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1 Introduction

In search of a sustainable energy source, nuclear fusion is under research. With the
goal to control thermo-nuclear fusion and eventually provide electric energy output, the
tokamak concept was invented in the 1950s in the Soviet Union [1] and culminates to-
day in an international project - ITER [2] - whose machine assembly began in 2020 [3].
While this experiment is multifaceted and placed under the umbrella term “fusion re-
search”, the most fundamental understanding originates from plasma physics, as the
fusing material is in a plasma state of matter. The challenge in fusion research is to
achieve controllable, stable and economically viable operation.
As the ITER tokamak approaches first operation, the concern about a specific plasma

physics phenomenon, the runaway electron (RE) generation, grows [4, 5]. RE generation
naturally accompanies plasma disruptions [6], which - though sought to be avoided [7] -
cannot be ruled out and disruption mitigation systems [8] must be integrated as a safety
net. Most recent theoretical analysis suggests [9, 10], that a disruptive nuclear phase
ITER plasma may generate a RE beam that cannot confidently be mitigated at current
development status and bears existential risks to the device [11, 12].
The work in this thesis investigates an inherent physical mechanism, where plasma

waves interact with the REs and could aid RE mitigation efforts. For this mechanism
to be understood, we begin by laying out the relevant concepts of tokamaks and plasma
physics.

The aspired nuclear reaction fuses the hydrogen isotopes deuterium (D) and tritium
(T)

D + T → α(3.5MeV) + n(14.1MeV),

distributing about 17.6 MeV of energy to a doubly charged alpha particle (α2+) and
a neutron. The fusion reaction takes place in an environment of low particle density
(∼ 1020m−3) and high temperature (∼ 108K ∼ 104 eV), where thermal motion leads
to a large enough cross section for the fusion collision to happen. At temperatures that
high, electrons become detached from the nucleus, creating a plasma with an electrically
conductive property.
It is this property, that allows the fuel D-T plasma and the alpha particle to be

confined within the magnetic fields generated by a tokamak (see figure 1.1), while the
neutron leaves the plasma without interaction. Field coils generate an axisymmetric
magnetic “cage” within a vacuum chamber, shaped to a torus. The center of the torus
is referred to as magnetic axis, the long way around the torus is called toroidal direction
and the short way around is the poloidal direction. Characteristic for a tokamak is
the central transformer coil, which induces a toroidal plasma current and superimposes
the toroidal magnetic field (from the toroidal field coils) with a poloidal component.
This results in helical magnetic field lines, twisted around the magnetic axis. The field
confines the charged plasma particles via the Lorentz force onto their own, infinitely
looping trajectory and prevent them from hitting the chamber walls. The good confining
properties of a tokamak is what allows a prolonged existence of the hot plasma in the first
place, and is also what will allow future tokamaks to absorb the alpha particle energy
and utilize it as an internal heating. For technical and economical reasons, present-day
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Figure 1.1: LHS: Schematic drawing of a tokamak [15]. RHS: Toroidal geometry definitions:
poloidal angle (θ), toroidal angle (ζ), radius from magnetic axis (r) and radius from
central axis (blue dashed line) R. The major radius R0 and the minor radius a
relate the device and plasma dimensions to magnetic axis (center of the torus).

tokamaks mostly use pure deuterium fuel (where fusion reactions are rare) as challenges
of non-nuclear phase plasmas are already plenty. The occasional dedicated experiments
(e.g. in JET [13] or TFTR [14]) however show that the plasma physics basics of alpha
particles are well understood.

Two additional aspects about the tokamak are important to note here: The plasma
current is induced by ramping up a current through the transformer coil, which cannot
be done indefinitely. Tokamak operation is therefore naturally pulsed, with the pulses (of
plasma) often being referred to as discharges or shots, which on current-day machines
usually last a duration of the order of seconds. The plasma current is driven by the
loop voltage and is - due to the high conductivity of a plasma - comparatively low
(∼ V) during normal operation. Secondly, the toroidal magnetic field strength decreases
radially as B ∼ 1/R (distance R from central axis) and creates regions usually referred
to as high-field side (HFS - inwards) and low-field side (LFS - outwards). On the other
hand, the poloidal magnetic field component is a function of the current profile. The
resulting twist of a field line is characterized by the so-called safety factor q, which
counts the number of toroidal transits for every poloidal transit. The name comes from
a necessity to maintain q ≳ 1 in the plasma center and q ≳ 3 at the plasma edge, in
order to prevent various plasma instabilities [1, 16–18].

From the axisymmetry of the torus it can be shown [1], that following a magnetic field
line will eventually map out a magnetic surface. The plasma of a tokamak is therefore of-
ten understood as consisting of radially nested flux surfaces. In a simplified picture, the
plasma can be thought of as “frozen” onto the magnetic field B. A static magnetic equi-
librium requires force balance between confining electromagnetic forces and expanding
pressure: j×B = −∇p, for a current j and a pressure p. It follows that (1) B×∇p = 0
and (2) j×∇p = 0, meaning that (1) field lines of B lie on surfaces of constant pressure
and (2) current lines lie on said surfaces as well. Because of such constants along flux
surfaces, they can be labelled and used to describe a plasma equilibrium. Often the
toroidal flux Ψ, i.e. the magnetic flux going through the poloidal cross-section of a flux
surface, is used as a radial coordinate (we will often use the normalized toroidal flux
0 ≤ ψ ≤ 1, where ψ = r2 for a circular torus). Another example is the safety factor,
which is constant along flux surfaces and the profile of which, q(ψ), is often used to
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describe a plasma equilibrium.

The equilibrium state may be subject to perturbations in the form of plasma waves,
which can be excited through interaction with energetic particles (EPs). The afore-
mentioned alpha particles of the burning, nuclear phase plasma constitute such a pop-
ulation [19]. It is energetically distinct from the thermal fuel population and resides
mostly in the core of the plasma, close to the magnetic axis [19]. With alpha velocities
comparable to the phase velocity of a specific type of plasma modes, the Toroidal Alfvén
Eigenmode [20] (TAE), resonance interaction can occur which drives the TAE unstable
and develops an Alfvénic plasma wave (discussed in more detail in chapter 2).

Particle trajectories in the tokamak are not perfectly bound to the magnetic field
lines and perform various kinds of periodic orbits [1]. If the resonance condition has to
be fulfilled with the orbital motion, it is sometimes better understood in the frequency
space than in velocity space. Because of the generally strong magnetic fields (∼ T), the
gyro-frequency ωg ∝|B| (∼ 108 s−1 for ions) lies well beyond the eigenfrequency of the
TAE (typically ωTAE ∼ 106 s−1) and can be ignored.

Due to the periodicity of the tokamak, the particles perform periodic motion in
poloidal and toroidal direction. A type of orbit emerges from the variation of magnetic
field strengths along a particle’s poloidal path, together with the adiabatic invariance of
the particle magnetic moment µ:

µ =
mv2⊥
2B

where m is the particle mass, v⊥ is its velocity perpendicular to the magnetic field line
and B = |B| is the magnetic field strength. As the particle is subject to varying B along
its trajectory, the conservation of energy, E = (mv2∥)/2+µB, compensates changes to v⊥
by changing the parallel velocity v∥. If the variation in B is strong enough (relative to the
initial v∥/v⊥), the parallel motion is reversed, or mirrored at the HFS of the tokamak.
This magnetic mirror effect causes some particles to become trapped in a section of
their poloidal orbit. Particles transiting the entire poloidal path are considered passing.
While the orbit frequency differs for trapped and passing particles, it is here commonly
denoted as ωθ.

In addition to the gyro-motion, particle trajectories deviate from the magnetic field
lines due to particle drifts, which for a general force F can be described by

vd =
F×B

qB2
,

where vd is the drift velocity and q is the particle charge. Important drifts include
curvature drift and∇B-drift, which due to the curvature and non-uniform magnetic field
of the torus are ubiquitous in a tokamak. The axisymmetry of the system ensures that
drifts outwards and inwards are compensated, but the particles now move along drift-
surfaces that deviate from the magnetic surfaces. The excursion from the surfaces due to
particle drifts exceeds the excursion due to the gyro-motion. Along its motion on drift-
surfaces, the particle drifts to neighbouring magnetic field lines, causing a precession
motion in toroidal direction with a frequency ωprec.

Should either of the frequencies ωθ or ωprec match the eigenfrequency of the TAE,
resonant interaction occurs by which energy is exchanged between the mode and the
particles. In the case of TAEs, alpha particles generally drive the mode and increase
its amplitude by which it perturbs the equilibrium. In that sense, alphas are usually
in competition with the thermal ions, which draw energy away from the mode in a
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process called ion Landau damping [21]. Here, it is only the most energetic portion of
the thermal ions, the Maxwellian tail, that resonates with the TAE.

During normal - quiescent - tokamak operation, perturbations that might grow into
major instabilities are undesired. The envisioned alpha population for the ITER opera-
tion is predicted to be unable to overcome the damping of the thermal population in the
quiescent phase [22]. In this work however, we aim to investigate the resonant α-TAE
interaction not in the quiescent phase, but during so-called disruptions [6].

A disruption describes an abrupt, uncontrolled termination of a tokamak discharge,
resulting in a release of its stored energy. The plasma temperature T drops by many
orders of magnitude within a timescale of milliseconds. While the plasma cools, it
becomes less conductive and the plasma current encounters a rising resistivity σ ∝
T−3/2 [1]. Self-inductive properties of the plasma induce a strong toroidal electric field
in an attempt to maintain the pre-disruption plasma current.

The electric field exerts an acceleration force on charged particles and has to compete
against the particle decelerating, collisional friction. Collisions in a plasma are due to
Coulomb interactions, which bear a remarkable property for super-thermal particles:
beyond a threshold, with rising speeds, the collisional momentum exchange decreases
stronger than the increased number of collision encounters could balance out [23]. This
phenomenon entails a friction force FC, that decreases with the particle velocity, FC ∝
v−2 above a threshold vth, which is the thermal velocity. Given an accelerating force
that can overcome the initial friction in the first place, the super-thermal particle is sped
up with increasing efficiency, it undergoes a runaway.

Following a tokamak disruption, the conditions are met for the induced electric field
to generate a population of runaway electrons [24, 25] (REs). The REs form a di-
rected beam of relativistic particles, carrying a significant portion of the initial plasma
current, which could be multiple mega-amperes for ITER. This conversion occurs in
post-disruption, where position control over the plasma becomes increasingly ineffec-
tive. As this beam bears the potential of damaging the device on impact [11] - esp. in
a high-current device like ITER [12] - runaway electron mitigation is a field of active
research [5, 8, 26]. Massive Material Injection [11, 27] (MMI) is a common method to
increase the (non-localized) irradiation of plasma energy content and generally raise the
friction FC. Material injection however may not be sufficient in itself to solve the run-
away problem [9, 10], hence additional methods are under consideration. One such idea
revolves around applying magnetic perturbations to the plasma, thus diminishing its
particle-confining property. Such mitigation systems mainly include Resonant Magnetic
Perturbations [28, 29] (RMPs) and passive helical coils [30, 31] and will be discussed in
section 2.2. Strong enough perturbations cause the magnetic field lines to behave chaot-
ically and provoke radial transport of particles, to which the runaways are susceptible to
because of their high velocity. RE transport is beneficial when it hinders the formation
of the beam, but often unfavourable once the beam is fully developed.

While it is possible to apply RMPs externally, the success in causing RE losses
varies [28, 29, 32]. A major obstacle was identified to be the limited penetration depth,
because of which the (predominantly core-generated) REs are hard to reach [9, 33]. As
it stands, these mitigation systems would benefit immensely from a plasma-inherent
mechanism, that causes perturbations in the core of the plasma following disruption.
Such a mechanism is studied in this work.

We consider the core-localized alpha particles of a nuclear phase ITER plasma and
their behaviour in a disruption. As mentioned in the context of REs, the collisional
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1.1 The concept of the post-disruption alpha particle drive

friction of high-velocity particles is low compared to thermal particles. It will be shown,
that this property allows the alphas to remain energetic for a several milliseconds into
a disruption. Crucially, the alphas maintain their ability to resonantly drive TAEs.
Meanwhile, the fast cooling thermal ion population loses its ability to damp the TAE.
This process is a natural consequence of the disruption and provides a possibility of
perturbations being driven unstable in the plasma core.

1.1 The concept of the post-disruption alpha particle drive

In this section, we provide a more detailed introduction to the novel mechanism that is
under study in this thesis.

The general idea behind the project of this thesis can be motivated by multiple ex-
perimental observations on present-day tokamaks. An example [34] was found at the
ASDEX-Upgrade tokamak [35, 36] (AUG). With a new experimental scenario estab-
lished [37, 38], one of the goals was to research EP-driven plasma instabilities in a
relatively cold plasma environment (T ≲ 1 keV). The experimental data can be found
in reference [39] and the scenario is further advanced in reference [40]. This unique sce-
nario allows an accumulation of impurities in the deuterium plasma core, which keeps
the temperature and pressure of the thermal population low due to strong impurity
radiation. Simultaneously, neutral beam injection (NBI) systems are used to generate
an additional, small population of EPs. Although the populations exchange energy via
collisions, the scenario allowed both to coexist at distinct energy regions. The EP veloc-
ities are about 100 times larger than the thermal velocity, but the background pressure -
because of its larger density - is comparable to the EP pressure [40]. These velocity and
pressure ratios approach the theoretical predictions for future fusion devices like ITER,
and gave access to previously experimentally unexplored parameter regimes [40].

During the experiment, a strong destabilization of a wide range of modes was ob-
served [41, 42], including TAEs [43]. The physical reason is found to be the strongly
temperature-dependent ion Landau damping of the thermal background plasma [44, 45],
which fails to compete against the resonant EP drive, when the temperature T is suffi-
ciently low. The collisional drag of the cold bulk plasma decelerates the EPs and reduces
their ability to destabilize plasma waves. However, the reduction in damping is more
severe as it is exponentially sensitive to the ion temperature [22, 46].

Although the experimental scenario described above was purposefully tailored for re-
search, such plasma conditions can occur in regular tokamak operations. An energetic
population and a cold bulk plasma can briefly coexist, when the plasma temperature
drops suddenly and violently, like in a disruption. Modes occurring in post-disruption
are routinely observed in present-day tokamaks [34, 47–50]. In figure 1.2 two such in-
stances are shown for the AUG and the larger JET tokamak [51]. The frequency range
in both cases is in the Alfvénic regime. Often the source of the mode drive is not obvi-
ous, as various kinds of energetic populations can be the origin and other destabilizing
mechanisms exist. While a former analytical study on runaway ions [52] was inconclu-
sive, it was later deduced [53] that runaway ions are unlikely as a driving population
on the short timescales of a disruption (∼ ms), through it was not ruled out during
magnetic reconnection events [54]. A study [55] on the DIII-D tokamak [56] identified
runaway electrons as the origin for the Compressional Alfvén Eigenmodes (or possibly
Global Alfvén Eigenmodes) at much larger frequency.
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Figure 1.2: Two examples of post-disruption magnetic signals picked up by Mirnov coils in
the (LHS) ASDEX Upgrade tokamak and (RHS) the JET tokamak (shot #89141).
The disruption occurred at a) ≈ 1.005 s and b) ≈ 51.63 s respectively. These figures
are provided courtesy of (LHS) P. Heinrich and (RHS) S. Newton, P. Pölöskei but
are unpublished.

For our predictive study, energetic alpha particles born during the fusion process
of a burning ITER plasma take the role of the mode-driving EPs. Theoretical analysis
predicts [22, 57] the existence of marginally unstable TAEs already in the pre-disruption
plasma conditions through resonances with the alpha particles and NBI-generated ions.
With an ion Landau damping, which is exponentially sensitive to the temperature, we
expect these modes to be destabilized shortly after a disruption.

The study focuses on TAEs and only the alpha particles, which have velocities higher
than the NBI-generated ions and well above the (pre-disruption) Alfvén velocity (factor
1.8 higher). The qualitative course of events is sketched in figure 1.3. In the normally
burning plasma (T ≈ 10−20 keV) the damping is comparable to the alpha drive [22], but
drops suddenly, when a disruptive event quenches the temperature of the plasma. The
high alpha particle energy (∼ MeV) will be shown to resist a thermalization with the
cooling background for a significant amount of time (∼ ms), even though the alpha pro-
duction ceases. As the plasma cools down further and reaches temperatures of the order
of tens of eVs, damping mechanisms of a cold plasma become significant. The ques-
tion that must be answered, is whether the alpha particle drive is strong and enduring
enough to destabilize TAEs in the weakly damped post-disruption plasma equilibrium.

Ultimately, the motivation behind this research is an attempt to find runaway electron
mitigating effects. The interaction of runaways with plasma waves has been investigated
in both theory [58–65] and through observations in multiple tokamaks [47, 48, 66–70].
Experiments at several tokamaks [71, 72] have observed a magnetic field strength B
threshold, below which runaway electron formation is suppressed. While the physics
behind the threshold is not certain, the suppressing effects have been correlated to in-
creased levels of perturbation strengths δB/B [73]. At the TEXTOR tokamak [74],
the post-disruption presence of a TAE correlated with enhanced losses of runaway elec-
trons [47]. The relative perturbation strength is higher when the magnetic field strength
B in the plasma is low and has been connected [66] to the lack of REs in the plasma
discharge. Other tokamaks, like COMPASS [75], have observed burst-like expulsion of
runaways caused by large-scale MHD (MagnetoHydroDynamic, see section 2.3) insta-
bilities [76]. Earlier studies showed, that magnetic perturbations with an amplitude of
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Figure 1.3: A qualitative sketch of the proposed alpha drive mechanism. The amplitude of a
TAE is determined by a competition between damping and driving forces. The
arrows indicate the strength of the driving force from the alpha distribution (red)
and the damping from the background (blue). In a disrupting plasma, the damping
temporarily loses against the alpha drive due to temperature-dependent Landau
damping, and a slow thermalization of alpha particles. Ultimately, the interaction
of the TAE with runaway electrons is of interest to this study. RE seeds are
generated by primary mechanisms, and multiplied via avalanche, once the induced
electric field arises. A reduction of the final RE current is the motivation behind
this research.

about δB/B ≈ 0.1% is sufficient to suppress runaway avalanche [33, 77], while more
recent research [9] has halved this threshold.

As hypothesised in the concluding remarks of reference [45], alpha particles could
serve as a drive for perturbations, that diminish the formation of a runaway electron
beam. Importantly, this could provide a passive and inherent mitigation mechanism,
that would aid the external mitigation systems, especially ones that rely on externally
applied perturbations. The instability effects on particle confinement are especially
relevant for REs, which - due to their high velocity - can be extremely susceptible to
orbit losses.

1.2 Scope of the thesis

In order to study the feasibility of the mechanism shown in section 1.1, a self-consistent
calculation of the alpha population, the plasma equilibrium, the wave-particle interac-
tions and the runaway electron generation is necessary. The presence of alpha particles
requires a burning plasma, which do not exist yet, but are eventually foreseen as ordi-
nary operation in reactor-relevant tokamaks like ITER.

Chapter 2 will introduce the plasma and tokamak theory necessary for this thesis. Due
to the complexity of the problem numerical tools will be applied throughout this project
and are briefly outlined in chapter 3, with the required code development presented in
chapter 4. In chapter 5 we study the main subject of this thesis in detail: Section 5.1 will
introduce the ITER plasma scenario that is the basis of the calculations in this work.
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1 Introduction

The plasma suffers a disruption, which we model with a thermal quench and reconstruct
a plasma equilibrium for this phase. The equilibrium is investigated about its TAEs and
the bulk plasma damping. Section 5.2 deals with the collisional dynamics of alpha parti-
cles, during which we also derive an analytical model. In section 5.3, plasma equilibrium,
alpha particles and TAEs come together in wave-particle interaction simulations, where
we also use a model to account for disruption-induced alpha particle transport. These
simulations yield the alpha-driven perturbation amplitudes one can expect during the
thermal quench of the ITER plasma. In the final section 5.4 we will perform disruption
simulations, that account for the calculated perturbations in the thermal quench, and
compute its influence on runaway electron generation. The results are summerized in
chapter 6.

The research conducted throughout this project and presented in this thesis is pub-
lished in paper A [78] and (submitted) in paper B [79]. Paper A is a proof-of-principle
study on the mechanism presented in the previous section. We found significant per-
turbations driven by the alphas in an unmitigated disruption and indications that these
perturbations may cause RE transport. This led to the more thorough and elaborate
investigation in the follow-up study in paper B. Improvements include the consideration
of mitigated disruption, a model for alpha particle transport, RE electron transport
calculations and a self-consistent disruption simulation with the included RE transport.
The methods of paper A (see e.g. code development section 4) were chosen for a proof-of
principle study, however improved/replaced for the follow-up study, and therefore put in
the forefront of this thesis. This paints a more complete picture of the physical process
and provides less distraction involving technicalities. A vast majority of the work pre-
sented in paper A and B was done by myself. Some code applications and derivations
were done by co-authors and will be clearly stated in this thesis.
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2 Theory

In plasma physics, various hierarchical theoretical frameworks exist, varying in complex-
ity and fidelity. Depending on the problem at hand, it is convenient or even necessary
to make a suitable choice. The following frameworks are presented based on the book
of J. Wesson [1].

The most fundamental model, the kinetic theory, treats the plasma as particle dis-
tributions that evolve in the six dimensional phase-space according to the kinetic equa-
tion [80]. Small-scale particle interactions are considered collisions and an appropriate
model for the Coulomb collisions in a plasma can be obtained with the Fokker-Planck
collision operator [23], which assumes that small angle collisions dominate. For strong
magnetic guiding fields, the particle gyration is averaged into a charge ring motion along
the magnetic field line, yielding the gyro-kinetic theory [81] and reducing the dimension
of the kinetic problem by one. When instead, the gyration is averaged to the movement
of a point-charge (center of the charge ring), we speak of the guiding-center theories
or drift-kinetic theories. Taking moments of the particle distributions allows a deriva-
tion of the magnetohydrodynamic (MHD) theory. Kinetic properties can be partially
restored in MHD by treating energetic particles (EPs) with distribution functions, that
are separated from the MHD-fluid in MHD-kinetic hybrid models.

With the reduction of the kinetic equation in section 2.1 we will introduce the Fokker-
Planck equation. Discussion of the Fokker-Planck operator is a suitable introduction to
the two EP species that are the main subject of this thesis, namely the fusion-born alpha
particles (alphas) in section 2.1.1 and the runaway electrons (REs) in section 2.1.2. The
relevance of REs for tokamak research will be made clear in section 2.2 where we talk
about plasma disruptions. Within the MHD-framework (section 2.3) we will describe
the phenomenon of a specific type of plasma waves, the so-called Alfvén wave. The
interaction of Alfvén waves with EPs however goes beyond its basic MHD properties
and eventually requires a discussion of wave-particle interactions in section 2.4.

2.1 The Fokker-Planck equation

Fusion plasma dynamics is dictated by the motion of charged particles due to external
and self-generated fields. Analogous to thermodynamics, their collective behaviour can
generally be described with a distribution function, however, it becomes necessary to in-
clude Maxwell’s equations describing the effects of electromagnetic forces. The following
aspects of collisional plasma physics is introduced based on the textbook by Helander
and Sigmar [23].

We begin by defining the distribution function f(t,x,v) for the time t, with particle
position vector x and particle velocity vector v ≡ ẋ. The function is normalized such
that the momentum-space integral returns the particle density n(t,x) =

∫
f(t,x,v) dv

and the the total integral yields the particle number N(t) =
∫
n(t,x) dx. Under a

conservation of particle number and an acceleration due to electromagnetic forces, the
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total rate of change df/dt yields the Vlasov equation

∂f

∂t
+ v · ∂f

∂x
+

q

m
(Ē+ v × B̄) · ∂f

∂v
= 0, (2.1)

where q is the particle charge, m the particle mass, Ē the electric field and B̄ the mag-
netic field. Outside its Debye-length, a plasma particle can be considered electrically
neutral and it becomes convenient to separate the microscopic interactions within the
Debye-length, i.e. collisions, from macroscopic forces. For the ion kinetics considered
in this thesis, we can use the approximation that small-angle Coulomb collisions dom-
inate and use the Fokker-Planck collision operator [23, 82, 83] CFP{f} = (∂f/∂t)coll,
transforming the Vlasov equation into the Fokker-Planck equation:

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E+ v ×B) · ∂f

∂v
= CFP{f}, (2.2)

where E and B now only represent average, macroscopic (> Debye-length) electric
and magnetic fields. The Fokker-Planck operator itself is still a complex object to
study [84, 85], but simplifications can be made to solve it explicitly for alpha particles.
We assume a small, energetic ion population fa colliding with a thermal background
fb consisting of electrons and ions. The operator only affects energy and pitch. The
gyration is averaged over and the remaining velocity coordinates are aligned with the
B-field in an orthogonal system (v, ξ), where v = |v| is the particle velocity, ξ ≡ v∥/v
is the pitch and v∥ is the velocity parallel to B. The EP collision operator CEP{fa, fb}
reads [23]:

CFP{f} → CEP{fa, fb} = νabD L{fa}+
1

v2
∂

∂v

v3( ma

ma +mb
νabs fa +

νabdif
2
v
∂fa
∂v

) , (2.3)
where ma is the EP mass, mb is the background particle mass and three distinct pro-
cesses are identified via their respective collision frequency: the frequency of pitch-angle
scattering νabD , the slowing-down frequency νabs , and the frequency of parallel diffusion
νabdif. The latter is multiplied with the Lorentz scattering operator, defined as

L =
1

2

∂

∂ξ

(
1− ξ2

) ∂

∂ξ
.

The characteristic frequencies are

νabD (v) = νab
erf(xb)−G(xb)

x3a
, (2.4)

νabs (v) = νab
2Ta
Tb

(
1 +

mb

ma

)
G(xb)

xa
, (2.5)

νabdif(v) = 2νab
G(xb)

x3a
, (2.6)

νab =
nbq

2
aq

2
b ln Λ

4πϵ20m
2
av

3
th,a

, (2.7)

with a general inter-species collision frequency νab, the Coulomb logarithm lnΛ, the
background particle density nb, the vacuum permittivity ϵ0, the respective species
charges qa and qb, normalized thermal velocities xa ≡ v/vth,a and xb ≡ v/vth,b, where
the respective species thermal velocities are evaluated as vth,a =

√
2Ta/ma and vth,b =

10



2.1 The Fokker-Planck equation

√
2Tb/mb for the species temperatures Ta and Tb. We have also introduced the Chan-

drasekar function G(x) and the error function erf(x), defined as

G(x) ≡ erf(x)− x · erf ′(x)
2x2

→

 2x
3
√
π
, x→ 0

1
2x2 , x→ ∞

(2.8)

erf(x) ≡ 2√
π

∫ x

0
e−y2 dy,

{
−1, x→ −∞,

1, x→ ∞
(2.9)

where ′ denotes a derivative with respect to x. The collision processes urge to return the
EP distribution fa to its natural state which is the (stationary) Maxwellian distribution
function:

fM =
nb

π3/2v3th,b
e−(v/vth,b)

2
,

With this property the Fokker-Planck operator fulfils the H-theorem [80], as it increases
the entropy of the system and vanishes, once Maxwellians (of equal temperature) are
obtained.

2.1.1 Fusion-born alpha particles

In the circumstance of a burning deuterium-tritium plasma alpha particles are born
through nuclear fusion. In steady-state, they form a slowing-down distribution [86],
that can be derived from the Fokker-Planck equation (eq. (2.2)) and the energetic parti-
cle collision operator (eq. (2.3)) for a small, energetic alpha species fα, a thermal electron
species fe and a thermal ion species fi.

Starting point is the operator CEP{fα, fe,i}, whose bilinear nature1 allows a separate
treatment of alpha-electron and alpha-ion collisions. Alpha particles emerge at a kinetic
birth energy of Eα0 = 3.5 MeV and a corresponding velocity vα0 ≈ 1.3 · 107m/s, hence
these ions are considered energetic with respect to the plasma background, which aver-
ages to a typical mean temperature of approximately 10-20 keV. The birth process is
isotropic to a good approximation [87].

In a typical fusion plasma, the electron temperature Te and the ion temperature Ti
are similar, fulfilling

vth,i ≪ vα0 ≪ vth,e

for the respective thermal velocities vth,e ≡
√

2Te/me and vth,i ≡
√
2Ti/mi . Although

a temperature cannot be assigned directly to the non-Maxwellian distribution of alphas,
the average alpha particle velocity corresponds to an energy of approximately Tα ≈
1 MeV. In the velocity and temperature regimes considered, pitch-angle scattering and
velocity diffusion become negligible compared to the slowing-down frequency (eq. (2.5)).

The Chandrasekhar function G(xb) (eq. (2.8)) for alpha drag against electrons is
evaluated for xb = xe → 0, and the result is expressed with the slowing-down time τs:

1

ναes

= τs =
3(2π)3/2ϵ20mαT

3/2
e

Z2
αe

2m
1/2
e ne ln Λ

, (2.10)

with the elementary charge e, the alpha particle charge Zα = 2e, the alpha particle mass
mα, the electron mass me and the electron density ne. For the alpha drag against ions,

1C{fα, fe,i} = C{fα, fe}+ C{fα, fi}.

11
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G(xb) is evaluated for xb = xi → ∞, yielding

ναis =

(
vc
v

)3 1

τs

mα +mi

mα
, (2.11)

where we defined the cross-over velocity vc as

vc ≡

(
3
√
π meniZ

2
i

4nemi

)1/3

vth,e. (2.12)

for the ion density ni, the ion charge Zi and the ion mass mi. This crossover velocity
vc defines a threshold value, above which the alpha-electron drag dominates over the
alpha-ion drag.

With ν
α(i,e)
s = ναes + ναis and equations (2.10)-(2.12), we can explicitly state the

isotropic Fokker-Planck collision operator (eq. (2.3)) for the alphas

CEP{fα, fe,i} =
1

v2τs

∂

∂v

[
(v3 + v3c )fα(v)

]
. (2.13)

We state the kinetic equation (2.2) for alpha particles:

∂fα
∂t

+ v · ∂fα
∂x

+
Zαe

mα
(E+ v ×B) · ∂fα

∂v
= CEP{fα, fe,i},+Sαδ(v − vα0), (2.14)

where we have addressed the birth process with an additional alpha particle source Sα
and the delta function δ(v − vα0). The alpha particles are born close to the magnetic
axis, where the flux-surfaces radius is small compared to the major radius of the toka-
mak and the problem can be treated in the (local) large aspect ratio limit. In this
limit, spatial effects across flux-surfaces can be neglected and because the plasma is
strongly homogeneous along the magnetic field lines, all spatial dependencies (∂fα/∂x)
are dropped. For the velocity space, we perform gyro-averaging and align a coordinate
system (v, ξ = v∥/v) parallel to the magnetic field lines, for which the kinetic equation
can be stated as [53]:

∂fα
∂t

+
Zαe

mα
E∥

(
ξ
∂

∂v
+

1− ξ2

v

∂

∂ξ

)
fα = CEP{fα, fe,i},+

Sαδ(v − vα0)

4πv2α0
, (2.15)

where E∥ is the parallel electric field. For a steady state solution (∂fα/∂t = 0) with
negligible electric field strength, the kinetic equation is solved by the so-called slowing-
down distribution f0 [86]:

f0 =
Sατs

4π(v3 + v3c )
U(vα0 − v), (2.16)

where we have introduced the unit step function U(x) limiting the velocity distribution
to the birth velocity.
A sketch of the function is shown in figure 2.1 for typical fusion parameters. After

emerging from the fusion reaction, the energetic alpha particle collides with the cooler
background and creates the depicted slowing-down shape. Between thermal ion velocity,
initial alpha velocity and thermal electron velocity respectively lies approximately one
order of magnitude. As above the cross-over velocity vc the electron drag dominates, a
main portion of the alpha energy in a tokamak is transferred into the electrons. With
its lower mass, a thermal electron is faster than an alpha particle, with vth,e/vα0 ≈ 7.2

12
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v
th,i

vc v 0
0.2 v

th,e

velocity

f 0

Figure 2.1: Sketch of an alpha particle slowing-down distribution f0 for typical fusion param-
eters.

(Te = 25 keV). Because of an energy diffusion effect [88] the alpha particles have an
velocity distribution around the birth velocity, which will be addressed in section 5.2.2
through an approximation of the unit-step function. The alpha particles accumulate
at lower energies and effectively merge together with the background as they approach
thermal ion velocities. At this point the alpha particles are usually considered Helium
ash, which need to be removed from the system to balance the birth process and avoid
a dilution of the fuel plasma [89]. The presence of Helium-ash has no significant impact
on the mode evolution discussed later in this thesis.

2.1.2 Runaway electrons

We return to the collisions of energetic particles with a thermal background and look at
the slowing-down frequency of electron-electron collisions νees (eq. (2.5)). The slowing-
down process on a parallel velocity v∥ can be associated with a Coulomb friction force
Fc,∥:

Fc,∥ ≡
me⟨∆v∥⟩ee

∆t
= −mev∥ν

ee
s ∝ G(xe) (2.17)

where average changes to the parallel velocity ⟨∆v∥⟩ee over some time ∆t become pro-
portional to the Chandrasekhar function G(xe) (eq. (2.8)). The electron-electron friction
force is sketched in figure 2.2 as a function of the particle velocity. Electron-ion collisions
yield the same scaling as electron-electron collisions at high velocities v∥. At high elec-
tron velocities, G(xe) has to be evaluated in the large argument limit xe = v∥/vth,e → ∞,
yielding the proportionality

G(xe) ∝ v−2
∥ ,

with key implications. The function peaks close to the thermal electron velocity vth,e and
afterwards begins dropping as v−2

∥ : A force accelerating an already energetic electron

towards higher velocities will reduce the (decelerating) friction. With some constant
force eE∥ > eEc opposing the friction, any electron above a critical threshold - vcrit
- will overcome the friction and is accelerated continuously - it will run away. The
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~v
th,e

v
crit

velocity

eEc

eE||

eE
D

|F
c
,|
||

runaway region

Figure 2.2: An illustration of the (parallel) electron-electron friction force
∣∣∣Fc,∥

∣∣∣ in a plasma as

a function of electron velocity. A typical force counteracting friction in a tokamak
is an electric field E∥. If the magnitude of the electric field overcomes the friction
force, electrons with v > vcrit are accelerated into the runaway region.

physical reason is, that with rising electron speed, the momentum exchange in a collision
decreases stronger than the increased number of collision encounters can balance out [23].
Relativistic energies (∼ MeV) can be reached, where the effects of synchrotron emis-

sion (predominantly due to gyration) and Bremstrahlung due to inelastic scattering off
heavier ions become important [90]. As the emission takes momentum away from the
runaway electron, momentum conservation acts as an additional force opposing the elec-
tric field. This creates an enclosed runaway region which is also sketched in figure 2.2,
though not captured by eq. (2.17).
In a tokamak plasma the relevant accelerating force is assumed by an electric field E∥.

The friction minimum in the runaway region is balanced by a critical electric field [91, 92]

Ec =
nee

3 ln Λ

4πϵ20mec2
, (2.18)

where c is the speed of light. This electric field threshold specifies a value above which
the runaway phenomenon can occur in the first place. Effects like pitch angle scattering
change the critical field [6], as does the inclusion of partially ionized impurities [93].
Partially ionized impurities effectively increase the friction, as the electron cloud of a
nucleus can be penetrated by the energetic RE [94]. As a result, the electron collides
with a higher net charge of the ion and increases general collision frequency in eq. (2.7).
The critical velocity vcrit marks the beginning of the runaway region and is often given in
terms of a normalized momentum p = γv/c, where γ = 1/

√
1− v2/c2 is the relativistic

Lorentz factor:

pcrit =
1√

E/Ec − 1
, (2.19)

for electron motion parallel to the electric field [92]. The electric field balancing the
maximum of the friction force, is the so-called Dreicer field [95, 96]

ED =
nee

3 ln Λ

4πϵ20Te
. (2.20)
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2.1 The Fokker-Planck equation

A slide-away effect [97, 98] can occur for E∥ ⪆ 0.214ED [95], where the entire electron
population becomes runaway.

For a detailed study on REs, generation processes are commonly divided into pri-
mary and secondary mechanism. The classical primary generation is the Dreicer gen-
eration [95], which repopulates a depleted momentum space region p ≥ pcrit through
collisional diffusion, providing a channel from the bulk population into the runaway re-
gion. Through evaluation of a relativistic kinetic equation, an explicit expression was
found [92] for the RE number density nRE growing due to the Dreicer growth rate γDreic.
For a limit E∥ ≫ Ec and fully ionized plasmas one can approximate the dominating scal-
ing to be

γDreic ≡
(
∂nRE

∂t

)
Dreic

∝ exp

(
− ED

4E∥

)
. (2.21)

An up-to-date model for the Dreicer calculation includes the effects of partially ionized
impurities [99]. The presence of partially ionized impurities generally reduces the Dreicer
growth rate and especially for mitigated disruptions is foreseen to be negligible [99, 100].

Another important primary mechanism is the hot-tail generation [101–105]: The en-
ergetic tail of a cooling thermal electron population equilibrates on a slower time-scale
than its bulk and can end up in the runaway electron region, which is formed by rising
electric field E∥. This mechanism is especially significant, when the cooling rate of the
plasma is comparable to the collision frequency of highly energetic electrons [102]. For
the nuclear phase of a plasma, the electron produced in the beta decay of tritium can
become a RE when the emitted electron with an energy of 18.6 keV is energetic enough
to overcome pcrit [106]. The neutron produced in the nuclear reaction (see introduction)
activates the tokamak walls, which proceed to emit photons that can generate a RE
in a Compton scattering process [106, 107]. Dreicer, hot-tail, Compton and beta-decay
mechanisms create a so-called runaway electron seed.

Once a runaway seed is present, a secondary generation mechanism can take effect.
The seed electron collides knock-on with a thermal electron and pushes it into the
runaway region, while itself remaining in it. Due to its multiplicative nature, this process
grows exponentially in time and is therefore suitably called runaway avalanche [94, 108,
109]. This avalanching cannot be captured using a Fokker-Planck collision operator
(eq. (2.3)) as that assumes small-angle collisions only. The calculation requires dealing
with the Boltzmann collision operator for large-angle collisions [110]. Approximate
solutions were initially found [109] by treating the distribution of avalanching electrons
with a source term S in the kinetic equation and obtain a growth rate

γav ≡
(
∂nRE

∂t

)
av

∝ nRE

(
E

EC
− 1

)
, (2.22)

in the limit of E ≫ Ec (and a large aspect ratio tokamak). Because of its multiplicative
nature, the avalanching mechanism can offer a significant contribution to the runaway
electron generation, with typical particle energies of 10 MeV [6]. An up-to-date model
includes the effects of partially ionized impurities, which may significantly increase the
avalanche growth rate [111]. This occurs because REs penetrating the nucleus’ electron
clouds encounter more target electrons for avalanching, and this can not be compensated
by the increased friction caused by the higher net charge of the nucleus [111].

In tokamak ramp-up phase, strong electric fields are required to form a plasma and
thus runaway electrons may be generated [112, 113]. In the quiescent operation that fol-
lows runaways are not problematic, because the electric field required to drive the plasma
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current is weak due to the high conductivity of a hot plasma. However, a plasma disrup-
tion event (see section 2.2) strongly decreases the plasma temperature and thus reduces
the conductivity, giving rise to a strong electric field E∥. These disruption-induced elec-
tric fields usually fulfill Ec < E∥ ≪ ED and runaway generation can occur [5]. The
study of runaway electrons in this work is conducted in the context of such tokamak
plasma disruptions, where it is not a desirable phenomenon.

Positively charged species can also be subject to the runaway generation mecha-
nism: Ion runaway [114] is suspected to occur during internal magnetic reconnection
events [54], however, generation by the disruption-induced electric field is unlikely on
disruption time-scales [52, 53] because of the larger ion mass. Since an average RE
energy (∼ 10MeV) far exceeds its rest mass equivalent, a pair-production process be-
tween a RE and a thermal electron can generate positrons [115–117]. Even though the
time-scale of annihilation is smaller than disruption time-scales [115], a positron run-
away beam is not as significant as its electron counterpart. Because a newly created
positron tends to co-move with the runaway electron, i.e. predominantly anti-parallel to
the electric field, it will be decelerated along the electric field direction and most likely
thermalize [115].

2.2 Plasma disruptions and runaway electron mitigation
attempts

Plasma disruption [8, 118] in a tokamak is an abrupt, unplanned termination of the dis-
charge. The thermal and electromagnetic energy stored in the plasma is released, with
the potential of damaging the device. Besides direct heat loads onto plasma-facing com-
ponents and electromagnetic forces exerted on structures [6], runaway electron beam
generation is a major concern, especially for high-current, reactor-relevant tokamaks
such as ITER [4, 5, 26]. A pivotal reason is, that the number density of runaway
electrons generated via avalanche (section 2.1.2) in a disruption was found to scale as
nRE ∝ exp(2.5Ip [MA]) with the plasma current Ip [118]. At the currently largest toka-
mak JET [51] a plasma current of 2.7 MA can reached, while ITER is planned to operate
at a maximum of 15 MA [2]. Avoidance of tokamak disruptions is targeted [7], but can-
not fully be ensured as the maximisation of performance requires an operation close to
stability limits [119]. As such, the field of runaway electron mitigation is actively being
researched [5, 8, 26].

A plasma disruption is commonly divided into the thermal quench (TQ) and a conse-
quent current quench (CQ). The TQ encompasses a plasma temperature (T ) breakdown
of many orders of magnitude - from tens of keVs to eVs over a timescale of milliseconds.
When the plasma cools, its electrical resistivity rises σ ∝ T−3/2 [119] drastically. The
self-induction of the plasma however, prevents the plasma current from changing on the
same time-scale as the temperature. Due to Ohm’s law, E = σj, an electric field E rises
in trying to maintain the current density j. The period of current decay is called CQ
and follows the TQ. The induced electric field develops in toroidal direction and can
be strong enough to generate runaway electrons (section 2.1.2), fulfilling Ec < E∥. Be-
cause of the RE generation, the electric field transforms a current carried by the thermal
population (Ohmic current) into a current carried by runaways (runaway current). A
significant portion of the initial plasma current is expected to be carried by relativistic
runaways by the end of the CQ [25, 106, 107], with the avalanche mechanism playing
a major contribution [94]. A concentrated beam of runaway electrons with component-
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melting capabilities [11, 12] is formed during a period where control over the plasma is
gradually lost.

High effort is put into researching and designing systems that are able to mitigate
the RE generation [5, 8, 26]. The obvious way is to increase the electron density ne and
raise the critical electric field threshold (eq. (2.18)). In addition, it is desired that a large
fraction of the plasma energy is radiated away, as the radiation is ideally isotropic and
would de-localize the heat load. As such, mitigation systems revolve around massive
material injection (MMI), which raises plasma density and facilitates a means to increase
the irradiation of the plasma energy content. Simply flooding the tokamak chamber with
material and pushing the electric field threshold out of range is not viable however. It
turns out [8], that the mitigation system must find a balance and distribute the energy
release accordingly, so neither the heat loads or the electromagnetic stress, nor the RE
beam energy can overcome a threshold that would cause damage to the device. A too
fast termination could cause the plasma chamber walls to either melt from the thermal
load or to deform due to electromagnetically generated torque [6]. A minimal duration
of the CQ of be approximately 35 ms is suggested as an acceptable lower limit [26].
For the upper bound of the CQ time-window, a duration of approximately 150 ms [107]
should not be overcome to ensure a complete radiative collapse. If the temperature
drops too fast, the plasma begins to recombine (at ≈ 2 eV for hydrogen [107]) before
the induced electric field has decayed and - as mentioned in section 2.1.2 - the partial
screening effect increases avalanche generation. Because of the partial screening effect,
the composition of the injected material also has to be chosen carefully [94].

Experiments with MMI systems show that a penetration of the injected material into
the core of a plasma is not guaranteed [11, 27]. In order to mitigate electron generation
in the plasma core, shattered pellet injection (SPI) systems are researched [120–122].
This method relies on cryogenically frozen pellets being scattered into the plasma for
an increased penetration depth. The material composition and amount is still an open
question, although a mixture of deuterium and neon is likely [107]. Despite the effort, it
appears [26] that currently available mitigation technologies require further development
to reliably prevent the formation of a runaway electron beam in the nuclear phase ITER
plasma.

Since velocity-space effects cannot guarantee avoidance, additional spatial effects
should be considered, e.g. increased transport of REs may help suppress runaway elec-
tron formation. The RE beam can be susceptible to ergodic zones, in which magnetic
field lines behave chaotically and may cause radial transport of runaways [26]. Using
Resonant Magnetic Perturbations (RMPs) this behaviour can be exploited by apply-
ing external magnetic fields, that perturb the plasma equilibrium field. While RMPs
have been observed to suppress runaways in smaller tokamaks [28, 29], it is not repro-
ducible at the large tokamak JET [32]. Because of the externally applied nature of the
RMPs, runaways that are predominantly formed in the core of the plasma are hard to
reach [9, 33, 123, 124], though mitigating effects still seem possible when applied pre-
disruption [125]. Passive helical coils [30] (PHCs) is a similar technique, that relies on
perturbation-induced de-confinement of REs and is currently in discussion as disruption
mitigation aid [31, 126, 127]. With helical coils placed inside the vessel, the induced
electric field of a disruption would drive currents through these coils, generating ergodic
zones in the plasma. RMPs and PHCs would both benefit from a mechanism that en-
hances the runaway transport in the plasma core. The primary goal of this thesis is to
investigate one such mechanism, which induces perturbations through plasma waves.
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2.3 Plasma waves in the magnetohydrodynamic framework

Magnetohydrodynamic (MHD) theory [20] is a useful tool to model large scale plasma
physics behavior. In this framework, the plasma is understood as a conductive, current-
carrying fluid immersed in a magnetic field and described by moments of its particle
distribution functions, i.e. density, temperature and (flow) velocity (This assumes the
particle distributions to be in Maxwellian form). In the ideal MHD model, one as-
sumes the plasma to have zero resistivity, zero heat conductivity and zero viscosity,
effectively ’freezing’ the plasma to the magnetic field lines. The model is often applied
in researching the stability of plasma equilibrium configurations. We will follow refer-
ences [119, 128] to derive linearized MHD equations from ideal, single-fluid MHD.

The ideal MHD equations for a single fluid read [119]

dρ

dt
+ ρ∇ · v = 0, (2.23)

ρ
dv

dt
= j×B−∇p, (2.24)

d

dt

(
p

ργ

)
= 0, (2.25)

E+ v ×B = 0, (2.26)

∇ ·B = 0, (2.27)

∇×B = µ0j, (2.28)

∇×E = − ∂B

∂t
, (2.29)

where ρ is the plasma mass density, γ an adiabatic coefficient, p the plasma pressure, v
the plasma velocity, B the magnetic field, E the electric field and j the current density.
In a static and time-independent assumption, we obtain the equations

j×B = ∇p,
∇×B = µ0j,

∇ ·B = 0,

which define the equilibrium of the magnetic field.
The above MHD equations (2.23)-(2.29) will now be linearized for the purpose of

stability analysis. To all dependent variables, we introduce small, time-dependent
perturbations Q1 ≪ Q0 to the constant equilibrium quantities Q0. With Q(x, t) =
Q0(x) +Q1(x, t) the linearized MHD equations read

∂ρ1
∂t

+∇ · (ρ0v1) = 0, (2.30)

ρ0
∂v1

∂t
= j1 ×B0 + j0 ×B1 −∇p1, (2.31)

∂p1
∂t

+ v1 · ∇p0 +
γp0
ρ0

(
∂ρ1
∂t

+ v1 · ∇ρ0
)

= 0, (2.32)

E1 = −v1 ×B1, (2.33)

∇ ·B1 = 0, (2.34)

∇×B1 = µ0j1, (2.35)

∂B1

∂t
= ∇× (v1 ×B0), (2.36)
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We assume normal mode expansion, which means that perturbed quantities can be ex-
pressed in the form Q1(x, t) = Q1(x) exp(−iωt). Furthermore, we define a displacement

vector ξ(x, t), such that v1 ≡ ∂ξ

∂t
. With the displacement vector one can express all

perturbed quantities in terms of ξ, yielding the relations

ρ1 = −∇ · (ρξ), (2.37)

p1 = −ξ · ∇p− γp∇ · ξ, (2.38)

B1 = ∇× (ξ ×B), (2.39)

µ0j1 = ∇× [∇× (ξ ×B)], (2.40)

where the 0 subscript for equilibrium quantities has been dropped. Inserting equa-
tions (2.37)-(2.40) into the linearized momentum equation (2.31), we obtain the equa-
tion

−ω2ρξ = F(ξ), (2.41)

for the force-operator

F(ξ) = µ−1
0 (∇×B)× [∇× (ξ×B)]+µ−1

0 {∇× [∇× (ξ×B)]}×B+∇(ξ ·∇p+γp∇· ξ).

Equation (2.41) is a vector equation for the three components of ξ and formally an eigen-
value problem with the eigenvalue ω. F is a self-adjoint operator, so ω is either purely
real, representing an oscillating wave, or purely imaginary, representing a wave evolving
exponentially in amplitude. Applying boundary conditions and solving equation (2.41)
we can analyze the linear stability of magnetic field equilibria.

2.3.1 The shear Alfvén wave

We analyze the solutions of the force-operator equation (2.41) in an infinite plasma,
that is aligned with a homogeneous equilibrium magnetic field B = Bez in z-direction
of a Cartesian coordinate system. Fourier-decomposed perturbations in the form of
ξ = ξ exp(ik · x) are introduced, where the wave vector is aligned as k = k⊥y + k∥z.
The force-operator equation is now stated as

ω2ρξ =
B2

µ0
{k× [k× (ξ × ez)]} × ez + γpk(k · ξ) (2.42)

and the three vector components of the equation rewritten into a matrix form:ω2 − k2∥v
2
A 0 0

0 ω2 − k2⊥v
2
s − k2v2A −k⊥k∥v2s

0 −k⊥k∥v2s ω2 − k2∥v
2
s


 ξx

ξy
ξz

 = 0 (2.43)

with the so-called Alfvén velocity vA =
√
B2/µ0ρ and the adiabatic sound velocity

vs =
√
γp/ρ . Note that the displacement in x-direction is decoupled from the y and z.

We solve eq. (2.43) by equating the matrix determinant to zero

(ω2 − k2∥v
2
A)
[
ω4 − (v2s + v2A)k

2ω2 + (kk∥vsvA)
2
]
= 0,

and obtain three distinct solutions for ω2. The decoupled x-component shows the most
obvious solution

ω2 = v2Ak
2
∥,
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which is the dispersion relation for the shear Alfvén wave (SAW) in a homogeneous
plasma. It is independent of k⊥, hence propagating along the magnetic field and fa-
cilitates a purely oscillating, i.e. stable solution. Through back substitution one finds
the Alfvén wave to be incompressible, p1 = 0, and with transverse movement, v1 and
B1 perpendicular to B0. Since the phase velocity vph = ω/k∥ is constant, there is no
dispersion. Physically, the Alfvén wave resembles a balance between the plasma inertia
and the magnetic field line tension that acts as a restoring force.
Further solutions to the matrix equation are known as the slow magnetosonic and

the fast magnetosonic wave, which represent a coupling between magnetic (Alfvénic)
and fluid (sonic) compression. The magnetosonic waves are compressible, oscillating,
and polarized, i.e. with both the displacement vector and magnetic perturbation having
transversal and longitudinal components. The coupling parameter between the SAW
and magnetosonic waves is the plasma-β:

β ≡ 2µ0p

B2
,

which in tokamaks is of the order of percentages and therefore we neglect coupling to
magnetosonic waves.

2.3.2 The toroidicity-induced Alfvén Eigenmode (TAE)

Switching from a uniform plasma to a torus has important consequences on the SAW due
to periodicity, if one chooses the inverse aspect ratio ϵ = a/R0 as a smallness parameter.
The wave perturbation vector ξ is Fourier-decomposed into

ξ(r, θ, ϕ) =
∑
m,n

ξn,m(r)ei(nζ−mθ−ωt),

where n is the toroidal mode number, ζ is the toroidal angle, m is the poloidal mode
number and θ the poloidal angle. Due to the axisymmetry of the torus, the waves
decouple in the toroidal direction, but because the magnetic field is a function of θ they
couple to neighbouring poloidal harmonics m± 1. The wave vector reads

k∥,m(r) =
1

R

(
n− m

q(r)

)
, (2.44)

with the (approximate) safety-factor profile q(r) = ϵBζ/Bθ. k∥ is a function of both m
and r and the solutions of the Alfvénic continuum

ω2(r) =

{
+k∥,m(r)2vA(r)

2,

−k∥,m(r)2vA(r)
2,

(2.45)

can intersect for different m. The location of the intersection is obtained by equating
k∥,m and k∥,m+1 and can be expressed in terms of the safety factor

q(rTAE) =
m+ 1/2

n
.

The toroidicity-induced degeneracy of the intersection is resolved by the system by pro-
ducing gaps in the frequency spectrum, giving rise to so-called Toroidicity-induced Alfvén
Eigenmodes [46] (TAEs). An example of an Alfvén continuum is shown in figure 2.3.
The radial extent of the frequency gaps can be global, with a gap width approximated
by [22]

∆TAE ≈ rTAE/m (2.46)
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2.3 Plasma waves in the magnetohydrodynamic framework

Figure 2.3: The Alfvén continuum ((ω/ωTAE)
2) calculated for the ASDEX Upgrade discharge

#21067 at 2.99 s for n = 4 − 6. One can see the gaps produced by symmetries
which - depending on their order - create continuum gaps for TAEs, EAEs and
NAEs. KTAEs are kinetic TAEs [129] not considered in this work. Figure taken
from the thesis of P. Lauber [130].

Depending on the relative phase of the coupling harmonics, the TAE is considered
even ((m,m + 1) in phase) or odd ((m,m + 1) opposite phase). Even TAEs have
frequencies at the lower gap boundary, while odd TAEs have frequencies at the upper
gap boundary [46].

Contrary to the uniform plasma case, the Alfvén modes of a toroidal plasma are
not dispersionless due to the dispersion relation (eq. (2.45)) being a function of radius.
With ω(r) = k∥(r)vA(r), a wave packet in an inhomogeneous plasma will disperse in an
effect called phase mixing [131], which damps the wave very effectively with a damping
strength proportional to the radial gradient γ ∝ d/dr(k∥vA). This is usually referred
to as continuum damping. However, in the toriodicity-induced frequency gaps, this
continuum damping is lacking and the TAE is considered a weakly damped mode.

Although the TAE is arguably the most studied Alfvén mode, an entire zoo of various
other Alfvénic modes exist, of which a review can be found e.g. in a review paper by
W. Heidbrink [129]. These can be produced for example by asymmetries of a higher or-
der, such as ellipticity (EAE) and triangularity (NAE), which create a coupling between
(m,m+2) and (m,m+3) poloidal harmonics respectively (see figure 2.3). Other types
of Alfvénic modes can occur due to an extremum in the q-profile, e.g. the Reversed-shear
AE (RSAE) or the Beta-induced AE (BAE).

In this work however, we will focus on the TAE, due to its weakly damped nature
and because it has a characteristically low frequency, ωTAE = vA/(2qR0) ∼ 100 kHz.
As we will discuss in section 2.4 this allows effective resonance with energetic particles
in a tokamak. Additionally, flat q-profiles allow a significant radial extent of TAEs
and are commonly found in tokamaks. These reasons open up the possibility of global
modes [132, 133], which can be driven to large amplitudes by either passing or trapped
energetic ions [46] through resonant interaction. As the modes presented here are oscil-
latory (ω real) in the ideal MHD framework, calculating the drive/damping requires a
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kinetic theory (e.g. drift- or gyrokinetic models). This constitutes the resonant wave-
particle interaction explained in section 2.4.

2.4 The mechanism of resonant wave-particle interaction

Interaction between plasma waves and particles is possible through resonant wave-
particle interaction. The phase velocity of Alfvénic modes vA is generally super-thermal
in a tokamak plasma, so it becomes convenient to divide the particle distributions into a
thermal component and an energetic part. The thermal background consists of the ma-
jority of the plasma, its bulk, and can be appropriately described by the MHD approach.
Often it will generally act to damp Alfvénic modes, while energetic particles exert a driv-
ing, destabilizing force. The rapid gyro motion averages to a net zero energy transfer,
because the gyrofrequency (for both ions and electrons) is generally well above than the
mode eigenfrequency ω. As such we follow the derivation of references [129, 134], which
are written for a drift-kinetic model.

In a tokamak, the resonance condition for a particle in a tokamak equilibrium per-
turbed by a wave with eigenfrequency ω, toroidal mode number n and poloidal mode
number m can be stated as [134]

v∥ =
qR0ω

nq −m− l
,

where v∥ is the parallel particle velocity and l originates from a Fourier expansion of the
particle drift orbit in an orbital harmonic.

As stated in the previous section, the location of a TAE in the safety-factor profile is
q(rTAE) = (m + 1/2)/n (eq. (2.3.2)), which is where global modes can form and avoid
continuum damping. Plugging the TAE location into the resonance condition yields

v∥ =
vA

|2l − 1|
,

where l = 0 describes the primary resonance v∥ = vA and higher values of l correspond
to higher harmonics at lower velocities. Importantly, the alpha particle birth velocity
(see section 2.1.1) fulfills vα ≈ 1.8vA for a typical ITER plasma, which allows a reso-
nance with all harmonics of a TAE, the most fundamental being the v∥ = vA (l = 1)
and v∥ = vA/3 (l = 2) harmonic [129]. This is generally not true for other energetic ions
in the tokamak, which for example emerge from external heating mechanisms like NBI
(Neutral Beam Injection) [2]. An optimum of energy transfer between particle and wave
is achieved, when the drift orbit width is comparable to the mode width. Due to the
smaller finite orbit width of the resonant alpha particles, the toroidal mode numbers for
ITER are expected to be high compared to present-day tokamak observations [22]. TAEs
are often considered dominant modes with regards to the amount of particle transport
they can cause. The reason for that is their comparatively low eigenfrequency, hence
higher (potential) particle displacement per wave-particle energy transfer [135].

We need to consider distributions of energetic particles and how they themselves are
affected by the interaction with the wave. A critical value is the slope of the distribution
function. We consider a distribution function f with a monotonically decreasing velocity
distribution ∂f/∂v as well as a monotonically decreasing radial distribution ∂f/∂r. Such
distributions are typical for energetic ions like fusion-product alpha particles.
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2.4 The mechanism of resonant wave-particle interaction

Figure 2.4: A sketch of the velocity distribution function f(v) resonating with a mode with
phase velocity ω/k. The amount of particles below the resonance velocity is larger
and will be accelerated by the wave, which effectively causes a damping of the wave.
The figure is taken and slightly modified from reference [129].

In figure 2.4 we see the energy distribution f(v) in the presence of a mode with
matching phase velocity. Particles with a velocity above the resonance lose part of their
energy through the interaction and are slowed down towards the resonance velocity.
The contrary is true for particles whose velocity is above the phase velocity ω/k. In
a monotonically decreasing velocity distribution more particles are on the gaining side
and the wave experiences a net energy loss, hence is damped. The driving force usually
comes from a spatial gradient and can be understood from a similar consideration about
the particle toroidal momentum pζ : This momentum is connected to the radial flux co-
ordinate ψ via pζ ∝ −ψ. Hence, a particle resonating with a wave and delivering its
toroidal momentum to it will transport the particle onto a flux surface that is radially
further outwards. A resonance that draws energy from the wave to increase a particle’s
toroidal momentum will force the particle to move inwards. In a monotonically decreas-
ing spatial distribution, there will always be more particles moving outwards, and these
are the particles that provide energy to the wave. In general, the energy transfer can be
shown to be proportional to

γ ∝ ω
∂f

∂v
+ n

∂f

∂pζ
.

Due to this redistribution, the resonance mechanism can not only drive modes unsta-
ble, but is also able to cause particle losses [136, 137] and has been observed in the past
during various tokamak experiments [138, 139].

Particles in a toroidally confining plasma can pursue complicated orbits. As stated
in the introduction, particles may be considered trapped or passing due to the poloidal
variation of the magnetic field strength. Ubiquitous drifts can force particles to traverse
complicated orbits, which is especially true for energetic particles as those can devi-
ate strongly from the confining flux surfaces. The axisymmetry of a tokamak however,
forces the drifting trajectories to eventually close in on them selves, which provides the
confining property in the first place. When talking about resonating particles, it is the
particle orbital motion in the tokamak that is pivotal to the interaction. The resonance
occurs between the wave frequency and ωθ and ωprec, which are the poloidal bounce and
the toroidal precession frequency respectively (see introduction). The requirement of
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needing to resolve particle orbits, together with the non-linear nature of the problem,
often means that sophisticated numerical codes must be relied upon. Such a code used
during this thesis is HAGIS (section 3.5).

2.4.1 Wave damping effects

While energetic particle species can act as a driving force onto plasma waves, the thermal
plasma background generally opposes this driving force and acts to damp the wave. We
briefly outline damping mechanisms that are important to the Alfvénic wave, most of
which rely on a resonant absorption of the wave energy.

Landau damping Alfvén waves propagate along the magnetic field lines with the Alfvén
velocity vA, therefore a resonance interaction requires v∥ = vA = ωk∥, for a parallel
particle velocity v∥. When a resonance condition between wave and particle is fulfilled,
it is the slope of the velocity distribution function, that decides in which direction the
energy transfer occurs. A negative slope ∂f/∂v < 0 carries energy away from the wave
and is known as Landau damping [21], see figure 2.4. A bump-on-tail distribution with
locally positive slopes can lead to a linearly unstable system and is known as “inverse”
Landau damping.

Ions: For typical tokamak plasmas, vi,∥ ≪ vA holds, where vi,∥ is the thermal ion
velocity, hence only a small fraction of the ions are able to resonate with Alfvén modes.
However, the magnetic field geometry alters the resonance condition by including both
the toroidal and poloidal drift motion into the equation, resulting in an additional res-
onance at vi,∥ = vA/3 [129]. It is expected [22, 134] to be the most significant damping
mechanism for burning tokamak plasmas. Due to the resonance with the Maxwellian
tail, it is exponentially sensitive to the ion temperature [22, 45, 46]. This is especially
relevant for this work, since the ion temperature drops quickly in a tokamak disruption
event 2.2.

Electrons: For typical tokamak electrons, ve,∥ ≫ vA holds, where ve,∥ is the thermal
electron velocity. Only a small portion ve,∥/ve,⊥ ≪ 1 of the electron distribution can
fulfil ω = k∥vA and partake in electron Landau damping [140]. However, at rational
surfaces, i.e. at q = m/n, the Alfvén wave vector k∥ (eq. (2.44)) becomes very small,
allowing resonance with higher velocities ve,∥. This resonance effect however occurs not
at the exact location of the TAE gap (q = m+1/2/n), thus only radially extended TAEs
are affected by this mechanism. Because electrons fulfilling ve,∥/ve,⊥ ≪ 1 are trapped,
the collisions of trapped electrons with passing electrons and ions affect the damping,
resulting in a mechanism called trapped electron collisional damping [141]. It relies on
high collision rates of plasmas, i.e. which are cold or of high density. In this work the
wave-particle interaction calculation takes place during the thermal quench of a plasma
at temperature well above 1 keV. It will be addressed in section 5.1 and found generally
negligible.

Radiative damping: With the inclusion of finite Larmor radius effects, the TAE is able
to couple to a kinetic Alfvén wave (KAW). As the radially moving KAW carries energy
away from the TAE, this effect is called radiative damping [142].
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3 Numerical tools

In chapter 2 we introduced a multitude of complicated theories that would be necessary
to carry out the work in this thesis. Due to the generally complex nature of the phe-
nomena, analytical solutions are generally not feasible and hence one needs to rely on
simulation tools to solve the problems numerically.

This chapter is concerned with the numerical tools that are applied throughout the
thesis. References to more detailed and complete descriptions will be given at the
beginning of each section. The order in which they are discussed corresponds to the
order of their application in chapter 5.

Depicted in figure 3.1, is an overview of the numerical tools used throughout this
thesis, with its respective physical purpose (purple), the input/output (red) and pro-
gramming language (blue). The codes HELENA [143] and CHEASE [144] are only used
as auxiliary codes for coordinate transformation of the VMEC-generated plasma equi-
librium and hence not described in this thesis. ASCOT and DREAM were only used in
paper B.

The role of each code in solving the problem laid out in section 1.1 is as follows:
CODION (section 3.1) it utilized to calculate how the alpha particle species evolves in
a disruption, which requires modeling the disruption (section 2.2), as well as solving the
ion kinetic equation (eq. (2.15)). The disruption itself is accompanied by the induction
of an electric field, which we calculate using the code GO (section 3.2) and use it as an
input to solve the ion kinetic equation. The kinetic pressure and current density of the
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Figure 3.1: An overview of the numerical tools and their purpose.
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plasma is used to reconstruct the plasma equilibrium with VMEC (section 3.3). The
plasma equilibrium is examined with the LIGKA (section 3.4) code about its support of
TAEs (section 2.3.2) and damping rates (section 2.4.1). The wave-particle interaction
(section 2.4) of alphas with TAEs is calculated by the tool HAGIS (section 3.5), yielding
the perturbation evolution of TAEs. With ASCOT (section 3.6), the runaway electron
transport in the perturbed equilibrium is estimated. Under the influence of this RE
transport, the runaway electron generation (section 2.1.2) is analyzed with the code
DREAM (section 3.7).

3.1 CODION - calculation of the alpha particle distribution

CODION [53] (COllisional Distribution of IONs) is a non-relativistic, linearized Fokker-
Planck solver developed to conduct calculations for ion runaway studies. In section 4.1
this code is adapted to calculations with fusion-born alpha particles during plasma ther-
mal quenches. It is originally built upon previously existing analytical models [54] and is
generally valid for the cases of fusion-relevant electric field strengths and trace impurities.

The CODION tool solves for an ion distribution function, whose evolution is dictated
by an electric field and by small-angle Coulomb collisions with background Maxwellian
distributions. It is written for an infinite, homogeneous plasma with straight field line
geometry and averages over the particle gyro-motion. The coordinate system is spanned
by (v, ξ) which are defined such, that the parallel particle velocity v∥ aligns with the
magnetic field lines and the pitch is ξ ≡ v∥/v with the particle velocity v = |v|. The
strength of the parallel electric field (E∥ ∥ v∥) can vary in time. Collisions are treated
with a linearized collision operator, which is valid for an ion species, whose density
is sufficiently small compared to the plasma background. The kinetic equation that
CODION solves is written in the Fokker-Planck approximation (section 2.1) and yields
for the evolution of an ion distribution fi:

∂fi
∂t

+
Zie

mi
E∗

(
ξ
∂

∂v
+

1− ξ2

v

∂

∂ξ

)
fi =

∑
b

CFP{fi, fb}, (3.1)

with an effective electric field E∗ (see below) and the Fokker-Planck collision operator
CFP describing collisions with a multitude of background species b. The collision operator
contains the energetic particle operator CEP (eq. (2.3)), as well as an operator for ion-
electron collisions and ion-ion collisions. Self-collisions can be included, but are generally
not important for the small density populations.
The electric field E∥ is defined such that electrons are accelerated in negative velocity

direction and ions in positive velocity direction. Because of the mass ratio, electrons are
accelerated faster than the ions, which allows the assumption that the electron popula-
tion is perpetually in steady state and has a distribution part that is drifting from its
thermal equilibrium due to being accelerated. The interaction of the drifting electron
population and the ions fi can (due to the quasi steady-state assumption) be written
in terms of a friction and absorbed into the electric field, yielding the effective electric
field E∗ = (1 − Zi/Zeff)E∥. When the plasma is pure (Zi = Zeff) no net acceleration
on the ions occurs, as the electron friction cancels perfectly. The presence of neutrals
and impurities causes a finite effective electric field to remain and, depending on Zi,
light impurities (Zi < Zeff) get accelerated in positive direction, while heavy impuri-
ties are accelerated towards negative direction, i.e. with the electrons [53]. Effects of
Bremsstrahlung and synchrotron emission losses of the alphas are neglected and justified
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3.2 GO - computation of the current density and electric field evolution

by the non-relativistic approach.

The distribution function fi(v, ξ) is discretized in velocity and expanded in Legen-
dre polynomials [53] for the pitch-angle variable. Time integration is performed with
a first order implicit scheme which allows a time-variation of electric field and back-
ground plasma parameters. Details about boundary conditions and implementation can
be found in reference [53], while convergence tests are found in the thesis of O. Em-
breus [145].

Using CODION, we will be able to calculate an alpha particle distribution undergoing
a thermal quench for the ITER tokamak (section 5.2.1 and section 4.1) and use it as
the particle species in the wave-particle interaction process, as has been done in paper
A [78]. For paper B [79] an analytical alpha particle model was developed and validated
against CODION, the details of which will be discussed in section 4.1.

3.2 GO - computation of the current density and electric field
evolution

GO [107, 146, 147] was developed for calculations of plasma cooling, runaway current
and electric field evolution. It is a 1D spatial model, capable of self-consistently cal-
culating the temperature evolution of each species through an energy balance equa-
tion, that includes the effects of Ohmic heating, line radiation, bremsstrahlung, ioniza-
tion/recombination rates and collisional energy exchange. A conducting plasma ves-
sel [146, 148] is part of the model, however magnetic coils are not included. Every
species calculation is advanced separately due to the different collision time scales. The
evolution of the electric field E is obtained by solving the induction equation in 1D with
a term for radial diffusion of the E-field

1

r

∂

∂r

(
r
∂E

∂r

)
= µ0

∂

∂t
(σ∥E + nREec︸ ︷︷ ︸

j

), (3.2)

where j is the current density, r is the radial coordinate, c the speed of light, e the
electron charge, µ0 the magnetic vacuum permittivity, σ∥ the parallel (Spitzer) conduc-
tivity with neoclassical corrections [1] and nRE the runaway electron number density.
This model inherently assumes E to act only parallel to the magnetic field and also
that every runaway electron that is generated, instantly travels at the speed of light.
For a GO application on plasma disruptions, the electric field mainly evolves due to

changes of the conductivity σ∥ ∝ T
3/2
e . The electric field then may generate runaway

electrons through primary mechanisms (Dreicer, hot-tail) 1 and the secondary mecha-
nism (avalanche), evolving the radial density profile nRE(r) of the REs. The current
density is found on the RHS of equation (3.2) and separated into the Ohmic current and
the runaway current.

GO is used in this thesis to calculate the current density profile j(r) (section 5.1) and
the induced electric field evolution (section 5.2.1) during an ITER disruption. The GO
code has been superseded by the recently developed and higher-fidelity code DREAM
(section 3.7), but at the beginning of this project, DREAM was not yet available.

1The tool is now implemented with tritium beta decay and inverse Compton scattering sources, but
not in the version used for this thesis.
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3.3 VMEC - determining the plasma equilibrium

VMEC [149, 150] (Variational Moments Equilibrium Code) is a tool widely used to
obtain plasma equilibria for fusion devices. It is formulated in the MHD framework and
seeks a solution to a magnetic field B, that fulfills the force balance equation

−j×B+∇p = 0,

while simultaneously obeying Ampere’s law ∇ × B = µ0j and Gauss’s law ∇ · B = 0
for a current j and a pressure p. The solution is found via an energy principle, where
the total (magnetic and thermal) energy Ep of the system is minimized for a toroidal
domain Σ:

Ep =

∫
Σ

(
1

2
|B|2 +|p|

)
dV.

The minimization of the energy Ep is approached through the steepest-descent method
while conserving a (prescribed) magnetic flux (or toroidal current). For an application
onto tokamaks, the main required input consists of a current density profile, a pressure
profile and an initial guess for the location of the magnetic axis. The result is cast in
flux coordinates (ψ, θ, ζ), where ψ is the flux coordinate corresponding to a radius, θ
the poloidal and ζ the toroidal angle (see figure 1.1). The surfaces are described via
Fourier harmonics in the angles. Two boundary conditions for Ψ are required to obtain
a unique solution. The inner boundary condition is fixed through a specification of
Fourier components, which requires the poloidal harmonics at the magnetic axis, Ψ = 0,
to vanish and the toroidal Fourier components are required to be 2π-periodic. A second
boundary condition on Ψ must be imposed on the plasma edge and can be chosen to be
free or fixed. The free boundary is treated with the inclusion of a vacuum magnetic field
which must be obtained through the external coil configurations. The fixed boundary
condition used for the application in this thesis assumes normal vectors to vanish on the
last closing flux surface and provides thus a specification of Fourier components.

3.4 LIGKA - obtaining mode structures and mode damping
rates

LIGKA [151, 152] (LInear GyroKinetic shear Alfvén physics) was developed to calculate
the kinetic effects of energetic particles on MHD modes. It is based around the gyroki-
netic model found in reference [153] and specified to the shear Alfvén frequency regime
(see section 2.3.1), i.e. frequencies well below the ion cyclotron frequency. LIGKA solves
a system of linearized gyrokinetic equations and obtains the eigenvalues (frequency and
damping) as well as the eigenfunctions (mode structures) of the system. Being a gy-
rokinetic model, it provides a background plasma description with the inclusion of finite
Larmor radius and orbit width effects. A condensed introduction and discussion of the
current state of the code is provided in reference [154] and will be followed here, while
exact details about mentioned quantities and the numerical implementation is found in
references [130, 155].

The system of equations is invoked from the parallel Ampere’s law [∇× (∇×A)]∥ =
µ0j∥ and the quasi-neutrality condition

∑
b Zbnb = 0 for particle species b = e, i, which

includes electrons e and ions i. The guiding center distribution functions fb = feq,b+δfb
are perturbed, causing fluctuations in the number densities δnb and current densities
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δjb, allowing to state the quasi-neutrality condition of gyrokinetics:

∑
b

Zb

∫
d2v{J0δf}b +

∑
i

(
mi∇⊥ · ni∇⊥δϕ

B2
+

3Pi⊥
4B2Ω2

i

∇4
⊥δϕ

)
= 0 (3.3)

with the gyro-average operator J0, δϕ is the perturbed electrostatic potential and Ω is
the gyrofrequency. Similarly, the gyrokinetic momentum equation can be stated from
Ampere’s law:

− ∂

∂t

[
∇ · ∇⊥δϕ

v2A

]
+B · ∇

∇ × (∇× δA∥b)

B
+ (b×∇δA∥) · ∇

µ0j∥

B
=

−
∑
b

µ0

∫
d2vZb{vd · ∇J0δf}b +

∑
i

[
b×∇

(
βi⊥
2Ωi

)]
· ∇∇2

⊥δϕ+∑
i

3βi⊥
8Ω2

b

∇4
⊥
∂δϕ

∂t
+B · ∇ 1

B

∑
i

βb
4
∇4

⊥δA∥,

(3.4)

where βb⊥ is the plasma beta for the perpendicular pressure component and b is a unity
vector in the direction of the magnetic field B. Using the linear gyrokinetic equation

∂δh

∂t
+(v∥b+ v̂d) · ∇δh =

[
b×∇feq

eB
· ∇ − ∂feq

∂E

∂

∂t

]
× J0

[
δϕ−

(
1− v̂d · ∇

iω

)
δϕ

]
,

(3.5)

with the drift velocity v̂d = −b/(eB) ×
(
mv2∥(b · ∇)b+ µ∇B

)
, the perturbed part of

the guiding center distribution functions evolve as

δfb = δhb +
∂feq,b
∂E

ZbJ0(ρk⊥)

[
δϕ− δψ −

v∥k∥

ω
δψ

]
+

∇feq,b
iωB

· (b×∇)J0δψ. (3.6)

where h is the non-adiabatic part of the distribution function. Solving equations (3.3)-
(3.6) yields the eigenvalues and the eigenfunctions of the perturbed electrostatic po-
tential δϕ(x) and the perturbed magnetic potential ∂tδA∥(x) = −b · ∇δϕ(x). These
solutions account for the mode structures as well as the mode damping, which includes
electron and ion Landau damping, continuum damping and radiative damping (see sec-
tion 2.4.1).
The real space vector x is discretized into finite radial elements and Fourier-decomposed

into toroidal harmonics n and poloidal harmonics m. While LIGKA can be coupled to
HAGIS (see next section) to numerically calculate particle orbits, it is often feasible to
use the analytical “fast-circulating” approximation [130], which neglects the effects of
trapped particles. This underestimates electron Landau damping effects in regions that
are distant from rational surfaces and can be partially addressed with the inclusion of
trapped electron collisional damping, of which analytical formulae exist [141].

The influence of energetic particles on eigenvalues and eigenfunctions can enter via
the pressure tensor Pi. However, workflows with the HAGIS code (see next section) have
been established (see e.g. the thesis of T. W. Hayward-Schneider [128] or the thesis of
M. Schneller [156]), where the EPs are treated with a drift-kinetic model. LIGKA is
also part of the ITER Integrated Modelling and Analysis Suite (IMAS [157]), designed
to provide a standardized workflow and database for ITER research and operation.
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3 Numerical tools

3.5 HAGIS - calculation of the wave-particle interaction

The HAGIS code [158] was developed to calculate the interactions between an ensemble
of energetic particles and a spectrum of MHD waves specific to toroidal plasmas. Its
model constitutes a non-linear, drift-kinetic, perturbative, particle-in-cell description.
It has already been applied to research of alpha-particle driven Alfvénic modes in the
quiescent ITER plasma [22]. Here, the code’s model is briefly introduced, closely fol-
lowing the descriptions of S. Pinches [134] and T. W Hayward-Schneider [128], where
exact details can be found.

The original idea of HAGIS is to derive the wave evolution by variation of the system
Lagrangian

Lsys = LEP + Lint + Lw, (3.7)

where LEP describes the equilibrium energetic particle energy, Lint the energy exchange
between the waves and the particles and Lw the electromagnetic energy component of
the waves supported by the background plasma2. Through the interaction Lagrangian
Lint a wave-particle non-linearity is maintained.

The guiding centre Lagrangian of a gyrating particle [159] reads

LEP = eA∗ · ẋ+
mµ

e
ξ̇ −H,

H =
1

2
mv2∥ + µB + eϕ

with the modified vector potential A∗, the guiding-center velocity ẋ, the magnetic mo-
ment µ, the gyro-phase ξ, the particle Hamiltonian H and the electrostatic potential
ϕ(x, t). The electromagnetic potential is perturbed by Ã and the equations are cast
in the Boozer coordinate system [160] (ψ, θ, ζ). The following canonical variables are
identified:

Pθ = ρ∥I +Ψ+ Ãθ,

Pζ = ρ∥g − ψ + Ãζ ,

Pξ = µ,

where ρ∥ = v∥/ωg is a parallel ion gyro-radius, I the toroidal curent, Ψ the toroidal
flux and g the poloidal current. From the canonical variables, the EP guiding center
equations of motion in an electromagnetic potential can be derived. With the assumption
that the electromagnetic potential is perturbed by a shear Alfvénic wave, the perturbed
vector potential Ã can be simplified with δB∥ = 0 and E∥ = 0, though the latter
restriction is lifted in reference [156], but not used in this thesis. A set of 4 first order
differential equations (ψ̇, θ̇, ζ̇, ρ̇∥) for each particle emerges. For the code to be feasible,
particles are replaced by weighted markers representing distinct phase space volumes of
energetic particle distributions.
In HAGIS, the plasma is in a (force) equilibrium to which the Alfvénic wave structures

are understood as a perturbative superposition ϕ̃. The spatial structure of each wave k
is Fourier-decomposed into poloidal m and toroidal n harmonics

ϕ̃k(t) = Ak(t)e
−iσk(t)

∑
m

ϕ̃km(ψ)ei(nkζ−mθ−ωkt), (3.8)

2More precisely, the wave Lagrangian is Lw = Lbulk + Lem, where the bulk plasma influence on the
waves Lbulk and electromagnetic contribution Lem is treated separately, but here glanced over for
simplicity.
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3.5 HAGIS - calculation of the wave-particle interaction

where Ak is the perturbation amplitude, σk is the mode phase, ωk is the mode eigen-
frequency and ϕ̃km is a fixed linear eigenfunction, e.g. obtained through LIGKA (sec-
tion 3.4). Since LIGKA is written in straight field line coordinates (PEST coordi-
nates [161]) and HAGIS in the Boozer coordinate system, a transformation takes place
that is handled by HAGIS itself. Only Ak(t)e

−iσk(t) is allowed to evolve in time and can
only change slowly compared to the wave eigenfrequency. For a total number of waves
Nw the wave Lagrangian reads

Lw =

Nw∑
k=1

Ek

ωk

[
A2

kσ̇k

]
, (3.9)

with the wave energy

Ek =
1

2µ0

∫
V
|∇⊥ϕ̃k|2/v2Ad3x.

The last Lagrangian required for eq. (3.7) is the interaction Lagrangian Lint. For a
number of markers Np with velocities v it can be stated as

Lint =

Np∑
j=1

(
Ãj · vj − ϕ̃j

)
, (3.10)

where the subscript j describes the quantities to be evaluated at the spatial location of
the particle j. The subscript k for Ã and ϕ̃ is dropped, as the contributions from each
wave present along the particle trajectory must be included.
It is useful to reformulate the perturbation amplitude in terms of its real and imaginary

parts
Ak(t)e

−iσk(t) = Xk(t)− iYk(t). (3.11)

For a total of Nw waves, the perturbed potential at the jth particle position becomes

ϕ̃j(t) =

Nw∑
k=1

∑
m

[
Xk(t)Cjkm + Yk(t)Sjkm

]
, (3.12)

where

Cjkm ≡ Re
[
ϕ̃km(ψj)e

iΘjkm

]
,

Sjkm ≡ Im
[
ϕ̃km(ψj)e

iΘjkm

]
,

with Θjkm = nkζj −mθj − ωkt. With this formulation, the interaction Lagrangian can
be rewritten as

Lint =

Np∑
j=1

Nw∑
k=1

1

ωk

∑
m

(k∥mv∥j − ωk)
[
XkCjkm + YkSjkm

]
, (3.13)

where only the parallel velocity v∥ of the particle is relevant reflecting on the shear
nature of Alfvénic waves.
Finally, varying Lint+Lw with respect to X and Y one can obtain the wave equations

Ẋk =
1

2Ek

Np∑
j=1

∑
m

(k∥mv∥j − ωk)Sjkm, (3.14)

Ẏk = − 1

2Ek

Np∑
j=1

∑
m

(k∥mv∥j − ωk)Cjkm. (3.15)
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where the resonance condition is illustrated by the term (k∥mv∥j − ωk).

HAGIS solves equations 3.14 and 3.15 with the particle information provided, that is
initialized by the user and evolved by the EP equations of motion. Only particle non-
linearities are retained as the EP description enters and is evolved via a drift-kinetic
model, but the waves enter the model as pre-calculated modes, whose structure (and
damping) cannot be evolved.

3.6 ASCOT5 - computation of the alpha particle transport

ASCOT5 [162, 163] is an orbit-following code that performs Monte-Carlo simulations
on test-particles inside a perturbed plasma equilibrium. It is able to calculate particle
transport effects caused by magnetic perturbations and was purposed to study fast ion
losses for ITER [164].

The Fokker-Planck equation is not solved directly, but with a statistical approach
revolving around a test-particle orbit-following Monte Carlo method [165, 166]. Within
the test-particle model, the test-particles do not affect the enclosing systems and as such
the collision operator is linear. The method of orbit-following approximates a particle
distribution function f with a distribution of markers, whose equations of motion are
described by the Langevin equation. With the Langevin equation a stochastic element
(via the Wiener process) enters and a Monte Carlo method [165, 166] is used to solve
the stochastic differential equation. For a reduction of complexity, the guiding center
motion can be solved for instead of the full orbit particle motion.

ASCOT5 is a multi-purpose tool which is able to calculate impurity migration, fast
ion losses and runaway electron transport in realistic magnetic confinement devices
(tokamak and stellerator) [126, 127, 167]. In this work, it will only see a brief appearance,
with the purpose of estimating the transport of runaway electrons caused by magnetic
perturbations. For this, the particle position x of each marker is tracked and from it a
diffusion coefficient is calculated as D = var[(∆x)]/2t via the position variance var over
time t.

3.7 DREAM - self-consistent simulation of a plasma disruption
and runaway electron generation

The Disruption Runaway Electron Analysis Model (DREAM [105, 168, 169]) is a high
fidelity code developed for self-consistent calculations of the plasma evolution during a
disruption event in axisymmetric geometry. Changes to global plasma parameters are
coupled to the generation and transport of RE particles. The bulk of the plasma is
treated with a combination of fluid models. These capture the evolution of electron
and ion temperatures, the toroidal electric field, the particle densities and charge stages
and the poloidal flux, which sets the current density. For an accurate description of the
REs, a kinetic treatment can be employed. Alternatively, the REs can be treated as a
fluid species, which is characterized solely by their current density. Advection-diffusion
coefficients can be prescribed to the equations governing the runaway electron motion.
We will use this feature to determine RE growth in the presence of transport caused by
TAEs.

DREAM supports analytically prescribed, static 2D magnetic field geometries in
the Miller parametrization [170]. It assumes nested flux surfaces, that can be fully
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3.7 DREAM - self-consistent simulation of a plasma disruption

parametrized by the major radius of the magnetic axis, elongation, Shafranov shift, tri-
angularity and a poloidal flux profile. Except for the major radius, all quantities can be
given as a function of radius.

The kinetic equation for the electron distribution fe in phase space is of the form of
a general advection-diffusion equation

∂fe
∂t

=
∂

∂z
·
(
−Afe +D · ∂fe

∂z

)
+ S(z), (3.16)

where z are (1D+2P) phase-space coordinates, A is the advection vector, D is the
diffusion and S is a source and sink term. The phase space advection

A = AE +AC +AB +AS +AT

describes the effects of electric field acceleration (AE), collisional friction (AC), bremsstrahlung
radiation reaction forces (AB), synchrotron (AS) radiation reaction forces and radial
transport (AT ). Similarly, the diffusion

D = DC +DT

captures the effects of collisional momentum-space diffusion (DC) and radial diffusion
(DT ). The source

S = Sava + Sp

describes the runaway avalanche process (Sava) and additional particle sources (Sp) for
electron density variations, originating e.g. due to ionization-recombination processes.
The collisional terms DC and AC encompass a fully relativistic, Fokker-Planck electron-
electron test-particle collision operator. Collisions with ions assume stationary targets of
infinite mass and follow a model presented in reference [171], which takes into account
the effects of partial ionization. Orbit effects in tokamaks are captured via bounce-
averaging [168], which accounts for the qualitatively different behavior of particles that
are passing and particles that are trapped. Explicit forms of A and D, as well as their
bounce-averaged components can be found in the original reference [168].

While DREAM can evolve the fully kinetic equation (3.16), it also supports the so-
lution of simplified equations, which often provide adequate results but at significantly
reduced computational costs. One such approximation treats the thermal populations
and the runaway electrons as a fluid, similar to GO (section 3.2). Here, the energy
spectrum of the runaway tail is not resolved and the focus lies on the RE generation
rate.

In the fully fluid mode, the thermal electron population is defined via their density
ne, temperature Te and Ohmic current jΩ, calculated via

jΩ
B

= σ
⟨E ·B⟩
⟨B2⟩

,

where ⟨·⟩ denotes a spatial flux average and σ is the parallel electric conductivity that
is implemented from the Sauter-Redl model [172], accounting for neoclassical effects
at arbitrary collisionality. The runaway electron fluid is characterized by its number
density nre and runaway current density jre. The former evolves as [168]

∂⟨nre⟩
∂t

=

(
∂⟨nre⟩
∂t

)
fluid

+
1

V ′
∂

∂r

[
V ′
(
Are⟨nre⟩+Dre

∂⟨nre⟩
∂r

)]
, (3.17)
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where (·)fluid is the fluid-model runaway generation rate, V ′ is the spatial Jacobian and
Are and Dre are the transport coefficients, that can be prescribed as functions of time,
radius and momentum. Note that for the application of momentum-dependent transport
coefficients, one has to assume some momentum-space distribution function (f(p)) for
the REs (even in fluid mode) and this will be done in section 5.4.
The runaway generation rate of the fluid model includes the following types of gener-

ation mechanism (see section 2.1.2):(
∂⟨nre⟩
∂t

)
fluid

=

(
∂⟨nre⟩
∂t

)
S

+

(
∂⟨nre⟩
∂t

)
dreic

+

(
∂⟨nre⟩
∂t

)
HT

,

with (·)dreic the Dreicer rate (using a neural network trained on full kinetic calcula-
tions [99]), (·)HT the hot-tail seed calculated with a model presented in references [105,
168] and (·)S is used to account for avalanching, Compton scattering and tritium decay
sources. The rate is given as [168](

∂⟨nre⟩
∂t

)
S

= 4π

∫ ∞

0
p2⟨S⟩ξ(p)H(p− pcrit)

where ⟨·⟩ξ denotes the combined flux surfaces and pitch average, S is the particle source
and H(x) is the Heaviside step function, birthing particles at the critical momentum pcrit
(see section 2.1.2). The source function for Compton and tritium decay seed sources is
modelled as in references [106, 107] and the avalanche source function [168] accounts for
particle screening effects. The runaway electrons generated contribute to the runaway
current density via

jre
B

=
ec⟨nre⟩
⟨B⟩

,

where we assume that every runaway electron travels at the speed of light c.
The background fluid species is defined by a density nji for each species i and charge

state j. Equations for their spatial evolution can be written with a one-dimensional
transport equation that is structurally similar to the kinetic equation (3.16), but only
evolves in time t and radial coordinate r (missing the momentum variables). The charge
stages are evolved self-consistently with ionization and recombination rate coefficients
extracted from the OpenADAS database [173] and accounting for Lyman opacity effects
upon recombination [10].
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4 Code development

For paper A [78], code development had to be conducted on CODION (section 3.1) and
HAGIS (section 3.5) and is presented in this chapter. The purpose of paper A was to
conduct a proof-of principle study on post-disruption TAEs driven by alpha particles.
This requires an answer to the questions about (1) the alpha particle evolution in a
disruption, (2) the support of post-disruption modes (TAEs) by the equilibrium, (3)
the wave-particle interaction between alphas and TAEs and finally (4), the question if
runaway electron transport can actually be caused by the TAEs. For simplicity, we used
and adjusted built-in modules and diagnostics, which this chapter is about. Paper A
eventually found question (4) to be positively answered, hence an extended follow-up
study was launched, resulting in paper B [79] and constituting the contents of chapter 5.
This chapter describes the tool development necessary for the project, while chapter 5
focuses more on the results.

CODION is equipped with a fusion source [78] to self-consistently calculate alpha
particle distributions in a burning tokamak plasma (section 4.1). Two instances of
HAGIS application are conducted: (1) the calculation of the TAE mode drive caused by
fusion-born alphas (section 4.2.1) and (2) the transport of runaway electrons caused by
TAEs (section 4.2.2). Application (1) requires the import of CODION-calculated alpha
distributions and (2) required a relativistic extension of the equation of motions. The
relativistic extension is presented in paper A, which was originally derived by S. Braun
and thus not presented in this thesis.

4.1 Alpha particle distribution calculation with CODION

The Fokker-Planck solver CODION was originally developed for the purpose of ion
runaway studies and introduced as such in section 3.1. For the treatment of alpha
particles as the fast ion species, it has been implemented with a fusion source Sα and
used throughout paper A [78].
The Fokker-Planck equation (3.1) was adjusted for a distribution of fusion-born alpha

particles fα, yielding

∂fα
∂t

+
Zαe

mα
E∗

(
ξ
∂

∂v
+

1− ξ2

v

∂

∂ξ

)
fα =

∑
b

CFP{fα, fb}+ Sα. (4.1)

The alpha source Sα can be described [88] as a Gaussian distribution in energy and
reads

Sα(E) = S0 exp

(
− 5

16

(E − Eα0)
2

TiE

)
, (4.2)

with the ion temperature Ti, the alpha particle birth energy Eα0 = 3.5MeV, the source
strength S0 and the factor 5/16 accounts for a transformation from the fusion reaction
center-of-mass frame to the lab frame according to H. Brysk [88]. The source strength
is defined as

S0 = nDnT⟨σv⟩,
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describing the fusion of deuterium and tritium with a respective particle density of nD
and nT and with ⟨σv⟩, where σ is the cross-section. It can be approximated as [174]:

⟨σv⟩ = 3.68 · 10−18 T
−2/3
i exp{−19.94 T

−1/3
i } m−3s−1.

Because the source is isotropic and because the distribution is resolved in pitch by a
Legendre mode decomposition, the fusion source is implemented to only act on the
lowest Legendre mode.
CODION is built around a linearized Fokker-Planck collision operator CFP and the

total distribution function fα is treated as a superposition of a Maxwellian fα,M and an
energetic part fα,EP. A non-monotonic grid is implemented, that maps the velocity grid
variable v onto a new grid y = v2+gv, with a small grid parameter variable g ∼ O(10−3).
This way, the more densely populated bulk and the sparsely populated energetic tail
can be resolved efficiently.
Figure 4.1a) shows the CODION computation of alpha particles being created and

distributed in velocity space for representative tokamak plasma conditions. Initially,
only fα,M is present, as is necessary for the linearized collision operator. The width
of its Maxwellian distribution corresponds to the background plasma temperature of
10 keV, which is equal for ions and electrons. From t = 0 on the fusion term Sα is
initiated, producing energetic alpha particles, that emerge isotropically at v = ±vα0 =
±
√
2Eα/mα and begin slowing-down due to Coulomb collisions with the background

plasma (self-collisions are neglected). The analytical steady-state solution f0 (eq. (2.16))
is approached by the energetic tail and matched after approximately one second to a
good degree. The temperature of the plasma steers not only the rate at which the alpha
particles are born, but also the collision process and changes the shape of the (energetic)
distribution via τs (eq. (2.10)) and vc (eq. (2.12)). The effect of velocity spreading at
the birth velocity vα0, that is described in CODION by eq. (4.2) is not captured by
the unit step-function in the analytical solution, but will be addressed further down in
this section as well as in the analytical model in section 5.2.2. Since CODION does not
include a particle sink, the alphas, that slow down, begin piling up at the origin and
progressively increase the number density nα = 4π

∫
fα,Mdv. Since this would dilute the

fuel plasma density nD + nT indefinitely (quasi-neutrality requirement) and reduce the
source strength, we assume the fuel density to remain constant and the alpha density is
generally not taken into account for the computation of S0. In a tokamak, the removal
of cold alpha particles - the Helium ash problem [89] - will be addressed for the same
reason, which is to avoid dilution. As we will see later, we are only interested in the
energetic tail of the distribution hence neglect an accurate treatment of the Maxwellian.
Shown in figure 4.1b) is an alpha distribution function fα(v, ξ) that is accelerated

in positive velocity direction through a constant electric field E ∥ v∥ of the magni-
tude E = 3V/m. In addition to collisional slowing-down and electric field acceleration,
one can see the effects of the pitch-angle scattering process, which seeks to restore the
isotropy of the system. CODION is ultimately applied onto disruption simulations. Al-
though electric fields during disruptions can reach magnitudes at the order of hundreds
of V/m, anisotropic alpha distributions are unlikely to occur. Similar to a research on
runaway ions [53], it was concluded during this study, that the disruption timescale is
too short for significant alpha acceleration. The distribution function is found largely
independent of pitch, which will be discussed in detail in section 5.2.3.

CODION is used throughout paper A [78] to calculate alpha particle distributions
during various scenarios of disrupting ITER plasmas. The plasma is represented by a
radial grid (101 points) and each point is populated with an alpha distribution according
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4.1 Alpha particle distribution calculation with CODION

Figure 4.1: a) Time-evolution of an isotropic alpha distribution fα(v, t) where the fusion is
initiated at t > 0. The 50%-50% D-T bulk plasma has a temperature of Te = Ti =
10 keV and an electron density of ne = nD+nT = 1020 m−3. Colors indicate time.
The analytical slowing-down distribution f0 is added to the picture (black, dotted).
Resolution parameters are 2000 velocity grid points, two Legendre polynomials (due
to isotropy) and 20 time-points. b) A 2D-velocity representation of fα(v, ξ) that
was under the influence of a constant electric field E∥ = 3V/m for 1 s. The fusion
process happened under the same plasma conditions as in a).

to the respective plasma parameters. With the ultimate aim to calculate wave-particle
interactions (section 2.4), the focus lies on energetic particles, i.e. the tail of the distribu-
tion function fα,EP. We require that the energetic tail of the distribution has reached its
steady-state fα,EP ≃ f0 before the disruption initiates. Two methods are implemented,
the first one requires the density in a small velocity space region around v = 0 to start
growing, while the second method prescribes a specific total density that has to be
reached. The density profile of the alpha particles in a burning ITER plasma has been
estimated and widely used in literature [19] and is generally matched well by the first
method. Once the initial distribution is obtained, the fusion source Sα is disabled and
an exponential decay in temperature on a millisecond timescale is simulated modeling a
thermal quench, that begins at t = 0. The slowing-down of the alpha particles following
the plasma disruption is tracked with CODION. For further usage, a way of transferring
the energetic part of the distribution functions fα,EP from CODION to HAGIS had to
be implemented. HAGIS already contains the means to include analytic alpha distribu-
tion functions in the slowing-down form of f0 (eq. (2.16)). we exploit this by fitting the
CODION distributions with a similar form.

A script was written, that performs a fit on the CODION-obtained distributions with
a function ffit and separates the function into Maxwellian and energetic part:

fα ≈ ffit = ffit,M + ffit,EP = p1 exp
−x2/p2 +

p3
x3 + p34

Erfc

(
x− p5
p6

)
,

where x ≡ v/vα,0 is the normalized velocity space and p1−6 are six fit-parameters. The
fit-parameters are generally a function of time t and radius r, as every alpha distribution
fα(r, t) is evolved in time. The total form of the function ffit represents a Maxwellian
plus a slowing-down form f0. In order to avoid further numerical issues, the unit-
step function U(x), that normally limits the energetic tail, is approximated with the
complementary error function Erfc(x):

U(1− x) −→ 1

2
Erfc

(
x− p5
p6

)
.
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Figure 4.2: Example fit of the CODION-data (black) with the Maxwellian (blue, dotted) and
the energetic (red, dotted) part of the fitting function ffit. Note that the weight-
function fweight has been shifted by −5 on the y-axis for the purpose of visibility.

where p6 represents a finite width at the (now variable) cut-off velocity p5. From com-
parisons with the analytic formulae, that are valid for steady-state, one can obtain good
initial values for the fit parameters. Initially, the parameter p1 corresponds to the bulk
alpha density, p2 to the background temperature, p3 to the tail density and p4 corre-
sponds to vc/vα0. In the error function, initially p5 = 1 holds, while p6 - representing
the velocity width at birth - can be calculated from equation (4.2). For each consecutive
time-step during the time evolution, the p-values from the previous time-step are used
as new initial guess and bound to only change by ±25% per step in time. This way, a
robust set of evolving energetic alpha particle distributions

fα,EP ≃ ffit,EP =
p3

x3 + p34
Erfc

(
x− p5
p6

)
(4.3)

are obtained via the fit parameters p3−6. In the application, the fit parameters p3−6 are
a function of both time t and radius r, representing the entire plasma evolving.

Due to the many orders of magnitudes covered by the distribution function fα, the
fitting is performed in logarithmic space. In order to put more focus on the energetic tail,
ffit is multiplied with a weight-function, that is a skewed and shifted normal distribution
of the form

fweight = exp−5(x−w1)2 ·
(
1 + Erf

(
w2(x− w1)

))
with two additional parameters w1 = 0.2, w2 = 10 and the Error function Erf(x). The
fitting itself is performed in MATLAB with the build-in lsqnonlin function, that is a
non-linear least-squares data-fitter. In figure 4.2 an example is shown. At t = 0.7ms >
0 the steady-state situation is already left and the Maxwellian form is distorted by
the temperature decay. It is this distortion, that generally impedes a straightforward
Maxwellian fit and subsequently affects ffit,EP. A proper result is only obtained with
the usage of fweight and slowly evolving fitting parameters p. The latter benefits from a
higher temporal resolution in the CODION simulation.
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With the CODION module presented in this section, we were able to calculate a self-
consistent evolution of fusion-born alpha particles undergoing various thermal quench
scenarios in an ITER plasma [78]. With the distribution functions obtained, we can
compute the EP-drive during the thermal quench with the method presented in sec-
tion 4.2.1.

4.2 Code development in HAGIS

4.2.1 Import of CODION-calculated alpha particle distributions

HAGIS has already been used multiple times to calculate energetic particle drive (in-
cluding alphas) in ITER plasmas [57, 128, 158], and as such it is benchmarked for ITER
dimensions and alpha particle energies. The code is written in flux coordinates, hence
the assumption r/a ≈ s (a minor plasma radius) is being made when transferring radial
distributions from CODION.

Isotropic alpha populations can be provided to HAGIS as a product of the radial
distribution f(s) and the velocity distribution f(v)

f(s, v) = Cf(v)f(s),

where C can be determined by the number ratio of alpha particles to background ions
nα/(nD + nT ) on the magnetic axis s = 0. With the fitted distributions in CODION,
that are defined by p3−6(r), this corresponds to

f(s) = p3(r)/p3(0),

f(v) =
v3α0

v3 + (p4vα0)3
Erfc

(
v − p5vα0
p6vα0

)
,

C =
nα

nD + nT
=

4π

nD + nT

∫ 1

0

1

x3 + p34
Erfc

(
x− p5
p6

)
dx,

where the alpha particle density on axis is calculated with the isotropic, gyro-averaged
velocity moment of the distribution. From its creation, the code had the option to
provide alpha velocity distributions f(v) with the analytical equation of the form of
f0 (eq. (2.16)). This input case was expanded, where the original variables of the slowing-
down formula are replaced with the corresponding fit-parameters that could simply be
read-in from a text file provided through CODION and the fitting procedures.

Shown in figure 4.3 is a small comparative simulation for the purpose of validation.
It shows the mode evolution of an n = 8 TAE in an ITER plasma, driven by alpha par-
ticles. For equal plasma parameters, the velocity distribution f(v) is prescribed by (1)
the original HAGIS implementation and (2) by CODION simulations and the transfer
into HAGIS using fitting parameters. The radial distribution f(s) and EP density on
axis C are the same in both cases. The linear growth rate is approximately γ/ω ≈ 1.3%,
where ω = 4.85 · 105 rad/s is the eigenfrequency of the mode (calculated by LIGKA).

With the possibility to import CODION-calculated alpha distribution functions, we
are able to calculate the resonant wave-particle interaction between self-consistently
evolved alpha particles and modes in a plasma equilibrium. Workflows already exist
between HAGIS and LIGKA (section 3.4), which can provide the mode information
required.
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4 Code development

Figure 4.3: Validation simulation: perturbation amplitudes of a n = 8 TAE in HAGIS driven
by the original implementation of a slowing-down distribution and the newly im-
plemented one, which ultimately inputs CODION-calculated distributions. The
plasma parameters are: electron temperature 25 keV, ion temperature, 21 keV,
electron density ne = 1020 m−3, ne = nD + nT . The plasma equilibrium and TAE
(structure and damping) is taken from the ITER simulations, which will be dis-
cussed in chapter 5. The spatial profile f(s) is the expected alpha density profile
for a burning ITER plasma.

4.2.2 Estimation of runaway electron transport caused by TAEs

Once the amplitude evolution for the excited TAEs is known, we apply HAGIS to
estimate the TAE impact on runaway electrons. Due to the multi MeV energies that
they can reach, REs require a relativistic treatment. Derived in the appendix of the
paper A [78] (by co-author S. Braun) are the relativistic equations of motion for runaway
electrons in the Boozer coordinate system, that is used in HAGIS. It follows the original
derivation in the PhD thesis of S. Pinches [134], adding a relativistic extension to it. A
verification of the numerical implementation into HAGIS can be found in reference [66],
where comparisons with the ANTS code [123, 175, 176] have been made by tracking the
same test particle ensembles in the same ITER plasma equilibrium.

Crucial for the application is the derived and implemented canonical toroidal angular
momentum of a runaway electron

Pφ ∝ p∥ − ψ

that is proportional to the relativistic parallel momentum p∥ and the radial flux coor-
dinate ψ. Due to their high energy and a lack of suitable resonances, runaways are
not expected to have a back-reaction on the wave-evolution. Hence HAGIS is run in
its “passive” mode, where only the effect of the presence of the TAEs is evaluated on
runaway electron test particles. Ensembles of 104 test particles are initiated, on a phase-
space grid in energy, pitch and radial position. With energies ranging from 10 keV to
30 MeV the test particles are representative of REs. The parallel velocity of the lowest
energy electron (for purely parallel motion) is v∥ ≈ 6 · 107m/s ≈ 8vA, therefore reso-
nances with the TAEs are unlikely. With the TAE amplitude held constant and the
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lack of resonances, changes to Pφ are dominated by changes to the radial coordinate ψ.
Should a resonance still occur, it is calculated by HAGIS, but then changes to Pφ can
also be due to changes in p∥. Using this method in paper A [78], calculations about
Pφ showed the possibility of radial transport of runaway electrons. However, for the
follow-up study [79], this method of calculating Pϕ was superseded, by the transport
coefficient calculations with the ASCOT5 (section 3.6).
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5 Study on post-disruption TAEs driven by
alpha particles and its influence on
runaway electron generation

This chapter is concerned with a detailed examination of the post-disruption concept
proposed in section 1.1 and summarized in figure 1.3. For a D-T ITER plasma, that
suffered a disruption, we establish the TAEs supported by the equilibrium and the
damping of the cooling bulk plasma in section 5.1. The population of fusion-born alpha
particles is subject of section 5.2, while their interaction with the TAEs is treated in
section 5.3.

As we will discuss in detail later, we can focus a majority of the study on the TQ
time scale, and will also consider a simple model for the MMI. Possible scenarios are
further expanded through varying thermal quench time-scales and possible alpha particle
transport (section 5.3.2). To gain quick access to the parameter space, we present an
analytical velocity space model for the alpha particles in section 5.2.2.

Finally, in section 5.4 we gather the knowledge from the previous sections and conduct
a disruption simulation, aimed to establish the influence of the alpha-driven TAEs on
runaway electron generation. The results are discussed and contextualized in chapter 6.

5.1 Spectrum of weakly damped Alfvénic modes in the ITER
post-disruption plasma equilibrium

We introduce the ITER plasma scenario, which will be the subject of study in the
next sections. Necessary is a calculation of the plasma equilibrium and Alfvénic mode
spectrum, that can be expected in a thermal quench following a disruption. The pre-
disruption state of the plasma will be determined from a predictive operational scenario
called “scenario #2” [19, 177], which is commonly used for simulations. Main plasma
parameters and their notation are summarized in table 5.1 and depicted in figure 5.1.
This scenario is used as an initial state and consecutively evolved with GO (section 3.2.

The plasma scenario we reside in corresponds to a maximum performance ITER op-
eration, with a total plasma current of 15 MA and an active nuclear phase, where
the hydrogen isotopes deuterium and tritium undergo fusion. This scenario foresees a
(mostly) flat electron density profile ne0(r). Due to the quasi-neutrality requirement of
the plasma, the electron density has to fulfill ne =

∑
j Zjnj , where j is an ion species

with charge Zj and density nj . The species in question are singly ionized deuterium and
tritium of equal densities nD0 = nT0 ≡ nDT0, as well as an alpha particle species with
charge Zα = 2 and density nα0. D-T fusion generates the alpha particles, hence the
alpha density profile is similar in shape to the ion temperature Ti0, peaking in the core
at less than one percent of the electron density and therefore are classified as a minority
species. Other minor impurities like beryllium or tungsten are neglected. The electron
temperature Te0 is slightly higher than the ion temperature, because the most energetic
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5 Post-disruption TAEs and their influence on RE generation

Figure 5.1: Profiles of particle densities (dashed) and temperatures (solid) of a burning ITER
plasma.

alpha particles mainly collide with electrons (see section 2.1.1). In turn, the electrons
heat the bulk ions and help sustain the fusion.
The profiles of temperature and density (figure 5.1) will initially be set up in the one

dimensional, homogeneous plasma code GO (section 3.2), hence the profiles are cast
in the normalized radius r/a. Subsequently applied codes, like HAGIS (section 3.5) or
LIGKA (section 3.4) however are written in flux coordinates, hence the approximation
r/a ≃ s is made, where s ≡

√
Ψ(r)/Ψ(a) is the normalized poloidal flux coordinate.

A plasma disruption initiates a global thermal energy loss, which we model as an
exponential temperature decay

T1(r, t) = Tf +
[
Te0(r)− Tf

]
exp(−t/tTQ), (5.1)

with a thermal quench time tTQ, a final temperature Tf = 10 eV (if not stated otherwise)
and where we from now on assume equal temperatures for electrons and ions T1. We

Parameter name Notation Value

Major radius R0 6.195 m
Minor radius a 2.06 m
Effective charge Zeff 1.0
Normalised flux ψ Ψ(r)/Ψ(a)
Normalised radius r/a r/a ≃

√
ψ ≡ s

Plasma current Ip0 15 MA
Magnetic field on axis B(s = 0) 5.26 T
Electron density on axis ne0(s = 0) 1020 m−3

Ion density on axis ni0(s = 0) 1020 m−3

Electron temperature on axis Te0(s = 0) 24.7 keV
Ion temperature on axis Ti0(s = 0) 21.2 keV

Table 5.1: The main plasma parameters of the 15 MA ITER scenario. Subscript 0 refers to
variables of the initial, pre-disruption state.
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5.1 TAE mode spectrum in ITER post-disruption

also introduce the normalized disruption time-scale tN ≡ t/tTQ, which serves as a metric
of temperature independent of tTQ. In order to model disruption mitigation systems,
injections of deuterium and/or neon are allowed to elevate the plasma density. The
amount injected is represented by the post-disruption electron density ne1 fulfilling the
quasi-neutrality requirement:

ne0 ≤ ne1 = ne0 + nD1 + nNE1, (5.2)

where nD1 is the injected deuterium density and nNE1 the injected (singly ionized)
neon density. The injected material is assumed to be singly ionized and deposited
instantly at t = 0 and across the entire plasma. In reality, the injection of material
and the evolution of temperature is not independent of each other, but determining the
correlation is outside the scope of this work. Instead, parameter scans for the densities
and the quench pace tTQ will be conducted. The exponential decay in temperature
assumes the global energy loss to be dominated by MHD-induced losses, which scale as
∼ T 5/2 [178], but can be assumed approximately exponential [104]. Due to the strong
temperature scaling, this assumption is especially valid in the initial phase of the thermal
quench, after which the temperature evolution is increasingly determined by effects like
line radiation from impurities, Ohmic heating, Bremsstrahlung and ionization of the
impurities. Our disruption calculation tools (GO and DREAM) are equipped with
energy balance equations, that would self-consistently evolve the temperature including
the above mentioned effects. However, we will mostly be interested in the initial phase
of the thermal quench, with plasma temperatures down to the order of hundreds of eVs,
allowing us to omit the energy balance equation.
The equilibrium state of a plasma is shaped by a balance of confining Lorentz forces

and the plasma pressure seeking expansion, j × B = ∇p. A disruption disturbs this
equilibrium, however, the re-establishment of a force balance occurs on the Alfvénic
time-scale R0/vA ∼ µs, which is many orders of magnitudes faster than the typical
disruption time-scale (tTQ ∼ ms). The healing of the flux surfaces will be addressed in
discussed in detail at the end of section 5.3. We evolve the plasma pressure p(r, t) and
current density j(r, t) with GO (section 3.2) and use these profiles to reconstruct the
plasma equilibrium using VMEC (section 3.3).
Beginning with the pressure calculations, the deuterium and tritium species are treated

as background pressure pb1 and separated from the energetic alpha particle pressure pα1.
Typical thermal collision timescales are of the order of microseconds, allowing one to
assume the bulk of the plasma to remain perpetually in a thermal equilibrium during the
temperature quench. Therefore, we calculate the pressure of the background populations
using the ideal gas equation, pb1 = 2eT1ne0, where we used the equal post-disruption
temperatures and densities of ions and electrons. Instead of following the complicated
temperature evolution of injected material, we assume one temperature for simplicity
and to avoid blowing up the dimensionality of the scans. The exact temperature of the
impurities is not really important from the alpha-drive point of view and is unlikely
to play a role in the damping either. The injected material is therefore modelled with
a Maxwellian of 10 eV and as a singly ionized species and does not partake in the
background pressure.
Although the alpha particles are a minority species in the plasma (nα0 < 10−2ne0),

their energetic nature allows them to exert a significant amount of pressure, which cannot
be calculated appropriately using the ideal gas equation. Instead, we use CODION with
the alpha particle module (section 4.1) to calculate distribution functions fα(r, v, t). The
distribution functions are initiated (with the plasma parameter profiles in figure 5.1) on
a radial grid r/a consisting of 101 points. fα(r, v, t) are then evolved in the thermal
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5 Post-disruption TAEs and their influence on RE generation

Figure 5.2: a) The time-evolution of pressure for the background plasma pb1 (solid) and the
alpha distribution pα1 (dashed) as a function of the normalized time tN = t/tTQ

indicated by color. The plasma is initialized via the plasma parameter profiles in
figure 5.1, followed by an (unmitigated) disruption defined by tTQ = 1ms, ne1 =
ne0 and Z1 = 5/3 (pure D-T plasma). The profiles are shown only up to r = 0.8a.
b) Graph of current density j(r) (solid) in a 15 MA ITER plasma for the time-
points tN = 0 (j0) and tN = 6 (j6) after the exponential thermal quench. In
addition we show the safety factor profile q (dashed).

quench according to the temperature eq. (5.1) and their pressure is computed using the
second velocity moment of their distribution function fα:

pα1(r, t) =
4πmα

3

∫ vα0

0
v2fα(r, v, t)dv, (5.3)

where we assume isotropy and applied gyro-averaging in the velocity space. While
CODION was used for the reconstruction of the equilibrium used in paper A and paper
B, an analytical model (section 5.2.2) for fα was derived in the work of paper B. For
the illustrations of the pressure in this chapter we use the analytical model.

The evolution of pα1 is governed by the thermalization process of the alpha particles,
as prescribed by the changes of densities and temperature profile. In figure 5.2a), pα1 and
pb1 are depicted separately for an unmitigated disruption case. In pre-thermal quench,
the alpha pressure in the plasma center accounts for roughly 15% of the total plasma
pressure, matching theoretical predictions [19]. As will be discussed in section 5.2, the
energetic tail is able to resist the deceleration for a significant amount of time, while
the background pressure shrinks according to the exponential temperature drop. This
delay allows the alphas to briefly dominate the (core) pressure at around tN = 3, albeit
at a magnitude that is low compared to the pre-thermal condition. Even though the
injection of (cold) material into the plasma does not significantly contribute to the
pressure itself, it enhances the deceleration of the alpha particles. As such, the pressure
of the unmitigated case sets an upper limit to the pressure profile used for equilibrium
reconstruction.

Calculations of the current density j(r) are conducted with the GO code (section 3.2).
Shown in figure 5.2b) is the current density j(r) in an unmitigated ITER disruption
(ne1 = ne0) with tTQ = 1ms for the time-points tN = 0 (j0) and tN = 6 (j6) . The
plasma carries a majority of the current in the hot, highly conductive core. Because of
the large magnitude of the plasma current, it cannot change on the same timescale as
the temperature/pressure and therefore, even after tN = 6, the current density is barely
evolved. Our assumption that T1 and ne1 are not correlated therefore also means, that
the material injection will not affect the current density profile. This comes down to
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5.1 TAE mode spectrum in ITER post-disruption

Figure 5.3: Shape-preserving q-profile scan showing the radial location of the TAE frequency
gaps as allowed by the ITER post-disruption equilibrium. Depicted in color are
TAEs of toroidal mode number n. The on-axis q-value eventually opted for further
analysis is q0 = 1.071 and is shown with a blue dotted line.

the conductivity being a strong function of temperature, but only a weak function of
density through the Coulomb logarithm.

With both pressure p1 = pb1 + pα1 and current density j obtained, the required
input for a VMEC calculation of a tokamak plasma equilibrium is available. We will
be focusing on the thermal quench and desire a post-disruption equilibrium, that is
valid for (at least) the lifetime of energetic alphas, which will later be calculated to
be < tN = 6 (section 5.2.3). With a current density profile close to its pre-disruption
condition and the thermal pressure exponentially decaying, the dominating factor in
determining the plasma equilibrium for the TQ is j0 ≃ j6. With the geometry and
magnetic field parameters of ITER, as well as a total current of 15 MA, the current
density j0 and the pressure p1(tN = 3) is employed for the VMEC calculation.

The current density and pressure profile allows one to solve the Grad-Shafranov equa-
tion, i.e. obtain flux surfaces with constant pressure, that define the plasma equilib-
rium [1]. In figure 5.2b I show the q-profile output of the plasma equilibrium deter-
mined by VMEC. Since the current density j generates the poloidal magnetic field, it
is responsible for the shape of the q-profile. A slightly pronounced local minimum in
q can be found at r ≲ 0.5a, and is caused by the maximum of j at around the same
radius. Moving towards the edge of the plasma, q rises until it reaches an edge value
of qedge > 3.5. In order to account for the pressure variations and/or to the disruption
scenario itself, a sensitivity scan will be conducted. The sensitivity measure will be
the spatial location and the number density of Alfvénic modes, that this equilibrium
supports under a shape-preserving scan over the q-profile elevation and is an approach
similar to reference [179].

With the help of the code LIGKA (section 3.4), we investigate the plasma equilibrium
by calculating the toroidicity-induced frequency gaps in the ideal MHD spectrum. This
reveals Toroidal Alfvén Eigenmodes (TAEs), that lie outside the frequency continuum
and therefore are weakly damped. The TAEs are represented by a Fourier decomposition
in the poloidal and toroidal direction and are located around the radial position rTAE,
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Figure 5.4: Normalized eigenfunctions of the post-disruption ITER TAEs in the a) low-n
branch and the b) high-n branch showing all the individual poloidal harmonics
of the electrostatic potential. The eigenmodes shown are of even parity, as seen by
the equal sign of the dominating poloidal harmonics.

where (see section 2.3.2)

q(rTAE) =
m+ 1/2

n
(5.4)

holds for the toroidal mode number n and poloidal mode number m. The LIGKA scans
are conducted as a function of q-profile elevation on axis q0,scan, with results of the TAE
locations shown in figure 5.3. The results show, that irrespective of q0,scan, there is a
robust set of weakly damped TAEs with toroidal mode numbers 1 < n < 35 in this
post-disruption ITER equilibrium. Another type of Alfvénic modes, the Beta-induced
Alfvén Eigenmodes (BAEs [180]), is found by LIGKA in the steep pressure region of the
pre-disruption phase, but neglected for this work. In addition to EP drive, BAE-drive
requires a high thermal ion pressure (beta), that is not given in the thermal quench. The
solutions that are shown here are from the even TAE branch. These are modes, which
are located near the bottom of the frequency gap and the poloidal harmonics of their
electrostatic potential have the same sign. Such modes are often referred to as “balloon-
ing” modes, because the poloidal harmonics interfere constructively on the low-field side
(LFS, outboards) of the tokamak. These even-parity TAEs have generally been found to
be the most unstable AE branch [22]. Their frequencies (in this unmitigated simulation)
range from ω = vA/(4πq(s)R0) ∝ 1/q(s)

√
ni ≈ 74 kHz − 83 kHz and vary mainly due

to the q-profile, as the ion density profile we consider is flat. TAEs of odd parity can be
found near the top of the frequency gap and the constructive interference occurs on the
high-field side (HFS) of the tokamak, as neighbouring poloidal harmonics of their elec-
trostatic potential have opposite signs (see section 2.3.2). While this uneven branch can
be weakly damped as well [128], its usually higher eigenfrequency ω > 100 kHz leads to
a weaker EP drive. Nonetheless, the odd branch will later be included in wave-particle
interactions (section 5.3) for completeness, however not considered further in this sec-
tion. Ultimately, the TAEs are going to interact with the energetic alpha particles in
the plasma and draw energy from their spatial pressure gradient (see figure 5.2a)). We
choose an on-axis safety-factor value of q0 = 1.071 and determine the TAEs, that are
found in the region of strong alpha particle pressure, 0 < s < 0.5. The global mode
structures are also computed by LIGKA and shown in figure 5.4. Dominant poloidal
harmonics of TAEs are often (m = n,m = n+ 1), but for higher q other pairs of (m,n)
can be found that fulfill equation (5.4). Due to the flatness of the q-profile in the inner
half of the plasma, a high density of neighbouring TAEs is present. This allows a spatial
overlap of modes, that leads to resonance overlap in the phase-space with the potential
to cause particle transport [57]. A high-n (n = 22 − 26) branch and a low-n branch
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Figure 5.5: The sum of electron Landau damping, ion Landau damping, continuum damping
and radiative damping on theM1 set of TAEs. The damping γ is normalized to the
TAE eigenfrequency ω and displayed as a function of normalized time tN , where
the temperature decay T1 ≃ Te0 exp(−tN ) represents a plasma thermal quench. a)
shows the low-n branch and b) the high-n branch of M1.

(n = 7−15) is identified, with up to 13 poloidal harmonics used to represent each mode
in Fourier space. The width of the mode can be approximated with ∆TAE ≃ rTAE/m
and becomes narrower for higher mode numbers n ∼ m.

The TAE modes of the plasma are considered as perturbations to the plasma equi-
librium. The perturbation growth is a competing process between a driving force and
damping. While the energetic alpha particles will eventually serve as instability drive,
the thermal background generally stabilizes the TAEs through various types of damping
(see section 2.4.1). The magnitudes of ion Landau damping, electron Landau damping,
radiative damping and continuum damping are calculated for each mode individually,
with special focus on the behaviour during mitigated quenches, i.e. as a function of
temperature and plasma densities. Collisional damping on trapped electrons is ad-
dressed with an analytical formula [141] and damping of the resistive plasma is included
with a numerical resistive MHD tool CASTOR (Complex Alfvén Spectrum of TORoidal
plasmas) [181]. We find the latter two damping mechanisms to be insignificant in the
thermal quench.

During the LIGKA application described above, the calculation of modes was re-
stricted to the inner half of the plasma, 0 < s < 0.5, which is roughly the radial extent
of the alpha particles (see figure 5.2a)). This restriction yields a set of modes that we
will denote withM1 and that generally has the low-n and high-n branches of even TAEs
mentioned above. This set of modes is used in this section, while the last section 5.4 will
lift said restriction and include odd-parity TAEs for a complete disruption simulation.

LIGKA is used to calculate the electron and ion Landau damping, the radiative damp-
ing and the continuum damping during the thermal quench of a disrupting ITER plasma,
that can be mitigated through material influx. Its initial state is described by the sce-
nario profiles (figure 5.1), the evolution of temperature T1 by equation (5.1) and the
changes in density are represented by ne1 (eq. (5.2)). For these damping calculations,
the presence of alpha particles is neglected and later retained when we calculate their
drive.

With the unmitigated case, (ne1 = ne0), we isolate the effects of the evolving tem-
perature and display the total of damping values in figure 5.5, which shows, that the
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Figure 5.6: a) The damping strengths on the high-n TAE branch of M1, as a function of
electron density at a fixed temperature profile T1(tN = 1.5). The electron density
is elevated from ne0 by an addition of singly ionized deuterium. b) The damping
onM1 in case of elevated density ne1 = 2ne0, where the legend displays the amount
of neon used in the injection. The case of 0% corresponds to the 2ne0 values in a),
but includes the low-n branch as well.

damping decreases as a function of tN . At the initial stage tN = 0, for the respective
electron and ion thermal velocities vth,e/vA = 6.1 and vth,i/vA = 0.09 holds, where the
ion thermal velocity is calculated for an “average” D-T ion with mass m = 2.5mp, where
mp is the proton mass. The D-T ions provide a significant contribution through their
Maxwell tail and higher side-band resonances with the Alfvén velocity (section 2.4.1).
During the TQ, the thermal populations cool down and the ion tail becomes no longer
efficiently damping. The electron Landau damping is known to evolve proportional to
the electron pressure βe ∝ Te [140] and therefore decays as well. Due to the TAEs re-
siding in continuum gaps, the continuum damping is essentially zero and unaffected by
the temperature. The radiative damping is based around finite Larmor radius effects.
Because the Larmor radius of thermal particles shrinks during the thermal quench, this
effect loses effectiveness as well.

We now fix the temperature to T1(tN = 1.5) and repeat the previous calculation for
various density changes to the pre-disruption plasma, representing an injection of mate-
rial. The injection is modeled as a Maxwellian distribution at 10 eV. Figure 5.6a) shows
this density scan affecting the damping on the high-n branch with a pure deuterium
injection. The material deposition increases the plasma mass, and thereby decreases
the Alfvén velocity vA, shifting it relative to the thermal velocities. With a reduction
to half the electron density instead (though difficult with material injection), the elec-
tron Landau damping increases, as vA approaches vth,e. We see a damping minimum
at ne1 = 2ne0, but with further increase, the ion Landau damping becomes stronger
and again comes close to pre-disruption conditions at ne1 = 4ne0. Additionally, we run
LIGKA simulations, where the injected material is composed of 0%, 10% and 100%
singly ionized neon, rest deuterium. The high mass of the neon has a significant effect
on the damping strength as shown in figure 5.6b).

For the collisional damping on trapped electrons, analytical formulae specific to TAEs
exist and are found in a more detailed discussion around eq. (26) in reference [22]. The
damping strength becomes more relevant as the collision frequency grows in a cooling
plasma. For a TAE representative of our MHD spectrum, n = 10, m = 10, q = 1,
ω = 80 kHz, the damping strength γe/ω overcomes 1% at tN ≈ 5.5, but is insignificant
before that.
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Resistive MHD fluid effects can be included with use of the resistive MHD code
CASTOR [181]. From the simulation we learn, that this damping is γres/ω < 1%
(ω = 80 kHz) up to a resistivity of ≈ 0.56 ·10−4Ωm, which corresponds to a background
temperature of ≈ 6 eV. Such low temperatures will not be reached in our simulations
and for the wave-particle interactions we swill remain well within [1.5tN , 5.5tN ], therefore
both the resistive damping and the collisional damping on trapped electrons is neglected.
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5.2 Alpha particle slowing-down distributions in an ITER
thermal quench

Operation of the ITER [2] tokamak eventually foresees deuterium-tritium (D-T) plasma,
producing alpha particles at a kinetic energy of Eα = 3.5 MeV. One goal of ITER is to
showcase self heating, i.e. that these energetic alphas allow the tokamak to sustain its
high temperature and maintain the fusion process for a considerable duration (> 1000 s).
The energetic alphas serve as an inner plasma heating, but once thermalized, they need
to be removed from the plasma to avoid dilution of the fuel [89]. Through a balance
of particle birth and sink, a steady-state distribution (section 2.1.1) is established of
which detailed theoretical analysis exist [22, 182]. In the event of a plasma disruption
the fusion and birth process ceases, global plasma parameters suddenly change and this
steady-state situation is forcefully left. Studies about the dynamic evolution of the alpha
distribution that follows used to lack in literature but now can be found in paper A [78]
and paper B [79]. Although these alphas remain a minority species in the tokamak
plasma, their energetic nature allows for interesting interactions with plasma waves,
even during the dynamic process of the thermalization. For an accurate calculation of
these processes, the distribution function of the alpha particles needs to be resolved.

In the following, the collisional thermalization of alpha particles undergoing a collapse
of plasma temperature is studied. An accurate computation of an energetic population
requires a kinetic treatment and a focus on particle distribution functions. In section
5.2.1, we will begin with a numerical treatment and present the results, that eventually
lead to a new analytical model (section 5.2.2).

5.2.1 Numerical calculation of the thermalizing alpha particles

With an alpha particle fusion source implemented (section 4.1), CODION is used to
calculate the spatio-temporal evolution of alpha particles in a disrupting ITER plasma.
The initial plasma conditions resemble that of “scenario #2” introduced in section 5.1.
The global plasma parameters of this scenario can be found in figure 5.1 and are used
for an initialization of the alpha distributions. Similar to section 5.1, the plasma dis-
ruptive event is modeled with a thermal quench described by an exponential decay in
temperature. The numerical treatment of the alpha particles presented here is covered
in paper A [78].

We define the plasma on a radial grid r/a, spanning 101 points with the temperature
and density values taken from the scenario data (figure 5.1). Each point is populated
with an initial alpha particle distribution fα(r, v, t) in CODION according to equa-
tion (4.1). We initiate thermal quenches (eq. (5.1)) at t = 0, with a total of 150 scenarios
with tTQ = [0.1− 1]ms and Tf = [1− 15] eV. The plasma density is held constant. The
kinetic simulation with CODION is supported by a fluid disruption simulation with GO,
whose purpose it is to calculate the electric field, that is induced during the disruption
(see figure 3.1). A small electric field (∼ 0.01V/m) is required in the quiescent phase in
order to maintain the plasma current Ip0, but is neglected for the CODION simulation.

The disruption-induced electric field is depicted in figure 5.7c) for a case of tTQ = 1ms,
Tf = 15 eV and a plasma density held constant. For other thermal quench scenarios,
the picture is qualitatively the same, but with higher maximum electric field values for
shorter quenches, and a radially more outwards localization of the maximum for lower
final temperatures. The induction of the electric field opposes any changes to the plasma
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current. As shown in a previous simulation (figure 5.2b)), the current (density) can be
assumed approximately constant for tN < 6; this is also seen here in the electric field,
that is of low magnitude for tN < 6.
In figure 5.7 we show the CODION-calculated evolution of fα(r, v, t) at two spatial

points r/a = 0 (figure 5.7a)) and r/a = 0.8 (figure 5.7b)), both with and without
E-field input. One can see the slowing-down process and the thermalization with the
background plasma, that occurs on a ms timescale. Importantly, we also see that the
electric field, that accelerates the ions in positive velocity direction, has a negligible
effect on the distribution function. Once the E-field begins reaching significant values
(≳ 6tN ), the alpha population is near its thermalized state and the collisional slowing-
down outweighs the acceleration, even at t = 8tN . Throughout the entire simulation, the
kinetic pressure of the distribution is altered by the electric field on a sub-percentage level
compared to a simulation without E-field. Even with a prolonged CODION simulation
(t = 20tN ), the electric field is not able to drag out an energetic tail of alphas, which
prohibits a generation of runaway alpha particles after the thermalization and coincides
with previous findings on runaway ions [53]. Note that in previous figure 4.1 the inclusion
of an E = 3V/m electric field seems significant to the alpha distributions, however,
such a significance is only obtained for the steady-state distribution, which may take
significantly longer to set than the disruption timescale allows.

Because of the negligible impact of the electric field, the alpha distribution remains
fully isotropic, even under the presence of a disruption-induced electric field. The
isotropy assumption enables the derivation of an analytical alpha particle model in
the next section 5.2.2. Here we only explicitly showed the isotropy to be valid for one
thermal quench scenario, but this will be re-evaluated for different thermal quench sce-
narios (tTQ, Tf ) and for mitigated cases (ne1 > ne0) in section 5.2.3, with the help of
the analytical model.
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Figure 5.7: a) The alpha distribution function fα at the ITER plasma centre during a thermal
quench, evolving without (dashed, color) and with (solid, black) electric field input.
b) The same simulation as in a) but at r/a = 0.8. The colors indicate the time-
steps and are the same as in a). Resolution parameters are: Velocity grid points
Nx = 2000, number of Legendre modes NL = 35 for b) and NL = 2 for a) and
number of time-steps for the entire simulation Nt = 10000. c) The induced electric
field that is used as input for a) and b). The dashed lines mark the time-points
(color) and radial position (black) used in a) and b).
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5.2.2 Analytical alpha particle velocity space model

In this section, we derive an analytical model for an alpha particle velocity distribution
fα, that undergoes a thermal quench. The derivation was done together with co-author
O. Embreus in paper B. Starting point is the isotropic kinetic equation for fusion-born
alpha particles (eq. (2.14)), that is used to derive the steady-state solution f0 (eq. (2.16)).
We assume isotropy, motivated by the numerical results presented in section 5.2.1.

From D-T fusion, alpha particles emerge isotropically at a velocity vα0. Its distribution
in velocity follows the kinetic equation:

∂fα(v, t)

∂t
=

1

v2τs

∂

∂v

[(
v3 + v3c

)
fα(v, t)

]
+
Sαδ(v − vα0)

4πv2α0
, (5.5)

where the birth process is described by the fusion strength Sα and the particle distribu-
tion is shaped by the slowing-down time τs and the cross-over velocity vc. As derived in
more detail in section 2.1.1, τs represents a time-scale for alpha-electron collisions and
vc is a threshold velocity above which alpha-ion collisions dominate. They are given as:

v3c = v3th,e
3
√
π me

4mα
Z1, (5.6)

τs =
3mαme

16
√
π Z2

αe
4lnΛ

v3th,e
ne

, (5.7)

Z1 =
∑
i

niZ
2
imα

nemi
, (5.8)

where vth,e ≡
√
2Te/me is the thermal electron velocity, Te the electron temperature,

me the electron mass, mα the alpha particle mass, Zα is the alpha particle charge, e
the elemental charge, lnΛ is the Coulomb logarithm and ne is the electron density. Z1

is a mass-averaged charge quantity, which is obtained through a summation over all
background ion species i. The dependencies on global plasma parameters are

v3c ∝
T
3/2
e
∑

i niZi

ne
,

τs ∝
T
3/2
e

ne
,

with a weak dependence on Te and ne in lnΛ, which is not displayed in the proportion-
ality, but retained for the calculation.
In steady-state, ∂fα/∂t = 0, this equation is solved by the slowing-down distribu-

tion [86]

f0(v) =
Sα0τs0
v3 + v3c0

U(vα0 − v), (5.9)

in which we denote the steady-state parameters with an additional subscript 0, indicat-
ing that it serves as an initial condition. Doing so assumes that the alpha particles have
reached the state f0 prior to the thermal quench.

The disruption will be modeled with an exponential thermal quench that initiates at
t = 0, when we also assume a stopping of the fusion process, hence the source strength
Sα = Sα0 is a constant. Meanwhile, the plasma densities ne and ni and charges Zi are
also allowed to change. The alpha distribution becomes explicitly described by vc and
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τs, which are functions of plasma parameters (mainly Te and ne) evolving in time. In
the time-dependent equation, the fusion strength is set to zero and the Fokker-Planck
equation now reads

τs
∂fα(v, t)

∂t
− 1

v2
∂(v3 + v3c )fα(v, t)

∂v
= 0,

which can be solved utilizing a generic function F

fα(v, t) =
1

v3 + v3c
F

(∫ t dt

τs
+

∫ v v2dv

v3 + v3c

)
,

=
1

v3 + v3c
F


∫ t dt

τs
+

1

3
ln(v3 + v3c )︸ ︷︷ ︸

≡ G(v, t)

 .

With the initial condition, fα(v, t = 0)
!
= f0(v), we are able to drop the time-dependency

in G(v, t) and express v in terms of G0 ≡ G(v, t = 0),

v = (e3G0 − v3c )
1/3.

Through rearrangement of the initial condition, we obtain F (G0) as

F (G0) = τs0Sα0
v3 + v3c
v3 + v3c0

U(vα0 − v) =
τs0Sα0

1 + (v3c0 − v3)e−3G0
U(vα0 − v).

Restoring the time-integral in G(v, t), a general time-dependent solution yields

fα(v, t) =
1

v3 + v3c0

τs0Sα0

1 + (v3c0 − v3)e−3G(v,t)
U(vα − v), (5.10)

=
τs0Sα0

v3 + v3c (1− e−3
∫
τ−1
s dt) + v3c0e

−3
∫
τ−1
s dt

U(vα − v). (5.11)

The “birth” velocity vα that limits the energetic tail of the velocity distribution is now
time-dependent and can be obtained by rearranging G(vα, t):

vα ≡
[
(v3α0 + v3c )e

−3
∫ t
0 τ−1

s dt − v3c

]1/3
. (5.12)

At the initial point in time, vc = vc0 and vα = vα0 holds, so we obtain fα(v, 0) = f0 as
expected. In a thermal quench,

lim
t→∞

exp

(
−3

∫ t

0
τ−1
s (t)dt

)
= 0

and

lim
t→∞

v3c (t) = 0,

but because the exponential approaches zero faster, the inside of the bracket vα = [·]1/3
becomes negative and vα imaginary. As this is unphysical, the model is only valid until
vα reaches zero, from which on the energetic tail has ceased to exist. This behavior can
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be resolved by absorbing the slowing-down particles into a Maxwellian (of Helium-ash),
but is not part of our model as we are interested in the energetic particles only.

Furthermore, we will approximate the unit step function U(x) with the aid of the
complementary Error function Erfc(x):

U(vα − v) −→ 1

2
Erfc

(
v − vα
∆v

)
. (5.13)

where ∆v describes the velocity spread at birth and can be calculated from a thermal
alpha particle velocity at background electron temperature [88] ∆v ≡

√
2Te/mα .

Important moments of the velocity distribution yield the alpha density nα and the
alpha pressure pα:

nα =

∫
fα(v, t)dv, (5.14)

pα =
mα

3

∫
v2fα(v, t)dv. (5.15)

The velocity space model now consists of equations (5.11), (5.12) and (5.13), which
depend on the evolution of parameters vc and τs via background quench evolution. It
derives from a simplified, isotropic Fokker-Planck collision operator in a uniform plasma.
Relativistic effects are not included as the Lorentz factor for alpha particles at birth is
γ ≡ 1/

√
1− v2α0/c

2 = 1.0009. In the following, the model will be applied for an ITER
plasma disruption and validated against the numerical code CODION.

5.2.3 Validation and discussion of the analytical model

Present section is dedicated to validation by applying the velocity space model onto an
ITER case and a general discussion of the alpha particle slowing-down process. This
will also lay the ground for section 5.3.2, where the simulation space of this section is
extended further. Since CODION has been equipped with a fusion source (section 4.1),
it is a good candidate for a validation of the model. We also want to extend the discus-
sion around the isotropy assumption, which so far has only been explicitly shown to be
valid for a specific thermal quench scenario (section 5.2.1).

We use the 15 MA burning ITER scenario, which is introduced in section 5.1 and
its plasma parameters are shown in figure 5.1. For the time being, only the inner-most
radial point, r = 0, is considered. The fusion source magnitude is calculated from the
equal D-T densities nDT0

Sα0 = n2DT0⟨σv⟩

and the D-T fusion cross-section [174]

⟨σv⟩ = 3.68 · 10−18 T
−2/3
i0 exp

(
−19.94 T

−1/3
i0

)
m−3s−1.

A reaction rate for D-D fusion is not included as it is generally two orders of magni-
tude lower. With this input, one can already establish the steady-state distribution
f0 (eq. (5.9)) and calculate the alpha particle density on axis to be roughly nα ≈
0.9 · 10−2ne0. This value is slightly higher (by ≈ 5%) than in ITER predictive stud-
ies [19] and is kept constant throughout the simulation.

A thermal quench is modeled with an exponential decay in temperature (eq. (5.1))
and the density is allowed to change according to a step-function increase (eq. (5.2)). For
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analytical

CODION

Figure 5.8: a) The evolving isotropic alpha particle distribution function fα(v, t) for an expo-
nentially cooling ITER core plasma, computed with the analytical model (solid) and
compared against a CODION simulation (dotted). Colors indicate time. Note that
both solutions conserve particle density (integral), but only CODION includes a
Maxwellian. As the temperature decay initiates (tTQ = 1ms), the electron density
is raised to ne,1 = 4ne,0 = 4·1020 m−3 by a singly ionized 50%-50% neon+deuterium
injection. b) Figure shows the time-point of the cut-off velocity vα (eq. (5.12))
reaching zero as a function of tN = t/tTQ and the post-disruption density ne1.
Colors indicate different quench times. While Z1 = 5/3 represents a pure D-T
plasma, the dashed lines yield the solution of a plasma with Z1 = 10.

the validation case, the plasma density is raised by a 50%-50% singly ionized mixture
of neon and deuterium to a value of ne1 = 4ne0. Shown in figure 5.8a) is fα(v, t)
of thermal-quenching plasma with tTQ = 1ms. The analytical results are compared
to CODION simulations with a generally good agreement. Note that the CODION
distributions include the Maxwellian of background temperature. At the initial time-
point fα = f0, for which the cross-over velocity equates to vc0/vα0 ≈ 0.44. Because
vα0 ≪ vth,e, velocities even beyond the birth velocity can be reached through collisions
with thermal electrons. This energy diffusion effect [88] is represented by ∆v in eq. (5.13)
and is included in CODION as well.

As the background plasma temperature decays, the cross-over velocity vc ∝ T
1/2
1

shrinks as does the governing collision time-scale τs ∝ T
3/2
1 . This facilitates an initially

slow, but accelerated cooling of the energetic alpha tail and is represented by the integral
in the expression for the cut-off velocity vα in equation (5.12). The energetic alphas are
able to withstand the deceleration for roughly tN = 2 =̂ 2ms. Because the density is
conserved, the slowed-down particles progressively pile up at lower energies. The EP
distribution at tN = 5 is similar in width to the initial Maxwellian of ≈ 21 keV1, while
the actual background temperature has reached approximately 400 eV already.

In order to investigate, how the alpha particle thermalization is affected by the plasma
composition and pace of the thermal quench, we create a parameter space [ne1, Z1, tTQ]
and measure the time-point of vα (eq. (5.12)) reaching zero. This approximates the
complete thermalization of the energetic tail. The parameter Z1 is used to represent the
composition of the plasma. A pure D-T plasma yields Z1 = 5/3, while the validation
case raises this value to Z1 = 2.6. Figure 5.8b) shows the results of the parameter space
scan. An increase in electron density causes the alpha tail to slow down ’quicker’ in

1Collisions at v < vc are dominated by alpha-ion collisions, hence the Maxwellian is roughly at the ion
temperature.
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reference to the background temperature (tN ∼ T1), as more collision targets become
available and the slowing-down time τs drops. The discrepancy between various thermal
quench times comes from a deviation of the elapsed time t = tN tTQ to slowing-down
time τs, the latter of which is independent of tTQ. Essentially, a slower quench leaves
the particles more time to collide, before a certain temperature (∼ tN ) is reached. We
raise the mass-weighted charge Z1 of the plasma from 5/3 to 10, which for the veloc-

ity distribution raises the cross-over velocity vc ∝ Z
1/3
1 . This increases the fraction in

velocity space that is dominated by alpha-ion collisions and explains the more effective
slowing-down of the alphas.

The isotropy assumption for the velocity distribution has been shown to remain valid
(section 5.2.1) for an unmitigated disruption case (ne1 = ne0 = 1020m−3, tTQ = 1ms
and Z1 = 5/3) and can now be discussed for mitigated cases. The anisotropy-inducing

electric field develops, as the plasma conductivity σ ∝ T
−3/2
1 shrinks. In the simplifying

assumption, that the injected material does not affect the temperature evolution in the
TQ (i.e. assuming that the heat loss is dominated by MHD losses [104]), the electric field
becomes independent of ne1 and Z1 and evolves with tN , which equates a temperature.
The unmitigated case remains isotropic until at least t = 8tN , see figure 5.7. Mitigation
systems raise ne1 and Z1 and thereby accelerate the alpha thermalization (figure 5.8b)).
Thus, the isotropy assumption is maintained for the mitigated cases and for the thermal
quench timescales considered in this work (tTQ ≥ 1ms).

We have showed the application of CODION in the calculation of alpha particle
distributions for ITER. The general observation [78] is that the alphas remain an EP
species distinct from the thermal bulk for a considerable amount of time. Thus an
EP mode-driving force during the TQ of the plasma is present. We realized that the
disruption-induced electric field has negligible effect on the alphas, hence an analytical
model was developed that shows good agreement with the numerical results [79]. In
section 5.3 this model will be utilized to cheaply perform parameter space scans and
calculate the alpha drive for the TAEs obtained in section 5.1.

5.3 Wave-particle interaction in the post-disruption plasma

This section is dedicated to the calculation of the wave-particle interaction between
the alphas and post-disruption TAEs. The mode evolution of a TAE is determined
by the competition of damping effects of the bulk plasma and a driving force, that
originates from the alpha particle spatial pressure gradient (section 2.4). Approximate
analytical formulae exist [46], but we compute the interaction numerically with HAGIS
(section 3.5). The required input consists of the plasma equilibrium, the mode eigen-
functions and damping as well as some representation of the energetic particles. As
such, the input is a combination of our knowledge gained from the previous sections,
i.e. the Alfvén spectrum/damping and equilibrium in section 5.1 and the alpha particle
model in section 5.2.

Section 5.3.1 describes the wave-particle evaluation in detail, that is then extended to
a parameter space evaluation in section 5.3.2. The parameter space covers the effects of
plasma composition, thermal quench times and introduces a diffusive transport model
to the alpha particle distributions.
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5.3.1 TAE mode evolution during an unmitigated ITER plasma disruption

Again, we use the burning ITER 15 MA scenario, that suffers an unmitigated disruptive
event described by an exponential thermal quench with tTQ = 1ms. The plasma is di-
vided into 101 radial points r/a and populated with velocity distributions fα(v, r, t) cal-
culated by the analytical model established in section 5.2.2. Analogous to how CODION-
calculated distributions were transferred (see section 4.2, without the fitting), fα(v, r, t)
is imported into HAGIS for some point in time via

fα(v, r) → fHAGIS(v, s) = f(s)f(v), (5.16)

f(v) =
Erfc

[
(v − vα)/∆v

]
v3 + v3c (1− e−3

∫
τ−1
s dt) + v3c0e

−3
∫
τ−1
s dt

, (5.17)

f(s) = nα(s)/nα(0), (5.18)

where vc, vα, τs and ∆v are also functions of s. The transformation inherently assumes
r/a ≈ s, i.e. that the plasma described by the flux surface label s is approximately
circular. HAGIS is able to use VMEC-generated equilibria and we import the plasma
equilibrium established in section 5.1. Mode eigenfunctions M1 and respective damping
levels are transferred from LIGKA simulations of the same section. The beginning time-
point for the HAGIS simulations is chosen to be tN = 1.5 and is justified by the low
damping values (see figure 5.5). The Alfvén velocity for the unmitigated ITER plasma
is vA/vα0 ≈ 0.58 and for TAEs the most fundamental resonances occur at vA and vA/3
(section 2.4). At tN = 1.5 this velocity space region is well populated by alpha particles
at this point in time (see figure 5.7 or figure 5.8).

The modes are perturbations, whose amplitude is measured in δB/B, where B the
local magnetic field strength. Each mode is initialized with δB/B = 10−10 and the alpha
particle distribution is represented by a total of 105 markers. The time-integrator is set to
conduct 256 time-steps per wave-period which approximates to roughly 5 ·10−7 s (varies
for each toroidally distinct wave). In the simulation the alpha particles interacting with
the TAEs are redistributed by HAGIS in both space and energy, but the collisional
slowing-down process due to the further shrinking background temperature is not taken
into account by the HAGIS model. The mode damping values at tN = 1.5 are taken
as constant throughout the simulation. We limit the simulation duration to the point
of complete alpha particle slow-down (see figure 5.8b), however, we will see that the
growth is strong enough for the modes to saturate well before the alphas thermalize.

The wave-particle interaction is calculated with the M1 set of modes (section 5.1),
which are the even TAEs found in the inner plasma, 0 < s < 0.5. Figure 5.9a shows
the evolution of their amplitudes as driven by the alpha particles against the weakly
damping post-disruption plasma. We observe a linear growth phase of ≈ 0.6ms, at
which the growth rate is approximately γ/ω ≈ 1.8% [1/rad]. After the linear phase, the
modes show non-linear behavior and saturate at an average amplitude of δB/B ≈ 0.1%.
The non-linearities are due to particle redistribution and are not observed when the
simulation is run with a single toroidal mode. Particularly standing out are the n = 8
and n = 9 modes which are the modes with the lowest - essentially none - damping
(figure 5.5a)). These two TAEs briefly reach amplitudes of δB/B ≲ 1%, which requires
us to take the result with caution. It is known [183], that due to a lack of zonal-
flow physics [184] and mode-mode coupling effects, the HAGIS model can overestimate
the mode amplitudes. As such, the mode amplitudes are treated as an upper limit.
More modest values are observed with a larger set of modes: For computational reasons
associated with a parameter scan (and because damping-to-drive ratio increases in the
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Figure 5.9: Evolution of TAEs with toroidal mode number n in an unmitigated post-disruption
ITER plasma as driven by alpha particle population. Figure a) shows the simu-
lation with the mode set M1 (only inner half of the plasma, even parity), while
figure b) shows the same simulation with modes of the entire plasma taken into
account (M2, odd parity added). The end of the simulation in a) corresponds to
the time-point of complete alpha slow-down vα(s = 0) = 0. Legend entries with
subscript “asc” in figure b) refer to a later usage in section 5.4. All poloidal har-
monics are included for the simulation and the displayed data is slightly smoothed
for the purpose of illustration.

radial direction outwards), the LIGKA-Eigenmode searcher forM1 was restricted to the
inner half of the plasma and to even parity TAEs. We lift these restrictions and repeat
one HAGIS computation with a new set of LIGKA-eigenmodes, M2, that includes all
the TAEs in the plasma. Its modes have toroidal mode numbers ranging n = 6 − 26,
with some gaps populated with more than one TAE (even, odd), totaling in 62 toroidal
modes with up to 17 poloidal mode numbers. The mode evolution of M2 is depicted
in figure 5.9b, showing a balanced distribution of energy among the modes. Because
of the particle redistribution, even the newly included modes at s > 0.5 receive drive
from the alpha particles. The strongest driven mode is still the (even) n = 8, however
with a slightly reduced growth rate. Part of the low-n branch (black) now saturates at
δB/B ≈ 10−5 and consists of odd parity TAEs that receive generally less EP drive.

The large amplitudes of the TAEs suggest, that RE transport is likely [33, 77]. With
M2, the requirement on resolution drastically increases and becomes very demanding on
the HAGIS code. With this expanded set of modes we will be conducting a self-consistent
simulation of a disrupting plasma in section 5.4. However, due to computational costs
the M1 set of modes will be used for the parameter space evaluation. The strong
amplitudes obtained with M1 and M2 are treated as an upper limit.

5.3.2 TAE mode evolution in a mitigated ITER plasma disruption and the
effects of alpha particle diffusion

The calculations of the previous sections are expanded to learn about the effects that
varying quench times, disruption mitigation techniques and alpha particle losses might
have on the destabilization of TAEs. For this, the wave-particle interaction simulations
are conducted in a parameter space A ≡ [Dα, tTQ, ne1, nNE1/nD1], which covers the
thermal quench time tTQ, the post-disruption electron density ne1, the fraction of neon
injected nNE1/nD1 and where we add an alpha particle diffusion parameter Dα (defined
below) in addition to the resonant EP transport in the HAGIS model.
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A plasma disruptive event is regularly accompanied by a breaking-up of the confining
magnetic flux services. While the plasma surfaces heal again, the high-velocity alpha
particles are susceptible to being transported out of the plasma. Precisely quantifying
the disruption-induced transport is hard to assess without costly and parameter-rich
numerical simulations and will instead be addressed with a diffusion model for the alpha
particles.

We return to the alpha particle description and treat the spatial problem of diffusion
separately from our velocity space solution. The one-dimensional diffusion equation for
the alpha particle density nα(r, t) states:

∂nα(r, t)

∂t
=

∂

∂r
D

∂

∂r
nα(r, t) ≈ D(t)

∂2nα(r, t)

∂r2
, (5.19)

where D(t) is a time-dependent diffusion strength, independent of velocity and radius.
Boundary conditions are (1) a flat gradient at the core, ∂nα(0, t)/∂r = 0 and (2) an
open boundary at the edge of the plasma, r = a, allowing an outflow of alpha particles.
Equation (5.19) is solved numerically with the Crank-Nicolson method and applied
on the density gradient before the particle distribution is imported into HAGIS. The
diffusive process begins at t = 0 and runs until the initial point of the wave-particle
interaction calculation. For simplicity, we assume that this diffusion only affects the
alphas and not the background plasma. The time-dependence of the diffusion strength
is introduced to account for a healing of the magnetic flux surfaces. In a recent study
on the medium sized ASDEX Upgrade tokamak [185] a healing rate at the time-scale of
the thermal quench was successfully used to match experimental data on MMI-injected
argon transport, therefore we use

D(t) = Dαe
−tN , (5.20)

with an initial diffusion coefficient Dα. The extrapolation from the AUG study as-
sumes the diffusive process to be independent of particle mass and machine size. With
a parametrization of the diffusion coefficient Dα we will cover cases where (1) no al-
pha particles are lost up to cases where (2) the transport renders the wave-particle
interaction mechanism increasingly insignificant. The reasoning for (1) originates from
evidence of post-disruption EP confinement in the plasma core [186]. Such a strongly
confining case is of particular interest, because under such circumstances the (generally
faster, core-localized) RE seed electrons are also not expelled and bear a risk of generat-
ing a dangerous RE beam. This assessment will be discussed by the end of the section.
The magnitudes chosen for (2) are deemed realistic and are taken from our knowledge
about current (medium-sized) tokamak experiments [187] (results of discussions with
various experts from the disruption community). Furthermore, we require the alpha
particle radial profile to be unaffected by transport prior to the disruption occurring.
Effects like electrostatic microturbulence can change the general slowing-down shape
into “bump-on-tail-like” energy distributions [188], which would also have effects on
the wave-particle interaction. An example of the diffusion acting on an alpha particle
profile nα(r, t) is shown in figure 5.10a), besides a simple validation simulation (as the
Crank-Nicolson script was written from scratch).
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t = 2s

t = 0

Figure 5.10: a) Example of a diffusion of alpha particles according to eq. (5.20) with an open
boundary at the plasma edge, calculated by a Crank-Nicolson method. b) Vali-
dation of the Crank-Nicolson implementation against a well-known analytical so-
lution of the 1D diffusion equation. Boundary conditions are u(0, t) = u(L, t) = 0
and the initial function is a 2L-periodic sinus function.

A parameter space A is defined with values representative of the ITER experiment

Dα = [1, 100]m2/s,

tTQ = [1, 3]ms,

ne1 = [1, 1.5, 2, 2.5, 3, 3.5, 4] ne0,

nNe1/nD1 = [0, 0.1, 1.0],

with singly ionized neon, totalling 84 combinations. Every parameter affects the par-
ticles and we obtain distribution functions fα(v, r, t,A) for each combination in the
parameter space. The analytical model is used for the velocity distribution. Damping
values obtained through LIGKA stay unaffected by Dα and tTQ, because the initial
time-point for the wave-particle calculations remains tN = 1.5, i.e. at the same plasma
temperatures. Damping values as a function of electron density ne1 and neon compo-
sition nNe1/nD1 are found in figure 5.6, while the effect of ne1 and tTQ on the alpha
slowing-down are illustrated in figure 5.8b).
The wave-particle interaction calculations are conducted with the M1 set of modes

and the numerical setup described in section 5.3.1. The perturbations are evaluated in
terms of the maximum (max δB/B) and root-mean-square values (rms δB/B) of their
amplitudes and are summarized in figure 5.11. Figure 5.12 is part of a sensitivity scan
that serves a discussion on the longevity of the perturbations. Its calculations differ
through the usage of more thermalized alpha particle distributions, obtained for the
time-point tN = 3.5.

Generally we find, that alpha transport and material injection reduces the perturba-
tion amplitudes, especially when neon is involved. We begin a more detailed discussion
on the LHS of figure 5.11 (a) and c)). Apparent is an overall drop in perturbation am-
plitudes, as the post-disruption electron density ne1 rises. This can be explained with
the damping rate dependencies (figure 5.6), that generally grow with the electron den-
sity, but show a local minimum at ne1 = 2ne0, which in turn causes a local maximum
in the perturbation amplitudes for the Dα = 1m2/s cases. In addition, the growing
electron density affects the alpha velocity distributions, providing more collision tar-
gets and cause a faster deceleration of the energetic alpha tail. The influence of this
accelerated thermalization can be separated from the damping strength’s influence by
looking at the simulation results for a different thermal quench time tTQ. The LHS of
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Figure 5.11: Evaluation of maximum (max, triangle) and root-mean-square (rms, circle) of
the mode amplitudes δB/B reached by post-disruptionM1 TAEs resonating with
alpha particles. The mean values are calculated after 3 ms into the simulation.
Red, purple and green colors represent 0%, 10% and 100% neon injection, rest
deuterium. The simulation is conducted with the HAGIS code where all modes
are initialized with an initial perturbation amplitude of δB/B = 10−10. The
initial time-point of the simulation corresponds to a global time of tN = 1.5 after
the thermal quench has begun. The energetic alpha particle distributions are also
calculated for the time-point tN = 1.5.

Figure 5.12: Same as figure 5.11, but the energetic alpha particle distributions are calculated
for the time-point tN = 3.5.

figure 5.11 represents such a comparison and shows a strong similarity in mode ampli-
tudes for cases where the electron densities are close to the pre-disruption condition.
Although the background temperature profile stays the same, a slower decay time tTQ

grants the alpha particles more time to decelerate until t/tTQ ≡ tN = 1.5 is reached.
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5.3 Wave-particle interaction in the post-disruption plasma

Meanwhile, the damping is a function of temperature and therefore in our simulations
is independent of tTQ. The difference between the tTQ = 1ms and tTQ = 3ms pertur-
bation amplitudes increases with a rising electron density ne1 → 4ne0 and are due to an
accelerated slowing-down of the alpha particles.

The amount of neon in the injection modeling is distinguished by colors, where red is
0%, purple 10% and green 100% neon. Adding neon to the plasma increases its mass and
affects the alphas via Z1 (eq. (5.8)), which ranges from Z1 = 5/3 to Z1 ≈ 3 for the highest
amounts of neon in our simulations. As shown in figure 5.8b, the influence of Z1 on the
EP slow-down is less significant, than the neon effect on the damping (figure 5.6b)).
As more neon is added to the plasma its mass density ρ grows and reduces the Alfvén
velocity vA ∝ ρ−1/2, causing the TAE to now resonate with less energetic particles.
These effects cause the observed reduction in perturbation amplitude, from which we
conclude that a neon presence is very effective in terminating the alpha-driven TAEs.

Increasing the diffusion strength Dα (RHS of figure 5.11) yields a stronger flattening
of spatial alpha particle gradient. As expected, this causes a drop in mode drive and we
find, that with Dα = 100m2/s, tTQ = 1ms the perturbation levels are overall an order
of magnitude lower than without diffusion. With a slower thermal quench our diffusion
equation models a slower healing of the confining flux surfaces and the impact of the
gradient flattening becomes stronger overall. This effect stacks on top of the quench time
influence on the alpha particle deceleration discussed above and even modest amounts
of injection have strong impact on δB/B.

We want to address the fact, that for the duration of the HAGIS simulation a further
slowing-down of the alpha population due to the sinking background temperatures can-
not be taken into account. Particles are redistributed in space and energy, however, only
due to the energy transfer towards the TAEs. For a sensitivity study, part of the param-
eter space simulations are now repeated with alpha distributions, that are obtained at
a later time-point tN = 3.5, hence are further slowed-down and less energetic. The rest
of simulation setup remains the same. The results are shown in figure 5.12. Compared
to the prior simulations, the alpha particles had an additional 2 ms (for tTQ = 1ms)
and 6 ms (for tTQ = 3ms) to slow down. Note that the saturation of mode amplitudes
(in the strongest driving, unmitigated case) takes approximately 1 ms (figure 5.9a)).
Overall, for the parameter space of good confinement (Dα ≈ 0), the mode amplitudes
are now reduced by a factor of 5, but remain significant. As seen in figure 5.8b, the
alpha particles for tN = 3.5 and tTQ = 3ms are very close to a complete thermalization
and as such become increasingly unable to drive the TAEs.

We have collected information on the alpha particle driven TAEs and how their per-
turbation amplitudes are influenced by the injection of material, alpha particle diffu-
sion and varying thermal quench times. The unmitigated and strongly confining case
A = (Dα = 1m2/s, tTQ = 1ms, ne1 = ne0, nNE1 = 0) yields the highest TAE amplitudes
for the proposed mechanism. Disruption mitigation systems, which inject material into
the plasma reduce the perturbation strengths, mainly by raising the damping of the
bulk plasma. Neon proves especially effective in doing so. Our modeling assumes, that
the material is deposited uniformly and instantly at the onset of the thermal quench.
Should the inner plasma (s ≲ 0.5) however remain close to its pre-disruption condition
- hence also with strong alpha particle presence - one can expect significant TAE mode
activity during the thermal quench. Certain scenarios of material deposition could even
enhance the alpha mode drive: Because the energy is drawn from a radial gradient in
the alpha particle pressure, a cold front that slowly moves inwards or does not penetrate
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all the way, could potentially raise the gradient. While this has not be considered here,
the model presented in section 5.2.2 would allow an effective analysis.
The mechanism is sensitive to the transport of alpha particles. A disruption-induced

destruction of the confining magnetic flux surfaces can cause losses of EPs. Intolerable
heat loads onto plasma facing material is one of the dangers accompanied by disrup-
tions [6]. Up to this date, quantifying the post-disruption transport remains an unsolved
problem. However, a study suggest [186], that the stochastic transport during the ther-
mal quench decreases fast with the size of the machine and a confinement of EPs in
the core can be maintained for ITER-sized tokamaks. This however remains to be con-
firmed. Core confinement of a RE beam for up to 1 s has been observed [189] at the
TCV tokamak [190]. While a core confinement of REs during the thermal quench is
detrimental to MMI-based RE mitigation attempts, it bodes well for the alpha-driven
TAEs.
With Dα close to zero, we considered a case of near perfect post-disruption confine-

ment of the core plasma. While this seems possible [186], it is not a given situation
and a breakup of magnetic surfaces may cause strong transport of the alpha particles
and reduce the TAE perturbation strengths. However, the relevance of the alpha-TAE
interaction we research in this work, ultimately comes down to the TAE interaction with
REs (section 5.4). Runaway electrons and alpha particles share a common trait, which
is their high velocity making them susceptible to losses. As REs posses speeds that are
even larger the alpha particles, it can be assumed that if the breakup of magnetic sur-
faces is sufficiently strong for a sufficiently long time, the runaway electron seed losses
will be even larger than the alpha particle losses. In cases where the alpha particles are
lost, the generation of a RE beam becomes less likely, although the RE seed population
may be replenished by the constant source of Compton scattering and tritium decay (see
section 5.4). The necessity for RE mitigating effects, which we study in the next section,
becomes less likely in scenarios where the alpha particles population is diminished.
In the following section, a disruption simulation is performed, where effects of the

established TAEs on RE generation are studied. Because the mechanism evolves natu-
rally in the plasma and without external influence, it is an inherent and passive effect
and could possibly aid RE mitigation attempts. For the reasons mentioned above, we
consider a scenario, where the healing of the broken up flux surfaces is fast enough to
keep both the alpha particles and runaway electrons well confined, as this is the most rel-
evant case for the TAE-RE interaction. We further consider the worst-case scenario, by
looking at an unmitigated disruption, which we found to yield the highest perturbation
amplitudes.
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5.4 Self-consistent disruption simulation

5.4 Self-consistent simulation of an unmitigated plasma
disruption under the influence of alpha-driven TAEs

In the previous section we have established that when a D-T ITER plasma disrupts, it
is able to utilize the energy of its lingering alpha particles to destabilize Alfvénic modes
in the cooling plasma. The strengths of these perturbations were found to be significant
enough to merit further investigation [33, 77, 78]. The perturbations develop in a highly
dynamic phase of the plasma, during which also the generation of runaway electrons
occurs. In this section we will compute how the TAEs of the unmitigated simulation,
A = (Dα = 1m2/s, tTQ = 1ms, ne1 = ne0, nNE1 = 0), affect the generation process.

The first step consists of calculating the RE transport caused by the perturbations
and a code, that is suitable for the task, is ASCOT5 (section 3.6). In a second step, the
DREAM tool (section 3.7) will be applied. It calculates runaway electron dynamics in a
disruption and - crucial for its application here - has the ability to include particle diffu-
sion effects into the RE generation equations. The code application itself was performed
by co-authors of paper B [79] K. Särkimäki (ASCOT5) and I. Pusztai (DREAM), while
I provided the inputs and conducted the analysis of the outputs.

Markers, which are initially located at the same radial position are traced and their
radial spreading in time is used to estimate the transport in form of a diffusion [167].
The diffusion coefficient is evaluated at various radial positions, where each position
is initially populated by 500 markers, which are distributed uniformly toroidally and
poloidally along a drift surface. The markers are chosen to represent REs and therefore
are strongly passing with a pitch ξ = p∥/p = 0.99. The simulation is repeated for
electron energies [0.1,1,10] MeV. Neither the induced electric field nor Coulomb collisions
are present in the simulation, so that all the observed transport is solely due to the
magnetic field perturbations.

For the simulation, we use the M2 set of TAEs and their perturbation strengths
obtained for the unmitigated case A = (1, 1, 1, 0), which is the strongest driving case in
our simulations. As it is also a case with Dα ≈ 0, we ignore our diffusion post-disruption
transport model, that would otherwise also affect the REs. The plasma equilibrium used
is the one obtained for the LIGKA and HAGIS simulations (section 5.1) and is converted
into a suitable input for ASCOT using the code CHEASE [144]. It forms a κ = 1.46
elongated plasma, with R0 = 6.2m, a = 2.06m inside a vessel with a wall radius
b = 3.72m and at a vertical displacement Z = 0. From the mode evolution of M2 the
root-mean-square amplitudes of δB/B in the time-frame t = tasc,i − tasc,f are calculated
and displayed in the previous mode-evolution (figure 5.9b)). This specific time-frame is
chosen, because at tasc,i = 1.38ms the rms(δB/B) has its maximum and the simulation
is performed for 0.5 ms to allow particle orbits to become de-correlated. Eigenfunctions
of M2 are set to be constant for the duration of the ASCOT simulation.

The resulting perturbed plasma equilibrium is shown on the RHS of figure 5.13. The
perturbation amplitude δB/B is calculated locally at each grid point, with δB be-
ing the toroidal maximum of the strength of the 3D MHD-perturbation. Both the
axis-symmetric field B and δB are calculated with all their components, i.e. toroidal,
poloidal and radial contribution. One can see the most pronounced TAEs to reside in
the inner half of the plasma, where TAE-driving alpha particles are most present. The
perturbations are stronger on the low-field-side of the plasma, which is both due to the
radial dependence of the toroidal magnetic field strength and due to the dominant TAEs
being of even parity.
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Figure 5.13: The plasma equilibrium (RHS) perturbed by M2 Alfvénic modes, the Poincare
plot (top left) for a 100 keV electron and the diffusion calculations (bottom left)
for test-particles inside these perturbed flux surfaces.

Runaway electrons are launched parallel to the magnetic field line trajectories with
kinetic energies [0.1, 1, 10] MeV and are tracked throughout their motion in the plasma.
Energy values and the parallel velocity direction is representative of a runaway elec-
tron accelerated by an induced electric field. Figure 5.13 (top left) shows a Poincare
plot of the 100 keV electron, from which we expect increased transport in the region
R ≈ 6.8− 7.4m. A diffusion strength is calculated as a function of the particle momen-
tum and radial position and displayed in figure 5.13 (bottom left). It peaks at R ≈ 7m
at value of D = 13886m2/s. Using first principles [191] and an average perturbation
strength of rms(δB/B) = 0.003 one can estimate the diffusion of a fully stochastic
magnetic field at the amplitude, yielding DRR ≈ R0c(δB/B)2 = 16740m2/s. This an-
alytical estimate is known [166] to significantly overestimate the transport in regions,
where magnetic islands occur. As no major islands can form, the analytical and numer-
ical value serve a good sanity check.

Until now, the disruption analysis in the previous sections has been conducted using
multiple codes and models. In the following we will apply a single tool - DREAM - that is
able to calculate the evolution of the background plasma, the induced electric field as well
as runaway electron generation including their radial transport. We employ DREAM
in its fully fluid mode, which often provides adequate results at significantly reduced
computational cost [168]. Instead of resolving for entire phase-space RE distribution
functions, the runaway current density jRE is used to characterize the runaway species.

The bulk ion plasma is a pure 50-50 D-T plasma. The electron background is char-
acterized by its density ne, its temperature Te and Ohmic current density j, of which
the initial profiles are laid out in figure 5.1 and figure 5.2b). The initial temperature
profile is evolved with the exponential temperature drop in eq. (5.1) at a quench time of
tTQ = 1ms, no material injection is performed and the current density is evolved self-
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consistently by DREAM. The geometric parameters R0, a, b and κ are used to describe
the magnetic field structure2. We assume zero triangularity and no Shafranov shift.
The ASCOT-obtained transport coefficients are given as functions of radius, normal-

ized relativistic momenta p ≡ γv/c = (0.66, 2.78, 20.5) and are calculated for p∥/p ≡
ξ = 0.99. These values are scaled for the DREAM simulation as follows: For particle
momenta below p = 0.66, a linear scaling is assumed with D = 0 for electrons with
p = 0. Above p = 20.5 the transport is assumed to remain constant, justified by the
expected dependency D ∝ p/

√
p2 + 1 [192]. Consistent with the Rechester-Rosenbluth

diffusion model [191] we assume a pitch-depend diffusivity D ∝|ξ|.
In order to account for momentum and pitch-dependent diffusivities, we have to as-

sume some distribution function for the runaway electron species, as noted in section 3.7.
As in the work by P. Svensson [9] we assume

f(r, p, ξ, t) =
A(p)

2 sinh(A(p))
eA(p)ξF (r, p, t),

F (r, p, t) = nRE(r, t)
Γavτ

E − Ec
e−Γavτ(p−pcrit)/(E−Ec),

where A(p)−1 ≡ (pνDτ)/2E determines the extent of the distribution function in pitch
ξ, νD is the pitch-angle collision frequency, τ ≡ mec/(eEc) is the relativistic collision
time between electrons, Γav is the avalanche source term computed by the DREAM
model, Ec and pcrit are the critical electric field and critical momentum respectively, both
accounting for partial ionization effects as in reference [107] (for pcrit) and reference [93]
(for Ec). The above function f(r, p, ξ, t) corresponds to a strongly forward beamed
particle distribution (at large momenta p) that is dominated by avalanche and is a good
approximation for avalanche generated beams [9, 77].
With the pitch-distribution of f(r, p, ξ, t) the ASCOT-obtained diffusivities D(p, ξ)

are pitch-averaged

⟨D⟩ξ(p) =
∫ 1

−1
D(p, ξ)

AeAξ

2 sinhA
dξ,

and used to calculate the radial RE flux F

F =

∫ ∞

pcrit

⟨D⟩ξ(p)
∂

∂r
Fdp.

The total runaway density evolves as

∂⟨nRE⟩
∂t

=

(
∂⟨nRE⟩
∂t

)
fluid

+
1

V ′
∂

∂r

[
V ′F

]
, (5.21)

where (·)fluid contains all the model RE generation mechanisms that are described in
section 3.7. Equation (5.21) corresponds to equation (3.17) without the advection terms.
While the ASCOT code calculates advection as well it is neglected for the DREAM sim-
ulation.

The diffusion coefficients D for the REs are now only radially varying and kept con-
stant in time for the entire simulation. This represents an upper limit on the effect of the
transport, as the magnetic perturbation amplitudes would decay over time in the experi-
ment. An amplitude scan for the diffusion is conducted, withD×[d1000, d10, x1, x3, x10] =
[1/1000, 1/10, 1, 3, 10] scaled, where x1 is the non-scaled, baseline scenario.

2Note that b is not the radius of the first wall, but rather that of the closest toroidally closed conducting
structural element.
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x10

d1000

Figure 5.14: DREAM simulation of an ITER plasma disruption (at t = 0), that is under the
influence of alpha-driven TAEs and the RE transport that the TAEs cause. The
diffusive transport strength is uniformly scaled up (x ) by factors 3 and 10, and
scaled down (d) by factors of 10 and 1000, while x1 is the baseline scenario. a)
Evolution of the total plasma current Ip (solid) and the total runaway current IRE

(dotted). b) RE generation rates d(IRE)/dt of individual generation mechanisms
for up-scaled transport (x10, dashed) and down-scaled transport (d1000, solid).
Note that the up-scaled simulation does not extent all the way until full conversion,
details see text.

DREAM outputs a runaway rate Γ ≡ d(⟨nRE⟩)/dt for every generation mechanism in-
dividually, from which we obtain the individual runaway current density rate d(jRE)/dt =
Γec. At each flux surface, jRE can be integrated into the runaway current rate d(IRE)/dt
of the entire device via

dIRE

dt
=

1

2π

∫ a

0
dr V ′

〈
R2

0

R2

〉
GR0

Bmin

djRE

dt
, (5.22)

where ⟨·⟩ denotes a flux-average value, R is the major radius at any given point,
GR0 ≡ (R/R0)Bζ , where Bζ is the toroidal magnetic field and Bmin is the minimum
magnetic field strength on the corresponding flux surface. With the same formula on
Ohmic current density jΩ, the Ohmic plasma current IΩ is calculated by DREAM.

Figure 5.14a) shows the evolution of the total plasma current (Ip = IΩ + IRE, solid)
and the total runaway current (IRE, dashed) for the scaled transport simulations. It
is observed in the simulations that increasing the RE-transport leads to a higher and
faster conversion3 of Ohmic current into runaway current.

For an explanation of the result, we will closely compare the increased transport
case (x10 ) with the reduced transport case (d1000 ), which is essentially unperturbed.
Depicted in figure 5.14b) are the individual runaway current rates d(IRE)/dt of every
generation mechanism as a function of time. Note the logarithmic scale on the y-axis and
the different time-scales of RE current conversion (figure 5.14a)). Hot-tail and avalanche
are dominating over the other processes that are generally many orders of magnitudes
weaker. Both dominant runaway processes increase by transport. Tritium decay of the
high-transport case eventually drops below the low-transport simulation levels: In the
beta-decay process of the tritium, a photon with an energy of 18.6 keV is released and

3The simulation data may end before a full conversion, because of a local electric field sign change,
that cannot be handled in the fluid DREAM simulations and is not solved by increasing resolution
parameters.
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is able to generate a RE seed particle when the photon energy is enough to push a
thermal electron beyond the critical momentum pcrit (eq. 2.19) for RE generation. This
critical momentum scales with the electric field as pcrit ∝ (E/Ec)

−1/2, which is affected
by the transport in a way (discussed below), that (locally) raises the critical momentum
beyond what can be reached by a thermal electron hit by a tritium decay photon.

The mechanism that is most significantly altered by the RE transport is the avalanche
generation. In order to understand this, we take a closer look at the runaway current
density jRE ∝ ⟨nRE⟩, which in for t ≲ 5ms is a good approximation for the RE seed
population, that will be multiplied by the avalanche (see figure 5.14b)). In figure 5.15a)
we can see the REs being distributed by the perturbations in the thermal quench. While
these perturbations - hence diffusion - do not extend all the way towards r = 0 (see fig-
ure 5.13), a significant portion of the core-localized seed electrons is transported towards
r ≈ 1m, the half-plane of the plasma. This has crucial implications: As illustrated in fig-
ure 5.15b), the runaway electron seed has been dragged into regions of generally stronger
electric field fractions E/Ec, which is a defining factor for the avalanche mechanism and
increases the multiplication. As time progresses, the diffusion that is held constant for
the simulation, keeps distributing runaway electrons. Meanwhile, the induced electric
field grows, as seen in figure 5.15b), and is increasing towards the edge of the plasma.

We can also see the electric field profile undergoing transport-induced changes for
t = 6.5ms. The x10 case decreases E/Ec at r ≈ 1m but increases it for r ≲ 0.5m. We
see this happening, because the electric field induction is tied to changes of the (local)
current. The high-transport case has increased jRE(r ≈ 1m), hence the local total
current decay is decelerated, resulting in a weaker local electric field E. By analogy, the
opposite is true, where the current density jRE has decreased because of the transport.

The transport-induced spatial rearrangement was shown to broaden the runaway elec-
tron profile and pushing REs into regions that are (a) more favorable for avalanching
and (b) would otherwise not be populated by RE particles. The net effect is illustrated
in figure 5.15c), which depicts the avalanche source term Γav in its radial profile. Note
that the time-points shown not only reflect on a time of significant avalanching, but is
also within the lifetime of the energetic alpha particles (figure 5.8b)), which are (indi-
rectly) the reason for the transport in the first place. The RE diffusion indeed reduces
Γav in the plasma core, r < 0.6m, but this reduction is overcompensated by an increase
in Γav for r > 0.6m. The consequence of the stronger avalanching shows in an increase
of the runaway current conversion (figure 5.14a)).

For the unmitigated and unperturbed ITER disruption, we find (figure 5.14a), d1000 )
that roughly 70% of the original pre-disruption current is converted into runaway cur-
rent by the end of the CQ. We include the effects of the alpha particles destabilizing
TAEs in the TQ (section 5.3) in the form of a diffusion coefficient for the perturbation-
induced transport on REs. The diffusion correlates with the spatial location of the alpha
particles, and as such is most significant in the inner half of the plasma (see figure 5.13).
Because of this, REs cannot become lost and the distribution of core-localized RE seed
particles ultimately increases the avalanche growth. For the TAE perturbation strengths
established for the worst-case disruption scenario (unmitigated, well-confining) we find
that the current conversion fraction increases to an estimated 85% and a ≈ 12.5 MA RE
beam. In summary, the RE mitigating effects that were hypothesised for the alpha-TAE
drive (see section 1.1) may end up increasing the runaway current in the absence of
further transport from mid-radius towards the edge.

We have conducted the DREAM simulation without material injection, which not
only provides the strongest perturbation amplitudes, but also isolates the effect of the
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d1000

x10

d1000

x10

Figure 5.15: DREAM simulation of an ITER plasma disruption (at t = 0), that is under the
influence of alpha-driven TAEs and the RE transport that the TAEs cause. Only
the up-scaled RE transport (x10, dotted) and down-scaled RE transport (d1000,
solid) is shown here for emphasis. Figure a) displays the runaway current density
jRE b) the electric field value E/Ec − 1 and c) the avalanche source term Γav.
The time-point t = 4.5ms approximates the RE seed as it is chosen prior to RE
avalanching (see figure 5.14b)) and is additionally zoomed in in a) and b) for
emphasis on the seed.
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TAEs on the RE generation. Considering the effects of material injection on the TAE
amplitudes (see figure 5.11), a rough estimate can be made: With a reduction of average
perturbation amplitude δB/B by two orders of magnitude, the Rechester-Rosenbluth
diffusion model [191] predicts the diffusion to scale down by a factor of 1000, correspond-
ing to the d1000 simulation conducted. The TAEs used for the unmitigated simulation
have an average amplitude of rms(δB/B) ≈ 3 · 10−3, and was shown (figure 5.11) to be
reduced to ≈ 10−5, for either high amounts of deuterium injection (ne1 > 4ne0), alpha
particle diffusion of the order of Dα = 100m2/s and slow thermal quenches (tTQ = 3ms)
in various combinations. Actual predictions however are non-trivial and would require
extended parameter scans and a self-consistent simulation like it has been done in this
section with DREAM. For example: While the alpha particle diffusion (Dα) reduces
the perturbation amplitudes by flattening its pressure gradient, it also causes the alpha
particles to reach further towards the edge of the plasma. The average amplitude of
the TAEs becomes lower, but modes closer to the plasma edge may become more pro-
nounced. A transport channel for the REs that reaches the edge, may finally cause loss
of runaway electrons and ultimately reduce the runaway current.
Similarly, one could think about exploiting the inherent core-transport with external

efforts. In a recent study [105], mitigated ITER disruptions under the presence of mag-
netic perturbations have been found to have substantial effect on the RE dynamics. For
the simulation study, resonant magnetic perturbations have been applied in the edge
region (0.6 < r/a < 1.0). Depending on the mitigation scenario and perturbation am-
plitudes, the RMPs - in combination with various injection schemes - would sometimes
increase the runaway current. The conclusion of the study was, that an effective dissipa-
tion of the runaway electrons is difficult without significant transport in the center [105].
In this context, the mechanism investigated in this work could provide synergy effects
with externally applied perturbations by extending the stochastic regions from the core
plasma all the way towards the edge. External perturbations methods like RMPs are
planned for ITER disruption mitigation systems and could benefit strongly from the
alpha-TAE drive investigated throughout this thesis.
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6 Summary and outlook

Multiple post-disruption phenomena were researched in the course of this prediction
study for the 15 MA ITER scenario.

In section 5.1, we reconstructed a plasma equilibrium valid for the thermal quench
and investigated it about the modes supported by the system, showing a wide range of
TAEs with toroidal mode numbers n = 6− 26. These are calculated to receive strongly
decreasing damping as the temperature decays, dropping from levels of γ/ω ≈ 4% down
to 0.1/0.2% (for n = 8, 9) only tN = 1.5tTQ into the thermal quench. Disruption
scenarios are considered, where mitigation systems might inject various mixtures of
deuterium and neon, whose inclusion generally raises the damping rate, especially for
mixtures containing neon.

Section 5.2 dealt with collisional alpha particle dynamics in the thermal quench. For
the initial, numerical treatment a fusion alpha source was implemented into CODION
(section 4.1) and simulations on various unmitigated scenarios (ne = 1020m−3) con-
ducted. A general observation was, that the alpha particles’ insufficient collisional
slowing-down allows them to stay energetic for several milliseconds despite strong back-
ground cooling. More specifically, the alphas thermalize after approximately 6tN fol-
lowing the disruption, allowing for resonant interaction with TAEs in the meantime.
Simulations including the self-induced electric field show that the alpha particle velocity
distribution remains isotropic during the slowing-down process. This led to the creation
of an analytical model for a time-dependent alpha slowing-down distribution, which was
used to include the effects of MMI. We found, that raising the density of the plasma
accelerates the thermalization, with the electron density playing a more significant role
that the ion composition. At a post-disruption electron density of 1021m−3 the alphas
thermalize at ≈ 4.5tN (for tTQ = 1ms). Whether this elevated electron density was
achieved by pure deuterium injection or with the inclusion of heavier mass ions is found
unimportant. Slower thermal quenches leave the alphas more time to decelerate be-
fore a certain temperature (∼ tN ) is reached. This is important for the alpha-TAE
drive because the damping is generally a function of temperature. At quenches as slow
as tTQ = 5ms the alphas thermalize already at 5tN (ne = 1020m−3) and at 3.25tN
(ne = 1021m−3).

The knowledge about alpha particles and TAEs previously gained was joined in sec-
tion 5.3, whose subject is wave-particle interaction simulations. For the unmitigated
case, the alpha particles were shown to resonantly drive the TAEs unstable. The simu-
lations begin at tN = 1.5 due to the low damping rates calculated before. A saturation
is reached after an additional tN = 1.5, with average perturbation amplitudes reaching
δB/B ≈ 10−3. For further wave-particle interaction simulations, a parameter space
was created, which covers the effects of density/neon injection, thermal quench time
and disruption-induced alpha particle transport. The latter is modelled with a diffusion
equation at the onset of the disruption and parameterized with the diffusion coefficient
Dα. The general observation was, that the unmitigated, well-confining (Dα ≈ 0) case
yields the highest perturbation amplitudes. Addition of material overall decreases the
TAE amplitudes, both due to an increase in background damping and due to accelerated
alpha slowing-down. The diffusion of alpha particles flattens the spatial gradient, from
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6 Summary and outlook

which the energy in the resonant interaction is drawn, yielding generally lower pertur-
bation strengths (up to an order of magnitude less for Dα = 100m2/s, tTQ = 1ms). For
slower thermal quenches the alphas are less energetic at tN = 1.5, resulting in slightly
lower average δB/B.

For section 5.4, the impact of the alpha-driven TAEs on RE transport and RE gen-
eration was calculated. It focuses on the unmitigated, well-confining disruption, which
is argued to be the most relevant case for our simulation, as it is the worst-case sce-
nario for RE generation. With a particle-following code, the RE transport is estimated
with as a diffusion in the perturbed ITER equilibrium, yielding a diffusion strength
of up to DRE ≈ 14000m2/s in the inner half of the plasma. Disruption simulations
were performed, taking into account the influence of variously scaled DRE on generation
mechanisms. The RE diffusion is found to generally increase the final runaway cur-
rent, with a 15% increase in the unscaled simulation (IRE ≈ 13MA) compared to the
down-scaled situation (DRE/1000, IRE ≈ 11MA). The reason is found to be the spatial
rearrangement of the runaway electron seed particles, that are eventually multiplied by
the avalanche mechanism. The RE seed is diffused into regions which would otherwise
not been populated and are generally more favorable for avalanche, because of the elec-
tric field profile. Losses of RE particles are not invoked since the DRE is most dominant
in the plasma core and does not extent all the way towards the plasma edge. The reason
for that is ultimately the central location of the TAE-driving alpha population.

With the ITER disruption research in this work, we have learned about an indirect
interaction mechanism between fusion-born alpha particles and runaway electrons, with
the mediator being TAEs. While the perturbations were found to increase the run-
away electron generation, it bears an interesting opportunity for disruption mitigation
systems. Systems like RMPs or passive helical coils apply externally generated per-
turbations in order to enhance RE transport. Both systems would benefit from the
core-transport mechanisms presented in this thesis. The next logical step therefore is,
to include such externally generated perturbations into our disruption simulations. In
combination with the core-localized TAEs, a synergy effect in reducing the final RE
current seems promising.
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[34] P. Heinrich. Investigations of Alfvénic activity during the current quench in
ASDEX Upgrade. master thesis, Technische Universität München, München
(2021). https://pure.mpg.de/rest/items/item_3332803_2/component/file_
3332804/content.

[35] H. Meyer et al. Nuclear Fusion, 59 (11):112014 (2019).

[36] U. Stroth et al. Nuclear Fusion, 62 (4):042006 (2022).

[37] L. Horvath et al. Nuclear Fusion, 56 (11):112003 (2016).

[38] P. Lauber. Strongly non-linear energetic particle dynamics in ASDEX Upgrade
scenarios with core impurity accumulation (2018). In proceedings of the 27th
IAEA Fusion Energy Conference. Available at https://conferences.iaea.org/
event/151/contributions/6094/.

[39] P. Lauber. NLED data and the ASDEX test case description. https://pwl.

home.ipp.mpg.de/NLED_AUG/data.html. Accessed: 2022-08-17.

[40] P. Lauber. Energetic particle dynamics induced by off-axis neutral beam injection
on ASDEX Upgrade, JT-60SA and ITER (2021). In proceedings of the 28th IAEA
Fusion Energy Conference. Available at https://conferences.iaea.org/event/
214/contributions/17169/.

[41] F. Vannini et al. Physics of Plasmas, 27 (4):042501 (2020).

[42] I. Novikau et al. Physics of Plasmas, 27 (4):042512 (2020).

[43] G. Vlad et al. Nuclear Fusion, 61 (11):116026 (2021).
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[110] O. Embréus et al. Journal of Plasma Physics, 84 (1):905840102 (2018).

[111] L. Hesslow et al. Nuclear Fusion, 59 (8):084004 (2019).

[112] H. W. Lu et al. Physica Scripta, 87 (5):055504 (2013).

[113] M. Cheon et al. Nuclear Fusion, 56 (12):126004 (2016).

[114] A. Gibson. Nature, 183 (4654):101 (1959).

[115] P. Helander et al. Phys. Rev. Lett., 90:135004 (2003).
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