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A B S T R A C T

The interaction of agents that have the ability to gather in coalitions is
a central concern in multi-agent systems since the beginnings of game
theory. Coalition formation is typically formalized by so-called hedo-
nic games. In these games, a finite set of agents has to be partitioned
into disjoint coalitions, i.e., groups or teams, while they can express
preferences about this subdivision. The desirability of coalitions is
measured by means of solution concepts. These concepts capture, for
instance, the stability of a coalition structure, i.e., its resistance against
deviations of agents, or optimality, i.e., global guarantees.

The first set of results concerns classical solution concepts in estab-
lished classes of hedonic games. We bridge several gaps in the liter-
ature by resolving the complexity of various solution concepts, such
as contractual Nash stability in additively separable hedonic games,
individual stability in symmetric fractional hedonic games, or strong
popularity in roommate games. In cardinal classes of hedonic games,
we perform comprehensive studies of Pareto optimality and popular-
ity.

We then go over to challenging various paradigms in the literature
by making several conceptual contributions. First, we complement
static solution concepts by a distributed view. Given a game, instead
of asking whether a certain partition exists, we ask whether we can
reach specific partitions by means of simple dynamics induced by in-
stabilities. We gain new insights in various classes of hedonic games,
such as anonymous hedonic games, hedonic diversity games, or frac-
tional hedonic games. We also analyze the speed of convergence of
the obtained dynamics.

Second, we propose stability concepts based on consent through
majority votes. These offer a compromise between classical concepts
which either neglect any form of consent or require unanimous con-
sent for performing deviations. We study the new solution concepts
in additively separable hedonic games and some natural subclasses.
The latter are based on the sole distinction of two types of utilities
corresponding to friends and enemies.

Third, we propose a way to integrate loyalty, a form of empathy-
based incentives, into a given cardinal hedonic game. By iteratively
applying the loyalty operation, we converge to a limit game which sat-
isfies egalitarianism at a local level. The limit game contains Pareto-
optimal partitions in the core, i.e., they satisfy group stability. How-
ever, the loyal game variants lead to intractabilities with respect to
preference elicitation and stability.
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Besides the main focus of the thesis on hedonic games, we also
study a game-theoretic model of residential segregation, which en-
capsulates Schelling’s homophily incentives. In this model, a set of
agents is assigned to locations in a metropolitan area. By interpreting
the neighborhood of an agent as their coalition, we obtain a model of
overlapping coalitions.

For our segregation model, we propose novel concepts of optimal-
ity connected to utilitarian social welfare and Pareto optimality. We
compute mostly tight bounds for the welfare obtained by all optimal-
ity notions, and show how to compute corresponding assignments of
agents to locations efficiently.

We conclude the thesis with the consideration of a series of further
directions including some specific open problems.
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Z U S A M M E N FA S S U N G

Ein zentrales Anliegen in Multiagentensystemen seit den Anfängen
der Spieltheorie ist die Interaktion von Agenten, die sich zu Koali-
tionen zusammenfinden können. Koalitionsbildung wird typischer-
weise mittels so genannter hedonischer Spiele formalisiert. In diesen
Spielen muss eine endliche Menge von Akteuren in disjunkte Koali-
tionen, d.h. Gruppen oder Teams, aufgeteilt werden, wobei die Ak-
teure Präferenzen über diese Aufteilung äußern können. Dabei wird
die Begehrtheit von Koalitionen mit Hilfe von Lösungskonzepten bes-
timmt. Diese Konzepte erfassen beispielsweise die Stabilität einer
Koalitionsstruktur, d.h. ihre Resistenz gegenüber Koalitionswechseln
der Akteure, oder deren Optimalität, also das Erfüllen globaler An-
forderungen.

Die erste Reihe an Ergebnissen betrifft klassische Lösungskonzepte
in etablierten Klassen hedonischer Spiele. Wir schließen mehrere
Lücken in der Literatur, indem wir die Komplexität verschiedener
Lösungskonzepte bestimmen wie beispielsweise vertragsgeschützter
Nash-Stabilität in additiv separablen hedonischen Spielen, individu-
eller Stabilität in symmetrischen fraktionalen hedonischen Spielen
sowie starker Popularität in Zimmerpartner-Spielen. In kardinalen
Klassen hedonischer Spiele stellen wir ausführliche Betrachtungen
zu Pareto-Optimalität und Popularität an.

Wir gehen dann dazu über, diverse Paradigmen in der Literatur
durch verschiedene konzeptionelle Beiträge in Frage zu stellen. Zu-
nächst ergänzen wir die gängigen statischen Lösungskonzepte durch
eine distributive Sichtweise. Anstatt die Existenz bestimmter Parti-
tionen zu untersuchen, betrachten wir, ob gute Partitionen mittels
einfacher, durch Instabilitäten induzierter Dynamiken erreicht wer-
den können. Wir gewinnen neue Einsichten in verschiedene Klassen
von hedonischen Spielen wie anonyme hedonische Spiele, hedonis-
che Diversitätsspiele oder fraktionale hedonische Spiele. Des Weite-
ren analysieren wir die Konvergenzgeschwindigkeit der so erhalte-
nen Dynamiken.

Zweitens schlagen wir Stabilitätskonzepte vor, die auf Zustimmung
durch Mehrheitsentscheidung beruhen. Diese bieten einen Kompro-
miss zwischen klassischen Konzepten, die entweder jede Form der
Zustimmung vernachlässigen oder einstimmige Zustimmung für die
Durchführung von Abweichungen verlangen. Wir untersuchen die
neuen Lösungskonzepte in additiv separablen hedonischen Spielen
und natürlichen Teilklassen derer. Letztere beruhen auf der alleini-
gen Unterscheidung von zwei Arten von Nützlichkeit, die Freunden
und Feinden entsprechen.
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Drittens schlagen wir einen Weg vor, um Loyalität, eine Form von
Empathie-basierten Anreizen, in ein gegebenes kardinales hedoni-
sches Spiel zu integrieren. Durch die wiederholte Anwendung der
Loyalitätsoperation konvergieren wir zu einem Grenzspiel, das Ega-
litarismus auf lokaler Ebene begünstigt. Dieses Grenzspiel enthält
Pareto-optimale Partitionen im Core; diese erfüllen also Gruppensta-
bilität. Die auf Loyalität basierenden Varianten des Grundspiels brin-
gen jedoch Berechenbarkeitsprobleme in Bezug auf Stabilität und die
allgemeine Präferenzbeschreibung mit sich.

Abgesehen vom Schwerpunkt der Arbeit auf hedonischen Spielen
untersuchen wir auch ein spieltheoretisches Modell von Segregation,
das Schellings Homophilie-Anreize aufgreift. In diesem Modell wer-
den einer Gruppe von Akteuren Wohnorte zugewiesen. Indem wir
die Nachbarschaft eines Akteurs als seine Koalition interpretieren, er-
halten wir ein Koalitionsmodell mit überlappenden Koalitionen.

Bezüglich dieses Modells schlagen wir neue Optimalitätskonzepte
vor, die eine Brücke zwischen utilitaristischer Wohlfahrt und Pareto-
Optimalität schlagen. Wir berechnen vorwiegend exakte Garantien
für die Wohlfahrt aller Optimalitätsbegriffe und zeigen, wie man
entsprechende Wohnortszuweisungen von Akteuren effizient berech-
nen kann.

Wir schließen mit der Betrachtung einer Reihe zukünftiger For-
schungsrichtungen inklusive konkreter offener Probleme.
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Part I

S Y N T H E S I S O F C O N T R I B U T I O N S





1
I N T R O D U C T I O N

Today’s world would be unthinkable without the extensive use of al-
gorithms. They help us every day to make decisions or to provide
us computational power of which humans are incapable. Even older
than the broad field of artificial intelligence, which concerns us to-
day, is game theory, which recently celebrated its hundredth birthday
(Borel, 1921; von Neumann, 1928). In short, game theory deals with
strategic decision making during the interaction of several individ-
uals. Today, an important aspect of game theory is the algorithmic
guidance of these processes as researched, for instance, in the areas
of algorithmic game theory and multi-agent systems.

An important aspect of game theory is the emergence of collabora-
tion. In our daily lives, group and team structures are ubiquitous. We
live together with our family or friends, we form teams in our work-
ing life, and in our free time, we join sport clubs or music groups.
The key question is how we establish the right groups or teams. This
question is closely related to asking for what we actually want to
achieve as individuals.

All of the examples discussed before have in common that we care
about who we spend time with. We know our most reliable friends,
our most productive co-workers, and who can entertain us the most.
The central goal is that the established cooperations should reflect our
opinions or preferences about who we would like to form a coalition
with.

However, we experience every day that it is not easy to find the
groups we want to belong to. Often, there simply is an abundance
of options. Formal models of coalition formation try to give a frame-
work to abstract the task of finding suitable cooperations. This helps
provide a precise description of the problem and can guide decision
processes.

We start by introducing some basic terminology to create a lan-
guage enabling us to discuss the formation of groups or teams more
precisely. Let us refer to the individuals participating in the coali-
tion formation process as a set of agents. The goal is to subdivide
the agents into different groups which we call coalitions. Together, all
coalitions yield a coalition structure (or a partition to be mathematically
precise). In a game, agents can specify preferences about the coalitions
they are part of. The desirability of coalition structures according to
the preferences in a specific game is then determined by so-called
solution concepts, which can be viewed as (desirable) properties of out-
comes.
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4 introduction

Given the large number of coalitions which an agent can be part of,
specifying preferences is not a straightforward task. Therefore, for-
mal models can give guidance for how to express an opinion instead
of providing a ranking of all possible options. Usually, this will lead
to a loss in generality because some complicated preferences might
not be expressible in a certain model. However, this also opens up the
possibility to focus on certain aspects of a specific coalition formation
process.

For instance, imagine that you are entrusted with the task of form-
ing groups at a workshop where the participants do not know each
other in advance. Then, it would be unreasonable if the agents have
to take the identity of other agents into account when expressing their
preferences. Still, instead of forming arbitrary teams, coalitions could
be selected based on preferences about coalition sizes.

In this thesis, we will study several classes of coalition formation
games with the goal of computing desirable coalition structures by
means of algorithms. In this course, we will also go beyond standard
solution concepts. We will investigate new ways of defining desir-
ability, and we will even leave paradigms of the classical theory by
dissolving from static solution concepts. Moreover, we will gain new
insights in the effects of empathy and homophily on the interpersonal
interaction.

1.1 hedonic games: the predominant model
of coalition formation

Since its early days, the treatment of cooperation is an integral part
of game theory. In the beginning—and in particular in the seminal
book Theory of Games and Economic Behavior by von Neumann and
Morgenstern (1944)—cooperation was usually analyzed with the aid
of a characteristic function that associates a value to every possible
coalition. Instead of finding a good coalition structure, this approach
aims at rewarding individual contributions appropriately if all agents
collaborate as a whole. The value associated with the set of all agents
can be distributed among the agents as their payoffs, and the pay-
off obtained by a certain agent is called their utility, which an agent
seeks to maximize. Since the distribution of payoffs can be performed
arbitrarily, we obtain a model with transferable utility.

It was only much later that this view was extended by not taking
the coalition structure of the agents as exogenously given. This idea
was used in the investigation of the bargaining set by Aumann and
Maschler (1964) and then advocated by Aumann and Drèze (1975)
in more generality. In their work, the new object of study is the
subdivision of the agents and the focus of an agent is their member-
ship in a coalition within a coalition structure. In the sequel, Drèze
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and Greenberg (1980) go one step further, and start to break away
from the assumption of transferable utility between agents. Instead
of maximizing payoff, an agent is now interested in the identity of
their coalition, that is, their members. In other words, this shifts at-
tention from a cardinal consideration of earning utility to an ordinal
consideration of (groups of) individuals. Drèze and Greenberg (1980)
coin the term hedonic games, where an agent is only concerned about
their own coalition while externalities, that is, the composition of the
coalition structure outside their own coalition, do not play a role.

It took about twenty years until the framework of hedonic games
achieved increased attention starting with important contributions by
Banerjee et al. (2001), Cechlárová and Romero-Medina (2001), and
Bogomolnaia and Jackson (2002). Hajduková (2006) surveys these
early results. Since then, hedonic games have been constantly and
extensively studied. In this thesis, we consider coalition formation in
the framework of hedonic games.

The two key challenges in hedonic games are finding suitable pref-
erence representations, and defining appropriate solution concepts.

The first goal is to consider games with a meaningful interpreta-
tion describing a real-life scenario. Over the years, a rich variety of
classes of hedonic games has been introduced, capable of modeling
settings, such as research team formation (Alcalde and Revilla, 2004),
task allocation (Saad et al., 2011), or community detection (Aziz et al.,
2019). Many of these classes will be defined formally in Section 2.1.

Second, we want to discuss central ideas of solution concepts. Most
of these can be classified as either notions of stability or notions of
optimality. The landscape of stability notions in hedonic games is
wide but they have in common that agents act based on decisions
leading to immediate improvements. This follows the idea of the core,
a prominent solution concept in transferable utility settings, where
an outcome is in the core if there is no set of agents that improves by
acting on its own. In more generality, stability means that there is no
single agent or set of agents that can perform a beneficial deviation
to improve their coalitions.

In contrast, notions of optimality usually take a global perspective.
A weak concept of optimality is the classical notion of Pareto opti-
mality which demands that every outcome that is preferred by some
agent is worse for another agent. Moreover, if utilities are expressed
cardinally, we have a common scale of utilities and can aggregate
them to global measures. For instance, we can consider the sum or
the minimum of the utilities of the agents in a given coalition struc-
ture. These aggregated values are referred to as the utilitarian or
egalitarian social welfare. We obtain further optimality notions by
considering coalition structures maximizing social welfare.
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1.2 schelling segregation: a model with
overlapping coalitions

A long-term goal in social sciences has been to model and understand
the emergence of segregation such as racial or sexual segregation.
This adds the influence of homophily, that is, the desire of humans to
be surrounded by like-minded others, to a cooperative scenario.

More than 50 years ago, Thomas Schelling was the first to propose
a simple model of segregation (Schelling, 1969; Schelling, 1971). He
considers a setting with a set of agents of different types, which rep-
resent similarity, for example, according to the agents’ ethnological
background or socio-economic status. The agents live in a street—
modeled as a line graph—or a metropolitan area—modeled as a grid
graph. Agents are assumed to possess a certain level of homophily in
the sense that they seek to live in a neighborhood in which at least a τ

fraction of agents has the same type. Whenever an agent is unhappy
because of living in a neighborhood of less than a τ fraction of similar
agents, they move to another location where they are happy, provided
that such a location exists. The surprising result by Schelling is that
even a small bias of τ ≈ 1

3 suffices for the agents to segregate, that is,
to eventually live in large clusters of similar agents.

Over the years, this phenomenon has been confirmed in numerous
simulations (see, e.g., Clark and Fossett, 2008; Easley and Kleinberg,
2010, Chapter 4). The individual micro-motives by the agents cause
an (undesired) macro-behavior on a global scale (Schelling, 2006).

After Schelling’s original publications, it has taken a while before
the first theoretical breakthroughs. Young (1998) paves the road by
considering a probabilistic variant of Schelling’s segregation process
with the aid of a Markov chain. He considers a set of agents lo-
cated on a cycle and finds that the stable states correspond to total
segregation into intervals of same-type agents. Subsequently, Zhang
(2004) extends this result to two dimensions using more involved tech-
niques from stochastic evolutionary game theory. In the sequel, sig-
nificant progress was also made in the original, unperturbed version
of Schelling’s model with the goal of measuring the size of monochro-
matic areas evolving through segregation (Brandt et al., 2012; Barm-
palias et al., 2014; Barmpalias et al., 2015; Immorlica et al., 2017).

More recently, a stream of research has started to study Schelling
segregation in a game-theoretic setting from a strategic point of view
(see, e.g., Chauhan et al., 2018; Echzell et al., 2019; Agarwal et al.,
2021). In these so-called Schelling games, a set of agents is to be
placed on an arbitrary topology graph, that is, any undirected and
unweighted graph, which can model simple metropolitan structures
as in Schelling’s original work, but also more complex structures. In
comparison to coalition formation games, the output of a Schelling
game is therefore an assignment of agents to nodes of a graph, and
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agents seek to maximize a utility function reflecting the homophily
incentive proposed by Schelling.

This model is quite related to coalition formation. However, the es-
sential difference is that the coalition formation process is constrained
by the topology graph. This is reflected both in the coalition struc-
tures and in the set of available deviations. First, instead of partition-
ing a set of agents into disjoint coalitions, the immediate neighborhood
of an agent acts as their coalition, yielding a setting with overlap-
ping coalitions. In particular, if the topology graph of the Schelling
game consists only of cliques, we can represent the game by common
classes of hedonic games. Second, the available deviations of an agent
are also constrained by the topology graph because an agent can only
deviate by relocating to another empty node.

1.3 contribution

The majority of the results in this thesis are of algorithmic nature
and aim at the possibility of implementing desirable solutions. We
examine a specific solution concept and game, and ask fundamental
algorithmic questions, such as

How can we compute a coalition structure (or assignment) that
satisfies the solution concept?

or, if the existence of outcomes satisfying the solution concept is an
issue,

How can we decide whether a coalition structure (or assign-
ment) that satisfies this solution concept exists?

Usually, we ask these questions for a certain class of hedonic games
or for the domain of Schelling games. The answer is then of one of
two natures. On the one hand, we find positive results in the sense
of efficient, that is, polynomial-time, algorithms. On the other hand,
we establish computational boundaries in the form of intractabilities,
that is, NP-hardness or similar results.1

In the case of hardness, we are interested to investigate further how
close we are to computational feasibility. Hence, we ask questions like

Does a hardness result still hold under stronger restrictions on
the class of instances?

or, more positively

Under which further conditions can we provide an efficient al-
gorithm?

1 We assume that the reader is familiar with classical concepts from computational
complexity. For more background on that topic, we refer to, e.g., the text book by
Arora and Barak (2009).
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For researching the latter question, there are several canonical ap-
proaches for the development of algorithms, such as

• Can we approximate good solutions?

• Can we weaken our demands on the solution? or

• Can we obtain better results for a subdomain of inputs?

The first two of these approaches lead to conceptually different yet
related solutions, while the third approach yields exact but partial
solutions. We will see examples for all of these three approaches. No-
tably, in the course of determining the computational complexity of
various solution concepts, we will close several gaps in the literature.

Additionally, the thesis contains various conceptual contributions.
First, we propose novel solution concepts. In the domain of coalition
formation, we consider majority-based stability concepts. These of-
fer a compromise between unanimous and completely neglected con-
sent by coalitions involved in deviations. In the domain of Schelling
games, we bridge the gap between Pareto optimality and welfare op-
timality by suggesting appropriate notions of optimality.

Second, the results in this thesis are among the pioneering work on
the consideration of dynamics based on single-agent deviations in the
domain of hedonic games. Instead of determining a fixed coalition
structure in an instance which satisfies a notion of stability, we con-
sider an arbitrary initial coalition structure and its instabilities, that
is, possible deviations by single agents. If an agent has an incentive
to perform a deviation, this leads to a transition to a new coalition
structure where we can look for instabilities once again. Continuing
this process leads to sequences of coalition structures emerging from
sequences of deviations. The key questions that we will ask about the
arising dynamics concern their possible or necessary convergence. In
addition, we also discuss their running time.

Third, we define loyalty, a notion of empathy, in coalition forma-
tion. In contrast to much of the literature where new game classes
are proposed, loyalty is a concept which is decoupled from utility re-
strictions and which can be applied to every game (where utilities are
expressed cardinally). Given a benchmark game, we obtain its loyal
variants, each featuring a different degree of empathy. As we will
see, a very high degree of loyalty corresponds to a local version of
egalitarianism. For the loyal variants, we study established solution
concepts answering similar algorithmic questions as before.



2
M AT H E M AT I C A L M O D E L S

In this chapter, we introduce the formal models that this thesis builds
upon. The majority of this chapter deals with hedonic games, our
framework to reason about coalition formation. We will start with
a general introduction and have a look at important specific classes
of hedonic games. We then discuss desirable outcomes, mostly mea-
sured by notions of stability and optimality. Next, we introduce the
framework for two novel conceptual ideas, namely dynamics and loy-
alty. In the final section, we broaden the picture and introduce the
formal model of Schelling segregation.

2.1 hedonic games

We model coalition formation in the framework of hedonic games
going back to Drèze and Greenberg (1980).

Given a positive integer i ∈ N, we use the common notation [i] :=

{1, . . . , i}. Let N := [n] be a finite set of agents. Any subset of N is
called a coalition. We denote the set of all coalitions containing agent
i ∈ N by Ni := {C ⊆ N : i ∈ C}. A coalition structure (or simply
partition) is a subset π ⊆ 2N which partitions N, that is,

⋃
C∈πC = N,

and for every pair C,D ∈ π, it holds that C = D or C∩D = ∅. Given
an agent i ∈ N and a partition π, let π(i) denote the coalition of i,
i.e., the unique coalition C ∈ π with i ∈ C. Two prominent partitions
are the singleton partition where every agent forms a coalition on their
own, and the grand coalition where the agents form one single joint
coalition.

Definition 2.1 (Drèze and Greenberg, 1980)
A (ordinal) hedonic game is defined by a tuple (N,≿) where
≿= (≿i)i∈N. Thereby, ≿i is a weak order, that is, a complete, re-
flexive, and transitive binary relation, over Ni which represents
the preferences of agent i.

We also call ≿i agent i’s preference order. Given two partitions π

and π ′, we say that agent i (weakly) prefers π over π ′ if and only if
π(i) ≿i π

′(i).
Given a preference order ≿i, we denote its strict part and indiffer-

ence part by ≻i and ∼i, respectively. A preference order is said to be
strict if it is antisymmetric. Moreover, a hedonic game (N,≿) is said
to be globally ranked if there exists a weak order ≿G over 2N such that,

9
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for each i ∈ N, the order ≿i is the restriction of ≿G to Ni (Farrell and
Scotchmer, 1988; Abraham et al., 2007b).

In some cases, we have cardinal representations of the preference
orders. Then, we also represent a hedonic game in the form (N,u)
where u = (ui)i∈N specifies a utility function ui : Ni → Q for every
agent i. If a hedonic game is given in this representation, we also
speak of a cardinal hedonic game. The preference order of an agent
is then determined by comparing the utilities of coalitions. In other
words, a cardinal hedonic game (N,u) is associated with its ordinal
variant (N,≿), where, for every agent i ∈ N and every pair of coali-
tions C,D ∈ Ni, it holds that C ≿i D if and only if ui(C) ⩾ ui(D).

We say that a utility function has binary utility values if it only
attains the values 0 and 1.

Since |Ni| = 2n−1, the preferences of the agents are rarely given
explicitly, but rather in some concise representation. In the follow-
ing, we discuss several representations leading to various classes of
hedonic games.

2.1.1 Preference Representation in Hedonic Games

Representing preferences in hedonic games is a tradeoff between ex-
pressiveness and efficient encoding. Since providing a complete list
of all preferences is infeasible, one idea is to restrict attention to coali-
tions that seem particularly interesting. A coalition C ∈ Ni is said
to be individually rational if C ≿i {i}, that is, C is weakly preferred
to being in a singleton coalition. A hedonic game is encoded with
individually rational lists of coalitions (IRLC) if, for every agent i and
pairs of coalitions C,D ∈ Ni with {i} ≻i C and {i} ≻i D, it holds that
C ∼i D (Ballester, 2004). In other words, it suffices to specify for ev-
ery agent an incomplete preference list which contains exactly their
individually rational coalitions.

Example 2.2 (Brandt and Bullinger, 2022)
We define a simple hedonic game (N,≿) in IRLC representation.
Let the agent set be N = {a,b, c,d} and preferences be given as

• N ≻a {a,b} ≻a {a, c} ≻a {a,d} ≻a {a},

• N ≻b {b, c} ≻b {b,a} ≻b {b,d} ≻b {b},

• {c,a} ≻c {c,b} ≻c {c,d} ≻c N ≻c {c}, and

• {d,a} ∼d {d,b} ∼d {d, c} ≻d N ≻d {d}.

The only individually rational coalitions are of size 1, 2, and 4.
Coalitions of size 3 are equally bad and less preferred than be-
ing in a singleton coalition. Consider the coalition structures
π1 = {{a,b}, {c,d}} and π2 = {{a, c}, {b,d}}. Then π1 is strictly
preferred by agents a and b while π2 is strictly preferred by
agent c. Agent d is indifferent between the two partitions. ◁
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Let us discuss the IRLC representation. On the one hand, it is
not fully expressive, that is, cannot express every preference order
over Ni, because a strict comparison of two coalitions that are both
not individually rational is not possible. On the other hand, if agents
have simple preferences, then a succinct representation is possible.
For instance, it can be the case that only coalitions of bounded size
are feasible and therefore ranked as individually rational.

Definition 2.3 (Irving, 1985; Brandt and Bullinger, 2022)
A hedonic game is called a

• roommate game if only coalitions of size at most 2 are indi-
vidually rational, and

• flatmate game if only coalitions of size at most 3 are indi-
vidually rational.

In principle, coalitions of size larger than 2 or 3 are not disallowed
in an output partition in roommate games or flatmate games. This
seems counterintuitive if the output is, for instance, supposed to be
a matching, but this is merely a cosmetic issue. A coalition which
is less preferred than the singleton coalition by all of its members is
not part of a partition selected by any reasonable solution concept.
Hence, we can just disregard it in all relevant situations.

The IRLC representation has another, technical advantage, namely
that it facilitates polynomial-time reductions and therefore paves the
way for hardness results. For reductions to run in polynomial time,
it only matters whether the reduced instances are sufficiently small
with respect to the encoding size of their source instances. It is unim-
portant whether there are exponentially large instances if they never
occur as reduced instances. This idea, which was first applied by
Ballester (2004), is, for instance, frequently used in Publication 2.

Another common idea to obtain feasible preference relations is to
only allow agents to express succinct information about their pref-
erences. This approach leads to an efficient encoding at the cost of
some expressiveness. It is therefore all the more important that the
obtained game classes have a meaningful interpretation. A very sim-
ple idea of this type is that agents only rank single agents instead of
all possible coalitions (Cechlárová and Romero-Medina, 2001). Then,
one can lift the preferences about individuals to preferences about
coalitions by comparing, for example, the best or the worst agents of
different coalitions.

In this thesis, we consider anonymous hedonic games and hedonic
diversity games, two classes of hedonic games that follow a similar
spirit. In each of them, agents have a complete ranking over all coali-
tions which is elicited from succinct secondary information. First, we
define anonymous hedonic games where only coalition sizes matter.
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Definition 2.4 (Bogomolnaia and Jackson, 2002)
A hedonic game (N,≿) is called an anonymous hedonic game if,
for every agent i ∈ N, there exists a weak order ≿S

i over integers
in [n] (S for sizes) such that π(i) ≿i π

′(i) if and only if |π(i)| ≿S
i

|π ′(i)|.

In hedonic diversity games, agents’ preferences are also based on a
ranking over numbers. The idea is that the set of agents is subdivided
into two sets of different types. The valuation of a coalition then
depends on the proportion of the two types in the coalition. Hedonic
diversity games are motivated by situations like the meeting of senior
and junior researchers at a conference dinner or the joint engagement
of politicians and scientists in a climate task force.

Definition 2.5 (Bredereck et al., 2019)
A hedonic game (N,≿) is called a hedonic diversity game if pref-
erences are elicited as follows. Assume that the agents are di-
vided into two different types, called red and blue agents. They
are represented by the subsets R ⊆ N and B ⊆ N, respectively,
such that N = R∪ B and R∩ B = ∅. For each agent i ∈ N, there
exists a weak order ≿F

i over {pq : p ∈ [|R|]∪ {0},q ∈ [n]} (F for frac-

tions) such that π(i) ≿i π
′(i) if and only if |R∩π(i)|

|π(i)| ≿F
i

|R∩π ′(i)|
|π ′(i)| .

An anonymous game (or hedonic diversity game) is said to be
single-peaked if, for each agent i ∈ N and each triple of integers
x,y, z ∈ [n] (or x,y, z ∈ {pq : p ∈ |R| ∪ {0},q ∈ [n]}) with x > y > z

or z > y > x, it holds that x ≻S
i y implies y ≿S

i z (or x ≻F
i y implies

y ≿F
i z).2 In other words, single-peakedness means that the prefer-

ences of every agent peak at a most preferred coalition size (or ratio),
and then the liking of coalition sizes (or ratios) monotonically decays
for both increasing and decreasing sizes (or ratios).

Note that, in contrast to the preference representations considered
in this thesis, there also exist fully expressive representations of he-
donic games apart from providing complete preference rankings as
lists. For instance, Elkind and Wooldridge (2009) propose an encod-
ing by Boolean formulas. Similar to the IRLC encoding, this encoding
has exponential size in the worst case, but simple preferences can be
represented succinctly.

2.1.2 Cardinal Classes of Hedonic Games

A prominent modeling paradigm for hedonic games is that we can
elicit preferences from cardinal utilities for single agents, that is from
utility functions of the form uS

i : N → Q (S for single). We will now in-
troduce three classes of cardinal hedonic games (and some subclasses)

2 In Publication 4, single-peakedness is called natural single-peakedness.
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based on this assumption. The idea is similar to obtaining a full rank-
ing over coalitions from information about single agents as in the
ordinal classes by Cechlárová and Romero-Medina (2001). However,
since we have cardinal values, we have more opportunities to aggre-
gate preferences. A particularly natural aggregation methods is to
take the sum of utilities.

Definition 2.6 (Bogomolnaia and Jackson, 2002)
A cardinal hedonic game (N,u) is called an additively separable
hedonic game if, for every agent i ∈ N, there exists a function
uS
i : N → Q such that ui(C) =

∑
j∈C uS

i (j) for all C ∈ Ni.

We therefore also represent an additively separable hedonic game
as the game (N,uS) where uS = (uS

i )i∈N is the vector of single-agent
utility functions. An additively separable hedonic game (N,uS) is
said to be symmetric if, for all pairs of agents i, j ∈ N, it holds that
uS
i (j) = uS

j (i).
There are a few interesting subclasses of additively separable hedo-

nic games in which only a single positive and negative utility value
is attained. The interpretation is that an agent simply distinguishes
agents of positive and negative utility as friends and enemies. Still,
the ratio between the absolute values of the negative and positive
utility matters, and can express a priority.

Definition 2.7 (Dimitrov et al., 2006)
An appreciation-of-friends game is an additively separable hedo-
nic game (N,uS) such that, for every pair of agents i, j ∈ N,
it holds that uS

i (j) ∈ {n,−1}. A friends-and-enemies game is an
additively separable hedonic game (N,uS) such that, for every
pair of agents i, j ∈ N, it holds that uS

i (j) ∈ {1,−1}.

While appreciation-of-friends games give priority to maximizing
friends, subject to which the minimization of enemies is relevant,
friends-and-enemies games consider these two objectives with equal
importance. Similar to appreciation-of-friends games, there also exist
aversion-to-enemies games, where the range of the utility functions is
{1,−n}, and therefore priority is given to avoiding enemies.

In contrast to the additive utility aggregation, it is also possible to
take the average utility. Dependent on whether an agent also consid-
ers themselves, we obtain two classes of hedonic games. If we con-
sider the whole coalition size, we obtain fractional hedonic games.

Definition 2.8 (Aziz et al., 2019)
A cardinal hedonic game (N,u) is called a fractional hedonic game
if, for every agent i ∈ N, there exists a function uS

i : N → Q such
that the following two conditions hold:

• It holds that uS
i (i) = 0.

• It holds that ui(C) =
∑

j∈C uS
i (j)

|C|
for all C ∈ Ni.
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If we do not consider the agent themselves in the denominator,
then the fraction corresponds to the expected utility when selecting
another agent in one’s coalition uniformly at random. This yields
modified fractional hedonic games.

Definition 2.9 (Olsen, 2012)
A cardinal hedonic game (N,u) is called modified fractional he-
donic game if, for every agent i ∈ N, there exists a function
uS
i : N → Q such that the following two conditions hold:

• It holds that uS
i (i) = 0 and ui({i}) = 0.

• It holds that ui(C) =
∑

j∈C uS
i (j)

|C|−1 for all C ∈ Ni \ {{i}}.

2.2 desirable partitions

It remains to define goals for our coalition formation games. These
are formulated in the form of solution concepts, that is, properties
that may or may not be satisfied by a certain partition. In general,
there exist notions of stability and optimality. The former concerns
the prospect of agents maintaining their coalitions from an individ-
ual perspective, while the latter deals with desirability from a global
perspective. In addition, there are some solution concepts, such as
popularity and individual rationality, that have a flavor from both
worlds. An overview of most solution concepts for hedonic games
considered in this thesis is given in Figure 2.1.

Throughout all of this and the next section, we implicitly assume
that we operate on a fixed hedonic game (N,≿).

A partition π is said to be individually rational if, for every agent
i ∈ N, it holds that π(i) ≿i {i}, that is, every agent’s coalition is
individually rational. Individual rationality can be seen as a basic re-
quirement regarding both stability and optimality. On the one hand,
no agent in an individually rational partition has an incentive to per-
form a deviation towards forming a singleton coalition. On the other
hand, individual rationality gives a mild guarantee of quality to every
agent.

2.2.1 Classical Notions of Stability

Stability concepts are based on incentives of single agents or groups
of agents to perform deviations. We start with the former. A single-
agent deviation performed by agent i transforms a partition π into a
partition π ′ where π(i) ̸= π ′(i) and, for all agents j ̸= i, it holds

that π(j) \ {i} = π ′(j) \ {i}. We write π
i−→ π ′ to denote a single-agent

deviation performed by agent i transforming a partition π into a par-
tition π ′.
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Contractual Nash
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Pareto
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Figure 2.1: Overview of solution concepts for hedonic games (Aziz and Sa-
vani, 2016; Brandt et al., 2022a). Notions of stability are in black
while notions of optimality are colored blue. Solution concepts
with the flavor of both stability and optimality are colored green.
The bold concepts are novel and introduced in Publication 5.
The arrows display implications.

Our paradigm for stability are myopic rational agents who only
engage in a deviation if it immediately makes them better off. This is
reflected in the definition of our first stability concept, Nash stability,
the analogue of Nash equilibrium in non-cooperative game theory
(Nash, 1950).

Definition 2.10 (Bogomolnaia and Jackson, 2002)
A Nash deviation is a single-agent deviation π

i−→ π ′ making
agent i better off, i.e., π ′(i) ≻i π(i). A partition which allows
for no Nash deviation is said to be Nash-stable.

Nash stability is a strong concept and comes with the drawback
that only the preferences of the deviating agent are of relevance. There-
fore, various refinements have been proposed which additionally re-
quire the consent of the abandoned and the welcoming coalition. We
follow the approach of Publication 5 and introduce consent-based sta-
bility concepts using the notion of favor sets.

Consider a coalition C ⊆ N and an agent i ∈ N. The favor-in set
of C with respect to i is the set of agents in C (excluding i) that strictly
favor having i inside of C rather than outside, i.e., Fin(C, i) = {j ∈
C \ {i} : C∪ {i} ≻j C \ {i}}. Similarly, the favor-out set of C with respect
to i is the set of agents in C (excluding i) that strictly favor having i

outside of C rather than inside, i.e., Fout(C, i) = {j ∈ C \ {i} : C \ {i} ≻j

C ∪ {i}}. Note that in both of the preceding definitions, the agent i

may or may not be a member of coalition C.
Unanimous consent was already an important ingredient of stabil-

ity in the early work by Drèze and Greenberg (1980). They motivated
consent based on an example by Meade (1972) in the context of labor
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markets. There, it is reasonable that a partner can only join or aban-
don a firm provided the consent of all other present partners. The
concepts in the form used in this thesis were formulated by Bogomol-
naia and Jackson (2002) and Dimitrov and Sung (2007).

Definition 2.11 (Bogomolnaia and Jackson, Dimitrov and Sung)
An individual deviation is a Nash deviation π

i−→ π ′ such that
Fout(π

′(i), i) = ∅. Similarly, a contractual deviation is a Nash

deviation π
i−→ π ′ such that Fin(π(i), i) = ∅. A single-agent

deviation that is both an individual and a contractual deviation
is called a contractual individual deviation.

A partition is said to be individually stable, contractually Nash
stable, or contractually individually stable if it allows for no indi-
vidual deviation, contractual deviation, or contractual individ-
ual deviation, respectively.

We move on to stability based on group deviations. The solution
concept that is ubiquitous since the birth of cooperative game theory
is the core (von Neumann and Morgenstern, 1944). Essentially, it is
the equivalent of Nash stability when considering group deviations.
For hedonic games, it was first considered by Banerjee et al. (2001)
and Bogomolnaia and Jackson (2002).

Definition 2.12 (Banerjee et al., 2001)
A coalition C ⊆ N is called a blocking coalition with respect to a
partition π if, for all i ∈ C, C ≻i π(i). A partition π is said to be
in the core if there exists no blocking coalition with respect to π.

Example 2.13

We demonstrate the introduced stability concepts with the aid
of an example. Consider the friends-and-enemies game (N,uS)

where N = {a,b, c,d} and uS
a(b) = uS

a(c) = uS
a(d) = uS

b(c) =

uS
b(d) = uS

c(a) = uS
d(a) = uS

d(c) = 1. All other pairwise
utilities are assumed to be −1. The game is visualized in Fig-
ure 2.2a. There, a directed edge from agent v to agent w means
that uS

v(w) = 1.
First, consider the partition π1 = {{a,b, c}, {d}} as depicted

in Figure 2.2b. It holds that π1 is individually rational, indi-
vidually stable, and in the core. Individual rationality follows
because the utility of all agents is non-negative.

For individual stability, note that a and c are not better off by
joining d or forming a singleton coalition. Moreover, b is not
allowed to join d because d blocks this. Finally, d cannot join
{a,b, c} because c blocks this.

For membership in the core, we first realize that the only bet-
ter coalition for agent a would be the grand coalition N. How-
ever, forming N is not beneficial for agent c. Hence, a cannot
be part of a blocking coalition. But this immediately implies
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Figure 2.2: Friends-and-enemies game of Examples 2.13 and 2.15. On the
left, the friendship relation is visualized. Partition π1 in the
middle is an individually stable partition in the core. Partition
π2 at the right is contractually Nash stable and even majority-
out stable.

that c cannot be part of a blocking coalition, either, because the
only coalition left yielding non-negative utility is the singleton
coalition {c} which is no improvement. For similar reasons, the
remaining agents cannot be part of a blocking coalition. Hence,
π1 is in the core.

On the other hand, d can perform a contractual Nash devia-
tion to join {a,b, c}. Hence, π1 is not contractually Nash stable,
and therefore also not Nash stable.

Second, consider the partition π2 = {{a,d}, {b, c}}. Since c

receives a utility of −1 for their coalition, this partition is not
individually rational, and therefore neither in the core nor indi-
vidually stable.

However, the partition is contractually Nash stable. Indeed,
agents a, c, and d are not allowed to leave their respective coali-
tions. Moreover, b has no incentive to form a singleton coalition
or to join {a,d} because this would decrease their utility. ◁

2.2.2 Majority-Based Stability

While Nash deviations do not take into account any agent except
the deviator, unanimous consent is a strong restriction, especially in
settings with medium-size or large coalitions such as joining a club,
choir, or orchestra. Therefore, it is natural to consider hybrid concepts
where abandoned or welcoming agents are not neglected but still do
not have the power to veto decisions. A good compromise seems
to take decisions by a simple majority vote. This was introduced
in Publication 5 and further studied in Publication 3. Our majority-
based stability concepts are an important special case in the class
of threshold stability notions as introduced by Gairing and Savani
(2019).
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Definition 2.14 (Brandt et al., 2022a)
A Nash deviation π

i−→ π ′ is called a majority-in deviation if it
holds that |Fin(π

′(i), i)| ⩾ |Fout(π
′(i), i)| and a majority-out devia-

tion if it holds that |Fout(π(i), i)| ⩾ |Fin(π(i), i)|. A single-agent
deviation that is both a majority-in deviation and a majority-out
deviation is called a separate-majorities deviation.

A partition is said to be majority-in stable, majority-out stable,
or separate-majorities stable if it allows for no majority-in devi-
ation, majority-out deviation, or separate-majorities deviation,
respectively.

Finally, it is possible to relax separate-majorities stability by per-
forming one joint vote instead of two separate votes. A Nash de-

viation π
i−→ π ′ is called a joint-majority deviation if |Fin(π

′(i), i)| +
|Fout(π(i), i)| ⩾ |Fout(π

′(i), i)|+ |Fin(π(i), i)|. A partition is said to be
joint-majority stable if it allows for no joint-majority deviation.

Example 2.15

We continue Example 2.13. Despite being individually stable,
partition π1 is not majority-in stable. Indeed, d is allowed to
join the coalition {a,b, c} because a and b favor this deviation.
Hence, this yields a majority-in deviation.

On the other hand, partition π2 is even majority-out stable.
The partners of a, c, and d have the power to prevent any of
their potential deviations. In addition, as before, b can not even
perform a Nash deviation.

2.2.3 Notions of Optimality

A very common concept of optimality is Pareto optimality. It was
already studied in the early work by Drèze and Greenberg (1980),
and later by Bogomolnaia and Jackson (2002).

Definition 2.16

A partition π ′ Pareto-dominates a partition π if, for all agents
i ∈ N, it holds that π ′(i) ≿i π(i) and, for some agent j ∈ N, it
holds that π ′(j) ≻j π(j). A partition is said to be Pareto-optimal
if it is not Pareto-dominated by any other partition.

Clearly, it is undesirable for the whole set of agents to be in a Pareto-
dominated partition because some agents may be better off while no
other agent is harmed. Still, Pareto-optimal partitions are not neces-
sarily stable. While contractual individual stability is a refinement of
Pareto optimality, there is no logical relationship between the other
stability concepts introduced in the previous section and Pareto opti-
mality.

Also, there usually exist many Pareto-optimal partitions, which can
differ a lot in quality. For instance, it is easy to see that, for every
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agent, there exists a Pareto-optimal partition where they are in a most
preferred coalition. In addition, if we are given a cardinal hedonic
game, we can also define the (utilitarian) social welfare associated
with a partition. Maximizing this welfare also yields Pareto-optimal
partitions.

Definition 2.17

Let a cardinal hedonic game (N,u) be given and consider a
partition π. The (utilitarian) social welfare of partition π is defined
as SW(π) :=

∑
i∈N ui(π(i)). A partition maximizing the social

welfare is said to be welfare-optimal.

2.2.4 Popularity

In this section, we introduce the concept of popularity, which was first
considered by Gärdenfors (1975) in the domain of matching. While
popularity of matchings is a thoroughly considered concept (see, e.g.,
the book chapter by Cseh, 2017), it has only been researched little in
the domain of coalition formation (Aziz et al., 2013b; Kerkmann et al.,
2020). Publication 2 presents both new results for roommate and flat-
mate games, as well as the first in-depth consideration of popularity
in additively separable hedonic games and fractional hedonic games.

Roughly speaking, a partition π is popular if it is impossible to
present another partition π ′ that would beat π in a majority vote
among the agents. Therefore, popularity corresponds to (weak) Con-
dorcet winners from social choice theory. Given two partitions π

and π ′, let N(π,π ′) be the set of agents who prefer π over π ′, i.e.,
N(π,π ′) := {i ∈ N : π(i) ≻i π ′(i)}. Then, the popularity margin of π

and π ′ is defined as ϕ(π,π ′) := |N(π,π ′)|− |N(π ′,π)|. We say that π
is more popular than π ′ if ϕ(π,π ′) > 0.

Definition 2.18 (Gärdenfors, 1975)
A partition π is said to be popular if, for all partitions π ′, it holds
that ϕ(π,π ′) ⩾ 0. A partition π is called strongly popular if, for
all partitions π ′ with π ′ ̸= π, it holds that ϕ(π,π ′) > 0.

In other words, a partition π is popular if and only if no partition is
more popular than π, and strongly popular if and only if π is more
popular than every other partition. Note that there can be at most
one strongly popular partition in a hedonic game, if any.

Popularity combines ideas from both stability and optimality. On
the one hand, a majority of agents cannot organize a deviation based
on a vote to change the status quo. On the other hand, possibly even
more inherent, popularity takes a global perspective by comparing
any two partitions. It therefore gives a guarantee against every other
partition, which can be interpreted as a form of optimality.

Popularity is a refinement of certain majority-based stability con-
cepts. Among these, joint-majorities stability can be seen as a natural
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Figure 2.3: Popularity margins in Example 2.20. We use arrows for positive
popularity margins, and dashed lines for a popularity margin
of 0.

local version of popularity because it is based on a vote among the
two coalitions involved in a single-agent deviation.

The existence of popular partitions is not guaranteed in many he-
donic games. However, this can be circumvented by introducing ran-
domization and considering probability distributions over partitions
(instead of deterministic outcomes).

A mixed partition is a set {(π1,p1), . . . , (πk,pk)}, where π1,. . . , πk

are pairwise different partitions and (p1, . . . ,pk) is a probability dis-
tribution. Given two mixed partitions p = {(π1,p1), . . . , (πk,pk)} and
q = {(σ1,q1), . . . , (σl,ql)}, we define the popularity margin of p and q

as their expected popularity margin, i.e.,

ϕ(p,q) =
k∑

i=1

l∑
j=1

piqjϕ(πi,σj).

The definition of popularity carries over to mixed partitions.3

Definition 2.19 (Kavitha et al., 2011)
A mixed partition p is said to be mixed popular if, for all mixed
partitions q, it holds that ϕ(p,q) ⩾ 0.

Note that mixed popularity corresponds to the randomized voting
rule maximal lotteries in the domain of social choice (see, e.g., Fish-
burn, 1984; Brandl and Brandt, 2020). We demonstrate popularity
and mixed popularity in an example.

Example 2.20 (Brandt and Bullinger, 2022)
We consider the hedonic game in Example 2.2. There, the
Pareto-optimal partitions, which are the only relevant partitions
for any type of popularity, are π0 = {N}, π1 = {{a,b}, {c,d}},
π2 = {{a, c}, {b,d}}, and π3 = {{a,d}, {b, c}}. Their popularity
margins are depicted in Figure 2.3. In particular, π0 is the only
(deterministic) popular partition, and there is no strongly popu-
lar partition. Also, p = {(π1, 1/3), (π2, 1/3), (π3, 1/3)} is a mixed
popular mixed partition. It holds that ϕ(p,π0) = ϕ(p,π1) =

ϕ(p,π2) = ϕ(p,π3) = 0. ◁
3 Note that it is unreasonable to consider a concept like mixed strong popularity.

Mixed strongly popular partitions are always degenerate in that they encompass
a single partition with probability one. Hence, the randomized and deterministic
notion coincide.
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2.3 distributed coalition formation

Classical stability concepts are in some sense static. For instance, the
existence problem is only concerned with the availability of a desir-
able solution, but it is unclear how such a solution should be obtained.
Therefore, we seek to complement the static view by a dynamical
view where agents take advantageous myopic decisions, and we in-
vestigate whether this leads to a dynamics reaching a stable partition.
The basic idea is that notions of stability naturally give an incentive
to deviate.

While dynamics were studied before in the domain of matching
(see, e.g., Roth and Vande Vate, 1990; Abeledo and Rothblum, 1995;
Brandt and Wilczynski, 2019), their consideration in coalition forma-
tion has only received increasing attention during the last years (Bilò
et al., 2018; Hoefer et al., 2018; Carosi et al., 2019). Publication 4 is
among the pioneering work on dynamics in hedonic games.

Given any partition that is not stable with respect to a single-agent
stability notion, there exists an agent that can perform a beneficial
deviation. After this deviation, we can once again look for possible
deviations. Iterating this process, we obtain an execution of a dynam-
ics.

Definition 2.21 (Brandt et al., 2021)
A sequence (πk)

K
k⩾0 is called an execution of the IS dynamics (IS

for individual stability) if, for every k with 1 ⩽ k ⩽ K, there

exists an agent dk ∈ N such that πk−1
dk−→ πk is an individual

deviation. The partition π0 is then called the starting partition.

In the previous definition, we define dynamics based on individual
stability, which yields the type of dynamics investigated in Publica-
tion 4. In addition, it is also possible to consider dynamics for any
other stability concept. In the course of this thesis, we also briefly
investigate JMS, SMS, MIS, and MOS dynamics which are based on
joint-majority, separate-majorities, majority-in, and majority-out devi-
ations, respectively.

In Definition 2.21, we allow the case K = ∞, corresponding to
an infinite execution of the IS dynamics. The key algorithmic ques-
tions about dynamics concern their convergence. Given a hedonic
game, we say that the IS dynamics possibly converges from starting
partition π0 if there exists a finite execution of an IS dynamics with
starting partition π0 that terminates in an individually stable parti-
tion. Similarly, given a hedonic game, we say that the IS dynamics
necessarily converges from starting partition π0 if every execution of an
IS dynamics with starting partition π0 is finite.4 We say that the IS
dynamics necessarily (or possibly) converges in a given hedonic game,

4 In Publication 4, possible convergence is referred to by the existence of a path to stabil-
ity and necessary convergence is called guaranteed convergence.
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if it necessarily (or possibly) converges from every starting partition.
By contrast, if there exists an infinite execution of the IS dynamics
from some starting partition, we say that the IS dynamics may cycle.

Necessary convergence of dynamics is independent of the selec-
tion of deviations in the cases where there are multiple choices. More
precisely, neither the agent that performs the deviation nor the exact
deviation performed by this agent matters. In some cases, however,
it can be useful to restrict possible deviations. We introduce one ar-
guably weak selection rule that is useful in the context of hedonic
diversity games.

Assume that a hedonic diversity game (N,≿) is given. Recall that
the agents are divided into two sets R and B of red and blue agents.
We call a coalition C ⊆ N homogeneous if it consists only of agents of
one type, i.e., C ⊆ R or C ⊆ B. Now, we say that a deviation satisfies
solitary homogeneity if, whenever the target coalition of the deviator
is homogeneous, then it is a singleton coalition (Brandt et al., 2022b).
Note that whenever an agent can perform an IS deviation, then they
can also perform a deviation satisfying solitary homogeneity. Indeed,
they can form the homogeneous singleton coalition instead of joining
existing homogeneous coalitions.

2.4 loyalty in cardinal hedonic games

In most of the literature discussed so far, the analysis of hedonic
games has taken a clear path: Consider a certain class of games and
investigate a specific solution concept on this class. Different classes
of hedonic games have mostly been considered in isolation and simi-
lar computational questions have been answered again and again. In
Publication 6, we take a different route. Before we apply a solution
concept to a game, we modify the game in a meaningful way. The
original game serves as a benchmark game, while the utility func-
tions in the modified game integrate empathy incentives. In this way,
instead of gaining insight into a single class of games, we learn about
the change of the coalition formation process as a whole if agents
change their behavior. Such an approach has been studied in the
non-cooperative game theory literature with the goal to measure the
degree of empathy or altruism needed to challenge the selfishness of
players leading to phenomena like the prisoner’s dilemma (see, e.g.,
Apt and Schäfer, 2014). Similar ideas have also been discussed in
economics (Mueller, 1986) and network design (Elias et al., 2010).

In the cooperative game theory literature, our model are altruistic
hedonic games as defined by Kerkmann et al. (2022). These games
assume a structure with friends and enemies among the agents as in
appreciation-of-friends games introduced in Definition 2.7. Then, an
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agent’s utility is aggregated by taking the sum or minimum utility of
an agent and their friends in their own coalition.

Our notions of loyalty as developed in Publication 6 differ in two
key aspects from the model by Kerkmann et al. (2022). First, we
generalize by allowing more general underlying games. The only
restriction we impose is the ability to express single-agent utilities by
cardinal values. Moreover, loyalty can have several degrees. The loyal
variant of a hedonic games is once again a hedonic game. Hence, we
can consider the loyal variant’s loyal variant, and can iterate this idea.

In this section, we assume that we operate on a fixed cardinal he-
donic game (N,u). Given an agent i ∈ N, we define their loyalty set
as Li = {j ∈ N \ {i} : ui({i, j}) > 0}. This set specifies the agents having
an effect on the cardinal utilities of an agent under loyalty. We use
this set to define the loyal variant of a game.

Definition 2.22 (Bullinger and Kober, 2021)
Let a cardinal hedonic game (N,u) be given. Then, its loyal
variant (N,uL) is given by utility functions uL

i : Ni → Q defined
by C 7→ minj∈C∩(Li∪{i}) uj(C) for every agent i ∈ N.

In other words, the utility function of an agent in the loyal vari-
ant is defined by the minimum utility in the benchmark game of the
agent themselves and agents within their coalition towards which
they express loyalty. In the special case where the benchmark game
is an appreciation-of-friends game, this coincides with the minimum-
based equal-treatment preferences defined by Kerkmann et al. (2022)
in the context of altruistic hedonic games. As we mentioned before,
the loyal variant is a cardinal hedonic game itself, and we can con-
sider its own loyal variant. Hence, we can recursively define several
loyal variants. Given a cardinal hedonic game (N,u), we define its
k-fold loyal variant (N,uk) by setting (N,u1) = (N,uL), and, for k ⩾ 1,
defining the (k+ 1)-fold loyal variant (N,uk+1) as the loyal variant
of (N,uk).

A natural question is whether this process terminates. Indeed, our
first result in Section 3.2.3 will establish convergence after at most n
steps.

2.5 schelling segregation

In this section, we introduce a game-theoretic model of Schelling seg-
regation. First, we define the formal model, and subsequently the
solution concepts considered in this thesis.
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2.5.1 Schelling Games on Graphs

The first game-theoretic approach to Schelling segregation is due to
Chauhan et al. (2018). In their model, strategic agents seek to opti-
mize an objective that is composed of reaching a threshold of sim-
ilar agents in their neighborhood (as in Schelling’s original model)
and of occupying a favorable location. Closely thereafter, Agarwal
et al. (2021) introduced a variant of this game called Schelling games
on graphs. This model combines homophily and location incentives
by assigning a characteristic to every agent. The characteristic of an
agent is that they are either strategic or stubborn. A strategic agent
seeks to maximize a homophily incentive while a stubborn agent
blocks locations. The latter can be viewed as a very strong location
incentive. Stubborn agents seem to be very restrictive and blur the be-
havior caused by pure homophily.5 Therefore, we consider Schelling
games on graphs without stubborn agents to focus on the analysis of
segregation caused by homophily.

Definition 2.23 (Agarwal et al., 2021)
A Schelling instance is a tuple (N,G) consisting of the following
two components.

• First, N := [n] is a set of n ⩾ 2 agents. Each agent has one
of two different types, red or blue.

• Second, G = (V ,E) is a simple undirected graph called
topology graph (or simply topology), which satisfies |V | ⩾ n.

We assume for the remainder of this section that we are given a
Schelling instance (N,G). Denote by r and b the number of red
and blue agents, respectively. The distribution of agents into types
is called balanced if |r− b| ⩽ 1. We say that two agents i, j ∈ N with
i ̸= j are friends if i and j are of the same type. For each i ∈ N, we
denote the set of all friends of agent i by F(i).

The output of a Schelling game is an assignment of the agents in N

to nodes of G such that there are no collisions. Formally, an assign-
ment is an n-tuple v = (v(1), . . . , v(n)) ∈ Vn such that v(i) ̸= v(j)

for all i, j ∈ N with i ̸= j. A node v ∈ V is occupied by agent i

if v(i) = v. For a given assignment v and an agent i ∈ N, let
Ni(v) = {j ∈ N : {v(i), v(j)} ∈ E} be the set of neighbors of agent i.
Let fi(v) = |Ni(v) ∩ F(i)| be the number of neighbors of i in v who
are their friends.

5 For instance, stubborn agents are essential in several proofs establishing hardness
results (see, e.g., Agarwal et al., 2021, Theorems 3.2 and 4.2). Publication 7 and
Kreisel et al. (2022) show that stubborn agents are not necessary for these results.
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Definition 2.24 (Agarwal et al., 2021)
A Schelling game is a Schelling instance where agent i’s utility
for assignment v is specified as

ui(v) =

{
0 if Ni(v) = ∅
fi(v)

|Ni(v)|
otherwise.

Hence, whenever an agent has a neighbor, then their utility is defined
as the fraction of their friends in their neighborhood.

2.5.2 Solution Concepts for Schelling Games

In contrast to most of the game-theoretic literature on Schelling segre-
gation focusing on notions of stability, we study notions of optimality.
First, welfare optimality and Pareto optimality are defined analogous to
the corresponding concepts for hedonic games.

Definition 2.25

The (utilitarian) social welfare of an assignment v is defined as

SW(v) :=
∑
i∈N

ui(v).

In addition, an assignment v is said to be welfare-optimal if it
maximizes social welfare.

An assignment v is said to be Pareto-optimal if there exists
no assignment v ′ such that, for all agents i ∈ N, it holds that
ui(v

′) ⩾ ui(v) and, for some agent j ∈ N, it holds that uj(v
′) >

uj(v).

Denote by SWR(v) and SWB(v) the sum of the utilities of the red
and blue agents, respectively; we have SWR(v) + SWB(v) = SW(v).

Now, we introduce two novel concepts of optimality that are tai-
lored for the study of Schelling games. Given two vectors w1 and w2

of the same length k, we say that w1 weakly dominates w2 if for each
i ∈ {1, . . . ,k}, the ith element of w1 is at least as large as that of w2.
We say that w1 strictly dominates w2 if at least one of these inequalities
is strict.

For an assignment v, denote by u(v) the vector of length n con-
sisting of the agents’ utilities ui(v), sorted in non-increasing order.
Similarly, denote by uR(v) and uB(v) the corresponding sorted vec-
tors of length r and b for the red and blue agents, respectively.

Definition 2.26 (Bullinger et al., 2021)
An assignment v is said to be

• group-welfare dominated by an assignment v ′ if SWX(v
′) ⩾

SWX(v) for X ∈ {R,B} and at least one of the inequalities
is strict, and
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Perfection

Individual Optimality

Welfare Optimality

Group-Welfare Optimality Utility-Vector Optimality

Pareto Optimality

Figure 2.4: Implication relations among optimality notions considered for
Schelling segregation in Publication 7. The bold concepts are
guaranteed to exist.

• utility-vector dominated by an assignment v ′ if u(v ′) strictly
dominates u(v).

An assignment v is group-welfare optimal if it is not group-welfare
dominated by any other assignment. Similarly, an assignment v
is utility-vector optimal if it is not utility-vector dominated by any
other assignment.

In Publication 7, we show that group-welfare optimality and utility-
vector optimality are independent in the sense that neither notion im-
plies the other one. Moreover, there is a close relationship to Pareto
optimality because an assignment v is Pareto-optimal if and only if
there is no other assignment v ′ such that uX(v

′) weakly dominates
uX(v) for X ∈ {R,B} and at least one of the dominations is strict.
Utility-vector optimality relaxes this domination by considering one
joint vector. Hence, we obtain the relationships between the optimal-
ity concepts as depicted in Figure 2.4.

We quantify the welfare guarantee provided by each optimality no-
tion (e.g., Pareto optimality) by a worst-case ratio of an optimal as-
signment compared to a welfare-optimal assignment. Such price con-
cepts are a standard measure in game theory, and are based on the
idea of the price of anarchy (Koutsoupias and Papadimitriou, 1999).
In the domain of hedonic games, the price of Pareto optimality was
introduced by Elkind et al. (2020) and subsequently studied in Pub-
lication 1. Balliu et al. (2022) study the price of Pareto optimality in
social distance games. To define this concept, let v∗(N,G) denote a
welfare-optimal assignment for the instance (N,G).

Definition 2.27 (Bullinger et al., 2021)
Given a property P of assignments and a Schelling instance
(N,G), the price of P for that instance is defined as the ratio
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between the maximum social welfare (of any assignment) and
the minimum social welfare of an assignment satisfying P:

Price of P for instance (N,G) =
SW(v∗(N,G))

minv∈P(N,G) SW(v)
,

where P(N,G) is the set of all assignments satisfying P in the
instance (N,G).6 The price of P for a class of instances is then
defined as the supremum price of P over all instances in that
class.

Clearly, assignments which are welfare-optimal—and therefore also
assignments satisfying weaker optimality notions—are guaranteed to
exist. Therefore, their price notion is well-defined. In addition, we
also consider two strengthenings of welfare optimality. These do not
guarantee existence—and therefore we do not consider their price—
but they turn out to be useful in the computational analysis of op-
timality notions. Note that the maximum utility that an agent can
attain in a Schelling game is 1.

Definition 2.28 (Bullinger et al., 2021)
An assignment v is called perfect if ui(v) = 1 for all i ∈ N. More-
over, an assignment v is called individually optimal for agent i if
ui(v) ⩾ ui(v

′) for all assignments v ′. An assignment is called
individually optimal if it is individually optimal for all agents.

These properties are at the top of the hierarchy in Figure 2.4.

6 We interpret the ratio 0
0 in this context to be equal to 1.
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S U M M A R Y O F P U B L I C AT I O N S

In this chapter, the results of the publications, which this thesis is
based on, are summarized.

3.1 computing desirable outcomes

We start by considering the solution concepts introduced in Section 2.2
in hedonic games. The focus is on the computational problem of find-
ing a partition that satisfies a given solution concept. In many cases,
such partitions are not guaranteed to exist, and we then consider the
existence and verification of the desired partitions. The methodology
for obtaining hardness results is discussed in detail in Section 4.3.

3.1.1 Single-Agent Stability

First, we consider classical stability notions in cardinal classes of he-
donic games. Single-agent stability concepts in these classes have
already been studied extensively (see, e.g., Bogomolnaia and Jackson,
2002; Sung and Dimitrov, 2010; Aziz et al., 2013b; Brandl et al., 2015).
Nevertheless, in Publications 3 and 4, we were able to bridge a few
gaps in the literature.

In additively separable hedonic games, the intractability of Nash
and individual stability are resolved in an early computational study
(Sung and Dimitrov, 2010), while there exists an efficient algorithm to
compute contractually individually stable partitions whose existence
is guaranteed (Aziz et al., 2013b). We complete the picture by proving
the intractability of contractual Nash stability. Notably, in contrast to
other complexity results, such as Theorem 3.2 or Theorem 3.22 later
on, the challenge to prove this theorem is not in finding a first No-
instance. Indeed, a simple No-instance encompassing only 4 agents
was already provided by Sung and Dimitrov (2007). The difficulty is
rather in using No-instances and further auxiliary agents in the right
way to make a reduction work.

Theorem 3.1 (Bullinger, 2022)
It is NP-complete to decide whether an additively separable
hedonic game contains a contractually Nash stable partition.

Under symmetric utilities, the non-existence of stable partitions in
additively separable hedonic games with respect to single-agent sta-
bility concepts ceases. Even Nash-stable partitions are guaranteed to

29
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exist (Bogomolnaia and Jackson, 2002). By contrast, the behavior of
fractional hedonic games is very different. There exist simple sym-
metric games where Nash-stable outcomes fail to exist, which leads
to computational intractability (Brandl et al., 2015, Theorems 2 and 5).
We strengthen this non-existence by providing a symmetric fractional
hedonic game with 15 agents and involved utilities where no indi-
vidually stable partition exists. We discuss the computer-aided tech-
niques that were applied for finding this game in Section 4.2. The
non-existence of individually stable partitions leads to a new hard-
ness result.

Theorem 3.2 (Brandt et al., 2021)
There exists a symmetric fractional hedonic game without an
individually stable partition. Moreover, it is NP-complete to
decide whether a symmetric fractional hedonic game contains
an individually stable partition.

3.1.2 Notions of Optimality

Next, we consider Pareto optimality and welfare optimality. Recall
that optimal partitions always exist, and we therefore seek to effi-
ciently compute one. In addition, even partitions that are both Pareto-
optimal and individually rational are guaranteed to exist. Indeed, the
singleton partition is individually rational, and one can subsequently
transition to Pareto-dominating partitions to reach a Pareto-optimal
and individually rational partition from the singleton partition.

We start with the consideration of symmetric modified fractional
hedonic games. Interestingly, computing Pareto-optimal partitions is
related to solving a combinatorial problem that generalizes maximum
cardinality matchings, namely maximum clique matchings. A clique
matching is a partition of the vertices of a graph such that every set
in the partition induces a clique. A clique is called non-trivial if it
encompasses at least two vertices. Then, a maximum clique matching
is a clique matching such that the number of vertices covered by non-
trivial cliques is maximized. Computing a maximum clique matching
can be done in polynomial time (Hell and Kirkpatrick, 1984). The
algorithm that yields the next theorem computes several maximum
clique matchings as a subroutine.

Theorem 3.3 (Bullinger, 2020)
For symmetric modified fractional hedonic games, there exists
a polynomial-time algorithm that computes a Pareto-optimal
and individually rational partition. Moreover, the partition pro-
duced by this algorithm is a 2-approximation of the maximum
social welfare.

Interestingly, the complexity of computing a welfare-optimal parti-
tion is open in modified fractional hedonic games, even if the game
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is assumed to be symmetric. The algorithm in the previous theorem
is the best known approximation. However, it is shown in Publica-
tion 1 that it suffices to consider partitions consisting of coalitions
of size at most 3 to find a welfare-optimal partition. Moreover, it
is possible to efficiently compute welfare-optimal outcomes if utility
values are assumed to be binary. This improves upon a result by
Elkind et al. (2020, Theorem 5.8) who showed that, under the same
conditions, Pareto-optimal partitions yield a 2-approximation of so-
cial welfare. The key insight is to exploit the combinatorial structure
of optimal partitions, and especially that maximum clique matchings
on the graph induced by utility values of 1 induce welfare-optimal
partitions.

Theorem 3.4 (Bullinger, 2020)
Let a symmetric modified fractional hedonic game (N,u) with
binary utility values be given and consider a partition π. Then,
a partition is welfare-optimal if and only if it is Pareto-optimal.
In particular, for symmetric modified fractional hedonic games
with binary utility values, a welfare-optimal partition can be
computed in polynomial time.

If we consider additively separable or fractional hedonic games in-
stead, a theorem analogous to Theorem 3.3 is unlikely to be true due
to computational boundaries. Note that in the next theorem and in
all subsequent results where partitions satisfying the considered so-
lution concept are guaranteed to exist, the hardness holds for the
respective search problem and is obtained via a Turing reduction.

Theorem 3.5 (Bullinger, 2020)
For symmetric additively separable hedonic games and sym-
metric fractional hedonic games, computing a Pareto-optimal
and individually rational partition is NP-hard.

In fact, for both of these games, it is intractable to compute Pareto-
dominating partitions (cf. Publication 1). However, despite the in-
tractability in the previous theorem, both of the involved solution
concepts can be satisfied separately. Clearly, the singleton partition
is individually rational. Moreover, Pareto-optimal partitions can be
computed for large subclasses of additively separable hedonic games
and fractional hedonic games. The corresponding algorithms in Pub-
lication 1 are similar to serial dictatorships: One by one, agents re-
strict the set of available partitions to their most preferred options.

Theorem 3.6 (Bullinger, 2020)
For symmetric additively separable hedonic games and frac-
tional hedonic games with binary utility values, a Pareto-optimal
partition can be computed in polynomial time.
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3.1.3 Popularity

The complexity of popularity has been extensively studied in the do-
main of matchings and in particular in marriage games (see, e.g., Gär-
denfors, 1975; Abraham et al., 2007a; Biró et al., 2010). As with many
matching problems, two approaches have turned out to be particu-
larly fruitful, namely exploiting the combinatorial and the geometric
structure of matchings. The former is related to augmenting paths
and their structure in the non-bipartite case including so-called blos-
soms discovered by Edmonds (1965b). The second is concerned with
the polyhedral structure of matchings, that is, the study of the match-
ing polytope (Edmonds, 1965a).

Both approaches also have proved to be useful in the course of this
thesis. While the first approach was applied in the study of Pareto
optimality in Theorem 3.4, the geometric view via the matching poly-
tope was very powerful in the study of popularity.

The general idea is to enhance Edmonds’ matching polytope with
constraints that capture the essence of popularity. Since there are ex-
ponentially many matchings that are potentially more popular than a
given candidate matching, this leads to a super-polynomial number
of constraints. Hence, tractability of the obtained linear program de-
pends on whether we can efficiently solve the separation problem to
apply an algorithm such as the Ellipsoid method (Khachiyan, 1979).
Fortunately, this is possible by applying an algorithm by McCutchen
(2008), which was originally developed to compute the so-called un-
popularity margin of a given matching.

This approach was first applied by Kavitha et al. (2011) to compute
mixed popular matchings in marriage games. While these authors en-
hance the bipartite matching polytope, we leverage the non-bipartite
matching polytope instead to generalize their result. An important
subtlety when dealing with mixed popular matchings in the match-
ing polytope is that we operate with an aggregated fractional form
of matchings. Hence, an important task is to decompose the aggre-
gated matching as an explicit probability distribution over determin-
istic matchings. While a succinct such decomposition in principle ex-
ists due to Carathéodory’s theorem, it can be efficiently constructed
by means of the Ellipsoid method (Grötschel et al., 1981, Theorem 3.9)
or even by a combinatorial algorithm (Padberg and Wolsey, 1984).

Theorem 3.7 (Brandt and Bullinger, 2022)
Mixed popular matchings in roommate games with weak pref-
erences can be found in polynomial time.

This approach is very universal and gives linear programming-
based alternatives to combinatorial algorithms such as the preference
refinement algorithm by Aziz et al. (2013a) for computing Pareto-
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optimal matchings7 or the algorithm by Biró et al. (2010) to verify pop-
ular matchings. Moreover, we can provide an efficient algorithm for
finding strongly popular matchings in roommate games—whenever
they exist—by computing multiple mixed popular matchings. This
resolves a repeatedly mentioned open problem (see, e.g., Biró et al.,
2010; Manlove, 2013).

Theorem 3.8 (Brandt and Bullinger, 2022)
Computing a strongly popular matching or deciding that no
such matching exists in roommate games (with weak prefer-
ences) can be done in polynomial time.

Notably, the positive results in the preceding two theorems stand
in contrast with the intractability of popularity in roommate games
(Faenza et al., 2019; Gupta et al., 2019). In other words, mixed pop-
ularity and strong popularity admit better computational tractability
for weak preferences than ordinary popularity for strict preferences
only.

The consideration of popularity in classes of hedonic games that
allow coalitions of size at least 3 is scarce. Some work considers
the verification problem for popularity and strong popularity and
the existence problem for strong popularity (Kerkmann et al., 2020;
Kerkmann and Rothe, 2020). Apart from an erroneous proof by Aziz
et al. (2013b),8 the existence problem for popularity had seemingly
not been considered, yet. We provide the first results regarding this
existence problem as well as the first computational boundaries for
mixed popularity.

We start with the natural extension from roommate games to flat-
mate games. Once we transition to these games, the contrast in com-
plexity between popularity and mixed or strong popularity in room-
mate games vanishes, and all related problems become intractable.
In fact, even if we assume all preferences to be strict and globally
ranked, we obtain several hardness results.

Theorem 3.9 (Brandt and Bullinger, 2022)
Consider the class of flatmate games with strict and globally
ranked preferences. Then, it is

• coNP-hard to decide whether there exists a strongly pop-
ular partition,

• NP-hard to compute a mixed popular partition,

• coNP-hard to decide whether there exists a popular parti-
tion,

7 This works because every matching in the support of a mixed popular matching is
Pareto-optimal (cf. Publication 2). Note that this already follows from a general
observation about weak Condorcet winners (Fishburn, 1984, Proposition 3).

8 In Theorem 3.10, we correct this by proving a stronger statement.
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• coNP-complete to verify a strongly popular partition,

• coNP-complete to verify a mixed popular partition, and

• coNP-complete to verify a popular partition.

Interestingly, all of these hardness results follow from one common,
yet involved, approach. In essence, we provide a flatmate game that
resembles the structure of a complete binary tree (of depth logarith-
mic in the input size of the instance). Each of the reductions uses this
game (or multiple copies of it) as a ground structure, and we attach
gadgets appropriate for the respective reductions. We discuss this
proof technique in more detail in Section 4.3.2.

Moreover, there is a strong connection regarding the verification
problem for mixed popularity and popularity. Based on the natural
embedding, that is, the interpretation of popular partitions as mixed
popular partitions where one specific partition is selected with prob-
ability 1, it follows that hardness of verification of popular partitions
implies hardness of verification of mixed popular partitions in any
domain (cf. Publication 2). Hence, while mixed popularity can be
an escape route from computational boundaries with respect to the
existence problem (which is the case in roommate games, as we have
discussed after Theorem 3.8), it cannot be an escape route with re-
spect to the verification problem.

If we consider cardinal classes of hedonic games such as additively
separable hedonic games and fractional hedonic games, then we ob-
tain similar results.

Theorem 3.10 (Brandt and Bullinger, 2022)
Consider the class of symmetric additively separable hedonic
games or the class of symmetric fractional hedonic games with
non-negative utilities. Then, it is

• coNP-hard to decide whether there exists a strongly pop-
ular partition,

• NP-hard to compute a mixed popular partition,

• NP-hard to decide whether there exists a popular parti-
tion,

• coNP-hard to decide whether there exists a popular parti-
tion,

• coNP-complete to verify a strongly popular partition,

• coNP-complete to verify a mixed popular partition, and

• coNP-complete to verify a popular partition.
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Finally, it is worth mentioning that the hardness results for the
existence problems considered in this section are unlikely to be tight.
Naturally, these existence problems belong to the complexity class ΣP

2 ,
and it is very well possible that they are even complete for this class.
An indication towards this conjecture is that deciding about the exis-
tence of popular partitions in symmetric additively separable hedonic
games and symmetric fractional hedonic games with non-negative
utilities is complete for both NP and coNP. Hence, membership in
any of these classes would cause the collapse of the polynomial hier-
archy to the first level.

3.2 developing novel concepts

In the previous section, we have investigated classic desiderata in
prominent classes of hedonic games. Now, we broaden the picture
by challenging three paradigms of the classical literature on coali-
tion formation. First, we consider coalition formation in a distributed
manner, where the goal is to reach a desirable—in our case stable—
partition by executing dynamics. Second, we oppose the unanimous
consent of individual stability and contractual Nash stability by con-
sidering stability concepts based on majority consent. Interestingly,
the positive results about majority-based stability concepts also con-
cern dynamics. Third, we discuss how the agents’ behavior changes
under loyalty.

3.2.1 Distributed Coalition Formation

In this section, we consider algorithmic questions regarding the be-
havior of IS dynamics.

Convergence of IS Dynamics

We start by presenting convergence results for IS dynamics in a large
variety of classes of hedonic games.

We start with the consideration of anonymous hedonic games. For
these games, if preferences are single-peaked, Bogomolnaia and Jack-
son (2002) show that partitions exist that simultaneously satisfy good
properties with respect to stability and optimality. They provide an
efficient algorithm which is identical to a specific run of IS dynamics
started from the singleton coalition. Thereby, they find an individ-
ually stable and weakly Pareto-optimal partition. We show that the
convergence of the IS dynamics is no coincidence. In this class of
games, IS dynamics converge regardless of the starting partition and
regardless of the performed deviations.



36 summary of publications

Theorem 3.11 (Brandt et al., 2021)
The IS dynamics necessarily converges in anonymous hedonic
games if the agents’ preferences are strict and single-peaked.

In the full version of Publication 4, we are able to show that the
result still holds if preferences may be weak (Brandt et al., 2022b).

In hedonic diversity games, dynamics were also known as a means
of convergence. In fact, Boehmer and Elkind (2020) prove that individ-
ually stable partitions are guaranteed to exist in these games with the
aid of dynamics: they define a partition with promising properties
regarding individual stability. Then, they prove possible convergence
of the IS dynamics from this partition. Due to this strong existence re-
sult, it would be interesting to see if we can obtain a similarly strong
convergence result for dynamics. Unfortunately, this is not the case.
In contrast to evidence collected from simulations by Boehmer and
Elkind (2020), dynamics only necessarily converge under strong re-
strictions.9

Theorem 3.12 (Brandt et al., 2022b)
The IS dynamics may cycle in hedonic diversity games even if
any three of the following restrictions apply:

1. preferences are single-peaked,

2. preferences are strict,

3. the starting partition is the singleton partition, and

4. all deviations satisfy solitary homogeneity.

The first two conditions of Theorem 3.12 restrict the considered
class of hedonic games, while the last two conditions restrict the dy-
namics. From these, solitary homogeneity of deviations seems to be
the weakest condition because it only defines a tie-breaking rule for
selecting the next deviation in very specific cases. Interestingly, this
small condition is an important ingredient for the following conver-
gence result when all four of these conditions are satisfied.

Theorem 3.13 (Brandt et al., 2022b)
The IS dynamics necessarily converges in hedonic diversity games
if agents have strict and single-peaked preferences and if the
dynamics starts from the singleton partition and all deviations
satisfy solitary homogeneity.

Finally, we consider fractional hedonic games. As a first result, we
obtain convergence if we assume binary utility values and run the
dynamics from the singleton partition.

9 The next two statements are taken from the full version of the article, correcting an
error in Publication 4.
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Proposition 3.14 (Brandt et al., 2021)
The IS dynamics starting from the singleton partition necessar-
ily converges in O(n2) steps in symmetric fractional hedonic
games with binary utility values. In these games, it may take
Θ(n

√
n) steps.

If we assume non-symmetric utilities, guaranteed convergence de-
pends on acyclicity of the preference structure. To state this theorem,
we define the notion of a utility graph. Given a cardinal hedonic
game (N,u), we call the directed graph G = (N,A) where (i, j) ∈ A if
ui({i, j}) > 0 its utility graph.

Proposition 3.15 (Brandt et al., 2021)
Consider an asymmetric10 fractional hedonic game. Then, the
IS dynamics starting from the singleton partition necessarily
converges if and only if the game’s utility graph is acyclic. More-
over, under acyclicity, it converges in O(n4) steps.

The previous results specify conditions under which convergence
in fractional hedonic games is possible, but these conditions seem
quite strong. However, recall that we have already seen in Theo-
rem 3.2 that individually stable partitions are not guaranteed to exist,
even if we impose symmetry of utilities. Hence, there also exist sym-
metric fractional hedonic games where the dynamics is doomed to
cycle. We even obtain computational boundaries for deciding on the
necessary and possible convergence of dynamics.

Theorem 3.16 (Brandt et al., 2021)
It is NP-hard to decide whether the IS dynamics necessarily (or
possibly) converges in symmetric fractional hedonic games.

Naturally, since individually stable partitions are not guaranteed
to exist in general anonymous hedonic games and hedonic diversity
games, similar problems are reasonable to pose in these classes. In-
deed, we also obtained computational boundaries for anonymous he-
donic games and hedonic diversity games (cf. Publication 4).

Speed of Convergence

So far, we were only concerned about whether dynamics converge or
not. A related question asks for the speed of convergence. A side
product of Propositions 3.14 and 3.15 is the polynomial running time
of dynamics in certain fractional hedonic games. These results were
obtained by investigating so-called potential functions, i.e., functions
that assign a score or a multi-dimensional vector to every partition.
The potential functions in these proofs are rather simple, by defining
scores or vectors associated with partitions or the coalitions constitut-
ing a partition, respectively. Convergence then follows because the

10 Recall that asymmetry of utilities is not the contrary of symmetry.
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associated scores and vectors change monotonically after every indi-
vidual deviation. Proof strategies based on potential functions are
discussed in Section 4.1.

We also obtain polynomial bounds on the running time of IS dy-
namics in anonymous hedonic games and hedonic diversity games.
Obtaining these bounds requires a far more involved use of poten-
tial functions. These results are only covered in the full version of
Publication 4 (Brandt et al., 2022b).

The potential function for anonymous hedonic games is composed
of values associated with both agents and coalitions in a temporary
partition. Notably, these values may depend on the whole IS dynam-
ics until reaching this partition, i.e., on an entire sequence of parti-
tions. The key insight is that the potential function is non-decreasing
and strictly increasing whenever an agent deviates towards a larger
coalition. The values composing the potential function mimic the
drift of agents towards larger coalitions. We therefore strengthen The-
orem 3.11 by even obtaining a polynomial running time.

Theorem 3.17 (Brandt et al., 2022b)
The IS dynamics necessarily converges in O(n3) steps in anony-
mous hedonic games if the agents’ preferences are strict and
single-peaked.

In hedonic diversity games, the running time of the IS dynamics
can be polynomially bounded if we assume the same restrictions as
in Theorem 3.13. The proof of this statement is highly interesting. In
contrast to most results in the hedonic games literature, it establishes
a reduction to a seemingly different class of hedonic games. After
tedious and non-trivial manipulations, we can show that only coali-
tions with very specific proportions of the agent types play a role in
an execution of the dynamics. These can be related to coalition sizes,
and therefore to anonymous hedonic games. This allows us to apply
Theorem 3.17.

Theorem 3.18 (Brandt et al., 2022b)
Under the restrictions of Theorem 3.13, the IS dynamics neces-
sarily converges in O(n5) steps in hedonic diversity games.

So far, we have seen several examples of polynomial running time
in classes of hedonic games where dynamics are guaranteed to con-
verge. This impression must be handled with care. Even if we know
that dynamics are guaranteed to converge, this does not necessarily
imply fast convergence. For instance, dynamics based on Nash sta-
bility are guaranteed to converge in symmetric additively separable
hedonic games according to the potential function argument by Bo-
gomolnaia and Jackson (2002). However, computing a Nash stable
or an individually stable partition is PLS-complete (Gairing and Sa-
vani, 2019). By exploiting the properties of the PLS-reduction, one
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can show that this immediately implies the existence of exponentially
long dynamics based on Nash stability (cf. Publication 5). Moreover,
by modifying an example provided by Monien and Tscheuschner
(2010), we can even give an explicit example of an IS dynamics of
exponential length.

Proposition 3.19 (Brandt et al., 2022a)
The IS dynamics in symmetric additively separable hedonic
games may be of exponential length.

A related question to asking for fast convergence is asking for
fastest convergence, i.e., for the smallest number of steps until dynam-
ics possibly converge. In very recent work, we provide NP-hardness
results for several dynamics based on both single-agent and group de-
viations in additively separable hedonic games (Boehmer et al., 2023).
Because of hardness results like Theorem 3.16, similar results seem to
be likely in other classes of hedonic games.

3.2.2 Stability Based on Majority Consent

We now discuss results on majority-based stability concepts in sub-
classes of additively separable hedonic games. All existence results
follow from the convergence of dynamics. If stability is based on ma-
jority consent by both the abandoned and welcoming coalition, we
obtain an existence result.

Theorem 3.20 (Brandt et al., 2022a)
The JMS dynamics (and therefore SMS dynamics) necessarily
converges in appreciation-of-friends games and in friends-and-
enemies games.

Moreover, we obtain another positive result regarding the existence
of majority-in stable partitions in appreciation-of-friends games.

Theorem 3.21 (Brandt et al., 2022a)
The MIS dynamics starting from the grand coalition necessarily
converges in appreciation-of-friends games.

While majority-based stability notions lead to positive results in
natural classes of restricted additively separable hedonic games, we
also obtain strong computational boundaries. The key challenge for
the proof of Theorem 3.22 is to construct sophisticated No-instances
for the respective problems. One indication for their complexity is
the number of agents required for them. Indeed, the smallest No-
instances found for majority-out stability in appreciation-of-friends
games and for majority-out and majority-in stability in friends-and-
enemies games consist of 16, 23, and 183 agents, respectively.

Theorem 3.22 (Bullinger, 2022)
It is NP-complete to decide whether
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• an appreciation-of-friends game contains a majority-out
stable partition,

• a friends-and-enemies game contains a majority-out sta-
ble partition, and

• a friends-and-enemies game contains a majority-in stable
partition.

Interestingly, Theorem 3.21 compared with the first result of Theo-
rem 3.22 shows that—despite their conceptual duality—the behavior
of majority-out and majority-in stability can be very different. More-
over, the results in Theorem 3.22 lie at the boundary of computa-
tional feasibility. When we move to stability concepts based on unani-
mous consent, we have existence and efficient computability based on
converging dynamics in appreciation-of-friends games and friends-
and-enemies games (cf. Publication 5). In addition, if we further re-
strict the considered classes of games, we also obtain positive results
for majority-based stability notions. In fact, appreciation-of-friends
games in which every agent has at most one friend admit a majority-
out stable partition, and if the friend or enemy relations are complete,
then majority-out stable or majority-in stable partitions are guaran-
teed to exist in friends-and-enemies games (cf. Publication 3). We
will use the first statement from Theorem 3.22 to illustrate the gen-
eral proof technique for obtaining hardness reductions for stability
notions in Section 4.3.1.

3.2.3 Cardinal Hedonic Games under Loyalty

In this section, we consider results from Publication 6 concerning
loyal variants of cardinal hedonic games. Our first result is that the
process of transitioning to the loyal variant converges after a finite
number of steps.

Proposition 3.23 (Bullinger and Kober, 2021)
Let a cardinal hedonic game (N,u) be given. Then, there exists
a cardinal hedonic game (N,uE) such that the vector uk of util-
ity functions of its k-fold loyal variant satisfies uk = uE for all
k ⩾ n where n = |N|.

The utility functions of the limit game have a compact represen-
tation based on computing minimum utilities locally. Therefore, the
game (N,uE) is called the locally egalitarian variant.

We are ready to discuss computational results regarding the loyal
variants of hedonic games. Interestingly, considering the games mod-
ified under loyalty adds complexity to eliciting preferences. It is even
hard to determine best coalitions. Formally, the problem of, given a
cardinal hedonic game (N,u), an agent i ∈ N, and a rational number
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q ∈ Q, deciding if there exists a coalition C ∈ Ni with ui(C) ⩾ q, is
called BestCoalition.

Theorem 3.24 (Bullinger and Kober, 2021)
Let k ⩾ 1. Then,

1. BestCoalition can be solved in polynomial time for the
k-fold loyal variant (or locally egalitarian variant) of sym-
metric modified fractional hedonic games.

2. BestCoalition is NP-complete for the k-fold loyal variant
(or locally egalitarian variant) of symmetric appreciation-
of-friends games, and

A key result of Publication 6 is the guaranteed existence of parti-
tions satisfying both notions of stability and optimality if the degree
of loyalty is sufficiently high. We present this theorem for the classes
of cardinal hedonic games known so far. A more general version of
the theorem is part of Publication 6.

Theorem 3.25 (Bullinger and Kober, 2021)
There exists a Pareto-optimal coalition structure in the core of
the locally egalitarian variant of symmetric additively separable,
fractional, and modified fractional hedonic games.

Interestingly, the guaranteed existence of nice partitions yields no
guarantee for their efficient computability.11

Theorem 3.26 (Bullinger and Kober, 2021)
The following statements hold.

1. Let k ⩾ 1. A partition in the core can be computed in
polynomial time for the k-fold loyal variant (or locally
egalitarian variant) of symmetric modified fractional he-
donic games.

2. Let k ⩾ 2. Computing a partition in the core is NP-
hard for the k-fold loyal variant (or locally egalitarian
variant) of symmetric appreciation-of-friends games with
non-empty core.

Moreover, in contrast to the existence of partitions in the core of
the locally egalitarian variant, non-existence becomes an issue in the
loyal variants.

Theorem 3.27 (Bullinger and Kober, 2021)
Let k ⩾ 1. Deciding whether the core is non-empty is NP-hard
for the k-fold loyal variant of symmetric additively separable
hedonic games.

11 This result is a rare exception in the hedonic games literature where the existence
and efficient computability of desirable partitions usually go hand in hand.
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An interesting open problem from Publication 6 is whether the core
is always non-empty in the loyal variant of an appreciation-of-friends
game. These games are not covered by the hardness results in The-
orems 3.26 and 3.27. In particular, the second part of Theorem 3.26

leaves out the case k = 1.

3.3 optimality in schelling segregation

In this section, we present results on Schelling segregation in the
framework of Schelling games on graphs. We consider welfare opti-
mality, group-welfare optimality, utility-vector optimality, and Pareto
optimality. We start with the consideration of social welfare. Recall
that the utility of every agent is bounded by 1, and therefore the max-
imum welfare in any instance of a Schelling game with n agents is
bounded by n. Consider the function g : N → Q defined by

g(n) =

{
n(n−2)
2(n−1) if n is even;
n−1
2 if n is odd.

The following theorem determines an optimal welfare guarantee
that can be attained in polynomial time.

Theorem 3.28 (Bullinger et al., 2021)
For any Schelling game with n agents, there exists an assign-
ment with social welfare at least g(n). Moreover, the bound
g(n) cannot be improved. Even more, we can compute an as-
signment with social welfare g(n) in polynomial time.

The tightness of the bound g(n) means that, for every n ∈ N, there
exists a Schelling game with n agents such that every assignment in
this game has social welfare of at most g(n). The proof idea for this
theorem is easy to describe. A random assignment of the agents to
nodes already satisfies the bound g(n) in expectation. To obtain a
deterministic, polynomial-time algorithm, one can derandomize the
procedure of randomly assigning agents to nodes by the method of
conditional probabilities. To this end, we subsequently select optimal
remaining positions for each agent with respect to the expected wel-
fare obtained when assigning the remaining agents at random—a
probabilistic quantity that can be computed deterministically and effi-
ciently. This algorithmic idea is well known from the approximation
of the MaxCut problem (see, e.g., Mitzenmacher and Upfal, 2005,
Chapter 6; Williamson and Shmoys, 2011, Chapter 5).

Also, the tightness of the bound is rather simple and follows from
considering a clique graph as a topology where the type distribution
of the agents is balanced. Clearly, in such an instance, every assign-
ment has equal social welfare.
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Still, the context of this theorem is very interesting. First, the Free-
man segregation index, a standard measure for the strength of seg-
regation in social sciences, defines the absence of segregation based
on the social welfare of an expected assignment (Freeman, 1978). In
this respect, Theorem 3.28 can be interpreted as saying that non-
segregated states are a good approximation of the maximum social
welfare. In fact, since g(n) ⩾ n

2 − 1 for every n ∈ N, the algorithm in
Theorem 3.28 almost yields a 2-approximation of the maximum social
welfare. While it is unknown if we can achieve a better approxima-
tion factor, we know that we meet computational boundaries when
we seek to maximize social welfare. The next result generalizes and
strengthens earlier hardness results by Agarwal et al. (2021).

Theorem 3.29 (Bullinger et al., 2021)
The following problem is NP-complete: Given a Schelling game
and a rational number q, decide whether there exists an assign-
ment with social welfare at least q.

The hardness holds even for the class of instances where the
number of agents is equal to the number of nodes and the topol-
ogy is a regular graph.

Next, we consider other notions of optimality. By computing the
upper and lower bounds for their welfare guarantees, we gain infor-
mation about their worst-case behavior. The results are summarized
in the next theorem.

Theorem 3.30 (Bullinger et al., 2021)
The following statements hold for the class of Schelling games.

• The price of group-welfare optimality is Θ(n).

• The price of utility-vector optimality is Θ(n).

• The price of Pareto optimality satisfies Ω(n) and O(n
√
n).

In other words, for all other welfare notions, optimal assignments
can suffer a significant welfare loss in the worst case. Moreover,
group-welfare optimality and utility-vector optimality guarantee con-
stant social welfare, i.e., a social welfare of Θ(1), in every instance.
Whether Pareto optimality also yields constant social welfare is un-
known, and the upper bound on the price of Pareto optimality only
comes from a guaranteed welfare of 1√

n
of Pareto-optimal assign-

ments. Still, there is evidence that Pareto-optimal assignments could
also assure constant welfare because this statement is true in restricted
instances of Schelling games. Note that these restrictions either leave
the topology graph or the agent distribution unconstrained.

Theorem 3.31 (Bullinger et al., 2021)
Consider a Schelling game.
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• If the topology graph is a tree, then every Pareto-optimal
assignment has a social welfare of at least n

n−1 .

• If the distribution of the agents is balanced, then every
Pareto-optimal assignment has a social welfare of at least 1.

Note that the bound for tree graphs is tight in the sense that, for
every n ∈ N, there exists a Pareto-optimal assignment on a star graph
of social welfare n

n−1 . However, the corresponding agent distribution
is highly unbalanced, having only 2 agents of one of the two types.

In the remaining section, we consider the efficient computability
of optimal assignments. The next theorem states that perfection, the
strongest optimality concept in Figure 2.4, is intractable.

Theorem 3.32 (Bullinger et al., 2021)
It is NP-complete to decide whether there exists a perfect as-
signment in a Schelling game.

This directly implies intractability of all notions for which existence
is guaranteed: there exists a perfect assignment if and only if every
optimal assignment is perfect. Hence, if we were able to compute
an optimal assignment, then we could decide if a perfect assignment
exists by checking whether every player receives a utility of 1 in an
optimal assignment.

It is also possible to infer intractability for other weakenings of
perfection such as maximizing Nash welfare or egalitarian welfare.
Furthermore, an inspection of the reduction of this proof reveals that
deciding about the existence of individually optimal assignments is
also hard (cf. Publication 7).

Corollary 3.33 (Bullinger et al., 2021)
Computing a utility-vector optimal (or Pareto-optimal) assign-
ment in a Schelling game is NP-hard. Also, deciding whether
there exists an individually optimal assignment is NP-complete.

In a similar way, it is also possible to apply Theorem 3.32 to prove
hardness of welfare optimality and group-welfare optimality. How-
ever, the proof of Theorem 3.32 crucially depends on the existence
of empty nodes (otherwise, perfect partitions are not possible). For
welfare optimality, Theorem 3.29 already proves a stronger statement,
and we can infer an intractability result for group-welfare optimality
under the same restrictions.

Theorem 3.34 (Bullinger et al., 2021)
Computing a group-welfare optimal assignment in a Schelling
game is NP-hard, even for the class of Schelling games where
the number of agents is equal to the number of nodes and the
topology is a regular graph.
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For an equal number of agents and nodes, Theorem 3.32 breaks
down because then every instance that contains two types of agents
and a connected topology is a No-instance. In addition, in this case,
we obtain a complete characterization of the instances containing an
individually optimal assignment, which can be checked in polyno-
mial time (cf. Publication 7).

Perfection and individual optimality are strong concepts of opti-
mality which are hard to satisfy at all. It is therefore natural to ask
for weaker notions that demand less. To this end, we consider pos-
itive agents under some assignment, that is, agents for which there
exists at least one agent of the same type in their neighborhood (cf.
Publication 7).

There are simple topologies—for example, star graphs—for which
there exists no assignment such that every agent is positive. On the
other hand, it is rather straightforward to provide an assignment
which makes a majority of the agents positive by assigning the ma-
jority type to a connected subgraph of the topology. In addition, if
the topology is a tree, we can decide if there exists an assignment
such that all agents are positive by means of dynamic programming.
Finally, if the topology graph has a minimum degree of 2, it is always
possible to assign the agents in a way such that every agent is positive.
Hence, if the topology satisfies a mild property that is very natural in
dense metropolitan areas, then it might not be possible to compute
optimal assignments but we can at least ensure every agent to live
next to a friend (cf. Publication 7).





4
M E T H O D O LO GY

In Chapter 3, we gave an overview of the results in this thesis while
the details of the proofs were kept rather brief. Here, we focus on the
methodology and explore important methods that were applied and
proposed to obtain many results in this thesis. Instead of stating com-
plete proofs, we present different themes of proofs that can be used
as role models in similar settings. Often it is easier to understand that
a solution technique works rather than why it works. In this chapter,
we aim at providing a better understanding of the latter.

4.1 analysis of dynamics via potential func-
tions

In this section, we discuss techniques for proving the necessary con-
vergence of dynamics. While several proof methods can be applied
in general—for instance, Theorem 3.11 is shown by contraction—a
typical proving scheme for the convergence dynamics is the use of
so-called potential functions (cf. Propositions 3.14 and 3.15 and Theo-
rems 3.17 and 3.18).

The idea of potential functions is similar to local search as captured
in the complexity class PLS (Johnson et al., 1988). Within the space of
possible solutions, we can transition to neighboring solutions. In our
case, a solution is a partition, and a transition can happen based on
a deviation. Every solution is associated with a number, its potential,
which can be interpreted as its value. While the goal of local search
is to find a solution achieving the maximum value in its neighbor-
hood, our goal is to find a valuation scheme such that transitions in
the neighborhood, that is, deviations, increase the value. We seek to
interpret dynamics as specific local search algorithms.

To set the stage, we develop the formal framework for these ideas.
Consider a fixed hedonic game (N,⪰) and let Π be the set of all par-
titions of n = |N| agents. We can define the deviation graph as the
directed graph DG = (Π,A) with vertex set Π where there exists a di-
rected edge (π,π ′) ∈ A if and only if there exists an agent d ∈ N such

that π d−→ π ′ is an individual deviation. Of course, one can define a
deviation graph for any type of deviation, but since the focus of our
analysis of dynamics lies on individual deviations, we state the defi-
nition for this case. Now, the execution of an IS dynamics is simply a
walk in the deviation graph. Moreover, the necessary convergence of
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IS dynamics in a certain game is equivalent to acyclicity of the game’s
deviation graph.

A potential function is a function Φ : Π → R. Potential functions are
a tool for proving necessary convergence of dynamics. The goal is
to prove that there exists a potential function Φ that is increasing for
any transition in the deviation graph. Formally, a potential function
is said to be increasing if, for every edge (π,π ′) ∈ A of the deviation
graph, it holds that Φ(π ′) > Φ(π). To summarize, we obtain the
following proposition.

Proposition 4.1
Let a hedonic game (N,⪰) be given. The following are equiva-
lent:

1. The IS dynamics on (N,⪰) necessarily converges.

2. The deviation graph of (N,⪰) is acyclic.

3. The game (N,⪰) possesses an increasing potential func-
tion.

The proposition follows from interpreting the potential function as
a topological ordering of the deviation graph (Kahn, 1962).

An influential early result concerning potential functions in cardi-
nal hedonic games was already shown by Bogomolnaia and Jackson
(2002).

Proposition 4.2 (Bogomolnaia and Jackson, 2002)
Consider a symmetric additively separable hedonic game. If

π
d−→ π ′ is a Nash deviation, then SW(π ′) > SW(π).

Essentially, this proposition means that the social welfare is an in-
creasing potential function with respect to Nash deviations. This idea
is quite fundamental and is still applied in similar settings (Bilò et al.,
2022; Bullinger and Suksompong, 2023).

As discussed before, many of the proofs in this thesis make use
of potential functions. Instead of discussing the details of the mostly
complex proofs, we outline general themes of the potential functions
in increasing complexity.

Simple Potential Functions

In Proposition 3.14, we show necessary convergence of the IS dynam-
ics starting from the singleton partition in symmetric fractional hedo-
nic games with binary utility values. The key structural insight of
the proof is that the partition in every step of the dynamics is a col-
lection of cliques (in the undirected graph with edges induced by the
binary and symmetric utilities). Unfortunately, using the social wel-
fare of partitions as a potential function is not possible. In fact, if a
partition π in a fractional hedonic game consists of cliques only, then
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SW(π) =
∑

C∈π |C|− 1. Hence, the only possibility for increasing the
social welfare is if the abandoned coalition was a singleton coalition.

However, a similar idea works. Indeed, the function Φ : Π → R,
π 7→ ∑

i∈N |π(i)| is an increasing potential function. For an individual

deviation π
d−→ π ′, it holds that

Φ(π ′) −Φ(π) = |π ′(d)|− |π(d)|︸ ︷︷ ︸
change by d

+(|π ′(d)|− 1︸ ︷︷ ︸
new coalition

) − (|π(d)|− 1︸ ︷︷ ︸
old coalition

)

= 2(|π ′(d)|− |π(d)|) > 0.

The computation uses the fact that d abandons a clique coalition
and joins a larger clique coalition. Interestingly, this potential is equiv-
alent to considering the social welfare of π if the single-agent utilities
were aggregated as if the game was an additively separable hedo-
nic game. Also, note that the method cannot generalize to arbitrary
symmetric weights due to the non-existence of individually stable
partitions in such fractional hedonic games (Theorem 3.2).

Lexicographic Comparison of Ordered Vectors

Another common technique for finding potential functions is to con-
sider ordered vectors with respect to lexicographic comparison. These
vectors can either be seen as multi-valued potential functions, or can
be aggregated to single-valued potential functions at the cost of hav-
ing a large range of values for the potential function. Note that the
latter does not cause computational problems because the potential
functions are an implicit underlying structure of a game.

For instance, Aziz et al. (2019, Theorem 5.6) use this technique to
prove the existence of core partitions in a restricted class of fractional
hedonic games. There, they associate to a partition the vector of util-
ities of the agents in non-decreasing order. Then, they show that a
partition which lexicographically maximizes this vector is in the core.

The proof of Proposition 3.15 features the combination of two po-
tential functions, each of which is based on an ordered vector. The
first vector is the vector of coalition sizes in non-increasing order. We
call this vector vS. The second vector, called vT , is based on a topolog-
ical order of the agents, which exists for acyclic utility graphs (Kahn,
1962).

The convergence of the dynamics follows from an interesting in-
terplay of these two vectors. While vS need not be monotonic with
respect to the lexicographic ordering, vT is decreasing weakly in ev-
ery step of the dynamics. The problem is that vT may have equal
lexicographic score after a deviation. However, vS is strictly increas-
ing (lexicographically) whenever this happens. Hence, we can use
the combination of both vectors to bound the running time of the
dynamics.
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Global Bounds of Non-Increasing Potential Functions

While the necessary convergence of dynamics is equivalent to the
existence of an increasing potential function (cf. Proposition 4.1), it
can be favorable to analyze non-increasing potential functions. These
can be simpler to understand, and we might be able to control the
number steps of the dynamics in which a non-increasing potential
function decreases.

For instance, in Publication 5, we develop a method for using the
social welfare as a potential function in games where the social wel-
fare can decrease after a deviation. The key insight is that there is a
global trend towards an increase of the social welfare. In other words,
rather than proving local improvements of the potential function, we
show an overall increase of the potential function dependent on the
length of the dynamics. This is based on a purely combinatoric inter-
pretation of dynamics based on single-agent deviations.

Beyond Static Potential Functions

Potential functions need not be defined to be static in that they do
not have to be functions of the form Φ : Π → R. One can even define
a potential function based on the history of the specific execution of
the dynamics, that is, the potential function can have the set of finite
sequences of partitions as its domain. This is particularly useful if we
do not have control over the starting partition of the dynamics.

An example is the potential function developed in the proof of
Theorem 3.17 dealing with anonymous hedonic games under single-
peaked preferences. It consists of a history-dependent sum of values
associated with each coalition and each agent in a partition. The po-
tential function reflects the structure of the single-peaked preferences
that we can elicit from the history of the dynamics. Since we only
learn about this structure as soon as an agent is affected by an in-
dividual deviation for the first time, the potential function depends
on the exact sequence of deviations until the currently considered
partition.

While the use of history-based potential functions can be very pow-
erful, they have the drawback that they are a lot harder to com-
prehend. For instance, the above discussed potential function from
Theorem 3.17 emulates the drift of agents towards the peak of their
single-peaked preferences. However, the update rules are complex
and fine-tuned to cover all relevant incidences during an execution of
the dynamics.
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4.2 finding complex examples by linear pro-
gramming

Linear programming is a standard tool in mathematical optimization
(see, e.g., Grötschel et al., 1993). In this thesis, linear programs have
been applied in two fundamental ways.

First, linear programs give rise to efficient algorithms, and can
therefore be used as a black box for obtaining theoretical guarantees.
This has been useful for determining the complexity of computing
mixed popular matchings in roommate games (cf. Theorem 3.7).

In this section, we discuss the second application of linear program-
ming, namely, how to make use of an explicit linear program to con-
struct a specific hedonic game. This method was used to prove the
first part of Theorem 3.2, that is, the existence of a fractional hedonic
game without an individually stable partition. For convenience, we
repeat the statement here.

Theorem 4.3 (Brandt et al., 2021)
There exists a symmetric fractional hedonic game without an
individually stable partition.

Setting Up a Linear Program

Intuitively, it is clear that stability based on unilateral deviations de-
pends on a set of inequalities because a partition is stable if and only
if no agent can perform a beneficial deviation. Each of these devia-
tions can be modeled as an inequality. Additionally, binary variables
of an integer program can represent membership in joint coalitions.
This idea leads to a way to tackle a problem like “Given a partition,
decide if there exists a beneficial deviation.” However, this approach
is not helpful if we do not even know the game, for which we want
to analyze the existence of stable partitions. In other words, we aim
at setting up a method for solving the much more complicated quan-
tified statement

“There exists a game, such that for every partition, there
exists some deviation.”

The natural way to use linear programs is to resolve existential
questions. Hence, we focus on finding a specific game, and therefore
use the variables of a linear program to encode single-agent utilities.
However, it is not clear how to encode the universal quantifier, which
determines that the game should not contain a stable partition.

The approach taken towards the proof of Theorem 4.3 is to com-
bine an educated human guess about the structure of the desired
game with exact specifications of such a game computed by a lin-
ear program. Instead of directly finding our game, we apply linear
programming to prove the following weaker statement.
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Figure 4.1: Towards a symmetric fractional hedonic game without an indi-
vidually stable partition (Brandt et al., 2021).

Proposition 4.4
There exists a symmetric fractional hedonic game where IS dy-
namics can cycle.

We use linear inequalities for the deviations of some specific can-
didate dynamics in a guessed candidate game. If the linear program
has a feasible solution, then we have found a game with a cyclic IS
dynamics. Otherwise, we do not have a definite answer about the
existence of a counterexample. We just know that there does not exist
a game with a certain structure such that a specific execution of IS
dynamics can cycle.

Consider a fractional hedonic game (N,u) with agent set N =⋃
i∈[5]Ni, where Ni = {ai,bi, ci : i ∈ [5]}. The agent set is parti-

tioned into five triples of agents. We would like to determine the
single-agent values uS by means of a linear program. Since we are
looking for symmetric utilities, we write u(i, j) for uS

i (j) = uS
j (i).

The goal is to find utilities such that a specific sequence of par-
titions evolves through individual deviations. Therefore, define the
partitions

• π0 = {N1 ∪N2,N3,N4,N5},

• π1 = {N1 ∪ {b2, c2},N3 ∪ {a2},N4,N5},

• π2 = {N1 ∪ {c2},N3 ∪ {a2,b2},N4,N5}, and

• π3 = {N1,N2 ∪N3,N4,N5}.

Note that π0
a2−→ π1

b2−→ π2
c2−→ π3 is a sequence of unilateral devi-

ations. The deviations only rely on the single-agent utilities between
the agents in N1 ∪N2 and the agents in N2 ∪N3. The partitions π0

and π3 only differ by an index shift of the agent. Hence, this dy-
namics can be extended to an infinite cycle if the game always looks



4.2 finding complex examples by linear programming 53

the same locally. The structure of the game and the dynamics are
depicted in Figure 4.1a.

To enable infinite dynamics, we assume the following constraints
on the utilities:

• For v,w ∈ {a,b, c} with v ̸= w and i, j ∈ [5], we assume that
u(vi,wi) = u(vj,wj).

• For v,w ∈ {a,b, c} and i, j ∈ [5], we assume that u(vi,wi+1) =

u(vj,wj+1).

There, we read indices modulo 5 mapping to the representative
in [5]. The first constraint assures that the utilities within each agent
set Ni are identical, and the second constraint assures that the utilities
between each pair of subsequent sets Ni and Ni+1 are identical. As
a consequence, if we can find utilities satisfying these constraints and
such that (πk)

3
k=0 is an execution of the IS dynamics, then the IS

dynamics can cycle in the game (N,u).
We are ready to define the variables of our linear program.

• Let the variables xab, xac, and xbc represent the symmetric
utilities u(a1,b1), u(a1, c1), and u(b1, c1), respectively.

• For v,w ∈ {a,b, c}, let the variable yvw represent u(v1,w2).

Hence, variables of the type xvw capture utilities among a triple of
agents, and variables of the type yvw capture utilities between two
subsequent triples. The variables of the linear program are shown in
Figure 4.1b. Note that the variables do not encompass all pairwise
utilities of the fractional hedonic game (N,u) but just all utilities rel-
evant to the coalitions in the dynamics.

Next, we can specify the constraints corresponding to the dynamics
(πk)

3
k=0. To this end, let i ∈ [3] and suppose that di is the deviating

agent leading to partition πi. Then,

• we want that udi
(πi(di)) > udi

(πi−1(di)), and

• for v ∈ πi(di) \ {di}, we want that uv(πi(v)) ⩾ uv(πi−1(v)).

The first, strict inequality assures that each deviation is a Nash
deviation. The second set of inequalities guarantees the consent of the
agents in the welcoming coalition, and therefore that each deviation
even is an individual deviation. Note that the strict inequality can be
transformed into a weak inequality by making use of a slack variable.

Each of these constraints can be written as a linear constraint us-
ing only variables xvw and yvw. This might seem counterintuitive
at first glance, because the utilities of fractional hedonic games are
fractions that include coalition sizes. However, this is not a problem.
We already know the coalition sizes of all coalitions involved in de-
viations, so these are only constants in the inequalities. For instance,



54 methodology

ci

ai

bi

ci+1

ai+1

bi+1228

228

228
228

228

228

436

248
228

223

188

171

223

236

171

Figure 4.2: Utilities found by linear programming (Brandt et al., 2021).

the inequality ua2
(N3 ∪ {a2}) > ua2

(N1 ∪N2) is equivalent to the
inequality

1

4
(yaa + yab + yac) >

1

6
(xab + xac + yaa + yba + yca) .

This fully specifies our linear program.

Finding the Counterexample

As mentioned before, the variables of the linear program do not en-
compass all single-agent utilities of a fractional hedonic game with 15

agents. In fact, we just find values for the variables that correspond
to our specific cyclic dynamics.

Hence, to extract an actual game from solutions of the linear pro-
gram, we still have the freedom to select values for the utilities u(v,w)

for v ∈ Ni and w ∈ Nj with |i− j| ∈ {2, 3}. We set these utilities to
sufficiently large negative numbers such that agents with a mutual
negative utility cannot be in the same coalition in any individually ra-
tional partition (one can think of a utility of −∞). This is convenient
because it significantly reduces the candidates for stable partitions in
a case analysis. Additionally, it is even necessary to have negative util-
ities because in a fractional hedonic game with non-negative utilities,
the grand coalition is Nash-stable and therefore individually stable.

So far, we do not know whether the linear program of the previous
section is actually useful. If it is infeasible, we gain no insight towards
proving Theorem 4.3. However, if it has a feasible solution, we at least
find a proof of Proposition 4.4.

In fact, a feasible solution of our linear program exists and is de-
picted in Figure 4.2. Hence, we find the single-agent utilities of a
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fractional hedonic game (N,u), where the utilities are defined by the
variables of the linear program and large negative utilities between
agents of non-adjacent triples.

It is not hard to confirm that the found fractional hedonic game
admits a cycling dynamics. For instance, it holds that

ua2
(N3 ∪ {a2}) =

1

4
(436+ 228+ 248) = 228

> 223 =
1

6
(228+ 228+ 436+ 223+ 223) = ua2

(N1 ∪N2).

This means that π0
a2−→ π1 is a Nash deviation. Moreover, it holds

that

ua3
(N3 ∪ {a2}) = 223 ⩾ 152 = ua3

(N3),

ub3
(N3 ∪ {a2}) = 171 ⩾ 152 = ub3

(N3), and

uc3
(N3 ∪ {a2}) =

704

3
⩾ 152 = uc3

(N3).

Thus, this deviation is even an individual deviation. Similarly, π1
b2−→

π2 and π2
c2−→ π3 are individual deviations.

Interestingly, the constructed game is even sufficient to prove The-
orem 4.3. The proof is a tedious case distinction for excluding every
partition from being individually stable. It can be found in the full
version of Publication 4 (Brandt et al., 2022b).

4.3 hardness reductions in hedonic games

Many results in the hedonic games literature and in particular in this
thesis concern the computational intractability of solution concepts.
As discussed in Section 2.1.1, Ballester (2004) set the stage for de-
riving hardness results by representing preferences by individually
rational lists of coalitions. This approach is appropriate for hedonic
games with an ordinal representation of preferences. Subsequently,
computational questions regarding hedonic games have been a con-
stant object of study (see, e.g., Sung and Dimitrov, 2010; Aziz et al.,
2013b; Woeginger, 2013; Peters and Elkind, 2015). In this section, we
discuss important approaches for obtaining hardness results used in
this thesis.

4.3.1 Hardness of Single-Agent Stability

An important proving scheme is due to Sung and Dimitrov (2010)
who considered hardness in cardinal classes of hedonic games. This
approach is for instance applied by Aziz et al. (2013b) or in Publica-
tions 3 and 4 to obtain Theorems 3.1, 3.2 and 3.22.
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Assume that we want to prove hardness of the existence problem
corresponding to some solution concept in a certain class of hedonic
games. The general strategy of Sung and Dimitrov (2010) consists of
the following five steps.

1. Find a No-instance, that is, a hedonic game in the considered
class of games where the studied solution concept cannot be
satisfied.

2. Encode the combinatorial structure of some NP-hard problem
as a hedonic game of the given class.

3. Leverage the No-instance from Step 1 as gadget.

4. Add various auxiliary agents.

5. Prove the correspondence of Yes-instances of the source prob-
lem and instances satisfying the solution concept.

Of course, these five steps can be very different in difficulty and
sophistication. Sometimes, even finding a first counterexample is
extremely complex. For instance, as we have seen in the previous
section, the fractional hedonic game constructed in the proof of The-
orem 3.2 has a sophisticated structure of utilities, or the friends-and-
enemies game for the third statement of Theorem 3.22 encompasses
183 agents. Moreover, it might even be the case that it is favorable not
to use simple No-instances as gadgets as more complex No-instances
can have additional properties that facilitate reductions. Examples
for this incident are the reductions concerning additively separable
hedonic games in Theorem 3.10.

In addition, usually there are various ways for the encoding in
Step 2, and another challenge can be to find the right trade-off be-
tween the complexity of the encoding and the complexity of the aux-
iliary structures added in Step 4. As an example, there exist very
simple additively separable hedonic games without a contractually
Nash stable partition (Sung and Dimitrov, 2007), while the difficulty
for deriving Theorem 3.1 is the appropriate usage of auxiliary agents.

In the following, we exemplify the reduction technique by outlin-
ing the proof of the first statement of Theorem 3.22. All steps in
this reduction have moderate complexity, while none of the steps are
trivial. Here, we want to derive the following theorem.

Theorem 4.5 (Bullinger, 2022)
It is NP-complete to decide whether an appreciation-of-friends
game contains a majority-out stable partition.

Step 1: Constructing a No-Instance

It is not immediately clear why appreciation-of-friends games do not
always contain a majority-out stable partition. For instance, these
games always contain a majority-in stable partition (cf. Theorem 3.21).
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Figure 4.3: Appreciation-of-friends game without a majority-out stable par-
tition (Bullinger, 2022). The depicted (directed) edges represent
friends, i.e., a utility of n, whereas missing edges represent a
utility of −1.

We now present the No-instance from Publication 3. Consider an
appreciation-of-friends game (N,u) where N = {z} ∪ {ai,bi, ci : i ∈
[5]}. The utilities uS for single agents are depicted in Figure 4.3.
Whenever there is a directed edge from agent i to agent j, then
uS
i (j) = n; otherwise, uS

i (j) = −1.
Let us discuss the main insights into why this game has no majority-

out stable partition. The key is that the friendship relation of a (direct)
5-cycle is already very restrictive. To see this, consider the subgame
(M,uM) of (N,u) where M = {ai : i ∈ [5]} and uM is the restriction
of u to M. The following statement holds.

Proposition 4.6
The unique majority-out stable partition in the game (M,uM)

is the grand coalition.

Proof. Let π be a majority-out stable partition of (M,uM).
Define C := π(a1) and assume for contradiction that |C| < 5. Then,

there exists i ∈ [5] such that uM
ai
(C) ⩽ 0. For the remainder of the

proof, we interpret indices modulo 5 mapping to their representative
in [5].

It holds that ai has a Nash deviation to join π(ai+1). This deviation
is even a majority-out deviation unless π(ai) = {ai,ai−1}. Therefore,
since π is majority-out stable, it holds that π(ai) = {ai,ai−1}.

Then, ai−2 has a Nash deviation to join C and, by majority-out sta-
bility, π(ai−2) = {ai−2,ai−3}. But then ai−4 is in a singleton coalition
and can perform a majority-out deviation to join π(ai−3).

Hence, we derive a contradiction and it must be the case that |C| =
5. Note that the grand coalition is majority-out stable.

We obtain the No-instance (N,u) by taking three copies of the 5-
cyclic game and adding an additional agent z who is a friend of one
agent in each of the cycles. Now, the agent z does not have any
friends, and can therefore enforce to be in a small coalition in any
majority-out stable partition. On the other hand, agents like a1 who
are in a 5-cycle and have agent z as a friend are in a constant conflict:
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If they form a coalition with agents in their cycle, then this coalition
has to be large (the intuition is that, as in Proposition 4.6, this coalition
has to contain a whole cyclic structure). Hence, the coalition of z is
smaller and a1 wants to join. Otherwise, if a1 is in a coalition with z,
then a2 cannot be forced to stay in their coalition unless this coalition
is very small. Hence, a1 would again perform a deviation. This
tension cannot be resolved in any partition, and therefore there exists
no majority-out stable partition.

Step 2: Encoding a Covering Problem

Many hardness reductions in hedonic games use covering problems
as source instances. The reason is that there exist good ways to repre-
sent coverings by hedonic games. Here, we present a reduction from
the NP-complete problem Exact Cover by 3-Sets (Karp, 1972). An
instance of Exact Cover by 3-Sets consists of a tuple (R,S), where R

is a finite ground set together with a set S of 3-element subsets of R. A
Yes-instance is an instance so that there exists a subset S ′ ⊆ S which
partitions R.

A natural way for encoding a covering problem is to use the friend-
ship relation of an appreciation-of-friends game to mimic the inclu-
sion structure of an instance (R,S) of Exact Cover by 3-Sets. We
can define an appreciation-of-friends game (N1,u1) with agent set
N1 = R∪ S and single-agent utilities u1

x(y) = |N1| if and only if x ∈ S

and y ∈ R with y ∈ x. We refer to agents corresponding to elements
in R and S as R-agents and S-agents, respectively.

We illustrate Steps 2 to 5 in Figure 4.4. There, we consider the
source instance (R,S) where R = {α,β,γ, δ, ϵ, ζ} and S = {s, t,u} where
s = {α,β,γ}, t = {β,γ, δ}, and {δ, ϵ, ζ}. The game (N1,u1) is depicted
in Figure 4.4a.

Step 3: Leveraging the No-Instance

The game (N1,u1) is merely a representation of the combinatorial
structure of a covering problem. It is not relevant if the source in-
stance is a Yes-instance or a No-instance. In fact, the game (N1,u1)

always contains a majority-out stable partition. This can be seen by
running an MOS dynamics starting from the singleton coalition. First,
let every S-agent s join an R-agent r with r ∈ s. This yields a parti-
tion π1. Now, let the MOS dynamics continue arbitrarily. Note that,
from this point onwards, only S-agents can perform a deviation. R-
agents are in singleton coalitions or in coalitions with S-agents only,
who would block their deviations. Hence, whenever they are not in a
singleton coalition, they are not allowed to leave. Moreover, consider
the vector of length |S| containing the coalition sizes of each S-agent in
decreasing size. Whenever an S-agent performs a deviation, she will
decrease her coalition size, and therefore the vector of coalition sizes
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(c) Steps 4 and 5: Using auxiliary agents and finding a correspondence with Yes-
instances (Bullinger, 2022).

Figure 4.4: Steps 2 to 5 of the reduction. We illustrate the reduction for
the source instance (R,S) of Exact Cover by 3-Sets where R =
{α,β,γ, δ, ϵ, ζ} and S = {s, t,u} where s = {α,β,γ}, t = {β,γ, δ},
and {δ, ϵ, ζ}. The ground structure in Figure (a) represents the
membership of elements in R in sets in S. Then, in Figure (b),
every element in R is replaced by a gadget which is a copy of
the found No-instance. Finally, in Figure (c), the sets in S are
replaced by auxiliary agents. We then outline the partition cor-
responding to an exact cover of R with the sets s and u.
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decreases lexicographically. This process has to terminate eventually,
and the dynamics reaches a majority-out stable partition.

Thus, we need to create the chance that reduced instances are No-
instances. To this end, we replace every R-agent by a copy of the
No-instance from Step 1. Hence, we obtain a new game (N2,u2)

where N2 = S∪NR with NR =
⋃

r∈RNr such that Nr corresponds to
a copy of the agent set from the No-instance. The game is illustrated
in Figure 4.4b. We retain the combinatorial structure of the covering
instance by associating the copy of a1 with the element in R and
wiring the friendship of S-agents to these agents.

Step 4: Adding Auxiliary Agents

By leveraging No-instances for every element in R, we have added
many local causes of instability to our base game. Hence, the agents
of a set Nr for r ∈ R need to form coalitions with agents outside of
Nr in every majority-out stable partition. However, there are only
few agents who have an incentive to form such coalitions, namely the
agents in S. Moreover, we want that the formation of coalitions with
agents in Nr corresponds to a covering.

We reach this goal by replacing the S-agents by a set of auxiliary
agents. More precisely, we define a game (N3,u3) where N3 = NS ∪
NR. The set NR is as in the previous step while NS =

⋃
s∈SNs

where Ns = {s0} ∪ {sr : r ∈ s} for s ∈ S. Now, we split the origin of
the three friendship relations of a previous S-agent s by having them
originate from each of the three agents representing the elements in s.
The game (N3,u3) is our final reduced instance and is depicted in
Figure 4.4c.

Step 5: Correspondence of Yes-Instances

All of the previous steps had the purpose of setting up the construc-
tion of the reduced instances. However, the essence of hardness re-
sults is of course proving correctness of the provided reduction. In
particular, this would require to map Yes-instances of the source prob-
lem to Yes-instances of the reduced problem.

We want to give some intuition of why this works for the presented
reduction. Our running example, for which we depict the reduced
instance in Figure 4.4 is a Yes-instance because the set R can be par-
titioned by {s,u}. There exists a majority-out stable partition in the
reduced instance, which in particular contains the coalitions {aα

1 , sα},
{a

β
1 , sβ}, {a

γ
1 , sγ}, {aδ

1,uδ}, {aϵ
1 ,uϵ}, {aζ

1,uζ}, and {t0, tβ, tγ, tδ}. These
coalitions are also highlighted in Figure 4.4c. The first six coalitions
force an agent from each No-instance to a coalition that they can-
not leave. Together, they prevent any danger of instability. The final
coalition, {t0, tβ, tγ, tδ}, contains the agents corresponding to the set
of t ∈ S, which is not contained in the partition of R.
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As in this example, agents in a set Ns for s ∈ S have two choices
in a majority-out stable partition: Either they form a coalition of their
own, or each of the agents sr for r ∈ s forms a coalition of size 2

with the agent ar
1. In this way, we can simultaneously prevent the

instabilities caused by each of the gadgets corresponding to elements
in R if and only if we can partition R by elements in S.

4.3.2 A Generic Reduction Technique for Complex Concepts

As mentioned before, the reduction method presented in the previous
section is quite universal and was applied in many different places
within this thesis. However, axioms that naturally belong to complex-
ity classes such as ΣP

2 which are above NP in the polynomial hierarchy
sometimes require more involved techniques. One of these axioms is
popularity. In this section, we show a reduction techniques that turns
out to be extremely useful in the analysis of popularity. It is applied
in all proofs of Theorems 3.9 and 3.10, but for simplicity, we limit
attention to the following statement.
Theorem 4.7

In flatmate games with strict and globally ranked preferences, it
is coNP-hard to decide whether there exists a strongly popular
partition.

A key challenge in the analysis of popularity is that the verifica-
tion of popular partitions is often coNP-complete. As a consequence,
proving that a reduced instance is a Yes-instance, that is, that it con-
tains a popular partition, can be tedious. The central idea for dealing
with this problem is that we construct a game that encodes some
NP-complete problem such that decisions about popularity, indepen-
dent of whether the source instance was a Yes- or No-instance, only
depend on a small number of agents.

We visualize the scheme of the reduction in Figure 4.5. There, the
circular vertices display agents, whereas edges indicate individually
rational coalitions. The straight edges without arrow tips display a
specific partition called π∗, which turns out to be the only reasonable
candidate partition for popularity. The arrows indicate changes nec-
essary in this partition to improve an agent’s coalition. In the formal
definition of the game given in Publication 2, all individually rational
coalitions are of size at most 3, and we therefore obtain a flatmate
game.

The ground structure of this technique is a binary tree as depicted
in Figure 4.5 in blue. All coalitions of π∗ of size 3 are a “vertex”
in this tree. The root of the tree is at the bottom of the figure, and
every vertex that is not a leaf has two children, which are to the left
and right above it. More specifically, there are even two interleaved
binary trees, where the second tree is the ground structure for the
empty vertices. For simplicity, we only depict one of the trees.
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Covering instance

α β γ δ ϵ ζ

Binary tree structure

Decision vertex

Figure 4.5: Reduction for simplifying complex decisions regarding the ver-
ification of popularity (Brandt and Bullinger, 2022). The source
instance of a covering problem is attached to the top layer. Then
the decision about the popularity of a good candidate partition
is propagated downwards along a structure resembling a binary
tree. In the end, decisions regarding the popularity of the candi-
date partition only depend on the agent at the decision vertex.

Now consider an instance (R,S) of Exact Cover by 3-Sets. In Fig-
ure 4.5, we have R = {α,β,γ, δ, ϵ, ζ} and {α,γ, δ} ∈ S. This instance is
encoded in the top layer of the reduced instance, and every element
of the ground set R corresponds to a leaf of the binary tree. Note that
the binary tree has more leaves than there are elements in R. This is
always the case because the number of leaves of the binary tree is a
power of 2 whereas |R| is divisible by 3. In the actual reduction, we
take the smallest size of a binary tree where more than half of the
leaves correspond to elements of R.

The sets in S represent preferred coalitions for the agents repre-
senting the elements in R, which is for instance indicated for the set
{α,γ, δ}. The key property of the reduction is that all the relevant
information about popularity propagates to the root node of the tree.
Hence, we reduce the analysis of the complex verification problem to
the inspection of the root node. More specifically, the partition π∗ is
popular, both when the source instance is a Yes- and a No-instance.

The important properties of this construction that facilitate reduc-
tions are summarized as follows. If the source instance is a No-
instance, then the partition π∗ is strongly popular with popularity
margin at least 2 against any other partition. On the other hand, if
the source instance is a Yes-instance, then we can move the agents in
the top layer to coalitions corresponding to a partition of R with sets
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in S.12 However, to challenge the partition π∗ as a whole, we must
propagate coalition changes downwards in a very specific way. We
can find a partition π ′ such that ϕ(π∗,π ′) = 1 where the decision
vertex at the bottom corresponds to an agent in a singleton coalition
in π ′.

The final step to establish Theorem 4.7 is to use an auxiliary agent z
that would like to form a coalition with the agent corresponding to
the decision vertex. Hence, we can consider the partition π∗ aug-
mented with a singleton coalition for z. Then, if the source instance
is a No-instance, this partition is still strongly popular. On the other
hand, due to z, if the source instance is a Yes-instance, there exists
now another partition against which this partition only achieves a
popularity margin of 0.

To obtain the other statements of Theorem 3.9, we can use multiple
copies of the reduced game in Figure 4.5 or attach other gadgets to
the decision vertex. It is possible to show that the obtained reductions
yield flatmate games with strict and globally ranked preferences, but
we omit the details here.

12 The actual construction has further auxiliary agents that deal with agents in the top
layer that do not correspond to an element in R.





5
F U R T H E R D I R E C T I O N S

We have seen that hedonic games can cover a diverse set of coali-
tion formation scenarios. These encompass applications like select-
ing roommates, allocating teams, or forming groups under diversity
constraints. Moreover, formal models of coalition formation can con-
tribute to a better understanding of the dynamical evolvement of
coalition structures or the emergence of segregation.

The key goal of this thesis was to provide algorithms for obtaining
coalition structures that satisfy a notion of desirability, such as stabil-
ity or optimality. While we have bridged a few gaps in the literature,
we have also opened up new research directions by considering stabil-
ity constrained by majority decisions, dynamics based on individual
decisions, or empathy in the form of loyalty. Moreover, most of the
contributions leading to this thesis leave some specific problems open.
We will conclude the thesis by discussing some general research di-
rections and concrete open problems in order to give guidance for
future work.

A first general path is to consider majority-based stability concepts
in other contexts. While we obtain a good understanding of these
concepts in additively separable hedonic games, some initial results
by Tappe (2021) show their hardness in unrestricted fractional hedo-
nic games. It would be interesting to see if we can guarantee their
existence and obtain efficient algorithms in restricted classes of frac-
tional hedonic games. In addition, studying majority-based stability
in further classes of hedonic games may lead to intriguing discover-
ies.

A second venue is to follow the approach of Publication 6 and to
move away from static utility models. One could consider games
related to a given benchmark game that integrate novel incentives,
for example, based on other notions of empathy. Towards this direc-
tion, we very recently propose a possibility to combine dynamics and
utility modification by having agents change their utilities based on
previously performed deviations (Boehmer et al., 2023). There is an
abundance of possibilities to changes agents’ incentives, and identify-
ing the most meaningful ones could be a fruitful challenge.

In the remainder of this section, we will discuss some specific prob-
lems that were left open in the course of this thesis.

The complexity of some solution concepts remains open. First,
while the algorithm in Theorem 3.3 is a 2-approximation to maxi-
mizing social welfare in modified fractional hedonic games, it is un-
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known whether welfare-maximizing partitions can be computed effi-
ciently.

Open Problem 5.1
Determine the complexity of computing a partition maximizing
social welfare in modified fractional hedonic games.

On the one hand, maximizing social welfare in other classes of
cardinal hedonic games, such as additively separable or fractional he-
donic games, is NP-hard (Aziz et al., 2013b, Theorem 4; Aziz et al.,
2015, Theorem 3), even under further utility restrictions. However,
welfare-maximizing partitions can be computed in polynomial time
in symmetric modified fractional hedonic games with binary utility
values (Monaco et al., 2018, Theorem 3.5) and, consist only of parti-
tions of size 2 and 3 for arbitrary utilities (cf. Publication 1). The
answer could go towards either direction.

Second, it remains to determine the exact complexity of the ex-
istence problem for popularity in various classes of hedonic games.
Since Theorem 3.10 contains both NP- and coNP-hardness, it feels
that this problem could be ΣP

2 -complete.

Conjecture 5.2
Consider the class of symmetric additively separable or sym-
metric fractional hedonic games. It is ΣP

2 -complete to decide
whether there exists a popular partition in these games.

Similar open problems concern strong popularity, and the consid-
eration of flatmate games.

Next, we consider the core of the loyal variant of appreciation-of-
friends games. Recall that, according to Theorem 3.27, the core can be
empty in the loyal variant of an additively separable hedonic game,
and the corresponding decision problem is NP-hard. Moreover, even
though we do not know whether partitions in the core of the k-fold
loyal variant of appreciation-of-friends games for k ⩾ 2 are guaran-
teed to exist, we face computational boundaries once again (cf. The-
orem 3.26). However, the core is non-empty for the loyal variant of
an additively separable hedonic game if the friendship structure is a
tree (cf. Publication 6). In addition, the core in ordinary appreciation-
of-friends games is always non-empty (Dimitrov et al., 2006). Hence,
there is evidence towards either direction for the next open problem.

Open Problem 5.3
Invetigate whether the core can be empty in the loyal variant
of an appreciation-of-friends game. Moreover, determine the
complexity of computing a partition in the core of such a game.

Note that Open Problem 5.3 is equivalent to asking for elements
in the core of altruistic hedonic games under minimum-based equal-
treatment preferences, an open problem mentioned by Kerkmann et
al. (2022).
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Our next open problem concerns dynamics in hedonic games. In
Publication 4, we have mainly considered necessary convergence. In
particular, despite the existence and efficient computability of individ-
ually stable partitions in hedonic diversity games, IS dynamics may
cycle under strong restrictions (cf. Theorem 3.12). In Publication 4, we
also discuss restrictions for necessary cycling, which preclude possi-
ble convergence. However, in particular in the following cases, it
might be possible to complement the negative results of Theorem 3.12

by more positive results.

Open Problem 5.4
Investigate whether IS dynamics in hedonic diversity games
possibly converge if

1. the dynamics start from the singleton partition, or

2. preferences are strict and single-peaked.

We finally state a conjecture concerning the welfare guarantee of
Pareto-optimal assignments in Schelling games. In Theorem 3.29,
there is a gap for the price of Pareto optimality. We have a lower
bound of Ω(n), whereas the upper bound of O(n

√
n) is not matching.

However, we have an upper bound of O(n) in restricted subclasses of
Schelling games (cf. Theorem 3.31). Moreover, the price of group-
welfare optimality and utility-vector optimality, natural refinements
of Pareto optimality, is Θ(n). Hence, there is multiple evidence for
the next conjecture.

Conjecture 5.5
The price of Pareto optimality in Schelling games satisfies Θ(n).

Together, we have seen that there is still a lot of potential for excit-
ing future research in coalition formation.
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C O R E P U B L I C AT I O N 1 : PA R E TO - O P T I M A L I T Y I N
C A R D I N A L H E D O N I C G A M E S

summary

Coalition formation is an important research topic in multi-agent sys-
tems and typically studied in the framework of hedonic games. We
study cardinal classes of hedonic games in which a set of agents ex-
presses their preferences about potential coalitions with the aid of
cardinal utilities. These classes are additively separable, fractional,
and modified fractional hedonic games. Each of these classes can
model different aspects of dividing a society into groups.

The desirability of coalition structures in hedonic games is usually
measured by considering so-called solution concepts. Among these,
Pareto optimality and individual rationality are among the most nat-
ural requirements. A coalition structure is Pareto-optimal if any coali-
tion structure that is better for some agent is worse for another agent.
Pareto optimality can therefore be seen as a global guarantee of a
coalition structure. A stronger guarantee is given by welfare optimal-
ity which demands maximality with respect to the utilitarian welfare
of a coalition structure. On the other hand, individual rationality of
a coalition structure means that no agent prefers to be on their own
over being in their designated coalition. Therefore, individual ratio-
nality gives an incentive to engage in a coalition formation process at
all.

For all of the above classes of games, we provide algorithms that
find Pareto-optimal coalition structures under some natural restric-
tions. While the output is also individually rational for modified
fractional hedonic games, combining both Pareto optimality and in-
dividual rationality leads to an NP-hardness for symmetric additively
separable and symmetric fractional hedonic games. In addition, we
prove that welfare-optimal and Pareto-optimal partitions coincide for
symmetric modified fractional hedonic games with binary utility val-
ues, resolving an open problem. For general modified fractional hedo-
nic games, our algorithm returns a 2-approximation for maximizing
social welfare. While we leave the complexity of computing welfare-
optimal coalition structures as a an open problem, we can show that
finding welfare-optimal coalition structures in modified fractional he-
donic games only requires the consideration of coalitions containing
at most three agents.
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ABSTRACT
Pareto-optimality and individual rationality are among themost nat-
ural requirements in coalition formation. We study classes of hedo-
nic games with cardinal utilities that can be succinctly represented
bymeans of complete weighted graphs, namely additively separable
(ASHG), fractional (FHG), and modified fractional (MFHG) hedo-
nic games. Each of these can model different aspects of dividing a
society into groups. For all classes of games, we give algorithms
that find Pareto-optimal partitions under some natural restrictions.
While the output is also individually rational for modified fractional
hedonic games, combining both notions is NP-hard for symmetric
ASHGs and FHGs. In addition, we prove that welfare-optimal and
Pareto-optimal partitions coincide for simple, symmetric MFHGs,
solving an open problem from Elkind et al. [9]. For general MFHGs,
our algorithm returns a 2-approximation to welfare. Interestingly,
welfare-optimal partitions in MFHGs only require coalitions of at
most three agents.
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1 INTRODUCTION
Coalition formation is a central problem in multi-agent systems
and has been extensively studied, ever since the publication of
von Neumann and Morgenstern’s Theory of Games and Economic
Behavior in 1944. In coalition formation, every agent of a group
seeks to be in a desirable coalition. As an important special case
therein, in clustering problems, a society is observed, for which
a structuring into like-minded groups, or communities, is to be
identified [16]. Coalition scenarios can be modeled by letting the
agents submit preferences, subject to which the happiness of an
individual agent with her coalition, or the like-mindedness of a
coalition, can be measured. The goal of every individual agent is to
maximize the value of her coalition.

In many settings, it is natural to assume that an agent is only
concerned about her own coalition, i.e., externalities are ignored.
As a consequence, much of the research on coalition formation
now concentrates on these so-called hedonic games [7]. Still, the
number of coalitions an agent can be part of is exponential in the

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

number of agents, and therefore it is desirable to consider expres-
sive, but succinctly representable classes of hedonic games. This
can be established by encoding preferences by means of a complete
directed weighted graph where an edge weight 𝑣𝑥 (𝑦) is a cardinal
value or utility that agent 𝑥 assigns to agent 𝑦. Still, this underlying
structure leaves significant freedom, how to obtain (cardinal) pref-
erences over coalitions. An especially appealing type of preferences
is to have the sum of values of the other individuals as the value
of a coalition. This constitutes the important class of additively
separable hedonic games (ASHGs) [6].

In ASHGs, an agent is willing to accept an additional agent into
her coalition as long as her valuation of this agent is non-negative
and in this sense, ASHGs are not sensitive to the intensities of single-
agent preferences. In particular, if all valuations are non-negative,
forming the grand coalition consisting of all agents is a best choice
for every agent. In contrast, fractional hedonic games (FHGs) define
preferences over coalitions by dividing the sum of values by the size
of the coalition [1]. This incentivizes agents to form dense cliques,
and therefore appropriately models like-mindedness in the sense
of clustering problems.

On the other hand, agents in FHGs may improve with a new
agentwhose valuation is below the average of their current coalition
partners. To avoid this, it is also natural to define the value of a
coalition as the average value of other agents, i.e., the denominator
in the definition of FHGs is replaced by the size of the coalition
minus 1. This defines the class of modified fractional hedonic games
(MFHGs) [17]. For all measures of stability and optimality that have
been investigated, these games do not guarantee the formation of
large cliques and are therefore less suitable for clustering problems.
In fact, partitions of agents into coalitions satisfying many desirable
properties can be computed in polynomial time, often simply by
computing maximum (weight) matchings. However, these games
ensure a certain degree of homogeneity of the agents, as agents tend
to contribute uniformly to each other’s utility in stable coalitions.

Having selected a representation for modeling the coalition for-
mation process, one needs a measure for evaluating the quality of a
partition. Various such measures, also called solution concepts, have
been proposed in the literature. Most of them aim to guarantee
a certain degree of stability—preventing single agents or groups
from agents to break apart from their coalitions—and optimality—
guaranteeing a globally measured outcome that is good for the
society as entity. A good overview of solution concepts is by Aziz
and Savani [5]. Themost undisputedmeasure of optimality is Pareto-
optimality, i.e., there should be no other partition, such that every
agent is weakly, and some agent strictly, better off. Apart from
its optimality guarantee, Pareto-optimality can also be seen as a
measure of stability, because a Pareto-optimal partition disallows
an agent to propose a partition she prefers without having another
agent vetoing this proposal. A stronger notion of optimality is that
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of (utilitarian) welfare-optimality, which aims to maximize the sum
of utilities of all agents.

Pareto-optimal outcomes still might be extremely disadvanta-
geous for single agents that receive large negative utility in or-
der to give small positive utility to another agent. Therefore, it is
also desirable that agents receive at least the utility they would
receive in a coalition of their own (in all our models this means
non-negative utility). This condition is called individual rationality.
Clearly, a Pareto-optimal and individually rational outcome can
always be found by the simple local search algorithm that starts
with the partition of the agents into singleton coalitions and moves
to Pareto-improvements as long as these exist. In general, this basic
algorithm need not run in polynomial time and the output need
not be welfare-optimal. It can even occur that no welfare-optimal
partition is individually rational. As we will see, it is even often
NP-hard to compute a Pareto-optimal and individually rational
partition (Theorem 5.2, Theorem 6.4).

We study Pareto-optimality in all three classes of games, and
give polynomial-time algorithms for computing Pareto-optimal
partitions in important subclasses, including symmetric ASHGs
and MFHGs. In addition, we prove that welfare-optimal and Pareto-
optimal partitions coincide for simple symmetric MFHGs, closing
the bounds on the price of Pareto-optimality for this class of games
left by Elkind et al. [9]. In the weighted case, our algorithm for
Pareto-optimality in MFHGs gives a 2-approximation of welfare
and its output is always individually rational. While we can prove
that even in the weighted case, welfare-optimality is attained by
a partition consisting only of coalitions of size two and three, the
complexity of computing a welfare-optimal partition remains open.
On the other hand, we prove that computing a Pareto-optimal and
individually rational partition is NP-hard for symmetric ASHGs and
FHGs, thus extending a result by Aziz et al. [3] for general ASHGs.
Note that symmetry is a significant restriction for hardness reduc-
tions, because non-symmetric games allow for the phenomenon of
non-mutual interest.

2 RELATEDWORK
Hedonic games were first introduced by Drèze and Greenberg [7].
Since then, a great amount of research has been devoted to the study
of algorithmic and mathematical properties of axiomatic concepts
regarding stability and optimality, representability of preferences,
and the discovery of well-behaved, yet expressive classes of hedonic
games. The survey by Hajduková [12] gives a critical overview
of preference representations and conditions that allow for the
existence and efficient computability of central stability notions,
such as Nash and core stability.

Pareto-optimality can be studied in many classes of hedo-
nic games by exploiting a strong relationship between Pareto-
optimality and perfection, i.e., partitions that put every agent in one
of her most preferred partitions [2]. This gives rise to the preference
refinement algorithm (PRA) which finds Pareto-optimal partitions
under certain conditions by means of a perfection-oracle. The re-
sulting Pareto-optimal partitions are even individually rational.
The assumptions required for the algorithm include the efficient
computation of preference refinements, which is not possible for
ASHGs and FHGs. Indeed, during the PRA, one has to search a set

of hedonic games that interpolates between two preference profiles
and can contain games not implementable as an ASHG or FHG,
respectively. In fact, for ASHGs and FHGs, perfect partitions can be
computed in polynomial time (Theorem 5.4, Theorem 6.6), while
computing Pareto-optimal and individually rational partitions is
NP-hard (Theorem 5.2, Theorem 6.4).

For cardinal hedonic games, stability and optimality have been
studied to some extent. Gairing and Savani [10, 11] settled the
complexity of the individual-player stability notions of Drèze and
Greenberg for symmetric ASHGs by treating them as local search
problems. For FHGs, hardness and approximation results for wel-
fare are given by Aziz et al. [4], while Aziz et al. [1] study stability.
Monaco et al. [15] show the tractability of some stability notions
and welfare-optimality for simple symmetric MFHGs, and the com-
putability of partitions in the core for weighted MFHGs. The ap-
proximation results for FHGs and most of the positive results for
MFHGs rely on computing specific matchings.

Pareto-optimality for cardinal hedonic games wasmainly studied
by Elkind et al. [9] in terms of the price of Pareto-optimality (PPO),
a worst-case ratio of Pareto-optimal and welfare-optimal partitions.
The focus lies on simple symmetric graphs and their main result is
to bound the PPO between 1 and 2 for simple, symmetric MFHGs.
Since we show that, for these games, every Pareto-optimal parti-
tion is welfare-optimal, we will close this gap. Pareto-optimality
for ASHGs was considered by Aziz et al. [3]. However, they only
dealt with a restricted class of preferences that guarantees unique
top-ranked coalitions and therefore one can apply a simple serial
dictatorship algorithm.

3 PRELIMINARIES
The primary ingredient of our model is a set of agents 𝑁 that
assign hedonic preferences over partitions of 𝑁 (also called coalition
structures), where the only information of a partition an agent
is interested in, is her own coalition. Preferences of agent 𝑖 are
therefore given over N𝑖 = {𝐶 ⊆ 𝑁 : 𝑖 ∈ 𝐶}, i.e., the subsets of
agents including herself, by valuation functions 𝑣𝑖 : N𝑖 → R. We
investigate a partition 𝜋 of the agents for notions of optimality and
stability, most importantly Pareto-optimality. Given a partition 𝜋 ,
we denote by 𝜋 (𝑖) the partition of agent 𝑖 and the utility she received
from this partition by 𝑣𝑖 (𝜋) = 𝑣𝑖 (𝜋 (𝑖)). A partition 𝜋 ′ is a Pareto-
improvement over 𝜋 if, for all agents 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋 ′) ≥ 𝑣𝑖 (𝜋) and
there exists an agent 𝑗 ∈ 𝑁 with 𝑣 𝑗 (𝜋 ′) > 𝑣 𝑗 (𝜋). In this case, we
also say that 𝜋 ′ Pareto-dominates 𝜋 . A partition 𝜋 is Pareto-optimal
if it is not Pareto-dominated.

A stronger requirement is that of (utilitarian) welfare-optimality.
For a subset 𝑀 ⊆ 𝑁 of agents, we denote 𝑣𝑀 (𝜋) =

∑
𝑖∈𝑀 𝑣𝑖 (𝜋).

The social welfare of a coalition 𝐶 is SW(𝐶) = 𝑣𝐶 (𝜋). The social
welfare of a partition 𝜋 is SW(𝜋) = ∑

𝐶∈𝜋 SW(𝐶) =
∑
𝑖∈𝑁 𝑣𝑖 (𝜋).

A partition 𝜋 is called welfare-optimal if it maximizes the function
SW amongst all partitions of agents. Welfare-optimal partitions
are Pareto-optimal.

A partition 𝜋 is individually rational for agent 𝑖 if 𝑣𝑖 (𝜋) ≥ 𝑣𝑖 ({𝑖}),
i.e., agent 𝑖 does not prefer to stay alone. In addition, 𝜋 is individually
rational if it is individually rational for every agent. Partitions that
are welfare-optimal or individually rational and Pareto-optimal
always exist.
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Preferences are succinctly represented by a family of cardinal
utility functions (𝑣𝑖 )𝑖∈𝑁 where 𝑣𝑖 : 𝑁 → R with 𝑣𝑖 (𝑖) = 0 that
can be aggregated to preferences over coalitions. A natural repre-
sentation is by means of a complete, directed, and weighted graph
𝐺 = (𝑁, 𝐸, 𝑣) where the weights are defined by the utility func-
tions. A game is called symmetric if, for all pairs of agents 𝑖, 𝑗 ∈ 𝑁 ,
𝑣𝑖 ( 𝑗) = 𝑣 𝑗 (𝑖). In this case, the underlying graph is symmetric and
we denote 𝑣 (𝑒) = 𝑣 (𝑖, 𝑗) = 𝑣𝑖 ( 𝑗) = 𝑣 𝑗 (𝑖) for a 2-elementary set
of agents 𝑒 = {𝑖, 𝑗}. A game is called simple if 𝑣𝑖 ( 𝑗) ∈ {0, 1} for
all agents 𝑖, 𝑗 ∈ 𝑁 . A hedonic game with simple and symmetric
preferences can therefore be represented by an unweighted and
undirected (but incomplete) graph.

We define the aggregated utilities for ASHGs, FHGs, and MFHGs
for partition 𝜋 and agent 𝑖 by

𝑣𝐴𝑆𝐻𝐺
𝑖 (𝜋) =

∑
𝑗 ∈𝜋 (𝑖)

𝑣𝑖 ( 𝑗)

𝑣𝐹𝐻𝐺
𝑖 (𝜋) = 𝑣𝐴𝑆𝐻𝐺

𝑖 (𝜋)
|𝜋 (𝑖) | , and

𝑣𝑀𝐹𝐻𝐺
𝑖 (𝜋) =

{
𝑣𝐴𝑆𝐻𝐺
𝑖 (𝜋 )
|𝜋 (𝑖) |−1 for 𝜋 (𝑖) ≠ {𝑖}

0 for 𝜋 (𝑖) = {𝑖}.
If it is clear from the context which game is considered, we omit

the superscripts of the utility functions.
We use the following notation from graph theory. For an arbi-

trary graph 𝐺 = (𝑉 , 𝐸), a vertex set𝑊 ⊆ 𝑉 and an edge set 𝐹 ⊆ 𝐸,
denote by 𝐺 [𝑊 ] and 𝐺 [𝐹 ] the subgraph of 𝐺 induced by𝑊 and 𝐹 ,
respectively, and denote by 𝐸 (𝐺) its edge set.

4 MODIFIED FRACTIONAL HEDONIC GAMES
In this section we focus on symmetric MFHGs. The analysis of
Pareto-optimality on this class of games relies on an extension of
maximum matchings to cliques. Given a graph, a set C of vertex-
disjoint cliques, each of size at least 2, is called a clique match-
ing. A vertex that is part of any clique in C is called covered or
matched. We are interested in clique matchings that cover a maxi-
mum number of vertices. We call the corresponding search problem
MaxCliqueMatching. Interestingly, a clique matching is maximum
if and only if it is inclusion-maximal w.r.t. vertices, i.e., there ex-
ists no other clique matching covering a strict superset of vertices
(Theorem 4.5), and can be computed in polynomial time. We can
further simplify the analysis to the special case that only triangles
and edges are allowed.

Given a graph, a set of vertex disjoint cliques, each of size
2 or 3, is called a 3-clique matching. By splitting larger cliques,
MaxCliqueMatching is equivalent to Max3CliqueMatching, i.e.,
finding a maximum 3-clique matching. Given a 3-clique match-
ing C, we denote by 𝑀 (C) and 𝑇 (C) its cliques of size 2 (edges)
and size 3 (triangles), respectively.

Theorem 4.1 (Hell and Kirkpatrick [13]). The problem
Max3CliqueMatching can be solved in polynomial time.

We prove that MaxCliqueMatching is equivalent to finding a
Pareto-optimal partition on an MFHG. Note that a relationship be-
tween clique matchings and simple symmetric MFHGs was already

exploited by Monaco et al. [15] for computing welfare-optimal
partitions.

Theorem 4.2. MaxCliqueMatching is equivalent to finding a
Pareto-optimal partition on a symmetric MFHG (under Turing reduc-
tions). Moreover, if we can solve MaxCliqueMatching in polynomial
time, we can even compute a Pareto-optimal and individually rational
partition for a symmetric MFHG in polynomial time.

Proof. Assume first that we are given an algorithm to find
a Pareto-optimal partition on a symmetric MFHG and let 𝐺 =
(𝑉 , 𝐸) be an instance of MaxCliqueMatching. We transform𝐺 into
an MFHG with the underlying weighted symmetric graph 𝐺 ′ =
(𝑉 , 𝐸 ′, 𝑣) where 𝐸 ′ = {𝑒 ⊆ 𝑉 : |𝑒 | = 2} and

𝑣 (𝑒) =
{
1 if 𝑒 ∈ 𝐸
−Δ − 1 else,

where Δ is the maximum degree of a vertex in 𝐺 .
Let 𝜋 be a Pareto-optimal partition of vertices into coalitions

for the symmetric MFHG with underlying graph 𝐺 ′. Define C =
{𝑃 ∈ 𝜋 : |𝑃 | ≥ 2}. Then, C consists of cliques in 𝐺 . Otherwise, by
construction of the utilities, there is one agentwho receives negative
utility. Assume for contradiction that there exists a coalition 𝑃 ∈ C
such that some agents in 𝑃 receive negative utility. Let 𝑆 = {𝑝 ∈
𝑃 : 𝑣 (𝑝, 𝑝 ′) = 1 for all 𝑝 ′ ∈ 𝑃\{𝑝}} be the set of agents that receive
non-negative utility from all other agents in 𝑃 . Since some agents
receive negative utility, there exists an agent 𝑞 ∈ 𝑃\𝑆 . But then,
the coalition 𝑆𝑞 = 𝑆 ∪ {𝑞} forms a clique in 𝐺 and the partition
𝜋 ′ = (𝜋\{𝑃}) ∪ {𝑆𝑞} ∪ {{𝑝 ′} : 𝑝 ′ ∈ 𝑃\𝑆𝑞} is a Pareto improvement
over 𝜋 . Hence, 𝜋 consists only of cliques and, by design of theMFHG
utilities, assigns utility 1 to agents in a clique of size at least 2, and
0 to agents in singleton coalitions. Consequently, C is inclusion-
maximal w.r.t. vertices, because every clique matching that covers
strictly more agents gives rise to a Pareto-improvement that assigns
utility 1 to a strict superset of agents that already receive utility 1.
Hence, we can solve MaxCliqueMatching by computing a Pareto-
optimal partition of the MFHG induced by 𝐺 ′.

Conversely, assume that we can solve MaxCliqueMatching. Con-
sider a symmetric MFHG induced by a complete weighted graph
𝐺 = (𝑁, 𝐸, 𝑣). Algorithm 1 computes a Pareto-optimal partition
in polynomial time given an algorithm MaxCliqueMatching that
computes a vertex-maximal clique matching in polynomial time.
The idea is to restrict attention to the unweighted subgraph induced
by edges with the largest positive weight still available.

The running time of the algorithm is clearly polynomial, includ-
ing polynomially many calls of MaxCliqueMatching. We prove its
correctness. Let 𝜋 be the output of the algorithm. First, note that
all non-singleton coalitions are cliques in 𝐺 with identical positive
utility within each clique. Hence, the output is individually rational.

For the proof of Pareto optimality, we assume that the while loop
took𝑚 iterations and we subdivide 𝜋 = S ∪⋃𝑚

𝑘=1 C𝑘 , where C𝑘 is
the clique matching in iteration 𝑘 , and S consists of the singleton
coalitions that are added to 𝜋 after the while loop. We will show by
induction over𝑚 that if the algorithm uses𝑚 iterations of the while
loop, then the output is Pareto-optimal. Let 𝜋 ′ be any coalition such
that, for all agents 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋) ≤ 𝑣𝑖 (𝜋 ′). We will prove that this
implies, for all agents 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋) = 𝑣𝑖 (𝜋 ′).
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Input: Symmetric MFHG induced by graph 𝐺 = (𝑁, 𝐸, 𝑣)
Output: Pareto-optimal and individually rational partition 𝜋

𝜋 ← ∅, 𝐴← 𝑁 , 𝐺𝑟 ← 𝐺 [{𝑒 ∈ 𝐸 : 𝑣 (𝑒) > 0}]
while 𝐸 (𝐺𝑟 ) ≠ ∅ do
𝑣max ← max{𝑣 (𝑒) : 𝑒 ∈ 𝐸 (𝐺𝑟 )}
𝐸𝐻 ← {𝑒 ∈ 𝐸 (𝐺𝑟 ) : 𝑣 (𝑒) = 𝑣max}
𝐻 ← 𝐺𝑟 [𝐸𝐻 ]
C ← MaxCliqueMatching(𝐻 )
𝜋 ← 𝜋 ∪ C
𝐴← {𝑎 ∈ 𝐴 : 𝑎 not covered by C}
𝐺𝑟 ← 𝐺𝑟 [𝐴]

return 𝜋 ∪ {{𝑎} : 𝑎 ∈ 𝐴}
Algorithm 1: Pareto-optimal partition of a sym. MFHG

If 𝑚 = 0, 𝐺 contains no edges of positive weight and there-
fore, for all agents 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋) = 0 ≥ 𝑣𝑖 (𝜋 ′). For the induction
step, let 𝑚 ≥ 1. Let 𝐻 be the auxiliary graph of the first while
loop. Note that within 𝜋 , agents in C1 can only be matched with
agents in 𝐻 since they receive the highest possible utility of any
agent in any coalition in 𝐺 and every other agent diminishes their
MFHG utility. In particular, they cannot be better off. Since C1 is
a vertex-maximal clique matching on 𝐻 , no agent in 𝐻 not cov-
ered by C1 can be in a coalition with an agent in C1 in 𝜋 ′. Define
𝑊 = {𝑖 ∈ 𝑁 : 𝑖 not covered by C1} and consider 𝐺 = 𝐺 [𝑊 ]. Then
𝜋 = S ∪⋃𝑚−1

𝑘=1 C𝑘+1 is a possible outcome of the algorithm for 𝐺 .
Furthermore, 𝜋 ′ restricted to agents in𝑊 is weakly better for any
agent in𝑊 than 𝜋 . Hence, by induction, also no agent outside C1
can be better off. □

Even though Pareto-optimal outcomes may be worse than
welfare-optimal outcomes by an arbitrarily large factor, the output
of the above algorithm guarantees significant social welfare.

Theorem 4.3. Let a symmetric MFHG be given. Let 𝜋 be the par-
tition computed by Algorithm 1 for this game. Then, for any welfare-
optimal partition 𝜋∗, it holds that 2SW(𝜋) ≥ SW(𝜋∗).

Proof. Consider a symmetric MFHG induced by graph 𝐺 =
(𝑁, 𝐸, 𝑣). Let 𝜋 be a partition computed by Algorithm 1 for this
game and let 𝜋∗ be welfare-optimal. We will show that, for any
coalition 𝐶 ∈ 𝜋∗, it holds that 2𝑣𝐶 (𝜋) ≥ 𝑣𝐶 (𝜋∗), which implies the
assertion.

Before we prove this, we make the observation that, for each
edge {𝑥,𝑦} = 𝑒 ∈ 𝐸, it holds that 𝑣𝑥 (𝜋) ≥ 𝑣 (𝑥,𝑦) or 𝑣𝑦 (𝜋) ≥
𝑣 (𝑥,𝑦). Indeed, if 𝑣 (𝑥,𝑦) ≤ 0, then this follows from the individual
rationality of 𝜋 . If we reach a maximum weight 𝑣max ≤ 𝑣 (𝑥,𝑦)
in the while loop and 𝑥 ∉ 𝐺𝑟 or 𝑦 ∉ 𝐺𝑟 then 𝑣𝑥 (𝜋) > 𝑣 (𝑥,𝑦) or
𝑣𝑦 (𝜋) > 𝑣 (𝑥,𝑦). Otherwise, we reach an iteration where 𝑣max =
𝑣 (𝑥,𝑦) and any maximum clique matching matches at least one of
them.

Now let any coalition 𝐶 ∈ 𝜋∗ be given where |𝐶 | = 𝑘 . The next
step is to sort the agents in 𝐶 by means of Algorithm 2. The result-
ing order places the agents essentially in decreasing value 𝑤𝑖 of
an incident edge of high utility. Let (𝑐1, . . . , 𝑐𝑘 ), (𝑤1, . . . ,𝑤𝑘 ) be an
outcome of this algorithm. We claim that for every 𝑖 ∈ {1, . . . , 𝑘},
𝑣𝑐𝑖 (𝜋∗) ≤ 𝑣𝑐𝑖 (𝜋) +

∑
1≤ 𝑗<𝑖

𝑤𝑗

𝑘−𝑗 . Note that for all 1 ≤ 𝑗 < 𝑖 ,

Input: Coalition 𝐶 ∈ 𝜋∗
Output: Order (𝑐1, . . . , 𝑐𝑘 ) of 𝐶 and weights (𝑤1, . . . ,𝑤𝑘 )

𝐻 ← 𝐶 , 𝐹 ← {{𝑥,𝑦} ∈ 𝐸 : 𝑥,𝑦 ∈ 𝐶, 𝑣 (𝑥,𝑦) > 0}, 𝑗 ← 1
while 𝐹 ≠ ∅ do
𝑣max ← max{𝑣 (𝑒) : 𝑒 ∈ 𝐹 }
Choose {𝑥,𝑦} ∈ argmax{𝑣 (𝑥,𝑦) : {𝑥,𝑦} ∈ 𝐹 } with 𝑣𝑥 (𝜋) ≥
𝑣 (𝑥,𝑦)
𝑐 𝑗 ← 𝑥 ,𝑤 𝑗 ← 𝑣max
𝐻 ← 𝐻\{𝑥}, 𝐹 ← {𝑒 ∈ 𝐹 : 𝑥 ∉ 𝑒}, 𝑗 ← 𝑗 + 1

Order 𝐻 = (𝑐 𝑗 , . . . , 𝑐𝑘 ) arbitrarily,𝑤𝑖 ← 0 for 𝑖 = 𝑗, . . . , 𝑘
return (𝑐1, . . . , 𝑐𝑘 ), (𝑤1, . . . ,𝑤𝑘 )
Algorithm 2: Special ordering for weight distribution

𝑣 (𝑐𝑖 , 𝑐 𝑗 ) ≤ 𝑤 𝑗 and for all 𝑗 > 𝑖 , 𝑣 (𝑐𝑖 , 𝑐 𝑗 ) ≤ 𝑤𝑖 . Hence,

𝑣𝑐𝑖 (𝜋∗) =
∑
𝑗≠𝑖

𝑣 (𝑐𝑖 , 𝑐 𝑗 )
𝑘 − 1 ≤

∑
𝑗>𝑖

𝑤𝑖

𝑘 − 1 +
∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 1

≤
∑
𝑗>𝑖

𝑤𝑖

𝑘 − 𝑖 +
∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 𝑗
= 𝑤𝑖 +

∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 𝑗
≤ 𝑣𝑐𝑖 (𝜋) +

∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 𝑗
.

We infer that

𝑣𝐶 (𝜋∗) =
𝑘∑
𝑖=1

𝑣𝑐𝑖 (𝜋∗) ≤
𝑘∑
𝑖=1

©«
𝑣𝑐𝑖 (𝜋) +

∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 𝑗
ª®¬

= 𝑣𝐶 (𝜋) +
𝑘∑
𝑖=1

∑
𝑗<𝑖

𝑤 𝑗

𝑘 − 𝑗
= 𝑣𝐶 (𝜋) +

𝑘∑
𝑗=1
(𝑘 − 𝑗) 𝑤 𝑗

𝑘 − 𝑗
≤ 2𝑣𝐶 (𝜋) .

□

Note that the approximation guarantee of the theorem extends
to the case of non-symmetric weights, because the symmetrization
𝑣 ′(𝑥,𝑦) = 1

2 (𝑣𝑥 (𝑦) + 𝑣𝑦 (𝑥)) preserves the welfare.
Moreover, the factor of 2 is the best possible approximation

guarantee of Algorithm 1. Let 𝜖 > 0 and the complete graph on
vertex set 𝑉 = {𝑤, 𝑥,𝑦, 𝑧} be given with weights as

𝑣 (𝑒) =


1 + 𝜖 if 𝑒 = {𝑥,𝑦}
1 if 𝑒 ∈ {{𝑤, 𝑥}, {𝑦, 𝑧}}
0 else.

𝑤 𝑥 𝑦 𝑧1 1 + 𝜖 1

Then, the output of Algorithm 1 is 𝜋 = {{𝑥,𝑦}, {𝑤}, {𝑧}} with
SW(𝜋) = 2 + 2𝜖 while 𝜋∗ = {{𝑤, 𝑥}, {𝑦, 𝑧}} is welfare-optimal
with SW(𝜋∗) = 4.

In the special case of simple symmetric games, the output is
welfare-optimal. The proof uses the characterization of Pareto-
optimal partitions by Elkind et al. [9, Lemma 15] that have observed
that all coalitions in such partitions are stars or cliques. The proof
shows that some welfare-optimal partition is a clique matching and
therefore, all maximum clique matchings are welfare-optimal. We
omit the proof due to space restrictions.

Theorem 4.4. Let a simple symmetric MFHG be given. Let 𝜋 be
a clique matching of the underlying unweighted graph. Then, 𝜋 is
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welfare-optimal if and only if it is a maximum clique matching. In
particular, the output of Algorithm 1 is welfare-optimal.

As we have seen in the above example, Pareto-optimal partitions
need not be welfare-optimal. However, this was shown by Elkind
et al. [9] for simple, symmetric MFHGs induced by a bipartite graph,
and we will extend their result to simple symmetric MFHGs. While
their results rely on estimating the welfare of partitions in terms of
minimum vertex covers, we will exploit a combinatorial description
of Max3CliqueMatching. We will develop it using terminology
closely related to the famous blossom algorithm by Edmonds [8]
to show the close relationship of computing maximum cardinality
matchings and maximum size 3-clique matchings.

The blossom algorithm deals with odd cycles by finding sub-
graphs called flowers. Let a graph𝐺 = (𝑉 , 𝐸) together with a match-
ing 𝑀 be given. A path is called 𝑀-alternating if it alternately
uses edges of 𝑀 and outside 𝑀 . An 𝑀-augmenting path is an 𝑀-
alternating path starting and ending at vertices not covered by 𝑀 .
An𝑀-stem is an𝑀-alternating path of even length. The uncovered
endpoint is its root, the covered endpoint is its tip. An 𝑀-blossom
is an odd cycle 𝐶 = (𝐵, 𝐸𝐵) of 𝐺 such that all vertices except one
are covered by𝑀 ∩ 𝐸𝐵 . Let𝐶 = (𝐵, 𝐸𝐵) be an𝑀-blossom such that
𝑏 ∈ 𝐵 is uncovered and let 𝑏1, 𝑏2 ∈ 𝐵 be the neighbors of 𝑏 on 𝐶 .
𝐵 is called 𝑀-chordal if {𝑏1, 𝑏2} ∈ 𝐸. An 𝑀-(chordal) flower is the
union of a stem and a (chordal) blossom that intersect exactly in
the tip of the stem. An example of a chordal flower together with
an augmentation is given in Figure 1. If the matching is clear from
the context, we will not specify it for the previous notation.

𝑏

𝑏2

𝑏1

root

Figure 1: The bold matching indicates a chordal flower that
can be augmented via the gray clique cover.

Theorem 4.5 (Hell and Kirkpatrick [13]). Let 𝐺 = (𝑉 , 𝐸) be a
graph. Then C is a maximum size 3-clique matching if and only if

(1) There exists no𝑀 (C)-augmenting path.
(2) There exists no𝑀 (C)-alternating path starting at an uncovered

vertex and ending at a vertex covered by a triangle.
(3) There exists no𝑀 (C)-chordal flower.

In particular, a clique matching is maximum if and only if is vertex-
maximal.

Note that compared to the classical characterization of maximum
cardinalitymatchings, the second condition allows for improvement
by deleting a triangle, and the third one by creating one in order to
improve a 3-clique matching.

Theorem 4.6. Let a simple, symmetric MFHG be given. Let 𝜋 be a
partition of the agents. Then, 𝜋 is welfare-optimal if and only if it is
Pareto-optimal.

Proof sketch. Let an MFHG induced by a unweighted graph
𝐺 = (𝑉 , 𝐸) be given. Clearly, welfare-optimal partitions are Pareto-
optimal.

For the reverse implication, let 𝜋 be a Pareto-optimal partition
which consists of cliques and stars only [9, Lemma 15]. By splitting
larger cliques, we may assume that all cliques are of size 2 and 3
(splitting the cliques yields a partition with identical utilities). Let
S ⊆ 𝜋 be its star-coalitions. For any star 𝑆 with 𝑘𝑆 ≥ 2 leaves, let 𝑐𝑆
be its center and 𝑙𝑆1 , . . . , 𝑙

𝑆
𝑘𝑆

be its leaves. We define a new partition
𝜋 ′ = {𝐶 ∈ 𝜋 : 𝐶 ∉ S} ∪ {{𝑐𝑆 , 𝑙𝑆1 }, {𝑙𝑆2 }, . . . , {𝑙𝑆𝑘𝑆 } : 𝑆 ∈ S}. Then,
SW(𝜋 ′) = SW(𝜋). The core of the proof is that 𝜋 ′ is a maximum
clique matching and therefore by Theorem 4.4 welfare-optimal.

Define the set𝑀S = {{𝑐𝑆 , 𝑙𝑆1 } : 𝑆 ∈ S}, i.e., the set of edges that
are added to the partition 𝜋 ′. Then,𝑀 (𝜋 ′) = 𝑀 (𝜋) ∪𝑀S is the set
of 2-cliques of the 3-clique matching 𝜋 ′.

We will prove that the conditions of the combinatorial character-
ization of Theorem 4.5 are satisfied. First, assume that there exists
an𝑀 (𝜋 ′)-augmenting path 𝑃 . An illustration of this step is given
after the proof with the aid of Figure 2.

For 𝑒 ∈ 𝑀S , we denote by 𝑆𝑒 the star which the edge 𝑒 originates
from. An edge 𝑒 ∈ 𝑀S ∩ 𝑃 is called exterior if 𝑐𝑆𝑒 , the center vertex
of 𝑆𝑒 , is the second or second-last vertex on the path. Otherwise,
we call the edge interior.

For an exterior edge 𝑒 , we denote by 𝑡 (𝑒) the endpoint of 𝑃 that
is a neighbor of 𝑐𝑆𝑒 on 𝑃 . The first step is to modify 𝑃 . In a second
step, the modified path will yield a Pareto-improvement over 𝜋 . An
exterior edge 𝑒 is called saturated if 𝑡 (𝑒) is a leaf of 𝑆𝑒 . An interior
edge 𝑒 is called saturated if all leaves of 𝑆𝑒 are covered by 𝑃 .

First, we may assume that every exterior edge is saturated or
there exists only one exterior edge 𝑒∗ which corresponds to a star
𝑆 with two leaves and 𝑙𝑆2 is the endpoint of 𝑃 that is not 𝑡 (𝑒∗).

To this end, assume first that there exist two exterior edges 𝑒 and
𝑓 originating from stars 𝑆 and 𝑇 , respectively. Replacing 𝑡 (𝑒) and
𝑡 (𝑓 ) by 𝑙𝑆2 and 𝑙𝑇2 leaves both edges saturated. Otherwise, if 𝑒∗ is
the only exterior edge originating from star 𝑆 , and is not saturated,
then 𝑆 has only two leaves, or we can replace 𝑡 (𝑒∗) by a leaf of 𝑆
uncovered by 𝑃 . In addition, if 𝑙𝑆2 is not the other endpoint of 𝑃 , we
can replace 𝑡 (𝑒∗) by 𝑙𝑆2 . This establishes the claim.

Second, we show that we can additionally assume that all interior
edges are saturated. Indeed, if 𝑒 is an interior edge and 𝑙 is a leaf
of 𝑆𝑒 not covered by 𝑃 , then we can replace 𝑃 by the augmenting
path that starts with 𝑙 and proceeds on 𝑃 with 𝑒 . Assume that the
path ends in an exterior edge 𝑓 . If 𝑓 is not saturated, we replace
𝑡 (𝑓 ) by 𝑙𝑆𝑓2 . Otherwise, we follow the path to the end. In any case,
this procedure yields a path 𝑃 ′ such that all exterior edges are as
after the first step and all interior edges are saturated.

We will show how to obtain a Pareto-improvement over 𝜋 from
𝑃 . Label the vertices of the path 𝑝0, . . . , 𝑝𝑚 for some (odd) integer𝑚.
If the first matching-edge of the path is exterior and saturated, we
delete 𝑝0 and 𝑝1 from the path. If the last matching-edge is exterior
and saturated, we delete 𝑝𝑚−1 and 𝑝𝑚 from the path. This leaves a
path 𝑃 ′ on vertices 𝑝 ′0, . . . , 𝑝

′
𝑚′ such that all leaves corresponding

to stars of edges in𝑀S ∩ 𝑃 ′ are covered by 𝑃 ′. Let T be the set of
star coalitions 𝑇 such that 𝑐𝑇 ∉ {𝑝 ′0, . . . , 𝑝 ′𝑚′}, but some leaf of 𝑇 is
a endpoint of 𝑃 ′.
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Consider 𝜋 ′ = {𝐶 ∈ 𝜋 : 𝐶 ∩ {𝑝0, . . . , 𝑝𝑚} = ∅} ∪
{𝑇 \{𝑝 ′0, 𝑝 ′𝑚′} : 𝑇 ∈ T } ∪ (𝑃 ′\𝑀 (𝜋 ′)), which is a Pareto-
improvement over 𝜋 . Hence, 𝜋 is not Pareto-optimal, which is
a contradiction. Therefore, the first condition of the combinatorial
characterization is satisfied.

An example for this case is given in Figure 2. The path 𝑃 is formed
by the straight lines and the partition 𝜋 ′ by the bold edges. Dashed
edges indicate leaves of the stars 𝑆 and 𝑇 . The edge {𝑐𝑆 , 𝑙𝑆1 } is exte-
rior and saturated, and the edge {𝑐𝑇 , 𝑙𝑇1 } is interior and saturated.
The gray partition yields a Pareto-improvement over 𝜋 .

𝑙𝑆3 𝑐𝑆1 𝑙𝑆1 𝑙𝑇1 𝑐𝑇1

𝑙𝑆2 𝑙𝑇2

Figure 2: Example of a Pareto-improvement that can be con-
structed from an𝑀 (𝜋 ′)-augmenting path.

The proofs that the second and third condition hold are similar,
and use that the first condition is already proved.

Hence, 𝜋 ′ is a maximum cliquematching and is therefore welfare-
optimal. Since SW(𝜋 ′) = SW(𝜋), it follows that 𝜋 is welfare-
optimal. □

As a corollary, we obtain efficient verification of Pareto-
optimality for simple symmetric MFHGs.

Theorem 4.7. The problem of verifying Pareto-optimality can be
done in polynomial time for simple symmetric MFHGs.

Proof. Let an MFHG be given and a partition 𝜋 that is to be
checked for Pareto-optimality. Simply compute a partition 𝜋∗ via
Algorithm 1 and compare their social welfare. By Theorem 4.2 and
Theorem 4.1, this runs in polynomial time. By Theorem 4.4, 𝜋∗ is
welfare-optimal. Finally, by Theorem 4.6, comparing social welfare
checks for Pareto-optimality. □

For general, weighted MFHGs, it is still of interest as to whether
one can also find a welfare-optimal partition in polynomial time.
While this question remains open, we can at least narrow down
the search to coalitions of small size. Then, a weighted version of
Max3CliqueMatching might give rise to an efficient algorithm.

The proof of the proposition relies on the fact that we can split
a coalition𝐶 of size at least 4 into an edge 𝑒 and the remainder𝐶\𝑒
such that SW(𝑒) + SW(𝐶\𝑒) ≥ SW(𝐶). The edge 𝑒 maximizes
a cleverly chosen objective function that relies on the weight of 𝑒 ,
the weight of the cut between 𝑒 and 𝐶\𝑒 , and the welfare of 𝐶\𝑒 .

Proposition 4.8. Let a partition 𝜋 of the agents of a general
MFHG be given. Then, there exists a partition 𝜋 ′ with |𝐶 | ≤ 3 for
all 𝐶 ∈ 𝜋 ′ with SW(𝜋 ′) ≥ SW(𝜋). In particular, there exists a
welfare-optimal partition consisting of coalitions of size at most 3.

5 ADDITIVELY SEPARABLE HEDONIC
GAMES

In this section, we will survey Pareto-optimality on ASHGs. Positive
results exist so far only for a very restrictive class that does not

allow for 0-weights, and unique top-ranked coalitions are therefore
guaranteed [3, Theorem 11]. We extend this result to a very general
class of ASHGs that includes symmetric ASHGs.

An ASHG is called mutually indifferent if 𝑣𝑖 ( 𝑗) = 0 implies
𝑣 𝑗 (𝑖) = 0 for every pair of agents 𝑖, 𝑗 . Note that every symmetric
ASHG is mutually indifferent.

Theorem 5.1. A Pareto-optimal outcome for mutually indiffer-
ent ASHGs can be computed in polynomial time. In particular, a
Pareto-optimal outcome for symmetric ASHGs can be computed in
polynomial time.

Proof. Consider Algorithm 3. The algorithm can be seen as
a variant of serial dictatorship where in every coalition formed
through a dictator 𝑑𝑖 , the dictator asks the agents in her coalition
to improve using a strict rank order such that none of higher rank
becomes worse off.

Input: Mutually indifferent ASHG induced by 𝐺 = (𝑁, 𝐸, 𝑣)
Output: Pareto-optimal partition 𝜋

𝜋 ← ∅, 𝐷 ← 𝑁 , 𝑖 ← 1
while 𝐷 ≠ ∅ do

Pick 𝑑𝑖 ∈ 𝐷
𝐶𝑖 ← {𝑑𝑖 } ∪ { 𝑗 ∈ 𝐷 : 𝑣𝑑𝑖 ( 𝑗) > 0}, 𝐼𝑖 ← { 𝑗 ∈ 𝐷 : 𝑣𝑑𝑖 ( 𝑗) = 0}
𝐻𝑖 ← 𝐶𝑖\{𝑑𝑖 }
while 𝐻𝑖 ≠ ∅ ∧ 𝐼𝑖 ≠ ∅ do

Pick ℎ ∈ 𝐻𝑖

𝐶𝑖 ← 𝐶𝑖 ∪ { 𝑗 ∈ 𝐼𝑖 : 𝑣ℎ ( 𝑗) > 0}
𝐻𝑖 ← (𝐻𝑖 ∪ { 𝑗 ∈ 𝐼𝑖 : 𝑣ℎ ( 𝑗) > 0})\{ℎ}
𝐼𝑖 ← { 𝑗 ∈ 𝐼𝑖 : 𝑣ℎ ( 𝑗) = 0}

𝜋 ← 𝜋 ∪ {𝐶𝑖 }, 𝐷 ← 𝐷\𝐶𝑖 , 𝑖 ← 𝑖 + 1
return 𝜋

Algorithm 3: Pareto-optimality for mutual indifference

The running time is polynomial since every edge in the graph
underlying the ASHG is checked at most once.

For correctness, denote by 𝐶1, . . . ,𝐶𝑘 the coalitions that form
in the order of the algorithm, and 𝐼𝑖 the respective indifference
sets (some may be empty) at the end of the inner while-loop. Note
that for all 𝑖 ∈ 1, . . . , 𝑘, 𝑎 ∈ 𝐶𝑖 , 𝑏 ∈ 𝐼𝑖 holds that 𝑣𝑎 (𝑏) = 0. For
correctness, assume that 𝜋 ′ is a partition such that for every agent
𝑖 ∈ 𝑁 , 𝑣𝑖 (𝜋 ′) ≥ 𝑣𝑖 (𝜋). If |𝐶𝑖 | > 1, then 𝐶𝑖 ⊆ 𝜋 ′(𝑑𝑖 ) ⊆ 𝐶𝑖 ∪ 𝐼𝑖 .
Hence, no agent in such a coalition will be better off. In addition,
no agent in a singleton coalition 𝐶𝑖 = {𝑑𝑖 } ∈ 𝜋 will be better off,
since they can only form coalitions with other singleton coalitions
or with coalitions such that they are in the set 𝐼 𝑗 , both of which
give them 0 utility. Therefore, no agent’s utility has improved. □

Slight modifications of the above algorithm give computational
tractability of Pareto-optimality even for more general classes of
ASHGs. The same algorithm works for the class of ASHGs such
that 𝑣𝑖 ( 𝑗) = 0 implies 𝑣 𝑗 (𝑖) ≤ 0 for every pair of agents 𝑖, 𝑗 . Hence,
the only edges remaining for the full domain of ASHGs are critical
edges of the form {𝑖, 𝑗} such that 𝑣𝑖 ( 𝑗) > 0 while 𝑣 𝑗 (𝑖) = 0. One
idea towards obtaining an algorithm for a more general class of
ASHGs is to use a pivoting rule that selects dictators. This allows,
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for example, for a positive result for the class of ASHGs such that
the critical edges form a directed acyclic graph (using a topological
order on the agents for a pivoting rule).

The outcome of the algorithm can, however, have an arbitrar-
ily large gap to the maximum social welfare that is obtained in a
welfare-optimal outcome. In addition, all but one agent may obtain
a worst coalition. On the other hand, a Pareto-optimal and indi-
vidually rational outcome does always exist, but computing such a
partition is intractable. The following is a strengthening of a result
by Aziz et al. [3] who dealt with the whole class of ASHGs and
established weak NP-hardness.

The reduction is from the NP-complete problem Exact3Cover
[14]. An instance (𝑅, 𝑆) of Exact3Cover (X3C) consists of a ground
set 𝑅 together with a set 𝑆 of 3-element subsets of 𝑅. A ‘yes’ instance
is an instance so that there exists a subset 𝑆 ′ ⊆ 𝑆 that partitions 𝑅.

Theorem 5.2. Finding a Pareto-optimal and individually ratio-
nal partition for symmetric ASHGs is (strongly) NP-hard, even if all
weights are integers bounded from above by 3.

Proof sketch. We provide a Turing reduction, illustrated in
Figure 3, from X3C. Given an instance (𝑅, 𝑆) of X3C, we con-
struct the symmetric ASHG with agent set 𝑁 = 𝑅 ∪ 𝑉 where
𝑉 = {𝑠𝑖 : 𝑖 = 1, . . . , 5, 𝑠 ∈ 𝑆} consists of 5 copies of agents for the
sets in 𝑆 . Preferences are given by weights 𝑣 as
• 𝑣 (𝑖, 𝑗) = 0, 𝑖, 𝑗 ∈ 𝑅, 𝑖 ≠ 𝑗
• 𝑣 (𝑖, 𝑠1) = 2, 𝑠 ∈ 𝑆, 𝑖 ∈ 𝑠
• 𝑣 (𝑠1, 𝑠2) = 𝑣 (𝑠1, 𝑠3) = 𝑣 (𝑠2, 𝑠4) = 𝑣 (𝑠3, 𝑠5) = 𝑣 (𝑠4, 𝑠5) = 3,
𝑣 (𝑠2, 𝑠3) = 0, 𝑠 ∈ 𝑆 , and
• all other weights are set to −13.

𝑠1

𝑠3

𝑠5

𝑠2

𝑠4

3

3

3

3

3
0

𝑉 𝑠 = {𝑖, 𝑗, 𝑘 }

𝑅 0 0 0 0 0
𝑖 𝑗 𝑘

2 2 2

Figure 3: ASHG for the reduction. Indicated edges between
𝑅-agents haveweight 0, other omitted edges haveweight−13.

We will argue that if we can compute a Pareto-optimal and
individually rational partition, we can decide X3C. Amongst all
individually rational partitions, the highest utility that the agents
can obtain is 2, 6, and 3 for agents in 𝑅, {𝑠1 : 𝑠 ∈ 𝑆}, and {𝑠𝑖 : 𝑖 =
2, . . . , 4, 𝑠 ∈ 𝑆}, respectively. It can be shown that there exists an
individually rational partition that attains these bounds for every
agent if and only if there exists a 3-partition of 𝑅 through sets in 𝑆 .

Hence, we can solve X3C in polynomial time by computing
a Pareto-optimal and individually rational partition for the corre-
sponding ASHG, and check whether every agent receives the utility
of a best partition amongst individually rational partitions. □

By applying a local search algorithm that starts with the single-
ton partition, we obtain the following corollary.

Corollary 5.3. Finding a Pareto-improvement is NP-hard for
symmetric ASHGs.

Finally, it is interesting to see why the strong relation between
Pareto-optimality and perfection exploited by Aziz et al. [2] does
not hold for ASHGs. The preference refinement algorithm computes
an individually rational, Pareto-optimal partition given an oracle
that decides whether there exists a perfect partition and, in the case
there exists one, can compute one. While the former problem is
NP-hard, the latter can be solved in polynomial time by forming a
top-ranked coalition, adding requisite agents, and adding outside
agents that need an inside agent. This theorem even holds for the
more general class of separable hedonic games [3, Theorem 9].

Theorem 5.4. The problem of, given a general ASHG, computing
a perfect partition or deciding that no such partition exists, can be
done in polynomial time.

6 FRACTIONAL HEDONIC GAMES
The serial dictatorship version used for ASHGs in Algorithm 3
implicitly exploits the fact that ASHGs have the property that top-
ranked coalitions in subgames are the restrictions of top-ranked
coalitions in the original game. This is not the case anymore for
FHGs. However, the set of top-ranked coalitions can be described
using the following observation.

Proposition 6.1. Let an FHG be given based on a graph 𝐺 =
(𝑁, 𝐸, 𝑣) and let 𝑑 ∈ 𝑁 . Let 𝐶 be a top-ranked coalition of 𝑑 and
set ` = 𝑣𝑑 (𝐶). Then, 𝐶 = {𝑎 ∈ 𝑁 \{𝑑} : 𝑣𝑑 (𝑎) > `} ∪𝑊 for some
𝑊 ⊆ {𝑎 ∈ 𝑁 \{𝑑} : 𝑣𝑑 (𝑎) = `}.

Hence, to obtain the top-ranked coalitions of an agent, one can
order the other agents in decreasing value and add them until
another agent is not beneficial. If there are agents that give exactly
the utility of a top-ranked coalition, they may or may not be added.

We will now show efficient computability of Pareto-optimal
partitions for certain classes of FHGs. An FHG satisfies the equal
affection condition if 𝑣𝑥 (𝑦), 𝑣𝑥 (𝑧) > 0 implies 𝑣𝑥 (𝑦) = 𝑣𝑥 (𝑧) for
every triple of agents 𝑥,𝑦, and 𝑧. An FHG is called generic if 𝑣𝑥 (𝑦) ≠
𝑣𝑥 (𝑧) for every triple of agents 𝑥,𝑦, and 𝑧, i.e., the utilities over the
remaining set of agents are pairwise distinct for every agent.

Since the equal affection condition guarantees unique top-ranked
coalitions for every agent, we obtain the following theorem, which
applies in particular to simple FHGs.

Theorem 6.2. Finding a Pareto-optimal partition for FHGs satis-
fying the equal affection condition can be done in polynomial time.

Another variant of serial dictatorship finds Pareto-optimal parti-
tions on generic FHGs.

Theorem 6.3. Finding a Pareto-optimal partition for generic FHGs
can be done in polynomial time.

Proof sketch. Let an FHG be based on the graph𝐺 = (𝑁, 𝐸, 𝑣).
We give an algorithm based on serial dictatorship that exploits a dy-
namically created hierarchy for the dictatorship. The next dictator
is chosen based on the top choices of the previous dictator.

By Proposition 6.1, we know the structure of the top-ranked
coalitions of an agent. Let an agent set 𝑀 ⊆ 𝑁 be given, that
induces the FHG on the subgraph 𝐺 [𝑀], and let 𝑑 ∈ 𝑀 . There
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exists a unique smallest top-ranked coalition, which we denote by
𝑇𝑑 (𝑀). Furthermore, for a generic FHG, there exist at most two
top-ranked coalitions. Denote in this case by 𝑡𝑑 (𝑀) the number of
such coalitions for agent 𝑑 in the subgame and if 𝑡𝑑 (𝑀) = 2, let
𝛼𝑑 (𝑀) ∈ 𝑀 be the unique agent such that𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)} is the
other top-ranked coalition.

We are ready to formulate the recursive algorithm A that com-
putes a Pareto-optimal partition by adding iteratively coalitions to a
partial partition. The actual Pareto-optimal partition is obtained by
choosing an arbitrary first dictator 𝑑 ∈ 𝑁 and calling A(𝑁, ∅, 𝑑).

Input: Non-empty agent set𝑀 , partial partition 𝜋 , pivot agent 𝑑
Output: Partition 𝜋

if 𝑡𝑑 (𝑀) = 1 then
if 𝑇𝑑 (𝑀) = 𝑀 then

return 𝜋 ∪ {𝑇𝑑 (𝑀)}
else

Pick 𝑑new ∈ 𝑀\𝑇𝑑 (𝑀)
Execute A(𝑀\𝑇𝑑 (𝑀), 𝜋 ∪ {𝑇𝑑 (𝑀)}, 𝑑new)

else
if 𝑣𝛼𝑑 (𝑀) (𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}) > 𝑣𝛼𝑑 (𝑀) (𝑀\𝑇𝑑 (𝑀)) then

if 𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)} = 𝑀 then
return 𝜋 ∪ {𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}}

else
Pick 𝑑new ∈ 𝑀\(𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)})
Execute A(𝑀\(𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}), 𝜋 ∪ {𝑇𝑑 (𝑀) ∪
{𝛼𝑑 (𝑀)}}, 𝑑new)

else if 𝑣𝛼𝑑 (𝑀) (𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}) < 𝑣𝛼𝑑 (𝑀) (𝑀\𝑇𝑑 (𝑀)) or
𝑣𝛼𝑑 (𝑀) (𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}) = 𝑣𝛼𝑑 (𝑀) (𝑀\𝑇𝑑 (𝑀)) = 0 then

Execute A(𝑀\𝑇𝑑 (𝑀), 𝜋 ∪ {𝑇𝑑 (𝑀)}, 𝛼𝑑 (𝑀))
else

Pick 𝑑new ∈ argmax{𝑣𝛼𝑑 (𝑀) (𝑥) : 𝑥 ∈ 𝑀\𝑇𝑑 (𝑀)}
if 𝛼𝑑 (𝑀) ∈ 𝑇𝑑new (𝑀\𝑇𝑑 (𝑀)) then

Execute A(𝑀\𝑇𝑑 (𝑀), 𝜋 ∪ {𝑇𝑑 (𝑀)}, 𝑑new)
else
Execute A(𝑀\(𝑇𝑑 (𝑀) ∪ {𝛼𝑑 (𝑀)}), 𝜋 ∪ {𝑇𝑑 (𝑀) ∪
{𝛼𝑑 (𝑀)}}, 𝑑new)

Algorithm 4: Pareto-optimal partition for generic FHG by
the recursive algorithm A

By the top-ranked coalition structure of agents in generic FHGs,
every step of Algorithm 4 can be executed and as argued after
Proposition 6.1, top-ranked coalitions can be efficiently computed.
Hence, the algorithm runs in polynomial time.

It can be checked that 𝜋 = A(𝑁, ∅, 𝑑) returns a Pareto-optimal
partition, provided that the input evolves from a generic FHG. □

Finally, similar statements as for ASHGs hold for FHGs. The
proofs are similar.

Theorem 6.4. Finding a Pareto-optimal and individually rational
partition for symmetric FHGs is NP-hard.

Theorem 6.5. Finding a Pareto-improvement is NP-hard for sym-
metric FHGs.

Theorem 6.6. The problem of, given an FHG, computing a perfect
partition or deciding that no such partition exists, can be done in
polynomial time.

7 CONCLUSION
We have investigated Pareto-optimality in three types of cardinal
hedonic games. The main findings and important related results
are collected in Table 1. We can efficiently find Pareto-optimal par-
titions in symmetric MFHGs and AHSGs, and reasonable classes
of FHGs including simple FHGs. The key insight for MFHGs is
the equivalence with an extension of matchings to cliques. The
combinatorial view of the problem allowed us to completely un-
derstand Pareto-optimal outcomes on simple, symmetric MFHGs,
where they coincide with welfare-optimal outcomes. This motivates
the study of the weighted case, where Pareto-optimal outcomes
have no guarantee on the welfare, and yet our algorithm returns
a 2-approximation to social welfare. The complexity of welfare-
optimization in the weighted case is an interesting open problem.
We are at least able to prove that coalitions of size 2 and 3 suffice,
which is in line with the research on any other solution concept for
MFHGs.

Pareto optimality Welfare optimality

PO PO∧IR Deterministic Approximation
MFHG P (sym, Thm. 4.2) P (sym, Thm. 4.2) P (0/1 sym, [15]) 2 (sym, Thm. 4.3)
ASHG P (sym, Thm. 5.1) NP-h (sym, Thm. 5.2) NP-h (sym, [3]) open
FHG P (0/1 sym, Thm. 6.2) NP-h (sym, Thm. 6.4) NP-h (0/1 sym, [4]) 4 (sym, [4])

Table 1: Complexity of Pareto- and welfare-optimality for
cardinal hedonic games. Preference restrictions are given
in parenthesis, where (0/1) sym denotes (simple) symmet-
ric preferences. For welfare-optimality, the best known ef-
ficiently attainable approximation ratio is given.

The key technique for positive results on ASHGs and FHGs
are refinements of serial dictatorship algorithms. Further enhance-
ments, e.g., with respect to the order of selection of the dictators,
might yield even better results. On the other hand, computing
Pareto-optimal outcomes that satisfy further properties will of-
ten be intractable. Computational hardness is obtained if we re-
quire individual rationality in addition. Since it is even hard to
compute Pareto-improvements, local search heuristics based on
Pareto-optimality cannot be exploited.

Partitions on simple MFHGs can simultaneously satisfy high
demands in terms of stability and optimality. Interesting further
directions for research therefore concern weighted MFHGs as well
as Pareto-optimality on the general domains of cardinal hedonic
games.
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7
C O R E P U B L I C AT I O N 2 : F I N D I N G A N D
R E C O G N I Z I N G P O P U L A R C OA L I T I O N S T R U C T U R E S

summary

An important aspect of multi-agent systems concerns the formation
of coalitions that are stable or optimal in some well-defined way. The
notion of popularity has recently received a lot of attention in this con-
text. A partition is popular if there is no other partition in which more
agents are better off than worse off. A stronger notion of popularity is
strong popularity which demands that, in every other partition, there
are more agents worse off than better off. In addition, there exists
a randomized version of popularity called mixed popularity. Mixed
popularity is particularly attractive because existence is guaranteed
by the Minimax Theorem, while there exist simple coalition forma-
tion games in which popular or strongly popular partitions need not
exist.

In this paper, we study all three notions of popularity in a variety
of coalition formation settings. Extending previous work on marriage
games, we show that mixed popular partitions in roommate games
can be found efficiently via linear programming and a separation or-
acle. This approach is quite universal, leading to efficient algorithms
for verifying whether a given partition is popular and for finding
strongly popular partitions (resolving an open problem).

By contrast, we prove that both problems become computation-
ally intractable when moving from coalitions of size 2 to coalitions
of size 3, even when preferences are strict and globally ranked. More-
over, we show that finding and recognizing popular, strongly popular,
and mixed popular partitions in symmetric additively separable he-
donic games and symmetric fractional hedonic games are hard.

Together, our results indicate strong boundaries to the tractability
of popularity in both ordinal and cardinal models of hedonic games.

It is worth mentioning that, based on the observation that the veri-
fication problem is hard, it is not straightforward to analyze the prob-
lem of computing popular partitions. To facilitate our hardness re-
sults, we develop a reduction technique that reduces the complex
decision of verifying popular partitions to the consideration of very
few agents. The key idea of this technique is to let decisions about
popularity “propagate” through a structure similar to a binary tree
such that all important information can be accessed via the root of
the tree.
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Abstract

An important aspect of multi-agent systems concerns the formation of coalitions that
are stable or optimal in some well-defined way. The notion of popularity has recently re-
ceived a lot of attention in this context. A partition is popular if there is no other partition
in which more agents are better off than worse off. In this paper, we study popularity,
strong popularity, and mixed popularity (which is particularly attractive because exis-
tence is guaranteed by the Minimax Theorem) in a variety of coalition formation settings.
Extending previous work on marriage games, we show that mixed popular partitions in
roommate games can be found efficiently via linear programming and a separation oracle.
This approach is quite universal, leading to efficient algorithms for verifying whether a
given partition is popular and for finding strongly popular partitions (resolving an open
problem). By contrast, we prove that both problems become computationally intractable
when moving from coalitions of size 2 to coalitions of size 3, even when preferences are
strict and globally ranked. Moreover, we show that finding popular, strongly popular, and
mixed popular partitions in symmetric additively separable hedonic games and symmetric
fractional hedonic games is NP-hard. Together, these results indicate strong boundaries to
the tractability of popularity in both ordinal and cardinal models of hedonic games.

1. Introduction

Coalitions and coalition formation have been a central concern of game theory, ever since the
publication of von Neumann and Morgenstern’s Theory of Games and Economic Behavior
in 1944. The traditional models of coalitional game theory, in particular TU (transferable
utility) and NTU (non-transferable utility) coalitional games, involve a formal specification
of what each group of agents can achieve on their own. Drèze and Greenberg (1980) noted
that in many situations this is not feasible, possible, or even relevant to the coalition for-
mation process, as, e.g., in the formation of social clubs, teams, or societies. Instead, in
coalition formation games, the agents’ preferences are defined directly over the coalition
structures, i.e., partitions of the agents in disjoint coalitions. Formally, coalition formation
can thus be considered as a special case of the general social choice setting, where the
agents entertain preferences over a special type of alternatives, namely coalition partitions
of themselves, from which one or more need to be selected. In most situations it is natural
to assume that an agent’s appreciation of a partition only depends on the coalition he is a
member of and not on how the remaining agents are grouped. Popularized by Bogomolnaia
and Jackson (2002), much of the work on coalition formation now concentrates on these
so-called hedonic games.

The main focus in hedonic games has been on finding and recognizing partitions that
satisfy various notions of stability—such as Nash stability, individual stability, or core

©2022 AI Access Foundation. All rights reserved.
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stability—or optimality—such as Pareto optimality, utilitarian welfare maximality, or egal-
itarian welfare maximality (see Aziz & Savani, 2016, for an overview). In this paper, we
focus on the notion of popularity (Gärdenfors, 1975), which has the flavor of both stability
and optimality. A partition is popular if there is no other partition that is preferred by a
majority of the agents. Moreover, a partition is strongly popular if it is preferred to every
other partition by some majority of agents. Popularity thus corresponds to the notion of
weak and strong Condorcet winners in social choice theory, i.e., candidates that are at least
as good as any other candidate in pairwise majority comparisons. Just like stability notions,
popularity is based on the idea that a subset of agents breaks off in order to increase their
well-being. However, since the new partition has to make at least as many agents better
off than worse off, popularity also has the flavor of optimality. According to the standard
reference Algorithmics of Matching Under Preferences, “popular matchings [. . . ] have been
an exciting area of research in the last few years” (Manlove, 2013, p. 333). A recent survey
on popular matchings is provided by Cseh (2017).

In contrast to Pareto optimal partitions, popular partitions are not guaranteed to exist.
We therefore also consider mixed popular partitions, as proposed by Kavitha, Mestre, and
Nasre (2011) and whose existence follows from the Minimax Theorem. A mixed popular
partition is a probability distribution over partitions p such that there is no other mixed
partition q such that the expected number of agents who prefer the partition returned by
p to q is at least as large as the other way round. Mixed popular partitions are a special
case of maximal lotteries, a randomized voting rule that has recently gathered increased
attention in social choice theory (Fishburn, 1984; Brandl, Brandt, & Seedig, 2016; Brandl
& Brandt, 2020; Brandl, Brandt, & Stricker, 2022).

We study the computational complexity of popular, strongly popular, and mixed popular
partitions in a variety of hedonic coalition formation settings including additively separable
hedonic games, fractional hedonic games as well as hedonic games where the coalition size
is bounded. The latter includes flatmate games (which only allow coalitions of up to three
agents) and roommate games (which only allow coalitions of up to two agents). Our main
findings can also be found in Tables 1 and 2 in the conclusion and are summarized as follows.

• Generalizing earlier results by Kavitha et al. (2011), we show how mixed popular
partitions in roommate games can be computed in polynomial time via linear pro-
gramming and a separation oracle on a subpolytope of the matching polytope for
non-bipartite graphs.1 This stands in contrast to a recent result showing that com-
puting popular partitions in roommate games is NP-hard (Faenza, Kavitha, Power,
& Zhang, 2019; Gupta, Misra, Saurabh, & Zehavi, 2019).

• As corollaries we obtain that verifying popular partitions (Biró, Irving, & Manlove,
2010), finding Pareto optimal partitions (Aziz, Brandt, & Harrenstein, 2013a), and
finding strongly popular partitions can all be done in polynomial time in roommate
games, even when preferences admit ties. The latter statement resolves an acknowl-
edged open problem.2

1. The results by Kavitha et al. (2011) only hold for house allocation and marriage markets and require
extra work to be extended to roommate markets. See Section 2 for more details.

2. See, for example, Biró et al. (2010) and Manlove (2013): “A third open problem is the complexity of
finding a strongly popular matching (or reporting that none exists), for an instance of RPT [Roommate
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• We provide the first negative computational results for mixed popular partitions and
strongly popular partitions by showing that finding these partitions in flatmate games
is NP-hard. Moreover, it turns out, that verifying whether a given partition is popular,
strongly popular, or mixed popular in flatmate games is coNP-complete. All of these
results hold for strict and globally ranked preferences, where coalitions appear in the
same order in each individual preference ranking. This is interesting insofar as finding
popular partitions in roommate games becomes tractable under the same restrictions.

• We prove that computing popular, strongly popular, and mixed popular partitions is
NP-hard in symmetric additively separable hedonic games and symmetric fractional
hedonic games. Furthermore, we show coNP-completeness of all corresponding verifi-
cation problems.

• Many of our hardness reductions follow a general scheme that might be of broader
interest beyond the scope of popularity. Specifically, we merely embed the combi-
natorial structure of an NP-hard problem (in our case the incidence structure of a
covering instance) into the leaves of an object similar to a binary tree. Within this
tree, we can propagate all relevant information for the property under consideration
(e.g., popularity) to the root agent of the tree, which then acts as a decision taker in
our reduction. Hence, checking exponentially many partitions relevant to popularity
reduces to checking one specific agent.

2. Related Work

Gärdenfors (1975) first proposed the notions of popularity and strong popularity in the
context of marriage games. He showed that popular matchings (or “majority assignments”
in his terminology) need not exist when preferences are weak, but that existence is guar-
anteed for strict preferences because every stable matching is popular. As a consequence,
the well-known Gale-Shapley algorithm efficiently identifies popular matchings in marriage
games with strict preferences. Kavitha and Nasre (2009), Huang and Kavitha (2011), and
Kavitha (2014) provide efficient algorithms for computing popular matchings that satisfy
additional properties such as rank maximality or maximum cardinality. For weak prefer-
ences, computing popular matchings is NP-hard, even when all agents belonging to one side
have strict preferences (Biró et al., 2010; Cseh, Huang, & Kavitha, 2015).

In the more restricted setting of house allocation (henceforth housing games), Abraham,
Irving, Kavitha, and Mehlhorn (2007) proposed efficient algorithms for finding popular
allocations of maximum cardinality for both weak and strict preferences. Mahdian (2006)
proved an interesting threshold for the existence of popular allocations: if there are n agents
and the number of houses exceeds αn with α ≈ 1.42, then the probability that there is a
popular allocation converges to 1 as n goes to infinity.

For roommate games with weak preferences, NP-hardness of computing popular match-
ings follows from the above-mentioned hardness results for marriage games. It was recently

Problem with Ties]” (Biró et al., 2010, p. 107); “Our last open problem concerns the complexity of the
problem of finding a strongly popular matching, or reporting that none exists, given an instance of SRTI
[Stable Roommates with Ties and Incomplete lists], which is unknown at the time of writing” (Manlove,
2013, p. 380).
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shown that this problem is still NP-hard when preferences are strict (Gupta et al., 2019;
Faenza et al., 2019; Cseh & Kavitha, 2018). Also, finding a maximum-cardinality popular
matching in instances where popular matchings are guaranteed to exist is NP-hard (Brandl
& Kavitha, 2018).

There are less results on strongly popular matchings. It is known from Gärdenfors (1975)
that a strongly popular matching has to be a unique popular matching and that every
strongly popular matching is stable in roommate and marriage games. Based on these
insights, Biró et al. (2010) showed that strongly popular matchings in roommate games
and marriage games with strict preferences can be found efficiently by first computing an
arbitrary stable matching and then checking whether it is strongly popular. The case of
weak preferences was left open and little progress has been made since then. Király and
Mészáros-Karkus (2017) recently gave an algorithm for finding strongly popular matchings
in marriage games where preferences are strict, except that agents belonging to one side
may be completely indifferent. In housing games, a matching is strongly popular if and only
if it is a unique perfect matching. Hence, strongly popular matchings in housing games can
be found in polynomial time. All of the above mentioned results on strong popularity,
including the open problem, follow from our Corollary 3.

Mixed popular matchings were introduced by Kavitha et al. (2011) who also showed
how to compute a fractional popular matching in housing games and marriage games,
which can then be translated into a mixed popular matching via a Birkhoff-von Neumann
decomposition. This is possible in bipartite settings because every fractional matching is
implementable as a probability distribution over deterministic matchings. When moving
from marriage markets to roommate markets, this does not hold anymore. For example, a
matching involving three agents where every pair of agents is matched with probability 1/2
is not implementable. Huang and Kavitha (2017) have shown that in marriage games with
strict preferences, the popular matching polytope is half-integral and that half-integral
mixed popular matchings can be computed in polynomial time. No such matchings are
guaranteed to exist when preferences are weak. They also apply the same techniques to
roommate games in order to compute an optimal half-integral solution over the bipartite
matching polytope in the case of strict preferences. However, the resulting solutions may
again fail to be implementable. Apart from that, their methods heavily rely on computing
stable matchings, which may be intractable when preferences are weak. By contrast, our
results in Section 4.2.1 are based on the matching polytope for non-bipartite graphs via
odd-set constraints and allow both to deal with ties and to efficiently compute a solution
that is implementable using LP methods (Proposition 5).3 The axiomatic properties of
mixed popular matchings such as efficiency and strategyproofness were investigated by
Aziz, Brandt, and Stursberg (2013c), Brandt, Hofbauer, and Suderland (2017), and Brandl,
Brandt, and Hofbauer (2017).

To the best of our knowledge, popularity, strong popularity, and mixed popularity have
not been studied for coalition formation settings that go beyond coalitions of size 2 except for

3. The journal version of the paper by Huang and Kavitha (2017), which appeared after the conference
version of our paper, also independently considers the non-bipartite matching polytope and briefly out-
lines how to compute mixed popular matchings (Huang & Kavitha, 2021). However, some important
subtleties such as how to retain deterministic matchings from the fractional solution (our Proposition 5)
are not considered.
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a theorem by Aziz, Brandt, and Seedig (2013b, Th. 15) who claimed that checking whether a
partition is popular in ASHGs is NP-hard and that verifying whether a partition is popular
is coNP-complete. However, the proof of the first statement is incorrect.4 We substantially
modified the reduction to prove a stronger statement and independently proved a stronger
statement for the verification problem.

3. Preliminaries

Let N be a finite set of agents. A coalition is a non-empty subset of N . By Ni we denote
the set of coalitions agent i belongs to, i.e., Ni = {S ⊆ N : i ∈ S}. A coalition structure,
or simply a partition, is a partition π of the agents N into coalitions, where π(i) is the
coalition agent i belongs to. A mixed partition is a set p = {(π1, p1), . . . , (πk, pk)}, where πi
s a partition for every i ∈ {1, . . . , k}, and (p1, . . . , pk) represents a probability distribution.
A mixed partition is interpreted as a randomization over partitions.

A hedonic game is a pair (N,≿), where ≿ = (≿i)i∈N is a preference profile specifying
the preferences of each agent i as a complete and transitive preference relation ≿i over Ni.
If ≿i is also anti-symmetric we say that i’s preferences are strict. Otherwise, we say that
preferences are weak. We denote by S ≻i T if S ≿i T but not T ≿i S—i.e., i strictly
prefers S to T—and by S ∼i T if both S ≿i T and T ≿i S—i.e., i is indifferent between S
and T . In hedonic games, agents are only concerned about their own coalition. Accordingly,
preferences over coalitions naturally extend to preferences over partitions as follows: π ≿i π

′

if and only if π(i) ≿i π
′(i).

Sometimes, we consider strict preferences, which are obtained from weak preferences by
breaking ties arbitrarily. To express such preferences succinctly, given a set X of alterna-
tives, we denote by X≻ an arbitrary, but fixed strict preference order of the alternatives
in X. For example, a ≻ {b, c}≻ ≻ d could be replaced by a ≻ b ≻ c ≻ d. For simplicity,
one can assume that ties are broken lexicographically. When referring to index sets, such
as sets of players, we use the shorthand [k] for {1, . . . , k} and [k, l] for {k, . . . , l}.

Two basic properties of partitions are Pareto optimality and individual rationality.
Given a hedonic game (N,≿), a partition π is Pareto optimal if there is no partition π′

such that π′ ≿j π for all agents j and π′ ≻i π for at least one agent i. A coalition S ∈ Ni is
individually rational for agent i if she prefers the coalition to staying alone, i.e., C ≿i {i}.
A Partition π is individually rational if π(i) ≿i {i} for all i ∈ N . The rationale behind
individual rationality is that agents cannot be forced into a coalition.

Individual rationality is also the crucial ingredient of a succinct representation of he-
donic games where only the preferences over individually rational coalitions are considered
(Ballester, 2004). A hedonic game (N,≿) is represented by Individually Rational Lists of
Coalitions (IRLC) via the game (N,≿′) where ≿′ is a preference profile such that ≿′

i is the
restriction of ≿i to individually rational coalitions in Ni. In this case, (N,≿) is called a
completion of (N,≿′). This representation of games is useful to obtain meaningful hardness
results because the size of the naive representation of a hedonic game is exponential in the

4. The reduction fails because for a Yes-instance of Exact 3-Cover, the partition π claimed to be popular
for the ASHG it maps to is not popular: the partition π′ = {{ys, zs1, z

s
2} : s ∈ S} ∪ {{br1, ar

2} : r ∈
R} ∪ {{br2, ar

1, a
r
3} : r ∈ R} is more popular.

573



Brandt & Bullinger

number of agents while the IRLC representation may only require polynomial space if the
number of individually rational coalitions is small enough.

In order to define popularity and strong popularity, let N(π, π′) be the set of agents who
prefer π over π′, i.e., N(π, π′) = {i ∈ N : π(i) ≻i π

′(i)}, where π, π′ are two partitions of N .
For any subset M ⊆ N of agents and partitions π, π′ of N , ϕM (π, π′) = |N(π, π′) ∩M | −
|N(π′, π) ∩M | is called the popularity margin on M with respect to π and π′. If M = {i}
is a singleton set, we use the shorthand notation ϕi instead of ϕ{i}. On top of that, we
define the popularity margin of π and π′ as ϕ(π, π′) = ϕN (π, π′). Then, π is called more
popular than π′ if ϕ(π, π′) > 0. Furthermore, π is called popular if, for all partitions π′,
ϕ(π, π′) ≥ 0, i.e., no partition is more popular than π. Also, π is called strongly popular if,
for all partitions π′ ̸= π, ϕ(π, π′) > 0, i.e., π is more popular than every other partition.
Note that there can be at most one strongly popular partition in any hedonic game.

For a hedonic game (N,≿) in IRLC representation, a partition π is called popular if
it is popular in the completion of (N,≿) where, for each agent, all coalitions that are not
individually rational are gathered in a single indifference class that is less preferred than the
singleton coalition. This definition of popularity generalizes the definition of popularity that
is used for marriage games by Kavitha et al. (2011), and adds the appropriate perspective
on individual rationality.5 Note that a popular partition need not be individually rational.

Many hedonic games do not admit a popular partition. However, existence can be
guaranteed by introducing randomization via mixed partitions, i.e., probability distributions
over partitions. Let therefore two mixed partitions p = {(π1, p1), . . . , (πk, pk)} and q =
{(σ1, q1), . . . , (σl, ql)} be given, where (p1, . . . , pk), (q1, . . . .ql) are probability distributions.
We define the popularity margin of p and q as their expected popularity margin, i.e.,

ϕ(p, q) =

k∑

i=1

l∑

j=1

piqjϕ(πi, σj).

Clearly, the definition of popularity carries over to the extension of ϕ. As first observed by
Kavitha et al. (2011), mixed popular partitions always exist, because they can be interpreted
as maximin strategies of a symmetric zero-sum game (see also Fishburn, 1984; Aziz et al.,
2013c).

Proposition 1. Every hedonic game admits a mixed popular partition.

Proof. Every hedonic game can be viewed as a finite two-player symmetric zero-sum game
where the rows and columns of the two players are indexed by all possible partitions
π1, . . . , πB|N| and the entry at position (i, j) of the game matrix is ϕ(πi, πj). There, B|N |
denotes the Bell number. By the Minimax Theorem (von Neumann, 1928), the value of
this game is 0 and therefore, any maximin strategy, whose existence is guaranteed, is pop-
ular.

5. The IRLC representation ignores preferences over coalitions that are not individually rational. However,
in contrast to core stability or Nash stability, these preferences can affect whether a partition is popular or
not. In order to circumvent this problem, one could strengthen the definition of popularity by requiring
that a coalition needs to be popular for all extensions of the IRLC represented preferences. All our
results also hold for this notion, because we construct individually rational partitions for which the two
notions of popularity coincide.
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Before stating and proving our results, we illustrate the most important concepts by
means of an example.

Example 1. Consider a hedonic game (N,≿) with N = {a, b, c, d} where preferences are
given in IRLC representation:

• N ≻a {a, b} ≻a {a, c} ≻a {a, d} ≻a {a}

• N ≻b {b, c} ≻b {b, a} ≻b {b, d} ≻b {b}

• {c, a} ≻c {c, b} ≻c {c, d} ≻c N ≻c {c}

• {d, a} ∼d {d, b} ∼d {d, c} ≻d N ≻d {d}

π0

π1

π2

π3

1

1
1

Then, the Pareto optimal partitions (which are the only ones relevant for popular-
ity) are π0 = {N}, π1 = {{a, b}, {c, d}}, π2 = {{a, c}, {b, d}}, and π3 = {{a, d}, {b, c}}.
Their popularity margins are depicted right of the preferences, where a dashed line de-
notes indifference with respect to popularity. In particular, π0 is the only (deterministic)
popular partition and there is no strongly popular partition. Further, the mixed partition
p = {(π1, 1/3), (π2, 1/3), (π3, 1/3)} is mixed popular. It holds that ϕ(p, π0) = ϕ(p, π1) =
ϕ(p, π2) = ϕ(p, π3) = 0.

4. Results

Our results are divided into three subsections. We first show some basic properties and
relationships between the different notions of popularity. Then, we analyze popularity in
ordinal hedonic games (such as flatmate and roommate games) and cardinal hedonic games
(such as additively separable and fractional hedonic games), respectively.

4.1 Basic Relationships

Clearly, a strongly popular partition is also popular and a popular partition, interpreted
as a probability distribution with singleton support, is mixed popular. Furthermore, every
coalition structure in the support of a mixed popular partition is Pareto optimal. This
already follows from a more general statement by Fishburn (1984, Prop. 3). We give a
simple proof for completeness.

Proposition 2. Let p = {(π1, p1), . . . , (πk, pk)} be a mixed popular partition. Then, for
every i ∈ [k] with pi > 0, πi is Pareto optimal.

Proof. Let p = {(π1, p1), . . . , (πk, pk)} be a mixed popular partition and fix i ∈ [k] such
that pi > 0. Assume for contradiction that π′

i is a Pareto improvement over πi. De-
fine p′ = {(π1, p1), . . . , (πi−1, pi−1), (π

′
i, pi), (πi+1, pi+1), . . . , (πk, pk)}. Note that ϕ(π′

i, p) =∑k
j=1,j ̸=i pjϕ(π

′
i, πj)+piϕ(π

′
i, πi) ≥

∑k
j=1,j ̸=i pjϕ(πi, πj)+piϕ(π

′
i, πi) >

∑k
j=1,j ̸=i pjϕ(πi, πj)+

piϕ(πi, πi) = ϕ(πi, p).

Then, ϕ(p′, p) =
∑k

j=1,j ̸=i pjϕ(πj , p) + piϕ(π
′
i, p) >

∑k
j=1,j ̸=i pjϕ(πj , p) + piϕ(πi, p) =

ϕ(p, p) = 0.

Hence, p is not mixed popular, a contradiction.
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We thus have the following relationships between strong popularity (sPop), popularity
(Pop), partitions in the support of any mixed popular partition (supp(mPop)), and Pareto
optimality (PO):

sPop =⇒ Pop =⇒ supp(mPop) =⇒ PO.

The concepts printed in boldface are guaranteed to exist. As a consequence, hardness
results for computing Pareto optimal partitions imply hardness of computing mixed popular
partitions (though not for popular partitions since they need not exist). Mixed popular
partitions also satisfy probabilistic strengthenings of Pareto optimality based on stochastic
dominance and pairwise comparisons (Aziz, Brandl, Brandt, & Brill, 2018).

The existence problems for popular and strongly popular partitions are naturally con-
tained in the complexity class Σp

2. The verification problems are contained in coNP. The
following relationship turns out to be helpful for deducing the complexity of verifying mixed
popular partitions from the respective result for popular partitions.

Proposition 3. Let a class of hedonic games be given such that the verification problem of
popular partitions is coNP-hard. Then, the verification problem of mixed popular partitions
is coNP-hard.

Proof. Let C be a class of hedonic games and let (G, π) be an instance of the deterministic
verification problem, i.e. G ∈ C is a hedonic game and π a partition of the agents of G.
By linearity of π′ 7→ ϕ(π, π′), π is popular if, and only if, it is mixed popular. Hence, the
embedding of the deterministic into the mixed case gives the desired reduction for coNP-
hardness.

Hence, whenever hardness results are obtained for the verification of popularity, they
transfer automatically to mixed popularity. Conversely, polynomial-time algorithms for
mixed popularity can be used to efficiently verify whether a partition is popular.

Also, since partitions have polynomial size (with respect to the number of agents), we can
use more popular partitions as polynomial-size certificates to No-instances of the verification
problem. This shows membership in coNP in the deterministic case and can also be applied
for mixed popularity. Indeed, whenever there exists a more popular mixed coalition, then
there exists also a more popular deterministic one. If p is a mixed partition for a game
G and p′ = {(π′

1, p
′
1), . . . , (π

′
k, p

′
k)} is more popular, then 0 < ϕ(p′, p) =

∑k
i=1 p

′
iϕ(π

′
i, p).

Consequently, for some i ∈ [k], ϕ(π′
i, p) > 0.

Popular partitions are not only Pareto optimal, but it also suffices to compare a partition
against Pareto optimal partitions when checking for popularity. This is useful when proving
popularity of a given partition, for example in hardness reductions.

Proposition 4. A partition π is popular if and only if, for all Pareto optimal partitions
π′, ϕ(π, π′) ≥ 0. In addition, π is strongly popular if and only if, for all Pareto optimal
partitions π′ ̸= π, ϕ(π, π′) > 0.

Proof. We show that the respective popularity margin with Pareto optimal partition deter-
mine popularity.

This follows from the fact that for every two partitions π, π̂, and a Pareto optimal Pareto
improvement π′ of π̂, it holds that ϕ(π, π̂) ≥ ϕ(π, π′). If we investigate strong popularity,
it can happen that π′ = π, but in this case ϕ(π, π̂) > 0 by Pareto dominance.
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4.2 Ordinal Hedonic Games

In this section we investigate hedonic games in IRLC representation. Important subclasses
of these games are defined by restricting the size of individually rational coalitions using a
global constant. We thus obtain flatmate games as games in which only coalitions of up to
three agents are individually rational and roommate games as games in which only coalitions
of size 2 are individually rational. More restrictions are obtained by partitioning the set
of agents into two groups, say, into males and females, and even further by additionally
demanding that one group of agents is completely indifferent, say, by assuming that they
are objects such as houses. A marriage game is a roommate game where the agents can
be partitioned in two sets such that the only individually rational partitions are formed
with agents from the other set. A housing game is a marriage game where all agents
belonging to one set of the partition are completely indifferent. In roommate games (and
their subclasses), partitions are referred to as matchings. All of these classes permit IRLC
representations with size bounded polynomially with respect to the number of the agents.
We have the following inclusion relationships.6

Housing ⊊ Marriage ⊊ Roommates ⊊ Flatmates ⊊ IRLC.

Finally we consider a severe preference restriction in coalition formation. A preference
profile admits globally ranked preferences if there exists a common (global) ranking ≿ of all
coalitions in 2N \ {∅} and each individual preference relation ≿i is the restriction of ≿ to
Ni.

Under globally ranked preferences, the intractability of computing popular matchings
in roommates games with strict preferences (Gupta et al., 2019; Faenza et al., 2019; Cseh
& Kavitha, 2018) breaks down. In fact, it is known that under these preferences, every
roommate game admits a stable matching, which can furthermore be efficiently computed
(Abraham, Leravi, Manlove, & O’Malley, 2008). Since every stable matching also happens
to be popular for strict preferences (see Section 2), this implies that computing popular
matchings in roommates games becomes tractable. By contrast, all hardness results for
flatmate games that will be shown in Section 4.2.2 hold even when preferences are globally
ranked. This confirms the robustness of these results and underlines the crucial difference
between settings with coalitions of size 2 and coalitions of size 3.

In our reductions, we consider hedonic games in globally ranked IRLC representation
that are further restricted. All coalitions C in the reduced instances are either individually
rational for all agents in C or for none. Hence, the global ranking of coalitions can be
compactly represented by omitting all coalitions C that are ranked below any of the singleton
coalitions consisting of one of the members of C. Any such coalition is Pareto dominated
and therefore irrelevant for popularity (Proposition 4).

When defining global rankings we will often connect rankings over subsets of coalitions
with each other. To simplify the exposition, we introduce the notion of the join of two
preference relations ≿1 and ≿2 over two disjoint sets (of coalitions) C1 and C2, respectively,
as the preference relation join(≿1,≿2) = ≿1 ∪ ≿2 ∪ C1 × C2 over the set C1 ∪ C2. In
other words, two sets X,Y ∈ C1, C2 are in relation join(≿1,≿2) if X,Y ∈ Ci and X ≿i Y
for some i ∈ [2], or if X ∈ C1 and Y ∈ C2. We extend this definition recursively to the

6. Note that the inclusion between housing games and marriage games does not hold for strict preferences.
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join of relations ≿1, . . . ,≿k over pairwise disjoint sets C1, . . . , Ck as join(C1, . . . , Ck) =
join(join(C1, . . . , Ck−1), Ck) for k ≥ 3. Note that the join operation is not commutative.

4.2.1 Roommate Games

We start by investigating mixed popularity in roommate games by an LP-based approach,
which will later have important consequences for popular and strongly popular matchings.

Kavitha et al. (2011) showed that mixed popular matchings in housing games and mar-
riage games can be found in polynomial time. However, as explained in Section 2, their
algorithm cannot directly be applied to roommate games. In this section, we show how to
obtain an algorithm for the more general class of roommate games.

To introduce our matching notation, we fix a graph G = (N,E) where the vertex set is
the set of agents and there is an edge between two vertices if the corresponding coalition
of size 2 is individually rational for both agents. For technical reasons, it is useful to
restrict attention to the case of perfect matchings, i.e., matchings in which every vertex is
matched with some vertex. Similarly to the construction by Kavitha et al. (2011), this can
be achieved by introducing worst-case partners wa for every agent a with {a,wa} ∼a {a}.
These worst-case partners are not individually rational for all other original agents, and are
indifferent among all other agents themselves. They mimic the case when an agent remains
unmatched and do not affect the popularity of a partition. In graph-theoretic terms, this is
equivalent to adding a loop to every vertex. If some loop is contained in a perfect matching,
this means that the agent is matched to herself, or in other words, remains unmatched.

We now establish a relationship between mixed matchings and fractional matchings,
where the latter are defined as points in the (perfect) matching polytope PMat ⊆ [0, 1]E ,
defined as follows (Edmonds, 1965).

PMat = {x ∈ RE :
∑

e∈E,v∈e
x(e) = 1 ∀v ∈ N,

∑

e∈{{v,w}∈E : v,w∈C}
x(e) ≤ |C| − 1

2
∀C ⊆ N, |C| odd,

x(e) ≥ 0 ∀e ∈ E}

The main constraint is often called odd set constraint and ensures that, for every odd set
of agents C, the weight of the fractional matching restricted to these agents is at most
(|C| − 1)/2, where this quantity is equal to the maximum cardinality that any matching on
the set C may have.

Given a matching M , denote by χM ∈ PMat its incidence vector. We obtain a cor-
respondence of mixed matchings and fractional matchings by mapping a mixed match-
ing p = {(M1, p1), . . . , (Mk, pk)} to the fractional matching xp =

∑k
i=1 piχMi . Note that

xp ∈ PMat by convexity. Since we only want to operate on the more concise matching
polytope, we need to ensure that we can recover a mixed matching efficiently. The follow-
ing proposition, which is based on general LP theory, can be seen as an extension of the
Birkhoff-von Neumann theorem to non-bipartite graphs.
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Proposition 5. Let G = (N,E) be a graph and x ∈ PMat a vector in the associated
matching polytope. Then, a mixed matching p = {(M1, p1), . . . , (Mk, pk)} such that xp = x
can be found in polynomial time.

Proof. The separation problem for the matching polytope PMat can be solved in polynomial
time, i.e., the class of matching polytopes is solvable. Therefore, given a graph G = (N,E)
and a vector x ∈ PMat we can find a convex combination of extreme points of PMat that
yield x in polynomial time (Grötschel, Lovász, & Schrijver, 1981, Th. 3.9). A combinatorial
algorithm to address this problem was proposed by Padberg and Wolsey (1984).

Since the extreme points of the matching polytope are the incidence vectors of matchings
(Edmonds, 1965), this is a mixed matching whose corresponding fractional matching is x.

To be able to operate on fractional matchings only, we seek to define popularity of
fractional matchings equivalent to popularity of mixed matchings that induce them. Popular
fractional matchings can be described as feasible points of a (non-empty) subpolytope of the
matching polytope. The separation problem for the subpolytope can be solved efficiently
using a modification of McCutchen’s algorithm for determining the unpopularity margin of
a matching (McCutchen, 2008).

To this end, we need to define the popularity margin for fractional matchings. Given
x, y ∈ PMat , we define their popularity margin as

ϕ(x, y) =
∑

a∈N

∑

i,j∈NG(a)

x(a, i)y(a, j)ϕa(i, j)

where NG(a) = {v ∈ N : {v, a} ∈ E} is the neighborhood of a in G and

ϕa(i, j) =





1 if i ≻a j

−1 if i ≺a j

0 if i ∼a j

.

Imagine that the matchings x and y independently match agent a to agent i and j
with probability x(a, i) and y(a, j), respectively. Then, we can interpret the quantity
x(a, i)y(a, j)ϕa(i, j) as the probability of agent a being matched to i through x and to
j through y times the characteristic function of agent a’s binary preference between these
two matching partners. Then,

∑
i,j∈NG(a) x(a, i)y(a, j)ϕa(i, j) is the expected preference of

agent a between matchings x and y, and ϕ(x, y) is the expected popularity margin of the
preferences of all agents.

Next, we relate the popularity margins of both worlds. The proof of the next proposition
is identical to the corresponding statement for marriage games by Kavitha et al. (2011). For
the sake of self-containment, we state its proof in the appendix. All other missing proofs
can also be found in the appendix.

Proposition 6. Let p and q be mixed matchings. Then,

ϕ(p, q) = ϕ(xp, xq).

In particular, p is popular if and only if for all matchings M , ϕ(xp, χM ) ≥ 0.
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As a consequence, mixed popular matchings correspond precisely to the feasible points
of the polytope

PPop = {x ∈ PMat : ϕ(x, χM ) ≥ 0 for all matchings M}.

It remains to find a feasible point of the popularity polytope PPop . By adopting the
auxiliary graph in McCutchen’s algorithm for non-bipartite graphs, we can find a matching
M minimizing ϕ(x, χM ) by solving a maximum weight matching problem (McCutchen,
2008). This solves the separation problem for PPop .

Proposition 7. The separation problem for PPop can be solved in polynomial time.

We are now ready to prove the following theorem.

Theorem 1. Mixed popular matchings in roommate games with weak preferences can be
found in polynomial time.

Proof. By Proposition 7 and by means of the Ellipsoid method (Khachiyan, 1979), we can
find a fractional popular matching in polynomial time. This can be translated into a mixed
popular matching by leveraging Proposition 5.

Theorem 1 has a number of interesting consequences. Since every mixed popular match-
ing is Pareto optimal, we now have an LP-based algorithm to find Pareto optimal matchings
for weak preferences as an alternative to combinatorial algorithms like the Preference Re-
finement Algorithm by Aziz et al. (2013a).

Corollary 1. Pareto optimal matchings in roommate games with weak preferences can be
found in polynomial time.

Biró et al. (2010) provided a sophisticated algorithm for verifying whether a given match-
ing is popular. An efficient LP-based algorithm for this problem follows from Theorem 1.

Corollary 2. It can be verified in polynomial time whether a given matching in a roommate
game is popular.

Finally, the linear programming approach allows us to resolve the open problem of
finding strongly popular matchings when preferences are weak.

Corollary 3. Finding a strongly popular matching or deciding that no such matching exists
in roommate games with weak preferences can be done in polynomial time.

Proof. If a strongly popular matching exists, it is unique. In particular, it is the unique
mixed popular matching. Given a (deterministic) matching M , we can check in polynomial
time if it is strongly popular. We can apply the reduction of Proposition 7 and check whether
the maximum weight matching amongst the matchings different to M on the auxiliary graph
has negative weight (in which case the matching M is strongly popular) or not. Note that
every matching different to M is contained in at least one (incomplete) graph obtained by
deleting an edge from M , while M is not contained in any such graph. Hence, we simply
compute a maximum weight matching for every graph obtained by deleting exactly one edge
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from M in the auxiliary graph. The maximum weight matching amongst these matchings
has the highest weight amongst matchings different from M .

The algorithm to compute a strongly popular matching if one exists first computes a
fractional popular matching. If it does not correspond to a deterministic matching, there
exists no strongly popular matching. Otherwise, it is deterministic and, as described above,
we can check if it is strongly popular. If this is the case, we return it. If not, there exists
no strongly popular matching.

As shown in the previous proof, the verification problem for strongly popular matchings
in roommate games can also be solved efficiently.

4.2.2 Flatmate Games

It turns out that moving from coalitions of size 2 to size 3 renders all search problems
related to popular partitions intractable. For mixed popular partitions, we can leverage the
relationship to Pareto optimal partitions. Aziz et al. (2013a, Th. 5) have shown that finding
Pareto optimal partitions in flatmate games with weak preferences is NP-hard. Since mixed
popular partitions are guaranteed to exist (Proposition 1) and satisfy Pareto optimality
(Proposition 2), this immediately implies the NP-hardness of computing mixed popular
partitions by means of a Turing reduction.7

Theorem 2. Computing a partition in the support of a mixed popular partition in flatmate
games with weak preferences is NP-hard.

For strict preferences, the same method does not work. Pareto optimal partitions can
always be found efficiently by serial dictatorship. Therefore, we will give direct reductions
that yield hardness for strong popularity and mixed popularity in flatmate games with
strict preferences. The reduction for popularity is a bit more involved and will be given
afterwards. All of these reductions are based on a common type of flatmate games that
evolve from instances of the NP-complete problem Exact 3-Cover (Karp, 1972). An instance
(R,S) of Exact 3-Cover (X3C) consists of a ground set R together with a set S of 3-element
subsets of R. A Yes-instance is an instance such that there exists a subset S′ ⊆ S that
partitions R.

Before presenting the proof, we want to discuss our proof strategy which is very generic
and also key to many hardness reductions for cardinal hedonic games in Section 4.3. We
want to describe the essential properties satisfied by reduced instances of our reduction. We
say that a class of games satisfies property PP (for popularity propagation) if there exists
a polynomial-time reduction from X3C that constructs for every instance (R,S) a game
(N,≿) together with a special agent x ∈ N , and a partition π∗ such that for every partition
π ̸= π∗, it holds that

1. ϕ(π∗, π) ≥ 1,

2. if π∗(x) ∩ π(x) = {x}, then ϕ(π∗, π) ≥ 3 or (R,S) is a Yes-instance,

3. for all y ∈ N , π∗(y) ≻y {y}, and
7. Using the same argument, one can transfer further results on Pareto optimality (Aziz et al., 2013a), e.g.,

for room-roommate games or three-cyclic matching games.
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4. π∗(x) ≻x C for all C ∈ Nx \ {π∗(x)}.

In addition, if (R,S) is a Yes-instance, then there exists a partition π′ with

5. ϕ(π∗, π′) = 1, and

6. π′(x) = {x}.

The first condition guarantees that π∗ is strongly popular and with the second condition,
strong popularity is unaffected when adding one or two auxiliary agents that only have an
effect on x. The third condition is only needed for the proofs concerning fractional hedonic
games with non-negative utility functions, but it also holds for all other classes investigated.
It ensures that every agent is part of an individually rational coalition, and in fact prefers
her coalition in π∗ over staying alone. The forth condition says that x is in her unique top-
ranked coalition under the partition π∗. The last two properties ensure that we can obtain
a more popular partition by adding auxiliary agents that form a new coalition with x.

In this section, we will exemplify a reduction satisfying property PP for flatmate games.
We will first describe the reduced flatmate games, then prove the first two items of property
PP in Lemma 1. Then, we provide a lemma for global rankedness of the game, and finally
give the actual reductions which implicitly construct the partition π′ from property PP.

To this end, consider an instance (R,S) of X3C. Let k = min{k ∈ N : 2k ≥ |R|} be the
smallest power of 2 that is larger than the cardinality of R. We define a flatmate game on

vertex set N =
⋃k

j=0Nj , where Nj =
⋃2j

i=1A
i
j consists of 2j sets of agents Ai

j .

We define the sets of agents as

• Ai
k = {aik, bik, cik} for i ∈ [|R|],

• Ai
k = {aik, bik, cik, yi1, yi2} for i ∈ [|R|+ 1, 2k], and

• Ai
j = {aij , bij , cij , αi

j , β
i
j , γ

i
j , δ

i
j} for j ∈ [0, k − 1], i ∈ [2j ].

Similar names of agents suggest that these agents are going to play the same role in the
reduction. The preferences are designed in a way such that if there exists no 3-partition
of R through sets in S, then there exists a unique best partition that assigns more than half
of the agents a top-ranked coalition. Otherwise, there exists a partition that puts exactly all
the other agents in one of their top coalitions. We order the set R in an arbitrary but fixed
way, say R = {r1, . . . , r|R|} and for a better understanding of the proof and the preferences,
we label the agents bik = ri for i ∈ [|R|]. If we view the set of agents N as k + 1 levels of
agents, then the ground set R of the instance of X3C is identified with some specific agents
in the top level k. Preferences of the agents are as follows. Recall that X≻ denotes an
arbitrary, but fixed strict preference order of the alternatives in X. We define

• {yi1, yi2} ≻yi1
{yi1}, i ∈ [|R|+ 1, 2k],

• {bik, yi2} ≻yi2
{yi1, yi2} ≻yi2

{yi2}, i ∈ [|R|+ 1, 2k],

• {aik, bik, cik} ≻aik
{aik, ai+1

k , δ
(i+1)/2
k−1 } ≻aik

{aik}, i ∈ [2k] odd,
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• {aik, bik, cik} ≻aik
{aik, ai−1

k , δ
i/2
k−1} ≻aik

{aik}, i ∈ [2k] even,

• {aij , βi
j , γ

i
j} ≻aij

{aij , bij , cij} ≻aij
{aij}, j ∈ [0, k − 1], i ∈ [2j ],

• {{bik, bvk, bwk } : {ri, rv, rw} ∈ S for v, w ∈ [|R|]}≻ ≻bik
{aik, bik, cik} ≻bik

{bik}, i ∈ [|R|],

• {bik, yi2} ≻bik
{aik, bik, cik} ≻bik

{bik}, i ∈ [|R|+ 1, 2k],

• {bij , c2i−1
j+1 , c2ij+1} ≻bij

{aij , bij , cij} ≻bij
{bij}, j ∈ [0, k − 1], i ∈ [2j ],

• {aij , bij , cij} ≻cij
{cij , ci+1

j , b
(i+1)/2
j−1 } ≻cij

{cij}, j ∈ [k], i ∈ [2j ] odd,

• {aij , bij , cij} ≻cij
{cij , ci−1

j , b
i/2
j−1} ≻cij

{cij}, j ∈ [k], i ∈ [2j ] even,

• {a10, b10, c10} ≻c10
{c10},

• {αi
j , β

i
j} ≻αi

j
{αi

j , α
i+1
j , δ

(i+1)/2
j−1 } ≻αi

j
{αi

j}, j ∈ [k − 1], i ∈ [2j ] odd,

• {αi
j , β

i
j} ≻αi

j
{αi

j , α
i−1
j , δ

i/2
j−1} ≻αi

j
{αi

j}, j ∈ [k − 1], i ∈ [2j ] even,

• {α1
0, β

1
0} ≻α1

0
{α1

0},

• {βi
j , γ

i
j , a

i
j} ≻βi

j
{βi

j , α
i
j} ≻βi

j
{βi

j}, j ∈ [0, k − 1], i ∈ [2j ],

• {γij , δij} ≻γi
j
{βi

j , γ
i
j , a

i
j} ≻γi

j
{γij}, j ∈ [0, k − 1], i ∈ [2j ],

• {δij , α2i−1
j+1 , α2i

j+1} ≻δij
{δij , γij} ≻δij

{δij}, j ∈ [0, k − 2], i ∈ [2j ], and

• {δik−1, a
2i−1
k , a2ik } ≻δik−1

{δik−1, γ
i
k−1} ≻δik−1

{δik−1}, i ∈ [2k−1].

The structure of the flatmate game is illustrated in Figure 1 for the case k = 3. We
will be particularly interested in coalitions of the types {aij , bij , cij}, {αi

j , β
i
j}, {γij , δij}, and

{yi1, yi2} which are marked by undirected edges. These coalitions form the partition π∗ of
Lemma 1 that we need later to investigate for strong and mixed popularity in the respective
reductions. The directed edges indicate that an agent at the tail of the arrow needs to form
a coalition with the agent at the tip of the arrow in order to improve from her coalition
of the above type. The ground structure of the set of agents can be viewed as a binary
tree of triangles depicted by the circular-shaped vertices. The important property of this
tree is that whenever a coalition of the type {aij , bij , cij} gets dissolved, there can only be an

improvement in popularity for the agents in Ai
j if they propagate changes in the partition

upwards within this tree. This is achieved for agents bij directly through the binary tree

and for agents aij with help of the auxiliary agents {αi
j , β

i
j , γ

i
j , δ

i
j} that are depicted as

diamond-shaped vertices.
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Figure 1: Schematic of the reduction for flatmate games with strict preferences. There is
an edge between two agents if they are in the coalition π∗ defined in Lemma 1.
Directed edges indicate improvements from π∗. The gray edges suggest a 3-
elementary set in S.

Lemma 1. Let an instance (R,S) of X3C be given and define the corresponding flat-
mate game as above. Consider the partition π∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪
{{αi

j , β
i
j}, {γij , δij} : j ∈ [0, k − 1], i ∈ [2j ]} ∪ {{yi1, yi2} : i ∈ [|R| + 1, 2k]}. Let π ̸= π∗

be an arbitrary partition of agents distinct from π∗. Then ϕ(π∗, π) ≥ 1. In addition, if
c10 ∈ N(π∗, π), then ϕ(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ⊆ N(π, π∗).

Proof. Let an instance (R,S) of X3C be given and define the corresponding flatmate game
as above. Let π∗ be defined as in the lemma and π ̸= π∗ another partition. We recursively
define the following sets of agents: for i ∈ [2k], T i

k = Ai
k and for j = k − 1, . . . , 0, i ∈ [2j ],

T i
j = Ai

j ∪ T 2i−1
j+1 ∪ T 2i

j+1. We will prove the following claim by induction over j = k, . . . , 0.

For every i ∈ [2j ] holds: Assume there exists an agent x ∈ T i
j with π(x) ̸= π∗(x). Then

ϕT i
j
(π∗, π) ≥ 1. If even π(aij) ̸= π∗(aij), then ϕT i

j
(π∗, π) ≥ 3∨{bik : i ∈ [2k]}∩T i

j ⊆ N(π, π∗).

Note that the claim implies ϕT i
j
(π∗, π) ≥ 0 in any case. Clearly, the assertion of the

lemma follows from the case j = 0.
We frequently use the facts that for all j ∈ [0, k − 1], i ∈ [2j ],

• αi
j /∈ N(π, π∗) and if βi

j ∈ N(π, π∗), then αi
j ∈ N(π∗, π), and

584



Finding and Recognizing Popular Coalition Structures

• γij /∈ N(π, π∗) and if δij ∈ N(π, π∗), then γij ∈ N(π∗, π).

The case j = k and i ∈ [2k] is immediate (using a similar fact for agents yi1 and yi2 in
the case i ∈ {|R|+ 1, . . . , 2k}).

For the induction step, let j ∈ {k − 1, . . . , 0} and fix i ∈ [2j ]. We will essentially prove
that changing the coalitions in Ai

j causes severe loss in popularity, unless we propagate

changes to substructures via bij or δij . Assume first that there exists an agent x ∈ T i
j with

π(x) ̸= π∗(x) but no such agent in Ai
j . Then, x ∈ T 2i−1

j+1 ∨ x ∈ T 2i
j+1 and the claim follows

by induction. Assume therefore that there exists an agent x ∈ Ai
j with π(x) ̸= π∗(x). Note

that ϕAi
j
(π, π∗) ≤ 1.

First consider the case that π(aij) ̸= π∗(aij). If bij ∈ N(π, π∗), we can apply induction

for T 2i−1
j+1 and T 2i

j+1 and we are done, because by induction ϕT 2i−1
j+1 ∪T 2i

j+1
(π∗, π) ≥ 4∨ {bik : i ∈

[2k]} ∩ (T 2i−1
j+1 ∪ T 2i

j+1) ⊆ N(π, π∗). We may therefore assume that bij ∈ N(π∗, π). Then,

ϕAi
j
(π∗, π) ≥ 3 or aij ∈ N(π, π∗). In the latter case, ϕAi

j
(π∗, π) ≥ 3 unless δij ∈ N(π, π∗).

Finally, if δij ∈ N(π, π∗), then the claim follows by induction for T 2i−1
j+1 and T 2i

j+1, because
ϕT i

j
(π∗, π) = ϕAi

j
(π∗, π) + ϕT 2i−1

j+1
(π∗, π) + ϕT 2i

j+1
(π∗, π) ≥ 1 + 1 + 1 = 3.

It remains the case that π(x) ̸= π∗(x) for x ∈ {αi
j , γ

i
j} while π(aij) = π∗(aij). If π(α

i
j) ̸=

π∗(αi
j), then ϕAi

j
(π∗, π) ≥ 2. If π(γij) ̸= π∗(γij), then ϕAi

j
(π∗, π) ≥ 2 or ϕAi

j
(π∗, π) ≥

0 ∧ π(δij) = {δij , α2i−1
j+1 , α2i

j+1} and the claim follows by induction.

In the next lemma, we prove that the preferences used in the construction are even
globally ranked.

Lemma 2. Let an instance (R,S) of X3C be given and define the corresponding flatmate
game as above. Then, the preferences are globally ranked.

Proof. The global preferences are composed of preferences ≻0, . . . ,≻k over the sets of coali-
tions C0, . . . , Ck, where Cj is essentially the set of coalitions that is individually rational for

some agent in Ai
j for some i ∈ [2j ]. More formally, Ck =

⋃2k

i=1{C ⊆ N : ∃v ∈ Ai
k : C ≿v {v}}

and, for j = k − 1, . . . , 0, Cj =
⋃2j

i=1{C ⊆ N : ∃v ∈ Ai
j : C ≿v {v}} \ Cj+1. Note that this

separates coalitions by level, and Cj ∩ Cj′ = ∅ for j ̸= j′. In particular, coalitions of the
types {δij , α2i−1

j+1 , α2i
j+1}, {δik−1, a

2i−1
k , a2ik }, and {bij , c2i−1

j+1 , c2ij+1} that involve agents of two lev-
els are added to the coalitions of the higher level. The global ranking is given in succinct
form over

⋃k
j=0Cj as join(≻0, . . . ,≻k). It can be extended to a full global ranking by

adding coalitions that are not individually rational for one of its members at the bottom.
It remains to specify these subrankings. The preferences over sets of coalitions can always
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be arbitrary. The ranking ≻k is given as

{{yi1, yi2} : i ∈ [|R|+ 1, 2k]}≻

≻k{{bik, yi2} : i ∈ [|R|+ 1, 2k]}≻

≻k{{yi1}, {yi2} : i ∈ [|R|+ 1, 2k]}≻

≻k{{bik, bvk, bwk } : {ri, rv, rw} ∈ S for v, w ∈ [|R|]}≻

≻k{{bik} : i ∈ [2k]}≻

≻k{{aik, bik, cik} : i ∈ [2k]}≻

≻k{{bik−1, c
2i−1
k , c2ik }, {δik−1, a

2i−1
k , a2ik } : i ∈ [2k−1]}≻

≻k{{aik}, {cik} : i ∈ [2k]}≻

For j ∈ [k − 1], the ranking ≻j is given as

{{γij , δij} : i ∈ [2j ]}≻

≻j{{aij , βi
j , γ

i
j} : i ∈ [2j ]}≻

≻j{{aij , bij , cij}, {αi
j , β

i
j} : i ∈ [2j ]}≻

≻j{{bij−1, c
2i−1
j , c2ij }, {δij−1, α

2i−1
j , α2i

j } : i ∈ [2j−1]}≻

≻j{{aij}, {bij}, {cij}, {αi
j}, {βi

j}, {γij}, {δij} : i ∈ [2j ]}≻

Finally, ≻0 is given as

{γ10 , δ10} ≻0 {a10, β1
0 , γ

1
0} ≻0 {{a10, b10, c10}, {α1

0, β
1
0}}≻

≻0{{a10}, {b10}, {c10}, {α1
0}, {β1

0}, {γ10}, {δ10}}≻

The individual preferences are clearly induced by the global ranking.

We are now ready to apply the two lemmas for the desired reductions.

Theorem 3. Deciding whether there exists a strongly popular partition in flatmate games
is coNP-hard, even if preferences are strict and globally ranked.

Proof. The reduction is from X3C. Given an instance (R,S) of X3C, we define a hedonic
game on agent set N ′ = N ∪ {z} where the agents N are as in the above construction with
the identical preferences except changing the preferences of c10 to {a10, b10, c10} ≻c10

{c10, z} ≻c10

{c10}, and {c10, z} ≻z {z}. In particular, for every agent in N \{c10}, coalitions together with z
are not individually rational. Note that |N ′| = 3

∑k
j=0 2

j+4
∑k−1

j=0 2
j+2(2k−|R|−1)+1 =

12 · 2k − 2 · |R| − 8 = O(|R|) and the reduction is in polynomial time.
Consider the partition σ∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αi

j , β
i
j}, {γij , δij} : j ∈

[0, k−1], i ∈ [2j ]}∪{{yi1, yi2} : i ∈ [|R|+1, 2k]}∪{{z}} = π∗∪{{z}} for the partition π∗ from
Lemma 1. Let σ ̸= σ∗ be given and define π = (σ \ σ(z)) ∪ {σ(z) \ {z}}, i.e. the partition
on the agent set N , where z left her coalition. Note that due to the preferences of agents
in N , ϕ(π∗, π) ≤ ϕN (σ∗, σ). We investigate the popularity margin of σ∗ and σ by a case
distinction over the possible coalitions for agent z using the knowledge of Lemma 1 about
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the relationship of the partitions π∗ and π. If σ(z) = {z}, then ϕ(σ∗, σ) = ϕ(π∗, π) ≥ 1.
If σ(z) = {c10, z}, then ϕ(σ∗, σ) ≥ −1 + ϕ(π∗, π) ≥ −1 + 1 ≥ 0. Otherwise, ϕ(σ∗, σ) =
1 + ϕ(π∗, π) ≥ 1. It follows directly that σ∗ is popular and hence there exists a strongly
popular partition if and only if σ∗ is strongly popular. We will prove that this is the case
if and only if the instance of X3C is a No-instance.

Assume that there exists no 3-partition of R through sets in S. The only case above,
where the popularity margin is not strictly positive, is if σ(z) = {z, c10}, but in this case
π(c10) = {c10} and it follows that ϕ(σ∗, σ) ≥ −1 + ϕ(π∗, π) ≥ −1 + 3 ≥ 2. Hence, σ∗ is
strongly popular.

Conversely, assume that there exists a 3-partition S′ ⊆ S of R. Define

σ′ ={{bvk, bwk , bxk} : {rv, rw, rx} ∈ S′} ∪ {{bik, yi2}, {yi1} : i ∈ [|R|+ 1, 2k]}
∪ {{δik−1, a

2i−1
k , a2ik } : i ∈ [2k−1]} ∪ {{bij , c2i−1

j+1 , c2ij+1}, {aij , βi
j , γ

i
j} : j ∈ [k − 1], i ∈ [2j ]}

∪ {{δij , α2i−1
j+1 , α2i

j+1} : j ∈ [k − 2], i ∈ [2j ]} ∪ {{α1
0}, {z, c10}}.

It is easily checked that ϕ(σ′, σ∗) = 0.
Indeed, N(σ′, σ∗) = {bik : i ∈ [2k]} ∪ {βi

j , δ
i
j , a

i
j : j ∈ [0, k − 1], i ∈ [2j ]} ∪ {yi2 : i ∈

[|R|+1, 2k]}∪{z}. Therefore, |N(σ′, σ∗)| = 2k+4
∑k−1

j=1 2
j+2k−(|R|+1)+1 = 6·2k−|R|−4 =

1
2 |N ′|. Hence, ϕ(σ′, σ∗) ≥ 0 and equality follows from popularity of σ∗. Therefore, there
exists no strongly popular partition.

A similar reduction as in Theorem 3 also works for mixed popularity. Then, however, we
need two auxiliary agents to control the switch between a strongly popular and non-popular
partition.

Theorem 4. Computing a mixed popular partition in flatmate games is NP-hard, even if
preferences are strict and globally ranked.

Popular partitions are guaranteed to exist in roommate games with strict and globally
ranked preferences (Abraham et al., 2008). We show by means of a counterexample that
this is no longer the case when moving from roommate to flatmate games. This example
game will serve as a crucial gadget to prove the hardness of computing popular partitions.

Proposition 8. There exists a flatmate game with strict and globally ranked preferences
which does not admit a popular partition.

Proof. Consider N = {x1, x2, x3} ∪ {zj1, zj2 : j ∈ [4]}, and preferences induced by the global

ranking ≻ given by {{x1, zj1, zj2} : j ∈ [4]}≻ ≻ {{x2, zj1, zj2} : j ∈ [4]}≻ ≻ {{x3, zj1, zj2} : j ∈
[4]}≻ ≻ ({{xi} : i ∈ [3]} ∪ {{zjk} : k ∈ [2], j ∈ [4]})≻. We claim that there exists no popular
partition. By Proposition 2, we only need to consider Pareto optimal partitions. Let π
be any Pareto optimal partition. Then π is individually rational. We will show how to
obtain a more popular partition. By the pigeon hole principle, there exists j ∈ [4] with
{zj1}, {zj2} ∈ π. If there exists i ∈ [3] with {xi} ∈ π, then creating the coalition {xi, zj1, zj2}
is more popular.

Otherwise, we may assume that for some {j1, j2, j3} ⊆ [4], π(xi) = {xi, zji1 , zji2 }, for
i ∈ [3]. Let j4 ∈ [4] \ {j1, j2, j3} be the remaining index. We obtain a new partition π′ by
forming π′(xi) = {xi, zji+1

1 , z
ji+1

2 }, leaving zj11 and zj12 in singleton coalitions.
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Then, N(π′, π) ⊇ {zji1 , zji2 : i ∈ [2, 4]} while N(π, π′) ⊆ {x1, x2, x3, zj11 , zj12 }. Hence,
ϕ(π′, π) ≥ 1.

The idea is to replace the agents xi of this example by the gadget of Lemma 1 to obtain
a hardness result.

Theorem 5. Deciding whether there exists a popular partition in flatmate games with strict
and globally ranked preferences is coNP-hard.

Proof. Given an instance (R,S) of X3C, we construct the flatmate game (N,≿) with strict
and globally ranked preferences as follows. We take 3 copies (Ni,≿i) of the game of
Lemma 1, where ≿i are the strict and globally ranked preferences of Lemma 2. Denote
the special partition and agent of the lemma by π∗

i and xi = c10i, respectively. Also, de-
note the set of coalitions ranked by ≿i with C ′

i and define Ci = C ′
i \ {{xi}}. We set

N = N1 ∪ N2 ∪ N3 ∪ {zj1, zj2 : j ∈ [4]}. To define global preferences, we define preferences

over C4 = {{xi, zj1, zj2} : i ∈ [3], j ∈ [4]} ∪ {{xi} : i ∈ [3]} ∪ {{zjk} : k ∈ [2], j ∈ [4]}.

{{x1, zj1, zj2} : j ∈ [4]}≻

≻4{{x2, zj1, zj2} : j ∈ [4]}≻

≻4{{x3, zj1, zj2} : j ∈ [4]}≻

≻4({{xi} : i ∈ [3]} ∪ {{zjk} : k ∈ [2], j ∈ [4]})≻

The global ranking is given over
⋃4

j=1Cj as ≿ = join(≿1,≿2,≿3,≿4) in succinct form.

We claim that there exists a popular partition if and only if (R,S) is a No-instance of
X3C.

If (R,S) is a No-instance, consider π∗ =
⋃3

i=1 π
∗
i ∪ {{zjk} : k ∈ [2], j ∈ [4]}. Let π be

any other partition. Let I = {i ∈ [3] : π∗(xi) ̸= π(xi) and define N ′ = N1 ∪ N2 ∪ N3 and
Z = {zj1, zj2 : j ∈ [4]}. We have ϕN ′(π∗, π) ≥ 3|I| (due to Lemma 1) while ϕZ(π, π

∗) ≤ 2|I|.
Hence, π∗ is more popular than π if |I| ≥ 1. In the case |I| = 0, it holds ϕN ′(π, π∗) ≤ 0
while ϕZ(π, π

∗) ≤ 0 and as π ̸= π∗, one of the inequalities must be strict.

Now assume that (R,S) is a Yes-instance of X3C and assume for contradiction that π
is popular (and hence Pareto optimal). Then, for i ∈ [3], i ∈ I. Indeed, if i /∈ I, then
π restricted to Ni must be π∗

i (otherwise, π∗
i is more popular). There exists j ∈ [4] with

π(zj1) ̸= {x1, zj1, zj2} and by Pareto optimality {zj1}, {zj2} ∈ π. We obtain a more popular

partition π′ by replacing the coalitions of Ni ∪ {zj1, zj2} by the partition of the proof of
Theorem 4 for the subgame (Ni,≿i).

It remains the case that I = [3]. We may assume that for some {j1, j2, j3} ⊆ [4], π(xi) =
{xi, zji1 , zji2 }, for i ∈ [3]. Let j4 ∈ [4] \ {j1, j2, j3} be the remaining index. We obtain a new

partition π′ by removing zj41 , zj42 from their coalitions and forming π′(xi) = {xi, zji+1

1 , z
ji+1

2 },
leaving zj11 and zj12 in singleton coalitions.

Then, N(π′, π) ⊇ {zji1 , zji2 : i ∈ [2, 4]} while N(π, π′) ⊆ {x1, x2, x3, zj11 , zj12 }. Hence,
ϕ(π′, π) ≥ 1, a contradiction.

588



Finding and Recognizing Popular Coalition Structures

To conclude the section, we deal with the problem of verifying whether a given partition
is popular or strongly popular. The respective results follow directly from the constructions
of the hardness of existence.

Theorem 6. Verifying whether a given partition in a flatmate game with strict and globally
ranked preferences is popular is coNP-complete.

Proof. In the proof of Theorem 5, the partition π∗ is popular if and only if (R,S) is a
No-instance of X3C.

Theorem 7. Verifying whether a given partition in a flatmate game is strongly popular is
coNP-complete, even if preferences are strict and globally ranked.

Proof. In the proof of Theorem 3, the partition π∗ is strongly popular if and only if (R,S)
is a No-instance of X3C.

We would like to remark a strong relationship of the existence and verification problems.
Our general proof strategy for the coNP-hardness of existence problems is to provide an
instance of a game together with a partition that is (strongly) popular if and only if the
constructed game arises from a No-instance of the NP-hard source problem (this is the
partition π∗ of property PP). If the game is based on a Yes-instance, there is no (strongly)
popular partition. In other words, all relevant questions on (strong) popularity can be
answered with this given partition.

Consequently, we actually prove coNP-hardness for a restriction of the verification prob-
lem that is only allowed to ask for verification of partitions that have to be (strongly) pop-
ular if such a partition exists. Clearly, the hardness of this restricted problem implies both
hardness of the verification and the existence problem. The latter follows from the simple
reduction that maps tuples (G, π) of a game and a partition to the game G. Instead of
giving the reduction for this unifying problem, we prefer not to introduce this restricted
verification problem, and to keep the focus on the problems that we are actually interested
in. Still, the same phenomenon will occur again for the proofs regarding cardinal hedonic
games in the next section.

4.3 Cardinal Hedonic Games

Important subclasses of hedonic games that admit succinct representations are based on
cardinal utility functions. For one, there are additively separable hedonic games (Bogomol-
naia & Jackson, 2002), where the utility that an agent associates with a coalition is the
sum of utilities he ascribes to each member of the coalition. On the other hand, there are
fractional hedonic games (Aziz, Brandl, Brandt, Harrenstein, Olsen, & Peters, 2019), where
the sum of utilities is divided by the number of agents contained in the coalition.

In the following, let vi(j) denote the utility that agent i associates with agent j. Based
on these utilities and the underlying class of games, we will deduce the utility vi(S) that i
associates with some coalition S ∈ Ni. The preferences of i over two coalitions S, T ∈ Ni

are then given by assuming that S ≿i T if and only if vi(S) ≥ vi(T ). A hedonic game (N,≿)
is an additively separable hedonic game (ASHG) if there is (vi(j))i,j∈N such that, for every
agent i, the preferences ≿i are induced by the cardinal utilities given by vi(S) =

∑
j∈S vi(j).
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Figure 2: Instance of an additively separable hedonic game with no popular partition.
Omitted edges have weight −K.

The hedonic game (N,≿) is a fractional hedonic game (FHG) if there exists (vi(j))i,j∈N
such that, for every agent i, the preferences ≿i are induced by the cardinal utilities given
by vi(S) = (

∑
j∈S vi(j))/|S|, for S ⊆ N . We focus on symmetric ASHGs and FHGs,

i.e., games for which vi(j) = vj(i) for all i, j ∈ N and denote the symmetric utilities by
v(i, j) = vi(j) = vj(i).

All hardness results in this section are obtained by rather involved reductions from X3C.

4.3.1 Additively separable hedonic games

We start by having a look at an example of an ASHG that contains no popular partition
and that will be used as a gadget in the hardness construction. There are smaller ASHGs
without a popular partition, but the instance of the proposition satisfies further properties
required for the reduction of Theorem 8 to work. All games considered in this section only
contain a single negative weight, whose absolute value is large enough to ensure that certain
coalitions will not form.

Proposition 9. Let 0 < ϵ < 1 and K ≥ 4. Consider the following ASHG, depicted in
Figure 2 with agent set N = {a1, a2, a3, b1, b2, b3, c1, c2} and utilities given by v(ai, c1) =
2, v(ai, c2) = 1, v(ai, bi) = ϵ, v(bi, c2) = 0 for all i ∈ [3] and v(x, y) = −K for all other
values not defined, yet. Then, there exists no popular partition.

Proof. Assume for contradiction that π was a popular partition. Then the following facts
hold:

• ai /∈ π(aj), i ̸= j,

• ai /∈ π(bj), i ̸= j,

• bi /∈ π(bj), i ̸= j, and

• c1 /∈ π(c2), c1 /∈ π(bj).
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In all of these cases, dissolving the coalition in question would be more popular, because all
but possibly one agent in the coalition have negative utility and an agent with non-negative
utility can only be contained in the coalition if it contains at least 3 agents. Note that K
is larger than the sum of positive weights incident to any agent and therefore its utility is
negative once it is in a coalition with an agent that gives negative utility.

Now, for every j, exactly one of the following holds: c1 ∈ π(aj) or bj ∈ π(aj). In fact,
both cannot hold as excluded above. If none holds, then π(aj) ⊆ {aj , c2} and we could
delete bj from her coalition (making no agent worse) and add it to π(aj), resulting in a
more popular partition.

Next, for i ∈ [2], there exists j with ci ∈ π(aj). Otherwise, there existed k with
π(ak) ⊆ {ak, bk} and removing bk and adding ci is more popular.

Thus, up to symmetry, the only possibility is π = {{a1, c1}, {b1}, {a2, c2, b2}, {a3, b3}}.
But then {{a2, c1}, {b2}, {a3, c2, b3}, {a1, b1}} is more popular. Hence, π was not popular.

We now discuss the proof strategy for showing that computing popular partitions in
symmetric ASHGs is NP-hard.

For a reduction from X3C, given an instance (R,S), we have R-gadgets for every element
of the ground set R and S-gadgets for every 3-elementary set in S. The gadgets for elements
of R rely on the ASHG of Proposition 9. The gadget for a set s ∈ S consists of three agents
that are very happy in a coalition of their own, but one of them is linked to the R-gadgets
corresponding to the agents in s and can simultaneously prevent the agents in these R-
gadgets from voting down a partition. This is of course at the expense of the happiness of
agents in the S-gadgets and can only happen if all three R-gadgets are simultaneously dealt
with. This is where we achieve the correspondence of the covering with 3-partitions, which
we can read off from the coalitions of the agents in S-gadgets.

Theorem 8. Checking whether there exists a popular partition in a symmetric ASHG is
NP-hard.

The verification problem for ASHGs turns out to be coNP-complete. The proof of
Theorem 9 is simpler than Aziz et al.’s ((2013b)) proof of a weaker statement for ASHGs
that do not have to be symmetric.

Theorem 9. Checking whether a given partition in a symmetric ASHG is popular is coNP-
complete.

The reductions for coNP-hardness of mixed and strong popularity as well as popularity
on ASHGs rely on the idea of property PP which we already employed in Lemma 1. The
next lemma establishes this property and is subsequently applied to prove the next four
theorems. Note that it is not possible to leverage the relationship of mixed popularity and
Pareto optimality, because Pareto optimal partitions can be found in polynomial time for
symmetric ASHGs (Bullinger, 2020).

Lemma 3. The class of symmetric ASHGs satisfies property PP.

We obtain several hardness results.
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Theorem 10. Checking whether there exists a strongly popular partition in a symmetric
ASHG is coNP-hard.

Theorem 11. Verifying whether a given partition in a symmetric ASHG is strongly popular
is coNP-complete.

Theorem 12. Computing a mixed popular partition in a symmetric ASHG is NP-hard.

We even obtain coNP-hardness of the existence of popular partitions which makes it
unlikely that the existence problem for symmetric ASHGs is in NP (otherwise coNP =
NP) and, together with Theorem 8, might be seen as evidence that this problem is even
Σp
2-complete.

Theorem 13. Checking whether there exists a popular partition in a symmetric ASHG is
coNP-hard.

4.3.2 Fractional hedonic games

We now turn to FHGs. In general, reduction proofs for FHGs tend to be more complicated
than for ASHGs, because utility functions are not additive. On top of that, negative utilities
have very different consequences in ASHGs and FHGs. In ASHGs with non-negative utility
functions, the grand coalition will form under any set of reasonable assumptions because it
is the best possible coalition for all agents. The same is not true for FHGs, which incentivize
small coalitions by having the size of a coalition in the denominator of utility functions.
Hence, in contrast to ASHGs, FHGs are meaningful in the absence of negative utilities and
it is therefore desirable to prove hardness results that even hold for non-negative utilities.

Before investigating popularity, we quote a useful proposition about the structure of
top-ranked coalitions in FHGs.

Proposition 10 (Bullinger (2020)). Let a FHG (N,≿) be given and let i ∈ N be an agent.
Let µ be the utility of a top-ranked coalition of agent i. Then, the top-ranked coalitions of
agent i are precisely the coalitions of the form {i} ∪ {j ∈ N : vi(j) > µ} ∪W for W ⊆ {j ∈
N : vi(j) = µ}.

In other words, every top-ranked coalition of agent i consists precisely of all agents j
whose utility vi(j) exceeds a certain threshold.

Now, we consider the existence and verification problem for popular partitions in frac-
tional hedonic games. The strategy is similar to the case of ASHGs. Again, there exist
gadgets for every element of R and the sets in S. The R-gadgets rely on rather simple
graphs, namely stars.

We define by Sk the star graph with k leaves, i.e., Sk
∼= G, where G = (V,E) with

V = {c, l1, . . . , lk}, E = {{c, lj} : j ∈ [k]}. We say that an FHG is induced by Sk if its agent
set is N = V , and symmetric, binary utilities are given by v(i, j) = 1 if {i, j} ∈ E and
v(i, j) = 0, otherwise, where i, j ∈ N . The next proposition classifies, which star graphs
induce FHGs admitting popular partitions. The boundary cases are illustrated in Figure 3.

Proposition 11. Let k ∈ N and consider the FHG induced by Sk.
For k ≤ 5, the (sub-)partition (of) π = {{c, l1, l2, l3}, {l4}, {l5}} is popular. For k ≥ 6,

Sk admits no popular partition.

592



Finding and Recognizing Popular Coalition Structures

c

l1

l2

l3

l4

l5

π

c

l1l2

l3

l4 l5

l6

π′

Figure 3: FHGs induced by stars. For stars with 5 leaves, a popular partition π exists (left).
This is not the case for stars with more leaves (right). For instance, the grand
coalition is more popular than partition π′.

Proof. The first part is easily seen.

For the second assertion, let k ≥ 6 and assume that π was a popular partition. Then,
|π(c)| ≤ 4, since otherwise we obtain a more popular partition if one leaf leaves π(c). But
in this case, the grand coalition is more popular (having c and at least k − 3 leaves better
off).

Using stars as gadgets, we can prove the next theorem.

Theorem 14. Checking whether there exists a popular partition in a symmetric FHG is
NP-hard, even if all utilities are non-negative.

The hardness proof for the verification problem for FHGs is a more involved version of
the proof for ASHGs.

Theorem 15. Checking whether a given partition in a symmetric FHG is popular is coNP-
complete, even if all utilities are non-negative and the underlying graph is bipartite.

The graphs used in the proof of Theorem 15 have girth 6. This is in contrast to the
polynomial-time algorithm by Aziz et al. (2019) for computing the core in FHGs with girth
at least 5.

As in the case of ASHGs, we now consider strong and mixed popularity for FHGs. First,
we derive property PP for FHGs. The underlying graph is almost identical to the one for
ASHGs, which might be surprising, because the utilities for ASHGs and FHGs induced by
the same graph will in general cause very different preferences over coalitions. However, all
coalitions that actually matter for the particular instance we consider are of size 2 and 3
and therefore the different game models behave very similarly.

Lemma 4. The class of symmetric FHGs with non-negative utility functions satisfies prop-
erty PP.
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The proof of the hardness of the existence of strongly popular partitions on FHGs is
very similar to the case of ASHGs, but there are some subtle differences regarding the
preferences of the additional agent.

Theorem 16. Checking whether there exists a strongly popular partition in a symmetric
FHG is coNP-hard, even if all utilities are non-negative.

Theorem 17. Verifying whether a given partition in a symmetric FHG is strongly popular
is coNP-complete, even if all utilities are non-negative.

Theorem 18. Computing a mixed popular partition in a symmetric FHG is NP-hard, even
if all utilities are non-negative.

As for ASHGs, we can pinpoint the complexity of the existence of popular partitions
more exactly. The general proof idea is the same, but the case analyses are simpler, because
we can choose positive utilities of the auxiliary agents, which can never help the original
agents in the copies of the game in Lemma 4.

Theorem 19. Checking whether there exists a popular partition in a symmetric FHG is
coNP-hard, even if all utilities are non-negative.

5. Conclusion

We have investigated the computational complexity of finding and recognizing popular,
strongly popular, and mixed popular partitions in various types of ordinal hedonic games
and cardinal hedonic games. Tables 1 and 2 summarize our results and give an overview of
the complexity for computing a respective partition. In the tables, NP-hardness refers to in-
tractability of the corresponding search problem, which follows directly from NP-hardness
or coNP-hardness of the existence problem via a Turing reduction. Note that both NP-
hardness and coNP-hardness of the existence problem for popularity hold for flatmate
games, ASHGs, and FHGs, where the NP-hardness for flatmate games follows from the
hardness for roommate games. It is open whether these problems are even Σp

2-complete.
Whenever we obtain hardness of an existence problem, the corresponding verification prob-
lem is coNP-complete. For mixed popularity, this follows from Proposition 3.

Two important factors that govern the complexity of computing these partitions in or-
dinal hedonic games are whether preferences may contain ties and whether coalitions of size
3 are allowed. When preferences are weak, computing mixed popular and strongly popular
partitions is only difficult for representations for which we cannot even compute Pareto op-
timal partitions efficiently. For strict preferences, however, Pareto optimal partitions can be
found efficiently while computing popular, mixed popular, and strongly popular partitions
remains intractable. These results are quite robust and all results for flatmate games hold
even when preferences are globally ranked, while this restriction allows for tractability of
popularity under strict preferences in roommate games. It can be shown that our hardness
results remain intact for tripartite matching (with strict and globally ranked preferences),
where the agents can be partitioned into three groups and individually rational coalitions
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weak preferences strict preferences

PO mPop sPop Pop PO mPop sPop Pop

IRLC in P
Flatmates NP-h.a NP-h. (Th. 2) NP-h. (Th. 3) NP-h. (Th. 4) NP-h. (Th. 3)

Roommates in Pb in P (Th. 1) in P (Cor. 3) in P (Th. 1) in Pd NP-h.g

Marriage NP-h.e in Pf

Housing in Pc in P in Ph in P in Pc

Table 1: Complexity of finding popular and Pareto optimal partitions in various classes of
hedonic games. New results are highlighted in gray and implications are marked
by gray arrows. NP-hardness of computing a popular or strongly popular partition
always follows by a Turing reduction from the existence problem.
a: Aziz et al. (2013a, Th. 5), b: Aziz et al. (2013a, Th. 7), c: Abraham et al. (2007,

Th. 3.9), d: Biró et al. (2010, Th. 6), e: Biró et al. (2010, Th. 11), Cseh et al. (2015,

Th. 2), f : Gärdenfors (1975, Th. 3), g: Gupta et al. (2019, Th. 1.1), Faenza et al. (2019,

Th. 4.6), Cseh and Kavitha (2018, Th. 2), h: Kavitha et al. (2011, Th. 2); the result by

Kavitha et al. also holds for marriage games and weak preferences; these cases are implied

by our Th. 1.

PO PO/IR mPop sPop Pop

symmetric ASHGs in Pa NP-h.a NP-h. (Th. 12) NP-h. (Th. 10) NP-h. (Th. 8, 13)

symmetric FHGs in P (0/1)a NP-h.a NP-h. (Th. 18) NP-h. (Th. 16) NP-h. (Th. 14, 19)

Table 2: Complexity of finding popular and Pareto optimal partitions in cardinal hedonic
games. New results are highlighted in gray. NP-hardness of computing a popular
or strongly popular partition always follows by a Turing reduction from the exis-
tence problem. Pareto optimal partitions in FHGs can be computed in polynomial
time for (0/1)-preferences.
a: Bullinger (2020, Th. 5.1, 5.1, 6.2, 6.4)

may only contain at most one agent of each group.8 An interesting avenue for future re-
search is to consider the three notions of popularity in further restrictions of flatmate games
such as room-roommate games or three-cyclic matching games.9 Notably, the related exis-
tence problem for stable three-dimensional matchings has also been shown to be NP-hard
(Lam & Plaxton, 2019).

Our positive results for roommate games are obtained via a single linear programming
approach that unifies a number of existing results and exploits the relationships between
the different types of popularity. On the other hand, both in flatmate games and cardinal
hedonic games, our hardness results are based on the same central idea, formalized via

8. The reduction for this result changes the source problem for the reduction in Lemma 1 to 3-Dimensional
Matching instead of Exact 3-Cover, and consists essentially of finding the tripartition of the agent set in
the existing reduction by placing the agents corresponding to the elements of the ground set of a source
instance the right way in the top layer in Figure 1.

9. Some advances in this direction were recently made by Cseh and Peters (2022).
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property PP. All of these classes of hedonic games contain games with a strongly popular
partition together with an agent that can govern the switch between strong popularity and
non-popularity by joining different sets of additional auxiliary agents. As a consequence,
results for all types of popularity and for both existence and verification problems can be
extracted from the same reduction.10

Since mixed popular partitions always exist, the natural computational problem is the
search problem. We have shown that intractability of this problem can be inferred from
corresponding results on Pareto optimality. Moreover, we prove the hardness of computing
mixed popular partitions in classes of games in which Pareto optimal partitions can be
found efficiently.11 In all our reductions, it is already hard to compute some (deterministic)
partition in the support of a mixed popular partition, i.e., a subset of Pareto optimal
partitions.
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Appendix A. Omitted Proofs

The appendix contains all omitted proofs.

A.1 Ordinal Hedonic Games

We introduce a useful notation for the next two propositions. Given a matching M and an
agent a, denote by M(a) the agent, a is matched with.

Proposition 6. Let p and q be mixed matchings. Then,

ϕ(p, q) = ϕ(xp, xq).

In particular, p is popular if and only if for all matchings M , ϕ(xp, χM ) ≥ 0.

Proof. Let p and q be two mixed matchings. By extending them with some matchings of
probability 0, we may assume that both are defined on the same set of matchingsM1, . . . ,Mk

as p = {(M1, p1), . . . , (Mk, pk)} and q = {(M1, q1), . . . , (Mk, qk)}. We derive that

10. The careful reader might have noticed that we do not extract the proofs of the verification problem for
ASHGs and FHGs from this general approach. While this is also possible, we have obtained independent
proofs which hold for a more restrictive variant of FHGs, and allow the comparison with existing results
about the complexity of computing partitions in the core.

11. Note that the complexity of Pareto optimality in FHGs under arbitrary symmetric weights is still open.
As indicated in Table 2, Bullinger (2020) only settles the problem for some restricted classes of FHGs
including binary utilities.
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ϕ(p, q) =
k∑

s,t=1

psqtϕ(Ms,Mt)

=
k∑

s,t=1

psqt
∑

a∈N
ϕa(Ms(a),Mt(a))

=

k∑

s,t=1

psqt
∑

a∈N

∑

i,j∈NG(a)

χMs(a, i)χMt(a, j)ϕa(i, j)

=
∑

a∈N

∑

i,j∈NG(a)

(
k∑

s=1

psχMs(a, i)

)(
k∑

t=1

qtχMt(a, j)

)
ϕa(i, j)

=
∑

a∈N

∑

i,j∈NG(a)

xp(a, i)xq(a, i)ϕa(i, j)

= ϕ(xp, xq).

This proves the desired equality.

Proposition 7. The separation problem for PPop can be solved in polynomial time.

Proof. Assume that a vector x ∈ RE is given. The separation problem for the match-
ing polytope can be solved in polynomial time. For the popularity constraints, we assign
weights wx to the edges of the underlying graph such that for all matchings M on G,
wx(M) = ϕ(χM , x). Therefore, their separation problem turns into finding a maximum
weight matching, which can be done in polynomial time.

We define the weights by letting

wx(i, j) =
∑

a∈NG(i)

x(i, a)ϕi(j, a) +
∑

a∈NG(j)

x(j, a)ϕj(i, a)

and compute

ϕ(χM , x) =
∑

a∈N

∑

i,j∈NG(a)

χM (a, i)x(a, j)ϕa(i, j)

=
∑

a∈N

∑

i,j∈NG(a)

χM (a, i)x(a, j)ϕa(i, j)

=
∑

a∈N

∑

j∈NG(a),i=M(a)

x(a, j)ϕa(i, j).
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On the other hand,

wx(M) =
∑

{i,j}∈M


 ∑

b∈NG(i)

x(i, b)ϕi(j, b) +
∑

b∈NG(j)

x(j, b)ϕj(i, b)




=
∑

{i,j}∈M


 ∑

b∈NG(i),j=M(i)

x(i, b)ϕi(j, b) +
∑

b∈NG(j),i=M(j)

x(j, b)ϕj(i, b)




=
∑

a∈N,a matched

∑

j∈NG(a),i=M(a)

x(a, j)ϕa(i, j)

=
∑

a∈N

∑

j∈NG(a),i=M(a)

x(a, j)ϕa(i, j)

The last equation is due to the fact that the inner sum is empty for unmatched agents
in M . Putting everything together, we conclude that ϕ(χM , x) = wx(M), which completes
the proof.

Theorem 4. Computing a mixed popular partition in flatmate games is NP-hard, even if
preferences are strict and globally ranked.

Proof. We provide a Turing reduction from X3C to the problem of finding a partition in the
support of a mixed popular partition together with its probability in this mixed partition.

Given an instance X3C, we construct a very similar game as in the proof of Theorem 3.
We have N ′ = N ∪ {z1, z2} where the agents N are as in the above construction with
identical preferences, except for changing the preferences of agent c10 to {a10, b10, c10} ≻c10

{c10, z1, z2} ≻c10
{c10}, and {c10, z1, z2} ≻zi {zi} for i ∈ [2]. By a case distinction similar to

the one in the proof of Theorem 3 and using Lemma 1, it follows that the partition π∗ =
{{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αi

j , β
i
j}, {γij , δij} : j ∈ [0, k], i ∈ [2j ] odd} ∪ {{yi1, yi2} : i ∈

[|R| + 1, 2k]} ∪ {{z1}, {z2}} is strongly popular if there exists no 3-partition of R through
sets in S. Therefore the unique mixed popular partition assigns probability 1 to π∗.

On the other hand, assume that there exist a 3-partition S′ ⊆ S of R. Define π =
{{bvk, bwk , bxk} : {rv, rw, rx} ∈ S′} ∪ {{bik, yi2}, {yi1} : i ∈ [|R|+ 1, 2k]} ∪ {{δik−1, a

2i−1
k , a2ik } : i ∈

[2k−1]}∪{{bij , c2i−1
j+1 , c2ij+1}, {aij , βi

j , γ
i
j} : j ∈ [k−1], i ∈ [2j ]}∪{{δij , α2i−1

j+1 , α2i
j+1} : j ∈ [k−2], i ∈

[2j ]} ∪ {{α1
0}, {z1, z2, c10}}. It is easily checked that ϕ(π, π∗) = 1. Therefore, there exists no

mixed popular partition that assigns probability 1 to π∗.
We can solve X3C by computing a partition π in the support of a mixed popular partition

and checking its probability in case π = π∗.

A.2 Additively separable hedonic games

Next, we consider the existence problem for ASHGs.

Theorem 8. Checking whether there exists a popular partition in a symmetric ASHG is
NP-hard.
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Figure 4: Schematic of the reduction of the existence problem for ASHGs. Edges of weight
0 and of negative weight are omitted.

Proof. The reduction is from X3C to deciding whether there exists a popular partition.

Let (R,S) be an instance of X3C. This can be reduced to an instance (N,≿), where
(N,≿) is an ASHG defined in the following way.

Let N = {ar1, ar2, ar3, br1, br2, br3, cr1, cr2 : r ∈ R} ∪ {ys, zs1, zs2 : s ∈ S} and edge weights as

• v(ari , c
r
1) = 2 and v(ari , c

r
2) = 1, v(ari , b

r
i ) = ϵ, v(bri , c

r
2) = 0 for all i ∈ [3] and r ∈ R,

• v(ar3, a
r′
3 ) = 0, v(br3, a

r′
3 ) = 0, v(br3, b

r′
3 ) = 0 for all s ∈ S and r, r′ ∈ s,

• v(ar3, y
s) = 5 and v(br3, y

s) = 0 for all s ∈ S and r ∈ R such that r ∈ s,

• v(ys, zs1) = v(ys, zs2) = 10 and v(zs1, z
s
2) = 0 for all s ∈ S, and

• v(x, y) = −40 for all other valuations not defined.

In order to enable the reduction, we can, for example, choose ϵ = 1
2 . A schematic of

the reduction for a certain set s = {i, j, k} ∈ S is depicted in Figure 4. We abbreviate
in the figure and the rest of the proof V r = {ar1, ar2, ar3, br1, br2, br3, cr1, cr2}, where r ∈ R,
and W s = {ys, zs1, zs2}, where s ∈ S. Also denote V R = ∪r∈RV r,WS = ∪s∈SW s and
A3 = {ar3 : r ∈ R}.

We show that there exists a popular partition of (N,≿) if and only if (R,S) is a Yes-
instance of X3C.

Assume (R,S) is a Yes-instance of X3C. Then, there exists S′ ⊆ S such that S′ is a par-
tition of R. Consider the partition π = {{ar1, cr1} : r ∈ R}∪{{ar2, br2, cr2} : r ∈ R}∪{{br1} : r ∈
R} ∪ {{ys, ai3, aj3, ak3, bi3, bj3, bk3} : s = {i, j, k} ∈ S′} ∪ {W s : s ∈ N \ S′} ∪ {{zs1, zs2} : s ∈ S′}.
We claim that π is popular.

Assume for contradiction that π′ is more popular than π.

We first prove the following two claims:
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1. Let r ∈ R such that for all s ∈ S with r ∈ s holds that ys /∈ π′(ar3). Then, |N(π, π′)∩
V r| − |N(π′, π) ∩ V r| ≥ 1.

2. Let r ∈ R. If |{ys : s ∈ S} ∩ π′(ar3)| ≤ 1 then, |N(π, π′)∩ V r| − |N(π′, π)∩ V r| ≥ 0. If
|{ys : s ∈ S} ∩ π′(ar3)| ≥ 2 then, |N(π, π′) ∩ V r| − |N(π′, π) ∩ V r| ≥ −1.

We start with the proof of the first claim.

Let therefore r ∈ R such that for all s ∈ S with r ∈ s holds that ys /∈ π′(ar3). Since
r ∈ R is fixed, we omit the superscript r for proving this claim. We know that a3 ∈ N(π, π′)
and b2, b3 /∈ N(π′, π) We distinguish several cases:

• First, consider the case that c1 ∈ π′(a1). Then, b1, a2 /∈ N(π′, π). In addition, we may
assume a1 /∈ N(π′, π), because otherwise c1, c2 ∈ N(π, π′) and the claim is true.

If ci ∈ N(π′, π), then c3−i /∈ N(π′, π) and either (a1 ∈ N(π, π′)∨ a2 ∈ N(π, π′))∧ b3 ∈
N(π, π′) or a1, a2 ∈ N(π, π′). In every case, |N(π′, π)| ≤ 2 and |N(π, π′)| ≥ 3 and the
claim follows.

Hence, we may assume that ci /∈ N(π′, π) and no agent can be in N(π′, π). In this
case, the claim follows.

• Second, assume c1 ∈ π′(a2). Then, a1, b2 ∈ N(π, π′). If a2 /∈ N(π′, π), then it has a
negative neighbor, i.e., a2 ∈ N(π, π′). We have |N(π, π′)| ≥ 4, |N(π′, π)| ≤ 3.

Hence, a2 ∈ N(π′, π). As a consequence, c1 /∈ N(π′, π) and c2 /∈ N(π′, π) ∨ b1 /∈
N(π′, π) and we conclude with |N(π, π′)| ≥ 3, |N(π′, π)| ≤ 2.

• Third, assume c1 ∈ π′(a3). Then, a1, b3 ∈ N(π, π′). If c2 ∈ π′(a3), then c1, c2, a2 ∈
N(π, π′) and we conclude with |N(π, π′)| ≥ 6. If c2 /∈ π′(a3), then {a1, a3, b3} ⊆
N(π, π′) and a2, b2 /∈ N(π′, π) and either b2 ∈ N(π, π′) or c2 /∈ N(π′, π).

• Finally, assume c1 /∈ π′(a1)∪π′(a2)∪π′(a3). Then a1, c1 ∈ N(π, π′) and a2 /∈ N(π′, π)∨
c2 /∈ N(π′, π). Hence, |N(π, π′)| ≥ 3, |N(π′, π)| ≤ 2. This concludes the proof of the
first claim.

Before we prove the second claim, we argue that we can assume without loss of generality
that for all r ∈ R, π′(ar3)∩V r ⊆ {ar3, br3}∨{ys : s ∈ S}∩π′(ar3) = ∅. Indeed, if both conditions
are not met, then leaving with ys ∈ {ys : s ∈ S} ∩ π′(ar3) and forming a coalition with W s

yields a partition π′′ with the following properties:

• |N(π′′, π) ∩ (N \W s)| ≥ |N(π′, π) ∩ (N \W s)| − 1 (Note that the only agent that is
not still better off is possibly ar3 since the other ar

′
3 are worse off since they would get

negative utility in π′(ar3).),

• |N(π, π′′) ∩ (N \W s)| ≥ |N(π, π′) ∩ (N \W s)|+ 1 (the only candidate is again ar3),

• |N(π′′, π) ∩W s| ≥ |N(π′, π) ∩W s|+ 3 if π(ys) ̸= W s, and

• |N(π, π′′) ∩W s| ≥ |N(π, π′) ∩W s| − 3 if π(ys) = W s.
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Other changes in W s cannot occur at the same time and we conclude ϕ(π′′, π) ≥ ϕ(π′, π)
(in fact the inequality is strict).

For the second claim, this means that if some ys ∈ π′(ar3) we can consider π′ modified
such that ys leaves her coalition. This can only decrease the size of N(π′, π)∩V r if |{ys : s ∈
S} ∩ π′(ar3)| ≥ 2 and cannot increase the size of N(π, π′) ∩ V r by more than 1. Hence, the
claim follows from the first case.

We define the set of critical subsets s ∈ S as Y c = {s ∈ S : ∃r ∈ R with ys ∈ π′(ar3)}
and the set of happy R gadgets as Rh = {r ∈ R : |{ys : s ∈ S} ∩ π′(ar3)| ≥ 2}.

We know that for every ys ∈ Y c at most 3 of the ar3 do not satisfy the condition of the
first claim. Hence, a total of max{|R| − 3|Y c| + |Rh|, 0} of the agents ar3 does so. Putting
together the claims yields

|N(π, π′) ∩ V R| − |N(π′, π) ∩ V R|
≥ max{|R| − 3|Y c|+ |Rh|, 0} − |Rh| ≥ |R| − 3|Y c|.

(1)

We claim that in addition

|N(π′, π) ∩WS | − |N(π, π′) ∩WS | ≤ |R| − 3|Y c|. (2)

The idea to prove this inequality is that every agent ys has to decide whether the agents
in W s or the ar3 with r ∈ s should be happy. Without loss of generality, we can assume
that for all s ∈ S, π(ys) ∩ A3 = ∅ or π(ys) ∩ W s = {ys}. Indeed, if both conditions are
not met, then leaving with ys and forming a coalition with W s yields a partition π′′ with
ϕ(π′′, π) ≥ ϕ(π′, π).

To prove Equation (2) note that W s ⊆ N(π, π′) ∩ WS for every s ∈ Y c such that
π(ys) = W s. In other words, |N(π, π′) ∩WS | ≥ 3|{s ∈ Y c : π(ys) = W s}|.

In addition, the only agents that get better in WS can be in a W s such that π(ys) ̸= W s

and ys /∈ Y c. This is, |N(π′, π) ∩WS | ≤ 3|{s /∈ Y c : π(ys) ̸= W s}|.
Combining the inequalities yields

|N(π′, π) ∩WS | − |N(π, π′) ∩WS |
≤ 3(|{s /∈ Y c : π(ys) ̸= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3(|{s /∈ Y c : π(ys) ̸= W s}|+ |{s ∈ Y c : π(ys) ̸= W s}|
− |{s ∈ Y c : π(ys) ̸= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3|S′| − 3|Y c| = |R| − 3|Y c|.

Combining Equation (1) and Equation (2) yields |N(π, π′)|− |N(π′, π)| ≥ 0, contradict-
ing the assumption that π′ was more popular than π.

It remains to prove that every popular partition yields a 3-partition of R with sets in
S. Therefore, assume that π is a popular partition in (N,≿). The partition will be found
by checking intersections of π(ys) ∩A3 as captured in the following claims:

1. For all r ∈ R there exists a unique s ∈ S with ys ∈ π(ar3). For this s holds that r ∈ s.

2. For all s ∈ S holds: (∃i ∈ s : ai3 ∈ π(ys)) ⇒ (∀j ∈ s, aj3 ∈ π(ys)).
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If the claim is true, S′ = {s ∈ S : A3 ∩ π(ys) ̸= ∅} covers R due to existence and is a
partition due to uniqueness and the second claim that ensures that either all three or none
of the agents in A3 corresponding to elements in s are present in a coalition π(ys).

We start to show the existence part of the first claim which will follow directly from the
property that N |V r contains no popular partition (Proposition 9).

Assume for contradiction that there exists a r ∈ R such that for all s ∈ S holds
ys /∈ π(ar3). We obtain a more popular partition in two steps. First, we modify π such
that for all agents in v ∈ V r we split their coalition into π(v) ∩ V r and V r \ π(v). This
cannot decrease the utility of any agent. Application of Proposition 9 yields a more popular
partition locally on V r that can be extended to the whole N via the remaining (modified)
coalitions in π.

For the uniqueness part assume for contradiction that there is r ∈ R and s ̸= s′ ∈ S
with {ys, ys′} ⊆ π(ar3). We distinguish two cases.

First, assume that |π(ar3)∩A3| ≤ 3. Then, there exists (without loss of generality using
symmetry amongst s and s′) an agent r′ ∈ R with r′ ∈ s and ar

′
3 /∈ π(ar3). Then, the partition

π′ obtained from π by removing the agents in W s from their partitions in π and letting
them form a coalition is more popular. Indeed, |N(π, π′)| ≤ 2 (the two remaining agents at3
with t ̸= r′ and t ∈ s are the only ones to possibly loose utility) and W s ⊆ N(π′, π).

Second, assume that |π(ar3) ∩A3| ≥ 4. Then, there exists an agent u ∈ A3 ∩ π(ar3) with
u /∈ s. The same partition π′ as in the first case yields |N(π, π′)| ≤ 3 and |N(π′, π)| ≥
|W s ∪ {u}| = 4.

In both cases, we have found a more popular partition, a contradiction.

Finally, for the second claim, in the case that there exists a s ∈ S with 1 ≤ |{j ∈ s :
aj3 ∈ π(ys)}| ≤ 2, the same rearrangement of coalitions (i.e., forming the coalition W s) is
more popular.

Theorem 9. Checking whether a given partition in a symmetric ASHG is popular is coNP-
complete.

Proof. The problem is in coNP, because a more popular partition serves as a polynomial-
time certificate for a No-instance.

For hardness, we reduce again from X3C. Given an instance (R,S) of X3C, we assume
without loss of generality that |R| ≥ 6. We define an ASHG (N,≿) given by N = R ∪
{s1, s2, s3 : s ∈ S} ∪ {b1, b2, b3} and weights as

• v(i, s3) = 1 for i ∈ s, s ∈ S,

• v(s1, s3) = v(s2, s3) = 4 for s ∈ S,

• v(sj , bj) = 1 for s ∈ S, j ∈ [2],

• v(b1, b3) = v(b2, b3) = α for |R|
3 − 1 < α < |R|

3 ,

• v(i, j) = 0 for i, j ∈ R, v(s1, s2) = 0 for s ∈ S, and v(b1, b2) = 0, and

• v(x, y) = −max{12, |S|+ |R|/3} for all agents x, y ∈ N such that no utility is defined,
yet.
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Figure 5: Schematic of the reduction for the verification problem of popular partitions on
symmetric ASHGs. Edges without explicit weight have weight 1. Omitted edges
for agents in R have weight 0. All other omitted edges have weight −12. The
partition π marked in gray is the one under consideration for verification.

One can choose, e.g., α = (|R| − 1)/3, but for the reduction, only the above bounds
matter. We introduce some useful notation for the proof. Denote V s = {s1, s2, s3} for
s ∈ S, B = {b1, b2, b3}, and V = ∪s∈SV s.

The partition in question is π = {V s : s ∈ S} ∪ {{r} : r ∈ R} ∪ {B}. We claim that
(R,S) is a Yes-instance of X3C if and only if π is not popular for the ASHG given by G.

If (R,S) is a Yes-instance, there exists a subset S′ ⊆ S that partitions R. In particular
|R| = 3|S′|.

Consider the partition given by π′ = {V s : s ∈ S \ S′} ∪ {{s3, i, j, k} : {i, j, k} = s ∈
S′} ∪ {{bj , sj : s ∈ S′} : j ∈ [2]} ∪ {{b3}}.

Then, N(π′, π) = R∪{b1, b2} and N(π, π′) = ∪s∈S′V s∪{b3}. Hence, π′ is more popular
than π.

Conversely, assume that there exists a more popular partition π′ and fix one that max-
imizes ϕ(π′, π). We have to prove that there exists a subset S′ ⊆ S that yields a partition
of R. Note that the negative weight is chosen so large that agents in a coalition linked by
negative utility are always worse off.

First, we claim that for all s ∈ S, N(π′, π) ∩ V s = ∅. Assume for contradiction that
for j ∈ [2], sj ∈ N(π′, π). Then, {sj , s3, bj} ⊆ π′(sj) ⊆ V s ∪ {bj}. Thus, s3−j , s3, bj , b3 ∈
N(π, π′).

We form a new coalition π′′ from π′ by having the coalitions V s and B (these agents
leave their coalitions in π′) and all other coalitions remain the same. We consider two cases:

• If |π′(b3−j) ∩ V | ≤ 1, then b3−j ∈ N(π, π′). (We used that |R| ≥ 6.) We have that
s3, s3−j , b1, b2, b3 ∈ N(π, π′)\N(π, π′′), s2 ∈ N(π′, π)\N(π, π′′) and possibly the agent
t ∈ π′(b3−j) ∩ V yields t ∈ N(π′, π) ∩N(π, π′′). Hence, ϕ(π′′, π) > ϕ(π′, π).
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• Otherwise, π′(b3−j)∩V ⊆ N(π, π′), but possibly b3−j ∈ N(π′, π)\N(π, π′′) in addition.
However, ϕ(π′′, π) > ϕ(π′, π) remains valid.

In any case, we derived a contradiction to the maximality condition on π′.
If s3 ∈ N(π′, π), then {s1, s2} ⊆ π′(s3), s ∩ π′(s3) ̸= ∅, and π′(s3) ⊆ V s ∪ s (here s ⊆ R

is the set of R-agents corresponding to elements of the set s). Hence, forming a coalition
π′′ by leaving with the agents in s moves these agents and s1, s2 out of N(π, π′), while only
removing s3 from N(π′, π). Hence, we again contradict the maximality of ϕ(π′, π).

For the rest of the analysis, we narrow down the possible more popular partitions to a
very specific situation that corresponds to 3-partitions. The idea is basically that whenever
we ‘sacrifice’ a set V s of agents, we can improve only 3 agents in R. Due to the boundaries
on α, we will cross the threshold, where we can have a popularity margin of precisely 1
exactly at the moment when we gathered |R|

3 neighbors for b1 and b2 in order to improve
these.

We introduce the sets RI = R ∩N(π′, π) and SC = {s ∈ S : π′(s3) ∩ R ̸= ∅}. Our goal
is to prove |R| = |RI | = 3|SC |.

For s ∈ SC holds V s ⊆ N(π, π′) (which follows for s3 since s3 /∈ N(π′, π)). Consequently,
|N(π, π′) ∩ V | ≥ 3|SC |. In addition, |N(π′, π) ∩R| = |RI | ≤ 3|SC | and ϕB(π

′, π) ≤ 1.
If |RI | < 3|SC |, then ϕ(π, π′) = ϕB(π, π

′)+ϕV (π, π
′)+ϕR(π, π

′) ≥ −1+3|SC |−(|RI |) =
3|SC | − |RI | − 1 ≥ 0 and π′ is not more popular. We conclude that |RI | = 3|SC |.

Before we conclude the proof, we show two auxiliary claims:

1. If B ⊆ π′(b3), then b1 /∈ N(π′, π) or b2 /∈ N(π′, π).

2. For j ∈ [2], if bj ∈ N(π′, π), then bj ∈ π′(b3) or |{s ∈ S : sj ∈ π′(bj)}| ≥ |R|
3 .

The first claim follows from the fact that if bj forms a coalition with an agent outside B
that gives her positive utility, then b3−j cannot be both in this coalition and improve her

utility. The second claim follows from vπ(bj) = α > |R|
3 − 1.

We are ready to prove |R| = 3|SC |. We consider the agents in B. The only possibility
for ϕ(π′, π) > 0 is that ϕB(π

′, π) ≥ 1 which can only happen if {b1, b2} ⊆ N(π′, π). Due to

the auxiliary claims, there exists j ∈ {1, 2} with |{s ∈ S : sj ∈ π′(bj)} ∩ π′(bj)| ≥ |R|
3 .

If s∗ ∈ {s ∈ S : sj ∈ π′(bj)} \ SC , then s∗j ∈ N(π, π′) (using |R| ≥ 6, i.e., |π′(bj) ∩ {s ∈
S : sj ∈ π′(bj)}| ≥ 2).12

Consequently, ϕ(π, π′) = ϕB(π, π
′)+ϕV (π, π

′)+ϕR(π, π
′) ≥ −1+(3|SC |+1)−3|SC | ≥ 0,

a contradiction. Therefore, {s ∈ S : sj ∈ π′(bj)} ⊆ SC and |R|
3 ≤ |{s ∈ S : sj ∈ π′(bj)}| ≤

|SC | = |RI |
3 ≤ |R|

3 .
Consider the set S′ = SC . Then, SC covers R since RI = R. In addition, since

|R| = 3|SC |, every agent r ∈ R is present in exactly one s ∈ SC . Hence, S
′ is a partition of

R with sets in S. In total, (R,S) is a Yes-instance of X3C.

We first prove the existence of the graph that underlies the subsequent reductions for
ASHGs. It satisfies similar properties as the flatmate game considered in Lemma 1. How-
ever, for the reduction to work, we need two sets of auxiliary agents. The first set corre-
sponds to the 3-elementary sets in S of an instance (R,S) of X3C, while the second set

12. This argument is stronger than what is needed for ASHGs, but it is needed for the case of FHGs.
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consists of two agents that allow the agents in the top-level not corresponding to elements
of R to improve their coalition.

Lemma 3. The class of symmetric ASHGs satisfies property PP.

Proof. Let (R,S) be an instance of X3C. We construct the following game. Let k = min{k ∈
N : 2k ≥ |R|} define the smallest power of 2 that is larger than the cardinality of R. We

define an ASHG on vertex set N = {ys1, ys2 : s ∈ S}∪{y1, y2}∪
⋃k

j=0Nj , where Nj =
⋃2j

i=1A
i
j

consists of 2j sets of agents Ai
j .

We define the sets of agents as

• Ai
k = {aik, bik, cik} for i ∈ [2k], and

• Ai
j = {aij , bij , cij , αi

j , β
i
j , γ

i
j , δ

i
j} for j ∈ [0, k − 1], i ∈ [2j ].

We order the set R in an arbitrary but fixed way, say R = {r1, . . . , r|R|}, and for a better
understanding of the proof and the preferences, we label the agents bik = ri for i ∈ [|R|]. If
we view the set of agents N as k+1 levels of agents, then the ground set R of the instance
of X3C is identified with some specific agents in the top level k. We are ready to define the
symmetric preferences as

• v(ys1, y
s
2) = 6k + 8 for all s ∈ S,

• v(ys2, b
i
k) = 2k + 3 if there exists s ∈ S with ri ∈ s,

• v(y1, y2) = 1,

• v(y2, b
i
k) = 2k + 3, i ∈ [|R|+ 1, 2k],

• v(bik, b
i′
k ) = 0, i, i′ ∈ [|R|+ 1, 2k],

• v(bik, b
i′
k ) = 0, i, i′ ∈ [|R|],

• v(aik, b
i
k) = v(aik, c

i
k) = v(bik, c

i
k) = k + 1, i ∈ [2k],

• For j ∈ [0, k − 1], i ∈ [2k],

– v(aij , b
i
j) = v(aij , c

i
j) = j + 1, v(bij , c

i
j) = j + 1.5,

– v(bij , c
2i−1
j+1 ) = v(bij , c

2i
j+1) = j + 1.5,

– v(αi
j , β

i
j) = j + 1, v(βi

j , γ
i
j) = 0,

– v(βi
j , a

i
j) = j + 1.75, v(γij , a

i
j) = j + 1.25,

– v(γij , δ
i
j) = j + 2, v(δij , α

2i−1
j+1 ) = v(δij , α

2i
j+1) = j + 1.5, and

• v(g, h) = −M − 1 for all g, h ∈ N such that the utility is not defined, yet, where M
is the maximum utility any agents could receive by the previous utilities.
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Let π∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αi
j , β

i
j}, {γij , δij} : j ∈ [0, k − 1], i ∈ [2j ]} ∪

{{y1, y2}} ∪ {{ys1, ys2} : s ∈ S} and x = c10.
Now consider a partition π ̸= π∗.
We will prove the following claim by induction over j = k, . . . , 0. For every i ∈ [2j ]

holds:

1. If {bij , aij} ∩ π(cij) = ∅, then ϕT i
j
(π∗, π) ≥ 1 and ϕT i

j
(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ∩ T i

j ⊆
N(π, π∗).

2. If αi
j /∈ N(π, π∗) and there exists an agent z ∈ T i

j with π(z) ̸= π∗(z). Then
ϕT i

j
(π∗, π) ≥ 1.

We will start by arguing, how the first part of the lemma follows from the induction
claim.

First, note that y1 /∈ N(π, π∗) and if y2 ∈ N(π, π∗), then y1 ∈ N(π∗, π). Similarly, for
all s ∈ S, ys1 /∈ N(π, π∗) and if ys2 ∈ N(π, π∗), then ys1 ∈ N(π∗, π). We can therefore focus on
T 1
0 and have ϕ(π∗, π) ≥ ϕT 1

0
(π∗, π). Define ρ = {C∩T 1

0 : C ∈ π} and ρ∗ = {C∩T 1
0 : C ∈ π∗},

which are the partitions π and π∗ restricted to agents in T 1
0 . If ρ = ρ∗, then π ̸= π∗ can only

happen if some agent outside T 1
0 forms a coalition with a former coalition of π∗ in T 1

0 . Note
that the only agents in T 1

0 that can improve by that are the agents of the type bik. In every
case, this will lead to ϕT 1

0
(π∗, π) ≥ 1. As we have argued above, this implies ϕ(π∗, π) ≥ 1.

If ρ ̸= ρ∗, we use the claim for the case j = 0 and observe that αi
0 /∈ N(π, π∗). Hence,

ϕ(π∗, π) ≥ 1 also holds in this case.
It needs still to be shown that if π(x)∩π∗(x) = {x}, then ϕ(π∗, π) ≥ 3 or (R,S) is a Yes-

instance. Assume therefore that π(x)∩π∗(x) = {x}. By the first part of the induction claim,
we conclude that ϕT 1

0
(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ⊆ N(π, π∗). Since we are done in the

former case, we assume that {bik : i ∈ [2k]} ⊆ N(π, π∗). This can only happen if, for every
i ∈ 1, . . . , |R|, there exists an si ∈ S with ysi2 ∈ π(bik). Define S′ = {s ∈ S : π(ys2) ∩ {bik : i ∈
[2k]} ̸= ∅}. Now fix s ∈ S′. Then, it holds that ys1 /∈ π(ys2), because otherwise agents bik ∈
π(ys1) are worse off than in π∗. In particular, ys1 ∈ N(π∗, π). Now, if at most two of the agents
bik corresponding two elements i ∈ s are in the coalition of ys2, then ys2 ∈ N(π∗, π). Together,
ϕ(π∗, π) ≥ ϕ{y1,y2}(π

∗, π) + ϕ{ys1,ys2}(π
∗, π) +

∑
s′∈S\{s}+ϕ{ys′1 ,ys

′
2 }(π

∗, π) + ϕT 1
0
(π∗, π) ≥ 0 +

2 + 0 + 1 = 3. It remains the case that π(ys2) = {ys2, bik, b
j
k, b

w
k } for every s ∈ S′ with

s = {i, j, w}. But then, S′ is a 3-partition of R by sets in S.
We will now proceed with the proof of the induction claim.
For the base case j = k, we observe that if Ai

k∩N(π, π∗) ̸= ∅, then clearly ϕAi
k
(π∗, π) ≥ 1.

In addition, if {bik, aik} ∩ π(cik) = ∅, then {aik, cik} ⊆ N(π∗, π) and bik ∈ N(π∗, π) ∪N(π, π∗).
For the induction step, let j ∈ {k − 1, . . . , 0} and fix i ∈ [2j ]. Assume first that there

exists an agent z ∈ T i
j with π(z) ̸= π∗(z) but no such agent in Ai

j . The premise of the first

claim is vacuous and this part is therefore true. Since z ∈ T 2i−1
j+1 ∨ z ∈ T 2i

j+1, we can apply

induction for the second claim since the premise of the second claim for T 2i−1
j+1 or T 2i

j+1 is

true. Assume therefore that there exists an agent z ∈ Ai
j with π(z) ̸= π∗(z).

We make the following observations.

• If αi
j ∈ N(π, π∗), then βi

j ∈ N(π∗, π).
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• If βi
j ∈ N(π, π∗), then αi

j ∈ N(π∗, π).

• If γij ∈ N(π, π∗), then δij ∈ N(π∗, π).

• If δij ∈ N(π, π∗), then γij ∈ N(π∗, π).

Now, we consider the case that π(aij) ̸= π∗(aij).

• We consider first the subcase that bij ∈ N(π, π∗). Then cij ∈ N(π∗, π).

– If π(bij) ⊇ {c2i−1
j+1 , c2ij+1}, then ϕAi

j
(π, π∗) ≤ 1 (with the above observations),

while by induction ϕT 2i−1
j+1 ∪T 2i

j+1
(π∗, π) ≥ 2 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 4 ∨ {bik : i ∈
[2k]} ∩ (T 2i−1

j+1 ∪ T 2i
j+1) ⊆ N(π, π∗) and we are done.

– Otherwise, cij ∈ π(bij). Then ϕAi
j
(π∗, π) ≥ 1 or aij ∈ N(π, π∗). The second

case can only occur for π(aij) = {aij , βi
j , γ

i
j}. Hence, ϕAi

j
(π∗, π) ≥ 1 or π(δij) =

{δij , α2i−1
j+1 , α2i

j+1}. But then ϕAi
j
(π∗, π) ≥ −1 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 and we

are done.

• We can even assume that bij ∈ N(π∗, π), since otherwise aij ∈ π(bij) and aij , c
i
j ∈

N(π∗, π) and it follows ϕAi
j
(π∗, π) ≥ 1.

• If cij ∈ N(π, π∗), then aij , b
i
j ∈ N(π∗, π) and therefore ϕAi

j
(π∗, π) ≥ 1 and we are done.

• Since π(cij) ̸= π∗(cij), we can assume that cij ∈ N(π∗, π).

• Next, consider the case that aij ∈ N(π, π∗) and, by the previous cases, cij , b
i
j ∈

N(π∗, π).

– If π(aij) = {aij , βi
j , γ

i
j}, then ϕAi

j
(π∗, π) ≥ 3 or π(δij) = {δij , α2i−1

j+1 , α2i
j+1}. In the

latter case, ϕAi
j
(π∗, π) ≥ 1 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 by induction and we are

done.

– Otherwise, βi
j ∈ π(aij) ∩ N(π∗, π) or γij ∈ π(aij) ∩ N(π∗, π). In the former case,

αi
j ∈ N(π∗, π) and in total ϕAi

j
(π∗, π) ≥ 3. In the latter case, again, ϕAi

j
(π∗, π) ≥

3 or π(δij) = {δij , α2i−1
j+1 , α2i

j+1} and the case is similar as before.

• It remains that aij , b
i
j , c

i
j ∈ N(π∗, π) in which case ϕAi

j
(π∗, π) ≥ 3.

We may therefore assume that π(aij) = π∗(aij). Only for the remaining cases, we

need that αi
j /∈ N(π, π∗). If π(αi

j) ̸= π∗(αi
j), then αi

j , β
i
j ∈ N(π∗, π) and consequently

ϕAi
j
(π∗, π) ≥ 2. If π(γij) ̸= π∗(γij), then ϕAi

j
(π∗, π) ≥ 2 or ϕAi

j
(π, π∗) ≥ 0 ∧ π(δij) ∩

{α2i−1
j+1 , α2i

j+1} ≠ ∅ and the claim follows by induction.
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For the second part of the lemma, assume that S′ is a 3-partition of R through sets in
S. Define

π′ ={{bvk, bwk , bxk, ys2}, {ys1} : {rv, rw, rx} = s ∈ S′} ∪ {{ys1, ys2} : s ∈ S \ S′}
∪ {{b|R|+1

k , . . . , b2
k

k , y2}, {y1}} ∪ {{δik−1, a
2i−1
k , a2ik } : i ∈ [2k−1]}

∪ {{bij , c2i−1
j+1 , c2ij+1}, {aij , βi

j , γ
i
j} : j ∈ [k − 1], i ∈ [2j ]}

∪ {{δij , α2i−1
j+1 , α2i

j+1} : j ∈ [k − 2], i ∈ [2j ]} ∪ {{α1
0}, {c10}}.

It is easily checked that ϕ(π′, π∗) = 1 and c10 forms a singleton coalition with c10 ∈ N(π∗, π′).

Theorem 10. Checking whether there exists a strongly popular partition in a symmetric
ASHG is coNP-hard.

Proof. The reduction is from X3C. Given an instance (R,S) of X3C, we consider the sym-
metric ASHG of Lemma 3 on agent set N with utility function v together with the parti-
tion π∗ and the special agent x ∈ N . Set M = max{∑w∈N : v(y,w)>0 v(y, w) : y ∈ N} and

α = minw∈N : v(x,w)>0 v(x,w) > 0. We define a symmetric ASHG on agent set N ′ = N ∪{z}
where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N , v′(z, x) = α/2, and
v′(z, y) = −M − 1 for y ∈ N \ {x}. Note that by Lemma 3, this reduction is in poly-
nomial time.

Consider the partition σ∗ = π∗ ∪ {{z}} and let σ ̸= σ∗ be given and define π =
(σ \ σ(z)) ∪ {σ(z) \ {z}}, that is, the partition of agent set N where z leaves her coalition.
We argue first that ϕN (σ∗, σ) ≥ ϕ(π∗, π) unless π(x) = π∗(x). Clearly, if z leaves a coalition,
only the agent x can be worse. Now recall that x receives her unique top-ranked coalition
in π∗, which means that x forms a coalition precisely with all agents that yield her positive
utility. By the choice of v(x, z), the only coalition of x that z is part of and that is not
worse for x, is π∗(x) ∪ {z}. Hence, the only case that the preferences of x over σ∗ and σ is
affected by z is if π(x) = π∗(x).

We perform a case distinction over the coalitions of z to investigate the popularity margin
between σ∗ and σ. First, if σ(z) = {z}, then ϕ(σ∗, σ) > 0 by Lemma 3. If σ(z) = {z, x},
then ϕ(σ∗, σ) ≥ −1+ϕ(π∗, π) ≥ 0 There, we can use the lemma again to see that the latter
inequality is strict if (R,S) is a No-instance. Otherwise, z ∈ N(σ∗, σ). If π(x) ̸= π∗(x),
then ϕ(σ∗, σ) ≥ 1 + ϕ(π∗, π) ≥ 1. We can therefore assume that π(x) = π∗(x). If π = π∗,
then ϕ(σ∗, σ) = ϕσ∗(z)(σ

∗, σ) > 0. If π ̸= π∗, then ϕ(σ∗, σ) ≥ 1 − 1 + ϕ(π∗, π) > 0, where
the −1 accounts for the case that x may be worse off in π compared to σ. Note that it can
not be the case that x is both better off in σ and worse off in π, since the only relevant
coalition σ(x) = π∗(x) ∪ {z}. Together, it follows that σ∗ is popular and it is a strongly
popular partition if (R,S) is a No-instance.

If (R,S) is a Yes-instance, then σ∗ is the only candidate that might be strongly popular.
Consider the partition π′ from Lemma 3 and define σ′ = (π′ \ {{x}}) ∪ {{x, z}}. Then,
x ∈ N(π∗, π′) ∩N(σ∗, σ′), whereas z ∈ N(σ′, σ∗). Therefore, ϕ(σ′, σ∗) = 1 + ϕ(π′, π∗) = 0.
Hence, π∗ is not strongly popular and there exists no strongly popular partition.

Theorem 11. Verifying whether a given partition in a symmetric ASHG is strongly popular
is coNP-complete.
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Proof. In the proof of Theorem 10, the partition σ∗ is strongly popular if, and only if, (R,S)
is a No-instance of X3C.

Theorem 12. Computing a mixed popular partition in a symmetric ASHG is NP-hard.

Proof. We give a Turing reduction from X3C. Given an instance (R,S) of X3C, we consider
the symmetric ASHG of Lemma 3 on agent set N with utility function v together with the
partition π∗ and the special agent x ∈ N . Set M = max{∑w∈N : v(y,w)>0 v(y, w) : y ∈ N}
and α = minw∈N : v(x,w)>0 v(x,w) > 0. We define a symmetric ASHG on agent set N ′ =
N ∪ {z1, z2} where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N , v′(z1, z2) =
v′(z1, x) = v′(z2, x) = α/3 > 0, and v′(zi, y) = −M − 1 for i ∈ [2], y ∈ N \ {x}. Note that
by Lemma 3, this reduction is in polynomial time.

Consider the partition σ∗ = π∗ ∪ {{z1, z2}} and let σ ̸= σ∗ be given and define π =
(σ \ (σ(z1) ∪ σ(z2))) ∪ {σ(z1) \ {z1, z2}, σ(z2) \ {z1, z2}}, that is, the partition of agent set
N where z1 and z2 leave their coalitions. Assume that (R,S) is a No-instance. We will
prove that ϕ(σ∗, σ) > 0, and therefore that σ∗ is strongly popular. We may assume that
σ(z1) = {z1, z2} or x ∈ σ(zi) for some i, because otherwise it is a Pareto improvement if z1
and z2 leave their coalitions and form a coalition of their own.

If σ(z1) = {z1, z2}, then by Lemma 3, ϕ(σ∗, σ) = ϕ(π∗, π) > 0, because π ̸= π∗.
Otherwise, assume without loss of generality that x ∈ σ(z1). Since x receives her top-
ranked coalition in π∗ and the utility provided by agents zi is sufficiently small, ϕN (σ∗, σ)−
ϕ(π∗, π) ≥ −1, where equality can only hold for π∗(x) = π(x). Now, if π(z1) ⊆ {x, z1, z2},
then ϕ(σ∗, σ) ≥ −2 + ϕ(π∗, π) ≥ 1. If there exists y ∈ N \ {x} with y ∈ σ(z1), then
z1, z2 ∈ N(σ∗, σ) and it follows ϕ(σ∗, σ) ≥ 2 − 1 + ϕ(π∗, π) > 0. In particular, the unique
mixed popular partition consists of σ∗ with probability 1.

Now assume that (R,S) is a Yes-instance. Consider the partition π′ from Lemma 3
and define σ′ = (π′ \ {{x}}) ∪ {{x, z1, z2}}. Then, x ∈ N(π∗, π′) ∩ N(σ∗, σ′), whereas
z1, z2 ∈ N(σ′, σ∗). Therefore, ϕ(σ′, σ) = 2+ ϕ(π′, π∗) = 1. Hence, the pure mixed partition
{σ∗} is not mixed popular.

We can solve X3C by computing a partition σ in the support of a mixed popular partition
and checking its probability in case σ = σ∗.

Theorem 13. Checking whether there exists a popular partition in a symmetric ASHG is
coNP-hard.

Proof. We provide a reduction from X3C. Given an instance (R,S) of X3C, we consider
the symmetric ASHG of Lemma 3 on agent set N with utility function v together with the
partition π∗ and the special agent x ∈ N . Set M = max{∑w∈N : v(y,w)>0 v(y, w) : y ∈ N}
and α = minw∈N : v(x,w)>0 v(x,w) > 0. For i ∈ [2], let Ni = {yi : y ∈ N} be two copies of
N . Accordingly, let π∗

i be their respective copies of π∗.
We define a symmetric ASHG on agent set N ′ = N1 ∪ N2 ∪ Z where Z = {zjk : k ∈

[2], j ∈ [3]}. Define Zj = {zj1, zj2}. Utilities are as follows.

• v′(yi, wi) = v(y, w) if y, w ∈ Ni for i ∈ [2],

• v′(zjk, x1) = α/7, v′(zjk, x2) = α/8 for k ∈ [2], j ∈ [3],
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• v′(zj1, z
j
2) = α for j ∈ [3], and

• v′(u, y) = −M − 1 for every pair of agents u, y ∈ N ′ such that their utility is not
defined, yet.

Note that by Lemma 3, this reduction is in polynomial time.
First assume that (R,S) is a No-instance. Then, σ∗ = π∗

1 ∪π∗
2 ∪{Zj : j ∈ [3]} is popular.

To prove this, let σ be an arbitrary partition and define πi = {σ(y) ∩ Ni : y ∈ Ni} be the
coalitions restricted to Ni. For each j ∈ [3], we can assume that σ(zjk) = Zj or there exists a
i ∈ [2] with Zj∩σ(xi) ̸= ∅. Otherwise, one can obtain a Pareto-improvement σ′ over σ and it
suffices to prove that ϕ(σ∗, σ′) ≥ 0. Indeed, if σ(zjk) = {zjk} for k ∈ [2], then creating Zj is a

Pareto-improvement. On the other hand, if {z3−k, x1, x2}∩σ(zjk) = ∅ and |σ(zjk)| ≥ 2, then

leaving her coalition with zjk yields a Pareto-improvement over σ. Hence, if x1, x2 /∈ σ(zjk),

then zj3−k ∈ σ(zjk) and putting all potential further agents in the coalition into a singleton
coalition would yield a Pareto improvement. Hence, we have already substantially restricted
the coalitions of agents in a Zj .

Next, we argue that we may assume that it does not happen that σ(zjk) = {zjk}. In

this case, there exists an i ∈ [2] with zj3−k ∈ σ(xi). We form a partition σ′ by adding zjk
to σ(zj3−k) = σ(xi). This yields a Partition with N(σ∗, σ) ⊆ N(σ∗, σ′) and N(σ′, σ∗) ⊆
N(σ, σ∗), hence ϕ(σ∗, σ′) ≥ ϕ(σ∗, σ), and it suffices to consider the popularity margin
between σ∗ and σ′.

By a similar argument, we can assume that σ(xi) ⊆ Z ∪Ni (putting all agents outside
Z ∪Ni into singleton coalitions has the same effect).

We can therefore partition the agent set N ′ into sets of the type Zj such that σ(zj1) = Zj ,
of the type Ni such that Z ∩σ(xi) = ∅, and of the type Ni ∪σ{xi} such that Z ∩σ(xi) ̸= ∅.
For the first type, ϕZj (σ∗, σ) = 0 and by Lemma 3, ϕNi(σ

∗, σ) ≥ 0 for the second type of
sets. We prove that ϕNi∪σ{xi}(σ

∗, σ) ≥ 0 if Z ∩ σ(xi) ̸= ∅.
If σ(xi) ⊆ Z ∪ {xi}, then xi ∈ N(σ∗, σ) and ϕσ(xi)\{xi}(σ

∗, σ) ≥ −2. As a consequence,
ϕNi∪σ(xi)(σ

∗, σ) ≥ −2 + ϕ(π∗
i , πi) ≥ 0 by Lemma 3.

Otherwise, Z ∩ σ(xi) ⊆ N(σ∗, σ) and the only agent in Ni that can be worse off in πi
compared to σ is xi. Note that the utilities are designed so that xi /∈ N(σ, σ∗)∩N(π∗, π). It
follows ϕNi∪σ(xi)(σ

∗, σ) = ϕNi(σ
∗, σ)+ϕσ(xi)∩Z(σ

∗, σ) ≥ ϕNi(σ
∗, σ)+1 ≥ −1+ϕ(π∗

i , πi)+1 ≥
0.

Together, it is shown that σ∗ is popular.
Conversely, assume that (R,S) is a Yes-instance and assume for contradiction that σ is

popular and define πi = {σ(y)∩Ni : y ∈ Ni} as above. The Pareto-improvements of the first
implication show that for all j, Zj ∈ σ or σ(xi)∩Zj ̸= ∅. Define I = {i ∈ [2] : Z∩σ(xi) ̸= ∅}.
The first crucial step is to prove that for all i ∈ I, it holds that there exists a j ∈ [3] with
σ(xi) = {xi} ∪ Zj .

Let therefore i ∈ I. First, σ(xi)∩Ni = {xi} since otherwise splitting σ(xi) into singleton
coalitions is more popular. In addition, x3−i /∈ σ(xi). If this happens and |σ(xi) ∩ Z| ̸= 2,
then splitting into singleton coalitions is more popular. On the other hand, if |σ(xi)∩Z| = 2,
there exists j∗ ∈ [3] with Zj∗ ∈ σ. We form the partition σ′ by leaving her coalition with x1
and forming {x1, zj

∗
1 , zj

∗
2 }. Then, {x1, x2, zj

∗
1 , zj

∗
2 } ⊆ N(σ′, σ) while N(σ, σ′) ⊆ σ(xi) ∩ Z.

Hence, σ′ is more popular.
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Hence, σ(xi) ⊆ Z ∪ {xi}. If for j ̸= j′, Zj ∩ σ(xi) ̸= ∅ and Zj′ ∩ σ(xi) ̸= ∅, then
dissolving σ(xi) is again more popular. Finally, if |σ(xi) ∩ Z| = 1, we find again a j∗ ∈ [3]

with Zj∗ ∈ σ. We form the partition σ′ by forming π(xi) ∩ Z and {xi, zj
∗

1 , zj
∗

2 } which is
more popular.

The next step is to show that I = {1, 2}. Assume for contradiction that Z ∩ σ(xi) = ∅.
Then we can assume that for all y ∈ Ni, σ(y) ⊆ Ni. If πi ̸= π∗

i , then replacing πi by
π∗
i is more popular (by Lemma 3). Otherwise πi = π∗

i and we consider the partition π′
i

of the last part of Lemma 3 for Ni. By the pigeon hole principle, there exists a j∗ ∈ [3]

with Zj∗ ∈ σ. We obtain σ′ = (σ \ (πi ∪ {Zj∗})) ∪ ((π′
i \ {{xi}}) ∪ {{xi, zj

∗
1 , zj

∗
2 }}). Then,

ϕ(σ′, σ) = ϕNi∪Zj∗ (σ′, σ) = −1 + 2 = 1 and σ′ is more popular.

Together, we can assume that there exist j1, j2 ∈ [3] with σ(xi) = {xi, zji1 , zji2 }, for i ∈ [2].

Let j3 ∈ [3] \ {j1, j2} be the third index. Note that Zj3 ∈ σ. Define σ′ = (σ \ {σ(zj1) : j ∈
[3]}) ∪ {{x1, zj21 , zj22 }, {x2, zj31 , zj32 }, Zj1}. Then, N(σ′, σ) = Zj2 ∪ Zj3 while N(σ, σ′) = Zj1 .
Hence, σ′ is more popular.

All in all, it is shown that there exists no popular partition if (R,S) is a Yes-instance.
This concludes the proof of the theorem.

A.3 Fractional Hedonic Games

Theorem 14. Checking whether there exists a popular partition in a symmetric FHG is
NP-hard, even if all utilities are non-negative.

Proof. The reduction is from X3C to deciding whether there exists a popular partition.
Let (R,S) be an instance of X3C. We transform it into an FHG (N,≿) defined by the

graph G = (N,E) that is given as follows:
N = {cr, lrj : r ∈ R, j ∈ [6]} ∪ {ys, zsj : s ∈ S, j ∈ [2]} and E = ER ∪EC ∪E6 ∪ES where

ER = {{cr, lrj} : r ∈ R, j ∈ [6]}, EC = {{lr6, ys} : s ∈ S, r ∈ s}, E6 = {{lr6, lt6} : r ̸= t, r, t ∈
s for s ∈ S}, ES = {{ys, zsj}, {zs1, zs2} : s ∈ S, j ∈ [2]}. The edge set EC connects the gadgets
for the ground set and the subsets for the X3C instance.

The weights are 1, except v(e) = 1
2 for e ∈ EC and v(e) = 1

4 for e ∈ E6. A schematic of
the reduction for a certain set s = {i, j, k} ∈ S is depicted in Figure 6.

We show that there exists a popular partition of (N,≿) if and only if (R,S) is a Yes-
instance of X3C.

Assume (R,S) is a Yes-instance of X3C. Then, there exists S′ ⊆ S such that S′ is a
partition of R. Consider the partition π = {{cr, lr1, lr2, lr3} : r ∈ R} ∪ {{lrj} : r ∈ R, j =

4, 5}∪ {{ys, li6, lj6, lk6} : s = {i, j, k} ∈ S′}∪ {{zs1, zs2} : s ∈ S′}∪ {{ys, zs1, zs2} : s ∈ S \S′}. We
claim that π is popular.

Assume for contradiction that π′ is more popular than π and let π′ be with ϕ(π′, π)
maximal. We will prove that ϕ(π, π′) ≥ 0, deriving a contradiction.

We introduce some notation for the proof. Let V r = {cr, lrj : j ∈ [6]}, where r ∈ R,

and W s = {ys, zs1, zs2}, where s ∈ S. Also denote V R = ∪r∈RV r,WS = ∪s∈SW s and
A6 = {lr6 : r ∈ R} and Y c = {s ∈ S : ∃a ∈ A6 with a ∈ π′(ys)}.

To derive a contradiction, we prove several claims.

1. Let r ∈ R such that, for all s ∈ S with r ∈ s, it holds that ys /∈ π′(lr6). Then,
ϕV r(π, π′) ≥ 1.
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Figure 6: Reduction for existence problem of popular partitions in FHGs. The schematic
displays the part of the network corresponding to one specific set s = {i, j, k}.

2. There exist no r ∈ R, s, s′ ∈ S with s ̸= s′ and {ys, ys′} ⊆ π′(lr6).

3. For all s ∈ S, it holds that π′(ys) ∩W s = {ys} or π′(ys) ⊆ W s.

4. For all r ∈ R, ϕV r(π, π′) ≥ 0.

5. It holds that ϕWS (π′, π) ≤ |R| − 3|Y c|.

The first claim says that we need sufficient external influence for V r to be ‘locally’
popular. The second and third claim give insight on the structure of potential more popular
partitions. The forth claim shows that we locally do best for every V r. The final claim
calculates the tradeoff between forming a coalition W s and joining the agents in V r.

In order to complete the proof from the claims, we apply Claims 1 and 4 to obtain
ϕV R(π, π′) ≥ max{0, |R| − 3|Y c|} ≥ |R| − 3|Y c|. Combining this inequality with the one of
Claim 5 yields ϕ(π, π′) ≥ 0.

The first claim is a straightforward case distinction considering π′(cr). Observe that by
construction of her neighboring agents, lr6 ∈ N(π, π′) or lr6 ∈ π′(cr). This property makes lr6
play an equivalent role compared to the agents lr5 and lr4 in the analysis.

We proceed with the second claim. Therefore, assume for contradiction that r ∈
R, s, s′ ∈ S with s ̸= s′ and {ys, ys′} ⊆ π′(lr6). We denote C = π′(lr6) for this part.
We claim that we can change π′ while strictly increasing ϕ(π′, π). This is done by forming
a partition π′′ that consists of coalitions W t whenever yt ∈ C. The agents outside WS in
C form a coalition of their own. Other coalitions are not changed.

• Let t ∈ S with yt ∈ C. If π(yt) = W t, then W t ⊆ N(π, π′). This is immediate for the
ztj . In addition, by assumption on C, at least 3 agents are present, and the utility is

estimated as vyt(π
′) ≤ max{

1
2
3 ,

3
2
4 ,

5
2
5 ,

6
2
6 ,

7
2
7 } = 1

2 < 2
3 = vyt(π)

• If π(yt) ̸= W t, then zt1, z
t
2 /∈ N(π′, π) and yt /∈ N(π′, π) ∨ (∃i : zti ∈ N(π, π′)).
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Define Y = |{t ∈ S : yt ∈ C}|. These first two insights yield, that ϕ{W s:s∈Y }(π′′, π) ≥
3|Y | + ϕ{W s:s∈Y }(π′, π). There is an increase of at least 6 by the assumption that

{ys, ys′} ⊆ C.

• The only agents that can decrease (π′′, π) compared to (π′, π) are in A6. Note that
if a ∈ A6 ∩ C has at most one neighbor in Y , then for some p (the number of

neighbors in A6), va(π
′) =

1
2
+ p

4
3+p < 1

4 = va(π). Define the improving agents in A6

via I = C∩A6∩N(π′, π) and the non-worsened agents as I ′ = C∩A6 \(I ∪N(π, π′)).

– If |I| ≤ 2, then ϕC∩A6(π
′′, π) ≥ ϕC∩A6(π

′, π) − 4 (the agents in I each counted
twice for being worse instead of better off).

– If |I| ≥ 3, we know that |Y | ≥ 3 (otherwise, three agents in I are incident to the
same two yt, but then in the instance of X3C, we had two identical 3-elementary
sets). This means for any a ∈ A6 ∩ C that has exactly two neighbors in Y that

for some p, va(π
′) ≤ 1+ p

4
4+p = 1

4 . Hence, a /∈ N(π′, π).

Agents in I need therefore three neighbors in Y and agents in I ′ two. Since every
agent in Y has at most three neighbors, this accumulates to |Y | ≥ |I|+ 2

3 |I ′|.
Consequently, for M = C ∩ (A6 ∪WS),

ϕ(π′′, π) = ϕN\M (π′′, π) + ϕC∩A6(π
′′, π) + ϕWS∩C(π

′′, π)

≥ ϕN\M (π′, π) + ϕC∩A6(π
′, π)− 2|I| − |I ′|+ ϕWS∩C(π

′, π) + 3|Y |
> ϕ(π′, π).

In both cases, we contradict the maximality of ϕ(π′, π).
The third claim is proven similarly, but we have to refine some calculation of the previous

claim, since we do not get the same lower bounds for the denominators of the utilities.
Assume for contradiction that s ∈ S with π′(ys) ∩A6 ̸= ∅ and π′(ys) ∩W s ̸= ∅. We set

C = π′(ys).

• First, we argue that we may assume that A6 ∩ C ∩ N(π′, π) = ∅. Otherwise, by the
previous claim, if lr6 ∈ A6 ∩C ∩N(π′, π), then cr ∈ C. Consequently, lrj ∈ N(π, π′) for
j ∈ [3] and cr ∈ N(π, π′). The latter is due to vcr(π

′) ≤ 6
9 < 3

4 = vcr(π). Also, there
exists j ∈ {4, 5} : lrj /∈ C or lr6 /∈ N(π′, π). Indeed, if the first is wrong, then for some

p, vlr6(π
′) ≤ 1+ 1

2
+ p

4
6+p = 1

4 = vlr6(π). Hence resetting the coalition within V r to π yields

a coalition contradicting the maximality of ϕ(π′, π).

• Now, we consider two cases. First assume that π(ys) ̸= W s. We claim that rear-
ranging π′ by means of removing agents of W s from π′(ys) improves ϕ(π′, π). Indeed,
zsj /∈ N(π′, π), but they will be after the rearrangement, and ys ∈ N(π′, π) afterwards.

Also, for all a ∈ A6 ∩ C, va(π
′) ≤

1
2
+ p

4
p+3 < 1

4 and these agents are already worse off in

the original π′.

• If π(ys) = W s, the same holds for agents in A6 ∩ C. Since W s ⊆ N(π, π′), the same
rearrangement improves ϕ(π′, π).
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We proceed with the next claim and fix r ∈ R. We may assume that for some s,
ys ∈ π′(lr6) (since the other case is already covered in the first claim). In addition, if
cr /∈ π′(lr6), then lr6 /∈ N(π′, π) (by the previous claims). In this case, the coalition π
restricted to V r \ {lr6} is popular and the claim is true.

Denote C = π′(lr6) and assume therefore cr ∈ C. We also know that {lr1, lr2, lr3} ∩
N(π′, π) = ∅ and |{lr1, lr2, lr3} ∩N(π, π′)| ≥ 2. Consequently, if {lr4, lr5} ∩C = ∅, we are done.
If {lr4, lr5} ∩ C ̸= ∅, {lr1, lr2, lr3} ⊆ N(π, π′). Hence, in the final case, |N(π′, π)| ≤ 3 while
|N(π, π′)| ≥ 3 and the claim is true.

For the fifth claim, we consider the coalitions in π for different ys:

• IfW s = π(ys), thenW s∩N(π′, π) = ∅ (by Claim 3) and if s ∈ Y c, thenW s ⊆ N(π, π′).
This gives |N(π, π′) ∩WS | ≥ 3|{s ∈ Y c : π(ys) = W s}|.

• If W s ̸= π′(ys) and s ∈ Y c, then W s ∩ N(π′, π) = ∅ (again using Claim 3). Conse-
quently, |N(π′, π) ∩WS | ≤ 3|{s /∈ Y c : π(ys) ̸= W s}|.
Combining the inequalities yields

|N(π′, π) ∩WS | − |N(π, π′) ∩WS |
≤ 3(|{s /∈ Y c : π(ys) ̸= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3(|{s /∈ Y c : π(ys) ̸= W s}|+ |{s ∈ Y c : π(ys) ̸= W s}|
− |{s ∈ Y c : π(ys) ̸= W s}| − |{s ∈ Y c : π(ys) = W s}|)
= 3|S′| − 3|Y c| = |R| − 3|Y c|.

This proves the final claim and we have proved that Yes-instances of X3C map to popular
partitions of the FHG.

For the reverse implication, assume that π is a popular partition. We exhibit the coali-
tions of the agents in A6.

1. For all r ∈ R, there exists a unique s ∈ S with ys ∈ π(lr6). For this s holds that r ∈ s.

2. For all r ∈ R, |A6 ∩ π(lr6)| = 3.

If the claims are true, S′ = {s ∈ S : A6 ∩ π(ys) ̸= ∅} covers R due to existence and is a
partition due to uniqueness and the fact, that uniqueness and the second claim imply that
the coalition of the unique ys must contain precisely li6 for i ∈ s.

We start with the first claim. Existence is clear because otherwise the subpartition of
π on V r (possibly restricted to V r) is popular on V r, contradicting Proposition 11.

For uniqueness, assume for contradiction that there is r ∈ R and s ̸= s′ ∈ S with
{ys, ys′} ⊆ π(lr6). We obtain a more popular coalition π′ as follows: remove the agents in
W s from their partitions in π and let them form a coalition. Then W s ∪ {ys′} ⊆ N(π′, π)
and N(π, π′) ⊆ {lr6 : r ∈ s}. Hence, π′ is more popular.

For the second claim, we know due to uniqueness in the first claim that |A6∩π(lr6)| ≤ 3.
Assume for contradiction that |A6 ∩ π(lr6)| < 3 and let ys ∈ π(lr6). Then, the same coalition
π′ as in the proof of the previous claim is more popular. This time, W s ⊆ N(π′, π) and
N(π, π′) ⊆ {lr6 : r ∈ s}, hence by assumption |N(π, π′)| ≤ 2.
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Figure 7: Schematic of the reduction for the verification problem of popular partitions on
bipartite FHGs. The bipartition is indicated by the shapes of the agents. The
partition π under consideration is marked in gray.

Theorem 15. Checking whether a given partition in a symmetric FHG is popular is coNP-
complete, even if all utilities are non-negative and the underlying graph is bipartite.

Proof. First of all, the verification problem is in coNP, because a more popular partition
serves as a polynomial-time certificate for a No-instance.

For hardness, we reduce again from X3C. Given an instance (R,S) of X3C, we assume
without loss of generality that |R| ≥ 6. We define an FHG (N,≿) given by the underlying
graph G = (N,E) depicted in Figure 7 and defined as:

N = R∪{s1, s2, s3 : s ∈ S}∪{b1, b2, b3}, E = {{s3, r} : r ∈ R∩s}∪{{s1, s3}, {s2, s3} : s ∈
S} ∪ {{sj , bj} : s ∈ S, j ∈ [2]} ∪ {{b1, b3}, {b2, b3}}.

The symmetric weights v are given as

• v(i, s3) =
1
2 if i ∈ s,

• v(s1, s3) = v(s2, s3) = 1 for s ∈ S,

• v(sj , bj) =
1
4 for s ∈ S, j ∈ [2], and

• v(b1, b3) = v(b2, b3) = α for 3(|R|−3)
4|R| < α < 3|R|

4(|R|+3) .

One can choose α with a size bounded polynomially in the input size. For the reduction,
only the above bounds matter. We introduce the same notation as in the proof for ASHGs.
Denote V s = {s1, s2, s3} for s ∈ S, B = {b1, b2, b3}, and V = ∪s∈SV s.

G is bipartite with bipartition (R∪{s1, s2 : s ∈ S}∪ {b3}, {s3 : s ∈ S}∪ {b1, b2}) and all
weights on present edges are positive.

The verification problem is asked for the partition π = {V s : s ∈ S}∪{{r} : r ∈ R}∪{B}.
We claim that (R,S) is a Yes-instance of X3C if and only if π is not popular for the FHG
given by G.
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If (R,S) is a Yes-instance, there exists a subset S′ ⊆ S that partitions R. In particular
|R| = 3|S′|.

Consider the partition given by π′ = {V s : s ∈ S \ S′} ∪ {{s3, i, j, k} : {i, j, k} = s ∈
S′} ∪ {{bj , sj : s ∈ S′} : j ∈ [2]} ∪ {{b3}}.

Then, for j ∈ [2], vbj (π
′) =

1
4
|S′|

|S′|+1 = |R|
4(|R|+3) > α

3 = vbj (π). Since all agents in R have

clearly improved their utility, R ∪ {b1, b2} ⊆ N(π′, π) (and in fact equality holds here).
Moreover, the utilities of agents in V s for s ∈ S \ S′ have not changed. Consequently,
N(π, π′) ⊆ ∪s∈S′V s ∪ {b3}. Hence, π′ is more popular than π.

Conversely, assume that there exists a more popular partition π′ and fix one that max-
imizes ϕ(π′, π). We have to prove that there exists a subset S′ ⊆ S that yields a partition
of R.

First, we make the observation that if bj ∈ N(π′, π) for j ∈ [2], then b3 ∈ N(π, π′).
Hence, ϕB(π

′, π) ≤ 1.
Second, we claim that for all s ∈ S, N(π′, π) ∩ V s = ∅. Clearly, s3 /∈ N(π′, π) (by

construction, since she receives a top coalition with respect to the given utilities). Assume
for j ∈ [2], sj ∈ N(π′, π). Then, π′(sj) = {sj , s3, bj}. Note that both neighbors of sj are
needed to improve utility, but no other agent may be present since for |π′(sj)| ≥ 4 follows

vsj (π
′) ≤

5
4
4 < 1

3 = vsj (π). In addition, s3−j , b3 ∈ N(π, π′).
We form a new coalition π′′ from π′ by having the coalitions V s and B and all other

coalitions remain the same. The exact same case distinction for b3−j as in the case of
ASHGs yields a contradiction to the maximality condition on π′.

The remainder of the proof follows a similar strategy as the one for ASHGs, but some
arguments are more tedious.

To make this more formal, we introduce the sets RI = R ∩N(π′, π) of agents in R that
form a coalition with a neighbor in π′ and SC = {s ∈ S : π′(s3) ∩R ̸= ∅}. The latter is the
set of critical sets in S whose corresponding agents s3 form a coalition with agents in R.
We split it into SC,1 = {s ∈ S : |π′(s3) ∩R| = 1} and SC,2 = SC \ SC,1.

We have the following facts:

• For s ∈ SC , s3 ∈ N(π, π′).

• For s ∈ SC,1, s1 ∈ N(π, π′) ∨ s2 ∈ N(π, π′).

• For s ∈ SC,2, s1 ∈ N(π, π′) ∧ s2 ∈ N(π, π′).

Consequently, |N(π, π′) ∩ V | ≥ 2|SC,1| + 3|SC,2|. In addition, |N(π′, π) ∩ R| = |RI | ≤
|SC,1|+ 3|SC,2|.

If SC,1 ̸= ∅, then ϕ(π, π′) = ϕB(π, π
′) + ϕV (π, π

′) + ϕR(π, π
′) ≥ −1 + 2|SC,1|+ 3|SC,2| −

(|SC,1| + 3|SC,2|) = |SC,1| − 1 ≥ 0 and π′ is not more popular. We conclude that SC,1 = ∅
or equivalently SC = SC,2.

A similar calculation excludes the case |RI | < 3|SC,2| which means |RI | = 3|SC,2|.
We claim that in fact |R| = 3|SC | = 3|SC,2|. Before we prove this, we show the same

two auxiliary claims as for ASHGs.

1. If B ⊆ π′(b3) then b1 /∈ N(π′, π) ∨ b2 /∈ N(π′, π).

2. For j ∈ [2], if bj ∈ N(π′, π), then bj ∈ π′(b3) ∨ |{s ∈ S : sj ∈ π′(bj)} ∩ π′(bj)| ≥ |R|
3 .

616



Finding and Recognizing Popular Coalition Structures

For the first claim, assume that B ⊆ π′(b3) and b1, b2 ∈ N(π′, π). Denote pj = |{s ∈
S : sj ∈ π′(b3)}|. We know that pj ≥ 1, since otherwise bj /∈ N(π′, π).

The function x 7→ 3(x−3)
4x is monotonically increasing for x > 0. Thus, by the lower

bound on α, we know that α > 3
8 (using |R| ≥ 6).

Let j ∈ [2] with pj = min{pj , p3−j}. Then |π′(b3)| ≥ 3 + 2pj . We compute vbj (π) −
vbj (π

′) = α
3 − α+

pj
4

3+2pj
=

pj
3(3+2pj)

(2α− 3
4) > 0. Hence, bj /∈ N(π′, π), a contradiction.

For the second claim, let j ∈ [2] with bj ∈ N(π′, π) and assume bj /∈ π′(b3). Similarly

as before, let p = |{s ∈ S : sj ∈ π′(bj)}|. Note that vbj (π) = α
3 > |R|−3

4|R| = 1
4

|R|
3

−1(
|R|
3

−1
)
+1

.

Therefore, vbj (π) < vbj (π
′) ≤ 1

4
p

p+1 only if p > |R|
3 − 1 and since p is an integer, this implies

p ≥ |R|
3 .

The remainder of the proof is identical to the one for ASHGs (Theorem 9).

Lemma 4. The class of symmetric FHGs with non-negative utility functions satisfies prop-
erty PP.

Proof. Let (R,S) be an instance of X3C. We construct the following game. Let k = min{k ∈
N : 2k ≥ |R|} define the smallest power of 2 that is larger than the cardinality of R. We
define a symmetric FHG with non-negative utility functions on vertex set N = {ys1, ys2 : s ∈
S} ∪ {y1, y2} ∪

⋃k
j=0Nj , where Nj =

⋃2j

i=1A
i
j consists of 2j sets of agents Ai

j .

We define the sets of agents as

• Ai
k = {aik, bik, cik} for i ∈ [2k], and

• Ai
j = {aij , bij , cij , αi

j , β
i
j , γ

i
j , δ

i
j} for j ∈ [0, k − 1], i ∈ [2j ].

We order the set R in an arbitrary but fixed way, say R = {r1, . . . , r|R|} and for a better
understanding of the proof and the preferences, we label the agents bik = ri for i ∈ [|R|]. If
we view the set of agents N as k+1 levels of agents, then the ground set R of the instance
of X3C is identified with some specific agents in the top level k. We are ready to define the
preferences.

• v(ys1, y
s
2) =

21
10(k + 1) for all s ∈ S,

• v(ys2, b
i
k) =

3
2(k + 1) if there exists s ∈ S with ri ∈ s,

• v(y1, y2) = 1,

• v(y2, b
i
k) = 2k+2(k + 1), i ∈ [|R|+ 1, 2k],

• v(bik, b
i′
k ) = 0, i, i′ ∈ [|R|+ 1, 2k],

• v(bik, b
i′
k ) =

2
3(k + 1), i, i′ ∈ [|R|],

• v(aik, b
i
k) = v(aik, c

i
k) = v(bik, c

i
k) = k + 1, i ∈ [2k],

• For j ∈ [0, k − 1], i ∈ [2k],
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– v(aij , b
i
j) = v(aij , c

i
j) = j + 1, v(bij , c

i
j) = j + 1.5,

– v(bij , c
2i−1
j+1 ) = v(bij , c

2i
j+1) = j + 1.5,

– v(αi
j , β

i
j) = j + 1, v(βi

j , γ
i
j) =

j
2 ,

– v(βi
j , a

i
j) = j + 1.75, v(γij , a

i
j) = j + 1.25,

– v(γij , δ
i
j) = j + 2, v(δij , α

2i−1
j+1 ) = v(δij , α

2i
j+1) = j + 1.6, and

• v(g, h) = 0 for all g, h ∈ N such that the utility is not defined, yet.

Let π∗ = {{aij , bij , cij} : j ∈ [0, k], i ∈ [2j ]} ∪ {{αi
j , β

i
j}, {γij , δij} : j ∈ [0, k − 1], i ∈ [2j ]} ∪

{{y1, y2}} ∪ {{ys1, ys2} : s ∈ S} and x = c10.
Now consider a partition π ̸= π∗.
We will prove the following claim by induction over j = k, . . . , 0. For every i ∈ [2j ]

holds:

1. If {bij , aij} ∩ π(cij) = ∅, then ϕT i
j
(π∗, π) ≥ 1 and ϕT i

j
(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ∩ T i

j ⊆
N(π, π∗).

2. If αi
j /∈ N(π, π∗) and there exists an agent z ∈ T i

j with π(z) ̸= π∗(z). Then
ϕT i

j
(π∗, π) ≥ 1.

We will start by arguing, how the first part of the lemma follows from the induction
claim.

First, note that y1 /∈ N(π, π∗) and if y2 ∈ N(π, π∗), then y1 ∈ N(π∗, π). Similarly, for
all s ∈ S, ys1 /∈ N(π, π∗) and if ys2 ∈ N(π, π∗), then ys1 ∈ N(π∗, π). We can therefore focus on
T 1
0 and have ϕ(π∗, π) ≥ ϕT 1

0
(π∗, π). Define ρ = {C∩T 1

0 : C ∈ π} and ρ∗ = {C∩T 1
0 : C ∈ π∗},

which are the partitions π and π∗ restricted to agents in T 1
0 . If ρ = ρ∗, then π ̸= π∗ can only

happen if some agent outside T 1
0 forms a coalition with a former coalition of π∗ in T 1

0 . Note
that the only agents in T 1

0 that can improve by that are the agents of the type bik. In every
case, this will lead to ϕT 1

0
(π∗, π) ≥ 1. As we have argued above, this implies ϕ(π∗, π) ≥ 1.

If ρ ̸= ρ∗, we use the claim for the case j = 0 and observe that αi
0 /∈ N(π, π∗). Hence,

ϕ(π∗, π) ≥ 1 also holds in this case.
It needs still to be shown that if π(x) ∩ π∗(x) = {x}, then ϕ(π∗, π) ≥ 3 or (R,S) is a

Yes-instance. Assume therefore that π(x)∩ π∗(x) = {x}. By the first part of the induction
claim, we conclude that ϕT 1

0
(π∗, π) ≥ 3 or {bik : i ∈ [2k]} ⊆ N(π, π∗). Since we are done

in the former case, we assume that {bik : i ∈ [2k]} ⊆ N(π, π∗). This can only happen if,
for every i ∈ 1, . . . , |R|, there exists an si ∈ S with ysi2 ∈ π(bik). Indeed, if this is not

the case, then the utility of bik is bounded by
2(k+1)+ 2λ

3
(k+1)

3+λ = 2
3(k + 1) = vbik

(π∗), where

λ = |{bjk : j ∈ [|R|]} ∩ (π(bik) \ {bik})|. Note that the equality is true for every λ ≥ 0. Hence,
bik /∈ N(π, π∗).

Define S′ = {s ∈ S : π(ys2) ∩ {bik : i ∈ [|R|]} ≠ ∅}. Now fix s ∈ S′ and define C = π(ys2).
We deal first with the case that ys1 ∈ C and let ri ∈ R with bik ∈ C. We claim that

aik, c
i
k ∈ C. Otherwise, for some λ ≥ 0, vbik

(π) ≤
3
2
(k+1)+(k+1)+ 2λ

3
(k+1)

4+λ < 2
3(k+1) = vbik

(π∗),

and bik /∈ N(π, π∗), which is a contradiction. Hence, aik, c
i
k ∈ C. If ys2 ∈ N(π∗, π), we are
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done, because then ϕ(π∗, π) ≥ ϕ{y1,y2}(π
∗, π)+ϕ{ys1,ys2}(π

∗, π)+
∑

s′∈S\{s}+ϕ{ys′1 ,ys
′

2 }(π
∗, π)+

ϕT 1
0
(π∗, π) ≥ 0 + 2 + 0 + 1 = 3. Now, if C ∩ {bjk : j ∈ [|R|]} = {bik}, then vys2(π) ≤

21
10

(k+1)+ 3
2
(k+1)

5 < 21
20(k + 1) = vys2(π

∗), but we already excluded that. Thus, there is i′ ̸= i

with bi
′
k ∈ C. It is easy to see that bi

′
k ∈ N(π∗, π), which is contradicting our assumption that

{bik : i ∈ [2k]} ⊆ N(π, π∗). This concludes the case that ys1 ∈ C and we assume henceforth
that, for all s ∈ S′, ys1 /∈ C.

Let I = s∩{ri ∈ R : bik ∈ C} the set of members of s whose corresponding agents are in

the coalition C. If |I| ≤ 2, then vys2(π) ≤
6
2
(k+1)

3 = k+1 < 21
20(k+1) = vys2(π

∗). However, it is

already excluded that ys2 ∈ N(π∗, π). Hence, |I| = 3. In other words, π(ys2) = {ys2, bik, b
j
k, b

w
k }

with s = {i, j, w}. We conclude that S′ is a 3-partition of R by sets in S.
We will now proceed with the proof of the induction claim.
For the base case j = k, fix i ∈ [2k] and assume that Ai

k /∈ π. We observe that if Ai
k ∩

N(π, π∗) ̸= ∅, then clearly ϕAi
k
(π∗, π) ≥ 1. If Ai

k ∩N(π, π∗) = ∅, then {aik, cik} ⊆ N(π∗, π)

and ϕAi
k
(π∗, π) ≥ 1. If in addition {bik, aik} ∩ π(cik) = ∅, then bik ∈ N(π∗, π) ∪N(π, π∗) and

the first part of the claim follows.
For the induction step, let j ∈ {k − 1, . . . , 0} and fix i ∈ [2j ]. Assume first that there

exists an agent z ∈ T i
j with π(z) ̸= π∗(z) but no such agent in Ai

j . The premise of the first

claim is vacuous and this part is therefore true. Since z ∈ T 2i−1
j+1 ∨ z ∈ T 2i

j+1, we can apply

induction for the second claim since the premise of the second claim for T 2i−1
j+1 or T 2i

j+1 is

true. Assume therefore that there exists an agent z ∈ Ai
j with π(z) ̸= π∗(z).

We make the following observations.

• If αi
j ∈ N(π, π∗), then βi

j ∈ N(π∗, π).

• If βi
j ∈ N(π, π∗), then αi

j ∈ N(π∗, π).

• If γij ∈ N(π, π∗), then δij ∈ N(π∗, π).

• If δij ∈ N(π, π∗), then γij ∈ N(π∗, π).

Now, we consider the case that π(aij) ̸= π∗(aij).

• We consider first the subcase that bij ∈ N(π, π∗). Then cij ∈ N(π∗, π).

– If π(bij) ⊇ {c2i−1
j+1 , c2ij+1}, then ϕAi

j
(π, π∗) ≤ 1 (with the above observations),

while by induction ϕT 2i−1
j+1 ∪T 2i

j+1
(π∗, π) ≥ 2 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 4 ∨ {bik : i ∈
[2k]} ∩ (T 2i−1

j+1 ∪ T 2i
j+1) ⊆ N(π, π∗) and we are done.

– Otherwise, cij ∈ π(bij) and π(bij)∩{c2i−1
j+1 , c2ij+1} ≠ ∅. Then ϕAi

j
(π∗, π) ≥ 1 or aij ∈

N(π, π∗). We only need to consider the second case. Assume for contradiction
that aij ∈ π(bij). Then, π(bij) ∩ {βi

j , γ
i
j} ̸= ∅ (otherwise, aij ∈ N(π∗, π)). Then,

vbij
(π) ≤ 3j+4

5 < 2j+2.5
3 = vbij

(π∗), contradicting our assumption on bij (note

that we used that π(bij) ̸⊇ {c2i−1
j+1 , c2ij+1}). Therefore, aij /∈ π(bij) and therefore

π(aij) = {aij , βi
j , γ

i
j}. Hence, ϕAi

j
(π∗, π) ≥ 1 or π(δij) = {δij , α2i−1

j+1 , α2i
j+1}. But

then ϕAi
j
(π∗, π) ≥ −1 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 and we are done.
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• We can even assume that bij ∈ N(π∗, π), since otherwise aij ∈ π(bij) and aij , c
i
j ∈

N(π∗, π) and it follows ϕAi
j
(π∗, π) ≥ 1.

• If cij ∈ N(π, π∗), then aij , b
i
j ∈ N(π∗, π) and therefore ϕAi

j
(π∗, π) ≥ 1 and we are done.

• Since π(cij) ̸= π∗(cij), we can assume cij ∈ N(π∗, π)

• Next, consider the case that aij ∈ N(π, π∗) and, by the previous cases, cij , b
i
j ∈

N(π∗, π).

– If π(aij) = {aij , βi
j , γ

i
j}, then ϕAi

j
(π∗, π) ≥ 3 or π(δij) = {δij , α2i−1

j+1 , α2i
j+1}. In the

latter case, ϕAi
j
(π∗, π) ≥ 1 and ϕT 2i−1

j+1 ∪T 2i
j+1

(π∗, π) ≥ 2 by induction and we are

done.

– Otherwise, βi
j ∈ π(aij) ∩ N(π∗, π) or γij ∈ π(aij) ∩ N(π∗, π). In the former case,

αi
j ∈ N(π∗, π) and in total ϕAi

j
(π∗, π) ≥ 3. In the latter case, again, ϕAi

j
(π∗, π) ≥

3 or π(δij) = {δij , α2i−1
j+1 , α2i

j+1} and the case is similar as before.

• Note that aij is not indifferent between π(aij) and π∗(aij), because π(aij) ̸= π∗(aij). It

remains that aij , b
i
j , c

i
j ∈ N(π∗, π), in which case ϕAi

j
(π∗, π) ≥ 3.

We may therefore assume that π(aij) = π∗(aij). Only for the remaining cases, we

need that αi
j /∈ N(π, π∗). If π(αi

j) ̸= π∗(αi
j), then αi

j , β
i
j ∈ N(π∗, π) and consequently

ϕAi
j
(π∗, π) ≥ 2. If π(γij) ̸= π∗(γij), then ϕAi

j
(π∗, π) ≥ 2 or ϕAi

j
(π, π∗) ≥ 0 ∧ π(δij) ∩

{α2i−1
j+1 , α2i

j+1} ≠ ∅ and the claim follows by induction.

For the second part of the lemma, assume that S′ is a 3-partition of R through sets in
S. Define

π′ ={{bvk, bwk , bxk, ys2}, {ys1} : {rv, rw, rx} = s ∈ S′} ∪ {{ys1, ys2} : s ∈ S \ S′}
∪ {{b|R|+1

k , . . . , b2
k

k , y2}, {y1}} ∪ {{δik−1, a
2i−1
k , a2ik } : i ∈ [2k−1]}

∪ {{bij , c2i−1
j+1 , c2ij+1}, {aij , βi

j , γ
i
j} : j ∈ [k − 1], i ∈ [2j ]}

∪ {{δij , α2i−1
j+1 , α2i

j+1} : j ∈ [k − 2], i ∈ [2j ]} ∪ {{α1
0}, {c10}}.

It is easily checked that ϕ(π′, π∗) = 1 and that c10 forms a singleton coalition with
c10 ∈ N(π∗, π′).

Theorem 16. Checking whether there exists a strongly popular partition in a symmetric
FHG is coNP-hard, even if all utilities are non-negative.

Proof. The reduction is from X3C. Given an instance (R,S) of X3C, we consider the sym-
metric, non-negative FHG of Lemma 4 on agent set N with utility function v together with
the partition π∗ and the special agent x ∈ N . We define a symmetric, non-negative FHG
on agent set N ′ = N ∪ {z} where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N ,
v′(z, x) = vx(π

∗)/2, and v′(z, y) = 0 for y ∈ N \{x}. Note that by Lemma 4, this reduction
is in polynomial time.
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Consider the partition σ∗ = π∗∪{{z}} and let a partition σ ̸= σ∗ of N ′ be given. Define
π = (σ\σ(z))∪{σ(z)\{z}}. Note that every agent y ∈ N \{x} can only improve her utility
if z leaves her coalition. In addition, the utility v(x, z) is designed so that x still receives
her unique top-ranked coalition in σ∗ (apply Proposition 10). Hence, ϕN (σ∗, σ) ≥ ϕ(π∗, π).

We consider the popularity margin between σ∗ and σ by a case distinction. If π ̸= π∗,
then ϕ(σ∗, σ) ≥ −1+ϕ(π∗, π) ≥ 0 and ϕ(σ∗, σ) > 0 if (R,S) is a No-instance. On the other
hand, if π = π∗, then σ(z) ̸= {z} (since σ ̸= σ∗). As vy(π

∗) > 0 for all y ∈ N , we know
that |σ(z) \ {z}| ≥ 2 and y ∈ N(σ∗, σ) for all y ∈ σ(z) \ {z} (by design of the utilities, this
holds in particular for agent x). Hence, ϕ(σ∗, σ) = ϕσ(z)(σ

∗, σ) ≥ −1 + |σ(z) \ {z}| > 0

It follows that σ∗ is popular and it is a strongly popular partition if (R,S) is a No-
instance.

If (R,S) is a Yes-instance, then σ∗ is the only candidate that might be strongly popular.
Consider the partition π′ from Lemma 4 and define σ′ = (π′ \ {{x}}) ∪ {{x, z}}. Then,
x ∈ N(π∗, π′) ∩ N(σ∗, σ′), whereas z ∈ N(σ′, σ∗). Therefore, ϕ(σ′, σ) = 1 + ϕ(π′, π∗) = 0.
Hence, π∗ is not strongly popular and there exists no strongly popular partition.

Theorem 17. Verifying whether a given partition in a symmetric FHG is strongly popular
is coNP-complete, even if all utilities are non-negative.

Proof. In the proof of Theorem 10, the partition σ∗ is strongly popular if, and only if, (R,S)
is a No-instance of X3C.

Theorem 18. Computing a mixed popular partition in a symmetric FHG is NP-hard, even
if all utilities are non-negative.

Proof. We give a Turing reduction from X3C. Given an instance (R,S) of X3C, we consider
the symmetric FHG of Lemma 4 on agent set N with utility function v together with the
partition π∗ and the special agent x ∈ N . We define a symmetric, non-negative FHG on
agent set N ′ = N ∪ {z1, z2} where the utilities are given by v′(y, w) = v(y, w) if y, w ∈ N ,
v′(z1, z2) = vx(π

∗)/2, v′(z1, x) = v′(z2, x) = vx(π
∗)/3 > 0, and v′(zi, y) = 0 for i ∈ [2], y ∈

N \ {x}. Note that by Lemma 4, this reduction is in polynomial time.

Consider the partition σ∗ = π∗ ∪ {{z1, z2}} and let σ ̸= σ∗ be given. Define π =
(σ \ (σ(z1) ∪ σ(z2))) ∪ {σ(z1) \ {z1, z2}, σ(z2) \ {z1, z2}}, that is, the partition of agent set
N where z1 and z2 leave their coalitions. Assume that (R,S) is a No-instance. We will
prove that ϕ(σ∗, σ) > 0, and therefore that σ∗ is strongly popular. We may assume that
σ(z1) = {z1, z2} or x ∈ σ(zi) for some i, because otherwise it is a Pareto improvement if z1
and z2 leave their coalitions and form a coalition of their own.

Note that as in the proof of Theorem 16, it holds that ϕN (σ∗, σ) ≥ ϕ(π∗, π). Now, for
i ∈ [2] holds that zi ∈ N(σ∗, σ) unless σ(zi) ∈ {{z1, z2, x}, {z1, z2}}. If σ(zi) = {z1, z2},
then ϕ(σ∗, σ) = ϕ(π∗, π) ≥ 1, because π ̸= π∗. On the other hand, σ(zi) = {z1, z2, x},
then π(x) ∩ π∗(x) = {x} and it follows that ϕ(σ∗, σ) ≥ −2 + ϕ(π∗, π) ≥ 1 (where the
last inequality uses Lemma 4). It remains the case that z1, z2 ∈ N(σ∗, σ) and we obtain
ϕ(σ∗, σ) ≥ 2 + ϕ(π∗, π) ≥ 2. Together, the partition σ∗ is strongly popular and therefore,
the unique mixed popular partition consists of σ∗ with probability 1.

Now assume that (R,S) is a Yes-instance. Consider the partition π′ from Lemma 4
and define σ′ = (π′ \ {{x}}) ∪ {{x, z1, z2}}. Then, x ∈ N(π∗, π′) ∩ N(σ∗, σ′), whereas
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z1, z2 ∈ N(σ′, σ∗). Therefore, ϕ(σ′, σ) = 2+ ϕ(π′, π∗) = 1. Hence, the pure mixed partition
{σ∗} is not mixed popular.

We can solve X3C by computing a partition σ in the support of a mixed popular partition
and checking its probability in case that σ = σ∗.

Theorem 19. Checking whether there exists a popular partition in a symmetric FHG is
coNP-hard, even if all utilities are non-negative.

Proof. We provide a reduction from X3C. Given an instance (R,S) of X3C, we consider the
symmetric FHG with non-negative utility functions of Lemma 4 on agent set N with utility
function v together with the partition π∗ and the special agent x ∈ N . Set α = vx(π

∗). For
i ∈ [2], let Ni = {yi : y ∈ N} be two copies of N . Accordingly, let π∗

i be their respective
copies of π∗.

We define a symmetric ASHG on agent set N ′ = N1 ∪ N2 ∪ Z where Z = {zjk : k ∈
[2], j ∈ [3]}. Define Zj = {zj1, zj2}. Utilities are as follows.

• v′(yi, wi) = v(y, w) if y, w ∈ Ni for i ∈ [2],

• v′(zjk, x1) = 2α/5, v′(zjk, x2) = α/3 for k ∈ [2], j ∈ [3],

• v′(zj1, z
j
2) = α/2 for j ∈ [3], and

• v′(u, y) = 0 for every pair of agents u, y ∈ N ′ such that their utility is not yet defined.

By Lemma 4, this reduction is in polynomial time.

First assume that (R,S) is a No-instance. We claim that σ∗ = π∗
1 ∪π∗

2 ∪{Zj : j ∈ [3]} is
popular. To prove this, let σ ̸= σ∗ be an arbitrary partition and define πi = {σ(y)∩Ni : y ∈
Ni} be the coalitions restricted to Ni. Let k ∈ [2] and j ∈ [3]. The first key insight is
that if there exists y ∈ σ(zjk) \ (Zj ∪ {x1, x2}), then zjk ∈ N(σ∗, σ). Assume that such an

agent y exists. Observe that the only agents that provide positive utility to zjk are zj3−k, x1,

and x2. The maximum utility that under these circumstances can be obtained for zjk is if

σ(zjk) = {zjk, z
j
3−k, x1, y} and even in this case v

zjk
(σ) =

α
2
+ 2α

5
4 = 9α

40 < α
4 = vzik

(σ∗).

We will use this insight to show that we can assume for every k ∈ [2], j ∈ [3] that
σ(zjk) ⊆ Zj ∪ {x1, x2}. Fix again k ∈ [2], j ∈ [3] and assume otherwise. Then, σ(zjk)∩ (Zj ∪
{x1, x2}) ⊆ N(σ∗, σ). This follows for agents in Zj from what we have just shown before,
and for agents xi by the design of their utilities and the fact that they received a top-ranked
coalition in π∗

i and by Proposition 10 in σ∗. We modify σ by leaving the coalition with

the agents in Zj , that is, we define σ′ = (σ \ σ(zjk)) ∪ {σ(zjk) \ Zj , σ(zjk) ∩ Zj}. Then,
N(σ∗, σ′) ⊆ N(σ∗, σ) and N(σ, σ∗) ⊆ N(σ′, σ∗), which implies that ϕ(σ∗, σ) ≥ ϕ(σ∗, σ′)
and it suffices to consider σ′ and show a non-negative popularity margin for that partition.

We are ready to compute the popularity margin. Therefore, define I = {i ∈ [2] : σ(xi)∩
Z ̸= ∅}. Note that for i ∈ [2], ϕNi(σ

∗, σ) ≥ ϕ(π∗
i , πi). Furthermore, if i ∈ I, then πi(xi) ∩

Ni = {xi} and |Z ∩ σ(xi)| ≤ 2. It follows that ϕ(σ∗, σ) = ϕN1(σ
∗, σ) + ϕN2(σ

∗, σ) +
ϕZ(σ

∗, σ) ≥ ∑
i∈I ϕNi(π

∗
i , πi) +

∑
i/∈I ϕNi(π

∗
i , πi) + ϕZ(σ

∗, σ) ≥ 3|I| − |{z ∈ Z : σ(z) ∩
{x1, x2} ≠ ∅}| = 3|I| − 2|I| ≥ 0. Hence, σ∗ is popular.
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Conversely, assume that (R,S) is a Yes-instance and assume for contradiction that σ is
popular and define πi = {σ(y) ∩Ni : y ∈ Ni} as above.

The overall proof strategy is as follows. First, we show that for k ∈ [2] and j ∈ [3],
σ(zjk) ∈ {Zj , Zj ∪ {x1}, Zj ∪ {x2}}. Then we show, that for i ∈ [2], there exists j ∈ [3] with
Zj ∪ {xi} ∈ σ. Finally, we perform a cyclic exchange of such coalitions.

Let k ∈ [2] and j ∈ [3] and define C = σ(zjk). The first crucial step is to show that
C ⊆ {x1, x2} ∪ Zj . To see this, assume for contradiction that there exists an agent y ∈
C \ ({x1, x2} ∪ Zj). We may assume that vy(σ) > 0, since otherwise leaving the coalition
with y yields a Pareto-improvement. Recall, that we have shown in the first part of the proof
that, under these circumstances, v

zjk
(Zj) > v

zjk
(σ). The same holds for zj3−k in both the case

that zj3−k ∈ C and zj3−k /∈ C. Define σ′ = (σ\{σ(zj1), σ(zj2)})∪{σ(zj1)\{zj1}, σ(zj2)\{zj2}, Zj}.
Then {zj1, zj2, y} ⊆ N(σ′, σ), while N(σ, σ′) ⊆ {x1, x2}. Hence, σ′ is more popular, which is
a contradiction. It follows that C ⊆ {x1, x2} ∪ Zj .

Next, we claim that zj3−k ∈ σ(zjk). Assume otherwise. If one of zjk and zj3−k is in a

singleton coalition, it is a Pareto improvement to form σ(zjk) ∪ σ(zj3−k). Otherwise, there

exists i ∈ [2] with σ(zjk) = {xi, zjk} and if σ(zj3−k) = {zj3−k, x3−i}. Hence, if zj3−k leaves her

coalition and joins σ(zjk), we obtain a more popular partition.
Define I = {i ∈ [2] : Z ∩ σ(xi) ̸= ∅} and let i ∈ I. We claim that there exists j ∈ [3]

with σ(xi) = {xi} ∪ Zj . Let k ∈ [2], j ∈ [3] with zjk ∈ σ(xi). We already know that
then Zj ⊆ σ(xi) ⊆ Zj ∪ {x1, x2}. Furthermore, by the pigeon hole principle, for some
j′ ∈ [3] \ {j} holds Zj′ ∈ σ. Assume for contradiction that x3−i ∈ σ(xi). Then, σ′ = (σ \
{σ(xi), Zj′})∪{Zj ∪{x1}, Zj′ ∪{x2}} is more popular. Indeed, N(σ′, σ) = {x1, x2, zj

′
1 , z

j′
2 },

while N(σ, σ′) = Zj .
The remainder of the proof is identical to the proof for ASHGs, namely we show that

I = {1, 2} and find a more popular partition even in this case.
All in all, it is shown that there exists no popular partition if (R,S) is a Yes-instance.

This concludes the proof of the theorem.
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C O R E P U B L I C AT I O N 3 : B O U N DA R I E S TO
S I N G L E - A G E N T S TA B I L I T Y I N A D D I T I V E LY
S E PA R A B L E H E D O N I C G A M E S

summary

Coalition formation considers the question of how to partition a set
of agents into coalitions with respect to their preferences. Addi-
tively separable hedonic games are a dominant model where cardi-
nal single-agent values are aggregated into utilities for coalitions by
taking sums of the single-agent values of all coalition members.

Output partitions in hedonic games are typically measured by no-
tions of stability, which is defined by the absence of beneficial devi-
ations. We follow this approach by considering stability based on
single-agent deviations, where some agent abandons their current
coalition to join another existing coalition or to form a singleton coali-
tion. Naturally, permissible deviations should always lead to an im-
provement in utility for the deviator. However, deviations may also
be constrained by demanding the consent of agents involved in the
deviations, i.e., by agents in the abandoned or joined coalition. Most
of the existing research focuses on the unanimous consent of one
or both of these coalitions, but more recent research relaxes this to
majority-based consent.

Our contribution is twofold. First, we settle the computational com-
plexity of the existence of contractually Nash stable partitions. Con-
tractual Nash stability requires the absence of deviations that are con-
strained by the unanimous consent of the abandoned coalition. This
resolves the complexity of the last classical stability notion for addi-
tively separable hedonic games.

Second, we identify clear boundaries to the tractability of stable
partitions with respect to majority-based stability concepts. These
results even hold in severely restricted classes of additively separable
hedonic games where the utility values are restricted to one positive
and one negative weight. In these classes, agents can be viewed as
either friends or enemies, dependent on whether they yield positive
or negative utility.

A key challenge in proving hardness results for these restricted
classes of additively separable hedonic games is to construct first
No-instances, i.e., instances in which no stable partition exists. The
obtained hardness results are opposed by efficient algorithms under
slight further restrictions.
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Abstract
Coalition formation considers the question of how to partition a set of agents into coalitions with
respect to their preferences. Additively separable hedonic games (ASHGs) are a dominant model
where cardinal single-agent values are aggregated into preferences by taking sums. Output partitions
are typically measured by means of stability, and we follow this approach by considering stability
based on single-agent movements (to join other coalitions), where a coalition is defined as stable
if there exists no beneficial single-agent deviation. Permissible deviations should always lead to
an improvement for the deviator, but they may also be constrained by demanding the consent of
agents involved in the deviations, i.e., by agents in the abandoned or welcoming coalition. Most
of the existing research focuses on the unanimous consent of one or both of these coalitions, but
more recent research relaxes this to majority-based consent. Our contribution is twofold. First, we
settle the computational complexity of the existence of contractually Nash-stable partitions, where
deviations are constrained by the unanimous consent of the abandoned coalition. This resolves the
complexity of the last classical stability notion for ASHGs. Second, we identify clear boundaries to
the tractability of stable partitions under majority-based stability concepts by proving elaborate
hardness results for restricted classes of ASHGs. Slight further restrictions lead to positive results.
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1 Introduction

Coalition formation is a vibrant topic in multi-agent systems at the intersection of theoretical
computer science and economic theory. Given a set of agents, e.g., humans or machines, the
central concern is to determine a coalition structure, or partition, of the agents into subsets,
or so-called coalitions. Agents have preferences over coalition structures, and therefore
coalition formation naturally generalizes the matching problem under preferences [22]. As in
the special case of matchings, a common assumption is that externalities outside one’s own
coalition play no role, i.e., agents are only concerned about the coalition they are part of.
This assumption leads to the popular framework of hedonic games [18].

In contrast to matchings, the number of coalitions an agent can be part of is not
polynomially bounded in coalition formation, and therefore, a lot of effort has been put into
identifying reasonable and succinct classes of hedonic games (see, e.g., [2, 5, 8, 20]). In many
such classes, agents extract cardinal preferences from a weighted and possibly directed graph
by some aggregation method. Probably the most natural and thoroughly researched way to
aggregate preferences is by taking the sum of the weights of edges towards agents in one’s
own coalition. This leads to the concept of additively separable hedonic games (ASHGs) [8].
This paper continues to investigate this class of hedonic games.
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The desirability of an output, i.e., of a coalition structure, is frequently measured with
respect to stability, which captures the prospect of agents maintaining their coalitions. A
coalition structure is stable if no single agent or group of agents has an incentive to deviate
by leaving their coalitions and joining other coalitions or forming new coalitions. Depending
on the requirements that deviators need to meet, one can define various specific stability
notions. In this paper, we focus on stability based on single-agent deviations. This means
that a deviation consists of a single agent that abandons her current coalition to join another
existing coalition or to form a new coalition of her own.

In this case, a reasonable minimum requirement is that a deviating agent should improve
her coalition. If no such deviation is possible, then a coalition structure is said to be Nash-
stable. However, this leads to an immensely strong stability concept because the deviation
is only constrained weakly. As a consequence, Nash-stable outcomes hardly ever exist. For
instance, consider a game with two agents x and y where x prefers to form a coalition with
y over staying alone, whereas y prefers to stay alone. Then, x always has an incentive to
join y whenever she is in a coalition of her own, whereas y would always leave x. Such
run-and-chase situations occur in most classes of hedonic games.1

Therefore, various weakenings of Nash stability have been proposed. These restrict the
possible deviations by adding further requirements on other agents involved in the deviation.
Typically, two types of constraints are considered, namely the demanding of some kind of
consent from the abandoned or the welcoming coalition. Most of the research has focused
on the unanimous consent of these coalitions. This leads to the concepts of contractual
Nash stability and individual stability where all agents in the abandoned or welcoming
coalition have to approve the deviation. Still, unanimous consent of involved coalitions is a
strong requirement. Hence, a reasonable compromise is to merely demand partial consent.
Therefore, we also study stability where deviations are constrained by the approval of a
majority vote of the abandoned or welcoming coalition.

1.1 Contribution
Our contribution is twofold. First, we settle the complexity of the existence problem of
contractually Nash-stable coalition structures. Despite knowing for quite long that No-
instances, i.e., additively separable hedonic games which do not admit a contractually
Nash-stable coalition structure, exist [28], detailed computational investigations of single-
agent stability during the last decade have left this problem open [10, 29]. Hence, we complete
the picture of the complexity of unanimity-based single-agent stability concepts in ASHGs.

Second, we investigate majority-based stability concepts. We will show that, even under
significant weight restrictions, stable coalition structures need not exist and we can leverage
No-instances to obtain computational intractabilities. This complements very recent results
by Brandt et al. [10] and resolves problems left open by this work. In particular, we completely
pinpoint the complexity of majority-based stability notions in friends-and-enemies games
and appreciation-of-friends games.

These results are in line with the repeatedly observed theme in hedonic games research
that the existence of counterexamples is the key to computational intractabilities (see, e.g.,
[3, 10, 11, 16, 29]).2 On the other hand, we demonstrate that the observed intractabilities
lie at the computational boundary by carving out further weak restrictions that lead to the
existence and efficient computability of stable states.

1 Notably, Nash-stable coalition structures always exist in ASHGs if the input graph is symmetric [8],
and in a generalization of this class of games called subset-neutral hedonic games [27].

2 A notable exception is provided by Bullinger and Kober [13] who identify a class of hedonic games
where partitions in the core always exist, but are still hard to compute.
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1.2 Related Work
The study of hedonic games was initiated by Drèze and Greenberg [18] but was only
popularized two decades later by Banerjee et al. [6], Cechlárová and Romero-Medina [15], and
Bogomolnaia and Jackson [8]. Aziz and Savani [4] review many important concepts in their
survey. Two important research questions concern the design of reasonable computationally
manageable subclasses of hedonic games and the detailed investigation of their computational
properties. The former has led to a broad landscape of game representations. Some of these
representations [5, 20] are ordinal and fully expressive, i.e., they can, in principle, express
every preference relation over coalitions. Still, representing certain preference relations
requires exponential space. These representations are contrasted by cardinal representations
based on weighted graphs [2, 8, 26], which are not fully expressive but only require polynomial
space (except when weights are artificially large). Apart from the already discussed additively
separable hedonic games, important aggregation methods consider the average of weights
leading to the classes fractional hedonic games [2] and modified fractional hedonic games [26].
Additively separable hedonic games have important subclasses where the focus lies in
distinguishing friends and enemies, and therefore only two different weights are present in
the underlying graph [16].

The computational properties of hedonic games have been extensively studied and we
focus on literature related to additively separable hedonic games. Various versions of stability
have been investigated [1, 3, 10, 16, 29, 21]. The closest to our work are the detailed studies of
single-agent stability by Sung and Dimitrov [29] and Brandt et al. [10]. Gairing and Savani [21]
settle the complexity of single-agent stability for symmetric input graphs. Majority-based
stability has only received little attention thus far [10, 21]. Apart from stability, other
desirable axioms concern efficiency and fairness. Aziz et al. [3] cover a wide range of axioms,
whereas Elkind et al. [19] and Bullinger [12] focus on Pareto optimality, and Brandt and
Bullinger [9] investigate popularity, an axiom combining ideas from stability and efficiency
which is also related to certain majority-based stability notions [10]. Finally, a recent trend
in the research on coalition formation is to complement the static view of existence problems
by considering dynamics based on stability concepts (see, e.g., [7, 10, 11, 14, 23]).

2 Preliminaries

In this section, we formally introduce hedonic games and our considered stability concepts.

2.1 Hedonic Games
Let N = [n] be a set of n ∈ N agents, where we define [n] = {1, . . . , n}. The output of a
coalition formation problem is a coalition structure, that is, a partition of the agents into
different disjoint coalitions according to their preferences. A partition of N is a subset π ⊆ 2N

such that
⋃

C∈π C = N , and for every pair C, D ∈ π, it holds that C = D or C ∩ D = ∅.
An element of a partition is called a coalition and, given a partition π, the unique coalition
containing agent i is denoted by π(i). We refer to the partition π given by π(i) = {i} for
every agent i ∈ N as the singleton partition, and to π = {N} as the grand coalition.

Let Ni denote all possible coalitions containing agent i, i.e., Ni = {C ⊆ N : i ∈ C}. A
hedonic game is a tuple (N,≿), where N is an agent set and ≿ = (≿i)i∈N is a tuple of weak
orders ≿i over Ni representing the preferences of the respective agent i. Hence, as mentioned
before, agents express preferences only over the coalitions of which they are part without
considering externalities. The strict part of an order ≿i is denoted by ≻i, i.e., C ≻i D if and
only if C ≿i D and not D ≿i C.

MFCS 2022
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Additively separable hedonic games assume that every agent is equipped with a cardinal
utility function that is aggregated by taking the sum of single-agent values. Formally,
following [8], an additively separable hedonic game (ASHG) (N, v) consists of an agent set
N and a tuple v = (vi)i∈N of utility functions vi : N → R such that π ≿i π′ if and only if∑

j∈π(i) vi(j) ≥ ∑
j∈π′(i) vi(j). Clearly, ASHGs are a subclass of hedonic games. When we

specify ASHG utilities, we neglect, without loss of generality, vi(i) because the preferences
do not depend on it and we implicitly assume that it is set to an appropriate constant if an
ASHG has to fit into a certain subclass of games.

Every ASHG can be naturally represented by a complete directed graph G = (N, E)
with weight vi(j) on arc (i, j). There are various subclasses of ASHGs that allow a natural
interpretation in terms of friends and enemies. An agent j ∈ N is called a friend (or enemy)
of agent i ∈ N if vi(j) > 0 (or vi(j) < 0). An ASHG is called a friends-and-enemies game
(FEG) if vi(j) ∈ {−1, 1} for every pair of agents i, j ∈ N [10]. Further, following [16], an
ASHG is called an appreciation-of-friends game (AFG) (or an aversion-to-enemies game
(AEG)) if vi(j) ∈ {−1, n} (or vi(j) ∈ {−n, 1}). In such games, agents seek to maximize
their number of friends while minimizing their number of enemies, where these goals have a
different priority in each case. Based on the friendship of agents, we define the friendship
relation (or enemy relation) as the subset R ⊆ N × N where (i, j) ∈ R if and only if vi(j) > 0
(or vi(j) < 0).

2.2 Single-Agent Stability
We want to study stability under single agents’ incentives to perform deviations. A single-
agent deviation performed by agent i transforms a partition π into a partition π′ where
π(i) ̸= π′(i) and, for all agents j ̸= i,

π′(j) =





π(j) \ {i} if j ∈ π(i),
π(j) ∪ {i} if j ∈ π′(i), and
π(j) otherwise.

We write π
i−→ π′ to denote a single-agent deviation performed by agent i transforming

partition π to partition π′.
We consider myopic agents whose rationale is to only engage in a deviation if it immediately

makes them better off. A Nash deviation is a single-agent deviation performed by agent i

making her better off, i.e., π′(i) ≻i π(i). Any partition in which no Nash deviation is possible
is said to be Nash-stable (NS).

Following [10], we introduce consent-based stability concepts via favor sets. Let C ⊆ N

be a coalition and i ∈ N an agent. The favor-in set of C with respect to i is the set of
agents in C (excluding i) that strictly favor having i inside C rather than outside, i.e.,
Fin(C, i) = {j ∈ C \ {i} : C ∪ {i} ≻j C \ {i}}. The favor-out set of C with respect to i is the
set of agents in C (excluding i) that strictly favor having i outside C rather than inside, i.e.,
Fout(C, i) = {j ∈ C \ {i} : C \ {i} ≻j C ∪ {i}}.

An individual deviation (or contractual deviation) is a Nash deviation π
i−→ π′ such that

Fout(π′(i), i) = ∅ (or Fin(π(i), i) = ∅). Then, a partition is said to be individually stable (IS)
or contractually Nash-stable (CNS) if it allows for no individual or contractual deviation,
respectively. A related weakening of both stability concepts is contractual individual stability
(CIS), based on deviations that are both individual and contractual deviations [8, 17].

Finally, we define hybrid stability concepts according to [10] where the consent of the
abandoned or welcoming coalition is decided by a majority vote. A Nash deviation π

i−→ π′ is
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Nash Stability

Majority-Out Stability

Majority-In Stability

Contractual Nash Stability

Individual Stability

Contractual Individual Stability

Figure 1 Logical relationships between stability notions. An arrow from concept S to concept
S′ indicates that if a partition satisfies S, it also satisfies S′. Conversely, this means that every S′

deviation is also an S deviation.

called a majority-in deviation (or majority-out deviation) if |Fin(π′(i), i)| ≥ |Fout(π′(i), i)|
(or |Fout(π(i), i)| ≥ |Fin(π(i), i)|). Similar to before, a partition is said to be majority-in
stable (MIS) or majority-out stable (MOS) if it allows for no majority-in or majority-out
deviation, respectively. The concepts MIS and MOS are special cases of the voting-based
stability notions by Gairing and Savani [21] for a threshold of 1/2. Brandt et al. [10] also
consider stability concepts that require voting-based consent by both the abandoned and
welcoming coalition, similar to CIS.

For a stability concept S ∈ {NS, IS, CNS, MIS, MOS}, we denote the deviation corre-
sponding to S as S deviation, e.g., CNS deviation for a contractual deviation. A taxonomy
of our related solution concepts is provided in Figure 1.

3 Contractual Nash Stability

Our first result settles the computational complexity of contractual Nash stability in ASHGs.
All of our reductions in this and the subsequent sections are from the NP-complete problem
Exact3Cover (E3C) [25]. An instance of E3C consists of a tuple (R, S), where R is a
ground set together with a set S of 3-element subsets of R. A Yes-instance is an instance
such that there exists a subset S′ ⊆ S that partitions R.

Before giving the complete proof, we briefly describe the key ideas. Given an instance
(R, S) of E3C, the reduced instance consists of three types of gadgets. First, every element in
R is represented by a subgame that does not contain a CNS partition. In principle, any such
game can be used for a reduction, and we use the game identified by Sung and Dimitrov [28].
Moreover, we have further auxiliary gadgets that also consist of the same No-instance. The
number of these auxiliary gadgets is equal to the number of sets in S that would remain after
removing an exact cover of R, i.e., there are |S| − |R|/3 such gadgets. By design, the agents
in the subgames corresponding to No-instances have to form coalitions with agents outside
of their subgame in every CNS partition. The only agents that can achieve this are agents in
gadgets corresponding to elements in S. A gadget corresponding to an element s ∈ S can
either prevent non-stability caused by exactly one auxiliary gadget, or by the three gadgets
corresponding to the elements r ∈ R with r ∈ s. Hence, the only possibility to deal with all
No-instances simultaneously is if there exists an exact cover of R by sets in S. Then, the
gadgets corresponding to elements in R can be dealt with by the cover and there are just
enough elements in S to additionally deal with the other auxiliary gadgets.

▶ Theorem 1. Deciding whether an ASHG contains a CNS partition is NP-complete.

Proof. We provide a reduction from E3C. Let (R, S) be an instance of E3C and set a =
|S|− |R|/3 (this is the number of additional sets in S if removing some exact cover). Without
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Figure 2 Schematic of the reduction from the proof of Theorem 1. We depict the reduced instance
for the instance (R, S) of E3C where R = {a, b, c, d, e, f}, and S = {s, t, u}, with s = {a, b, c},
t = {b, c, d}, and u = {d, e, f}. Fully drawn edges mean a positive utility, which is usually 1 except
between agents of the types s̄r and sr, where vs̄r (sr) = 3. Dashed edges represent a utility of 0. For
agents in N̄S , only the single positive utility is displayed. Other omitted edges represent a negative
utility of −4.

loss of generality, a ≥ 0. We define an ASHG (N, v) as follows. Let N = NR ∪ NS ∪ N̄S ∪ NA

where
NR = ∪r∈RNr with Nr = {ri : i ∈ [4]} for r ∈ R,
NS = ∪s∈SNs with Ns = {sr : r ∈ s} for s ∈ S,
N̄S = ∪s∈SN̄s with N̄s = {s̄r : r ∈ s} for s ∈ S, and
NA = ∪1≤j≤aN j with N j = {xj

i : i ∈ [4]} for 1 ≤ j ≤ a.

We define valuations v as follows:
For each r ∈ R, i ∈ [3]: vri

(r4) = 1.
For each r ∈ R, (i, j) ∈ (1, 2), (2, 3), (3, 1): vri(rj) = 0.
For each 1 ≤ j ≤ a, i ∈ [3]: vxj

i
(xj

4) = 1.
For each 1 ≤ j ≤ a, (i, k) ∈ (1, 2), (2, 3), (3, 1): vxj

i
(xj

k) = 0.
For each s ∈ S, r ∈ s: vsr (r4) = 1.
For each s ∈ S, r ∈ s, 1 ≤ j ≤ a: vsr

(xj
4) = vxj

4
(sr) = 0.

For each s ∈ S, r, r′ ∈ s: vsr
(sr′) = 0.

For each s ∈ S, r, r′ ∈ s, r ̸= r′, z ∈ (NS ∪ NA) \ Ns: vs̄r (sr) = 3, vs̄r (sr′) = −2, and
vs̄r

(z) = 0.
All other valuations are −4.

An illustration of the game is given in Figure 2. The agents in NR in the reduced instance
form gadgets consisting of a subgame without CNS partition for every element in R. The
agents in NA constitute further such gadgets. The agents in NS consist of triangles for every
set in S and are the only agents who can bind agents in the gadgets in any CNS partition.
Finally, agents in N̄S avoid having agents in NS in separate coalitions to bind agents in NA.
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We claim that (R, S) is a Yes-instance if and only if (N, v) contains a CNS partition.
Suppose first that S′ ⊆ S partitions R. Consider any bijection ϕ : S \ S′ → [a]. Define a
partition π by taking the union of the following coalitions:

For every r ∈ R, i ∈ [3], form {ri}.
For s ∈ S′, r ∈ s, form {sr, r4}.
For s ∈ S \ S′, form {sr : r ∈ s} ∪ {x

ϕ(s)
4 }.

For s ∈ S, r ∈ s, form {s̄r}.
For 1 ≤ j ≤ a, i ∈ [3], form {xj

i }.

We claim that π is CNS. We will show that no agent can perform a deviation.
For r ∈ R, i ∈ [3], it holds that vri

(π) = 0 and joining any other coalition results in a
negative utility. In particular, vri(π(r4) ∪ {ri}) = −3.
For r ∈ R, r4 is not allowed to leave her coalition.
For s ∈ S′, r ∈ s, it holds that vsr

(π) = 1 and joining any other coalition results in a
negative utility. The agent sr is in a most preferred coalition.
For s ∈ S \ S′, r ∈ s, it holds that vsr

(π) = 0 and joining any other coalition results in a
negative utility. In particular, vsr

(π(r4) ∪ {sr}) = −3.
For s ∈ S′, r ∈ s, the agent s̄r obtains a non-positive utility by joining any other coalition.
In particular, vs̄r (π(sr) ∪ {s̄r}) = −1.
For s ∈ S \ S′, r ∈ s, the agent s̄r obtains a non-positive utility by joining any other
coalition. In particular, vs̄r (π(sr) ∪ {s̄r}) = −1.
For 1 ≤ j ≤ a, i ∈ [3], it holds that vxj

i
(π) = 0 and joining any other coalition results in

a negative utility. In particular, vxj
i
(π(xj

4) ∪ {xj
i }) = −11.

For 1 ≤ j ≤ a, xj
4 is in a best possible coalition (achieving utility 0).

Conversely, assume that (N, v) contains a CNS partition π. Define S′ = {s ∈ S : π(sr) ∩
NR ̸= ∅ for some r ∈ s}. We will show first that S′ covers all elements in R and then show
that |S′| = |R|/3.

Let r ∈ R. Then, for all i ∈ [3], π(ri) ⊆ Nr. This follows because there is no agent who
favors ri in her coalition. Therefore, she would leave any coalition with an agent outside Nr

to receive non-negative utility in a singleton coalition. Further, if there is no s ∈ S with r ∈ s

such that r4 ∈ π(rs), then π(r4) ⊆ Nr. Indeed, if r4 forms any coalition except a singleton
coalition, she will receive negative utility, and then there must exist an agent who favors her
in the coalition. Consequently, if r4 /∈ π(rs) for all s ∈ S with r ∈ s, then r4 is in a singleton
coalition, or there exists i ∈ [3] with r4 ∈ π(ri), for which we already know that π(ri) ⊆ Nr.

Assume now that π(r4) ⊆ Nr. For i, i′ ∈ [3], ri /∈ π(ri′) because then one of them would
receive a negative utility and could perform a CNS deviation to form a singleton coalition.
If {r4} ∈ π, then r1 would deviate to join her. Hence, there exists exactly one i ∈ [3] with
{ri, r4} ∈ π. Suppose without loss of generality that {r1, r4} ∈ π. But then, r3 would
perform a CNS deviation to join them, a contradiction. We can conclude that there exists
s ∈ S with r ∈ s such that r4 ∈ π(rs). Hence, s ∈ S′ and we have shown that S′ covers R.

To bound the cardinality of S′, we will show that, for every 1 ≤ j ≤ a, there exists
s ∈ S \ S′ with Ns ⊆ π(xj

4). Let therefore 1 ≤ j ≤ a and let C = π(xj
4). Similar to the

considerations about agents in Nr, we know that π(xj
i ) ⊆ Xj for i ∈ [3], and that it cannot

happen that C ⊆ Xj , and therefore C ∩ Xj = {xj
4}. In particular, there must be an agent

y ∈ N \ Xj with y ∈ C. Since no agent in C favors xj
4 to be in her coalition, we know

that vxj
4
(π) ≥ 0 and therefore C ⊆ {xj

4} ∪ NS . Let s ∈ S and r ∈ s with sr ∈ C. As we
already know that s̄r /∈ C, it must hold that Ns ⊆ C to prevent her from joining. It follows
that s /∈ S′. Since π(xj

4) ∩ π(xj′

4 ) = ∅ for 1 ≤ j′ ≤ a with j′ ≠ j, we find an injective

MFCS 2022
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mapping ϕ : [a] → S \ S′ such that, for every 1 ≤ j ≤ a, Nϕ(j) ⊆ π(xj
4). Consequently,

|S′| ≤ |S| − |ϕ([a])| ≤ |S| − a = |R|/3. Hence, S′ covers all elements from R with (at most)
|R|/3 sets and therefore is an exact cover. ◀

The reduction in the previous proof only uses a very limited number of different weights,
namely the weights in the set {1, 0, −2, −4}, where the weight −4 may be replaced by an
arbitrary smaller weight. By contrast, CNS partitions always exist if the utility functions
of an ASHG assume at most one nonpositive value, and can be computed efficiently in this
case [10, Theorem 4]. This encompasses for instance FEGs, AFGs, and AEGs. Hence, the
hardness result is close to the boundary of computational feasibility.

4 Appreciation-of-Friends Games

In this section, we consider appreciation-of-friends games. Typically, these games behave well
with respect to stability. In particular, IS, CNS, and MIS partitions always exist and can be
computed efficiently, while it is only known that NS leads to non-existence and computational
hardness among single-agent stability concepts [10, 16]. By contrast, we show in our next
result that MOS partitions need not exist in AFGs. In other words, despite their conceptual
complementarity, the stability concepts MOS and MIS lead to very different behavior in a
natural class of ASHGs. The constructed game has a sparse friendship relation in the sense
that almost all agents only have a single friend. After discussing the counterexample, we
show how requiring slightly more sparsity yields a positive result. Due to space restrictions,
some proofs are omitted or sketched.

▶ Proposition 2. There exists an AFG without an MOS partition.

Proof. We define the game formally. An illustration is given in Figure 3. Let N =
{z} ∪ ⋃

x∈{a,b,c} Nx, where Nx = {xi : i ∈ [5]} for x ∈ {a, b, c}. In the whole proof, we
read indices modulo 5, mapping to the respective representative in [5]. The utilities are
given as:

For all i ∈ [5], x ∈ {a, b, c} : vxi(xi+1) = n.
For all x ∈ {a, b, c} : vx1(z) = n.
All other valuations are −1.

The AFG consists of 3 cycles with 5 agents each, together with a special agent that is liked
by a fixed agent of each cycle and has no friends herself. The key insight to understanding why
there exists no MOS partition is that agents of type x1 where x ∈ {a, b, c} have conflicting
candidate coalitions in a potential MOS partition. Either, they want to be with z (a coalition
that has to be small because z prefers to stay alone) or they want to be with x2 which
requires a rather large coalition containing their cycle.

Before going through the proof that this game has no MOS partition, it is instructional
to verify that, for cycles of 5 agents, the unique MOS partition is the grand coalition, i.e.,
the unique MOS partition of the game restricted to Nx is {Nx}, where x ∈ {a, b, c}. This is
a key idea of the construction and is implicitly shown in Case 2 of the proof for x = b.

Assume for contradiction that the defined AFG admits an MOS partition π. To derive a
contradiction, we perform a case distinction over the coalition sizes of z.

Case 1. |π(z)| = 1.
In this case, it holds that π(z) = {z}. Then, π(a1) ∈ {{a1, a2}, {a1, a5}}. Indeed, if

π(a1) ̸= {a1, a2}, then a1 has an NS deviation to join z, and is allowed to perform it
unless π(a1) = {a1, a5}. We may therefore assume that {ai, ai+1} ∈ π for some i ∈ {1, 5}.
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b2 b5

b3 b4

c2 c5

c3 c4

b1
a1 c1

Figure 3 AFG without an MOS partition. The depicted (directed) edges represent friends, i.e., a
utility of n, whereas missing edges represent a utility of −1.

Then, π(ai−1) = {ai−1, ai−2} =: C. Otherwise, ai−1 can perform an MOS deviation to join
{ai, ai+1}. But then ai+2 can perform an MOS deviation to join C. This is a contradiction
and concludes the case that |π(z)| = 1.

Case 2. |π(z)| > 1.
Let F := {a1, b1, c1}, i.e., the set of agents that have z as a friend. Note that z can

perform an NS deviation to be a singleton. Hence, as π is MOS, |F ∩ π(v)| ≥ |π(z)|/2. In
particular, there exists an x ∈ {a, b, c} with π(z) ∩ Nx = {x1}. We may assume without
loss of generality that π(z) ∩ Na = {a1}. Then, π(a5) = {a4, a5}. Otherwise, a5 has an
MOS deviation to join π(z). Similarly, π(a3) = {a2, a3} (because of the potential deviation
of a3 who would like to join {a4, a5}). Now, note that va1({a1, a2, a3}) = n − 1. We can
conclude that |π(z)| ≤ 3 as a1 would join {a2, a3} by an MOS deviation, otherwise. Hence,
we find x ∈ {b, c} with Nx ∩ π(z) = ∅. Assume without loss of generality that x = b has this
property.

Assume first that π(b1) = {b1, b5}. Then, π(b4) = {b3, b4}. Otherwise, b4 has an MOS
deviation to join {b1, b5}. But then b2 has an MOS deviation to join {b3, b4}, a contradiction.
Hence, π(b1) ̸= {b1, b5}. Note that we have now excluded the only case where b1 is not
allowed to perform an NS deviation. In all other cases, no majority of agents prefers her to
stay in the coalition. We can conclude that b2 ∈ π(b1) because otherwise, b1 can perform
an MOS deviation to join π(z). If b5 /∈ π(b1), then π(b5) = {b4, b5} (to prevent a potential
deviation by b5). But then b3 has an MOS deviation to join them. Hence, b5 ∈ π(b1).
Similarly, if b4 /∈ π(b1), then π(b4) = {b3, b4} and b2 has an MOS deviation to join {b3, b4}
(which is permissible because b5 ∈ π(b1)). Hence {b1, b2, b4, b5} ⊆ π(b1), and therefore even
Nb ⊆ π(b1). Hence, b1 has an MOS deviation to join π(v) (recall that |π(v)| ≤ 3). This is
the final contradiction, and we can conclude that π is not MOS. ◀

Note that most agents in the previous example have at most 1 friend (only three agents
have 2 friends). By contrast, if every agent has at most one friend, MOS partitions are
guaranteed to exist. This is interesting because it covers in particular directed cycles, which
cause problems for Nash stability. The constructive proof of the following proposition can be
directly converted into a polynomial-time algorithm.

▶ Proposition 3. Every AFG where every agent has at most one friend admits an MOS
partition.

Proof. We prove the statement by induction over n. Clearly, the grand coalition is MOS for
n = 1. Now, assume that (N, v) is an AFG with n ≥ 2 such that every agent has at most
one friend. Consider the underlying directed graph G = (N, A) where (x, y) ∈ A if and only
if vx(y) > 0, i.e., y is a friend of x. By assumption, G has a maximum out-degree of 1, hence
it can be decomposed into directed cycles and a directed acyclic graph.
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Assume first that there exists C ⊆ N such that C induces a directed cycle in G. We call
an agent y reachable by agent x if there exists a directed path in G from x to y. Let c ∈ C

and define R = {x ∈ N : c reachable by x}. Note that C ⊆ R and that R is identical to the
set of agents that can reach any agent in C. By induction, there exists an MOS partition π′

of the subgame of (N, v) induced by N \ R that is MOS. Define π = π′ ∪ {R}. We claim
that π is MOS. Let x ∈ N \ R. By our assumptions on π′, there exists no MOS deviation of
x to join π(y) for y ∈ N \ R. In particular, if x is allowed to perform a deviation, then x

must have a non-negative utility (otherwise, she can form a singleton coalition contradicting
that π′ is MOS). So her only potential deviations are to a coalition where she has a friend.
Note that x has no friend in R. Indeed, if y was a friend of x in R, then c is reachable for x

in G through the concatenation of (x, y) and the path from y to c. Hence, x has no MOS
deviation. Now, let x ∈ R. Then, vx(π) > 0 because she forms a coalition with her unique
friend. By assumption, x has no friend in any other coalition. Therefore, x has no MOS
deviation either.

We may therefore assume that G is a directed acyclic graph. Hence, there exists an
agent x ∈ N with in-degree 0. If x has no friend, let T = {x}. If x has a friend y, we
claim that there exists an agent w such that (i) w is the friend of at least one agent and
(ii) every agent that has w as a friend has in-degree 0, i.e., such agents are not the friend
of any agent. We provide a simple linear-time algorithm that finds such an agent. We will
maintain a tentative agent w that will continuously fulfill (i) and update w until this agent
also fulfills (ii). Start with w = y. Note that this agent w fulfills (i) because y is a friend of x.
If w is the friend of some agent z that is herself the friend of some other agent, update w = z.
For the finiteness (and efficient computability) of this procedure, consider a topological order
σ of the agents N in the directed acyclic graph G [24], i.e., a function σ : N → [n] such that
σ(a) < σ(b) whenever (a, b) ∈ A. Note that if w is replaced by the agent z in the procedure,
then σ(z) < σ(w). Hence, w is replaced at most n times, and our procedure finds the desired
agent w after a linear number of steps. Now, define T = {a ∈ N : w reachable by a}, i.e., T

contains precisely w and all agents that have w as a friend.
We are ready to find the MOS partition. By induction, we find a partition π′ that is

MOS for the subgame induced by N \ T . Consider π = π′ ∪ {T}. Then, a ∈ T \ {w} has no
incentive to deviate, because she has no friend in any other coalition and has w as a friend.
Also, w is not allowed to perform a deviation, because the non-empty set of agents T \ {w}
unanimously prevents that. Possible deviations by agents in N \ T can be excluded as in the
first part of the proof because these agents have no friend in T . Together, we have completed
the induction step and found an MOS partition. ◀

On the other hand, it is NP-complete to decide whether an AFG contains an MOS
partition. For a proof, we use the game constructed in Proposition 2 as a gadget in a greater
game. The difficulty is to preserve bad properties about the existence of MOS partitions
because the larger game might allow for new possibilities to create coalitions with the agents
in the counterexample.

▶ Theorem 4. Deciding whether an AFG contains an MOS partition is NP-complete.

5 Friends-and-Enemies Games

Friends-and-enemies games always contain efficiently computable stable coalition structures
with respect to the unanimity-based stability concepts IS and CNS [10]. In this section, we
will see that the transition to majority-based consent crosses the boundary of tractability.
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a0a1a2a3a4

b0b1b2b3b4

c0c1c2c3c4

d0d1d2d3d4

z1

z2

z3

Figure 4 FEG without an MOS partition. The depicted (directed) edges represent friends. The
double arrow means that every agent to the left of the tail of the arrow has every agent below the
arrow as a friend.

The closeness to this boundary is also emphasized by the fact that it is surprisingly difficult
to even construct No-instances for MOS and MIS, i.e., FEGs which do not contain an MOS
or MIS partition, respectively. Indeed, the smallest such games that we can construct are
games with 23 and 183 agents, respectively. We will start by considering MOS.

▶ Proposition 5. There exists an FEG without an MOS partition.

Proof sketch. We only give a brief overview of the instance by means of the illustration in
Figure 4. The FEG consists of a triangle of agents together with 4 sets of agents whose
friendship relation is complete and transitive, together with one additional agent each that
gives a temptation for the agent of the transitive substructures with the most friends.

An important reason for the non-existence of MOS partitions is that there is a high
incentive for the transitive structures to form coalitions. This gives incentive to agents zi

to join them. If z1, z2, and z3 are in disjoint coalitions, then they would chase each other
according to their cyclic structure. If they are all in the same coalition, then agents x0 for
x ∈ {a, b, c, d} prevent the complete transitive structures to be part of this coalition and
other transitive structures are more attractive. ◀

In the previous proof, it is particularly useful to establish disjoint coalitions of groups of
agents who dislike each other. On the other hand, if we make the further assumption that one
agent from every pair of agents likes the other agent, then this does not work anymore and
the grand coalition is MOS. This condition essentially means completeness of the friendship
relation.3 Note that this proposition is not true for other stability concepts such as NS or
even IS.

▶ Proposition 6. The grand coalition is MOS in every FEG with complete friendship relation.

Proof. Let (N, v) be an FEG with complete friendship relation, and let π be the grand
coalition. We claim that π is MOS. Suppose that there is an agent x ∈ N who can perform
an NS deviation to form a singleton.

3 Technically, the friendship relation may not be reflexive, but we can set vi(i) = 1 for all i ∈ N in an
FEG to formally achieve completeness.
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like aj
i for i ∈ [5], j ∈ [9]

liked by aj
i for i ∈ [5],

j ∈ {0, 1, . . . , 9}

Figure 5 FEG without an MIS partition. The depicted edges represent friends. Undirected edges
represent mutual friendship. For i ∈ [5], some of the edges of agents in Ai are omitted. In fact, these
agents form cliques. Also, each Ki represents a clique of 11 agents.

Then, vx(N) < 0 and therefore |{y ∈ N \ {x} : vx(y) = −1}| > {y ∈ N \ {x} : vx(y) = 1}|.
Hence,

|Fin(N, x)| ≥ |{y ∈ N \ {x} : vx(y) = −1}|
> |{y ∈ N \ {x} : vx(y) = 1}|
≥ |Fout(N, x)|.

In the first inequality, we use that x is a friend of all of her enemies. In the final inequality,
we use that x can only be an enemy of her friends. Hence, x is not allowed to perform an
MOS deviation. ◀

Still, the non-existence of MOS partitions in FEGs shown in Proposition 5 can be leveraged
to prove an intractability result. Interestingly, in contrast to the proofs of Theorem 1 and
Theorem 4, the next theorem merely uses the existence of an FEG without an MOS partition
to design a gadget and does not exploit the specific structure of a known counterexample.

▶ Theorem 7. Deciding whether an FEG contains an MOS partition is NP-complete.

In our next result, we construct an FEG without an MIS partition. Despite a lot of
structure, the game is quite large encompassing 183 agents.

▶ Proposition 8. There exists an FEG without an MIS partition.

Proof sketch. We illustrate the example with the aid of Figure 5 and briefly discuss some
key features. Again, the central element is a directed cycle of three agents. These agents are
connected to five copies of the same gadget. This gadget consists of a main clique {a0

i , . . . , a9
i }

of 10 mutual friends and further cliques that cause certain temptations for agents in the
main clique. Cliques are linked by agents that have an incentive to be part of two cliques,
which are part of disjoint coalitions. Since it is possible to balance all diametric temptations,
the instance does not admit an MIS partition. ◀
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Similar to Proposition 6, it is easy to see that the singleton partition is MIS in every
FEG with complete enemy relation. Indeed, then an agent either has no incentive to join
another agent, or the other agent will deny her consent. Hence, MIS can also prevent typical
run-and-chase games which do not admit NS partitions. We are ready to prove hardness of
deciding on the existence of MIS partitions in FEGs.

▶ Theorem 9. Deciding whether an FEG contains an MIS partition is NP-complete.

6 Discussion and Conclusion

We have investigated single-agent stability in additively separable hedonic games. Our main
results determine strong boundaries to the efficient computability of stable partitions. Table 1
provides a complete picture of the computational complexity of all considered stability notions
and subclasses of ASHGs, where our results close all remaining open problems. First, we
resolve the computational complexity of computing CNS partitions, which considers the last
open unanimity-based stability notion in unrestricted ASHGs. The derived hardness result
stands in contrast to positive results when considering appropriate subclasses such as FEGs,
AEGs, or AFGs [10]. Second, our intractability concerning AFGs stands in contrast to known
positive results for all other consent-based stability notions, and can also be circumvented
by considering AFGs with a sparse friendship relation. Finally, we provide sophisticated
hardness proofs for majority-based stability concepts in FEGs. These turn into computational
feasibilities when transitioning to unanimity-based stability, or under further assumptions to
the structure of the friendship graph.

A key step of all hardness results in restricted classes of ASHGs was to construct the first
No-instances, that is, games that do not admit stable partitions for the respective stability
notion. This is no trivial task as can be seen from the complexity of the constructed games.
Once No-instances are found, we can leverage them as gadgets of hardness reductions, which
is a typical approach for complexity results about hedonic games. We have provided both
reductions where the explicit structure of the determined No-instances is used as well as
reductions where the mere existence of No-instances is sufficient and used as a black box.

Our results complete the picture of the computational complexity for all considered
stability notions and game classes. Still, majority-based stability notions deserve further
attention because they offer a natural degree of consent to perform deviations. Their thorough
investigation in other classes of hedonic games might lead to intriguing discoveries.

Table 1 Overview of the computational complexity of single-agent stability concepts in different
classes of ASHGs. The NP-completeness results concern deciding on the existence of a stable partition.
Membership in Function-P means that the search problem of constructing a stable partition can be
solved in polynomial time.

ASHG Unrestricted Friends-and-enemies games Appreciation-of-friends games
NS NP-complete [29] NP-complete [10] NP-complete [10]
IS NP-complete [29] Function-P [10] Function-P [16]
CNS NP-complete (Th. 1) Function-P [10] Function-P [10]
MIS NP-complete [10] NP-complete (Th. 9) Function-P [10]
MOS NP-complete [10] NP-complete (Th. 7) NP-complete (Th. 4)
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S TA B L E C OA L I T I O N S T R U C T U R E S I N H E D O N I C
G A M E S

summary

The formal study of coalition formation in multi-agent systems is typ-
ically realized in the framework of so-called hedonic games, which
originate from economic theory. The main focus of this branch of re-
search has been on the existence and the computational complexity
of deciding about the existence of coalition structures that satisfy var-
ious stability criteria. The actual process of forming coalitions based
on individual behavior has received little attention.

In this paper, we study the convergence of simple dynamics leading
to stable partitions. The basic idea is simple. Consider an arbitrary
partition. Either this partition is stable or we have a cause of instabil-
ity due to an agent who would like to perform a deviation. If we let
this agent perform their deviation, we end up at a new partition and
can once again ask for instabilities. Iterating this process we obtain a
sequence of partitions induced by a sequence of deviations. We call
this process a dynamics. The dynamics we consider is based on indi-
vidual stability: an agent will join another coalition if she is better off
and no member of the welcoming coalition is worse off.

We study dynamics in a variety of classes of hedonic games, includ-
ing anonymous, fractional, and dichotomous hedonic games as well
as hedonic diversity games. In this course, we identify conditions
for the convergence of dynamics, provide elaborate counterexamples
to the existence of individually stable partitions, and study the com-
putational complexity of problems related to the coalition formation
dynamics. The constructed counterexamples are interesting because
they entail that dynamics may inevitably cycle. For instance, we find
a small anonymous hedonic game and a first symmetric fractional
hedonic game, in which no individually stable partition exists. More-
over, we show that dynamics may cycle in hedonic diversity games.
These results settle open problems suggested by Bogomolnaia and
Jackson (2002), Brandl, Brandt, and Strobel (2015), and Boehmer and
Elkind (2020).
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Abstract

The formal study of coalition formation in multiagent sys-
tems is typically realized using so-called hedonic games,
which originate from economic theory. The main focus of this
branch of research has been on the existence and the computa-
tional complexity of deciding the existence of coalition struc-
tures that satisfy various stability criteria. The actual process
of forming coalitions based on individual behavior has re-
ceived little attention. In this paper, we study the convergence
of simple dynamics leading to stable partitions in a variety
of classes of hedonic games, including anonymous, dichoto-
mous, fractional, and hedonic diversity games. The dynamics
we consider is based on individual stability: an agent will join
another coalition if she is better off and no member of the
welcoming coalition is worse off. We identify conditions for
convergence, provide elaborate counterexamples of existence
of individually stable partitions, and study the computational
complexity of problems related to the coalition formation dy-
namics. In particular, we settle open problems suggested by
Bogomolnaia and Jackson (2002), Brandl, Brandt, and Stro-
bel (2015), and Boehmer and Elkind (2020).

Introduction
Coalitions and coalition formation are central concerns in
the study of multiagent systems as well as cooperative
game theory. Typical real-world examples include individ-
uals joining clubs or societies such as orchestras, choirs,
or sport teams, countries organizing themselves in interna-
tional bodies like the European Union (EU) or the North At-
lantic Treaty Organization (NATO), students living together
in shared flats, or employees forming unions. The formal
study of coalition formation is often realized using so-called
hedonic games, which originate from economic theory and
focus on coalition structures (henceforth partitions) that sat-
isfy various stability criteria based on the agents’ prefer-
ences over coalitions. A partition is defined to be stable if
single agents or groups of agents cannot gain by deviating
from the current partition by means of leaving their current
coalition and joining another coalition or forming a new one.
Which kinds of deviations are permitted depends on the un-
derlying notion of stability. Two important and well-studied
questions in this context concern the existence of stable par-

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

titions in restricted classes of hedonic games and the com-
putational complexity of finding a stable partition. However,
stability is only concerned with the end-state of the coalition
formation process and ignores how these desirable partitions
can actually be reached. Essentially, an underlying assump-
tion in most of the existing work is that there is a central au-
thority that receives the preferences of all agents, computes
a stable partition, and has the means to enforce this parti-
tion on the agents. By contrast, our work focuses on simple
dynamics, where starting with some partition (e.g., the par-
tition of singletons), agents deliberately decide to join and
leave coalitions based on their individual preferences. We
study the convergence of such a process and the stable par-
titions that can arise from it. For example, in some cases
the only partition satisfying a certain stability criterion is the
grand coalition consisting of all agents, while the dynamics
based on the agents’ individual decisions can never reach
this partition and is doomed to cycle.

The dynamics we consider is based on individual stabil-
ity, a natural notion of stability going back to Drèze and
Greenberg (1980): an agent will join another coalition if
she is better off and no member of the welcoming coali-
tion is worse off. Individual stability is suitable to model
the situations mentioned above. For instance, by Article 49
of the Treaty on European Union, admitting new members
to the EU requires the unanimous approval of the current
members. Similarly, by Article 10 of their founding treaty,
unanimous agreement of all parties is necessary to become a
member of the NATO. Also, for joining a choir or orchestra
it is often necessary to audition successfully, and joining a
shared flat requires the consent of all current residents. This
distinguishes individual stability from Nash stability, which
ignores the consent of members of the welcoming coalition.

The analysis of coalition formation processes provides
more insight in the natural behavior of agents and the condi-
tions that are required to guarantee that desirable social out-
comes can be reached without a central authority. Similar
dynamic processes have been studied in the special domain
of matching, which only allows coalitions of size 2 (e.g.,
Roth and Vande Vate 1990; Abeledo and Rothblum 1995;
Brandt and Wilczynski 2019). More recently, the dynam-
ics of coalition formation have also come under scrutiny in
the context of hedonic games (Bilò et al. 2018; Hoefer, Vaz,
and Wagner 2018; Carosi, Monaco, and Moscardelli 2019).
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While coalition formation dynamics are an object of study
worthy for itself, they can also be used as a means to design
algorithms that compute stable outcomes, and have been im-
plicitly used for this purpose before. For example, the algo-
rithm by Boehmer and Elkind (2020) for finding an individ-
ually stable partition in hedonic diversity games predefines
a promising partition and then reaches an individually stable
partition by running the dynamics from there. Similarly, the
algorithm by Bogomolnaia and Jackson (2002) for finding
an individually stable partition on games with ordered char-
acteristics, a generalization of anonymous hedonic games,
runs the dynamics using a specific sequence of deviations
starting from the singleton partition.

In many cases, the convergence of the dynamics of de-
viations follows from the existence of potential functions,
whose local optima form individually stable states. Gener-
alizing a result by Bogomolnaia and Jackson (2002), Suk-
sompong (2015) has shown via a potential function argu-
ment that an individually stable—and even a Nash stable—
partition always exists in subset-neutral hedonic games, a
generalization of symmetric additively-separable hedonic
games. Using the same potential function, it can straight-
forwardly be shown that the dynamics converge.1

Another example are hedonic games with the common
ranking property, a class of hedonic games where prefer-
ences are induced by a common global order (Farrell and
Scotchmer 1988). The dynamics associated with core-stable
deviations is known to converge to a core-stable partition
that is also Pareto-optimal, thanks to a potential function ar-
gument (Caskurlu and Kizilkaya 2019). The same potential
function implies convergence of the dynamics based on in-
dividual stability.

In this paper, we study the coalition formation dynamics
based on individual stability for a variety of classes of he-
donic games, including anonymous hedonic games (AHGs),
hedonic diversity games (HDGs), fractional hedonic games
(FHGs), and dichotomous hedonic games (DHGs). Whether
we obtain positive or negative results often depends on the
initial partition and on restrictions imposed on the agents’
preferences. Computational questions related to the dynam-
ics are investigated in two ways: the existence of a path to
stability, that is the existence of a sequence of deviations
that leads to a stable state, and the guarantee of convergence
where every sequence of deviations should lead to a stable
state. The former gives an optimistic view on the behavior
of the dynamics and may be used to motivate the choice of
reachable stable partitions (we can exclude “artificial” stable
partitions that may never naturally form). If such a sequence
can be computed efficiently, it enables a central authority to
coordinate the deviations towards a stable partition. How-
ever, since this approach does not give any guarantee on the
outcome of the dynamics, we also study the latter, more pes-
simistic, problem. Our main results are as follows.

1By inclusion, convergence also holds for symmetric
additively-separable hedonic games. Symmetry is essential
for this result to hold since an individually stable partition may not
exist in additively-separable hedonic games, even under additional
restrictions (Bogomolnaia and Jackson 2002).

• In AHGs, the dynamics converges for (naturally) single-
peaked strict preferences. We provide a 15-agent exam-
ple showing the non-existence of individually stable par-
titions in general AHGs. The previous known counterex-
ample by Bogomolnaia and Jackson (2002) requires 63
agents and the existence of smaller examples was an ac-
knowledged open problem (see Ballester 2004; Boehmer
and Elkind 2020).

• In HDGs, the dynamics converges for strict and naturally
singled-peaked preferences when starting from the single-
ton partition. In contrast to empirical evidence reported
by Boehmer and Elkind (2020), we show that these pref-
erence restrictions are not sufficient to guarantee conver-
gence from an arbitrary initial partition.

• In FHGs, the dynamics converges for simple symmet-
ric preferences when starting from the singleton partition
or when preferences form an acyclic digraph. We show
that individually stable partitions need not exist in gen-
eral symmetric FHGs, which was left as an open problem
by Brandl, Brandt, and Strobel (2015).

• For each of these four classes, including DHGs, we show
that deciding whether there is a sequence of deviations
leading to an individually stable partition is NP-hard
while deciding whether all sequences of deviations lead
to an individually stable partition is co-NP-hard. Some of
these results hold under preference restrictions and even
when starting from the singleton partition.

Preliminaries
Let N = [n] = {1, . . . , n} be a set of n agents. The goal
of a coalition formation problem is to partition the agents
into different disjoint coalitions according to their prefer-
ences. A solution is then a partition π : N → 2N such
that i ∈ π(i) for every agent i ∈ N and either π(i) = π(j)
or π(i) ∩ π(j) = ∅ holds for every agents i and j, where
π(i) denotes the coalition to which agent i belongs. Two
prominent partitions are the singleton partition π given by
π(i) = {i} for every agent i ∈ N , and the grand coalition π
given by π = {N}.

Since we focus on dynamics of deviations, we assume that
there exists an initial partition π0, which could be a natural
initial state (such as the singleton partition) or the outcome
of a previous coalition formation process.

Classes of Hedonic Games
In a hedonic game, the agents only express preferences over
the coalitions to which they belong, i.e., there are no ex-
ternalities. Let Ni denote all possible coalitions containing
agent i, i.e., Ni = {C ⊆ N : i ∈ C}. A hedonic game is
defined by a tuple (N, (%i)i∈N ) where %i is a weak order
over Ni which represents the preferences of agent i. Since
|Ni| = 2n−1, the preferences are rarely given explicitly, but
rather in some concise representation. These representations
give rise to several classes of hedonic games:
• Anonymous hedonic games (AHGs) (Bogomolnaia and

Jackson 2002): The agents only care about the size of
the coalition they belong to, i.e., for each agent i ∈ N ,
there exists a weak order %i over integers in [n] such that
π(i) %i π

′(i) iff |π(i)| %i |π′(i)|.
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• Hedonic diversity games (HDGs) (Bredereck, Elkind, and
Igarashi 2019): The agents are divided into two different
types, red and blue agents, represented by the subsets R
andB, respectively, such thatN = R∪B andR∩B = ∅.
Each agent only cares about the proportion of red agents
present in her own coalition, i.e., for each agent i ∈ N ,
there exists a weak order %i over {pq : p ∈ [|R|]∪{0}, q ∈
[n]} such that π(i) %i π

′(i) iff |R∩π(i)|
|π(i)| %i

|R∩π′(i)|
|π′(i)| .

• Fractional Hedonic Games (FHGs) (Aziz et al. 2019):
The agents evaluate a coalition according to how much
they like each of its members on average, i.e., for each
agent i, there exists a utility function vi : N → R where
vi(i) = 0 such that π(i) %i π

′(i) iff
∑
j∈π(i) vi(j)

|π(i)| ≥
∑
j∈π′(i) vi(j)

|π′(i)| . An FHG can be represented by a weighted
complete directed graph G = (N,E) where the weight
of arc (i, j) is equal to vi(j). An FHG is symmetric if
vi(j) = vj(i) for every pair of agents i and j, i.e., it can
be represented by a weighted complete undirected graph
with weights v(i, j) on each edge {i, j}. An FHG is sim-
ple if vi : N → {0, 1} for every agent i, i.e., it can
be represented by an unweighted directed graph where
(i, j) ∈ E iff vi(j) = 1. We say that a simple FHG is
asymmetric if, for every pair of agents i and j, vi(j) = 1
implies vj(i) = 0, i.e., it can be represented by an asym-
metric directed graph.

• Dichotomous hedonic games (DHGs): The agents only
approve or disapprove coalitions, i.e., for each agent i
there exists a utility function vi : Ni → {0, 1} such
that π(i) %i π

′(i) iff vi(π(i)) ≥ vi(π
′(i)). When the

preferences are represented by a propositional formula,
such games are called Boolean hedonic games (Aziz et al.
2016).

An anonymous game (resp., hedonic diversity game) is gen-
erally single-peaked if there exists a linear order > over in-
tegers in [n] (resp., over ratios in {pq : p ∈ [|R|] ∪ {0}, q ∈
[n]}) such that for each agent i ∈ N and each triple of inte-
gers x, y, z ∈ [n] (resp., x, y, z ∈ {pq : p ∈ |R| ∪ {0}, q ∈
[n]}) with x > y > z or z > y > x, x %i y implies
y %i z. The obvious linear order > that comes to mind is,
of course, the natural order over integers (resp., over ratio-
nal numbers). We refer to such games as naturally single-
peaked. Clearly, a naturally single-peaked preference profile
is generally single-peaked but the converse is not true.

Dynamics of Individually Stable Deviations
Starting from the initial partition, agents can leave and join
coalitions in order to improve their well-being. We focus on
unilateral deviations, which occur when a single agent de-
cides to move from one coalition to another. A unilateral
deviation performed by agent i transforms a partition π into
a partition π′ where π(i) 6= π′(i) and, for all agents j 6= i,

π′(j) =





π(j) \ {i} if j ∈ π(i)

π(j) ∪ {i} if j ∈ π′(i)
π(j) otherwise

.

Since agents are assumed to be rational, agents only en-

gage in a unilateral deviation if it makes them better off, i.e.,
π′(i) �i π(i). Any partition in which no such deviation is
possible is called Nash stable (NS).

This type of deviation can be refined by additionally re-
quiring that no agent in the welcoming coalition is worse
off when agent i joins. A partition in which no such devia-
tion is possible is called individually stable (IS). Formally, a
unilateral deviation performed by agent i who moves from
coalition π(i) to π′(i) is an IS-deviation if π′(i) �i π(i)
and π′(i) %j π(j) for all agents j ∈ π′(i). Clearly, an NS
partition is also IS.2 In this article, we focus on dynamics
based on IS-deviations. By definition, all terminal states of
the dynamics have to be IS partitions.

We are mainly concerned with whether sequences of IS-
deviations can reach or always reach an IS partition. If there
exists a sequence of IS-deviations leading to an IS partition,
i.e., a path to stability, then agents can coordinate (or can be
coordinated) to reach a stable partition. The corresponding
decision problem is described as follows.

∃-IS-SEQUENCE-[HG]
Input: Instance of a particular class of hedonic

games [HG], initial partition π0

Question: Does there exist a sequence of IS-deviations
starting from π0 leading to an IS partition?

In order to provide some guarantee, we also examine
whether all sequences of IS-deviations terminate. Whenever
this is the case, we say that the dynamics converges. The
corresponding decision problem is described below.

∀-IS-SEQUENCE-[HG]
Input: Instance of a particular class of hedonic

games [HG], initial partition π0

Question: Does every sequence of IS-deviations start-
ing from π0 reach an IS partition?

We mainly investigate this problem via the study of its
complement: given a hedonic game and an initial partition,
does there exist a sequence of IS-deviations that cycles?

A common idea behind hardness reductions concerning
these two problems is to exploit prohibitive subconfigura-
tions that evolve from instances without an IS partition or
instances which allow for cycling starting from a certain par-
tition.

Anonymous Hedonic Games (AHGs)
Bogomolnaia and Jackson (2002) showed that IS partitions
always exist in AHGs under naturally single-peaked prefer-
ences, and proved that this does not hold under general pref-
erences, by means of a 63-agent counterexample. Here, we
provide a counterexample that only requires 15 agents and
additionally satisfies general single-peakedness.

Due to space restrictions, we omit some of the proofs or
provide only proof sketches.

2It is possible to weaken the notion of individual stability even
further by also requiring that no member of the former coalition of
agent i is worse off. The resulting stability notion is called contrac-
tual individual stability and guarantees convergence of our dynam-
ics.

5213



Proposition 1. There may not exist an IS partition in AHGs
even when n = 15 and the agents have strict and generally
single-peaked preferences.
Sketch of proof. Let us consider an AHG with 15 agents with
the following (incompletely specified) preferences.

1 : 2 � 3 � 13 � 12 � 1 � [. . . ]
2 : 13 � 3 � 2 � 1 � 12 � [. . . ]

3, 4 : 3 � 2 � 1 � [. . . ]
5, . . . , 15 : 13 � 12 � 15 � 14 � 11 � [. . . ] � 1

They can be completed to be generally single-peaked w.r.t.
axis 1 < 2 < 3 < 13 < 12 < 15 < 14 < 11 < · · · < 4.

One can prove that in an IS partition,
(i) agents 3 and 4 are in a coalition of size at most 3;

(ii) agents 5 to 15 are in the same coalition;
(iii) agents 3 and 4 are in the same coalition;
(iv) agents 1 and 2 cannot be both alone.
Therefore, agents 3 and 4 must be together, as well as

agents 5 to 15, but not in the same coalition. It remains to
identify the coalitions of agents 1 and 2. By (i), they can-
not be both with agents 3 and 4. If one agent among them
is alone and the other one with agents 5 to 15, then the
alone agent can deviate to join them, a contradiction. The
remaining possible partitions are present in the cycle of IS-
deviations below (the deviating agent is written on top of the
arrows).
{{1}, {2, 3, 4}, {5, . . . , 15}} {{2, 3, 4}, {1, 5, . . . , 15}} {{3, 4}, {1, 2, 5, . . . , 15}}

{{1, 3, 4}, {2, 5, . . . , 15}}{{2}, {1, 3, 4}, {5, . . . , 15}}{{1, 2}, {3, 4}, {5, . . . , 15}}

1 2

1
21

2

Hence, there is no IS partition in this instance.

However, even in smaller examples where IS partitions do
exist, there may still be cycles in the dynamics.
Proposition 2. The dynamics of IS-deviations may cycle in
AHGs even when starting from the singleton partition or
grand coalition, for strict generally single-peaked prefer-
ences, and for n < 15.

Proof. Let us consider an AHG with 7 agents with the fol-
lowing (incompletely specified) preferences.

1 : 2 � 3 � 5 � 4 � 1 � [. . . ]
2 : 5 � 3 � 2 � 1 � 4 � [. . . ]

3, 4 : 3 � 2 � 1 � [. . . ]
5, 6, 7 : 5 � 4 � 3 � 2 � 1 � [. . . ]
They can be completed to be generally single-peaked

w.r.t. axis 1 < 2 < 3 < 5 < 4 < 6 < 7. Note that
{{1}, {3, 5, 6}, {2, 4, 7}} is an IS partition. We represent be-
low a cycle in IS-deviations that can be reached from the
singleton partition or the grand coalition.
{1, 2}, {3, 4}, {5, 6, 7} {1}, {2, 3, 4}, {5, 6, 7} {2, 3, 4}, {1, 5, 6, 7}

{3, 4}, {1, 2, 5, 6, 7}{1, 3, 4}, {2, 5, 6, 7}{2}, {1, 3, 4}, {5, 6, 7}

2 1

2
12

1

We know that it is NP-complete to recognize instances for
which an IS partition exists in AHGs, even for strict pref-
erences (Ballester 2004). We prove that both checking the
existence of a sequence of IS-deviations ending in an IS par-
tition and checking convergence are hard.
Theorem 3. ∃-IS-SEQUENCE-AHG is NP-hard and ∀-
IS-SEQUENCE-AHG is co-NP-hard, even for strict prefer-
ences.

However, this hardness result does not hold under strict
naturally single-peaked preferences, since we show in the
next proposition that every sequence of IS-deviations is fi-
nite under such a restriction.
Proposition 4. The dynamics of IS-deviations always con-
verges to an IS partition in AHGs for strict naturally single-
peaked preferences.

Proof. Assume for contradiction that there exists a cycle
of IS-deviations. The key idea is to construct an infinite
sequence of agents (ak)k≥1 that perform deviations from
coalitions (Ck)k≥1, which are strictly increasing in size. Let
a1 be an agent that deviates within this cycle towards a larger
coalition by an IS-deviation. This transforms, say, partition
π1 into partition π1

1 . Set C1 = π1(a1) and Ĉ1 = π1
1(a1).

One can for instance take an agent that performs a devia-
tion from a coalition of minimum size amongst all coali-
tions from which any deviation is performed. We will now
observe how the coalition Ĉ1 evolves during the cycle. Af-
ter possibly some agents outside Ĉ1 joined it or some left it,
some agent b originally in Ĉ1 must deviate from the coali-
tion evolved from Ĉ1. Otherwise, we cannot reach parti-
tion π1 again in the cycle. If b 6= a1, we assume that the
deviation transforms partition π2 into partition π1

2 and we
set a2 = b, C2 = π2(b), and Ĉ2 = π1

2(b). Note that
|Ĉ2| > |C2| ≥ |Ĉ1|, by single-peakedness and the fact that
|Ĉ2| �b |C2| �b |C2| − 1 �b · · · �b |Ĉ1| �b |Ĉ1| − 1
(where all preferences but the first follow from the assump-
tion of strictness when some other agent joined the coalition
of b). In particular, |C2| > |C1|.

If b = a1, assume that the deviation transforms partition
π2

1 into π3
1 , where possibly π2

1 = π1
1 . We update Ĉ1 =

π3
1(a1). Note that still |Ĉ1| > |C1| by single-peakedness,

because the original deviation of a1 performed in partition
π1 was towards a larger coalition and |π2

1(a1)| �a1
|π1

1(a1)|
(equality if the partitions are the same). We consider again
the next deviation from Ĉ1 until it is from an agent b 6= a1,
in which case we proceed as in the first case. This must
eventually happen, because every time the deviation is again
performed by agent a1 she gets closer to her peak. We pro-
ceed in the same manner. In step k, we are given a coali-
tion Ĉk with |Ĉk| > |Ck| which was just joined by an
agent. When the next agent originally in Ĉk deviates from
the coalition evolved from Ĉk, it is either an agent differ-
ent from ak and we call it ak+1, and find coalitions Ck+1

and Ĉk+1 with |Ĉk+1| > |Ck+1| ≥ |Ĉk|; or this agent is ak,
she moves towards an updated coalition Ĉk which maintains
|Ĉk| > |Ck|.

We have thus constructed an infinite sequence of coali-
tions (Ck)k≥1 occurring in the cycle with |Ck+1| > |Ck|
for all k ≥ 1, a contradiction.

An interesting open question is whether this convergence
result still holds under naturally single-peaked preferences
with indifference. However, convergence is also guaran-
teed under other constrained anonymous games, called neu-
tral anonymous games, which are subset-neutral, as defined
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by Suksompong (2015), thanks to the use of the same poten-
tial function argument.

Hedonic Diversity Games (HDGs)
Hedonic diversity games take into account more informa-
tion about the identity of the agents, changing the focus
from coalition sizes to proportions of given types of agents.
We obtain more positive results regarding the existence of
IS partitions. Indeed, there always exists an IS partition in
a hedonic diversity game, even with preferences that are
not single-peaked (Boehmer and Elkind 2020). However, we
prove that there may exist cycles in IS-deviations, even un-
der some strong restrictions. This stands in contrast to empir-
ical evidence for convergence based on extensive computer
simulations by Boehmer and Elkind (2020).

Proposition 5. The dynamics of IS-deviations may cycle in
HDGs even

1. when preferences are strict and naturally single-peaked,
2. when preferences are strict and the initial partition is the

singleton partition or the grand coalition, or
3. when preferences are naturally single-peaked and the ini-

tial partition is the singleton partition.

Sketch of proof. We only provide the counterexample for an
HDG with strict and naturally single-peaked preferences (re-
striction 1). Let us consider an HDG with 26 agents: 12 red
agents and 14 blue agents. There are four deviating agents:
red agents r1 and r2 and blue agents b1 and b2, and four fixed
coalitions C1, C2, C3 and C4 such that:
• C1 contains 2 red agents and 4 blue agents;
• C2 contains 5 red agents;
• C3 contains 3 red agents and 2 blue agents;
• C4 contains 6 blue agents.

The relevant part of the preferences is given below.

b1 : 3
8 � 5

7 � 5
6 � 2

7

b2 : 5
7 � 4

7 � 1
2 � 5

6

r1 : 4
7 � 1

4 � 1
7 � 2

3

r2 : 1
4 � 3

8 � 3
7 � 1

7

C1 : 3
8 � 3

7 � 1
3

C2 : 5
7 � 5

6 � 1

C3 : 4
7 � 1

2 � 3
5

C4 : 1
4 � 1

7 � 0

Consider the following sequence of IS-deviations
that describe a cycle in the dynamics. The four de-
viating agents of the cycle b1, b2, r1 and r2 are
marked in bold and the specific deviating agent be-
tween two states is indicated next to the arrows.

C1 ∪ {b1, r2} C2 C3 ∪ {b2} C4 ∪ {r1}
3/8 1 1/2 1/7

C1 ∪ {b1} C2 C3 ∪ {b2} C4 ∪ {r1, r2}
2/7 1 1/2 1/4

C1 ∪ {b1} C2 C3 ∪ {b2, r1} C4 ∪ {r2}
2/7 1 4/7 1/7

C1 C2 ∪ {b1} C3 ∪ {b2, r1} C4 ∪ {r2}
1/3 5/6 4/7 1/7

C1 ∪ {r2} C2 ∪ {b1} C3 ∪ {b2, r1} C4

3/7 5/6 4/7 0

C1 ∪ {b1, r2} C2 ∪ {b2} C3 C4 ∪ {r1}
3/8 5/6 3/5 1/7

C1 ∪ {r2} C2 ∪ {b1,b2} C3 ∪ {r1} C4

3/7 5/7 2/3 0

C1 ∪ {r2} C2 ∪ {b1,b2} C3 C4 ∪ {r1}
3/7 5/7 3/5 1/7

r2

r1 b1

r2

b2

r1b1

b2

This example does not show the impossibility to reach an
IS partition since the IS partition {C1 ∪ {b1, r2}, C2, C3 ∪
{r1, b2}, C4} can be reached via IS-deviations from some
partitions in the cycle. Thus, starting in these partitions, a
path to stability may still exist. Nevertheless, it may be pos-
sible that every sequence of IS-deviations cycles, even for
strict or naturally single-peaked preferences (with indiffer-
ence), as the next proposition shows. An interesting open
question is whether strict and single-peaked preferences al-
low for the existence of a path to stability.

Proposition 6. The dynamics of IS-deviations may never
reach an IS partition in HDGs, whatever the chosen path
of deviations, even for (1) strict preferences or (2) naturally
single-peaked preferences with indifference.

However, convergence is guaranteed by combining all
previous restrictions, as stated in the next proposition.

Proposition 7. The dynamics of IS-deviations starting from
the singleton partition always converges to an IS partition
in HDGs for strict naturally single-peaked preferences.

Sketch of proof. One can easily prove that at any step
of the dynamics, a coalition is necessarily of the form
{r1, b1, . . . , bk} or {b1, r1, . . . , rk′} or {b1} or {r1}
where ri ∈ R and bj ∈ B for every i ∈ [k′], j ∈ [k]
and k ≤ |B| and k′ ≤ |R|. Therefore, the ratio of
a coalition can only be equal to 1

k+1 , k′

k′+1 , 0 or 1.
Let us define as ρ(C) the modified ratio of a valid
coalition C formed by the dynamics where ρ(C) =



|R∩C|
|C| if C = {b1, r1, . . . , rk′} for k′ ≥ 1

1− |R∩C||C| if C = {r1, b1, . . . , bk} for k ≥ 2

0 otherwise, i.e., C = {r1} or C = {b1}
.

For each partition in a sequence of IS-deviations, we
consider the vector composed of the modified ratios ρ(C)
for all coalitions C in the partition. One can prove that for
each sequence of IS-deviations, either this vector strictly
increases lexicographically at each deviation or there is an
equivalent sequence of IS-deviations where it does.

Under strict preferences, checking the existence of a path
to stability and convergence are hard.

Theorem 8. ∃-IS-SEQUENCE-HDG is NP-hard and ∀-
IS-SEQUENCE-HDG is co-NP-hard, even for strict prefer-
ences.

Fractional Hedonic Games (FHGs)
Next, we study fractional hedonic games, which are closely
related to hedonic diversity games, but instead of agent
types, utilities rely on a cardinal valuation function of the
other agents. The first part of the section deals with sym-
metric games, the second part with simple games.

An open problem for symmetric FHGs was whether they
always admit an IS partition (Brandl, Brandt, and Strobel
2015). Here, we provide a counterexample using 15 agents.

Theorem 9. There exists a symmetric FHG without an IS
partition.
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(a) Five triangles ordered in
a cycle. There is a tendency
of agents in Ni to deviate to
coalitions in Ni+1.

bi

ai

ci

bi+1

ai+1

ci+1228

228

228
228

228

228

436

248

228

223

188

171

223

236

171

(b) The transition weights between
the triangles allow for infinite loops
of deviations.

Figure 1: Description of the graph associated with the con-
structed symmetric FHG without an IS partition.

Sketch of proof. Define the sets of agents Ni = {ai, bi, ci}
for i ∈ {1, . . . , 5} and consider the FHG on the agent set
N =

⋃5
i=1Ni where symmetric weights are given as in

Figure 1b. All weights not specified in this figure are set to
−2251. The FHG consists of five triangles that form a cycle.
Its structure is illustrated in Figure 1a.

There is an infinite cycle of deviations starting with the
partition {N5 ∪N1, N2, N3, N4}. First, a1 deviates by join-
ing N2. Then, b1 joins this new coalition, then c1. After this
step, we are in an isomorphic state as in the initial partition.
It can be shown that there exists no IS partition in this in-
stance.

Employing this counterexample, the methods of Brandl,
Brandt, and Strobel (2015), which originate from hardness
constructions of Sung and Dimitrov (2010), can be used to
show that it is NP-hard to decide about the existence of IS
partitions in symmetric FHGs.

Corollary 10. Deciding whether there exists an individually
stable partition in symmetric FHGs is NP-hard.

If we consider symmetric, non-negative utilities, the grand
coalition forms an NS, and therefore IS, partition of the
agents. However, deciding about the convergence of the IS
dynamics starting with the singleton partition is NP-hard.
The reduction is similar to the one in the previous statement
and avoids negative weights by the fact that, due to symme-
try of the weights, in a dynamics starting with the single-
ton partition, all coalitions that can be obtained in the pro-
cess must have strictly positive mutual utility for all pairs of
agents in the coalition.

Theorem 11. ∃-IS-SEQUENCE-FHG is NP-hard and ∀-IS-
SEQUENCE-FHG is co-NP-hard, even in symmetric FHGs
with non-negative weights. The former is even true if the ini-
tial partition is the singleton partition.

From now on, we consider simple FHGs. We start with
the additional assumption of symmetry.

Proposition 12. The dynamics of IS-deviations starting
from the singleton partition always converges to an IS parti-

tion in simple symmetric FHGs in at most O(n2) steps. The
dynamics may take Ω(n

√
n) steps.

Sketch of proof. We only prove the upper bound. Note that
all coalitions formed through the deviation dynamics are
cliques. Hence, every deviation step will increase the total
number of edges in all coalitions. More precisely, the dy-
namics will increase the potential Λ(π) =

∑
C∈π |C|(|C| −

1)/2 in every step by at least 1. Since the total number of
edges is quadratic, this proves the upper bound.

Note that there is a simple way to converge in a linear
number of steps starting with the singleton partition by form-
ing largest cliques and removing them from consideration.

If we allow for asymmetries, the dynamics is not guar-
anteed to converge anymore. For instance, the IS dynam-
ics on an FHG induced by a directed triangle will not con-
verge for any initial partition except for the grand coalition.
We can, however, characterize convergence on asymmetric
FHGs. Tractability highly depends on the initial partition.
First, we assume that we start from the singleton partition.

The key insight is that throughout the dynamic process on
an asymmetric FHG starting from the singleton partition, the
subgraphs induced by coalitions are always transitive and
complete. Convergence is then shown by a potential function
argument.
Proposition 13. The dynamics of IS-deviations starting
from the singleton partition converges in asymmetric FHGs
if and only if the underlying graph is acyclic. Moreover, un-
der acyclicity, it converges in O(n4) steps.

The previous statement shows convergence of the dynam-
ics for asymmetric, acyclic FHGs. In addition, it is easy to
see that there is always a sequence converging after n steps,
starting with the singleton partition. One can use a topolog-
ical order of the agents and allow agents to deviate in de-
creasing topological order towards a best possible coalition.

There are two interesting further directions. One can
weaken either the restriction on the initial partition or on
asymmetry. If we allow for general initial partitions, we im-
mediately obtain hardness results that apply in particular to
the broader class of simple FHGs.
Theorem 14. ∃-IS-SEQUENCE-FHG is NP-hard and ∀-IS-
SEQUENCE-FHG is co-NP-hard, even in asymmetric FHGs.

On the other hand, if we transition to simple FHGs while
maintaining the initial partition, the problem of deciding
whether a path to stability exists becomes hard.
Theorem 15. ∃-IS-SEQUENCE-FHG is NP-hard even in
simple FHGs when starting from the singleton partition.

Dichotomous Hedonic Games (DHGs)
By taking into account the identity of other agents in the
preferences of agents over coalitions, it can be more com-
plicated to get positive results regarding individual stability
(see, e.g., Theorem 9). However, by restricting the evalua-
tion of coalitions to dichotomous preferences, the existence
of an IS partition is guaranteed (Peters 2016), as well as
convergence of the dynamics of IS-deviations, when start-
ing from the grand coalition (Boehmer and Elkind 2020).

5216



Nevertheless, the convergence of the dynamics is not guar-
anteed for an arbitrary initial partition and no sequence of
IS-deviations may ever reach an IS partition.

Proposition 16. The dynamics of IS-deviations may never
reach an IS partition in DHGs, whatever the chosen path of
deviations, even when starting from the singleton partition.

Proof. Let us consider an instance of a DHG with three
agents where the only coalition approved by agent i is
{i, i+ 1} for i ∈ {1, 2} and {1, 3} for agent 3.

There is a unique IS partition which consists of the
grand coalition {1, 2, 3}. We represent below all possible
IS-deviations between all the other possible partitions. An
IS-deviation between two partitions is indicated by an arrow
mentioning the name of the deviating agent.

{{1}, {2}, {3}} {{1, 2}, {3}}

{{1}, {2, 3}}

{{1, 3}, {2}}

1
2

3

1

2

3

One can check that the described deviations are IS-
deviations. A cycle is necessarily reached when starting
from a partition different from the unique IS partition, which
can be reached only if it is the initial partition.

Moreover, it is hard to decide on the existence of a se-
quence of IS-deviations ending in an IS partition, even when
starting from the singleton partition, as well as checking
convergence.

Theorem 17. ∃-IS-SEQUENCE-DHG is NP-hard even
when starting from the singleton partition, and ∀-IS-
SEQUENCE-DHG is co-NP-hard.

Note that the counterexample provided in the proof of
Proposition 16 exhibits a global cycle in the preferences of
the agents: {1, 2} B {1, 3} B {2, 3} B {1, 2}. However, by
considering dichotomous preferences with common ranking
property, that is, each agent has a threshold for acceptance
in a given global order, we obtain convergence thanks to
the same potential function argument used by Caskurlu and
Kizilkaya (2019), for proving the existence of a core-stable
partition in hedonic games with common ranking property.

Note that when assuming that if a coalition is approved
by one agent, then it must be approved by all the members
of the coalition (so-called symmetric dichotomous prefer-
ences), we obtain a special case of preferences with com-
mon ranking property where all the approved coalitions are
at the top of the global order. Therefore, convergence is also
guaranteed under symmetric dichotomous preferences.

Conclusion
We have investigated dynamics of deviations based on indi-
vidual stability in hedonic games. The two main questions
we considered were whether there exists some sequence of
deviations terminating in an IS partition, and whether all se-
quences of deviations terminate in an IS partition, i.e., the
dynamics converges. Our results are mostly negative with
examples of cycles in dynamics or even non-existence of IS

partitions under rather strong preference restrictions. In par-
ticular, we have answered a number of open problems pro-
posed in the literature. On the other hand, we have identified
natural conditions for convergence that are mostly based on
preferences relying on a common scale for the agents, like
the common ranking property, single-peakedness or symme-
try. An overview of our results can be found in Table 1.

Convergence Hardness

A
H

G
s X strict & nat. SP (single-

peaked) (Prop. 4)

◦ strict & gen. SP; singletons
/ grand coalition (Prop. 2)

∃ strict (Th. 3)
∀ strict (Th. 3)

H
D

G
s X strict & nat. SP; single-

tons (Prop. 7)

◦
[strict & nat. SP] or [strict;
singletons/grand coalition] or
[nat. SP; singletons] (Prop. 5)

∃ strict (Th. 8)
∀ strict (Th. 8)

FH
G

s X simple & sym.; singletons
(Prop. 12)

X acyclic digraph (Th. 13)◦ sym. (Th. 9)

∃ sym. (Th. 11)

∃ simple; single-
tons (Th. 15)
∃ asym. (Th. 14)
∀ sym. (Th. 11)
∀ asym. (Th. 14)

D
H

G
s X grand coalition (Boehmer

and Elkind 2020)◦ singletons (Prop. 16)

∃ singletons
(Th. 17)
∀ general (Th. 17)

Table 1: Convergence and hardness results for the dynam-
ics of IS-deviations in various classes of hedonic games.
Symbol X marks convergence under the given preference re-
strictions and initial partition (if applicable) while ◦ marks
non-convergence, i.e., cycling dynamics. Symbol ∃ (resp.,
∀) denotes that problem ∃-IS-SEQUENCE-HG (resp., ∀-IS-
SEQUENCE-HG) is NP-hard (resp., co-NP-hard).

For all hedonic games under study, it turned out that the
existence of cycles for IS-deviations is sufficient to prove
the hardness of recognizing instances for which there ex-
ists a finite sequence of deviations or whether all sequences
of deviations are finite, i.e., the dynamics converges. While
our results cover a broad range of hedonic games considered
in the literature, there are still promising directions for fur-
ther research. First, even though our hardness results hold
under strong restrictions, the complexity of these questions
remains open for interesting preference restrictions, some of
which do not guarantee convergence. Following our work,
the most intriguing cases are AHGs under single-peaked
weak preferences, simple symmetric FHGs with arbitrary
initial partitions, and HDGs under single-peaked prefer-
ences. Secondly, one could investigate more specific rules
of IS-deviations that quickly terminate in IS partitions. For
instance, for simple symmetric FHGs, there is the possibility
of very fast convergence, but the selection of the deviating
agents in this approach requires to solve a maximum clique
problem (cf. the discussion after Proposition 12). Finally,
the dynamics we consider only concerns individual stability.
One could also aim at reaching outcomes that satisfy Pareto
optimality or other desirable properties in addition.
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10
C O R E P U B L I C AT I O N 5 : S I N G L E - A G E N T DY N A M I C S
I N A D D I T I V E LY S E PA R A B L E H E D O N I C G A M E S

summary

The formation of stable coalitions is a central goal in multi-agent sys-
tems. A considerable stream of research defines stability via the ab-
sence of beneficial deviations by single agents. The simplest type of
such a deviation is a Nash deviation, where it is required that an
agent improves their utility by performing the deviation. However,
requiring that a coalition structure allows for no Nash deviation is
a strong demand. Therefore, further restrictions for conducting de-
viations have been imposed in the literature, which are based on the
consent of the agents in the abandoned as well as the welcoming coali-
tion. If all agents in the abandoned (or welcoming) coalition have to
approve a deviation, we speak of a contractual (or individual) devia-
tion.

While Nash deviations are not constrained by agents other than
the deviating agent, contractual and individual deviations require the
unanimous consent of agents. We strive for a compromise between
these two extremes, and also study consent decided by majority votes.
In particular, we introduce two new stability notions that can be seen
as local variants of popularity.

We investigate all resulting stability notions in additively separa-
ble hedonic games. There, we pinpoint boundaries to computational
complexity depending on the type of consent and restrictions on
the utility functions. The latter restrictions shed new light on well-
studied classes of games based on the appreciation of friends or
the aversion to enemies. While majority-based stability leads to in-
tractabilities in general additively separable hedonic games, we find
more positive results in the obtained restricted classes of games. In
particular, involving both the abandoned and welcoming coalition in
the majority vote leads to tractability.

Many of our positive results follow from the Deviation Lemma, a
general combinatorial observation, which can be leveraged to prove
the convergence of simple and natural single-agent dynamics under
fairly general conditions.
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Abstract
The formation of stable coalitions is a central concern in mul-
tiagent systems. A considerable stream of research defines
stability via the absence of beneficial deviations by single
agents. Such deviations require an agent to improve her utility
by joining another coalition while possibly imposing further
restrictions on the consent of the agents in the welcoming as
well as the abandoned coalition. While most of the literature
focuses on unanimous consent, we also study consent decided
by majority vote, and introduce two new stability notions that
can be seen as local variants of popularity. We investigate
these notions in additively separable hedonic games by pin-
pointing boundaries to computational complexity depending
on the type of consent and restrictions on the utility functions.
The latter restrictions shed new light on well-studied classes
of games based on the appreciation of friends or the aversion
to enemies. Many of our positive results follow from the Devi-
ation Lemma, a general combinatorial observation, which can
be leveraged to prove the convergence of simple and natural
single-agent dynamics under fairly general conditions.

Introduction
Coalition formation is a central concern in multi-agent sys-
tems and considers the question of grouping a set of agents,
e.g., humans or machines, into coalitions such as teams, clubs,
or societies. A prominent framework for studying coalition
formation is that of hedonic games, where agents’ utilities are
solely based on the coalition they are part of, and which thus
disregards inter-coalitional relationships (Drèze and Green-
berg 1980). Hedonic games have been successfully used to
model various scenarios evolving from operations research
or the mathematical social sciences such as research team
formation (Alcalde and Revilla 2004), task allocation (Saad
et al. 2011), or community detection (Newman 2004; Aziz
et al. 2019). Identifying desirable coalition structures is often
based on the prospect of coalitions to stay together. To this
end, various notions of stability have been introduced and
studied. A coalition structure (henceforth partition) is stable
when no individual or group of agents benefits by joining
another coalition or by forming a new coalition.

In this paper, we focus on deviations by single agents. The
simplest example is a Nash deviation where some agent uni-
laterally decides to leave her current coalition in order to join

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

another coalition. While such a deviation clearly captures
the incentive of single agents to perform deviations, it com-
pletely ignores the other agents’ opinions about the deviation.
To overcome this shortcoming, various restrictions of Nash
deviations have been proposed. This has motivated stability
notions such as individual stability or contractual Nash sta-
bility, which consider the unanimous consent of some or all
of the coalitions directly affected by the deviation. While
unanimous consent is in fact used in the formation process
of international bodies like the EU or the NATO, it might
be impractical and even undesirable in small- or medium-
scale coalition formation scenarios. As a compromise, we
also study intermediate notions of stability based on majority
votes among the involved coalitions. This setting has received
little attention so far (Gairing and Savani 2019), and we will
also define some new majority-based stability notions.

The study of hedonic games was initiated by Drèze and
Greenberg (1980), and later popularized by Banerjee, Kon-
ishi, and Sönmez (2001), Cechlárová and Romero-Medina
(2001), and Bogomolnaia and Jackson (2002). Since then, a
large body of research has been devoted to defining suitable
game representations and solution concepts. An overview of
many important aspects is provided in the survey by Aziz
and Savani (2016). One prominent, natural, and arguably sim-
ple type of hedonic games is given by additively separable
hedonic games (Bogomolnaia and Jackson 2002). In these
games, agents entertain cardinal utilities for other agents and
the utility for a coalition is defined by taking the sum of the
individual utility values. This game representation allows, for
instance, the modeling of settings where agents have friends
and enemies, and their goal is to simultaneously maximize
the number of friends and minimize the number of enemies,
while one of these two goals can have higher priority than the
other one (Dimitrov et al. 2006). Our work provides exact
boundaries for the computational tractability of stability con-
cepts based on single-agent deviations in additively separable
hedonic games, showing a clear cut between Nash stability
and stability notions under consent. We give simple and pre-
cise conditions for restricted classes of utility functions that
pinpoint the boundaries of computational tractability. This
includes well-studied classes of games where agents only
distinguish between friends and enemies.

A more recent line of research on stability notions fo-
cuses on the dynamical aspects leading to the formation of
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stable outcomes (e.g., Bilò et al. 2018; Hoefer, Vaz, and Wag-
ner 2018; Carosi, Monaco, and Moscardelli 2019; Brandt,
Bullinger, and Wilczynski 2021). This yields an important
distributed perspective on the coalition formation process.
The value of some positive computational results in the con-
text of hedonic games is diminished by the fact that they
implicitly assume that a central authority has the means to
collect all individual preferences, compute a stable partition,
and enforce this partition on the agents. In contrast, simple
dynamics based on single-agent deviations provide a much
more plausible explanation for the formation of stable parti-
tions. A versatile tool to prove the convergence of dynamics
are potential functions, which guide the dynamics towards
stable states (e.g., Bogomolnaia and Jackson 2002; Suksom-
pong 2015). We extend the applicability of this approach
by considering non-monotonic potential functions, i.e., po-
tential functions that might decrease in some rounds of the
dynamic process. This is possible because the total number
of rounds can be bounded by observing the potential function
from a global perspective using a new general combinatorial
insight that we call the Deviation Lemma. The Deviation
Lemma is not restricted to additively separable utilities or
the specific type of single-agent deviations. For instance, the
combinatorial relationship of the lemma also arises naturally
in the analysis of deviation dynamics in classes of games
beyond the scope of this paper, such as anonymous hedonic
games (Bogomolnaia and Jackson 2002). In fact, the lemma
holds for every sequence of partitions such that each partition
evolves from its predecessor by having one element move to
another partition class. It establishes a relationship between
the development of the sizes of coalitions involved in devia-
tions to information solely based on the starting partition and
the terminal partition of the sequence.

For the special case of symmetric utility functions, ad-
ditively separable hedonic games are well understood: the
standard notion of utilitarian social welfare represents an
increasing potential function for the dynamics induced by
Nash stability (Bogomolnaia and Jackson 2002), but finding
stable states (even under unanimous consent of the welcom-
ing coalition) leads to PLS-complete problems (Gairing and
Savani 2019). As we will see, this implies worst-case expo-
nential running time of the dynamics. By contrast, our results
hold for restricted sets of non-symmetric utility functions and
our computational boundaries lie between polynomial-time
computability and NP-completeness. In fact, whenever we
identify a potential function guaranteeing the existence of sta-
ble outcomes, we are also able to prove that, from any starting
partition, the corresponding simple dynamics of single-agent
deviations converges to a stable partition in a polynomial
number of rounds.

Preliminaries and Model
In this section we introduce hedonic games and our stabil-
ity concepts. We use the notation [k] = {1, . . . , k} for any
positive integer k.

Hedonic Games
Throughout the paper, we consider settings with a set N =
[n] of n agents. The goal of coalition formation is to find a

partition of the agents into different disjoint coalitions accord-
ing to their preferences. A partition of N is a subset π ⊆ 2N

such that
⋃

C∈π C = N , and for every pair C, D ∈ π, it
holds that C = D or C ∩ D = ∅. An element of a partition
is called coalition, and given a partition π, we denote by π(i)
the coalition containing agent i. We refer to the partition π
given by π(i) = {i} for every agent i ∈ N as the singleton
partition, and to π = {N} as the grand coalition.

Let Ni denote all possible coalitions containing agent i,
i.e., Ni = {C ⊆ N : i ∈ C}. A hedonic game is defined by
a tuple (N, ≿), where N is an agent set and ≿ = (≿i)i∈N

is a tuple of weak orders ≿i over Ni which represent the
preferences of the respective agent i. Hence, agents express
preferences only over the coalitions which they are part
of without considering externalities. The generality of the
definition of hedonic games gives rise to many interesting
subclasses of games that have been proposed in the liter-
ature. Many of these classes rely on cardinal utility func-
tions vi : N → R for every agent i, which are aggregated in
various ways (Aziz et al. 2019; Bogomolnaia and Jackson
2002; Olsen 2012). One particularly natural and prominent
such model considers aggregation by taking the sum of indi-
vidual utilities. Formally, following Bogomolnaia and Jack-
son (2002), an additively separable hedonic game (ASHG)
(N, v) consists of an agent set N and a tuple v = (vi)i∈N

of utility functions vi : N → R such that π(i) ≿i π′(i) iff∑
j∈π(i) vi(j) ≥ ∑

j∈π′(i) vi(j). Clearly, ASHGs are a sub-
class of hedonic games, and we can assume without loss of
generality that vi(i) = 0 (or set the utility of an agent for
herself to an arbitrary constant). ASHGs have a natural rep-
resentation by a complete directed graph G = (N, E) with
weight vi(j) on arc (i, j). An ASHG is called symmetric if
vi(j) = vj(i) for every pair of agents i and j, and it can then
be represented by a complete undirected graph with weight
vi(j) on edge {i, j}. There are various classes of ASHGs
with certain restrictions for the utility functions that allow
a natural interpretation in terms of friends and enemies. An
agent j is called friend (respectively, enemy) of agent i if
vi(j) > 0 (respectively, vi(j) < 0). An ASHG is called
friends-and-enemies game (FEG) if vi(j) ∈ {−1, 1} for ev-
ery pair of agents i and j. Further, following Dimitrov et al.
(2006), an ASHG is called an appreciation of friends game
(AFG) (respectively, an aversion to enemies game (AEG))
if vi(j) ∈ {−1, n} (respectively, vi(j) ∈ {−n, 1}). In all of
these games, agents pursue the objective to maximize their
number of friends while minimizing their number of enemies.
In the case of an FEG, these two goals have equal priority,
while there is a strict priority for one of the goals in AFGs
and AEGs.

Stability Based on Single-Agent Deviations
We want to study stability under single agents’ incentives
to perform deviations. A single-agent deviation performed
by agent i transforms a partition π into a partition π′ where
π(i) ̸= π′(i) and, for all agents j ̸= i,

π′(j) =





π(j) \ {i} if j ∈ π(i),

π(j) ∪ {i} if j ∈ π′(i),
π(j) otherwise.
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We write π
i−→ π′ to denote a single-agent deviation per-

formed by agent i transforming partition π to partition π′.
We consider the case of myopic rational agents who only

engage in a deviation if it immediately makes them better
off. Formally, a Nash deviation is a single-agent deviation
performed by agent i making agent i better off, i.e., π′(i) ≻i

π(i). Any partition in which no Nash deviation is possible is
called Nash stable (NS).

This concept of stability is very strong and comes with
the drawback that only the preferences of the deviating agent
are considered. Therefore, various refinements have been
proposed which additionally require the consent of the aban-
doned and the welcoming coalition. For a compact represen-
tation, we introduce them via the notion of favor sets.

Let C ⊆ N be a coalition and i ∈ N be an agent. The
favor-in set of C with respect to i is the set of agents in C
(excluding i) that strictly favor having i inside of C than out-
side, i.e., Fin(C, i) = {j ∈ C \ {i} : C ∪ {i} ≻j C \ {i}}.
Similarly, the favor-out set of C with respect to i is
the set of agents in C (excluding i) that strictly favor
having i outside of C than inside, i.e., Fout(C, i) =
{j ∈ C \ {i} : C \ {i} ≻j C ∪ {i}}.

Following Bogomolnaia and Jackson (2002) and Dimitrov
and Sung (2007), an individual deviation (respectively, con-
tractual deviation) is a Nash deviation π

i−→ π′ such that
Fout(π

′(i), i) = ∅ (respectively, Fin(π(i), i) = ∅). A single-
agent deviation that is both an individual and a contractual
deviation is called contractual individual deviation. All of
these deviation concepts give rise to a respective stability
concept. A partition is called individually stable (IS), con-
tractually Nash stable (CNS), or contractually individually
stable (CIS) if it allows for no individual, contractual, or
contractual individual deviations, respectively.

While these stability concepts include agents affected by
the deviation, they require unanimous consent, which might
be unnecessarily strong in some settings. Based on this ob-
servation, we define several hybrid stability concepts where
the possibility of a deviation by some agent is decided via
majority votes of the involved agents.

A Nash deviation π
i−→ π′ is called majority-in devia-

tion (respectively, majority-out deviation) if |Fin(π
′(i), i)| ≥

|Fout(π
′(i), i)| (respectively, |Fout(π(i), i)| ≥ |Fin(π(i), i)|).

A single-agent deviation that is both a majority-in deviation
and a majority-out deviation is called separate-majorities
deviation. As before, a partition is called majority-in stable
(MIS), majority-out stable (MOS), or separate-majorities
stable (SMS) if it allows for no majority-in, majority-out,
or separate-majorities deviations, respectively. The concepts
MIS and MOS are a special case of voting-based stability
notions by Gairing and Savani (2019) for a threshold of 1/2.

Finally, it is possible to relax SMS by performing one
joint vote instead of two separate votes. A Nash deviation
π

i−→ π′ is called a joint-majority deviation if |Fout(π(i), i)|+
|Fin(π

′(i), i)| ≥ |Fin(π(i), i)| + |Fout(π
′(i), i)|. A partition

is then called joint-majority stable (JMS) if it allows for no
joint-majority deviations. JMS is particularly interesting as
it is a natural local version of popularity (Pop), an axiom
recently studied in the context of hedonic games (Gärdenfors

NS

MOS JMS MIS

CNS SMS IS

CIS

Pop

PO

Figure 1: Logical relationships between stability notions and
other solutions concepts. An arrow from concept α to concept
β indicates that if a partition satisfies α, it also satisfies β.
Majority-based stability notions are highlighted in blue, other
single-agent based stability notions in black.

1975; Cseh 2017; Brandt and Bullinger 2020).1
Also note that while CIS is a refinement of Pareto

optimality (PO), there is no logical relationship be-
tween other (majority-based) stability concepts and
PO. In particular, we denote the stability concepts
based on single-agent deviations by S, i.e., S =
{NS, IS, CNS, CIS, MIS, MOS, SMS, JMS}. A taxonomy
of our related solution concepts is provided in Figure 1. For a
more concise notation, we refer to deviations with respect to
stability concept α ∈ S as α-deviations, e.g., IS-deviations
for α = IS.

All these stability concepts naturally induce dynamics
where we choose some starting partition and obtain a suc-
cessor partition by having some agent perform a deviation
from the current partition. More precisely, given a stability
concept α ∈ S, an execution of α-dynamics is an infinite
or finite sequence (πj)j≥0 of partitions and a corresponding

sequence (ij)j≥1 of (deviating) agents such that πj−1
ij−→ πj

is an α-deviation for every j. The partition π0 is then called
the starting partition. Given a hedonic game G, and a stabil-
ity concept α ∈ S, we say that the dynamics converges for
starting partition π0 if every execution of the α-dynamics
on G with starting partition π0 is finite. Additionally, the
α-dynamics converges on G if it converges for every starting
partition.

Proving convergence of dynamics is a very natural way to
prove the existence of stable states and underlines the robust-
ness of the stability concept. It complements a static solution
concept with a decentralized process to reach a solution.

Results
In this section, we present our results.

Computational Boundaries for Nash Stability
First, we consider the notion of Nash stability. In the absence
of negative utility values, the partition consisting solely of the
grand coalition is Nash stable. Conversely, in the absence of

1Informally speaking, a partition is popular if there is no other
partition preferred by a majority of the agents. JMS partitions can
only be challenged by partitions evolving through Nash deviations.
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positive utility values, the singleton partition is Nash stable. It
is therefore necessary for an ASHG to have both positive and
negative utility values in order to admit a non-trivial Nash
stable partition (see also Gairing and Savani 2019).

Sung and Dimitrov (2010) showed that deciding whether
an ASHG has an NS partition is NP-hard by a reduction
from EXACT3COVER. This reduction produces an ASHG
with four distinct positive utility values and one negative
utility value. We improve upon this result by showing that a
reduction is possible with only one positive and one negative
utility value. Moreover, it is possible for any choice of these
two utility values, as long as the absolute value of the negative
utility value is at least as large as the positive utility value. We
state the theorem in a general way allowing the positive and
negative utility value to be dependent on the number of agents
of the particular instance. In this way, we simultaneously
cover several important cases. For instance, the hardness
holds for fixed constant positive and negative utility values
as in FEGs, or for AFGs and AEGs. Note that for all of
our stability notions, a stable partition is a polynomial-time
verifiable certificate: one can simply check whether any agent
can perform a deviation, and if no one can, the partition is
stable. Therefore, we omit the proof of membership in NP
in all of our reductions. The proof of the next and some
subsequent results are omitted due to space restrictions.

Theorem 1. Let f+ : N → Q>0 and f− : N → Q<0 be two
polynomial-time computable functions satisfying |f−(m)| ≥
f+(m) for all m ∈ N. Then, the problem of deciding whether
an ASHG with utility values restricted to {f−(n), f+(n)}
has an NS partition is NP-complete.

Theorem 1 requires the negative utility value to be at least
as large in absolute value as the positive utility value. While
we leave open the computational complexity for completely
arbitrary pairs of negative and positive values, we can show
that the problem is also hard when the positive utility value
is significantly larger than the absolute value of the negative
utility value. The reduction is a variant of the reduction in
Theorem 1.

Theorem 2. Deciding whether an AFG has an NS partition
is NP-complete.

Deviation Lemma and Applications
By contrast, restricting the utility values to one positive and
one negative value leads to positive results for other notions
of stability. These results can be shown in a unified manner
using a potential function argument that crucially hinges on
the following general observation.

Lemma 1 (Deviation Lemma). Let π0
i1−→ π1

i2−→ . . .
ik−→

πk be a sequence of k single-agent deviations. Then, the
following identity holds:

∑

j∈[k]

|πj(ij)| − |πj−1(ij)| =
1

2

∑

i∈N

|πk(i)| − |π0(i)|. (1)

Proof. Let π0
i1−→ π1

i2−→ . . .
ik−→ πk be a sequence of k

single-agent deviations and fix some j ∈ [k]. Then, the fol-

lowing facts hold:

|πj(ij)| =


 ∑

i∈πj(ij)\{ij}
|πj(i)| − |πj−1(i)|


 + 1,

|πj−1(ij)| =


 ∑

i∈πj−1(ij)\{ij}
|πj−1(i)| − |πj(i)|


 + 1,

πj(i) = πj−1(i) ∀i ∈ N \ (πj(ij) ∪ πj−1(ij)) .

Combining these facts allows us to express the difference of
the deviator’s coalition sizes as follows:

|πj(ij)| − |πj−1(ij)| =


 ∑

i∈πj(ij)\{ij}
|πj(i)| − |πj−1(i)|




−


 ∑

i∈πj−1(ij)\{ij}
|πj−1(i)| − |πj(i)|




+
∑

i∈N\(πj(ij)∪πj−1(ij))

|πj(i)| − |πj−1(i)|

=
∑

i∈N\{ij}
|πj(i)| − |πj−1(i)|.

Adding |πj(ij)| − |πj−1(ij)| to both sides yields

2 (|πj(ij)| − |πj−1(ij)|) =
∑

i∈N

|πj(i)| − |πj−1(i)|.

Summing these terms for all j ∈ [k], interchanging summa-
tion order, and telescoping gives
∑

j∈[k]

2 (|πj(ij)| − |πj−1(ij)|) =
∑

j∈[k]

∑

i∈N

|πj(i)| − |πj−1(i)|

2
∑

j∈[k]

|πj(ij)| − |πj−1(ij)| =
∑

i∈N

∑

j∈[k]

|πj(i)| − |πj−1(i)|

2
∑

j∈[k]

|πj(ij)| − |πj−1(ij)| =
∑

i∈N

|πk(i)| − |π0(i)|.

Dividing both sides by 2 completes the proof.

The Deviation Lemma is especially useful as the right-
hand side of Equation (1) does not depend on k, and we
can therefore also find bounds for its left-hand side solely
depending on the number of players n.

Lemma 2. Consider a sequence of k successive single-agent
deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.

Then, the following bounds hold:

−n(n − 1)

2
≤

∑

j∈[k]

|πj(ij)| − |πj−1(ij)| ≤ n(n − 1)

2
.

Proof. Observe that for all i ∈ N and all partitions π, we
have

1 ≤ |π(i)| ≤ n.
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Thus, we can find the bounds

−n(n − 1) ≤
∑

i∈N

|πk(i)| − |π0(i)| ≤ n(n − 1).

Applying Lemma 1 yields the desired result.

We demonstrate the power of the Deviation Lemma by
proving convergence of the dynamics for a variety of devia-
tion types and classes of ASHGs.
Theorem 3. The dynamics of IS-deviations always converges
in ASHGs with at most one nonnegative utility value.

Proof. Let (N, v) be an ASHG such that the vi take on at
most one nonnegative value. If there are no nonnegative valu-
ations, all IS-deviations are singleton formations, so after at
most n deviations, we reach a stable partition. Now, suppose
that there is exactly one nonnegative utility value x ≥ 0. If
there are no negative valuations, then in case x = 0 we termi-
nate immediately, and in case x > 0 the grand coalition will
form after at most n2 deviations. The latter holds because
every deviation increases the number of pairs of agents which
are part of the same coalition. Thus, we will now assume that
in addition to the single nonnegative utility value x, there is
at least one negative utility value, and we denote the largest
absolute value of a negative utility value by y. Further, define
∆ = min{vi(C) − vi(C

′) : i ∈ N, C,C ′ ∈ Ni, vi(C) >
vi(C

′)}. Intuitively, ∆ > 0 is the minimum improvement
any agent is guaranteed to have when making a NS-deviation.
Further, consider the potential function Φ defined by the
social welfare of a partition as Φ(π) =

∑
i∈N vi(π).

Let us investigate how this potential changes for a single
IS-deviation π

i−→ π′.

Φ(π′) − Φ(π) = vi(π
′) − vi(π)︸ ︷︷ ︸
deviator

+
∑

j∈π′(i)\{i}
vj(π

′) − vj(π)

︸ ︷︷ ︸
welcoming coalition

+
∑

j∈π(i)\{i}
vj(π

′) − vj(π)

︸ ︷︷ ︸
abandoned coalition

= vi(π
′) − vi(π) +

∑

j∈π′(i)\{i}
vj(i) −

∑

j∈π(i)\{i}
vj(i)

= vi(π
′) − vi(π) + x (|π′(i)| − 1) −

∑

j∈π(i)\{i}
vj(i)

≥ ∆ + x (|π′(i)| − 1) − x (|π(i)| − 1)

= ∆ + x (|π′(i)| − |π(i)|) .

The third equality comes from the fact that i performs an
IS-deviation, so all agents j ∈ π′(i) \ {i} must accept i,
which means they must have vj(i) = x. Now, let π0 be any
initial partition and consider any sequence of k successive
IS-deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.

Telescoping and termwise application of the above in-
equality yields Φ(πk) − Φ(π0) =

∑
j∈[k] Φ(πj) −

Φ(πj−1) ≥ ∑
j∈[k] ∆ + x (|πj(ij)| − |πj−1(ij)|) = k∆ +

x
∑

j∈[k]|πj(ij)| − |πj−1(ij)|. We recognize the sum from

the Deviation Lemma, which can be bounded from below
using Lemma 2:

Φ(πk) − Φ(π0) ≥ k∆ − x
n(n − 1)

2
. (2)

As the right hand side is unbounded in k, the sequence must
be finite. To be precise, we can bound the potentials of the
initial and final partitions by

Φ(π0) ≥ −n(n − 1)y, Φ(πk) ≤ n(n − 1)x.

Substituting in these bounds and rearranging for k gives

k ≤ (2y + 3x)n(n − 1)

2∆
. (3)

There are a few important insights gained by the previous
proof. First, the bound obtained via the Deviation Lemma
does not mean that the potential function Φ is increasing
in every round. In fact, since utilities are not necessarily
symmetric, the deviating agent might move from a rather
large coalition to a smaller coalition only improving her
utility by ∆ whereas the utility of all agents in the abandoned
coalition are decreased by x. In fact, the Deviation Lemma
does not give us control of the potential function in a single
round. Also, it does not control the utility changes caused
by the deviator. We apply it to control the utility changes of
agents involved in deviations except for the deviator to obtain
Equation (2). Hence, we can bound their utility changes by
a global constant solely depending on input data. The utility
changes caused by the deviator will then eventually lead to
the potential reaching a local maximum.

Second, we can easily obtain polynomial bounds on the
running time of the dynamics. If x and y are polynomially
bounded in n and all valuations are integer, polynomial run-
ning time is directly obtained from Equation (3). In particular,
this is the case for FEGs, AFGs, and AEGs, so individually
stable partitions can be found in polynomial time for these
games. After showing two more applications of the Deviation
Lemma for other types of deviations, we will capture this
observation in Corollary 1.

Third, the previous theorem is tight in the sense that the
dynamics can cycle if we have two nonnegative utility values.
Indeed, in an instance with agent set N = [3] and utility val-
ues vi(j) = 1, vj(i) = 0 for (i, j) ∈ {(1, 2), (2, 3), (3, 1)},
the dynamics can infinitely cycle among the partitions
{{1, 2}, {3}}, {{1}, {2, 3}}, and {{1, 3}, {2}}. However,
the partition consisting of the grand coalition is individu-
ally stable and can be reached through the dynamics.

Our next application of the Deviation Lemma considers
contractual Nash stability, where we obtain a similar result
if we allow at most one nonpositive value. The proof is com-
pletely analogous and is therefore omitted. Note that this
result also breaks down if we simultaneously allow the utility
values −1 and 0 by constructing a similar cycle as in the
previous example.

Theorem 4. The dynamics of CNS-deviations always con-
verges in ASHGs with at most one nonpositive utility value.
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Theorems 3 and 4 use the Deviation Lemma to derive
positive results for the single-sided unanimity-based stability
notions IS and CNS. In a third application of the deviation
lemma, we show that this technique is also applicable to
majority-based stability notions, at least when we involve
both the welcoming and the abandoned coalition in the vote.
The key idea is a suitable arrangement of the terms occurring
in the difference of the potential with respect to the agents
affected by a deviation.

Theorem 5. The dynamics of JMS-deviations always con-
verges in ASHGs with at most two distinct utility values.

Note that since every JMS-deviation is also an SMS-
deviation, the previous result holds for SMS as well. As
in the discussion after Theorem 3, we obtain a polynomial
running time of the dynamics for appropriate restrictions of
the cases. We collect important consequences in the follow-
ing corollary. In particular, we extend results by Dimitrov
et al. (2006) and Aziz and Brandl (2012) who proved the
existence of IS partitions for AFGs and AEGs, respectively.2

Corollary 1. The dynamics of IS-, CNS-, and JMS-deviations
always converges in polynomial time in AFGs, AEGs, and
FEGs.

We would like to stress that convergence of the dynamics
does not guarantee a polynomial running time in general. An
example is the case of symmetric utility values in ASHGs.
For NS this can be directly inferred from the PLS-reduction
by (Gairing and Savani 2019), which satisfies tightness, a
property of reductions defined by Schäffer and Yannakakis
(1991).

Proposition 1. The dynamics of NS-deviations in symmet-
ric ASHGs may require exponentially many rounds before
converging to an NS partition.

Proof. It is easy to verify that the PLS-reduction from
PARTYAFFILIATION under the Flip neighborhood by Gair-
ing and Savani (2019, Observation 2) is tight. Schäffer and
Yannakakis (1991, Lemma 3.3) showed that tight reductions
preserve the existence of exponentially long running times
of the standard local search algorithm, i.e., the NS-dynamics
in our case. Note that the standard local search algorithm of
the source problem can have an exponential running time,
because PARTYAFFILIATION is a generalization of MAXCUT
whose standard local search algorithm can run in exponen-
tial time with respect to the flip neighborhood (Schäffer and
Yannakakis 1991, Theorem 5.15).3

While the previous proposition uses a nonconstructive ar-
gument avoiding to construct an explicit example with an
exponential running time, it is possible to construct such an
example even in the more restricted case of IS-dynamics. To
this end, it is possible to modify an example for MAXCUT
provided by Monien and Tscheuschner (2010) by essentially

2These contributions actually show existence of partitions satis-
fying properties stronger than IS.

3We refer to the respective references for formal definitions of
the involved combinatorial problems.
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Figure 2: The aversion to enemies games without MIS par-
tition (left) and MOS partition (right) from Proposition 3.
Omitted edges have weight 1.

reverting the sequence of flips for MAXCUT to obtain an ex-
ecution of the IS-dynamics. Thus, we generalize the previous
proposition via a constructive proof.

Proposition 2. The dynamics of IS-deviations in symmet-
ric ASHGs may require exponentially many rounds before
converging to an IS partition.

Stability under Majority Consent
In this section, we study stability under majority consent.
First, the existential results of Theorem 3 and Theorem 4
are contrasted with the non-existence of stable partitions in
AEGs under the majority-based relaxations of the respective
stability concepts.

Proposition 3. There exists an AEG which contains no MIS
(respectively, MOS) partition.

Proof. First, we provide an AEG with no MIS partition. Let
N = {c1, c2, c3, c4}, i.e., there are n = 4 agents, and val-
uations defined as vc1

(c2) = vc3
(c4) = −n and all other

valuations set to 1. The AEG is illustrated in Figure 2 (left).
Assume for contradiction that there exists an MIS partition

π. Then, c1 /∈ π(c2) and c3 /∈ π(c4). Also, |π(c1)| ≤ 1 (re-
spectively, |π(c3)| ≤ 1), because otherwise, c2 (respectively,
c4) would join via an MIS-deviation). But then π(c1) = {c1}
and π(c3) = {c3}, and c1 could deviate to join π(c3), a
contradiction.

Second, we provide an AEG without MOS partition. Let
N = {d1, d2, d3, d4}, and define valuations for all i, j ∈ [4]
with i < j as vdi

(dj) = 1 and vdj
(di) = −4. An illustration

is provided in Figure 2 (right).
Assume for contradiction that there exists an MOS par-

tition π. Then, every coalition C ∈ π must fulfill |C| ≤ 2.
Otherwise, the agent of C with the second smallest index
would form a singleton via an MOS-deviation. In addition,
there cannot be a singleton, because if some agent is in a
singleton, there must be a second such agent, and then the
one with the smaller index would join the other one. Hence,
π consists of two pairs. But then d1 would deviate to the pair
not containing her, a contradiction.

We can leverage the AEGs provided in the previous propo-
sition as gadgets in reductions to show hardness of the asso-
ciated decision problems. This can be interpreted as a more
exact boundary (compared to Theorem 1) of the tractabilities
encountered in Theorem 3 and Theorem 4 for the special case
of AEGs.

Theorem 6. It is NP-complete to decide if there exists an
MIS (respectively, MOS) partition in AEGs.
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The utility restrictions in Theorem 6 are not as flexible as
in the negative result for Nash stability in Theorem 1 or the
positive results for unanimity-based dynamics in Theorem 3
and Theorem 4. In fact, the picture for majority-based notions
is more diverse, because we obtain another positive result in
the class of AFGs.

Theorem 7. When starting from the grand coalition, the
dynamics of MIS-deviations converges after at most n rounds
in AFGs.

Proof. The key insight is that there can only be deviations
to form a new singleton coalition yielding no more than
n deviations. Let π0 = {N} be the initial partition, and
consider a sequence of k MIS-deviations

π0
i1−→ π1

i2−→ . . .
ik−→ πk.

We inductively define coalitions evolving from the grand
coalition if removing the deviator as G0 = N , and Gj =
Gj−1 \ {ij} for j > 0.

Now, we proceed to simultaneously prove the following
claims by induction:

1. ∀j ∈ [k] : πj−1(ij) = Gj−1.
2. ∀j ∈ [k] : πj(ij) = {ij}.
3. ∀j ∈ [k] :

{
i ∈ πj−1(ij) : vij

(i) = n
}

= ∅.

The base case j = 1 is immediate. For the induction
step, let 2 ≤ j ≤ k and suppose the claims are true for all
1 ≤ l < j. We start with the first claim. By the induction hy-
pothesis, πj−1 = {Gj−1} ∪ {{il} : 1 ≤ l < j}. This means
that if πj−1(ij) ̸= Gj−1, we must have πj−1(ij) = {ij},
indicating ij = il for some l < j. Then, the welcoming
coalition cannot be Gj−1, as ij , by induction hypothesis,
abandoned Gl−1 due to not having any friends in Gl−1,
and thus has, by Gj−1 ⊆ Gl−1, no friends in Gj−1, ei-
ther. The alternative is that ij joins another singleton coali-
tion {im} to form a pair. However, if im abandoned Gm at
some point m < l, then she dislikes ij , and won’t allow
her to join. If im abandoned Gm at some point m > l,
then ij dislikes im, and has no incentive to join. Hence,
πj−1(ij) = Gj−1. For the second claim, note that ij cannot
join another singleton {im}, because im abandoned Gm−1

at some point m < j and thus dislikes ij . Hence, ij must
form a singleton πj(ij) = {ij}, which she only wants to do
if

{
i ∈ πj−1(ij) : vij (i) = n

}
= ∅. This accomplishes the

third claim, and completes the induction proof.
Finally, as there can be at most n singletons, the dynamics

must terminate after at most n rounds.

The computational boundaries in this section encountered
so far only hold for one-sided stability notions where either
the welcoming or the abandoned coalition takes a vote. On
the other hand, Theorem 5 shows that these are opposed by
tractabilities under two-sided majority consent.

For general utilities, existence of SMS (and therefore JMS)
partitions is not guaranteed anymore, and we show that the
tractabilities break down.

Theorem 8. Deciding whether an ASHG contains an SMS
(respectively, JMS) partition is NP-complete.

Conclusion and Discussion

We studied stability based on single-agent deviations in ad-
ditively separable hedonic games with a particular focus on
games with restricted utility functions that can be naturally
interpreted in terms of friends and enemies. We identified a
computational boundary between Nash stability and stabil-
ity with unanimous consent. The picture is less clear when
deviations are governed by majority consent. While stable
partitions always exist when considering both the abandoned
and the welcoming coalition of the deviating agent, we ob-
tain both positive and negative results if only one of these
coalitions is considered. Table 1 summarizes our results and
compares them with related results from the literature. No-
tably, we obtain all of our positive results through the con-
vergence of simple and natural dynamics. This also extends
previously known results about IS. Aziz and Brandl (2012)
obtain a polynomial algorithm essentially by running a dy-
namics from the singleton partition, whereas Dimitrov et al.
(2006) take a different, graph-theoretical approach consid-
ering strongly connected components. The construction of
CIS partitions by Aziz, Brandt, and Seedig (2013) is done
by iteratively identifying specific coalitions, and it is not
known whether CIS-dynamics converge in polynomial time
for natural starting partitions such as the singleton partition
or grand coalition. An important tool in establishing our re-
sults concerning convergence of dynamics is the Deviation
Lemma, a general combinatorial insight that allows us to
study dynamics from a global perspective.

General FEGs AEGs AFGs

NS NP-cd NP-c (Th. 1) NP-c (Th. 1) NP-c (Th. 2)
IS NP-cd FP (Th. 3) FPa (Th. 3) FPc (Th. 3)
CNS NP FP (Th. 4) FP (Th. 4) FP (Th. 4)
CIS FPb FPb FPb FPb

MIS NP-c (Th. 6) ? NP-c (Th. 6) FP (Th. 7)
MOS NP-c (Th. 6) ? NP-c (Th. 6) ?
JMS NP-c (Th. 8) FP (Th. 5) FP (Th. 5) FP (Th. 5)
SMS NP-c (Th. 8) FP (Th. 5) FP (Th. 5) FP (Th. 5)

Table 1: Overview of our computational results. The NP-
completeness results concern deciding on the existence of a
stable partition. The positive results mean that a stable parti-
tion can be constructed in polynomial time (Function-P) by
executing a dynamics. Question marks indicate that it is even
unknown whether a stable partition always exists.
a: Aziz and Brandl (2012), b: Aziz, Brandt, and Seedig
(2013), c: Dimitrov et al. (2006), d: Sung and Dimitrov (2010)

Our work offers a wide range of interesting follow-up ques-
tions. First, Table 1 contains some problems left open in our
analysis. Specifically, despite the existence of partitions with-
out CNS partitions, the complexity of the existence problem
of CNS partitions remains open for general utilities. Also,
the voting-based stability notions deserve further investiga-
tion, and might even lead to interesting discoveries in other
classes of hedonic games. Lastly, an intriguing further direc-
tion is to study further applications of the Deviation Lemma,
particularly in domains other than coalition formation.
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11
C O R E P U B L I C AT I O N 6 : LOYA LT Y I N C A R D I N A L
H E D O N I C G A M E S

summary

A common theme of decision making in multi-agent systems is to
assume selfish behavior of agents following Bentham’s utilitarianism.
Based on this paradigm, agents simply assign values to alternatives
(or output options), which they seek to maximize. This rationale
is questionable in coalition formation where agents are affected by
other members of their coalition. We propose the concept of loyalty
in hedonic games, a binary relation dependent on agents’ utilities.
This concept is based on the assumption that agents are benevolent
towards other agents they like to form coalitions with.

Given a hedonic game, we can define an associated loyal variant
where agents’ utilities are defined by taking the minimum of their util-
ity and the utilities of agents towards which they are loyal. The goal is
to analyze the loyal variant in comparison to the original benchmark
game and to carve out the influence of the modified incentives.

Since the loyal variant of a hedonic game is a hedonic game itself,
taking the loyal variant can be iterated to obtain various degrees of
loyalty. Interestingly, this process terminates after a finite number of
steps in a game with a high degree of loyalty where the incentives
of agents lead to a locally egalitarian behavior with respect to the
benchmark game.

Surprisingly, loyalty leads to an increase of complexity regarding
the description of the game. Even if the preferences in the benchmark
game follow a simple structure based on the consideration of friends
and enemies, computing best coalitions in the loyal variants leads to
computational hardness.

Moreover, we determine the desirability of coalition structures in
the obtained game variants by means of group stability and efficiency.
Specifically, we consider the problem of finding coalition structures
in the core as well as coalition structures satisfying Pareto optimal-
ity. We obtain strong existential results, opposed by computational
intractabilities. In particular, the limit game possesses Pareto-optimal
coalition structures in the core, while it is generally hard to compute
solutions in the core.
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Abstract
A common theme of decision making in multi-
agent systems is to assign utilities to alternatives,
which individuals seek to maximize. This rationale
is questionable in coalition formation where agents
are affected by other members of their coalition.
Based on the assumption that agents are benevolent
towards other agents they like to form coalitions
with, we propose loyalty in hedonic games, a bi-
nary relation dependent on agents’ utilities. Given
a hedonic game, we define a loyal variant where
agents’ utilities are defined by taking the minimum
of their utility and the utilities of agents towards
which they are loyal. This process can be iterated
to obtain various degrees of loyalty, terminating in
a locally egalitarian variant of the original game.
We investigate axioms of group stability and effi-
ciency for different degrees of loyalty. Specifically,
we consider the problem of finding coalition struc-
tures in the core and of computing best coalitions,
obtaining both positive and intractability results. In
particular, the limit game possesses Pareto optimal
coalition structures in the core.

1 Introduction
Decision making in multi-agent systems is highly driven by
the idea of the homo economicus, a rational decision taker
that seeks to maximize her individual well-being. Follow-
ing the classical Theory of Games and Economic Behavior
by von Neumann and Morgenstern, agents assign utilities to
alternatives and aim for an outcome that maximizes individ-
ual utility. Such behavior entails many delicate situations in
non-cooperative game theory such as the prisoner’s dilemma
or the tragedy of the commons [Hardin, 1968], where agents
take decisions in their individual interest without regarding
other agents. This leads to outcomes that are bad for the so-
ciety as a whole and often, as it is the case in the prisoner’s
dilemma, agents have an incentive to coordinate to improve
their respective situation.

From the theoretical point of view, one can either accept
the existence of such dilemmata and study their social im-
pact, for instance, by means of the price of anarchy [Kout-

soupias and Papadimitriou, 1999], or one can ask for the de-
gree of individual dependency on the social outcome neces-
sary to escape a situation of inferior welfare. The latter idea
is implemented by adapting the utility function of players as
a weighted sum of individual and joint utility, an idea repeat-
edly developed in network design [Elias et al., 2010], arti-
ficial intelligence [Apt and Schäfer, 2014], or public choice
[Mueller, 1986]. Specifically, the selfishness level by Apt and
Schäfer is the lowest weight on the joint utility such that a
Nash equilibrium becomes a social optimum.

On the other hand, empirical evidence does not only ques-
tion whether agents behave according to the utility model
by von Neumann and Morgenstern [Kahneman and Tversky,
1979], but even supports the hypothesis that human behavior
is steered by the well-being of the whole society [Colman et
al., 2008]. However, in scenarios of high competition, agents
might also act spiteful towards other agents, i.e., there is an
incentive to harm other agents [Levine, 1998].

In cooperative game theory, it seems to be an even more
reasonable assumption to include other agents into the own
valuation. We follow this line of thought in the setting of
coalition formation, where we propose loyalty, a possibility
to modify utilities by taking into account other agents’ utili-
ties towards which loyalty is perceived. Loyalty is a binary
relation directly extracted from the agents’ utilities over part-
nership, i.e., coalitions of size 2. Loyalty is sensed towards
the agents within the own coalition that yield positive utility
in a partnership. Following the paradigm of a chain that is
only as strong as its weakest link, loyal utilities are obtained
by taking the minimum of the own utility and the utilities of
agents receiving our loyalty. As such, we obtain a loyal vari-
ant of the original game, which is itself a coalition formation
game, and we can iterate towards various degrees of loyalty.
As we will see, this process terminates in a game which satis-
fies a high degree of egalitarianism. We consider common so-
lution concepts concerning group stability and efficiency for
different degrees of loyalty and the limit game, and provide
both existential and computational results.

We study coalition formation in the framework of hedonic
games [Drèze and Greenberg, 1980; Banerjee et al., 2001;
Bogomolnaia and Jackson, 2002]. Our contribution lies in
studying aspects of empathy in hedonic games [Brânzei and
Larson, 2011; Monaco et al., 2018; Nguyen et al., 2016]. Pre-
vious work considers empathy between agents through vari-
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ous alternative utility functions based on friendship relations
among the agents extracted from utility functions or a social
network. Closest to our work are altruistic hedonic games in-
troduced by Nguyen et al. [2016] and subsequently studied
by Wiechers and Rothe [2020], Kerkmann and Rothe [2020],
and Schlueter and Goldsmith [2020]. Our first degree of loy-
alty in symmetric friend-oriented hedonic games coincides
with minimum-equal-treatment altruistic hedonic games as
defined by Wiechers and Rothe [2020]. We significantly ex-
tend their model, but since most of our hardness results work
for the restricted class of symmetric friend-oriented hedonic
games, they have immediate consequences for this type of al-
truistic hedonic games. Also, loyal variants of hedonic games
fit into the framework of super altruistic hedonic games by
Schlueter and Goldsmith [2020] if their aggregation is mod-
ified by taking the average instead of the minimum of other
agents’ utilities.

2 Preliminaries and Model
We start with some notation. Define [i] = {1, . . . , i} and
[i, j] = {i, . . . , j} for i, j ∈ Z, i ≤ j.

Also, we use standard notions from graph theory. Let G =
(V,E) be an undirected graph. For a subset of agents W ⊆
V , denote by G[W ] the subgraph of G induced by W . Given
two vertices v, w ∈ V , we denote by dG(v, w) their distance
in G, i.e., the length of a shortest path connecting them. The
graphG is called regular if there exists a non-negative integer
r such that every vertex of G has degree r.

In the following subsections, we introduce hedonic games,
our concept of loyalty, and desirable properties of coalition
structures.

2.1 Cardinal Hedonic Games
Let N = {1, . . . , n} be a finite set of agents. A coalition is a
non-empty subset ofN . ByNi we denote the set of coalitions
agent i belongs to, i.e., Ni = {S ⊆ N : i ∈ S}. A coalition
structure, or simply a partition, is a partition π of the agents
N into disjoint coalitions, where π(i) denotes the coalition
agent i belongs to. A hedonic game is a pair (N,%), where
% = (%i)i∈N is a preference profile specifying the prefer-
ences of each agent i as a complete and transitive preference
relation %i over Ni. In hedonic games, agents are only con-
cerned about their own coalition. Accordingly, preferences
over coalitions naturally extend to preferences over partitions
as follows: π %i π

′ if and only if π(i) %i π
′(i).

Throughout the paper, we assume that rankings over the
coalitions in Ni are given by utility functions ui : Ni → R,
which are extended to evaluate partitions in the hedonic way
by setting ui(π) = ui(π(i)). A hedonic game together with
a representation by utility functions is called cardinal hedo-
nic game. Because the sets Ni are finite, preferences could
in principle always be represented by cardinal values. This is
impractical due to two reasons. First, such utility functions
require exponential space to represent. Therefore it would be
desirable to consider classes of hedonic games with succinct
representations. Second, we would like to compare different
agents’ utility functions such that a certain cardinal value ex-
presses the same intensity of a preference for all agents. This

cannot be guaranteed by arbitrary utility representations of
ordinal preferences. Our model of loyalty is therefore partic-
ularly meaningful in succinctly representable classes of car-
dinal hedonic games. These include the following classes of
hedonic games, which aggregate utility functions over single
agents of the form ui : N → R where ui(i) = 0, which can
be represented by a complete weighted digraph.

• Additively separable hedonic games (ASHGs) [Bogo-
molnaia and Jackson, 2002]: utilities are aggregated
by taking the sum of single utilities, i.e., ui(π) =∑
j∈π(i) ui(j).

• Friend-oriented hedonic games (FOHGs) [Dimitrov et
al., 2006]: the restriction of ASHGs where utilities for
other agents are either n (the agent is a friend) or −1
(the agent is an enemy), i.e., for all i, j ∈ N with
i 6= j, ui(j) ∈ {n,−1}. Given an FOHG, the set
Fi = {j ∈ N : ui(j) = n} is called friend set of agent i.
The unweighted digraphGF = (N,A) where (i, j) ∈ A
if and only if j ∈ Fi is called friendship graph. An
FOHG can be represented by specifying the friend set
for every agent or by its friendship graph.
• Modified fractional hedonic games (MFHGs) [Olsen,

2012]: utilities are aggregated by dividing the sum of
single utilities by the size of the coalition minus 1, i.e.,
ui(π) = 0 if π(i) = {i}, and ui(π) =

∑
j∈π(i) ui(j)

|π(i)|−1 , oth-
erwise. In other words, the utility of a coalition structure
is the expected utility achieved through another agent in
the own coalition selected uniformly at random.

A cardinal hedonic game is called mutual if, for all pairs
of agents i, j ∈ N , ui(j) > 0 implies uj(i) > 0. It is called
symmetric if, for all pairs of agents i, j ∈ N , ui(j) = uj(i).
Clearly, symmetric games are mutual. Throughout most of
the paper, we will consider at least mutual variants of the
classes of hedonic games, which we just introduced.

2.2 Loyalty in Hedonic Games
We are ready to define our concept of loyalty. Given a cardi-
nal hedonic game, its loyal variant needs to specify two key
features. First, for every agent, we need to identify a loyalty
set, which contains the agents towards which loyalty is ex-
pressed. Second, we need to specify how loyalty is expressed,
i.e., how to obtain new, loyal utility functions.

Formally, given a cardinal hedonic game and an agent
i ∈ N , we define her loyalty set as Li = {j ∈ N \
{i} : ui({i, j}) > 0}. In other words, agents are affected
by agents that influence them positively when being in a
joint coalition. Note that for all hedonic games consid-
ered in this paper, the loyalty set is equivalently given by
Li = {j ∈ N \ {i} : ui({i, j}) > ui(i)}, i.e., it contains
the agents with which i would rather form a coalition of size
2 than staying on her own. The loyalty graph is the directed
graph GL = (N,A) where (i, j) ∈ A if and only if j ∈ Li.

It remains to specify how agents aggregate utilities in a
loyal way. Given a cardinal hedonic game, its loyal variant
is defined on agent set N by the utility function uLi (π) =
minj∈π(i)∩(Li∪{i}) uj(π(i)). Interestingly, the loyal variant
is itself a hedonic game, and we can consider its own loyal
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variant. Following this reasoning, we recursively define the
k-fold loyal variant by setting the 1-fold loyal variant to the
loyal variant and the (k + 1)-fold loyal variant to the loyal
variant of the k-fold loyal variant. Also, we denote by uki and
Lki the utility function and the loyalty set of an agent i, and
by GkL the loyalty graph of the k-fold loyal variant.

In fact, we will see that this process terminates after at
most n steps in a limit game that satisfies egalitarianism at
the level of coalitions. For simplicity, we restrict attention
to mutual cardinal hedonic games, where the loyalty sets
defines a symmetric binary relation and the loyalty graph
can be represented by an undirected graph.1 For an agent
i ∈ N , let GπL(i) be the agents in the connected compo-
nent of the subgraph of GL induced by π(i) containing i.
Now, define the locally egalitarian variant of a cardinal he-
donic game as the game on agent set N with utilities given
by uEi (π) = minj∈GπL(i) uj(π). In other words, an agent re-
ceives the minimum utility among all agents reachable within
her coalition in the loyalty graph.

Finally, we introduce a technical assumption. A mutual
cardinal hedonic game is called loyalty-connected if, for all
agents i ∈ N and coalition structures π, ui(GπL(i)) ≥ ui(π).
This property precludes negative influence through agents
outside the reach of loyalty, and is satisfied by reasonable
classes of cardinal hedonic games like ASHGs, MFHGs, or
fractional hedonic games [Aziz et al., 2019].

2.3 Solution Concepts
We evaluate the quality of coalition structures by measures of
stability and efficiency.

A common concept of group stability is the core. Given
a coalition structure π, a coalition C ⊆ N is blocking π
(respectively, weakly blocking π) if for all agents i ∈ C,
ui(C) > ui(π) (respectively, for all agents i ∈ C, ui(C) ≥
ui(π), where the inequality is strict for some agent in C). A
coalition structure π is in the core (respectively, strict core)
if there exists no non-empty coalition blocking (respectively,
weakly blocking) π.

A fundamental concept of efficiency is Pareto optimality.
A coalition structure π′ Pareto dominates a coalition struc-
ture π if, for all i ∈ N , ui(π′(i)) ≥ ui(π(i)), where the
inequality is strict for some agent in N . A coalition struc-
ture π is called Pareto optimal if it is not Pareto dominated by
another coalition structure. In other words, given a Pareto op-
timal coalition structure, every other coalition structure that
is better for some agent, is also worse for another agent.

Another concept of efficiency concerns the welfare of a
coalition structure. There are many notions of welfare depen-
dent on how to aggregate single agents’ utilities for a social
evaluation. In the context of loyalty, egalitarianism seems to
be especially appropriate. It aims to maximize the well-being
of the agent that is worst off. Formally, the egalitarian wel-
fare of a partition π is defined as E(π) = mini∈N ui(π(i)).
Also, let Ek(π) denote the egalitarian welfare of the k-fold
loyal variant. Following this definition, coalition structures

1This restriction is in accordance with our results, but it can be
lifted with some technical effort.

maximizing egalitarian welfare are not necessarily Pareto op-
timal. However, there exists always a Pareto optimal coali-
tion structure maximizing egalitarian welfare. Specifically,
a coalition structure maximizes leximin welfare if its utility
vector, sorted in non-decreasing order, is lexicographically
largest. A coalition structure maximizing leximin welfare is
Pareto optimal and maximizes egalitarian welfare.

Apart from finding efficient coalition structures, an indi-
vidual goal of an agent i is to be in a best coalition, i.e., in a
coalition inNi maximizing her utility. Formally, the problem
of, given a cardinal hedonic game, an agent i∗ ∈ N , and a ra-
tional number q ∈ Q, deciding if there exists a subset C ⊆ N
with i∗ ∈ C and ui∗(C) ≥ q, is called BestCoalition.

3 Loyalty Propagation and Best Coalitions
Our first proposition collects some initial observations. It
states, how loyalty propagates through the loyalty graph for
higher degree loyal variants, terminating with the locally
egalitarian variant, and considers egalitarian welfare.

Proposition 1. Let a mutual cardinal hedonic game on agent
set N with |N | = n be given. Let k ≥ 1, i ∈ N , and π a
coalition structure. Then, the following statements hold.

1. The loyalty graph and loyalty sets are the same for all
loyal variants, i.e., GkL = G1

L and Lki = L1
i .

2. Loyalty extends to agents at distance k, i.e., uki (π) =
min{uj(π) : j ∈ π(i) with dGL[π(i)](i, j) ≤ k}.

3. Utilities converge to the utilities of the locally egalitar-
ian variant, i.e., uli = uEi for all l ≥ n.

4. Egalitarian welfare is preserved, i.e., Ek(π) = E(π).

Proof. The first statements follow immediately from mutual-
ity. We prove the second statement by induction over k. For
k = 1, the assertion follows directly from the definition of
the loyal variant.

Now, let k ≥ 2 be an integer. Let C = π(i), CL = π(i) ∩
(Li ∪ {i}), H = GL[π(i)], and for p ≥ 1, let Cp(j) = {m ∈
C with dH(j,m) ≤ p}. Then,

uki (π) = min
j∈CL

uk−1
j (C)

= min
j∈CL

min{um(C) : m ∈ Ck−1(j)}

= min
j∈C : dH(i,j)≤1

min{um(C) : m ∈ Ck−1(j)}

= min{uj(C) : j ∈ C with dH(i, j) ≤ k}.
There, the second equality follows by induction, the third

equality by definition of the loyalty graph, and the last equal-
ity by observing that the vertices with a distance of at most
k from i are precisely the vertices with a distance of at most
k − 1 from an arbitrary neighbor.

The third statement follows from the second one, and the fi-
nal statement follows from the observation that the minimum
utility among agents in a coalition structure is preserved when
transitioning to a loyal variant.

Example 1. We provide an example showing that part 4
of Proposition 1 does not extend to leximin welfare.
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a3 b3

a4 b4

a1 b1

a2 b2

Figure 1: Friendship graph of Example 1. The black and white coali-
tions constitute a coalition structure minimizing leximin welfare for
the 2-fold loyal variant, which is not Pareto optimal under the origi-
nal utilities.

Consider a symmetric FOHG with agent set N =
{ai, bi, ci : 1 ≤ i ≤ 4} ∪ {z1, z2}, and the friendship
graph in Figure 1. It can be shown that the coalition
structure π = {{zi, a2i−1, a2i, b2i−1, b2i, c2i−1, c2i} : i =
1, 2} maximizes leximin welfare for its 2-fold loyal vari-
ant (consider agents of type bi). However, π is not
even Pareto optimal under the original utilities. Indeed,
π′ = {{z1, a1, a4, b1, b4, c1, c4}, {z2, a2, a3, b2, b3, c2, c3}}
is a Pareto improvement. All agents receive at least the same
utility, and a2, a4, c1, and c3 are better off.

Our next goal is to reason about finding best coalitions for
an agent. Note that this problem can usually be solved in
polynomial time. For instance, in ASHGs, given an agent i,
every coalition that contains i together with all agents that
give positive utility to i and no agent that gives negative util-
ity to i is a best coalition for i. By contrast, we obtain hard-
ness results for loyalty even in symmetric FOHGs. While it
is possible to determine the number of friends of the unhap-
piest friend in a best coalition in polynomial time [Wiechers
and Rothe, 2020], the problem becomes hard if the number of
enemies is to be minimized at the same time. We omit some
proof details and proofs due to space restrictions, but they can
all be found in the extended version of the paper.

Theorem 2. Let k ≥ 1. Then, BestCoalition is NP-
complete for the k-fold loyal variant of symmetric FOHGs.

Proof sketch. Membership in NP is clear. For hardness,
we provide a reduction from the NP-complete problem
SetCover [Karp, 1972]. An instance of SetCover con-
sists of a triple (A,S, κ), where A is some finite ground set,
S ⊆ 2A is a set of subsets of A, and κ is an integer. The in-
stance (A,S, κ) is a Yes-instance if there exists S′ ⊆ S with⋃
B∈S′ B = A and |S′| ≤ κ. The reduction is illustrated in

Figure 2.
Let k ∈ N. Define M =

⌊
k−1
2

⌋
. Given an instance

(A,S, κ) of SetCover, define a = |A|. We define an in-
stance ((N, (Fi)i∈N ), i∗, q) of BestCoalition based on
an FOHG (N, (Fi)i∈N ) represented via friend sets by speci-
fying each individual component. The agent set is defined as
N = {wi : i ∈ [0, a+2]}∪{vi : i ∈ [0, a−1]}∪{αji , βji : i ∈
[a], j ∈ [M ]} ∪ A ∪ S, and consists of representatives of the
elements of A and S, and auxiliary agents. If k is even, set
i∗ = w0 and if k is odd, i∗ = v0. The friend sets are given as

• Fw0
= {w1, v0, . . . , va−1},

• Fw1
= {w0, w2, w3, . . . , wa+2},

A S

Ka+2

w0

v0

v1

s1

v2

s2

v3

s3

α1
1 βM1

x1

α1
2 βM2

x2

α1
3 βM3

x3

α1
4 βM4

x4

. . .

. . .

. . .

. . .

M times

Figure 2: Schematic of the hardness reduction in Theorem 2 for
k ≥ 2. The figure shows the friendship graph for the instance
of SetCover given by A = {x1, x2, x3, x4} and S = {s1 =
{x1, x2, x3}, s2 = {x1, x3, x4}, s3 = {x2, x4}}. The black ver-
tex indicates a complete subgraph on a + 2 vertices. We ask
BestCoalition for the agents v0 and w0, respectively, indicated
by double circles.

• Fwi = {wj : j ∈ [a+ 2], j 6= i} for i ∈ [2, a+ 2],

• Fvi = {w0, α
1
1, . . . , α

1
a} for i ∈ [0, a− 1] if k > 2,

• Fvi = {w0} ∪A for i ∈ [0, a− 1] if k ≤ 2,

• Fα1
i

= {v0, . . . , va−1, β
1
i } for i ∈ [a],

• Fαji = {βj−1
1 , . . . , βj−1

a , βji } for i ∈ [a], j ∈ [2,M ],

• Fβji = {αji , αj+1
1 , . . . , αj+1

a } for i ∈ [a], j ∈ [M − 1],

• FβMi = {αMi } ∪A for i ∈ [a],

• Fx = {βMi : i ∈ [a]} ∪ {s ∈ S : x ∈ s} for x ∈ A if
k > 2,

• Fx = {v0, . . . , va−1} ∪ {s ∈ S : x ∈ s} for x ∈ A if
k ≤ 2, and

• Fs = {x ∈ A : x ∈ s} for s ∈ S (in other words,
Fs = s).

Finally, with n = |N |, specify the threshold utility q =
n(a + 1) − (a + κ) for k = 1 and q = n(a + 1) −
(1 + κ+ 2(M + 1)a), otherwise. Note that the distance be-
tween i∗ and the xi in the loyalty graph is exactly k.

If (A,S, κ) is a Yes-instance, let S′ ⊆ S be a set cover
of A with at most κ sets. For k = 1, consider the coalition
C = A ∪ S′ ∪ {v0, . . . , va−1, w0, w1}. For k ≥ 2, consider
the coalition C = (N \ S) ∪ S′. It is quickly checked that in
each case ukv0(C) ≥ q.

Conversely, assume that C is a coalition with i∗ ∈ C and
uki∗(C) ≥ q. Then, all agents that have a distance of at most
k in the loyalty graph have to be included due to the degrees
of vertices at a distance of at most k. In particular, A ⊆ C for
any k. Let S′ = C ∩ S.

First, consider the case k = 1. Then, uv0(C) = n(a +
1) − a − |S′|. Hence u1

v0(C) ≥ q implies that |S′| ≤ κ. In
addition, every agent x ∈ A must have at least a + 1 friends
present in C. In other words, for every x ∈ A there exists
s ∈ S′ with x ∈ s. Hence, S′ is a cover of A with at most κ
elements.
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For arbitrary k ≥ 2, it holds that ui∗(C) = n(a+ 1)− 1−
|S′| − (M + 2)a. Hence u1

v0(C) ≥ q implies that |S′| ≤ κ.
The remainder follows analogous to the case k = 1.

Since the instances in the previous reduction contain agents
with an arbitrarily large distance (parametrized by k), we
cannot deduce direct consequences for the locally egalitarian
variant. However, it is possible to bound the diameter in the
reduced instances globally to obtain a similar result.
Theorem 3. BestCoalition is NP-complete for the lo-
cally egalitarian variant of symmetric FOHGs.

If we change the underlying class of hedonic games, we
can circumvent the hardness results of the last two theorems.
Theorem 4. Let k ≥ 1. Then, BestCoalition can be
solved in polynomial time for the k-fold loyal variant and the
locally egalitarian variant of symmetric MFHGs.

4 Coalition Structures in the Core
In this section we consider group stability in the locally egal-
itarian variant and the loyal variants.

4.1 Core in the Locally Egalitarian Variant
We start with a general lemma yielding a sufficient condition
for existence of Pareto optimal coalition structures in the core.
Lemma 5. Consider a class of hedonic games with the fol-
lowing two properties:

1. Restrictions of the game to subsets of agents are in the
class.

2. For every coalition in any game of the class, the value of
the coalition is the same for every player in the coalition.

Then, for every game in the class, there exists a coalition
structure in the core which is Pareto optimal.

Weakening the second condition of the lemma to the ex-
istence of some coalition that is best for all of its members
is sufficient to find a coalition structure in the core. We dis-
cuss this in the extended version of the paper. Interestingly,
the lemma can be applied to the locally egalitarian variant of
cardinal hedonic games under fairly weak assumptions.
Theorem 6. Let a loyalty-connected, mutual cardinal hedo-
nic game be given. Then, there exists a Pareto optimal coali-
tion structure in the core of its locally egalitarian variant.

Proof. Let a loyalty-connected, mutual cardinal hedonic
game be given and consider its locally egalitarian variant. We
modify the utility functions such that uEi (C) stays the same if
C is connected in the loyalty graph, and set it to 0, otherwise.
It suffices to find a Pareto optimal member of the core un-
der this modification, because, by loyalty-connectivity, split-
ting coalitions into their connected components in the loyalty
graph is weakly better for every agent, even under uE . Con-
sider the class of hedonic games given by this modified n-fold
loyal variant together with all of its restrictions, in which we
apply the same modifications towards the utility values for
non-connected coalitions.

By Proposition 1, the utility for a coalition is the same
for every player in the coalition. Hence, all requirements of

Lemma 5 are satisfied and we find the desired coalition struc-
ture.

In the extended version of the paper, we provide an exam-
ple for the necessity of loyalty-connectivity in the previous
theorem.
Example 2. We extend an example by Wiechers and
Rothe [2020] that shows that the previous result cannot be
strengthened to find a coalition structure in the strict core.
Consider the symmetric FOHG on agent set {a, b, c, d, e}
with loyalty graph depicted below.

a

b

c

d

e

Consider its locally egalitarian variant. Then, {a, b, c} is
the unique best coalition for agents b and c and among the
best coalitions for agent a. Hence, it has to be contained in
every coalition structure in the strict core. Similarly, {a, d, e}
has to be a coalition in the strict core. As these conditions
cannot be satisfied simultaneously, the strict core is empty.

Note that both the coalition structure {{a, b, c}, {d, e}}
and {{a, d, e}, {b, c}} are in the core and Pareto optimal.

The construction in Lemma 5 gives rise to a simple recur-
sive algorithm that computes Pareto optimal coalition struc-
tures in the core. Still, the computational complexity highly
depends on the underlying cardinal hedonic game. While a
modified version of the algorithm by Bullinger [2020] for
computing Pareto optimal coalition structures in symmetric
MFHGs finds a coalition structure in the core of their locally
egalitarian variants, a version of our reduction on best coali-
tions shows an intractability for FOHGs.
Theorem 7. The following statements hold.

1. Computing a coalition structure in the core can be done
in polynomial time for the locally egalitarian variant of
symmetric MFHGs.

2. Computing a coalition structure in the core is NP-hard
for the locally egalitarian variant, even in the class of
symmetric FOHGs with non-empty core.

4.2 Core in the Loyal Variants
In contrast to the locally egalitarian variant, the k-fold loyal
variant may have an empty core for arbitrary k. This is even
true in a rather restricted class of symmetric ASHGs with in-
dividual values restricted to {n, n+ 1,−1}.
Proposition 8. For every k ≥ 1, there exists a symmetric
ASHG with O(k) agents such that the core of its k-fold loyal
variant is empty.

Proof sketch. We only describe the instance. Let k ∈ N.
We define an ASHG (N, (ui)i∈N ). Set m = k if k is
an even number and m = k + 1 if k is odd. Let Ai =
{ai, bi1, . . . , bim, ci1, . . . , cim} for i ∈ [3]. Define N =⋃3
i=1Ai as the set of agents and let n = |N |. Reading in-

dices i modulo 3, we define symmetric utilities according to

• u(ai, bi1) = u(ai, c
i
1) = n+ 1 for i ∈ [3],

• u(bim, ai+1) = u(cim, ai+1) = n for i ∈ [3],
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• u(bij , bij+1) = u(cij , c
i
j+1) = n + 1 for i ∈ [3], j ∈

[m− 1], and
• u(v, w) = −1 for all other utilities.

Note that |N | = 3(2m+ 1) = O(k).

We can use the previous counterexample as a gadget in a
sophisticated reduction to obtain computational hardness.
Theorem 9. Let k ≥ 1. Deciding whether the core is non-
empty is NP-hard for the k-fold loyal variant of symmetric
ASHGs.

Naturally, the question arises whether the core is always
non-empty for loyal variants of FOHGs. While we leave
the ultimate answer to this question as an open problem, we
give evidence into both directions. First, we determine cer-
tain graph topologies that allow for coalition structures in the
core. By contrast, we provide an intractability result for the
computation of coalition structures in the core, and in the ex-
tended version of the paper we show that the dynamics related
to blocking coalitions can cycle.
Proposition 10. Let a symmetric FOHG with connected, reg-
ular friendship graph be given. Then the coalition structure
consisting of the grand coalition is in the strict core for the
k-fold loyal variant for every k ≥ 1.

Proof. Assume that the friendship graph is regular with ev-
ery vertex having degree r. Singleton coalitions are clearly
not weakly blocking, so we may assume that r ≥ 2. In addi-
tion, we may assume that a weakly blocking coalition induces
a connected subgraph of G. In a weakly blocking coalition
C ( N , some agent would have less than r friends, strictly
decreasing her utility. Hence, the grand coalition is in the
strict core.

Albeit the previous proposition may look rather innocent,
regular substructures in the loyalty graph have been very use-
ful in dealing with core (non-)existence (see, e.g., the many
cycles in the games of Proposition 8 and Theorem 9).

For symmetric FOHGs with a tree as loyalty graph, it is
easy to see that a coalition structure is in the core if and only
if its coalitions form an inclusion-maximal matching. In the
case of ASHGs, we can apply a greedy matching algorithm
to compute coalition structures in the core.
Proposition 11. Let k ≥ 1. A coalition structure in the core
of the k-fold loyal variant can be computed in polynomial
time for symmetric ASHGs with a tree as loyalty graph.

On the negative side, even under the existence of core par-
titions, it may be hard to compute them. Interestingly, the
next theorem does not cover the case k = 1.
Theorem 12. Let k ≥ 2. Computing a coalition structure in
the core is NP-hard for the k-fold loyal variant of symmetric
FOHGs with non-empty core.

On the other hand, if the games originate from symmetric
MFHGs, we obtain a polynomial-time algorithm by a modi-
fication of the algorithm in Theorem 7.
Theorem 13. Let k ≥ 1. Computing a coalition structure in
the core can be done in polynomial time for the k-fold loyal
variant of symmetric MFHGs.

Symmetric k-fold Best Coalition Core Solutionloyal variant

FOHGs

orig. poly. poly.+
[Dimitrov et al., 2006]

k = 1 NP-h.[Thm. 2] open ?
k ≥ 2 NP-h.[Thm. 2] NP-h. ? [Thm. 12]
limit NP-h.[Thm. 3] NP-h.+ [Thm. 7]

ASHGs
orig. poly. NP-h.−

[Aziz et al., 2013]
k ≥ 1 NP-h.[Thm. 2] NP-h.− [Thm. 9]
limit NP-h.[Thm. 3] NP-h.+ [Thm. 7]

MFHGs all poly.[Thm. 4] poly.+ [Thms. 7,13]

Table 1: Computational complexity of computing best coalitions and
core partitions. The circled +, −, and ? indicate whether elements
in the core always exist, may not exist, or whether this is unknown.

5 Conclusion and Open Problems

We have introduced loyalty in hedonic games as a possible
way to integrate relationships of players in a coalition into
the coalition formation process. Given a hedonic game, play-
ers can modify their utilities to obtain a new hedonic game
which regards loyalty among coalition partners. Applying
loyalty multiple times yields a sequence of hedonic games
with increasing loyalty, eventually terminating in a hedonic
game with utilities that represent a local form of egalitarian-
ism. The limit game usually contains Pareto optimal coalition
structures in the core, but their efficient computability is de-
pendent on the initial input game. We show that computing
best coalitions is hard if the input is an FOHG, a reduction
that can also be applied to the computation of coalition struc-
tures in the core, revealing a close relationship of the two
problems. An overview of our results is given in Table 1.

Our work offers plenty directions for further investigation.
First, similarly to altruistic hedonic games, one can make the
aggregation mechanism for loyal utilities dependent on a pri-
ority amongst the agents, or take averages instead of sums.
This yields new notions of loyalty that are worth to inves-
tigate and compare. Second, it would be interesting to ap-
proach loyalty for other underlying classes of hedonic games
such as fractional hedonic games. This includes also to find
a reasonable way to define loyalty for purely ordinal input.
Note that our (equivalent) definition of the loyalty set is also
applicable in this case. Finally, an intriguing open problem
concerns the existence of coalition structures in the core for
loyal variants of FOHGs, in particular for the 1-fold variant,
where we could not show hardness of the computational prob-
lem.
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12
C O R E P U B L I C AT I O N 7 : W E L FA R E G U A R A N T E E S I N
S C H E L L I N G S E G R E G AT I O N

summary

The emergence of segregation is a long-term object of study in social
sciences. About 50 years ago, Thomas Schelling proposed a simple,
yet highly influential model that reveals how individual perceptions
and incentives can lead to residential segregation. Even a small de-
gree of homophily at the individual level can cause segregation at
the global level. Schelling’s model has inspired a constant stream of
research during the last decades.

While the early research on Schelling’s model mostly encompasses
results obtained from simulations, there is a recent stream of work
studying a game-theoretic variant of Schelling’s model. In this vari-
ant, agents are assigned to the nodes of a topology graph, and act
strategically to obtain a good position. We contribute to this research
and study welfare guarantees and complexity with respect to several
welfare measures.

First, we show that while maximizing the social welfare is NP-hard,
computing an assignment of the agents to the nodes of any topology
graph with approximately half of the maximum welfare can be done
in polynomial time. We then consider Pareto optimality, and intro-
duce two novel optimality notions that are a compromise between
Pareto optimality and welfare maximization. We establish mostly
tight bounds on the worst-case welfare loss for assignments satisfy-
ing any of the introduced optimality notions as well as the complexity
of computing such assignments.

In addition, we study the problem of finding an assignment where
every agent is the neighbor of at least one similar agent. This can be
interpreted as a weak notion of homophily. We show that for tree
topologies, it is possible to decide whether there exists an assignment
that gives every agent a positive utility in polynomial time. Moreover,
when every node in the topology graph has a degree of at least 2, such
an assignment always exists and can be found efficiently.

199



200 welfare guarantees in schelling segregation

reference

M. Bullinger, W. Suksompong, and A. A. Voudouris. Wel-
fare guarantees in Schelling segregation. Journal of Artifi-
cial Intelligence Research, 71:143–174, 2021.
DOI: https://doi.org/10.1613/jair.1.12771

individual contribution

I, Martin Bullinger, am the main author of this publication. In particu-
lar, I am responsible for the joint development and conceptual design
of the research project, most of the proofs and their write-up (in par-
ticular, Theorems 3.2, 3.3, 4.9, and A.2, Propositions 6.4, A.3, and A.4,
and all results in Section 5), the joint development of further results,
and corrective changes in other parts of the paper.

copyright agreement

The right to present this paper in a doctoral thesis has been granted by
the publisher, AI Access Foundation, in the copyright form presented
below. There, it is stated that “The author retains the right to use this
material in future works of his or her own authorship.” This form can also
be found at http://jair.org/public/resources/copyright.pdf (ac-
cessed November 10, 2022).

https://doi.org/10.1613/jair.1.12771
http://jair.org/public/resources/copyright.pdf


AI Access Foundation

Transfer of Copyright

Title of Contribution:

Author:

The undersigned (Author), desiring to publish the article named above,
in the Journal of Artificial Intelligence Research, hereby grants and assigns
exclusively to the AI Access Foundation (Publisher) all rights of copyright in
this article, and the exclusive right to copy and distribute the article through-
out the world, and the authority to exercise or to dispose of all subsidiary
rights in all countries and in all languages.

The author retains the right to use this material in future works of his or
her own authorship. The author retains the right to post an electronic copy
of the article on his or her web site, on web sites operated by the author’s
institution, and on scholarly repositories, provided there is no commercial
purpose involved, and with appropriate bibliographic citation to the JAIR
article.

The Author agrees that the contribution does not contain any material
created by others, or from other copyrighted works, unless the written consent
of the owner of such material is attached.

The undersigned warrants that s/he has full power to make this agree-
ment, and has not previously granted, assigned, or encumbered any of the
rights granted and assigned herein; that the material submitted for publica-
tion is the work of the author, and is original, unpublished, and not previously
the subject of any application for copyright registration (except material for
which the Publisher has written grants of permission to include, as described
above).

Author Date

1



Journal of Artificial Intelligence Research 71 (2021) 143-174 Submitted 02/2021; published 05/2021

Welfare Guarantees in Schelling Segregation

Martin Bullinger martin.bullinger@in.tum.de
Institut für Informatik
Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany

Warut Suksompong warut@comp.nus.edu.sg
School of Computing
National University of Singapore
13 Computing Drive, Singapore 117417, Singapore

Alexandros A. Voudouris alexandros.voudouris@essex.ac.uk

School of Computer Science and Electronic Engineering

University of Essex

Wivenhoe Park, Colchester CO4 3SQ, United Kingdom

Abstract

Schelling’s model is an influential model that reveals how individual perceptions and
incentives can lead to residential segregation. Inspired by a recent stream of work, we
study welfare guarantees and complexity in this model with respect to several welfare
measures. First, we show that while maximizing the social welfare is NP-hard, computing
an assignment of agents to the nodes of any topology graph with approximately half of the
maximum welfare can be done in polynomial time. We then consider Pareto optimality,
introduce two new optimality notions based on it, and establish mostly tight bounds on the
worst-case welfare loss for assignments satisfying these notions as well as the complexity of
computing such assignments. In addition, we show that for tree topologies, it is possible
to decide whether there exists an assignment that gives every agent a positive utility in
polynomial time; moreover, when every node in the topology has degree at least 2, such an
assignment always exists and can be found efficiently.

1. Introduction

Schelling’s model was proposed half a century ago to illustrate how individual perceptions
and incentives can lead to racial segregation, and has been used to study this phenomenon
in residential metropolitan areas in particular (Schelling, 1969, 1971). The model is rather
simple to describe. There are a number of agents, each of whom belongs to one of two
predetermined types and occupies a location; in his original work, Schelling assumed that
the locations are cells of a rectangular board, which can be represented as a grid graph.
Every agent would like to occupy a node on the graph such that the fraction of other
agents of the same type in the neighborhood of that node is at least a predefined tolerance
threshold τ ∈ [0, 1]. If this condition is not met for an agent, then the agent can relocate to
a randomly chosen empty node on the grid. One of the most surprising findings of Schelling
is that, starting from a random initial assignment of the agents to the nodes of the grid,
the dynamics may converge to segregated assignments even when τ ≈ 1/3, contrasting the
intuition that segregation should happen only when τ ≥ 1/2.

©2021 AI Access Foundation. All rights reserved.
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Throughout the years, hundreds of researchers in sociology and economics reconfirmed
Schelling’s observations and made similar ones for numerous variants of the model using
computer simulations—see, for example, the work of Clark and Fossett (2008). More re-
cent work, mainly in computer science, performed rigorous analyses of such variants, some
of which are quite close to the original model, and showed that the dynamics accord-
ing to which the agents relocate converges to assignments in which the agents form large
monochromatic regions (that is, subgraphs consisting only of agents of the same type); in
addition, this line of work established bounds on the size of these regions. We refer to the
papers by Pollicott and Weiss (2001), Young (2001), Zhang (2004), Pancs and Vriend (2007),
Brandt et al. (2012), Barmpalias et al. (2014, 2015), Bhakta et al. (2014), and Immorlica
et al. (2017) for results of this flavor.

While most of the literature on Schelling’s model has focused on properties related to
segregation between the two types, segregation itself is only one side of the story, especially
when we allow different, possibly more complex location graphs. Given that the agents are
willing to relocate to be close to other agents of the same type, another natural question is
whether the resulting assignments satisfy some sort of efficiency. This has been considered
in part by a recent array of papers (Chauhan et al., 2018; Echzell et al., 2019; Elkind et al.,
2019; Agarwal et al., 2020; Bilò et al., 2020; Chan et al., 2020; Kanellopoulos et al., 2020),
which have studied Schelling’s model from a game-theoretic perspective. In particular,
instead of randomly relocating, the agents are assumed to be strategic and each of them
aims to select a location that maximizes her utility, defined as the fraction of same-type
agents in her neighborhood.

Besides questions related to the existence and computation of equilibria (i.e., assign-
ments in which no agent has an incentive to relocate in order to increase her utility), the
authors of some of the aforementioned papers have also studied the efficiency of assignments
in terms of social welfare, defined as the total utility of the agents. For this objective, these
authors have shown that computing assignments (not necessarily equilibria) maximizing the
social welfare is NP-hard under specific assumptions about the graph and the behavior of
the agents. Furthermore, they established several bounds on the worst-case ratio between
the maximum social welfare (achieved by any possible assignment) and the social welfare of
the best or worst equilbrium assignment, also known as the price of stability (Anshelevich
et al., 2008) and the price of anarchy (Koutsoupias & Papadimitriou, 1999), respectively.
These ratios quantify the welfare that is lost due to the agents aiming to maximize their
individual utilities rather than their collective welfare.

Inspired by this active stream of work, we study welfare guarantees and complexity in
Schelling’s model, not only with respect to the social welfare, but also to different notions
of efficiency, such as Pareto optimality and natural variants of it.

1.1 Our Contribution

Our setting consists of n agents partitioned into two types, and a location graph known
as the topology; agents of the same type are “friends”, and agents of different types are
“enemies”. Each agent is assigned to a single node of the graph, and the utility of the agent
is defined as the fraction of her friends among the agents in her neighborhood.
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Welfare notion P
Price of P

Welfare guarantee
Lower bound Upper bound

Maximum welfare 1 1 n
2 − 1 [Thm. 3.1]

GWO Ω(n) [Prop. 4.6] O(n) [Thm. 4.8] n
n−1 [Thm. 4.8]

UVO Ω(n) [Thm. 4.7] O(n) [Thm. 4.7] 1 [Thm. A.1]

PO
general
trees
approx. balanced

Ω(n) [Prop. 4.6]
Ω(n) [Cor. 4.11]
Ω(n) [Cor. 4.13]

O(n
√
n) [Thm. 4.9]

O(n) [Cor. 4.11]
O(n) [Cor. 4.13]

1√
n

[Thm. 4.9]
n

n−1 [Thm. 4.10]
Ω(1) [Prop. 4.12]

Table 1: An overview of our results on the price and welfare guarantees of the optimality notions
we consider. The ‘approximately balanced’ results for Pareto optimality hold when the numbers
of agents of the two types are within a constant factor of each other (and the number of agents is
equal to the number of nodes). Combining the lower and upper bounds, we obtain a price of Θ(n)
for all welfare notions except for maximum welfare (whose price is trivially 1) and PO on general
topologies.

We start by considering the social welfare. We show that for any topology and any
distribution of the agents into types, there always exists an assignment with social welfare at
least n/2−1, and we provide a polynomial-time algorithm for computing such an assignment.
Since the social welfare never exceeds n, our algorithm produces an assignment with at least
approximately half of the maximum social welfare. We complement this result by showing
that maximizing the social welfare is NP-hard, even when the topology is a graph such
that the number of nodes is equal to the number of agents. This improves upon previous
hardness results of Elkind et al. (2019) and Agarwal et al. (2020) whose reductions use
instances with “stubborn agents” (who are assigned to fixed nodes in advance and cannot
move), and either a topology with the number of nodes larger than the number of agents, or
at least three types of agents instead of just two. These results are presented in Section 3.

Even if an assignment does not maximize the social welfare, it can still be optimal in
other senses. With this in mind, in Section 4, we turn our attention to different notions
of optimality. In particular, we consider the well-known notion of Pareto optimality (PO),
according to which it should not be possible to improve the utility of an agent without de-
creasing that of another agent. We also introduce two variants of PO, called utility-vector
optimality (UVO) and group-welfare optimality (GWO), which are particularly appropriate
for Schelling’s model and may be of interest in other settings as well. Informally, an as-
signment is UVO if we cannot improve the sorted utility vector of the agents, and GWO
if it is not possible to increase the total utility of one type of agents without decreasing
that of the other type. We prove several results on these three notions of optimality. First,
while UVO and GWO imply PO by definition, we show that they are not implied by each
other or by PO. Then, for each P ∈ {PO,UVO,GWO}, we establish mostly tight bounds
on the price of P , which is an analogue of the price of anarchy: the price of P is defined
as the worst-case ratio between the maximum social welfare (among all assignments) and
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the minimum social welfare among all assignments satisfying P .1 Several of our results in
Sections 3 and 4 are summarized in Table 1.

Next, in Section 5, we address the complexity of computing assignments satisfying dif-
ferent optimality notions. Our NP-hardness reduction for social welfare maximization in
Section 3 also yields a corresponding hardness for GWO. We then consider perfect assign-
ments, in which every agent receives the maximum utility of 1, and show that deciding
whether such an assignment exists is NP-complete. As consequences, we obtain hardness
results for computing a UVO or PO assignment, as well as for maximizing the egalitarian
welfare (defined as the minimum utility among all agents) and the Nash welfare (defined as
the product of the agents’ utilities). When perfect assignments do not exist, a reasonable
relaxation is to require that every agent receives the maximum utility that she can receive
in any assignment for that instance; we call assignments satisfying this requirement individ-
ually optimal. While deciding whether an individually optimal assignment exists is again
NP-complete in general, when the number of agents is equal to the number of nodes in the
topology, we present a characterization of instances admitting such an assignment—this
characterization allows us to solve the decision problem in polynomial time for the special
case.

Finally, another important measure of efficiency is the number of agents who receive a
positive utility in the assignment. Even though only requiring the utility to be nonzero seems
minimal, there exist simple instances in which not all of the agents can obtain a positive
utility simultaneously. We show that for trees, it is possible to decide in polynomial time
whether there exists an assignment such that all agents receive a positive utility. We then
observe that it is always possible to guarantee a positive utility for at least half of the agents.
Moreover, when every node in the topology has degree at least 2, an assignment in which
all agents receive a positive utility is guaranteed to exist, and such an assignment can be
computed in polynomial time. These results are presented in Section 6.

1.2 Further Related Work

As already mentioned, Schelling’s model and its variants have been studied extensively
from many different perspectives in several disciplines. For an overview of early work on
the model, we refer the reader to the work of Immorlica et al. (2017).

Most related to our present work are the papers by Elkind et al. (2019), Agarwal
et al. (2020), Bilò et al. (2020), and Kanellopoulos et al. (2020), which studied game-
theoretic and complexity questions related to the social welfare in Schelling games. In
particular, Elkind et al. (2019) considered jump Schelling games in which there are k ≥ 2
types of agents, and the topology is a graph with more nodes than agents so that there
are empty nodes to which unhappy agents can jump. They showed that equilibrium assign-
ments do not always exist, proved that computing equilibrium assignments and assignments
with social welfare close to n (the maximum possible) is NP-hard, and bounded the price
of anarchy and stability for both general and restricted games.

1. Note that an analogue of the price of stability, where we consider the worst-case ratio between the
maximum social welfare and the maximum social welfare among assignments satisfying the optimality
notion, is uninteresting: for all of the optimality notions we consider, this price is simply 1.
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Later on, Agarwal et al. (2020) considered the complement case of swap Schelling games
in which the number of nodes in the topology is equal to the number of agents; since there
are no empty nodes to which the agents can jump, the agents can increase their utility only
by swapping positions pairwise. For this setting, the authors showed results similar to those
of Elkind et al. (2019). Bilò et al. (2020) improved some of the price of anarchy bounds of
Agarwal et al. (2020), and also studied a variation of the model in which the agents have
a restricted view of the topology and can only swap with their neighbors. Kanellopoulos
et al. (2020) investigated the price of anarchy and stability in jump Schelling games, but
with a slightly different utility function according to which an agent considers herself as
part of her set of neighbors.

Schelling games are closely related to variants of hedonic games, most notably un-
weighted fractional hedonic games (Aziz et al., 2019), in which there is a set of agents and
an unweighted graph that indicates friendship relations among them. In such games, the
agents split into disjoint coalitions and, similarly to Schelling games, the utility of each
agent is equal to the fraction of her friends in her coalition. The main difference between
the two models is that, in Schelling games, the agents occupy the nodes of a topology graph,
thereby leading to overlapping coalitions.

The price of Pareto optimality was first considered in the context of fractional hedonic
games by Elkind et al. (2020), and was also implicitly studied by Bullinger (2020). Since
Pareto optimality is a fundamental notion in various settings, its price has also been studied
in the context of social distance games (Balliu et al., 2017) and fair division (Bei et al.,
2019). To the best of our knowledge, this is the first time that Pareto optimality is studied
in Schelling’s model.

2. Preliminaries

Let N = {1, . . . , n} be a set of n ≥ 2 agents. The agents are partitioned into two different
types (or colors), red and blue. Denote by r and b the number of red and blue agents,
respectively; we have r + b = n. The distribution of agents into types is called balanced if
|r− b| ≤ 1. We say that two agents i, j ∈ N such that i 6= j are friends if i and j are of the
same type; otherwise we say that they are enemies. For each i ∈ N , we denote the set of
all friends of agent i by F (i).

A topology is a simple connected undirected graph G = (V,E), where V = {v1, . . . , vt}.
Each agent in N has to select a node of this graph so that there are no collisions. A
tuple I = (N,G) is called a Schelling instance. Given a set of agents N and a topology
G = (V,E) with |V | ≥ n, an assignment is an n-tuple v = (v(1), . . . , v(n)) ∈ V n such that
v(i) 6= v(j) for all i, j ∈ N with i 6= j; here, v(i) is the node of the topology where agent i
is positioned. A node v ∈ V is occupied by agent i if v = v(i). For a given assignment v
and an agent i ∈ N , let Ni(v) = {j ∈ N : {v(i), v(j)} ∈ E} be the set of neighbors of
agent i. Let fi(v) = |Ni(v) ∩ F (i)| be the number of neighbors of i in v who are her
friends. Similarly, let ei(v) = |Ni(v)| − fi(v) be the number of neighbors of i in v who are
her enemies. Following prior work, we define the utility ui(v) of an agent i in v to be 0 if
|Ni(v)| = 0; otherwise, her utility is defined as the fraction of her friends among the agents

147



Bullinger, Suksompong, & Voudouris

in her neighborhood:

ui(v) =
fi(v)

|Ni(v)| =
fi(v)

fi(v) + ei(v)
.

The social welfare of an assignment v is defined as the total utility of all agents:

SW(v) =
∑

i∈N
ui(v).

Let v∗(I) be an assignment that maximizes the social welfare for a given instance I; we
refer to it as a maximum-welfare assignment. Note that for any assignment v, we have
ui(v) ≤ 1, and so SW(v∗) ≤ n. Denote by SWR(v) and SWB(v) the sum of the utilities of
the red and blue agents, respectively; we have SWR(v) + SWB(v) = SW(v).

3. Social Welfare

The first question we address is whether a high social welfare can always be achieved in any
Schelling instance. Even though it may seem that we can obtain high welfare simply by
grouping the agents of each type together, given the possibly complex topology in combina-
tion with the distribution of agents into types, it is unclear how this idea can be executed
in general or what guarantee it results in. Nevertheless, we show that high welfare is indeed
always achievable. Moreover, we provide a tight lower bound on the maximum welfare for
each number of agents.

For any positive integer n, define

g(n) =

{
n(n−2)
2(n−1) if n is even;
n−1

2 if n is odd.

Note that g(n) ≥ n/2 − 1 for all n. Our approach is to choose an assignment uniformly
at random among all possible assignments. Equivalently, we place agents in the following
iterative manner: for an arbitrary unoccupied node, assign a uniformly random agent who
is unassigned thus far. We show that the expected welfare of the assignment resulting
from this simple randomized algorithm is at least g(n), which implies the existence of an
assignment with this welfare guarantee.

Theorem 3.1. For any Schelling instance with n agents, there exists an assignment with
social welfare at least g(n). Moreover, the bound g(n) cannot be improved.

Proof. First, note that we may assume that the number of agents is equal to the number of
nodes by restricting our attention to an arbitrary connected subgraph of G with the desired
size. For vi ∈ V , let Nvi = {vj ∈ V | {vi, vj} ∈ E} be the neighborhood of node vi in G,
and nvi = |Nvi | be its size.

Consider an assignment of the agents to the nodes of G chosen uniformly at random.
Let W be a random variable denoting the social welfare of this assignment, Ui a random
variable denoting the expected utility of the agent placed at node vi, and Xi a binary
random variable describing the color of this agent, where Xi = 1 if node vi is occupied by a
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blue agent and Xi = 0 if it is occupied by a red agent. By the linearity of expectation and
the law of total expectation, we have

E[W ] =
n∑

i=1

E[Ui]

=
n∑

i=1

(Pr(Xi = 1) · E[Ui | Xi = 1] + Pr(Xi = 0) · E[Ui | Xi = 0]).

Now, for a fixed vi ∈ V , it holds that

E[Ui | Xi = 1] =
1

nvi

∑

vj∈Nvi

E[Xj | Xi = 1]

=
1

nvi

∑

vj∈Nvi

Pr(vj blue | vi blue) =
1

nvi

∑

vj∈Nvi

b− 1

n− 1
=
b− 1

n− 1
,

where the first equality is again due to linearity of expectation. Similarly, we have E[Ui |
Xi = 0] = r−1

n−1 . Hence,

E[W ] =

n∑

i=1

(
b

n
· b− 1

n− 1
+
r

n
· r − 1

n− 1

)

= b · b− 1

n− 1
+ r · r − 1

n− 1

=
1

n− 1
(b(b− 1) + (n− b)(n− b− 1)) =

1

n− 1
(n2 − n+ 2b(b− n)).

Observe that the function b(b− n) is decreasing in the range b ∈ [0, n/2] and increasing
in the range b ∈ [n/2, n]. This means that for even n, we have

E[W ] ≥ 1

n− 1

(
n2 − n+ 2 · n

2
·
(
−n

2

))
=
n(n− 2)

2(n− 1)
= g(n).

For n odd, since b is an integer, it holds that

E[W ] ≥ 1

n− 1

(
n2 − n+ 2 · n− 1

2
·
(
−n+ 1

2

))
=
n− 1

2
= g(n),

implying that E[W ] ≥ g(n) in both cases. Hence, there exists an assignment with social
welfare at least g(n).

Finally, it can be verified that when G is a complete graph with n nodes and the
distribution of agents into types is balanced, every assignment has social welfare exactly
g(n).

Next, we derandomize the algorithm in Theorem 3.1 to produce an efficient deterministic
algorithm that computes an assignment with welfare at least g(n). The pseudocode of the
algorithm, which shares the notation of Theorem 3.1, can be found in Algorithm 1. The
main idea is that when we choose an agent to be assigned to an unassigned node, we pick
a type such that the expected welfare is maximized, where the expectation is taken with
respect to the uniform distribution of the remaining agents to the remaining nodes.
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Algorithm 1 Assignment with high social welfare

Input: Schelling instance I = (N,G) with G = (V,E)
Output: Assignment with social welfare at least g(n)

for i = 1, . . . , n do
if there is a unique assignment v consistent with X1 = a1, . . . , Xi−1 = ai−1 (up to
permuting agents of the same color) then

return v
W0 = E[W | X1 = a1, . . . , Xi−1 = ai−1, Xi = 0]
W1 = E[W | X1 = a1, . . . , Xi−1 = ai−1, Xi = 1]
if W1 ≥W0 then
ai = 1 /*assign a blue agent to vi*/

else
ai = 0 /*assign a red agent to vi*/

return Assignment corresponding to (a1, . . . , an)

Theorem 3.2. Algorithm 1 returns an assignment with social welfare at least g(n) in
polynomial time.

Proof. We use the same notation as in the proof of Theorem 3.1.
First, we prove that the welfare of the returned assignment is at least g(n). For i =

0, . . . , n, denote by Ai the event X1 = a1 ∧X2 = a2 ∧ · · · ∧Xi = ai. In particular, A0 is the
entire sample space. We will show by induction that for each i, E[W | Ai] ≥ E[W ]. The
base case i = 0 holds trivially. For i ∈ {1, . . . , n}, if there is a unique assignment consistent
with X1 = a1 ∧ · · · ∧ Xi−1 = ai−1, then the social welfare of the returned assignment is
E[W | Ai−1] ≥ E[W ] ≥ g(n), where the first inequality follows from the induction hypothesis
and the second inequality from Theorem 3.1. Otherwise, we have

E[W ] ≤ E[W | Ai−1]

= Pr(Xi = 0 | Ai−1) · E[W | Ai−1 ∧Xi = 0] + Pr(Xi = 1 | Ai−1) · E[W | Ai−1 ∧Xi = 1]

≤ Pr(Xi = 0 | Ai−1) · E[W | Ai] + Pr(Xi = 1 | Ai−1) · E[W | Ai]

= E[W | Ai],

where we use the law of total expectation for the first equality and the choice of ai in the
algorithm for the second inequality. This completes the induction. Hence, if the algorithm
terminates in the jth iteration, the welfare of the returned assignment is E[W | Aj ] ≥
E[W ] ≥ g(n).

We next show that the algorithm can be implemented in polynomial time. To this end,
it suffices to show that the quantities W0 and W1 can be computed efficiently for each fixed
i ∈ {1, . . . , n}. If there is only one type of agents left after having assigned the first i agents,
this is straightforward, so assume that both types of agents still remain. By the linearity
of expectation, for each x ∈ {0, 1},

E[W | Ai−1 ∧Xi = x] =
n∑

j=1

E[Uj | Ai−1 ∧Xi = x].
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By the law of total expectation,

E[Uj | Ai−1 ∧Xi = x] = Pr(Xj = 0 | Ai−1 ∧Xi = x) · E[Uj | Ai−1 ∧Xi = x ∧Xj = 0]

+ Pr(Xj = 1 | Ai−1 ∧Xi = x) · E[Uj | Ai−1 ∧Xi = x ∧Xj = 1],

where a probability can be 0 if vj has already been assigned an agent (i.e., if j ≤ i). When
j > i, we have

Pr(Xj = 1 | Ai−1 ∧Xi = x) =
b−∑i−1

k=1 ak − x
n− i .

Also, by the linearity of expectation,

E[Uj | Ai−1 ∧Xi = x ∧Xj = 1] =
1

nvj

∑

vk∈Nvj

E[Xk | Ai−1 ∧Xi = x ∧Xj = 1].

Finally,

E[Xk | Ai−1 ∧Xi = x ∧Xj = 1] =





ak if k ≤ i− 1;

x if k = i;
b−∑i−1

`=1 a`−x−1

n−i−1 if k > i.

The computations for Xj = 0 as well as for j ≤ i can be done similarly.

Since the social welfare of any assignment is at most n, Algorithm 1 always produces
an assignment with at least roughly half of the optimal welfare. This raises the question
of whether it is possible to compute a maximum-welfare assignment for any given instance
in polynomial time. Unfortunately, Elkind et al. (2019) proved that maximizing the social
welfare is NP-hard. However, their proof relies on the existence of a “stubborn agent”,
who is assigned to a fixed node in advance and cannot move, and uses a topology with
more nodes than agents.2 We show that the hardness remains even when both of these
assumptions are removed and the topology is a regular graph, i.e., a graph in which all
nodes have the same degree.

Theorem 3.3. The following problem is NP-complete: Given a Schelling instance and a
rational number s, decide whether there exists an assignment with social welfare at least s.
The hardness holds even for the class of instances where the number of agents is equal to
the number of nodes and the topology is a regular graph.

Proof. The problem belongs to NP since computing the social welfare of a given assignment
can be done efficiently. For the hardness, we reduce from the Maximum Clique problem
for regular graphs, i.e., given a regular graph G and an integer k, is there a clique of size
at least k? Note that this problem is NP-hard: Indeed, the Independent Set problem
is NP-hard for regular graphs (Garey & Johnson, 1979, pp. 194–195), and a set of vertices

2. Agarwal et al. (2020) showed that the hardness holds when the numbers of agents and nodes are equal,
but still required stubborn agents and moreover assumed at least three types of agents.
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forms a clique in a given graph exactly when these vertices form an independent set in the
complement graph.3

Let (G, k) be an instance of Maximum Clique, where G = (V,E) is a ρ-regular graph
on n vertices, and k an integer. Define a Schelling instance on topology G with k red and
n− k blue agents. For any assignment v, the social welfare SW(v) is equal to n− 2δ(v)/ρ,
where δ(v) denotes the number of edges connecting a red agent and a blue agent in v. If
G has a clique of size k, then by assigning all red agents to nodes in this clique, we have
δ(v) = kρ − 2

(
k
2

)
; indeed, the sum of degrees of the red agents is kρ, from which we have

to subtract twice the number of red-red edges. Similarly, if G does not have a clique of size
k, then for any assignment v, we have δ(v) > kρ− 2

(
k
2

)
. Hence, there exists an assignment

with welfare at least n− 2k + 4
(
k
2

)
/ρ if and only if G has a clique of size k, so we may set

s = n− 2k + 4
(
k
2

)
/ρ to complete the reduction.

Note that Theorem 3.3 also yields the hardness of computing a maximum-welfare as-
signment. Indeed, any algorithm that computes such an assignment can also be used to
decide whether there exists an assignment with a certain social welfare.

4. Optimality Notions

Even when an assignment does not achieve maximum social welfare, there can still be
other ways in which it is “optimal”. In this section, we consider some optimality notions
and quantify them in relation to social welfare. We begin with a classic notion, Pareto
optimality.

Definition 4.1. An assignment v is said to be Pareto dominated by an assignment v′ if
ui(v) ≤ ui(v

′) for all i ∈ N , with the inequality being strict for at least one agent. An
assignment v is Pareto optimal (PO) if it is not Pareto dominated by any other assignment.

Given two vectors w1 and w2 of the same length k, we say that w1 weakly dominates
w2 if for each i ∈ {1, . . . , k}, the ith element of w1 is at least that of w2. We say that w1

strictly dominates w2 if at least one of the inequalities is strict.

For an assignment v, denote by u(v) the vector of length n consisting of the agents’
utilities ui(v), sorted in non-increasing order. Similarly, denote by uR(v) and uB(v) the
corresponding sorted vectors of length r and b for the red and blue agents, respectively. Note
that an assignment v is Pareto optimal if and only if there is no other assignment v′ such
that uX(v′) weakly dominates uX(v) for X ∈ {R,B} and at least one of the dominations
is strict. Motivated by this observation, we define two new optimality notions appropriate
for Schelling instances.

Definition 4.2. An assignment v is said to be

• group-welfare dominated by an assignment v′ if SWX(v′) ≥ SWX(v) for X ∈ {R,B}
and at least one of the inequalities is strict;

3. Given a graph G = (V,E), its complement graph is the graph G = (V,E) with E = {e ⊆ V : |e| = 2, e /∈
E}, i.e., there is an edge between vertices v1, v2 ∈ V in G exactly when there is no edge between them
in G.
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Figure 2: Example showing that GWO does not imply UVO.

• utility-vector dominated by an assignment v′ if u(v′) strictly dominates u(v).

An assignment v is group-welfare optimal (GWO) if it is not group-welfare dominated by
any other assignment. Similarly, an assignment v is utility-vector optimal (UVO) if it is
not utility-vector dominated by any other assignment.

The implication relations in Figure 1 follow immediately from the definitions; in partic-
ular, both of the new notions lie between welfare maximality and Pareto optimality. We
claim that no other implications exist between these notions. To establish this claim, it
suffices to show that GWO and UVO do not imply each other.

Proposition 4.3. GWO does not imply UVO.

Proof. Assume that the topology is a star as in Figure 2, and there are two red and n− 2
blue agents, where n ≥ 5. The left assignment v is GWO, since putting a blue agent at the
center as in the right assignment v′ leaves both red agents with utility 0. However, v is not
UVO, as

u(v) = (1, 1/(n− 1), 0, . . . , 0)

is strictly dominated by

u(v′) = (1, . . . , 1, (n− 3)/(n− 1), 0, 0).

Proposition 4.4. UVO does not imply GWO.

Proof. Let n be a multiple of 4. Suppose that the topology is a complete bipartite graph
with n/2 nodes on each side, and there are n/2 red and n/2 blue agents (Figure 3). The left
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Figure 3: Example showing that UVO does not imply GWO. The topology is a complete bipartite
graph.

assignment v, which assigns one red agent to the left side and one blue agent to the right
side, is UVO. Indeed, the red agent assigned to the left side receives utility (n/2−1)/(n/2),
and any assignment in which an agent receives equal or higher utility must have the same
sorted utility vector as v. We have

SW(v) = 2 · n/2− 1

n/2
+ 2(n/2− 1) · 1

n/2
= 4− 8

n
,

with each group receiving half of the welfare, i.e., 2 − 4/n. On the other hand, in the
right assignment v′, which assigns half of the agents of each color to each side, every agent
receives utility 1/2. Hence SW(v′) = n/2, and each group receives a total utility of n/4. It
follows that when n ≥ 8, v is UVO but not GWO.

In order to quantify the welfare guarantee that each optimality notion provides, we
define the price of a notion as follows.

Definition 4.5. Given a property P of assignments and a Schelling instance, the price
of P for that instance is defined as the ratio between the maximum social welfare (of any
assignment) and the minimum social welfare of an assignment satisfying P :

Price of P for instance I =
SW(v∗(I))

minv∈P (I) SW(v)
,

where P (I) is the set of all assignments satisfying P in instance I.4 The price of P for a
class of instances is then defined as the supremum price of P over all instances in that class.

For P ∈ {PO, GWO, UVO}, we have v∗(I) ∈ P (I), so the price of P is always well-
defined and at least 1. Note also that maxv∈P (I) SW(v) = SW(v∗(I)).

4. We interpret the ratio 0
0
in this context to be equal to 1.
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In Figure 2, the left assignment is GWO and PO and has social welfare n/(n − 1),
whereas the maximum-welfare assignment on the right has social welfare n(n− 3)/(n− 1).
We therefore have the following bound (for n ≤ 4, the bound holds trivially).

Proposition 4.6. For every n, both the price of GWO and the price of PO are at least
n− 3.

The following result shows that the welfare of a UVO assignment can also be a linear
factor away from the maximum welfare, but not more.

Theorem 4.7. The price of UVO is Θ(n).

Proof. We prove the lower and the upper bound separately.

Lower bound: Consider the topology in Figure 3. As in the proof of Proposition 4.4, the
left assignment v is UVO and has social welfare 4 − 8/n. On the other hand, the right
assignment v′ has social welfare n/2, meaning that the ratio SW(v′)/SW(v) is greater than
n/8.

Upper bound: We claim that if n ≥ 3, any UVO assignment has social welfare at least5

1/2; since the maximum social welfare is at most n, this yields the desired bound.
Assume first that the number of agents is equal to the number of nodes. Let v be a UVO

assignment. If there is a red agent and a blue agent both receiving utility 0, then since no
node is empty and n ≥ 3, swapping them yields an improvement with respect to the utility
vector. So we may assume that all agents of one type, say blue, receive a positive utility.
If at least n/2 agents receive a positive utility, then SW(v) ≥ n/(2n− 2) > n/(2n) = 1/2.
Assume therefore that more than n/2 agents receive utility 0; these agents must all be
red. Swap b of these red agents receiving utility 0 with all b blue agents to obtain an
assignment v′. Notice that the utility in v′ of each of these b red agents is at least as high
as the utility of the blue agent in v with whom she was swapped, while all blue agents
receive utility 0 in v′. In addition, every other (red) agent is not worse off, and at least one
of them is better off (in particular, one who receives utility 0 in v, which must exist since
n/2 > b). Hence v is utility-vector dominated by v′, a contradiction.

Now, assume that the number of agents is less than the number of nodes. Since n ≥ 3,
any UVO assignment v must have SW(v) > 0, so there exists a connected component (of
the topology restricted to the nodes occupied according to v) with a positive social welfare.
Let n′ be the size of this component. If n′ = 2, then SW(v) ≥ 2. Else, the assignment
restricted to this component is also UVO, and by our earlier arguments has social welfare
at least 1/2.

Next, we show that the price of GWO is also Θ(n). The lower bound follows from
Proposition 4.6, while the upper bound follows from the fact that the social welfare never
exceeds n along with the following theorem, which establishes a lower bound of (at least) 1
on the social welfare of GWO assignments.

Theorem 4.8. Any GWO assignment has social welfare at least n/(n− 1) for n ≥ 4, and
1 for n = 3. Moreover, these bounds cannot be improved.

5. In Theorem A.1, we improve this bound to 1 via a longer proof.
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Proof. To see that the bounds cannot be improved, consider the left assignment in Figure 2
for n ≥ 4, and a triangle topology with two red and one blue agents for n = 3.

Assume first that the number of agents is equal to the number of nodes. The case n = 3
can be verified directly, since the only two possible topologies are a triangle and a path.
Let n ≥ 4, and assume for contradiction that there exists a GWO assignment v with social
welfare less than n/(n− 1). Since the least possible positive utility of an agent is 1/(n− 1),
this means that some agent receives utility 0. Take such an agent i, and assume without loss
of generality that i is red. Since the numbers of agents and nodes are equal, i is connected
to a set A 6= ∅ of blue agents. Consider the following cases.

Case 1: There is a blue agent j outside A. We swap i and j to obtain an assignment v′.
After the swap, j has utility 1, and each blue agent in A has utility at least 1/(n − 1),
so SWB(v′) ≥ n/(n − 1) > SW(v) ≥ SWB(v). In addition, no red agent receives a lower
utility in v′ than in v. Hence v is not GWO, a contradiction.

Case 2: There are no blue agents outside A, but at least one red agent besides i. Since
no node is empty, there is a blue agent j ∈ A who is adjacent to another red agent. We
swap i and j to obtain an assignment v′. No agent receives a lower utility in v′ than in v.
Moreover, i’s utility strictly increases. Hence v is not GWO, a contradiction.

Case 3: There are no blue agents outside A, and no red agent besides i. This means that
i receives utility 0 in any assignment. Consider an assignment v′ such that the blue agents
form a connected component. Each blue agent receives utility at least 1/2, so SWB(v′) ≥
b/2 ≥ 3/2 > n/(n− 1). It follows that v is group-welfare dominated by v′, a contradiction.

Now, assume that the number of agents is less than the number of nodes. Since n ≥ 3,
any GWO assignment v must have SW(v) > 0, so there exists a connected component (of
the topology restricted to the nodes occupied according to v) with a positive social welfare.
Since the assignment restricted to this component is GWO, we are done if the component
is of size at least n′ ≥ 4, because then SW(v) ≥ n′/(n′ − 1) ≥ n/(n − 1). If there is a
component of size 2 with positive welfare, the social welfare is at least 2 and we are also
done. Since any component of positive welfare has a welfare of at least 1, we are again done
if there are at least two components of positive welfare. Thus, we can assume that there
is a single component of positive welfare of size 3, which we can moreover assume has the
topology of a triangle (the only other possibility being a path, which guarantees a welfare
of 3/2), and that there are exactly two agents of one type, say blue, and one agent of the
other type in this component.

If there is another blue agent outside this component, v is group-welfare dominated by
the assignment that swaps the red agent of the triangle and this blue agent. Finally, consider
the case where there is another red agent and no blue agent outside the triangle. The red
agent must have an empty neighboring node. We obtain a group-welfare improvement by
moving the red agent of the triangle to this empty node. Hence, the remaining case is that
all agents are part of the triangle, meaning that n = 3; in this case, the social welfare is 1,
as desired.

We now turn to Pareto optimality, for which we prove a weaker lower bound on the
social welfare.
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Figure 4: Illustration for the proof of Theorem 4.10.

Theorem 4.9. When n ≥ 3, any PO assignment has social welfare at least 1/
√
n.

Proof. By an argument similar to that in the upper bound part of Theorem 4.7, and since
the function 1/

√
n is decreasing, it suffices to consider the case where the number of agents

is equal to the number of nodes. Let v be a PO assignment. If at least
√
n agents receive a

positive utility, then SW(v) ≥ √n/(n − 1) ≥ 1/
√
n, so assume that fewer than

√
n agents

receive a positive utility. Similarly, we may assume that every agent receives utility less
than 1/

√
n. If there is a red agent and a blue agent both receiving utility 0, then since no

node is empty and n ≥ 3, swapping them yields a Pareto improvement. So we may assume
that all agents of one type, say blue, receive a positive utility. This means in particular that
b <
√
n, and more than n−√n red agents only have blue neighbors. Hence, there exists a

blue agent i with at least (n − √n)/
√
n =

√
n − 1 ≥ b − 1 red neighbors. Let A be a set

containing b− 1 of these red neighbors.

Swap the b−1 blue agents other than i with the red agents in A to obtain an assignment
v′. Since these red agents are not adjacent to any red agent in v, no red agent is worse off
in v′. Each of the b− 1 blue agents receives utility at least 1/b > 1/

√
n in v′, so all of them

are strictly better off. Furthermore, i is adjacent to all of these b− 1 blue agents in v′, and
therefore cannot be worse off. Hence v is not PO, a contradiction.

Combined with Proposition 4.6, Theorem 4.9 implies that when n ≥ 3, the price of PO
is at least n−3 and at most n

√
n. We conjecture that the welfare guarantee in Theorem 4.9

can be improved to n/(n− 1) for n ≥ 4, which would be tight due to the left assignment in
Figure 2. Next, we confirm this conjecture when the topology is a tree.

Theorem 4.10. When n ≥ 3 and the topology is a tree, any PO assignment has social
welfare at least n/(n− 1). Moreover, this bound cannot be improved.

Proof. The bound cannot be improved due to the left assignment in Figure 2. To establish
the bound, note first that by an argument similar to that in the upper bound part of
Theorem 4.7, and since the function n/(n− 1) is decreasing, it suffices to consider the case
where the number of agents is equal to the number of nodes. Let v be a PO assignment. As
in the proof of Theorem 4.9, we may assume that all agents of one type, say blue, receive a
positive utility. If an agent occupying a leaf node is adjacent to another agent of the same

157



Bullinger, Suksompong, & Voudouris

type, then SW(v) ≥ 1 + 1/(n− 1) and we are done. Hence, assume that all leaf nodes are
occupied by red agents receiving utility 0.

Root the tree at an arbitrary node. The deepest level of the tree consists only of leaf
nodes; call this “level 1”, and call the other levels accordingly (see Figure 4). Consider
an arbitrary parent i of a leaf at level 1—this parent must be blue. Since all blue agents
receive a positive utility, i must have a blue parent j. Any branch originating from j has to
go down to level 1; otherwise, the branch stops at level 2 with a red leaf, and we can swap
this red leaf with i to obtain a Pareto improvement. In particular, in j’s subtree, all nodes
on level 2 are blue. If j does not have a parent or has a blue parent, then she has utility 1
and SW(v) ≥ n/(n− 1). Assume therefore that j has a red parent k. Note that j receives
utility at least 1/2, and any of its child at least 1/(n− 1).

Suppose that k has another child. If k has a red child, this child cannot be a leaf
(because all leaves have utility 0), so it must in turn have a blue child (otherwise it receives
utility 1 and we are done), but then this blue child receives utility 0, a contradiction. Hence
k can only have blue children. Suppose that k has a blue child ` 6= j, which cannot be
a leaf. If ` only has blue children, it receives utility at least 1/2, and we are done since
SW(v) ≥ 1/2+1/(n−1)+1/2 = n/(n−1). So assume that ` has a red child m, which must
also be a leaf. Since all blue agents receive a positive utility, ` must also have a blue child
o, which must in turn have only red children. Now, swapping m and o leads to a Pareto
improvement, a contradiction. Hence we may assume that k’s only child is j.

Finally, if k does not have a parent or has a blue parent, swapping k with i yields a Pareto
improvement. So assume that k has a red parent. This means that k receives utility 1/2.
Combining this with the utility of j and her children, we again have SW(v) ≥ n/(n−1).

Together with Proposition 4.6, which holds for trees, Theorem 4.10 gives a tight bound
on the price of PO for trees.

Corollary 4.11. When the topology is a tree, the price of PO is Θ(n).

To finish this section, we show that if b/r ∈ Θ(1), i.e., the fraction of agents of each
type is at least a certain constant, then a constant welfare can again be guaranteed.

Proposition 4.12. Suppose that the number of agents is equal to the number of nodes.

Then any PO assignment has social welfare at least min
{

b
r+1 ,

r
b+1

}
.

Proof. Let v be a PO assignment. Since the number of agents is equal to the number of
nodes, as in the proof of Theorem 4.9, we may assume that all agents of one type, say
blue, receive a positive utility. Since a blue agent is adjacent to at least one other blue
agent and at most r red agents, each blue agent receives utility at least 1/(r + 1). This
means that SW(v) ≥ b/(r + 1). Similarly, if all red agents receive a positive utility, then
SW(v) ≥ r/(b+ 1). The conclusion follows.

When the ratio b/r is upper and lower bounded by constants, the welfare guarantee
provided by Proposition 4.12 is also constant, which is at most a linear factor away from
the maximum welfare. Since Figure 3 shows an instance with b = r and a PO assignment
whose welfare is a linear factor away from the maximum welfare, we obtain the following:

Corollary 4.13. When b/r ∈ Θ(1) and the number of agents is equal to the number of
nodes, the price of PO is Θ(n).
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Figure 5: Illustration for the proof of Theorem 5.3 when R = {1, 2, 3, 4, 5, 6} and S = {x, y} where
x = {1, 2, 3} and y = {4, 5, 6}.

5. Computing Optimal Assignments

In the previous section, we introduced two new concepts of optimality and studied the wel-
fare guarantees that they provide along with Pareto optimality. In this section, we continue
our investigation of these optimality notions by examining the complexity of computing
assignments satisfying them. Furthermore, we consider other common welfare notions such
as egalitarian welfare and Nash welfare.

First, we observe that in the reduced instances of Theorem 3.3, an assignment is GWO
if and only if it maximizes the social welfare.6 This immediately yields the following in-
tractability.

Theorem 5.1. Computing a GWO assignment is NP-hard, even for the class of Schelling
instances where the number of agents is equal to the number of nodes and the topology is a
regular graph.

For the other two optimality notions, we will establish a close relationship to the problem
of computing a “perfect assignment”, wherein every agent receives utility 1.

Definition 5.2. An assignment v is called perfect if ui(v) = 1 for all i ∈ N .

We start by showing the hardness of this problem.

Theorem 5.3. Deciding whether there exists a perfect assignment is NP-complete.

Proof. Membership in NP is clear: a perfect assignment can be verified in polynomial time.
The hardness reduction is from Exact 3-Cover (X3C). An instance of X3C consists

of a tuple (R,S), where R is a ground set whose size is divisible by 3, and S is a collection

6. To see this, note that for any assignment v, the sum of utilities of the red and blue agents is equal to
SWR(v) = r − δ(v)/ρ and SWB(v) = b− δ(v)/ρ, respectively, where δ(v) denotes the number of edges
connecting a red agent and a blue agent in v. Hence, both the GWO and maximum-welfare assignments
are precisely the assignments minimizing the number of these interconnection edges.
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of 3-element subsets of R, where |S| ≥ |R|/3. A Yes-instance is an instance in which there
exists a subcollection S′ ⊆ S of size |R|/3 that exactly partitions R. It is well-known that
X3C is NP-hard (Garey & Johnson, 1979, p. 221).

Let an instance (R,S) of X3C be given. We define a Schelling instance with 1 + |S| −
|R|/3 blue and |R|+ 2|S|2 + |R|/3 red agents. Define the topology graph G = (V,E) with
V = R ∪ {si : 1 ≤ i ≤ 2|S|+ 2, s ∈ S} ∪ {z} and edges given by

• {r, s1} ∈ E if r ∈ R and s ∈ S with r ∈ s;

• {si, sj} ∈ E for s ∈ S, 1 ≤ i, j ≤ 2|S|+ 1;

• {s1, s2|S|+2}, {s2|S|+2, z} ∈ E for s ∈ S; and

• no further edges are in E.

See Figure 5 for an illustration. Note that the number of nodes is |R| + 2|S|2 + 2|S| + 1
and the number of agents is |R| + 2|S|2 + |S| + 1, so exactly |S| nodes are left empty in
any assignment. We claim that (R,S) is a Yes-instance if and only if there exists a perfect
assignment in the Schelling instance.

Assume first that (R,S) is a Yes-instance, and let S′ ⊆ S be a partition of R using sets
in S. We assign the blue agents to the nodes in the set A = {z}∪ {s2|S|+2 : s ∈ S \S′}, and
the red agents to the vertices in the set B = R∪{si : 2 ≤ i ≤ 2|S|+ 1, s ∈ S}∪{s1 : s ∈ S′}.
Note that |A| = 1 + |S| − |R|/3, B = |R| + 2|S|2 + |R|/3, and the nodes in A induce a
connected subgraph of G that has no neighbor in B. This means that all blue agents receive
utility 1. Since S′ covers R, all red agents also receive utility 1, meaning that the assignment
is perfect.

Conversely, assume that there is a perfect assignment. Since every assignment leaves
exactly |S| nodes empty, no blue agent can be assigned to a vertex in {si : 1 ≤ i ≤ 2|S|+1, s ∈
S}, because she would then have a red neighbor. Additionally, no blue agent can be assigned
to a vertex in R, because then some of her only neighbors in the set {s1 : s ∈ S} would also
have to be blue, which is impossible by the previous sentence. We conclude that the blue
agents are assigned to the nodes in {z} ∪ {s2|S|+2 : s ∈ S}, which means in particular that
some blue agent is assigned to z. Define S′ = {s ∈ S : s1 is red}. Then, the empty nodes
are precisely {s2|S|+2 : s ∈ S′} ∪ {s1 : s ∈ S \ S′}, and we have |S′| = |R|/3. In particular,
all nodes in R must have red agents. Now, such an agent can receive a positive utility only
if at least one of her neighbors is red. Hence, S′ covers R. Since |S′| = |R|/3, it follows
that S′ forms a partition of R.

Theorem 5.3 turns out to be particularly useful for deriving hardness results with respect
to other optimality and welfare notions.

Corollary 5.4. Computing a UVO assignment (resp., PO assignment) is NP-hard.

Proof. Observe that if there exists a perfect assignment in an instance, then every UVO
(resp., PO) assignment in that instance must be perfect. Hence, an algorithm for computing
a UVO (resp., PO) assignment can be used to decide whether a perfect assignment exists.
The conclusion follows from Theorem 5.3.
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Figure 6: Example of an individually optimal assignment.

In addition, we obtain the hardness of computing assignments with maximum egalitarian
or Nash welfare. Recall that the egalitarian welfare of an assignment is the minimum among
the agents’ utilities in that assignment, and the Nash welfare is the product of the agents’
utilities in that assignment.

Corollary 5.5. The following problem is NP-complete: Given a Schelling instance and a
rational number s, decide whether there exists an assignment with egalitarian (resp., Nash)
welfare at least s.

Proof. Membership in NP is trivial. For the hardness, observe that an assignment is perfect
if and only if its egalitarian (resp., Nash) welfare is (at least) 1, so the conclusion follows
from Theorem 5.3.

We emphasize that it is crucial for Theorem 5.3 and its corollaries that the number of
nodes in the topology is larger than the number of agents. If the two numbers are equal,
then perfect assignments do not exist (unless there is only one type of agents), and the
corresponding decision problem becomes trivial. Nevertheless, it remains interesting to ask
for assignments that are “individually optimal” for all agents.

Definition 5.6. An assignment v is called individually optimal for agent i if ui(v) ≥ ui(v′)
for all assignments v′. An assignment is called individually optimal if it is individually
optimal for all agents.

An example of an individually optimal assignment is shown in Figure 6, where every
agent receives a utility of 1/2.

Note that it is easy to compute the utility that an agent receives in an individually opti-
mal assignment for her: Assign this agent to a node of minimum degree; then, assign agents
of the same type to as many neighbors as possible and leave other neighbors empty; finally,
if needed, assign agents from the other type to the remaining neighbors. An individually
optimal assignment for all agents, if it exists, is clearly optimal with respect to all welfare
measures that we consider and treats agents of the same type equally.

In the reduction of Theorem 5.3, we can assume that there are at least three agents
of each type, and some nodes in the topology have7 degree 2. Hence, an assignment is

7. More precisely, we can assume without loss of generality that |S| ≥ 2 + |R|/3 in an instance (R,S) of
X3C, since the problem can be solved by brute force otherwise. Then, there are at least three blue
agents. Also, there are at least three red agents whenever |R| ≥ 3. Finally, nodes of the type s2|S|+2

have degree 2.
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individually optimal if and only if every agent receives utility 1. Consequently, perfect
assignments and individually optimal assignments coincide, and we obtain the following:

Corollary 5.7. Deciding whether there exists an individually optimal assignment is NP-
complete.

However, we show next that if the numbers of agents and nodes are equal, then this
decision problem becomes efficiently solvable. More precisely, we provide simple conditions
characterizing the instances with an individually optimal assignment. Recall the definition
of a complement graph from Footnote 3.

Theorem 5.8. Given a Schelling instance with an equal number of agents and nodes, there
exists an individually optimal assignment if and only if all of the following three conditions
are met:

(1) The numbers of red and blue agents are the same, or the topology graph is a complete
graph.

(2) The topology graph is regular.

(3) The complement graph of the topology graph is bipartite.

Deciding whether the three conditions are met can be done in polynomial time. Moreover,
if all three conditions are met, we can compute an individually optimal assignment in poly-
nomial time.

Proof. Consider a Schelling instance with an equal number of agents and nodes and a
topology graph G = (V,E). Denote the complement graph by G. Note that if G is a
complete graph, then all assignments are individually optimal and conditions (2) and (3)
are trivially met. Therefore, assume from now on that G is not a complete graph.

First, suppose that there exists an individually optimal assignment, and consider such an
assignment. Recall that there are b blue and r red agents. Let δ denote the minimum degree
among the nodes of G. If b ≥ δ + 1 or r ≥ δ + 1, then the individually optimal utility for
one type of agents is 1, and there does not exist an individually optimal assignment. Hence,
this cannot be the case, and the individually optimal utility is (b − 1)/δ and (r − 1)/δ
for the blue and red agents, respectively. In particular, the topology graph must be δ-
regular; otherwise, an agent assigned to a node with degree greater than δ cannot receive
her individually optimal utility. Condition (2) is therefore met.

Let B and R be the sets of nodes occupied by the blue and red agents, respectively.
For the assignment to be individually optimal, B and R must form cliques in the topology
graph. In other words, (B,R) forms a bipartition of the complement graph, meaning that
condition (3) is met.

The regularity of the topology graph implies the regularity of its complement graph,
which is not the empty graph (because we already excluded a complete topology graph).
Since (B,R) forms a bipartition of the complement graph which is (n− 1− δ)-regular, the
number of edges adjacent to exactly one node in B is (n − 1 − δ)b, the number of edges
adjacent to exactly one node in R is (n− 1− δ)r, and these two numbers must be equal. It
follows that b = r, so condition (1) is met as well.
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Conversely, assume that the three conditions are met. Since we have already handled
the case of a complete topology graph, we have that the numbers of blue and red agents
are the same.

Let (X,Y ) be a bipartition of the node set V in G. Since G is regular, so is G. Again,
by counting the (nonzero) number of edges incident to nodes in X and Y , regularity implies
that |X| = |Y |. Now, consider the assignment that assigns all blue agents at the nodes in X
and all red agents at the nodes in Y ; this assignment is feasible because the numbers of blue
and red agents are the same. Since (X,Y ) forms a bipartition in the complement graph,
the set of blue agents as well as the set of red agents form cliques in the topology graph.
Regularity therefore implies that every agent is individually optimal, so the assignment is
individually optimal.

The proof of the converse also shows that we can compute an individually optimal
assignment in polynomial time by computing the complement graph and an arbitrary bi-
partition. This yields an individually optimal assignment, provided that all three conditions
are met. It is clear that checking whether the three conditions are met can also be done in
polynomial time.

The key algorithmic problem in the proof of Theorem 5.8 is to decide whether the nodes
of a given regular graph can be partitioned into two equally-sized subsets in such a way
that each subset forms a clique. This problem is related to some NP-hard problems, and
its tractability may therefore be of broader interest. Indeed, it appears similar not only to
the Maximum Clique problem, which we have seen to be NP-hard for regular graphs (cf.
Theorem 3.3), but also to the Minimum Bisection problem, which is likewise NP-hard for
regular graphs (Bui et al., 1987). The latter problem asks for a partition of the nodes of
a given graph into two equally-sized subsets such that the number of edges between these
two sets is minimized. Our proof of Theorem 5.8 shows that the variant where we ask for
the two subsets of nodes to form cliques is solvable in polynomial time.

6. Number of Positive Agents

In this section, we consider the problem of maximizing the number of agents receiving
a positive utility, who we refer to as positive agents. This problem is closely related to
egalitarian and Nash welfare, because an assignment has nonzero egalitarian (resp., Nash)
welfare if and only if it makes every agent positive. Notice that it is not always possible
to make every agent positive—for example, in a star, every agent whose type is different
from the center agent receives zero utility. We begin by showing that for trees, deciding
whether it is possible to make every agent positive can be done efficiently. Our algorithm is
based on dynamic programming and shares some similarities with the algorithm of Elkind
et al. (2019) for deciding whether an equilibrium exists on a tree.

Theorem 6.1. There is a polynomial-time algorithm that decides whether there exists an
assignment in which every agent receives a positive utility when the topology is a tree.

Proof. Pick an arbitrary node vroot to be the root of G. For each node v ∈ V , let tree(v)
be the set of descendants of v, including v itself. For each v, we fill out a table τv, which
contains an entry τv(C, nB, nR, nE , q) for each tuple (C, nB, nR, nE , q), where
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• C ∈ {blue, red, empty};

• nB, nR, nE ∈ {0, 1, . . . , n};

• q ∈ {yes,no}.
The number of entries in each table is 6(n + 1)3. The value of each entry is either true or
false. Specifically, τv(C, nB, nR, nE , q) = true if and only if there exists an assignment of a
subset of agents to the nodes in tree(v) satisfying the following conditions:

1. If C = empty, then node v is empty; otherwise, it is assigned to an agent of color C.

2. There are nB blue agents, nR red agents, and nE empty nodes in tree(v).

3. If C ∈ {blue, red}, then q = yes if and only if the agent in node v has at least one
child of the same color.

4. Every node in tree(v) different from v has at least one neighbor of the same color.

An assignment in which every agent receives a positive utility exists if and only if in the table
τvroot of the root node vroot, there exists (C, nB, nR, nE , q) such that τvroot(C, nB, nR, nE , q) =
true, nB = b, nR = r, and if C ∈ {blue, red} then q = yes.

The tables for the leaf nodes can be filled in trivially. We now show how to fill the table τv
of each v ∈ V given the tables of its children. If v has L children w1, . . . , wL, we construct in-
termediate tables θ0

v , θ
1
v , . . . , θ

L
v . Each table θiv takes parameters (nB, nR, nE , qB, qR, q̂B, q̂R).

The entry of the table is set to true if it is possible to place agents in the first i subtrees
so that the following conditions hold: there are a total of nB blue agents, nR red agents,
and nE empty nodes; qB (resp., qR) indicates whether there is at least one blue (resp., red)
agent among the first i children of v; q̂B (resp., q̂R) indicates whether there is at least one
blue (resp., red) agent among the first i children of v who does not have a blue (resp., red)
child. The table θ0

v can be filled in trivially: only the entry θ0
v(0, 0, 0, no, no, no, no) is set to

true. By combining the tables θi−1
v and τwi , we can fill in the table θiv in polynomial time.

Specifically, we set the entry θiv(nB, nR, nE , qB, qR, q̂B, q̂R) to true if and only if there exist
entries θi−1

v (n′B, n
′
R, n

′
E , q

′
B, q

′
R, q̂B

′, q̂R
′) and τwi(C

′′, n′′B, n
′′
R, n

′′
E , q

′′) such that both are true
and the following three conditions hold:

1. n′B + n′′B = nB, n′R + n′′R = nR, and n′E + n′′E = nE .

2. qB = yes if and only if q′B = yes or C ′′ = blue. Analogously, qR = yes if and only if
q′R = yes or C ′′ = red.

3. q̂B = yes if and only if (i) q̂B
′ = yes or (ii) C ′′ = blue and q′′ = no. Analogously,

q̂R = yes if and only if (i) q̂R
′ = yes or (ii) C ′′ = red and q′′ = no.

The table θLv can then be used to fill in τv in polynomial time. Specifically, we set the entry
τv(C, nB, nR, nE , q) to true if and only if there exists an entry θLv (n′B, n

′
R, n

′
E , q

′
B, q

′
R, q̂B

′, q̂R
′)

which has been set to true and such that the following conditions hold:

1. If C = blue, then nB = n′B + 1, nR = n′R, and nE = n′E . Else, if C = red, then
nB = n′B, nR = n′R + 1, and nE = n′E . Finally, if C = empty, then nB = n′B,
nR = n′R, and nE = n′E + 1.
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Figure 7: Example showing that Theorem 6.3 does not hold when the number of nodes is greater
than the number of agents. There are three red and three blue agents. No matter how the agents
are placed, at least one of them will receive utility 0.

2. If C = blue, then q = q′B. Else, if C = red, then q = q′R.

3. If q̂B
′ = yes, then C = blue. Similarly, if q̂R

′ = yes, then C = red.

This concludes the proof.

Observe that for any topology, an assignment in which at least half of the agents are
positive is guaranteed to exist and can be easily found by using depth-first search for the
majority type.

Proposition 6.2. For any n ≥ 3, there exists a polynomial-time algorithm that computes
an assignment in which at least dn/2e agents receive a positive utility.

Proof. Assume without loss of generality that there are at least as many red as blue agents,
so there are at least dn/2e ≥ 2 red agents. Starting from an arbitrary node of the topology,
we first assign the red agents to nodes as we perform a depth-first search, and then assign
the blue agents to any subset of the remaining nodes. Since the topology is connected, every
red agent will have at least one red neighbor, meaning that at least dn/2e agents receive a
positive utility.

The bound dn/2e is tight when the topology is a star and there are dn/2e red and bn/2c
blue agents.

Next, we show that when every node has degree at least 2 and the number of agents
is equal to the number of nodes, it is possible to give every agent a positive utility. Note
that the latter condition is also necessary—for the topology given in Figure 7, if there are
three red and three blue agents (so one node is left unoccupied), it is easy to see that no
assignment makes every agent positive.

Theorem 6.3. Suppose that every node in the topology has degree at least 2, the number of
agents is equal to the number of nodes, and there are at least two agents of each type. Then
there exists an assignment such that every agent receives a positive utility.

Proof. Consider an arbitrary assignment v. If every agent is already positive, we are done,
so assume that there is an agent i with utility 0. Without loss of generality, i is a blue agent.
Among all paths from i to another blue agent, consider one with maximum length—suppose
that the path goes to agent j. Since there are at least two blue agents, such a path must
exist; moreover, since i has utility 0, the path contains at least one red agent. Let k be the
last red agent on the path before reaching j. Swap i and k.
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u

v

w

x

Figure 8: Illustration for the proof of Proposition 6.4.

We claim that in the resulting assignment v′, the number of positive agents increases
by at least 1; by applying such swaps repeatedly, we will reach an assignment in which all
agents are positive. To establish the claim, it suffices to show that i, k, as well as any agent
adjacent to either of them are positive in v′. Since i has utility 0 in v, she has at least two
red neighbors in v, so k is positive in v′. Moreover, i is adjacent to j in v′ and therefore
becomes positive. Any other red agent on the path remains positive, and all agents adjacent
to k in v′ are red (besides possibly i, if k is the only red agent on the path) and are therefore
positive. Finally, consider any red agent ` adjacent to i in v′ not lying on the path. Since
every node has degree at least 2, agent ` must have a neighbor m 6= i (possibly m = j). If `
is adjacent to k in v′, then ` is positive since k is red. Else, if m is a blue agent, we obtain
a longer path from i to m in v than the original longest path, a contradiction. Hence m
must be red, and ` is positive in v′, proving the claim.

Since the longest path problem is known to be NP-hard (Garey & Johnson, 1979, p. 213),
the proof of Theorem 6.3 does not give rise to a polynomial-time algorithm for computing
a desired assignment. In Theorem A.2, we present an inductive approach that is more
involved but leads to an efficient algorithm.

For our final result of this section, we show that maximizing the social welfare and
maximizing the number of positive agents can be conflicting goals. Recall that an assignment
has nonzero egalitarian welfare if and only if it makes every agent positive. To avoid
confusion, we will refer to our main notion of social welfare (i.e., the sum of the agents’
utilities) as utilitarian welfare.

Proposition 6.4. There exists a Schelling instance in which the maximum egalitarian wel-
fare is nonzero but the egalitarian welfare of every assignment that maximizes the utilitarian
welfare is zero.

Proof. Consider the topology in Figure 8, and assume that there are 2 blue and 15 red
agents (so no node can be left empty). The only way to achieve nonzero egalitarian welfare
is to assign the blue agents to u and v, yielding utilitarian welfare 14.5. However, assigning
the blue agents to w and x results in a higher utilitarian welfare of 91/6 ≈ 15.17.

The utilitarian welfare gap in the example in Proposition 6.4 is rather small. However,
one can easily modify the example by adding more three-node gadgets as subtrees of the
node v to obtain instances wherein the utilitarian welfare of the unique assignment yielding
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a positive egalitarian welfare is an additive factor of Θ(n) lower than the maximum possible
utilitarian welfare. Moreover, even assignments that maximize the utilitarian welfare can
differ significantly in terms of egalitarian welfare. In Propositions A.3 and A.4, we present
examples illustrating the possibility that one such assignment has a positive egalitarian
welfare while another one has zero, or that two such assignments have positive egalitarian
welfare differing by a multiplicative factor of Θ(n).

7. Conclusion and Future Work

In this paper, we have studied questions regarding welfare guarantees and complexity in
Schelling segregation. Several of our findings are positive: An assignment with high social
welfare always exists and can be found efficiently, and the welfare of assignments satisfying
most optimality notions are at most a linear factor away from the maximum social welfare in
the worst case. Furthermore, even though an assignment yielding a positive utility to every
agent may not exist, the existence can be guaranteed when every node in the topology has
degree at least 2, a realistic assumption in well-connected metropolitan areas. By contrast,
computing an assignment that maximizes the social welfare or satisfies any of the optimality
notions is NP-hard, and assignments maximizing the (utilitarian) social welfare can differ
significantly in terms of egalitarian welfare.

A number of interesting directions remain from our work. On the technical side, it
would be useful to close the gap on the price of Pareto optimality, which we conjecture
to be Θ(n), as well as to characterize the topologies for which an assignment such that
every agent receives a positive utility always exists. Another question is whether we can
obtain in polynomial time a better approximation of social welfare than the factor of 2
in Theorem 3.2, or whether there is in fact an inapproximability result. From a more
conceptual perspective, one could try to extend our results to a model with more than two
types of agents or more complex friendship relations (e.g., friendship relations defined by a
social network, Elkind et al., 2019) or modified utility functions (Kanellopoulos et al., 2020).
Questions concerning the convergence behavior in best-response dynamics also remain open:
do such dynamics always converge to an optimal assignment? Finally, studying our new
optimality notions from Section 4 in related settings such as hedonic games, especially when
agents are partitioned into types, or optimality notions derived from other known welfare
measures, may lead to intriguing discoveries as well.
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Appendix A. Additional Results

In the upper bound part of Theorem 4.7, we showed that any UVO assignment has social
welfare at least 1/2. Here we establish an improved bound of 1, albeit with a much longer
proof.

Theorem A.1. When n ≥ 3, any UVO assignment has social welfare at least 1.

Proof. By an argument similar to that in the upper bound part of Theorem 4.7, it suffices
to consider the case where the number of agents is equal to the number of nodes. Let v
be a UVO assignment. If all agents receive nonzero utility, then since the least possible
positive utility is 1/(n − 1), the social welfare would be at least n/(n − 1) > 1. Hence we
may assume without loss of generality that there is a red agent with utility 0, and that all
blue agents receive a positive utility.

Decompose the topology into maximal monochromatic components. We claim that there
cannot be a set of red components and a set of blue components such that the two sets have
the same total number of nodes and together they do not cover all nodes; call this claim
(*). To see why (*) is true, assume for contradiction that two such sets exist. We swap all
agents in the set of red components with those in the set of blue components to obtain an
assignment v′. The utility of each swapped red agent in v′ is at least that of the blue agent
whom she replaces in v; an analogous statement holds for the swapped blue agents in v′.
Moreover, an unswapped agent who is adjacent to at least one swapped agent receives a
strictly higher utility in v′ than in v. Hence v is not UVO, a contradiction that establishes
(*).

Next, assume for contradiction that SW(v) < 1, and let s be the number of maximal
monochromatic components in the topology. Call an edge “monochromatic” if it connects
two agents of the same color. Since a component with t nodes has at least t− 1 edges, the
total number of monochromatic edges is at least n − s. A monochromatic edge generates
a utility of at least 1/(n − 1) for each of the two agents adjacent to it, so the generated
utility is at least 2/(n − 1) for each edge. Since SW(v) < 1, this means that the number
of monochromatic edges is less than (n− 1)/2, and therefore at most (n− 2)/2. Thus, we
have n− s ≤ (n− 2)/2, which implies that n ≤ 2s− 2.

Let k ≥ 1 be the number of red components of size 1, i.e., the number of red agents
with utility 0. By (*), the size of any blue component is at least k. Suppose the smallest
blue component has size at least k + 1. Then, considering the k singleton red components
and the smallest blue component, there are k+ 1 components with a total of at least 2k+ 1
nodes. Letting n0 and s0 denote the number of nodes and components considered so far, we
have n0 > 2s0−2. Since every other component has size at least 2, we also have n > 2s−2,
a contradiction with n ≤ 2s− 2. So the smallest blue component must have size k. If there
is any other component, we are again done by (*). Hence, the topology consists exactly of
k red components of size 1 and one blue component of size k. In particular, k ≥ 2.

We now show that the blue component of size k is a star, i.e., all but one blue agents have
exactly one blue neighbor. Assume that at least two blue agents have more than one blue
neighbor each. Each of these two agents receives utility at least 2

k+2 , while every other blue

agent receives at least 1
k+1 . Hence SW(v) ≥ 2 · 2

k+2 + (k− 2) · 1
k+1 = k(k+4)

(k+1)(k+2) , which is at
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least 1 because k ≥ 2. So the blue component is a star, and SW(v) ≥ k−1
2k−1 + (k−1) · 1

k+1 =
3k(k−1)

(k+1)(2k−1) , which is at least 1 whenever k ≥ 4.

It remains to consider the cases k = 2 and k = 3. Since SW(v) < 1, each blue agent
must have at least one red neighbor. Moreover, between the two blue agents with one blue
neighbor, at least one must have more than one red neighbor. Let i be such a blue agent,
j be her blue neighbor, ` be a red neighbor of j, and m 6= ` be a red neighbor of i. We
swap i and ` to obtain an assignment v′. From v to v′, j receives the same utility, m
receives a strictly higher utility, i receives a higher utility than `’s utility in v (which is 0),
and ` receives at least as much utility as i does in v. It follows that v is not UVO, a final
contradiction which completes the proof.

Next, we present an efficient algorithm for computing an assignment that gives every
agent a positive utility when every node has degree at least 2; a shorter proof that such an
assignment exists can be found in Theorem 6.3.

Theorem A.2. Suppose that every node in the topology has degree at least 2, the number
of agents is equal to the number of nodes, and there are at least two agents of each type.
Then, it is possible to compute an assignment in which every agent receives a positive utility
in polynomial time.

Proof. We present an inductive approach which inherently gives rise to a polynomial-time
algorithm. First, if there is an edge connecting two nodes of degree at least 3, deleting
it still leaves a topology in which every node has degree at least 2. The topology may
stay connected or break into two connected components. We first show how to deal with a
connected topology in which no edge connects two nodes of degree at least 3, and specify
later how to proceed when the topology breaks into two components upon the removal of
an edge. Assume that we have a connected topology such that no edge connects two nodes
of degree at least 3. If the topology is a cycle, a desired assignment can be easily found, so
assume otherwise.

Call the nodes of degree at least 3 “primary nodes”, and the remaining nodes (which
have degree 2) “secondary nodes”. Note that no edge connects two primary nodes and
there exists at least one primary node due to our previous assumptions. In addition, each
secondary node belongs either to a path connecting two primary nodes or to a cycle going
from a primary node back to itself. We prove our claim for the class of graphs satisfying
these conditions, but more generally without the assumption that primary nodes have degree
at least 3 (so they may have degree 1 or 2). Nevertheless, the fact that the primary nodes
under our original assumptions can be easily identified by their degree will be useful for
constructing an efficient algorithm. From this point on, primary nodes will remain primary
throughout the procedure regardless of their degree.

Consider the “meta-graph” H whose nodes correspond to the primary nodes of our
topology G, where two nodes in H are connected by an edge if and only if there exists a
path connecting the two corresponding primary nodes not going through any other primary
node in G. Since G is connected, so is H (note that H may consist of a single node).
Let v be a primary node in G such that removing the corresponding node in H leaves H
connected—for example, any leaf in a spanning tree of H satisfies this property.
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We will color certain nodes in G blue in the following order. Start with a cycle connecting
v back to itself (if there is any), and color nodes excluding v in sequence starting from a node
adjacent to v; then move on to the next cycle if there is another left. The only exception
is if the total amount of nodes to be colored blue only allows us to color one more node
when we are about to start coloring a new cycle—in this case, we color v blue instead of
the first node of a new cycle. Whenever we run out of nodes to be colored blue, we color
all of the remaining nodes red. If we have colored all nodes in cycles adjacent to v and
there are still nodes left to be colored blue, we color v blue, followed by secondary nodes
on paths adjacent to v (call this set of secondary nodes A); for each such path, we color
nodes closer to v before those further away from v. If we run out of blue nodes, color all
remaining nodes red. In case we have also colored all nodes in A and removed them, the
remaining topology is again connected due to our choice of v. If we have only one node left
to be colored blue, color one of the primary nodes adjacent to a secondary node in A blue,
and all of the remaining nodes red; any remaining primary node is still adjacent to at least
one secondary node. Else, there are at least two nodes left to be colored blue, and we apply
induction on the remaining topology. Note that if we only have one primary node v left, G
is a union of cycles that only intersect each other at v, and the same procedure still applies.

We now show how to proceed when, upon removing an edge connecting two nodes of
degree at least 3, the topology breaks into two connected components C1 and C2. We
try to allocate an appropriate number of red and blue agents to each component, and
recurse on the two smaller problems. Assume without loss of generality that |C1| ≤ |C2|
and r ≤ b. Since every node in the remaining (disconnected) topology still has degree at
least 2, we must have |C1| ≥ 3. Assume first that |C1| ≥ 4. If r ≥ 4, we allocate two
red and two blue agents to each component, and the remaining agents arbitrarily so that
the number of agents is equal to the number of nodes in each subproblem—this ensures
that the subproblems satisfy the conditions of the original problem. If r = 2, or if r = 3
and |C2| ≥ 5, we simply allocate all red agents to C2. The remaining case is that r = 3,
|C1| = |C2| = 4, and b = 5. In this case, suppose that the removed edge is adjacent to node
x in C1. We assign the blue agents to C2 ∪ {x}, and the red agents to C1 \ {x}. Since each
node in C1 is adjacent to at least one other node in C1 besides x, all agents are positive.

Consider now the case where |C1| = 3. If one of the types has three or at least five agents,
we may allocate three agents of that type to C1. Hence, assume that both types consist of
either two or four agents. The only two possibilities are then (|C1|, |C2|, r, b) = (3, 3, 2, 4)
and (3, 5, 4, 4). Both cases can be handled similarly to the case (4, 4, 3, 5) in the previous
paragraph.

Since each step of our procedure removes at least one node or edge, by following the
procedure, we obtain a polynomial-time algorithm that computes a desired assignment.

In fact, the algorithm in Theorem A.2 runs in time linear in the size of the input. Indeed,
finding a spanning tree of H can be done by breadth-first search, and all other steps of the
algorithm take time O(m), where m denotes the number of edges in G.

Finally, we continue our discussion after Proposition 6.4 by presenting further examples
relating egalitarian and utilitarian welfare.
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Proposition A.3. There exists a Schelling instance in which one assignment maximizing
utilitarian welfare also maximizes egalitarian welfare, while another such assignment has
zero egalitarian welfare.

u1 u2

v

w

x2x1

Figure 9: Illustration for the proof of Proposition A.3.

Proof. Consider the topology in Figure 9, and assume there are 3 blue and 16 red agents
(so no node can be left empty). The only way to achieve nonzero egalitarian welfare is to
assign the blue agents to u1, u2, and v, yielding utilitarian welfare 52/3. Assigning the blue
agents to w, x1, and x2 results in the same utilitarian welfare, while the egalitarian welfare
is then zero. It can be verified that both assignments maximize the utilitarian welfare.

Proposition A.4. There exists a class of Schelling instances such that the ratio between the
maximum and minimum egalitarian welfare among assignments that maximize utilitarian
welfare is Θ(n).

Proof. Let k be a positive integer. We define the topology G = (V,E) of a Schelling instance
with node set V given by

V = {ai : 1 ≤ i ≤ k} ∪ {x1, x2, y1, y2} ∪ {bji : 1 ≤ j ≤ 3, 1 ≤ i ≤ k}

and edge set E given by

• {ai, a`} ∈ E for 1 ≤ i, ` ≤ k;

• {ai, x`} ∈ E for 1 ≤ i ≤ k, 1 ≤ ` ≤ 2;

• {x1, y1}, {x2, y2} ∈ E;

• {yj , bji} ∈ E for 1 ≤ i ≤ k, 1 ≤ j ≤ 2;

• {bji , b
j
`} ∈ E for 1 ≤ i, ` ≤ k, 1 ≤ j ≤ 3;

• {bji , b3i } ∈ E for 1 ≤ i ≤ k, 1 ≤ j ≤ 2;

• no further edges are in E.
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Figure 10: Illustration for the proof of Proposition A.4.

See Figure 10 for an illustration for k = 3.

Assume that there are n = 4k+ 4 agents, composed of k blue and 3k+ 4 red agents, so
no node can be left empty. Note that the topology graph is (k + 1)-regular and contains
cliques of size k. Hence, as in the proof of Theorem 3.3, an assignment maximizes the
utilitarian welfare if and only if the blue agents form a clique.

Consider the assignment where the blue agents form the clique {ai : 1 ≤ i ≤ k}. The
utility of each neighboring (red) agent xj is 1/(k+1), so the egalitarian welfare is 1/(k+1).
On the other hand, consider the assignment with the blue agents forming the clique {b3i : 1 ≤
i ≤ k}. In this assignment, every agent has utility at least (k−1)/(k+1), where the minimum
utility is attained by the blue agents. Hence, the egalitarian welfare is (k−1)/(k+1), which
is a multiplicative factor of Θ(k) = Θ(n) higher than that of the first assignment.
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