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Abstract—Functional electrical stimulation (FES) applies low-
current high-voltage electrical pulses to muscles to induce a
torque-generating contraction. While FES is widely used for
movement rehabilitation, it is challenging to control the muscle
response for goal-oriented actions, due to the many physical
and neural sources of variation in the signal-to-muscle response
pathway. This paper aims to describe sources of variation that
have not previously been discussed for learning FES control,
and proposes how a neuromuscular simulation might leverage
this knowledge through domain randomisation to help develop
adaptive real-world controllers.

Index Terms—Electrical stimulation, robot control, human in
the loop, machine learning, digital simulation

I. INTRODUCTION

Control of the neuromuscular system can be assisted by
electrical stimulation of muscle fibres through the skin using
functional electrical stimulation (FES), a commonly used
technology in neurorehabilitation of motor deficits [1].

Actuating the human neuromuscular system with FES for
goal-directed movements is a non-trivial task. Goal-directed
movements typically require intricate coordination of joint
movements through activation of multiple muscle groups.
Furthermore, the muscles’ response to electrical stimulation
is affected by many complex and time varying factors.

Given the many variables that introduce uncertainty to
the control of an FES system, data-driven models are a
favoured approach. Nevertheless, neuromuscular responses to
FES is largely person and case specific. Furthermore, there
exists many non-linear, non-stationary characteristics that are
modulated by unobservable factors that would necessitate an
unrealistically large dataset to model using experimental data.

Simulation-based learning for FES control has been ex-
plored to address the challenge of data scarcity, but challenges
remain in transferring policies learned in simulation to real-
world systems [2]. The focus of this paper is to identify
the main sources of variability inherent in FES control, and
discuss how these variations might be incorporated to a domain
randomisation learning protocol, such that we may effectively
translate simulated neuromuscular systems into real-world
FES control applications. It is intended that by effectively
incorporating these sources of variance and uncertainty into
simulations, we would enable more robust transfer of poli-
cies person-to-person without requiring extensive retraining
or calibration, presenting greater opportunities for FES-based
rehabilitation and assistance at home.
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II. NEUROMUSCULAR MODEL FOR FES CONTROL

For transferring simulated policies to real-world biological
systems, it is useful to identify sources of uncertainty and
variance apparent in the FES control, as this system knowl-
edge can be used to design domain randomisation strategies
that focus on biologically feasible regions, and improve the
subsequent learning-based control models.

Recent work studying FES elbow joint control precedes
real-world control with a simulation stage [2]. Here, while
fatigue is explicitly modelled using a recurrent neural network,
a drop in performance is still observed when transferring the
learned policy to the real musculoskeletal system, though still
produces more stable control than a conventional PID con-
troller. This drop in performance is likely a result of training in
a simulation that uses a fixed-parameter biomechanical model
of the human arm, i.e. the real-world variations described
below are not factored into the learned model.

For assisting complex motions such as dexterous grasping
with FES, we can consider two primary groups of system
variables; stationary and non-stationary variables. Stationary
system variables are those whose behaviour do not vary over
the typical course of an FES session, whereas non-stationary
variables may see significant changes in their properties in a
relatively short time frame (Fig. 1).

A. Stationary Variables

The main system variables that are stationary during use of
an FES system include the adopted stimulation profile, and
the underlying musculoskeletal system.

Here, the stimulation profile refers to the quantity and place-
ment of stimulation electrodes, the stimulation patterns, ampli-
tudes and frequencies selected, and the physical dimensions of
the stimulation electrodes. These properties are distinct from
the resulting response in the underlying muscle. Many current
FES studies consider large muscle groups with large stimula-
tion electrode pads to encourage signal propagation through
the muscle, such that more muscle fibres are engaged. While
this offers benefits in the muscle output power, there is a loss
in specificity that might be required for finer control activities
such as dexterous manipulation. Using an array of smaller
electrodes enables finer control of muscle fibres; however,
this introduces a combinatorial optimisation problem to the
challenge of FES control, given the redundancy present in the
musculoskeletal system, and the diffuse activation produced by
an electrode resulting in the stimulation of unintended fibres.
Smaller electrodes may also lead to increased discomfort due
to higher charge densities on the skin, limiting the level of
stimulation that can be delivered by an electrode.
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Fig. 1. Neuromuscular dynamics in response to artificial electrical stimulation. A map between FES electrodes position/intensity and joint torque may be
learned while considering both stationary and non-stationary sources of variation.

The musculoskeletal system then concerns the anatomy of
the person that FES is being applied to. There is a degree of
uncertainty in the exact location of specific muscles, as well as
variable skin-to-muscle depths in the subcutaneous tissue that
will affect propagation of the FES stimulation. The anatomical
size, mass, and layout of muscles, tendons and bones will vary
person-to-person, affecting the dynamic response of joints and
limbs to a stimulation, but this will not vary over the course
of an FES session.

B. Non-Stationary Variables

There are many non-stationary variables to account for in
FES control. The main variables of interest here are muscle
fatigue, pain threshold, reflexes, activation thresholds, and skin
surface conductance conditions.

Existing works in the field of traditional control have
considered this non-stationarity through non-linear model-
free control methods [3]-[5]. Recently, reinforcement learning
(RL) based control for elbow joint control modelled fatigue in
a simulated experiment as a time varying activation scaling
parameter [6], while a separate study modelled fatigue as
a partially observable state that can be modelled as a fully
observable state by learning the hidden state through the use
of a recurrent network structure [2].

Muscle fatigue is perhaps the most obvious non-stationary
variable to consider for control adaptation, there is a clear
drop-off in output muscle torque for a sustained stimulation;
however, this effect is relatively short term. Other sources of
non-stationary in the muscle response, such as the acceptable
pain threshold [7], [8], or skin surface conductance levels [9],
may take longer to become apparent than muscle fatigue, but
the effects on control will persist for a longer duration.

III. SIMULATION AND DOMAIN RANDOMISATION FOR
LEARNING FES CONTROL

Typically, machine learning techniques for human behaviour
modelling treat the human as a black-box model where all the
sources of variability are introduced as noise. Given the sparse
neuromuscular FES-response data available in real-life FES
applications, explicitly introducing prior knowledge on the
distribution of the data can decrease the uncertainty inherent
in the learnt models. For instance, Medina et al. [10] designed
Gaussian Process priors to generate a latent desired trajectory
that echoes human-like mechanical impedance behaviour to
improve the predictive capability of the machine learning algo-
rithm. Prior works in domain randomization have identified the
challenge of designing simulation parameter distributions that
align well to policies executed in real environments [11], and
how careful consideration of real-world data can lead to better
randomization distributions for simulator parameters, leading
to more robust real-world policies [12].

Given the wide range of variations that may affect FES
control, the challenge of gathering data and training on a
person for extended periods, and the combinatorial challenge
in identifying stimulation patterns for FES-array systems and
multi-joint movements, we believe there is a clear case for
applying Sim2Real methodologies such as domain randomi-
sation to learning FES control. Furthermore, by accounting
for the stationary and non-stationary variables described here,
it would be possible to develop robust and transferable RL-
derived policies that enable real-world FES rehabilitation and
assistance at home.
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