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Summary 

Complex diseases such as type 2 diabetes and Alzheimer’s disease are growing global 

health burdens that negatively impact quality of life. Understanding the molecular 

perturbations causing these diseases is key to finding biomarkers and drug targets 

that enable early and effective intervention. While studies have been successful at 

identifying numerous disease-associated genes and proteins, discerning causal 

mechanisms remains a challenge.  

Protein levels are intermediate phenotypes that are often dysregulated in disease; and 

are measurable, druggable targets. In this thesis, I show how genetic variation 

underlying serum protein levels (protein quantitative trait loci [pQTLs]) can help to 

pinpoint causal biomarkers and pathways. Using whole genome sequencing (WGS) 

data from two isolated Greek populations, we detect pQTLs for >400 serum proteins 

relevant to cardiometabolic and neurological processes. We find novel pQTLs, 

including some rare variants that have drifted up in frequency in the studied cohorts.  

By integrating our pQTL findings with existing large-scale disease genome-wide 

association study (GWAS) data, we identify genes and proteins causal for 

cardiometabolic traits and neurological diseases through colocalisation analysis and 

Mendelian randomisation. These include CD33 and Alzheimer’s disease; MEP1B and 

high-density lipoprotein levels; and MSR1 and schizophrenia.  

In doing so, we validate known targets and propose potential clinical biomarkers and 

drug repurposing opportunities, while demonstrating the importance of isolated 

populations in pQTL analysis. We discuss limitations and future directions, and 

contribute to a growing pQTL resource that may be used by others to empower future 

research. 
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Zusammenfassung 

Komplexe Krankheiten wie Typ-2-Diabetes und Alzheimer stellen weltweit eine 

zunehmende Belastung für die Gesundheit dar und beeinträchtigen die 

Lebensqualität. Kenntnis von molekularen Veränderungen, die diese Krankheiten 

verursachen, ist der Schlüssel für die Suche nach Biomarkern und Arzneimittelzielen, 

die ein frühzeitiges und wirksames Eingreifen ermöglichen. Zwar konnten in Studien 

zahlreiche krankheitsassoziierte Gene und Proteine identifiziert werden, doch bleibt 

es eine Herausforderung, die ursächlichen Mechanismen zu erkennen.  

Proteinspiegel sind intermediäre Phänotypen, die bei Krankheiten oft fehlreguliert 

sind und messbare, medikamentöse Ziele darstellen. In dieser Dissertation zeige ich, 

wie genetische Variationen, die den Serumproteinspiegeln zugrunde liegen (protein 

quantitative trait loci [pQTLs]), dazu beitragen können, kausale Biomarker und 

Signalwege zu identifizieren. Anhand von Daten aus Ganzgenomsequenzierungen 

(WGS) aus zwei isolierten griechischen Populationen ermitteln wir pQTLs für >400 

Serumproteine, die für kardiometabolische und neurologische Prozesse relevant 

sind. Wir finden neue pQTLs, darunter einige seltene Varianten, deren Frequenz in 

den untersuchten Kohorten gestiegen ist.  

Durch die Integration unserer pQTL-Ergebnisse mit bestehenden groß angelegten 

genomweiten Assoziationsstudien (GWAS) identifizieren wir Gene und Proteine, die 

für kardiometabolische Merkmale und neurologische Erkrankungen kausal sind, 

durch Kolokalisationsanalyse und Mendelian Randomization. Dazu gehören CD33 

und Alzheimer, MEP1B und High-Density-Lipoproteinspiegel sowie MSR1 und 

Schizophrenie.  

Auf diese Weise validieren wir bekannte Zielmoleküle und schlagen potenzielle 

klinische Biomarker und Möglichkeiten für die Neuausrichtung von Medikamenten 

vor, während wir gleichzeitig die Bedeutung isolierter Populationen bei der pQTL-

Analyse aufzeigen. Wir erörtern Einschränkungen und künftige Richtungen und 

leisten einen Beitrag zu einer wachsenden pQTL-Ressource, die von anderen genutzt 

werden kann, um die künftige Forschung zu unterstützen. 
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1 Introduction 

1.1 Genetics of complex diseases 

The study of human genetics is aimed at understanding how genetic variations can 

explain the differences in traits observed between people. The most common method 

to do this today involves testing individual variants throughout the entire human 

genome for associations with traits of interest – also called phenotypes – in a genome-

wide association study (GWAS). Before the first landmark study in 20051, disease-

associated genes were primarily identified through linkage analyses in high-risk 

families. This approach was limited, however, to traits with clear patterns of 

inheritance, and has thus seen most success in identifying risk genes for rare diseases 

caused by aberrations in only one or a few genes – also known as Mendelian traits. 

 

Figure 1. Basic principles of GWAS.  

At the same time, linkage studies revealed a group of traits that could not be 

explained by the Mendelian model. In a 1994 study of Alzheimer’s disease (AD)2, the 
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authors attempted to explain transmission patterns for late-onset AD using 

Mendelian models, but failed. They suggested a “more complex transmission 

mechanism (mixed or polygenic model)” with no singular deterministic risk gene, 

and called for novel methodology that could account for “oligogenic and 

heterogeneity models”. GWAS has not only removed the need for pedigree 

information, but provides the power and resolution needed to capture the breadth of 

genetic variation associated with complex, polygenic traits like late-onset AD. For 

example, in one of the largest late-onset AD GWAS (>90,000 cases) to date3, 38 

associated loci implicating a range of biological processes were detected, among over 

10,000 loci that have been associated with thousands of complex traits4 in the past two 

decades.  

1.1.1 Limitations of GWAS  

The advent of GWAS soon revealed limitations regarding the method and 

interpretation of results. Associated variants discovered through GWAS explained a 

much smaller proportion of phenotypic variance than expected. This was apparent 

in early GWAS studies for height5–7, which found over 40 associated loci that 

explained only about 5% of trait heritability – much lower than the estimated 

heritability of 80%8,9.This discrepancy was hence termed the “missing heritability” 

problem. Sources of missing heritability have been discussed extensively since, and 

include overestimations of genuine heritability10; imprecise phenotype definitions; 

epistasis11; contributions of variants in non-coding regions, rare variants of small 

effect sizes, or structural variants; and inadequate sample sizes and ancestral 

diversity.  
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Figure 2. Regional Manhattan plot of locus on chromosome 12 associated with high-density 

lipoprotein levels [24097068]. The diamond represents the SNP with the lowest p-value; other SNPs 

are coloured according to the extent of linkage disequilibrium (r2) with the strongest associated SNP. 

Nearest genes are annotated in the panel below the plot. Figure produced and downloaded from 

https://my.locuszoom.org/.  

Downstream from variant detection, the complexity of the human genome has 

furthermore made it difficult to identify causal variants and causal genes. A large 

obstacle is linkage disequilibrium (LD), whereby alleles at different loci are more 

likely to be inherited together than by random chance. As a result, GWAS signals are 

often composed of multiple variants in LD that may span larger or smaller regions of 

the genome (Figure 2), obscuring the causal variant. This is even more complicated 

for variants in non-coding regions, which make up 99% of the human genome. 

Increasingly sophisticated fine-mapping tools are being developed for this 

purpose12,13. The process often includes annotating variants using deleteriousness 

scores that consider genomic features and protein structure, such as CADD14 and 

Eigen15; incorporating growing information on regulatory elements (databases such 

as ENCODE16); or overlapping with quantitative trait loci. 

https://my.locuszoom.org/


14 

1.2 Overcoming the limitations 

1.2.1 Whole-genome sequencing 

One way to find missing heritability is to detect more genetic variants, and this can 

be achieved by genotyping more sites. Single nucleotide polymorphism (SNP) arrays 

combined with imputation is the most widely-used method to genotype sites across 

the whole genome at decent coverage. Popular as a cost-effective solution, these 

arrays contain allele-specific oligonucleotide probes to which fluorescently-labelled 

sequences can bind to, producing a hybridisation signal that reflects the genotype at 

a chosen site. Modern arrays typically directly genotype between 200,000 and 2 

million sites out of the ~3.3 billion bases of the human genome; and genotypes at 

additional sites are then imputed through LD. However, SNP arrays are predesigned 

based on known variants, and imputation is based on known LD patterns in studied 

populations. This means that while they are effective at genotyping common 

variation in well-studied populations, SNP arrays cannot reliably genotype rare or 

novel variants, especially in less studied populations.   

In contrast, whole genome sequencing (WGS) aims to genotype each position in the 

genome directly without prior information. In addition to eliminating the 

ascertainment bias associated with array design17, WGS provides coverage that is 

magnitudes larger, plus high-quality genotyping of ultra-rare and novel variants. 

Even at very low sequencing depths, Gilly et al.18 found that WGS identified twice as 

many variants as a genotyping array + imputation approach in the same cohort, with 

a large proportion of variants only identified through WGS being rare variants. When 

applied in a GWAS across more than 50 phenotypes, low-depth WGS also detected 

twice the number of suggestive associations with almost equal sensitivity. The study 

shows how WGS is able to provide a more complete characterisation of underlying 

genetic architecture than imputation approaches, particularly at the extreme ends of 

the allele frequency spectrum.  
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1.2.2 Isolated populations  

Analysing isolated populations can also address the lack of power that general 

population studies have to detect low-effect rare variants. Defined as subpopulations 

arising from a small group of individuals or founders that are geographically and/or 

culturally isolated due to a founder or bottleneck event (Figure 3), isolates have 

unique characteristics that can be leveraged to empower GWAS studies. One such 

population is the Icelandic population of roughly 320,000, most of whom are 

descended from a small group of individuals that emigrated from Scandinavia, 

Scotland, and Ireland approximately 1,100 years ago19.   

 

Figure 3. Bottleneck effect leading to reduced genetic diversity in a new population.  

An advantageous genetic characteristic of isolated populations is their reduced 

haplotype complexity, which is observed by stretches of LD that extend over longer 

distances compared to non-isolated populations. Haplotypes refer to groups of 

variants in LD; and higher overall levels of LD result in longer haplotypes and more 

haplotype sharing between individuals. This facilitates genotype imputation and 

increases the power of an association study by reducing heterogeneity; although it 

also reduces fine-mapping potential. A second advantage is the enrichment of rare 

disease alleles, which is a result of a combination of geographical isolation, 

endogamy, and stronger genetic drift. This raises certain alleles to fixation (and others 

to extinction) in the population (Figure 3); consequently, rare disease-causing alleles 
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may drift up in frequency in isolated populations, enabling easier detection of a rare 

GWAS signal even with smaller sample sizes. 

These characteristics are further complemented by reduced environmental and 

cultural heterogeneity (e.g., in diet, lifestyle habits, or environmental conditions), 

which limits potential confounding. Isolated populations have proven useful in 

GWAS: the cardioprotective variant in APOC3 was first discovered in an isolated Old 

Order Amish population20, and was associated with higher high-density lipoprotein 

(HDL) levels and lower total cholesterol levels. The variant, R19X, is a loss-of-

function variant that is non-existent in the general European population but was 

found in 5% of the studied Amish individuals, enabling discovery. Later, R19X was 

also found in the isolated Greek population, MANOLIS, at a frequency of 1.9%21. The 

association with higher HDL levels was recapitulated in MANOLIS, providing 

evidence supporting the clinical relevance of R19X and demonstrating how 

population isolates can empower GWAS discovery.  

1.2.3 Rare variant analysis 

R19X exemplifies how functionally important rare variants contribute to trait 

heritability, but are often missed by GWAS studies due to insufficient power. 

Detecting the association in the general European population would have required 

an estimated sample size of 67,00021, as compared to the 809 Old Order Amish and 

1,256 MANOLIS samples in which it was detected. To attain power to test for rare 

variant effects, methods have been developed that allow for the effects of multiple 

rare variants to be tested cumulatively. Most commonly used are burden tests, kernel-

based tests such as SKAT22, and methods that unify the two approaches, such as 

SKAT-O23. The main difference between burden tests and kernel-based tests is that 

burden tests assume that all variants contribute to the phenotype in the same 

direction; whereas, kernel-based tests allow for varying effect sizes and directions. 

Rare variant association studies in large cohorts confirm that rare variants contribute 

to disease risk independently from common variation, and have implicated genes not 

detected in the typical single point GWAS24–26.  
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1.2.3 Meta-analyses 

Increasing sample size is another straightforward method to improve statistical 

power. The quickest way to achieve this today is through meta-analysis, which allows 

the aggregation of GWAS results of multiple independent studies on the same trait 

without the need for individual-level genotype data. Large-scale meta-analyses were 

pioneered by a study on type 2 diabetes (T2D)27, where the authors combined GWAS 

results from three large cohorts (WTCCC, DGI, FUSION) to obtain a sample size of 

more than 10,000. They identified six novel loci associated with type 2 diabetes that 

replicated in almost 80,000 additional samples. This was a substantial increase to the 

ten established T2D loci at the time. In addition to increased power, meta-analysis 

provides replication: false signals from a single cohort are likely to be attenuated 

when integrated with data from other cohorts, while genuine signals are augmented. 

The accrual of published GWAS studies in the past two decades has made meta-

analysis an increasingly convenient way to accurately and comprehensively identify 

disease-associated variants across the allele frequency spectrum.  

1.2.4 Intermediate phenotypes 

Downstream interpretation of GWAS loci is a difficult task that acts as a major 

obstruction blocking the path towards clinical translation. Functional variant 

annotation can be improved by complementing GWAS with the analysis of 

intermediate phenotypes. Intermediate phenotypes are known as such because they 

lie in between disease outcomes and their causal variants. These are typically 

measured, quantitative parameters that are often perturbed in disease; like body mass 

index, waist-hip ratio, blood pressure, and kidney function markers. With the 

development of multi-omic technologies, molecular traits such as methylation, gene 

expression, metabolite, and protein levels can now also be studied as intermediate 

traits. Genetic variants associated with quantitative molecular traits are known as 

quantitative trait loci (QTLs), and provide functional information behind disease-

causing variants, shedding light on elusive pathways and interactions in disease. This 

thesis focuses on protein levels as an intermediate phenotype, which we elaborate on 

in Chapters 1.3 and 1.4.  
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1.3 Protein levels as an intermediate phenotype  

Proteins make up a class of macromolecules essential for life, and are vital for a 

diverse range of biological processes as enzymes, antibodies, hormonal proteins, 

transport proteins, structural proteins, et cetera. This diversity is made possible due 

to the unique three-dimensional (3D) structures of proteins, for which hundreds of 

millions of configurations exist28 . In humans, protein synthesis begins with DNA, 

which is transcribed to messenger RNA, followed by translation. During translation, 

a specific sequence of amino acids is joined together in a polypeptide chain to form 

the primary structure. The secondary and tertiary structures are then formed when 

chemical groups on the amino acids interact with each other to produce a 3D 

configuration. This determines the binding sites and chemical properties of a protein 

molecule and is therefore central to its function. Modifications to protein structure, 

either through changes in the encoding gene or post-translational processes, can alter 

protein function and disrupt normal biological processes, causing disease.  

Besides changes to their structure, abnormal protein abundances are also a risk factor 

for disease. Numerous processes from mRNA production to protein degradation 

work together to regulate protein abundances at the steady state and in response to 

system perturbations29. Being dynamic and quantifiable traits makes them useful 

biomarkers that can be used to predict, diagnose, or monitor disease. Many proteins 

are already part of common blood tests: immunoglobulin tests measure antibody 

levels in the blood and are used to detect infections or autoimmune conditions; high 

levels of creatinine kinase can indicate inflammation in the heart; abnormal fasting 

insulin levels can indicate prediabetes; and more. As an intermediate phenotype, 

finding associated loci through pQTL analyses and overlapping these with existing 

disease GWAS through various causal inference tools can help to fine-map disease 

loci, reveal novel pathways, and identify clinical biomarkers and drug targets.    

1.3.1 Quantifying the circulating proteome 

Opportunities for biomarker discovery can be maximised by using a hypothesis-free 

approach that covers as much of the human proteome as possible. The human 
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proteome refers to the entire set of proteins expressed by the human genome; this 

amounts to approximately 20,000 canonical proteins, corresponding to the ~20,000 

genes in the genome. In reality, the proteome differs between tissues due to the 

different biological processes occurring in each. This thesis is focused on the 

circulating proteome, which is composed of immunoglobulins and proteins that have 

been secreted, leaked from damaged cells, or shed into the bloodstream. Because 

circulating proteins may originate from anywhere in the body, abnormal levels can 

reflect disturbed biological processes in any tissue or organ, offering a wealth of 

systemic information. As of 2021, ~4,395 canonical plasma proteins had been 

catalogued as part of the Human Plasma Proteome Project (HPPP)30,31.  

Mass-spectrometry (MS) and affinity-based assays are the two most commonly used 

protein quantification methods today. Quantifying the circulating proteome, 

however, is a challenge because of the extreme range of abundances in which the 

proteins are present. Only 20 proteins account for almost 99% of the blood proteome, 

compared to 2,500 proteins in human cells30,32. Typical MS-based approaches can only 

capture ~500 circulating proteins33, with those that are able to capture more proteins 

requiring impractically extensive preparation at high costs34,35. Affinity-based 

approaches such as that offered by Olink (https://olink.com/) and Somalogic 

(https://somalogic.com/) are newer alternatives that are able to detect low abundance 

proteins in plasma and serum samples. The latest assays offered by Olink and 

Somalogic are able to quantify ~3,000 and ~7,000 proteins, respectively. This provides 

pQTL studies greater access to the circulating proteome, enabling more thorough 

genetic characterisation.  

1.3.2 Interpreting pQTLs 

Protein levels are regulated in response to changes in their environment and interact 

often with other molecules. This means that they may be influenced by changes in 

multiple genes and are complex traits themselves. In a pQTL analysis, a common 

initial step is to designate pQTLs as either cis or trans acting (Figure 4). Cis-pQTLs are 

variants located within or nearby (usually defined as between 1 to 2 million bases) 

the gene encoding the target protein; while trans-pQTLs are variants located outside 

https://olink.com/
https://somalogic.com/
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of the defined cis region, including variants on entirely different chromosomes. This 

distinction allows us to glean different types of information on the genetic regulation 

of the target protein. 

 

Figure 4. Cis- and trans-pQTLs. The ovals represent pQTLs. 

Due to their proximity to the encoding gene, many cis-pQTLs influence protein 

expression directly through transcriptional regulation. Evidence of this may be 

obtained by overlapping the cis-pQTL with a corresponding cis-eQTL (gene 

expression QTLs) in a colocalisation analysis (Figure 5), where positive colocalisation 

would indicate that cis-pQTL also influences mRNA levels in particular tissues. 
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Figure 5. Visualising colocalisation between a pQTL (top panel) and an eQTL (bottom panel) using 

regional plots showing association signal architecture. The example shows the variant at 

chr15:78944951 (purple diamond), which is both a cis-pQTL for cathepsin H (CTSH) serum levels36 and 

an cis-eQTL for CTSH gene expression in thyroid tissue (GTEx)37.  

Meanwhile, trans-pQTLs reflect gene or protein interactions and offer insight into 

molecular pathways. In a study by Folkersen et al.38, the most likely causal genes were 

determined for each trans-pQTL using a combination of eQTL colocalisation testing, 

network analysis, and text mining. The authors describe a pathway comprising 

FOXO3, AKT1, and NGF; identifying FOXO3 as the causal gene for the trans-pQTL 

associated with NGF levels, despite the nearest gene being LACE1. The three proteins 

are part of an apoptosis regulation pathway in neurons that has been implicated in 

neuropathies39,40:  

Reduced NGF → Inhibits Akt activity → Dephosphorylates FoxO → Activates 

pro-apoptotic genes 

The example demonstrates the potential of trans-pQTL analyses to advance our 

current understanding of pathways relevant to disease. Additionally, existing studies 

have identified several pleiotropic trans genes that influence the levels of multiple 

proteins41–46; namely, ABO, CFH, HLA, F12, FUT2, ST3GAL6, KLKB1, and VTN. Four 

of these genes (ABO, FUT2, F12, KLKB1) are involved in blood coagulation pathways, 

while CFH and HLA play a role in inflammatory response.   

1.3.3 Existing pQTL studies  

The publication of pQTL studies picked up speed after 2016, corresponding to the 

time affinity-based technologies by Somalogic and Olink were made available. Before 

this, most pQTL studies were performed using mass spectrometry or targeted 

proteomic panels. From an list curated by Suhre et al.47 

(http://www.metabolomix.com/a-table-of-all-published-gwas-with-proteomics/), 

most studies have assayed between 80 and 1,500 proteins, in sample sizes between 

100 and 5,000. Sample sizes have increased over the years – up to 50,000 – as seen 

most recently in a manuscript by Sun et al. in the UK Biobank cohort48, as well as in a 

http://www.metabolomix.com/a-table-of-all-published-gwas-with-proteomics/
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2021 study by Ferkingstad et al. in more than 35,000 Icelanders49. Increasing sample 

size generally increases the pQTL discovery rate, likely owing to increased power. 

This was particularly so for trans-pQTLs, which tend to have smaller effects. 

Comparing two studies by Folkersen et al. that analysed roughly the same Olink 

proteins, 41 cis- and 38 trans-pQTLs were detected in the smaller study with 3,394 

samples38, as compared to 75 cis- and 326 trans-pQTLs in a larger meta-analysis with 

21,758 samples43. This stresses the importance of larger sample sizes to provide a 

more complete understanding of protein level heritability. We additionally note that 

almost all studies have used genotype array data in European populations with little 

focus on rare (MAF < 1%) variants, highlighting the need for sequencing-based 

studies and greater ethnic diversity. 

1.4 Connecting pQTLs to health and disease 

Clinical translation is an eventual goal for most pQTL studies, and key to achieving 

this is the successful identification of genes, proteins, and networks that lie on the 

causal pathway to disease. By leveraging existing knowledge, pQTLs can be used to 

discover clinical biomarkers, validate drug targets, and construct disease risk scores. 

In this section, I will elaborate, using examples, on the various downstream methods 

incorporating pQTLs that accelerate clinical translation.  

Identifying causal genes is a major limitation obstructing the path from GWAS to 

clinical translation. To overcome this, overlaps between pQTLs and disease-

associated loci can help to pinpoint causal genes. This is normally done through a test 

of colocalisation, which evaluates if a pQTL signal and a GWAS signal share the same 

causal variant. Cis-pQTLs are particularly useful for this purpose – because  we are 

often able to map cis-pQTLs to their causal genes with confidence, positive 

colocalisation with a GWAS signal would indicate the same causal gene for the 

GWAS signal. For instance, Pietzner et al.50 identify PRSS8 as the causal gene for a 

known Alzheimer’s disease (AD) locus, based on colocalisation between the cis-pQTL 

for PRSS8 and the AD signal. The causal variant lies within the adjacent KAT8 gene 
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in a gene-rich region, and prior efforts to identify a causal gene had been 

unsuccessful.  

Complementing colocalisation analysis is Mendelian randomisation (MR), which is 

used to identify proteins whose levels are causal for – not just correlated with – 

disease. A significant protein-disease MR association indicates that the disease is 

directly influenced by changes in the target protein abundance, and has been 

described as the equivalent of a randomised clinical trial47 for estimating causal effects 

between an exposure and an outcome. In two-sample MR, analysts are allowed to use 

exposure or outcome GWAS data from other studies to be tested against their own; 

this includes data from large consortia, which can substantially increase statistical 

power and widen the scope of discovery. For example, Sun et al. confirmed a causal 

protective role of PSP-94 in prostate cancer using two-sample MR45. Reduced serum 

levels of the protein had previously been associated with the development of male 

prostate cancer, but it was unknown if the association was causal. Mendelian 

randomisation is able to resolve correlation from causation; this is an important 

distinction that acts as a crucial filtering step in selecting effective biomarkers and 

drug targets.  

Both MR and colocalisation evidence are valuable for drug target discovery and 

prioritisation. Human genome-derived proteins make up almost 75% of known 

molecular drug targets51, making the proteome a valuable source of novel 

therapeutics. Genetic support has been estimated to double the success rate of drug 

targets in clinical development52, and even more so when causal genes are known53. 

Genes and proteins with causal links to disease may also be overlapped with drug 

databases to identify new indications that approved drugs may be repurposed for, 

which can dramatically expedite the drug development process.  

Biomarker discovery can also be achieved through polygenic scores, which aggregate 

the effects of alleles across the genome to estimate an individual’s genetic 

predisposition to a particular trait. Like disease, protein levels can also be genetically 

predicted using polygenic models trained on pQTL data. Association tests between 

predicted protein levels and disease occurrence in large samples can then be 
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performed, presenting a powerful approach for biomarker discovery. This was 

demonstrated by a polygenic model explaining almost 20% of variance in circulating 

ST2 levels, that was used to predict ST2 levels in a cohort of >300,000 individuals (UK 

Biobank)43. Calculated scores were strongly associated with asthma and 

inflammatory bowel disease, highlighting ST2 as a biomarker for the two conditions.  

The popularity of polygenic scores is founded upon its ability to identify low- or high-

risk individuals within a population54. In the same way, protein polygenic scores can 

be used to identify individuals with especially high or low predicted levels of a target 

protein. The scores may be incorporated into existing risk models to improve 

predictive accuracy. For proteins that act as drug targets, they can furthermore 

identify patients that are likely to benefit most from the targeting drug. Growing 

pQTL data alongside GWAS data is, therefore, key to improving polygenic models, 

which will create more opportunities to further our understanding of disease and 

translate this knowledge into patient benefit.   
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1.5 Aims 

For complex diseases, the traditional GWAS is often limited in the information it can 

convey by itself. In this thesis, we will analyse serum protein levels as an intermediate 

trait to seek clarification into complex disease aetiology. Using multiplexed 

proteomic and whole genome sequencing data in isolated populations, we aim to: 

(1) Comprehensively describe the genetic regulation of serum proteins levels: 

This will be achieved through genome-wide association tests to identify 

independently-associated cis- and trans-acting pQTLs. Using available tools, we will 

perform functional annotation of the detected pQTLs; characterise heritability; and 

carry out eQTL colocalisation tests to give further insight into our findings. Because 

the cohorts analysed are part of isolated populations that have been whole genome-

sequenced, particular attention will also be given to rare variants that may have 

drifted up in frequency. The pQTLs will be made available for the public to 

download, contributing to the growing database of pQTLs that can be used to 

empower future research.  

(2) Further understanding of the complex disease aetiology through pQTLs: 

In this thesis, we will focus on two broad classes of complex disease: neurological and 

cardiometabolic. Methods that allow us to leverage existing GWAS data – namely, 

colocalisation tests and two-sample Mendelian randomisation – will be used to 

identify genes and proteins causally associated with relevant diseases. By 

incorporating the information acquired from these analyses with existing literature, 

we aim to highlight biomarkers with potential for clinical use; describe pathological 

pathways; and identify drug repurposing opportunities.   



26 

2 Methods 

2.1 Study design 

Serum proteins from five Olink panels were analysed in two phases: 184 proteins 

from the Neurological and Neuro-exploratory panels were first analysed with a focus 

on neurological disease (Chapter 3.1); and 276 proteins from the Cardiovascular II, 

Cardiovascular III, and Metabolism panels were analysed in the second phase, with 

a focus on cardiometabolic disease (Chapter 3.2). Figure 6 provides an overview of 

the analysis pipeline for each phase. In the rest of this chapter, I will provide further 

detail on the methods that were implemented at each step of the analysis.  

 

Figure 6. Overview of analysis pipeline. The numbers provided are from the first phase of analysis, 

focusing on 184 proteins from the Neurological and Neuro-exploratory Olink panels.  

2.2 Study cohorts 

The HELIC (HELlenic Isolated Cohorts) study comprises two Greek cohorts, 

MANOLIS and Pomak. The MANOLIS (Minoan Isolates) collection contains data 
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from individuals from the mountainous region of Mylopotamos, on the island of 

Crete in southern Greece55. Of the total population of ~5,200 (2011), 29.7% (N=1,553) 

participated in the study. The mean age of the participants was 61.6 years, 55.8% of 

whom were female. The Pomak collection, on the other hand, is made up of 

individuals from the Pomak villages located in the Xanthi regional unit in 

northeastern Greece56. These individuals are part of the small minority of Muslims in 

Greece with uncertain historical origins. Of the estimated population of 25,000, 1,702 

participated in the HELIC study. The mean age was 44.9 years, with 69.3% of 

participants being female.  

Compared to the general Greek population, MANOLIS and Pomak have genomic 

characteristics that establish them as genetic isolates, such as more extensive 

haplotype sharing, genetic drift, and enrichment of missense variants in the 

MANOLIS cohort57. For both cohorts, detailed phenotypic information have been 

collected, including anthropometric, biometric, biochemical and haematological 

blood measurements, medical history, demographic, socioeconomic, lifestyle, and 

dietary information55,56. Genome-wide association studies for these traits have also 

been performed58,59, and serum measurements for 460 proteins were generated in 

1,455 MANOLIS and 1,617 Pomak individuals using the Olink proximity extension 

assay (PEA).  

2.3 Olink proteomic quantification 

460 proteins in 1,455 MANOLIS and 1,617 Pomak serum samples were quantified 

using Olink’s proximity extension assay (PEA; https://olink.com/). These proteins 

composed the Neurology, Neuro-exploratory, Cardiovascular II, Cardiovascular III, 

and Metabolism panels, which were designed by Olink based on existing literature. 

The PEA method involves three steps: (1) the immunoreaction step, where a pair of 

antibodies labelled with complementary oligonucleotides first binds specifically to a 

target protein. Binding of the antibody pairs brings the oligonucleotides in close 

proximity, causing them to hybridise. This leads to (2) the extension step, where a 

double-stranded barcode unique to the target protein is formed. Larger quantities of 
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the protein are, therefore, reflected in larger quantities of the barcode, which are 

quantified in (3) the amplification and detection step, using real-time quantitative 

polymerase chain reaction (qPCR).  Olink’s PEA is distinguished by its use of 

antibody pairs and PCR amplification, which enables highly specific protein 

quantification even with low sample volumes.  

Relative protein quantities are reported as arbitrary Normalised Protein Expression 

(NPX) values, where an increase in 1 NPX means a doubling of protein concentration. 

NPX values are calculated based on the qPCR cycle threshold (Ct) values and various 

internal and sample controls, according to the following equations:  

CtAnalyte – CtExtension Control = dCtAnalyte 

dCtAnalyte – dCtInter-plate Control = ddCtAnalyte 

Correction factor – ddCtAnalyte = NPXAnalyte 

The extension control is used to adjust for intra-assay variability introduced during 

extension; inter-plate controls are used to adjust for interplate variability; and the 

correction factor is a value derived from negative controls to adjust background 

values to approximately zero. Following NPX calculations, all samples with internal 

controls deviating by more than 0.3 NPX from the median are then excluded as 

failures. Explanations for each type of control are provided in greater detail in Olink’s 

white paper (https://www.olink.com/content/uploads/2022/04/white-paper-data-

normalization-v2.1.pdf).   

2.4 High-depth whole-genome sequencing and variant calling 

The genomic DNA of 1,482 MANOLIS and 1,642 Pomak samples were subject to the 

same high-depth whole genome sequencing (WGS), alignment, and variant calling 

pipeline. WGS was performed using Illumina’s HiSeqX platform, and reads were 

aligned with the hg38 reference genome (GRCh38). Variant calling and genotyping 

were then carried out using the HaplotypeCaller and GenotypeGVCFs tools from the 

Genome Analysis Toolkit (GATK) to produce a cohort-wide variant call format (VCF) 

file. VCF files further underwent variant-level QC using GATK’s variant quality score 

https://www.olink.com/content/uploads/2022/04/white-paper-data-normalization-v2.1.pdf
https://www.olink.com/content/uploads/2022/04/white-paper-data-normalization-v2.1.pdf
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recalibration tool (VQSR); and sample-level QC, which excluded 25 and 27 samples 

from MANOLIS and Pomak, respectively. Other intermediate steps and QC criteria 

have been described in detail in publications36,60–62. Altogether, 1,455 MANOLIS and 

1,617 Pomak samples had both WGS and Olink data.  

2.5 Association and meta-analysis 

2.5.1 Single variant association analysis 

Protein QTLs are identified by checking for significant associations between 

genotypes and target protein measurements. For quantitative phenotypes such as 

protein measurements, linear models are used to test for associations. The basic linear 

regression model, however, assumes that all observations are independent of each 

other. This is problematic in isolated populations such as MANOLIS and Pomak, 

whose genetic isolation results in high relatedness between individuals. For this 

reason, we use linear mixed models (LMMs) that are able to account for relatedness 

and population structure by incorporating a relatedness matrix. An LMM models a 

quantitative phenotype y as:  

𝑦 = 𝑊𝛼 + 𝑥𝛽 + 𝑍𝑢 + 𝜀 

Where 𝑦 is an 𝑛 × 1 vector of phenotype values and 𝑛 is the number of individuals; 

𝑊 is an 𝑛 × 𝑐 matrix of covariates with fixed effects, where 𝑐 is the number of 

covariates and 𝛼 is a 𝑐 × 1 vector of corresponding coefficients; 𝑥 is an 𝑛 × 1 vector of 

marker genotypes, 𝛽 is the effect size of the marker; 𝑍 is an 𝑛 × 𝑚 loading matrix 

where 𝑚 is the number of strains (𝑚 = 𝑛 for human studies), 𝑢 is an 𝑚 × 1 vector of 

random effects and follows the multivariate normal distribution 𝑀𝑉𝑁𝑚(0, 𝜆𝜏−1𝐾), 

where 𝜏−1 is the variance of residual errors, 𝜆 is a scale factor that is the ratio between 

the two variance components, 𝐾 is an 𝑚 × 𝑚 relatedness matrix; and 𝜀 is an 

𝑛 × 1 vector of errors that follows the distribution 𝑀𝑉𝑁𝑛(0, 𝜏−1𝐼𝑛), where 𝐼𝑛 is an 

𝑛 × 𝑛 identity matrix.  
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In the analyses presented in this dissertation, we perform association testing using 

the LMM algorithm implemented in GEMMA63, which uses the full relatedness 

matrix 𝐾 to calculate exact association statistics with high computational efficiency.  

2.5.2 Meta-analysis 

Meta-analysis combines the results across multiple association studies with the main 

objective of increasing statistical power. Using just summary statistics, the approach 

allows for the proper adjustment of study-specific covariates pre-meta-analysis, 

while offering power equivalent to that of a mega-analysis (where individual-level 

data across studies are first pooled before running the association tests)64. Methods 

for meta-analysis are classified into two broad families: those that operate under the 

“fixed effects” model, which assumes that the true underlying effects are equal across 

studies; or the “random effects” model, which allows for effects to vary between 

studies. With any model, the meta-analysis p-value may be calculated using either a 

p-value-based or inverse variance-based (IV) strategy. Whereas the p-value-based 

strategy only calculates a signed Z-score and p-value, the IV-based strategy outputs 

a Z-score (𝑍), effect size (𝛽), standard error (𝑆𝐸), and p-value (𝑃) and is more 

informative. It has, additionally, been shown to be more robust to between-study 

differences in allele frequencies65, making it the preferred option for many 

researchers. Under the fixed effects model, the meta-analysis association statistics for 

each variant under the IV-based strategy are calculated as given66:  
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Intermediate statistics for each study 𝑖: 

𝑤𝑖 =
1

𝑠𝑒𝑖
2
 

Meta-analysis statistics: 

𝑆𝐸 = √(1/ ∑ 𝑤𝑖)

𝑖

 

𝛽 =
∑ 𝛽𝑖𝑖 𝑤𝑖

∑ 𝑤𝑖𝑖
 

𝑍 =
𝛽

𝑆𝐸
 

𝑃 = 2𝜙(|−𝑍|) 

Where 𝑤𝑖 is the weight given to each study 𝑖, 𝑠𝑒𝑖 is the standard error for each study 

𝑖, 𝛽𝑖 is the effect size for each study 𝑖, and 𝛽 is the overall effect size. 

2.5.3 Multiple testing correction 

The p-value is most often used to denote significance in statistical testing. A threshold 

of P<0.05 is commonly applied; this means that we can reject the null hypothesis (H0) 

if there is less than a 5% probability of observing a result as extreme as the observed 

result, under the conditions of H0. In the case of any GWAS, H0 states that there is no 

association between the observed genotype and phenotype. A p-value that falls 

below the decided threshold can therefore be used to reject H0, implying a significant 

association between genotype and phenotype.  

When carrying out multiple tests simultaneously, the p-value threshold must be 

adjusted to control for the type I error rate.  GWAS involves the testing of millions of 

variants across the genome at the same time – and in the case of a large-scale pQTL 

analysis – with hundreds of protein measurements, amounting to a huge number of 

simultaneous tests. Bonferroni correction – where the p-value threshold is adjusted 

by dividing by the total number of tests – is a popular method to correct for multiple 

testing. However, in the context of a pQTL analysis, this is overly conservative as it 

does not take into account LD between variants, nor correlation between proteins. 
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Considering these two factors, we adjust only for the effective number of variants 

(𝑁𝑒𝑓𝑓) and proteins (𝑀𝑒𝑓𝑓) to arrive at a threshold of P < 0.5/(𝑁𝑒𝑓𝑓 × 𝑀𝑒𝑓𝑓).  

𝑁𝑒𝑓𝑓  was calculated by pruning of the variants to produce a set of variants in 

approximate linkage equilibrium with each other, using the “--indep” command 

implemented in Plink (https://www.cog-genomics.org/plink/ . 𝑀𝑒𝑓𝑓  was derived 

using Cheverud’s formula67, which is based on the principle that the variance (𝑉𝜆𝑜𝑏𝑠) 

of the eigenvalues derived from the (trait) correlation matrix is proportional to the 

correlation between traits; therefore, the proportional reduction in the number of 

traits can be calculated as the ratio of the 𝑉𝜆𝑜𝑏𝑠 to the maximum variance (equal to the 

total number of traits) 𝑀, as  𝑉𝜆𝑜𝑏𝑠/𝑀. This produces the equation 𝑀𝑒𝑓𝑓 = (1 −

(𝑀 − 1)𝑉𝜆𝑜𝑏𝑠/𝑀2), where 𝑀𝑒𝑓𝑓  ranges from 1 to 𝑀. 

2.5.4 Rare variant meta-analysis 

Gene-based testing provides increased statistical power to detect rare variant 

associations, by aggregating rare variants within a gene and testing for associations 

on the gene level. Burden testing, kernel-based, (e.g. SKAT), and unified approaches 

(e.g. SKAT-O) are popular methods used for rare variant analysis in single cohorts. 

Until recently, however, existing meta-analysis methods had been unable to account 

for relatedness between subjects from multiple sources. The software package 

GMMAT (https://github.com/hanchenphd/GMMAT) implements a computationally 

efficient meta-analysis framework, SMMAT.meta68, that provides an interface to 

SKAT-O and allows the specification of relatedness matrices and variant weights. 

Briefly, single-variant scores and covariance matrices for low-frequency to rare 

variants (MAF < 5%) are first computed using SMMAT, and then meta-analysed to 

produce a SKAT-O association p-value for every gene.  

  

https://www.cog-genomics.org/plink/
https://github.com/hanchenphd/GMMAT
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2.6 Downstream bioinformatics 

With the help of existing bioinformatics tools and databases, we are able to achieve a 

better understanding of the genetic architecture underlying serum protein levels, and 

connect the proteome to health and disease using pQTLs. The following table (Table 

1) is a list of databases and their purposes used in our analysis, with further details 

on colocalisation analysis and Mendelian randomisation in the next sections.
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Table 1. Descriptions of databases used in this thesis. 

Database [URL] Description and purpose 

Ensembl  
[https://www.ensembl.org/] 

Ensembl is a genome browser that also incorporates 
information from several other databases/tools. 
Ensembl is particularly useful for pQTL annotation, to:  

1. Map pQTLs to their nearest genes; 
2. Get variant consequences and their predicted 

deleteriousness using the variant effect 
predictor tool (VEP); 

3. Compare allele frequencies between 
populations.   

GTEx  
[https://gtexportal.org/] 

Short for genotype-tissue expression, the GTEx portal 
contains information on gene expression QTLs (eQTLs) 
in different human tissues. pQTL-eQTL colocalisation 
can: 

1. Validate cis-pQTLs; 
2. Identify causal genes for trans-pQTLs; 
3. Identify specific tissues from which a pQTL 

may originate [Pietzner] 

PhenoScanner 
[http://www.phenoscanner.medschl.ca
m.ac.uk/] 

PhenoScanner is a database of summary statistics from 
large-scale GWAS. A command line tool is available to 
retrieve GWAS summary statistics that overlap queried 
genomic variants (e.g., a pQTL) or regions. 
Colocalisation between pQTLs and GWAS signals can: 

1. Connect protein to disease 
2. Identify causal genes for GWAS signals (see 

Chapter 1.4) 
3. Support MR associations 

STRING  
[https://string-db.org/] 

STRING is a database of protein-protein interaction 
networks that aggregates information from other 
primary databases. STRING confidence scores may be 
used to prioritise causal genes or identify possible 
mediator genes for trans-pQTLs 
[10.1371/journal.pgen.1006706] 

MR-Base/OpenGWAS  
[https://www.mrbase.org/] 

Similar to PhenoScanner, MR-Base is a database of 
summary statistics from large-scale GWAS, developed 
for use in two-sample Mendelian randomisation using 
the connected TwoSampleMR R package (or web app). 
Using pQTLs as instruments, two-sample MR is able to 
deduce causal relationships between protein levels and 
disease.  

Open Targets  
[https://www.opentargets.org/] 

Open Targets and DrugBank are both drug databases 
that contain information on targets for drugs that are 
approved or in clinical trials. This information can be 
used to identify repurposing opportunities or potential 
side effects of drugs targeting proteins that have been 
causally linked to disease via two-sample MR.  

DrugBank  
[https://go.drugbank.com/] 
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2.6.1 Colocalisation analysis  

A colocalisation test answers the question of whether any two independent 

association signals share a causal variant, which increases the probability that the two 

traits share a causal mechanism. A pQTL can be tested for colocalisation with a signal 

from any other trait, including gene expression (eQTLs) and disease (as discussed in 

this thesis), or other protein traits. Colocalisation differs from a simple overlap or 

visual comparison by also taking into account local LD patterns, thereby reducing the 

chances of accidental overlap (Figure 5). While several methods have been 

developed69, the coloc method70 is able to test for colocalisation using only the allelic 

effect and standard errors of local variants at the associated locus, without the need 

for individual-level genotype data or prior selection of variants (hence avoiding the 

“winner’s curse” resulting in the overestimation of effect sizes).  

For every locus across the two tested traits, coloc calculates five posterior probabilities 

(based on user-defined priors), each corresponding to one of five hypotheses: 

● H0: No association with either trait 

● H1: Association with trait 1 but not trait 2 

● H2: Association with trait 2 but not trait 1 

● H3: Association with both traits, but with distinct causal variants  

● H4: Association with both traits with a shared causal variant (positive 

colocalisation) 

Briefly, for each trait, every variant within the locus is assigned a value of 0 or 1, 

where 1 indicates a strong association with the trait based on the given summary 

statistics. This produces a pair of binary vectors of (0,1) values corresponding to each 

trait, which are then assessed for its support for each hypothesis (Figure 7). 
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Figure 7. Example of one configuration under different hypotheses by Giambartolomei et al. (2014), 

used under CC BY 4.0. In this example, “eQTL” and “biomarker” refer to association signals from the 

two tested traits. The y-axis represents the -log10 of the association test p-values, with each point 

representing a variant.  

The results are, however, valid only under the assumptions that (1) samples for both 

traits have the same ancestry; (2) for each trait, the phenotype and genotype are 

linearly related; (3) the causal variant is included in the set of tested variants; and (4) 

only one association (i.e. causal variant) is present in the region of interest. Where 

multiple causal variants are present (as for many pQTLs), coloc can be run for each 

independent signal by using p-values that have been conditioned on all other signals 

in the region.  

https://creativecommons.org/licenses/by/4.0/
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2.6.2 Mendelian randomisation 

Mendelian randomisation (MR) aims to evaluate the causal effect of an exposure on 

an outcome. Discerning correlation from causation is, however, difficult due to 

unknown confounding factors. MR overcomes this by estimating the effect of an 

exposure (e.g., protein level) on an outcome (e.g., disease) using proxies – known as 

the “instruments” – that are least likely to be related to potential confounding factors. 

In MR, these instruments are the genetic variants associated with the exposure, since 

genotypes are randomly assigned to individuals during meiosis (according to 

Mendel’s laws). 

The traditional MR (one sample MR) study requires both the exposure and outcome 

data to be from the same samples; but because this is often not possible, two sample 

MR was developed to allow for different study samples to be used for the either 

dataset71. In most cases, this increases statistical power as large datasets from 

consortia can be used. The power of MR relies heavily on three assumptions:  

1. “Relevance”: The genetic variants (the instruments) are associated with the 

exposure 

2. “Independence”: There are no confounders of the genetic variant-outcome 

association 

3. “Exclusion restriction”: The genetic variants influence the outcome only 

through the exposure  
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Figure 8. Representation of valid instrumental variables and potential violations of the core 

assumptions (dotted arrows). The effect of the genetic variant(s) on the exposure and outcome must 

not be mediated by confounders, which is a violation of the independence assumption (top dotted 

arrow). The genetic variant(s) must also not influence the outcome directly, which is a violation of the 

exclusion restriction (bottom dotted arrow).  

Several guides have been published suggesting steps to ensure the robustness of an 

MR study72,73. In short, special care should be taken when choosing genetic 

instruments – multiple genetic instruments should be used where possible to ensure 

sufficient power, but they must not be pleiotropic. Additionally, sensitivity analyses 

should be performed using alternative MR methods with relaxed assumptions (e.g., 

MR Egger74); tests of heterogeneity (e.g., Cochran’s Q statistic) to ensure concordant 

effects across instruments; or leave-one-out analyses to remove variants with 

dominating effects.  
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3 Summary of contributed publications 

3.1 Mapping the serum proteome to neurological diseases using 

whole genome sequencing  

(See Appendix A) 

Background: The global burden of neurological disorders has been increasing 

continually over the last two decades. Despite this, few treatment options exist and 

diagnosis is often challenging due to the heterogeneous and overlapping nature of 

neurological diseases. There is an urgent demand for novel treatment strategies and 

biomarkers that can detect early disease; and an important source of biomarkers are 

circulating proteins, which are accessible, quantifiable, and actionable targets whose 

abundances are often perturbed in disease.  

Methods: Understanding the genetic basis of circulating proteins can bridge 

knowledge gaps by resolving GWAS signals and uncovering causal pathways and 

potential clinical biomarkers. Here, we aimed to identify genetic variants influencing 

the levels (protein quantitative trait loci [pQTLs]) of 184 serum proteins, using whole 

genome sequence data from two Greek isolated population-based cohorts (N=2,893), 

MANOLIS and Pomak. The analysed proteins were quantified using Olink's 

proximity extension assay, and comprised the Neurological and Neuro-exploratory 

Olink panels. We integrated our findings with existing neurological disease GWAS 

data, using colocalisation analysis and two-sample Mendelian randomisation, to 

identify causal protein-disease relationships.  

Results: We detected 214 independently-associated pQTLs (162 cis; 52 trans) for 107 

proteins. Excluding pleiotropic loci, 87 pQTLs (40%; 72 cis; 15 trans) were 

independent from previously-reported pQTLs and were hence defined as novel. The 

remaining pQTLs have been associated in previous pQTL studies, either directly or 

through linkage disequilibrium (LD), validating previous findings and providing 

proof of concept. A large majority (70%) of pQTLs were located in intergenic regions 
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or introns, in addition to 36 pQTLs overlapping regulatory features. Through 

colocalisation and two-sample Mendelian randomisation analysis, we identified 25 

causal protein level-disease relationships, three of which we highlighted: 

(1) Transmembrane glycoprotein NMB (GPNMB) and Parkinson’s disease (PD) 

We observed positive colocalisation between a cis-pQTL for GPNMB and a 

known locus associated with PD75,76. GPNMB is a glycoprotein that is involved 

in different cell functions, including neuroinflammation77. The relationship 

between GPNMB and PD is supported by experimental evidence showing 

that GPNMB is increased in both the brain78 and plasma79 of PD patients.  

Further, we observed colocalisation between the serum pQTL and eQTLs in 

whole blood and several brain tissues (basal ganglia, cortex, and anterior 

cingulate cortex), indicating shared regulatory mechanisms. Our findings 

suggest serum GPNMB as a potential biomarker for PD and provides genetic 

evidence for GPNMB as a therapeutic target for PD. 

(2) Siglec-33 (CD33) and Alzheimer’s disease (AD) 

Through both colocalisation and two-sample MR, we observed evidence for a 

causal relationship between increased CD33 and AD risk. Genetic associations 

between variants in CD33 and AD have been replicated in several GWAS 

studies3,80–82. CD33 is a member of the immunoglobulin superfamily that is 

expressed primarily on myeloid cells. The protein modulates brain microglial 

activation by inhibiting phagocytosis, and its role in AD is well-studied83–85. 

Drug repositioning efforts have, additionally, shown that the FDA-approved 

anti-CD33 drug, lintuzumab, was able to effectively downregulate cell surface 

expression of CD33 in vitro86.  Our results provide validation and further 

genetic support for anti-CD33 drugs for AD treatment.  

(3) Macrophage scavenger receptor I/II (MSR1) and schizophrenia 

We observed an inverse relationship between MSR1 and schizophrenia risk, 

indicating a possible protective role for MSR1. The protein mediates the 
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phagocytosis of toxic molecules, with known protective effects against 

bacterial infections, AD, and atherosclerosis87. MSR1 depletion in mice has 

also been shown to cause deteriorating working memory and dysregulated 

immune response, further supporting a brain protective mechanism88. The 

causes of schizophrenia are not known, and the role of MSR1 in schizophrenia 

has not been described. These findings provide evidence for a novel pathway 

in schizophrenia development, where reduced expression of MSR1 may cause 

the accumulation of toxins and damage signals in the brain, resulting in excess 

inflammation and changes in brain function that lead to schizophrenia.  

Conclusion: We described the genetic architecture of 107 serum proteins relevant to 

neurological processes, 15 of which have not previously been investigated before. We 

detected both known and novel pQTLs, thereby validating previously published 

findings and contributing new knowledge. Using three examples – GPNMB and PD; 

CD33 and AD; and MSR1 and schizophrenia – we showed how pQTL studies can 

identify clinical biomarkers, uncover drug repurposing opportunities, and reveal 

novel disease pathways, respectively. All results from the colocalisation and MR 

analyses serve as a starting point for further experiments that will help to increase 

our understanding of neurological disease aetiology exponentially.  

Contributions: My contributions to this work include the preparation of the 

proteomic data, all described analyses, and interpretation of the results. The first draft 

of the manuscript was written by me and revised by Prof. Dr. Eleftheria Zeggini, 

including all presented figures and tables.  
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3.2 Identifying causal serum protein-cardiometabolic trait 

relationships using whole genome sequencing 

(See Appendix B) 

Background: Cardiovascular and metabolic diseases are among the leading causes of 

mortality around the world today. The prevalence of diabetes, for example, has risen 

rapidly by 70% since 2000, and is responsible for an increasing number of deaths 

caused by comorbidities like kidney disease89. While genome- and proteome-wide 

association studies have been successful at identifying genetic variation linked to a 

wide variety of cardiometabolic diseases, pinpointing causal genes and proteins with 

the biggest predictive and therapeutic potential remains a challenge. Intermediate 

phenotypes such as protein levels provide biological information that, when 

integrated with GWAS data, can identify causal disease genes and proteins.  

Methods: We performed a genome-wide association meta-analysis for 248 serum 

proteins to identify protein quantitative trait loci (pQTL) in 2,893 individuals (from 

the HELIC-MANOLIS and Pomak cohorts) with whole-genome sequence data. 

Relative abundances of serum proteins from the Cardiovascular II, Cardiovascular 

III, and Metabolism Olink panels were measured using Olink’s proximity extension 

assay (PEA). This meta-analysis provides a substantial increase in power from our 

previous study (MANOLIS only; N=1,356)60 by doubling the sample size. 

Colocalisation and two-sample MR analyses were applied to cardiometabolic traits 

to identify causal protein-disease relationships. In doing so, we found that the protein 

meprin A subunit beta (MEP1B) was causally associated with high density 

lipoprotein (HDL) levels, and systematically phenotyped a mouse model to better 

understand its biological role. 

Results: We detected 301 pQTLs (215 cis; 86 trans) for 170 proteins that were present 

in both cohorts with concordant direction of effect. This is an 83% increase from our 

previous analysis in only the MANOLIS cohort, demonstrating the importance of 

large sample sizes to empower discovery. 58% of the pQTLs replicated in an 



43 

independent cohort, ORCADES (N=950). Importantly, we detected 15 novel pQTLs 

that are rare in the general European population, but have drifted up in frequency in 

at least one of our discovery cohorts. This included a deleterious variant 

(rs144755357) for the matrix metalloproteinase-2 (MMP2) protein that had increased 

in frequency 95-fold in Pomak (MAF=1.3%; gnomAD Europeans MAF<0.01%). 

MMP2 has been linked to chronic airway diseases and cancer90,91, exemplifying the 

advantage of isolated populations to detect high-impact rare variants relevant to 

disease.  

Through causal inference analysis, we found 43 serum proteins to be causally 

associated with a cardiometabolic trait. The analysis revealed shared and distinct 

aetiology among lipid traits: LDL cholesterol, total cholesterol, and triglyceride levels 

were causally associated with the levels of seven common proteins; but HDL 

cholesterol was associated with a different set of proteins, suggesting distinct 

regulatory pathways from other lipid traits. Using novel pQTLs as instrumental 

variables, we found that decreased MEP1B, a protease, was associated with increased 

HDL cholesterol. Systematic phenotyping of an existing Mep1b knock-out mouse 

model showed increased body mass in female mice due to increased adiposity, 

confirming a metabolic role for MEP1B.  

Conclusion: This work expands on previous work60 and demonstrates the 

importance of larger sample sizes (meta-analysis) and isolated populations in pQTL 

discovery. Through a meta-analysis, we provided a more thorough characterisation 

of the genetics underlying serum protein levels and uncovered novel rare pQTLs. We 

highlighted proteins that are causally associated with cardiometabolic traits, 

including known (e.g., LDL receptor and LDL cholesterol) and novel protein-disease 

relationships (e.g., cathepsin H [CTSH] and delta like non-canonical Notch ligand 1 

[DLK1] in diabetic kidney disease) that warrant further investigation. Finally, we 

showed – using a Mep1b knock-out mouse model – how pQTL analysis can inspire 

new hypotheses for downstream functional experiments and deliver novel biological 

insights.  
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Contributions: My contributions to this work include the preparation of the 

proteomic data, association and meta-analyses, colocalisation analysis, and 

interpretation of the results. The first draft of the manuscript was written by me and 

revised by Prof. Dr. Eleftheria Zeggini, including all presented figures and tables.     
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4 Discussion 

The aims of this thesis were to describe the genetic basis of the human serum 

proteome, and through that, achieve a better understanding of the molecular 

aetiology of complex neurological and cardiometabolic diseases. Using 

comprehensive whole genome sequence data, we showed that underlying genetic 

variation varies greatly from protein to protein across the full allele frequency 

spectrum, and demonstrated the value of isolated populations in detecting rare 

pQTLs. By leveraging information from public databases, we identified genes, 

proteins, and pathways causal for disease; revealed shared aetiology between traits; 

and identified opportunities for drug repurposing.  

4.1 Replicating published findings  

Roughly half of the pQTLs we detected replicated previously-reported findings from 

studies that used independent cohorts and sometimes different proteomic assays 

(e.g., Somalogic). Across the 585 pQTLs for 290 proteins which we detect, 55% of cis-

pQTLs and 27% of trans-pQTLs are located in previously-associated regions (within 

2Mb). Replicated loci serve as proof of concept, which increases the probability that 

novel loci are genuine; while validating previous findings. This is important 

especially for less robust trans-acting loci, which tend to have smaller effect sizes and 

are more susceptible to errors due to technical and sample differences.  

Conditionally independent variants, however, differed from other studies in many 

cases. This was most obvious in comparison with recent findings from the UK 

Biobank (UKB)48: while 88% (515) of our associated regions replicated (within 2Mb), 

only 42% (244) of independent variants matched directly (94) or were in LD (r2>0.8) 

with those reported in UKB. Possible explanations for this include: different 

populations, genotyping technologies, LD reference panels, and the methods used to 

define independence (Plink92 clump + GCTA-COJO93 vs Plink clump + SuSiE 

(UKB)48,94). This has implications in downstream analyses, such as MR, where the 

independent variants are often used as instruments. This emphasises the need for 
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rigorous study design and validation before findings are forwarded for clinical 

application.  

We replicate (P<1x10-5) the following MR findings from five large pQTL studies41–

43,45,46 (data from https://www.epigraphdb.org/pqtl/95) (Table 2), strengthening genetic 

evidence for clinical translation.   

Table 2. Causal circulating protein-disease associations replicated from five large pQTL studies41–

43,45,46. 

Exposure (protein) Outcome Major function(s) 

Siglec-3 (CD33)  Alzheimer’s disease Immune response (microglial 
activation) 

Granulin (GRN) Coronary heart disease, LDL 
cholesterol, HDL cholesterol, 
total cholesterol 

Unknown, implicated in 
numerous functions 

Intercellular adhesion 
molecule 2 (ICAM2) 

LDL cholesterol, HDL cholesterol Spermatogenesis, immune 
response 

E-Selectin (SELE) Coronary heart disease, 
myocardial infarction, LDL 
cholesterol, total cholesterol 

Inflammation 

P-Selectin (SELP) LDL cholesterol, total cholesterol Inflammation 

Von Willebrand Factor 
(VWF) 

Coronary heart disease, 
myocardial infarction 

Blood coagulation 

 

4.2 Rare and non-coding variant contributions  

Rare genetic variants can contribute a significant proportion of heritability but are 

often detectable only when sample or effect sizes are large. Here, we found novel 

pQTLs that are rare in the general urban European population, but have drifted up 

in frequency in HELIC MANOLIS and/or Pomak up to 680-fold. We reported fifteen 

of such pQTLs for proteins from the Cardiovascular and Metabolism Olink panels, 

all of which were variants at newly-associated loci (Table 1 of Publication 2). These 

novel loci demonstrate how genetic drift in isolated populations can, even at 

moderate sample sizes, empower pQTL discovery. 

Among the novel pQTLs in HELIC, we observed that the median effect size of rare 

pQTLs (MAF < 1%) was significantly higher than that of non-rare pQTLs (Wilcoxon 

rank sum test; P = 6.60x10-6). This may not be reflective of genuine genetic 

https://www.epigraphdb.org/pqtl/
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architecture, but rather, a lack of power to detect rare variants of smaller effect sizes. 

Gene-based testing can circumvent this by aggregating rare variants within a gene 

and testing for associations on the gene level.  

In addition to single-variant analysis, gene-based rare variant meta-analysis was also 

performed for 250 proteins (from the Cardiovascular and Metabolism panels) from 

MANOLIS60, Pomak, and an independent isolated population, ORCADES (total N = 

4,422), as recently published62. A total of 55 signals passed stringent quality control, 

including a cis-signal for myeloperoxidase (MPO) that was undetectable in the single-

point analysis. The study provides a rare variant analysis pipeline that supplements 

common-variant association analysis to give a more complete understanding of 

protein level genetic architecture. This serves as a starting point for larger meta-

analyses, which will have greater statistical power to explain missing heritability, and 

are currently underway.  

4.3 The importance of orthogonal validation 

Antibody-based proteomic assays such as Olink’s PEA are susceptible to epitope 

effects that can result in false pQTL signals reflecting changes in protein structure 

rather than protein abundance. While not necessarily biologically unimportant, such 

variants are not relevant to the aims of this study. This has been discussed in the 

publications included in this thesis, and highlights the need for pQTL validation 

using alternative proteomic assays. Other areas of ambiguity include the use of 

arbitrary thresholds for cis/trans annotation, and cross-reactivity with highly 

homologous protein isoforms.  

Limitations to the methods used for downstream causal inference analysis have also 

been discussed in the contributed publications. In essence, two-sample MR is based 

on strong assumptions that are difficult to verify (see Methods). Because trans-pQTLs 

are more likely to be pleiotropic, using only cis-pQTLs is one way to reduce chances 

of horizontal pleiotropy; however, this results in fewer instruments and lower 

statistical power. We also observe instances where only one instrument was available, 

which increases the potential for false positives. In such cases, genetic colocalisation 
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between the pQTL and the outcome GWAS signal is needed to ensure no 

confounding by LD has occurred. MR results need to be interpreted with caution and 

validated using complementary functional assays. Overall, there is a need for 

consistent strategy and reporting for MR studies. Guidelines (STROBE-MR96; 

https://www.strobe-mr.org/) and recommendations97  have recently been published, 

that future studies should adhere to so as to ensure the quality of MR results. A public 

database of MR findings will also facilitate replication efforts, strengthening evidence 

for potential clinical targets. 

  

https://www.strobe-mr.org/
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4.5 Conclusion and future perspectives 

Circulating proteins are accessible and dynamic markers with potential clinical 

applications at every step of disease progression, and thus play an indispensable role 

in our goal towards precision medicine. They assume a unique position in between 

disease genotype and phenotype; and through the convergence of genetic variation 

underlying protein levels (pQTLs) and diseases (GWAS signals), we show how we 

are able to bring findings from proteomic and GWAS studies a step closer to the clinic. 

This work contributes novel findings and strengthens evidence for disease-relevant 

proteins that warrant further translational work. All pQTL data have been shared 

publicly on the GWAS Catalog (https://www.ebi.ac.uk/gwas/; accession IDs provided 

in supplementary material of contributed publications), adding to a knowledge 

database that serves as a foundation for forming new hypotheses and validating 

existing ones.  

Large national-scale projects such as the UK Biobank and the German National 

Cohort (NAKO; https://nako.de/) are generating sequencing and multi-omic data in 

hundreds of thousands of individuals that will be instrumental in future research. As 

proteomic technologies approach high-throughput capabilities, we will achieve more 

in-depth genetic characterisation of the circulating proteome. This will empower 

biomarker discovery, improve polygenic models, and uncover an abundance of 

biological insight. Future projects integrating multi-omic data in large and diverse 

samples, both in circulation and specific cell types/tissues will further clarify 

ambiguities, enabling us to harness the full potential of pQTLs. Meanwhile, efforts to 

recruit participants across ancestry groups and the increasing adoption of open 

sharing of ancestrally-diverse genetic data must be prioritised to ensure health 

disparities are reduced98. 

   

https://www.ebi.ac.uk/gwas/
https://nako.de/
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Neurological disorders are the leading cause of disability
worldwide, accounting for 276 million disability-adjusted
life years (DALY) globally in 20161. This burden is con-

tinuously increasing with growing and ageing populations2,
emphasising the need for better prevention and treatment stra-
tegies. Multiple genetics and genomics efforts have established
that these diseases have a substantial genetic component3,4. Elu-
cidating their genetic architecture can, therefore, help to forward
our understanding of their aetiology by identifying causal disease
mechanisms, thus opening a path towards clinical translation.

Due to their heterogeneity and overlapping clinical features,
neuropsychiatric disorders such as schizophrenia and bipolar
disorder are often misdiagnosed5, while others with more distinct
symptoms, such as Alzheimer’s disease (AD), lack effective drugs
and accessible biomarkers that can detect early disease6. The
human serum proteome is an especially valuable resource of
potential biomarkers for these highly polygenic disorders. As
proteins are often dysregulated in disease, studying protein
quantitative trait loci (pQTLs), which are genetic variants asso-
ciated with protein expression levels, can help to bridge existing
knowledge gaps. Most pharmaceutical drugs also target proteins,
further increasing their actionability.

By implementing statistical methods that leverage relevant bio-
medical data, such as causal inference and colocalisation analysis,
pQTLs can be used to determine causality and to identify disease
pathways. For example, in a study focused on neurologically relevant
proteins7, a pQTL for serum PVR mapping to the PVR gene (cis-
pQTL), was found to be causally associated with AD through
Mendelian randomisation analysis. Through similar methods, a
recent brain proteome-wide association (PWAS) and pQTL study8

identified five genes causal for AD at high confidence, of which four
were novel. By validating known AD loci and identifying new causal
genes, these studies demonstrate proof-of-concept.

Here, we aimed to identify biomarkers of neurological traits
and enhance insight into disease pathways, by carrying out a
pQTL analysis of 184 neurologically relevant serum proteins. The
main advantage of serum proteins is that they are easily acces-
sible, both as drug targets and diagnostic biomarkers. We use
whole-genome sequencing (WGS) to capture the entire allele
frequency spectrum in 2,893 samples from two Greek population-
based cohorts, MANOLIS and Pomak. Association analysis was
first carried out individually for each cohort, followed by a meta-
analysis. Specifically, proteins were quantified using Olink’s
proximity extension assay (PEA) and comprised established or
potential markers of neurobiological processes. Using WGS, we
were able to detect both rare and common pQTL variants. We
then investigated the relevance of the discovered pQTLs to neu-
rological diseases and highlight biomarkers of high diagnostic or
prognostic potential, identify drug repositioning opportunities,
and describe pathways relevant to neurological traits.

Results
Protein QTL discovery. For the 184 neurologically relevant
proteins analysed, we detect 214 independently-associated pQTLs
(P < 1.05 × 10−10; ‘Methods’ section) for 107 proteins from the
meta-analysis, following conditional testing (Fig. 1 and Supple-
mentary Data 1). Loci were classified into cis and trans: cis-acting
pQTLs, which are defined as variants residing within 1Mb
upstream or downstream of the protein-encoding gene, are likely
to regulate protein expression directly at the transcriptional level,
while trans-pQTLs are likely to act through intermediaries to
modulate protein levels. We observe 162 (75.7%) cis-acting
pQTLs for 91 proteins, and 52 (24.3%) trans-acting pQTLs for 38
proteins. A total of 22 proteins had both cis and trans-acting
pQTLs (Fig. 2b).

Sixteen proteins have only trans-pQTLs, 13 of which have
pQTLs only in pleiotropic loci. We find altogether 30 variants
arising at known pleiotropic loci, including those near or within
KLKB1, ABO, F12, VTN, and the HLA region on chromosome 6.
These are loci that influence the levels of multiple proteins; the
most pleiotropic being loci at KLKB1 and ABO, affecting 11 and
12 proteins, respectively. These have been identified in published
pQTL studies and are not restricted to neurologically relevant
proteins9–12. ABO is the most extensively studied among these
pleiotropic loci, and is known for its role in blood coagulation
processes and determining the ABO blood types. In particular, we
detect the missense variant rs8176747 affecting ADAM15, IL3RA,
and KIRREL2 protein levels. rs8176747 is among the variants
routinely used to determine blood group phenotype13, which has
been associated with multiple diseases, mainly of cardiovascular
relevance. As proteins such as ABO are connected to large
signalling networks, changes in their structure or expression levels
could influence multiple downstream substrates, hence explaining
their pleiotropy.

We identify 33 sequence variant-protein level independent
associations for 15 proteins that have not been investigated for
pQTLs before (Table 1). For the remaining 92 proteins, we
identify 72 novel cis-pQTL variants, and 15 novel trans-pQTL
variants, excluding those at known pleiotropic loci. We define
novelty if no variants within 2Mb have been previously reported
in serum pQTL studies, or if associations remain significant after
conditioning on established pQTLs.

Eight of the proteins we studied here have also been investigated in
a pQTL study in cerebrospinal fluid (CSF)14. We replicate six of these
cis-pQTLs in serum: for CD33, GPNMB, LEPR, NAAA, SIGLEC-9,
and TDGF1. Additionally, we find novel cis-pQTLs for CD33 and
GPNMB, and trans-pQTLs for NAAA and SIGLEC-9, which had
not been detected in CSF. The observed replication of CSF pQTLs
indicates that the expression of these proteins in serum and CSF are
governed by a shared genetic mechanism.

Of the identified independent pQTLs, 185 (86%) are common-
frequency variants (minor allele frequency [MAF] > 5%), 25
(12%) are low-frequency (MAF 1–5%) and four (2%) are rare
(MAF < 1%) (Fig. 2a). Eight of the low-frequency or rare pQTLs
(all cis signals) have not been reported before, despite the proteins
having been analysed in past studies, demonstrating the
advantage of using whole-genome sequencing-based analysis to
capture the full MAF spectrum.

Gene expression QTL colocalisation. Colocalisation analysis is
used to test if independent association signals from two traits
share the same causal variant. When comparing protein with
gene expression levels, positive colocalisation is indicative of a
shared regulatory mechanism, thereby acting as orthogonal vali-
dation. Through testing for colocalisation of neurological pQTLs
with gene expression QTLs (eQTLs) from multiple tissues
(GTEx), our results also identify disease-relevant tissues where
gene expression correlates with serum protein expression. For cis-
acting pQTLs, analysis was carried out between protein expres-
sion and the expression of the encoding gene, in all available
tissues. Sixty-four (69%) cis-pQTLs colocalised strongly (coloca-
lisation posterior probability 4 [CLPP4] > 0.8; ‘Methods’ section)
with gene expression in at least one tissue, with 11 (12%) in whole
blood, and 21 (23%) in various parts of the brain (Supplementary
Data 4). This indicates that for these loci, the causal variant
influences both gene and protein expression, therefore supporting
transcriptional regulation as the mechanism underpinning var-
iation in protein expression levels.

For trans-pQTLs, positive colocalisation between a pQTL and an
eQTL at a distal gene increases the likelihood that the two gene
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products map to the same regulatory pathway (Supplementary
Note 1 and Supplementary Fig. 2). Colocalisation analysis was
performed between protein traits and expression of genes within
2Mb of the trans-acting variant. We detect 36 (75%) signals that
colocalise with the expression of at least one gene in their vicinity,
with three (6%) in whole blood and 30 (62%) in the brain
(Supplementary Data 4). As proof-of-concept, we find known
receptor-ligand pairs such as a trans signal for the KIR2DL3 (killer
cell immunoglobulin-like receptor 2DL3) protein colocalising with

the expression of HLA-C in multiple tissues (22 tissues; CLPP4 >
0.78). KIR2DL3 is an inhibitory receptor for HLA-C, and is
responsible for preventing natural killer cells from killing healthy
cells15.

The analysis also enabled the identification of new protein links.
For example, we observe a trans-pQTL for SMPD1 (sphingomyelin
phosphodiesterase; rs10745925; MAF= 0.333; P= 7.75 × 10−23;
BETA=−0.2805; SE= 0.0285) that colocalises strongly with the
expression of GNPTAB in the liver (CLPP4: 0.89), and moderately in

Fig. 1 pQTL signals for 107 serum proteins from Olink neurology and neuro-exploratory panels. a 3D Manhattan plot of detected pQTLs. The x axis
represents each of the 107 proteins; the y axis represents the chromosome location of each signal; and the z axis represents the −log10 p-values of each
association signal. b Scatterplot of pQTL variant location against the location of the gene encoding the target protein. Each dot represents an independent
variant. Cis-pQTLs are coloured in teal, while trans-pQTLs are in orange.

Fig. 2 Overall genetic architecture of 107 serum proteins of neurological relevance. a A total of 214 independent variants were detected. Cis-acting
variants were defined as variants lying within 1Mb upstream and downstream of the gene encoding the target protein, while trans-acting variants are
variants that lie outside of this region. Most severe consequence was determined by Ensembl’s variant effect predictor (VEP). Effects more than missense
included ‘stop_gained’, ‘frameshift_variant’, and ‘splice_acceptor_variant’ in our dataset; ‘Regulatory region’ variants include ‘[3/5]_primeUTR_variant’,
‘TF_binding_site_variant’, ‘splice_region_variant’, and ‘regulatory_region_variant’; while’Others’ comprises mostly intergenic and intronic variants. Novelty
was assessed by cross-referencing published summary statistics from other pQTL studies (Supplementary Data 2). Known pleiotropic loci were not
considered novel. Rare, low-frequency and common variants were defined as variants with minor allele frequency (MAF) < 1%, MAF 1–5%, and MAF > 5%,
respectively. b Number of proteins for which we detected only cis-pQTLs, trans-pQTLs, or both.
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other tissues (CLPP4= 0.58 [oesophagus mucosa]; 0.57 [stomach];
0.54 [adrenal gland]). SMPD1 is a lipid hydrolase involved in
multiple cell processes; whereas GNPTAB encodes subunits of
GlcNAc-1-phosphotransferase, which is involved in the synthesis of
mannose-6-phosphate (M6P). SMPD1 exists in two forms: secreted
and lysosomal. Its lysosomal form is transported via the M6P
receptor pathway, therefore supporting the observed SMPD1-
GNPTAB interaction. Moreover, we find that the minor allele is
associated with a decrease in circulating SMPD1 and an increase in
GNPTAB expression. This could be a result of increased M6P
tagging, which targets a disproportionate amount of the enzyme to
the lysosome rather than the secretory pathway. Secreted and
lysosomal SMPD1 are likely to play distinct roles in the body16, and
abnormal levels of the secreted form have been implicated in age-
related neurodegenerative conditions17 including Alzheimer’s
disease18 and amyotrophic lateral sclerosis (ALS)19. We, therefore,
identify a locus at GNPTAB that coregulates secreted SMPD1 levels
and GNPTAB expression, pinpointing a possible mechanism behind
SMPD1-related neuropathological disorders.

Heritability. To estimate the narrow-sense heritability of the
protein traits studied, the proportion of variance explained (PVE)
by all variants across the genome was calculated using GCTA
GREML20 for each protein. Using a single-component approach,
WGS variants explained a median of 33.3% of variance in serum
protein levels, with the highest observed heritability observed for
CD33 (h2= 87.2%). Another three proteins had high heritability
of more than 80%: TDGF1 (85.4%), VSTM1 (82.8%), and LAIR2

(82.3%). Conversely, some proteins had very low heritability
estimates of h2 < 5%: IKZF2 (4.9%), RNF31 (4.4%), and EPHA10
(0.001%).

We observe that for all four proteins with h2 > 80%, the pQTLs
colocalised with gene expression QTLs in multiple tissues,
indicating regulation at the transcriptional level; therefore, the
high observed h2 values are likely to mirror genuine high
heritability. There are, however, other non-mutually exclusive
reasons that can drive very high or low estimates: (1) Variants
that alter the binding specificity of the Olink antibody but not the
quantity of protein may produce inaccurate heritability estimates;
and (2) Known and unknown biases of single-component
GREML approach, which tends to overestimate h2 when causal
variants are common, and underestimate h2 when causal variants
are rare21 (Supplementary Fig. 1).

Link to disease outcomes. To explore the biological relevance of
the pQTLs, we carried out colocalisation analysis with neu-
ropsychiatric traits using data published by the Psychiatric
Genomics Consortium (PGC), as well as other neurodegenerative
traits, using publicly available summary statistics from recent
large GWAS meta-analyses (Supplementary Data 5b). We also
studied colocalisation with signals for pain-related traits that have
been proven to have a neuropathic component, such as chronic
back pain22 and osteoarthritis23. A total of 15 protein–trait pairs
colocalised with human disease signals, suggesting a role for the
protein in mediating disease. These results are summarised in
Supplementary Data 5a.

Table 1 Independent pQTL variants for proteins that are being analysed for the first time.

Protein Variant MAF BETA S.E. P-value rsID

ADGRB3 chr6:68956792 0.1576 0.89 0.032 8.44E−170 rs1932618
ADGRB3 chr6:68962147 0.3461 0.4947 0.0262 2.31E−79 rs3798971
ADGRB3 chr6:68968025 0.3468 0.8342 0.0225 2.83E−301 rs1953613
CD302 chr2:159745359 0.1016 −0.4303 0.0436 5.34E−23 rs5002908
CD302 chr2:159773858 0.3098 0.3731 0.0281 3.64E−40 rs1553790820
CDH17 chr9:133253728 0.0918 −0.6534 0.0462 1.70E−45 rs10793962
CDH17 chr9:133264504 0.3431 −0.3879 0.028 1.19E−43 novel
CDH17 chr19:48703205 0.4516 −0.386 0.0264 2.25E−48 rs681343
CDH17 chr8:94194571 0.4782 −0.2672 0.0276 3.61E−22 rs56129387
CDH17 chr8:94130944 0.4847 0.2889 0.0267 3.21E−27 rs1051624
GGT5 chr22:24232046 0.0064 −2.3071 0.1696 3.75E−42 rs200519116
GGT5 chr22:24235780 0.1923 −0.3614 0.0326 1.52E−28 rs6004108
GGT5 chr22:24247481 0.2015 −0.3049 0.0317 7.33E−22 rs5760275
IFI30 chr19:18172691 0.2613 0.3604 0.0295 2.10E−34 rs273266
IMPA1 chr8:81652967 0.3331 0.3338 0.0278 3.41E−33 rs2142316
KIR2DL3 chr19:54744273 0.0665 0.8024 0.0574 2.11E−44 rs10414825
KIR2DL3 chr19:54743423 0.2167 0.6973 0.0299 5.70E−120 rs11667532
KIR2DL3 chr6:31272403 0.266 0.5934 0.0307 1.71E−83 rs2524093
KLB chr17:68883786 0.0268 −0.556 0.0849 5.79E−11 rs34931250
KLB chr4:39431127 0.3249 −0.4173 0.0265 5.44E−56 rs2926042
KLB chr4:39447786 0.333 0.7642 0.025 1.17E−205 rs12513342
LTBP3 chr11:65572664 0.0527 0.5989 0.058 5.49E−25 rs10896017
LTBP3 chr11:65575510 0.2504 0.253 0.0299 2.68E−17 rs67924081
NDRG1 chr5:177412889 0.2384 0.2707 0.0318 1.67E−17 rs2731674
NDRG1 chr4:186235350 0.4738 0.2847 0.0263 2.23E−27 novel
PSG1 chr19:42929524 0.02 0.7883 0.087 1.32E−19 rs146569565
PSG1 chr19:42872373 0.1525 −0.3243 0.033 7.79E−23 rs60887906
PSG1 chr19:42881078 0.192 0.8012 0.0267 5.72E−198 rs2005772
RBKS chr2:27858572 0.009 1.9199 0.1685 4.54E−30 rs140948699
SNCG chr10:86945549 0.2564 0.934 0.0217 3.24E−403 rs3750822
TPPP3 chr16:67267204 0.0813 −0.3312 0.0483 6.86E−12 rs7200971
VSTM1 chr19:54062922 0.1819 −0.8967 0.0309 9.59E−185 rs8111849
VSTM1 chr19:54042277 0.3968 0.8847 0.0218 4.71E−359 rs2433724
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We applied two-sample Mendelian randomisation (MR) for the
107 proteins for which we detect pQTLs, and 206 neurologically
relevant and behavioural traits. In contrast to colocalisation, the
objective of MR is to look for causal effects of proteins on
neurological phenotypes. Using both cis and trans-acting pQTLs,
fifteen proteins were found to be causal for at least one trait, and
we detect significant causal effects for 25 unique protein–trait
pairs (Fig. 3 and Supplementary Data 6a).

We replicate multiple known associations between protein and
disease from the colocalisation and MR analyses. These include
LEPR (leptin receptor) and migraine24, LTBP3 (latent-transform-
ing growth factor beta-binding protein 3) and osteoarthritis25,
FLRT2 (leucine-rich repeat transmembrane protein) with bipolar
disorder26, and PLXNB127 (plexin-B1) and PLA2G1028 (group
10 secretory phospholipase A2) with schizophrenia.

The analysis also identified new protein-disease relationships.
Notably, the strongest causal association was found between
serum WFIKKN1 and schizophrenia (Padj= 9.12 × 10−43);
WFIKKN1 (WAP, Kazal, immunoglobulin, Kunitz and NTR
domain-containing protein 1) has not been associated with any
neuropsychiatric disorder to date, but is highly expressed in the
brain (GTEx) and regulates the activity of several growth and
differentiation factors29. Similarly, we find new evidence that
serum VSTM1 is causally associated with sleep apnoea (Padj=
2.03 × 10−2). VSTM1 (V-set and transmembrane domain-
containing protein 1) is a cytokine that promotes the differentia-
tion of helper T-cells (TH17), which are often implicated in
autoimmune disorders that may develop secondary to sleep
apnoea30,31.

The overarching aim of this study was to identify protein
biomarkers that may be used in the prognosis, diagnosis, or
treatment of neurological diseases. Here, we highlight various
potential disease markers that are supported by multiple lines of
evidence.

GPNMB as a biomarker for Parkinson’s disease. We identified a
cis-pQTL that is associated with decreased levels of serum
GPNMB (transmembrane glycoprotein NMB; rs7797870;
MAF= 0.4286; P= 7.01 × 10−50; BETA=−0.2109; SE= 0.0247)
and colocalises with a known Parkinson’s disease (PD) locus32

(CLPP4= 0.86) (Fig. 4b). GPNMB has been highlighted as a
susceptibility gene in large PD meta-analyses32 and has been
proven to be upregulated in the brains of PD patients and in mice
with induced lysosomal dysfunction33. In addition to its con-
nection to PD, we present new evidence showing that serum
GPNMB shares a causal variant with GPNMB gene expression in
both whole blood (CLPP4= 0.79) and brain tissue (basal ganglia
CLPP4= 0.70; cortex CLPP4= 0.74; anterior cingulate cortex
CLPP4= 0.83). This not only implies that GPNMB expression is
regulated transcriptionally by the pQTL, but also that its
expression in the blood and brain are mediated via a shared
mechanism. This is supported by previous research showing that
tissue GPNMB is able to shed its ectodomain and enter
circulation34. The lead variant rs75801644 explained 7% of var-
iance in antibody binding for serum GPNMB. Importantly, the
identification of serum GPNMB levels as a potential marker of
PD is significant as current diagnostic biomarkers are mostly
found in the CSF. As serum biomarkers are much less invasive to

Fig. 3 Causal protein-disease associations identified using two-sample Mendelian randomisation. We investigated the causal effect of serum proteins
(exposure) on various neurological traits (outcome), indicated in the first two columns in the plot. PubMed IDs (PMIDs) are given where manually
downloaded summary statistics were used; other IDs are those as given in MRBase (https://gwas.mrcieu.ac.uk/). The number of variants used in the
analysis are given in the ‘nSNP’ column. The ‘pBH’ column contains the FDR-adjusted (Benjamini–Hochberg) P-value for each test. Protein–trait pairs with
only one variant were analysed using the Wald ratio method, while those with more than one variant were analysed using the inverse variance-weighted
(IVW) method. Data are represented as mean odds ratio ± SEM. *Additional signal arising from analysis using only cis-pQTLs as instrumental variables.
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measure, they are generally preferred for routine testing or
monitoring disease progression. Clinical studies will be required
to evaluate translational utility.

CD33 as a biomarker for Alzheimer’s disease. Using two-sample
MR, we confirm a significant causal association between serum
CD33 (myeloid cell surface antigen CD33) and Alzheimer’s
disease35 (AD; BETA= 0.0091; SE= 0.0017; inverse variance-
weighted [IVW] Padj= 3.62 × 10−4) (Figs. 3 and 4a). The role of
CD33 in AD is further affirmed by positive colocalisation between
the cis-pQTL with the causal variant rs2455069 (MAF= 0.3967;
P= 2.03 × 10−1580; BETA= 1.2092; SE= 0.0142), and a known
AD-associated locus (CLPP4= 0.82). CD33 is upregulated in the
AD brain and is positively correlated with disease severity, while
knockout mice have been shown to have reduced amyloid plaque

formation36. Additionally, the cis-pQTL for CD33 colocalises with
an eQTL for the CD33 gene in whole blood (CLPP4= 0.95) and in
the brain (cerebellar hemisphere CLPP4= 0.62), indicating a
shared regulatory pathway for gene and protein expression.

Notably, our heritability analysis revealed a very high h2 value
(82.7%) for serum CD33, which is the highest proportion of
variance explained observed across all analysed traits, thus
reflecting high heritability. This has been similarly observed in
a study showing that the most strongly AD-associated variant in
CD33, rs3865444, explained more than 70% of variance in CD33
monocyte expression and was moreover unaffected by age37. A
reverse Mendelian randomisation analysis (using AD as the
exposure and serum CD33 as the outcome) confirmed that AD is
causal for increased CD33. Together, these findings indicate that
serum CD33 levels are a promising diagnostic marker for early
AD (Supplementary Note 2).

MSR1 on the causal pathway to schizophrenia. We find that a
cis-pQTL (rs150158578) associated with decreased serum MSR1
(macrophage scavenger receptor types I and II) is causal for
schizophrenia, supported by evidence from colocalisation analysis
(CLPP4= 0.75) and two-sample MR (BETA=−0.2205; SE=
0.0522; Wald ratio Padj= 1.44 × 10−2; Fig. 3). Variants in the
MSR1-encoding gene have been nominally significantly asso-
ciated in a schizophrenia GWAS38, and have been robustly
associated with AD39 and PD38.

MSR1 is an immune modulator expressed on the cell surface of
macrophages. The protein plays a critical role in the clearance of
infectious agents and toxic molecules, such as amyloid-beta
protein40, damage-associated molecular patterns (DAMPs)41, and
modified lipids, such as oxidised low-density lipoprotein
(oxLDL)42. MSR1-mediated phagocytosis activates both pro-
and anti-inflammatory responses, and has been shown to have a
protective effect against multiple diseases, including bacterial and
viral infections, AD, atherosclerosis and Barrett’s oesophagus
(BE)43. Accordingly, MSR1-deficient mice have been shown to
exhibit dysregulated immune response in the brain and
deteriorating working memory44. MSR1 activation can also lead
to excessive inflammation linked to sepsis and worsening the
cardiac and cerebral injury. Here, we observe a causal association
between decreased MSR1 expression and increased risk of
schizophrenia, suggesting a protective role (Fig. 5b).

We also find colocalisation of the cis-pQTL for serum MSR1
with an eQTL for theMSR1 gene in the nucleus accumbens of the
basal ganglia (CLPP4= 0.90), aorta (CLPP4= 0.94), tibial artery
(CLPP4= 0.90), and oesophagus (CLPP4= 0.91) (Fig. 5c). The
nucleus accumbens is central to the brain’s reward system, and is
enriched in dopaminergic neurons that contribute to the
pathophysiology of schizophrenia45,46 and other neuropsychiatric
diseases47,48. A large comorbidity study has shown that patients
with schizophrenia are more likely to suffer from coronary heart
disease, cerebrovascular disease, and congestive heart failure49.
We observed no evidence of colocalisation or causality between
serum MSR1 and stroke or coronary artery disease (CAD).

To further investigate the mechanism through which the
pQTL regulates protein expression, we queried the ENCODE50

(https://www.encodeproject.org/) database for overlaps with cis
regulatory elements. We found that, in blood cells, three variants
in LD (r2 > 0.8) with rs15015857 (rs420931, rs433235, and
rs59251421) reside within regulatory elements with a proximal
enhancer-like signature (EH38E2612565), a promoter-like sig-
nature (EH38E2612567), and a distal enhancer-like signature
(EH38E2612573), respectively. All three variants, as well as
rs150158578, are also eQTLs for MSR1 gene expression in whole
blood (GTEx). This suggests that the pQTL regulates MSR1 in

Fig. 4 Colocalisation plots. Each plot shows the association signal and the
−log10 P-values. The lead pQTL variant is represented by a black diamond,
while other points are variants that are coloured according to the extent of
linkage disequilibrium with the lead variant. The location of the genes of
interest are also shown in yellow at the bottom of each plot. Significance
thresholds used for each respective study are shown using a dotted red line.
a Left: Protein QTL signal for serum CD33; right: GWAS signal for Alzheimer’s
disease. b Left: Protein QTL signal for serum GPNMB; right: GWAS signal for
Parkinson’s disease.
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blood cells at the transcriptional level, possibly by altering the
binding affinity of transcription factors to the promoter or an
enhancer. Additionally, we note two other cis-acting rare,
independent variants (rs182190568, MAF= 0.006, P= 1.44 ×
10−21, BETA=−1.2568, SE= 0.1317; rs41341748, MAF=
0.0148, P= 3.18 × 10−38, BETA=−1.3351, SE= 0.1033), and
a rare deletion (chr8: 16090094-16150000[b38]; MAF= 0.006;
P= 7.10 × 10−23; BETA=−1.414, SE= 0.1436) that are sig-
nificantly associated with serum MSR1 levels (Fig. 5a), illustrat-
ing the complexity of the genetic regulation of MSR1.

Drug target evaluation. Drug repositioning can dramatically
expedite translational applications of proteomics and genomics
into patient benefit. As over 95% of drugs target proteins51, we
sought to identify proteins included in this study that are targets
of drugs that have been approved, or are in later stages of clinical
trials (see ‘Methods’ section). Twenty-three of the proteins we
studied in this work are targets of approved drugs. Of these, 17
proteins had pQTL signals (Supplementary Data 7).

Seven of these proteins have cis-acting pQTLs that colocalise
with or are causal for neurological diseases: DDR1, IL12, NEP,

Fig. 5 Serum MSR1 is causally associated with schizophrenia. a Genetic architecture of serum MSR1. Each of the three independent variants and their LD
variants are represented in orange, teal, and purple, respectively; the intensity of the colours indicates the strength of linkage disequilibrium (r2). A rare
deletion is also indicated in purple, and is in complete LD with the independent variant rs182190568. Below the signal plot, the location of the variants
respective to the gene are indicated using coloured points for the SNVs and a dotted box for the deletion. b Proposed mechanism of how decreased MSR1
may lead to neuronal damage, resulting in neuropsychiatric disease. c Association signal plots at the MSR1 locus for (clockwise) serum MSR1, schizophrenia,
gene expression ofMSR1 in nucleus accumbens tissue, aorta, oesophagus muscularis and tibial artery. The lead pQTL variant is denoted by a black diamond,
while variants in LD are coloured according to the strength of LD with the lead variant (red [r2 > 0.8]; orange [0.5 < r2 > 0.8]; blue [0.2 < r2 > 0.5]; grey
[r2 < 0.2]).
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CD33, DPEP1, GPNMB, and LEPR (Supplementary Note 3). Of
note is DPEP1 (dipeptidase 1), whose increased expression is
causal for osteoarthritis and multisite chronic pain (MCP) (Fig. 3).
DPEP1 is inhibited by the drug cilastatin, which is often used in
combination with the antibiotic imipenem as an embolic agent in
the treatment of serious infections. Given that DPEP1 is causally
associated with osteoarthritis, cilastatin could potentially be
repurposed to treat osteoarthritis. Indeed, the cilastatin/
imipenem combination has been investigated as a treatment
for knee osteoarthritis52,53, and has been proven to provide
pain relief. Also notable is CD33, whose expression is
increased in AD (Figs. 3 and 4a). CD33 has proven to be a
safe target, demonstrated by the acute myeloid leukaemia
(AML) drugs, gemtuzumab ozogamicin and lintuzumab. In a
study investigating the repurposing of lintuzumab for redu-
cing AD risk, the anti-CD33 drug was shown to robustly
decrease cell surface expression of the protein54. We, there-
fore, provide further genetic evidence supporting reposition-
ing of lintuzumab for AD treatment.

Discussion
Biomarker discovery is a process central to precision medicine,
and is especially important for many neurological disorders that
remain challenging to diagnose and treat. Serum proteins make
ideal intermediate traits to study as they are druggable, measur-
able targets that are strongly linked to both causative genetic
variants and medical outcomes. Having knowledge of their
underlying genetic architecture and how that may correlate with
diseases can also enhance our understanding of disease aetiology.
We have carried out a pQTL analysis of 184 neurologically
relevant serum proteins using WGS data. Altogether, we find 214
pQTLs for 107 proteins, of which 33 were for proteins that are
being analysed for the first time. We detect novel pQTLs for
previously studied proteins and replicate established associations
of both blood and CSF pQTLs.

Through downstream analysis, we highlight disease-relevant,
translatable pQTLs by presenting new evidence supporting
protein-disease associations; most notably, CD33 and Alzheimer’s
disease, GPNMB and Parkinson’s disease, and MSR1 and schi-
zophrenia. Additionally, we observed that serum DPEP1 is causal
for both osteoarthritis and multisite chronic pain (MCP). Pain is
the main symptom of osteoarthritis, and osteoarthritis is the
leading cause of pain and disability worldwide55. DPEP1 has been
implicated in osteoarthritis through a large genome-wide asso-
ciation study56, and was additionally shown to be downregulated
in mouse models of osteoarthritis57. These findings indicate that
serum DPEP1 may serve as a valuable candidate biomarker for
identifying patients with undiagnosed osteoarthritis and suffer
from MCP.

Consistent with previously published pQTL studies, the
majority (73.8%) of variants were intergenic and intronic; we also
observed 31 (14.4%) variants in regulatory regions and 25 (11.6%)
coding variants, either missense or with more severe con-
sequences. We note a limitation of epitope-based proteomic
assays, in that cis-acting protein structure-altering variants may
affect epitope-binding affinity and, in turn, measured protein
levels. We identified 21 proteins with cis-acting variants, which
were either highly correlated (r2 > 0.8) with, or were missense or
more severe consequence variants themselves. Of these, 16 var-
iants were determined by Olink to be within a possible epitope-
binding site (Supplementary Data 3), including those for CD33,
GPNMB, and MSR1. Further errors may also be introduced due
to cross-reactivity and unspecific binding58. For 20 of 21 proteins
with corresponding protein quantification using the SomaScan
technique (an aptamer-based proteomic technology binding to

varying protein sites), the correlation between Olink and
SomaScan59 plasma protein measurements was evaluated in 485
individuals from the Fenland cohort60, using Spearman’s rank-
based correlation (Supplementary Data 3). Notably, we observed
good correlation in protein abundance between the two mea-
surements for CD33 (ρ= 0.60), GPNMB (ρ= 0.51), and MSR1
(ρ= 0.74). Explanations for a lack of correlation are manifold,
including missing specificity of the aptamer or antibody for the
selected target, the low affinity of the aptamer, targeting of dif-
ferent protein isoforms, a different dynamic range of the assays,
as well as other technical factors as recently summarised61. Fur-
ther orthogonal validation using epitope-independent assays is
warranted.

We detect no pQTLs for 77 proteins and only trans-pQTLs for
16 proteins. This may be explained by other limitations including
those related to epitope-binding. Firstly, only proteins in the
serum were quantified. As serum contains multiple cell types
originating from different tissues, pQTL detection is volatile to
changes in serum composition. We note, for example, that the cis-
pQTL for CD33 is also a known blood cell QTL (rs3865444)37,
highlighting how different cell-type composition and therefore,
sample handling, can affect the serum proteome and drive
pleiotropic signals. Secondly, the individuals included in this
analysis are of European ancestry only, and variants that are
absent or present in extremely low frequencies in our cohorts
would not have been detected. Therefore, our findings—in both
the pQTL discovery and downstream causal inference analyses—
cannot be extrapolated to non-European populations. Finally, our
sample size may not be adequate for the detection of rare variants
of small effect sizes, again stressing the importance of larger,
ethnically diverse studies.

In conclusion, we present the results of the first WGS-based
pQTL analysis of neurologically relevant serum proteins to date.
In addition to exploring the genetic architecture of these proteins,
we show that pQTL analysis has the potential to identify disease-
relevant serum biomarkers for debilitating neurological condi-
tions. We identify opportunities for the repurposing of ther-
apeutic targets, and deliver deeper insight into disease pathways.
We recognise that an effective biomarker must be able to dif-
ferentiate similarly presenting disorders to avoid misdiagnoses;
hence, special attention must be given to further validation.
Finally, we provide a resource that may be utilised by future
studies to develop new hypotheses and advance our under-
standing of brain-related disorders.

Methods
Cohorts and samples. The two cohorts included in this analysis, MANOLIS and
Pomak, are part of the Hellenic Isolated Cohorts (HELIC; https://www.helmholtz-
muenchen.de/itg/projects-and-cohorts/helic/index.html). The HELIC study focuses
on the genetics of complex traits, making use of characteristics of founder popu-
lations, such as increased frequency of rare variants, extended linkage dis-
equilibrium, and reduced haplotype complexity. For MANOLIS, biological samples
were collected from the mountainous Mylopomatos villages in Crete, Greece;
whereas, Pomak refers to a set of mountainous villages in the North of Greece.
Further phenotypic and genetic characteristics have been described in detail in
previous publications62–64. The study was approved by the Harokopio University
Bioethics Committee, and informed consent was obtained from all human subjects.

Sequencing and variant calling. Both MANOLIS and Pomak followed the same
sequencing, alignment, and variant calling pipeline. Genomic DNA (500 ng) from
1482 MANOLIS samples and 1642 Pomak samples were sheared to a median size
of 500 bp and subjected to standard Illumina paired-end DNA library construction.
Adapter-ligated libraries were amplified by six cycles of PCR and subjected to DNA
sequencing using the HiSeqX platform (Illumina) according to the manufacturer’s
instructions. Basecall files for each lane were transformed into unmapped BAMs
using Illumina2BAM, marking adapter contamination and decoding barcodes for
removal into BAM tags. PhiX control reads were mapped using BWA Backtrack
and were used to remove spatial artefacts. Reads were converted to FASTQ and
aligned using BWA MEM 0.7.8 to the hg38 reference (GRCh38) with decoys
(HS38DH). The alignment was then merged into the master sample BAM file using
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Illumina2BAM MergeAlign. PCR and optical duplicates are marked using bio-
bambam markduplicates and the files were archived in CRAM format. Per-lane
CRAMs were retrieved and reads pooled on a per-sample basis across all lanes to
produce library CRAMs; these were each divided into 200 chunks for parallelism.
GVCFs were generated using HaplotypeCaller v.3.5 from the Genome Analysis
Toolkit (GATK) for each chunk. All chunks were then merged at sample level,
samples were then further combined in batches of 150 samples using GATK
CombineGVCFs v.3.5. Variant calling was then performed on each batch using
GATK GenotypeGVCFs v.3.5. The resulting variant callsets were then merged
across all batches into a cohort-wide VCF file using bcftools concat.

Proteomics and QC. Proteins from Olink’s (https://www.olink.com) Neurology
and Neuro-exploratory panels were measured in the serum of 1457 MANOLIS and
1611 Pomak samples. The full list of 184 proteins is provided in Supplementary
Data 8. Protein expression was quantified using Olink’s Proximity Extension Assay
(PEA) technology. Briefly, each protein assay uses pairs of oligonucleotide-labelled
antibody probes; when these antibody pairs bind to the target antigen, the oligo-
nucleotides hybridise due to their proximity and are extended by DNA polymerase.
These DNA barcodes are amplified by PCR and quantified using microfluidic
qPCR. Protein expression levels are reported as Normalised Protein Expression
(NPX) values, Olink’s relative quantification unit, which is in the Log2 scale. NPX
values are derived by adjusting raw qPCR Ct values against several internal controls
—an extension control, inter-plate control, and a correction factor calculated using
a negative control. Additionally, the negative control determines the limit of
detection (LOD) for each assay, calculated as the negative control plus three
standard deviations. We included all proteins and all below-LOD NPX values in
our analysis. Fifty-two and 37 MANOLIS samples, and 68 and 60 Pomak samples
failed vendor QC for the Neurology and Neuro-exploratory panels, respectively,
and were excluded from the analysis. Reported NPX values were then rank-based
inverse normal transformed (INT) and used for the association analysis.

Association analysis and meta-analysis. A maximum of 1365 samples from
MANOLIS and 1537 samples from Pomak were analysed for the Neurology panel;
and for the Neuro-exploratory panel, a maximum of 1372 samples from MANOLIS
and 1545 samples from Pomak were analysed. For each cohort, whole genome-
wide association analysis with 184 proteins was performed using a linear mixed
model implemented in GEMMA v.0.9465, simultaneously adjusting for covariates
—age, sex, season of sample collection, plate number, plate row, and plate column.
An empirical relatedness matrix was also used for each cohort to account for
population structure; this was calculated on an LD-pruned set of low-frequency
and common variants (MAF > 1%) that passed the Hardy–Weinberg equilibrium
test (P > 1 × 10−5). Following per-cohort analysis, 12,392,022 variants common to
the two cohorts were meta-analysed using the fixed-effects inverse variance-based
method in METAL66. As no proteins displayed significant genomic inflation
(0.95 < λ < 1.03), no genomic control was applied.

Conditional analysis to identify independent variants. Using the PeakPlotter
software (https://github.com/hmgu-itg/peakplotter), we detected 171 signals. We
observed several signals extending over large regions that were mistakenly broken
up into multiple signals; because of this, 12 signals were excluded to give 159 sig-
nals. Independent variants were identified using the approximate conditional and
joint stepwise model selection, implemented using the -slct option in GCTA-
COJO67, using a collinearity cut-off of 0.9. Before that, however, variants were first
subjected to clumping in Plink 1.968 (www.cog-genomics.org/plink/1.9/), using a r2

threshold of 0.1 and a clumping window of 1Mb; this reduces the number of
variants input to COJO to avoid overfitting of the model. We arrived at a final
number of 214 independent variants for 140 signals after filtering for minor allele
count (MAC) > 10, Hardy–Weinberg equilibrium P > 1 × 10−5, and replication
(meta-analysis P-value < per-cohort P-value) in both cohorts.

Significance thresholds
Single variant-based association and rare variant analysis. For single variant-based
association, the significance threshold was adjusted for multiple testing by cor-
recting for the effective number of protein traits (Meff) and variants (Neff) analysed.
The effective number of proteins was computed using the ratio of the eigenvalue
variance to its maximum69,70:

Meff ¼ Mð1� ðM � 1ÞVλobs
=M2Þ ¼ 1þ trðΣTΣÞ

M
ð1Þ

where Vλobs
is the variance of the eigenvalues of the correlation matrix. For theM =

184 Olink proteins included in the study, Meff = 93 in both cohorts. The effective
number of variants, or Neff , was determined by using the --indep and --maf
options offered in Plink 1.9 to prune these variants. Specifically, variants with a
minor allele count (MAC) of <10 were excluded; and parameters specified for
--indep were: window size of 50 kb, variant count of 5, and variance inflation factor
(VIF) of 2. This was performed separately for both the MANOLIS and Pomak
cohorts, with resulting Neff s of 5,078,182 and 4,144,062 in each respective cohort.
The more conservative Neff of 5,078,182 was considered for the calculation of the P-

value significance threshold for the meta-analysis to give a final P-value threshold
of 1.05 × 10−10. The same threshold was used for the rare variant analysis.

Significance threshold for two-sample MR. P-values were adjusted for multiple
testing by controlling for false discovery rate (FDR) using the Benjamini–Hochberg
method. Results were considered significant if the FDR-adjusted P-values were
below 0.05.

Novelty. We assessed variants for novelty using a funnel approach, by first iden-
tifying (a) novel proteins, then (b) novel signals, and finally, (c) novel variants.
Novel proteins were defined as proteins that are being analysed for pQTLs for the
first time. This was determined by comparing our proteins against protein lists
from four large pQTL studies7,10–12,71, querying GWAS Catalogue for known
signals, then confirmed by doing manual literature searches. Next, we determined
variants belonging to novel signals by checking against previously reported pQTLs
(Supplementary Data 2). Signals were considered novel if no variants had been
reported within 1Mb upstream and downstream of our variants. All variants from
known loci were then assessed for novelty by matching their rsIDs against pre-
viously reported variants; where no match was found, variants were conditioned on
other known variants at the locus, and considered novel if the association P-value
remained significant after conditioning.

Heritability. Heritability analysis was performed using GCTA GREML20 (https://
cnsgenomics.com/software/gcta/index.html#GREML), using both the multi-
component LDMS and single-component approaches in two separate cohorts. The
final meta-analysis h2meta was calculated using the following formula (provided on
the GCTA website):

h2meta ¼ ∑ðh2i =SE2
i Þ=∑ð1=SE2

i Þ; SE ¼ pð1=∑ð1=SE2
i ÞÞ ð2Þ

GREML-LDMS. For each cohort, the segment-based LD score was first calculated
using GCTA’s --ld-score-region with the default length segment of 200 Kb. Var-
iants were then stratified into four quartiles according to their LD scores in R, and a
genetic relatedness matrix (GRM) was calculated for each group. For each protein,
we then ran REML analysis with four GRMs using default settings. REML analysis
failed to converge for 45 proteins across the two cohorts, likely due to limitations
arising from a smaller sample size.

GREML-SC. As we were unable to obtain h2 estimates for all proteins using
GREML-LDMS, we also ran single-component GREML (GREML-SC) for all
protein traits using a single GRM (also computed using GCTA). Full results may be
found in Supplementary Data 9.

Variant consequences. We used Ensembl’s variant effect predictor72 (VEP; http://
www.ensembl.org/vep) to determine the most severe consequence of each variant.
To check for potential protein-altering effects, we also queried the most severe
consequence of variants in LD (r2 > 0.8) with reported cis-acting variants, which
were extracted using PLINK 1.9. Variants with, or in LD with variants with
potentially protein-altering consequences are reported in Supplementary Data 3.

eQTL colocalisation. Colocalisation analysis was performed using our pQTL
results and gene expression QTL (eQTL) data downloaded from the GTEx database
(https://www.gtexportal.org/), using the coloc.fast function from the gtx R package
(https://github.com/tobyjohnson/gtx/). The method is equivalent to coloc by
Giambartolomei et al.73 and assumes only one causal variant at each associated
locus. To satisfy this assumption in our pQTL data, for each independent variant,
we conditioned associations on all other independent variants at the locus. For cis-
pQTLs, we tested colocalisation with an expression of the encoding gene in all
available tissues. For trans-pQTLs, colocalisation was performed with all genes
within 2Mb of the causal variant for all available tissues. For all analysed genes,
eQTL data within 1 Mb upstream and downstream of the causal variant was
extracted.

PheWAS colocalisation. Using the same conditioned pQTL data from the eQTL
colocalisation analysis, we performed colocalisation with psychiatric and neuro-
degenerative traits. For each analysed locus, GWAS data within 2Mb of the causal
variant was extracted. We used only publicly available summary statistics, either
downloaded from the Psychiatric Genomics Consortium (PGC) website (https://
www.med.unc.edu/pgc/download-results/), or as mentioned in the respective
papers. A list of studies used can be found in Supplementary Data 5b. Additionally,
colocalisation analysis was carried out with PhenoScanner74,75 traits of neurolo-
gical relevance. The results for this are included in Supplementary Data 5a. Five
different posterior probabilities are reported in the table (CLPP0-CLPP4), which
corresponds to the five tested hypotheses explained in Giambartolomei et al.73. In
particular, CLPP4 indicates association with both tested traits with a shared causal
variant.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27387-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7042 | https://doi.org/10.1038/s41467-021-27387-1 | www.nature.com/naturecommunications 9

https://www.olink.com
https://github.com/hmgu-itg/peakplotter
http://www.cog-genomics.org/plink/1.9/
https://cnsgenomics.com/software/gcta/index.html#GREML
https://cnsgenomics.com/software/gcta/index.html#GREML
http://www.ensembl.org/vep
http://www.ensembl.org/vep
https://www.gtexportal.org/
https://github.com/tobyjohnson/gtx/
https://www.med.unc.edu/pgc/download-results/
https://www.med.unc.edu/pgc/download-results/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Two-sample Mendelian randomisation. Two-sample MR was performed
between 107 protein traits and 206 neurologically relevant phenotypes, using the
TwoSampleMR R package76 (https://github.com/MRCIEU/TwoSampleMR). Traits
available in the MRBase77 platform were selected based on the following: (a) Self-
reported traits in UK Biobank with at least 1000 cases; (b) UK Biobank ICD10
primary and secondary traits of neurological relevance; (c) studies categorised as
‘Psychiatric/neurological’, ‘Personality’, and ‘Sleeping’; (d) other large neurologi-
cally relevant traits with more than 10,000 samples; (e) manually downloaded
summary statistics (see ‘PheWAS colocalisation’ section). Independent variants
with an association meta-analysis P < 5 × 10−8 were determined by GCTA-COJO
(see ‘Peak calling and independent variants’ section) and used as instrumental
variables (IV), including both cis and trans variants. All variants at pleiotropic loci,
including KLKB1, FUT2, ABO, ST3GAL6, and the HLA region, were excluded from
the analysis. For each protein–trait pair, pQTL summary statistics for all inde-
pendent variants and their variants in LD (r2 > 0.8) were first extracted, excluding
those without rsIDs. This was then harmonised with the available outcome data.
Where any independent variant was not available in the outcome data, an LD
variant (r2 > 0.8) was used as proxy instead. For protein traits with more than 1
causal variant (IV), we used the inverse variance-weighted method; otherwise,
Wald ratio estimates were used. Sensitivity analysis was carried out for
protein–trait pairs with more than one IV by assessing heterogeneity about the
IVW estimate using Cochran’s Q tests, with P < 0.05 denoting significant hetero-
geneity. We find that none of the protein–trait pairs with an FDR-adjusted P < 0.05
had Cochran’s Q P < 0.05. The analysis was also repeated using only cis-pQTLs
(Supplementary Data 6b). This resulted in an additional causal signal, LTBP3 with
osteoarthritis; and the loss of three signals: ADAM23 with neuroticism, NEP with
osteoarthritis, and SIGLEC1 with osteoarthritis. We note an important caveat of
our analysis, which is that when only one instrumental variable is available, a
higher risk of violating the two-sample MR assumptions exists. Results from Wald
ratio tests should, therefore, be interpreted cautiously and with orthogonal
validation.

Drug target evaluation. Drug target evaluation was done by querying the Open
Targets78 (https://www.targetvalidation.org/) and Drugbank79 (https://
go.drugbank.com/) databases (Supplementary Data 7).

Ethics statement. The study was approved by the Institutional Review Board of
Harokopio University and the Greek Ministry of Education, Lifelong Learning and
Religious Affairs. The MAN-OLIS and Pomak studies were approved by the
Harokopio University Bioethics Committee and informed consent was obtained
from every participant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The MANOLIS sequencing data used in this study are available at the European
Genome-Phenome Archive (EGA) under accession number EGAS00001001207. The
Pomak sequencing data have not been deposited to the EGA as the data and the
information derived from it are culturally and politically sensitive in the context of this
religiously isolated population. We will consider requests to access the data by
researchers when an alternative cohort cannot reasonably be used for their research, and
will respond to such requests within 6 months. Summary statistics generated in this study
are available for download in the GWAS Catalogue. Accession codes and the respective
hyperlinks are provided in Supplementary Data 10.

Code availability
Analysis was performed using publicly available software as described in the ‘Methods’
section. Additional scripts may be found in our GitHub repositories (https://github.com/
hmgu-itg).
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Abstract

Cardiometabolic diseases, such as type 2 diabetes and cardiovascular disease, have a high public health burden. Understanding the
genetically determined regulation of proteins that are dysregulated in disease can help to dissect the complex biology underpinning
them. Here, we perform a protein quantitative trait locus (pQTL) analysis of 248 serum proteins relevant to cardiometabolic processes in
2893 individuals. Meta-analyzing whole-genome sequencing (WGS) data from two Greek cohorts, MANOLIS (n = 1356; 22.5× WGS) and
Pomak (n = 1537; 18.4× WGS), we detect 301 independently associated pQTL variants for 170 proteins, including 12 rare variants (minor
allele frequency < 1%). We additionally find 15 pQTL variants that are rare in non-Finnish European populations but have drifted up
in the frequency in the discovery cohorts here. We identify proteins causally associated with cardiometabolic traits, including Mep1b
for high-density lipoprotein (HDL) levels, and describe a knock-out (KO) Mep1b mouse model. Our findings furnish insights into the
genetic architecture of the serum proteome, identify new protein–disease relationships and demonstrate the importance of isolated
populations in pQTL analysis.

Introduction
Cardiovascular and metabolic disorders, such as hypertension,
hyperlipidaemia, coronary artery disease (CAD) and type 2 dia-
betes (T2D), impose a heavy and increasing health burden (1,2).
Significant progress has been made in disentangling the com-
plex and overlapping genetic aetiology of these diseases through
genome-wide association studies (GWAS), which have success-
fully identified multiple genetic variants associated with disease
risk. At the same time, multiplex proteomic assays have enabled
the identification of disease-associated proteins (3–5).

However, statistical association with disease does not always
mean that the gene or protein plays a causal role. This can
be elucidated by coupling genetics with proteomics to identify

genetic variants associated with protein levels, known as protein
quantitative trait loci (pQTLs). By complementing pQTL analysis
with causal inference approaches such as two-sample Mendelian
randomization (MR), non-spurious protein–disease relationships
and, therefore, disease pathways, genetic variants, and proteins
of clinical relevance can be identified (6–12).

We have previously (10) assessed the genetic architecture of 257
serum protein levels in a Greek isolated cohort, MANOLIS, through
which we found 164 independently associated pQTLs for 109
proteins, and demonstrated the value of genetically predicted pro-
tein levels in clinical risk models. Here, we substantially increase
power by doubling the sample size, meta-analyzing whole genome
sequencing data from MANOLIS with an additional isolated
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Figure 1. Chromosomal location of cis- (red) and trans-pQTLs (blue) plotted against the chromosomal location of the gene encoding the proteins of
interest. Cis-pQTLs were defined as variants lying within 1 Mb of the start of the gene encoding the target protein.

population cohort, Pomak. We find 301 independent pQTLs for
170 proteins and describe pQTLs that are driven up in frequency
in either discovery cohort, illustrating the value of population iso-
lates in the discovery of protein-associated variation. We further
highlight previously undetected causal protein–disease associa-
tions using genetic colocalization analysis and two-sample MR.

Results
Genetic architecture of 170 proteins
We detect 301 independently associated pQTLs (P < 7.45 × 10−11)
for 170 proteins (Supplementary Material, Table S2) that are
present in both cohorts with a consistent direction of effect.
Of these, 133 variants belong to loci that were not detected
previously in MANOLIS only (10). All protein targets had between
one and eight independently associated variants (Supplementary
Material, Fig. S1), highlighting the varying complexity of protein
level genetic architecture. Additional evidence for replication was
sought in a protein level dataset of plasma samples obtained from
up to 950 individuals (Methods) from the ORCADES study (13), an
isolated population from the Orkney islands in the Northern Isles
of Scotland. In sum, 177 (58.8%) pQTLs replicated (Methods) in
this independent cohort (Supplementary Material, Table S2).

Detected pQTLs were categorized into cis- and trans-pQTLs
according to their distance to the target protein-encoding gene
(Methods); we found 215 cis-acting pQTLs for 138 proteins, and
86 trans-pQTLs for 63 proteins (Fig. 1). In sum, 31 proteins had
both cis- and trans-pQTLs. By mapping trans-pQTLs to their nearest
gene, we determined 42 trans-pQTLs located in known pleiotropic
genes; namely, ABO, CFH, HLA, F12, FUT2, ST3GAL6 and KLKB1.
Four of these genes (ABO, FUT2, F12, KLKB1) are involved in blood
coagulation pathways, whereas CFH and HLA are closely related
to inflammatory response.

Protein QTLs that act in trans are also useful for identify-
ing unknown molecular interactions. As proof of principle, we
detect an intronic trans-pQTL for C-C motif chemokine ligand 3
(CCL3) located within the encoding gene for C-C motif chemokine
receptor 3, CCR3. CCL3 is a known agonist of CCR3 that may
contribute to the aggregation of eosinophils to inflammation sites
(14). Mapping trans-pQTLs to their causal genes, however, remains
a challenge as causal genes are often not the closest ones (8,12)
(Supplementary Material, Note 1).

The majority of pQTLs are common variants (minor allele
frequency [MAF] > 5%). We find 12 rare (MAF < 1%) pQTLs and 42
low-frequency pQTLs (1% < MAF < 5%). Using Ensembl’s variant
effect predictor (VEP), we find altogether 36 (12%) pQTLs that have
a most severe consequence of missense, whereas two variants
for PRSS27 (trans-pQTL) and IL17D (cis-pQTL), respectively, are
stop-gain variants. The PRSS27-associated variant acts in trans
and is located within the pleiotropic gene, FUT2. The cis-pQTL
for IL17D and five other missense variants are all rare and were
previously undetected in MANOLIS, showing how larger sample
sizes provide increased power to detect rare associated variants
of severe consequences.

Excluding trans-pQTLs located within pleiotropic genes, we
find 35 pQTLs (11.6%) in regions that have not been reported
in other large-scale pQTL analyses (Supplementary Material,
Table S3), comprising 22 cis-pQTLs for 18 proteins, and 13 trans-
pQTLs for 12 proteins. As isolated populations often contain
private, rare variants that have drifted up in frequency because
of founder effects (15), we additionally interrogate 69 pQTLs that
are present in only one discovery cohort, of which 7 replicate in
ORCADES (10%) and 28 (40.5%) have not been previously reported
(Supplementary Material, Table S2). In sum, 15 novel pQTLs
are rare (MAF < 1%) in non-Finnish Europeans (gnomAD) but
have drifted up in frequency in one or both of our discovery

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddac275/6812863 by guest on 04 M

arch 2023

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data


Human Molecular Genetics, 2022, Vol. 00, No. 00 | 3

Table 1. Novel and previously unreported pQTLs that have drifted up in frequency in MANOLIS and/or Pomak. The gnomAD-NFE MAF
column contains the minor allele frequencies (MAF) of each variant in non-Finnish Europeans (NFE) from the Genome Aggregation
Database (gnomAD). MAFs (gnomAD and 1000 Genomes) of all other detected variants are reported in Supplementary Material, Table
S4. The most severe consequences were obtained using Ensembl’s variant effect predictor (VEP). An expanded table containing the
genotype counts, Hardy–Weinberg equilibrium test P-values, and the full VEP results are in Supplementary Material, Tables S5A and B.
Abbreviations: Chr, chromosome; Pos, position; HELIC, Hellenic isolated cohorts; MAF, minor allele frequency; NFE, non-Finnish
Europeans

Protein Chr Pos rsID Cohorts cis/trans HELIC
MAF

gnomAD-NFE
MAF

Most severe
consequence

SUMF2 7 71973324 rs568788425 MANOLIS cis 0.80% 0.04% Intron
CD1C 1 158292108 rs201448758 MANOLIS+Pomak cis 1.21% 0.01% Missense
ENO2 12 6862641 rs184861396 MANOLIS+Pomak cis 0.45% 0.20% Intron
ITGB7 12 53519700 rs541150953 MANOLIS+Pomak cis 1.53% 0.18% Intron
ACP6 1 121470180 rs114127018 Pomak cis 0.90% 0.01% Intergenic
APLP1 19 35871901 rs767668877 Pomak cis 1.00% 0.00% Missense
CD93 1 3888781 rs912070506 Pomak trans 0.20% 0.01% Intergenic
CD93 2 207672303 rs942471010 Pomak trans 0.40% 0.01% Intergenic
CD93 2 227266736 rs1396628045 Pomak trans 0.40% 0.01% Non-transcript exon
IGFBP7 4 67658568 rs539585543 Pomak cis 0.70% 0.02% Intron
IL1RL2 2 89009162 rs543843028 Pomak cis 2.00% 0.13% Intergenic
KYAT1 9 126833282 rs746374838 Pomak cis 0.60% 0.00% Missense
MMP2 16 55496937 rs144755357 Pomak cis 1.30% 0.01% Missense
PSGL1 12 97893711 rs185338771 Pomak cis 0.40% 0.00% Intergenic
VSIG2 11 124706898 rs959226701 Pomak cis 0.60% 0.15% Intergenic

cohorts by at least 2.25-fold (Table 1; Supplementary Material,
Fig. S2; Supplementary Material, Table S4), including four
missense variants. None of the 15 variants were present in the
replication cohort, and proxies in linkage disequilibrium (LD)
failed to replicate. In particular, a cis-pQTL for 72 kDa type IV
collagenase (MMP2; rs144755357) that has drifted up 95-fold
in Pomak is predicted to be deleterious by SIFT and PolyPhen-
2 (Supplementary Material, Table S5). The MMP2-increasing
variant causes a p.Arg495Gln substitution within the hemopexin
C domain, which binds the inhibitor TIMP-2 (16) (Supplementary
Material, Fig. S3). We therefore demonstrate the importance of
including isolated populations in pQTL association studies as they
may contribute to high-impact variants otherwise undetectable
in cosmopolitan populations.

Identifying proteins associated with
cardiometabolic traits
To identify causal relationships between serum proteins and car-
diometabolic traits, we applied two-sample Mendelian random-
ization and colocalization analysis using GWAS summary statis-
tics of complex traits. We defined cardiometabolic traits as fol-
lows: all lipid traits; glycaemic traits; diabetes; kidney disease and
measures of kidney function; all heart conditions; hypertension;
and body-mass index (BMI) (Methods). We find 43 serum proteins
that are associated with at least one cardiometabolic trait (Sup-
plementary Material, Table S6 and S7).

Of these, 18 proteins show strong evidence of causal asso-
ciation (≥2 instrumental variables, using the inverse variance-
weighted [IVW] method) with at least one cardiometabolic trait
(Fig. 2). Of note are the TYRO3 (tyrosine-protein kinase receptor),
DLK1 (protein delta homologue 1) and CTSH (cathepsin H) pro-
teins, which are significantly associated with diabetic kidney dis-
ease (DKD). Increased TYRO3 and CTSH levels are associated with
an increased risk of DKD in individuals with type 1 or 2 diabetes,
and reduced DLK1 levels are associated with an increased risk
of DKD in individuals with T2D. Whereas CTSH and DLK1 have
not been associated with kidney disease (Supplementary Material,

Note 2), studies have shown increased TYRO3 mRNA expression
(17) and increased circulating and urinary TYRO3 levels (18) in
patients with DKD, further supporting a causal role. We also note
that TYRO3 is targeted by an approved drug for rheumatoid arthri-
tis, fostamatinib, highlighting an opportunity for the repurposing
of fostamatinib to treat DKD. We elaborate on other previously
unreported examples in Supplementary Material, Note 2.

The MR analysis further validates known protein–disease links,
showing causal associations between increased serum LDLR
(low-density lipoprotein [LDL] receptor) protein and decreased
LDL, total cholesterol and risk of coronary heart disease (19). We
also replicate a previously reported finding showing that LRIG1
(leucine-rich repeats and immunoglobulin-like domains 1) lies
on the causal path for atrial fibrillation, T2D and self-reported
hypercholesterolemia (10).

For two proteins, sulfatase modifying factor 2 (SUMF2;
Supplementary Material, Note 2) and meprin A subunit beta
(Mep1b), we observe association with cardiometabolic traits
using novel replicating pQTLs as instrumental variables. We
find that decreased serum Mep1b is causally associated with
increased HDL levels (Wald ratio PFDR = 3.38 × 10−2; beta = −0.008;
SE = 0.002). The intronic cis-pQTL, rs680321, is robustly associated
with serum Mep1b (MAF = 0.37; beta = −1.07; SE = 0.026; P = 2.50 ×
10−372; Supplementary Material, Note 3). Two other independently
associated Mep1b cis-pQTLs are private to Pomak (rs763953724,
rs1410442909); both variants are non-existent in non-Finnish
Europeans and lie upstream of the Mep1b gene.

To better understand the potential metabolic role played by
Mep1b, we systematically phenotyped an existing Mep1b KO
mouse model at the German Mouse Clinic. Monitoring body
weight from age 9 to 19 weeks revealed that Mep1b depletion in the
mouse impacts on the body mass of females, which were heavier
as a result of increased adiposity (Supplementary Material, Note 4;
Supplementary Material, Figs S4–S6; Supplementary Material,
Table S8). This sex-specific effect was not observed for the
cis-pQTL, rs680321 (sex heterogeneity P = 0.086; Supplementary
Material, Fig. S7 and Supplementary Material, Table S9).
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Figure 2. Two-sample Mendelian randomization between proteins (exposure) and cardiometabolic traits (outcome), using only downloaded summary
statistics. Points represent the effect size (beta) and direction of each causal association, with errors bars representing ±SE. Arrows indicate beta
coefficients that are below −1. Actual beta and SE values are given to the right of each plot. Traits marked with an asterisk (∗) indicate that a Wald
ratio test was performed; otherwise, the inverse-variance weighted method was used. Full MR results with MRBase traits are given in Supplementary
Material, Table S6.

Discussion
The relationship between Mep1b and cholesterol or adiposity
remains largely unexplored. Mep1b is a metalloprotease that is
involved in post-translational proteolysis of numerous targets
(20,21) in mammals. Closely related to meprin α (MEP1A),
both proteins have been implicated in inflammatory disorders,
Alzheimer’s disease, kidney disease and cancer (20). Several
substrates of Mep1b have also been linked to cholesterol levels,
such as dipeptidyl peptidase 4 (DPP4) and amyloid precursor
protein (APP) (22,23). Results from our MR analysis and mouse
phenotyping support a direct role of Mep1b in influencing
adiposity, which is a risk factor for a multitude of complex
diseases, including those previously linked to Mep1b. Given its
involvement in complex networks, however, further experiments
will be needed to identify specific pathways.

Our causal inference analysis additionally revealed car-
diometabolic traits that are associated with multiple shared
proteins (Supplementary Material, Figs S8–S10). LDL cholesterol,
total cholesterol and triglyceride levels were all causally associ-
ated with the serum levels of seven proteins: GRN, LDLR, SUMF2,
KIM1, ENTPD5, CHI3L1 and FGF21. HDL cholesterol was associated
with four of the same proteins (GRN, LDLR, SUMF2, ENTPD5), but
additionally with eight other proteins (TYRO3, HBEGF, SPON1, SCF,
TIMP4, TFPI, MEP1B, ANGPTL1, AXL) that were not significantly
associated with LDL or total cholesterol, suggesting a complex
and distinct underlying proteomic landscape. This demonstrates
the potential of such analyses to furnish insights into molecular
similarities and differences between similarly presenting diseases
or disease subtypes in future studies, facilitating efforts for more
precise diagnosis and treatment.

In this work, we detect 133 new pQTLs, 40% of which are
trans-pQTLs for 48 proteins, including the CCR3-CCL3 receptor-
ligand interaction. We were able to reproduce 92% of the 164
independent pQTLs reported previously (10), including 12 vari-
ants exclusive to MANOLIS. The remaining 13 pQTLs (12 cis,

1 trans) were not reproduced because of either the exclusion of the
protein from meta-analysis (QC failure) or a loss of significance.
Overall, 59% of our pQTLs replicated in an independent cohort.
There are several possible explanations for lack of replication,
including insufficient statistical power because of the smaller
sample size of the replication cohorts, a lack of proxies for private
variants, and differences in cell type and protein composition
between serum (MANOLIS and Pomak) and plasma (ORCADES)
(Supplementary Material, Fig. S11).

Population isolates have special population genetics character-
istics that can boost the discovery of rare variant associations.
Here, we identify 15 rare pQTLs that have drifted up in frequency
in one or both cohorts. Whole genome sequencing enables access
to the analysis of rare variants through gene-based burden test-
ing. We have recently described (24) five rare variant burden
pQTLs in MANOLIS, Pomak and ORCADES that are independent
of the single point signals reported in this work. Projects with
larger sample sizes will further increase power and are currently
underway.

We recognize several limitations to this work. First, as Olink’s
immunoassay relies on the binding of antibodies to target anti-
gens, genetic variation can alter binding sites and, therefore, the
affinity of the antibody probes to the target protein. This may
result in association signals that reflect altered protein structure
rather than changes in protein abundance. For 25 proteins with
protein-altering variants (based on Ensembl VEP classification
[Methods]), we checked for such effects through a comparison
of proteomic data by Olink versus an aptamer-based assay by
Somalogic (with different antigen binding sites) in an independent
cohort, Fenland (12). We observed good correlation (Spearman
correlation>0.5) for 13 (59%) of 22 proteins that were measured
using both technologies (Supplementary Material, Table S10), sug-
gesting genuine pQTL signals. Other than altered antibody binding
as a result of protein structure changes, weak correlations may
be explained by different technical and protein characteristics,

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddac275/6812863 by guest on 04 M

arch 2023

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac275#supplementary-data


Human Molecular Genetics, 2022, Vol. 00, No. 00 | 5

as recently investigated (25). Orthogonal validation is therefore
necessary for accurate downstream biological interpretation.

Secondly, the validity of the two-sample MR results relies on
the assumptions that the genetic instruments (pQTLs) influence
the outcome (cardiometabolic trait) only through the exposure
(protein level) and are not associated with confounders (Methods).
Moreover, we note that the GWAS summary statistics used in this
analysis were not derived from WGS-based studies, and therefore
several of our instruments were not found in these datasets
and could not be used. As we only assess causality unidirection-
ally, future studies will benefit from bidirectional analyses using
larger, sequence-based exposure and outcome GWAS datasets
that can produce a greater number of reliable instruments and
provide validation. Finally, all individuals in the discovery and
replication cohorts are of European descent. Larger, ethnically
diverse sample sizes are needed to fully characterize the genetic
architecture of the serum proteome.

Materials and Methods
Sequencing and variant calling
The two cohorts were sequenced in an identical way. Genomic
DNA (500 ng) from 1482 and 1642 samples for MANOLIS and
Pomak, respectively, was subjected to standard Illumina paired-
end DNA library construction. Adapter-ligated libraries were
amplified by six cycles of PCR and subjected to DNA sequencing
using the HiSeqX platform (Illumina) according to manufacturer’s
instructions.

Basecall files for each lane were transformed into unmapped
BAMs using Illumina2BAM, marking adaptor contamination and
decoding barcodes for removal into BAM tags. PhiX control reads
were mapped using BWA Backtrack and were used to remove
spatial artefacts. Reads were converted to FASTQ and aligned
using BWA MEM 0.7.8 to the hg38 reference (GRCh38) with decoys
(HS38DH). The alignment was then merged into the master sam-
ple BAM file using Illumina2BAM MergeAlign. PCR and optical
duplicates are marked using biobambam markduplicates and the
files were archived in CRAM format.

Per-lane CRAMs were retrieved and reads pooled on a per-
sample basis across all lanes to produce library CRAMs; these
were each divided in 200 chunks for parallelism. GVCFs were
generated using HaplotypeCaller v.3.5 from the Genome Analysis
Toolkit (GATK) (26) for each chunk. All chunks were then merged
at sample level, samples were then further combined in batches
of 150 samples using GATK CombineGVCFs v.3.5. Variant calling
was then performed on each batch using GATK GenotypeGVCFs
v.3.5. The resulting variant callsets were then merged across all
batches into a cohort-wide VCF file using bcftools concat.

Variant and sample quality control
Variant-level QC was performed using the Variant Quality Score
Recalibration tool from the GATK v. 3.5–0-g36282e4 (26), using a
tranche threshold of 99.4% for SNPs, which provided an estimate
false positive rate of 6% and a true positive rate of 95%. For INDELs,
we used the recommended threshold of 1%. For sample-level QC,
we made extensive use of genotyping array datasets in overlap-
ping samples, which provided sample matching information for
1386 and 1511 samples in MANOLIS and Pomak, respectively.
In MANOLIS, a total of 25 individuals were excluded (n = 1457)
based on sex checks, low concordance (<0.8) with chip data,
duplicate checks, average depth (<10×), missingness (>0.5%) and
contamination (Freemix or CHIPMIX score from the verifyBamID
suite32 > 5%). This number was 27 for the Pomak cohort. In the

case of sample duplicates, the sample with highest quality met-
rics (depth, freemix and chipmix score) was kept.

Proteomics
The serum levels of 275 unique from three Olink (https://
www.olink.com/) panels—Cardiovascular II, Cardiovascular III
and Metabolism—were measured using Olink’s proximity
extension assay (PEA) technology (Supplementary Material,
Table S1). Briefly, for each assay, the binding of a unique pair
of oligonucleotide-labelled antibody probes to the protein of
interest results in the hybridization of the complementary
oligonucleotides, which triggers extension by DNA polymerase.
DNA barcodes unique to each protein are then amplified and
quantified using microfluidic real-time qPCR. Measurements
were given in a natural logarithmic scale in Normalized Protein
eXpression (NPX) levels, a relative quantification unit. NPX is
derived by first adjusting the qPCR Ct values by an extension
control, followed by an inter-plate control and a correction factor
predetermined by a negative control signal. This is followed by
intensity normalization, where values for each assay are centred
around its median across plates to adjust for inter-plate technical
variation. Further details on the internal and external controls
used can be found at http://www.olink.com. Additionally, a lower
limit of detection (LOD) value is determined for each protein based
on the negative control signal plus three standard deviations. In
this study, NPX values that fall below the LOD were set to missing.

We adjusted all phenotypes using a linear regression for age,
age squared, sex, plate number and per-sample mean NPX value
across all assays, followed by inverse-normal transformation of
the residuals. We also adjusted for the season, given the observed
annual variability of some circulating protein levels. Given the dry
Mediterranean climate of Crete, we define the season of collection
as hot summer or mild winter. Plate effects are partially offset by
the median-centring implemented by Olink. MANOLIS and Pomak
samples were plated in the order of sample collection, which
results in plate and season information to be largely correlated.

In MANOLIS, we excluded 13 protein measurements across all
panels with missingness or below-LOD proportion greater than
40%. BNP was measured across all three panels and was excluded
because of high missingness in all three. In sum, 26, 2 and 14
samples failed vendor QC and were excluded from Cardiovascular
II, III and Metabolism, respectively. Also, 42 samples were excluded
because of missing age. In Pomak, we excluded 15 proteins and
49, 6 and 13 samples in Cardiovascular II, III and Metabolism.
No samples were excluded because of missing covariates. Seven
proteins in MANOLIS and five in Pomak were further excluded
because of failing QC in the other cohort. A total of 255 proteins
were included in the final single-point analysis (Supplementary
Material, Table S1).

Single-point association and meta-analysis
We carry out single-point association using the linear mixed
model implemented in GEMMA v.0.94 (27). We use an empiri-
cal relatedness matrix calculated on an LD-pruned set of low-
frequency and common variants (MAF > 1%) that pass the Hardy–
Weinberg equilibrium test (P < 1 × 10−5). We further filter out vari-
ants with missingness higher than 1% and MAC < 10. Following
single-point association, a further seven proteins (GDF15, TFF3,
TINAGL1, LOX1, SRC, CTSL1, IDUA) were excluded because of
having a genomic control λGC < 0.97 or λGC > 1.05 after association
in either cohort.

GEMMA truncates alleles to a single character. In order to
enable unambiguous meta-analysis of indels, we updated alleles
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in summary statistics by matching it to the VCF. More precisely,
we join both files by chromosome and position, and match the
alleles by frequency for biallelics. For multiallelics, we compute
the difference in allele frequency between the GEMMA output
MAF, which is based on samples with non-missing phenotypes,
and the AF fields of each allele in the VCF, and use the alleles
with the lowest difference.

We use the 25 March 2011 release of METAL (28) for meta-
analysis of 248 proteins using inverse-variant based weighting.
Full summary statistics are available for download from the
GWAS Catalogue (https://www.ebi.ac.uk/gwas/); accession IDs are
provided in Supplementary Table 14.

Signal extraction and conditional analysis
Using a P-value threshold of 1 × 10−6, 495 signals were
extracted using the peakit.py routine of PeakPlotter commit
545191d6db51d87f2b549351e5cda19aaf50330e (https://github.
com/hmgu-itg/peakplotter), after filtering out index variants with
a minor allele count (MAC) of <10 or do not pass the Hardy–
Weinberg equilibrium test. PeakPlotter is based on a combination
of distance-based and LD-based pruning; specifically, the software
sorts variants passing the significance threshold by increasing the
P-value, then for each variant, computes SNPs in LD greater than
r2 = 0.2, removes them and moves on to the next variant. Variants
selected in this way located within <2 Mb of each other are then
grouped together, and the index variant is set to the variant with
the lowest P-value. Each index variant defines a signal, and we
use locus and signal interchangeably in this article. A total of 380
index variants passing the study-wide significance threshold of
P < 7.45 × 10−11 were extracted. We then extracted independent
SNV at each associated locus using an approximate conditional
and joint stepwise model selection analysis as implemented
in GCTA-COJO34, using merged cross-cohort genotypes for LD
calculation. To avoid overfitting when too many predictors are
included in the model, we perform LD-based clumping using Plink
v.1.9 (29) (www.cog-genomics.org/plink/1.9/), based on an r2 value
of 0.1 and a window of 1 Mb before the GCTA-COJO analysis (30).
The extended LD present within population isolates can cause
very large peaks to be broken up into several signals. We identified
and manually investigated 44 regions where multiple peaks were
present in close proximity of each other, reducing the number
of independent signals to 257 and the number of conditionally
independent variants to 370 (301 present in both cohorts).

Sex-specific meta-analysis
To look for sex-specific pQTLs, we investigated the heterogeneity
between males and females for all 370 conditionally independent
pQTLs present in at least one cohort. Single-point association
analyses for males and females in both discovery cohorts were
first run separately for each pQTL using GEMMA v.0.94 (27), using
the same methods as described for the main single point analysis.
With the output files, we then performed a sex-specific meta-
analysis using the GWAMA v2.2.2 software (31,32) by specifying
the —sex option. None of the 370 pQTLs show significant sex
heterogeneity using a Bonferroni-corrected P-value significance
threshold (P < 1.35 × 10−4) (Supplementary Material, Table S9).

Defining cis- and trans-pQTLs
We define cis-pQTLs as variants that lie within 1 Mb upstream
or downstream of the encoding gene, whereas trans-pQTLs are all
variants lying outside of this region.

Comparison of Olink and Somalogic proteomic
data in Fenland
Cis-acting protein-altering variants may result in false-positive
associations because of epitope effects. We note that 26 cis-acting
variants for 25 proteins have a potentially protein-truncating
effect (IMPACT of MODERATE or HIGH according to Ensembl
VEP). Comparison of Olink measurements with an alternative
assay, Somalogic, in the Fenland (12,25) cohort (https://www.
omicscience.org/apps/pgwas/) showed good correlation between
the two measurements for 13 out of 22 proteins (with cis-pQTLs)
with both Olink and Somalogic proteomic data (Supplementary
Material, Table S10).

Significance threshold
We based our significance threshold on the effective number of
variants and traits analyzed. We excluded variants with MAC < 10
from the MANOLIS cohort, then performed LD-pruning using
Plink v.1.9 (29) using the parameter—indep 50 5 2. This yielded
an Neff = 5 078 182 unique variants for MANOLIS. As computing
a similar value for the meta-analysis would have required a
computationally intensive merging of genotypes across cohorts
and handling of cohort-specific variants, we note that the Pomak
estimate is similar and that the majority of variants in the meta-
analysis will be common to both cohorts, with a further portion
of cohort-specific variants likely in LD with common ones. We
therefore use the MANOLIS Neff in our analysis. For Meff, the
effective number of phenotypes, we compute the ratio of the
eigenvalues of the phenotype correlation matrix to its maximum
and obtain 132. The resulting P-value threshold is 7.45 × 10−11.

Replication
Replication was performed in the ORCADES isolated cohort from
the Orkney archipelago in the Northern Isles of Scotland (13). In
sum, 1348 samples were sequenced using the same WGS protocol
as described for MANOLIS and Pomak. An identical phenotype
transformation was performed on 275 proteins from the CVDII, III
and META Olink panels in 995 samples. Because of quality control,
between 928 and 950 samples overlapped between the WGS and
Olink datasets. All 255 proteins analyzed in MANOLIS and Pomak
were also found in the ORCADES dataset. Association was per-
formed using GCTA v.1.93.0 beta using the MLMA algorithm (33).
In ORCADES, using common LD-pruned variants for calculating
the relatedness matrix was not sufficient, as persistent inflation
was present. We assumed this was because of a different related-
ness structure being expressed in rare variants, and we therefore
included all sequence variants in the relatedness calculation,
using five partitions of the autosomal genome. Following this,
inflation was controlled. We sought replication for each of the
370 independent variants identified by COJO that are present in
at least one cohort, using a Bonferroni threshold of 0.05/371 =
1.35 × 10−4.184 variants replicated in this way.

Novelty
Previous associations with identical proteins was of particular
interest as it determines novelty of our findings. To assess whether
a protein had been previously studied, we examined protein lists
and summary statistics from 33 large published proteomics GWAS
(Supplementary Material, Table S3). To determine the novelty
of genetic cis- and trans-association with proteins in our study,
we first determined previously reported variants within a 2 Mb
window around the association peaks. We used GEMMA (27) to
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perform association analysis using previously reported indepen-
dent variants as covariates. The variants were declared novel if
either there were no known signals in the 2 Mb window, or the
associations were still study-wide significant (P-value threshold:
7.45 × 10−11) after conditioning. For trans associations, we further
annotated signals depending on whether they fell within highly
pleiotropic genes that were associated with more than 1 protein
in the current study and had evidence of additional associations
in the literature (KLKB1, ABO, APOE, FUT2, F12, VTN, CFH, HLA), or
whether they were independent of any cis signals in the vicinity.
After this procedure, 42 cis-associated variants for 30 proteins
were either not within 1 Mb or independent of a signal reported in
previous proteomics GWAS. In sum, 37 trans-associated variants
for 34 proteins were both novel and independent from cis loci.
Only 15 of these were not located within highly pleiotropic genes.
For all loci annotated as provisionally novel using the above
method, we queried the GWAS Catalogue (34) (https://www.ebi.
ac.uk/gwas/home)in a 2 Mb window through the Ensembl (35)
REST API, as well as our PhenoScanner results. As proteomics
GWAS signals are often designated generically in Ensembl, we
additionally performed direct queries to the GWAS catalogue
REST API when phenotype descriptions were not specific enough.
We manually investigated the list of signals in search of variants
associated with the protein trait of interest. When such a variant
was found, conditional analysis was performed and the novelty
status was updated accordingly. Novelty of each independent
variant is annotated in Supplementary Material, Table S2.

Variant consequences
Consequence was evaluated using Ensembl VEP (35,36) for each
variant with respect to any transcript of the cis gene for cis-
associated variants and to the mapped gene for trans-associated
variants. For trans associations, variants were manually mapped
to any gene in a 1 Mb window coding for known ligands or inter-
actants when they were not contained within gene boundaries.
In sum, 38 replicating independent variants were protein-altering
variants with a most severe consequence equal to or more severe
than missense (https://www.ensembl.org/info/genome/variation/
prediction/predicted_data.html) according to Ensembl VEP. For
every variant, we extracted tagging SNVs at r2 > 0.8 using PLINK;
however, none of these tagging variants had a more severe conse-
quence on the target gene than the independent variant. Similarly,
we overlapped all independent variants with regulatory features
using the Ensembl REST API. 21 variants in 19 loci overlapped
with a regulatory feature. Variant consequences are annotated in
Supplementary Material, Table S2.

Gene expression QTL colocalization
We perform colocalization testing with eQTL data from the GTEx
database (37) (https://gtexportal.org/home/). First, to account for
multiple independent variants at the same locus, for every signal,
regions are extended 1 Mb either side of every independent vari-
ant, and associations are conditioned on every other variant in
the peak using GCTA-COJO; the results are used as input for the
colocalization analysis. For cis signals, expression information for
the cis gene is extracted from the GTEx database over the same
region. For trans signals, expression information is restricted to all
genes located within a 2 Mb region surrounding the variant. Then,
for every variant/gene pair, we perform colocalization testing
using the fast.coloc function from the gtx R package (https://
github.com/tobyjohnson/gtx).We use the commonly chosen value
of 0.8 as a posterior threshold to declare colocalization (38), and
default values of 1 × 10−4, with a standard deviation of 1, for
the prior probability of a variant to be causal for either trait, and

1 × 10−5, with a standard deviation of 1, for the prior probability of
a variant to be causal for both traits. In sum, 77 (35%) independent
cis variants colocalize with an expression quantitative trait locus
for the cis gene. In addition, we find that 61 (73%) trans-pQTL
variants colocalize with eQTLs for at least one gene in their
vicinity (±1 Mb), in any tissue (Supplementary Material, Table S11;
Supplementary Material, Figs S12–S13; Supplementary Material,
Note 1).

PheWAS colocalization
We use the PhenoScanner python command line tool (39,40)
(https://github.com/phenoscanner/phenoscannerpy) to query
1 Mb upstream and downstream of every lead variant in each
signal. We only considered previous associations with a reported
P-value of 0 < P < 5 × 10−8. Using the PhenoScanner associations,
we then perform colocalization testing using the same input pQTL
data and methods that were used for the eQTL colocalization
analysis. We additionally perform colocalization testing using
downloaded summary statistics for atrial fibrillation, T2D,
Alzheimer’s disease, albuminuria, BMI, waist-hip ratio, estimated
glomerular filtration rate, diabetic kidney disease and lipid levels.
References to each study and full pheWAS colocalization results
are presented in Supplementary Material, Table S7.

Drug target evaluation
For evaluating whether associated genes were drug targets, we
used the OpenTargets (41) and DrugBank (42) databases. We
accessed OpenTargets using the OpenTarget API. We converted
the DrugBank XML file to flat files using the dbparser R package,
and performed gene name matching using the USCS Gene
Info database (https://genome.ucsc.edu/), downloaded May 6,
2019.35 of the proteins for which a signal was detected at
study-wide significance were targeted by drugs according to
OpenTargets. This was true for 70 proteins when queried against
the DrugBank database (Supplementary Material, Table S12).
In sum, 29 proteins are targeted by drugs according to both
OpenTargets and DrugBank databases.

Mouse phenotype evaluation
We use the Ensembl (35) REST API to extract mouse orthologs
for all of the 170 genes that encode proteins for which genetic
associations were found in our study. According to the IMPC (43)
API (https://www.mousephenotype.org/), KO experiments for 36
of these orthologs were associated with 70 unique phenotypes,
with a P-value smaller than 1 × 10−4 (Supplementary Material,
Table S13).

Two-sample MR
We extracted variants characterized as independent signals by
GCTA-COJO (30) on a protein-by-protein basis across all cis- and
trans-loci, and excluded novel variants without an rsID. For each
remaining variant, we then extracted their pQTL summary statis-
tics. When a variant was not present in the outcome GWAS
summary statistics, we considered pQTL summary statistics for
tagging positions with r2 > 0.8. All such records were then merged
by protein and carried over to MR analysis using the MRBase R
package (44), where they were merged with the exposure datasets
by rsID. MR was performed for 105 proteins on a set of 261
medically relevant traits available in MRBase. We defined car-
diometabolic traits as: all lipid traits; glycaemic traits; diabetes;
kidney disease and measures of kidney function; all heart condi-
tions; hypertension; and BMI. These are annotated in Supplemen-
tary Material, Table S6. As all of our instruments involved a small
number of variants (≤10), we used the inverse-variance weighted
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method, except for single-instrument analyses where we use
the Wald ratio test, which consists of dividing the instrument-
outcome by the instrument-exposure regression coefficient. All
P-values were adjusted for multiple testing using the Benjamini–
Hochberg method, using the adjusted P < 0.05 as the threshold for
significant association.

An important caveat of our overlap-maximizing approach is
that we did not require overlapping variants to be lead variants
in the outcome trait GWAS. This could potentially lead to false-
positives for single-instrument tests if the variant is located at the
shoulders of an association peak in the outcome trait GWAS. The
future availability of population-scale association studies with
WGS or WES will greatly enhance the variant overlap compared
with GWAS, and hence increase the power of MR analyses in
proteomics. In addition to summary statistics available in MRBase,
we also leveraged summary statistics manually downloaded from
recent large association studies for: albuminuria, diabetic kidney
disease, atrial fibrillation, BMI, CAD, lipid levels, T2D. PMID refer-
ences for these studies are provided in Supplementary Material,
Table S6.

Mep1b mouse model
Mep1b −/− (C57BL/6 N) mouse model is described in our previous
study (45). The targeted mutation leads to the disruption of the
catalytic centre in exon7 of the wild-type allele.

Mouse phenotyping
Mice were maintained in IVC cages with water and standard
mouse chow according to the directive 2010/63/EU, German laws
and GMC housing conditions (https://www.mouseclinic.de). All
tests were approved by the responsible authority of the district
government of Upper Bavaria.

In total, 18 mutant mice (9 males, 9 females) and wild-type con-
trol littermates (10 males, 10 females) underwent a systematic,
comprehensive phenotyping screen by the German Mouse Clinic
at the Helmholtz Zentrum Muenchen (https://www.mouseclinic.
de) as previously described (46–49). This screen started at the age
of 8 and 9 weeks for male and females respectively and covered
multiple parameters in the areas of behaviour, cardiovascular
function, clinical chemistry, dysmorphology, energy metabolism,
eye analysis and vision, haematology, immunology, neurology,
allergy and pathology.

Body weight
Body weight was measured at different time-points at a range of
8–19 weeks.

Body composition analysis
Body composition was analyzed at 13 and 18 weeks. Lean tissue
and body fat in live mice without anaesthesia were measured
by the whole-body composition analyzer (Bruker MiniSpec LF 50)
based on Time Domain Nuclear Magnetic Resonance.

Blood collection
Blood samples were collected under isoflurane anaesthesia by
retrobulbar puncture after overnight food withdrawal at 11–
12 weeks of age and as a final blood withdrawal from ad libitum
fed animals at 19–20 weeks. Blood samples for clinical chemistry
analyses were collected in Li-heparin-coated tubes and stored
at room temperature for one to three hours until centrifugation
(4500 × g, 10 min) and separation of plasma aliquots for further
analyses.

Clinical chemistry
The clinical chemistry analyses of circulating biochemical param-
eters in blood was performed using a clinical chemistry ana-
lyzer (AU480 autoanalyzer, Beckman Coulter, Krefeld, Germany).
Fasting plasma lipid and glucose levels at 11–12 weeks of age
and a broad set of parameters from fed animals at 19–20 weeks
were measured using the respective kits provided by Beckman
Coulter, including various enzyme activities as well as plasma
concentrations of specific substrates and electrolytes in ad libitum
fed mice (50).

Statistics
Data generated by the German Mouse Clinic were analyzed
using R (Version 3.2.3). Tests for genotype effects were made by
Wilcoxon rank sum test, linear models, or ANOVA depending on
the assumed distribution of the parameter and the questions
addressed to the data. A P-value <0.05 has been used as level
of significance; a correction for multiple testing has not been
performed. Figures were prepared using GraphPad Prism version
7.00 for Windows (GraphPad Software, La Jolla, California, USA).
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Appendix C 

The two articles included in Appendices A and B are Open Access articles published 
under the terms of the Creative Commons Attribution License 
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is 
properly cited. Proof of permission from the publishers have been provided via 
RightsLink from the Copyright Clearance Center 
(https://www.copyright.com/solutions-rightslink-permissions/), and can be found 
in the following pages.  
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