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Prediction with Approximated Gaussian Process
Dynamical Models

Thomas Beckers and Sandra Hirche

Abstract—The modeling and simulation of dynamical systems
is a necessary step for many control approaches. Using classical,
parameter-based techniques for modeling of modern systems, e.g.,
soft robotics or human-robot interaction, is often challenging or
even infeasible due to the complexity of the system dynamics.
In contrast, data-driven approaches need only a minimum of
prior knowledge and scale with the complexity of the system. In
particular, Gaussian process dynamical models (GPDMs) provide
very promising results for the modeling of complex dynamics.
However, the control properties of these GP models are just
sparsely researched, which leads to a ”blackbox” treatment in
modeling and control scenarios. In addition, the sampling of
GPDMs for prediction purpose respecting their non-parametric
nature results in non-Markovian dynamics making the theoretical
analysis challenging. In this article, we present approximated
GPDMs which are Markov and analyze their control theoretical
properties. Among others, the approximated error is analyzed
and conditions for boundedness of the trajectories are provided.
The outcomes are illustrated with numerical examples that
show the power of the approximated models while the the
computational time is significantly reduced.

Index Terms—Probabilistic models, nonparametric methods,
Gaussian processes, stochastic modeling, probabilistic simulation,
learning systems, data-based control.

I. INTRODUCTION

MODELING of dynamical systems plays a very import
role in the area of control theory. The goal is the deriva-

tion of a mathematical model which is based on generated
input data and the corresponding output data of the plant.
The model is necessary for any model-based control design,
such as model predictive control. Besides, a model is required
for simulations to evaluate the quality of the control designs
and to improve the understanding of the system. To achieve
a dynamical model, the output of the model is feedbacked to
the model itself. A special class of dynamical models is given
by simulation models, which do not rely on any data from
the plant during the prediciton [1]. Therefore, these models
are suitable to perform predictions independent of the plant
for not only simulations but also in control scenarios such as
model predictive control. Classical system identification deals
with parametric models. If the system contains nonlinearities,
there exist various identification techniques, which mostly
depends on the structure of the nonlinear elements. For these
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approaches, a suitable model structure must be selected a priori
to achieve useful results. However, there exists a large class of
systems which can not be accurately described by parametric
models. Especially, for complex systems such as human mo-
tion dynamics [2], [3], prediction of climate effects [4], [5] or
structural dynamics [6], [7], non-parametric techniques appear
to be more promising.
Within the past two decades, Gaussian processes (GPs) have
been developed as powerful function regressors. A GP con-
nects every point of a continuous input space with a normally
distributed random variable. Any finite group of those in-
finitely many random variables follows a multivariate Gaussian
distribution. The result is a powerful tool for nonlinear func-
tion regression without the need of much prior knowledge [8].
In contrast to most of the other techniques, GP modeling
provides not only a mean function but also a measure for
the uncertainty of the prediction. The output is a Gaussian
distributed variable which is fully described by the mean
and the variance. There are several possibilities to use a
Gaussian process for dynamic system modeling. A frequent
approach is the state space model which is in general a very
efficient model structure. Gaussian process dynamical models
(GPDMs) have recently also become a versatile tool in system
identification because of their beneficial properties such as the
bias variance trade-off and the strong connection to Bayesian
mathematics, see [9]. The Gaussian process state space model
(GP-SSM) uses GPs for modeling dynamical systems with
state space models, see [10], where each state is described
by an own GP. The function between the states and the
system’s outputs are modeled by another GP or a parametric
structure. Alternatives are given by nonlinear identification
models such as NFIR [11], NARX [10] or nonlinear output
error (NOE) models [12]. In comparison to the other models,
the NOE has the advantage of being a simulation model
such as the GP-SSM. Although the application of Gaussian
process dynamical models increases in control theory, e.g., for
adaptive control and model predictive control [13], [14], [15],
the theoretical properties of these GPDMs are only sparsely
researched. However, the theoretical properties are crucial for
further investigations in robustness, stability and performance
of control approaches based on GPDMs [16], [17].
In many works where GPs are considered as dynamical model,
only the mean function of the process is employed, for instance
in [18] and [19]. This is mainly because a GPDM is often
used for replacing a deterministic model in already existing
model-based control approaches. In [20] some basic theoretical
properties for deterministic GP-SSMs are derived. However,
GPDMs contain a much richer description of the underlying
dynamics but also the uncertainty about the model itself when
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the full probabilistic representation is considered. In [21], [22]
control laws are derived which explicitly take the uncertainty
of GPDMs into account but without investigation of the control
properties of the models. In order to ensure the applicability
of GPDMs, classical control theory properties are required,
see [16] and [17]. Such basic properties of a dynamical system
are, among others, the existence of boundedness conditions.
In [23] some basic boundedness properties for simplified
probabilistic GP-SSMs are presented. However, it turns out
that the analysis of GPDMs is challenging as its usage in
simulations requires the sampling of an infinite-dimensional
object which is not possible without further simplifications,
e.g., discrete sampling with interpolation. To overcome this
issue, the authors of [24] propose to marginalize out the
transition functions to respect the nonparametric nature of the
model using Particle Markov Chain Monte Carlo (PMCMC).
However, the resulting non-Markovian dynamics is strongly
undesired in control systems as it leads to theoretical and
practical issues: the analyse tools in control are mostly suited
for Markovian systems such as the Lyapunov stability and
the dependencies across time results in computational time
and memory issues for long-time simulations. Even though
effective sampling of GPDMs has recently gained attention in
the machine learning community, e.g. [25], [26], the control
related implications are still open.
Contributions: The contribution of this article is the intro-
duction of approximated GP-SSM and GP-NOE models to
recover the Markovian property. For this purpose, the set
of past states for the prediction of the next state ahead is
shortened to a finite subset. We show that control relevant
properties such as boundedness for the open- and closed-
loop are preserved in the transition from the true model
to the approximated, Markovian model. In addition, it is
guaranteed that the predicted uncertainty of the approximated
model overestimated the true uncertainty. Furthermore, upper
bounds for the approximation error expressed by the means
square prediction error and the Kullback–Leibler divergence
are presented. In two case studies, we discuss the behavior of
the approximated models and highlight their benefits.
Notation: Vectors and vector-valued functions are de-
noted with bold characters v. The notation [a; b] is used
for [a>, b>]> and x1:n denotes [x1, . . . ,xn]. Capital letters A
describes matrices. The matrix I is the identity matrix in
appropriate dimension. The expression N (µ,Σ) describes a
normal distribution with mean µ and covariance Σ. N+

denotes the positive natural numbers.
The remainder of the article is structured as follows. In sec-
tion II, the background of GPDMs as well as their sampling
procedure are introduced. Section III presents the novel ap-
proximated GPDMs and the approximation error. The bound-
edness of the presented models is analyzed in section IV,
followed by a discussion. Finally, two case studies demonstrate
the applicability.

II. PRELIMINARIES AND DEFINITIONS

In this article, we focus on Gaussian process based dynamic
models. Thus, we start with a brief introduction to GPs as they
are the central part of the model.

A. Gaussian Process Models

Let (Ω,F , P ) be a probability space with the sample
space Ω = Rn, n ∈ N, the corresponding σ-algebra F and
the probability measure P . Consider a vector-valued, unknown
function y = f(z) with f : Rn → Rnf and y ∈ Rnf .
The measurement ỹ ∈ Rnf of the function is corrupted by
Gaussian noise η ∈ Rnf , i.e.,

ỹ = f(z) + η, η ∼ N (0,Σn) (1)

with the positive definite matrix Σn = diag(σ2
1 , . . . , σ

2
nf

). To
generate the training data, the function is evaluated at nD
input values {z{j}}nD

j=1. Together with the resulting measure-
ments {ỹ{j}}nD

j=1, the whole training data set is described
by D = {X,Y } with the input training matrix X =
[z{1}, z{2}, . . . ,z{nD}] ∈ Rn×nD and the output training
matrix Y = [ỹ{1}, ỹ{2}, . . . , ỹ{nD}]> ∈ RnD×nf . Now, the
objective is to predict the output of the function f(z∗) at
a test input z∗ ∈ Rn. The underlying assumption of GP
modeling is, that the data can be represented as a sample of
a multivariate Gaussian distribution using a kernel function k.
The joint distribution of the i-th component of f(z∗) is1[

Y:,i

fi(z
∗)

]
∼N

([
m(X)
m(z∗)

]
,

[
K(X,X) + σ2

i I k(z∗, X)

k(z∗, X)
>

k(z∗, z∗)

])
(2)

with the kernel k : Rn × Rn → R as a measure of the
correlation of two points (x,x′). The mean function is
given by a continuous function m : Rn → R and the vec-
tor of mean functions m : Rn×nD → RnD by m(X) =
[m(X:,1); . . . ;m(X:,nD )]. The kernel function is the central
part of the kernel trick, which transforms the data to a higher
dimensional feature space Υ, see Fig. 1, without knowing
the actual transformation φ : RnD → Υ since k(x, x′) =
〈φ(x), φ(x′)〉 . Then, a linear regression is performed in
the feature space and the output is transformed back. The

φ

Rn Υ

Fig. 1: The kernel trick transforms the data in a higher dimen-
sional feature space where a linear regression is performed.

function K : Rn×nD × Rn×nD → RnD×nD is called the
Gram matrix Kj,l = k(X:,l, X:,j) with j, l ∈ {1, . . . , nD}.
Each element of the matrix represents the covariance between
two elements of the training data X . The vector-valued
function k : Rn × Rn×nD → RnD calculates the covariance
between the test input z∗ and the input training data X

k(z∗, X) with kj = k(z∗, X:,j) (3)

for all j ∈ {1, . . . , nD}. The covariance function depends
on a set of hyperparameters Φ = {ϕ1, . . . , ϕnh} whose
number nh ∈ N and domain of parameters depend on the

1For notational convenience, we simplify K(X,X) to K
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employed function. A comparison of the characteristics of
the different covariance functions can be found in [27]. The
prediction of each component of f(z∗) is derived from the
joint distribution (2) and, therefore, it is a Gaussian distributed
variable. The conditional probability distribution for the i-th
element of the output is defined by the mean and the variance

µi(f |z∗,D) =m(z∗) + k(z∗, X)
>
(K + σ2

i I)
−1

(Y:,i −m(X)) (4)

vari(f |z∗,D) =k(z∗, z∗)−k(z∗, X)>(K + σ2
i I)
−1

k(z∗, X). (5)

Remark 1. The existence of the inverse Gram matrix is essen-
tial for the prediction step. The Gram matrix is invertable if all
vectors in the feature space φ(X:,1), . . . , φ(X:,nD ) are inde-
pendent. If there exist an i, j ∈ N such that φ(X:,i) = φ(X:,j)
or the number of training points exceeds the dimensionality
of the feature space, i.e nD > dim(Υ), the condition can
be violated. In this case, the Moore–Penrose-pseudoinverse
is used. For further discussion on regularization methods for
GPs, see [28].

The nf normally distributed components of f |z∗,D are
combined into a multi-variable Gaussian distribution

f |z∗,D ∼ N (µ(·),Σ(·))
µ(f |z∗,D) = [µ(f1|z∗,D), . . . , µ(fnf |z∗,D)]

> (6)
Σ(f |z∗,D) = diag(var(f1|z∗,D), . . . , var(fnf |z∗,D)),

where Φi = {ϕ1, . . . , ϕnh} is the set of hyperparameters
for the i-th output dimension. The hyperparameters are typ-
ically optimized by means of the likelihood function, thus
by ϕ

{j}
i = arg maxϕ{j} logP (Y:,i|X,ϕ{j}) for all i ∈

{1, . . . ,m} and j ∈ {1, . . . , nh}. A gradient based algorithm
is often used to find at least a local maximum of the likelihood
function [8].

Remark 2. Also the correlation between the dimensions of the
state variable can be considered, e.g., by placing a separate
covariance functions on the GP outputs [29] or by using a
multiple-output covariance function [30].

B. Gaussian Process Dynamical Models

Black-box models of nonlinear systems can be classified
in many different ways. One main aspect of GPDMs is
to distinguish between recurrent structures and non-recurrent
structures. A model is called recurrent if parts of the regression
vector depend on the outputs of the model. Even though
recurrent models become more complex in terms of their
behavior, they allow to model sequences of data, see [31]. If all
states are fed back from the model itself, we get a simulation
model, which is a special case of the recurrent structure. The
advantage of such a model is its property to be independent
of the real system’s states. Thus, it is suitable for simulations,
as it allows multi-step ahead predictions without the need of
the real system. In this article, we focus on two often-used
recurrent structures: the Gaussian process state space model
(GP-SSM) and the Gaussian process nonlinear error output
(GP-NOE) model.

1) Gaussian Process State Space Models: Gaussian process
state space models are structured as a discrete-time system. In
this case, the states are the regressors, which is visualized
in Fig. 2. This approach allows to be more efficient, since
the regressors are less restricted in their internal structure.
Thus, a very efficient model in terms of number of regressors
might be possible. The mapping from the states to the output
can often be assumed to be known. The situation, where the
output mapping describes a known sensor model, is such an
example. It is mentioned in [24] that using too flexible models
for both - f and the output mapping - can result in problems
of non-identifiability. Therefore, we focus on a known output
mapping. The mathematical model of the GP-SSM is thus
given by

xt+1 = f(ξt) =


f1(ξt) ∼ GP

(
m1(ξt), k

1(ξt, ξ
′
t)
)

...
...

...
fnx(ξt) ∼ GP

(
mnx(ξt), k

nx(ξt, ξ
′
t)
)
.

yt ∼ p(yt|xt,γy), (7)

where ξt ∈ Rnξ , nξ = nx + nu is the concatenation of the
state vector xt ∈ X ⊆ Rnx and the input ut ∈ U ⊆ Rnu such
that ξt = [xt;ut]. The mean function is given by continuous
functions m1, . . . ,mnx : Rnξ → R. The output mapping is
parametrized by a known vector γy ∈ Rnγ with nγ ∈ N. The
system identification task for the GP-SSM mainly focuses on f
in particular. It can be described as finding the state-transition
probability conditioned on the observed training data.

Remark 3. The potentially unknown number of regressors
can be determined using established nonlinear identification
techniques as presented in [32], or exploiting embedded
techniques such as automatic relevance determination [16].

q−1
GP
GP

...
GP

p(yt+1|xt+1,γy)

xt

ut

xt+1 yt+1

Fig. 2: Structure of a GP-SSM with q as backshift operator,
such that q−1xt+1 = xt.

2) Gaussian Process Nonlinear Output Error Models: The
GP-NOE model uses the past nin ∈ N>0 inputs ut ∈ U ⊆ Rnu
and the past nout ∈ N>0 output values yt ∈ Rny of the model
as the regressors. Figure 3 shows the structure of GP-NOE,
where the outputs are fed back. In combination with neural
networks, this model type is also known as parallel model.
The mathematical model of the GP-NOE is given by

yt+1 = h(ζt) =


h1(ζt) ∼ GP

(
m1(ζt), k

1(ζt, ζ
′
t)
)

...
...

...
hny (ζt) ∼ GP

(
mny (ζt), k

ny (ζt, ζ
′
t)
)
,

(8)
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...

q−1 ...
q−nout

GP
GP

...
GP

yt

yt−nout+1

ut

ut−nin+1

yt+1

Fig. 3: Structure of a GP-NOE model with q as backshift
operator, such that q−1yt+1 = yt.

where the vector ζt ∈ Rnζ , nζ = noutny + ninnu is
the concatenation of the past output values yt and input
values ut such that ζt = [yt−nout+1; . . . ;yt;ut−nin+1; . . . ;ut].
The mean function is given by continuous func-
tions m1, . . . ,mny : Rnζ → R. In contrast to nonlinear
autoregressive exogenous models, that focus on one-step
ahead prediction, a NOE model is more suitable for
simulations as it considers the multi-step ahead prediction [1].
However, the drawback is a more complex training procedure
that requires a nonlinear optimization scheme due to their
recurrent structure [16].

Remark 4. It is always possible to convert an identified input-
output model into a state-space model, see [33]. However,
focusing on state-space models only would preclude the de-
velopment of a large number of useful identification result for
input-output models.

3) Training: As the article focuses on the properties of
GPDMs, regardless of the training procedure, we assume for
the remainder of the paper that a training set D is existent and
available. In case of a GP-SSM, the training set consists of
X = [ξ0, . . . , ξnD−1] with ξt = [x>t ,u

>
t ]> as input data, and

Y = [x1, . . . ,xnD ]> as output data. In contrast, the training
set of a GP-NOE model consists of X = [ζ0, . . . , ζnD−1] with
ζt = [y>t ,u

>
t ]> as input data, and Y = [y1, . . . ,ynD ]> as

output data. For the sake of completeness, we present a simple
way how to collect training data in the following. In case of
available state measurements, the training data set for a GP-
SSM can be directly created by recording the states and inputs
as depicted in Fig. 4. Here, the discrete-time system to model
is operated by an arbitrary controller. The only condition on
the controller is that a finite sequence of training data of the
system can be collected whereas stability is not necessarily
required. As stated in section II-B, the transition from the
state xt to the output yt is assumed to be known.
However, if the state is intractable, well-known methods
for the training are based on variational inference and the

Controller System q−1 X=[ξ0, . . . , ξnD−1]

Y =[x1, . . . ,xnD ]

D
xt

ut ξt

Fig. 4: Block diagram of the generation of the training data
set D with nD data points for GP-SSMs.

introduction of inducing points, see [2], [24], [34] for more
details. More information about the training procedure of GP-
NOE models are presented in [10], [12].

Remark 5. In this article, the training input and output data
is always denoted by X and Y , respectively, to be in line with
the standard notation. Note that in case of GP-SSMs, the set
Y does not contain the outputs yt but the next states ahead.

C. The crux of simulation

The prediction with discrete-time GPDMs, needed for sim-
ulations and model-based control approaches, is more chal-
lenging than GP prediction: The reason is the feedback of
the model’s output to the input that manifests as correla-
tion between the current and past states defined by the GP
model. Therefore, a prediction with the presented GP models
in section II-B would require the sampling of the probabilistic
mappings f and h given by (7) and (8), respectively. Once
sampled, the model could be treated as standard discrete-
time system. Unfortunately, these functions are defined on the
sets X ⊆ Rnx ,U ⊆ Rnu which contain infinitely many points.
Thus, it would be necessary to draw an infinite-dimensional
object which represents a sample of the probabilistic map-
pings. This is not possible without further simplifications, e.g.,
discrete sampling with interpolation, see [35]. To overcome
this issue, the probabilistic mapping is marginalized out to re-
spect the nonparametric nature of the model, see [36] for more
details. The result is a probability distribution of the states
without dependencies on the probabilistic mappings f ,h.
However, the marginalization of f ,h leads to dependencies
across time for the states. For the prediction of the next state
ahead xt+1, the nature of GP models allows to include the past
states as noise-free ”training data” in a way that there exists
an analytic closed-form, see [37]. We formally restate the non-
Markovian prediction as given in [36] in the next property.

Remark 6. For the sake of notational simplicity, we consider
GPDMs with identical kernels and identical noise of the
training data for each output dimension. The results can easily
be extended to GPDMs with different kernels and noise for
each output dimension.

Property 1. Consider a GP-SSM (7) with training
set D = {X,Y }, where Y is corrupted by Gaussian
noise N (0, σ2

nI). Then, the conditional distribution of the next
state ahead xt+1 ∈ Rnx and output yt+1 ∈ Rny is given by

xt+1|ξ0:t,D ∼ N
(
µ(xt+1|ξ0:t,D),Σ(xt+1|ξ0:t,D)

)
µi(·) = m(ξt) + k(ξt, Xt)

>K−1
t

(
[Yt]:,i −m(Xt)

)
Σi,i(·) = k(ξt, ξt)− k(ξt, Xt)

>K−1
t k(ξt, Xt)

p(yt+1|ξ0:t,γy,D) = p(yt+1|xt+1,γy)p(xt+1|ξ0:t,D)
(9)

with x0 ∈ Rnx for all t ≥ 0 and extended data matrices Xt ∈
Rnξ×(nD+t), Yt ∈ R(nD+t)×nx

Xt = X, Yt = Y if t = 0

Xt = [X, ξ0:t−1], Yt = [Y >,x1:t]
> otherwise. (10)
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The Gram matrix Kt ∈ R(nD+t)×(nD+t) is defined as

Kt =


[

K + σ2
nI K(ξ0:t−1, X)

K(ξ0:t−1, X)> K(ξ0:t−1, ξ0:t−1)

]
, if t > 0

K + σ2
nI, otherwise.

(11)

Remark 7. Property 1 shows that dependency across time
appears through past states and inputs treated as noise-free
”training data”. However, it should not be mistaken as real
training data, which is also included in the Gram matrix Kt,
but seen as a way to include the correlation through time.

For the first step, i.e t = 0, the conditional distribution as
given in Property 1 is identical to the standard GP prediction
with predicted mean and variance given by (4). For t > 0, the
current state is feedbacked to the input, as shown in Fig. 2.
Using the joint Gaussian distribution property (2) of the GP,
we obtain the joint distribution[

(Yt):,i

(xt+1)i

]
∼ N

([
m(X)
m(ξ0:t)

]
,

[
Kt K ′t
K ′>t k(ξt, ξt)

])
, (12)

where K ′>t =
[
k(ξt, X)>,k(ξt, ξ0:t−1)>

]
. Based on (12),

the conditional probability distribution of the next state
ahead xt+1 is computed.

Remark 8. If we consider a state feedback law ut = g(xt)
with g : Rnx → Rnu , the extended input vector is then given
by ξt = [x>t , g(xt)

>]> and Property 1 can also be used to
sample trajectories for closed-loop simulations.

Analogously, we introduce the prediction for the GP-NOE
model.

Property 2. Consider a GP-NOE model (8) with training
set D = {X,Y }, where the output data Y is corrupted by
Gaussian noise N (0, σ2

nI). Then, the conditional distribution
of the next output yt+1 ∈ Rny is given by

yt+1|ζ0:t,D ∼ N
(
µ(yt+1|ζ0:t,D),Σ(yt+1|ζ0:t,D)

)
µi(·) = m(ζt) + k(ζt, Xt)

>K−1
t

(
[Yt]:,i −m(Xt)

)
Σi,i(·) = k(ζt, ζt)− k(ζt, Xt)

>K−1
t k(ζt, Xt)

(13)

with ζ0 ∈ Rnζ for all t ≥ 0 and the extended data
matrices Xt ∈ Rnζ×(nD+t), Yt ∈ R(nD+t)×ny

Xt = X, Yt = Y if t = 0

Xt = [X, ζ0:t−1], Yt = [Y >,y1:t]
> otherwise. (14)

The Gram matrix Kt ∈ R(nD+t)×(nD+t) is defined as

Kt =


[

K + σ2
nI K(ζ0:t−1, X)

K(ζ0:t−1, X)> K(ζ0:t−1, ζ0:t−1)

]
, if t > 0

K + σ2
nI, otherwise.

(15)

D. Need for Markovian models

The previous section shows that the next step ahead
state xt+1 of a GP-SSM is a sample drawn from a Gaussian

distribution with the posterior mean and variance based on
the previous states and inputs. This leads to dependencies
between the states such that the dynamical model loses the
Markov property, i.e., xt+1 depends not only on xt but on all
previous states x0:t. The resulting issues are from theoretical
and practical nature as presented in the following.

1) Theoretical issues: The proof of system properties such
as stability, convergence rate, and performance is key for
mainly all applications in control systems - especially in safety
critical environments as, e.g., autonomous driving. Over the
last decades, the control community has developed a large
amount of tools for the analysis and control synthesis for
dynamical systems. However, these tools mainly focus on
systems with Markov property. For instance, the Lyapunov
stability is a standard concept for the analysis of nonlin-
ear open- and closed-loop systems which needs the Markov
property. For non-Markovian systems, the amount of tools
are significantly decreased such that the analysis of control
systems with GPDMs is challenging.

2) Practical issues: As the past states are treated as new
”training points” without noise, the size of the covariance
matrix Kt increases with each time step, see Property 1. This
results not only in a strongly increasing computing time for
the prediction but also an intractable memory problem for
long time simulations. Even though recent findings allows
the computing time to be at least linear, e.g. see [25], the
control related implications of these approximations are still
unaddressed.

III. APPROXIMATED MODELS

To overcome the issue of the non-Markovian property of
GPDMs, we introduce approximated GPDMs where only
a subset of previous states and inputs are considered for
the prediction. These models allow to use all analyse tools
available for Markovian systems and to keep the computation
time constant. First, we introduce the formal description of
this approximated model. For this purpose, we define the
matrix Ξmt ∈ Rnξ×m consisting of past states and inputs as

Ξmt :=

{
∅ if m = 0 ∨ t = 0

[ξt−1, . . . , ξt−m] otherwise,
(16)

which are used for the prediction. The maximum length of
memory m ∈ N defines how many past states and inputs are
considered for the prediction of the next state. The resulting
actual length of memory m = min(t,m) is the number of
states and inputs which are actually available. The actual
length and the maximum length only differ if the number of
past states beginning with x0 is less than m. The prediction
of the next state ahead and the output yt+1 ∈ Rny is given by

xmt+1 ∼ N
(
µ(xmt+1|ξt,Ξmt ,D)︸ ︷︷ ︸

ft(ξt,Ξ
m
t )

,Σ(xmt+1|ξt,Ξmt ,D)︸ ︷︷ ︸
Ft(ξt,Ξ

m
t )

)
yt+1|xmt+1 ∼ p(yt+1|xmt+1,γy). (17)

For simplicity in the notation, we introduce two helper func-
tions f t:Rnξ×Rnξ×m→Rnx and Ft:Rnξ×Rnξ×m→Rnx×nx .
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The posterior mean and variance of the i-th element of xmt+1

is given by

ft(ξt,Ξ
m
t )i=m(ξt)+k(ξt, X

m
t )>(Km

t )
−1(

[Y mt ]:,i−m(Xm
t )
)

Ft(ξt,Ξ
m
t )i,i= k(ξt, ξt)− k(ξt, X

m
t )>(Km

t )
−1
k(ξt, X

m
t ),
(18)

respectively. The extended data matrices Xm
t ∈ Rnξ×(nD+m)

and Y mt ∈ R(nD+m)×ny are denoted by

Xm
t = X, Y mt = Y if m=0 ∨ t=0

Xm
t = [X, ξt−m:t−1], Y mt = [Y >,xt−m+1:t]

> otherwise
(19)

where only elements back to t = 0 in case of negative t −
m are considered. The corresponding Gram matrix Km

t ∈
R(nD+m)×(nD+m) is given by

Km
t =

[
K(X,X) + σ2

nI K(ξt−m:t−1, X)
K(ξt−m:t−1, X)> K(ξt−m:t−1, ξt−m:t−1)

]
(20)

if t > 0 ∧m > 0 and K(X,X) + σ2
nI otherwise.

Note that the prediction in (17) is based on the past states
and inputs back to the time step t −m, as indicated in (19).
In contrast, the prediction of a GP-SSM is based on the full
history of states and inputs, see (19).

Definition 1. We call (17) a Gaussian process approxi-
mated state space model (GP-ASSM) with maximum memory
length m.

Remark 9. For m = ∞, the prediction depends on all past
states, i.e.,

x∞t+1 ∼ N
(
µ(x∞t+1|ξt, . . . , ξ0,D),Σ(x∞t+1|ξt, . . . , ξ0,D)

)
(21)

and thus, equals the true distribution in (9) without Markovian
property. The most simple approximation is given for maximum
memory length m = 0

x0
t+1 ∼ N

(
µ(x0

t+1|ξt,D),Σ(x0
t+1|ξt,D)

)
, (22)

where the next state ahead is independent of all past states
except the current state and input ξt. GP-ASSMs with finite
maximum length of memory m are Markov chains of finite
order as they depend on a finite set of past states and input.

Figure 5 visualizes the relation between actual length m and
the maximum length m.

Example 1. The idea of the presented approximation is
visualized in the top plot of Fig. 6 by a one-dimensional GP-
ASSM with maximum length of memory m = 0. For the
sake of simplicity, the external input is set to zero ut = 0 for
all t ∈ N. The distribution of the next state ahead depends
only on the current state x0

t as it is always sampled from
a Gaussian distribution disregarding the history of the past
states. Thus, for a given x0

0, the next state x0
1 (red circle) is

sampled from a Gaussian distribution (green line), where the
mean and variance are based on x0

0, see (22). In the next time
step, x0

2 (red circle) is sampled from a Gaussian distribution
(green line), where the mean and variance are solely based
on x0

1. This procedure is continued for the following time

x0 · · · xt−m · · · xt−1 xt xt+1

m states in memory

Fig. 5: Time dependencies for the next step ahead state xt+1

with the actual length of the memory m = min(t,m) and
maximum length m.

steps. As the distribution (green line) of the next state x0
t+1 is

independent of the past states x0
t−1, . . . , x

0
0, it is always equal

to the distribution of the GP (mean and 2-sigma uncertainty) at
state x0

t . In contrast, the true sampling (m =∞) with a one-
dimensional GP-SSM considers all past states x∞t , . . . , x

∞
0 ,

see (21). In Fig. 7, we start again with a given x∞0 . The next
state x∞1 (red circle) is sampled from a Gaussian distribution
based on the initial state. Then, x∞2 is sampled based on x∞1
and x∞0 . For this purpose, the pair (x∞0 , x

∞
1 ) is added as

noise free training data, see (10). Thus, for any following state
where x∞t = x∞0 , t ≥ 2, the next state is given by x∞t+1 = x∞1 .
Due to the dependency on all past states, the distribution of
states, which are not yet added as training data, differ from
the predicted mean and variance of the GP. This is visualized
at the distribution of x∞4 (green line) in contrast to the mean
(blue line) and the 2-sigma uncertainty (gray shaded area) of
the GP. This sampling procedure is necessary since the state
mapping f , given by (7), can not be drawn directly due to
the definition over an infinite set X ⊆ Rnx . In Fig. 7, the
mapping f is illustratively drawn (yellow line) over a finite
but large number of states.

x0
0 x0

1 x0
2 x0

3

x0
1

x0
2

x0
3

x0
4

Mean
2-sigma
Data points
States

Fig. 6: Sampling of a one-dimensional GP-ASSM with
squared exponential kernel.

x∞
0 x∞

1 x∞
2 x∞

3

x∞
1

x∞
2

x∞
3

x∞
4

Sample of state mapping f

Fig. 7: Sampling of a one-dimensional GP-SSM with squared
exponential kernel.
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Remark 10. More advanced strategies for defining the subset
of states, that are stored in the memory, are also conceivable.
Namely, the same methods as for sparsification of the training
data can be exploited. For instance, approaches based on the
effective prior [38] or pseudo-inputs [39] have already been
successfully applied for sparsification.

In the following, we transfer this formal description to
GP-NOE models. In comparison to GP-SSMs, the GP-NOE
models do not have explicitly defined states. Therefore, we
define the matrix of past outputs and inputs as

Λmt =

{
∅ if m = 0 ∨ k = 0

[ζt−1, . . . , ζt−m] otherwise
(23)

with m ∈ N defining the maximum length of memory
and m = min(t,m), the actual length of memory. The
prediction of the next output yt+1 ∈ Rny is given by

ymt+1 ∼ N
(
µ(ymt+1|ζt,Λmt ,D)︸ ︷︷ ︸

ht(ζt,Λ
m
t )

,Σ(ymt+1|ζt,Λmt ,D)︸ ︷︷ ︸
Ht(ζt,Λ

m
t )

)
. (24)

For simplicity in the notation, we introduce the helper func-
tions ht : Rnζ × Rnζ×m → Rny and Ht : Rnζ × Rnζ×m →
Rny×ny . The mean [ht]i and variance [Ht]i,i of the i-th output
dimension is given by

[ht]i =m(ζt) + k(ζt, Xt)
>(Km

t )
−1

([Yt]:,i −m(Xm
t ))

[Ht]i,i =k(ζt, ζt)− k(ζt, Xt)
>(Km

t )
−1
k(ζt, X

m
t ). (25)

For GP-NOE models, we define the extended training
sets Xm

t ∈ Rnζ×(nD+m), Y mt ∈ R(nD+m)×ny as

Xm
t = X, Y mt = Y if m=0 ∨ t=0

Xm
t = [X, ζt−m:t−1], Y mt = [Y >,yt−m+1:t]

> otherwise

with the Gram matrix Km
t ∈ R(nD+m)×(nD+m) as

Km
t =

[
K(X,X) + σ2

nI K(ζt−m:t−1, X)
K(ζt−m:t−1, X)> K(ζt−m:t−1, ζt−m:t−1)

]
(26)

if t > 0 ∧m > 0 and K(X,X) + σ2
nI otherwise.

Definition 2. We call (24) a Gaussian process approximated
nonlinear output error (GP-ANOE) model with maximum mem-
ory length m.

Having introduced the formal description for the approx-
imations of the non-Markovian dynamics, we analyze the
approximation error in the following.

A. Approximation Error

In this section, we present the computation of the error
between the true state distribution xt+1 given by (9) and the
approximated distribution xmt+1 based on the maximum length
of memory m. As the Kullback-Leibler (KL) divergence is an
important measure of how one probability distribution differs
from a second, we start with the KL divergence of the GP-
SSM prediction from the GP-ASSM prediction. For the sake
of clarity, we define the following notational simplifications

Fmt := Ft(ξt,Ξ
m
t ), F∞t := Ft(ξt,Ξ

∞
t ) (27)

fmt := f t(ξt,Ξ
m
t ), f∞t := f t(ξt,Ξ

∞
t ) (28)

for the mean and variance given by (17).

Proposition 1. Consider a GP-ASSM with maximum length
of memory m ∈ N and data set D such that

xmt+1 ∼ N
(
µ(xt+1|ξt,Ξmt ,D),Σ(xt+1|ξt,Ξmt ,D)

)
with x0 ∈ Rnx . For given past states and inputs ξ0:t,
where ξt 6= ξ0, . . . , ξt−1, the KL-divergence of the true
distribution xt+1 from the approximation xmt+1 is given by

dKL(xt+1‖xmt+1) =
1

2
∆>t [Fmt ]−1∆t − nx + tr

(
F∞t [Fmt ]−1

)
+ ln

[
tr
(
[F∞t ]−1Fmt

)]
(29)

with ∆t = fmt − f∞t .

Proof. For given past states and inputs ξ0:t, the next state xt+1

of the GP-SSM and the next state xmt+1 of the GP-ASSM are
Gaussian distributed such that the KL-divergence is given by

dKL(xt+1‖xmt+1)=
1

2

[
tr
(
[Fmt ]−1F∞t

)
+
(
fmt −f∞t

)>
[Fmt ]−1

(
fmt −f∞t

)
− nx + ln

( |Fmt |
|F∞t |

)]
(30)

using the definition of Ft,f t in (17). As the variance of each
element in xt+1 and xmt+1 is independent, see (18), the KL-
divergence can be rewritten to

dKL(xt+1‖xmt+1) =
1

2

nx∑
i=1

[
[F∞t ]i,i + ([fmt ]i − [f∞t ]i)

2

[Fmt ]i,i

+ ln

(
[Fmt ]i,i
[F∞t ]i,i

)
− 1

]
. (31)

Finally, simplifying (31) leads to (29).

Proposition 1 shows that the error is quantified by the drift
of mean µ(xt+1|ξt,Ξmt ,D) and variance Σ(xt+1|ξt,Ξmt ,D)
with respect to the true distribution. Therefore, depending on
the maximum length of memory m, the approximation error
is zero at the beginning as the following corollary points out.

Corollary 1. For all t ≤ m, the approximated distribu-
tion p(xt+1|ξt,Ξmt ,D) given by (17) equals the true distribu-
tion given by (7) with KL-divergence dKL(xt+1‖xmt+1) = 0.

Proof. The corollary is a direct consequence of Proposition 1.
If the time step t is equal to or less than the maximum length
of memory m, the matrices of past states and inputs of the
GP-SSM and the GP-ASSM is identical, i.e., Ξmt = Ξ∞t , and
thus, the mean and variance of the approximated distribution
equals the true distribution. In consequence, the KL-divergence
is zero given by (31).

The restriction of Proposition 1 that the current state must
not be part of the past states is necessary as otherwise, the
variance Ft(ξt,Ξ

∞
t ) or Fmt would be zero. In Example 1,

this case is explained as the past states and inputs are added to
the extended data set such that the predicted variance becomes
zero. Additionally, the asymmetry of the KL divergence might
be obstructive in some applications. Therefore, we introduce
a different measure for the approximation error, namely the
mean square prediction error (MSPE).



8

Proposition 2. Consider a GP-ASSM with maximum memory
length m ∈ N and data set D such that

xmt+1 ∼ N
(
µ(xt+1|ξt,Ξmt ,D),Σ(xt+1|ξt,Ξmt ,D)

)
with x0 ∈ Rnx . For given past states and inputs ξ0:t, the
MSPE between xmt+1 and xt+1 of the GP-SSM is given by

E

[∥∥xt+1 − xmt+1

∥∥2
]

=‖f∞t −fmt ‖+ tr (F∞t + Fmt ) . (32)

Proof. Since each element of xt+1 and xmt+1 with a given
history of past states and inputs ξ0:t is Gaussian distributed,
the MSPE is defined by

E

[∥∥xt+1 − xmt+1

∥∥2
]

=

nx∑
i=1

E
[
(xt+1,i − xmt+1,i)

2
]

(33)

=

nx∑
i=1

(
[f∞t ]i − [fmt ]i

)2
+ [F∞t ]i,i + [Fmt ]i,i.

Equation (33) is then rewritten to (32).

With Propositions 1 and 2 the error of the approximation
can be computed. Even if the error measures do not decrease
in general for increasing maximum length of memory m,
the behavior of the variance can be quantified. The next
proposition allows to overestimate the predicted variance based
on the maximum length of memory.

Proposition 3. Consider two GP-ASSMs with states and
inputs ξ0:t ∈ Rnξ with ξ0 6= ξ1 6= . . . 6= ξt such
that xmt+1 ∼ N

(
f t(ξt,Ξ

m
t ), Ft(ξt,Ξ

m
t )
)

and xm
′

t+1 ∼
N
(
f t(ξt,Ξ

m′
t ), Ft(ξt,Ξ

m′
t )
)
, where m and m′ are the max-

imum length of memory, respectively. Then, for m′ > m

tr
(

Σ(xm
′

t+1|ξt,Ξm
′

t ,D)
)
< tr

(
Σ(xmt+1|ξt,Ξmt ,D)

)
(34)

holds for all t ∈ N with t > m.

Proof. Following (9), the variance for each component of the
predicted state of a GP-ASSM is given by

var(xmt+1,i|ξt,Ξmt ,D) = k(ξt, ξt)− k(ξt, X
m
t )>(Km

t )
−1

k(ξt, X
m
t ). (35)

The Gram matrix Km
t is positive definite and from (20) we

know, that its dimension is (nD + m) × (nD + m). Based
on Km

t , the Gram matrix Km′
t ∈ R(nD+m′)×(nD+m′) is

determined as

Km′
t =

[
K(ξt−m′:t−m−1, ξt−m′:t−m−1) K(ξt−m′:t−m−1, X)

K(ξt−m′:t−m−1, X)> Km
t

]
.

Since the Km′
t is positive definite and m′ > m, the inequality

k(ξt, ξt)− k(ξt, X
m′
t )>(Km′

t )
−1
k(ξt, X

m′
t )

<k(ξt, ξt)− k(ξt, X
m
t )>(Km

t )
−1
k(ξt, X

m
t )

⇒ var(xm
′

t+1,i|ξt,Ξm
′

t ,D) < var(xmt+1,i|ξt,Ξmt ,D) (36)

holds for all t ∈ N with t > m. Summing up (36) over all
elements of xt+1 leads to (34).

Proposition 3 verifies that the variance of the distribution
for the next state ahead xm

′
t+1 is less than the variance of xmt+1

with a shorter actual length of memory. This induces that the
variance is the lowest for the true sampling as it is given
for m = ∞. The restriction t > m in Proposition 3 is
necessary as otherwise the variances would be equal for t ≤ m
as explained in Corollary 1. The inequality of past states is
necessary to ensure that the GP-ASSM with maximum length
of memory m′ contains not only a multiple of the same
states which would not decrease the variance. For the sake of
completeness, a weaker description for all t ∈ N is provided
by the following corollary.

Corollary 2. Consider two GP-ASSMs with states and in-
puts ξ0:t ∈ Rnξ such that xmt+1 ∼ N

(
f t(ξt,Ξ

m
t ), Ft(ξt,Ξ

m
t )
)

and xm
′

t+1 ∼ N
(
f t(ξt,Ξ

m′
t ), Ft(ξt,Ξ

m′
t )
)
, where the in-

dices m and m′ denote the maximum length of memory,
respectively. Then, for m′ > m, tr

[
Σ(xm

′
t+1|ξt,Ξm

′
t ,D)

]
≤

tr
[

Σ(xmt+1|ξt,Ξmt ,D)
]

holds for all t ∈ N.

Proof. The corollary is a direct consequence of Proposition 3
since as long as the current time step t is less than the
maximum length of memory m, the variance of xmt+1 and xm

′
t+1

is identical as shown in Corollary 1.

In the next example, a comparison of the presented error
measures and the behavior of the variance is presented.

Example 2. In Fig. 8, the distributions (gray shaded) for
the next state ahead xmt+1 depending on the maximum length
of memory m for a given trajectory x0, . . . , x3 (red circles)
is shown. We use here a one-dimensional GP-ASSM with
squared exponential function. For sake of simplicity, the input
is set to zero, i.e., ut = 0 for all t ∈ N. With increasing
maximum length of memory m, the variance of the distri-
butions (gray shaded) decreases as stated in Proposition 3.
For m = 3, the distribution is equal to the true distribution
as stated in Corollary 1. Table I shows the computed KL-
divergence, the MSPE and the variance of xm4 per maximum
length of memory m.

0 1 2 3 4 5 6

4

6

8

Time step t

S
ta

te
x
m t

State
m = 0

m = 1

m = 2

m = 3

Fig. 8: The distribution for the next state ahead xmt depending
on the maximum length of memory m.

m = 0 m = 1 m = 2 m = 3

dKL(x4‖xm4 ) 2.1131 3.0811 0.5559 0
MSPE(x4, x

m
4 ) 0.5720 0.5190 0.1171 0.0575

Σ(xm4 |ξ3,Ξ
m
3 ,D) 0.3620 0.1519 0.0706 0.0288

TABLE I: Comparison of the KL-divergence, MSPE and
variance Σ for GP-ASSMs with different lengths of memory.
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So far, we obtain a method for sampling from the non-
Markovian GP-SSM and introduce the approximated GP-
ASSM which is a Markov chain of finite order. This approx-
imation allows to use GP-ASSMs like parametric dynamical
models since the state dependencies across time are removed.
The approximation error is analyzed based on different mea-
sures and illustrated in Example 2.

Remark 11. This section focuses on the formal development
of GP-ASSMs, but the results are also directly applicable to
GP-ANOE models. In this case, the proofs are analogously
but with the output yt as regressor.

IV. BOUNDEDNESS OF GPDMS

After the introduction of GP-SSMs and GP-ASSMs, the
models are analyzed in terms of boundedness. Furthermore,
the relation of the boundedness properties between the true
and the approximated distribution are investigated.

A. GP State Space Models

We start with the general introduction of the boundedness
of GP-ASSMs for bounded mean functions and kernels.

Theorem 1. Consider a GP-ASSM (17) with maximum mem-
ory length m, bounded mean |m(x)| ≤ mmax ∈ R+ and
kernel function k(x,x′) ≤ kmax ∈ R+ for all x,x′ ∈ Rnξ .
Then, for every xmt ∈ Rnx , the state xmt ∈ Rnx , t ∈ N+ is
ultimately p-bounded by

sup
t∈N+

E ‖xt‖p ≤ nx
( c2

2π

) 1
2

∫
R

|zp| exp

(
−1

2
‖c1 − z‖2c2

)
dz

c1 = mmax + nDkmax max
i
‖(K + σnI)−1Y:,i‖

and c2 = kmax − k2max
kmax+σ2

n
for all p ∈ N+.

Proof. We start with the computation of the expected
value for a one-dimensional GP-SSM, which equals
a GP-ASSM with m = ∞, as for any other m
the number of considered past states is reduced.
For this purpose, we first recall the joint probability
distribution of a GP-SSM given by p(x1:t|u0:t,D) =∣∣(2π)tǨ

∣∣− 1
2 exp

(
− 1

2 (x1:t − m̌0:t−1) Ǩ−1 (x1:t − m̌0:t−1)
>
)

with the conditional covariance matrix Ǩt ∈ Rt×t

Ǩt =K(ξ0:t−1, ξ0:t−1)−K(ξ0:t−1, X)>
(
K + σ2

nI
)−1

K(ξ0:t−1, X). (37)

The elements of the mean vector m̌0:t−1 ∈ R1×t are

m̌i = m(ξi) +K(ξi, X)>(K + σ2
nI)−1(Y −m(X)) (38)

for all i = {0, . . . , t − 1} with mean vector m(X) =
[m(X1), . . . ,m(XnD )]>. Then, the p-th absolute expected
value is given by

sup
t∈N+

E |xt|p = sup
t∈N+

∫
Rt

|xpt |p(x1:t|u0:t,D)dx1:t (39)

= sup
t∈N+

∫
Rt

|xpt |
∣∣(2π)tǨt

∣∣− 1
2 exp

(
−1

2
µ>t Ǩ

−1
t µt

)
dx1:t

with µt = x1:t −m0:t−1. Note that the mean µt and the
covariance Ǩt are depend on the past states and inputs. Thus,
the joint distribution is not a multivariate Gaussian distribution
such that there exists no analytical solution for (39) in gen-
eral. However, we exploit the Gaussian like structure of the
distribution to find an upper bound for the integral. First, the
matrix Ǩt is positive definite, and its largest eigenvalue λ̄(Ǩt)
is lower bounded by kmax − k2

max/(kmax + σ2
n) ≤ λ̄(Ǩt)

for all ξ0:t−1 ∈ Rnξ×t using the Courant-Fischer Theorem.
The variable σ2

n is the variance of the noise that corrupts the
training data. Second, the elements m̌i of the mean vector are
bounded by |m̌i| ≤ mmax + nDkmax‖(K + σnI)−1Y ‖ for
bounded mean functions, see [20]. These bounds leads to the
upper bound of the expected value given by

sup
t∈N+

E |xt|p ≤ sup
t∈N+

∫
Rt

|xpt |(2π)−
t
2 (kmax −

k2
max

kmax + σ2
n

)
t
2

exp

(
−1

2
(ct − x1:t)(kmax −

k2
max

kmax + σ2
n

)(ct − x1:t)
>
)
dx1:t

where the elements of the vector ct ∈ R1×t are ct,i = mmax+
nDkmax‖(K + σnI)−1Y ‖. Finally, the upper bound can be
simplified as the components of the integral are independent
such that

sup
t∈N+

E |xt|p ≤
( c2

2π

) 1
2

∫
R

|zp| exp

(
−1

2
‖c1 − z‖2c2

)
dz (40)

with c1 = mmax + nDkmax‖(K + σnI)−1Y ‖ and c2 =
kmax − k2

max/(kmax + σ2
n). As a nx-dimensional GP-SSM

depends on separated GPs and the Gram matrix K re-
mains bounded, Equation (40) can be extended to higher-
dimensional xt ∈ Rnx . Consequently, the upper bound in
Theorem 1 holds. Finally, this remains obviously true for
GP-ASSMs with m < ∞ as only a subset of past states is
considered. This concludes the proof.

Remark 12. Many commonly used kernels for GPDMs are
bounded, for instance, the squared exponential or Matérn
kernel.

As no boundedness of the input ut is required for Theo-
rem 1, we can derive the following corollary for the bound-
edness of a closed-loop with a GP-ASSM.

Corollary 3. Consider a GP-ASSM (17) with maximum mem-
ory length m, bounded mean |m(x)| ≤ mmax ∈ R+ and
kernel function k(x,x′) ≤ kmax ∈ R+ for all x,x′ ∈ Rnξ .
A state feedback law is applied such that ut = g(xt) with
g : Rnx → Rnu . Then for every xmt ∈ Rnx , the state xmt ∈
Rnx , t ∈ N+ of the closed-loop is ultimately p-bounded by

sup
t∈N+

E ‖xt‖p ≤ nx
( c2

2π

) 1
2

∫
R

|zp| exp

(
−1

2
‖c1 − z‖2c2

)
dz

c1 = mmax + nDkmax max
i
‖(K + σnI)−1Y:,i‖

and c2 = kmax − k2max
kmax+σ2

n
for all p ∈ N+.

Proof. The bound for the closed-loop is a direct consequence
of Theorem 1 as it holds for arbitrary inputs ut ∈ Rnu .
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Theorem 1 and Corollary 3 show the boundedness of GP-
ASSMs for bounded mean function and kernel, which holds
for the true as well as for the approximated distribution.
However, it is also possible that a GP-ASSM with unbounded
kernel leads to bounded dynamics. This mainly depends on the
training data. In this case, the boundedness property might
be lost for a different maximum length of memory, as the
following proposition states.

Theorem 2. Consider two GP-ASSMs with the
states xmt and xm

′
t , respectively, such that

xmt+1 ∼ N
(
f t(ξt,Ξ

m
t ), Ft(ξt,Ξ

m
t )
)

and xm
′

t+1 ∼
N
(
f t(ξ

′
t,Ξ

m′
t ), Ft(ξ

′
t,Ξ

m′
t )
)
, where m and m′ are the

maximum length of memory. Then, for m < m′

sup
t∈N

E ‖xmt ‖p <∞; sup
t∈N

E ‖xm′
t ‖p <∞ (41)

holds for any p ∈ N and xm0 = xm
′

0 ∈ Rnx .

Proof. We use a counter example to prove this theorem.
Consider a one-dimensional GP-ASSM with m = 0 and
linear kernel k(z, z′) = z>z′, where z, z′ ∈ Rn. We
assume two training points at X1 = [−1; 0], X2 = [1; 0]
and Y = [Y1, Y2] ∈ R2 with noise σ2

n = 1 and input ut = 0.
Using the definition of (17), the mean ft and variance Ft of
next state x0

t+1 is given by

ft(ξt, ∅) =
1

3
x0
t (Y2 − Y1), Ft(ξt, ∅) =

1

3
(x0
t )

2
. (42)

For |Y2 − Y1| ≤ 3, the sequence {x0
t}, t ∈ N is p-bounded,

since x0 = 0 is stochastically asymptotically stable in the
large. Next, in an alternative GP-ASSM, we use the same
training points with m′ ≥ 1. Starting at xm

′
0 ∈ R\0, the

distribution of xm
′

1 can be computed using (42). With a
Gaussian distributed sampled xm

′
1 , the next step state xm

′
t+1

for t ≥ 1 are given by

ft

([
xm

′
t

0

]
,Ξm

′
t

)
=
xm

′
1

xm
′

0

xm
′

t , Ft

([
xm

′
t

0

]
,Ξm

′
t

)
= 0

xm
′

t+1 =
xm

′
1

xm
′

0

xm
′

t . (43)

The predicted variance for all states in the future is zero, since
the state xm

′
1 exactly defines a sample of the GP with a linear

kernel. The reason is that a linear function is fully defined by
one point unequal zero. Based on the Gaussian distribution
of xm

′
1 , the probability, that a trajectory of (43) is unbounded,

is computed by

P
(
|xm′

1 /xm
′

0 |>1
)

= 1 + cdf
[
(−3|xm′

0 |+ ∆Y )/([xm
′

0 ]2)
]

− cdf
[
(3|xm′

0 |+ ∆Y )/([xm
′

0 ]2)
]
, (44)

where ∆Y = Y1 − Y2 and cdf denotes the standard normal
cumulative distribution function. Since the probability (44) is
greater than zero, the sequence {xm′

t }, t ∈ N is not p-bounded.
Hence, a different maximum length of memory m of a GP-
ASSM might lead to a loss boundedness property as stated
in Theorem 2.

Example 3. In Fig. 9, the counter example from the proof
of Theorem 2 is visualized. For this purpose, we employ two

GP-ASSMs with m = 0 and m = 10, respectively, based
on a linear kernel k(z, z′) = z>z′. Although the samples of
the GP-ASSM with m = 0 are bounded (top), a GP-ASSM
with m′ = 10 (bottom) shows unbounded trajectories, which
leads to an unbounded mean and variance.
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t
Fig. 9: The GP-ASSM with m = 0 (top) results in bounded
system trajectories whereas a GP-ASSM with m′ ≥ 1 (bottom)
generates unbounded trajectories. Therefore the boundedness
property is lost for different maximum lengths of memory m.

The following theorem shows the relationship between the
boundedeness of GP-ASSMs with different length of memory.
It states that the approximated dynamics given by a GP-ASSM
is bounded if the dynamics of the GP-SSM is bounded. Thus,
it allows to use the approximation in control settings without
losing the boundedness, which is important for the robustness
and stability analysis. Note, that in contrast to Theorem 1, the
kernel is not required to be bounded.

Theorem 3. Considering two GP-ASSMs with
the states xmt and xm

′
t , respectively, such that

xmt+1 ∼ N
(
f t(ξt,Ξ

m
t ), Ft(ξt,Ξ

m
t )
)

and xm
′

t+1 ∼
N
(
f t(ξ

′
t,Ξ

m′
t ), Ft(ξ

′
t,Ξ

m′
t )
)
, where m and m′ are the

maximum length of memory. Then, if m < m′,

sup
t∈N,xm′

0 ∈Rnx
E ‖xm′

t ‖p <∞⇒ sup
t∈N,xm0 ∈Rnx

E ‖xmt ‖p <∞ (45)

holds for all p ∈ N.

Remark 13. Note the swap of xm
′

t and xmt in (45) in contrast
to (41).

Proof. In the following, we split the proof in two parts
depending on time step t.
For t ≤ m, the memories Ξmt and Ξm

′
t of both GP-ASSMs

are identical and, thus, the expected value is bounded by
supt∈N,t≤m E[(xm

′
t )

p
] = supt∈N,t≤m E[(xmt )

p
] <∞. For t >

m, we use the last point in memory xm
′

max (0,t−m′−1) as initial
point for xmt+1. Thus, we can follow the above argumentation
again, which leads to supt∈N,t>m E[(xmt )

p
] < ∞ such that

the boundedness is preserved.
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B. GP Nonlinear Output Error Models

In this section, we transfer our results about boundedness of
GP-ASSMs to GP-ANOE models. In GP-ANOE models, the
feedback loop is closed by the output yt instead of the state xt
as in GP-ASSMs. Therefore, we present the following results
without further explanation and refer here to section IV-A.

Proposition 4. Consider a GP-ANOE (24) with maximum
memory length m and bounded mean |m(x)| ≤ mmax ∈ R+

and kernel function k(x,x′) ≤ kmax ∈ R+ for all x,x′ ∈
Rnξ . Then for every y0 ∈ Rny , the output ymt ∈ Rny , t ∈ N+

is ultimately p-bounded by

sup
t∈N+

E ‖yt‖p ≤ ny
( c2

2π

) 1
2

∫
R

|yp| exp

(
−1

2
‖c1 − x‖2c2

)
dx

c1 = mmax + nDkmax max
i
‖(K + σnI)−1Y:,i‖

and c2 = kmax − k2max
kmax+σ2

n
for all p ∈ N+.

Proof. Analogously to the proof of Theorem 1 with the GP-
ANOE model defined by (24).

Proposition 5. Consider two GP-ANOEs with
outputs ymt and ym

′
t , respectively, such that the output

ymt+1 ∼ N
(
ht(ζ

m
t ,Λt), Ht(ζ

m
t ,Λt)

)
and ym

′
t+1 ∼

N
(
ht(ζ

m′

t ,Λ′t), Ht(ζ
m′

t ,Λ′t)
)

where m and m′ are the
maximum length of memory, respectively. Then, for m < m′,
supt∈N E

∥∥ymt+1

∥∥p < ∞ ; supt∈N E ‖ym′
t+1‖p < ∞ holds

for p ∈ N and ζm0 = ζm
′

0 ∈ Rnζ .

Proof. Analogously to the proof of Theorem 2 with the GP-
ANOE model defined by (24).

Proposition 6. Consider two GP-ANOE models
with outputs ymt and ym

′
t , respectively, such

that ymt+1 ∼ N
(
ht(ζ

m
t ,Λt), Ht(ζ

m
t ,Λt)

)
and

ym
′

t+1 ∼ N
(
ht(ζ

m′

t ,Λ′t), Ht(ζ
m′

t ,Λ′t)
)
, where m and m′

are the maximum length of memory, respectively. Then,
if m < m′ holds, supt∈N,ζm′

0 ∈Rny E ‖ym′
t ‖p < ∞ ⇒

supt∈N,ζm0 ∈Rnx E ‖ymt ‖p <∞ holds for all p ∈ N.

Proof. Analogously to the proof of Theorem 3 with the GP-
ANOE model defined by (24).

V. CASE STUDY

In two case studies, we demonstrate the modeling with GP-
ASSMs and discuss their behavior.

A. Open-loop

In an open-loop setting, we show the modeling of a dy-
namical system with a GP-SSM and GP-ASSMs with differ-
ent maximum lengths of memory. As dynamical system to
be modeled, we consider the non-autonomous discrete-time
predator–prey system introduced in [40]. It is given by

xt+1,1 = xt,1 exp

(
1− 0.4xt,1 −

(2 + 1.2ut,1)xt,2
1 + (xt,1)2

)
xt+1,2 = xt,2 exp

(
1 + 0.5ut,1 −

(1.5− ut,2)xt,2
xt,1

) (46)

with input and noisy output

yt = xt + ν, ut =

[
cos(0.02πt)
sin(0.02πt)

]
, (47)

and with state xt ∈ R2, output yt ∈ R2, input ut ∈ R2,
and Gaussian distributed noise ν ∈ R2,ν ∼ N (0, 0.052I).
The states xt,1 and xt,2 represent the population size of prays
and predators, respectively, but are taken to be continuous. The
system dynamics (46) are assumed to be unknown whereas the
input and output, given by (47), are assumed to be known. For
the modeling with a GP-SSM, 33 training points of a trajectory
from the predator–prey system with initial state x0 = [0.3; 0.8]
are collected. More detailed, every third state xt, input ut
and output yt between t = 1, . . . , 100 is recorded. Thus, the
training set D = {X,Y } consists of

X = [ξ1, ξ4, . . . , ξ97] with ξt = [xt;ut]

Y = [y1,y4, . . . ,y97]>.
(48)

Following the structure of GP-SSMs in (7), two GPs
are employed to model each element of the state xt
separately. Both GPs are based on a squared expo-
nential kernel with automatic relevance detection given
by k(ξt, ξ

′
t) = ϕ2

1 exp
(
−(ξt − ξ′t)>P−1(ξt − ξ′t)

)
with ma-

trix P = diag(ϕ2
2, . . . , ϕ

2
5). This kernel is bounded with

respect to ξt, ξ
′
t ∈ R4. The hyperparameters ϕ1, . . . , ϕ5 of

each GP are optimized by means of the likelihood function,
see [8]. In this study, we model the dynamics (46) with a GP-
SSM, a GP-ASSM with maximum length of memory 10 and a
GP-ASSM with maximum length of memory 0. For the testing
of these models, we select the initial state x0 = [0.268; 0.400].
The top plot of Fig. 10 visualizes the trajectory of the
predator–prey system (46), considered as the ground-truth.
After a transition phase, the numbers of prays (red dashed)
and predators (blue solid) converge to a periodic solution. The
second plot shows three samples of the GP-SSM drawn by
means of Property 1. Even though the training set consists
only of data up to the time step t = 97, see (48), the GP-SSM
precisely predicts the trajectory after the transition phase. As
the GP-SSM implies m = ∞, all past state transitions are
added to the memory Ξ∞t , defined in (16), and used for the
next state ahead prediction. Consequently, the shape of each
sample is identical in periodic repetitions, as highlighted inside
the boxes in the second plot of Fig. 10. Three samples of the
GP-ASSM with maximum length of memory 10, given by
the means of (17), are visualized in the third plot of Fig. 10.
The samples are similar to the samples of the GP-SSM, since
the memory Ξ10

t consists of sufficiently many past states to
generate a similar predictive distribution for next step state.
However, the shape of the samples differs between the periodic
repetitions, as indicated with the two boxes. This variation is
due to the reduced memory, which induces that the evolution
of the state inside the left box is not considered for the predic-
tion of the corresponding state in the right box. In contrast to
the GP-SSM, the maximum length of memory 10 bounds the
size of the Gram matrix K10

t . In the bottom plot of Fig. 10,
three samples of the GP-ASSM with maximum length of
memory 0 are drawn. The variance for each prediction step
is significantly higher, as described in Proposition 3, such that
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Fig. 10: From top to bottom: Trajectory of predator–prey sys-
tem, samples of GP-SSM, samples of GP-ASSM with m = 10,
and samples of GP-SSM with m = 0. For decreasing maxi-
mum length of memory of the approximations, the variance is
increasing which leads to rougher trajectories.

the trajectories are rougher. However, the size of the Gram
matrix K0

t remains constantly low.
Finally, the GP-SSM and the GP-ASSM with m = 0 are
tested with 50 different initial values, which are drawn from a
uniform distribution between [−5, 5] for both states, visualized
in Fig. 11. All trajectories are bounded, which supports The-
orems 1 and 3.

B. Closed-loop

In the case study, we demonstrate the usage of a GP-ASSM
to test a controller for a chaotic dynamical systems. For this
purpose, we consider the time-continuous Thomas’ cyclically
symmetric attractor with an external input described by

ẋ =

sin(x2)− bx1

sin(x3)− bx2

sin(x1)− bx3

+

u0
0

 , y = x+ ν (49)
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Fig. 11: Trajectories of 50 samples starting from multiple
initial points demonstrate the boundedness of the GP-SSM
and GP-ASSM.

with state x ∈ R3, input u ∈ R, output y ∈ R3 and noise
ν ∼ N (0, 0.0062I). The constant b is set to b = 0.2. The
resulting trajectories can be seen as the motion of a frictionally
dampened particle moving in a 3D lattice of force, see [41].
The goal is to test the performance of a set-point controller
for the dynamics (49) which are assumed to be unknown and
costly to evaluate or safety critical. Therefore, a simulation
with a GP-ASSM should be performed to evaluate the con-
troller before it is applied to the real system. The training set
D consists of 375 training points equally distributed on the set
[−1, 1]3 for the state x and [−2, 2] for the input u. The sample
time is set to 0.01 s for a low discretization error as, otherwise,
it can lead to a significantly different behavior of the chaotic
system. The GP-ASSM with maximum memory length of one
is based on squared exponential kernels and the hyperparam-
eters are optimized by means of the likelihood function. The
control law for testing is assumed to be u = −[2, 2, 2]x. The
top graph of Fig. 12 visualizes the resulting 20 samples with
the mean (solid line) and the 3σ standard deviation (shaded
area). The samples converge to a small neighborhood around
zero using the feedback control law. Then, the control law
is applied to the actual, time-continuous system where the
trajectory converges to zero. The example shows that the
GP-ASSM is sufficient to mimic the behavior of an actual
system. The benefit in contrast to standard GP-SSMs is the
significantly reduced computation time. Figure 13 shows the
computation time2 which is required per time step (top) and
the total time (bottom) over the time steps. The GP-SSM
computation time for a step scales cubic with the number of
time steps due to the required matrix inversion, see (4). In
contrast, the GP-ASSM is constant such that the total time is
reduced from 361 s to 52 s.

2Simulations were performed on a Intel i7-4600U with 2.1 Ghz, 8 GB
RAM, and Matlab 2018.
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C. Discussion

In the previous sections, we show that the sampling of
GPDMs, avoiding the impossible sampling of infinite dimen-
sional objects, leads to non-Markovian dynamics. This charac-
teristic is surprising as the representation of the GP-SSM and
GP-NOE model, given by (7) and (8) respectively, is based on
a Markovian state space structure. However, the covariance
term of the GP introduces dependencies across the states
that leads to dependencies across time for GPDMs. Thus,
the sampling of GP-SSMs and GP-NOE models generates
non-Markovian dynamics, which we analyze from a control
theoretical point of view. More precisely, a general description
for approximated GPDMs based on a finite number of included
past states/outputs is presented and compared against the true
sampling. The approximation error of these models is analyzed
with respect to the Kullback-Leibler divergence, the mean
square prediction error and the variance of the prediction.
Furthermore, we prove that the true variance of the next state
ahead is always less than the variance of the approximated

model as illustrated in Fig. 10. This is relevant for the usage
of the approximation in variance based control approaches
such as risk-sensitive control approaches, e.g., [42], [43].
Additionally, the boundedness of GPDMs with bounded mean
and variance functions, such as the commonly used squared
exponential function, is proven and visualized in Fig. 11. The
boundedness is an important property for the identification
of unknown systems with GPDMs and is likewise exploited
for robustness analysis in GPDM based control approaches,
see [44]. The introduced characteristics about the relation
between the boundedness of the true sampling and the approxi-
mations allows a safe usage of the approximation. Finally, the
approximated models allow not only a significant reduction
of the total computing time as shown is Fig. 13 but also a
constant computing time per step which enables the usages in
real-time environments.

CONCLUSION

In this article, we show that the sampling procedure for
Gaussian process dynamical models leads to non-Markovian
dynamics. We present a holistic description for approximated
models which fulfills the Markov condition. The approxi-
mation error of these models is analyzed in respect to the
Kullback-Leibler divergence, the mean square prediction error
and the variance of the prediction. Furthermore, the bound-
edness of Gaussian process state space models and nonlinear
output error models is qualitatively and quantitatively proven.
We proof that the non-Markovian as well as the Markovian
approximation is always bounded under specific conditions.
Finally, we show the relation between different approximations
with respect to the boundedness property of the system.
Examples visualize the outcome and highlight the relevance
of the results for data-driven based control approaches.
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[22] T. Beckers, D. Kulić, and S. Hirche, “Stable Gaussian process based
tracking control of Euler-Lagrange systems,” Automatica, vol. 103, pp.
390–397, 2019.

[23] T. Beckers and S. Hirche, “Equilibrium distributions and stability
analysis of Gaussian process state space models,” in Proceedings of
the Conference on Decision and Control (CDC), 2016, pp. 6355–6361.

[24] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen, “Bayesian
inference and learning in Gaussian process state-space models with
particle mcmc,” in Advances in Neural Information Processing Systems,
2013, pp. 3156–3164.

[25] J. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. Deisenroth,
“Efficiently sampling functions from Gaussian process posteriors,” in
International Conference on Machine Learning. PMLR, 2020, pp.
10 292–10 302.

[26] C.-A. Cheng and B. Boots, “Variational inference for Gaussian process
models with linear complexity,” in Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, 2017, p.
5190–5200.

[27] C. M. Bishop et al., Pattern recognition and machine learning. Springer
New York, 2006, vol. 4.

[28] H. Mohammadi, R. Le Riche, E. Touboul, X. Bay, and N. Durrande,
“An Analytic Comparison of Regularization Methods for Gaussian
Processes,” GDR Mascot Num annual conference, 2015. [Online].
Available: https://hal-emse.ccsd.cnrs.fr/emse-01148652

[29] B. Rakitsch, C. Lippert, K. Borgwardt, and O. Stegle, “It is all in the
noise: Efficient multi-task Gaussian process inference with structured
residuals,” in Advances in neural information processing systems, 2013,
pp. 1466–1474.

[30] A. Melkumyan and F. Ramos, “Multi-kernel Gaussian processes,” in
Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, 2011, p. 1408–1413.
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