

Technical University of Munich

Department of Civil, Geo and Environmental Engineering

Chair of Computational Modeling and Simulation

Checking mvdXML using mvdXML

Master Thesis

of the Master of Science degree in Civil Engineering

Author: Rawan Khaled Gaafar

Matriculation number:

1. Supervisor: Prof. Dr.-Ing. André Borrmann

2. Supervisor: Stefan Jaud, M.Sc

3. Supervisor: Sebastian Esser, M.Sc

Date of Issue: 02. May 2022

Date of Submission: 02. November 2022

Acknowledgment II

Taking this opportunity, I would like to extend my deepest thanks and gratitude to my

academic advisor M.Sc. Stefan Jaud for his positive guidance, understanding, and

support over the past half year. I am grateful for his valuable expertise, counsel, inspi-

ration, and motivation. My sincere thanks and deep gratitude go out also to Prof. Dr.-

Ing. André Borrmann and M. Sc. Sebastian Esser for their helpful advice, guidance,

and remarks during this work. Without your assistance and dedicated involvement in

every step, this paper would have never been completed.

To my father, Khaled Gaafar, thank you for everything you do for us and for being the

biggest support system for this family. To my mother, Yeldiz Helmy, thanks for always

encouraging me to go forward; thank you for representing strength, sacrifice, determi-

nation, and unconditional love in my life. To my dear sister, you have changed and

inspired me in many positive ways you may not even be aware of. Thank you for always

being beside me, for being the symbol of power and strength to me, Sara. To my life

partner, Omar Elsaqqa, thank you for all your love and support during this journey,

emotionally, mentally, and academically.

Finally, I would also like to express my deepest gratitude to my friends for providing

me with unfailing support and continuous encouragement throughout my years of study

and through the process of researching and writing this thesis. This accomplishment

would not have been possible without them. Thank you.

Acknowledgment

Abstract III

The digitization of the construction industry relies heavily on digital building models.

Building Information Modeling (BIM) represents a built facility by creating models to

store vast amounts of geometric and semantic attributes throughout its life cycle.

Therefore, it is necessary to employ different software applications from various devel-

opers to enable a highly collaborative process among the involved parties to include

all the aspects within a single model. The Industry Foundation Classes (IFC) standard

was developed by buildingSMART International (bSI), enabling open, vendor-neutral

data sharing for various use cases among heterogeneous applications. However, Soft-

ware developers may find it challenging to support and transfer all this information,

which may not be required in all cases. That is why Model View Definitions (MVDs) are

established to reduce the scope of the facility information and to achieve automatic

quality assurance through the specification of the Exchange Information Requirements

(EIR). MVDs are currently encoded in the electronic format mvdXML. Even though

mvdXML opens vast possibilities and has several use cases, such as documentation,

filtering, and validation, there are presently several disputed uncertainties about the

robustness of mvdXML. Moreover, despite the many scientific research studies based

on mvdXML in validation procedures of IFC, up to now, there is no validation technique

to check the consistency of mvdXML itself.

This thesis provides a prototypical implementation of validating mvdXML using

mvdXML. A checker based on the mvdXML as the format for structuring the validation

rules to check other mvdXML files is developed. In this paper, two main aims are pre-

sented: 1) to develop a standardized validation tool for mvdXML; 2) to examine how

robust mvdXML is and how versatile mvdXML can be by challenging its capabilities

and taking it to a new meta-level to be used to check itself instead of only using it to

check IFC files. The method is verified using three different datasets, and the main

problems, difficulties, and requirements are discussed. Ultimately, we came up with a

successful methodology to check mvdXML files using mvdXML. This encourages other

users to create their mvdXML files confidently since there is now a method to check

those files. The methodology can also be further developed for any data model since

it has already been successfully used on itself, proving its robustness and versatility

Abstract

Abstract IV

abilities. However, some limitations exist within the scope of mvdXML 1.1 for defining

the checking rules. Hence, in future versions of mvdXML, it might be of interest to

expand the schema to support more features to eliminate those limitations.

Zusammenfassung V

Die Digitalisierung der Bauindustrie stützt sich in hohem Maße auf digitale Gebäude-

modelle. Die Gebäudedatenmodellierung (Building Information Modeling, BIM) stellt

eine gebaute Einrichtung dar, indem sie Modelle erstellt, in denen große Mengen ge-

ometrischer und semantischer Attribute während ihres gesamten Lebenszyklus ge-

speichert werden. Daher müssen verschiedene Softwareanwendungen von unter-

schiedlichen Entwicklern eingesetzt werden, um einen hochgradig kollaborativen Pro-

zess zwischen den beteiligten Parteien zu ermöglichen, damit alle Aspekte in einem

einzigen Modell berücksichtigt werden können. Der Industry Foundation Classes

(IFC)-Standard wurde von buildingSMART International (bSI) entwickelt und ermög-

licht den offenen, ortsneutralen Datenaustausch für verschiedene Anwendungsfälle

zwischen heterogenen Anwendungen. Für Softwareentwickler kann es jedoch eine

Herausforderung sein, all diese Informationen zu unterstützen und zu übertragen, was

nicht in allen Fällen erforderlich ist. Aus diesem Grund wurde die Model View Definition

(MVD) eingeführt, um den Umfang der Anlageninformationen zu reduzieren und eine

automatische Qualitätssicherung durch die Spezifikation der Exchange Information

Requirements (EIR) zu erreichen. MVDs werden derzeit in dem elektronischen Format

mvdXML kodiert. Auch wenn mvdXML weitreichende Möglichkeiten eröffnet und ver-

schiedene Anwendungsfälle wie Dokumentation, Filterung und Validierung bietet, gibt

es derzeit einige umstrittene Unsicherheiten hinsichtlich der Robustheit von mvdXML.

Darüber hinaus gibt es trotz zahlreicher wissenschaftlicher Untersuchungen, die

mvdXML in Validierungsverfahren der IFC einsetzen, bisher keine Validierungstech-

nik, um die Konsistenz von mvdXML selbst zu überprüfen.

Diese Arbeit bietet eine prototypische Implementierung der Validierung von mvdXML

mit mvdXML. Es wird ein Checker entwickelt, der auf mvdXML als Format zur Struktu-

rierung der Validierungsregeln basiert, um andere mvdXML-Dateien zu überprüfen. In

diesem Beitrag werden zwei Hauptziele vorgestellt: 1) die Entwicklung eines standar-

disierten Validierungswerkzeugs für mvdXML; 2) die Untersuchung der Robustheit und

Vielseitigkeit von mvdXML, indem die Fähigkeiten von mvdXML herausgefordert wer-

den und es auf eine neue Metaebene gebracht wird, um sich selbst zu prüfen, anstatt

es nur zur Prüfung von IFC-Dateien zu verwenden. Die Methode wird anhand von drei

Zusammenfassung

Zusammenfassung VI

verschiedenen Datensätzen verifiziert, und die Hauptprobleme, Schwierigkeiten und

Anforderungen werden diskutiert. Letztendlich haben wir eine erfolgreiche Methode

zur Prüfung von mvdXML-Dateien mit mvdXML entwickelt. Dies ermutigt andere Be-

nutzer, ihre mvdXML-Dateien mit Zuversicht zu erstellen, da es nun eine Methode zur

Überprüfung dieser Dateien gibt. Die Methodik kann auch für jedes andere Datenmo-

dell weiterentwickelt werden, da sie bereits erfolgreich für sich selbst verwendet wurde,

was ihre Robustheit und Vielseitigkeit unter Beweis stellt. Allerdings gibt es im Rahmen

von mvdXML 1.1 einige Einschränkungen bei der Definition der Prüfregeln. Daher

könnte es in zukünftigen Versionen von mvdXML von Interesse sein, das Schema zu

erweitern, um mehr Funktionen zu unterstützen und diese Beschränkungen zu besei-

tigen.

Contents VII

List of Figures

List of Tables

List of Abbreviations

1 Introduction 1

1.1 Motivation ...1

1.2 Structure ...2

2 Theoretical Background 3

2.1 Data Modeling ...3

2.1.1 Data Modeling Languages ..3

2.1.1.1 Unified Modeling Language (UML) ...3

2.1.1.2 eXtensible Markup Language (XML) ...4

2.1.2 Classes and Objects ...5

2.1.3 Schema and Datasets ...6

2.2 Building Information Modeling (BIM) ...7

2.2.1 Exchange Information Requirements (EIR) ..8

2.2.2 Industry Foundation Classes (IFC) ...8

2.2.3 Information Delivery Manuals (IDM) and Model View Definitions (MVD)9

2.3 State of the art of mvdXML ... 10

2.3.1 MvdXML Definition Tools .. 11

2.3.2 MvdXML Usage .. 11

2.3.3 MvdXML Schema Structure .. 12

2.3.3.1 MvdXML Schema Components .. 14

2.3.4 MvdXML Versions ... 17

2.4 Data Validation .. 18

2.4.1 Validation vs. Verification .. 18

2.4.2 Checking Types .. 18

2.4.3 XML Verification and Validation .. 20

2.4.3.1 XML Schema Definition (XSD) .. 21

2.4.3.2 Schematron... 21

Contents

Contents VIII

2.4.4 Why Data Validation ... 22

2.4.5 How to perform Data Validation .. 22

2.4.5.1 Data Validation Checker and Encoded Data Formats 23

2.4.5.2 Validation Dimensions .. 27

3 Related Work 29

3.1 MvdXML Use Cases ... 29

3.1.1 Filtering ... 29

3.1.2 Validation .. 30

3.2 Self-Validation ... 31

3.3 Summary .. 33

4 Methodology and Implementation 35

4.1 Aims and Objectives ... 35

4.2 Approach .. 36

4.3 Evaluation Approach and Datasets ... 38

4.3.1 Evaluation Phases .. 38

4.3.2 Furniture Example ... 40

4.3.3 Other mvdXMLs .. 40

4.4 Design and Development .. 42

4.4.1 Error Scenarios ... 42

4.4.2 Checks Definition .. 46

4.5 Implementation ... 52

4.5.1 Furniture Schema and Dataset ... 52

4.5.2 MvdXML Checks ... 60

4.5.3 Checker .. 64

5 Testing and Results 65

5.1 Furniture Dataset .. 65

5.2 Other mvdXMLs .. 72

5.3 MvdXML Checks ... 76

6 Discussion 77

7 Summary 85

7.1 Conclusion .. 85

Contents IX

7.2 Future Work .. 86

References 89

Appendix A 92

Appendix B 133

Appendix C 166

Appendix D 191

Appendix A X

Figure 2.1: Class diagram with three compartments (www.diagrams.net/blog/uml-

class-diagrams) ... 4

Figure 2.2: Declaration of class attributes and methods ... 6

Figure 2.3: Illustration of object diagram of a chair class instance 6

Figure 2.4: UML class diagram of furniture schema ... 7

Figure 2.5: The mvdXML schema's basic structure (Chipman et al., 2016) 13

Figure 2.6: General validation procedure of IFC using mvdXML (Jiang et al., 2019) 23

Figure 4.1: Methodology of the proposed mvdXML validation process 37

Figure 4.2: Illustration of the logic rule behind the mvdXML validation procedure 38

Figure 4.3: Four stages of the evaluation process of the proposed method 39

Figure 4.4: Pie chart mapping the number of the mvdXML files from each source ... 41

Figure 4.5: Section of “ComponentRuleIDUniqueness” mvdXML file shows an error of

RuleID duplication within the same concept template 43

Figure 4.6: Model View Concept Example in mvdXML (Zhang et al., 2014) 47

Figure 4.7: ComponentParametersAttributes mvdXML file shows an error in the

Parameters string .. 50

Figure 4.8: ComponentRuleIDExistence mvdXML file shows an error of non-existence

of RuleID ... 51

Figure 4.9: Framework of the furniture example ... 53

Figure 4.10: UML class diagram of the furniture schema ... 54

Figure 4.11: UML object diagram of chair3 ... 55

Figure 4.12: Part of the furniture mvdXML shows the two ways of referring to another

entity .. 56

Figure 4.13: Structure of the report ... 64

Figure 5.1: Report showing the results of chair entity ... 67

Figure 5.2: Report showing the results of leg and armrest entities 68

Figure 5.3: Confusion matrix of mvdXML checks on the furniture mvdXML 69

List of Figures

Appendix A XI

Figure 5.4: Histogram showing the number of reasonable and unreasonable results of

the furniture mvdXML .. 70

Figure 5.5: Confusion matrix of mvdXML checks on the incorrect furniture mvdXMLs

 .. 71

Figure 5.6: Histogram showing the number of reasonable and unreasonable results of

the incorrect mvdXMLs .. 72

Figure 5.7: Part of the ReferenceView mvdXML showing its parameters element follow

the old grammar of mvdXML 1.0 ... 75

Figure 5.8: Part of the COBie mvdXML .. 76

Figure 6.1: Scale of objectiveness of the mvdXML checks 78

Figure 6.2: Chart showing the number of unreasonable and/or inapplicable checks 79

Figure 6.3: Part of the furniture mvdXML file showing how EntityReference check works

 .. 80

Figure 6.4: Scale of difficulty of the mvdXML checks ... 81

Figure 6.5: Scale of knowledge of the mvdXML checks ... 82

Figure 6.6: Pie chart mapping the accuracy of the mvdXML files according to the

checks ... 84

Figure 7.1: Illustration showing how right-hand-side RuleID within the same node

should work ... 87

Figure 7.2: Illustration showing how EntityReference check should work 87

Appendix A XII

Table 2.1: Metric values description (Chipman et al., 2016) 17

Table 2.2: Operators description (Chipman et al., 2016) .. 17

Table 2.3: Classification of checking types (Hjelseth, 2016) 20

Table 2.4: Comparison between mvdXML and IDS (Tomczak et al., 2022) 26

Table 2.5: Summary of validation dimensions. The green-colored parameters are the

relevant dimensions within this work’s scope (Sidi et al., 2012) 28

Table 4.1: List of the possible error scenarios .. 45

Table 4.2: List of the objective checks. The results of the red-colored checks are of

interest .. 48

Table 4.3: List of the subjective checks. The results of the red-colored check are of

interest .. 49

Table 4.4: List of the furniture mvdXML checks. Green-colored checks are of high

interest, while red-colored checks expected to be more challenging in

implementation .. 57

Table 4.5: Definition of the checks’ concept templates and concept roots. Green-

colored checks are of high interest, while red-colored checks expected

to be more challenging in implementation 58

Table 4.6: List of furniture incorrect mvdXML files .. 59

Table 4.7: ConceptTemplate(s) and ConceptRoot(s) of the proposed mvdXML checks.

The red-colored checks indicate a challenge in the implementation 62

Table 5.1: Results of the manual check of the furniture dataset against the furniture

mvdXML .. 65

Table 5.2: Summary of the discovered errors in the mvdXML files 73

List of Tables

Appendix A XIII

AEC Architecture, Engineering, and Construction

DSRM Design Science Research Methodology

BIM Building Information Modelling

IFC Industry Foundation Classes

BCF BIM Collaboration Format

bSI BuildingSMART International

MVD Model View Definitions

UML Unified Modeling Language

XML eXtensible Markup Language

XSD XML Schema Definition

OOM Object Oriented Modeling

SGML Standard Generalized Markup Language

W3C World Wide Web Consortium

URI Uniform Resource Identifier

OOP Object Oriented Programming

IDM Information Delivery Manual

LOI Level of Information

DTD Document Type Definition

XSLT eXtensible Stylesheet Language Transformations

List of Abbreviations

Appendix A XIV

EIR Exchange Information Requirements

ER Exchange Requirements

ERM Exchange Requirements Model

IR Information Requirements

PDT Product Data Template

DD Data Dictionary

IDS Information Delivery Specification

DOC Document

XLS Excel Spreadsheet File

PDF Portable Document Format

ISO International Organization for Standardization

JSON JavaScript Object Notation

STEP Standard for the Exchange of Product

IfcDoc IFC Documentation

HTML HyperText Markup Language

ifcQL IFC Query Language

RDF Resource Description Framework

OWL Web Ontology Language

PAT Process Analysis Toolkit

KIT Karlsruhe Institute of Technology

UUID Universally Unique Identifier

COBie Construction-Operations Building Information Exchange

Introduction 1

According to international standards, Building Information Model (BIM) is "A shared

digital representation of physical and functional characteristics of any built object in-

cluding buildings, bridges, roads, process plants, etc., forming a reliable basis for de-

cisions" (ISO 29481-1:2010). BIM has become an essential compatible method, sup-

ported by various tools and technologies, constantly used in the construction sector to

facilitate communication and collaboration among project participants. BIM-based on

open standards aims to include every aspect of the building industry. The Industry

Foundation Classes (IFC) is an open and standardized data model with the goal of

promoting software application interoperability for building information modeling in the

Architecture, Engineering & Construction industry (AEC). (Laakso & Kiviniemi, 2012,

p. 135)

Since BIM is used to digitally represent a facility's geometric and semantic attributes

throughout its life cycle, the quantity of data could be huge. Most of the time, it is not

easy to transfer all of the model's information because it may be far more extensive

than what is necessary for a certain task. That is why Model View Definitions (MVD)

were developed primarily for IFC implementation and have been viewed as subsets of

the IFC Model Specification (Hietanen & Final, 2006, p. 2). MVDs can be encoded in

an electronic format called mvdXML, mainly used to aid the filtering and validating of

IFC instance files. Although mvdXML is a data model itself, it currently does not yet

have any mechanisms for checking it.

1.1 Motivation

This paper aims to validate mvdXML using itself. The motivation stemmed from the

fact that mvdXMLs can check IFC, but what can validate mvdXML files themselves?

That raised the research question of whether we can check mvdXML using mvdXML

since it can already check IFC instances. Furthermore, another goal of this work, which

is the main reason why we have chosen mvdXML, is to analyze the capabilities of

mvdXML to check a data model other than IFC. We want to examine how mvdXML

can be used to check another data model outside IFC's scope, such as mvdXML itself.

This work implements a prototypical validation technique for quality control of mvdXML

using itself. Thus, several different checks are created to not only validate many

1 Introduction

Introduction 2

aspects of an mvdXML file, but also to push mvdXML as a validation tool to its limits

and challenge it with as many different combinations of check types as possible. Not

only the correctness of any mvdXML file is guaranteed by using this method, but also

significant findings about using mvdXML within another scope other than IFC can be

reached, which in return help in defining new requirements for the subsequent ver-

sions.

1.2 Structure

In the scope of this thesis, the Design Science Research Methodology (DSRM) is em-

ployed, as established by Peffers et al. (2007). DSRM includes six main steps (Peffers

et al., 2007): -

1. Problem identification and motivation

2. Definition of the objectives for a solution

3. Design and development

4. Demonstration

5. Evaluation

6. Communication.

This paper consists of 7 main chapters: introduction, theoretical background, related

work, methodology and implementation, testing and results, and discussion. The intro-

duction describes the motivation, the proposed solution, and its objectives. The theo-

retical background briefly discusses an overview of the scientific literature and some

theory concepts required for this work. In chapter 3, some of the prior works that influ-

enced this work are examined. Chapter 4 consists of the third step in the DSRM. It

explains the proposed validation method, including the error scenarios, and checks

definitions. Also, this part contains insight into the different databases used to test this

tool, including the designed furniture example. Chapter 5 describes the demonstration,

including the experiments and findings. It displays the results of all the experiments

conducted for this study using graphs, charts, and comparisons. In chapter 6, detailed

justifications behind the findings are described, along with a general analysis of the

capabilities and limitations of mvdXML. Hence, the whole method is evaluated. Chap-

ter 7 is the last part of this work, which concludes the whole work and discusses some

of the future work. The crucial points covered throughout the thesis are summarized,

along with the study's constraints and potential directions for further research.

Theoretical Background 3

This chapter discusses some definitions and examples of the main topics used in this

work. It introduces some generic terms, then gets more profound into the main topic.

2.1 Data Modeling

Data modeling in the AEC industry consists of two main features: geometry and se-

mantics. In most cases, when digitally modeling building and infrastructure systems, it

is essential to consider the geometric and semantic data. To support the design, plan-

ning, construction, and operation of a physical facility, information can be digitally gath-

ered, structured, analyzed, summarized, compared, and appraised with the help of

digital building models. In general, digital and prototypical models come in various

forms regarding different disciplines and fields. These all attempt to provide a digital

copy of reality or to reflect an as-yet-unrealized aspect of a planned future reality digi-

tally. One significant form in the AEC industry is Building Information Models.

(Borrmann et al., 2015, p. 44)

This chapter covers the essential terms and concepts related to data modeling that will

be covered in later chapters. Since, as known and mentioned, IFC and mvdXML are

data models, the most important terms and concepts for data modeling, including data

modeling languages, schema, and instances, as well as classes and objects, are in-

troduced.

2.1.1 Data Modeling Languages

Numerous languages can define and describe the data models. The Unified Modeling

Language (UML) and the Extensible Markup Language (XML) are introduced in this

section since they are used in the subsequent chapters within the thesis's scope.

2.1.1.1 Unified Modeling Language (UML)

The Unified Modeling Language (UML), a language that has been internationally de-

fined and standardized, is used to graphically represent object-oriented models

(OOMs) in a variety of diagrams or aspects using texts and symbols (Booch, 2005).

Class and Object diagrams are the most important types of UML diagrams. Class

2 Theoretical Background

Theoretical Background 4

diagrams illustrate the principles of a class regarding its type, attributes, methods, and

relationships to the other classes in structured representations of a particular domain

(Borrmann et al., 2018, p. 46). A class is depicted on the class diagram along with

three horizontal sectional divisions, as shown in Figure 2.1. The upper section de-

scribes the class's name, the middle section includes the class's variables, and the

below section includes the class's functions or methods. This class can be joined to-

gether with other classes to form a complete class diagram illustrating their relation-

ships. In the same way, an object diagram is a class diagram that shows the detailed

state of a class at a point in time.

Figure 2.1: Class diagram with three compartments (www.diagrams.net/blog/uml-class-diagrams)

2.1.1.2 eXtensible Markup Language (XML)

The World Wide Web Consortium has standardized XML, or Extensible Markup Lan-

guage, as a structured markup language to store and transmit text documents. XML is

a straightforward and highly adaptable text format derived from SGML (ISO

8879:1986), the Standard Generalized Markup Language. XML was initially created to

address the difficulties of large-scale electronic publishing. However, it is becoming

more crucial in transmitting a range of data on the Web and elsewhere.

(W3C, www.w3.org)

Serialization is the primary function of XML. It keeps information in a very structured

way, and XML documents are readable by computers and humans. XML tags, referred

to as "markup," represent the data structure. An element can be expressed in XML by

writing its name between opening tags and ending it again with its name between clos-

ing tags. Between the opening and closing tags are the data and attributes describing

the elements (for example, <Door>……</Door>). (Borrmann et al., 2018, p. 47)

http://www.w3.org/

Theoretical Background 5

Additionally, namespaces are used in an XML document to provide elements and at-

tributes with unique, distinctive names. Names for elements or attributes in an XML

instance may come from different XML vocabularies. The ambiguity between identi-

cally named elements or attributes can be eliminated if each vocabulary is given its

namespace. By connecting element and attribute names used in XML documents with

namespaces indicated by URI references, XML namespaces offer a quick way to qual-

ify the names used. The reserved XML attribute xmlns or xmlns:prefix, whose value

must be a valid namespace name, is used to declare an XML namespace.

(W3C, www.w3.org)

Defining a data model (XML schema file) and storing the actual data (XML data file)

are both possible using XML. An XML schema defines the structure of an XML docu-

ment that goes beyond the fundamental syntactical restrictions imposed by XML itself.

The additional XML schema, usually XML Schema Definition (XSD), defines the re-

quired data for parsing and validating XML. (Dykes & Tittel, 2011)

Since one of the formats used to store schemas and instance data is XML, and one of

the most common descriptive languages used for defining a schema is XSD, several

document formats make use of it (Borrmann et al., 2018, p. 222). MvdXML is one of

those document formats, which uses XML to serialize the information, and is based on

the XSD.

2.1.2 Classes and Objects

In Object Oriented Programming (OOP), a class, such as the "Chair" class shown in

Figure 2.2, is a template that creates objects which share common variables and meth-

ods. It represents a template for creating instances, which are also called objects. An

object's state is stored in variables, and its behavior is exposed through methods.

(Borrmann et al., 2018, p. 48)

In other words, an object is a member of a specific class with predetermined values

instead of variables. Instantiation can therefore be referred to as construction. Every

object has a unique copy of variables that are not shared with other objects. In OOP,

a special method in the class, a constructor, is called to create an object. (Wu, 2006)

Figure 2.2 illustrates the “Chair” class, while Figure 2.3 visualizes an object, Chair4,

constructed from the chair class template.

http://www.w3.org/

Theoretical Background 6

Figure 2.2: Declaration of class attributes and methods

Figure 2.3: Illustration of object diagram of a chair class instance

2.1.3 Schema and Datasets

Cerovsek (2011) defines a schema as a standardized meta-model that specifies and

defines the structure of schema-derived instance files. It identifies the object's charac-

teristics, types, and restrictions (Cerovsek, 2011, p. 226). In other words, the outline

for the data sets' construction is defined by a schema, while an instance of the data-

base is the collection of data stored at any given time.

The following schema UML diagram in Figure 2.4 represents an example. It illustrates

a schema that is composed of a collection of relatable classes. Each class is connected

to other classes by a connecting line representing their relationship. The example be-

low shows that the "Chair," "Armrest," and "Leg" classes inherit from the more generic

class "Component." The arrow with a blank head serves to represent inheritance.

Moreover, the "Chair" class is composed of "Armrest," "Leg," and "Production" classes.

Cardinality is expressed near the end of the arrows, showing the required number of

Theoretical Background 7

instances from this class. A relationship's optionality can be either "0..", indicating that

it is optional, or "1..", meaning it is required. At the same time, the cardinality can be

specified from "..1" to "..*", indicating that only one instance or an unlimited number of

class instances is required.

Figure 2.4: UML class diagram of furniture schema

2.2 Building Information Modeling (BIM)

BIM is the process of creating a precise virtual representation of a building asset. This

data-rich three-dimensional geometric model can be utilized throughout the whole

building life cycle. (Azhar, 2011, p. 241)

OpenBIM is a multidisciplinary area in which the modeling process is software inde-

pendent. It is widespread in OpenBIM to link diverse models developed by different

software programs. To enable interoperability between the different models, the Indus-

try Foundation Classes (IFC) have been developed as an open standard in the

OpenBIM area to serve the BIM interoperability necessities. (Laakso & Kiviniemi, 2012,

p. 134)

Theoretical Background 8

The broad scope of application of OpenBIM prompts a massive quantity of data, which

could sometimes be challenging to support in only one data model and to transfer all

the information, which may not be required in all cases. Therefore, Model View Defini-

tion (MVD) was established by buildingSMART to control the scope of the IFC schema

and assure the quality of the model information (Hietanen & Final, 2006). In addition,

buildingSMART also established the standard mvdXML to represent MVDs and their

supporting exchange requirements (ER) in an electronic format as documentation. Be-

sides, mvdXML can be used to validate whether the data content of an IFC file written

against an MVD complies with these requirements or not. (Chipman et al., 2012, p. 11)

This chapter introduces the topic, laying out the fundamentals of MVD and mvdXML

so that the subsequent chapters can build on these principles.

2.2.1 Exchange Information Requirements (EIR)

Throughout the design, construction, and operation phases, building information mod-

els must be shared and exchanged according to unique requirements for each domain

industry. EIR is a document specified by the client that outlines all the requirements

pertaining to the information exchanges in a BIM process. The appointed party must

meet these requirements during the handover (Borrmann et al., 2015, p. 240). Building

model data transferred between building project professionals are governed by Model

View Definitions (MVDs), which specify the information that must be shared. The infor-

mation identifies model semantics that two or more applications must share. (Lee et

al., 2016)

2.2.2 Industry Foundation Classes (IFC)

Industries need a neutral file format that includes their specifications and requirements

for a variety of exchanges that support the full use of a building model. The build-

ingSMART international organization has produced the IFC file format to serve as a

uniform platform for software developers. IFC schema is an open and standardized

data model designed to allow BIM software programs in the Architecture, Engineering,

and Construction (AEC) industry to communicate with one another (Laakso & Ki-

viniemi, 2012, p. 134). It is now commonly used not only to transfer data between

different parties involved in the AEC industry, but also to archive project information

throughout the different phases of the project. IFC data can be encoded in various

formats, including XML, JavaScript Object Notation (JSON), and Standard for the

Theoretical Background 9

Exchange of Product (STEP). (buildingSMART, www.technical.build-

ingsmart.org/standards/ifc/ifc-formats)

In most circumstances, transferring all of the information that is included in the model

is challenging, and this information could be much more than what is required for a

specific task. Hence, Model View Definitions have been thought of as subsets of the

IFC Model Specification and were created mainly for IFC implementation (Hietanen &

Final, 2006, p. 2).

2.2.3 Information Delivery Manuals (IDM) and Model View Definitions (MVD)

In the previous section, IFC was introduced as a data model that can carry data related

to a facility model throughout its life cycle. Because all information may be joined into

a single model, this model can be highly complicated. To address this issue, build-

ingSMART has established the minimalist standardization approach to control which

information is required for a particular use at which time (Borrmann et al., 2015, pp.

130 – 133). MVDs and IDMs are used to implement the approach.

IDM is a documented method for outlining the information exchange requirements. The

fundamental goal of IDM is to ensure that specific important information and require-

ments are communicated at a particular time throughout the model life cycle. The end

user’s value chain specifies these requirements. An MVD is then used to guarantee

that IFC implementations meet those needs. The main purpose of MVD is to constrain

the scope of the entire IFC schema by specifying a subset of the IFC schema that is

required and sufficient to meet one or more specific sets of data exchange require-

ments defined by the user in the IDM. Besides, they can be used for a wide range of

other purposes, including automatic data quality assurance and certification of an IFC

model. Depending on the range of its domain, a software application can execute more

than one MVD. (Hietanen & Final, 2006, pp. 2-8)

An MVD is created from an IDM utilizing a portion of the IFC model. An MVD comprises

predefined concept templates and specifications that can be reused. A concept uses

a relational structure and a constraint to represent the necessary entities, attributes,

properties, and relationships (Lee et al., 2016, p. 355). MVDs were very closely tied to

the complete schema up until IFC 2x3. In IFC4, there are only two official MVDs: Ref-

erence View and Design Transfer View (BuildingSMART, https://technical.build-

ingsmart.org/standards/ifc/mvd/). The Reference View is designed to bring partial and

main models from different authors together and smooth the coordination between

http://www.technical.buildingsmart.org/
http://www.technical.buildingsmart.org/

Theoretical Background 10

them, while The Design Transfer View represents the transfer of the entire model and

any further modifications (Borrmann et al., 2015, p. 134). There are already another

five MVDs in progress. Furthermore, the present direction is also going towards defin-

ing more MVDs due to the expansion of IFC into more fields, such as roads and

bridges. (BuildingSMART, https://technical.buildingsmart.org/standards/ifc/mvd/)

2.3 State of the art of mvdXML

MVDs and accompanying exchange requirements are encoded in the electronic format

mvdXML, designed by buildingSMART (Chipman et al., 2016, p. 7). MvdXML is the

XML format that includes MVD information (Jiang et al., 2019, p. 4). This section ex-

amines the structure and purpose of mvdXML in greater depth.

The Model View Definition standard approach determines the rules that must be fol-

lowed and the data exchange requirements for building information models. MvdXML

is the formal machine-readable representation of MVD, recommended by Build-

ingSMART (Liu et al., 2019, p. 12). Thus, the main goal of why mvdXML was developed

is to choose and specify the necessary information entities from a schema, their prop-

erties, and rules for specific exchange use cases. Later, the focus on using mvdXML

as a validation tool was also considered. (Weise et al., 2017, p. 4)

The process of mvdXML development follows mainly four primary steps: 1) IDM defi-

nition, 2) MVD concepts definition, 3) application deployment and certification, and 4)

BIM validation. Domain experts first establish IDMs to offer human-readable definitions

for use-case scopes and EIRs of specific exchange cases. The IDM is then used to

extract model subsets “model views” from IFC. These model views are usually en-

coded in mvdXML and can then be implemented in domain applications to develop

export or import procedures for different exchange scenarios. In other words, IFC-

based model views are subsets of the IFC schema tailored to end-user requirements.

Instance models imported and exported from software programs are checked in the

final BIM validation step to ensure the given ERs are met. (Zhang et al., 2013, p. 2)

Many professional groups have created IDMs and MVDs for targeted domain model

exchanges using this methodology. A list of ongoing projects is available on the web-

site of buildingSMART-tech.org. Phases 1 and 4 of the development process primarily

focus on end users. However, phases 2 and 3 are more critical from a technical stand-

point for the deployment of IFC because they are expected to embody the semantics

captured and stated in ERs completely. As a result, throughout this procedure, it is

https://technical.buildingsmart.org/standards/ifc/mvd/

Theoretical Background 11

necessary to provide a set of information describing the entities that should be chosen,

the features that should be mandatory or optional, and the desired level of detail. Since

the IFC model is generic with many optional characteristics and offers a variety of tech-

niques to identify objects and relationships, it makes this task complex and incon-

sistent. In order to map the exchange requirements to the IFC schema, a logical, formal

procedure is required (Zhang et al., 2013, p. 2).

2.3.1 MvdXML Definition Tools

BuildingSMART has established the mvdXML as the official defined specification data

format for storing MVDs, and it is not dependent on any specific product model

schema. Any text editor can create a Model View Definition based on mvdXML. How-

ever, it is envisaged that specialized software will be utilized to read and write mvdXML

data sets. Some of the specialized software that may be used to work with mvdXML is

reviewed in this work.

The IFC Documentation Generator (ifcDoc) is a program used to create and edit

mvdXML. It offers users a graphical user interface via which they can define all of the

material within mvdXML, such as adding entities, characteristics, and constraints to

concepts based on established exchange requirements. Additionally, this program can

automatically construct instantiation diagrams, produce Hypertext Markup Language

(HTML) documentation for model views, and create IFC4 documentation. MvdXML can

also be edited in its raw form using XML/XSD editors like Microsoft Visual Studio and

Eclipse, just like any other XSD-based schema. Moreover, MvdXML can be read by

IFC-based software programs to filter and validate data automatically so that it com-

plies with the given restrictions. Additionally, mvdXML can be written by IFC-based

software applications to let users define unique exchange circumstances (Chipman et

al., 2016, p.8). We use Microsoft Visual Studio within this thesis’s scope for developing

the mvdXML checks.

2.3.2 MvdXML Usage

MvdXML serves a number of purposes. The primary purpose of mvdXML is to custom-

ize and confine the entire IFC model to specific subsets which are sufficient for certain

use cases. MvdXML supports documenting the model views, as well as aid in the fil-

tering and validating of IFC instance files. A subset of mvdXML could be sufficient to

Theoretical Background 12

provide the necessary functionality in some instances requiring only one purpose. Alt-

hough mvdXML is utilized mainly with IFC, it is not limited to IFC since it is a generic

framework and can be used with completely different schemas. (Chipman et al., 2016,

p.7)

2.3.3 MvdXML Schema Structure

MvdXML schema, shown in Figure 2.5, comprises two main sub-components:

mvd:Templates and mvd:Views. The single root element mvdXML defines the two sub-

components. The definition of reusable concept templates, mvd:ConceptTemplate, is

at the heart of the mvd:Templates function. Mvd:ConceptTemplate specifies sub-

graphs that contain all schema information required for the functional unit addressed

by the concept. Views have a collection of model views, mvd:ModelView, which clari-

fies how concept templates should be applied to fulfill the exchange requirements.

(Chipman et al., 2016, p. 10)

MvdXML rules are separated into two parts: data structures and rule statements. IFC

data structures are described as nested XML tags in the header, which indicate how

to find related data nodes starting from a root entity nodeset by nested XML tags. (Liu

et al., 2019, p. 12). The concept template is the part that encompasses the data struc-

tures, beginning with an applicable root entity, which is usually a subtype of IfcObject.

The root entity continues with a list of AttributeRules and EntityRules repeated succes-

sively, right down to the required attributes to define the unit of functionality. (Chipman

et al., 2016, pp. 10-11).

The mvd:ModelView contains information on how concept templates are utilized in a

view to define mvd:ExchangeRequirements. The exchange requirements element is

one of the significant elements of the model view. It specifies whether or not the

mvd:TemplateRules in each mvd:ConceptRoot must be met in a specific use case.

The second main part of the model view is mvd:Roots, which is comprised of a set of

mvd:ConceptRoots. Concept root defines mvd:Concepts as well as template rules that

apply to a specific IFC item by referring to it. Mvd:TemplateRules define the rules which

a concept needs to pass for validation. Additional limitations could be imposed using

the mvd:Applicability tag. If applied, restrictions must be met by the entity instance

before applying the concepts. (Chipman et al., 2016, pp. 10-13)

Theoretical Background 13

Figure 2.5: The mvdXML schema's basic structure (Chipman et al., 2016)

Theoretical Background 14

2.3.3.1 MvdXML Schema Components

An mvdXML file starts with the single root element, mvdXML, which includes zero-to-

many mvd:ModelView and zero-to-many mvd:ConceptTemplate. The number of con-

cept templates should be, at the very least, the same as the number referred to in the

provided model view(s). (Chipman et al., 2016, p. 18)

ConceptTemplate element may also have mvd:SubTemplates and can create a tree of

connected reusable concept templates. It might refer to related partial concepts within

the tree. The following are the relevant optional and required attributes and elements

that a concept template element have. (Chipman et al., 2016, pp. 18-19):-

• @applicableSchema: provides information on the default schema to which the

template applies, such as IFC2X FINAL, IFC2X2 FINAL, IFC2X3, or IFC4.

• @applicableEntity: an array of strings that specify the IfcRoot-based entities that

the concept applies to, including all derived entities. If a subTemplate is used,

the applicable entity must be the same type or subtype of the main template.

• Rules: a collection of attributes (AttributeRule) declared at the applicableEntity,

where each attribute may have defined graphs of object instances or value con-

straints.

The "Rules" element type is AttributeRule, i.e., it has a collection of AttributeRule ele-

ments. The AttributeRule element specifies an attribute for an entity together with any

associated restrictions and/or entity rules. The main attributes and components of each

AttributeRule that fall within the scope of this thesis are as follows (Chipman et al.,

2016, pp. 19-20): -

• @AttributeName: describes the IFC schema's name for the attribute, connec-

tion, or inverse relationship.

• @RuleID: identifies the rule to be used as a reference at template rules created

within concepts, where this rule is applied with a specific set of parameters.

Each RuleID must be distinct from the others within the scope of its usage.

However, the same RuleID can be utilized if they are used in different scopes;

for example, two AttributeRules are defined within separate EntityRules, one for

IfcPropertySingleValue and the other for IfcPropertyEnumeratedValue.

• EntityRules: a collection of EntityRule, which identifies the type of the Attribut-

eRule. Any type may be used if the list is empty, as indicated by the schema.

Theoretical Background 15

When there is more than one specified entity, instances must correspond to one

of them.

• Constraints: a group of expressions, each of which must result in the referred

property being TRUE. This implies a Boolean AND combination. The Con-

straints element is of Constraint type. Constraint specifies a restriction on an

attribute or entity that may require the value, type, or collection size to have

equality (or another comparison) to a literal value or referenced value.

EntityRules has a set of EntityRule elements, which in turn may also have Attribut-

eRules element, and so on, forming a tree structure. Each EntityRule has the similar

elements as AttributeRule: @EntityName, @RuleID, AttributeRules, and Constraints.

Added to this, EntityRule also has an optional element, References, which can refer to

a partial ConceptTemplate. To guarantee that RuleIDs of partial templates are distinct

within the context of their usage, the attribute "IdPrefix" is optional. All referenced

RuleIDs begin with this attribute as a prefix. (Chipman et al., 2016, p. 20)

Therefore, there are two ways to refer to another entity and its attribute in a concept

template. The first one is to refer to partial concept templates in the main concept tem-

plate using the UUID attribute using @ref/@href. The second method uses the tree

structure of attribute and entity rules.

The second main element in mvdXML is ModelView, which represents the description

of an MVD. It contains zero-to-many ConceptRoot elements and references zero-to-

many applicable ExchangeRequirement elements. The element ModelView has

(Chipman et al., 2016, p. 21): -

• @applicableSchema

• ExchangeRequirements: list of the exchange requirements defined in this model

view. They ought to show up in logical sequence. The ExchangeRequirement

element describes the Exchange Requirement Model (ERM), which identifies

the ER specified for a specific exchange scenario that are covered by the MVD.

@applicability attribute determines if the ERM is applicable to import, export, or

both.

• Roots: list of all root concepts that are defined within the scope of the model

view.

Theoretical Background 16

Each ConceptRoot has the following attributes and elements (Chipman et al., 2016, p.

22): -

• @applicableRootEntity: identifies the IFC entity for which the concepts apply. It

describes the class or data type of the instance being described or validated.

• Applicability: Applicability: a collection of TemplateRules based on a concept

template and explains the circumstances in which the concepts apply to the

applicableRootEntity. Before checking the TemplateRules applied to the con-

cepts, those criteria must be valid. Applicability has only two elements: Tem-

plate, which has a @ref/@href attribute that refer to a concept template by its

UUID, and TemplateRules, which defines the rules by @Parameter attribute

that refer to the RuleID of the reference concept template.

• Concepts: a set of concepts.

A Concept element defines the usage of a given entity with regard to the rules that

must be followed. Again, each concept has Template and TemplateRules elements. It

also has a Requirements element, which consists of a list of requirements outlining

how the concept can be applied to specific import, export, or both exchanges (Chipman

et al., 2016, p. 23).

TemplateRules Element can define a tree of logical expressions. The @operator prop-

erty logically interprets each individual TemplateRule, which are grouped together un-

der the TemplateRules element. The rule grammar used to define any rule in Templat-

eRule element is composed of: a metric and an operator (Chipman et al., 2016, p. 30).

Table 2.1 and 2.2 describe the supported metrics and operators in mvdXML 1.1.

The most prevalent rule type is data existence, which is commonly a prerequisite for

the other rules. It determines whether a schema-level "OPTIONAL" characteristic or

relationship exists. Existence and cardinality rules can be defined in the Concept by

the token "[Exists]" and "[Size]," respectively, in the rules formatted by the rule gram-

mar. The second type ensures that specific elements/objects adhere to certain naming

rules, particular attributes, and values. The "[Value]" token in mvdXML defines the data

content rule type. It also has a number of operators, such as "Equal" and "Greater

Than,“ as well as regular expressions for checking the value. The data uniqueness rule

establishes an implicit constraint requiring unique attribute instance values. The

"[Unique]" token in mvdXML defines uniqueness rules. The fourth rule is used to check

the type of value that has been assigned to the attribute. The purpose of the conditional

Theoretical Background 17

rule is to ensure that the checking results of different rules are consistent. The rule is

based on the findings of the previous rule types. Conditional dependence connections

are currently represented in the mvdXML standard using the logic connectors "AND,"

"OR," and "XOR." (Zhang et al., 2015, pp. 30-33)

Table 2.1: Metric values description (Chipman et al., 2016)

Metric Description

Exists Describes the necessity of the existence of the attribute

Value Describes the attribute's value

Size Describes the size of a collection or string

Type Describes the type of value assigned to the attribute

Unique
Describe if the value is unique within the Concept Template

population of instances

Table 2.2: Operators description (Chipman et al., 2016)

Operator XML Escaped Description

= = Equal

!= != Not Equal

> > Greater Than

>= >= Greater Than or Equal

< < Less Than

<= <= Less Than or Equal

2.3.4 MvdXML Versions

The first public release of mvdXML, version 1.0, was released in 2013. Providing a

neutral structure for the documentation of MVDs was the primary goal of version 1.0.

It was highly used to document the MVD ideas and concepts and describe the included

attributes and entities to generate the IFC subset schema. The current development

release, mvdXML 1.1, has replaced mvdXML version 1.0. The newer update focuses

on validating and checking IFC file instances according to validation rules that were

added to this version. The validation rules are based on the specified Exchange Re-

quirements. In addition, the documentation process has been upgraded by including

several new examples and fixing minor issues and inconsistencies found in mvdXML

1.0. This version will provide the foundation for all future additions and maintenance.

MvdXML 1.2 is currently under development and is not yet considered a formal

Theoretical Background 18

buildingSMART standard. (buildingSMART, www.technical.buildingsmart.org/stand-

ards/ifc/mvd/mvdxml/)

2.4 Data Validation

2.4.1 Validation vs. Verification

According to EN 17412-1, verification is defined as "confirmation, through the provision

of objective evidence, that specified requirements have been fulfilled, "while validation

is defined as "confirmation, through the provision of objective evidence, that the re-

quirements for a specific intended use or application have been fulfilled." Thus, val-

idation varies from general verification because it has a specified intended purpose. In

the thesis scope, validation is the core of this study since the goal is to validate an

mvdXML instance file against a specified set of rules. BIM model validation involves

determining whether a model has the necessary geometry and information. Its main

objective is to make sure the models fit all standards for the use for which they are

intended.

Thus, in other words, validation is a subjective procedure that depends on the authors

and the use case. The concept of quality contains several criteria that might be evalu-

ated subjectively, including "free from flaws," "suited for its purpose," and even "pleas-

ant to the eye" or "customer delight and satisfactory/satisfaction." (Cunningham, 2013,

p. 3)

2.4.2 Checking Types

A complete understanding of different types of checks is essential in this stage to

clearly identify the validation process within this work scope. Research done by Hjel-

seth (2016) has been reviewed to determine the different types of checking and their

use, which helped us to decide on the validation checking type as the core of this work.

Hjelseth (2016) divides checking concepts into the following types (Hjelseth, 2016):-

1) Compliance checking

a. Validation checking

b. Content checking

2) Design solution checking

a. Smart objects checking

b. Design option checking

Theoretical Background 19

Validation checking is the first type of compliance checking, which is the most common.

Validation checking's principle is to ensure that the created solution adheres to the

provided rules. To comply, the model's constraints must be within the rule's limitations.

Codes, standards, contracts, best practices, and other established criteria can all be

used to create rule sets. Clash detection, checking of component pairs, code checking,

and checking based on information, are the most common types of validation checking.

The goal of code checking is to see if the BIM solutions comply with codes, rules, and

standards, among other things. The logic of compliance checking is based on the pro-

cessing of established criteria with the following outcomes: "Pass," "Fail," or "Not

checked." The "Not checked" result is due to the rule not being activated because of

missing information. The rule set can include restrictions that specify value limits or the

presence or non-existence of an item, and feedback will be shown with the result.

(Hjelseth, 2016, pp. 356-358)

Model content checking is the second type of compliance checking, aiming to create

an automated mechanism to ensure that the BIM's professional information is correct

for a particular application. Content-based checking rule sets may help Information

Delivery Manuals (IDM) and BIM guidance. Automatic content control in the BIM is a

continuous activity throughout the design process. This type of checking is to compare

the content and properties in BIM to a predefined list of relevant data. The checking

has two alternatives: identified or not identified. Further actions can be writing a report

to document compliance, and specific data can be erased or replaced with default val-

ues. This verification method ensures that the model has the exact amount of required

information in the BIM, i.e., not too little or too much information. This is done by check-

ing whether the model conforms with a requirement list of data specified based on IDM

or Level of Information (LOI). (Hjelseth, 2016, pp. 358-360)

Design solution checking is usually done as part of the design process as a continual

assistance. It is divided into smart object checking and design option checking. The

former lets the object observe its surroundings and adapt to them using pre-pro-

grammed rules or algorithms. The latter enables the designer to evaluate a broader

range of possible realistic options based on rules that recognize a predetermined cir-

cumstance and then conduct a search, based on a knowledge database, for appropri-

ate options. The database might be an internal database or an archive of design solu-

tions, or it could just be a set of search rules for relevant solutions. (Hjelseth, 2016, pp.

360-362)

Theoretical Background 20

Table 2.3 summarizes the classification of model-checking concepts according to Hjel-

seth (2016).

Table 2.3: Classification of checking types (Hjelseth, 2016)

Concept

group

Concept

type
Purpose Outcome Examples

Compliance

checking

Validation

checking
Validation Pass/fail Clash detections

Code compliance

Model con-

tent checking
Content A filtered list Exchange

requirements

Design solu-

tion checking

Smart object

checking
Adaptation

A modified

model

Size of building

parts related to the

building

Design ob-

ject checking
Guidance

Options and

advice

Knowledge data-

base for relevant

solutions selection

This section described different types of concepts of data model checking. It has been

identified that the checking type related to this paper's scope is validation checking.

Validation checking is the purpose of this paper, to check mvdXML against a specified

set of rules. If the mvdXML adheres to the rules sets, then it passes all the checks, and

it can be said that the file is valid.

2.4.3 XML Verification and Validation

Since mvdXML is also an XML file, this section discusses different methodologies em-

ployed in the industry regarding verifying and validating XML files. Several tools can

generally check XML instance files against the schema, such as XML Schema (such

as XSD) and Document Type Definition (DTD). Those XML schema languages can be

used as verification tools to ensure that an XML document has correct syntax and

structure as well as legal elements and attributes. Nevertheless, since schema verifi-

cation is out of this thesis’s scope and the focus is going beyond schema verification,

Schematron as a validation tool is also reviewed in this section since it has more ca-

pabilities than any other XML schema parser.

Theoretical Background 21

2.4.3.1 XML Schema Definition (XSD)

The World Wide Web Consortium (W3C) has recommended using XML Schema Def-

inition, or XSD, to describe and verify the structure and content of an XML document.

It is mostly used to specify what kinds of elements, properties, and data the document

can contain. To ensure that each element, attribute, and data type in the document

adheres to its description, the information in the XSD is used as a check. Similar to

older XML schema languages like Document Type Definition (DTD), an XSD offers

more control over the XML structure and is, therefore, a more potent substitute.

(W3C, www.w3.org)

2.4.3.2 Schematron

In simple terms, Schematron is a very versatile rule-based schema language that can

express restrictions differently than XML Schema and DTD. Hence, using XPath and

XSLT (Extensible Stylesheet Language Transformations) expressions, Schematron

can be a very effective tool for validating XML data models due to its flexibility.

(Tennison, 2004, p. 628).

Elements and attributes make up XML documents. Schema verification was the only

checking method initially used for XML documents. This signifies that an XML docu-

ment was considered legitimate if it had successfully undergone schema verification.

Schema verification guarantees document structure but cannot check conditional and

integrity requirements. Unlike grammar-based schemas like XSD, Schematron can at-

tain the required level of validity. It can check both the structure and content of XML

documents, in which constraints on entities can be defined, as well as demand on the

presence of attributes can be applied. (W3C, www.w3.org)

Schematron can be considered as a potential alternative to mvdXML for checking

mvdXML. However, it is somewhat ambiguous to choose it and presume it is more

appropriate than mvdXML because no research has been done on Schematron vali-

dating IFC or any other equivalent, notably mvdXML.

http://www.w3.org/
http://www.w3.org/

Theoretical Background 22

2.4.4 Why Data Validation

Generally, the concept of testing and checking is widely established in the BIM industry

to ensure that a deliverable unit, such as a BIM model, is suitable for specific use. For

example, to ensure that a building model is suitable and correct for quantity takeoff and

cost estimation. Therefore, BIM instance models are special models whose correct-

ness and accuracy are vital because they are used in further operational steps. BIM

model validation is thus a crucial procedure that ensures that the models have the

required quality and are compliant with their intended purpose, in which a set of pro-

cedures is executed. The entire design process should involve model validation

checks. By doing so, the models' quality is continuously monitored, and the necessary

modifications can be made at the right time, avoiding errors during development. Con-

tinuous model validation can remove errors from the process as soon as feasible, min-

imizing the potential effects of future corrections.

Additionally, model checkers are frequently employed to validate critical systems or

data models, which are then used in further other processes. The challenge lies in the

fact that any model checker, like any other piece of complicated software, is prone to

errors. As a result, given the importance of model checkers, explicitly verifying them,

checking their accuracy, and enhancing their quality are critical. The model checker’s

correctness must be ensured to trust the verification result. Although model checkers

are exceedingly difficult to verify because their logic is always complex and highly op-

timized, the primary strategy of formalizing the development and validation of a formal

verification system to increase user confidence in them is vital. (Sun et al., 2010)

Therefore, without implementing any checking techniques on model checkers, the

model checker implementation must be assumed to be correct, which may not be true.

Since the encoded rulesets used in the checking procedure are one of the main com-

ponents of any checker, the correctness of those rulesets is one of the most critical

procedures to guarantee the checker's correctness itself. Within this thesis scope,

mvdXML is the data model with the encoded rulesets and must be checked.

2.4.5 How to perform Data Validation

One of the critical issues in this research is determining which types of checks are

required and which rules should be set as well as how to create and implement them

to check mvdXML. The types of required checks should be identified for an efficient

validation procedure, and the general workflow steps should be followed. This section

Theoretical Background 23

discusses how data validation can be performed and how to tailor it to mvdXML, in-

cluding validation steps, checking types, validation parameters, and dimensions.

2.4.5.1 Data Validation Checker and Encoded Data Formats

Since this work focuses on mvdXML, the IFC validation workflow using mvdXML is

reviewed from several related works, which are discussed in depth in Chapter 3. Five

main steps are generally implemented to ensure that received data comply with estab-

lished requirements, shown in Figure 2.6. First, the appointed party defines data and

information which are required to be present during the handover as Exchange Infor-

mation Requirements (EIR). The requirements are then interpreted to model the data

in a format that has been agreed on, as well as to encode the checking rules using a

specified exchange format. The rules are then used to check the provided data from

the BIM model automatically, and a report is generated with the identified find-

ings.(Jaud & Muhič, 2022; Jiang et al., 2019)

Figure 2.6: General validation procedure of IFC using mvdXML (Jiang et al., 2019)

A data model checker is a tool that checks the correctness of a system (Mosleh et al.,

2016, p. 2). As shown in Figure 2.5, any checker tool has two inputs: the input file to

be checked and the rulesets encoded in a chosen encoded data format. The first and

second input files in this work to be checked and to check are mvdXML. Aside from

mvdXML being selected as the format that encodes the checking rules, other similar

available data formats are discussed and compared in this section to identify the rea-

sons behind choosing mvdXML specifically to check mvdXML.

There are many possible approaches to encode rules based on exchange require-

ments, making it challenging for users to select the best one. Tomczak et al. (2022)

classify and compare several exchange formats. Some of them, including documents

Theoretical Background 24

and spreadsheets, Product Data Templates (PDT), Data Dictionaries (DD), Information

Delivery Specification (IDS), and mvdXML, are reviewed in this section.

One of the most used Information Requirements (IR) techniques today is text-based

documents (DOC) due to their versatility, adaptability, and ease of use. Typically, they

are created using popular text editors, enhanced with photos and diagrams, then as-

sembled into Portable Document Format (PDF) files. Using spreadsheets (XLS) to de-

fine IR is another more organized method. It forces a tabular arrangement and makes

computer parsing simpler. (Tomczak et al., 2022, p. 4)

Moreover, the IDS is a standard proposed by buildingSMART for describing BIM infor-

mation requirements in a machine-readable and human-readable format. The primary

purpose of IDS is to provide a straightforward yet complete method for authoring and

validating information requirements. It is a crucial component that can be utilized as a

contract to ensure that the correct information is delivered. Furthermore, it can build

customized, use-case-specific requirements dependent on the project. One can spec-

ify what data must be included in the BIM model and verify that it is supplied with IDS.

Each IDS definition has two parts: applicability (which filters the elements) and require-

ments (which specify what information should be given). Another popular format that

is the core of this thesis and has been discussed thoroughly in Chapter 2.3 is mvdXML.

The original intent of MVD was to narrow the considerably wider IFC to smaller subsets

to serve a particular use case. Later it has also been used in validation procedures for

IFC files. (Tomczak et al., 2022, p. 5)

In general, mvdXML and IDS have common features and similarities since they are in

the same category. IDS, like mvdXML, make use of the XML markup language. Re-

garding the validation process, the two formats support IFC files and bring validation

of IFC to the client. Nevertheless, only openBIM conforming tools can use IDS because

it only applies to IFC entities and associated properties, unlike mvdXML, which is a

generic framework that can be used for other data models than IFC. In other words,

IDS is strictly dependent on the IFC schema. Moreover, IDS has a limited list of what

can be requested. (Tomczak, 2022, pp. 5-10)

There are also several more possibilities for encoding exchange requirements, such

as PDT and DD. Product Data Templates, also known as Data Templates, is a com-

mon standardized tabular set of product properties. PDT was developed to make it

possible to compare similar products since it is possible for the involved parties to

Theoretical Background 25

communicate efficiently by using the same templates. PDT's emphasis is only on

"what," not "by whom," "for whom," "when," and "for what." In response to ISO 23386's

requirement for meta-information attributes, Data Dictionaries are established to define

a standard structure to store information and objects along with their properties and

relationships. This contains citations to outside sources as well as details on who made

the things and when they were made. (Tomczak et al., 2022, p. 5)

The findings reveal that no single solution can address all the issues. Despite overlaps,

each approach has a distinct function, advantages, and disadvantages and should be

chosen carefully. All the strategies presented have a purpose and serve a vital role in

the ecosystem. Within this paper's scope, mvdXML is the data format selected for en-

coding the checking rules for multiple reasons. Aside from the fact that one of the aims

of this paper is also to analyze the capabilities of mvdXML in a validation process, it is

also a naturally wise decision to pick it as a solution for validating mvdXML instance

files. This is because it is nowadays one of the best and most used solutions to encode

MVD since it almost captures most of its information (Chipman et al., 2016). Addition-

ally, in terms of expressiveness, from the above-listed possibilities, the only format that

can compete with mvdXML is IDS. MvdXML and IDS are more capable of a semi-

automated validation procedure than the other listed possibilities (Tomczak et al.,

2022, pp. 8-9). In other words, the coding effort to extract the stored data and require-

ments in an mvdXML or idsXML is less than that to be done in all other formats on the

list to an automatic procedure. Therefore, considering the IDS option, a comparison of

the similarities and differences between mvdXML and IDS has been made, and the

results are outlined in Table 2.4.

Theoretical Background 26

Table 2.4: Comparison between mvdXML and IDS (Tomczak et al., 2022)

Functions mvdXML IDS

Functions

Validation ✓ ✓

Documentation ✓ ✓

Clash detection x x

Precise filtering ✓ ✓

Geometry representation x x

References x ✓

Rulesets

Based on exchange re-

quirements
✓ ✓

Develop new rulesets ✓ ✓

Combining rules ✓ ✓

Modify existing rules ✓ ✓

Import
IFC files ✓ ✓

DWG x x

Reporting
BCF ✓ ✓

Visualization ✓ ✓

Language XML ✓ ✓

Organization BuildingSMART ✓ ✓

Usage Scope
Schema-depandent x ✓

Generic ✓ x

There are many similarities between the two methods, mvdXML and idsXML. However,

mvdXML is chosen over IDS for one important reason, as shown in the last feature of

the comparison; IDS is limited to IFC entities only. Therefore, it cannot be used for any

other data model than IFC; thus, it is completely excluded from this work as a solution.

Besides, although IDS can be used for IFC validation, the most common method used

while checking IFC files is mvdXML, which proves the relevance of mvdXML in valida-

tion procedures. It is of this thesis interest to analyze and examine mvdXML capabili-

ties to be more versatile.

Theoretical Background 27

2.4.5.2 Validation Dimensions

Data quality is the extent to which a set of data characteristics satisfies requirements

in ISO 9000-3:2015. The key issue to be addressed in this subsection is how to deter-

mine the quality of a given set of data and to which extent it overlaps with the mvdXML

scope. The findings helped in identifying which exact validation checks should be set

and which rules defining those checks should be identified based on the purpose.

Data validation is referred to as the study and use of various assurance techniques,

standards, criteria, and systems to ensure data quality in terms of a set of quality pa-

rameters. Several general validation parameters can be used to check the input data.

A Data Quality Dimension is a feature or component of data that provides a method for

assessing and controlling data and information quality (Sidi et al., 2012, p. 302). Table

2.5 presents some key data quality parameters and their definitions from the literature.

The green-colored dimensions are the ones that gain relevance in the upcoming par-

agraphs and are within the mvdXML scope.

The first parameter is data accuracy and correctness. This indicator refers to correct

records and values that can be relied upon as a reliable source of information, meas-

ured by determining how closely a data value resembles another value, designated as

accurate. Accuracy and correctness rules can specify that the values must be within a

valid range or equal/not equal to a specific value. The second indicator is data timeli-

ness, which determines how current data is. It is an important data quality attribute

since out-of-data information can lead to individuals making poor decisions. Timeliness

rules can set limits on a data value's lifetime, signaling that it should possibly be up-

dated. Data completeness is another vital trait for measuring the extent to which the

information is comprehensive. In other words, it ensures that all the required data is

present and detects any missing values. In addition, data consistency is a concept that

may be used to assess the consistency of data sets from several perspectives, such

as checking that the information is of the correct type and format. It also ensures that

data is entered in a logically consistent manner. Accessibility metrics can be used to

assess how easily certain data can be accessible. Furthermore, a uniqueness check

may be required for a specific field or value to ensure that an undesired duplication

does not exist. (Gao et al., 2016, p. 434; Sidi et al., 2012, pp. 302-303)

Theoretical Background 28

Table 2.5: Summary of validation dimensions. The green-colored parameters are the relevant dimen-

sions within this work’s scope (Sidi et al., 2012)

Validation Parameter Definition/Function

Accuracy and correctness
Checks how close a data value is to an-

other regarded correct value

Timeliness and currency
Checks the degree to which the data’s

age is adequate for the task

Completeness

The degree to which the data available

are enough in terms of breadth, depth,

and scope for the task

Consistency

Checks that data is given in the same

specified type and format and is com-

patible with preceding data

Accessibility
Ensures that the information is readily

available or retrievable

Uniqueness
Ensures that the data is unique and not

undesirably duplicated

Security and privacy
Assess the security and privacy of data

sets from several angles

Relevancy
To what extent is the information rele-

vant and valuable for the task

Without delving too far into the general validation rule types, mvdXML has specific

checking capabilities. The following are the different types of validation rules in

mvdXML (Zhang et al., 2015, pp. 30-31):

1. Data existence and cardinality, including the presence of attribute values and

referred entities, as well as the size of collection data types

2. Data content, such as the value of simple data types and collection types

3. Data uniqueness

4. Data type

5. Conditional dependency, examining the conditional if-then dependency and

consistency between them

More description of the mvdXML rule grammar can be found in Section 2.6.3.1.

Related Work 29

There has been sufficient research on several applications using mvdXML and how

mvdXML could be applied in many ways to facilitate the automatic validation of differ-

ent data models, the most common IFC files. Nevertheless, no researchers have con-

sidered the case of mvdXML checking itself or any other data model than IFC. This

chapter describes the use cases of mvdXML in the current research studies, specifi-

cally mvdXML as a validation tool, and analyzes different checking guidelines and sys-

tems. The chapter concludes with a case study of the checking system validating itself.

3.1 MvdXML Use Cases

Several researchers have been working on mvdXML-related projects. Some examples

that support the use of mvdXML are described in the following sections to demonstrate

its various use cases. First, a study performed in the field of BIM filtering is reviewed.

Second, mvdXML is introduced and examined for validation purposes, presenting two

different studies.

3.1.1 Filtering

Baumgärtel et al. (2016) introduced a unique method in which mvdXML can be utilized

to not only check BIM data, but also filter them. While model views are mainly required

and used for documentation and validation, the need for sharing reduced building in-

formation models between participants is becoming more apparent (Baumgärtel et al.,

2016). Zhang et al. provided the validation process, discussed in depth in Section 3.1.2

(Zhang et al., 2014). Moreover, other methods and checkers based on mvdXML have

also been developed. Filtering, however, is not currently available with any of these

tools. As a result, the mvdXML converter and ifcQL processor tools have been created

in this method to enable both MVD-based validations and filtering (Baumgärtel et al.,

2016). The main focus in this section is on mvdXML being used as a filtering tool.

The IFC handles several aspects of the construction industry. While this is beneficial

for interoperability, it can cause issues with the level of detail in each domain. There-

fore, nowadays, MVD-based filtering is becoming more critical. A two-step conversion

for this study’s implementation was applied. It begins with converting the contents of

an mvdXML file to IFC Query Language (ifcQL) commands by a converter. IfcQL can

3 Related Work

Related Work 30

create, read, update, and delete BIM data easily. After that, the user must choose

whether the result should be utilized for validation or filtering. In the second stage, the

tool ifcQL processor is employed. The query commands extract the required infor-

mation from the original IFC and create a simplified and reduced building information

model. The use of various types of filters or filter layers is needed to achieve the nec-

essary data reduction with model views. Four filter types were presented by Windisch

et al. (2012), namely, schema-level filtering, class-level, object-level, and reasoning-

level filtering. The simplified building information model can then be exchanged with

one or more software applications. (Baumgärtel et al., 2016; Windisch et al., 2012)

3.1.2 Validation

MvdXML has always been highly used in the validation process in different scenarios.

Five steps are generally performed to check the rules in mvdXML on IFC instance files

(Jiang et al., 2019, p. 8). Figure 2.6 in Section 2.4.5.1 depicts those five main steps: -

1. Defining Exchange Requirements and interpreting it

2. Generating IFC models using BIM software based on the EIR

3. Converting the stored EIR to mvdXML format using an mvdXML rule transformer

and inserting additional information using IfcDoc

4. Checking IFC models against mvdXML files

5. Generating BCF report

Several types of research have been done in this area of developing different types of

checkers to validate IFC data models using mvdXMLs. In this subsection, two of those

studies are briefly inspected. Both studies have been implemented on IFC models fol-

lowing the same general validation procedure mentioned above.

In a study carried out by Jiang et al. (2019), a strategy to manage green building infor-

mation was created by merging mvdXML with semantic technologies (Resource De-

scription Framework (RDF) and Web Ontology Language (OWL)) for green construc-

tion code validation. Since there are limitations of existing code-checking methodolo-

gies, this proposed method provides a solution for green construction code checking.

The authors employed two BIM operating standards for green construction code vali-

dation in this work, mvdXML and Building Collaboration Format (BCF). Following the

main general steps, a checker was created using the open standard mvdXML to define

code validation rulesets and check IFC models against it. A BCF was then used to

Related Work 31

report the checking process using a BCF generator, which can be shown in a BIM

software tool, such as Revit. The rule sets are defined in Excel in a structured way and

then imported into an mvdXML rule transformer to generate them in the mvdXML file.

Once the mvdXML ruleset is completed, the IFC model can be validated. The mvdXML

checker captures each created issue in a BCF report when the checking is completed.

(Jiang et al., 2019)

Another important study is the implementation of a model view checker prototype by

Zhang et al. (2014). This checker was built using the open mvdXML standard for vali-

dating instances of IFC models so that receiving systems derive the appropriate infor-

mation. The mvdXML standard version 1.1 is used in this implementation, and the pro-

cedure has taken almost the same flow as the one mentioned above. The first step of

this procedure is defining validation rule sets by interpreting exchange criteria and or-

ganizing validation rulesets, then executing the check and generating a report of the

results. Here are again two open standards utilized in this implementation: mvdXML

for structuring the validation rules and BCF for generating reports. IFC instances and

mvdXML files are the checker’s input, while BCF files are the output. The rules should

be evaluated as true; otherwise, if an object instance breaks one of the rules, the ap-

plication will raise an issue captured in the form of a BCF report. The mvdXML valida-

tion rules are structured based on two BIM operational standards, the Dutch Rgd BIM

Norm and the Norwegian Statsbygg BIM Manual. The prototypical checker is then

tested with example use cases. This study has identified that the mvdXML standard

and its implementation may be used as a light checking tool for IFC validation even if

there are still some general issues and restrictions. (Zhang et al., 2014)

3.2 Self-Validation

The next generation of software nowadays is self-validating. Self-checking system de-

sign has gained interest in the past, intending to create tools capable of independently

detecting the occurrence of a flaw during routine operational life. Developing innovative

self-validation techniques and quality-control systems is highly important for more effi-

cient construction processes. (Bolchini & Salice, 2000; Sun et al., 2010)

Unfortunately, no work has been found in the field of BIM and the industry of AEC

related to self-validation methods. To our knowledge, till these days, there are not any

other similar methods. However, a study carried out by Sun et al. (2010) in which an

approach for checking model checkers is proposed and applied. The authors present

Related Work 32

a method that combines code contracts and model-checking procedures to systemat-

ically verify Process Analysis Toolkit (PAT) and increase its quality, a real-world model

checker. PAT is a self-contained framework for designing, simulating, and verifying

real-time systems. It uses a variety of model-checking techniques to verify different

properties. (Sun et al., 2010, p. 519)

PAT is designed to be an expandable and modular framework allowing users to create

customized model checkers quickly. It offers a library of model-checking algorithms to

verify a wide range of systems. A suitable verification algorithm is invoked depending

on the property to verify. Since the library of the algorithms is shared by all the created

modules, the accuracy of PAT is thus critical and must work correctly and efficiently.

Therefore, it has constantly been thoroughly tested, but issues and bugs are still re-

ported now and then. The leading cause of these bugs is that PAT is continually being

updated because coding modification and extension are frequently made to achieve

efficiency, resulting in additional discovered bugs. PAT now has over 800 registered

users from over 180 different organizations. In conclusion, PAT has grown into an ex-

tensive software package requiring systematic quality control. (Sun et al., 2010, pp.

521-522)

This approach is unique because it focuses on model checking the model checker

itself. In short, a checker that checks itself, i.e., PAT is checked using PAT. It consists

of two main components: code contracts and model checking. The contracts serve as

a validity specification, and model checking is a valuable tool for looking for contract

violations. The validation process involves specifying the code contracts relating to the

complete system as a property and then formally verifying via model checking. The

models can be saved as PAT models, allowing us to model verify them directly in PAT

itself. Integrating code contracts with the model checker is considerably broader and

can be used to check a wide range of C# software systems. (Sun et al., 2010, pp. 520-

531)

Full details and specs of the method can be found in (Sun et al., 2010), which are not

more discussed in this paper because it does not overlap with the scope of BIM and

mvdXML. Despite this, this study case was sufficient to be the proof that gave us the

insight that our approach is applicable and necessary for real-world problems since it

can be used in a broader scope also.

Related Work 33

3.3 Summary

To conclude this chapter, the following main points are captured from the prior work: -

• The general checking procedure is outlined in five main stages for almost all the

tools and techniques: -

1. interpretation of exchange requirements

2. generating data model

3. structuring validation rulesets

4. check execution and

5. report generation

• Since mvdXML is used for validation purposes, it is critical to validate it to have

confidence in its outcome

• The future is about self-validating, which has been proven to be applicable and

more efficient for real-world challenges in several other fields

Besides, as clearly discussed, there is research gap in two crucial aspects. First, no

prior self-validation methods were considered within the scope of BIM, IFC, or

mvdXMLs. In addition, the case of using mvdXML to validate any other data model

than IFC was not also properly considered, although mvdXML is a generic framework

that can be used on other data models. As a result, existing approaches cannot be

directly applied to checking any kind of data models. Thus, mvdXML use has always

been looked to as a validation method for IFC only from the researchers’ point of view.

To ameliorate this situation, the development of new technology is necessary to better

the current situation. However, since there is a huge gap in this area, we found out that

we also cannot directly apply our approach. Thus, the priority of this thesis’s goals has

been restated. The main goal would be is to generally analyze the capabilities of

mvdXML to validate other data models than IFCs to find out how close or far is it from

being a versatile validation tool. Along with this main aim, the mvdXML itself will also

be checked with a robust prototypical validation method that can be further developed.

Also, many factors are involved in object or data model compliance checking. Each

language or tool has its own function and scope; therefore, it is critical to decide con-

sciously which to use based on specific purposes. After reviewing the theoretical back-

ground of this paper's problem and the literature review, it has been found that

mvdXML significantly needs a method to be checked since it is highly used in the val-

idation procedure of other data models, such as IFC. However, no method has been

Related Work 34

proposed until now in the literature review to check mvdXML itself, even though some

discussed issues have been discovered in some mvdXML instance files such as Ref-

erenceView mvdXML. Furthermore, mvdXML is used to check itself in this work since

it was successfully used in validation procedures of IFC and can be used on other data

models since it is already a generic framework. Moreover, mvdXML is the most suitable

method for encoding MVD itself, as recommended by bSI. Hence, using mvdXML to

check mvdXML is more closely the proper procedure. Other alternatives of data for-

mats and their exclusion have been discussed in Section 2.4.5.1. Besides, Schema-

tron, reviewed in Section 2.4.3.2, can be considered another potential method other

than mvdXML for checking mvdXML, since it can already check XML files, in general.

However, since no research has been carried out previously on Schematron validating

IFC or any similar, particularly mvdXML, it is somehow vague to choose it and assume

it is more suitable than mvdXML.

Methodology and Implementation 35

This research aims to test the practicality of checking a data model other than IFC files

using mvdXMLs. It is essential in this paper to discover what is still required for an

mvdXML to be a versatile tool for many different functions and activities.

In the scope of this thesis, the Design Science Research Methodology (DSRM) is em-

ployed, as established by Peffers et al. (2007). DSRM includes six main steps: -

1. Problem identification and motivation

2. Definition of the objectives for a solution

3. Design and development

4. Demonstration

5. Evaluation

6. Communication.

The following sections discuss in detail the methodology steps, as well as the datasets

used for the evaluation and their sources.

4.1 Aims and Objectives

This study aims to analyze the capabilities of mvdXML critically. The analysis must be

carried out according to a specific use case. The use case chosen for this work is to

analyze mvdXML as a validation tool for a data model other than IFC. The data model

selected to be checked is mvdXML since the secondary goal of this thesis is to ensure

the quality of any generated mvdXML. Thus, mvdXML is used to validate itself. The

following section describes the detailed approach of this study.

Alongside the main aim, this thesis has the following secondary goals: -

• To check the accuracy and correctness of mvdXMLs using mvdXML

• To enable validation of mvdXMLs that other end users create for specific use

cases

• To allow end users to build and customize their checking mvdXMLs

• To enable mvdXML to be a versatile tool by checking a data model other than

the IFC schema

4 Methodology and Implementation

Methodology and Implementation 36

• To discover the potential for expanding and enhancing the mvdXML schema in

the subsequent versions

Data validation is a task that is typically carried out in many aspects and fields. This

practice has been carried out for a long time, but despite this, methods and techniques

have never been standardized (Di Zio et al., 2016, p. 3). This is because validation is

a subjective process. Thus, the validation criteria rely heavily on the author's objec-

tives.

Since validation criteria are subjective, this paper defines specific objectives for the

validation process of mvdXML that are as objective as possible. Hence, the methodol-

ogy can be later evaluated based on these objectives. Based on the aims mentioned

above and expected outcomes, the following objectives are settled: -

• Detect missing optional elements that can be required in some use cases

• Ensure specific values for specific attributes

• Detect mistakes in attribute usage

• Detect alien elements in strings

• Detect contradictions

• Discover the capabilities and limitations of mvdXML

4.2 Approach

As previously mentioned, the general framework of this paper is the DSR methodology.

The previous chapters and sections discussed the motivation, research question, so-

lution, and objectives. This section demonstrates the implementation of the proposed

solution. The working steps that have been done and are still to be done in this work

can be summarized as follows: -

1. Review the state of the art of the mvdXML

2. Develop the self-validation procedure

2.1. Define error scenarios that can be caused

2.2. Define the checking rules

2.3. Define the concept templates and concept roots of the checks

2.4. Implement the procedure and test it

3. Analyze the mvdXML capabilities based on the self-validation procedure results

4. Propose solutions to expand the mvdXML schema capabilities in the following

versions

Methodology and Implementation 37

The proposed approach tests the versatility and adept of mvdXML as a validation tool

on a schema other than IFC by challenging it to check itself with several different

checks to discover what is testable with this tool and what is not. Hence, in this paper,

an mvdXML checker for mvdXMLs is presented. A prototypical implementation is

demonstrated and tested using different example use cases.

Chapter 3 reviewed several related previous works in order to have a reference to an

efficient and successful data validation procedure. It is necessary to create and follow

a general framework for data validation. Previous related works inspire the validation

process shown in Figure 4.1. It consists of four main steps; 1. interpreting the require-

ments and analyzing the errors that can be generated, which helps in 2. encoding the

validation rule sets in an mvdXML, 3. executing those checks using the checker, and

4. generating a pass/fail report.

Figure 4.1: Methodology of the proposed mvdXML validation process

Since the core structure of the mvdXML is maintained in the proposed developed

mvdXML, the logic behind the checking rules is kept. The checker checks schema

conformance first. If the data model is schema conformed, it executes the mvdXML

checks. Otherwise, the checker aborts and does not execute the mvdXML checks. If

the mvdXML check is conducted, the process continues with checking the applicability.

If applicable, the output also contains information about which entities pass and which

fail, as shown in Figure 4.2. A BCF report was generated in most previous literature

review cases. However, the proposed checker uses the Markdown format for the re-

port. Markdown is a simpler report format that just reports fail/pass results. The logic

behind the checking rules is to show first which elements are applicable and not appli-

cable and then which of the applicable elements pass or fail. Thus, BCF was out of this

thesis's scope since it has many more features than just reporting pass/fail results and

has many more IFC-specific attributes.

Methodology and Implementation 38

Figure 4.2: Illustration of the logic rule behind the mvdXML validation procedure

4.3 Evaluation Approach and Datasets

To attain the most accurate objective results and guarantee the results' correctness,

the implemented method must be checked on several stages parallel to its implemen-

tation. So that the implementation can be continuously evaluated and always get early

feedback after each testing step in the early development phase, which helps catch

errors and improve the performance of the mvdXML checks faster.

Hence, before the main implementation of the mvdXML checks, the database for the

continuous evaluation process must first be set up. The goal is to gather as many

mvdXML instances as possible to test the method on different levels and to ensure

precise, accurate results. Thus, the technique and the capabilities of mvdXML can be

analyzed based on correct results.

The following sections cover in detail the four stages of the evaluation process, the

source of the datasets, and provide a thorough explanation of how they were prepared.

4.3.1 Evaluation Phases

The evaluation procedure is divided into four significant stages. The first two are con-

sidered the main two tests in the very early design phase, which we depend on to give

us quick feedback for adjusting the checker. The following two steps are then carried

out after partially testing the mvdXML checks and are somehow expecting accurate

results. These last two stages then come to implementation to maybe fix minor hidden

issues and get final results, which will mainly be a large part of the analysis. Figure 4.3

illustrates the four stages and their relations.

Methodology and Implementation 39

Figure 4.3: Four stages of the evaluation process of the proposed method

The first step is to check an XML file against an mvdXML file. Both of those files are

created by the author and are explained in detail in the next section. Based on the

feedback of this first loop, the checker is adjusted. This step helps better understand

the checker process and its generated results and eliminates any errors. Next to this,

the checker is used again also to check the author-made correct and incorrect mvdXML

files against the primary checks encoded in an mvdXML file. The incorrect mvdXML

files have intended errors to observe the ability of the method to capture them. This

step helps improve the mvdXML checks along with the checker. Finally, the technique

is used to check official mvdXMLs, and the final version of the mvdXML checks itself

Methodology and Implementation 40

also. These steps, especially the first two, keep running in loops, helping to optimize

the procedure until satisfying results that we aimed for and expected are achieved.

4.3.2 Furniture Example

Gathering the dataset is a crucial step to guarantee the best correct performance of

the mvdXML checker. Therefore, there are four different sources for the dataset in this

study: a small example developed by the author, several official and other mvdXML

files that are freely available on the internet, and the developed mvdXML checker itself.

Those types of datasets are selected to be included in our evaluation.

The first dataset is a simple example developed from scratch by the author for several

reasons. We are confident of the content of this example as we designed it ourselves.

Hence, the expected results are already known, and the checker can then be evaluated

initially to determine whether it works appropriately as expected. In addition, this ex-

ample is a lot simpler than the mvdXML schema. It is easier first to identify implemen-

tation errors while testing it on a small sample instead of trying it automatically on more

complex mvdXML files. Finally, we want to challenge the method with different scenar-

ios and ideas that have different combinations and apply different combinations of

checks on them to see how the checker responds. That is how we can test it and later

analyze it based on how versatile it is, i.e., to test whether it can work on any possible

scenario or not.

The designed example, the furniture example, consists of a collection of information

related to a furniture class with different chairs. Figure 2.4 in Chapter 2 depicts the

UML diagram of this furniture schema. It is composed of a furniture class, which has

chairs. The chair class has three other classes: armrests, legs, and production. The

three components, chair, leg, and armrest, inherit some features from a class called

component, which has two objects of class material: cushion and structure. Based on

this schema, a furniture dataset and mvdXML were created and used in the evaluation

procedure.

4.3.3 Other mvdXMLs

Another source of the dataset for the third phase of the testing process is the official

buildingSMART mvdXML instance files, such as IFC4 Precast, Reference View, and

Quantity Takeoff, which are easily obtained from the official website (buildingSMART,

Methodology and Implementation 41

https:technical.buildingsmart.org/standards/ifc/mvd/mvd-database/). Other three offi-

cial buildingSMART files have been obtained from other links to be tested: -

• Alignment Based ReferenceView: https://bsi-infraroom.github.io/IFC-Documen-

tation/4_3_0_0/abrv/HTML/link/ifc4x3_rc4-update.htm

• IFC4 General Usage: https://standards.buildingsmart.org/IFC/RE-

LEASE/IFC4/ADD2/HTML/

• COBie: http://docs.buildingsmartalliance.org/MVD_COBIE/annex/annex-

a/construction-operations/COBie.mvdxml.txt

Besides, the mvdXML example in the documentation of mvdXML 1.1 is employed

(Chipman et al., 2016, p. 36). Moreover, this phase uses two models made by the

Institute for Applied Computer Science (IAI) at the Karlsruhe Institute of Technology

(KIT) to represent the case where mvdXMLs are created by other end-users for specific

uses other than the official ones (Institute for Automation and Applied Informatics (IAI),

2021).

Figure 4.4 visualizes that seven of the files are official BuildingSMART mvdXML files,

while the other two are from Karlsruhe Institute of Technology.

Figure 4.4: Pie chart mapping the number of the mvdXML files from each source

Finally, the last source is the developed mvdXML itself, i.e., the checking mvdXML is

used to validate itself.

78%

22%

MvdXMLs sources

Official BuildingSMART KIT

https://technical.buildingsmart.org/standards/ifc/mvd/mvd-database/

Methodology and Implementation 42

4.4 Design and Development

After gathering and preparing the datasets, the next step is to find out different error

scenarios and design the checks respectively. This step analyzes the errors that can

be generated in an mvdXML file based mainly on the documentation. The focus is

primarily on the mistakes that can happen, but the schema checks cannot catch them.

Furthermore, some of the check's ideas are derived from the recommendations, which

are not enforced in the mvdXML schema. Other checks are subjective checks based

on the author's opinion and not the error scenarios. The following sections cover the

different types of errors and their rules.

4.4.1 Error Scenarios

All the errors that came up in this thesis, other than schema errors, are summarized in

Table 4.1. We try to create as many scenarios as possible to challenge the mvdXML

for several types of checks. These error cases are based on an objective basis and

derived from the documentation of mvdXML 1.1 (Chipman et al., 2016), the general

guidelines and checking procedures outlined in the theoretical background and litera-

ture review in Chapters 2 and 3, and the author's understanding of the topic. Objective

basis within this context means without the inclusion of the author’s opinion. Based on

those error scenarios, several types of objective mvdXML checking rules are designed,

described in the next section.

There are six error concepts defined that can occur in any mvdXML file. The first error

is RuleID not being unique within its scope of usage. When for example, two attributes

have the same value for the RuleID attribute in one concept template, this check fails.

This error may also occur if two RuleID(s) are similar in two different concept templates,

while one of them is referred to as a partial concept template into another, and there is

no unique IdPrefix. Otherwise, with the presence of a unique IdPrefix, in this case, the

RuleID value can be duplicated. Therefore, errors 1 and 2 complement each other in

the case of the reference to a partial concept template; either RuleID or IdPrefix must

be unique to form a unique combination of the value. The schema restricts the type of

RuleID and IdPrefic to mvd:ruleId, whose base is a normalized string. However, it does

not have the feature of limiting the duplication of those attributes. RuleID, with or with-

out the combination of IdPrefix, must be unique to prevent confusion when using it in

the Parameters string. Figure 4.5 depicts a part of the “ComponentRuleIDUniqueness”

mvdXML file (described in detail in Section 4.5.1), showing that the RuleID attribute is

Methodology and Implementation 43

duplicated twice for MaterialName and Category. Hence, this file fails against the

RuleID check.

Figure 4.5: Section of “ComponentRuleIDUniqueness” mvdXML file shows an error of RuleID duplica-

tion within the same concept template

The third error is regarding the Parameters attribute. This error is generated if one of

the following scenarios happens: -

a. No metric is defined within the Parameters strings: The user may forget to spec-

ify a metric or use the old grammar of mvdXML 1.0 even if the schema followed

in the mvdXML file is mvdXML 1.1.

b. Presence of MetricValue other than the enabled ones: There may be a typo of

[Exist] instead of [Exists], for instance.

c. Presence of any word that does not make sense: The only metric values that

make sense for mvdXML 1.1 is defined in Chapter 2.4. Any other metric that

might be thought of as supported or any other word between the square brack-

ets instead of those five metrics generates an error.

d. Presence of an attribute that is not in the mvdXML file: Parameters string may

have a RuleID that is not even defined in the referred concept template.

The schema generally enforces the existence of Parameters attribute for each Tem-

plateRule. However, it did not interfere with the content of the string regarding those

points.

Methodology and Implementation 44

Another four scenarios generate the “ref” error: -

a. No Template is referred to in the Applicability or/and Concept nodes

b. No Template is referred to in the EntityRule node when the References element

exists

c. The @ref attribute in the EntityRule node refers to a wrong concept template

UUID: This error can be caught by checking if the EntityName of the EntityRule

is similar to the applicableEntity of the referred concept template or not. If not,

an error is reported

d. The @ref attribute in any of the nodes mentioned above refers to non-existent

ConceptTemplate

The first two errors and the fourth are already schema errors in which the proposed

checker is tested on how it responds to such checks.

The fifth error occurs if two conditions exist. If there is a blank Parameters string in

Applicability or Concept nodes, and no Constraint exists in the referred concept tem-

plate. The last error scenario describes a case in which mvdXML, ConceptTemplate,

ModelView, ConceptRoot, or Concept have an empty @Name attribute. The schema

here enforces the existence of the @Name attribute since it is a required attribute, but

it does not enforce the presence of a value for it.

Methodology and Implementation 45

Table 4.1: List of the possible error scenarios

Error Scenarios

ID Attribute Type Error Description

1 RuleID Uniqueness
Two attributes have the same RuleID

name within the same scope

2 IdPrefix Uniqueness
Two IdPrefix have the same name

within the same scope

3a

Parameters
Content Correct-

ness (Value)

No MetricValue in the parameters

string

3b
Presence of MetricValue other than

the enabled ones in the mvdXML

3c
Presence of any word that does not

make sense instead of a MetricValue

3d
Presence of an attribute that is not in

the mvdXML file

4a

ref
Content Correct-

ness (Value)

No template is referred to in applicabil-

ity or concept node

4b

No template is referred to while the

reference attribute exists in the Enti-

tyRule node

4c
The ref in EntityRule node is referring

to a wrong concept template UUID

4d

The ref attribute in any of those nodes

refers to non-existent ConceptTem-

plate

5 Constraint Existence

The parameters string is empty, and

there is no Constraint in the referred

ConceptTemplate

6 Name
Content Correct-

ness (Value)

Required attributes such as Name ex-

ist but are empty

Methodology and Implementation 46

4.4.2 Checks Definition

The proposed mvdXML validation approach shares similar features to the IFC valida-

tion approach. In addition to adhering to all of the syntactic restrictions outlined in the

schema, a semantically validated IFC instance also needs to follow additional guide-

lines about the proper usage of model elements (Yang & Eastman, 2007).

Similarly, the scope of this thesis is not verification but validation. Based on the above

error analysis and the author's understanding, several types of mvdXML checks are

defined. The focus of the checks is not schema checks, but errors that can happen and

are not enforced in the schema, i.e., schema checks are out of scope. Nevertheless,

two schema-level checks and some subjective checks based on user-specific require-

ments are defined to review how the checker responds. The primary purpose of those

checks is to challenge the mvdXML as much as possible to know its limits. Further-

more, to decide at the end whether and how to expand mvdXML's checking capabilities

beyond the currently existing core checks of IFC data models, i.e., we are trying to be

mean to mvdXML and push it to its limits.

As an illustration for IFC checks, consider Figure 4.6, which depicts a rule of "any

IfcWall should be typed by an IfcWallType" in IFC 4. The usual way of defining IFC

checks follows the same concept as this illustration. The concept template describes

the root entity object (IfcObject) down to its relationship with the attribute value (which

is here IfcTypeObject) through the tree structure of attributes and entities. The check

itself is then employed in the concept by specifying the applicableRootEntity (which is

Ifcwall in this situation, a subtype of IfcObject), and the check is defined on the attribute

using any of the five metric values [Value],[Size],[Exists],[Type], and [Unique]. (Zhang

et al., 2014, pp. 29-30). Some of the designed checks follow the same concept logic

of IFC checks, and others differ slightly in the check definition. The mvdXML checker

is tested using all those different types of checks, and the results are used to examine

the versatility of mvdXML as a validation tool for other data models.

Methodology and Implementation 47

Figure 4.6: Model View Concept Example in mvdXML (Zhang et al., 2014)

Objective checks are based on the defined objectives in this thesis and on the facts

drawn from the theoretical concepts, the literature review, and some of the discussed

issues among the users (buildingSMART, https://forums.buildingsmart.org/t/problems-

when-parsing-and-automating-referenceview-v1-2-mvdxml/1935). In other words, the

objective checks are not influenced by personal opinions. They only consider and rep-

resent the current situation of mvdXML and their facts. In contrast, the subjective

checks are influenced by our perception of a valid mvdXML file, i.e., personal opinions

influence them. Despite this, some subjective checks may have an objective point of

view in particular situations (discussed in the following chapters). However, these par-

ticular situations can be solved with other checks from another point of view.

https://forums.buildingsmart.org/t/problems-when-parsing-and-automating-referenceview-v1-2-mvdxml/1935
https://forums.buildingsmart.org/t/problems-when-parsing-and-automating-referenceview-v1-2-mvdxml/1935

Methodology and Implementation 48

Table 4.2: List of the objective checks. The results of the red-coloured checks are of interest

Objective Checks Definition

ID Check Name Check Description Attribute Metric Value

1a RuleID Uniqueness
RuleID is unique within the

same scope
RuleID Unique

2a IdPrefix Uniqueness
IdPrefix is unique within the

same scope
IdPrefix Unique

3 MetricValue

There must be a correct appli-

cable metric value for each at-

tribute in every parameter

string

Parameters Value

4 ParametersAttributes

Each attribute existing in the

Parameters string must have

RuleID

Parameters Value

5 TemplateReference

There must be a ref attribute in

Applicability, Concept nodes,

as well as EntityRule if Refer-

ences exists

ref Exists

6 EntityReference

Check that the ref in EntityRule

node is referring to the correct

ConceptTemplate

ref Value

7
ReferencedCon-

ceptTemplates

All referenced ConceptTem-

plates in the EntityRule nodes

and ModelViews exist in the

mvdXML file

ref Value

8 Constraints

If parameters are empty, a con-

straint must exist in the referred

ConceptTemplate

Parameters &

Constraint

Value & ex-

ists

9 Name

Name attribute must exist in

mvdXML, ConceptTemplate,

ModelView, ConceptRoot, and

Concept

Name exists

Methodology and Implementation 49

Table 4.3: List of the subjective checks. The results of the red-coloured check are of interest

ReferenceConceptTemplates and TemplateReference checks are already schema

checks and enforced in the schema, but it is crucial to examine how the checker will

respond to schema compliance checks. Furthermore, as shown in the objective checks

table, there are only three types of metric values used; Unique, Exists, and Value. We

add another metric value in the subjective checks, “Size” in the OperatorExistence

check.

It is essential to say that even the subjective checks may have an objectively valid

reason behind them, according to the author. For example, the error "3d" in Table 4.1

above. The error, as discussed before, describes a case in which a parameters string

contains a RuleID that does not exist, as shown in Figure 4.7, depicting this case in

the “ComponentParametersAttributes” mvdXML file.

Subjective Checks Definition

ID Check Name Check Description Attribute Metric Value

1b RuleID Existence
Each AttributeRule has a

RuleID
RuleID Exists

2b IdPrefix Existence IdPrefix exists IdPrefix Exists

10 EntityRule
Each AttributeRule must have

EntityRule
EntityRule Exists

11 OperatorExistence
Operator exists when there is

more than one TemplateRule

Operator &

TemplateRule

Exists and

Size

Methodology and Implementation 50

Figure 4.7: ComponentParametersAttributes mvdXML file shows an error in the Parameters string

Since there are two sources of this error, it can have two ways to be checked. The first

source, which is more general covering a broader aspect, is that the parameters might

have an attribute that is not even defined in the mvdXML. In other words, the parame-

ters string contains any word not defined as a RuleID in the mvdXML file and out of the

scope, for example, “Category” in Figure 4.7 above. Respectively, the first objective

way is to check that the parameters string only contains the attribute RuleIDs. So that

any alien element within the string, such as “Category,” generates an error. This is the

most accurate way to catch such an error. The second source, which has narrower

scope but could be easier to implement within the mvdXML scope, is that the parame-

ters might have a RuleID that was intended to be present in the mvdXML but forgotten,

as shown in Figure 4.8, showing a part of “ComponentRuleIDExistence” mvdXML file.

Therefore, the second subjective way (RuleID Existence) is to ensure that for each

attribute, a RuleID exists. This method is another way to ensure that each referred

attribute in the parameters string exists in the mvdXML file. Unlike the first check, this

check catches that there is no RuleID, such as in Figure 4.8 but does not catch any

error in Figure 4.7 because the RuleID itself exists. Thus, there is still a risk for any

alien string to exist in the parameters string, which is not even an attribute

Methodology and Implementation 51

Figure 4.8: ComponentRuleIDExistence mvdXML file shows an error of non-existence of RuleID

Moreover, some checks, such as RuleID and IdPrefix, complement each other. The

base concept behind the two checks of RuleID uniqueness and IdPrefix existence is

that we want to ensure that the RuleID attribute is unique within the same scope. Within

the same scope means all concept templates which are related by referring to each

other. Therefore, the RuleID for each attribute must be different unless there is an

IdPrefix attribute on the EntityRule node of one of the AttributeRules that are similar in

two different concept templates. To implement this within the scope of mvdXML, the

objective RuleID uniqueness check is defined to ensure that each AttributeRule is

unique within one ConceptTemplate. At the same time, the subjective check of IdPrefix

existence guarantees that RuleIDs of referred concept templates are unique. There-

fore, the RuleID being unique between different concept templates is assured because

even if they have the same name, there is a prefix for the RuleID name of one of them.

Those are some examples of subjective checks based on an objective source. Other

subjective checks are user-based and depend solely on the author's opinion, which

may showcase some features. Such as the EntityRule check, which specifies that for

each AttributeRule, there must be an EntityRule to know its type because, in complex

schemas, there might be the exact name of two attributes but with different entities.

Another subjective check is OperatorExistence. Although the schema specifies a

Methodology and Implementation 52

default "and" operator to the TemplateRules node, a modification in the schema of not

defining a default operator along with this check must be considered. So that we pre-

vent a case in which the user forgets to specify another operator than the "and" oper-

ator. Besides, this check showcases that since there are some totally subjective

checks, there should also be checks to check them.

This chapter consists of all the ideas to be implemented in this work, but some of them

may not be applicable within the scope of mvdXML. Also, based on the results of the

checks, the subjective checks are still to be seen, whether they make sense or are

useless. The implementation and results chapters discover and explain all those con-

siderations thoroughly.

4.5 Implementation

The mvdXML standard, version 1.1, is the basis for this implementation. A thorough

description of its specification can be found in Chapter 2.4. It is also recommended to

read the documentation for more details (Chipman et al., 2016). This work is intended

to know what is required to check a data model other than IFC using mvdXML by im-

plementing a prototype of checking mvdXML using mvdXML. This chapter explains all

the implementation steps successively, from implementing the furniture example and

the mvdXML checks to executing the checker and testing.

4.5.1 Furniture Schema and Dataset

The following steps illustrated in Figure 4.9 are the main implementation steps to have

several furniture mvdXML files that will help us showcase different combinations of

attribute types and checking scenarios. It is important to mention that this example can

be tailored to any other elements, i.e., it is not specific to the furniture and chairs ex-

ample. The general framework is as follows: -

1. A general schema that has much flexibility

2. Data set based on this schema

3. MvdXMLs that check the data set

4. Incorrect mvdXML files

Methodology and Implementation 53

Figure 4.9: Framework of the furniture example

The first step in this example implementation is to tailor the furniture schema that has

a lot of flexibility, with different types of attributes and their relationships. The UML

diagram was introduced in Chapter 2 to explain schema and again outlined here in

Figure 4.10 to describe the furniture schema in depth. In the schema, there are seven

related classes. The schema begins with a furniture class that contains a chair class.

The chair class is considered the main class in our dataset, with several mandatory

and optional attributes of different types, such as the "Length" and "Width" attributes

of type double and other boolean attributes. It also inherits the integer "ID", the string

"Color" attributes, and another two objects, "Structure" and "Cushion" of type Material

from another class, called component. the "Structure" and "Cushion" objects have two

attributes: "Name" of type string and "Category" of type enumeration. In addition, the

chair class has three classes: Leg, Armrest, and Production. Leg and armrest classes

inherit the same attributes and objects of ID, Color, Structure, and Cushion from the

component class. The leg class also has two other bool attributes, "HasWheel" and

"IsSwiveling", while the Armrest class is empty. The production class includes different

types of attributes as well. The XML schema definition (XSD) of the entire schema is

attached in Appendix A.1.

Methodology and Implementation 54

Figure 4.10: UML class diagram of the furniture schema

The next step is creating a furniture dataset based on the furniture schema. A furniture

instance with four chair instances in the same XML file is designed. Each chair object

stores a different collection of information. The UML diagram of the furniture instance,

along with a detailed description of one chair object, Chair 3, is depicted in Figure 4.11

as an example. The characteristics of each chair object are specified so that each chair

is unique to the others to give different results when checking it. For example, Chair 3

has all the required and optional attributes of ID, Color, Length, HasBackrest,

HasHeadrest, and IsReclining, with specific values. The only optional attribute that was

not stated is Width. Additionally, it has a Production instance from the Production class

in which there is information for IsAntique, ProductionYear, and Country attributes but

does not have the optional attribute Manufacturer. Chair 3 also has Structure and

Cushion as attributes of the type material. The Category enumeration is metal and

textile, while the Name is steel and silk, respectively. Moreover, Chair 3 is composed

of three legs and one armrest. The three legs instances have all the attributes except

Color. Two have the same characteristics, while the third has only one different char-

acteristic: a wheel. The armrest does not contain information regarding the Color and

Methodology and Implementation 55

Structure attributes but only information on the Cushion attribute. The other three

chairs follow the same concept as Chair 3. Appendix A.2 shows the full XML created,

consisting of the four chair instances.

Figure 4.11: UML object diagram of chair3

The following step is constructing a Furniture mvdXML to check some features of the

Furniture dataset elements. It consists of four concept templates referring to Compo-

nent, Chair, Armrest, and Leg entities and nine concept roots representing nine differ-

ent checks. The main concept template in our mvdXML is the Chair concept template,

which refers to another two partial concept templates for the classes' Armrest and Leg.

The two ways to refer to another entity and its attribute in a concept template is show-

cased in the Furniture mvdXML file. The first way is shown in the case of the Chair

referring to the Armrest and Leg partial concept templates. To showcase the second

way of the tree structure of attributes and entities, the Material class is included in the

three concept templates using the tree structure of AttributeRule, called Structure or

Cushion, referring to EntityRule Material, referring to its attributes. Both techniques are

shown below in Figure 4.12. Finally, a separate concept template for the component is

created to visualize some cases discussed below.

Methodology and Implementation 56

Figure 4.12: Part of the furniture mvdXML shows the two ways of referring to another entity

The following checks are defined specifically for this example which are solely based

on the subjective point of view of the author. All the checks and their description are

outlined in Table 4.4. Nine checks are implemented in the furniture mvdXML to check

the dataset for several different features. It is interesting to view how the checker

responds to some checks, such as checks 3,5,7,8 and 9. In check 5, we are looking

for the existence of the structure attribute if the cushion attribute exists for any

component element. This check ensures that the checker responds well to such a

check, in which it will not only check one element but three; chair, leg, and armrest

since they all inherit these attributes from the component. Other checks, 3 and 7, have

Armrest and Chair as the applicableRootEntity in the ConceptRoot but refer to the

component ConceptTemplate to check the values of the attributes of structure and

cushion because there are inheritance relationships between them. All those checks

are expected to work well since they are not different from the concept of IFC checks,

except for check 8 and 9. Regarding checks 8 and 9, a new feature must be supported

within the mvdXML scope: check two RuleIDs against each other rather than checking

an attribute against a specific value. Hence, the checker is challenged with a new way

of checking. Since it is an example that we are confident of its content, the results of

such checks are already known. Chapter 5 discusses the results in depth.

Methodology and Implementation 57

Table 4.4: List of the furniture mvdXML checks. Green-colored checks are of high interest, while red-

colored checks expected to be more challenging in implementation

Furniture mvdXML Checks

Check ID Check Description

1
A chair reclines, has a headrest, and at least one armrest if it has a

backrest

2
If a chair is antique, then the production year, country, and the man-

ufacturer must be known

3
If the structure material of a chair is steel, then the cushion material

must be faux leather

4
The length and width of a chair must be equal to or greater than

52.5 and 48.5, respectively

5
If cushion attribute exists, then the structure must exist for the chair,

armrest, and leg

6 A leg must swivel if it has a wheel

7 If the structure category for an armrest is metal, then it must be steel

8 The cushion materials of the chair and its armrests are similar

9 The colors of a chair and its legs are similar

Table 4.5 outlines a summary of the checks' concept templates and concept roots. The

full individual mvdXML files can be found attached in Appendix A.3.

Methodology and Implementation 58

Table 4.5: Definition of the checks’ concept templates and concept roots. Green-colored checks are of high interest, while red-colored checks expected to be

more challenging in implementation

Furniture mvdXML implementation

Check

ID

Rule Implementation

ConceptTemplate ConceptRoot

applicableEntity applicableRootEntity Applicability TemplateRule

1 Chair Chair HasBackrest exists
IsReclining & HasHeadrest exist

Armrest size > 0

2 Chair Chair IsAntique exists Country, Manufacturer, & ProductionYear exist

3 Component Chair
StructureMaterial

Name=Steel
CushionMaterialName=Faux Leather

4 Chair Chair -----------
Length>=52.5

Width>=48.5

5 Component Component Cushion exists Structure exists

6 Leg Leg HasWheel exists IsSwiveling exists

7 Component Armrest StructureCategory=Metal StructureMaterialName=Steel

8 Chair Chair Armrest size > 0
CushionMaterialName=Armrests_CushionMaterial-

Name

9 Chair Chair ----------- Color=Legs_Color

Methodology and Implementation 59

Finally, for each defined mvdXML check, an mvdXML file, based on the furniture

schema, consisting of one or several furniture checks with intended errors, is created

to be captured by the developed checker. This step is essential to test the mvdXML

checks and ensure the ability of the checker to catch several types of errors. Twelve

mvdXML files are developed, including different types of errors. They are summarized

in Table 4.6, while the complete mvdXML files can be found in Appendix A.4. Regard-

ing EntityRule check, there is no need to create specific incorrect mvdXML for it be-

cause there are already several attributes without entities in the furniture mvdXML.

Table 4.6: List of furniture incorrect mvdXML files

Incorrect mvdXML files

Name Error Check

ComponentRuleIDUnique-

ness

RuleID (MaterialName)

repeated twice within the

same scope
RuleID

ComponentRuleIDExist-

ence

RuleID does not exist for

cushion, structure, name,

and category attributes

ChairIDPrefixUniqeness
Armrest and leg have the

same IdPrefix
IdPrefix

ChairIDPrefixExistence
Armrest and leg do not

have IdPrefix

ComponentMetricValue
There is no MetricValue

or incorrect one
MetricValue

ComponentParametersAt-

tributes

There is no RuleID called

StructureName or Cate-

gory

ParametersAttributes

ChairTemplateReference

No template is referred to

in the Applicability, Con-

cept, and EntityRule

nodes

TemplateReference

Chair-LegEntityReference

Leg ConceptRoot refers

to Chair ConceptTem-

plate

EntityReference

Methodology and Implementation 60

Table 4.6 List of furniture incorrect mvdXML files, continued

ChairReferencedConcept

Templates

EntityRule, ConceptRoot,

and Concept refer to con-

cept templates that does

not exist in the mvdXML

ReferencedConceptTemplates

ChairConstraints

Existence of empty pa-

rameters in Applicability

and Concept nodes, and

no constraints exist

Constraints

ChairName

Name attribute is empty

for mvdXML, Con-

ceptTemplate, Mod-

elView, ConceptRoot,

and Concept

Name

ChairOperatorExistence

No operator is specified

while there is more than

one TemplateRule

OperatorExistence

4.5.2 MvdXML Checks

The main point to remember again while implementing mvdXML checks is that the

main focus is not checking if the file is valid according to the schema or not since there

are already available tools that could check schema compliance. This work checks

certain optional features and criteria to be fulfilled. Added to this note, while implement-

ing the Applicability in the ConceptRoot, there is no need to consider the existence of

an element if checking its value, size, uniqueness, or type since the existence is al-

ready implicitly checked before the main check itself. For example, in the RuleID

uniqueness check, we only implement "RuleID[Unique]=TRUE" in the parameters

string without any applicability condition. If RuleID does not even exist, then this entity

fails.

Each check is created in a separate file at the beginning of the implementation in order

to be able to check each one independently on the furniture mvdXML first to track any

source of errors easily. Then all the applicable checks, which proved their usefulness,

are merged in one mvdXML file, called mvdXMLChecks, which is used to check the

official mvdXMLs and itself. In total, this paper presents eleven mvdXML files with

Methodology and Implementation 61

different checks. As shown in Table 4.7, the checks use all metrics except for the metric

value "type". In addition, Regex expression is employed in a significant check, such as

MetricValue. All those checks with these metric values and Regex combinations are

expected to be easily applied, as their logic and implementation are similar to IFC

checks. Other different checks can be a little bit challenging or maybe even totally

inapplicable. Such examples are ParametersAttributes, EntityReference, and Applica-

bleRootEntity. The first check tries to use a RuleID within a Regex expression, while

the other two checks apply a two-sided check within different concept templates. All

the mvdXML checks files are available in Appendix B.

Methodology and Implementation 62

Table 4.7: ConceptTemplate(s) and ConceptRoot(s) of the proposed mvdXML checks. The red-colored checks indicate a challenge in the implementation

MvdXML implementation

ID MvdXML

Rule Implementation

ConceptTemplate ConceptRoot

applicableEntity applicableRootEntity Applicability TemplateRule

1a
RuleID

ConceptTemplate ConceptTemplate ------- RuleID unique

1b AttributeRule AttributeRule ------- RuleID exists

2a

IdPrefix

ConceptTemplate ConceptTemplate IdPrefix exists IdPrefix is unique

2b EntityRule EntityRule
References ex-

ists
IdPrefix exists

3 MetricValue
TemplateRulesTemplat-

eRule

TemplateRulesTemplat-

eRule

Using Regex to ensure Param-

eters contain an applicable

metric

4
ParametersAt-

tributes
mvdXML mvdXML -------

Parameters

[Value]=reg'.*(RuleID[Value]).*'

5
TemplateRefer-

ence

ConceptRoot ConceptRoot
Applicability ex-

ists

@ref != ‘ ’ Concept Concept -------

EntityRule EntityRule
References ex-

ists

Methodology and Implementation 63

Table 4.7 ConceptTemplate(s) and ConceptRoot(s) of the proposed mvdXML checks. The red-colored checks indicate a challenge in the implementation,

continued

6 EntityReference mvdXML mvdXML -------
ref=uuid AND EntityName=ap-

plicableEntity

7a

ReferencedCon-

ceptTemplates
mvdXML mvdXML

Applicability ex-

ists
Applicabilityref=uuid

7b ------- Conceptref=uuid

7c
References ex-

ists
Entityref=uuid

8 Constraints mvdXML mvdXML Parameters=”” Constrain exists

9 Name

mvdXML mvdXML

------- Name exists

ConceptTemplate ConceptTemplate

ModelView ModelView

ConceptRoot ConceptRoot

Concept Concept

10 EntityRule AttributeRule AttributeRule ------- EntityRule exists

11
OperatorExi-

stence

ConceptRoot ConceptRoot
A_Template-

Rule size>1
A_Operator exists

Concept Concept
C_Template-

Rule size>1
C_Operator exists

Methodology and Implementation 64

4.5.3 Checker

The checker was provided to me by the company The Hard Code GmbH, which I fur-

ther developed and built upon it by implementing the necessary interfaces to fit with

the furniture schema first and then to fit with checking mvdXML with mvdXML. Next,

test units are developed for each stage of the testing process to test the procedure

thoroughly. Each unit test needs two inputs, the dataset, and the checking file, giving

out one output, the markdown report. The checker works so that schema-level checks

are implemented before executing the mvdXML check. If there is a schema-level error,

it throws an exception and does not execute the test. Hence, no need to design specific

checks based on the schema. It supports the five primary checks of value, size, type,

existence, and uniqueness. The checker is further developed it also to check for two-

sided rules.

As mentioned before, the Markdown report has been chosen instead of BCF because

only a pass/fail result is required. BCF has much more to do than report a pass or fail

result, while a markdown report is much simpler. Thus, the checker itself generally

works with the same logic as the IFC checker, but instead of IFC and BCF, mvdXML

and Markdown. The report's structure, as shown in Figure 4.13, is straightforward,

showing the report's name first, then the checked entity, followed by the ConceptRoot

in which the check rules are enclosed. The check results are then given by showing

how many elements of this entity are applicable and how many are not. The applicable

ones are then checked to know how many of those are failing and how many are pass-

ing. Even though this may sound redundant to show both the failed and passed enti-

ties, it offers confidence that the checker works well in each detail.

Figure 4.13: Structure of the report

Testing and Results 65

This chapter discusses each testing phase done in this work in depth. The testing pro-

cedure uses different datasets for each stage. The results of each phase and its effect

on the implementation procedure are reviewed. Then, a general analysis of the checks

is outlined in Chapter 6, along with graphs to illustrate and visualize the results.

5.1 Furniture Dataset

As discussed before, the first step of the testing procedure is checking the furniture

XML file, consisting of a collection of information about four different chairs, against

the designed furniture mvdXML. A manual check of the furniture dataset against its

mvdXML has already been performed, and its results are summarized in Table 5.1.

Table 5.1: Results of the manual check of the furniture dataset against the furniture mvdXML

Manual Check Results

Check ID
Chair ID

1 2 3 4

1 Fail Not applicable Pass Pass

2 Not applicable Pass Fail Pass

3 Not applicable Pass Fail Pass

4 Pass Fail Fail Pass

5 Fail Pass Pass Pass

8 Not applicable Pass Fail Pass

9 Pass Fail Fail Pass

 Legs

5 Not applicable

6 Pass
2.1, 2.2, 2.3,

2.4 Fail

3.1, 3.2 Not

applicable

3.3 Fails

Pass

 Armrests

5 ------- Pass 3.1 Fails Pass

7 -------
2.1 Fails

2.2 Pass
Not applicable Pass

5 Testing and Results

Testing and Results 66

Figures 5.1 and 5.2 illustrate the report results of the chair, leg, and armrest entities. It

shows how many instances are applicable or not and which ones failed and passed by

representing their ID attribute. The results of the above manual check are precisely the

same as the results of the generated report of the automatic check.

Testing and Results 67

Figure 5.1: Report showing the results of chair entity

Testing and Results 68

Figure 5.2: Report showing the results of leg and armrest entities

The second step of the evaluation procedure also includes the furniture schema, in

which the furniture mvdXML file is checked against the mvdXML checks. Then the

incorrect mvdXML files are checked against the mvdXML checks also.

First, several unit tests are implemented according to the number of checks. Each unit

has furniture mvdXML as the first fixed input and an mvdXML check as the changing

second input. Thus, eleven-unit tests are implemented and executed on the furniture

mvdXML. The following matrix in Figure 5.3 classifies the reports into four categories:

true positive, false positive, false negative, and true negative. True positive means that

regarding this check on furniture mvdXML, some/all elements passed as expected.

While false positive means that some/all elements passed as not expected. True and

false negatives are the concept in which the elements fail. For example, EntityRule

check gives pass and fail results for different AttributeRule(s) in the furniture mvdXML

file, which is true as expected since some have EntityRule, and others do not.

Testing and Results 69

Figure 5.3: Confusion matrix of mvdXML checks on the furniture mvdXML

Thus, the following graph in Figure 5.4 visualizes that from those eleven results, the

results of two check does not make sense and are false, which are ParametersAttrib-

utes and EntityReference. Error sources of those checks are thoroughly discussed in

Chapter 6. All the related eleven reports can be found in Appendix C.

Testing and Results 70

Figure 5.4: Histogram showing the number of reasonable and unreasonable results of the furniture

mvdXML

Next is to check the designed incorrect furniture mvdXMLs against the mvdXML checks

to view how many of the intended errors can be caught and compare the results with

the above results. Twelve unit tests are created, each with the inputs of one mvdXML

check and the respective incorrect mvdXML file. The findings from the developed unit

tests are elaborated in Figures 5.5 and 5.6. Since TemplateReference and Refer-

encedConceptTemplates are schema checks, the checker was adapted so that it does

not check the incorrect files against the schema first. Instead, it just executes the

mvdXML check.

0

1

2

3

4

5

6

7

8

9

10

Reasonable Results Unreasonable Results

Reasonability

Testing and Results 71

Figure 5.5: Confusion matrix of mvdXML checks on the incorrect furniture mvdXMLs

Out of twelve errors, one file gives false positive results: OperatorExistence. On the

other hand, opposite to the first checking case, we can view that ParametersAttributes,

EntityReference, and the third ConceptRoot of ReferencedConceptTemplates give ac-

curate results in this testing case. In contrast, they give false results in the first one.

The following Figure 5.6 views the number of results that are reasonable and not rea-

sonable. The next chapter compares and analyzes these findings to draw some es-

sential conclusions. The detailed reports of the results are attached to Appendix C.

Testing and Results 72

Figure 5.6: Histogram showing the number of reasonable and unreasonable results of the incorrect

mvdXMLs

5.2 Other mvdXMLs

The third evaluation stage uses nine mvdXML files described in Section 4.3.3. The

results show that out of the nine files, no mvdXML is 100% accurate and correct ac-

cording to the subjective and objective checks. There are around five files, which con-

tain several errors, either schema-level errors or errors based on the checks, while the

other four have up to three errors. Table 5.2 recaps the files and their checking results.

0

2

4

6

8

10

12

Reasonable Results Unreasonable Results

Reasonability

Testing and Results 73

Table 5.2: Summary of the discovered errors in the mvdXML files

MvdXML file Error MvdXML check

ReferenceView

Several AttributeRule(s) do not

have RuleID
RuleID

Several AttributeRule(s) do not

have EntityRule
EntityRule

Eight EntityRule(s) do not have

IdPrefix
IdPrefix

All TemplateRule(s) do not have

metric value
MetricValue

mvdXML and several ConceptTem-

plate(s) have empty @Name
Name

QuantityTakeOff

Several AttributeRule(s) do not

have RuleID
RuleID

Several AttributeRule(s) do not

have EntityRule
EntityRule

Six EntityRule(s) do not have IdPre-

fix
IdPrefix

Several TemplatRule(s) do not

have metric value
MetricValue

MvdXML and several ConceptTem-

plate(s) have empty @Name
Name

IFC4precast

Several AttributeRule(s) do not

have RuleID
RuleID

Seven AttributeRule(s) do not have

EntityRule
EntityRule

MvdXML has empty @Name Name

Testing and Results 74

Table 5.2 Summary of the discovered errors in the mvdXML files, continued

KIT_Example1

AttributeRule: Name does not have

EntityRule
EntityRule

EntityRule:IfcSimpleProperty does

not have IdPrefix
IdPrefix

KIT_Example2

Two AttributeRule(s) do not have

RuleID
RuleID

Several AttributeRule(s) do not

have EntityRule
EntityRule

Six EntityRule(s) do not have IdPre-

fix
IdPrefix

Documentation Ex-

ample

Nine AttributeRule(s) do not have

RuleID
RuleID

Two AttributeRule(s) do not have

EntityRule
EntityRule

One ConceptRoot has empty

@Name
Name

COBie

Several AttributeRule(s) do not

have RuleID
RuleID

Six AttributeRule(s) do not have En-

tityRule
EntityRule

All TemplateRule(s) do not have

metric value
MetricValue

mvdXML, all ConceptRoot(s) and

one Concept have empty @Name
Name

AlignmentBasedRV

Several AttributeRule(s) do not

have RuleID
RuleID

Several AttributeRule(s) do not

have EntityRule
EntityRule

Six EntityRule(s) do not have IdPre-

fix
IdPrefix

Several TemplateRule(s) do not

have metric value
MetricValue

Testing and Results 75

Table 5.2 Summary of the discovered errors in the mvdXML files, continued

IFC4_GU

Several AttributeRule(s) do not

have RuleID
RuleID

Several AttributeRule(s) do not

have EntityRule
EntityRule

Six EntityRule(s) do not have IdPre-

fix
IdPrefix

Several TemplatRule(s) do not

have metric value
MetricValue

Mvdxml has empty @Name Name

Along with the above summary table of errors, several interesting errors and results

are objectively highlighted in this section, while the next chapter discusses them thor-

oughly. The results of ReferenceView, for example, show that all TemplateRule(s) fail

according to the MetricValue check because, as we can see in Figure 5.7, there is no

metric value following the old grammar of mvdXML 1.0. There is also one Templat-

eRule that is empty. The same applies to COBie, QTO, and IFC4_GU mvdXMLs, which

contain TemplateRule(s) that do not have metric values or are empty. Nevertheless,

for the empty TemplateRule, as long as the Constraints check passes, then we can

ignore it.

Figure 5.7: Part of the ReferenceView mvdXML showing its parameters element follow the old gram-

mar of mvdXML 1.0

The checker checks all those files against a merged file of only the applicable and

reasonable mvdXML checks based on the previous stages. Thus, ParametersAttrib-

utes, EntityReference, OperatorExistence, and the third ConceptRoot of Referenced-

ConceptTemplates checks were excluded. As mentioned before, the checker first val-

idates the mvdXML file against the schema. Therefore, several adjustments had to be

made on several files before executing the primary checks. For example, Reference-

View and QuantityTakeOff have been adapted since multiple of its ConceptTemplates

did not have the required attribute @name. Hence, the attribute has been added but

remained empty. All the failing ConceptTemplate entities, according to the @name

Testing and Results 76

check, are the ones that did not have it in the first place. QTO mvdXML was also invalid

according to the schema for having @status as mandatory, while status is an enumer-

ation that does not have this option in mvdXML 1.1. It has been adapted, and then the

checking procedure was accomplished.

Another mvdXML that was adjusted is COBie. All the empty @status attributes (sta-

tus=" ”) have been removed, followed by changing (status=" Candidate" to status="

candidate"). In addition, the attribute @name has been added to the mvdXML element.

The value of the @applicablity attribute has also been changed from being "default" to

"both" and the @requirement value from being "optional" to "recommended". Again, all

those attributes are enumerations with specific options in mvdXML 1.1. Moreover, Fig-

ure 5.8 visualizes part of the COBie mvdXML report, in which one can visualize that

"Rules" is encoded instead of "TemplateRules", which is again an old grammar of

mvdXML 1.0. Hence, it has been edited to be used within the scope of this thesis.

Figure 5.8: Part of the COBie mvdXML

Furthermore, AlignmentBasedRV was adjusted so that each TemplateRule has the

required attribute @Parameters, which was not the case. All the failed Templat-

eRule(s), according to the MetricValue check, were invalid according to the schema in

the first place since there was already no @Parameters attribute.

5.3 MvdXML Checks

The last data model used in the procedure using the mvdXML checks is the mvdXML

checks file itself. The same checks applied to it, and there are no errors found, which

means the mvdXML is 100% accurate according to the checks. The report results in

detail can be found in Appendix C.

Discussion 77

This chapter closely examines the results of all the employed testing phases. The re-

sults and findings are compared and illustrated to identify the accuracy variations and

the applicability of the mvdXML checks. This discussion subjectively evaluates the re-

sults and the process.

In general, as mentioned throughout this paper, validation is a very subjective process.

Hence, the whole implementation, testing, and evaluation procedures can be consid-

ered subjective, even if we tried to be as objective as possible. Overall, the checker

proves its practicality and potential to check other data models and expand its usage.

However, the method has some limitations that are also discussed in this chapter.

Figure 6.1 elaborates the objectiveness of the implemented checks. Downward are the

objective checks, based on the mvdXML documentation, along with some schema

checks, while upward are the subjective checks, based on the author's view. In be-

tween come RuleID and IdPrefix checks, which are Objective-Subjective since their

existence is a subjective check, but together they have a logical objective reason be-

hind them. In RuleID, the first ConceptRoot checks for the existence of RuleID to en-

sure that all referred attributes in Parameters have their RuleID, while the second Con-

ceptRoot checks for the uniqueness of RuleIDs within only one ConceptTemplate. To

check the uniqueness within multiple ConceptTemplates, IdPrefix checks were created

to ensure the existence of a unique IdPrefix when referring to another ConceptTem-

plate. This flow would have been more effortless if the mvdXML 1.1 grammar enabled

us to check further a specific entity based on the result of a predecessor check. So that

one can specify that if the RuleID of two AttributeRules in different ConceptTemplate

is not unique, then check if one of them has an EntityRule with a unique IdPrefix.

6 Discussion

Discussion 78

Figure 6.1: Scale of objectiveness of the mvdXML checks

From those eleven checks, two checks are inapplicable, EntityReference and Param-

etersAttributes, and thus give unreasonable results, while OperatorExistence is appli-

cable and can be implemented but gives unreasonable results also. Therefore, around

73% of the checks give correct meaningful, valuable results. These findings can be

visualized in Figure 6.2, followed by an explanation of the inapplicability and absurdity

of the checks.

Discussion 79

Figure 6.2: Chart showing the number of unreasonable and/or inapplicable checks

In EntityReference check, the concept of right-hand-sided RuleIDs did not work cor-

rectly because it only compares the @ref of the EntityRule against the @uuid of its

ConceptTemplate, which in return always gives a "fail" result. After all, these two ele-

ments will never be equal. For example, as shown in Figure 6.3, when EntityReference

check was executed on the furniture mvdXML, it showed a false negative result be-

cause it only compared the Armrest @ref with the first ConceptTemplate @uuid. In

another check, such as ReferencedConceptTemplate, the right-hand-sided work per-

fectly because the two elements (RuleID) checked against each other are not within

the same node, such as EntityReference check. In addition, the logic behind the Enti-

tyReference check has another limitation. The check is not only to check the @ref

against @uuid but also to ensure that the EntityName is the same as the applica-

bleEntity of the referred ConceptTemplate, which is challenging to implement.

Reasonable Results

Unresonable Results

0

1

2

3

4

5

6

7

8

Applicable Inapplicable

Applicability and Resonability

Reasonable Results Unresonable Results

Discussion 80

Figure 6.3: Part of the furniture mvdXML file showing how EntityReference check works

Furthermore, In the ParametersAttributes check, the rule tries to use a RuleID within a

Regex expression (Parameters [Value]=reg'.*(RuleID[Value]).*'). Although this is a

very significant objective check, it was inapplicable with the current grammar of

mvdXML 1.1. Hence, an error such as that in ReferenceView official mvdXML, where

there are no RuleID called “Spatial Composite” or “Spatial Parts” but mentioned in the

Parameters string, was not caught due to the inapplicability of this check.

Regarding the OperatorExistence check, the rule syntax was easy to implement, but

since there is always a default operator "and" to TemplateRules, the result is always

"pass.” Therefore, there is no need for this check currently. Even though, subjectively

saying, it is better in the future to remove the mandatory default "and" operator and to

consider this check to allow the user to specify which specific operator he needs. Oth-

erwise, if forgotten, the mvdXML file will consider it "and,” while the user may mean

another logical operator.

To sum up, eight of eleven checks show applicability as well as meaningful results.

The applicable eight checks proved their usefulness and can be used for future studies.

Hence, they are enough to consider this prototypical implementation a successful

methodology. A scale of the toughness of the implementation of those checks is shown

in Figure 6.4. The figure illustrates how easy or complicated the implementation of such

checks is within the scope of mvdXML grammar. As shown, ParametersAttributes and

EntityReference are inapplicable and give wrong results. At the same time, Refer-

encedConceptTemplates is relatively difficult to implement since a new way of

Discussion 81

supporting checks that have RuleIDs on both sides is developed, i.e., comparing two

values from the same mvdXML file. This check has three concept roots for three dif-

ferent entities: Applicability, Concept, and EntityRule. The first two concept roots work

correctly, while the third one, which is related to the EntityRule @ref, gives unmean-

ingful results, because same as EntityReference, it is trying to compare two RuleIDs

within the same ConceptTemplate as shown in Figure 6.3. All other checks were ap-

plicable because they were implemented similarly to the usual concept of IFC checks.

Figure 6.4: Scale of difficulty of the mvdXML checks

Similar to the above scale, Figure 6.5 visualizes another scale for evaluating the

knowledge we get from each check. The scale shows that three checks are totally

useless since they give false results. Next, come ReferencedConceptTemplates and

Constraints checks which do not provide complete information about which entity is

exactly failing since the applicableRootEntity is the root element mvdXML. This is be-

cause mvdXML 1.1 does not have the feature of referring to two ConceptTemplates,

Discussion 82

in contrast to mvdXML 1.2. Additionally, the mvdXML schema currently defines the

applicableRootEntity as a string, not an array of strings. The user cannot specify dif-

ferent entities to be checked in the right-hand-side rules. Hence, the root entity was set

to mvdXML to be able to check two RuleIDs against each other from two different

nodes. Therefore, the results are not very detailed and clarified due to the generality

of the entity, i.e., the user knows this mvdXML file fails due to an error according to this

check, but he must manually search for which exact entity caused this error. Moreover,

in the Constraints check, the rule only ensures that there is a Constraint attribute in the

whole mvdXML file if there is an empty Parameters string instead of explicitly checking

the existence of this attribute within the specified referred ConceptTemplate of the

blank Parameters string. Therefore, the user must continue manually for more infor-

mation on this result. Finally, it can also be seen that the other six checks give 100%

valuable results.

Figure 6.5: Scale of knowledge of the mvdXML checks

Discussion 83

The pie chart in Figure 6.6 classifies the accuracy and correctness of the mvdXML files

being tested into four categories, 100%, 75%, 50%, and 25% of correctness. This clas-

sification is based on two factors; the number of failed results and the number and

severity of schema errors discovered. These results conclude that checking any

mvdXML file, whether the official BuildingSMART ones or others created by other end

users, is crucial. Furthermore, it can be observed that the bigger the size of the

mvdXML file, the more prone it is to errors, whether errors according to the schema or

to the developed checks. IFC4precast and IFC4 general usage mvdXMLs are the only

two official mvdXMLs that did not have any schema error in the first place. Neverthe-

less, IFC4 general usage has five types of errors according to the mvdXML checks,

while IFC4precast has only three. Along with IFC4precast, the mvdXML examples of

KIT and the documentation show the highest accuracy after the mvdXML file of checks

itself. The mvdXML checks file has 100% accuracy because it matches all the defined

rules.

Generally, the mvdXML files from sources other than the official buildingSMART have

more accuracy. This can mean the more complex the file is, the more its fragility to-

wards mistakes. In the scenario of empty parameters but constraints check pass, the

errors are ignored because there is a reason behind the parameter being blank. How-

ever, in the case of the absence of metric values within parameters, such as in Refer-

enceView, AlignmentBasedRV, and IFC4_GU, the errors were considered because it

does not make sense that the expressions still follow the old style of the previous ver-

sion, even if still supported. It must be encoded with the current grammar of mvdXML

1.1, which is more self-explanatory for both humans and computers.

Discussion 84

Figure 6.6: Pie chart mapping the accuracy of the mvdXML files according to the checks

To conclude, the prototypical implementation in this study has proved its success and

usefulness. Using mvdXML to check itself can help guarantee the correctness of

mvdXMLs, which is highly needed, as elaborated in the previous paragraphs. It thus

has the potential also to be used on other data models. However, some limitations

regarding mvdXML 1.1 grammar and schema must be addressed. The following bullet

points sum up some of the discovered limitations: -

1. Support of rules with Right-hand sided RuleIDs within the same entity/node

2. Use of RuleID within a Regex expression

3. Referring to two ConceptTemplates in ConceptRoot

4. Setting different entities for Applicability and Concept within the same Concep-

tRoot

5. Selecting more than one entity in the ApplicableRootEntity

6. Selecting a specific entity with a particular value in the ConceptRoot to be

checked

MvdXMLChecks

IFC4precast
Documentation

kIT 1
KIT 2

IFC4_GU

ReferenceView
QTO

COBie
AlignmentBasedRVR

MvdXMLs Accuracy

100% 75% 50% 25%

Summary 85

7.1 Conclusion

This thesis evaluated and analyzed the capabilities of the employment of mvdXML as

a validation tool on data models other than IFCs by developing a checker model that

checks mvdXML data models using mvdXML. The structure of this paper first intro-

duced the concept of validation and verification, as well as the current state of mvdXML

and its schema structure. Then it has been decided to validate mvdXML files using

itself subjectively, and thus the correctness of mvdXML files has also been checked

according to the designed checks. The checker used different datasets to check, in-

cluding a simple furniture example designated by the author, along with other official

BuildingSMART mvdXMLs and mvdXMLs from other sources. The results outcome

has then been compared and analyzed to understand how mvdXML can support dif-

ferent types of checks and react to them.

After the first evaluation procedure on the checks using the furniture example, eight

checks that performed the best within the scope of mvdXML were then merged into

one mvdXML file called mvdXMLChecks. This mvdXML file can be used as a final

version to check any mvdXMLs. The final chosen checks are RuleID, IdPrefix, Tem-

plateReference, MetricValue, Constraints, Name, ReferencedConceptTemplates, and

EntityRule. These rules check well and properly some features which are of use to our

specified objectives, such as detecting missing elements, ensuring correct content

within strings and correct values of attributes, as well as detecting mistakes in elements

usage. Therefore, mvdXML proves that it can be further developed to be a more ver-

satile tool. The end-user has the freedom to consider more or less of the developed

checks in this work and to edit or update them to adapt them to his own use case or

maybe also to develop the method further to support other data models.

In addition to the discovered capabilities of mvdXML, this implemented method has

also discovered some limitations that were addressed in detail in the previous chapter,

which concludes to the fact that the mvdXML needs to be expanded to show more

flexibility to support more useful checks. It has been proven scientifically through this

thesis that the schema needs more improvement and expansion in future versions.

7 Summary

Summary 86

7.2 Future Work

There are some limitations in this study and opportunities for further research. One

major limitation of this study is that it focused on one version of mvdXML 1.1, which

does not show all the new features that are supported by mvdXML 1.2. Further re-

search could expand the implemented method to include more checks based on the

latest 1.2 version to increase the checker efficiency. Additionally, the study looked only

at the effects of the implementation of mvdXML checking mvdXMLs but omitted other

data models. Further research could consider using mvdXML to validate other data

models within the same field and scope to study how adaptable and flexible mvdXML

is as a validation tool.

Furthermore, various limitations have been discovered in this thesis. Several recom-

mendations for expanding the future schema that this or the past work have not cov-

ered can be introduced. It might be interesting for other researchers to develop further

the schema and the checks based on it. These topics can encourage others to keep

adding new features, coming up with fresh concepts and making improvements and

enhancements.

• Add a feature to use a RuleID within a Regex expression

In the current checks, we were not able to implement a check such as that in

ParametersAttributes mvdXML (Parameters [Value]=reg'.*(RuleID[Value]).*'). In

the future, the mvdXML schema can be expanded to enable the mvdXML to use

RuleID within Regex expression, which will help develop more checks and en-

hance their quality.

• Enable Right-hand sided RuleIDs within the same node

In the future, the Right-hand sided RuleIDs rules should be improved to work

correctly within the same element. For EntityReference check, for example, we

need to add the support of a feature to check each @ref attribute with all the

other ConceptTemplate @uuids, as shown in Figure 7.1. The same concept

follows for the third ConceptRoot of ReferencedConceptTemplates check.

Summary 87

Figure 7.1: Illustration showing how right-hand-side RuleID within the same node should work

• Enable referring to a particular entity with a specific feature

The schema should be expanded to allow checking particular entities with spe-

cific values. In other words, regarding the EntityReference check, the user

should be able to choose the referred ConceptTemplate in the EntityRule node

and apply another check on it. Figure 7.2 clarifies this check concept, which is

currently inapplicable.

Figure 7.2: Illustration showing how EntityReference check should work

Summary 88

• Update the checks based on the grammar of mvdXML 1.2 + new features

MvdXML 1.2 supports referring multiple ConceptTemplates since it was a re-

quirement that came up between 1.1 and 1.2. Since needs are constantly ex-

panding, an additional provision that would support and enhance this feature is

to set applicableRootEntity as an array of strings to enable the user to specify

two entities, one primary entity and another secondary entity. This enhancement

would again help checks such as the Constraints check to be more self-explan-

atory.

• Add totally new checks

We have already implemented this set of rules based on some defined objec-

tives from the author's point of view. The checker can also have new checks to

fulfill other goals and purposes. Moreover, a new checking procedure with an

additional set of checks can be implemented to check the developed checks in

this paper. It would be somehow an infinite process of reviewing the checks

since any checker is prone to errors, and thus it would be very wise to define

another set of rules which checks that the checker's checks make sense. For

example, the OperatorExistence check was easily implemented but generated

non-sense results. Such rules must be reviewed to guarantee the perfect quality

of the whole procedure for generating mvdXMLs.

References 89

Azhar, S. (2011). Building information modeling (BIM): Trends, benefits, risks, and
challenges for the AEC industry. Leadership and management in engineering,
11(3), 241-252.

Baumgärtel, K., Pirnbaum, S., Pruvost, H., & Scherer, R. J. (2016). Automatic BIM
filtering using model view definitions. 33rd CIB W78 conference, Brisbane,
Australia,

Bolchini, C., & Salice, F. (2000). The design of self-checking systems. Proc. 1st On-
Line Symposium for Electronics Engineerings (OSEE),

Booch, G. (2005). The unified modeling language user guide. Pearson Education India.

Borrmann, A., König, M., Koch, C., & Beetz, J. (2015). Building Information Modeling:
Technologische Grundlagen und industrielle Praxis. Springer-Verlag.

Borrmann, A., König, M., Koch, C., & Beetz, J. (2018). Building information modeling:
Why? what? how? In Building information modeling (pp. 1-24). Springer.

buildingSMART. IFC Formats. Retrieved: https://technical.buildingsmart.org/
standards/ifc/ifc-formats/. Accessed: 30.10.2022

buildingSMART. Industry Foundation Classes (IFC) – An Introduction. Retrieved:
https://technical.buildingsmart.org/ standards/ifc/. Accessed: 30.10.2022

buildingSMART. Model View Definition (MVD) – An Introduction. Retrieved:
https://technical.buildingsmart.org/ standards/ifc/mvd/. Accessed: 30.10.2022

buildingSMART. The curious case of the MVD. Retrieved:
https://blog.buildingsmart.org/blog/the-curious-case-of-the-mvd/ . Accessed:
30.10.2022

buildingSMART. mvdXML. Retrieved: https://technical.buildingsmart.org/
standards/ifc/imvd/mvdxml/. Accessed: 30.10.2022

buildingSMART. MVD Database. Retrieved: https://technical.buildingsmart.org/
standards/ifc/imvd/mvd-database/. Accessed: 30.10.2022

buildingSMART. Problems when parsing and automating ReferenceView_V1-
2.mvdxml. Retrieved: https://forums.buildingsmart.org/t/problems-when-
parsing-and-automating-referenceview-v1-2-mvdxml/1935. Accessed:
30.10.2022

Cerovsek, T. (2011). A review and outlook for a ‘Building Information Model’(BIM): A
multi-standpoint framework for technological development. Advanced
engineering informatics, 25(2), 224-244.

Chipman, T., Liebich, T., & Weise, M. (2012). mvdXML. In: Retrieved from:
Specification of a standardized format to define and ….

Chipman, T., Liebich, T., & Weise, M. (2016). mvdXMl specification 1.1. Model Support
Group (MSG) of buildingSMART International Ltd.

Cunningham, T. (2013). Factors affecting the cost of building work-an overview.

References

References 90

Di Zio, M., Fursova, N., Gelsema, T., Gießing, S., Guarnera, U., Petrauskienė, J.,
Quensel-von Kalben, L., Scanu, M., ten Bosch, K., & van der Loo, M. (2016).
Methodology for data validation 1.0. Essnet Validat Foundation.

Dykes, L., & Tittel, E. (2011). XML for Dummies. John Wiley & Sons.

EN 17412‑1:2020. (2020). Building Information Modelling - Level of Information Need.

Gao, J., Xie, C., & Tao, C. (2016). Big data validation and quality assurance--issuses,
challenges, and needs. 2016 IEEE symposium on service-oriented system
engineering (SOSE),

Hietanen, J., & Final, S. (2006). IFC model view definition format. International Alliance
for Interoperability, 1-29.

Hjelseth, E. (2016). Classification of BIM-based model checking concepts.

ISO 8879:1986. (1986). Information processing — Text and office systems — Standard
Generalized Markup Language (SGML).

ISO 29481-1:2010. (2010). Building information modelling — Information delivery
manual — Part 1: Methodology and format.

ISO 9000-3:2015. (2015). Quality management systems — Fundamentals and
vocabulary.

Jaud, Š., & Muhič, S. (2022). Checking IFC with MVD Rules in Infrastructure: A Case
Study. Engineering Proceedings, 17(1), 33.

Jiang, S., Wu, Z., Zhang, B., & Cha, H. S. (2019). Combined MvdXML and semantic
technologies for green construction code checking. Applied Sciences, 9(7),
1463.

Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology
(KIT) (2021). KIT mvdXML Examples. Retrieved:
https://www.ifcwiki.org/index.php?title=KIT_mvdXML_Examples

Laakso, M., & Kiviniemi, A. (2012). The IFC standard: A review of history, development,
and standardization, information technology. ITcon, 17(9), 134-161.

Lee, Y.-C., Eastman, C. M., & Solihin, W. (2016). An ontology-based approach for
developing data exchange requirements and model views of building
information modeling. Advanced engineering informatics, 30(3), 354-367.

Liu, H., Gao, G., Zhang, H., Liu, Y.-S., Song, Y., & Gu, M. (2019). MVDLite: A Light-
weight Representation of Model View Definition with Fast Validation for BIM
Applications. arXiv preprint arXiv:1909.06997.

Mosleh, M. A., Alhussein, M. A., Baba, M. S., Malek, S., & ab Hamid, S. (2016).
Reviewing and classification of software model checking tools. In Advanced
Computer and Communication Engineering Technology (pp. 279-294).
Springer.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of
management information systems, 24(3), 45-77.

Sidi, F., Panahy, P. H. S., Affendey, L. S., Jabar, M. A., Ibrahim, H., & Mustapha, A.
(2012). Data quality: A survey of data quality dimensions. 2012 International
Conference on Information Retrieval & Knowledge Management,

References 91

Sun, J., Liu, Y., & Cheng, B. (2010). Model checking a model checker: A code contract
combined approach. International Conference on Formal Engineering Methods,

Tennison, J. (2004). Validating xml with schematron. In Beginning XSLT (pp. 626-660).
Springer.

Tomczak, A., van Berlo, L., Krijnen, T., Borrmann, A., Bolpagni, M., Research, I. C. f.,
Building, I. i., & Construction. (2022). A review of methods to specify information
requirements in digital construction projects. World Building Congress
WBC2022; International Council for Research and Innovation in Building and
Construction, Ed,

W3C. (2012). W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures.
Retrieved: https://www.w3.org/TR/xmlschema11-1/. Accessed: 30.10.2022

W3C. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). Retrieved:
https://www.w3.org/TR/xml/. Accessed: 30.10.2022

Weise, M., Nisbet, N., Liebich, T., & Benghi, C. (2017). IFC model checking based on
mvdXML 1.1. In eWork and eBusiness in Architecture, Engineering and
Construction (pp. 19-26). CRC Press.

Windisch, R., Katranuschkov, P., & Scherer, R. (2012). A generic filter framework for
consistent generation of BIM-based model views. Proceedings of the 2012 eg-
ice Workshop,

Wu, C. T. (2006). An Introduction to object-oriented programming with Java TM.
Mcgraw-Hill Incorporated.

Yang, D., & Eastman, C. M. (2007). A rule‑based subset generation method for product
data models. Computer‑Aided Civil and Infrastructure Engineering, 22(2), 133-
148.

Zhang, C., Beetz, J., & de Vries, B. (2013). Towards model view definition on semantic
level: A state of the art review. Proceedings of the 20th International Workshop:
Intelligent Computing in Engineering,

Zhang, C., Beetz, J., & Weise, M. (2014). Model view checking: automated validation
for IFC building models. eWork and eBusiness in Architecture, Engineering and
Construction: ECPPM, 14.

Zhang, C., Beetz, J., & Weise, M. (2015). Interoperable validation for IFC building
models using open standards. Journal of Information Technology in
Construction (ITcon), 20(2), 24-39.

Appendix A 92

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" tar-
getNamespace="furniture.xsd" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fur="furniture.xsd">
 <xs:element name="furniture" type="fur:Furniture"/>

 <xs:complexType name="Furniture">
 <xs:sequence>
 <xs:element name="Chairs">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="fur:Chair" name="Chair" maxOccurs="unbounded"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Component">
 <!--Base class called component-->
 <xs:sequence>
 <xs:element name="Structure" type="fur:Material" maxOccurs="1" minOc-
curs="0"/>
 <xs:element name="Cushion" type="fur:Material" maxOccurs="1" minOc-
curs="0"/>
 </xs:sequence>
 <xs:attribute type="xs:string" name="Color" use="optional"/>
 <xs:attribute type="xs:string" name="ID" use="required"/>
 </xs:complexType>

 <xs:simpleType name="Category">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Textile"/>
 <xs:enumeration value="Metal"/>
 <xs:enumeration value="Wood"/>
 <xs:enumeration value="Leather"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="Material">
 <xs:attribute type="fur:Category" name="Category" use="required"/>
 <xs:attribute type="xs:string" name="Name" use="required"/>
 </xs:complexType>

 <xs:complexType name="Chair">
 <xs:complexContent>
 <xs:extension base="fur:Component">
 <!--Chair inherits the features from base class component-->

Appendix A

Furniture Example

A.1 Furniture XSD

Appendix A 93

 <xs:sequence>
 <xs:element name="Armrests">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="fur:Armrest" name="Armrest" maxOccurs="2"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Legs">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="fur:Leg" name="Leg" maxOccurs="6" minOc-
curs="3"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Production" type="fur:Production" maxOccurs="1"
minOccurs="0"/>
 </xs:sequence>
 <xs:attribute type="xs:boolean" name="HasBackrest" use="required"/>
 <xs:attribute type="xs:boolean" name="IsReclining" use="required"/>
 <xs:attribute type="xs:boolean" name="HasHeadrest" use="required"/>
 <xs:attribute type="xs:double" name="Length" use="optional"/>
 <xs:attribute type="xs:double" name="Width" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Armrest">
 <!--Armrest inherits the features from base class component-->
 <xs:complexContent>
 <xs:extension base="fur:Component">
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Leg">
 <!--Leg inherits the features from base class component-->
 <xs:complexContent>
 <xs:extension base="fur:Component">
 <xs:attribute type="xs:boolean" name="HasWheel" use="required"/>
 <xs:attribute type="xs:boolean" name="IsSwiveling" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="Production">
 <xs:attribute type="xs:boolean" name="IsAntique" use="optional"/>
 <xs:attribute type="xs:integer" name="ProductionYear" use="optional"/>
 <xs:attribute type="xs:string" name="Country" use="optional"/>
 <xs:attribute type="xs:string" name="Manufacturer" use="optional"/>
 </xs:complexType>

</xs:schema>

Appendix A 94

A.2 Furniture Dataset

<?xml version="1.0" encoding="utf-8"?>
<furniture xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="furniture.xsd">
 <Chairs>
 <Chair Color="Black" ID="1" HasBackrest="true" IsReclining="true" HasHead-
rest="true" Length="52.5" Width="48.5">
 <Cushion Category="Leather" Name="Faux Leather" />
 <Armrests />
 <Legs>
 <Leg Color="Black" ID="1.1" HasWheel="true" IsSwiveling="true" />
 <Leg Color="Black" ID="1.2" HasWheel="true" IsSwiveling="true" />
 <Leg Color="Black" ID="1.3" HasWheel="true" IsSwiveling="true" />
 </Legs>
 </Chair>
 <Chair Color="White" ID="2" HasBackrest="false" IsReclining="false" HasHead-
rest="true">
 <Structure Category="Metal" Name="Steel" />
 <Cushion Category="Leather" Name="Faux Leather" />
 <Armrests>
 <Armrest ID="2.1">
 <Structure Category="Metal" Name="Aluminium" />
 <Cushion Category="Leather" Name="Faux Leather" />
 </Armrest>
 <Armrest ID="2.2">
 <Structure Category="Metal" Name="Steel" />
 <Cushion Category="Leather" Name="Faux Leather" />
 </Armrest>
 </Armrests>
 <Legs>
 <Leg Color="Black" ID="2.1" HasWheel="true" IsSwiveling="false">
 <Structure Category="Wood" Name="Timber" />
 </Leg>
 <Leg Color="Black" ID="2.2" HasWheel="true" IsSwiveling="false">
 <Structure Category="Wood" Name="Timber" />
 </Leg>
 <Leg Color="Black" ID="2.3" HasWheel="true" IsSwiveling="false">
 <Structure Category="Wood" Name="Timber" />
 </Leg>
 <Leg Color="Black" ID="2.4" HasWheel="true" IsSwiveling="false">
 <Structure Category="Wood" Name="Timber" />
 </Leg>
 </Legs>
 <Production IsAntique="true" ProductionYear="1960" Country="England" Manu-
facturer="Thomas Chippendale" />
 </Chair>
 <Chair Color="Black" ID="3" HasBackrest="true" IsReclining="true" HasHead-
rest="true" Length="50.5">
 <Structure Category="Metal" Name="Steel" />
 <Cushion Category="Textile" Name="Silk" />
 <Armrests>
 <Armrest ID="3.1">
 <Cushion Category="Leather" Name="Faux Leather" />
 </Armrest>
 </Armrests>
 <Legs>
 <Leg ID="3.1" HasWheel="false" IsSwiveling="false">
 <Structure Category="Metal" Name="Steel" />
 </Leg>
 <Leg ID="3.2" HasWheel="false" IsSwiveling="false">
 <Structure Category="Metal" Name="Steel" />

Appendix A 95

 </Leg>
 <Leg ID="3.3" HasWheel="true" IsSwiveling="false">
 <Structure Category="Metal" Name="Steel" />
 </Leg>
 </Legs>
 <Production IsAntique="true" ProductionYear="1940" Country="Germany" />
 </Chair>
 <Chair Color="Blue" ID="4" HasBackrest="true" IsReclining="true" HasHead-
rest="true" Length="55.5" Width="50.5">
 <Structure Category="Metal" Name="Steel" />
 <Cushion Category="Leather" Name="Faux Leather" />
 <Armrests>
 <Armrest ID="4.1">
 <Structure Category="Metal" Name="Steel" />
 <Cushion Category="Leather" Name="Faux Leather" />
 </Armrest>
 </Armrests>
 <Legs>
 <Leg Color="Blue" ID="4.1" HasWheel="true" IsSwiveling="true">
 <Structure Category="Metal" Name="Steel" />
 </Leg>
 <Leg Color="Blue" ID="4.2" HasWheel="true" IsSwiveling="true">
 <Structure Category="Metal" Name="Steel" />
 </Leg>
 <Leg Color="Blue" ID="4.3" HasWheel="true" IsSwiveling="true">
 <Structure Category="Metal" Name="Steel" />
 </Leg>
 </Legs>
 <Production IsAntique="true" ProductionYear="1940" Country="England" Manu-
facturer="Thomas Chippendale" />
 </Chair>
 </Chairs>
</furniture>

Appendix A 96

A.3 Furniture mvdXML File

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="9ba97c1d-c13c-4b4f-9581-
51565828e701" name="Furniture mvdXML" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" name="ChairCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Chair">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="ID" RuleID="ID" />
 <AttributeRule AttributeName="HasBackrest" RuleID="HasBackrest" />
 <AttributeRule AttributeName="IsReclining" RuleID="IsReclining" />
 <AttributeRule AttributeName="HasHeadrest" RuleID="HasHeadrest" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Length" RuleID="Length" />
 <AttributeRule AttributeName="Width" RuleID="Width" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Armrests" RuleID="Armrests">
 <EntityRules>
 <EntityRule EntityName="Armrest">
 <References IdPrefix="Armrests_">
 <Template ref="5d2e52c2-cc53-441d-99b2-58df8312dda8" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Legs" RuleID="Legs">
 <EntityRules>
 <EntityRule EntityName="Leg">
 <References IdPrefix="Legs_">
 <Template ref="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" />
 </References>

Appendix A 97

 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Production" RuleID="Production">
 <EntityRules>
 <EntityRule EntityName="Production">
 <AttributeRules>
 <AttributeRule AttributeName="IsAntique" RuleID="IsAntique" />
 <AttributeRule AttributeName="ProductionYear" RuleID="Produc-
tionYear" />
 <AttributeRule AttributeName="Country" RuleID="Country" />
 <AttributeRule AttributeName="Manufacturer" RuleID="Manufacturer"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="5d2e52c2-cc53-441d-99b2-58df8312dda8" name="Arm-
restConceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Arm-
rest">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" name="LegCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Leg">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="HasWheel" RuleID="HasWheel" />
 <AttributeRule AttributeName="IsSwiveling" RuleID="IsSwiveling" />

Appendix A 98

 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="9f10223f-0da5-4536-9e17-0f96f13dd6e8" name="Compo-
nentConceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Compo-
nent">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="83f5229e-f411-466e-b25b-b89d04666e1a" name="ChairModelView"
applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="7a273105-4e0a-4349-a59e-
304669341d75" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="32c2ca93-451e-4fc2-9891-ad0dcf6bb3e7" name="Chair Has-
Backrest, then IsReclining, has Armrests, HasHeadrest" applicable-
RootEntity="Chair">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />

Appendix A 99

 <TemplateRules>
 <TemplateRule Parameters="HasBackrest[Value]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="fdc7fec5-6e23-4e99-b3e0-c84832662a6c" name="Chair Has-
Backrest, then IsReclining, has Armrests, HasHeadrest">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="IsReclining[Value]=TRUE AND Arm-
rests[Size]>0 AND HasHeadrest[Value]=TRUE" Description="check if recline, arm-
rest, and headrest exists if chair has backrest" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="0c7b70bc-d061-4ff7-bb93-daf67c428ac1" name="Chair Pro-
duction" applicableRootEntity="Chair">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <TemplateRules>
 <TemplateRule Parameters="IsAntique[Value]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="2300768b-1297-4bb8-b348-978c449633b7" name="Chair Pro-
duction">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Country[Exists]=TRUE AND Manufac-
turer[Exists]=TRUE AND ProductionYear[Exists]=TRUE" Description="check if produc-
tion year, country of orgin, and manufacturer attributes exists if the chair is
antique" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="86f2a7d8-8e90-485a-a700-f3a8d0f0693b" name="Chair
Structure=steel, then Cushion=faux leather" applicableRootEntity="Chair">
 <Applicability>
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <TemplateRules>
 <TemplateRule Parameters="StructureMaterialName[Value]='Steel'" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="cf38f321-63cc-4c15-93e3-09291441552d" name="Chair
Structure=steel, then Cushion=faux leather">
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <Requirements>
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="import" />

Appendix A 100

 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="CushionMaterialName[Value]='Faux Leath-
er'" Description="check if chair strcuctal material is steel then chair cushioned
material must be leather" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="be790918-5b48-416c-9dd2-ccbe1b51f86a" name="Chair
length and width" applicableRootEntity="Chair">
 <Concepts>
 <Concept uuid="3aa515cf-c928-4f8a-8fb3-89b252c5e2b1" name="Chair
length and width">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Length[Value]>=52.5 AND
Width[Value]>=48.5" Description="check that the length is equal or greater
than 52.5 and width is equal or greater than 48.5" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="31adb6df-f558-4594-b9f3-ed7e3e352bd9" name="Component
Cushion exists, then Structure exists" applicableRootEntity="Component">
 <Applicability>
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <TemplateRules>
 <TemplateRule Parameters="Cushion[Exists]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="afe6bbcc-91a8-477f-95ff-318a2c832e0c" name="Component
Cushion exists, then Structure exists">
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <Requirements>
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Structure[Exists]=TRUE" Descrip-
tion="check that structural material exists when cushioned material exists" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="74884d5c-d231-4204-aaeb-3a3fbc13049d" name="Leg
HasWheel, then IsSwiveling" applicableRootEntity="Leg">
 <Applicability>
 <Template ref="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" />
 <TemplateRules>
 <TemplateRule Parameters="HasWheel[Value]=TRUE" />
 </TemplateRules>
 </Applicability>

Appendix A 101

 <Concepts>
 <Concept uuid="2c5eaeec-cc64-45da-9cc6-e2f7257f59d1" name="Leg
HasWheel, then IsSwiveling">
 <Template ref="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" />
 <Requirements>
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="IsSwiveling[Value]=TRUE" Descrip-
tion="check that the wheels can swivel" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="811c5e38-684d-4684-a54d-a5c4cc0c7517" name="Armrest
StructureCategory is metal, then steel" applicableRootEntity="Armrest">
 <Applicability>
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <TemplateRules>
 <TemplateRule Parameters="StructureCategory[Value]='Metal'" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="9ba7e275-5012-43a0-a63c-714c8b5065ee" name="Armrest
StructureCtegory is metal, then steel">
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <Requirements>
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="StructureMaterialName[Value]='Steel'"
Description="check that StructureMaterialName is steel when StructureCategory is
metal" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="81e78ab9-5560-4ce3-a4d6-7cad75f8920b" name="Chair and
Armrests Cushion similar" applicableRootEntity="Chair">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <TemplateRules>
 <TemplateRule Parameters="Armrests[Size]>0" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="ac7f9692-913f-4992-b276-b3b9a3bddb0d" name="Chair and
Armrests Cushion similar">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>

Appendix A 102

 <TemplateRule Parameters="Armrests_CushionMaterial-
Name[Value]=CushionMaterialName[Value]" Description="check if armrests cushion
material are the same as the cahir" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="6cc834bf-aced-4f7d-9e20-7c6fd09096da" name="Chair and
Leg colors similar" applicableRootEntity="Chair">
 <Concepts>
 <Concept uuid="99c1cc18-ef3b-4ef6-9049-58e8d4ac14ef" name="Chair and
Leg colors similar">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="7a273105-4e0a-4349-a59e-
304669341d75" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Color[Value]=Legs_Color[Value]" De-
scription="check that the color of chair and legs are same" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 103

A.4 Furniture mvdXML Incorrect Files

ComponentRuleIDUniqueness

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="b0be1b17-fd1b-4115-b116-
75bc202dac47" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="9f10223f-0da5-4536-9e17-0f96f13dd6e8" name="Compo-
nentConceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Compo-
nent">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="MaterialName" />
 <AttributeRule AttributeName="Category" RuleID="Category" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Structure" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="MaterialName" />
 <AttributeRule AttributeName="Category" RuleID="Category" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="7b7d205a-8217-40eb-b417-0a6de675f046" name="ComponentMod-
elView" applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="31adb6df-f558-4594-b9f3-ed7e3e352bd9" name="" applica-
bleRootEntity="Component">
 <Applicability>
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <TemplateRules>
 <TemplateRule Parameters="Cushion[Exists]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="afe6bbcc-91a8-477f-95ff-318a2c832e0c" name="">

Appendix A 104

 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Structure[Exists]=TRUE" Descrip-
tion="check that structural material exists when cushioned material exists" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 105

A.4 Furniture mvdXML Incorrect Files

ComponentRuleIDExistence

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="eff7a740-9657-4106-a9d3-
95224ae2ccb4" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="9f10223f-0da5-4536-9e17-0f96f13dd6e8" name="Compo-
nentConceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Compo-
nent">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" />
 <AttributeRule AttributeName="Category" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name"/>
 <AttributeRule AttributeName="Category" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="979934da-8b06-4d07-ae9a-756e5918a66a" name="ComponentMod-
elView" applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="31adb6df-f558-4594-b9f3-ed7e3e352bd9" name="" applica-
bleRootEntity="Component">
 <Applicability>
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <TemplateRules>
 <TemplateRule Parameters="Cushion[Exists]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="afe6bbcc-91a8-477f-95ff-318a2c832e0c" name="">

Appendix A 106

 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Structure[Exists]=TRUE" Descrip-
tion="check that structural material exists when cushioned material exists" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 107

A.4 Furniture mvdXML Incorrect Files

ChairIDPrefixUniqueness

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="9fa9933f-b96f-4ca2-9d0f-
17c139af9d31" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" name="ChairCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Chair">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="ID" RuleID="ID" />
 <AttributeRule AttributeName="HasBackrest" RuleID="HasBackrest" />
 <AttributeRule AttributeName="IsReclining" RuleID="IsReclining" />
 <AttributeRule AttributeName="HasHeadrest" RuleID="HasHeadrest" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Length" RuleID="Length" />
 <AttributeRule AttributeName="Width" RuleID="Width" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Armrests" RuleID="Armrests">
 <EntityRules>
 <EntityRule EntityName="Armrest">
 <References IdPrefix="Armrests_">
 <Template ref="5d2e52c2-cc53-441d-99b2-58df8312dda8" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Legs" RuleID="Legs">
 <EntityRules>

Appendix A 108

 <EntityRule EntityName="Leg">
 <References IdPrefix="Armrests_">
 <Template ref="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Production" RuleID="Production">
 <EntityRules>
 <EntityRule EntityName="Production">
 <AttributeRules>
 <AttributeRule AttributeName="IsAntique" RuleID="IsAntique" />
 <AttributeRule AttributeName="ProductionYear" RuleID="Produc-
tionYear" />
 <AttributeRule AttributeName="Country" RuleID="Country" />
 <AttributeRule AttributeName="Manufacturer" RuleID="Manufacturer"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="5d2e52c2-cc53-441d-99b2-58df8312dda8" name="Arm-
restConceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Arm-
rest">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" name="LegCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Leg">
 <Definitions>
 <Definition>
 <Body />
 </Definition>

Appendix A 109

 </Definitions>
 <Rules>
 <AttributeRule AttributeName="HasWheel" RuleID="HasWheel" />
 <AttributeRule AttributeName="IsSwiveling" RuleID="IsSwiveling" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="3e86a57c-91df-4c8c-8d4e-603d7c1bca9f" name="ChairModelView"
applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="cc841c98-136d-4791-a8cb-ee8204e0bc4b" name="" applica-
bleRootEntity="Chair">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <TemplateRules>
 <TemplateRule Parameters="Armrests[Size]>0" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="6d41b0ee-e4e2-46cb-8376-1f025bba0b8f" name="">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Armrests.CushionMaterial-
Name[Value]=CushionMaterialName[Value]" Description="check if armrests cushion
material are the same as the cahir" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 110

A.4 Furniture mvdXML Incorrect Files

ChairIDPrefixExistence

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="16b39f36-0939-47fd-9437-
09146be1bb4d" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" name="ChairCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Chair">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="ID" RuleID="ID" />
 <AttributeRule AttributeName="HasBackrest" RuleID="HasBackrest" />
 <AttributeRule AttributeName="IsReclining" RuleID="IsReclining" />
 <AttributeRule AttributeName="HasHeadrest" RuleID="HasHeadrest" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Length" RuleID="Length" />
 <AttributeRule AttributeName="Width" RuleID="Width" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Armrests" RuleID="Armrests">
 <EntityRules>
 <EntityRule EntityName="Armrest">
 <References>
 <Template ref="5d2e52c2-cc53-441d-99b2-58df8312dda8" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Legs" RuleID="Legs">
 <EntityRules>

Appendix A 111

 <EntityRule EntityName="Leg">
 <References>
 <Template ref="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Production" RuleID="Production">
 <EntityRules>
 <EntityRule EntityName="Production">
 <AttributeRules>
 <AttributeRule AttributeName="IsAntique" RuleID="IsAntique" />
 <AttributeRule AttributeName="ProductionYear" RuleID="Produc-
tionYear" />
 <AttributeRule AttributeName="Country" RuleID="Country" />
 <AttributeRule AttributeName="Manufacturer" RuleID="Manufacturer"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="5d2e52c2-cc53-441d-99b2-58df8312dda8" name="Arm-
restConceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Arm-
rest">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" name="LegCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Leg">
 <Definitions>
 <Definition>
 <Body />
 </Definition>

Appendix A 112

 </Definitions>
 <Rules>
 <AttributeRule AttributeName="HasWheel" RuleID="HasWheel" />
 <AttributeRule AttributeName="IsSwiveling" RuleID="IsSwiveling" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="6430db01-7b42-43d6-9771-3c044fc8ec09" name="ChairModelView"
applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="cc841c98-136d-4791-a8cb-ee8204e0bc4b" name="" applica-
bleRootEntity="Chair">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <TemplateRules>
 <TemplateRule Parameters="Armrests[Size]>0" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="6d41b0ee-e4e2-46cb-8376-1f025bba0b8f" name="">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Armrests.CushionMaterial-
Name[Value]=CushionMaterialName[Value]" Description="check if armrests cushion
material are the same as the cahir" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 113

A.4 Furniture mvdXML Incorrect Files

ComponentMetricValue

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="a6f819ae-8715-465d-b6a7-
d4b76298efbc" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="9f10223f-0da5-4536-9e17-0f96f13dd6e8" name="Compo-
nentConceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Compo-
nent">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="7feec79c-0c8f-45db-9db9-bcad6fcf6532" name="ComponentMod-
elView" applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="31adb6df-f558-4594-b9f3-ed7e3e352bd9" name="" applica-
bleRootEntity="Component">
 <Applicability>
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <TemplateRules>
 <TemplateRule Parameters="Cushion[Valu]=TRUE" />

Appendix A 114

 <TemplateRule Parameters="CushionCategory[]='Leather'" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="afe6bbcc-91a8-477f-95ff-318a2c832e0c" name="">
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules operator="or">
 <TemplateRule Parameters="Structure[Exists]=TRUE AND Structure-
Category[yes]=TRUE"/>
 <TemplateRules operator="and">
 <TemplateRule Parameters="Structure[Exists]=TRUE AND Structure-
Category[]='Metal'" />
 <TemplateRule Parameters="StructureMaterialName[Exist]=TRUE"/>
 </TemplateRules>
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 115

A.4 Furniture mvdXML Incorrect Files

ComponentParametersAttributes

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="a6f819ae-8715-465d-b6a7-
d4b76298efbc" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="9f10223f-0da5-4536-9e17-0f96f13dd6e8" name="Compo-
nentConceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Compo-
nent">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="7feec79c-0c8f-45db-9db9-bcad6fcf6532" name="ComponentMod-
elView" applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="31adb6df-f558-4594-b9f3-ed7e3e352bd9" name="" applica-
bleRootEntity="Component">
 <Concepts>
 <Concept uuid="afe6bbcc-91a8-477f-95ff-318a2c832e0c" name="">
 <Template ref="9f10223f-0da5-4536-9e17-0f96f13dd6e8" />
 <Requirements>

Appendix A 116

 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules operator="or">
 <TemplateRule Parameters="Category[Value]='Metal'" />
 <TemplateRule Parameters="StructureName[Exists]=TRUE"/>
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 117

A.4 Furniture mvdXML Incorrect Files

ChairTemplateReference

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="df5a3296-7d6f-42c7-97ea-
80cbcc8fc3e7" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" name="ChairCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Chair">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="ID" RuleID="ID" />
 <AttributeRule AttributeName="HasBackrest" RuleID="HasBackrest" />
 <AttributeRule AttributeName="IsReclining" RuleID="IsReclining" />
 <AttributeRule AttributeName="HasHeadrest" RuleID="HasHeadrest" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Length" RuleID="Length" />
 <AttributeRule AttributeName="Width" RuleID="Width" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Armrests" RuleID="Armrests">
 <EntityRules>
 <EntityRule EntityName="Armrest">
 <References IdPrefix="Armrests_">
 <Template ref=""/>
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Legs" RuleID="Legs">
 <EntityRules>

Appendix A 118

 <EntityRule EntityName="Leg">
 <References IdPrefix="Legs_">
 <Template ref=""/>
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Production" RuleID="Production">
 <EntityRules>
 <EntityRule EntityName="Production">
 <AttributeRules>
 <AttributeRule AttributeName="IsAntique" RuleID="IsAntique" />
 <AttributeRule AttributeName="ProductionYear" RuleID="Produc-
tionYear" />
 <AttributeRule AttributeName="Country" RuleID="Country" />
 <AttributeRule AttributeName="Manufacturer" RuleID="Manufacturer"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="5d2e52c2-cc53-441d-99b2-58df8312dda8" name="Arm-
restConceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Arm-
rest">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" name="LegCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Leg">
 <Definitions>
 <Definition>
 <Body />
 </Definition>

Appendix A 119

 </Definitions>
 <Rules>
 <AttributeRule AttributeName="HasWheel" RuleID="HasWheel" />
 <AttributeRule AttributeName="IsSwiveling" RuleID="IsSwiveling" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="11797c75-bc2d-4390-8419-d633bc206bb4" name="ChairModelView"
applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="cc841c98-136d-4791-a8cb-ee8204e0bc4b" name="" applica-
bleRootEntity="Chair">
 <Applicability>
 <Template ref="" />
 <TemplateRules>
 <TemplateRule Parameters="Armrests[Size]>0" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="6d41b0ee-e4e2-46cb-8376-1f025bba0b8f" name="">
 <Template ref="" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Armrests.CushionMaterial-
Name[Value]=CushionMaterialName[Value]" Description="check if armrests cushion
material are the same as the cahir" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 120

A.4 Furniture mvdXML Incorrect Files

Chair-LegEntityReference

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="f65063a2-b4b2-4da5-8cb8-
bb26d33bd38b" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" name="ChairCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Chair">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="ID" RuleID="ID" />
 <AttributeRule AttributeName="HasBackrest" RuleID="HasBackrest" />
 <AttributeRule AttributeName="IsReclining" RuleID="IsReclining" />
 <AttributeRule AttributeName="HasHeadrest" RuleID="HasHeadrest" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Length" RuleID="Length" />
 <AttributeRule AttributeName="Width" RuleID="Width" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Legs" RuleID="Legs">
 <EntityRules>
 <EntityRule EntityName="Leg">
 <References IdPrefix="Legs_">
 <Template ref="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Production" RuleID="Production">
 <EntityRules>

Appendix A 121

 <EntityRule EntityName="Production">
 <AttributeRules>
 <AttributeRule AttributeName="IsAntique" RuleID="IsAntique" />
 <AttributeRule AttributeName="ProductionYear" RuleID="Produc-
tionYear" />
 <AttributeRule AttributeName="Country" RuleID="Country" />
 <AttributeRule AttributeName="Manufacturer" RuleID="Manufacturer"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" name="LegCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Leg">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="HasWheel" RuleID="HasWheel" />
 <AttributeRule AttributeName="IsSwiveling" RuleID="IsSwiveling" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="6a9f3a29-ac49-4f00-9830-04b6a0353e8b" name="ChairModelView"
applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="0c7b70bc-d061-4ff7-bb93-daf67c428ac1" name="" applica-
bleRootEntity="Leg">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <TemplateRules>
 <TemplateRule Parameters="IsAntique[Value]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="2300768b-1297-4bb8-b348-978c449633b7" name="">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />

Appendix A 122

 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Country[Exists]=TRUE AND Manufac-
turer[Exists]=TRUE AND ProductionYear[Exists]=TRUE" Description="check if produc-
tion year, country of orgin, and manufacturer attributes exists if the chair is
antique" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 123

A.4 Furniture mvdXML Incorrect Files

ChairReferencedConceptTemplates

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="7f06d0ef-1246-41b5-bb10-
0b0c12e511d2" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" name="ChairCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Chair">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="ID" RuleID="ID" />
 <AttributeRule AttributeName="HasBackrest" RuleID="HasBackrest" />
 <AttributeRule AttributeName="IsReclining" RuleID="IsReclining" />
 <AttributeRule AttributeName="HasHeadrest" RuleID="HasHeadrest" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Length" RuleID="Length" />
 <AttributeRule AttributeName="Width" RuleID="Width" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Armrests" RuleID="Armrests">
 <EntityRules>
 <EntityRule EntityName="Armrest">
 <References IdPrefix="Armrests_">
 <Template ref="5d2e52c2-cc53-441d-99b2-58df8312dda8" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Production" RuleID="Production">
 <EntityRules>

Appendix A 124

 <EntityRule EntityName="Production">
 <AttributeRules>
 <AttributeRule AttributeName="IsAntique" RuleID="IsAntique" />
 <AttributeRule AttributeName="ProductionYear" RuleID="Produc-
tionYear" />
 <AttributeRule AttributeName="Country" RuleID="Country" />
 <AttributeRule AttributeName="Manufacturer" RuleID="Manufacturer"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="8106005c-8964-476a-9c53-d652207da7b2" name="ChairModelView"
applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="0c7b70bc-d061-4ff7-bb93-daf67c428ac1" name="" applica-
bleRootEntity="Chair">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d95" />
 <TemplateRules>
 <TemplateRule Parameters="IsAntique[Value]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="2300768b-1297-4bb8-b348-978c449633b7" name="">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d95" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Country[Exists]=TRUE AND Manufac-
turer[Exists]=TRUE AND ProductionYear[Exists]=TRUE" Description="check if produc-
tion year, country of orgin, and manufacturer attributes exists if the chair is
antique" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 125

A.4 Furniture mvdXML Incorrect Files

ChairConstraints

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="266ad15b-9dac-46de-b500-
bdda6e0e6d79" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" name="ChairCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Chair">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="ID" RuleID="ID" />
 <AttributeRule AttributeName="HasBackrest" RuleID="HasBackrest" />
 <AttributeRule AttributeName="IsReclining" RuleID="IsReclining" />
 <AttributeRule AttributeName="HasHeadrest" RuleID="HasHeadrest" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Length" RuleID="Length" />
 <AttributeRule AttributeName="Width" RuleID="Width" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Armrests" RuleID="Armrests">
 <EntityRules>
 <EntityRule EntityName="Armrest">
 <References IdPrefix="Armrests_">
 <Template ref="5d2e52c2-cc53-441d-99b2-58df8312dda8" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Legs" RuleID="Legs">
 <EntityRules>

Appendix A 126

 <EntityRule EntityName="Leg">
 <References IdPrefix="Legs_">
 <Template ref="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Production" RuleID="Production">
 <EntityRules>
 <EntityRule EntityName="Production">
 <AttributeRules>
 <AttributeRule AttributeName="IsAntique" RuleID="IsAntique" />
 <AttributeRule AttributeName="ProductionYear" RuleID="Produc-
tionYear" />
 <AttributeRule AttributeName="Country" RuleID="Country" />
 <AttributeRule AttributeName="Manufacturer" RuleID="Manufacturer"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="5d2e52c2-cc53-441d-99b2-58df8312dda8" name="Arm-
restConceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Arm-
rest">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="28edd9a1-fdd2-4298-9a94-49c7ccc031b3" name="LegCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Leg">
 <Definitions>
 <Definition>
 <Body />
 </Definition>

Appendix A 127

 </Definitions>
 <Rules>
 <AttributeRule AttributeName="HasWheel" RuleID="HasWheel" />
 <AttributeRule AttributeName="IsSwiveling" RuleID="IsSwiveling" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="c342feeb-dd6f-48a2-bccd-b31d4674d342" name="ChairModelView"
applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="32c2ca93-451e-4fc2-9891-ad0dcf6bb3e7" name="" applica-
bleRootEntity="Chair">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <TemplateRules>
 <TemplateRule Parameters="" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="fdc7fec5-6e23-4e99-b3e0-c84832662a6c" name="">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="IsReclining[Value]=TRUE AND Arm-
rests[Size]>0 AND HasHeadrest[Value]=TRUE" Description="check if recline, arm-
rest, and headrest exists if chair has backrest" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="0c7b70bc-d061-4ff7-bb93-daf67c428ac1" name="" applica-
bleRootEntity="Chair">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <TemplateRules>
 <TemplateRule Parameters="IsAntique[Value]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="12ad3dad-264a-4f6e-ac4d-df669d03b9a2" name="">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />

Appendix A 128

 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Manufacturer[Exists]=TRUE" Descrip-
tion="Manufacture exists AND"/>
 <TemplateRules operator="or">
 <TemplateRule Parameters="" Description="IsAntique OR Country
exists" />
 <TemplateRule Parameters="Country[Exists]=TRUE" Descrip-
tion="IsAntique OR Country exists"/>
 </TemplateRules>
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 129

A.4 Furniture mvdXML Incorrect Files

ChairName

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="c8a623f4-7d9e-428a-9c56-
74e0cdce9923" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" name="" applica-
bleSchema="FurnitureSchema" applicableEntity="Chair">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="ID" RuleID="ID" />
 <AttributeRule AttributeName="HasBackrest" RuleID="HasBackrest" />
 <AttributeRule AttributeName="IsReclining" RuleID="IsReclining" />
 <AttributeRule AttributeName="HasHeadrest" RuleID="HasHeadrest" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Length" RuleID="Length" />
 <AttributeRule AttributeName="Width" RuleID="Width" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Production" RuleID="Production">
 <EntityRules>
 <EntityRule EntityName="Production">
 <AttributeRules>
 <AttributeRule AttributeName="IsAntique" RuleID="IsAntique" />
 <AttributeRule AttributeName="ProductionYear" RuleID="Produc-
tionYear" />
 <AttributeRule AttributeName="Country" RuleID="Country" />
 <AttributeRule AttributeName="Manufacturer" RuleID="Manufacturer"
/>
 </AttributeRules>

Appendix A 130

 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="6fe45497-9985-495a-a1a9-fa8c64f457b9" name="" applica-
bleSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="32c2ca93-451e-4fc2-9891-ad0dcf6bb3e7" name="" applica-
bleRootEntity="Chair">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <TemplateRules>
 <TemplateRule Parameters="HasBackrest[Value]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="fdc7fec5-6e23-4e99-b3e0-c84832662a6c" name="">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="IsReclining[Value]=TRUE AND Arm-
rests[Size]>0 AND HasHeadrest[Value]=TRUE" Description="check if recline, arm-
rest, and headrest exists if chair has backrest" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix A 131

A.4 Furniture mvdXML Incorrect Files

ChairOperatorExistence

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="0b0a12fb-1951-44dc-8eba-
4769c0758d13" name="" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" name="ChairCon-
ceptTemplate" applicableSchema="FurnitureSchema" applicableEntity="Chair">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="ID" RuleID="ID" />
 <AttributeRule AttributeName="HasBackrest" RuleID="HasBackrest" />
 <AttributeRule AttributeName="IsReclining" RuleID="IsReclining" />
 <AttributeRule AttributeName="HasHeadrest" RuleID="HasHeadrest" />
 <AttributeRule AttributeName="Color" RuleID="Color" />
 <AttributeRule AttributeName="Length" RuleID="Length" />
 <AttributeRule AttributeName="Width" RuleID="Width" />
 <AttributeRule AttributeName="Structure" RuleID="Structure">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="StructureMaterial-
Name" />
 <AttributeRule AttributeName="Category" RuleID="StructureCate-
gory" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Cushion" RuleID="Cushion">
 <EntityRules>
 <EntityRule EntityName="Material">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="CushionMaterialName"
/>
 <AttributeRule AttributeName="Category" RuleID="CushionCategory"
/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Production" RuleID="Production">
 <EntityRules>
 <EntityRule EntityName="Production">
 <AttributeRules>
 <AttributeRule AttributeName="IsAntique" RuleID="IsAntique" />
 <AttributeRule AttributeName="ProductionYear" RuleID="Produc-
tionYear" />
 <AttributeRule AttributeName="Country" RuleID="Country" />
 <AttributeRule AttributeName="Manufacturer" RuleID="Manufacturer"
/>
 </AttributeRules>

Appendix A 132

 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="1ce7b63b-9339-4b39-93b6-28760ef08eb2" name="ChairModelView"
applicableSchema="FurnitureSchema">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" name="Chair Checks" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="0c7b70bc-d061-4ff7-bb93-daf67c428ac1" name="" applica-
bleRootEntity="Chair">
 <Applicability>
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <TemplateRules>
 <TemplateRule Parameters="IsAntique[Value]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="12ad3dad-264a-4f6e-ac4d-df669d03b9a2" name="">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Manufacturer[Exists]=TRUE" Descrip-
tion="Manufacture exists AND"/>
 <TemplateRules>
 <TemplateRule Parameters="ProductionYear[Exists]=TRUE" Descrip-
tion="IsAntique OR Country exists" />
 <TemplateRule Parameters="Country[Exists]=TRUE" Descrip-
tion="IsAntique OR Country exists"/>
 </TemplateRules>
 </TemplateRules>
 </Concept>
 <Concept uuid="2300768b-1297-4bb8-b348-978c449633b7" name="">
 <Template ref="ab8ea1a0-3610-4e2f-b3d6-0f6414522d94" />
 <Requirements>
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d6e6c274-9087-48d7-b2aa-
7bf062a4dc46" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Country[Exists]=TRUE AND Manufac-
turer[Exists]=TRUE AND ProductionYear[Exists]=TRUE" Description="check if produc-
tion year, country of orgin, and manufacturer attributes exists if the chair is
antique" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 133

Appendix B

MvdXML Checks

B.1 RuleID

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="f5a92a6c-da0f-4333-92e7-
a67f988c9a33" name="RuleID check" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="dd83efa6-88c4-4954-b378-7f6ffaaec311" name="RuleID
ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="AttributeRule">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="RuleID" RuleID="RuleID" />
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="dd83efa6-88c4-4954-b378-7f6ffaaec312" name="RuleID
ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="ConceptTem-
plate">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Rules">
 <EntityRules>
 <EntityRule EntityName="AttributeRule">
 <References>
 <Template ref="dd83efa6-88c4-4954-b378-7f6ffaaec311" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="446e5681-5773-4a35-a1ca-9d86873072da" name="RuleIDModelView"
applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="5b4e94ff-fc86-4df8-a651-
028f731c9dc2" name="RuleID check" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="5d33acef-c6be-4b54-b9b8-a24ec0c4d043" name="RuleID ex-
istence" applicableRootEntity="AttributeRule">
 <Concepts>
 <Concept uuid="68ecc19c-cd8c-4a38-b0d2-8bf16d2b6455" name="RuleID ex-
istence">

Appendix B 134

 <Template ref="dd83efa6-88c4-4954-b378-7f6ffaaec311" />
 <Requirements>
 <Requirement exchangeRequirement="5b4e94ff-fc86-4df8-a651-
028f731c9dc2" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="5b4e94ff-fc86-4df8-a651-
028f731c9dc2" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="RuleID[Exists]=TRUE" Description="check
if RuleID exists for each AttributRule" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="112c33e2-366c-4ab8-9491-47f881bbc07e" name="RuleID
uniqueness" applicableRootEntity="ConceptTemplate">
 <Concepts>
 <Concept uuid="e5eaa92e-d530-414f-bf86-c50a3b84fbe2" name="RuleID
uniqueness">
 <Template ref="dd83efa6-88c4-4954-b378-7f6ffaaec312" />
 <Requirements>
 <Requirement exchangeRequirement="5b4e94ff-fc86-4df8-a651-
028f731c9dc2" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="5b4e94ff-fc86-4df8-a651-
028f731c9dc2" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="RuleID[Unique]=TRUE" Description="check
if RuleID is unique" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 135

B.2 IdPrefix

<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="b4289196-e8be-4a79-a27e-
8aa14e9c1333" name="IdPrefix check" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="4c31b9d9-3a83-4120-a56d-9b116593e02e" name="IdPrefix
ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="EntityRule">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="References" RuleID="References">
 <EntityRules>
 <EntityRule EntityName="EntityRuleReferences">
 <AttributeRules>
 <AttributeRule AttributeName="IdPrefix" RuleID="IdPrefix" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="4c31b9d9-3a83-4120-a56d-9b116593e02f" name="IdPrefix
ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="ConceptTem-
plate">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Rules">
 <EntityRules>
 <EntityRule EntityName="AttributeRule">
 <AttributeRules>
 <AttributeRule AttributeName="EntityRules">
 <EntityRules>
 <EntityRule EntityName="AttributeRuleEntityRules">
 <AttributeRules>
 <AttributeRule AttributeName="EntityRule">
 <EntityRules>
 <EntityRule EntityName="EntityRule">
 <References>
 <Template ref="4c31b9d9-3a83-4120-a56d-
9b116593e02e" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>

Appendix B 136

 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="af93039d-0e9e-4c36-a467-5d94ec2b2546" name="IdPrefix Mod-
elView" applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="4b52ac1c-f3fb-41f1-b804-
467f1ab32197" name="IdPrefix check" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="0a48b28a-c7b4-4e53-8153-d6042aaf0ebc" name="IdPrefix
existence" applicableRootEntity="EntityRule">
 <Applicability>
 <Template ref="4c31b9d9-3a83-4120-a56d-9b116593e02e" />
 <TemplateRules>
 <TemplateRule Parameters="References[Exists]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="cb576fee-b25f-4d51-aa07-cd436851317d" name="IdPrefix
existence">
 <Template ref="4c31b9d9-3a83-4120-a56d-9b116593e02e" />
 <Requirements>
 <Requirement exchangeRequirement="4b52ac1c-f3fb-41f1-b804-
467f1ab32197" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="4b52ac1c-f3fb-41f1-b804-
467f1ab32197" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="IdPrefix[Exists]=TRUE" Descrip-
tion="check the existence of IdPrefix when References exist" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="0a48b28a-c7b4-4e53-8153-d6042aaf0ebd" name="IdPrefix
uniqueness" applicableRootEntity="ConceptTemplate">
 <Applicability>
 <Template ref="4c31b9d9-3a83-4120-a56d-9b116593e02f" />
 <TemplateRules>
 <TemplateRule Parameters="IdPrefix[Exists]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="cb576fee-b25f-4d51-aa07-cd436851317c" name="IdPrefix
uniqueness">
 <Template ref="4c31b9d9-3a83-4120-a56d-9b116593e02f" />
 <Requirements>
 <Requirement exchangeRequirement="4b52ac1c-f3fb-41f1-b804-
467f1ab32197" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="4b52ac1c-f3fb-41f1-b804-
467f1ab32197" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="IdPrefix[Unique]=TRUE" Descrip-
tion="check the uniqueness of IdPrefix when References exist" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 137

B.3 MetricValue

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="efa19fc4-d99b-4762-873a-
02f614f177b3" name="MetricValue check mvdXML" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="8e900bab-2693-4a44-88ac-5ba07a654ae7" name="Met-
ricValue ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="Tem-
plateRulesTemplateRule">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Parameters" RuleID="Parameters" />
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="37d669a7-9e7d-4823-bf75-0ede48ec05ea" name="MetricValue Mod-
elView" applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="c5e9d969-adae-4c05-b6d1-
646ee8cac94e" name="MetricValue check" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="12e23e60-73af-48c3-ba5b-889fc9ea88b0" name="Met-
ricValue" applicableRootEntity="TemplateRulesTemplateRule">
 <Concepts>
 <Concept uuid="3bb3ea16-af65-4806-9f42-4c53464bfecc" name="Met-
ricValue">
 <Template ref="8e900bab-2693-4a44-88ac-5ba07a654ae7" />
 <Requirements>
 <Requirement exchangeRequirement="c5e9d969-adae-4c05-b6d1-
646ee8cac94e" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="c5e9d969-adae-4c05-b6d1-
646ee8cac94e" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Parameters[Value]!=reg'.*(\\[\\]).*'
AND Parame-
ters[Value]=reg'.*(\\[Value\\]|\\[VALUE\\]|\\[Size\\]|\\[SIZE\\]|\\[Type\\]|\\[TY
PE\\]|\\[Unique\\]|\\[UNIQUE\\]|\\[Exists\\]|\\[EXISTS\\]).*'" Description="check
the existence of a metric value for each attribute in the parameters string" />
 <TemplateRule Parameters="Parameters[Value]!=reg'.*(\\[[a-
z]+\\]).*' AND Parame-
ters[Value]=reg'.*(\\[Value\\]|\\[VALUE\\]|\\[Size\\]|\\[SIZE\\]|\\[Type\\]|\\[TY
PE\\]|\\[Unique\\]|\\[UNIQUE\\]|\\[Exists\\]|\\[EXISTS\\]).*'" Description="check
the existence of a metric value for each attribute in the parameters string" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 138

B.4 ParametersAttributes

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="f6510261-fc19-4f59-b352-
7fe704f89eef" name="Parameters Attributes" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ca46edea-a1e7-4ed1-84d0-8a8a5366759a" name="Parameters
ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="mvdXML">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Views">
 <EntityRules>
 <EntityRule EntityName="ModelView">
 <AttributeRules>
 <AttributeRule AttributeName="Roots">
 <EntityRules>
 <EntityRule EntityName="ConceptRoot">
 <AttributeRules>
 <AttributeRule AttributeName="Applicability">
 <EntityRules>
 <EntityRule EntityName="ConceptRootApplicability">
 <AttributeRules>
 <AttributeRule AttributeName="TemplateRules">
 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <AttributeRules>
 <AttributeRule AttributeName="Items">
 <EntityRules>
 <EntityRule EntityName="Templat-
eRulesTemplateRule">
 <AttributeRules>
 <AttributeRule AttributeName="Pa-
rameters" RuleID="ApplicabilityParameters" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Concepts">
 <EntityRules>
 <EntityRule EntityName="Concept">
 <AttributeRules>
 <AttributeRule AttributeName="TemplateRules">
 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <AttributeRules>
 <AttributeRule AttributeName="Items">
 <EntityRules>

Appendix B 139

 <EntityRule EntityName="Templat-
eRulesTemplateRule">
 <AttributeRules>
 <AttributeRule AttributeName="Pa-
rameters" RuleID="ConceptsParameters" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Templates">
 <EntityRules>
 <EntityRule EntityName="ConceptTemplate">
 <AttributeRules>
 <AttributeRule AttributeName="Rules">
 <EntityRules>
 <EntityRule EntityName="AttributeRule">
 <AttributeRules>
 <AttributeRule AttributeName="RuleID" RuleID="RuleID" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="28f35c0d-b708-4737-8ed1-5c4d705bf284" name="ReferencedAt-
tributesModelView" applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="cf892156-6c33-4c1d-a960-
060fe2b67474" name="ReferencedAttributes check" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="81a939d4-7568-460e-b212-346efb5d0af4" name="Applica-
bility parameters attributes" applicableRootEntity="mvdXML">
 <Concepts>
 <Concept uuid="714da4f2-4aca-498b-9094-6141b5f44747" name="Applica-
bility parameters attributes">
 <Template ref="ca46edea-a1e7-4ed1-84d0-8a8a5366759a" />
 <Requirements>
 <Requirement exchangeRequirement="cf892156-6c33-4c1d-a960-
060fe2b67474" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="cf892156-6c33-4c1d-a960-
060fe2b67474" requirement="mandatory" applicability="export" />

Appendix B 140

 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="ApplicabilityParame-
ters[Value]=reg'.*(RuleID[Value]).*'" Description="check the existence of the at-
tributes in the concept template" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="f1d6e1cd-4007-44ae-aaa9-ab3960555501" name="Concept
parameters attributes" applicableRootEntity="mvdXML">
 <Concepts>
 <Concept uuid="d6abc66a-b390-456b-bb40-43e679fdf2d1" name="Concept
parameters attributes">
 <Template ref="ca46edea-a1e7-4ed1-84d0-8a8a5366759a" />
 <Requirements>
 <Requirement exchangeRequirement="cf892156-6c33-4c1d-a960-
060fe2b67474" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="cf892156-6c33-4c1d-a960-
060fe2b67474" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="ConceptsParame-
ters[Value]=reg'.*(RuleID[Value]).*'" Description="check the existence of the at-
tributes in the concept template" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 141

B.5 TemplateReference

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="af1b116d-bc06-46d1-a955-
8532c1cd1652" name="@ref Check" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="ad9aeda2-ad85-431b-a95b-7ea56fb52b96" name="Tem-
plateReference ConceptTemplate" applicableSchema="mvdXML_V1.1" applica-
bleEntity="ConceptRoot">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Applicability" RuleID="Applicability">
 <EntityRules>
 <EntityRule EntityName="ConceptRootApplicability">
 <AttributeRules>
 <AttributeRule AttributeName="Template" RuleID="ApplicabilityTem-
plate">
 <EntityRules>
 <EntityRule EntityName="GenericReference">
 <AttributeRules>
 <AttributeRule AttributeName="ref" RuleID="Applicabil-
ityref" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="ad9aeda2-ad85-431b-a95b-7ea56fb52b97" name="Tem-
plateReference ConceptTemplate" applicableSchema="mvdXML_V1.1" applica-
bleEntity="Concept">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Template">
 <EntityRules>
 <EntityRule EntityName="GenericReference">
 <AttributeRules>
 <AttributeRule AttributeName="ref" RuleID="Conceptref" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="c9d40546-597e-41a5-9f1f-2f2ef50ca54c" name="EntityRule
reference ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="Enti-
tyRule">
 <Definitions>

Appendix B 142

 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="References" RuleID="References">
 <EntityRules>
 <EntityRule EntityName="EntityRuleReferences">
 <AttributeRules>
 <AttributeRule AttributeName="Template">
 <EntityRules>
 <EntityRule EntityName="GenericReference">
 <AttributeRules>
 <AttributeRule AttributeName="ref" RuleID="ref" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="5a621057-3734-41e2-ba04-b0fb47a71f6b" name="TemplateRefer-
ence ModelView" applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="a00f80e9-1e8f-417d-b10e-
d8865ef6252e" name="Template reference check" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="2e84ff23-2825-49e8-a92e-8af75bb92753" name="Applica-
bility template reference" applicableRootEntity="ConceptRoot">
 <Applicability>
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b96" />
 <TemplateRules>
 <TemplateRule Parameters="Applicability[Exists]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="b45128ae-dc95-4de3-ad2d-6e2d8d2a9042" name="Applica-
bility template reference">
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b96" />
 <Requirements>
 <Requirement exchangeRequirement="a00f80e9-1e8f-417d-b10e-
d8865ef6252e" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="a00f80e9-1e8f-417d-b10e-
d8865ef6252e" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Applicabilityref[Value]!=''" Descrip-
tion="check the existence Template ref when Applicability exist" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="d80f9f4a-19f5-4585-aaed-1fed551ad8f7" name="Concept
template reference" applicableRootEntity="Concept">
 <Concepts>
 <Concept uuid="a71e6bfd-6ff5-4000-8966-7c737830fab7" name="Concept
template reference">
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b97" />

Appendix B 143

 <Requirements>
 <Requirement exchangeRequirement="a00f80e9-1e8f-417d-b10e-
d8865ef6252e" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="a00f80e9-1e8f-417d-b10e-
d8865ef6252e" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="Conceptref[Value]!=''" Descrip-
tion="check the existence of Template ref" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="44401324-8c79-4cfc-b40d-29a105f4de61" name="Entity
template reference" applicableRootEntity="EntityRule">
 <Applicability>
 <Template ref="c9d40546-597e-41a5-9f1f-2f2ef50ca54c" />
 <TemplateRules>
 <TemplateRule Parameters="References[Exists]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="4caf23ec-c495-497e-94c1-b35995686d61" name="Entity
template reference">
 <Template ref="c9d40546-597e-41a5-9f1f-2f2ef50ca54c" />
 <Requirements>
 <Requirement exchangeRequirement="a00f80e9-1e8f-417d-b10e-
d8865ef6252e" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="a00f80e9-1e8f-417d-b10e-
d8865ef6252e" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="ref[Value]!=''" Description="check that
the ref value exists if references exist" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 144

B.6 EntityReference

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="64c2925d-0a75-401e-9b7a-
460b755b2951" name="EntityReference check" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="c9d40546-597e-41a5-9f1f-2f2ef50ca54b" name="Con-
ceptTemplate ConceptTemplate" applicableSchema="mvdXML_V1.1" applica-
bleEntity="mvdXML">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Templates">
 <EntityRules>
 <EntityRule EntityName="ConceptTemplate">
 <AttributeRules>
 <AttributeRule AttributeName="applicableEntity" RuleID="applica-
bleEntity" />
 <AttributeRule AttributeName="uuid" RuleID="uuid" />
 <AttributeRule AttributeName="Rules">
 <EntityRules>
 <EntityRule EntityName="AttributeRule">
 <AttributeRules>
 <AttributeRule AttributeName="EntityRules">
 <EntityRules>
 <EntityRule EntityName="AttributeRuleEntityRules">
 <AttributeRules>
 <AttributeRule AttributeName="EntityRule">
 <EntityRules>
 <EntityRule EntityName="EntityRule">
 <AttributeRules>
 <AttributeRule AttributeName="References"
RuleID="References">
 <EntityRules>
 <EntityRule EntityName="EntityRul-
eReferences">
 <AttributeRules>
 <AttributeRule Attribu-
teName="Template">
 <EntityRules>
 <EntityRule EntityName="Ge-
nericReference">
 <AttributeRules>
 <AttributeRule Attribu-
teName="ref" RuleID="ref" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>

Appendix B 145

 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="0ffa2776-5e08-4cd1-a39b-d9000ddd0862" name="ConceptTem-
platesExistenceModelView" applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="d573aa26-526e-492a-ae5b-
65247e07e114" name="Existence of ConceptTemplates check" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="44401324-8c79-4cfc-b40d-29a105f4de69" name="Entity
Reference" applicableRootEntity="mvdXML">
 <Concepts>
 <Concept uuid="4caf23ec-c495-497e-94c1-b35995686d69" name="check that
the ref value is referring to the correct concept template by checking the enti-
ties">
 <Template ref="c9d40546-597e-41a5-9f1f-2f2ef50ca54b" />
 <Requirements>
 <Requirement exchangeRequirement="d573aa26-526e-492a-ae5b-
65247e07e114" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="d573aa26-526e-492a-ae5b-
65247e07e114" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="ref[Value]=uuid[Value] AND Enti-
tyName[Value]=applicableEntity[Value]" Description="check that the ref value is
referring to the correct concept template by checking the entities" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 146

B.7 ReferencedConceptTemplates

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="51512520-03d6-4584-991d-
009fd8f105c0" name="ReferencedConceptTemplates check" xmlns="http://build-
ingsmart-tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="58c7bea0-2ff8-41f3-97a4-be9854616a94" name="Refer-
encedConceptTemplates ConceptTemplate" applicableSchema="mvdXML_V1.1" applica-
bleEntity="mvdXML">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Views">
 <EntityRules>
 <EntityRule EntityName="ModelView">
 <AttributeRules>
 <AttributeRule AttributeName="Roots">
 <EntityRules>
 <EntityRule EntityName="ConceptRoot">
 <AttributeRules>
 <AttributeRule AttributeName="Applicability" RuleID="Ap-
plicability">
 <EntityRules>
 <EntityRule EntityName="ConceptRootApplicability">
 <AttributeRules>
 <AttributeRule AttributeName="Template">
 <EntityRules>
 <EntityRule EntityName="GenericReference">
 <AttributeRules>
 <AttributeRule AttributeName="ref"
RuleID="Applicabilityref" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Concepts">
 <EntityRules>
 <EntityRule EntityName="Concept">
 <AttributeRules>
 <AttributeRule AttributeName="Template">
 <EntityRules>
 <EntityRule EntityName="GenericReference">
 <AttributeRules>
 <AttributeRule AttributeName="ref"
RuleID="Conceptref" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>

Appendix B 147

 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Templates">
 <EntityRules>
 <EntityRule EntityName="ConceptTemplate">
 <AttributeRules>
 <AttributeRule AttributeName="uuid" RuleID="uuid" />
 <AttributeRule AttributeName="SubTemplates">
 <EntityRules>
 <EntityRule EntityName="ConceptTemplate">
 <AttributeRules>
 <AttributeRule AttributeName="uuid" RuleID="suuid" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Rules">
 <EntityRules>
 <EntityRule EntityName="AttributeRule">
 <AttributeRules>
 <AttributeRule AttributeName="EntityRules">
 <EntityRules>
 <EntityRule EntityName="AttributeRuleEntityRules">
 <AttributeRules>
 <AttributeRule AttributeName="EntityRule">
 <EntityRules>
 <EntityRule EntityName="EntityRule">
 <AttributeRules>
 <AttributeRule AttributeName="References"
RuleID="References">
 <EntityRules>
 <EntityRule EntityName="EntityRul-
eReferences">
 <AttributeRules>
 <AttributeRule Attribu-
teName="Template">
 <EntityRules>
 <EntityRule EntityName="Ge-
nericReference">
 <AttributeRules>
 <AttributeRule Attribu-
teName="ref" RuleID="Entityref" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>

Appendix B 148

 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
</Templates>
<Views>
 <ModelView uuid="d1619f42-1410-48dd-aed4-dcbb21c9f6b6" name="ConceptTem-
platesExistence ModelView" applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="1496d96f-f4e2-400a-8f75-
c044c7dd6878" name="Existence of ConceptTemplates check" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="b3d73a9a-3693-462a-bed6-20658ed48122" name="Existence
of referred ConceptTemplates check of Applicability in the mvdXML file" applica-
bleRootEntity="mvdXML">
 <Applicability>
 <Template ref="58c7bea0-2ff8-41f3-97a4-be9854616a94" />
 <TemplateRules>
 <TemplateRule Parameters="Applicability[Exists]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="1b6168cd-1336-4c19-b9dc-4afc19ec77f9" name="check that
all referenced ConceptTemplates in applicability exists in the mvdxml file">
 <Template ref="58c7bea0-2ff8-41f3-97a4-be9854616a94" />
 <Requirements>
 <Requirement exchangeRequirement="1496d96f-f4e2-400a-8f75-
c044c7dd6878" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="1496d96f-f4e2-400a-8f75-
c044c7dd6878" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules operator="or">
 <TemplateRule Parameters="Applicabilityref[Value]=uuid[Value]"
Description="check that all referenced ConceptTemplates in applicability exists
in the mvdxml file" />
 <TemplateRule Parameters="Applicabilityref[Value]=suuid[Value]"
Description="check that all referenced ConceptTemplates in applicability exists
in the mvdxml file" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="087aae2f-2c43-4f1f-a572-42d0eb27ce2d" name="Existence
of referred ConceptTemplates of Concept in the mvdXML file" applicable-
RootEntity="mvdXML">
 <Concepts>
 <Concept uuid="9de4f802-1301-4b16-87c8-7de4166280af" name="check that
all referenced ConceptTemplates in concept exists in the mvdxml file">
 <Template ref="58c7bea0-2ff8-41f3-97a4-be9854616a94" />
 <Requirements>
 <Requirement exchangeRequirement="1496d96f-f4e2-400a-8f75-
c044c7dd6878" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="1496d96f-f4e2-400a-8f75-
c044c7dd6878" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules operator="or">

Appendix B 149

 <TemplateRule Parameters="Conceptref[Value]=uuid[Value]" Descrip-
tion="check that all referenced ConceptTemplates in concept exists in the mvdxml
file" />
 <TemplateRule Parameters="Conceptref[Value]=suuid[Value]" De-
scription="check that all referenced ConceptTemplates in concept exists in the
mvdxml file" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="087aae2f-2c43-4f1f-a572-42d0eb27ce2e" name="Existence
of referred ConceptTemplates of EntityRule in the mvdXML file" applicable-
RootEntity="mvdXML">
 <Applicability>
 <Template ref="58c7bea0-2ff8-41f3-97a4-be9854616a94" />
 <TemplateRules>
 <TemplateRule Parameters="References[Exists]=TRUE" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="9de4f802-1301-4b16-87c8-7de4166280ae" name="check that
all referenced ConceptTemplates in concept root exists in the mvdxml file">
 <Template ref="58c7bea0-2ff8-41f3-97a4-be9854616a94" />
 <Requirements>
 <Requirement exchangeRequirement="1496d96f-f4e2-400a-8f75-
c044c7dd6878" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="1496d96f-f4e2-400a-8f75-
c044c7dd6878" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules operator="or">
 <TemplateRule Parameters="Entityref[Value]=uuid[Value]" Descrip-
tion="check that all referenced ConceptTemplates in concept root exists in the
mvdxml file" />
 <TemplateRule Parameters="Entityref[Value]=suuid[Value]" Descrip-
tion="check that all referenced ConceptTemplates in concept root exists in the
mvdxml file" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 150

B.8 Constraints

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="efa19fc4-d99b-4762-873a-
02f614f177b4" name="Constraints check mvdXML" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="8e900bab-2693-4a44-88ac-5ba07a654ae7" name="Con-
straints ConceptTemplate" applicableSchema="mvdXML_V1.1" applica-
bleEntity="mvdXML">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Templates">
 <EntityRules>
 <EntityRule EntityName="ConceptTemplate">
 <AttributeRules>
 <AttributeRule AttributeName="SubTemplates">
 <EntityRules>
 <EntityRule EntityName="ConceptTemplate">
 <AttributeRules>
 <AttributeRule AttributeName="Rules">
 <EntityRules>
 <EntityRule EntityName="AttributeRule">
 <AttributeRules>
 <AttributeRule AttributeName="EntityRules">
 <EntityRules>
 <EntityRule EntityName="AttributeRuleEnti-
tyRules">
 <AttributeRules>
 <AttributeRule AttributeName="Enti-
tyRule">
 <EntityRules>
 <EntityRule EntityName="EntityRule">
 <AttributeRules>
 <AttributeRule Attribu-
teName="Constraints">
 <EntityRules>
 <EntityRule EntityName="Enti-
tyRuleConstraints">
 <AttributeRules>
 <AttributeRule Attribu-
teName="Constraint" RuleID="SConstraint">
 <EntityRules>
 <EntityRule Enti-
tyName="EntityRuleConstraintsConstraint" />
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>

Appendix B 151

 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Rules">
 <EntityRules>
 <EntityRule EntityName="AttributeRule">
 <AttributeRules>
 <AttributeRule AttributeName="EntityRules">
 <EntityRules>
 <EntityRule EntityName="AttributeRuleEntityRules">
 <AttributeRules>
 <AttributeRule AttributeName="EntityRule">
 <EntityRules>
 <EntityRule EntityName="EntityRule">
 <AttributeRules>
 <AttributeRule AttributeName="Con-
straints">
 <EntityRules>
 <EntityRule EntityName="EntityRule-
Constraints">
 <AttributeRules>
 <AttributeRule Attribu-
teName="Constraint" RuleID="Constraint">
 <EntityRules>
 <EntityRule EntityName="Enti-
tyRuleConstraintsConstraint" />
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Views">
 <EntityRules>
 <EntityRule EntityName="ModelView">
 <AttributeRules>
 <AttributeRule AttributeName="Roots">
 <EntityRules>
 <EntityRule EntityName="ConceptRoot">
 <AttributeRules>
 <AttributeRule AttributeName="Applicability">

Appendix B 152

 <EntityRules>
 <EntityRule EntityName="ConceptRootApplicability">
 <AttributeRules>
 <AttributeRule AttributeName="TemplateRules">
 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <References IdPrefix="A1_">
 <Template ref="2dbb40c4-1433-42f2-9e02-
5216142de6b4" />
 </References>
 <AttributeRules>
 <AttributeRule AttributeName="Items">
 <EntityRules>
 <EntityRule EntityName="Templat-
eRules">
 <References IdPrefix="A2_">
 <Template ref="2dbb40c4-1433-
42f2-9e02-5216142de6b4" />
 </References>
 <AttributeRules>
 <AttributeRule Attribu-
teName="Items">
 <EntityRules>
 <EntityRule EntityName="Tem-
plateRules">
 <References IdPrefix="A3_">
 <Template ref="2dbb40c4-
1433-42f2-9e02-5216142de6b4" />
 </References>
 <AttributeRules>
 <AttributeRule Attribu-
teName="Items">
 <EntityRules>
 <EntityRule Enti-
tyName="TemplateRules">
 <References IdPre-
fix="A4_">
 <Template
ref="2dbb40c4-1433-42f2-9e02-5216142de6b4" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Concepts">
 <EntityRules>
 <EntityRule EntityName="Concept">
 <AttributeRules>
 <AttributeRule AttributeName="TemplateRules">

Appendix B 153

 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <References IdPrefix="C1_">
 <Template ref="2dbb40c4-1433-42f2-9e02-
5216142de6b4" />
 </References>
 <AttributeRules>
 <AttributeRule AttributeName="Items">
 <EntityRules>
 <EntityRule EntityName="Templat-
eRules">
 <References IdPrefix="C2_">
 <Template ref="2dbb40c4-1433-
42f2-9e02-5216142de6b4" />
 </References>
 <AttributeRules>
 <AttributeRule Attribu-
teName="Items">
 <EntityRules>
 <EntityRule EntityName="Tem-
plateRules">
 <References IdPrefix="C3_">
 <Template ref="2dbb40c4-
1433-42f2-9e02-5216142de6b4" />
 </References>
 <AttributeRules>
 <AttributeRule Attribu-
teName="Items">
 <EntityRules>
 <EntityRule Enti-
tyName="TemplateRules">
 <References IdPre-
fix="C4_">
 <Template
ref="2dbb40c4-1433-42f2-9e02-5216142de6b4" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>

Appendix B 154

 </ConceptTemplate>
 <ConceptTemplate uuid="2dbb40c4-1433-42f2-9e02-5216142de6b4" name="Templat-
eRules ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="Templat-
eRules">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="operator" RuleID="operator" />
 <AttributeRule AttributeName="Items">
 <EntityRules>
 <EntityRule EntityName="TemplateRulesTemplateRule">
 <AttributeRules>
 <AttributeRule AttributeName="Parameters" RuleID="Parameters" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="37d669a7-9e7d-4823-bf75-0ede48ec05eb" name="Constraints Mod-
elView" applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="c5e9d969-adae-4c05-b6d1-
646ee8cac94f" name="Constraints check" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="12e23e60-73af-48c3-ba5b-889fc9ea88b2" name="Con-
straints exist if Applicability parameters is empty" applicable-
RootEntity="mvdXML">
 <Applicability>
 <Template ref="8e900bab-2693-4a44-88ac-5ba07a654ae7" />
 <TemplateRules>
 <TemplateRule Parameters="A1_Parameters[Value]='' OR A2_Parame-
ters[Value]='' OR A3_Parameters[Value]='' OR A4_Parameters[Value]=''" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="3bb3ea16-af65-4806-9f42-4c53464bfece" name="Con-
straints exist if Applicability parameters is empty">
 <Template ref="8e900bab-2693-4a44-88ac-5ba07a654ae7" />
 <TemplateRules operator="or">
 <TemplateRule Parameters="Constraint[Exists]=TRUE" Descrip-
tion="check the existence of a constraint" />
 <TemplateRule Parameters="SConstraint[Exists]=TRUE" Descrip-
tion="check the existence of a constraint" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="12e23e60-73af-48c3-ba5b-889fc9ea88b1" name="Con-
straints exist if Concept parameters is empty" applicableRootEntity="mvdXML">
 <Applicability>
 <Template ref="8e900bab-2693-4a44-88ac-5ba07a654ae7" />
 <TemplateRules>
 <TemplateRule Parameters="C1_Parameters[Value]='' OR C2_Parame-
ters[Value]='' OR C3_Parameters[Value]='' OR C4_Parameters[Value]=''" />
 </TemplateRules>
 </Applicability>
 <Concepts>

Appendix B 155

 <Concept uuid="3bb3ea16-af65-4806-9f42-4c53464bfecd" name="Con-
straints exist if Concept parameters is empty">
 <Template ref="8e900bab-2693-4a44-88ac-5ba07a654ae7" />
 <Requirements>
 <Requirement exchangeRequirement="c5e9d969-adae-4c05-b6d1-
646ee8cac94f" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="c5e9d969-adae-4c05-b6d1-
646ee8cac94f" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules operator="or">
 <TemplateRule Parameters="Constraint[Exists]=TRUE" Descrip-
tion="check the existence of a constraint" />
 <TemplateRule Parameters="SConstraint[Exists]=TRUE" Descrip-
tion="check the existence of a constraint" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 156

B.9 Name

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="95282cea-9813-40f4-8df1-
09c47baabaa1" name="Name Check" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="46ae7cad-d482-4d05-ac12-7b25a64dd2bd" name="mvdXML
name ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="mvdXML">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="name" RuleID="name" />
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="cf07e82c-07b0-4ba1-9b93-5afc3a655438" name="Con-
ceptTemplate name ConceptTemplate" applicableSchema="mvdXML_V1.1" applica-
bleEntity="ConceptTemplate">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="name" RuleID="name" />
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="f1199fa9-9558-4953-acd4-3c849ca269bc" name="ModelView
name ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="Mod-
elView">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="name" RuleID="name" />
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="54a74e90-2315-4f17-9532-38b8b61baca4" name="Concep-
tRoot name ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="Con-
ceptRoot">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="name" RuleID="name" />
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="085356f4-eb8a-4383-844a-b1fa7667355a" name="Concept
name ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="Concept">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>

Appendix B 157

 <Rules>
 <AttributeRule AttributeName="name" RuleID="name" />
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="b0a45fb3-abcb-42a5-a3fb-2d4c71e90a18" name="Name ModelView"
applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" name="" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="3a205731-14eb-49a0-8749-f6611ef29262" name="Name ex-
istence" applicableRootEntity="mvdXML">
 <Concepts>
 <Concept uuid="b6903a8f-288d-4844-9143-ae58e804fa29" name="Name ex-
istence">
 <Template ref="46ae7cad-d482-4d05-ac12-7b25a64dd2bd" />
 <Requirements>
 <Requirement exchangeRequirement="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="name[Value]!=''" Description="check the
existence of thre required name attribute" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="b34f9bc3-bd00-4dd8-8dd0-9f998a76d0b2" name="Name ex-
istence" applicableRootEntity="ConceptTemplate">
 <Concepts>
 <Concept uuid="b5d030d4-3b85-478a-9244-1cd554a0b9ec" name="Name ex-
istence">
 <Template ref="cf07e82c-07b0-4ba1-9b93-5afc3a655438" />
 <Requirements>
 <Requirement exchangeRequirement="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="name[Value]!=''" Description="check the
existence of thre required name attribute" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="e254aaaf-8e3b-4dc5-95e8-8f407292edc9" name="Name ex-
istence" applicableRootEntity="ModelView">
 <Concepts>
 <Concept uuid="175dca75-39db-4cff-82a8-f55005991d96" name="Name ex-
istence">
 <Template ref="f1199fa9-9558-4953-acd4-3c849ca269bc" />
 <Requirements>
 <Requirement exchangeRequirement="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>

Appendix B 158

 <TemplateRule Parameters="name[Value]!=''" Description="check the
existence of thre required name attribute" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="e866d8e7-ea66-48a2-bbeb-2d4abe891b27" name="Name ex-
istence" applicableRootEntity="ConceptRoot">
 <Concepts>
 <Concept uuid="d5c61d91-f1fe-4c9a-8d94-4b27394f97d4" name="Name ex-
istence">
 <Template ref="54a74e90-2315-4f17-9532-38b8b61baca4" />
 <Requirements>
 <Requirement exchangeRequirement="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="name[Value]!=''" Description="check the
existence of thre required name attribute" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="f811fd26-6017-4e67-8416-8fa6a3b1a590" name="Name ex-
istence" applicableRootEntity="Concept">
 <Concepts>
 <Concept uuid="8af72edb-a767-44f1-9b7b-bc5f2bc345f5" name="Name ex-
istence">
 <Template ref="085356f4-eb8a-4383-844a-b1fa7667355a" />
 <Requirements>
 <Requirement exchangeRequirement="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="4db6be29-c08f-436c-a8b9-
bd8480b0cf29" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="name[Value]!=''" Description="check the
existence of thre required name attribute" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 159

B.10 EntityRule

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="18da6b90-3231-494f-8ee9-
0e07a45eced0" name="EntityRule check" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="809c75a7-2fe6-4343-8ccb-ca99e346195f" name="Enti-
tyRuleConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="Attribut-
eRule">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="EntityRules">
 <EntityRules>
 <EntityRule EntityName="AttributeRuleEntityRules">
 <AttributeRules>
 <AttributeRule AttributeName="EntityRule" RuleID="EntityRule" />
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="eed31656-c5e0-486e-8d50-590e7f54a7d1" name="EntityRuleMod-
elView" applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="17b6e550-0b34-4984-bafe-
d5b114ee496f" name="EntityRule check" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="e5a1e8ba-6309-4a04-abb5-648883b691c8" name="Existence
of EntityRule" applicableRootEntity="AttributeRule">
 <Concepts>
 <Concept uuid="5edda7d5-82c9-441f-9f5c-b18d79d91826" name="Existence
of EntityRule">
 <Template ref="809c75a7-2fe6-4343-8ccb-ca99e346195f" />
 <Requirements>
 <Requirement exchangeRequirement="17b6e550-0b34-4984-bafe-
d5b114ee496f" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="17b6e550-0b34-4984-bafe-
d5b114ee496f" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="EntityRule[Exists]=TRUE" Descrip-
tion="check if EntityRule exists" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix B 160

B.11 OperatorExistence

<?xml version="1.0" encoding="utf-8"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="90a47549-9b35-4afc-b701-
16570d42c83f" name="OperatorExistence check" xmlns="http://buildingsmart-
tech.org/mvd/XML/1.1">
 <Templates>
 <ConceptTemplate uuid="29b68639-c8ad-4d94-a567-49938a8c730c" name="Operator
ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="ConceptRoot">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="Applicability">
 <EntityRules>
 <EntityRule EntityName="ConceptRootApplicability">
 <AttributeRules>
 <AttributeRule AttributeName="TemplateRules">
 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <References IdPrefix="A1_">
 <Template ref="9d3ebda0-6a01-42c2-9463-b641413f3a3d" />
 </References>
 <AttributeRules>
 <AttributeRule AttributeName="Items">
 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <References IdPrefix="A2_">
 <Template ref="9d3ebda0-6a01-42c2-9463-
b641413f3a3d" />
 </References>
 <AttributeRules>
 <AttributeRule AttributeName="Items">
 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <References IdPrefix="A3_">
 <Template ref="9d3ebda0-6a01-42c2-9463-
b641413f3a3d" />
 </References>
 <AttributeRules>
 <AttributeRule AttributeName="Items">
 <EntityRules>
 <EntityRule EntityName="Templat-
eRules">
 <References IdPrefix="A4_">
 <Template ref="9d3ebda0-6a01-
42c2-9463-b641413f3a3d" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>

Appendix B 161

 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="ad9aeda2-ad85-431b-a95b-7ea56fb52b99" name="Tem-
plateReference ConceptTemplate" applicableSchema="mvdXML_V1.1" applica-
bleEntity="Concept">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="TemplateRules">
 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <References IdPrefix="C1_">
 <Template ref="9d3ebda0-6a01-42c2-9463-b641413f3a3d" />
 </References>
 <AttributeRules>
 <AttributeRule AttributeName="Items">
 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <References IdPrefix="C2_">
 <Template ref="9d3ebda0-6a01-42c2-9463-b641413f3a3d" />
 </References>
 <AttributeRules>
 <AttributeRule AttributeName="Items">
 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <References IdPrefix="C3_">
 <Template ref="9d3ebda0-6a01-42c2-9463-
b641413f3a3d" />
 </References>
 <AttributeRules>
 <AttributeRule AttributeName="Items">
 <EntityRules>
 <EntityRule EntityName="TemplateRules">
 <References IdPrefix="C4_">
 <Template ref="9d3ebda0-6a01-42c2-9463-
b641413f3a3d" />
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>

Appendix B 162

 </ConceptTemplate>
 <ConceptTemplate uuid="9d3ebda0-6a01-42c2-9463-b641413f3a3d" name="Templat-
eRules ConceptTemplate" applicableSchema="mvdXML_V1.1" applicableEntity="Templat-
eRules">
 <Definitions>
 <Definition>
 <Body />
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="operator" RuleID="Operator" />
 <AttributeRule AttributeName="Items" RuleID="TemplateRule">
 <EntityRules>
 <EntityRule EntityName="object" />
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="368715b1-6e25-4bae-9985-5bfa95a00adb" name="OperatorExist-
enceModelView" applicableSchema="mvdXML_V1.1">
 <ExchangeRequirements>
 <ExchangeRequirement applicability="both" uuid="435f8e1c-ee0a-462f-9f48-
b968fb202485" name="OperatorExistence check" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="e000882d-911a-44a8-b6b5-dbbc0c48486d" name="Operator
existence for applicability first TemplatRules" applicableRootEntity="Concep-
tRoot">
 <Applicability>
 <Template ref="29b68639-c8ad-4d94-a567-49938a8c730c" />
 <TemplateRules>
 <TemplateRule Parameters="A1_TemplateRule[Size]>1" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="9c9147e3-65f8-4f2e-8d57-817ae1e5e589" name="Operator
existence for applicability first TemplatRules">
 <Template ref="29b68639-c8ad-4d94-a567-49938a8c730c" />
 <Requirements>
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="A1_Operator[Exists]=TRUE" Descrip-
tion="check the existence of operator when there is more than one Templat-
eRule/TemplateRules in first TemplateRules node" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="546074ba-6d89-4b23-80ee-4298dffbc479" name="Operator
existence for applicability second TemplatRules" applicableRootEntity="Concep-
tRoot">
 <Applicability>
 <Template ref="29b68639-c8ad-4d94-a567-49938a8c730c" />
 <TemplateRules>
 <TemplateRule Parameters="A2_TemplateRule[Size]>1" />
 </TemplateRules>
 </Applicability>
 <Concepts>

Appendix B 163

 <Concept uuid="a60e8004-f2f2-4611-a960-f25e0efe64ea" name="Operator
existence for applicability second TemplatRules">
 <Template ref="29b68639-c8ad-4d94-a567-49938a8c730c" />
 <Requirements>
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="A2_Operator[Exists]=TRUE" Descrip-
tion="check the existence of operator when there is more than one Templat-
eRule/TemplateRules in second TemplateRules node" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="e0412f8f-0d85-472d-8c59-c9c7c97dfbcc" name="Operator
existence for applicability third TemplatRules" applicableRootEntity="Concep-
tRoot">
 <Applicability>
 <Template ref="29b68639-c8ad-4d94-a567-49938a8c730c" />
 <TemplateRules>
 <TemplateRule Parameters="A3_TemplateRule[Size]>1" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="627d1edd-cd3d-482a-9624-36bcb3c147a5" name="Operator
existence for applicability third TemplatRules">
 <Template ref="29b68639-c8ad-4d94-a567-49938a8c730c" />
 <Requirements>
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="A3_Operator[Exists]=TRUE" Descrip-
tion="check the existence of operator when there is more than one Templat-
eRule/TemplateRules in third TemplateRules node" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="29d04bca-962f-495d-b2e4-6bb6531a9b29" name="Operator
existence for applicability fourth TemplatRules" applicableRootEntity="Concep-
tRoot">
 <Applicability>
 <Template ref="29b68639-c8ad-4d94-a567-49938a8c730c" />
 <TemplateRules>
 <TemplateRule Parameters="A4_TemplateRule[Size]>1" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="01d1fff8-86a9-4549-83ec-82d7f774e22e" name="Operator
existence for applicability fourth TemplatRules">
 <Template ref="29b68639-c8ad-4d94-a567-49938a8c730c" />
 <Requirements>
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>

Appendix B 164

 <TemplateRule Parameters="A4_Operator[Exists]=TRUE" Descrip-
tion="check the existence of operator when there is more than one Templat-
eRule/TemplateRules in fourth TemplateRules node" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="a42a6025-a02a-46b7-99fb-2064dc7bd435" name="Operator
existence for concept first TemplatRules" applicableRootEntity="Concept">
 <Applicability>
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b99" />
 <TemplateRules>
 <TemplateRule Parameters="C1_TemplateRule[Size]>1" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="91c11058-e819-40ba-8171-1d5e4ea72545" name="Operator
existence for concept first TemplatRules">
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b99" />
 <Requirements>
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="C1_Operator[Exists]=TRUE" Descrip-
tion="check the existence of operator when there is more than one Templat-
eRule/TemplateRules in first TemplateRules node" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="071ffae7-28e6-4e8a-9668-b297eef53595" name="Operator
existence for concept second TemplatRules" applicableRootEntity="Concept">
 <Applicability>
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b99" />
 <TemplateRules>
 <TemplateRule Parameters="C2_TemplateRule[Size]>1" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="aec85996-6c68-4ce1-9436-9e1ad799281b" name="Operator
existence for concept second TemplatRules">
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b99" />
 <Requirements>
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="C2_Operator[Exists]=TRUE" Descrip-
tion="check the existence of operator when there is more than one Templat-
eRule/TemplateRules in second TemplateRules node" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="216170c7-c249-4b5f-be7c-b8ffb61f9de4" name="Operator
existence for concept third TemplatRules" applicableRootEntity="Concept">
 <Applicability>
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b99" />
 <TemplateRules>

Appendix B 165

 <TemplateRule Parameters="C3_TemplateRule[Size]>1" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="7f640a2d-8922-46cd-908b-d5b1cf08e152" name="Operator
existence for concept third TemplatRules">
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b99" />
 <Requirements>
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="C3_Operator[Exists]=TRUE" Descrip-
tion="check the existence of operator when there is more than one Templat-
eRule/TemplateRules in third TemplateRules node" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 <ConceptRoot uuid="9ced90e7-4d5f-4ddd-839c-0c6ead235a73" name="Operator
existence for concept fourth TemplatRules" applicableRootEntity="Concept">
 <Applicability>
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b99" />
 <TemplateRules>
 <TemplateRule Parameters="C4_TemplateRule[Size]>1" />
 </TemplateRules>
 </Applicability>
 <Concepts>
 <Concept uuid="4ac0350b-58de-4073-8b99-870c0cebf49d" name="Operator
existence for concept fourth TemplatRules">
 <Template ref="ad9aeda2-ad85-431b-a95b-7ea56fb52b99" />
 <Requirements>
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="import" />
 <Requirement exchangeRequirement="435f8e1c-ee0a-462f-9f48-
b968fb202485" requirement="mandatory" applicability="export" />
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="C4_Operator[Exists]=TRUE" Descrip-
tion="check the existence of operator when there is more than one Templat-
eRule/TemplateRules in fourth TemplateRules node" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Appendix C 166

Appendix C

Reports

C.1 Furniture Dataset XML against Furniture mvdXML

Furniture Dataset test results

Chair

ConceptRoot 'Chair HasBackrest, then IsReclining, has Armrests, HasHeadrest'
(uuid=32c2ca93-451e-4fc2-9891-ad0dcf6bb3e7)

There were 3 applicable and 1 not applicable Chair(s) in the checked file.

The following entities are failing:
- Chair: 1

The following entities are passing:
- Chair: 3
- Chair: 4

ConceptRoot 'Chair Production' (uuid=0c7b70bc-d061-4ff7-bb93-daf67c428ac1)

There were 3 applicable and 1 not applicable Chair(s) in the checked file.

The following entities are failing:
- Chair: 3

The following entities are passing:
- Chair: 2
- Chair: 4

ConceptRoot 'Chair Structure=steel, then Cushion=faux leather'
(uuid=86f2a7d8-8e90-485a-a700-f3a8d0f0693b)

There were 3 applicable and 1 not applicable Chair(s) in the checked file.

The following entities are failing:
- Chair: 3

The following entities are passing:
- Chair: 2
- Chair: 4

ConceptRoot 'Chair length and width' (uuid=be790918-5b48-416c-9dd2-
ccbe1b51f86a)

The following entities are failing:
- Chair: 2
- Chair: 3

The following entities are passing:
- Chair: 1
- Chair: 4

Appendix C 167

ConceptRoot 'Component Cushion exists, then Structure exists' (uuid=31adb6df-
f558-4594-b9f3-ed7e3e352bd9)

There were 4 applicable and 0 not applicable Chair(s) in the checked file.

The following entities are failing:
- Chair: 1

The following entities are passing:
- Chair: 2
- Chair: 3
- Chair: 4

ConceptRoot 'Chair and Armrests Cushion similar' (uuid=81e78ab9-5560-4ce3-
a4d6-7cad75f8920b)

There were 3 applicable and 1 not applicable Chair(s) in the checked file.

The following entities are failing:
- Chair: 3

The following entities are passing:
- Chair: 2
- Chair: 4

ConceptRoot 'Chair and Leg colors similar' (uuid=6cc834bf-aced-4f7d-9e20-
7c6fd09096da)

The following entities are failing:
- Chair: 2
- Chair: 3

The following entities are passing:
- Chair: 1
- Chair: 4

Leg

ConceptRoot 'Component Cushion exists, then Structure exists' (uuid=31adb6df-
f558-4594-b9f3-ed7e3e352bd9)

There were 0 applicable and 13 not applicable Leg(s) in the checked file.

ConceptRoot 'Leg HasWheel, then IsSwiveling' (uuid=74884d5c-d231-4204-aaeb-
3a3fbc13049d)

There were 11 applicable and 2 not applicable Leg(s) in the checked file.

The following entities are failing:
- Leg: 2.1
- Leg: 2.2
- Leg: 2.3
- Leg: 2.4
- Leg: 3.3

The following entities are passing:
- Leg: 1.1
- Leg: 1.2
- Leg: 1.3
- Leg: 4.1
- Leg: 4.2
- Leg: 4.3

Armrest

Appendix C 168

ConceptRoot 'Component Cushion exists, then Structure exists' (uuid=31adb6df-
f558-4594-b9f3-ed7e3e352bd9)

There were 4 applicable and 0 not applicable Armrest(s) in the checked file.

The following entities are failing:
- Armrest: 3.1

The following entities are passing:
- Armrest: 2.1
- Armrest: 2.2
- Armrest: 4.1

ConceptRoot 'Armrest StructureCategory is metal, then steel' (uuid=811c5e38-
684d-4684-a54d-a5c4cc0c7517)

There were 3 applicable and 1 not applicable Armrest(s) in the checked file.

The following entities are failing:
- Armrest: 2.1

The following entities are passing:
- Armrest: 2.2
- Armrest: 4.1

Appendix C 169

C.2 Furniture mvdXML against mvdXML Checks

RuleIDReport

RuleID check

AttributeRule

ConceptRoot 'RuleID existence' (uuid=5d33acef-c6be-4b54-b9b8-a24ec0c4d043)

The following entities are passing:
- AttributeRule: ID
- AttributeRule: HasBackrest
- AttributeRule: IsReclining
- AttributeRule: HasHeadrest
- AttributeRule: Color
- AttributeRule: Length
- AttributeRule: Width
- AttributeRule: Structure
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Cushion
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Armrests
- AttributeRule: Legs
- AttributeRule: Production
- AttributeRule: IsAntique
- AttributeRule: ProductionYear
- AttributeRule: Country
- AttributeRule: Manufacturer
- AttributeRule: Cushion
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Structure
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: HasWheel
- AttributeRule: IsSwiveling
- AttributeRule: Color
- AttributeRule: Structure
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Cushion
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Structure
- AttributeRule: Name
- AttributeRule: Category

ConceptTemplate

ConceptRoot 'RuleID uniqueness' (uuid=112c33e2-366c-4ab8-9491-47f881bbc07e)

The following entities are passing:
- ConceptTemplate: ab8ea1a0-3610-4e2f-b3d6-0f6414522d94
- ConceptTemplate: 5d2e52c2-cc53-441d-99b2-58df8312dda8
- ConceptTemplate: 28edd9a1-fdd2-4298-9a94-49c7ccc031b3
- ConceptTemplate: 9f10223f-0da5-4536-9e17-0f96f13dd6e8

Appendix C 170

C.2 Furniture mvdXML against mvdXML Checks

IdPrefixReport

IdPrefix check

EntityRule

ConceptRoot 'IdPrefix existence' (uuid=0a48b28a-c7b4-4e53-8153-d6042aaf0ebc)

There were 2 applicable and 8 not applicable EntityRule(s) in the checked file.

The following entities are passing:
- EntityRule: Armrest
- EntityRule: Leg

ConceptTemplate

ConceptRoot 'IdPrefix uniqueness' (uuid=0a48b28a-c7b4-4e53-8153-d6042aaf0ebd)

There were 1 applicable and 3 not applicable ConceptTemplate(s) in the checked
file.

The following entities are passing:
- ConceptTemplate: ab8ea1a0-3610-4e2f-b3d6-0f6414522d94

MetricValueReport

MetricValue check

TemplateRulesTemplateRule

ConceptRoot 'MetricValue' (uuid=12e23e60-73af-48c3-ba5b-889fc9ea88b0)

The following entities are passing:
- TemplateRulesTemplateRule: HasBackrest[Value]=TRUE
- TemplateRulesTemplateRule: IsReclining[Value]=TRUE AND Armrests[Size]>0 AND
HasHeadrest[Value]=TRUE
- TemplateRulesTemplateRule: IsAntique[Value]=TRUE
- TemplateRulesTemplateRule: Country[Exists]=TRUE AND Manufacturer[Exists]=TRUE
AND ProductionYear[Exists]=TRUE
- TemplateRulesTemplateRule: StructureMaterialName[Value]='Steel'
- TemplateRulesTemplateRule: CushionMaterialName[Value]='Faux Leather'
- TemplateRulesTemplateRule: Length[Value]>=52.5 AND Width[Value]>=48.5
- TemplateRulesTemplateRule: Cushion[Exists]=TRUE
- TemplateRulesTemplateRule: Structure[Exists]=TRUE
- TemplateRulesTemplateRule: HasWheel[Value]=TRUE
- TemplateRulesTemplateRule: IsSwiveling[Value]=TRUE
- TemplateRulesTemplateRule: StructureCategory[Value]='Metal'
- TemplateRulesTemplateRule: StructureMaterialName[Value]='Steel'
- TemplateRulesTemplateRule: Armrests[Size]>0
- TemplateRulesTemplateRule: Armrests_CushionMaterialName[Value]=CushionMaterial-
Name[Value]
- TemplateRulesTemplateRule: Color[Value]=Legs_Color[Value]

Appendix C 171

C.2 Furniture mvdXML against mvdXML Checks

ParametersAttributesReport

ParametersAttributes check

mvdXML

ConceptRoot 'Applicability parameters attributes' (uuid=81a939d4-7568-460e-
b212-346efb5d0af4)

The following entities are failing:
- mvdXML: 9ba97c1d-c13c-4b4f-9581-51565828e701

ConceptRoot 'Concept parameters attributes' (uuid=f1d6e1cd-4007-44ae-aaa9-
ab3960555501)

The following entities are failing:
- mvdXML: 9ba97c1d-c13c-4b4f-9581-51565828e701

Appendix C 172

C.2 Furniture mvdXML against mvdXML Checks

TemplateReferenceReport

TemplateReference check
ConceptRoot

ConceptRoot 'Applicability template reference' (uuid=2e84ff23-2825-49e8-a92e-
8af75bb92753)

There were 7 applicable and 2 not applicable ConceptRoot(s) in the checked file.

The following entities are passing:
- ConceptRoot: 32c2ca93-451e-4fc2-9891-ad0dcf6bb3e7
- ConceptRoot: 0c7b70bc-d061-4ff7-bb93-daf67c428ac1
- ConceptRoot: 86f2a7d8-8e90-485a-a700-f3a8d0f0693b
- ConceptRoot: 31adb6df-f558-4594-b9f3-ed7e3e352bd9
- ConceptRoot: 74884d5c-d231-4204-aaeb-3a3fbc13049d
- ConceptRoot: 811c5e38-684d-4684-a54d-a5c4cc0c7517
- ConceptRoot: 81e78ab9-5560-4ce3-a4d6-7cad75f8920b

Concept

ConceptRoot 'Concept template reference' (uuid=d80f9f4a-19f5-4585-aaed-
1fed551ad8f7)

The following entities are passing:
- Concept: fdc7fec5-6e23-4e99-b3e0-c84832662a6c
- Concept: 2300768b-1297-4bb8-b348-978c449633b7
- Concept: cf38f321-63cc-4c15-93e3-09291441552d
- Concept: 3aa515cf-c928-4f8a-8fb3-89b252c5e2b1
- Concept: afe6bbcc-91a8-477f-95ff-318a2c832e0c
- Concept: 2c5eaeec-cc64-45da-9cc6-e2f7257f59d1
- Concept: 9ba7e275-5012-43a0-a63c-714c8b5065ee
- Concept: ac7f9692-913f-4992-b276-b3b9a3bddb0d
- Concept: 99c1cc18-ef3b-4ef6-9049-58e8d4ac14ef

EntityRule

ConceptRoot 'Entity template reference' (uuid=44401324-8c79-4cfc-b40d-
29a105f4de61)

There were 2 applicable and 8 not applicable EntityRule(s) in the checked file.

The following entities are passing:
- EntityRule: Armrest
- EntityRule: Leg

EntityReferenceReport

ConceptRoot 'Entity Reference' (uuid=44401324-8c79-4cfc-b40d-29a105f4de69)

The following entities are failing:
- mvdXML: 9ba97c1d-c13c-4b4f-9581-51565828e701

Appendix C 173

C.2 Furniture mvdXML against mvdXML Checks

ReferencedConceptTemplatesReport

ReferencedConceptTemplates check

mvdXML

ConceptRoot 'Existence of referred ConceptTemplates check of Applicability in
the mvdXML file' (uuid=b3d73a9a-3693-462a-bed6-20658ed48122)

There were 1 applicable and 0 not applicable mvdXML(s) in the checked file.

The following entities are passing:
- mvdXML: 9ba97c1d-c13c-4b4f-9581-51565828e701

ConceptRoot 'Existence of referred ConceptTemplates of Concept in the mvdXML
file' (uuid=087aae2f-2c43-4f1f-a572-42d0eb27ce2d)

The following entities are passing:
- mvdXML: 9ba97c1d-c13c-4b4f-9581-51565828e701

ConceptRoot 'Existence of referred ConceptTemplates of EntityRule in the
mvdXML file' (uuid=087aae2f-2c43-4f1f-a572-42d0eb27ce2e)

There were 1 applicable and 0 not applicable mvdXML(s) in the checked file.

The following entities are failing:
- mvdXML: 9ba97c1d-c13c-4b4f-9581-51565828e701

ConstraintsReport

Constraints check

mvdXML

ConceptRoot 'Constraints exist if Applicability parameters is empty'
(uuid=12e23e60-73af-48c3-ba5b-889fc9ea88b2)

There were 0 applicable and 1 not applicable mvdXML(s) in the checked file.

ConceptRoot 'Constraints exist if Concept parameters is empty'
(uuid=12e23e60-73af-48c3-ba5b-889fc9ea88b1)

There were 0 applicable and 1 not applicable mvdXML(s) in the checked file.

Appendix C 174

C.2 Furniture mvdXML against mvdXML Checks

NameReport

Name check

mvdXML

ConceptRoot 'Name existence' (uuid=3a205731-14eb-49a0-8749-f6611ef29262)

The following entities are passing:
- mvdXML: 9ba97c1d-c13c-4b4f-9581-51565828e701

ConceptTemplate

ConceptRoot 'Name existence' (uuid=b34f9bc3-bd00-4dd8-8dd0-9f998a76d0b2)

The following entities are passing:
- ConceptTemplate: ab8ea1a0-3610-4e2f-b3d6-0f6414522d94
- ConceptTemplate: 5d2e52c2-cc53-441d-99b2-58df8312dda8
- ConceptTemplate: 28edd9a1-fdd2-4298-9a94-49c7ccc031b3
- ConceptTemplate: 9f10223f-0da5-4536-9e17-0f96f13dd6e8

ModelView

ConceptRoot 'Name existence' (uuid=e254aaaf-8e3b-4dc5-95e8-8f407292edc9)

The following entities are passing:
- ModelView: 83f5229e-f411-466e-b25b-b89d04666e1a

ConceptRoot

ConceptRoot 'Name existence' (uuid=e866d8e7-ea66-48a2-bbeb-2d4abe891b27)

The following entities are passing:
- ConceptRoot: 32c2ca93-451e-4fc2-9891-ad0dcf6bb3e7
- ConceptRoot: 0c7b70bc-d061-4ff7-bb93-daf67c428ac1
- ConceptRoot: 86f2a7d8-8e90-485a-a700-f3a8d0f0693b
- ConceptRoot: be790918-5b48-416c-9dd2-ccbe1b51f86a
- ConceptRoot: 31adb6df-f558-4594-b9f3-ed7e3e352bd9
- ConceptRoot: 74884d5c-d231-4204-aaeb-3a3fbc13049d
- ConceptRoot: 811c5e38-684d-4684-a54d-a5c4cc0c7517
- ConceptRoot: 81e78ab9-5560-4ce3-a4d6-7cad75f8920b
- ConceptRoot: 6cc834bf-aced-4f7d-9e20-7c6fd09096da

Concept

ConceptRoot 'Name existence' (uuid=f811fd26-6017-4e67-8416-8fa6a3b1a590)

The following entities are passing:
- Concept: fdc7fec5-6e23-4e99-b3e0-c84832662a6c
- Concept: 2300768b-1297-4bb8-b348-978c449633b7
- Concept: cf38f321-63cc-4c15-93e3-09291441552d
- Concept: 3aa515cf-c928-4f8a-8fb3-89b252c5e2b1
- Concept: afe6bbcc-91a8-477f-95ff-318a2c832e0c
- Concept: 2c5eaeec-cc64-45da-9cc6-e2f7257f59d1
- Concept: 9ba7e275-5012-43a0-a63c-714c8b5065ee
- Concept: ac7f9692-913f-4992-b276-b3b9a3bddb0d
- Concept: 99c1cc18-ef3b-4ef6-9049-58e8d4ac14ef

Appendix C 175

C.2 Furniture mvdXML against mvdXML Checks

EntityRuleReport

EntityRule check

AttributeRule

ConceptRoot 'Existence of EntityRule' (uuid=e5a1e8ba-6309-4a04-abb5-
648883b691c8)

The following entities are failing:
- AttributeRule: ID
- AttributeRule: HasBackrest
- AttributeRule: IsReclining
- AttributeRule: HasHeadrest
- AttributeRule: Color
- AttributeRule: Length
- AttributeRule: Width
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: IsAntique
- AttributeRule: ProductionYear
- AttributeRule: Country
- AttributeRule: Manufacturer
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: HasWheel
- AttributeRule: IsSwiveling
- AttributeRule: Color
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Name
- AttributeRule: Category

The following entities are passing:
- AttributeRule: Structure
- AttributeRule: Cushion
- AttributeRule: Armrests
- AttributeRule: Legs
- AttributeRule: Production
- AttributeRule: Cushion
- AttributeRule: Structure
- AttributeRule: Structure
- AttributeRule: Cushion
- AttributeRule: Structure

Appendix C 176

C.2 Furniture mvdXML against mvdXML Checks

OperatorExistenceReport

OperatorExistence check

ConceptRoot

ConceptRoot 'Operator existence for applicability first TemplatRules'
(uuid=e000882d-911a-44a8-b6b5-dbbc0c48486d)

There were 0 applicable and 9 not applicable ConceptRoot(s) in the checked file.

ConceptRoot 'Operator existence for applicability second TemplatRules'
(uuid=546074ba-6d89-4b23-80ee-4298dffbc479)

There were 0 applicable and 9 not applicable ConceptRoot(s) in the checked file.

ConceptRoot 'Operator existence for applicability third TemplatRules'
(uuid=e0412f8f-0d85-472d-8c59-c9c7c97dfbcc)

There were 0 applicable and 9 not applicable ConceptRoot(s) in the checked file.

ConceptRoot 'Operator existence for applicability fourth TemplatRules'
(uuid=29d04bca-962f-495d-b2e4-6bb6531a9b29)

There were 0 applicable and 9 not applicable ConceptRoot(s) in the checked file.

Concept

ConceptRoot 'Operator existence for concept first TemplatRules'
(uuid=a42a6025-a02a-46b7-99fb-2064dc7bd435)

There were 0 applicable and 9 not applicable Concept(s) in the checked file.

ConceptRoot 'Operator existence for concept second TemplatRules'
(uuid=071ffae7-28e6-4e8a-9668-b297eef53595)

There were 0 applicable and 9 not applicable Concept(s) in the checked file.

ConceptRoot 'Operator existence for concept third TemplatRules'
(uuid=216170c7-c249-4b5f-be7c-b8ffb61f9de4)

There were 0 applicable and 9 not applicable Concept(s) in the checked file.

ConceptRoot 'Operator existence for concept fourth TemplatRules'
(uuid=9ced90e7-4d5f-4ddd-839c-0c6ead235a73)

There were 0 applicable and 9 not applicable Concept(s) in the checked file.

Appendix C 177

C.3 Incorrect Furniture mvdXML files against mvdXML Checks

ComponentRuleIDUniquenessReport

ComponentRuleID Uniqueness check

AttributeRule

ConceptRoot 'RuleID existence' (uuid=5d33acef-c6be-4b54-b9b8-a24ec0c4d043)

The following entities are passing:
- AttributeRule: Cushion
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Structure
- AttributeRule: Name
- AttributeRule: Category

ConceptTemplate

ConceptRoot 'RuleID uniqueness' (uuid=112c33e2-366c-4ab8-9491-47f881bbc07e)

The following entities are failing:
- ConceptTemplate: 9f10223f-0da5-4536-9e17-0f96f13dd6e8

ComponentRuleIDExistenceReport

ComponentRuleID Existence check

AttributeRule

ConceptRoot 'RuleID existence' (uuid=5d33acef-c6be-4b54-b9b8-a24ec0c4d043)

The following entities are failing:
- AttributeRule: Cushion
- AttributeRule: Name
- AttributeRule: Category
- AttributeRule: Structure
- AttributeRule: Name
- AttributeRule: Category

ConceptTemplate

ConceptRoot 'RuleID uniqueness' (uuid=112c33e2-366c-4ab8-9491-47f881bbc07e)

The following entities are failing:
- ConceptTemplate: 9f10223f-0da5-4536-9e17-0f96f13dd6e8

Appendix C 178

C.3 Incorrect Furniture mvdXML files against mvdXML Checks

ChairIdPrefixUniquenessReport

ChairIdPrefixUniqueness check

EntityRule

ConceptRoot 'IdPrefix existence' (uuid=0a48b28a-c7b4-4e53-8153-d6042aaf0ebc)

There were 2 applicable and 6 not applicable EntityRule(s) in the checked file.

The following entities are passing:
- EntityRule: Armrest
- EntityRule: Leg

ConceptTemplate

ConceptRoot 'IdPrefix uniqueness' (uuid=0a48b28a-c7b4-4e53-8153-d6042aaf0ebd)

There were 1 applicable and 2 not applicable ConceptTemplate(s) in the checked
file.

The following entities are failing:
- ConceptTemplate: ab8ea1a0-3610-4e2f-b3d6-0f6414522d94

ChairIdPrefixExistenceReport

ChairIdPrefixExistence check

EntityRule

ConceptRoot 'IdPrefix existence' (uuid=0a48b28a-c7b4-4e53-8153-d6042aaf0ebc)

There were 2 applicable and 6 not applicable EntityRule(s) in the checked file.

The following entities are failing:
- EntityRule: Armrest
- EntityRule: Leg

ConceptTemplate

ConceptRoot 'IdPrefix uniqueness' (uuid=0a48b28a-c7b4-4e53-8153-d6042aaf0ebd)

There were 0 applicable and 3 not applicable ConceptTemplate(s) in the checked
file.

Appendix C 179

C.3 Incorrect Furniture mvdXML files against mvdXML Checks

ComponentMetricValueReport

ComponentMetricValue check

TemplateRulesTemplateRule

ConceptRoot 'MetricValue' (uuid=12e23e60-73af-48c3-ba5b-889fc9ea88b0)

The following entities are failing:
- TemplateRulesTemplateRule: Cushion[Valu]=TRUE
- TemplateRulesTemplateRule: CushionCategory[]='Leather'
- TemplateRulesTemplateRule: Structure[Exists]=TRUE AND StructureCate-
gory[]='Metal'
- TemplateRulesTemplateRule: StructureMaterialName[Exist]=TRUE
- TemplateRulesTemplateRule: Structure[Exists]=TRUE AND StructureCate-
gory[yes]=TRUE

ComponentParametersAttributesReport

ComponentParametersAttributes check

mvdXML

ConceptRoot 'Applicability parameters attributes' (uuid=81a939d4-7568-460e-
b212-346efb5d0af4)

The following entities are failing:
- mvdXML: a6f819ae-8715-465d-b6a7-d4b76298efbc

ConceptRoot 'Concept parameters attributes' (uuid=f1d6e1cd-4007-44ae-aaa9-
ab3960555501)

The following entities are failing:
- mvdXML: a6f819ae-8715-465d-b6a7-d4b76298efbc

Appendix C 180

C.3 Incorrect Furniture mvdXML files against mvdXML Checks

ChairTemplateReferenceReport

ChairTemplateReference check

ConceptRoot

ConceptRoot 'Applicability template reference' (uuid=2e84ff23-2825-49e8-a92e-
8af75bb92753)

There were 1 applicable and 0 not applicable ConceptRoot(s) in the checked file.

The following entities are failing:
- ConceptRoot: cc841c98-136d-4791-a8cb-ee8204e0bc4b

Concept

ConceptRoot 'Concept template reference' (uuid=d80f9f4a-19f5-4585-aaed-
1fed551ad8f7)

The following entities are failing:
- Concept: 6d41b0ee-e4e2-46cb-8376-1f025bba0b8f

EntityRule

ConceptRoot 'Entity template reference' (uuid=44401324-8c79-4cfc-b40d-
29a105f4de61)

There were 2 applicable and 6 not applicable EntityRule(s) in the checked file.

The following entities are failing:
- EntityRule: Armrest
- EntityRule: Leg

Chair-LegEntityReferenceReport

Chair-LegEntityReference check

mvdXML

ConceptRoot 'Entity Reference' (uuid=44401324-8c79-4cfc-b40d-29a105f4de69)

The following entities are failing:
- mvdXML: f65063a2-b4b2-4da5-8cb8-bb26d33bd38b

Appendix C 181

C.3 Incorrect Furniture mvdXML files against mvdXML Checks

ChairReferencedConceptTemplatesReport

ChairReferencedConceptTemplates check

mvdXML

ConceptRoot 'Existence of referred ConceptTemplates check of Applicability in
the mvdXML file' (uuid=b3d73a9a-3693-462a-bed6-20658ed48122)

There were 1 applicable and 0 not applicable mvdXML(s) in the checked file.

The following entities are failing:
- mvdXML: 7f06d0ef-1246-41b5-bb10-0b0c12e511d2

ConceptRoot 'Existence of referred ConceptTemplates of Concept in the mvdXML
file' (uuid=087aae2f-2c43-4f1f-a572-42d0eb27ce2d)

The following entities are failing:
- mvdXML: 7f06d0ef-1246-41b5-bb10-0b0c12e511d2

ConceptRoot 'Existence of referred ConceptTemplates of EntityRule in the
mvdXML file' (uuid=087aae2f-2c43-4f1f-a572-42d0eb27ce2e)

There were 1 applicable and 0 not applicable mvdXML(s) in the checked file.

The following entities are failing:
- mvdXML: 7f06d0ef-1246-41b5-bb10-0b0c12e511d2

ChairConstraintsReport

ChairConstraints check

mvdXML

ConceptRoot 'Constraints exist if Applicability parameters is empty'
(uuid=12e23e60-73af-48c3-ba5b-889fc9ea88b2)

There were 1 applicable and 0 not applicable mvdXML(s) in the checked file.

The following entities are failing:
- mvdXML: 266ad15b-9dac-46de-b500-bdda6e0e6d79

ConceptRoot 'Constraints exist if Concept parameters is empty'
(uuid=12e23e60-73af-48c3-ba5b-889fc9ea88b1)

There were 1 applicable and 0 not applicable mvdXML(s) in the checked file.

The following entities are failing:
- mvdXML: 266ad15b-9dac-46de-b500-bdda6e0e6d79

Appendix C 182

C.3 Incorrect Furniture mvdXML files against mvdXML Checks

ChairNameReport

ChairName check

mvdXML

ConceptRoot 'Name existence' (uuid=3a205731-14eb-49a0-8749-f6611ef29262)

The following entities are failing:
- mvdXML: c8a623f4-7d9e-428a-9c56-74e0cdce9923

ConceptTemplate

ConceptRoot 'Name existence' (uuid=b34f9bc3-bd00-4dd8-8dd0-9f998a76d0b2)

The following entities are failing:
- ConceptTemplate: ab8ea1a0-3610-4e2f-b3d6-0f6414522d94

ModelView

ConceptRoot 'Name existence' (uuid=e254aaaf-8e3b-4dc5-95e8-8f407292edc9)

The following entities are failing:
- ModelView: 6fe45497-9985-495a-a1a9-fa8c64f457b9

ConceptRoot

ConceptRoot 'Name existence' (uuid=e866d8e7-ea66-48a2-bbeb-2d4abe891b27)

The following entities are failing:
- ConceptRoot: 32c2ca93-451e-4fc2-9891-ad0dcf6bb3e7

Concept

ConceptRoot 'Name existence' (uuid=f811fd26-6017-4e67-8416-8fa6a3b1a590)

The following entities are failing:
- Concept: fdc7fec5-6e23-4e99-b3e0-c84832662a6c

Appendix C 183

C.3 Incorrect Furniture mvdXML files against mvdXML Checks

ChairOperatorExistenceReport

ChairOperatorExistence check

ConceptRoot

ConceptRoot 'Operator existence for applicability first TemplatRules'
(uuid=e000882d-911a-44a8-b6b5-dbbc0c48486d)

There were 0 applicable and 1 not applicable ConceptRoot(s) in the checked file.

ConceptRoot 'Operator existence for applicability second TemplatRules'
(uuid=546074ba-6d89-4b23-80ee-4298dffbc479)

There were 0 applicable and 1 not applicable ConceptRoot(s) in the checked file.

ConceptRoot 'Operator existence for applicability third TemplatRules'
(uuid=e0412f8f-0d85-472d-8c59-c9c7c97dfbcc)

There were 0 applicable and 1 not applicable ConceptRoot(s) in the checked file.

ConceptRoot 'Operator existence for applicability fourth TemplatRules'
(uuid=29d04bca-962f-495d-b2e4-6bb6531a9b29)

There were 0 applicable and 1 not applicable ConceptRoot(s) in the checked file.

Concept

ConceptRoot 'Operator existence for concept first TemplatRules'
(uuid=a42a6025-a02a-46b7-99fb-2064dc7bd435)

There were 1 applicable and 1 not applicable Concept(s) in the checked file.

The following entities are passing:
- Concept: 12ad3dad-264a-4f6e-ac4d-df669d03b9a2

ConceptRoot 'Operator existence for concept second TemplatRules'
(uuid=071ffae7-28e6-4e8a-9668-b297eef53595)

There were 1 applicable and 1 not applicable Concept(s) in the checked file.

The following entities are passing:
- Concept: 12ad3dad-264a-4f6e-ac4d-df669d03b9a2

ConceptRoot 'Operator existence for concept third TemplatRules'
(uuid=216170c7-c249-4b5f-be7c-b8ffb61f9de4)

There were 0 applicable and 2 not applicable Concept(s) in the checked file.

ConceptRoot 'Operator existence for concept fourth TemplatRules'
(uuid=9ced90e7-4d5f-4ddd-839c-0c6ead235a73)

There were 0 applicable and 2 not applicable Concept(s) in the checked file.

Appendix C 184

C.4 Official mvdXML files and other examples against mvdXML Checks

The reports have huge space and can be found within the enclosed ZIP file.

C.5 mvdXMLChecks file against mvdXMLChecks

MvdXMLChecks

ConceptTemplate

ConceptRoot 'RuleID uniqueness' (uuid=112c33e2-366c-4ab8-9491-47f881bbc07e)

The following entities are passing:
- ConceptTemplate: dd83efa6-88c4-4954-b378-7f6ffaaec311
- ConceptTemplate: dd83efa6-88c4-4954-b378-7f6ffaaec312
- ConceptTemplate: 4c31b9d9-3a83-4120-a56d-9b116593e02e
- ConceptTemplate: 4c31b9d9-3a83-4120-a56d-9b116593e02f
- ConceptTemplate: 8e900bab-2693-4a44-88ac-5ba07a654ae8
- ConceptTemplate: ad9aeda2-ad85-431b-a95b-7ea56fb52b96
- ConceptTemplate: ad9aeda2-ad85-431b-a95b-7ea56fb52b97
- ConceptTemplate: c9d40546-597e-41a5-9f1f-2f2ef50ca54c
- ConceptTemplate: 58c7bea0-2ff8-41f3-97a4-be9854616a94
- ConceptTemplate: 8e900bab-2693-4a44-88ac-5ba07a654ae7
- ConceptTemplate: 2dbb40c4-1433-42f2-9e02-5216142de6b4
- ConceptTemplate: cc727b3c-f7f8-45a5-a91c-6b417dca5015
- ConceptTemplate: 3da5173a-417a-4d03-91c2-e62ad8049cf6
- ConceptTemplate: 8192b792-53ba-4153-a70c-ba92be020070
- ConceptTemplate: 1bd2b0b0-155f-46a4-86a5-f2ad4ab76922
- ConceptTemplate: 52f03d6e-6248-4750-ba15-b0842c1ccf1a
- ConceptTemplate: 809c75a7-2fe6-4343-8ccb-ca99e346195f

ConceptRoot 'IdPrefix uniqueness' (uuid=0a48b28a-c7b4-4e53-8153-d6042aaf0ebd)

There were 17 applicable and 0 not applicable ConceptTemplate(s) in the checked
file.

The following entities are passing:
- ConceptTemplate: dd83efa6-88c4-4954-b378-7f6ffaaec311
- ConceptTemplate: dd83efa6-88c4-4954-b378-7f6ffaaec312
- ConceptTemplate: 4c31b9d9-3a83-4120-a56d-9b116593e02e
- ConceptTemplate: 4c31b9d9-3a83-4120-a56d-9b116593e02f
- ConceptTemplate: 8e900bab-2693-4a44-88ac-5ba07a654ae8
- ConceptTemplate: ad9aeda2-ad85-431b-a95b-7ea56fb52b96
- ConceptTemplate: ad9aeda2-ad85-431b-a95b-7ea56fb52b97
- ConceptTemplate: c9d40546-597e-41a5-9f1f-2f2ef50ca54c
- ConceptTemplate: 58c7bea0-2ff8-41f3-97a4-be9854616a94
- ConceptTemplate: 8e900bab-2693-4a44-88ac-5ba07a654ae7
- ConceptTemplate: 2dbb40c4-1433-42f2-9e02-5216142de6b4
- ConceptTemplate: cc727b3c-f7f8-45a5-a91c-6b417dca5015
- ConceptTemplate: 3da5173a-417a-4d03-91c2-e62ad8049cf6
- ConceptTemplate: 8192b792-53ba-4153-a70c-ba92be020070
- ConceptTemplate: 1bd2b0b0-155f-46a4-86a5-f2ad4ab76922
- ConceptTemplate: 52f03d6e-6248-4750-ba15-b0842c1ccf1a
- ConceptTemplate: 809c75a7-2fe6-4343-8ccb-ca99e346195f

Appendix C 185

ConceptRoot 'ConceptTemplate Name existence' (uuid=f823d6e0-ee95-4bb0-a62b-
249a17bc283d)

The following entities are passing:
- ConceptTemplate: dd83efa6-88c4-4954-b378-7f6ffaaec311
- ConceptTemplate: dd83efa6-88c4-4954-b378-7f6ffaaec312
- ConceptTemplate: 4c31b9d9-3a83-4120-a56d-9b116593e02e
- ConceptTemplate: 4c31b9d9-3a83-4120-a56d-9b116593e02f
- ConceptTemplate: 8e900bab-2693-4a44-88ac-5ba07a654ae8
- ConceptTemplate: ad9aeda2-ad85-431b-a95b-7ea56fb52b96
- ConceptTemplate: ad9aeda2-ad85-431b-a95b-7ea56fb52b97
- ConceptTemplate: c9d40546-597e-41a5-9f1f-2f2ef50ca54c
- ConceptTemplate: 58c7bea0-2ff8-41f3-97a4-be9854616a94
- ConceptTemplate: 8e900bab-2693-4a44-88ac-5ba07a654ae7
- ConceptTemplate: 2dbb40c4-1433-42f2-9e02-5216142de6b4
- ConceptTemplate: cc727b3c-f7f8-45a5-a91c-6b417dca5015
- ConceptTemplate: 3da5173a-417a-4d03-91c2-e62ad8049cf6
- ConceptTemplate: 8192b792-53ba-4153-a70c-ba92be020070
- ConceptTemplate: 1bd2b0b0-155f-46a4-86a5-f2ad4ab76922
- ConceptTemplate: 52f03d6e-6248-4750-ba15-b0842c1ccf1a
- ConceptTemplate: 809c75a7-2fe6-4343-8ccb-ca99e346195f

AttributeRule

ConceptRoot 'RuleID existence' (uuid=5d33acef-c6be-4b54-b9b8-a24ec0c4d043)

The following entities are passing:
- AttributeRule: RuleID
- AttributeRule: Rules
- AttributeRule: References
- AttributeRule: IdPrefix
- AttributeRule: Rules
- AttributeRule: EntityRules
- AttributeRule: EntityRule
- AttributeRule: Parameters
- AttributeRule: Applicability
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: References
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: Views
- AttributeRule: Roots
- AttributeRule: Applicability
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: Concepts
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: Templates
- AttributeRule: uuid
- AttributeRule: SubTemplates
- AttributeRule: uuid
- AttributeRule: Rules
- AttributeRule: EntityRules
- AttributeRule: EntityRule
- AttributeRule: References
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: Templates
- AttributeRule: SubTemplates
- AttributeRule: Rules

Appendix C 186

- AttributeRule: EntityRules
- AttributeRule: EntityRule
- AttributeRule: Constraints
- AttributeRule: Constraint
- AttributeRule: Rules
- AttributeRule: EntityRules
- AttributeRule: EntityRule
- AttributeRule: Constraints
- AttributeRule: Constraint
- AttributeRule: Views
- AttributeRule: Roots
- AttributeRule: Applicability
- AttributeRule: TemplateRules
- AttributeRule: Items
- AttributeRule: Items
- AttributeRule: Items
- AttributeRule: Concepts
- AttributeRule: TemplateRules
- AttributeRule: Items
- AttributeRule: Items
- AttributeRule: Items
- AttributeRule: Items
- AttributeRule: Parameters
- AttributeRule: name
- AttributeRule: name
- AttributeRule: name
- AttributeRule: name
- AttributeRule: name
- AttributeRule: EntityRules
- AttributeRule: EntityRule

ConceptRoot 'EntityRule existence' (uuid=e5a1e8ba-6309-4a04-abb5-
648883b691c8)

The following entities are passing:
- AttributeRule: RuleID
- AttributeRule: Rules
- AttributeRule: References
- AttributeRule: IdPrefix
- AttributeRule: Rules
- AttributeRule: EntityRules
- AttributeRule: EntityRule
- AttributeRule: Parameters
- AttributeRule: Applicability
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: References
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: Views
- AttributeRule: Roots
- AttributeRule: Applicability
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: Concepts
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: Templates
- AttributeRule: uuid
- AttributeRule: SubTemplates
- AttributeRule: uuid
- AttributeRule: Rules

Appendix C 187

- AttributeRule: EntityRules
- AttributeRule: EntityRule
- AttributeRule: References
- AttributeRule: Template
- AttributeRule: ref
- AttributeRule: Templates
- AttributeRule: SubTemplates
- AttributeRule: Rules
- AttributeRule: EntityRules
- AttributeRule: EntityRule
- AttributeRule: Constraints
- AttributeRule: Constraint
- AttributeRule: Rules
- AttributeRule: EntityRules
- AttributeRule: EntityRule
- AttributeRule: Constraints
- AttributeRule: Constraint
- AttributeRule: Views
- AttributeRule: Roots
- AttributeRule: Applicability
- AttributeRule: TemplateRules
- AttributeRule: Items
- AttributeRule: Items
- AttributeRule: Items
- AttributeRule: Concepts
- AttributeRule: TemplateRules
- AttributeRule: Items
- AttributeRule: Items
- AttributeRule: Items
- AttributeRule: Items
- AttributeRule: Parameters
- AttributeRule: name
- AttributeRule: name
- AttributeRule: name
- AttributeRule: name
- AttributeRule: name
- AttributeRule: EntityRules
- AttributeRule: EntityRule

EntityRule

ConceptRoot 'IdPrefix existence' (uuid=0a48b28a-c7b4-4e53-8153-d6042aaf0ebc)

There were 10 applicable and 57 not applicable EntityRule(s) in the checked file.

The following entities are passing:
- EntityRule: AttributeRule
- EntityRule: EntityRule
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules

ConceptRoot 'Entity template reference' (uuid=44401324-8c79-4cfc-b40d-
29a105f4de61)

There were 10 applicable and 57 not applicable EntityRule(s) in the checked file.

The following entities are passing:
- EntityRule: AttributeRule

Appendix C 188

- EntityRule: EntityRule
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules
- EntityRule: TemplateRules

TemplateRulesTemplateRule

ConceptRoot 'MetricValue' (uuid=12e23e60-73af-48c3-ba5b-889fc9ea88b0)

The following entities are passing:
- TemplateRulesTemplateRule: A_RuleID[Unique]=TRUE
- TemplateRulesTemplateRule: RuleID[Exists]=TRUE
- TemplateRulesTemplateRule: References[Exists]=TRUE
- TemplateRulesTemplateRule: IdPrefix[Exists]=TRUE
- TemplateRulesTemplateRule: IdPrefix[Exists]=TRUE
- TemplateRulesTemplateRule: E_IdPrefix[Unique]=TRUE
- TemplateRulesTemplateRule: Parameters[Value]!=reg'.*(\\[\\]).*' AND Parame-
ters[Value]=reg'.*(\\[Value\\]|\\[VALUE\\]|\\[Size\\]|\\[SIZE\\]|\\[Type\\]|\\[TY
PE\\]|\\[Unique\\]|\\[UNIQUE\\]|\\[Exists\\]|\\[EXISTS\\]).*'
- TemplateRulesTemplateRule: Parameters[Value]!=reg'.*(\\[[a-z]+\\]).*' AND Pa-
rame-
ters[Value]=reg'.*(\\[Value\\]|\\[VALUE\\]|\\[Size\\]|\\[SIZE\\]|\\[Type\\]|\\[TY
PE\\]|\\[Unique\\]|\\[UNIQUE\\]|\\[Exists\\]|\\[EXISTS\\]).*'
- TemplateRulesTemplateRule: Applicability[Exists]=TRUE
- TemplateRulesTemplateRule: Applicabilityref[Value]!=''
- TemplateRulesTemplateRule: Conceptref[Value]!=''
- TemplateRulesTemplateRule: References[Exists]=TRUE
- TemplateRulesTemplateRule: ref[Value]!=''
- TemplateRulesTemplateRule: Applicability[Exists]=TRUE
- TemplateRulesTemplateRule: Applicabilityref[Value]=uuid[Value]
- TemplateRulesTemplateRule: Applicabilityref[Value]=suuid[Value]
- TemplateRulesTemplateRule: Conceptref[Value]=uuid[Value]
- TemplateRulesTemplateRule: Conceptref[Value]=suuid[Value]
- TemplateRulesTemplateRule: A1_Parameters[Value]='' OR A2_Parameters[Value]=''
OR A3_Parameters[Value]='' OR A4_Parameters[Value]=''
- TemplateRulesTemplateRule: Constraint[Exists]=TRUE
- TemplateRulesTemplateRule: SConstraint[Exists]=TRUE
- TemplateRulesTemplateRule: C1_Parameters[Value]='' OR C2_Parameters[Value]=''
OR C3_Parameters[Value]='' OR C4_Parameters[Value]=''
- TemplateRulesTemplateRule: Constraint[Exists]=TRUE
- TemplateRulesTemplateRule: SConstraint[Exists]=TRUE
- TemplateRulesTemplateRule: name[Value]!=''
- TemplateRulesTemplateRule: name[Value]!=''
- TemplateRulesTemplateRule: name[Value]!=''
- TemplateRulesTemplateRule: name[Value]!=''
- TemplateRulesTemplateRule: name[Value]!=''
- TemplateRulesTemplateRule: EntityRule[Exists]=TRUE

ConceptRoot

ConceptRoot 'Applicability template reference' (uuid=2e84ff23-2825-49e8-a92e-
8af75bb92753)

There were 7 applicable and 11 not applicable ConceptRoot(s) in the checked
file.

The following entities are passing:
- ConceptRoot: 0a48b28a-c7b4-4e53-8153-d6042aaf0ebc
- ConceptRoot: 0a48b28a-c7b4-4e53-8153-d6042aaf0ebd

Appendix C 189

- ConceptRoot: 2e84ff23-2825-49e8-a92e-8af75bb92753
- ConceptRoot: 44401324-8c79-4cfc-b40d-29a105f4de61
- ConceptRoot: b3d73a9a-3693-462a-bed6-20658ed48122
- ConceptRoot: 12e23e60-73af-48c3-ba5b-889fc9ea88b2
- ConceptRoot: 12e23e60-73af-48c3-ba5b-889fc9ea88b1

ConceptRoot 'ConceptRoot Name existence' (uuid=a188ab71-7624-4b24-81e4-
fcc4fb73ee0f)

The following entities are passing:
- ConceptRoot: 112c33e2-366c-4ab8-9491-47f881bbc07e
- ConceptRoot: 5d33acef-c6be-4b54-b9b8-a24ec0c4d043
- ConceptRoot: 0a48b28a-c7b4-4e53-8153-d6042aaf0ebc
- ConceptRoot: 0a48b28a-c7b4-4e53-8153-d6042aaf0ebd
- ConceptRoot: 12e23e60-73af-48c3-ba5b-889fc9ea88b0
- ConceptRoot: 2e84ff23-2825-49e8-a92e-8af75bb92753
- ConceptRoot: d80f9f4a-19f5-4585-aaed-1fed551ad8f7
- ConceptRoot: 44401324-8c79-4cfc-b40d-29a105f4de61
- ConceptRoot: b3d73a9a-3693-462a-bed6-20658ed48122
- ConceptRoot: 087aae2f-2c43-4f1f-a572-42d0eb27ce2d
- ConceptRoot: 12e23e60-73af-48c3-ba5b-889fc9ea88b2
- ConceptRoot: 12e23e60-73af-48c3-ba5b-889fc9ea88b1
- ConceptRoot: fae1d217-26da-4cb3-aa2a-dcc82b059c0b
- ConceptRoot: f823d6e0-ee95-4bb0-a62b-249a17bc283d
- ConceptRoot: c268d637-1674-4948-8eb3-0e185a8536a3
- ConceptRoot: a188ab71-7624-4b24-81e4-fcc4fb73ee0f
- ConceptRoot: f210fea4-f81c-4333-81b9-6912585703fe
- ConceptRoot: e5a1e8ba-6309-4a04-abb5-648883b691c8

Concept

ConceptRoot 'Concept template reference' (uuid=d80f9f4a-19f5-4585-aaed-
1fed551ad8f7)

The following entities are passing:
- Concept: e5eaa92e-d530-414f-bf86-c50a3b84fbe2
- Concept: 68ecc19c-cd8c-4a38-b0d2-8bf16d2b6455
- Concept: cb576fee-b25f-4d51-aa07-cd436851317d
- Concept: cb576fee-b25f-4d51-aa07-cd436851317c
- Concept: 3bb3ea16-af65-4806-9f42-4c53464bfecc
- Concept: b45128ae-dc95-4de3-ad2d-6e2d8d2a9042
- Concept: a71e6bfd-6ff5-4000-8966-7c737830fab7
- Concept: 4caf23ec-c495-497e-94c1-b35995686d61
- Concept: 1b6168cd-1336-4c19-b9dc-4afc19ec77f9
- Concept: 9de4f802-1301-4b16-87c8-7de4166280af
- Concept: 3bb3ea16-af65-4806-9f42-4c53464bfecd
- Concept: 3bb3ea16-af65-4806-9f42-4c53464bfece
- Concept: d19bbdc6-45a9-4dc5-921d-9a1cc45f33bb
- Concept: 483ba4c1-5320-4f77-b983-65dbd9d15b3f
- Concept: 09f52eb4-ae51-4a2d-b34d-76f2224bd455
- Concept: 69bff2ff-fb43-4bfa-ad29-ca6c5f88501f
- Concept: c86e1175-19b2-4559-957f-bafcc4a41efc
- Concept: 5edda7d5-82c9-441f-9f5c-b18d79d91826

ConceptRoot 'Concept Name existence' (uuid=f210fea4-f81c-4333-81b9-
6912585703fe)

The following entities are passing:
- Concept: e5eaa92e-d530-414f-bf86-c50a3b84fbe2
- Concept: 68ecc19c-cd8c-4a38-b0d2-8bf16d2b6455
- Concept: cb576fee-b25f-4d51-aa07-cd436851317d
- Concept: cb576fee-b25f-4d51-aa07-cd436851317c
- Concept: 3bb3ea16-af65-4806-9f42-4c53464bfecc
- Concept: b45128ae-dc95-4de3-ad2d-6e2d8d2a9042

Appendix C 190

- Concept: a71e6bfd-6ff5-4000-8966-7c737830fab7
- Concept: 4caf23ec-c495-497e-94c1-b35995686d61
- Concept: 1b6168cd-1336-4c19-b9dc-4afc19ec77f9
- Concept: 9de4f802-1301-4b16-87c8-7de4166280af
- Concept: 3bb3ea16-af65-4806-9f42-4c53464bfecd
- Concept: 3bb3ea16-af65-4806-9f42-4c53464bfece
- Concept: d19bbdc6-45a9-4dc5-921d-9a1cc45f33bb
- Concept: 483ba4c1-5320-4f77-b983-65dbd9d15b3f
- Concept: 09f52eb4-ae51-4a2d-b34d-76f2224bd455
- Concept: 69bff2ff-fb43-4bfa-ad29-ca6c5f88501f
- Concept: c86e1175-19b2-4559-957f-bafcc4a41efc
- Concept: 5edda7d5-82c9-441f-9f5c-b18d79d91826

mvdXML

ConceptRoot 'Existence of referred ConceptTemplates of Applicability in the
mvdXML file' (uuid=b3d73a9a-3693-462a-bed6-20658ed48122)

There were 1 applicable and 0 not applicable mvdXML(s) in the checked file.

The following entities are passing:
- mvdXML: bdae3712-5c82-45fb-878f-b2f52713e96c

ConceptRoot 'Existence of referred ConceptTemplates of Concept in the mvdXML
file' (uuid=087aae2f-2c43-4f1f-a572-42d0eb27ce2d)

The following entities are passing:
- mvdXML: bdae3712-5c82-45fb-878f-b2f52713e96c

ConceptRoot 'Constraints ConceptRoot for Applicability Parameters'
(uuid=12e23e60-73af-48c3-ba5b-889fc9ea88b2)

There were 0 applicable and 1 not applicable mvdXML(s) in the checked file.

ConceptRoot 'Constraints ConceptRoot for Concept Parameters' (uuid=12e23e60-
73af-48c3-ba5b-889fc9ea88b1)

There were 0 applicable and 1 not applicable mvdXML(s) in the checked file.

ConceptRoot 'mvdXML Name existence' (uuid=fae1d217-26da-4cb3-aa2a-
dcc82b059c0b)

The following entities are passing:
- mvdXML: bdae3712-5c82-45fb-878f-b2f52713e96c

ModelView

ConceptRoot 'ModelView Name existence' (uuid=c268d637-1674-4948-8eb3-
0e185a8536a3)

The following entities are passing:
- ModelView: aa413190-fee1-4ca5-8222-bfc10369a776

Appendix D 191

Appendix D

The enclosed ZIP file contains the following content:

• The written part of the work as a Word document

• The created Furniture Example (XSD, Dataset XML, correct and incorrect

mvdXML files)

• The created mvdXML checks (the individual files + the merged file)

• The reports of all the tests

• The source code of the developed furniture example, mvdXML checks, and

checker interfaces

Hiermit erkläre ich, dass ich die vorliegende Master-Thesis selbstständig angefertigt

habe. Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel

benutzt. Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches

kenntlich gemacht.

Ich versichere außerdem, dass die vorliegende Arbeit noch nicht einem anderen Prü-

fungsverfahren zugrunde gelegen hat.

München, 2. November 2022 Rawan Gaafar

Vorname Nachname

Rawan Gaafar

Rawan.gaafar@tum.de

Erklärung

