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Abstract. Underactuated vehicles have gained much attention in the recent

years due to the increasing amount of aerial and underwater vehicles as well
as nanosatellites. The safe tracking control of these vehicles is a substantial

aspect for an increasing range of application domains. However, external dis-
turbances and parts of the internal dynamics are often unknown or very time-

consuming to model. To overcome this issue, we present a safe tracking control

law for underactuated rigid-body dynamics using a learning-based oracle for
the prediction of the unknown dynamics. The presented approach guarantees

a bounded tracking error with high probability where the bound is explicitly

given. With additional assumptions, asymptotic stability of the tracking error
is achieved. A numerical example highlights the effectiveness of the proposed

control law.

1. Introduction. The demand for unmanned aerial and underwater vehicles is
rapidly increasing in many areas such as monitoring, mapping, agriculture, and
delivery. These vehicles are typically underactuated due to constructional reasons
which poses several challenges from the control perspective [1, 2, 3]. The dynamics
of these systems can often be expressed by rigid bodies motion with full attitude
control and one translational force input. This is a classical problem in underactu-
ated mechanics and many different types of control methods have been proposed to
achieve an accurate trajectory tracking. Most of the control approaches are mainly
based on feedback linearization [4, 5] and backstepping methods [6, 7] which are
also analyzed in terms of stability, e.g. in [8]. However, these control approaches
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depend on exact models of the systems and possible external disturbances to guar-
antee stability and precise tracking. An accurate model of typical uncertainties is
hard to obtain by using first principles based techniques. Especially the impact of
air/water flow on aerial/underwater vehicles or the interaction with unstructured
and unknown environment further compound the uncertainty. The increase of the
feedback gains to suppress the unknown dynamics is unfavorable due to the large
errors in the presence of noise and the saturation of actuators.

A suitable approach to avoid the time-consuming or even unfeasible modeling
process is provided by learning-based oracles such as Neural Networks or Gaussian
processes (GPs). These data-driven modeling tools have shown remarkable results
in many different applications including control, machine learning and system iden-
tification [9]. In data-driven control, data of the unknown system dynamics is
collected and used by the oracle to predict the dynamics in areas without training
data. In contrast to parametric models, data-driven models are highly flexible and
are able to reproduce a large class of different dynamics, see [10].

The purpose of this article is to employ the power of learning-based approaches
for the tracking control for a large class of underactuated systems. Additionally,
stability and a desired level of performance of the closed-loop system should be
guaranteed. The problem of tracking control of underactuated aerial/underwater
vehicles with uncertainties has been addressed in [11, 12, 13] but these approaches
are restricted to structured uncertainties such as uncertain parameters or use high
feedback gains for compensation. Safe feedback linearization/backstepping based
on GPs are introduced in [14, 15, 16] for a specific class of systems but they do not
capture the general underactuated nature of the here considered mechanics or are
limited to single input systems.

Learning-based approaches for Euler-Lagrange systems with stability guarantees
are presented in [17, 18, 19]. However, the systems are required to be fully actuated.
For a specific type of aerial vehicles, a safe Gaussian process based controller is
proposed in [20] but with additional assumptions such as the existence of an initial
safe controller.

The contribution of this article is a safe learning-based tracking control law for
a large class of underactuated vehicles with partially unknown dynamics. The
proposed control law guarantees the probabilistic boundedness of the tracking error
and specifies the ultimate bound. Instead of focusing on a particular type of oracle,
the proposed approach allows the usage of various learning-based oracles.

The remaining article is structured as follows: After the problem setting in Sec-
tion 2, the learning-based oracles and the tracking controller are introduced in Sec-
tion 3. In particular, in Section 3.1, we provide a probabilistic model error bound
for the unknown dynamics and apply it in Section 3.2 to design a safe data-driven
tracking control law based on a backstepping methodology. Finally, a numerical
example is presented in Section 4.

2. Problem Setting. We assume a single underactuated rigid body with position1

p ∈ R3 and orientation matrix R ∈ SO(3). The body-fixed angular velocity is
denoted by ω ∈ R3. The vehicle has mass m ∈ R>0 and rotational inertia J ∈ R3×3.

1Vectors are denoted with bold characters and matrices with capital letters. The term Ai,:

denotes the i-th row of the matrix A. The expression N (µ,Σ) describes a normal distribution

with mean µ and covariance Σ. The probability function is denoted by P. The set R>0 denotes
the set of positive real numbers.
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The state space of the vehicle is S = SE(3)× R6 with

s = ((R,p), (ω, ṗ)) ∈ S
denoting the whole state of the system. The vehicle is actuated with control torques
τ ∈ R3 and a control force u ∈ R, which is applied in a body-fixed direction defined
by a unit vector e ∈ R3 as visualized in Fig. 1. We can model the system with the
following set of differential equations

mp̈ = Reu+ f(p, ṗ),

Ṙ = Rω̌,

ω̇ = J−1
(
Jω × ω + τ + fω(s)

)
,

(1)

where the hat map (̌·) : R3 → so(3) is given by

ω̌ =

 0 −ω3 −ω2

ω3 0 −ω1

ω2 ω1 0

 .
The functions f : R6 → R3 and fω : S → R3 are state-dependent but time-invariant
unknown dynamics. It is also assumed that the full state s can be measured.
This assumption is very common and simply imposed for multi-rotor unmanned
aerial vehicles or underwater vehicles. In both scenarios this assumption can be
then fulfilled by design or by exploiting observer-based techniques, for instance, as
in [21] for scenarios where no full state measurements are available. The general
objective is to track a trajectory specified by the functions (Rd,pd) : [0, T ]→ SE(3).
For simplicity, we focus here on position tracking only. The extension to rotation
tracking is straightforward and will be discussed later.

2.1. Equivalent system. In preparation for the learning and control step, we
transform the system dynamics (1) in an equivalent form. For the unknown dynam-

ics f and fω, we use the estimates f̂ : R6 → R3 and f̂ω : S → R3, respectively, of

an oracle. The estimation error is moved to the error functions ρ(x) = f(x)− f̂(x)

and ρω(s) = fω(s) − f̂ω(s), where x = [p>, ṗ>]> ∈ R6, s ∈ S. With the system
matrix A ∈ R6×6 and input matrix B ∈ R6×3 given by

A =

[
0 I3
0 0

]
, B =

[
0

1
mI3

]
,

e

p
τ1

τ2
τ3

orientation R

Figure 1. Underactuated vehicle with full attitude control and a
translational force input. The position of the vehicle is described
by the vector p and the orientation by the matrix R.
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and I3 ∈ R3×3 as identity matrix, we can rewrite (1) as

ẋ = Ax+B
(
g(R, u) + f̂(x) + ρ(x)

)
Ṙ = Rω̌

ω̇ = J−1
(
Jω × ω + τ + f̂ω(s) + ρω(s)

)
,

(2)

where g : SO(3)×R→ R3 is assumed as virtual control input with g(R, u) := Reu.
As consequence, (2) is equivalent to (1).

3. Learning-based control. In this section, we present the main result of the
paper. First, in Section 3.1, we introduce the technical assumptions on the data
set and the model error bounds. Next, we particularize to the situation when the
oracle is specified by a Gaussian process model which allows us to provide a proba-
bilistic model error bound for the unknown dynamics. Secondly, in Section 3.2, we
design a data-driven tracking control law and provide safety guarantees by means
of a probabilistic ultimate bound of the tracking error. Finally, we provide suf-
ficient conditions to achieve asymptotic stability for the tracking error with high
probability without any prediction error.

3.1. Learning. For the compensation of the unknown dynamics of (1), we consider
an oracle which predicts the values of f ,fω for a given state s. For this purpose,
N ∈ N training points of the system (1) are collected such that a data set

D = {s{i},y{i}}Ni=1 (3)

exists. The output data y ∈ R6 are given by

y = [(mp̈−Reu)>, (Jω̇ − Jω × ω)− τ )>]>

such that the first three components of y correspond to f and the remaining to
fω. For the generation of the data set D, the system (1) can be operated by an
arbitrary controller. The only condition is that a finite sequence of training data
of the system can be collected whereas stability is not necessarily required. The

estimates of the oracle based on the data set D are denoted by f̂(x) and f̂ω(s).

Remark 1. Simple oracles can be parametric models such as a linear model, where
the parameters are learned with a least-square approach based on the data set D.
More powerful oracles are given by neural networks, due to their universal function
approximation property [22]. Furthermore, non-parametric oracles such as Gaussian
processes and support vector machines have led to promising results as probabilistic
function approximators [23, 24].

Remark 2. We focus here on state-dependent but time-invariant unknown dy-
namics f ,fω such that the data set (3) is valid for all times. However, for the
quasi-static case, where the change in the unknown dynamics due to time-varying
elements is on a much longer time-scale than due to the state dependencies, the
model can be held sufficiently accurate by retraining with a newly collected data
set D after a decent time.

For the later stability analysis of the closed-loop, we introduce the following
assumptions, which cover various types of oracles.
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Assumption 1. Consider an oracle with the predictions f̂ ∈ C2 and f̂ω ∈ C0
based on the data set D. Let SX ⊂ (SE(3)× (X ⊂ R6)) be a compact set where the

derivatives of f̂ are bounded on X . There exists a bounded function ρ̄ : SX → R≥0
such that the prediction error is given by

P

{∥∥∥∥[ f(x)− f̂(x)

fω(s)− f̂ω(s)

]∥∥∥∥ ≤ ρ̄(s)

}
≥ δ

with probability δ ∈ (0, 1] for all x ∈ X , s ∈ SX .

Assumption 1 ensures that there exists an (probabilistic) upper bound for the

error between the prediction f̂(x), f̂ω(s) and the actual f(x),fω(s) on a compact
set. This assumption is fulfilled, for instance, by a Gaussian process model as oracle.

Gaussian process models have been proven as very powerful oracle for nonlinear
function regression. For the prediction, we concatenate the N training points of D in
an input matrix X = [s1, s2, . . . , sN ] and a matrix of outputs Y > = [y1,y2, . . . ,yN ],
where y might be corrupted by additive Gaussian noise with N (0, σ2I6), σ ∈ R≥0.
Then, a prediction for the output y∗ ∈ R6 at a new test point s∗ ∈ SX is given by

µi(y
∗|s∗,D) = mi(s

∗) + k(s∗, X)>K−1
(
Y:,i − [mi(X:,1), . . . ,mi(X:,N )]>

)
vari(y

∗|s∗,D) = k(s∗, s∗)− k(s∗, X)>K−1k(s∗, X).
(4)

for all i ∈ {1, . . . , N}, where Y:,i denotes the i-th column of the matrix of outputs Y .
The kernel k : SX × SX → R is a measure for the correlation of two states (s, s′),
whereas the mean function mi : SX → R allows to include prior knowledge. The
function K : SNX ×SNX → RN×N is called the Gram matrix whose elements are given
by Kj′,j = k(X:,j′ , X:,j)+δ(j, j′)σ2 for all j′, j ∈ {1, . . . , N} with the delta function
δ(j, j′) = 1 for j = j′ and zero, otherwise. The vector-valued function k : SX ×
SNX → RN , with the elements kj = k(s∗, X:,j) for all j ∈ {1, . . . , N}, expresses the
covariance between s∗ and the input training data X. The selection of the kernel
and the determination of the corresponding hyperparameters can be seen as degrees
of freedom of the regression. A powerful kernel for GP models of physical systems
is the squared exponential kernel. An overview about the properties of different
kernels can be found in [23].

Remark 3. The mean function can be achieved by common system identification
techniques of the unknown dynamics f ,fω as described in [25]. However, without
any prior knowledge the mean function is set to zero, i.e. mi(s) = 0.

Based on (4), the normal distributed components y∗i |s∗,D are combined into a
multi-variable distribution y∗|(s∗,D) ∼ N (µ(·),Σ(·)), where

µ(y∗|s∗,D) = [µ1(·), . . . , µ6(·)]>, Σ(y∗|s∗,D) = diag [var1(·), . . . , var6(·)] .

Remark 4. For simplicity, we consider identical kernels for each output dimension.
However, the GP model can be easily adapted to different kernels for each output
dimension.

With the introduced Gaussian process model, we are now addressing Assump-
tion 1 using [24, 17, 26]. To provide model error bounds, additional assumptions
on the unknown parts of the dynamics (1) must be introduced, in line with the
no-free-lunch theorem, see [27].
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Assumption 2. The kernel k is selected such that f ,fω have a bounded re-
producing kernel Hilbert space (RKHS) norm on X and SX , respectively, in de-
tail, ‖fi‖k <∞ and ‖fω,i‖k <∞ for all i = 1, 2, 3.

The norm of a function in a RKHS is a smoothness measure relative to a ker-
nel k that is uniquely connected with this RKHS. In particular, it is a Lipschitz
constant with respect to the metric of the used kernel. A more detailed discussion
about RKHS norms is given in [28]. Assumption 2 requires that the kernel must
be selected in such a way that the functions f ,fω are elements of the associated
Reproducing kernel Hilbert space. This sounds paradoxical since this function is
unknown. However, there exist some kernels, namely universal kernels, which can
approximate any continuous function arbitrarily precisely on a compact set, see [24,
Lemma 4.55], such that the bounded RKHS norm is a mild assumption. Finally,
with Assumption 2, the residual model error can be bounded as written in the
following lemma.

Lemma 3.1 (adapted from [17]). Consider the unknown functions f ,fω and a GP
model satisfying Assumption 2. The model error is bounded by

P

{∥∥∥∥∥µ
([

f̂(x)

f̂ω(s)

] ∣∣∣∣∣s,D
)
−
[
f(x)
fω(s)

] ∥∥∥∥∥ ≤
∥∥∥∥∥β>Σ

1
2

([
f̂(x)

f̂ω(s)

] ∣∣∣∣∣s,D
)∥∥∥∥∥
}
≥ δ

for x ∈ X , s ∈ SX , δ ∈ (0, 1) with β ∈ R6 given by [17, Lemma 1]

Proof. It is a direct implication of [17, Lemma 1].

With Assumption 2 and the fact, that universals kernels exist which generate
bounded predictions with bounded derivatives, see [26], GP models can be used as
oracle to fulfill Assumption 1. In this case, the prediction error bound is given by

ρ̄(s) := ‖β>Σ
1
2 ([f̂(x)>, f̂ω(s)>]>|s,D)‖ as shown in Lemma 3.1.

Remark 5. An efficient algorithm can be used to find β based on the maximum
information gain [29].

3.2. Tracking control. For the tracking control, we consider a given desired tra-
jectory xd(t) : Rt≥0 → X ,xd ∈ C4. The tracking error is denoted by z0(t) =
x(t) − xd(t). Before we propose the main theorem about the safe learning-based
tracking control law, the feedback gain matrix G is introduced. As part of the con-
troller, G penalizes the position tracking error and the result is fed back to both
inputs, the force control u and the torque control τ of the system (1).

Property 1. The matrix G ∈ R3×6 is chosen such that there exist a positive
definite matrix P ∈ R6×6 and a positive definite symmetric matrix Q ∈ R6×6 which
satisfy the Lyapunov equation

P
(
A−BG

)
+
(
A−BG

)>
P = −Q.

Property 1 is satisfied if the real parts of all eigenvalues of (A−BG) are negative.
For example, this can be achieved by any G = [G1, G2], where G1, G2 ∈ R3×3 are
positive definite diagonal matrices.

Theorem 3.2. Consider the underactuated rigid-body system given by (1) with
unknown dynamics f ,fω and the existence of an oracle satisfying Assumption 1.
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Let Gz1 , Gz2 ∈ R3×3 be positive definite symmetric matrices. Assuming Property 1
is satisfied, the control law

τ = J(e× (R>gd̈ − ω̌2eu− 2ω̌eu̇)u−1)− Jω × ω − f̂ω(s),

ü = e>(R>gd̈ − ω̌2eu− 2ω̌eu̇),
(5)

with the desired virtual control input derivative

gd̈ = mp
(4)
d −G

(
∂ ˙̂x

∂x
˙̂x− ẍd

)
−BP ( ˙̂x− ẋd)

− (Gz1 +Gz2)

(
ġ −mp(3)d +G( ˙̂x− ẋd) +

∂f̂

∂x
˙̂x

)

− (Gz2Gz1 + I3)
(
g −mp̈d +Gz0 + f̂(x)

)
−Gz2B>Pz0 −

∂

∂x

[∂f̂
∂x

˙̂x
]

˙̂x. (6)

˙̂x = Ax+B
(
g(R, u) + f̂(x)

)
(7)

guarantees that the tracking error is uniformly ultimately bounded in probability by

P

{
‖z0(t)‖ ≤ max

s∈SX
ρ̄(s)λ

√
max{eig(P ), 1}
min{eig(P ), 1} ,∀t ≥ T

}
≥ δ

with constants λ, T ∈ R≥0 on SX .

Remark 6. The control law does not depend on any state derivatives, which are
typically noisy in measurements. The derivatives, i.e. the translational and angular
accelerations, are only necessary for the training of the oracle, see (3), which can
often deal with noisy data. For instance, GP models can handle additive Gaussian
noise on the output [23].

Remark 7. The torque control law of (5) is only applicable if u 6= 0, as otherwise
no tracking control is possible in general. A reasonable trajectory planning can
avoid a zero force input, see [11].

We prove the boundedness of the tracking error by the step-wise construction of a
Lyapunov function using backstepping methods following the construction proposed
in [12] for the nominal case.

Proof. The term g(R,u) in (2) is assumed as virtual control input with the desired
force

gd(t,x) = mp̈d −Gz0 − f̂(x), (8)

where G is the feedback gain matrix. The tracking error dynamics are given by

ż0 = Ax+B
(
g(R, u) + f̂(x) + ρ(x)

)
−
[
ṗd
p̈d

]
. (9)

Using the desired acceleration p̈d of (8) in (9) leads to

ż0 =
(
A−BG

)
z0 +B

(
g(R, u)− gd(t,x) + ρ(x)

)
.

In the next step, the boundedness of the tracking error z0 is proven. For this
purpose, we use the matrices P,Q of Property 1 to construct the Lyapunov func-
tion V0(z0) = 1

2z
>
0 Pz0 ≥ 0 and compute its evolution

V̇0 = −1

2
z>0 Qz0 + (B>Pz0)>

(
g(R, u)− gd + ρ(x)

)
.
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The first summand is negative for all z0 ∈ R6. Next, we extend the previous
Lyapunov function with the error term z1 ∈ R3 given by

z1(t,x, R, u) = g(R, u)− gd(t,x), (10)

which describes the error between the virtual and the desired control input. For this
purpose, a quadratic Lyapunov function V1(z0, z1) = 1

2z
>
1 z1+V0 ≥ 0 is considered.

The derivative of V1 leads to

V̇1 = V̇0 + z>1

(
ġ −mp(3)d +Gż0 +

˙̂
f(x)

)
, (11)

where p
(3)
d denotes the third time-derivative of the desired position pd, and where

we have used (10) and (8). As in (8), following again the idea of a desired virtual
input proposed for the nominal case, see [12], we construct a desired value of ġ with

gḋ = mp
(3)
d −G( ˙̂x− ẋd)−B>Pz0 −Gz1z1 −

∂f̂

∂x
˙̂x. (12)

Instead of having dependencies on the typical noisy state derivative ẋ, we use the
estimation ˙̂x ∈ R6 given by

˙̂x = Ax+B
(
g(R, u) + f̂(x)

)
,

which only contains the known parts of the system dynamics (2). Then, the ex-
pression (12) is used to substitute ġ in (11). This last substitution leads to the
evolution

V̇1 = −1

2
z>0 Qz0 − z>1 Gz1z1 + z>0 PBρ(x) + z>1

([∂f̂
∂x

+G
]
Bρ(x) + ġ − gḋ

)
.

Next, we define the error z2 ∈ R3 with z2(t,x, R, u) = ġ(R, u)− gḋ(t,x, R, u), and
an extended Lyapunov function

V (z0, z1, z2) = V1 +
1

2
z>2 z2 ≥ 0. (13)

The derivative of V leads to

V̇ = V̇1 + z>2

(
g̈ −mp(4)d +Gz̈0 +BP ż0 +

d

dt

[∂f̂
∂x

˙̂x
])

and we construct a desired value of g̈ with gd̈ given by

gd̈ = mp
(4)
d −G

(
∂ ˙̂x

∂x
˙̂x− ẍd

)
−BP ( ˙̂x− ẋd)

− (Gz1 +Gz2)

(
ġ −mp(3)d +G( ˙̂x− ẋd) +

∂f̂

∂x
˙̂x

)

− (Gz2Gz1 + I3)
(
g −mp̈d +Gz0 + f̂(x)

)
−Gz2B>Pz0 −

∂

∂x

[∂f̂
∂x

˙̂x
]

˙̂x.

Then, it is substituted into V̇ to obtain

V̇ = −1

2
z>0 Qz0 − z>1 Gz1z1 − z>2 Gz2z2

+ (z>0 P + z>1 D(x) + z>2 E(x))Bρ(x) + z>2 (g̈ − gd̈), (14)

D(x) :=
∂f̂

∂x
+G,
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E(x) := BP +Gz1D +G
∂ ˙̂x

∂x
+

∂

∂x

(∂f̂
∂x

˙̂x
)
.

To eliminate the last summand in (14) except for the estimation error ρω, we note
that

g̈(R, u) = R(ω̌2eu+ 2ω̌eu̇+ ω̇ × eu+ eü),

such that g̈ − gd̈ = −RJ−1ρω(s)× g for

ω̇ × eu+ eü = R>gd̈ − ω̌2eu− 2ω̌eu̇. (15)

Using (15) and Assumption 1, the evolution of the Lyapunov function V can be
upper bounded by

P{V̇ ≤ −
[
z>0 , z

>
1 , z

>
2

] Q 0 0
0 Gz1 0
0 0 Gz2

z0z1
z2


+
∥∥(z>0 P + z>1 D̄ + z>2 Ē)B + c̄z2

∥∥ρ̄(s)} ≥ δ, (16)

with the upper bounds D̄, Ē ∈ R3×3 and c̄ ∈ R, which exist due to Assumption 1.
Thus, the evolution is negative with probability δ for all z with

‖z‖ > max
s∈SX

ρ̄(s)
‖PB‖+

∥∥D̄B∥∥+
∥∥ĒB∥∥+ c̄

min{eig(Q), eig(Gz1), eig(Gz2)}︸ ︷︷ ︸
=:λ

where a maximum of ρ̄ exists regarding to Assumption 1. Finally, the Lyapunov
function (13) is lower and upper bounded by α1(‖z‖) ≤ V (z) ≤ α2(‖z‖), where
α1(r) = 1

2 min{eig(P ), 1}r2 and α2(r) = 1
2 max{eig(P ), 1}r2. Thus, we can compute

the radius b ∈ R≥0
of the bound by

b = max
s∈SX

ρ̄(s)λ

√
max{eig(P ), 1}
min{eig(P ), 1} . (17)

Hence, the tracking error of the closed-loop is uniformly ultimately bounded in
probability by P{‖z0(t)‖ ≤ b,∀t ≥ T} ≥ δ.
Remark 8. Extension to the attitude are analogously to perform with additional
terms in the Lyapunov function as given in [11, 8].

Note that the proof of Theorem 3.2 shows that the bound of the tracking er-
ror (17) depends on the prediction error ρ̄ of the oracle. Depending on prior knowl-
edge about the unknown functions f ,fω and the oracle used, the prediction error
can vanish which leads to asymptotic stability of the tracking error. In order to
achieve this, we introduce the following assumption.

Assumption 3. Let be the data set D, such that the model error of the oracle is
bounded by

P

{∥∥∥∥[f(x)− f̂(x)

fω(s)− f̂(s)

]∥∥∥∥ = 0

}
≥ δ. (18)

Simply speaking, the oracle must be able to reproduce the unknown dynamics
with a certain probability without any prediction error. Even though this seems
to be a strong assumption, there exist these types of oracles if additional prior
knowledge about the unknown f ,fω is available, see [23] and [24] for instance, as
we explain in the below.
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Remark 9. With a GP model as oracle, (18) is satisfied if the posterior variance

Σ([f̂(x)>, f̂ω(s)>]>|s,D) is zero on SX , as shown in Lemma 3.1, for the data set D.
If the kernel function of the GP has a finite dimensional feature space, the posterior
variance vanishes for a finite number of distinct, noise-free data points, see [30] for
further details. A finite dimensional feature space is given, for instance, by the
linear or the polynomial kernel, see [23].

With (18), asymptotic stability of the tracking error is achieved which is formally
written in the next corollary.

Corollary 1. Consider the underactuated rigid-body system given by (1) with un-
known dynamics f ,fω and the existence of an oracle satisfying Assumption 1,
Property 1, and (18). Then, the control law (5) renders the tracking error z0
asymptotically stable on SX with probability δ.

Proof. Using the result about the upper bound of the Lyapunov derivative given
by (16) together with (18), i.e. ρ̄(s) = 0, leads to

P

V̇ ≤ − [z>0 , z>1 , z>2 ]
Q 0 0

0 Gz1 0
0 0 Gz2

z0z1
z2

 ≥ δ, (19)

such that V̇ is always negative on SX with probability δ. As consequence, the
tracking error is asymptotically stable on SX with probability δ.

4. Numerical example. To demonstrate the application relevance of our pro-
posed approach, we consider the task of an quadcopter to explore a terrain with
unknown thermals. The dynamics of the vehicle are described by (1) with mass
m = 1 kg, inertia J = I3kgm2 and the direction e = [0, 0, 1]> of the force input u.
The data of the thermals is taken from publicly available paragliding data2. The
thermals are assumed to act on the quadcopter as a disturbance in the direction
of x3, i.e., the altitude, as well as an angular momentum in the direction of ω1.

A GP model is then used as oracle to predict f(x) and fω(s) based on the
collected data set with the squared exponential kernel, see [23]. The prior knowledge
about the existing gravity in f(x) is considered as estimate in the mean function
of the GP with m3(s) = −10. First, we start with the collection of training data
for the GP model. For this purpose, the control inputs for the aerial vehicle are
generated by a controller as proposed in Theorem 3.2 but without an oracle, i.e.

f̂(x) = f̂ω(s) = 0,∀x ∈ R6, s ∈ S. The feedback gain matrix is set to

G =

10 0 0 10 0 0
0 10 0 0 10 0
0 0 20 0 0 10


and Gz1 = Gz2 = 2I3. The desired trajectory is given by xd,1(t) = sin(t), xd,2(t) =
cos(t)− 1, xd,3(t) = t/10. Figure 2 visualizes the normalized magnitude of the ther-
mal updraft which is assumed to be unknown. Every 0.1 s a training point has
been recorded. Each training point consists of the actual state s and y as given
by (3). Since the training points depend on the typically noisy measurement of
the accelerations p̈ and ω̇, a Gaussian distributed noise N (0, 0.082I3) is added to
the measurement. After the simulation time of 15 s, the data set D consists of 150

2https://thermal.kk7.ch/
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training points. Based on this data set, a GP model is trained and the hyperpa-
rameters are optimized by means of the likelihood function, see [24], for instance.

Figure 3 shows the tracking error of the quadcopter for the training step, i.e,
without oracle (blue) and for the proposed learning-based control law (red). Due to
the impact of f and fω, a large tracking error occurs without an accurate model.
The trained oracle allows us to significantly decrease the tracking error and to let it
converges to a tight set around zero which is also captured in Fig. 4 by the bounded
Lyapunov function. The Lyapunov function might be non-decreasing in some time
sections after it enters this set which results in the “humps” that can be observed
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Figure 2. Visualization of the normalized magnitude of the ther-
mal updraft acting on the quadcopter and the recorded training
data points (red crosses).
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Figure 3. Tracking error of the quadcopter with control law (5)
without learning (blue) and with our proposed learning-based ap-
proach (red).
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in Fig. 4. However, as guaranteed by Theorem 3.2, the Lyapunov function stays
in this set after the initial entry for all time with high probability. The size of
this set can be further reduced by improving the accuracy of the model with more
training data. The corresponding control inputs generated by the learning-based
control law (5) are depicted in Fig. 5. Figure 6 shows the prediction of the GP
model (solid) and the ground truth (dashed) of the unknown functions f and fω.
Even though these functions are highly nonlinear over time, the GP model can
approximate the dynamics accurately which leads to the reduced tracking error.

Finally, we test the learning-base control law on a set of randomly generated
desired trajectories. For this purpose, we generate 30 trajectories, each created
by the sampling of a start point, an endpoint and 3 waypoints from a uniform
distribution over [−1.5, 1.5]× [−2.5, 0]× [0, 1]. The full trajectory is then generated
via quintic polynomials [31]. The left plot of Fig. 7 shows three examples of these
randomly generated trajectories. The set of 30 trajectories is split in a training
set consisting of i) 5 trajectories (375 training points) and ii) 10 trajectories (750
training points) as well as 20 test trajectories. A GP model is trained based on the
two training sets as previously described. The evaluation of the L2-norm of the
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Figure 4. Lyapunov function (solid) converges to a tight set
around zero (dashed line) and stays inside this set with high prob-
ability as guaranteed by Theorem 3.2.
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Figure 5. Control inputs for the quadcopter. Top: Control input
for the thrust u. Bottom: Control input for the torques τ1, τ2, τ3.
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tracking error based for the test set is visualized in the right plot of Fig. 7. The first
boxplot shows the performance of the standard control law without learning. The
second boxplot represents the performance for the proposed learning-based control
law with a training set of 375 state measurements which significantly reduces the
tracking error. The performance can be further improved by collecting more data
as shown in the most right boxplot for a training set of 750 state measurements.

Conclusion. We present a safe learning-based tracking control law for a class of
underactuated systems with unknown dynamics typical for aerial and underwater
vehicles. Using a various type of oracles, the tracking error is proven to be bounded
in probability and the size of the bound is explicitly given. Furthermore, additional
assumptions lead to asymptotic stability. Even though no particular oracle is as-
sumed, we show that Gaussian process models fulfill all requirements to be used as
oracle in the proposed control scheme. Finally, a numerical example visualizes the
effectiveness of the control law.
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