risk assessments, budgeting, and many other
aspects of policy making and research (Trancik, 2021). The subsequent list of drivers intends to

grasp general drivers while presenting specific examples from renewable energy technologies.

First, next to learning by doing, there are other learning channels that can drive technological
change. These entail learning by searching through knowledge accumulation, as mentioned
previously, and learning by using a technology (Junginger et al., 2006). Further learning channels
are learning by interacting, a form of social learning where two parties only learn together
(Kellogg, 2011, Tang and Popp, 2016, Tang, 2018), as well as learning from spillovers. Learning
from spillover occurs when one party — e.g. a firm, industry, university, region, country, or
technology — benefits from the experience, knowledge, policies, or other characteristics from
another party. Empirical evidence reports mixed results on the existence and magnitude of
spillover effects that appears to depend on focal technology and geographic scope (for intra-
technology spillovers (Nemet, 2012b, Grafstrom, 2018, Hoppmann, 2018, Anderson et al., 2019,

Bollinger and Gillingham, 2019, Nemet et al., 2020); for inter-technology spillovers (Nemet,
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2012a, Dechezleprétre et al., 2014, Duch-Brown and Costa-Campi, 2015). Moreover, there is

general technological progress, e.g. because of advances in basic research (Malerba, 1992). 12

“It is good business and good economics to lead a technological revolution and define market
trends.”

— Barack Obama (2017), former US President

Second, production, scale, location, market structure, regulation, and macroeconomic factors
can drive sustainable innovation and technological change. Production factors include prices
and compositions of raw material (Nemet, 2006, Hettinga et al., 2009, Yu et al., 2011, Bolinger
and Wiser, 2012, Gan and Li, 2015, Pillai, 2015, Voormolen et al., 2016, Green, 2019, Hsieh
et al., 2019), labor costs (Bolinger and Wiser, 2012, Gillingham et al., 2016, Elia et al., 2020),
and firm, process, or plant characteristics (Nemet, 2006, Swanson, 2006, Horbach, 2008, Powell
et al., 2012, 2015, Amore and Bennedsen, 2016, Gillingham et al., 2016). Scale effects can drive
technological change on three levels: the unit, e.g. the size of a PV module or the hub height of
a wind turbine (Bolinger and Wiser, 2012, Wilson, 2012, Duffy et al., 2020, Odam and de Vries,
2020, Sweerts et al., 2020), the manufacturing facility (Nemet, 2006, Yu et al., 2011, Goodrich
et al., 2013, Green, 2019), and the power plant (Qiu and Anadon, 2012, Benini et al., 2019, Beiter
et al., 2021). Location entails resource potential, e.g. solar radiation or wind speed (Vartiainen
et al., 2020, Beiter et al., 2021), accessibility, e.g. distance to shore or water depth in the case
of offshore wind (Voormolen et al., 2016), and other regional or national characteristics (Pillai,

2015).

Different factors characterizing markets for green technologies also impact technological progress.
Strategic considerations for gaining a competitive edge, also known as the Porter Hypothesis, can
induce firms to drive environmental innovation (Porter, 1991, Porter and van der Linde, 1995,
Kesidou and Demirel, 2012, Ambec et al., 2013). The extent of competition is also associated
with technological progress and specifically costs (Bolinger and Wiser, 2012, Gillingham et al.,
2016, Voormolen et al., 2016, Dong et al., 2018, Hayashi et al., 2018, O’Shaughnessy, 2019,
Macher et al., 2021), as are supply-demand imbalances (Zheng and Kammen, 2014, Reichelstein
and Sahoo, 2018), search or customer acquisition costs (Seel et al., 2014, Gillingham et al., 2016,

Gillingham and Bollinger, 2021), and characteristics of complementary markets (Tang, 2018).

12 An ample literature investigates organizational factors behind the learning curve, e.g. training and forgetting
(e.g. Argote and Epple, 1990, Argote et al., 1990, Adler and Clark, 1991, Benkard, 2000, Argote et al., 2021).
While highly relevant, this literature is generally beyond scope. However, the existence of forgetting experience
and knowledge — and, equivalently, old knowledge becoming less relevant — has implications for modeling
technological change (Klaassen et al., 2005, Anderson et al., 2019, Bollinger and Gillingham, 2019).
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Furthermore, a booming body of theoretical and empirical literature examines the effect of regu-
lation and policies on sustainable innovation, technology costs, or other measures for technologi-
cal progress (see reviews Popp et al., 2010, Popp, 2019, Stern and Valero, 2021). Environmental
regulations such as carbon pricing (Brunnermeier and Cohen, 2003, Acemoglu et al., 2016, Aghion
et al., 2016, Calel and Dechezlepretre, 2016), government funding for R&D as technology push,
green certificates or quotas (Fischer and Newell, 2008, Johnstone et al., 2010, Peters et al., 2012,
Feldman et al., 2020), and other demand-pull policies directly subsidizing technology adoption
(Peters et al., 2012, Hoppmann et al., 2013, Gillingham et al., 2016, Lindman and Séderholm,
2016, Dong et al., 2018, Gao and Rai, 2019, Lin and Chen, 2019) appear to influence technolog-
ical change and costs. Permitting processes (Dong and Wiser, 2013, Seel et al., 2014, Burkhardt
et al., 2015), local content requirements (Qiu and Anadon, 2012, Probst et al., 2020), and green
public procurement (Krieger and Zipperer, 2022), and regulatory (or other stakeholder) pressure
(Kesidou and Demirel, 2012, Berrone et al., 2013) represent additional regulatory drivers — or

hurdles — of technological progress.

Lastly, scholars identify macroeconomic factors like energy or electricity prices (Popp, 2002,
Bolinger and Wiser, 2012, Macher et al., 2021), financing/interest rates (Egli et al., 2018, Varti-
ainen et al., 2020, Duffy et al., 2020), foreign exchange rates (Bolinger and Wiser, 2012, Lilliestam
et al., 2020), and government debt (Ek and S6derholm, 2010) as drivers of green innovation and

technology costs.

Improvements in some of the non-learning factors may realize in part due to learning effects.
Thus, if the improvements can be attributed to LBD, they can even be captured by basic learning
curves. Nevertheless, disentangling these effects improves our understanding of key drivers and

allows for more precise and flexible future projections.

1.3.4 Technological Progress in Action: Renewable Energy Technologies

The previous sections motivate why phasing out electricity generation from fossil fuels — espe-

113

cially coal, lignite, gas, and oil*® — is essential for sustainable development and net zero while

emphasizing the paramount importance of technological progress.

13We will not discuss nuclear energy in detail because of its particularities: a potentially low carbon and dispatch-
able technology but running on a finite “fuel” (uranium) with questionable resiliency against climate change,
a need for permanent radioactive waste storage, the risk of a maximum conceivable accident, and challenging
economics. The interested reader is referred to the literature (e.g. Grubler, 2010, Davis, 2012, Markard et al.,
2020, Ahmad, 2021).
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FIGURE 1.2: Renewable Energy Capacity and Generation.
Notes: Data is from the International Renewable Energy Agency (IRENA, 2022a).

As shown in Figure 1.2, the first steps toward a cleaner electricity sector have been made over the
last few decades, even though 4,748 GW of fossil fuel power plants have still generated 19,402
TWh of electricity in 2020, i.e. almost three times as much as all renewables. Hydropower
constitutes the largest renewable energy source to date, both in terms of installed capacity and
electricity generation. Thanks to strong growth rates, solar PV and onshore wind energy are
catching up, with ca. 710 GW and 697 GW of installed capacity in 2020. Since onshore wind
farms typically achieve more full load hours, i.e. higher capacity factors, they generate almost
1,500 TWh of electricity compared to 844 TWh from solar. Other important renewable energy
sources are bioenergy such as biofuels or biogas with 133 GW installed capacity in 2020, offshore
wind (34 GW) and geothermal energy (14 GW). * For several technologies, these statistics

are changing rapidly, sometimes also in the form of a (regional) “boom-and-bust”. A recent

example for a booming technology is the offshore energy, where 2021 represents a record year

MNote that solar in Figure 1.2 also contains a small share of capacity and energy generation attributable to
concentrated solar power (CSP). While CSP capacity in 2000 was almost !/3 of total solar capacity, it accounts
for less than /100 in 2020. Wave or tidal energy is another renewable source with few installations.
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with capacity additions of about 21 GW (i.e. a plus of 62%), driven by China in particular
(GWEC, 2022, IRENA, 2022a).
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25% quartile and the highest cost at the 75% quartile from IEA (2020Db).

The growth in renewable energy capacity is associated with declining costs for several key tech-
nologies, as illustrated in Figure 1.3. In favorable conditions (e.g. as in the Persian Gulf region),
it is possible to generate electricity from solar PV at a levelized cost of electricity (LCOE) of
below 0.02 USD/kWh (Apostoleris et al., 2021). While its global average LCOE is higher at
about 0.057 USD /kWh, solar PV has still seen a remarkable decline from 0.4 USD/kWh in 2010.
Onshore and offshore wind have experienced similar, though less extreme cost declines both
in terms of LCOE and investment cost. The rapid technological change of PV and wind have
consistently been underestimated by (learning curve) models and experts (Creutzig et al., 2017,

Meng et al., 2021, Victoria et al., 2021, Wiser et al., 2021, Xiao et al., 2021).

Other renewable energy technologies (hydro, biomass, geothermal) have always been highly

competitive with fossil fuels in suitable locations between 2010 and 2020, although we do not
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observe cost reductions. Overall, electricity generated from all these technologies, on average, is
now at parity with or cheaper than electricity generated from fossil fuels and far below household

electricity prices. 1°

Recent extraordinary developments at commodity markets, increasing
carbon prices, and lower full load hours due to the merit order effect tend to strongly affect
the LCOE of fossil generation (IEA, 2020b). Thus, the marron interval in Figure 1.3 tends
to significantly shift upwards, approaching 0.20-0.30 USD/kWh or more in some regions (Kost

et al., 2021, IRENA, 2022b).

The described dynamics and current costs might suggest that there are few further hurdles to
fully decarbonize the power sector in an efficient and affordable way, as designated e.g. by
SDGT7. However, solar and wind, i.e. the technologies with the fastest growth and largest
potential as of today, are not dispatchable. Their intermittency incurs additional cost for the
power system, e.g. because additional measures and infrastructure for balancing supply and
demand are necessary. With increasing shares of intermittent electricity generators, these costs
tend to rise, and consequently, wind’s LCOE and PV’s LCOE from Figure 1.3 cannot be fairly

compared to a dispatchable technology (Joskow, 2011, Borenstein, 2012).

While some of this intermittency can be addressed with demand-side flexibility (e.g. Ruhnau
et al., 2020), energy storage technologies are increasingly required at grid-scale to balance elec-
tricity supply and demand at all times. Since many energy storage technologies are still at a
relatively early stage in their technology life-cycle, their future technological progress will likewise
be of major importance for a decarbonized electricity system. Battery storage represents one
of the more developed technologies that shows promising potential across different applications

and high learning curves of up to 30% (Schmidt et al., 2017, Ziegler and Trancik, 2021).

Taken together, this section shows rapid sustainable technological progress in the electricity
sector. Thanks to this change, renewable energy technologies are now competitive with fos-
sil generation in terms of average LCOE. Quantifying these dynamics and relating them to
previously presented models and innovation drivers implies many uncertainties and unanswered
research gaps. Subsequently, we explain how the main body of this thesis contributes to reducing

these gaps.

15The global averages naturally disguise notable heterogeneity within time, across regions, and power-generating
units. This heterogeneity facilitates the analyses in chapters 2 and 3.
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1.4 Methodology, Research Results, and Contribution

1.4.1 Estimating Learning Curves for Onshore Wind Energy

Having established the general relevance of understanding technological progress for more sus-
tainability, we now present research questions, contributions, research designs, and core findings
of the three essays constituting the main part of this thesis. We begin with a European country-
level analysis of technological progress in onshore wind energy. As shown in section 1.3.4, onshore
wind has seen increasing installed capacities globally. Nevertheless, for a low-carbon energy sys-
tem, huge capacity additions in every world region are required (IRENA, 2019). Yet, the extent
of capacity additions will depend on the future attractiveness of onshore wind, particularly in
terms of costs. To estimate future technology costs, various energy and power system models
endogenize technological progress (i.e. costs) to enable within-model feedback effects responding
to the extent of capacity and knowledge additions (see section 1.3.1). Given the material impact
of the learning rate on model recommendations (e.g. Nemet, 2006), the huge, 43 percentage
points range of learning rates reported in prior literature causes unsatisfying uncertainty for
system modellers and potentially biased results. Hence, we aim to answer the following research

question:

Research Question 1:

What are robust learning rates for onshore wind and how do they depend on the measurement of

technological change or knowledge?

We approach this question with a multi-factor learning curve model where learning by doing
(LBD) occurs through experience, i.e. installed capacity, accumulation and learning by searching
(LBS) occurs through knowledge accumulation. We proxy for knowledge using patents and
country-level public R&D expenses. Additionally, we control for manufacturing economies of
scale, commodity prices, and country fixed effects. Seven major European onshore wind markets
between 1998 and 2018 constitute our sample, determined by cost data availability from the

International Renewable Energy Agency.

Our main findings are as follows. First, the magnitude of the learning rate depends on the
measure of technological progress. While we estimate significant LBD (LBS) rates for the LCOE

of 2-3% (7-9%), there is hardly any learning in (upfront) investment cost. As we show, learning
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in the LCOE is rather driven by learning effects that have led to higher capacity factors. These
estimates are robust to several robustness checks, including an instrumental variable specification

that addresses endogeneity and reverse causality concerns of costs and cumulative capacity.

Second, we find remarkable differences of LBS rates depending on the knowledge measure and
further specifications. Whereas R&D-based LBS rates are absolutely higher in the base scenario
with common lag and depreciation assumptions from prior literature, they are much more sen-
sitive to changes in the depreciation rate. Within a reasonable range in depreciation rates of
0% to 10% percent, corresponding LBS rates vary by 12 percentage points, illustrating an often

cited drawback of the learning curve approach.

Overall, these results support the inclusion of a knowledge stock in system models with endoge-
neous technological change in light of the significant LBS rates. Moreover, our findings suggest
that modelers should account for improvements in onshore wind capacity factors. Modeling
technological progress by means of investment costs only disregards the observed learning in

quality that improves the performance of the technology.

1.4.2 System Price Dynamics for Battery Storage

Significant technological learning in some key renewable energy generation technologies like solar
PV and onshore wind is well-documented. However, ongoing cost improvements of these inter-
mittent technologies alone won’t suffice for an affordable and carbon-free power system with
security of supply. Instead, many regions’ power system requires energy storage technologies for
shifting excessive generation from renewables to periods with insufficient generation. Battery
storage has gained policy attention, significant spending in R&D, and a surge in patenting (Kit-
tner et al., 2017, IEA, 2020a, 2022). It is a flexible and modular technology, resembling solar PV
modules in this regard. Yet, whereas solar PV can now be installed at highly competitive costs
in many regions across the world, governments still widely provide strong financial support for
the adoption of battery storage technologies like electric vehicles or distributed storage systems
(e.g. Comello and Reichelstein, 2019). Against this backdrop, we investigate pricing and price

drivers of distributed storage systems, aiming to answer the following research question.

Research Question 2:

Which role do experience, system scale, and market characteristics play for total system prices

of distributed battery storage systems?
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To answer this question, we first set up a basic experience curve model that relates prices at each
installation date ¢ to industry experience, measured as the cumulative number of projects up to
this specific date. We also separate our project-level data into a small, residential segment and
a larger, commercial segment. Next, we extend our model to account for a system’s size in kWh,
its duration in hours, and the Herfindahl-Hirschman index (HHI) at time ¢ in the corresponding
county. Moreover, we include county and installer firm fixed effects. The underlying data on
project location, size, date, and costs comes from California’s Self-Generation Incentive Program

(SGIP).

With the basic one-factor experience curve, we estimate experience rates of only 1.3% that
are in stark contrast to previously reported learning and experience rates for battery storage
components like cells and packs (Kittner et al., 2017, Schmidt et al., 2017, Hsieh et al., 2019,
Kittner et al., 2020, Ziegler and Trancik, 2021). To further investigate the role of experience, we
separate our observations into a small, residential segment (below/equal to 10 kW) and a larger,
commercial segment (above 10 kW) (CPUC, 2016). We find that large systems show significant
experience rates of up to 11 % whereas there is slight negative learning by doing in the small

segment.

Next, we examine the effect of within-segment size heterogeneity — proxied by duration in hours
and capacity in kWh — and competition — proxied by the HHI — while adding county and
installer firm fixed effects. As expected, scale effects are significant, both in terms of energy
storage capacity in kWh and duration in hours. Furthermore, the HHI is positively associated
with system prices. This effect is particularly large and highly significant for small systems. Two
additional analyses support and illustrate the role of such balance-of-system (BOS), i.e. non-
battery, price components as hurdles to system price declines. First, we estimate lower learning
rates for BOS prices in both segments. Second, we find a negative “learning” effect across
segments for firms with more installation experience. Put differently, installers seem to be able
to charge price premiums the more systems they have previously installed. On the contrary,
growing industry experience is associated with lower prices in both segments, indicating small

experience spillover effects within the industry.

Taken together, our findings provide some explanations for still challenging end-user economics
of battery storage systems. To reduce private and commercial adopters’ need for government

support in the future, scaling up markets and systems while stimulating competition and price



1 Introduction 21

transparency to reduce BOS prices represent high-level policy mechanisms. Facilitating electric-
ity market participation of distributed storage systems and compensating end-users for flexibility
provided to the grid could justify larger systems while potentially improving end-user economics.
Finally, our finding of significant differences in learning rates between large and small segments

calls for more granular models enabling targeted policy recommendations.

1.4.3 Toxic Waste Management after Unionization

So far, countries as an aggregate as well as end-users and firms constitute the actors behind sus-
tainable technological change. In Chapter 4, we investigate the role of another group of actors in
progress toward more sustainability: labor unions. We also extent the scope from specific energy
technologies to the (manufacturing) industry in general. As discussed in section 1.2, negative
environmental externalities do not exclusively occur in the energy sector. Rather, efforts by the
industrial sector will play a crucial role for sustainable development, including climate change
mitigation but also circular economy efforts and toxic waste reduction. Hence, environmental
sustainability subsequently refers to clean, i.e. low-emission manufacturing. Specifically, we

raise the following research question.

Research Question 3:

How does unionization affect facilities’ toxic waste management practices?

Toxic waste management essentially implies a trade-off for unions: Releasing toxic waste pollutes
the environment, thus affecting the workplace and neighboring communities but avoiding toxic
releases by handling the waste is costly and relatively dangerous. By means of a local regression
discontinuity design, we estimate the causal impact of unionization elections in the US held
between 1990 and 2017 on toxic releases and “cure”, i.e. waste recycling, use for energy recovery,
or other treatment (also referred to as waste handling). We find that on-site, i.e. at the facility
where the union election takes place, facilities increase toxic releases but decrease toxic waste
cure after unionization. These effects are large: compared to facilities where the union could not
reach a majority, facilities increase (reduce) on-site release ratios (cure) by 15 (59) percentage
points, on average over the three years after the election. We argue that unions care for workplace

safety and thus protect their members from waste cure tasks.
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In additional analyses, we rule out changes in production output and financial constraints as
alternative explanations, supporting our reasoning that concerns for workplace safety rather
than cost saving motives are the main driver behind our main effect. Furthermore, we find
that unions might help in achieving multi-win outcomes: catastrophic releases happen less often
after unionization — potentially indicating better training — and facilities adopt more innovative

pollution prevention measures like eco-designing products.

Our contribution to the literature is twofold. First, we show that unions matter for facilities’ en-
vironmental performance by affecting toxic waste management. Specifically, we find that unions
aggravate low-emission manufacturing. Second, our findings highlight the conflicts of interests
between different stakeholder groups on the path toward more industrial sustainability. Previ-
ous literature reports such stakeholder conflicts by using environmental, social, and governance
scores as well as product recalls (Ertugrul and Marciukaityte, 2021, Heitz et al., 2021, Kini
et al., 2021). We show that even locally harmful pollution that affects facilities’ neighborhoods,
environment, and the workforce can only partially align goals as typified by lower catastrophic
releases and more innovation. Our findings suggest that unions prioritize safety over environmen-
tal sustainability and call upon governments and management to focus on outcomes sufficiently

satisfying both objectives for truly sustainable outcomes.

1.5 Structure of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 introduces a taxonomy of cost
drivers in the context of energy technologies and estimates robust multi-factor learning curves
for onshore wind. Chapter 3 proceeds with the empirical analysis of system price dynamics
for distributed battery storage. In this essay, the description of model, variables, and data in
the methods section comes at the end, consistent with the style requirements of several Nature
journals. Chapter 4 presents causal evidence on the role of labor unions in toxic manufacturing
emissions and adoption of pollution prevention measures. Chapter 5 concludes the thesis with
a discussion of results, and implications for research and policy. Lastly, the Appendix contains
additional visualizations, further details on the different samples or variables, and regression

results of robustness tests for the three essays.



2 Mills of Progress Grind Slowly?
Estimating Learning Curves for On-

shore Wind Energy

by Magnus Schauf and Sebastian Schwenen'®

Estimated learning rates for onshore wind span a large range of about 40 percentage points.
We propose a multi-factor experience curve model with a new economies of scale measure and
estimate learning rates for onshore wind using country-level data from seven European countries.
We find learning by doing rates of 2%-3% and learning by searching rates of 7%-9% in terms of
LCOE. When decomposing LCOE, we find no significant learning in installed costs but significant
learning in capacity factors. Accounting for improvements in capacity factors and modeling
learning by searching can hence be promising for energy models that endogenize technological
change. We confirm our results in several robustness checks, and show that depreciation rates

of the knowledge stock have large effects on estimated learning rates.

'6This essay has been published in Energy Economics. It is reproduced by permission of the publisher. My
contributions are as follows: development of the research idea, literature review, formulation of the statistical
model, data curation, performing the analysis, creating the visualizations, and writing the original draft.
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2.1 Introduction

Onshore wind energy is a key technology to decarbonize the power system. Globally, onshore
wind is projected to provide about one third of total electricity by 2050, accounting for more
than one quarter of the emissions reductions targeted in the Paris agreement (IRENA, 2019).
Whether wind power meets its projected future market shares, however, will ultimately depend

on the evolution of technology costs.

To account for advances in technology costs, power system models increasingly endogenize
technological change when projecting future market outcomes. In particular, system models
approximate technological change with learning rates, that indicate the percentage change in
costs associated with an increase in experience, often measured as cumulative installed capacity
(Gillingham et al., 2008, Rubin et al., 2015). The extant literature has found learning rates
for onshore wind that span about 43 percentage points (Lindman and Séderholm, 2012, Rubin
et al., 2015, Williams et al., 2017). As a result, the differences in estimated learning rates can
lead to potentially large bias in modeled equilibrium outcomes and market projections of power

system models.

In this paper, we address the uncertainty in estimated learning rates by implementing sufficiently
robust estimation approaches. Specifically, we identify and select the most crucial determinants
of learning rates and exploit novel covariates to improve the estimation of learning rates. We
also show how empirical specifications can be tailored to fit the computational needs of power

market models.

The existing literature has proposed a variety of research designs to measure learning rates.
While learning has often been confined to changes in total installed costs (e.g Jamasb, 2007,
Lindman and Séderholm, 2012), scholars started exploring advances in levelized cost of electricity
(LCOE) as a more comprehensive cost measure (Williams et al., 2017, Glenk et al., 2021). Recent
works found that progress in technology costs also relates to certain cost components, such as
operation and maintenance (Steffen et al., 2020), financing costs (Egli et al., 2018) and economic

life extensions (Duffy et al., 2020).

In addition, differences in estimated learning rates can result from underlying samples that,

e.g., differ in geographical scope or aggregation level (Lindman and Séderholm, 2012, Williams
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et al., 2017). Furthermore, empirical models typically differ in the number and measurement of

controls and assumptions on time lags and depreciation rates.'”

To capture the existing range of approaches, we propose a model that (i) encompasses different
cost measures as outcome variable of interest, (ii) includes a set of common as well as novel
covariates that can be tailored to different assumptions on time lags and depreciation rates,
(iii) fits recent and rich data from seven European countries, and (iv) can be re-run using
instrumental variables. More broadly, our approach is to identify the relevant cost drivers
and learning channels for different cost measures, using the same set of data throughout all
regressions, and covering twenty years of cost developments. Our goal is to show what cost
drivers and learning channels are robust across different specifications and where learning takes
place, i.e., what parts of technology costs experience technological progress. Finally, we use our

results to discuss promising ways to integrate learning curves into power system models.

Our data includes information on installment cost, LCOE, and capacity factors of wind turbines
in Denmark, France, Germany, Great Britain, Italy, Spain, and Sweden from 1998 to 2018. To
explain changes in these costs measures, we merge in data on capacities of wind energy in each
country, as well as on public research, development, and demonstration (RD&D) expenditures,
patent data, information on total assets of wind turbine manufacturers, labor costs, and further

control variables such as a commodity price index.

First, our results confirm earlier studies in that we find significant cost reductions in the LCOE
of wind turbines. We identify both significant learning by doing, i.e., learning as capacity accu-
mulates, and learning by searching, i.e., learning as a result of increases in RD&D expenditures
or the number of patents. Specifically, we find learning rates of 2.8% for learning by doing and
of 7.1% for learning by searching. These estimates are at the lower end of previously estimated
learning rates. We confirm the magnitude of our point estimates using a battery of conceptual
and econometric robustness checks. Our results are also robust to controlling for a wide range of
control variables. Last, we again confirm the magnitude of our estimates using an IV approach

to rule out concerns relating to reverse causality.

Next to our robustness checks, we also probe into the sensitivities of our estimates and find that
important drivers of sensitivity are depreciation rates and, somewhat related, the measurement

of the knowledge stock in terms of patents versus RD&D. As such, we show that changing

17Scholars have also highlighted the difficulty in interpreting estimated learning rates causally (Gillingham et al.,
2008).
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depreciation rates and measures of the learning stock can, at least in parts, explain some of the

observed heterogeneity in previous learning rates.

When breaking down LCOE into installment costs and capacity factor, our findings show that
no significant learning takes place in installment costs. Both learning by doing and learning
by searching are not significant. Yet, when using capacity factor as outcome variable, we find
strong evidence for learning by searching. As such, our results suggest that—from a learning
perspective—onshore wind technology is not getting significantly cheaper, but better, and that
increases in quality, i.e., the capacity factor, can be largely attributed to innovation as measured
in RD&D and patent data.'® Hence, our results also show that power system models can account
for technological change by letting capacity factors for wind depend on input parameters for

RD&D expenditures.

Our findings relate to several strands of research on the estimation of learning curves. First, we
add to the literature on wind power learning rates (Ek and Séderholm, 2010, Qiu and Anadon,
2012, Tang and Popp, 2016, Hayashi et al., 2018, Tang, 2018, Anderson et al., 2019, Odam and
de Vries, 2020). While the extant literature has typically been confined to studying one cost
measure, each with distinct data, we add by formulating a multi-factor experience curve model
to estimate a variety of cost components, all based on one recent dataset. Our findings hence
“control” for differences in sample composition. In addition, we propose a novel measure to
capture economies of scale (EOS). Specifically, we propose wind turbine manufacturer size, mea-
sured by their average total assets, as an alternative EOS measure borrowed from the innovation
economics and finance literature (Whited and Wu, 2006, Kogan et al., 2017). Prior studies use
average wind turbine and wind farm size as EOS proxy, i.e., scale effects in operating capacity,
but find it hard to econometrically disentangle these effects from learning (Ek and Séderholm,
2010, Odam and de Vries, 2020). Our EOS measure, firm size, explicitly focuses on economies
of scale in the manufacturing process, and shows across multiple specifications that higher EOS

are significantly associated with lower technology costs.

By studying different cost measures and decomposing LCOE into installment cost and capacity
factor we also contribute to recent works that likewise have modeled disaggregate technology
costs and their main components (Nemet, 2012b, Neij et al., 2017, Steffen et al., 2020). In

particular, Steffen et al. (2020) report strong learning effects in operations and maintenance

8 These results are robust to controlling for input costs and EOS measures as well as for country-level fixed
effects, that absorb differences in capacity factors across countries that stem from weather or different sites of
wind farms.
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costs. In this context, our results show significant technological progress via learning in quality,

i.e., the capacity factor, rather than in installment costs.

More broadly, we also relate to the general literature on learning rates (e.g., Benkard, 2000, Yeh
and Rubin, 2012) by identifying the impact of assumptions on depreciation rates and measure-
ments of knowledge on estimated learning rates. Here, we find that different assumptions can

lead to differences in estimated learning rates of up to 12%.

The paper is organized as follows. Section 2.2 provides a short review on the estimation of
learning curves and presents a taxonomy of cost drivers as identified in the extant literature.
Section 2.3 introduces our baseline econometric model, our approaches to robustness and sen-
sitivity checks, and our data. Section 2.4 shows our results. Section 2.5 discusses our findings
in view of prior results and outlines implications for the use of learning rates in energy system

models. Section 2.6 concludes.

2.2 Estimating Learning Rates for Power Generating Technolo-

gies

In this section, we first review learning curve models and their use in energy system models.
Subsequently, we provide a taxonomy of cost drivers, i.e., factors that drive learning, as identified
from the existing literature. We also discuss the wide range of previous estimates for learning

rates.

2.2.1 Technological Change, Learning Curves, and Energy System Models

In its basic form, learning curves relate a measure of experience, FX P, usually cumulative

installed capacity, to a cost measure, COST, such as upfront total installed costs. Formally,

COST = COSTy x EX P, (2.1)
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where the index 0 denotes any chosen start date and b captures the cost elasticity of learning.
Of particular interest is the learning by doing (LBD) rate 1 — 2%, which indicates the percentage

change in costs associated with a doubling in experience.'”

Besides applications in policy evaluation and technology studies, learning curves are commonly
used to proxy endogenous technological change (ETC) in energy system models (Gillingham
et al., 2008, Pizer and Popp, 2008). Learning-based ETC models assume that past decisions on
the accumulation of experience determine technology costs, i.e., technological change, at current

and future points in time.?°

Typically, learning curves of energy technologies are estimated using total installed costs as
outcome variable. This is, firms/the industry learn as they are installing additional capacity
and as a result can reduce overall installment costs (e.g., in $/kW). Instead of using installment
costs on the left hand side of equation (2.1), other models use levelized costs of electricity
as outcome variable (e.g., in $/kWh). Finally, some models decompose technology costs and
estimate learning rates for individual cost components such as operation and maintenance or

balance of system costs (Nemet, 2012b, Neij et al., 2017, Steffen et al., 2020).

2.2.2 Factors that Drive Learning

Next to differences in the definition and measurement of technology costs, the heterogeneity
in estimated learning rates also results from different measures of experience, or more broadly,
variables on the right hand side of equation (2.1) that drive learning. Many studies employ so-
called one-factor learning curve models to study learning by doing (LBD). This is, they analyze
the relationship between one measure of experience, typically cumulative installed capacity, and

technology cost.

Yet, the literature has employed a variety of additional factors that drive technology costs.
Figure 2.1 presents a brief taxonomy of approaches. As shown, a well established extension
within a so-called two-factor learning curve is the inclusion of a knowledge stock through which

learning by searching (LBS) takes place (Kouvaritakis et al., 2000, Miketa and Schrattenholzer,

9Based on seminal learning curves in airframe manufacturing (Wright, 1936), Arrow (1962) coins the term
"learning by doing" as the mechanism through which an increase in experience with the relevant manufacturing
processes results in lower costs, e.g., labor or unit costs.

20Tn contrast to learning-based ETC models, models with exogenous technological change include assumptions
on future costs that do not depend on prior market outcomes or firm decisions (Gillingham et al., 2008). The
more fundamental discussion on empirically separating endogenous from exogenous technological change (e.g.,
Nordhaus, 2014) is beyond the scope of this study.
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2004, Klaassen et al., 2005, Kobos et al., 2006, Jamasb, 2007, Soderholm and Klaassen, 2007).
Two-factor learning curves thus combine two originally separate approaches of implementing
ETC into energy system models (Gillingham et al., 2008). Other recent works have also focused
on mechanisms such as learning by using, learning by interacting or relationship-specific LBD
(Kellogg, 2011, Tang, 2018) and learning from spillovers (Irwin and Klenow, 1994, Anderson
et al., 2019, Bollinger and Gillingham, 2019, Nemet et al., 2020).

Learning by doing (experience)
Internal Learning by searching (knowledge)
Learning by using

Learning by interacting ‘

Learning

External Learning through spillover effects

General technological progress

Production input

Scale

Location

Market structure

Regulation and policies

Non learning ‘

Macroeconomy

FIGURE 2.1: Taxonomy of Energy Technology Cost Drivers.

As indicated in Figure 2.1, learning by interacting and learning from spillovers differ from previ-
ously mentioned mechanisms because they represent externalities, i.e., firms learn from actions
taken by other market actors (Malerba, 1992, Clarke et al., 2006). Finally, technological change
is also attributed to external learning in the form of general technological or scientific progress

(Malerba, 1992).

Next to learning mechanisms, the literature employs a wide range of covariates not directly
related to learning. Mostly, these controls relate to input, scale economies, location-specific,
market structure, regulatory, and macroeconomic factors. Examples from onshore wind include
materials price indices, wind resource quality, competition, requirements on local value creation,

and interest rates.
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Importantly, economies of scale have so far been incorporated into learning studies on two
different levels: wind farm size and wind turbine unit size (Berry, 2009). Hence, EOS has
mostly been measured as the average capacity of a wind farm or average capacity of a wind
turbine (Berry, 2009, Qiu and Anadon, 2012, Wilson, 2012).2! Yet, studies that use these
EOS proxies find it hard to disentangle scale effects in operation from learning effects (Ek and
Soderholm, 2010, Odam and de Vries, 2020). In our empirical analysis, we introduce firm size
as an alternative EOS measure that more explicitly captures scale effects in the manufacturing
process. In particular, firm size captures economies of sale in the manufacturing process that
relate to, e.g., larger production lines, the distribution of headquarter overhead costs on more

units, or procurement volume discounts.

2.2.3 Estimated Learning Rates for Onshore Wind

Figure 2.2 illustrates the range of onshore wind LBD and LBS rates reported in previous studies,
each with different cost measures and cost drivers. LBD rates range from -11.4% to 20% and

LBS rates from 0% to 27%.22

Single-factor Number of factors Multi-factor
;g Isoard & Soria. (2001) Kobos (2006) Ek & Sdderholm (2010)
o Europe, 1981-1995, 20% LBD Global, 1975-2000, 14.2% LBD, Europe, 1986-2002, 17% LBD,
0, 0,
Junginger et al. (2005) 18% LBS 20%LBS
Global, 1990-2001, 19% LBD Jamasb (2007) Odam & de Vries (2020),
Wiser et al. (2016) Global, 1990-1998, 13% LBD, DE, DK, ES, UK, 1981-2000,
T ‘ 0, 0, 0,
g Global, 2014-2030, 16% LBD 26.8% LBS 2.85% LBD, 11.8% LBS
(] N
= e Odam & de Vries (2020),
Williams et al. (2017
S ||GloballUsA, 1990—20§5, 9.%% LBD DE, DK, ES, UK, 1981-2000, 2.5%
-% LBD, 2.1%-5.7% LBS
g
5 Trappey et al. (2013) Witajewski-Batvilks et al. (2015)
% Taiwan, 2000-2010, -11.4% LBD USA, 1990-2012, 3.7% LBD
o Qiu & Anadon (2012)
= China, 2003-2007, 4.2% joint LBD
a & LBS
Tang & Popp (2016)
Steffen et al. (2020) China, 2002-2009, LBD 0.95%, 0
Germany, 2000-2017, 11% LBD LBS, LBI 3.1%
Tu et al. (2019) Tang (2018)
5 China, 2006-2015, 7.5% LBD USA, 2001-2012, No Log Scale
'% Yao et al. (2015) Anderson et al. (2019) Hayashi et al (2018)
o China, 2004-2011, 4.4% LBD USA, 2001-2015, 1.45% LBD China, 2005-2012, 0 LBD, 0 LBS

F1GURE 2.2: Classification of Previous Onshore Wind Learning Rate Studies.

ZIMulti-factor learning curves or cost assessments for other technologies, such as for solar photovoltaics, also
include plant size to measure economies of scale in manufacturing (Nemet, 2006, Pillai, 2015).
22Including earlier studies amplifies this range.
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In particular, Figure 2.2 indicates three findings when reviewing the extant literature. First,
more recent studies tend to show lower learning rates. Second, studies using project-level data
find lower learning rates than studies based on more aggregated data. Third, the range in
learning rates and the sensitivity to model assumptions appears to be smaller when the period
of observation is long enough and several factors are examined that can drive technology costs.
Taken together, when moving from top left to bottom right corner of Figure 2.2, previous works

have found relatively lower learning rates.?3

Another source of variation in learning rates in Figure 2.2 is the cost measure used to proxy
technological progress. While the majority, particularly earlier studies, focuses on installment
costs, more recent studies analyze learning in terms of LCOE (Wiser et al., 2016, Williams
et al., 2017), capacity factor (Tang and Popp, 2016, Tang, 2018) or component-level cost, such

as operations and maintenance (Steffen et al., 2020).

2.3 Methodology and Data

Next, we introduce our empirical approach and present the data used to estimate learning rates
for onshore wind energy. To capture the broad channels of learning as reviewed above, we
opt for an econometric model that covers all relevant cost drivers and allows for different cost
measures as outcome of interest. We also probe into the sensitivities of estimated learning rates

by employing a range of differently specified cost drivers as well as control variables.

2.3.1 Econometric Model

We allow onshore wind technology costs to depend on two key learning mechanisms, LBD and
LBS, as well as on non-learning cost drivers. Specifically, we estimate the following multi-factor

experience curve model for onshore wind:

log LCOE;; =Py + B1 log EXP; 4 + B2 log KS;1 + B3 log EOS, (22)
2.2

+ B4 log Cliy + Bs log LA; 4 + FE; + €4,

ZFor learning mechanisms beyond LBD and LBS as well as for some non-learning mechanisms, most notably
EOS, the empirical evidence is likewise mixed. While Anderson et al. (2019) do not find experience spillovers,
Qiu and Anadon (2012) and Tang (2018), for the operational phase, do. Some studies report a statistically
significant relationship between technological change and economies of scale (Qiu and Anadon, 2012, Odam
and de Vries, 2020) whereas others find insignificant diseconomies of scale (Ek and Séderholm, 2010, Anderson
et al., 2019).
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where LCOE is our benchmark measure for technology costs, and subscripts ¢ and t indicate
country and year, respectively. We first estimate equation (2.2) using LCOE as outcome of
interest. As argued, LCOE is a comprehensible cost measure that captures total installed costs
as well as other relevant cost components (e.g., operating and maintenance costs). Further
below, we decompose learning into other cost components to shed light what parts of LCOE are

subject to learning.

The terms EXP and KS are the two seminal learning channels, experience and knowledge
stock. First, EXP captures learning by doing and is measured as depreciated, cumulative
installed capacity in MW. More specifically, the experience for country 7 in year t is computed
as

EXPy=(1-06)«EXP;1+ CAPy, (2.3)

where CAP is new capacity and § captures depreciating experience, i.e., the forgetting rate
(Argote and Epple, 1990). We set § to 3% in our benchmark specification, following earlier
assumptions in the literature (Klaassen et al., 2005, Kobos et al., 2006).

K S is the knowledge stock and captures learning by searching. Depending on the specification,
K S is measured as cumulative, depreciated patents granted by the European Patent Office
(EPO) in t — 3 or as cumulative, depreciated public wind energy RD&D expenses in ¢ — 5.

Formally, when using patents
KSFAT = (1-6) « KSFAT + PAT, s, (2.4)

where PAT are patents of the class FO3D (wind rotors) that are granted by the EPO. As
indicated, we use a three-year time lag for learning. As for experience, we use a depreciation
rate § of 3%. This approach again follows previous assumptions on magnitudes of depreciation
rates for knowledge (Griliches, 1979, Klaassen et al., 2005, Popp et al., 2011, Odam and de Vries,
2020).

When re-running our model using public RD&D spending as a commonly employed alternative
measure (Klaassen et al., 2005, S6derholm and Klaassen, 2007), we compute the knowledge stock
as

KSfPP = (1 —6) « KS[PP? + RDD;_s. (2.5)

2y
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Because RD&D expenditures occur upfront to knowledge creation and the applications of patents,
we use a longer time lag of five years and a higher depreciation rate of 6%. Further below, we

introduce several sensitivity checks to the computation of experience and knowledge stock.

EOS in equation (2.2) captures economies of scale in manufacturing, approximated by the
average firm size of the three largest listed European wind turbine producers Vestas, Siemens
Gamesa, and Nordex. These three firms had a joint global market share of 37.6% in 2018 (REN21,
2019) and are the largest players on the European market.?* Following common approaches in
the innovation economics and finance literature (e.g., Whited and Wu, 2006, Kogan et al., 2017),
we measure firm size as total assets reported in the annual financial statements. For robustness,
we also construct FOS by proxying firm size with average deflated revenues as in Kogan et al.

(2017).

Last, CI is commodity index, LA is relative unit labor cost, and F'E; captures country fixed
effects.?’ Finally, we calculate the LBD rate as LBD = 1 — 2% and the LBS rate as LBS =
1 -2,

2.3.2 Robustness

Learning curve estimation is subject to simultaneity bias (Jamasb, 2007, Soderholm and Klaassen,
2007, Witajewski-Baltvilks et al., 2015). Arguably, increases in capacity can reduce costs via
LBD while, vice versa, increases in capacity can stem from an increase in demand due to lower
technology costs. We therefore perform a robustness check using two-stage least squares (2SLS)
estimation. Following Jamasb (2007), we instrument experience with time fixed effects. In
addition, we use GDP per capita as well as the financing conditions by country, because we
expect countries with higher GDP to have deeper pockets for investing into new capacity, and
high interest rates to make deployment more costly and less attractive, given the large invest-
ments required upfront. Hence, we instrument experience with time fixed effects, the log of
GDP per capita, and long-term interest rates in the first stage. The second-stage equation is
equivalent to equation (2.2) with experience now being instrumented. Another concern could

be that public RD&D expenditures are allocated to “promising industries” where cost declines

2See Bloomberg New Energy Finance at https://about.bnef.com/blog/
vestas-still-rules-turbine-market-but-challengers-are-closing-in/.
25The Hausman and Breusch-Pagan tests reject random effects.
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are expected. Following Jamasb (2007), we hence run our 2SLS robustness checks only using

patents as measure for knowledge stock.

2.3.3 Sensitivities

To probe into the sensitivities of estimated learning rates, we re-run our model using a range of
different assumptions on the main measures of learning, i.e., experience and knowledge stock.
The existing literature has often measured experience and knowledge using different assumptions,
in particular on time lags and depreciation rates. Many studies integrate depreciation into
knowledge stocks. Conversely, depreciating experience has received minor attention, although
empirical evidence suggests the presence of forgetting in multiple contexts (Argote et al., 1990,
Benkard, 2000, Thompson, 2007). Prior studies for wind or solar PV that implement forgetting
assume a rate of around 10% per year (Hayashi et al., 2018, Bollinger and Gillingham, 2019).
Our benchmark specification assumes a lower forgetting rate of 3%, which we have set equal
to typical assumptions on the depreciation of the knowledge stock. These depreciation rate
assumptions are subject to significant uncertainty (Yeh and Rubin, 2012). To gauge into the
effects of these assumptions, we assess the sensitivity of our results with respect to different time
lags and depreciation rates for both the experience and knowledge stock measures. Specifically,
we re-run our specification in (2.2) and vary depreciation rates using values between 0% and

20% in steps of 2.5%.

2.3.4 Decomposing Technology Costs

Finally, we investigate learning in different cost components. In addition to LCOE as cost
measure, we estimate equation (2.2) using two further measures for technological progress. We
do so to explore what parts of technology costs are ultimately affected by learning, and what

part of technology costs are particularly relevant for projecting technological change.

Importantly, note that LCOE typically is an outcome variable of power market models. When
endogenizing technological change of renewable generation in power market models, typical input

parameters are installment costs and capacity factor. Below, we therefore focus on installment
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costs (IC) and capacity factor (CF) to make our result implementable in power system mod-
els.?6 While changes in installment costs can be understood as direct cost-reducing technological
change, we use the capacity factor to measure improvements in quality of wind turbines.?” We
perform these tests by exchanging the dependent variable in equation (2.2) and leaving all vari-

ables on the right hand side unchanged.

2.3.5 Data

Our main data comprise a set of country-level variables. We make use of cost data for onshore
wind from seven European countries which is available from the International Renewable Energy
Agency (IRENA, 2020).2% For the experience and knowledge measures we use data on country-
specific onshore wind capacities and RD&D data from IRENA and the International Energy
Agency (IEA). Further, we add patent data from OECD iLibrary and PATSTAT. In particular,
we employ patent data from the OECD iLibrary using the class FO3D "wind rotors". For
robustness checks, we use PATSTAT data and the Y-scheme patent classification, specifically
class YO2E 10/70 and subclasses.?’

We also merge in yearly data on average total assets of the three largest listed European wind
turbine manufacturers, Vestas, Siemens Gamesa, and Nordex, that we obtain from Thomson
Reuters. These data constitute our EOS variable. Finally, we source data on commodity prices
and firm indicators, likewise from Thomson Reuters.?® Data on economic variables, primarily

labor cost, is also from the OECD iLibrary.

26 As well known, the LCOE is the ratio of total lifetime costs over total electrical output. The installment costs
constitute the bulk of total lifetime costs, while the capacity factor can be seen as a proxy for total electrical
output.

2TWe assume that, for wind energy, capacity factors are independent of power market characteristics and not
endogenous due to the position of wind power in the merit order and flexible demand from storage and power-
to-X facilities (e.g., Ruhnau et al., 2020, Glenk and Reichelstein, 2019) that can reduce curtailment.

% The countries included are Denmark (DNK), Germany (DEU), Spain (ESP), France (FRA), the United King-
dom (GBR), Italy (ITA) and Sweden (SWE). The use of IRENA’s cost data, particularly LCOE, comes with
the assumption of a homogeneous WACC of 7.5%.

29The Y-scheme classification allows to find patents related to wind energy from multiple different patent classes
and subclasses. For our dependent variable, experience and knowledge stock measures, we interpolate occasional
missing data. Especially, we interpolate two implausible outliers in Spanish and British cost data.

30The data codes are WC02999, HWWISR$, LAHCASH, LCPCASH for firms total assets, steel, aluminum,
and copper, respectively. Iron ore prices are publicly available at the FRED at https://fred.stlouisfed.
org/series/PIORECRUSDM. We calculate the commodity price index following Moné et al. (2017) as CI; =
0.74 % Steel Price;+0.11 % Iron Ore Price; + 0.02 x Aluminum Price; + 0.01 x Copper Price;. Cross-sectional
variation stems from deflating the commodity index with country-specific deflation rates. We deflate the
commodity index with deflators from the IEA but do not find our results to be sensitive to non-deflation.
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TABLE 2.1: Descriptive Statistics

Variable Mean SD Min. P25 Median P75 Max.
Panel A: Raw data

LCOE 0.11 0.03 0.05 0.09 0.11 0.12 0.16
IC 2127.07 281.67 1276.00 1923.00 2135.00 2318.00 3134.00
CF 0.26 0.04 0.18 0.23 0.25 0.28 0.40
New capacity 620.92 882.35 —33.00 41.00 233.38 846.02 4871.00
EPO patents 10.60 21.78 0.00 0.00 1.31 8.06 116.57
RD&D 11.88 13.20 0.14 2.66 7.12 15.83 86.03
CI 294.08 114.47 117.28 165.34 310.80 384.23 511.02
EOS 4276.30 3131.95 159.53 1571.63 4785.79 5598.60 11721.44
LA 103.17 6.90 85.84 100.00 102.16 106.28 123.58
Panel B: Ezxperience and knowledge stocks

EXP 6933.15 8311.92 14.32 1296.21 3237.15 9122.91 40643.99
KSPAT 97.20 177.09 0.97 7.22 22.25 75.30 777.23
KSRDD 118.64 95.31 5.81 45.52 101.14 157.93 453.83

Notes: This table shows descriptive statistics. The number of observations is 147, except for EOS, where we have
21 yearly observations. Panel A displays raw data. We measure LCOE in $/kWh, IC in $/kW, CF in %, new
capacity in Megawatt (MW), RD&D and EOS in $ millions, and LA as a relative unit cost index. All monetary
data except EOS are in 2019 $, EOS are nominal. New capacity contains data from 1990 to 2018 and patents
(RD&D) from 1984 to 2015 (2013). Panel B presents experience and knowledge stocks that we compute from the
data.

The availability of our EOS measure determines the sample starting year, 1998, and the use of
patent data our end year, 2018, resulting in 147 observations. Due to the time lag until new
patents or RD&D enter the knowledge stock and to account for its character as a stock, we include
patents and RD&D from 1984 on. For similar reasons, we start constructing the experience stock

in 1990. Commercial uptake of onshore wind farms and data availability determine these starting

dates for the computation of the stock variables. Table 2.1 provides the summary statistics.

2.4 Results

This section presents our empirical results. We discuss our baseline estimates and a battery of

robustness checks, including the instrumental variable approach and our sensitivity analysis.



2 Estimating Learning Curves for Onshore Wind Energy 37

2.4.1 Main Results

Table 2.2 depicts the results of estimating equation (2.2) when LCOE is the dependent variable.
Column 1 shows the results when using patents to construct the knowledge stock. We estimate
an LBD rate of 2.8% and an almost three-times larger LBS rate of 7.1%, both statistically
different from zero at the 1% level. Hence, a doubling of the depreciated cumulative capacity
(patents) is associated with an LCOE decrease of 2.8% (7.1%). All non-learning covariates have
the expected impact: The commodity index and labor costs are strongly positively associated
with LCOE whereas EOS are negatively associated with LCOE, all significant at the 1% level. In
terms of magnitude, we find that an increase in EOS as measured by total assets of one percent

is associated with a decline of 0.08% in technology costs.

TABLE 2.2: Regression Results for LCOE

Dependent (1) (2) (3)
variable: LCOE OLS OLS 25LS
EXP —0.041*** —0.028 —0.085***
(0.014) (0.017) (0.019)
KSPAT —0.106™* —0.104**
(0.015) (0.015)
KSRPD —0.136***
(0.041)
CI 0.180*** 0.169*** 0.191***
(0.040) (0.045) (0.042)
EOS —0.080*** —0.158*** —0.045*
(0.024) (0.023) (0.026)
LA 0.450*** 0.612*** 0.386**
(0.171) (0.191) (0.177)
Constant —3.701%** —3.683*** —3.753***
(0.799) (0.948) (0.819)
Country FE Yes Yes Yes
LBD (in %) 2.77 1.89 5.73
LBS (in %) 7.06 9.00 6.98
Adjusted R? 0.77 0.71 0.74
N 147 147 147

This table presents our main regression results on log-log scale. We estimate the model twice, first with patents
(column 1), then with RD&D as the knowledge variable (column 2). Column 3 contains the results of our
instrumental variable approach using the two-stage least squares (2SLS) estimator. We use time dummies, per
capita GDP and interest rates as instruments for EXP but also include all other covariates in the reduced form.
Standard errors are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01 indicate significance.

Column 2 re-estimates the model using the RD&D-based knowledge stock that targets input to

innovation. As can be seen, switching the knowledge stock definition to RD&D reduces LBD to
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1.9% (significant at 10.4%) but increases LBS to 9%. Whereas estimates slightly change, they
hence remain comparable to using patents as knowledge measure. In addition, both specifications
clearly show that LBS rates are several orders of magnitude higher than LBD rates. Lastly, the

impact of all covariates remains robust and as conjectured throughout both specifications.

Our core results of Table 2.2 remain virtually unchanged when (1) counting patents in several
different ways with respect to patent class, quality indicator, e.g., family size, or weights for qual-
ity (Popp et al., 2011, Nemet, 2012a), (2) approximating experience with cumulative generation
instead of capacity, (3) using lagged experience, (4) using average revenue of the three turbine
manufacturers as EOS measure, (5) varying start year and end year, separately and together, by
one year, and (6) deflating commodity prices and firm total assets in different ways. Appendix
Table A.1 contains estimation results of robustness check (1), Appendix Table A.2 of robustness

checks (2) to (4), and Appendix Table A.3 of robustness check (5).

2.4.2 Instrumental Variable Estimation Results

Our results above rely on ordinary least squares regression with regular standard errors.3' Next,
we address potential concerns of simultaneity bias by using the instrumental variable approach.
Column 3 of Table 2.2 presents the 2SLS regression results. As can be seen, the LBS rate
remains robust in terms of significance and magnitude. However, the LBD rate increases to
5.7%, thereby converging to the estimated LBS rate of 7%. The coefficients of EOS and labor
costs both decline in absolute terms. Overall, our IV regression corroborates our prior results
that significant learning takes place both for LBD and LBS. In particular, our IV results shows
that LBS still outweighs LBD.

2.4.3 Sensitivity in Time Lags and Depreciation Rates

In order to understand the influence of different assumptions on depreciation rates of experience
and knowledge, we vary both using values between 0% and 20% in steps of 2.5%, following Kobos
et al. (2006).

31Using robust standard errors or panel-corrected standard errors (Beck and Katz, 1995) produces largely identical
results.
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FIGURE 2.3: Sensitivity Analyses with Various Depreciation Rates.

Notes: The left graph shows LBD rates in four different scenarios. We vary either the depreciation in experience
or in knowledge. As before, we measure knowledge using patents or RD&D. The varying depreciation rate in
each scenario is reflected on the horizontal axis, using steps of 2.5%. For instance, in the first scenario (EXP
base, PAT varies), the graph depicts LBD rates when holding the depreciation rate for experience at its base of
3% and varying the depreciation rate of knowledge from 0 to 20%. The right graph shows the corresponding LBS
rates.

Figure 2.3 illustrates the results.?> We observe two important patterns. First, learning rates
remain relatively stable when using the patent-based knowledge stock, no matter if varying the
depreciation rate for knowledge (EXP base, PAT varies) or for experience (EXP varies, PAT
base). As can be seen in the left panel of Figure 2.3, LBD rates are approximately constant. In
the right panel of Figure 2.3, depreciating cumulative patents at a higher rate decreases LBS to
a minimum of 5.5%, i.e. only about 1.5 and 1.8 percentage points lower than the estimated base

case in Table 2.2 and the zero depreciation case, respectively.

Second and more importantly, LBS rates strongly react to variations in the RD&D-based knowl-
edge stock depreciation rates. As can be seen in the right panel of Figure 2.3, LBS rates vary be-

tween 17.7% in the zero depreciation case and 4.8% when using a depreciation rate of 20% (EXP

32Varying both forgetting and depreciation rates simultaneously produces similar point estimates.



2 Estimating Learning Curves for Onshore Wind Energy 40

base, RD&D varies). The sensitivity is particularly pronounced in the first steps after starting
with a zero depreciation rate, i.e. around values frequently used in prior studies (Klaassen et al.,
2005). Overall, the RD&D-based knowledge stock depreciation rate, and with it the choice of
RD&D versus patents as measure for knowledge, appears to contribute to explaining parts of

the previously reported range in learning rates.

In untabulated analyses, we also vary the lag structure from two to seven years but do not find
large impacts on our results. In sum, the sensitivity analysis supports our initially reported LBD
rates. We find that the measurement and the assumed depreciation rate of the knowledge stock
have larger implications on the learning rates than the depreciation of experience. However, our

result that LBS rates are significantly higher than LBD rates remains robust.

2.4.4 Decomposing LCOE

That LBS is highly significant in terms of magnitude suggests that research and development
drive technology cost. To further gauge into what parts of LCOE are driven by knowledge
creation, and what parts are driven by experience, we decompose LCOE and estimate the impact
of knowledge and experience separately for installment costs and capacity factor. Importantly,
this decomposition also aids the setup of energy system models in that it sheds light on how
researchers can endogenize technological change, i.e, via endogenizing upfront installment costs
or capacity factors. Table 2.3 shows the corresponding regression results of this decomposition

into installment costs and capacity factor.

As shown in columns 1 and 2, we do not find any significant learning when we measure costs
with total installed costs. These findings are in stark contrast to our results on LCOE. Yet, note
that EOS are still significantly negatively related to costs and the commodity index is positively

associated to costs, as can be expected.

In columns 3 and 4, we use capacity factor and estimate a statistically significant LBS rate of
3.9% to 5.2%. LBD rates vary between 0.3% to 0.8%, albeit insignificant in this multi-factor

model. While EOS again show a significant relationship to the dependent variable, changes in
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TABLE 2.3: Regression Results for Wind Installment Cost and Capacity Factor

(1) (2) (3) (4) (5)

IC IC CF CF CF

EXP —0.005 —0.002 0.011 0.004 0.039***

(0.013) (0.013) (0.011) (0.012) (0.015)
KSPAT —0.007 0.055%** 0.054***

(0.013) (0.011) (0.012)
KSRDD —0.030 0.073**

(0.032) (0.030)

CI 0.252%* 0.248"** —0.046 —0.040 —0.053*

(0.035) (0.036) (0.031) (0.033) (0.032)
EOS —0.096*** —0.098"** 0.050%** 0.090*** 0.028

(0.021) (0.018) (0.018) (0.016) (0.020)
LA 0.105 0.097 —0.288"* —0.369"** —0.248*

(0.151) (0.149) (0.131) (0.137) (0.135)
Constant 6.637" 6.811*** —0.634 —0.668 —0.626

(0.705) (0.741) (0.613) (0.683) (0.622)
Country FE Yes Yes Yes Yes Yes
LBD (in %) 0.36 0.14 —0.75 —0.26 —2.72
LBS (in %) 0.50 2.04 —3.85 —5.21 —3.80
Adjusted R? 0.35 0.35 0.67 0.63 0.61
N 147 147 147 147 147

This table presents regression results for installed costs and capacity factor as proxies for technological change.
We estimate each model twice, first with patents (columns 1 and 3), then with RD&D as the knowledge variable
(columns 2 and 4). Column 5 shows results of the instrumental variable model using the two-stage least squares
(2SLS) estimator. All variables are on log scale. Standard errors are in parentheses. * p < 0.10, ** p < 0.05, ***
p < 0.01 indicate significance.

the commodity index have, as expected, no effect. Note that the learning rates are negative

because an increase of capacity factors indicates technological progress.3?

As argued, since bias due to simultaneity could also affect inference when using installment
costs or capacity factor as proxies for technological change, we repeat our instrumental variables
estimation of section 2.3.2. Column 5 of Table 2.3 shows the results.?* As in the case of LCOE,
the IV approach produces almost identical LBS rates compared to the base OLS case. LBD

rates increase by approximately two percentage points to 2.7%.

33We also re-run equation 2.2 using total installed costs scaled by full load hours as the dependent variable. This
constitutes a further robustness check as well as a potential alternative cost measure to incorporate into energy
system models. We do not tabulate the results because they are conceptually similar to using capacity factors
and only show slightly higher learning rates compared to those of the capacity factor.

34We do not tabulate results of the IV approach for total installed costs because learning rates hardly change
and remain insignificant.
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Overall, our decomposition of LCOE illustrates that a mere modeling focus on installed costs
does not provide a complete picture of progress in onshore wind technology. Instead, to achieve
results much closer to the technical reality and the progress in LCOE, the capacity factor with

its significant LBS rates should likewise be modelled.

2.5 Discussion

Our results above suggest that, first, LBS has larger effects on technology costs than LBD.
Second, LBS estimates depend heavily on the assumptions on the depreciation of the knowl-
edge stock. In particular, LBS rates react sensitively to changes in the depreciation rate when
measuring knowledge with RD&D. In contrast, learning rates are more stable across different

depreciation rates when using patents as measure for knowledge instead.

One reason for the high sensitivity in learning rates when using RD&D as proxy for knowledge
is that RD&D is an input-oriented measure. Arguably, RD&D is subject to diversion and
failure, which the depreciation rate must adequately account for. Hence, using insufficiently low
depreciation rates can result in inflated knowledge stocks. In line with Figure 3 above, inflating

knowledge stocks can in turn lead to high estimated learning effects from RD&D expenditures.

Patents on the other hand are an output measure of knowledge, verified by the patent examiner
as unique and new.?®> As our findings show, using patents to proxy for knowledge is hence more

robust to different assumptions on the depreciation rate.

Overall, our findings indicate that energy system models that incorporate ETC should not be
confined to LBD only, and include LBS. Public RD&D lends itself to being used as the knowledge
measure in systems models (Gillingham et al., 2008, Rubin et al., 2015) because it is a policy
variable, unlike patents. In order to deal with the lower robustness of RD&D, validating LBS
rate assumptions using patents or including a sufficiently high depreciation rate for RD&D in

the range of 6-10% appears reasonable.

Furthermore, we find that LBS in particular channels into improvements in quality rather than
in mere cost reductions. This is, we find no significant effects on total installed costs but mostly

in terms of capacity factor. Last, the assumed time lags until which new experience or new

35Patents have the additional benefit of measuring both public and private knowledge whereas public RD&D
spending does not.
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knowledge adds to the existing stocks has only small or no effects on learning rates. Thus,
system models can adapt time lags for learning such that it fits modelling needs for investment

decision frequency.

In closing, we present a short projection model where we employ our main LBD and LBS
estimates for LCOE and capacity factor. The aim of this brief projection is to use and compare

our estimates with expected capacity factors for 2050.

According to a projection by IRENA (2019), European onshore wind capacity is to reach 215
GW in 2030 and 482 GW in 2050, starting from 162 GW in 2018. We combine our model
assumptions and results (3% forgetting without lag, 6% knowledge depreciation rate with five
year lag, average European 2018 LCOE (capacity factor) of 0.062 $/kWh (35.41%), LBD and
LBS from Table 2.2 with four new assumptions: First, Europe adds capacity constantly each year
to reach the 2030 target and then the 2050 target, second, future yearly European wind RD&D
expenses correspond to its 2019 value of $364.59 million, third, learning rates are applicable to
Europe as a whole, and, fourth, there are no changes in commodity prices, manufacturing EOS

and labor costs.

Our computed projections show that the LCOE declines by 6.19% until 2030 and 10.50% until
2050, then amounting to 0.055 $/kWh, highly competitive with current generation costs of
conventional technologies even in the absence of any carbon pricing. In the same period, the
average capacity factor of a European onshore wind farm increases by 6.01% to 37.57%. This
capacity factor approaches the 2018 level of Great Britain and Denmark, the two countries with
the highest average capacity factor. The projection in IRENA (2019) suggests capacity factors
between 30% and 58%. Our estimate of 37.57% is at the lower and more conservative end of

this projection, yet well within this range.

2.6 Conclusion

This study uses recent country-level data to estimate learning rates of onshore wind power.
We identify relevant cost drivers and learning channels for different measures of technological
progress of wind turbines, i.e., LCOE, installment cost, and capacity factors. Our goal is to

show what cost drivers and learning channels are robust across different specifications and where
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learning takes place, i.e., what cost components experience technological progress. In decom-
posing LCOE into installment costs and capacity factor, we also aim at guiding energy system
models in how they can incorporate endogenous technological change into equilibrium market

analyses and corresponding projections.

First, we find learning by doing rates of 2%-3% and learning by searching rates of 7%-9% when
estimating effects for LCOE. These estimates are robust against a variety of additional controls
as well as when using instrumental variables. Yet, we show that estimates depend on assumptions
on depreciation rates and the measurement of the knowledge stock, explaining parts of the huge
variation observed in previous learning rate studies. Importantly, learning rates are most robust

when measuring knowledge creation by using the patent stock, instead of relying on RD&D data.

To explore the relevant cost components that are subject to learning, we then decompose LCOE
into installment costs and capacity factor. For installment costs, we find learning rates close to
zero. In contrast, for the capacity factor, we find insignificant LBD rates but significant LBS

rates of 3.9%-5.2%, depending on the specification.

We therefore recommend to extend system modeling of ETC with capacity factors. In so doing,
energy market models can account for the fact that onshore wind is not necessarily becoming
less expensive in terms of upfront costs, but better in terms of quality and efficiency. In other
words, traditional learning channels, such as learning by doing, become less important for upfront
installment costs the more mature the technology gets. Instead, learning by searching becomes

more relevant, in particular for advancing the quality or efficiency of wind turbines.

Notably, we also find significant and economically strong effects of economies of scale and com-
modity prices. Hence, future costs of onshore wind also depend on sufficiently competitive supply

as well as technological progress both in upstream industries and in the wind industry.

In conclusion, our results highlight the benefits of shifting from a mere focus of installment costs
to capacity factors when researching future cost developments and integrating learning curves
into power system models. When implementing and estimating learning rates, in particular for
learning by searching, researchers have to carefully introduce assumptions on depreciation for
knowledge creation via RD&D and patent filings that can significantly drive learning in onshore

wind technologies.



3 System Price Dynamics for Battery
Storage

by Magnus Schauf and Sebastian Schwenen35

While steep learning curves have been documented for lithium-ion battery packs, little evidence
exists on whether total system prices for end-users reflect this decline. We use project-level data
from California to estimate system price dynamics and experience rates for battery storage sys-
tems. We document low experience rates of about 1.3%, i.e., with every doubling in cumulative
projects, system prices fall by 1.3%. Larger systems show higher experience rates of up to 11%,
while smaller systems show slightly negative experience rates. We find that limited competition
among installers is restraining price declines for small systems. Moreover, learning is driven
by industry (rather than firm) experience and is significantly lower for non-battery pack prices.
In sum, our results suggest that price dynamics relevant to end-users fall behind the pace of
reported cost declines for battery packs, and warrant policy focus on installer competition and

non-battery pack prices.

36This essay is based on joint work with Sebastian Schwenen. My contributions are as follows: development of
the research idea, literature review, formulation of the statistical model, data curation, performing the analysis,
creating the visualizations, and writing the original draft.
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3.1 Introduction

BATTERY STORAGE is a key ingredient for decarbonized energy systems (Arbabzadeh et al.,
2019). When widely distributed across the system, battery storage facilitates the growth of wind
and solar energy (Zerrahn et al., 2018, Schill, 2020, Tong et al., 2021), provides grid stabilization
services (Davies et al., 2019), and supports off-grid electricity provision (Jaiswal, 2017, Lee and

Callaway, 2018).

The growing relevance of battery storage (Schmidt et al., 2019, Beuse et al., 2020) coincides with
a massive increase in R&D and patenting, aiming to reduce battery costs (IEA, 2020a, 2022).
However, the economics of battery storage remain challenging for end-users and often dependent
on subsidies (Comello and Reichelstein, 2019). As a consequence, understanding learning and
potential price reductions for battery storage is important for predicting future market shares

and for designing effective support policies.

To analyze and forecast learning and cost reductions, previous studies estimate learning or
experience rates for battery storage. Typically, learning rates indicate the change in technology
costs associated with a doubling of experience, where experience is measured as cumulative
installed capacity or cumulative production. The literature finds learning or experience rates
for batteries mostly between 12% and 30% (Kittner et al., 2017, Schmidt et al., 2017, Hsieh
et al., 2019, Kittner et al., 2020, Ziegler and Trancik, 2021). Yet, while these results are largely
confined to analyzing global averages of scarce annual data for battery cells and packs, less is
known on the dynamics of total system prices for distributed storage systems, i.e. what drives
prices relevant to end-users. Importantly, although evidence for solar photovoltaics (PV) shows
that market structure matters (Gillingham et al., 2016), there are no documented experience
rates for local battery storage markets that take into account the degree of installer competition.
A further consequence of scarce data is that little attention has so far been paid to estimating
the price dynamics for the different applications of distributed battery storage (e.g. for small
residential and larger non-residential systems) as well as its different price components, such as

balance-of-system (BOS) prices.

In this article, we provide several contributions to the literature on learning by doing and tech-
nological progress of battery storage. First, we use rich project-level data from California to

provide an empirical analysis of total system price dynamics in battery storage markets. We
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estimate experience rates of about 1.3%, implying that, on average, experience rates for system
prices fall behind the majority of reported experience and learning rates for battery packs and
cells (Kittner et al., 2017, Schmidt et al., 2017, Ziegler and Trancik, 2021). Second, we docu-
ment substantial heterogeneity in total system prices and show that experience rates for larger
systems are significantly higher than for smaller residential systems (11% vs. -2%). Third, we
show that besides experience and system size, market structure matters. In particular for small
storage systems, we find that less competition among installer firms is associated with lower
experience rates and thus, on average, higher system prices. Fourth, we report that the non
battery-related share of the total price, i.e. the BOS price, shows lower experience rates than
total prices. Lastly, we explore experience spillover effects and find a price-reducing effect of
industry-wide experience. In contrast, we find that firm-specific experience does not explain

observed reductions in system prices.

Overall, our analysis reveals that total price dynamics and specifically BOS prices do not match
the pace of cost and price reductions for battery packs. Learning effects play a minor role
especially for small system prices, which are rather driven by the economics of installer firms
and the degree of competition among them. Because we find marked differences in learning for
small residential and larger systems, the results of this article further highlight the relevance of
tailoring support policies for battery storage to the different use cases. In addition, our findings
stress the policy potential for reducing BOS prices and increasing installer competition to further

accelerate investment in distributed storage.

3.2 Battery Storage Trends in California

To analyze technological progress and its determinants, we require detailed data on the total
prices of individual storage systems. To this end, we conduct our analysis using the case of
California and rich project-level data provided by the California Public Utilities Commission
(CPUC). More specifically, the data are from the CPUC’s Self Generation Incentive Program
(SGIP), which administers the vast majority of subsidized battery storage systems in California.
SGIP data include, amongst others, information on location, involved firms, system size, and

“total eligible costs”, i.e. total system prices.

Although other states in the US have started to promote battery storage, California represents

the vast majority of distributed storage capacity (82% in 2019 for systems below 1 MW) in
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the US (EIA, 2021). The SGIP data hence offer a well representative sample. Moreover, cost
and growth dynamics are comparable to markets outside the US, e.g. to the German market

(Figgener et al., 2021, 2022).

Figure 3.1 shows the growth of SGIP supported storage projects over time. The program has
supported about 8,000 systems (panel a) or about 250 MWh of storage capacity (panel b)
annually over the recent years. In total, the program supports almost 1.1 GWh of cumulative
storage capacity until 2021. The SGIP data, i.e. our sample, starts in 2008 and ends in December

2021 (because there are very few observations in the early years, Figure 3.1 shows data beginning

in 2014).
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FIGURE 3.1: SGIP Battery Systems and Installed Capacity in California. (A), number of
subsidized storage systems. (B), installed storage capacities. We show systems and capacity by
size segment, where “small” refers to systems with a power rating of 10kW or less and “large”
refers to systems with more than 10kW. Data as of February 2022.

As further shown in Figure 3.1, the bulk of capacity additions until 2017 came from larger systems
(above 10kW). From 2017 onward, the number of small systems (below 10kW) surged to several
thousand new installations per year. In parallel, this increase led to a rising share of residential
storage capacity, which in 2021 represents more than 50% of total interconnected capacity.
Among the reasons for this strong uptake of residential storage are wildfire-related power shutoffs,

a gradual phase-out of net metering policies, new product launches, and government subsidies

for adopters (Barbose et al., 2021).

Similar to distributed solar generation (Gillingham et al., 2016), battery storage prices vary

substantially across regions. Figure 3.2 illustrates this price dispersion for battery storage by
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county for large (panel a) and small systems (panel b). As can be seen, prices differ considerably

by county, ranging from about 900 to 2800 USD per kWh.
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FIGURE 3.2: System Prices. (A), mean prices for large systems by county. (B), mean prices for
small systems by county. (C), by size segment and year.

Finally, as shown in panel ¢ of Figure 3.2, average storage prices decline significantly especially
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in the early years of our sample, with a parallel decline in variance. The strong decline for small
systems in 2017 coincides with the launch of a new and aggressively priced product from Tesla,
a firm that acts both as installer and battery technology provider. While average prices of small
systems tend to slightly adjust upwards thereafter, this price decline suggests to include the
role of competition, amongst other drivers, to explain the heterogeneity and dynamics in system

prices as observed in Figure 3.2.

3.3 Estimating Experience Rates for Battery Storage

A well-established approach to measuring technological progress is to use learning rates, that in-
dicate percentage changes in technology costs associated with a doubling of experience (Wright,
1936, Arrow, 1962). While experience is measured differently in the literature, a common ap-
proach is to proxy experience with cumulative installed capacity, namely cumulative kilowatt-
hours (kWh) in the case of energy storage (Schmidt et al., 2017, Way et al., 2022). Similar to
other energy technologies, such as wind power (Schauf and Schwenen, 2021), lithium-ion bat-
tery learning and experience rates as reported in the literature differ substantially, depending
on the technology variant, definition of experience, model specification, and the sample period.
Reported experience rates for electric vehicle battery packs are between 6% and 21% (Nykvist
and Nilsson, 2015, Schmidt et al., 2017, Hsieh et al., 2019, Kittner et al., 2020). Experience rates
for batteries range from 15% to 30% (Kittner et al., 2017, Schmidt et al., 2017, Kittner et al.,
2020, Ziegler and Trancik, 2021), or even higher when accounting for performance improvements

beyond cost declines (Ziegler and Trancik, 2021).

Our methodological approach relies on one-factor experience curves (Schmidt et al., 2017). In
particular, we use SGIP data and predict total prices per kWh for battery storage systems (in
logs) with experience (measured as cumulative projects, likewise in logs). Since learning on
total system prices typically does not depend on the energy storage capacity of the system, we
use the natural log of cumulative projects to proxy for experience. In additional analyses, we
validate our results using cumulative capacity in kWh. We use least squares regression with
standard errors clustered at the county level. Additional information and summary statistics for
the underlying data are presented in the Methods section and in the Appendix (Tables A.4 to
A6).
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Table 3.1 reports the estimated coefficients and corresponding experience rates. We compute
the experience rates as 1 — 27, where 3 is the estimated coefficient for experience. As shown
in column (1), a doubling of experience, when measured as the cumulative number of projects,
is associated with a decline in system prices of 1.29%. In column (2), we proxy experience by
cumulative installed capacity and find slightly higher experience rates of about 3.33%. These
estimates for project-level data are significantly below the previously reported experience rates

(Schmidt et al., 2017, Hsieh et al., 2019, Kittner et al., 2020, Ziegler and Trancik, 2021).

TABLE 3.1: Estimated Experience Rates

Dependent variable: Price in All observations
2021 USD/kWh
/ (1) )
EXP # —0.019*
(0.011)
EXP kWh —0.049***
(0.015)
Experience rate % 1.29 3.33
Adjusted R? 0.003 0.01
N 28,299 28,299

All variables are on log scale. Clustered standard errors are in parentheses. * p < 0.1, ™™ p < 0.05, *** p < 0.01
indicate significance.

3.4 Scale and Installer Competition

To further probe into the markedly low experience rates for system prices, we explore whether
learning effects differ when splitting the sample according to different storage applications. We
split the sample in residential (i.e. small, 10 kW or less) and non-residential (i.e. larger, above
10 kW) systems. This scale threshold is consistent with the definition of the CPUC (CPUC,
2016).

Table 3.2 presents the results for small and large storage systems. As shown in column (1),
large systems show experience rates of about 11.11%. In column (2), we control for the market
concentration in each county, as measured by the county-specific Herfindahl-Hirschman Index
(HHI), which impacts prices with marginal significance. The specification in column (2) further
controls for system size in kWh and duration in hours. We add these controls to account for
installation-related economies of scale within CPUC’s classification of large and small segments.

In this specification, we also control for unobserved, time-invariant county and installer firm
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heterogeneity by including corresponding fixed effects. We find an experience rate of 8.44%. In
sum, the experience rates for large systems are much higher than for the sample including all

systems and closer to the experience rates as reported in previous studies.

TABLE 3.2: Regression Results by Segment

Price in 2021 Large Small
USD/kWh
/ (1) 2) (3) 4
EXP # —0.170** —0.127** 0.028* 0.021*
(0.008) (0.017) (0.014) (0.007)
HHI 0.148* 0.577***
(0.088) (0.107)
Size kWh —0.039** —0.173***
(0.019) (0.013)
Duration —0.123* —0.426**
(0.072) (0.031)
County FE No Yes No Yes
Firm FE No Yes No Yes
Experience rate % 11.11 8.44 —1.93 —1.49
Adjusted R? 0.39 0.66 0.01 0.67
N 2,957 2,957 25,331 25,331

All variables except HHI are on log scale. Clustered standard errors are in parentheses. * p < 0.1, ** p < 0.05,
*** p < 0.01 indicate significance, FE fixed effects.

Column (3) of Table 3.2 shows results for the sample of small systems, which are in stark
contrast to the results for larger systems. Learning for small systems is close to zero with an
estimated negative experience rate of approximately 2%. In addition, the relatively good model

fit (adjusted R?) of the one-factor model for large systems does not apply to small systems.

We again extend the basic model to control for the county-level HHI, for scale effects, and for
county and installer firm heterogeneity. The results for this specification are shown in column
(4) and indicate that scale effects play a significant role for small systems, too. For instance, an
increase of a small storage system’s capacity by ten percent associates with a decrease in system

price per kWh of about 1.7%.

Importantly, we find that also the level of installer competition significantly determines the
system price. Specifically, a more concentrated installer market (a higher HHI) is associated
with higher prices. In other words, an increase in the HHI by 0.12 (one standard deviation) is

associated with an increase in system prices by 5.3%. Notably, the model in column (4) that
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accounts for the HHI and system scale characteristics explains a relevant part of the variation

in system prices (as shown by the relatively high R?).
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FIGURE 3.3: Experience Curves. (A), for large systems above 10 kW. (B), for small systems
below 10 kW. 95% confidence intervals are shown in grey.

Figure 3.3 illustrates the experience curves for small and large systems graphically. Panel a of
Figure 3.3 shows the experience curve for larger systems as estimated in column (1) of Table
3.2. In line with the relatively high R? for larger systems, the model describes the data well. In
contrast, panel b of Figure 3.3 shows the experience curve for smaller systems (that correspond
to the estimates in column (3) of Table 3.2). As can be seen, there is significant heterogeneity in
system prices for small systems. The above findings indicate that, first, learning follows strongly
different magnitudes for large and small systems, and second, experience alone does not describe
the data well, especially for smaller storage systems. As we have shown in our regression results
above, further factors such as market concentration, system size, and duration play a significant

role for total system prices, and in particular for small storage systems.

3.5 Balance-of-System Prices

So far, our results point to significant learning in total system prices of larger battery storage
systems but not for small systems. Next, we explore which price components are driving these
results. In particular, we investigate whether observed price declines can be attributed to the

prices of battery packs or rather to non-battery, i.e. BOS prices.
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Whereas battery packs are arguably a globally traded commodity, BOS prices primarily encom-
pass components with mostly local learning, such as installation, permitting, customer acquisi-
tion, and mark-ups. In addition to these “soft cost” components (O’Shaughnessy et al., 2019),

BOS also entails inverters and other auxiliary hardware like cables.

Specifically, we proxy BOS prices by deducting battery pack prices from total system prices.
Since the SGIP data only provides system prices, we use yearly averages for battery pack prices
from Bloomberg’s battery price survey to compute BOS prices. This approach is consistent with
earlier studies in the context of solar PV, that examine learning in non-module (i.e. BOS) or
soft costs after subtracting module (and inverter) costs (Shum and Watanabe, 2008, Strupeit
and Neij, 2017). Hence, our BOS measure includes the potentially missing ability of installer
firms to purchase battery packs at prices published by Bloomberg, e.g. because of low order

volumes or a lack of trading networks.
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FIGURE 3.4: BOS Experience Curves, with 95% confidence intervals in grey.

To estimate learning in non-battery pack prices, we rerun our one-factor experience curve model
using BOS prices as the dependent variable. Figure 3.4 depicts the resulting experience rates,
again for the small and large segment without further controls. As shown, BOS learning is less

strong than total system price learning. This holds for both segments, but in particular for
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small systems, where we estimate negative BOS learning of about 7.5%. Because BOS learning
is slower or negative as compared to total prices, BOS prices make up for an increasing share of

total battery system prices.

To illustrate the increasing relevance of non-battery price components, Figure 3.5 plots the share
of BOS prices over time. As shown, at the end of our sample in 2022, BOS prices account for

more than 80% of stationary system prices.
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Overall, our findings suggest that local BOS price learning cannot match the pace of upstream
battery technology learning. The detrimental dynamics of BOS prices hence attenuate learning
effects for total system prices. In Appendix Table A.7 we show that our results hold when

running the extended model with additional controls, e.g. for HHI.

3.6 Separating Industry from Firm Learning

The previous analysis assumes homogeneous experience spillover effects within California, i.e.
capacity added by one firm directly factors into the entire experience stock across the industry.
This assumption is implicit to the vast majority of experience curve studies, and is impossible

to test without project-level and installer firm-level data. In closing, we exploit our data to
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explicitly investigate the prevalence of spillover effects by separating industry from installer
firm learning (Irwin and Klenow, 1994, Bollinger and Gillingham, 2019, Nemet et al., 2020).
Because our earlier findings indicate that reductions in total system prices are primarily driven
by global progress in battery packs rather than installer-specific BOS prices, we expect industry-
wide learning to dominate intra-firm learning. We conduct our analysis by computing separate
experience stocks for the industry and installer firms, and include both as explanatory variables

(see Methods).

TABLE 3.3: Industry versus Firm Learning by Segment

Price, BOS in Price BOS
2021 USD/kWh Large Small Large Small
(1) (2) (3) (4)
SPILL # —0.161*** —0.089*** —0.127** —0.055%**
(0.021) (0.013) (0.020) (0.018)
EXP Firm # 0.035*** 0.074** 0.034** 0.085***
(0.012) (0.006) (0.014) (0.008)
HHI 0.160* 0.434*** 0.110 0.499***
(0.090) (0.095) (0.101) (0.116)
Size kWh —0.039* —0.180*** —0.047** —0.217***
(0.020) (0.012) (0.023) (0.014)
Duration —0.119 —0.416*** —0.163* —0.490***
(0.077) (0.031) (0.093) (0.036)
County FE Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Industry experience rate % 10.57 5.96 8.45 3.71
Firm experience rate % —2.45 —5.30 —2.40 —6.10
Adjusted R? 0.66 0.68 0.54 0.69
N 2,957 25,331 2,957 25,331

All variables except HHI are on log scale. The variable SPILL captures learning from industry-wide experience, i.e.
spillover learning. The variable EXP Firm captures learning from firm-specific experience. For each observation,
we compute SPILL as the industry-wide cumulative number of projects excluding the firm that has installed the
observed system. For each observation, we compute EXP Firm as the cumulative number of projects by the firm
that has installed the observed system. Clustered standard errors are in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01 indicate significance, FE fixed effects.

Table 3.3 shows the results. In the large segment, industry learning is significant while firm
learning is negative (column (1)), with attenuated industry learning effects for BOS (column
(3)). The results for small systems show similar patterns. The magnitude of industry learning is

lower than for larger systems, with an industry experience rate of 6% for system prices (column

2) and 3.7% for BOS (column 4). However, negative firm learning is more than twice as large
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when compared to larger systems. In terms of magnitude, a doubling of firm experience is related

to an increase in system price by 5.3% and an increase in BOS by 6.1%.

Put differently, firms with more experience ask for higher prices, on average. This effect is more
pronounced for small systems, where, as shown earlier, competition is a relevant driver for system
prices. These findings indicate that both commercial and especially residential customers are
willing (or required) to pay for previous experience, e.g. because it is signaling market share,
reputation, and reliability. Furthermore and as expected, industry learning plays a bigger role in
explaining system price reductions than intra-firm learning, since the latter reflects less dynamic
BOS prices and positive margins for experienced installers. Lastly, even after controlling for firm
learning and a range of further variables, experience rates for total system prices and especially

for BOS remain much lower than for battery cells and packs.

3.7 Discussion

Our results have several findings relevant to scholars, policy makers, and investors in distributed
energy storage. First, we provide robust evidence of low learning by doing in system prices
for battery storage based on rich project-level data. We estimate experience rates of about
1.3%, implying less learning than previously reported. When separating experience curves for
small (below 10kW) and large (above 10kW) systems, we document significant heterogeneity in
experience rates, with up to 11% for larger and -2% for smaller systems. These results highlight
the benefit of more differentiated projections. Projections that do not account for the relatively
stronger learning for large systems may understate future capacity additions, in particular in

markets where large systems dominate.

Second, our results show statistically significant and economically relevant effects of market
competition on system prices. To increase market penetration, regulators should hence facilitate
installer competition, in particular for the smaller residential systems. Furthermore, we find a
large effect of system size on system prices, consistent with bottom-up cost modeling (Ramasamy
et al., 2021). Further scaling up both large and small systems is associated with lower system
prices per kWh. To harness scale economies, regulators should remove barriers for the operation
of larger storage systems, e.g. by allowing for additional revenues from providing grid services

and trading in peer-to-peer markets.



8 System Price Dynamics for Battery Storage 58

Third, we report slower learning in BOS prices compared to total system prices, eventually
leading to high shares of BOS versus battery pack prices. Battery storage hence faces a “BOS
price challenge”, as found in the context of soft costs for distributed solar PV (O’Shaughnessy
et al., 2019). Future policies should therefore focus on reducing BOS prices. Potential levers
for reducing BOS prices include increased price transparency, e.g. by further expanding quote
platforms for installers, as well as standardizing permitting and regulatory processes. Given the
stickiness of BOS prices, our analysis at the same time underscores the importance of global

cost-reductions of battery packs through innovation and production scale-up.

Fourth, learning at the installer level is negative (reflecting positive margins for experienced
installers). Hence, observed price reductions are largely driven by industry-wide experience with
again relatively low experience rates of 4-10%. The presence of industry-wide (as opposed to firm-
specific) learning indicates little within-firm appropriability of experience, and instead points to
the existence of spillovers across the industry. As such, positive externalities of experience add
to the potential benefits of battery storage for decarbonized energy systems. From a policy
perspective, these positive externalities provide a rationale for continued public support for

battery storage.

3.8 Methods

3.8.1 Experience Curve Model

To model cost reductions for distributed battery storage systems, we utilize a simple mathemat-
ical power law known as the “learning curve” (Wright, 1936). Since we are interested in learning
curves for the total system, we predict prices rather than costs. Using prices instead of costs is
common in the literature because cost data are often not available. Learning curves based on
price data are commonly referred to as experience curves (Schmidt et al., 2017), which we follow

in this paper.

Formally, let Pf°"¢ be the deflated price per unit of capacity (kWh) for stationary storage
systems, P§™"¢ be the price of the first unit of experience EX P, and b be the learning parameter.

Then, we can write

pgtere = pgtore « EXP. (3.1)
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Assuming a multiplicative error term ¢, we can log-linearize the relationship to
In(Pfr¢) = P 4 B1In(EX P;) + e, (3.2)

where (3 is the estimator for b and represents the learning elasticity. We then obtain the learning
by doing, i.e. experience, rate as 1 —2%. Equation 3.2 estimates a standard one-factor experience

curve.

In our extended model, we add competition (H HI), installation-level economies of scale (SIZFE
and DUR), and fixed effects (¢) as further variables to the basic one-factor experience curve.

Formally, we estimate
In(Pftre) = Pstore + Bin(EX P;) + BoHH I + B3in(SIZE;) + Baln(DURi) + ¢ +€, (3.3)

where HHI captures the Herfindahl-Hirschman index in county j at time ¢, SIZE and DUR
represent system size in kWh and duration in hours of project i, and ¢ are county and installer

firm fixed effects. Duration is defined as the ratio of storage capacity (kWh) to power rating
(kW).

Finally, we formalize the spillover model as
In(P5°7¢) = P§*" + B1In(SPILL) + Baln(EX Pyy) + 0 + ¢ + e, (3.4)

where the first factor SPILL captures industry experience at time ¢ and the second factor,
EXP, captures experience of firm k£ at time t. We likewise extend this model to include the
HHI, system size, duration, and fixed effects, as indicated by § and ¢. In all our models, we

cluster standard errors at the county level to correct for heteroskedasticity.

3.8.2 [Experience and Competition Variables Construction

We construct experience, our main explanatory variable, on a per day basis using each system’s
interconnection date. We use cumulative projects as our main experience proxy to reflect our
project-level data where most of the learning, if present, arguably realizes per installed project,
regardless of the exact storage capacity. Accordingly, we calculate the cumulative capacity by

each firm at any given installation date. In the spillover model, we subtract this firm experience
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from total experience to obtain our industry experience measure SPILL Nemet et al. (2020).
Following previous literature, we accumulate energy storage capacity in kWh (Schmidt et al.,

2017, Kittner et al., 2017, Ziegler and Trancik, 2021) as a robustness test.

We use the Herfindahl-Hirschman Index (HHI) to measure competition by county. The HHI
shows the sum of squared market shares of all firms in the market and is capped at one for a
monopoly. For every county, we define market share as the share of cumulative installations per

installer in the previous year (Gillingham et al., 2016).

3.8.3 The California SGIP Data and Further Data Sources

The main dataset used in our study is a public export of California’s Self-Generation Incentive
Program (SGIP) database. This database contains applications for a variety of technologies on
plant level between 2000 and today. The first battery storage system is recorded in 2008 (see
discussion surrounding Figure 3.1 and Appendix Figure A.1). Variables include system power
and energy capacity, county, eligible costs, incentives, involved firms, and application process
and status characteristics. In order to remove outliers in terms of price or system design and
address potential data errors, we only include systems within a price range of 200 to 6,000 USD
per kWh (400 to 12,000 USD per kW). We also exclude systems with a duration (energy storage
capacity divided by power) smaller than one or larger than ten. Overall, these cleaning steps
affect less than 1% of observations and, in untabulated analyses, do not materially impact our
results. Importantly, we apply a thorough string clean algorithm on firms and counties that

adjusts spelling, abbreviations, and typos.

We merge in publicly available battery price data from Bloomberg to compute BOS prices from
total system prices. To get average prices for batteries used in stationary storage systems, we
adjust the Bloomberg data in all years as follows. Given the relationship between average prices
and average prices for stationary storage systems in 2021, we add 15.15% to the price index in
order to reflect higher average prices for batteries used in stationary storage applications (as
compared to the raw battery packs prices). Finally, we extract Consumer Price Index data from

FRED to deflate all monetary variables to 2021 values.
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3.8.4 Robustness Checks

To test the sensitivity of our results to our modeling assumptions, we run a battery of robustness
checks. Specifically, we (i) alter the definition of experience to cumulative installed capacity in
kWh, (ii) change the sample period to start in 2014, (iii) consider only systems which the
program administrator marked as paid, (iv) drop systems installed by SolarCity/Tesla as the
corresponding price data might represent appraised values (Barbose and Darghouth, 2019), (v)
exclude installations by firms with less than 20 observations, (vi) set a different size threshold
of 50 kWh that defines the segments (small/large), and (vii) use unadjusted Bloomberg battery
prices to calculate BOS prices. Appendix Tables A.8 to A.20 contain the results. Our experience

rates and further results remain robust and largely similar in terms of magnitude.



4 Better Safe than Sorry? Toxic Waste

Management after Unionization

Magnus Schauf and Eline Schoonjans3”

How do unions protect workers from toxic waste? This paper studies the impact of organized
labor on toxic waste management at US facilities between 1991 and 2020. When unions bargain
for worker benefits such as workplace safety and member health, their effect on toxic releases
remains unclear. Reducing toxic waste releases has positive health and environmental effects
but requires more and dangerous activities to treat waste after production. Using a regres-
sion discontinuity design on close-call union elections, we find a significantly positive effect of
unionization on toxic releases at the facility site. In contrast, end-of-pipe (EOP) treatment of
toxic waste increases after unionization. These effects are more pronounced in states without
right-to-work laws, for less toxic chemicals, and for non-heavy industries. Finally, we show that
unionized facilities increase waste prevention activities through innovative product and process
modifications and have less catastrophic releases. However, these effects cannot offset the reduc-
tion in waste EOP treatment, resulting in more waste releases. Our findings suggest that unions
prioritize safety over ecology and call upon managerial and governmental action to better align

these two objectives.

37This essay is based on joint work with Eline Schoonjans. My contributions are as follows: development of the
research idea, partial literature review, formulation of the statistical model, TRI data curation, performing the
analysis, creating visualizations, writing large parts of the original draft, and reviewing and editing.
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4.1 Introduction

Each year, US manufacturing facilities produce about 30 billion pounds of hazardous chemical
waste, 10% of which end up in the environment through air, land, and water releases (EPA,
2022d). Such toxic chemical releases have a multitude of negative effects on human health, our

planet, and the economy (Currie et al., 2015, Levine et al., 2020).

Workers represent a stakeholder group highly affected by toxic waste (Dietz et al., 2015). On one
hand, workers are exposed to toxic chemical releases at the workplace and possibly as members of
local communities. On the other hand, workers are also most affected by performing dangerous
and costly tasks that avoid releases of these chemicals. Hence, workers face an ecology-safety
tradeoff between protecting themselves, the community, and the society at a larger scale from

releasing toxic waste and protecting themselves from handling toxic waste.

While mechanisms are often not well understood (Ertugrul and Marciukaityte, 2021), recent
research suggests that workers’ interests and the interests of other stakeholders like society or
nature diverge (Ertugrul and Marciukaityte, 2021, Heitz et al., 2021). Yet, little research causally
examines whether pollution that is particularly detrimental on a local level (Currie et al., 2015)
leads to better alignment of interests between workers and society. Toxic waste management
provides a context for disentangling mechanisms by directly comparing qualitatively different
worker benefits. Although benefits of lower pollution at the workplace also improve welfare for
other, especially local, stakeholders, it is unclear whether unions prioritize this benefit in light

of associated costs borne by workers.

This paper empirically studies how a shift in stakeholders’ bargaining power toward workers
following unionization affects the ecology-safety tradeoff and associated toxic waste externali-
ties. Specifically, we test whether facilities rather release (less ecology, more safety) or treat
(more ecology, less safety) their toxic waste. Toxic waste treatment refers to end-of-pipe (EOP)
procedures, which include recycling, energy recovery, and other, typically chemical, treatment.

Releases entail chemical emissions and disposals to the environment, i.e. air, land, and water.

We formulate unions’ stance on the ecology-safety tradeoff as a bidirectional hypothesis. If
ecology concerns dominate, unionization will lead to less releases and possibly more treatment.

If safety concerns dominate, unionization will lead to more releases and less treatment.
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The collective voice view stipulates that unionized workers bargain more easily for their interests
than non-unionized workers (Freeman and Medoff, 1979). Basic interests are securing labor and
reasonable pay (McDonald and Solow, 1981). Both translate into a distaste for EOP waste
treatment which is often costly (King and Lenox, 2002, Frondel et al., 2007). Saving these costs
could permit unionized workers to extract part of the rent surplus in the form of higher pay or

better employment conditions.

Furthermore, labor unions’ interests extend to additional dimensions of member welfare, such as
workplace safety and worker health (Freeman and Medoff, 1979). Given the high risk for fatal in-
juries when performing waste treatment activities (BLS, 2021), pursuing workplace safety could
also align with decreasing waste treatment. On the contrary, welfare maximization arguably
implies protection from pollution and its negative effects at the workplace and in local commu-
nities, be it for selfish or altruistic motivations. Moreover, since environmental protection can
represent an investment in human capital, which is stickier following unionization (McDonald
and Solow, 1981), managers might strive to reduce toxic releases to increase their workers’” health
and thereby productivity (Graff Zivin and Neidell, 2012). This reduction can be achieved with

more EOP waste treatment but also by means of other pollution prevention activity.

Consequently, we argue that innovation activities and better training could align interests be-
tween different stakeholder groups and relax workers’ ecology-safety tradeoff. In light of this
multi-win character, we hypothesize that such activities should increase following unionization.
Stimulating innovation environments require short-term failure tolerance and long-term reward
mechanisms (Manso, 2011). Unionization facilitates the former through better employment
protection while the reduction of negative waste effects might represent sufficient long-term mo-
tivation. Whether and to what extent unions can realize all of these interests depends on their
bargaining power which can be restricted by, i.a., right-to-work (RTW) legislation (Chava et al.,
2020).

For estimation, we rely on a local regression discontinuity design (RDD) using union elections
that narrowly pass or don’t pass the majority cutoff of 50 percent plus one vote. The local
RDD establishes causality under verifiable assumptions, addressing endogeneity concerns of un-
observable differences between unionized and non-unionized facilities (Hahn et al., 2001, Lee and
Lemieux, 2010). We consider chemical-facility-level data reported annually by manufacturing
facilities to the Toxic Release Inventory (TRI), a program of the US Environmental Protection

Agency (EPA). By means of thoroughly cleaned facility names, we match this detailed source of
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toxic waste management data to US union elections between 1990 and 2017. Our final sample

contains 5,583 chemical-facility-year observations related to 605 union elections.

Our main result provides evidence of a shift in waste management practices after a shift in
stakeholder power toward unionized workers. Specifically, we find that, on average over three
years after unionization, releases increase and treatment decreases at facilities with close-call
union wins. The effect is statistically significant and economically large for on-site release and
treatment in particular, i.e. at the location where unions have most interest in. Year-to-year
changes in on-site releases (treatment) are 14.7 (59.3) percentage points higher (lower) in facilities
with a marginal union victory compared to facilities with marginal union losses, on average. We
do not find significant evidence of “outsourcing” releases or treatment to other facilities (off-
site). As such, our findings indicate unions’ preference for safety when facing an ecology-safety

tradeofl.

This main effect survives a battery of contextual and RDD-specific robustness tests and re-
mains significant in a global RDD using all elections. In cross-sectional analyses, we examine
whether union power as determined by the presence of RTW laws, chemical toxicity, and in-
dustry affiliation play a role for the unionization effect. We find that facilities reduce treatment
especially in non-RTW states where unions have higher bargaining power and for less toxic
chemicals. Similarly, facilities from non-heavy industries primarily drive the observed decrease
in waste treatment. We argue that operative flexibility and worker expectations might explain

this heterogeneity.

Next, we probe into two possible explanations behind our main effect. Specifically, we investigate
the impact of production output and financial constraints. First, consistent with DiNardo and
Lee (2004), we do not find a significant effect of unions on productivity and rule out that changes
in production output explain increasing releases or decreasing treatment. Second, since waste
treatment is costly, financially constrained facilities might not be able to afford waste treatment.
However, we also rule out that financial constraints drive our results. This finding emphasizes the
ecology-safety tradeoff and unions’ welfare extraction rather than purely monetary motivations

as drivers behind the observed changes in waste management practices.

Lastly, we investigate two mechanisms, catastrophic releases and innovative pollution prevention
activity, that could relax the ecology-safety tradeoff. We show a decrease in catastrophic releases

which might result from better training. Moreover, we show an increase in innovative pollution
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prevention activity. Together, these findings suggest that unionization motivates facilities to

focus on multi-win outcomes.

Our paper contributes to the literature in several ways. First, we identify labor unions as signif-
icant drivers of facilities’ environmental performance in general and waste management strategy
in specific. Other important determinants of firms’ environmental performance entail environ-
mental and liability regulation (Shapiro and Walker, 2018, Akey and Appel, 2021), pressure
by community stakeholders (Kassinis and Vafeas, 2006), financial constraints (Dutt and King,
2014, Cohn and Deryugina, 2018, Xu and Kim, 2022), corporate governance (Kim et al., 2019,
Shive and Forster, 2020), and innovation (King and Lenox, 2002). We add to this literature by
highlighting that unions represent an obstacle in reducing environmental impact because of their

lower willingness for curing toxic chemicals.

Second, we contribute to the literature on real effects of unionization. Previous literature reports
unionization effects on investment (Connolly et al., 1986, Machin and Wadhwani, 1991), inno-
vation (Haucap and Wey, 2004, Bradley et al., 2017), and corporate governance (DeAngelo and
DeAngelo, 1991, Chyz et al., 2013, Chung et al., 2016). While the evidence is sometimes mixed,
a commonly shared conclusion is that unions and their members extract welfare at the expense of
shareholders. A particularly recent stream investigates the effect of unionization on other stake-
holders, e.g. using environmental, social, and governance scores (Ertugrul and Marciukaityte,
2021, Heitz et al., 2021) or product recalls (Kini et al., 2021). These studies corroborate the
general consensus of unionization being detrimental to other stakeholder groups. We add to this
literature by exploiting the various advantages that the context of waste management offers.
Most importantly, unionized workers in our setting face a tradeoff between being exposed to
pollution or to dangerous jobs. As such, we can study a setting where negative externalities
from pollution take place and partially realize at the same level as unionization and decisions on
waste management: the facility. Moreover, we establish our effects using quantity-based mea-
sures rather than methodology-based and often controversial ESG scores (Chatterji et al., 2016,
Berg et al., 2022).

Overall, we show that real effects of unionization extend to toxic waste management and provide
new insights into how unionized workplaces operate on the local facility level. Our results high-
light that the utility of being in a labor union goes beyond purely monetary incentives. Finally,

the tendency for unions to value safety over ecology highlights the need for policymakers and
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managers to increase standards of and trust in waste management practices while augmenting

efforts toward multi-win outcomes, e.g. via green innovation and training.

The rest of this paper is organized as follows. Section 4.2 develops our hypothesis from reviewing
the literature on unionization in the context of workplace and environmental protection. Section
4.3 describes our data and econometric approach. Section 4.4 presents main results, Section 4.5
shows cross-sectional heterogeneity, and Section 4.6 investigates possible underlying mechanisms.

Section 4.7 concludes.

4.2 Hypothesis Development

This section discusses the role of labor unions in influencing environmental externalities generally
and toxic waste management at manufacturing firms specifically. As the organized voice of
individual workers, labor unions assist in internalizing employment-related external costs and
reduce transaction costs through collective bargaining (Freeman, 1976). They lobby for their
interests when bargaining with managers or when interacting with policymakers. Unions’ main
interests are employment and employment conditions, such as wages, job security, and safety

(Freeman and Medoff, 1979, McDonald and Solow, 1981).

4.2.1 Ecology-Safety Tradeoff

Empirical evidence on whether unions’ interests align with those of other stakeholders beyond
their bargaining unit, including the general workforce, communities, and society at large, is
somewhat mixed. A particularly recent stream investigates the effect of unionization on non-
shareholding stakeholders, e.g. by means of environmental, social, and governance scores (Er-
tugrul and Marciukaityte, 2021, Heitz et al., 2021) or product recalls (Kini et al., 2021). They
find that unions extract welfare for their members at the expense of external stakeholders. How-
ever, anecdotal evidence shows union support for environmental protection policies, despite their
potential negative impact on member jobs. In the 1950’s and 1960’s unions lobbied for envi-
ronmental regulation to reduce air, land, and water pollution (Dewey, 1998). The passing of
these regulations (Clean Air Act and Clean Water Act) led to significant costs for workers due to

lower wages and unemployment (Walker, 2011, 2013). Yet, their positive impact on member and
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community health seemed to outweigh these costs, as workers and their families are arguably

most exposed to detrimental effects of pollution on the local level (Dietz et al., 2015).

Health effects resulting from contamination with or exposure to pollution, as well as resulting eco-
nomic effects, are empirically well-documented. Adverse inter-generational health impacts (for
a review, see Graff Zivin and Neidell, 2013), including pronounced elderly mortality (Deryugina
et al., 2019), higher respiratory and heart-related hospital admissions (Schlenker and Walker,
2016), and increased probability of low birthweight (Currie et al., 2015), lead to ripple effects
throughout the whole economy: Housing prices decrease (Currie et al., 2015), workers lower la-
bor supply and become less productive (Hanna and Oliva, 2015, He et al., 2019), investors trade
worse (Huang et al., 2020), and managers and their human capital migrate away from polluting

plants (Levine et al., 2020).

Consequently, pollution from facilities’ releases of toxic chemical waste directly impacts worker
well-being. Workers are exposed to pollution directly at the workplace and potentially also as
inhabitants of neighboring communities (Currie et al., 2015, Dietz et al., 2015). Put differently,
a firm’s toxic releases essentially reduce workers’ welfare non-monetarily through its negative
health impacts and monetarily because workers might lower their labor supply and spend more
on pharmaceuticals or other “defensive investments” to mitigate pollution effects (Hanna and
Oliva, 2015, Deschénes et al., 2017). Therefore, a union that maximizes member welfare should
also pursue ecological objectives through lower toxic releases. Moreover, if unionization leads to
costlier and stickier human capital (McDonald and Solow, 1981), managers can have incentives
to reduce releases and increase workers’ productivity. As such, environmental protection is an

investment in human capital (Graff Zivin and Neidell, 2012).

However, industrial ecology scholars argue that workers partially carry the burden of lower toxic
releases to the environment through higher exposure and higher risks at their jobs, without
reasonable accounting for associated health and safety effects (Ashford, 1997, Armenti et al.,
2011, Scanlon et al., 2015). Workers perform waste treatment jobs, namely recycling, use for
energy recovery, and other treatment that typically destroys the chemical in order to reduce
releases. These waste treatment practices are usually the final step in the production process
(end-of-pipe). Official statistics for workplace safety underscore that unions could directly bar-
gain to treat less waste because it is dangerous. For instance, “refuse and recyclable material
collector” is the sixth most fatal work-injury related occupation with 33 fatalities per 100,000

full-time equivalent workers, which is ten times higher than the average over all occupations in
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the US (BLS, 2021). Recent empirical studies report a downward shift in the distribution of
accident-case rates and injuries after unionization (Zoorob, 2018, Heitz et al., 2021, Li et al.,
2022), supporting the argument that unions address workplace safety. Potential channels might
be better training of employees (Heitz et al., 2021) and protection from dangerous tasks such as

waste treatment.

Besides concerns for member safety, unionization might lead to less waste treatment because
of cost saving incentives. Infrastructure to treat waste is costly to install and operate (Frondel
et al., 2007). Further, King and Lenox (2002) argue that on-site waste treatment often results in
unexpected additional costs. Finally, unionization could indirectly lead to less waste treatment
through greater employment protection, inducing “shirking” or a less thorough work attitude

(Bradley et al., 2017).

Manufacturing facilities can also cooperate with special third-party waste management plants
to relocate waste before managing it. Since such off-site waste management essentially avoids
unionized workers to be exposed to or treat waste on site, our reasoning above applies for on-site

waste management in particular.

Taken together, we posit that workers face a tradeoff between increasing ecology (through lower
toxic releases) and increasing safety (through less dangerous waste treatment practices). Since
unionization shifts the weights of stakeholder interests, workers should have more power to
impact the ecology-safety tradeoff according to their interests. We hypothesize that it is ex ante
unclear whether these interests relate to less releases but more treatment or more releases but
less treatment. While we so far assumed the decision at stake to be ecology wersus safety, we

next argue how facilities could relax this tradeoft.

4.2.2 Relaxing the Ecology-Safety Tradeoff

Several mechanisms exist to reduce both the need to release and treat waste. First, a mechanical
lever for unions to decrease waste that needs to be managed, is by decreasing production output.
In light of stronger employment protection, previously mentioned “shirking” behavior might not
only refer to unpleasant waste treatment but also extend to other, production-related, job duties
(Bradley et al., 2017). On the contrary, unionization can enhance productivity through its
bundling of worker interests and reduction of transaction costs (Freeman, 1976). Empirical

evidence reports little changes in productivity due to unionization (DiNardo and Lee, 2004)
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Second, a theoretically more appealing mechanism is to increase investment in source reduction
or pollution prevention activities such as training, innovation, and improvement of operations.
Traditional hold-up theory would predict investments to decline after unionization because man-
agers anticipate excessive rent capturing by unions (Grout, 1984, Connolly et al., 1986). How-
ever, in our setting the character of these investments is different. Firm investment in pollution
prevention implies positive externalities (or reduced negative externalities) that directly benefit
workers through higher workplace safety and better environmental protection. As such, firms
can share non-monetary benefits from these investments with their workforce. These benefits
could represent long-term rewards which, combined with short-term failure tolerance of union

contracts, often stimulate innovation activity (Manso, 2011).

Third, pressure due to the unionization shock on labor costs can also play a role. Higher labor
costs might induce managers to save costs. Reportedly, cost savings are the major influencing
factor for pollution prevention earlier during the production process, rather than end-of-pipe
waste treatment (Frondel et al., 2007). Moreover, pollution prevention increases process con-
trol, stimulates process innovation, and encourages the development of worker problem-solving
skills, which in turn leads to higher financial performance (King, 1999, King and Lenox, 2002).
Nevertheless, King and Lenox (2002) argue that managers have systematically overlooked inno-
vative pollution prevention as a green and profitable opportunity. Taken together, the multi-
win character of pollution prevention investment should dominate managerial hold-up concerns.
Consequently, we expect that unionization relaxes the ecology-safety tradeoff through innovative

pollution prevention policies and less failures in operations.

4.3 Methodology and Data

4.3.1 Data and Sample

Our sample consists of industrial facilities that are mandated to report toxic waste by chemi-
cal to the US Environmental Protection Agency (EPA) and had a union election between 1990
and 2017. Specifically, we use data of hazardous chemical usage and waste submitted to EPA’s
Toxic Release Inventory (TRI) under the Emergency Planning and Community Right to Know
Act (EPCRA) of 1986. The EPCRA and subsequent amendments require a facility to report
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chemical-level data for currently about 600 chemicals. TRI data items include chemical infor-
mation, production waste quantities, waste management practices, and the geographic location

of these management practices (on-site versus off-site).

We add toxicity data, namely reportable quantities for chemicals according to the Comprehensive
Environmental Response, Compensation, and Liability Act (CERCLA), using the Chemical
Abstracts Service Registry Number (CAS) for merging (King and Lenox, 2000, 2002, Kim et al.,
2019). Reportable quantities represent the threshold value in pounds that determines necessary
emergency reporting and action in case of an accidental spill. These quantities are in a range
of 1 to 5,000, with the lowest value of 1 indicating a highly toxic chemical for which spilling
one pound or more already requires emergency action.?® Further, by means of the CAS, we
supplement our TRI data with a chemical’s listing period in the TRI, obtained from the EPA.
In robustness tests, we exclude chemicals based on their listing period not covering our entire

sample period to control for regulatory changes (see Section 4.4.3).

Although not free of flaws,?? the TRI does not seem to be subject to systematically manipulated
reporting (Bui and Mayer, 2003). Moreover, the EPA checks submitted reports and can fine
misreporting facilities. Consequently, academic literature exploits the rich TRI data in many
different applications (e.g. King and Lenox, 2002, Currie et al., 2015, Shapiro and Walker, 2018,
Akey and Appel, 2021). Following previous literature (Dutt and King, 2014, Akey and Appel,
2021), we exploit the empirical advantages of this detailed chemical-level data, e.g. more precise
estimates of toxic waste quantities, more precise controls for changes in production output at

multi-product facilities, and accounting for chemical fixed effects in further analyses.

The US authority supervising and validating facility-level union elections, the National Labor
Relations Board (NLRB), provides union election data. Per election case, the data contain
facility and union information as well as election characteristics, most importantly the number
of eligible voters and the valid votes pro and contra joining the respective union. We only
keep certification cases, i.e. elections for union representation at a facility. Figure 4.1 shows
the trends in union elections over our sample period. Consistent with other studies (Bradley

et al., 2017, Campello et al., 2018, Heitz et al., 2021, Kini et al., 2021), the number of elections

38We also merge in alternative chemical-level toxicity data, namely the human toxicity potential (HTP) published
by Hertwich et al. (2001). By providing separate toxicity values for the two key exposure routes — air and water
— of pollution on humans, the HTP enables robustness tests with an explicit focus on human health.

39These flaws relate to the self-reported nature of the data and inconsistency over time due to frequent regulatory
changes (e.g. Currie et al., 2015).
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gradually declines while the vote share, i.e. the success rate of unionization, fluctuates more,

with a tendency to increase in more recent years.

F1GURE 4.1: Number of Union Elections and Vote Shares by Election Year

70+ -100

(o))
o
|
-
!
o
o

Vote share for union [%]
Elections [#]

1990 1993 1996 1999 2002 2005 2008 2011 2014 2017
Election year

Cl vote share —e— Vote share for union— ——- Elections

Notes: This figure shows trends in union elections from 1990 till 2017, certified by the NLRB and matched to the TRI
data. The dashed line represents the number of elections certified by year. The line with dots depicts the average vote
share in a year and the gray vertical lines indicate the 95% confidence interval for this average vote share.

Since NLRB and TRI data do not share a common identifier, we must string-match facility
names. Before, we perform a meticulous string cleaning procedure in order to increase the
number and quality of exact and fuzzy matches. Our string cleaning algorithm harmonizes
facility names across both data sets for instance by adjusting abbreviations or removing legal
forms.2® We are careful to ensure accurate matches by requiring that the facilities’ states and

cities always match. We complement all exact matches with manually checked fuzzy matches of

distance 1 or 2 as calculated by the Optimal String Alignment method.

4Gimilar, though sometimes more compact string cleaning algorithms are commonly used in the literature,
including for TRI and unionization data (Lee and Mas, 2012, Akey and Appel, 2021, Xu and Kim, 2022).
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In order to arrive at our main sample, some additional cleaning steps are necessary. First, as small
union elections are less suitable for our research design (DiNardo and Lee, 2004, Frandsen, 2017),
we exclude elections with less than 50 eligible voters.*! Second, we only include observations
which we can merge to the National Establishment Time Series (NETS) using the TRI facility
identifier. NETS, a commercial database by consultancy Walls & Associates based on data from
Dun & Bradstreet, provides facility-level sales, employees, and the “Paydex” business credit
score,’? amongst others. These variables allow for testing one of the key identifying assumptions
of our empirical design more thoroughly (see Section 4.3.3). Our main sample contains 605

unique union elections and 5,583 chemical-facility-year observations consisting of 283 different

chemicals.

4.3.2 Variables

Having introduced our data sources and sample, we next briefly describe variables relevant for

estimating our effects and for testing the validity of our design.

In our main analysis, we estimate direct and medium-term effects of unionization on several
measures of waste management at the facility-chemical-year level.4® We consider waste manage-
ment variables up to three years post union election, because the certification and bargaining
process as well as potentially resulting real effects are not immediate. First, we calculate releases
as the sum of chemical releases to air, land, and water, on-site, off-site, and in total. Second, we
construct EOP waste treatment as the sum of waste that is recycled, used for energy recovery,
or otherwise treated. Again, this measure can be a total as well as separated for on-site versus
off-site. Importantly, we process waste releases and waste treatment to ratios that indicate the
change in the outcome variable on a year-by-year basis. The benefits of using ratios instead of
level variables are fourfold. First, we decrease the skewness of our outcome variables. Second, we
avoid potentially inconsistent estimates produced by a common alternative, log-transformation
(Cohn et al., 2022). Third, we facilitate the comparability of otherwise very heterogeneous chem-
ical quantities and facility sizes (Dutt and King, 2014). Finally, we align with the reporting of

production output in the TRI.

41Smaller elections can be more easily manipulated during the election and seem to occur in a more selective way
given their notably higher vote share.

42The Paydex score is a business credit score between 0 and 100, calculated from previous transaction data. A
high score indicates a high probability for the focal firm to pay back its debt on time.

43We eliminate some rare cases of partial facility reports where two or more entries per chemical exist for a given
year and facility by aggregating the individually reported quantities.
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We formally define the change in the outcome variable as

A}/iyjyt = Kzuﬁt/}/i»jvt*l’ (4'1)

where Y represents waste treatment or releases, on-site, off-site, or in total, in pounds of chemical
i at facility j in year ¢t (Dutt and King, 2014). We exclude observations with ratios exceeding a
threshold of three as these are either data errors or evidence of extraordinary transformations
at the facility (Akey and Appel, 2021). In robustness checks, we adjust this threshold to either
two or four and also take the natural log to further reduce the impact of extreme values (Dutt

and King, 2014).

Throughout our analysis, the vote share, i.e. the number of votes in favor of the union divided
by the total number of valid votes cast, constitutes our main independent or “running” variable.
A vote share of 50% plus one vote implies a successful union election and thus establishes
treatment in our analysis. Since vote share has finite, discrete, and asymmetric support, which
changes with the number of votes cast, we adjust the vote share such that 50% constitutes the
homogeneous and symmetric cutoff. For all even numbers of votes cast, we subtract an amount
equal to 0-5/number of votes cast from the vote share. Cases with odd numbers of votes cast are not

adjusted (DiNardo and Lee, 2004).

In our further analyses and for testing one identifying assumption of our empirical approach, we
require additional facility-level and chemical-level variables. Facility-level variables encompass
sales, number of employees, and the Paydex score from NETS (Akey and Appel, 2021). Chemical-
facility-level variables include information on (i) production output, (ii) pollution prevention

measures, also termed “source reduction activities”, and (iii) catastrophic releases from TRI.

First, we proxy production output with the production ratio that facilities report to the TRI.
The production ratio indicates changes in the output of a manufactured product or a supporting
operational procedure related to the use of a specific chemical. Following Akey and Appel (2021)
and the construction of our dependent variables, we exclude observations with ratios larger
than three. Second, to measure facilities’ engagement in chemical-level pollution prevention,
we construct an indicator variable from the approximately 50 codes that facilities can report as
performed pollution prevention activity. This variable, “innovative prevention”, is equal to one

if a facility, for a given chemical, reports prevention activities related to product and process
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innovations and zero otherwise.** Finally, we examine catastrophic releases because we assume
that better trained employees commit less mistakes leading to such releases.*> Given the rarity
of catastrophic releases, we construct an indicator variable equal to one if a facility reported

catastrophic releases of a specific chemical and zero if not.

We describe all variables in Appendix Table A.21. Appendix Table A.22 contains summary
statistics and Appendix Figure A.2 illustrates spatial heterogeneity across US states for several

variables characterizing our sample.

4.3.3 Empirical Strategy

We identify the causal effect of unionization on waste management practices at manufacturing
firms by means of a regression discontinuity design (RDD). Due to endogeneity, a simple OLS
regression could provide inconsistent and biased estimates. Endogeneity arises when unioniza-
tion depends on factors that also influence our variables of interest. For example, workers at
facilities that have unsatisfying and dangerous waste management practices or other unobserv-
able grievances may be more likely to unionize, which could imply over- or underestimation of

the unionization impact.

The RDD establishes causality and exploits the election character of unionization, where a
simple majority separates the treatment (i.e., successful union certification) from the control
group (DiNardo and Lee, 2004). Specifically, considering close-call union elections around the
majority cutoff represents a quasi-experimental approach which supports causal interpretation

of the local treatment effect.

Formally, in our main empirical analysis, we estimate the following non-parametric local-linear

equation (Lee and Lemieux, 2010):

AYjtin = a+7Dj + Bi(Xj — ) + (Br — Bi)Dji(Xjt — ) + €ijttns (4.2)

where Y represents released or treated waste in pounds of chemical ¢ at facility j in year t + n,

with n € [1,2,3]. Our running variable X, adjusted vote share, splits our observations into

44 This innovation measure captures TRI reporting codes W50, W51, W59, W80, W82, W83, W84, W89.

45 Catastrophic releases refer to a “major uncontrolled emission, fire, or explosion, involving one or more highly
hazardous chemicals, that presents serious danger to employees in the workplace” (OSHA, 2012). In about 2%
of facility-chemical-year observations, facilities report a catastrophic release.
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TABLE 4.1: Pre-Treatment Balance

No Union Unionization Difference
Mean Mean Diff T-stat p
Total waste release ratio 0.912 0.958 —0.046 —0.819 0.414
On-site release ratio 0.887 0.962 —0.075 —1.434 0.153
Off-site release ratio 0.884 0.788 0.096 0.846 0.400
Total waste treatment ratio 0.934 0.923 0.011 0.162 0.871
On-site treatment ratio 0.998 0.946 0.052 0.507 0.613
Off-site treatment ratio 0.865 0.734 0.130 1.599 0.112
Catastrophic releases 0.018 0.019 —0.001 —0.037 0.970
Prevention count 0.201 0.281 —0.081 —1.304 0.193
Innovative prevention 0.022 0.019 0.003 0.222 0.825
Production ratio 1.031 0.927 0.104 2.810 0.005
Ln (Sales) 17.045 17.026 0.020 0.110 0.913
Ln (Employees) 5.014 5.155 —0.140 —0.878 0.380
Paydex score 67.047 68.274 —1.227 —1.030 0.304

Notes: This table presents the pre-election variable balance between the treatment and control group in the
MSE-optimal bandwidth of our main specification in the year before unionization. All variables are defined in
Appendix Table A.21.

treatment (D = 1) and control (D = 0) groups at the cutoff ¢ of 50%. We include observations,
where X is within the mean-squared-error optimizing (MSE-optimal) bandwidth A on each side
of the cutoff (Imbens and Kalyanaraman, 2012). For statistical inference, we correct for the
estimation bias with bias-corrected confidence intervals and robust standard errors clustered
at the facility level (Calonico et al., 2014, 2019). We choose a triangular kernel for weighting

observations, but test robustness of our results to alternative choices.

In order to qualify as an econometric method estimating causal effects, an RDD requires two
identifying assumptions: (i) ex ante comparability between treatment and control group obser-
vations as well as (ii) exogeneous election outcomes that no party can manipulate (Hahn et al.,
2001, DiNardo and Lee, 2004, Lee and Lemieux, 2010). Table 4.1 shows the results for testing
the pre-election balance of dependent variables and covariates in the vote share bandwidth of
9% around the cutoff. This bandwidth corresponds to the average MSE-optimal bandwidths
of our main analyses. Most importantly, our main dependent variables, changes in (on-site)
waste releases and treatment are balanced in treatment and control group prior to the union
election. Both treatment and control group are also comparable in terms of adoption of pollu-

tion prevention activities, sales, employees, and financial constraints, amongst others. Prior to
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FIGURE 4.2: Distribution of Vote Shares
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Notes: This figure plots a histogram of the distribution of the adjusted vote shares across 50 equally spaced bins. Each
observation represents a unique election in our main sample.
unionization, we observe a significantly lower production ratio among facilities that ultimately

unionize. Consequently, we explicitly control for the production ratio in further analyses.

Next, we perform diagnostic tests for the second identifying assumption, absence of manipulation.
First, Figure 4.2 illustrates the distribution of vote share in favor of joining the union in 2%
steps, i.e. 50 bins. As can be seen, the density of unions that fail is generally larger but decreases
closer to the cutoff. This decline continues further on the treatment side of the cutoff. Overall,
vote share is fairly distributed across the range of 0% to 100% but further manipulation tests

are warranted.

Second, we quantitatively test whether there is a discontinuity in the density of our running
variable, vote share. To this end, we present results of the recently proposed test by Cattaneo
et al. (2020) in Figure 4.3 and the McCrary (2008) density test in Appendix Figure A.3. While

we validate the absence of manipulation under the former test, the discontinuity estimate of
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FIGURE 4.3: Cattaneo (2020) Discontinuity Test
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Notes: This figure plots the Cattaneo et al. (2020) discontinuity test for the density of the adjusted vote share variable.
The bins plot the distribution of the adjusted vote shares in a histogram. The solid red and blue line estimate the local
polynomial density and the shaded red and blue compute bias corrected confidence intervals on each side of the cutoff.
Each observation represents a unique election in our main sample.

the latter test marginally rejects the null hypothesis of no discontinuity. Several additional
considerations dispel concerns that the discontinuity could imply problematic manipulation in
our setting. The McCrary test is not designed for discrete variables like vote share. Therefore,
we perform a formal discontinuity test explicitly designed for discrete variables using vote share
rounded to the nearest integer (Frandsen, 2017). With a p-value of 0.23, this test again does
not indicate the presence of manipulation. Moreover, we argue that with an increasing number
of voters, less precise majority manipulation in the secret ballots is possible (DiNardo and
Lee, 2004, McCrary, 2008). This argument additionally supports the restriction of our sample
to elections with at least 50 voters. Finally, manipulation occurs primarily through contested

ballots (Frandsen, 2017). Longer periods — we assume 30 days — between election and certification

increase the likelihood of such contested ballots. For a sample that excludes elections with these
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longer certification periods, no test indicates manipulation.*® In sum, we conclude that both

identifying assumptions of the RDD are sufficiently satisfied.

4.4 Main Results

This section presents our main empirical results from applying the RDD in Equation 4.2. We

discuss our baseline estimates, external validity, and a battery of robustness checks.

4.4.1 Main RDD Results

In our main analysis, we estimate the effect of unionization on changes in toxic chemical releases
and EOP treatment. We consider average effects up to three years after the election as well as

year-by-year effects to investigate both short-term and medium-term effects.

TABLE 4.2: Main Analysis - Waste Releases after Unionization

Changes in waste releases

Total On-site Off-site
(1) (2) (3)
Unionization 0.096 0.147** —0.172
(0.085) (0.071) (0.171)
Mean 0.941 0.942 0.880

Notes: This table presents the unionization effect on changes in waste releases up to three years post election. We
report bias-corrected local regression discontinuity estimates using the MSE-optimal bandwidth and triangular
kernel. The mean reports the control group’s average dependent variable in the MSE-optimal bandwidth below
the cutoff of 50%. Union election results are from the NLRB over 1990-2017. Toxic waste data are from EPA’s
TRI over the 1991-2020 time period. Robust standard errors clustered at the facility are in parentheses. * p < 0.1,
** p < 0.05, *** p < 0.01 indicate significance.

Table 4.2 reports the corresponding regression discontinuity estimates using local polynomial
estimation of order one. We find a positive effect of unionization on changes in releases, i.e.
increasing releases. This effect is not statistically significant for the total release ratio in column
(1). In columns (2) and (3), we decompose waste releases into on-site and off-site releases.
On-site, where unions arguably have greater incentives to influence managerial decisions, the

change in waste releases increases significantly by 0.147 for union wins compared to union losses.

46For this more restrictive sample, our main results of section 4.4 remain robust (untabulated).
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At the 50% cutoff, this estimate reads as follows: facilities with a union loss reduce their on-
site releases by approximately 12% whereas facilities with union wins increase on-site releases by
3%, compared to the previous year. Off-site changes in releases are statistically indistinguishable

from zero.

Why would unionization cause higher toxic releases that adversely affect the environment at
the workplace of union members? We conjecture in section 4.2 that unions are particularly
concerned with workplace safety. Increasing releases after unionization can be a consequence of
this preference as unions might prefer polluting waste releases over some more dangerous waste

treatment activities.

TABLE 4.3: Main Analysis - EOP Waste Treatment after Unionization

Changes in waste treatment

Total On-site Off-site
(1) (2) (3)
Unionization —0.236 —0.593** —0.085
(0.179) (0.244) (0.125)
Mean 0.943 0.948 0.909

Notes: This table presents the unionization effect on changes in EOP waste treatment up to three years post
election. We report bias-corrected local regression discontinuity estimates using the MSE-optimal bandwidth
and triangular kernel. The mean reports the control group’s average dependent variable in the MSE-optimal
bandwidth below the cutoff of 50%. Union election results are from the NLRB over 1990-2017. Toxic waste
data are from EPA’s TRI over the 1991-2020 time period. Robust standard errors clustered at the facility are in
parentheses. * p < 0.1, ™™ p < 0.05, *** p < 0.01 indicate significance.

We explicitly test our hypothesis in Table 4.3. In column (1), we report a negative, albeit not
statistically significant effect of unionization on the change in treated waste. Successful unioniza-
tion implies an, on average, 0.24 drop in the waste treatment ratio compared to facilities where
a union lost in a close-call election. Again, we further validate this finding by decomposing total
waste treatment into on-site and off-site treatment. As expected, unionization significantly and
strongly impacts on-site EOP waste treatment. On a year-by-year average, unionized facilities
reduce on-site waste treatment by 59 percentage points compared to non-unionized facilities.
This effect is statistically significant marginally above the 1%-level (column (2)). The economic
magnitude of the effect is quite large but should be interpreted with caution considering that it
is the local treatment effect at the cutoff. In contrast, column (3) shows that there is hardly any
detectable effect on off-site waste treatment where the elected union has less incentive to take
action. This finding is in line with our theory because influences and safety concerns of a union

should predominantly affect workers’ exposure to waste treatment at their facility, i.e. on-site.
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To further understand the timing of the apparent negative waste treatment effect coinciding
with higher on-site releases over three years after a successful election, we rerun our analysis
for each year separately. Table 4.4 contains the results. As can be seen in panel A, changes in
total releases increase strongest in the first year but are never statistically significant. In panel
B, we show that the on-site release ratio is positive in all years and statistically significant in
the year directly following unionization. The results for treated waste in panel C and on-site
treated waste in panel D mirror this strong immediate reaction and somewhat lower lagged
effects. Specifically, we observe a large reduction in the on-site waste treatment ratio in the year
following the election, significant at the 5%-level. Again, the economic magnitude of the effect

is quite large.

TABLE 4.4: Waste Release and Treatment by Year

(1) (2) (3)

t+1 t+2 t+3
Panel A: Changes in waste releases
Unionization 0.134 —0.022 0.096
(0.135) (0.169) (0.161)
Panel B: Changes in on-site waste releases
Unionization 0.231* 0.103 0.172
(0.134) (0.115) (0.162)
Panel C: Changes in waste treatment
Unionization —0.353* —0.102 —0.134
(0.205) (0.159) (0.349)
Panel D: Changes in on-site waste treatment
Unionization —0.664** —0.173 —0.493*
(0.280) (0.414) (0.293)

Notes: This table presents the unionization effect on changes in waste releases and treatment for each of the
three years post election. We report bias-corrected local regression discontinuity estimates using the MSE-
optimal bandwidth and triangular kernel. Robust standard errors clustered at the facility are in parentheses. *
p < 0.1, " p < 0.05, ** p < 0.01 indicate significance.

Overall, our results suggest that newly unionized firms have a strong distaste for EOP waste
treatment, especially on-site, at the expense of higher on-site releases to the environment. This
effect generally is strongest in the year following unionization, but unions’ rejections of on-site
waste treatment in particular persist in the third year as well. Hence, unions seem to prioritize
workplace safety or cost-savings over potentially detrimental effects through increased exposure
to chemicals in the environment. In other words, safety dominates ecology. Moreover, the lower

magnitude of the release effect might indicate that facilities find other ways than releases to

facilitate less treatment.
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4.4.2 External Validity

An inherent feature of a local RDD is strong internal validity and limited external validity be-
cause only close-call elections are considered. Hence, the local RDD excludes many observations
when estimating the treatment effect but for these observations with clearer election outcomes,
the relationship between waste management practices and unionization might differ. To probe
into the external validity of our results, we estimate a global polynomial RDD using all obser-
vations, i.e. including clear wins and losses. Since this global RDD introduces more bias in

coefficients, literature suggests using a higher-order polynomial (Dittmar et al., 2020).

FIGURE 4.4: Global Polynomial Discontinuity Estimates
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Notes: This figure presents the global unionization effect on waste management practices up to three years post election.
Figure A presents changes in total waste releases, Figure B presents changes in on-site waste releases, Figure C presents
changes in total waste treatment, and Figure D presents changes in on-site waste treatment. We show third-order global
regression discontinuity functions.
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Figure 4.4 plots the global third-order polynomial (Dittmar et al., 2020) from a regression of
waste release and treatment ratios on vote share at both sides of the unionization cutoff. The
effect of unionization on changes in waste releases appears relatively small in this global esti-
mation. On the contrary, there is a drop in the waste treatment ratio at the right side of the
cutoff, i.e. when the union election passes with a union win. For both releases and treatment,

the effects are stronger on-site than in total.

Table 4.5 reports the conventional estimates of unionization in a global third-order polynomial
on our main dependent variables, total waste release ratio (columns (1)-(2)), on-site waste re-
lease ratio (columns (3)-(4)), total waste treatment ratio (columns (5)-(6)), and on-site waste
treatment ratio (columns (7)-(8)). In columns (2),(4), (6), and (8), we include year and chemical

fixed effects to control for unobservable variations across chemicals and over time.

TABLE 4.5: Global Regression Discontinuity (Third-Order Polynomial)

Changes in waste releases Changes in EOP waste treatment

Total On-site Total On-site
(1) (2) (3) (4) (5) (6) (7) (8)
Unionization 0.098 0.074 0.118* 0.098* —0.193 —0.265"* —0.399** —0.479**
(0.071)  (0.069) (0.063) (0.059) (0.136) (0.122) (0.201) (0.198)

Chemical FE No Yes No Yes No Yes No Yes
Year FE No Yes No Yes No Yes No Yes
N 4044 4015 3789 3752 3335 3292 1712 1677

Notes: This table presents the unionization effect on changes in waste releases and treatment up to three years post
election. In columns (2),(4), (6), and (8), we include year and chemical fixed effects to control for unobservable
variations across chemicals and over time. For estimations with fixed effects, we drop singleton chemical or
year observations (Correia, 2019). We report conventional regression discontinuity estimates using the global
bandwidth, triangular kernel, and a third-order polynomial. Robust standard errors clustered at the facility are
in parentheses. * p < 0.1, ™™ p < 0.05, *** p < 0.01 indicate significance.

As can be seen, the direction and size of our estimates are consistent when using a global
polynomial setting.*” Consequently, we show that our results can be extrapolated to the complete
sample of union elections despite our main results from the local RDD having primarily internal
validity. The effect sizes of changes in on-site waste releases and treatment remain meaningful,

but slightly smaller for all elections compared to close-call elections in our main analysis.

4"We verify that our results are not driven by particular estimation specifications. Specifically, our results
remain virtually unchanged when estimating a second-order or fourth-order polynomial and when using a
kernel function (epanechnikov or uniform) that more equally weights observations across the range of our
running variable.
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4.4.3 Robustness

This section examines the robustness of our local RDD findings to assumptions and default
econometric model specifications. To this end, we perform several contextual and local RDD-
specific robustness checks. First, we change the threshold for including ratios in our analysis
from three to two and four (Akey and Appel, 2021). Second, we use the natural logarithm of the
ratios, thereby mitigating the effects of outliers while excluding zeros, i.e. observations where
facilities do not release or treat a chemical anymore (Dutt and King, 2014). Third, we rerun our
analysis using a multiplicative version of the individual ratios in year t+3. We construct this
measure by multiplying the ratios in the three years following the election which represents an
alternative for testing the medium-term, compound effect of unionization on chemical-level waste
management practices (Akey and Appel, 2021). Fourth, we add year and chemical fixed effects as
covariates. Fifth, we adjust the number of eligible voters to 25 and 75 (DiNardo and Lee, 2004).
Lastly, we only include chemicals for which the EPA consistently mandated reporting during
our sample period. Our main result of increasing on-site waste releases and decreasing on-site
EOP treatment is robust in all specifications and significant in the vast majority of alternative

specifications. Appendix Table A.23 contains corresponding estimation results.

While these robustness tests target contextual assumptions, variables, or sample definitions,
a local RDD requires discretionary specifications for estimation. Although we use standard
specifications, we still test the sensitivity of our estimates towards alternative specifications.
These tests include using a second-order local polynomial to estimate the discontinuity and
using an epanechnikov kernel function. Moreover, we also run a “donut” RDD where we exclude
observations directly at the cutoff, i.e. those with a vote share or adjusted vote share of 50%
(Barreca et al., 2011). As shown in Appendix Table A.24, our results remain virtually unchanged

across these robustness checks.

Finally, we perform placebo tests using alternative cutoffs. Thus, by artificially assigning treat-
ment observations to the control group or vice versa, we expect to not find an effect in most
cases, implying that our estimated effects are not random. Specifically, we alter the cutoff from
vote shares of 20% to 80% in steps of 0.05%, hence running 1,200 iterations of our RDD with
1,200 different cutoffs (Bordignon et al., 2016). Figure 4.5 compares the discontinuity estimates
from these false cutoffs to the true estimate of 0.147 for the on-site release and -0.593 for the

on-site treatment changes, depicted by the dashed lines. The large majority of these RDD runs
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FIGURE 4.5: Density of Discontinuity Estimates at Placebo Cutoffs
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Notes: This figure plots a histogram of the distribution of the discontinuity estimates from placebo tests with artificial
cutoffs between 20% and 80% of the vote share. The dashed vertical line represents the “true” on-site discontinuity
estimate from Table 4.2 in the left graph and from Table 4.3 in the right graph.

produces an estimate of zero or close to zero, i.e. does not find a significant effect of unionization

on on-site waste releases and EOP treatment. This finding further supports our identification

and attribution of our results to the unionization effect.

4.5 Cross-Sectional Heterogeneity

Our main analysis shows that unionization results in increasing on-site releases and decreasing
waste treatment, especially on-site. Next, we investigate whether (i) union power as determined

by legislation, (ii) chemical toxicity, and (iii) industry affiliation moderate our effects.

4.5.1 Union Power

As of 2022, 27 states in the US have right-to-work (RTW) laws in place. Under RTW legislation,
workers at a facility are not obliged to join or pay for the union that represents them. Recent
empirical evidence underscores that RT'W laws essentially restrict the power of unions with real
effects on, i.a., investment and innovation (Bradley et al., 2017, Chava et al., 2020). Conse-
quently, if unions actively bargain for changes in waste management practices, we expect these

changes to be stronger for facilities located in a non-RTW law state where unions have more
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bargaining power. For estimation, we run Equation 4.2 for two samples, namely for observations

from RTW versus non-RTW states.*8

TABLE 4.6: Union Bargaining Power

Changes in waste releases Changes in waste treatment

Total On-site Total On-site
(1) (2) (3) (4)

Panel A: RTW state

Unionization 0.131 0.160 —0.009 —0.058
(0.158) (0.215) (0.266) (0.369)

Panel B: Non-RTW state

Unionization 0.072 0.134* —0.422%** —1.005***
(0.107) (0.072) (0.116) (0.191)

Notes: This table presents the unionization effect on changes in waste releases and treatment up to three years
post election. We split our sample in observations from US states with right-to-work laws in panel A and US
states without in panel B. We report bias-corrected local regression discontinuity estimates using the MSE-optimal
bandwidth and triangular kernel function. Robust standard errors clustered at the facility are in parentheses. *
p < 0.1, " p<0.05 " p < 0.01 indicate significance.

Table 4.6 contains the corresponding estimates. The results in panel A show that unionization
does not have a significant effect in RTW law states, neither on changes in (on-site) releases
nor in (on-site) treatment. On the contrary, our main effects are significant in non-RTW states
(panel B). Especially, we find that the decrease in (on-site) waste treatment is stronger than in
RTW states. Some scholars argue that the general attitude toward unions rather than effective
RTW legislation determines union power (e.g. Farber, 1984). To proxy for this general attitude,
we split the sample into observations from states eventually versus not adopting RT'W legislation.
Appendix Table A.25 shows that our results of significant effects in non-RTW states hold. In
sum, these findings suggest that unions require sufficient bargaining power to cause real changes

in waste management practices.

4.5.2 Chemical Toxicity

So far, our analysis deals with quantity-based measures of toxic waste that implicitly assume a
general comparability across chemicals (Kassinis and Vafeas, 2006, Dutt and King, 2014, Wang
et al., 2021). However, our chemical-level data also allows for explicit accounting of differing

toxicity as done by other scholars (King and Lenox, 2002, Berrone and Gomez-Mejia, 2009, Kim

48We assign states according to the year they pass RTW legislation. For instance, chemical-level waste from
facilities in Michigan is in the non-RT'W split of the sample before 2012 and in the RTW split afterwards.
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et al., 2019). As such, we can investigate whether chemical toxicity moderates the ecology-safety

tradeoff.

On one hand, union’s observed distaste for EOP waste treatment could intensify for extremely
toxic materials due to higher safety concerns. Given the proximity of blue-collar workers to
production (Bradley et al., 2017) and detailed data provided by EPA and other institutions it
is also reasonable to assume that unions could gather this toxicity information. On the other
hand, more toxic chemicals are arguably more regulated and have greater negative effects when
released. Consequently, waste management practices for these chemicals might be less flexible

in general.

For estimation, we use reportable quantities for emergency action to split the sample. All
chemical-facility-year observations with a reportable quantity of 1, 10, and 100 pounds constitute
the more toxic subsample. Higher, i.e. 1000 and 5000 pounds, or missing reportable quantities

hence constitute the less toxic subsample.

TABLE 4.7: Chemical Toxicity

Changes in waste releases Changes in waste treatment

Total On-site Total On-site

(1) (2) (3) (4)

Panel A: RQ < 100 pounds

Unionization 0.084 0.131 —0.159 —0.448***
(0.144) (0.118) (0.184) (0.155)

Panel B: RQ > 100 pounds

Unionization 0.132 0.166** —0.256 —0.586**
(0.086) (0.080) (0.190) (0.272)

Notes: This table presents the unionization effect on changes in waste releases and treatment up to three years
post election. We split our sample in chemicals that have low reportable quantities (RQ below or equal to 100
pounds), i.e. higher toxicity, and those with high reportable quantities (RQ above 100 pounds or not specified),
i.e. lower toxicity. Panel A and B report the respective subsamples which are approximately evenly distributed
over the total number of observations. We report bias-corrected local regression discontinuity estimates using the
MSE-optimal bandwidth and triangular kernel function. Robust standard errors clustered at the facility are in
parentheses. * p < 0.1, ™™ p < 0.05, *** p < 0.01 indicate significance.

As shown in Table 4.7, accounting for diverging toxicity does not affect the direction of our main
result. Panel A and panel B both report increasing release ratios and decreasing treatment ratios.
We show that changes in on-site releases are not statistically significant despite their similar
magnitude to our main effect, whereas changes in on-site waste treatment drops significantly

also for more toxic chemicals (panel A). On the contrary, the coefficients for on-site release

and treatment are statistically significant and larger in absolute terms for the subsample of less
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toxic chemicals (panel B). In Appendix Table A.26, we report further heterogeneity analyses
for toxicity subsamples using the human toxicity potential to split the sample (Hertwich et al.,

2001). Again, real effects tend to be slightly smaller for more toxic chemicals.

Tighter environmental permits for releasing these chemicals and more detrimental effects of pol-
lution exposure are possible underlying explanations. Nevertheless, this heterogeneity analysis
suggests that increasing on-site releases and especially decreasing on-site treatment are present

in both toxicity subsamples.

4.5.3 Industry Affiliation

Subsequently, we explore whether a facility being affiliated to a heavy versus a non-heavy indus-
try matters for waste releases and waste treatment. Workers expectations on job risks, such as
exposure to dangerous procedures or chemical emissions might depend on the industry affiliation
of their employers. Viscusi (1979) finds that workers have no perfect information on job risk and

their perception is positively correlated with industry risk.

Specifically, we conjecture that workers in “dirty”, i.e. heavy, industries likely expect a certain
extent of exposure to hazardous substances and also regard releases and waste management
practices as an integral part of performing business. Additionally, industries likely face differ-
ent possibilities and (regulatory) constraints in adjusting waste management as a response to
unions’ pressures. To investigate the role of industry affiliation and to approximate correspond-
ing potential preferences of workers, we split our sample into chemical observations from heavy
industry (e.g. chemicals, oil and gas) versus non-heavy industry facilities (e.g. food processing,

electronics).”

Panel A of Table 4.8 shows significant positive effects of unionization in non-heavy industries
on changes in total (column (1)) and on-site releases (column (2)) as well as significant negative
effects on changes in total (column (3)) and on-site waste treatment (column (4)). Panel B
mostly corroborates the direction of these effects also for observations from heavy industries,

although only the on-site treatment coefficient is statistically different from zero.

498pecifically, we assign facilities with a primary NAICS starting with 21, 221-223, 324-327, 331-332, and 562
to the heavy-industry subsample and all others to the non-heavy industry subsample.
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TABLE 4.8: Industry Affiliation

Changes in waste releases Changes in waste treatment

Total On-site Total On-site

(1) (2) (3) (4)

Panel A: Non-heavy industry

Unionization 0.198** 0.237*** —0.408*** —0.832%**
(0.098) (0.058) (0.122) (0.174)

Panel B: Heavy industry

Unionization 0.125 0.124 0.018 —0.477*
(0.123) (0.130) (0.297) (0.267)

Notes: This table presents the unionization effect on changes in waste releases and treatment up to three years
post election. We split our sample in observations from non-heavy industries in panel A and heavy industries
in panel B. We report bias-corrected local regression discontinuity estimates using the MSE-optimal bandwidth
and triangular kernel function. Robust standard errors clustered at the facility are in parentheses. * p < 0.1, **
p < 0.05, *** p < 0.01 indicate significance.

Overall, our results of decreasing waste ratios and simultaneously increasing release ratios are
stronger for facilities in non-heavy industries. This finding suggests that workers from heavy in-
dustries have different risk expectations and interests regarding toxic waste management. More-
over, regulations and higher marginal costs of changing waste management practices might limit

the wiggle room for unions to influence the ecology-safety tradeoff in heavy industries.

4.6 Further Analyses

In our last results section, we aim to examine alternative explications and further disentangle
the drivers of our main effects, increasing on-site release and decreasing on-site waste treatment.
To this end, we first investigate whether changes in production output mechanically affect our
results. Second, we explore whether our main effects might be driven by motivations to save
costs. Finally, we test our hypothesis of more pollution prevention activities due to their multi-

win character.

4.6.1 Production Output

Production output is highly positively correlated to waste releases and waste treatment. Hence,
quantitative changes in these waste management procedures could be purely mechanical and

result from changing production output after unionization, e.g. because of lower productivity and
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shirking due to misaligned incentives (Bradley et al., 2017). To examine the role of production
output, we use the production ratio as presented in Section 4.3.2, i.e. output related to chemical

use in one year divided by output in the previous year.

TABLE 4.9: Production Output

Production Changes in waste releases Changes in waste treatment
ratio Total On-site Total On-site
(1) (2) (3) (4) (5)
Unionization 0.100 0.108 0.131* —0.281* —0.599**
(0.098) (0.093) (0.077) (0.166) (0.234)
Production 0.265*** 0.272%** 0.206** 0.274*
ratio (0.059) (0.069) (0.084) (0.144)

Notes: This table presents the unionization effect on the production ratio in column (1). We report the union-
ization effect on changes in waste releases and treatment up to three years post election when controlling for the
production ratio in columns (2)-(5). We report bias-corrected local regression discontinuity estimates using the
MSE-optimal bandwidth of our main analysis and triangular kernel function. Robust standard errors clustered
at the facility are in parentheses. * p < 0.1, ** p < 0.05, " p < 0.01 indicate significance.

In Table 4.9, we first test whether unionization has a significant effect on this production ratio.
Column (1) shows that unionization does not significantly affect the production ratio up to three

years after the election takes place. This finding is consistent with DiNardo and Lee (2004) and

does not point to the presence of shirking on job duties by unionized workers.

Next, we report unionization and production effects on waste management strategies in columns
(2) to (5). We find no relevant changes in coefficients and significance levels when including
the production ratio as a control variable, compared to our main results in Tables 4.2 and 4.3.
Hence, we rule out that the increase in on-site waste releases and strong decrease in treated
waste after unionization is a purely mechanic consequence of changing production levels.?® Fur-
thermore, these findings address concerns with respect to the observed pre-election unbalance of

the production ratio between treatment and control group.

4.6.2 Financial Constraints

Next, we consider financial constraints, approximated by the minimum Paydex credit score, as a
possible mechanism of our results. The unionization effect on financing decisions, such as debt-

to-equity ratios, is well documented in the literature (Bronars and Deere, 1991, Klasa et al., 2009,

50Tn untabulated robustness checks, we use the log of sales and the log of employees from NETS instead of TRI’s
production ratio to proxy for production output. Our results remain virtually unchanged.
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Matsa, 2010). Moreover, other studies present evidence that more financially constrained firms
release more toxic chemicals (Xu and Kim, 2022), potentially because the costs associated with
end-of-pipe treatment procedures require sufficient funding (Frondel et al., 2007, Dutt and King,
2014). Our sample reflects these findings as the Paydex score and changes in waste treatment

are positively correlated.

TABLE 4.10: Financial Constraints

Paydex Changes in waste releases Changes in waste treatment
score Total On-site Total On-site
(1) (2) (3) (4) (5)
Unionization 6.099 0.183** 0.163** —0.265 —0.700***
(3.817) (0.071) (0.074) (0.226) (0.260)
Paydex score —0.000 —0.001 0.005 0.009**
(0.002) (0.002) (0.003) (0.004)

Notes: This table presents the unionization effect on the minimum Paydex credit score in column (1). We report
the unionization effect on changes in waste releases and treatment up to three years post election when controlling
for the Paydex score in columns (2)-(5). We report bias-corrected local regression discontinuity estimates using
the MSE-optimal bandwidth of our main analysis and triangular kernel function. Robust standard errors clustered
at the facility are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 indicate significance.

We examine whether unionization directly impacts financial constraints and thereby indirectly
impacts waste releases and treatment. As shown in column (1) of Table 4.10, we find a positive
but insignificant local unionization effect on the Paydex score. We show that financial constraints
do not significantly mediate the relationship between unionization and changes in waste releases
and total waste treatment (columns (2) to (4)). In column (5), we show that, ceteris paribus,
an increase in the Paydex score increases on-site treatment. However, the mediating effect is
relatively small. These results suggest that financial constraints, and possibly cost savings, are
not the main motivation of our EOP waste treatment effect. Thus, workplace safety concerns

appear to be more relevant for the observed decrease in waste treatment.

4.6.3 Prevention Activities

Our empirical results 