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Abstract

The four-dimensional (4D) space and time-dependent electron density needs to be accurately
known for precise point positioning, satellite navigation, and telecommunication. If a high-
precision and high-resolution model of the electron density of the ionosphere and plasmas-
phere is available globally, each measurement of space-geodetic observation techniques such
as the Global Navigation Satellite System, Satellite Altimetry or the satellite tracking system
(like Doppler Orbitography and Radiopositioning Integrated by Satellite) could be corrected
for the plasmaspheric and ionospheric impact. Since the development of such a model still
relies on data with insufficient and unevenly global coverage, it would be beneficial to intro-
duce equality and inequality constraints. In this work, we model the electron density using
a multi-layer Chapman model based on 2D series expansions of B-spline functions. Different
scenarios are selected containing various key parameters with equality and inequality con-
straints and estimated under the consideration of inequality constrained optimization. The
algorithm is applied to simulated data and semi-simulated input data. Finally, the results are
evaluated via the comparisons between the input and reconstructed electron densities.

Keywords: ionosphere modeling; plasmasphere modeling; multi-layer Chapman model; in-
equality constrained optimization; B-spline expansions
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1 Introduction

1.1 Motivation

The ionosphere means the ionized part of the atmosphere from 50 km from the Earth’s sur-
face up to the plasmasphere, where plasma consists of neutral molecules, positive ions, free
electrons and atoms. The plasma is formed in the high-altitude atmosphere by the photoion-
ization of solar radiation (ultraviolet rays, X-rays and solar wind) and the collision of energetic
particles produced by the Sun or other stars [Davies, 1990]. The electron density in the iono-
sphere varies with height, thus dividing the ionosphere from the bottom up into layers D, E,
F1 and F2, where the electron density reaches its maximum in the F2 layer [Schunk and Nagy,
2009]. The region above the peak height of the F2 layer is called the top side of the ionosphere,
while the lower region is called the bottom side of the ionosphere. In a narrow sense, the
ionosphere refers to the atmospheric space around 50-1000 km above ground level, while the
region from 1000 km to the top of the magnetosphere is known as the plasmasphere, where
the magnetospheric boundary extends to a height of about 3-5 Earth radii [Lunt et al., 1999;
Bishop et al., 2009; Teunissen and Montenbruck, 2017]. Although the electron density of the
plasmasphere is much lower than that of the ionosphere, it still contains a large proportion of
electrons due to its large altitude range: around 10% during the day and up to 60% at night
[Yizengaw et al., 2008]. Although we describe and model the ionosphere in layers, in fact, the
temporal and spatial changes of the ionosphere are quite complex, not only with periods such
as day, season, and year but also with changes in latitude and longitude. It is also affected by
various factors such as solar activity and geomagnetism, resulting in very complex changes
[Cander, 2019]. Therefore, the study of the ionosphere has become one of the hotspots in
related scientific fields such as atmospheric research and climate monitoring.

When studying and analyzing the ionosphere, multiple ionospheric parameters are gener-
ally used to characterize the ionospheric structure, which include the electron density, ion
density, electron temperature, and ion temperature. From the point of view of geodetic ap-
plications, the electron density among these ionospheric parameters is the most important
and relevant one [Bust and Mitchell, 2008]. It has a significant influence on the propagation
of radio waves causing bending the signal and producing a propagation delay. For example,
when an electromagnetic wave is emitted by the Global Navigation Satellite System (GNSS),
it propagates through the ionosphere and produces an error of up to tens of meters, which
is one of the main error sources that restrict the high-precision positioning of GNSS users
(especially single-frequency GNSS users) [Macalalad et al., 2013; Choy et al., 2008; Øvstedal,
2002]. For multi-frequency GNSS users, since the ionosphere is a dispersive medium, the first-
order ionosphere effect can be eliminated by using linear combinations of the measurements
at two frequencies. However, single-frequency GNSS users may rely on ionospheric models
to correct those propagation errors [Minkwitz et al., 2014]. Generally, ionospheric models can
be divided into three categories, empirical models, theoretical models, and parametric models
[Cander et al., 1999; Feltens et al., 2011]. A more specific description of them will be given in
the next section.
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1 Introduction

However, due to the complexity of spatio-temporal variations in the ionosphere and the strong
correlations among different parameters, the classical least squares estimation may lead to
physically unrealistic results, e.g., the maximum electron density in a certain region is neg-
ative. As a consequence, when we are estimating the parameters of models, inequality con-
straints need to be considered in order to give feasible regions for parameters and avoid those
unrealistic results [Koch, 1985; Roese-Koerner, 2015; Nocedal and Wright, 1999]. Furthermore,
in the field of GNSS, models with inequality constraints help to refine and improve regional
and global ionospheric delay correction models and improve GNSS real-time positioning ac-
curacy.

1.2 State of the art

Electron density modeling has always been an important direction of ionosphere research,
mainly by means of processing and analyzing observation data, so as to be able to grasp
spatio-temporal variations in the ionosphere. Although a large number of different ground-
based and space-based observing technologies can largely provide information for ionospheric
research, ionospheric variations are affected by multiple factors. Therefore, it is necessary to
use ionosphere models to quantitatively describe and analyze the ionosphere. These iono-
sphere models can be broadly categorized into three main types: theoretical models, empir-
ical models, and parametric models. [Cander et al., 1999; Feltens et al., 2011]. For detailed
descriptions of the first two models, see Liang [2017]. In this thesis, we will concentrate on
the empirical models.

The empirical models are models based on statistical analysis of large amounts of observations
and use certain mathematical functions to quantitatively describe the physical parameters of
ionospheric manifestations in response to various external factors (solar activity, temporal pe-
riodicity, geomagnetic activity, etc.) and to describe the ”meteorology” and behavior of the
ionosphere. The main of these quantitative descriptions of the formulation physical parame-
ters are Chapman functions (see Section 2.3), spherical harmonic functions, polynomials, and
spline functions [Schaer, 1999; Hu et al., 2014]. Usually, the accuracy of empirical models is
affected by factors such as the number and quality of observed data samples and modeling
methods. In the following, detailed descriptions of some famous empirical models will be
given and the definitions of the D, E, F1 and F2 layers are introduced in Section 2.1.

The Bent model [Llewellyn and Bent, 1973] describes the ionospheric electron density as a
function of latitude, longitude, time, season, and solar radio flux. The topside is represented
by a parabola and three exponential profile segments, and the bottomside by a bi-parabola.
The model is based on about 50000 Alouette topside ionograms (1962-1966), 6000 Ariel 3
in-situ measurements (1967-1968), and 400000 bottomside ionograms (1962-1969). For the
F2-peak the Committee Consultative for Ionospheric Radiowave (CCIR) maps are used. The
model has been widely used for ionospheric refraction corrections in satellite tracking. It does
not include the lower layers (D, E, F1) and uses a simple quadratic relationship between factor
in CCIR map and the height of the F2-peak·

The Ching–Chiu’s model [Ching and Chiu, 1973; Chiu, 1975] is a global phenomenologica1
mode1 of the large-scale variations of ionospheric electron density with the annual, diurnal
and solar activity cycles has been constructed from monthly averaged hourly ionospheric
sounding data from some 50 stations spanning the years 1957-1970 and is specifically de-
signed for global thermospheric and ionospheric dynamical calculations. Compared to the
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Bent model, the Ching–Chiu’s model covers E, F1 and F2 layers using the standard Chapman
function. However, it is less detailed in latitude and diurnal variations than large computer
models because it summarizes the observations in simple empirical formulas. But it is more
comprehensive in large annual and solar cycle variations.

The International Reference Ionosphere (IRI) model [Bilitza et al., 1990, 2014] is an interna-
tional project sponsored by the Committee on Space Research (COSPAR) and the International
Union of Radio Science (URSI). Famous versions are IRI79, IRI2012, IRI2016 and IRI2020. It
divides electron density profile into four subregions covering D, E, F1 and F2 layers in the alti-
tude range from 50 km to 2000 km. As an empirical model, IRI uses most of the available and
reliable data sources for the ionosphere plasma and keeps continuously upgrading through
introducing new options as new data and modeling approaches are available. Because of
this, in this thesis, we select the IRI model and solve the inequality constrained optimization
problems for the key parameters. For further details about IRI model, see Section 2.4.

The NeQuick [Nava et al., 2008] is an ionospheric electron density model developed at the
Aeronomy and Radiopropagation Laboratory of The Abdus Salam International Centre for
Theoretical Physics (ICTP), Trieste, Italy, and at the Institute for Geophysics, Astrophysics
and Meteorology (IGAM) of the University of Graz, Austria. It is particularly adopted by the
Galileo system in order to compute the ionospheric delay corrections [Aragon-Angel et al.,
2019]. It allows to calculate the electron density at any given location in the ionosphere and
the Vertical Total Electron Content (VTEC) along any ground-to-satellite ray path by numerical
integration. In recent years, several changes have been introduced in the version 1 of the
NeQuick model and the NeQuick 2 is the latest version. It uses a modified profile formulation,
which includes five semi-Epstein layers with modeled thickness parameters. Three profile
anchor points are used; namely the E layer peak, the F1 peak and the F2 peak. The model
topside is represented by a semi-Epstein layer with a height-dependent thickness parameter
empirically determined.

For the study of inequality constrained optimization, it should be noted that inequality con-
strained optimization problems are usually difficult to solve compared to unconstrained or
equality constrained optimization problems [Nocedal and Wright, 1999]. Fortunately, there
are already optimization procedures available(see e.g. Lötstedt [1984]; Gill et al. [1984]; Cole-
man and Li [1996]; Mead and Renaut [2010]). In our field, Koch [1981] and Fritsch [1983a] were
the first to address inequality constrained least squares (ICLS) problems in geodesy. While
the former formulated the design of optimal Finite Impulse Response (FIR) filters as ICLS
problem, the latter examined hypothesis testing with inequality constraints. Later on, Fritsch
[1982] and Koch [1985] transformed the quadratic programming problem resulting from the
first and second-order design of a geodetic network into a linear complementarity problem
and solved it via Lemke’s algorithm. Fritsch [1983b, 1985] examined further possibilities re-
sulting from the use of ICLS for the design of FIR filters and other geodetic applications.

A more recent approach stems from Peng et al. [2006] who established a method to express
many simple inequality constraints as one intricate equality constraint in a least squares con-
text. Tang et al. [2012] used inequalities as smoothness constraints to improve the estimated
mass changes in Antarctica from Gravity Recovery and Climate Experiment (GRACE) obser-
vations, which leads again to a quadratic program. Liang [2017] used inequality constraints
optimization to directly estimate key parameters for IRI model along vertical profile.
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1 Introduction

1.3 Goals and contributions

The objective of this thesis is to achieve an estimation of certain elements in the empirical
Multi-Layer Chapman Model (MLCM) (see Section 4.1) of the electron density under the con-
sideration of inequality constrained optimization, which results should be physically realistic.
And we choose the IRI model for testing the algorithm since it has obvious advantages in data
sources and coverage over other electron density models described in Section 1.2. To achieve
this goal, different approaches are investigated, combined and adapted within the derived 3D
electron density modeling concept. In the vertical profile, we select the standard Chapman
function to describe the distribution of electron density in D, E, F1 and F2 layers, see Fig.
1.1. For the plasmasphere, we apply the exponential function. In total, we cover the electron
density from 50 km to 1000 km. Since B-spline expansions are appropriate for handling in-
homogeneous data distribution even data gaps, it is introduced to model the horizontal key
parameters distributed globally.

In the presentation of MLCM, there are totally 14 key parameters and the goal of this thesis is
to select the largest but appropriate subset of parameters to be estimated. Since the core of the
thesis is inequality constrained optimization, we start the numerical estimation with a closed
loop simulation and then apply the optimization procedure to a combination of simulated and
real data based on the separability approach. To evaluate the quality of the estimation, we
adopt the Monte Carlo method to compute the standard deviation of the estimated parameters
and make a comparison between the original electron density and the reconstructed electron
density in a closed loop simulation. Specific contributions of the work in this thesis are:

- Perform the estimation with one parameter with inequality constraints based on simu-
lated data and compare the result with the classical least squares method.

- Perform the estimation with three parameters with inequality constraints based on sim-
ulated data and compute the standard deviation using the Monte Carlo method.

- Perform the estimation with nine parameters with inequality constraints based on sim-
ulated data and data from the separability approach.

1.4 Outline of the thesis

In Chapter 1, the objective of this thesis is given. We start from the motivation of the research
and continued by the state of the art as well as goals and contributions.

The background of the ionosphere is introduced in Chapter 2, which includes physical in-
formation about the ionosphere and plasmasphere. The vertical structure, spatio-temporal
variations in the ionosphere, and the mechanism of ionization in ionosphere and plasmas-
phere are explained. Furthermore, we address the background of the Chapman function and
the IRI model since they are used in this thesis for 3D electron density modeling.

The procedure of inequality constrained optimization is covered in Chapter 3, where we first
explain the definition of nonlinear problem. For inequality constrained problem, we first
introduce the Karush–Kuhn–Tucker optimality conditions (see Section 3.3) and choose the
sequential quadratic programming method which is explained in the last section.

Chapter 4 mainly gives the configurations of our contributions. We select Chapman functions
to describe the vertical electron density distribution of the D, E, F1, and F2 layers and use the
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1.4 Outline of the thesis

Figure 1.1: Ionospheric layer composition based on the vertical electron density distribution
[Limberger, 2015]
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1 Introduction

exponential function for plasmasphere. The Section 4.2 covers the parametrization with the
use of B-splines for the key parameters. The linearization of the observation equation system
and the modeling procedure are described in the last two sections.

The contributions in this study are summarized in Chapter 5, which consists of four sections
corresponding to different scenarios. In the first scenario, only one parameter is estimated
with inequality constraints and the result is compared with the classical least squares method.
Estimations with three inequality constrained parameters and nine inequality constrained pa-
rameters are presented in the following scenarios where the standard deviations of the results
consisting of three inequality constrained parameters are also included. The last scenario
is in response to nine inequality constrained parameters estimation with the input from the
separability approach.

The major findings and conclusions of this thesis are summarized in the last part: conclusion
and outlook (Chapter 6). Furthermore, some thoughts for further works are raised.
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2 Ionosphere Background

2.1 Ionosphere structure

The ionosphere refers to the region of the Earth’s upper atmosphere where ions and electrons
exist. In a broad sense, the ionosphere also includes the part of the Earth’s atmospheric space
up to the top of the magnetosphere, and the upper part of the ionosphere is usually referred
to as the plasmasphere [Kelley, 2009]. Because the ionosphere covers a wide height range,
the top and bottom ionosphere exhibit different properties such as electron temperature and
density, ion composition and density. Therefore, it is of great importance to study the structure
and properties of the ionosphere and plasmasphere.

2.1.1 Structure of the ionosphere

The chemical composition is usually not evenly distributed in space, resulting in an altitude-
dependent structure of atmospheric molecules when ionized by solar radiation. According to
those different structures and wavelengths of solar radiation that are most absorbed in certain
regions, the ionosphere can be subdivided into distinct regions. A widely used strategy is
that the ionosphere is divided into D, E, F1 and F2 layer from the bottom to the top, see
Fig. 1.1. Table 2.1 gives the approximate altitude range for the layers used in this thesis and
Fig. 2.1 describes the typical day and night electron density in the mid-latitude ionosphere
[Hargreaves, 1992]. The dashed lines depict the electron density distribution for the minimum
sunspot case and the solid lines depict the maximum sunspot case. In the following, more
detailed descriptions of each layer will be given.

2.1.1.1 D layer

This layer is the closest layer to the ground, with an altitude range of 50-90 km and an electron
concentration of about 102 − 104 el/cm3. The layer is subject to multiple variables under the
influence of solar activity and the local atmosphere, such as the electron density in high solar
activity years is about two to three times higher than in low solar activity years; the electron
density is usually larger in summer than in winter; the electron density is usually the largest

Table 2.1: Approximate values of height ranges for different ionospheric layers

Layer Height range [km]
D 50-90
E 90-140
F1 140-200
F2 200-500

Plasmasphere 500-1000
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2 Ionosphere Background

Figure 2.1: Typical day and night electron density profiles in the mid-latitude ionosphere
[Hargreaves, 1992]. el/cm3 is an abbreviation for electrons/cm3.

in the afternoon and decreases after sunset; it largely disappears at night. The electron density
is usually the largest in the afternoon and decreases after sunset; largely disappears at night.
Frequency modulated (FM) based radio signals can be scattered in this area [Liang, 2017].

2.1.1.2 E layer

The E layer is a layer containing molecules and ions located at about 90 km to 140 km from
the ground, containing NO+, O+

2 , and absorbing mainly soft X-rays from solar radiation. The
electron density in this layer is higher than in the D layer, about 103 − 105 el/cm3, and there
are significant diurnal, seasonal and solar activity cycle variations [Liang, 2017]. Its peak is
located at about 100 km to 110 km. Due to the presence of different molecular gases at this
altitude, the ion production and loss rates are independent of the altitude and are dominated
by molecular-ion decomposition and compounding processes, resulting in a strong correlation
between the electron concentration and the ion production and loss rates in this region. The
E layer reflects radio-standard Amplitude Modulated (AM) signals from the ground back to
the ground. During the night the E layer does not disappear, but the electron concentration is
somewhat weakened. In addition to the regular ionospheric E layer, there is a sporadic E layer
in this region called the Es layer [Haldoupis, 2011; Garcı́a-Rigo et al., 2011], which generally
occurs at 90 km to 120 km and higher. In low- and mid-latitudes the Es layer happens mostly
during the day and prevalently during the summer, while at high latitudes the layer is more
likely to happen at night and is frequently related to the aurora. The most important feature
is that the magnitude of the Es layer can be similar to that of the F region, which will be given
in the following.
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2.1 Ionosphere structure

2.1.1.3 F layer

This layer is the mid region of the ionosphere, about 140-1000 km above the ground, with
the largest electron concentration of about 105 − 106 el/cm3, and the electron distribution is
mainly influenced by the neutral wind and the Earth’s magnetic field [Liang, 2017]. The F
layer can reflect radio shortwave signals emitted from the ground, while visible light, radar,
TV and FM wavelengths are too short to be reflected by the ionosphere and penetrate the
ionosphere. At the same time, changes in the larger scales of the ionosphere are associated
with changes in this layer, as it has the largest proportion of electron density in the entire
ionosphere.

Due to the complex physical mechanisms involved in its formation, the F layer can be sub-
divided into the F1 layer and the F2 layer. The F1 layer is more striking during the summer
than during the winter, at high solar activity, and during ionosphere storms. The F2 layer is
at a higher altitude than the F1 layer. The peak is typically located between 300 km and 500
km. It exists during day and night but is highly variable with timescales ranging from the 11
years of a solar cycle or even longer, to a few seconds during the strong interactions with the
plasmasphere above [Zolesi and Cander, 2014]. However, the F1 layer disappears during the
night.

2.1.2 Spatial variations in the ionosphere

Globally, differences in atmospheric density, atmospheric composition and exposure to solar
radiation at different locations result in an uneven horizontal distribution of the electron den-
sity. In general, the ionosphere is active and varies strongly at low latitudes; at mid-latitudes it
is relatively calm, with significant seasonal and diurnal variations; at high latitudes (especially
the poles) it is influenced by polar days and nights, with less significant seasonal and diurnal
variations. In addition, the ionosphere is subject to other regular and irregular variations due
to solar activity, solar radiation and solar altitude angle variations, as described below.

The first thing we need to note is that, in low latitude regions, there are usually two maxima
of the electron density occurring at about 15◦ to 20◦ north and south of the Earth’s magnetic
equator [Nishida, 1968; Maeda and Badillo, 1966]. This is the so-called ”Appleton anomaly”
affected by ”fountain effect”, see Fig. 2.2. The charged particles in the bottom region of the
ionosphere are continuously moving upwards due to the combined effect of solar radiation
and tides, and that the ionization of atmospheric molecules between the latitude of ±20◦ are
enhanced by the interaction of the horizontal geomagnetic field in the equatorial region.

As a consequence, the electron densities are enhanced to two maxima at geomagnetic latitudes
15◦ to 20◦ on both sides of the magnetic equator, forming two crests, which generally start at
9:00 to 11:00 Local Time (LT) and can continue until 22:00 LT, after which the phenomenon
disappears. The peak electron density in the summer hemisphere is usually lower than that
in the winter hemisphere around the winter/summer solstice.

In mid-latitude regions, the electron density in the F2 layer is higher in winter than that in
summer [Barab, 1962]. The reason is that, under the influence of seasonal summer airflow, the
increase of atmospheric molecules is more than the increase of single atoms at mid-latitudes,
resulting in higher ion capture rates in summer than in winter. Furthermore, the increase in
capture rates in summer is much higher than the increase due to ionization by solar radiation,
which in turn results in lower electron concentrations in summer than in winter. This anomaly
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2 Ionosphere Background

Figure 2.2: A schema of the fountain effect where B the geomagnetic field, E the electric field,
g the gravity and ∇ p the pressure gradient forces [Kelley, 2009].

can occur annually in the northern hemisphere but is not present in the southern hemisphere
during low solar activity years.

Bellchambers and Piggott [1958] as well as Penndorf [1965] found that the electron density
does not always decrease monotonically at night, but sometimes appears to increase. This
phenomenon is possible in all regions except high latitudes. At the same time, the probability
of occurrence before midnight is comparable to that after midnight and it is more likely to
occur in summer than that in winter. Besides, the higher the solar and geomagnetic activity,
the less this phenomenon will occur.

In addition to the above solar and geomagnetic activities that can cause ionospheric anomalies,
some other natural phenomena and human activities can cause ionospheric anomalies, such
as typhoons [Bauer, 1957], earthquakes [Davies and Baker, 1965], lightning [Kelley et al., 1985;
Holzworth et al., 1985], tsunamis [Tang et al., 2018] and nuclear experiments [Zhang and Tang,
2015; Park et al., 2011], among others.

2.1.3 Temporal variations in the ionosphere

The ionospheric variability is influenced by solar activity and can be similar to that of the
Sun, e.g., daily cycles, quasi-27-day cycles [Rich et al., 2003], seasonal cycles [Balan et al., 1998;
Da Rosa et al., 1973; Titheridge, 1973], On the other hand, ionospheric variability is influenced
by solar-terrestrial variations and solar-lunar variations. In addition to these periodic varia-
tions, atmospheric molecular concentrations and solar radiation are also influenced by other
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2.2 Mechanism of ionization

factors, resulting in the ionosphere being characterized by periodic variations in the mixing of
multiple frequency signals [Amiri-Simkooei and Asgari, 2012].

2.2 Mechanism of ionization

The physical processes in the ionosphere consist of two parts: the photochemical process,
which leads to the production and loss of ionized particles, and the transport process, which
describes the movement of ionized particles for example diffusion and drift [Davies and Baker,
1965]. The balance of ionization is in fact a dynamic equilibrium, which means, the electron
density is affected by the relative speed of the production and loss processes, as well as the
movement of the particles. The ionized continuity equation can be adopted to describe the
rate of change dNe/dt of the electron density Ne

dNe

dt
= Q − L − div(Nev) (2.1)

where t is the time, Q and L present the production and loss rate, respectively. div(Nev) de-
scribes the loss rate of the electrons due to the transport process with v the net drift velocity.

Here, we will discuss more details about Q and L, since they are affected by two important
ionization processes: photoionization and recombination.

The amount of ion-electron pairs lost per unit volume and per unit time is defined as the
loss rate L, and it is mainly caused by two processes, which are called recombination and
attachment. Recombination describes the fact that the free electrons tend to reunite with the
positive ions to produce neutral atoms again, whereas attachment means the free electrons
tend to attach themselves to neutral molecules to form negative ions. The loss rate can be
represented by

L =
dI
ds

= −σf nI (2.2)

where I denotes the loss of radiation intensity along the Line-of-Sight. n is the density of a
neutral particle and σf identifies the cross section of the radiation or photon absorption rate
for the frequency f .

The production rate Q is the number of ion-electron pairs produced caused by photoionization
per unit volume per unit time. The mechanisms of photoionization are different depending
on the latitude. In low- and mid-latitude, solar radiation in the Extreme Ultraviolet (EUV)
and X-ray parts of the spectrum are the main cause for the production of ions and electron
pairs. However, in high latitude regions or during magnetic storms, the production process is
caused by the fact that charged particles settle into the atmosphere and collide with neutral
molecules to produce particle ionization, and produce negative ions during the attachment
at the bottom ionosphere. Since the ionization is balanced, The production rate Q of ions or
electrons can be obtained as

Q = −dI
ds

= σf nI. (2.3)
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2.3 The Chapman layer

The Chapman layer modeling, the IRI model as well as the plasmasphere described in the
current and following sections mainly follow the work in Limberger [2015] and Liang [2017].
In order to approximate the variations of free electrons along the vertical, Chapman [1931a,b]
gave a formulation which is generally called the Chapman function. Its methodology can
also be found in Chapman and Mian [1942a,b]. The Chapman function is built based on the
following assumptions:

- the atmosphere is composed of only one chemical element, i.e., as an isothermal one-
component gas,

- the atmosphere is horizontally stratified and can be described by an undisturbed layer
structure without diffusion or horizontal variations,

- the radiation is monochromatic and parallel,

- the temperature T, gravitational acceleration g and molecular mass m are constant, so
that the scale height H = kT/(mg) (k is the Boltzmann’s constant) is constant, too, and

- the electron production is caused only by photoionization and electron loss only through
recombination.

Considering the last assumption, recombination is the only reason for electron loss and can
be described as

vL = αN2
e (2.4)

where α is introduced as the recombination coefficient [Hargreaves, 1992].

Therefore, the electron density variation with respect to time can be explained as

dNe
dt

= Q − αN2
e = σf nI − αN2

e (2.5)

according to the Eqs. (2.3) and (2.4). This shows that now the electron density variation is
in fact the difference between ionization and recombination [Davies, 1990]. Here, in order to
describe n, we start from a known neutral density value n0 at h0 so that

n = n0 exp(−h − h0

H
). (2.6)

It is worth mentioning that the Chapman function is dependent on the Sun’s position since
the sun is of significant importance in influencing the density of electrons. Therefore, the solar
zenith angle χ is taken into account. According to Fig. 2.3, we have

ds =
dh

cos(χ)
. (2.7)

We define z = h − h0 and substitute all the expressions above into Eq. (2.3), which leads to

Q = σf n0 I∞ exp(− z
H

+
σf n0H
cos(χ)

exp(− z
H
)). (2.8)
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Figure 2.3: Loss of radiation intensity with respect to a path element ds or height interval dh
[Limberger, 2015]

Here, the derivation of the equation above is calculated with the purpose of finding the max-
imum production rate and its corresponding peak height. We adopt χ = 0 because Q will
reach its maximum when the sun is at its zenith and obtain

dQ
dz

= σf n0 I∞︸ ︷︷ ︸
term1

exp(− z
H

+ σf n0 H exp(− z
H
))︸ ︷︷ ︸

term2

− 1
H
(1 + σf n0 H exp(− z

H
))︸ ︷︷ ︸

term3

!
= 0. (2.9)

It can be proved that the terms 1 and 2 are always larger than 0. Therefore, only term 3 = 0
can be expected, which leads to

σf n0 H = −1 (2.10)

under the consideration that the maximum ion production can only occur at h0 or z = 0. Sub-
stituting the above into Eq. (2.8), we reach the expression of the maximum ion production

Qmax = σf n0 I∞ exp(−1)

= Q exp(−1 +
z
H

+
1

cos(χ)
exp(− z

H
)).

(2.11)

Solving the above equations, we finally get the Chapman product function

Q = Qmax exp(1 − h − h0

H
− 1

cos(χ)
exp(−h − h0

H
)). (2.12)

We assume Ne =
√

Q/α, χ = 0 and hm = h0, which leads to

Ne(h) = Nm exp(
1
2
(1 − h − hm

H
− exp(−h − hm

H
))). (2.13)

This equation shows that there are three key parameters in each layer:

- Nm is the maximum electron density of the current layer,

- hm corresponds to the peak height, and

- H denotes the scale height.

Fig. 2.4 shows how the three parameters influence the shape of the Chapman function pro-
files.
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2 Ionosphere Background

Figure 2.4: Electron density profiles for different function parameters. Dependency with re-
spect to the maximum electron density Nm =

[
105 el/cm3, 2 · 105 el/cm3, ..., 6 · 105 el/cm3]

(top left), peak heights hm = [200 km, 250 km, ..., 400 km] (top right), and scale height
H = [60 km, 70 km, ..., 100 km] (bottom left) [Limberger, 2015].

2.4 International Reference Ionosphere

The IRI model [Bilitza et al., 1990; Bilitza and Reinisch, 2008; Bilitza et al., 2014] is an interna-
tional project sponsored by COSPAR and URSI. The IRI model, an internationally recognized
and recommended standard for the specification of plasma parameters in the Earth’s iono-
sphere, describes monthly averages of the electron density, electron temperature, ion temper-
ature, ion composition, and several additional parameters in the altitude range from 50 km
to 2000 km [Bilitza et al., 2011]. It has been continuously upgraded through introducing new
options as new data and modeling approaches are available. Model drivers are such as solar
indices, ionosphere index and magnetic indices. As an empirical model, IRI uses most of the
available and reliable data sources for the ionosphere plasma. The information about the data
sources is listed in Table 2.2.

The structure of the vertical Electron Density Profile (EDP) of the IRI model is shown in Fig.
1.1. As can be seen, IRI divides the ionosphere into four layers: from top to bottom they are
the D, E, F1 and F2 layer. IRI uses global maps of the characteristic peak densities and heights
from the CCIR and the URSI [Rush, 1989] as anchor points, and describes the vertical profile
between these points by appropriate analytical functions.

2.5 Plasmasphere

The plasmasphere refers to the region above the topside ionosphere probably 1000 km where
the domination of ions is H+ instead of O+. The outer boundary of the plasmasphere is known
as the plasmapause, which is defined by an order of magnitude drop in plasma density. The
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Table 2.2: IRI data sources and characteristics [Liang, 2017]

Data Source Observed quantity Height range Remarks

Ionosonde electron densities till the F2 peak worldwide

Incoherent Scatter Radar (ISR)
plasma densities,

temperatures,
velocities

the whole ionosphere
only at a few selected

locations

Topside souder
satellite

electron densities
satellite height down

to the F2 peak
global distribution

In situ satellite
measurements

electron densities,
temperatures,

velocities

at the satellite orbit
height

measurements are
along the satellite orbit

Rocket
electron densities,
ion composition

lower ionosphere
only reliable method

for plasma parameters
in the D region

plasmasphere is the inner part of the magnetosphere that co-rotates with the Earth. Typical
electron density values there are about 104 el/cm3 and drop by about 1-2 orders of magnitude
at the plasmapause.

Actually, no plasma production occurs in the plasmasphere and the ionized particles have to
diffuse up from the ionosphere, i.e., related to the final term of the continuity equation (2.1).
According to Hargreaves [1992], when the distribution of the plasma does not change with
time, in other words, the plasma is in equilibrium, the plasma density N is represented with
an exponential function

N = N0 exp(−h/HP). (2.14)

Here exist several plasmasphere models e.g., the Global Core Plasma Model (GCPM) [Gal-
lagher et al., 2000], the IZMIRAN plasmasphere model [Gulyaeva, 2002], the Global Plas-
masphere Ionosphere Density (GPID) model [Webb and Essex, 2001, 2003], the IMAGE/RPI
plasmasphere model [Hu et al., 2014], and Neutrelitz electron density model (NEDM) [Hoque
et al., 2022]. They have been developed theoretically, semi-empirically or fully empirically
[Goto et al., 2012].

The GCPM-2000 of Gallagher et al. [2000] is an empirical description of thermal plasma den-
sities in the plasmasphere, plasmapause, magnetospheric trough, and polar cap. It has been
developed from retarding ion mass spectrometer data collected by the Dynamic Explorer satel-
lite, includes several previously published regional models, and represents the low energy
plasma distribution along the field lines from 0 to 24 hours magnetic local time world-wide.
GCPM-2000 is smoothly coupled to IRI in the transition region of 400-600 km altitude. It was
applied also for the plasmasphere extension of NeQuick model [Cueto et al., 2007].

The GPID model is a semi-empirical representation that was developed by Webb and Essex
[2001, 2003]. GPID includes IRI below about 500 km to 600 km and extends with a theoretical
plasmasphere electron density description along the magnetic field lines. Authors report on
drawbacks of merging of the IRI with the plasmasphere part of GPID.

The IMAGE/RPI plasmasphere model [Huang et al., 2004] is based on radio plasma imager
(RPI) [Reinisch et al., 2000] measurements of the electron density distribution along magnetic
field lines. A plasmaspheric model is evolving for up to about four earth radii. The depletion
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and refilling of the plasmasphere during and after magnetic storms is described in Reinisch
et al. [2004]. A power profile model as function of magnetic activity was developed from RPI
observations for the polar cap region [Nsumei et al., 2003].

The IZMIRAN plasmasphere model [Gulyaeva, 2002; Gulyaeva et al., 2002] is an empirical
model based on whistler and satellite observations. IZMIRAN is the Institute of Terrestrial
Magnetism, Ionosphere and Radiowaves Propagation. The IZMIRAN plasmasphere model
presents global vertical analytical profiles of electron density (Ne) smoothly linked with the
IRI electron density profile at altitude of one basis scale height above the F2 peak (400 km for
electron temperature) and extended towards the plasmapause up to 36000 km (IRI-Plas).

The NEDM model is developed by superposing the Neustrelitz Plasmasphere Model (NPSM)
to an ionosphere model composed of separate F and E-layer distributions. It uses the Neustrelitz
TEC model (NTCM), the Neustrelitz Peak Density Model (NPDM), and the Neustrelitz Peak
Height Model (NPHM) for the Total Electron Content (TEC), peak ionization, and peak height
information. These models describe the spatial and temporal variability of the key parameters
as a function of local time, geographic/geomagnetic location, solar irradiation, and activity.
The model is developed to calculate the electron concentration at any given location and time
in the ionosphere for trans-ionospheric applications.
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3 Parameter Estimation

In order to estimate the unknown parameters, we need to build the functional relationship
between the observations and the unknown parameters, besides, the statistical properties of
the observations should also be determined. Therefore, in this chapter, we first introduce the
fundamentals of the nonlinear problem and then followed by the inequality constrained opti-
mization, including the Karush–Kuhn–Tucker (KKT) conditions and the Sequential Quadratic
Programming (SQP) method. Our problem can be specified as a nonlinear one, thus, we will
start to tackle the nonlinear problem. For more details in this Chapter, see Liang [2017].

3.1 Nonlinear problem

The relations between the observations and the unknown parameters can be generally defined
as 

f1(β1, ..., βu) = y∗1 + e1
f2(β1, ..., βu) = y∗2 + e2

...
fn(β1, ..., βu) = y∗n + en

(3.1)

where y∗i (i = 1, ..., n) are the n observations, β j (j = 1, ..., u) denote the u unknown parame-
ters, fi(β1, ..., βu) correspond to the real-valued differentiable functions of β j, and we have ei
for observation errors.

Then, we define

X =


∂ f1
∂β1

∣∣
β0

· · · ∂ f1
∂βu

∣∣
β0

∂ f2
∂β1

∣∣
β0

· · · ∂ f2
∂βu

∣∣
β0

...
. . .

...
∂ fn
∂β1

∣∣
β0

· · · ∂ fn
∂βu

∣∣
β0


y∗ = [y∗1 , ..., y∗n]

T , y0 = [ f10, ..., fn0]
T , e = [e1, ..., en]

T , and ∆y = y∗−y0 = [y∗1 − f10, ..., y∗n − fn0]
T

where the superscript T means transpose. By means of the Taylor series expansion, Eq. (3.1)
can be written in matrix notation as

X∆β = y∗ − y0 + e = ∆y + e (3.2)

To solve such a problem, the iteration method can be adopted, which means during each
iteration, the unknown vector ∆β, denoting the correction to the initial parameter vector β0,
has to be estimated. Together with βit,0 from the previous iteration step, the sum of them is
considered as the initial parameter vector in the next step, i.e.,

βit+1,0 = βit,0 + ∆β̂it (3.3)
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3 Parameter Estimation

where it describes the iteration step,and ∆β̂it represents the estimate of the unknown vector
∆β. During the iteration, the y0 and the partial derivatives in the Jacobian matrix X have to
be updated according to βit+1,0.

3.2 Optimization with inequality constraints

According to Liang [2017], equality constraints can easily be incorporated into the adjustment
system by the method of Lagrange multipliers. However, the problems get more complicated
if inequality constraints need to be introduced, which will lead to optimization problems,
also known as mathematical programming. Mathematically speaking, optimization is to min-
imize or maximize a function subject to constraints on its variables, which can be formulated
generally as

min
∆β∈Ru

S(∆β) (3.4a)

s.t. h(∆β) = 0 (3.4b)
g(∆β) ≤ 0 (3.4c)

where S(∆β) is the real-valued objective function of ∆β to be minimized, the p × 1 vector-
valued functions h(∆β) are the equality constraints, and the p × 1 vector-valued functions
g(∆β) are the inequality constraints. The symbol smaller than or equal to “≤” in Eq. (3.4c)
represents a component-wise operator.

It is worth mentioning that Eq. (3.4) contains both types of constraints. In the following,
problems of this type will be referred to as “inequality constrained problems” and not as “in-
equality and equality constrained problems”. This abbreviation of notation is legitimated by
the fact that if both types of constraints appear, the inequalities are the much more challenging
ones. Furthermore, it is easy to incorporate equality constraints in almost any algorithm for
inequality constrained estimation.

Maybe the largest difference between unconstrained (or equality constrained) optimization
and inequality constrained optimization is that for the latter, it is not known beforehand
which constraints will influence the result. Equality constraints in general influence the result.
However, this is not necessarily the case for inequalities. Due to this fact, there exist only
iterative algorithms to solve inequality constrained problems. In general, such a problem is
much harder to solve than an equality or unconstrained one.

As we work on the nonlinear model (3.1), we can directly set up the objective function in the
least squares sense as

S(∆β) = (∆y − f(∆β))TP(∆y − f(∆β))/σ2 (3.5)

where P is the weight matrix of the observations and σ means the unknown variance factor of
variance of unit weight. The problem (3.4) under consideration of the objective function (3.5)
belongs to a Non-Linear Programming (NLP) problem.

In order to solve the constrained NLP problem, there are different methods, such as the
penalty and augmented Lagrangian methods (e.g., Fiacco and McCormick [1990]; Rockafel-
lar [1973]), the SQP methods (e.g., Han [1977]; Powell [1978]) and the interior-point methods
(also called barrier methods, e.g., Fiacco and McCormick [1990]; Forsgren et al. [2002];) All
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3.3 Karush–Kuhn–Tucker optimality conditions

these methods apply quadratic approximations to a function combining the objective function
and constraints [Goldsmith, 1999]. An overview of the optimization techniques for NLP prob-
lems can be found in, e.g., Venter [2010]. Among those, the SQP methods are probably the
most preferable methods in NLP (see e.g., Boggs and Tolle [1995]; Schittkowski [1986]) and
will be introduced in Section 3.4. In the following, the optimality conditions for constrained
optimization problems will be given first, since many algorithms are based on them.

3.3 Karush–Kuhn–Tucker optimality conditions

For a constrained problem, the optimality conditions called KKT conditions, also known as
the Kuhn–Tucker conditions [Kuhn and Tucker, 2014], have to be fulfilled at the constrained
optimum point. The KKT approach generalizes the Lagrangian approach that allows only
equality constraints. The Lagrangian function for the constrained optimization problem (3.4a)
is defined as

L(∆β, k, k) = S(∆β) + kTh(∆β)− k
T

g(∆β) (3.6)

where the p × 1 vector k and the p × 1 vector k consist of the Lagrange multipliers.

Suppose ∆β∗ is a local minimum, there exist vectors k∗ = [k∗1, ..., k∗p]T and k
∗
= [k

∗
1 , ..., k

∗
p]

T such
that the following conditions are satisfied (cf. Luenberger et al. [1984]; Nocedal and Wright
[1999])

∇∆βL(∆β∗, k∗, k
∗
) = ∇∆βS(∆β∗) + HTk∗ − GTk

∗
= 0 (3.7a)

h(∆β∗) = 0 (3.7b)
g(∆β∗) ≤ 0 (3.7c)

gi(β∗)k
∗
i = 0, i = 1, ..., p (3.7d)

k
∗
i ≥ 0, i = 1, ..., p (3.7e)

where H and G are the Jacobian matrices of the vector-valued constraint functions h(β) and
g(β), i.e.,

H = [∇∆βh1(∆β∗), ...,∇∆βhp(∆β∗)]T

G = [∇∆βg1(∆β∗), ...,∇∆βgp(∆β∗)]T.
(3.8)

Eqs. (3.7) are known as the KKT conditions, which are the first-order (due to gradient) nec-
essary conditions for a point to be a constrained local optimum. A point that satisfies these
conditions is known as a KKT point. Eq. (3.7a) indicates that the gradient of the Lagrangian
must vanish at the optimum point. The Eqs. (3.7b) and (3.7c) suggest that all constraints are
fulfilled, i.e., the optimum point is feasible with respect to all constraints. Eq. (3.7d) indicates
that if the i-th inequality constraint is inactive, i.e. gi(∆β∗) < 0, then the corresponding La-
grange multiplier holds k

∗
j = 0. Therefore, the inactive constraints can be taken out from Eq.

(3.7a). Eq. (3.7e) states that the Lagrange multipliers associated with inequality constraints
must be non-negative. Note, that there is no restriction on the sign of the Lagrange multipliers
associated with equality constraints. If the active set, i.e., the set of constraints that holds as
equality, is known, then the problem (3.4) can be transformed into an equality constrained
problem which can easily be solved.
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3.4 Sequential Quadratic Programming method

3.4.1 Search direction – Quadratic Programming subproblem

The SQP method is an iterative method, where the update of the estimates βit from the cur-
rent iteration to the next iteration for the problem (3.4) is obtained by solving the Quadratic
Programming (QP) subproblem (cf. Boggs and Tolle [1995]; Han [1977]; Nocedal and Wright
[1999]; Powell [1978])

min
∆β∈Ru

S(p) = (∇∆βS(∆βit,0))
Tp +

1
2

pT∇2
∆β∆βL(∆βit,0, kit, kit)p (3.9a)

s.t. Hp + h(∆βit,0) = 0 (3.9b)
Gp + g(∆βit,0) ≤ 0 (3.9c)

where S(p) denotes the objective function of optimization variables, p is the solution of the
current QP problem. ∆β, kit and kit are the estimates of parameter vector and vectors of
multipliers in the current iteration, and ∇2

ββL(∆β, kit, kit) is the Hessian of the Lagrangian
function (3.6).

The QP subproblem (3.9) can then be simplified as

min
β∈Ru

S(p) = cTp +
1
2

pTQp (3.10a)

s.t. Hp + h = 0 (3.10b)
Gp + g ≤ 0 (3.10c)

where the iteration index it is dropped for better readability and

c = ∇∆βS(∆βit,0), Q = ∇∆β∆βL(∆βit,0, kit, kit),

h = h(∆βit,0), g = g(∆βit,0).
(3.11)

There are a variety of algorithms to solve Eq. (3.10) and the algorithms will be introduced in
the next sections. The solution pit of the QP subproblem (3.10) is then used to form a new
iterate

βit = βit,0 + αitpit (3.12)

applying a line search strategy, in order to force convergence from poor starting points [Powell,
1978]. The positive scalar αit, called the step length, gives the size of the step taken from the
current iterate to the next one. For a constrained problem, the step length has to be determined
such that not only the objective function (3.4a) has a sufficient decrease but also the constraints
(3.4b) and (3.4c) are satisfied. This is achieved by a line search to reduce a merit function; see
Section 3.4.3 for details [Liang, 2017].

3.4.2 Active-set methods

There exists a wide variety of algorithms for solving inequality constrained optimization prob-
lems of type (3.10) [Liang, 2017]. Most of them can be subdivided into two main classes:
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3.4 Sequential Quadratic Programming method

active-set and interior-point methods. While the algorithms of the first type follow the bound-
ary of the feasible set, the latter follows a central path through the interior of the feasible
region. Furthermore, in active-set algorithms, the constraints enter in an exact way, while
interior-point methods use relaxed constraints, which are tightened in each iteration. Com-
pared with active-set approaches, interior-point methods usually need fewer, but more expen-
sive, iterations to solve an optimization problem [Gould, 2003]. An advantage of the active-set
methods is that they allow a ”warm start” (i.e. allow to specify an initial solution). This is very
useful within the SQP methods for NLP problem, since each QP subproblem in the sequence
is related to the previous QP problem(e.g. Maes [2010]; Wong [2011]).

Thus, we will focus on the active-set methods here. The main idea of it is to follow the
boundary of the region in the parameter space, where all constraints are satisfied (i.e. the
feasible region), in an iterative approach until the optimal solution is reached. This is done
by extracting the constraints that hold as equality constraints (called active set) at the point of
the current solution and therefore solve a sequence of equality constrained subproblems. If at
least one constraint is active, the point of the optimal solution will always be at the boundary
of the feasible region.

In the following, we will describe the binding-direction primal active-set method, which is a
combined version of the algorithms introduced in Gill et al. [1981] and Best [1984]. Firstly,
two concepts for different types of constraints and directions on which the method relies will
be explained.

3.4.2.1 Active, Inactive and Violated Constraints

An inequality constraint
gi1 p1 + gi2 p2 + ... + giu pu ≤ −ḡi (3.13)

is called active if it holds as the equality constraint

gi1 p1 + gi2 p2 + ... + giu pu = −ḡi (3.14)

where gij and gi are taken from G and g in Eq. (3.10c). This is equivalent to the statement that
p is on the boundary of the feasible set. A constraint is inactive if the strict inequality

gi1 p1 + gi2 p2 + ... + giu pu < −ḡi (3.15)

holds. In this case, there is a ”buffer” between p and the constraint. The constraint is called
violated if

gi1 p1 + gi2 p2 + ... + giu pu > −ḡi, (3.16)

which must not happen throughout the iterations of the algorithm. For each feasible point p,
if we comprise all active inequality constraints (3.14) and all equality constraints in the u × pw
matrix W and the pw × 1 vector w, a working set can be assembled, i.e.

WTp = w. (3.17)

All pv inactive inequality constraints are combined to

VTp = v, (3.18)
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with the u × pv matrix V and the pv × 1 vector v. Taken together, both sets yield the original
set of constraints [

WT

VT

]
︸ ︷︷ ︸

G

p ≤
[

w
v

]
︸ ︷︷ ︸

−ḡ

(3.19)

Each point p(k) has its specific set of active and inactive constraints. Thus, it would be conse-
quent to write

W(k)T
p(k) = w(k), (3.20)

V(k)T
p(k) = v(k), (3.21)

However, we decide to drop the iteration index (k) of the sets in the following whenever it
seems appropriate to keep the formulas tidy. Therefore, one should keep in mind that these
sets change at each iteration.

3.4.2.2 Binding, Non-binding and Infeasible Directions

Within the algorithms, the parameter vector p will be updated repeatedly with a search direc-
tion q and a step length α

p(k+1) = p(k) + α(k)q(k), α(k) > 0 (3.22)

Therefore, the determination if a step in a potential search direction p(k) can violate a con-
straint is crucial. For inactive constraints, if α(k) is chosen small enough, a step in any direction
is possible. Thus, it is sufficient to examine solely the active constraints as they can be violated
through an update in the incorrect direction. A direction is called binding if

WTq(k) = 0 (3.23)

holds concerning all active constraints, which means, q(k) is in the null-space of W and due
to

WTp(k+1) = WT(p(k) + α(k)q(k))

= WTp(k) + α(k) WTq(k)︸ ︷︷ ︸
=0

= WTp(k)

= w,

(3.24)

all constraints active in p(k) will stay active after the next iteration. A direction is called non-
binding concerning the constraint i if

W(:, i)Tq(k) < 0 (3.25)

holds where W(:, i) means the ith column in W. As a consequence, the constraint i will become
inactive in the point p(k+1) (cf. Eq. (3.15))

W(:, i)Tp(k+1) = W(:, i)T(p(k) + α(k)q(k))

= W(:, i)Tp(k)︸ ︷︷ ︸
=wi

+ α(k)︸︷︷︸
>0

W(:, i)Tq(k)︸ ︷︷ ︸
<0

< wi.

(3.26)
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3.4 Sequential Quadratic Programming method

For an infeasible direction concerning the constraint i

W(:, i)Tq(k) > 0 (3.27)

holds. The feasible region would be left through a step of arbitrary step size in this direction
(cf. Eq. (3.16))

W(:, i)Tp(k+1) = W(:, i)T(p(k) + α(k)q(k))

= W(:, i)Tp(k)︸ ︷︷ ︸
=wi

+ α(k)︸︷︷︸
>0

W(:, i)Tq(k)︸ ︷︷ ︸
>0

> wi.

(3.28)

This must not happen throughout the algorithm.

3.4.2.3 Outline of the Binding-Direction Primal Active-Set Method

Having the concepts described in the last two paragraphs at hand an outline of the Binding-
Direction Primal Active-Set algorithm can be stated, which is given in Alg. 3.1.

Algorithm 3.1: Binding-Direction Primal Active-Set Algorithm
Input:
Q[u×u],c[u×1] · · · Matrix and vector with the coefficients of the objective function
H[u×p],h[p×1] · · · Matrix and corresponding right-hand side of the inequality
constraints
G[u×p],g[p×1] · · · Matrix and corresponding right-hand side of the equality constraints

p(0)
[u×1] · · · feasible initial solution vector

Output:
p[u×1] · · · Vector containing the solution of the QP
kw[pw×1] · · · Vector containing the Lagrange multipliers of the active constraints

1 [W, w, V, v] = findActiveConstraints(H, h, G, g, p)
2 for i = 1 : imax do
3 [q, kw] = computeSearchDirection(Q, c, W, p)
4 α = computeStepLength(V, v, p, q)
5 p = p + αq
6 [W, w, V, v] = updateActiveSet(W, w, V, v, p, α)
7 if min(kw ≥ 0) then
8 break

9 return p,kw

Starting at a feasible point p(k) an initial active set can be obtained by evaluating the constraints
at p(k) (line 1 of Alg. 3.1). It has to be taken care of that the initial matrix of active constraints
W is of full column rank (cf. Wong [2011]). Therefore, it might be necessary to eliminate
dependent columns from W and the corresponding values in w. Afterwards a search direction
p, the Lagrange multipliers of the active constraints kw (line 3), and a step length α (line 4) are
computed, and an update of the solution is performed (line 5). Subsequently, a decision has
to be made, which constraints stay in the active set and which are dropped (line 6). The last
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four steps are repeated iteratively until all Lagrange multipliers associated with inequalities
are non-negative. Starting with the search direction all steps are explained in more detail in
the following.

3.4.2.4 Search Direction q

The search direction q(k) shall be computed in a way that all active constraints

W(k)T
p(k) = w(k)

are kept active after the update
p(k+1) = p(k) + q(k) (3.29)

and such that the value of the objective function of problem 3.10 becomes minimal in the
current subspace (i.e. the null-space of the matrix of active constraints). This ensures that we
move along the boundary of the feasible region towards the minimum. We have intentionally
omitted the step length α here, as we want to derive a search direction that directly points to
the minimum of the current subspace without the need for a “scaling”. The step length will
come into play again in the next paragraph, as it is essential to not violate constraints inactive
at the point of the current solution. Therefore, the following subproblem has to be solved. It
should be noted that in this case, q is the optimization variable and p is fixed (iteration indices
were omitted)

min
q∈Ru

1
2
(p + q)TQ(p + q) + cT(p + q) (3.30a)

s.t. WTq = 0 (3.30b)
(3.30c)

The search direction can either be obtained by computing a direction to the unconstrained
minimum and using projectors to map it to the null-space of the matrix of active constraints
W or by an approach using the Lagrangian of the problem (cf. Best [1984]). The Lagrangian
of the problem (3.30) reads

L(q, kw) =
1
2
(p + q)TQ(p + q) + cT(p + q) + kw(WTq)

=
1
2

qTQq + pTQq +
1
2

pTQp + cTp + cTq + kwWTq
(3.31)

kw are the Lagrange multipliers linked with the active constraints. The gradients of (3.31) with
respect to q and kw read

∇qL(q, kw) = Qq + Qp + c + Wkw

= Qq + gL + Wkw

∇kw L(q, kw) = WTq.

(3.32)

The gradient
gL = gL(p) = Qp + c, (3.33)

was used as substitution. Setting the derivatives equal to zero results in[
Q W
wT 0

] [
q

kw

]
=

[
−gL

0

]
(3.34)
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As a consequence, if we solve the above equations, a search direction q can be computed
which will not violate any active constraints. Furthermore, we can also obtain the Lagrange
multipliers of all active constraints. They can be used to determine which active constraints
should be deactivated in the later step. However, so far we have never made any statement
about inactive constraints. In fact, they are used when dealing with the step length α.

3.4.2.5 Step Length α

When we computed the search direction q, it should always follow that no active constraint
will be violated after the parameter update. In this section, the determination of a maximal
feasible step length α ∈ (0, 1] is introduced, to ensure that also no inactive constraint will be
violated. Here we need to clarify that this step length α is different from αit in Eq. (3.12).
The latter will be introduced in section 3.4.3. In the beginning, it shall be identified that those
constraints could possibly be violated through a step in direction q. Those inactive constraints
for which

V(:, i)Tq(k) ≤ 0 (3.35)

holds, cannot be violated through a step in direction q. This can be verified by examining the
product

V(:, i)Tp(k+1) = V(:, i)T(p(k) + α(k)q(k))

= V(:, i)Tp(k)︸ ︷︷ ︸
<vi

+ α(k)︸︷︷︸
>0

V(:, i)Tp(k)︸ ︷︷ ︸
≤0

< vi.

(3.36)

This is equivalent to the statement that the constraint i will stay inactive in the next iteration
step. Therefore, only constraints for which

V(:, i)Tq(k) > 0 (3.37)

holds, can become active or violated in the next step. Those constraints shall be called poten-
tially violated constraints. If

V(:, i)Tp(k+1) = V(:, i)T(p(k) + α
(k)
i q(k)) = vi (3.38)

holds for a certain αi, the constraint i will become active in the next iteration step. Reformu-
lating Eq. (3.38) with respect to αi can be used to determine the distance to the constraint i in
the direction q

αk
i =

vi − V(:, i)Tp(k)

V(:, i)Tq(k)
(3.39)

Therefore, the maximal feasible step length αmax is restrained by the constraint i that would
first be violated through a step in direction q. As described above, the best achievable step
length would be one, as in this case, the new point p(k+1) will be the minimum of the current
subspace. As a consequence, the optimal step length is defined as

α = min(α(k)
i , 1), ∀

{
i|V(:, i)Tq(i) > 0

}
(3.40)
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3.4.2.6 Update of the Active Set

Until now, we have explained how to obtain an optimal solution in the current subspace. In
this section, the ”core” of the algorithm will be introduced. That is, drop constraints from
the set or include new ones, which is the strategy to update the set of active constraints.
This strategy determines the subspace and therefore the sequence of equality constrained
subproblems to be solved. Depending on the chosen step length α, two cases have to be
distinguished.

If α < 1, the decision of taking a ”full step” is prevented by the hitherto inactive constraint i.
In this case, the constraint i is removed from the inactive set V,v and included in the active set
W,w. As a consequence, in the next iteration step, a new equality constrained optimization
problem has to be solved.

If α = 1 holds, due to its design, the point p(k+1) is the minimum of the current subspace. This
means it is the point that has the minimal value of the objective function that keeps all active
constraints of iteration step (k) also active after step (k + 1). Therefore, to further minimize
the objective function without removing a constraint from the active set is no longer possible.
It is mandatory to identify those active constraints that prevent a decrease in the objective
function. It can be shown that all inequality constraints which are associated with a negative
Lagrange multiplier are the ones to deactivate. We should notice that equality constraints
should never be removed from the active set. As a result, if there are no negative Lagrange
multipliers, it can be proven that p(k+1) is the optimal solution and the algorithm terminates
since it is not possible to further reduce the value of the objective function.

3.4.3 Step length – Line search and merit function

As explained in the last sections, the search direction pit in Eq. (3.12) is the solution of the
QP subproblem(3.10). Here, we will introduce how to determine the step length parameter
αit. However, the choice of step length is complicated by the fact that, not only do we wish
to reduce the objective function, but we have to satisfy the constraints. Therefore, a merit or
penalty function that weights their relative importance can be used as a criterion to decide
whether one point is better than another [More and Wright, 1993]. The merit function in an
objective function form is expressed as

Φ(β, v) = S(β) +
j=p

∑
j=1

vj · hj(β) +
j=p+p

∑
j=p+1

vj · max
[
0, gj−p(β)

]
, (3.41)

requiring that αit should satisfy the condition

Φ(βit + αitpit, v) < Φ(βit, v), (3.42)

where vj are penalty parameters. Powell [1978] gives the recommend value. On the first

iteration, we let vj = Kj = [kT, k
T
]j(j = 1, ..., p, ..., p + p). On the other iterations, we apply the

formula

v(it)j = max

Kj,
v(it−1)

j + Kj

2

 . (3.43)

Condition 3.42 can be obtained if the function

ϕ(α) = Φ(β + αp, v) (3.44)
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decreases initially when α is set positive. The procedure for choosing α is as follows. It
depends on a number δ that is usually the derivative ϕ′(0). We then build a sequence αk(k =
0, 1, ...) until it gives a suitable value of α. α0 is defined as 1 and, for k ≥ 1, the value of αk
depends on ϕk(α), which is the quadratic approximation of ϕ(α) and is defined by

ϕk(0) = ϕ(0)
ϕ′

k(0) = δ

ϕk(αk−1) = ϕ(αk−1).
(3.45)

We let αk be the greater of 0.1αk−1 and the value of α that minimizes ϕk(α). For each term in
the sequence, we test the condition

ϕ(αk) ≤ ϕ(0) + 0.1αkδ (3.46)

and we set the step length to αk as soon as this inequality is satisfied.
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4 Electron Density Modeling

As already described in Chapter 2, the ionosphere can be subdivided into four layers, which
are the D, E, F1, F2 layer along height. If we take the plasmasphere into account, the elec-
tron density can be considered as the sum of all four layers in the ionosphere as well as the
plasmaphere, where we get the so-called multi-layer approach.

Ne(h) = ND
e (h) + NE

e (h) + NF1
e (h) + NF2

e (h) + NP
e (h)

=
4

∑
Q=1

NQ
e (h) + NP

e (h)
(4.1)

with Q ∈ {D, E, F1, F2} is a summation index for layers in ionosphere and P means plasmas-
phere.

4.1 General modeling of the vertical electron density distribution

For the four layers, we adopt the Chapman function as described in Eq. (2.13). While for the
plasmasphere, we apply the exponential function,

NP
e (h) = NP

0 exp(− h
HP ) (h > hF2

m ) (4.2)

where NP
0 presents the basic electron density whereas HP means the scale height for the

plasmasphere.

Here, it can be summarized that, if we want to model the distribution of electron density
along the height, in total there are 14 key parameters

K = {ND
m , hD

m , HD, NE
m, hE

m, HE, NF1
m , hF1

m , HF1 , NF2
m , hF2

m , HF2 , NP
0 , HP}. (4.3)

Based on K, the MLCM can is defined. However, because of the strong correlations between
the key parameters, if we estimate all of them using the classical least squares method, it
will usually lead to physically unrealistic results. To aviod this, the inequality constrained
optimization which is already explained in Chapter 3 is applied, and we select appropriate
and realistic subsets K1 in which parameters are constrained by inequality constraints and
then put the rest into an equality constrained subset K2.
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4 Electron Density Modeling

4.2 Parametrization for key parameters - B-splines

Since we want to calculate a global 3D model of the electron density and the Chapman func-
tion is introduced in the last section, here B-spline presentations of key parameters will be
introduced and explained. Other types of representations, Spherical Harmonics (SH) and
Empirical Orthogonal Function (EOF) are introduced and compared by Liang [2017].

The approach based on B-splines has been adopted in this work. The main characteristic
of this approach is: The basis functions are different from zero in a local environment on
the sphere to allow for the modification of present data or incorporation of new data into
the model without causing a global effect. Polynomial and trigonometric B-splines with lo-
cal support have been selected as appropriate basis function candidates for representing the
ionospheric information derived from space-geodetic observation techniques in the model
space.

For the case of a 1D representation, the approximation function s(x) with x ∈ [xmin, xmax] is
expressed as

s(x) =
K

∑
k=1

dJ
k ϕJ

k(x) (4.4)

where ϕ identifies a linearly independent set of 1D scaling functions ϕJ
1, ..., ϕJ

k of level J and dJ
k

are the associated series coefficients.

In the following, two different kinds of B-spline basis functions are introduced, namely the
normalized quadratic polynomial B-splines and normalized trigonometric B-splines. Both
offer excellent features for ionosphere modeling in the regional and global domains.

4.2.1 Normalized quadratic polynomial B-splines

For regional modeling applications, the normalized quadratic polynomial B-splines denoted
by ϕJΦ

k (x) = Nm
JΦ,k(x) is considered as 1D basis function for representing the signal within a

bounded interval. Nm
JΦ,k(x) are usual normalized B-splines of degree m = 2 with

KΦ−1

∑
k=0

N2
JΦ,k(x) = 1 x ∈ [0, 1] (4.5)

where JΦ ∈ N0 defines the B-spline resolution level and k ∈ {0, 1, ..., KΦ − 1} identifies a
specific spline function; k is denoted as shift [Schmidt et al., 2015]. The model resolution is
controlled by the level, i.e., the higher JΦ is chosen, the finer the signal structures that can be
resolved. The total number of B-splines is computed from KΦ = 2JΦ + 2. The basis is deployed
by an increasing sequence of KΦ + 3 so-called knot points vJΦ

k ∈ {vJΦ
0 , vJΦ

1 , ..., vJΦ
KΦ+2} where, at

the boundaries, multiple knots may be linked to a specific coordinate point. The knot interval
vJΦ

k+1 − vJΦ
k must not mandatory be constant. The basis for normalized quadratic polynomial

B-splines is defined recursively [Schumaker and Traas, 1991; Stollnitz et al., 1995] with

N0
JΦ,k(x) =

{
1 vJΦ

k ≤ x < vJΦ
k+1

0 otherwise
, k = 0, ..., KΦ − 1 (4.6)

Nm
JΦ,k(x) =

x − vJΦ
k

vJΦ
k+m − vJΦ

k

Nm−1
JΦ,k (x) +

vJΦ
k+m+1 − x

vJΦ
k+m+1 − vJΦ

k+1

Nm−1
JΦ,k+1(x), m ≥ 1. (4.7)
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4.2 Parametrization for key parameters - B-splines

A uniform knot sequence is established as

0 = vJΦ
0 = · · · = vJΦ

2︸ ︷︷ ︸
Boundary multiplicity

< vJΦ
3 < · · · <︸ ︷︷ ︸

Internal sequence

vJΦ
KΦ

= · · · = vJΦ
KΦ+2 = 1︸ ︷︷ ︸

Boundary multiplicity

(4.8)

where KΦ distinct knots are taken into account. At the boundaries, there is a multiplicity of
m knots each that allow for the endpoint-interpolation. The knot distance vJΦ

k+1 − vJΦ
k yields

consequently (KΦ − 2)−1 on the unit interval.

Figure 4.1 provides examples of polynomial B-spline functions of m = 2 regarding different
levels JΦ = 0, 1, 2, 3. The number of splines varies with JΦ where the subplots are related to
JΦ = 0 → KΦ = 3 (top left), JΦ = 1 → KΦ = 4 (top right), JΦ = 2 → KΦ = 6 (bottom left) and
JΦ = 3 → KΦ = 10 (bottom right). Special features of polynomial B-splines are in particular
given by the endpoint-interpolation, i.e., adaptation of the splines to a bounded interval, and
localization, i.e., compact support only within a restricted interval.

Figure 4.1: Normalized quadratic polynomial B-splines with different levels JΦ = 0, 1, 2, 3 and
accordingly different number of B-splines KΦ = 3, 4, 6, 10.

It can be clearly seen from the plots, that the first two and last two splines are different
with respect to the interior spline functions contributing to the endpoint-interpolation in the
bounded interval. Each spline differs from zero only within a certain interval according to
the level JΦ. In addition, it becomes visible that always three adjacent splines are overlapping,
i.e., a single data point contributes to the determination of exactly three B-spline coefficients.
The model resolution defined by JΦ should be adapted to the input data density to overcome
data gaps. For the case of a homogeneous data sampling, Schmidt et al. [2011] derived the
relation

∆si =
simax − simin

KΦ − 1
(4.9)

with the sampling si on the interval [simin, simax]. This formulation can be transformed to

JΦ < log2(
simax − simin

∆si
− 1). (4.10)
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4 Electron Density Modeling

4.2.2 Normalized trigonometric B-splines

As a second type of basis function, normalized trigonometric B-splines Tm
JT ,k(x) of order m = 3

are introduced in this section [Schumaker, 1981; Schumaker and Traas, 1991].

Trigonometric B-splines with resolution level JT ∈ N0 are defined on a circle in the closed
interval [0, 2π) and have no knot multiplicity but comply with the constraint of s(0) = s(2π).
Periodic trigonometric B-splines are particularly suitable for global modeling applications due
to special properties in the definition on the [0, 2π) interval with ”wrapping-around” condi-
tion and localization, i.e., compact support only within a restricted interval as also provided by
the polynomial B-splines. The number of spline functions is computed from KT = 3 · 2JT dis-
tributed on the basis interval, meaning that the interrupted boundary splines are completed
by the corresponding opposing sub-spline to enable periodicity. Similar to the polynomial
B-splines, the distance between two consecutive knots vJT

k and vJT
k+1 for k = 0, 1, ..., KT − 1

reads
hJT =

360◦

KT
=

120◦

2JT
. (4.11)

with the non-decreasing sequence of distinct knots

0 = vJT
0 < vJT

1 < · · · < vJT
KT

< vJT
KT−1 < 2π. (4.12)

and additional knots
vJT

KT+i = vJT
i + 360◦ for i = 0, 1, 2. (4.13)

Following Lyche and Schumaker [2000], the functions are defined as

MJT ,k2(λ) = T3
JT ,k(λ) = T3

hJT
(v − vJT

k ) (4.14)

with setting hJT = h and v − vJT
k = Θ for the sake of simplification, thus, the function T3

hJT
(v −

vJT
k ) = T3

h (Θ) can be computed via

T3
h (Θ) =



sin2(Θ/2)
sin(h/2) sin(h)

for 0 ≤ Θ < h

1
cos(h/2)

− sin2((Θ − h)/2) + sin2((2h − Θ)/2)
sin(h/2) sin(h)

for h ≤ Θ < 2h

sin2((3h − Θ)/2)
sin(h/2) sin(h)

for 2h ≤ Θ < 3h

0 others.

(4.15)

Finally, the basis functions are obtained as

T3
JT ,k(λ) =

{
MJT ,k(λ) for k = 0, ..., KT − 3
MJT ,k(λ) + MJT ,k(λ − 360◦) for k = KT − 2, KT − 1.

(4.16)

A set of trigonometric B-splines of m = 3 for different levels JT = 0 → KT = 3 (top left),
JT = 1 → KT = 6 (top right), JT = 2 → KT = 12 (bottom left) and JT = 3 → KT = 24 (bottom
right) is provided by Fig. 4.2. Similarities to the polynomial B-spline functions can be found
in the local support and the overlapping of three splines in each point along x. The main
difference is related to the boundary splines where, in contrast to the endpoint-interpolation
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4.2 Parametrization for key parameters - B-splines

Figure 4.2: Trigonometric B-splines with different levels JT = 0, 1, 2, 3 and accordingly different
number of B-splines KT = 3, 6, 12, 24.

of polynomial splines, the periodicity is visible. Although different colors have been chosen
for each function, it can be clearly seen that every sub-spline at one boundary is continued at
the opposite boundary.

Similarly to Eq. (4.10), the relation of the data density to the B-spline level can be derived
from [Schmidt et al., 2011]

JT < log2(
simax − simin

3∆si
). (4.17)

4.2.3 B-spline tensor products

Sω shall identify a unit sphere as

RSω
:= {(φ, λ) : −π

2
≤ φ ≤ π

2
and 0 ≤ λ < 2π} (4.18)

with polar coordinates φ and λ in an angular system mapped on a rectangle RSω
in a 2D

space R2. The representation of a subsurface of S′
ω defined within φ ∈ [φmin, φmax] and

λ ∈ [λmin, λmax] in the rectangular domain can be obtained with

RSω
:= {(φ, λ) : φmin ≤ φmax ≤ π

2
and λmin ≤ λ ≤ λmax}. (4.19)

In order to represent multidimensional information on the rectangular modeling surfaces RSω

or R′
Sω

as introduced by Eqs. (4.18) and (4.19), tensor products of B-spline base functions shall
be applied in an orthogonal coordinate system.

For a 2D case representation, the approximation function s can be constructed from

s(x1, x2) =
K1−1

∑
k1=0

K2−1

∑
k2=0

dJ1,J2
k1,k2

ϕJ1
k1
(x1)ϕ

J2
k2
(x2). (4.20)
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4 Electron Density Modeling

Here, tensor products of two linearly independent 1-D B-spline functions ϕJ1
k1

and ϕJ2
k2

have
been introduced together with the corresponding series coefficients d. It should be noticed
that ϕ1 and ϕ2 may differ but can also be of the same type.

So far, the B-spline levels and numbers were expressed in relation to the B-spline type (JT, KT, JΦ, KΦ).
From now on, the identification will be based on indices (J1, K1, J2, K2, ...) to distinguish be-
tween B-splines of the same kind in the tensor product notation. Furthermore, the degree of
polynomial B-splines will permanently be considered as m = 2.

At first, polynomial B-splines are chosen on both, the x1 and x2 interval, with

x1 → ϕ1 = Φ3
k1

and x2 → ϕ2 = Φ2
k2

(4.21)

for the levels J1 = 3 and J2 = 2. The corresponding basis is depicted in Fig. 4.3. Both plots
show the support area spanned by the tensor product of two polynomial B-splines which are
emphasized by thick lines. As can be clearly seen from the left illustration of Fig. 4.3, an
ellipse shaped support area is spanned by ϕ3

4(x1) (green) and ϕ2
2(x2) (orange). Choosing the

same level in both directions naturally would result in a circle shaped area. The subfigure on
the right, exemplarily depicts the support area at the boundary for ϕ3

4(x1) (green) and ϕ2
0(x2)

(blue) constraint by endpoint-interpolation on the x2 axis.

Figure 4.3: Polynomial B-splines Φ3
k1
(x1) and Φ2

k2
(x2) of degree m = 2 with different levels

J1 = 3 and J2 = 2. ϕ2
2(x2) (left), ϕ2

0(x2) (right) and ϕ3
4(x1) are emphasized to show the

support area.

In the next step, the 2D basis is generated from the combination of polynomial and trigono-
metric B-spline functions. The basis is defined as

x1 → ϕ1 = Φ3
k1

and x2 → ϕ2 = T3
2,k2

(4.22)

for different levels J1 = 3 and J2 = 2 with endpoint-interpolation in the x1 and continuity
in the x2 direction. Figure 4.4 shows the support area for ϕ3

4(x1) and T2
7 (x2) in this spline

constellation. The right subplot additionally shows the 3D shape of a 2D tensor B-spline
product basis related to the emphasized splines of the left graph.

Compared to the first two parametrization approaches - SH and EOF, B-spline functions can
allow for an appropriate handling of the heterogeneous data distribution, including data gaps
[Schmidt et al., 2011]. Therefore, B-splines are used as basis functions to represent ionospheric
key parameters in this study.
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4.3 Linearized observation equation system

Figure 4.4: Combination of trigonometric B-splines with level J1 = 3 and polynomial B-splines
with level J2 = 2. A specific spline combination identified by k1 = 4 and k2 = 7 has
been highlighted and plotted in the center part of the left subplot. Accordingly, a 3D
representation of the tensor product is given on the right hand side.

4.3 Linearized observation equation system

Since now we already introduced our modeling equation, it is worth substituting the Chapman
function into two observation Eqs. (3.2) and (3.4). In other words, the inequality constrained
optimization of the nonlinear problem will be applied in this section for MLCM.

In the following, we will only consider the F2 layer, and thus only the key parameters NF2
m ,

hF2
m and HF2 are included in the system in order to avoid too long equations and expressions.

Taking Eq. (3.2) into account, we obtain

N∗
e − Ne(x0) + e =

[
∂Ne(x0)

∂NF2
m

∣∣
x0

]
∆NF2

m +

[
∂Ne(x0)

∂hF2
m

∣∣
x0

]
∆hF2

m +

[
∂Ne(x0)

∂HF2

∣∣
x0

]
∆HF2 (4.23)

where N∗
e is the observation; x0 =

[
NF2

m |0, hF2
m |0, HF2 |0

]
represents the linearization point, while

Ne(x0) denotes the approximate value of the electron density at that point.

Since the key parameters shall be presented using B-splines, we have

κi(φ, λ) + v(φ, λ) =
K1−1

∑
k1=0

K2−1

∑
k2=0

(dJ1,J2
k1,k2

)i ϕJ1
k1
(φ) ϕJ2

k2
(λ) (4.24)

with v denotes the truncation error. According to the equation above, Eq. (4.23) can be adapted
in order to let the B-spline coefficients of the key parameters being the unknown parameters,
which leads to:

N∗
e − Ne(κ(x0)) + e =

I

∑
i=1

(

[
∂Ne

∂κi

∣∣
κ(x0)

] [
∂κi

∂di

∣∣
x0

]
)T∆di (4.25)

where I is the number of key parameters. Here I = 3 for only 3 key parameters in the F2 layer
as an example while in the next chapter, I = 14 for all Chapman key parameters are chosen.
κ denotes the key parameters whereas d gives the B-spline coefficients.
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4 Electron Density Modeling

In the following, the partial derivatives of the key parameters and B-spline coefficient with
respect to the Chapman function will be derived, which are in fact the most important part
on the right side of Eq. (4.25).

1. Partial derivatives of the Chapman function for NF2
m and the B-spline coefficients:

∂Ne

∂NF2
m

= exp(
1
2
(1 − h − hF2

m

HF2
− exp(−h − hF2

m

HF2
))) (4.26)

∂Ne

∂NF2
m

∂NF2
m

∂(dJ1,J2
k1,k2

)
NF2

m

=
∂Ne

∂NF2
m

ϕJ1
k1
(φ) ϕJ2

k2
(λ) (4.27)

2. Partial derivatives of the Chapman function for hF2
m and the B-spline coefficients:

∂Ne

∂hF2
m

=


NF2

m

2HF2

∂Ne

∂NF2
m
(1 − exp(−h − hF2

m

hF2
)) +

NP
0

HP
∂Ne

∂NP
0

if h ≥ hF2
m

NF2
m

2HF2

∂Ne

∂NF2
m
(1 − exp(−h − hF2

m

hF2
))− NP

0
HP

∂Ne

∂NP
0

else

(4.28)

∂Ne

∂hF2
m

∂hF2
m

∂(dJ1,J2
k1,k2

)
hF2

m

=
∂Ne

∂hF2
m

ϕJ1
k1
(φ) ϕJ2

k2
(λ) (4.29)

3. Partial derivatives of the Chapman function for HF2 and the B-spline coefficients:

∂Ne

∂HF2
= NF2

m
∂Ne

∂NF2
m

h − hF2
m

2(HF2)2 (1 − exp(−h − hF2
m

hF2
)) (4.30)

∂Ne

∂HF2

∂HF2

∂(dJ1,J2
k1,k2

)HF2

=
∂Ne

∂HF2
ϕJ1

k1
(φ) ϕJ2

k2
(λ) (4.31)

For other key parameters, the partial derivatives can be derived similarly according to the
equations above.

4.4 Procedure of modeling

The main steps of the computation procedure for the discussed electron density model are
shown in Fig. 4.5. The observations can be taken from satellite measurements, simulation
data and their combinations. And the parameters need to be divided into two subsets with
equality and inequality constraints, respectively. After setting the initial values of unknown
parameters, the observation equation system is established including the computation of elec-
tron density differences and the Jacobian matrix. The corrections of the B-spline coefficients
for key parameters ∆d can be obtained after the estimation based on Inequality Constrained
Optimization (ICO), which can be used for correcting the unknown parameters. Here, a
check for ∆d is performed to decide whether to finish the procedure. If it is smaller than the
threshold, the B-spline coefficients are transformed into key parameters and the validation is
performed including the comparisons of key parameters and electron densities before and af-
ter estimation, as well as using external validation data. Or the observation equation system is
updated and the computation is repeated until the correction is smaller than the threshold.
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4.4 Procedure of modeling

Figure 4.5: Procedure developed within this thesis
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5 Numerical Analysis

The main contributions of this study are described in this chapter and can be subdivided into
four scenarios corresponding to four sections, respectively, which are different in terms of the
number of key parameters constrained by inequality constraints or the source of input data,
see Table 5.1. However, the coverage, the spatial resolution in latitude, longitude and height,
and the levels of B-splines are the same for different scenarios. A more detailed description of
these configurations will be given in Section 5.1.

5.1 One parameter with inequality constraints

In this section, we adopt a scenario that only NF2
m is unknown and, thus, constrained by

inequality constraints while the other parameters are given with equality constraints.

The input data is the electron density computed based on the key parameters provided via
IRI2012 and Chapman function. Specifically speaking, according to Eq. (4.24) the key param-
eters provided by IRI2012 are transformed into sets of B-spline coefficients, which are reused
to compute the new key parameters. Then, with the use of the Chapman function, the new
key parameters are involved to derive the electron density which is the input observation in
the experiment. It is worth mentioning that HF2 is computed as:

HF2 =
VTEC

4.13 · NF2
m

(5.1)

where the VTEC values are taken from VTEC models for example ’othg’. In this and the
next two sections, the main purpose is to achieve a so-called closed loop simulation, which
algorithm is shown in Fig. 5.1. In this validation, step 1 means the key parameters for the
Chapman profile function need to be presented by B-splines as much as possible. Therefore,
an inverse modeling and a forward modeling are performed in order to drop the truncation
error. Then in the second step, the key parameters are estimated using the electron density
computed from κ̂ and we get κ̃. Finally, the evaluation of the closed loop validation can be
performed according to the differences between the κ̂ (which is called ’original value’ later)
and κ̃ (which is called ’estimated value’ later), as well as the differences between original
electron density Ne and reconstructed electron density Ñe.

In this thesis, we choose the key parameters provided by IRI2012 with a spatial resolution of
5◦ × 5◦ with respect to latitude φ and longitude λ at 12:00, March 20, 2015. In the vertical
profile, we apply an irregular sampling strategy, which is 5 km between 50 km and 540 km
and 20 km between 540 km and 1000 km. In total there are 122 samples along one vertical
profile. This strategy is adopted because below 540 km, there are D, E, F1 and part of F2 layers,
which leads to much more variations and needs more samples than the ionosphere above 540
km.
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5 Numerical Analysis

Table 5.1: Contents of the scenarios

Scenario
Number of key parameters
with inequality constraints

Activeness of
constraints

Coverage
Constraints for
each gird point

Observations Noise

1-1 One Inactive Global Same Simulation 0

1-2 One Active Global Same Simulation 0

2-1 Three Inactive Single profile \ Simulation 0

2-2 Three Active Single profile \ Simulation 0

2-3 Three Inactive Global Same Simulation 0

2-4 Three Active Global Same Simulation 0

2-5 Three Inactive Global Different Simulation 5%

3-1 Nine Inactive Single profile \ Simulation 0

3-2 Nine Active Single profile \ Simulation 0

3-3 Nine Inactive Single profile \ Simulation 5%

3-4 Nine Active Single profile \ Simulation 5%

3-5 Nine Inactive Global Different Simulation 0

3-6 Nine Inactive Global Different Simulation 5%

4-1 Nine \ Global Different Separability approach \

Figure 5.1: Flow chart of closed loop validation
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5.1 One parameter with inequality constraints

For the key parameters, their maps are characterized by a spatial resolution of 5◦ × 5◦ with
respect to latitude φ and longitude λ and the B-spline coefficients are represented by poly-
nomial B-splines of level 4 and trigonometric B-splines of level 3 for latitude and longitude,
respectively.

Scenario 1-1

Since now only one key parameter is constrained with inequality constraints, the classical least
squares method can also be applied as a reference strategy if we now consider NF2

m as the only
unknown parameter. The results are plotted in Fig. 5.2 where Electron Density Unit (EDU) is
defined as 1 EDU = 10−12 el/m3.

Figure 5.2: Maps of the original key parameter NF2
m , the estimated key parameter from the

least squares method and the differences between them.

The top left panel shows the original values for electron density which are calculated from
the key parameter provided by IRI2012. Since the F2 layer contains around 70% to 80% of
the electron density in the ionosphere [Liang, 2017], NF2

m can roughly show the distribution
of electron density horizontally. It can be found that there are obviously two crests on both
sides of the equator, which is the so-called equatorial anomaly described in Section 2.1.2. Fur-
thermore, according to the distribution, we can conclude that the activeness of the ionosphere
is highly dependent on solar activity. In Africa, since it is noon, the electron density is high
while in night regions (e.g. the Pacific), the electron density is low.

The estimated results of the least squares method are shown in the top right panel. Compared
with the original values, the estimated values follow the same distribution, and their differ-
ences are given in the bottom left panel. The differences are all smaller than 10−13 EDU and
they mainly come from the computation error during the matrix inversion process. The max-
imum difference occurs at the peak of the original value. Besides, the least squares method
will produce large differences at the region where the original values have large variations,
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e.g. Africa and South Asia shown in Fig. 5.2. In contrast, in stable areas, the estimated values
are closer to the original values.

Now, the estimated results of ICO are presented in Fig. 5.3. In the current configuration,
we set the lower bound to be equal to 0.1 EDU and use 2.5 EDU as the upper bound, which
means

0.1 EDU ≤ NF2
m ≤ 2.5 EDU (5.2)

holds for every NF2
m . However, the minimum and maximum of the original values are 0.116

EDU and 2.353 EDU, respectively. This means, both the lower bound and upper bound will
stay inactive during the estimation process. The differences between the original value and
the ICO results are illustrated in the bottom left panels in Fig. 5.3. It can be found that using
the algorithm of ICO comes to differences lower than 10−14 EDU, which is better than the
results using Least Squares Method (LSM). For the distribution of the differences, a similar
conclusion can be found, which is in the areas containing large variations of the original value,
the difference is also large.

Figure 5.3: Maps of the original key parameter NF2
m , the estimated key parameter in scenario

1-1 and the differences between them.

Scenario 1-2

Afterwards, we now give another lower bound and upper bound for the NF2
m estimation:

0.12 EDU ≤ NF2
m ≤ 2.3 EDU (5.3)

should hold for every NF2
m in the grid. Now, the minimum value of the original values is

smaller than the lower bound whereas the maximum value of the original values is larger
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5.2 Three parameters with inequality constraints

than the upper bound. This means either the lower bound or the upper bound will be active
in certain areas.

The results using the above settings are plotted in Fig. 5.4, and we could clearly observe the
influences of the active bounds. In the Mideast area, where the original values are larger than
2.3 EDU, the estimated results are limited to 2.3 EDU while in the Northern area of North
America, the estimated results are limited to 0.12 EDU due to the lower constraints. However,
for other regions, since they are in the interval between the lower bound and upper bound, the
estimated results are close to the original values. In other words, the differences in those areas
are close to 0. Furthermore, it is worth mentioning that, there are oscillations only around the
areas where the constraints are active. This is because the representation of B-spline functions
is characterized by a compact support.

Figure 5.4: Maps of the original key parameter NF2
m , the estimated key parameter in scenario

1-2 and the differences between them

5.2 Three parameters with inequality constraints

In this section, we start another scenario, in which three parameters are estimated with in-
equality constraints and they are NF2

m , hF2
m and HF2 . Since they have significant correlations

with each other, the classical LSM can lead to physically unrealistic results [Lalgudi Gopalakr-
ishnan and Schmidt, 2022]. However, besides the comparisons of key parameters and electron
density before and after the estimation, the Monte Carlo method is adopted to simulate the
standard deviation of the estimated parameters in case 5% noise is added during the proce-
dure.
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Table 5.2: Values of the key parameters

Key parameter Value Key parameter Value

NP
0 0.025 EDU HF1 40 km

HP 80 km NE
m 0.1 EDU

NF2
m 2.5 EDU hE

m 100 km

hF2
m 480 km HE 20 km

HF2 80 km ND
m 0.05 EDU

NF1
m 0.2 EDU hD

m 80 km

hF1
m 250 km HD 10 km

Table 5.3: Relevant values in scenario 2-1

Key parameter Original value Lower bound Upper bound Estimated value Difference

NF2
m 2.5 EDU 2.2 EDU 2.8 EDU 2.5 EDU 1.8 × 10−11 EDU

hF2
m 480 km 250 km 500 km 480 km −5.4 × 10−9 km

HF2 80 km 75 km 120 km 80 km −3.7 × 10−9 km

Scenario 2-1

We first start with one vertical profile estimation, which means only one grid point of the
global grid will be considered and the electron density distribution along the height is illus-
trated. In this step, we drop the data from IRI2012 and Table 5.2 gives the values of the key
parameters defined by ourselves, which will be used in the current scenario using the single
vertical profile estimation.

In the following, the original values, lower and upper bounds, the estimated values as well as
the differences between the original values and the estimated values are given in Table 5.3. It
can be found that in the current step, all of the original values are in the region between lower
bound and upper bound, and the results are nearly the same as the original values.

Fig. 5.5 describes the original electron density computed with the original key parameters and
the reconstructed electron density computed with the estimated key parameters. And their
differences are plotted in Fig. 5.6. The average absolute difference is 2.34 · 10−11 EDU. Ac-
cording to the distribution of the differences, we can also conclude that the ICO will generate
large deviations when the original values are large.

Scenario 2-2

Compare to the constraints given in Table 5.3, we now set other constraints for the three key
parameters, which are presented in Table 5.4 in accompany with its corresponding estimated
results. Here, we believe that the peak height of the F2 layer should not be higher than 450km.
This means the upper bound of hF2

m will become active during the estimation while the other
five keep staying inactive.
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5.2 Three parameters with inequality constraints

Figure 5.5: Original electron densities vs. reconstructed electron densities in scenario 2-1

Figure 5.6: Differences between original electron densities and reconstructed electron densities
in scenario 2-1
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Table 5.4: Relevant values in scenario 2-2

Key parameter Original Value Lower bound Upper bound Estimated value Difference

NF2
m 2.5 EDU 2.2 EDU 2.8 EDU 2.401 EDU 0.09EDU

hF2
m 480 km 250 km 450 km 450 km 30 km

NF2
m 80 km 75 km 120 km 75 km 5 km

As for the results shown in the last two columns, hF2
m comes to 450 km which is the same as

its upper bound. Besides, due to the correlations between the three parameters, the results
of the other two are affected by hF2

m . However, there is no violation happening. In other
words, the estimated results are still between or at the bounds. The comparison between the
original electron density and the estimated electron density is plotted in Fig. 5.7. The red
curve is the best fitting curve to the blue curve under the constraints in Table 5.4. And we can
clearly distinguish that, due to the upper bound of hF2

m , the peak height for the F2 layer of the
reconstructed electron density is lower by 30 km than that of the original electron density.

Figure 5.7: Differences between original electron densities and reconstructed electron densities
in scenario 2-2.

Scenario 2-3

After the estimation of a single vertical profile, we now come to the global estimation. At first,
we set the constraints for the three parameters described in Table 5.5 to all grid points where
the minimum and maximum values are taken from the original values. The constraints are
set according to the boundary values of the key parameters. In this step, all the constraints
are inactive in the estimation procedure. The results are given in the following.
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Table 5.5: Constraints of the key parameters in scenario 2-3

Key parameter Minimum value Lower bound Maximum value Upper bound

NF2
m 0.113 EDU 0.1 EDU 2.353 EDU 2.5 EDU

hF2
m 242.7 km 240 km 410.6 km 450 km

NF2
m 80.4 km 80 km 117.5 km 120 km

Figure 5.8: Maps of the original key parameter NF2
m , the estimated key parameter in scenario

2-3 and the differences between them.
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Figure 5.9: Maps of the original key parameter hF2
m , the estimated key parameter in scenario

2-3 and the differences between them.

Figure 5.10: Maps of the original key parameter HF2 , the estimated key parameter in scenario
2-3 and the differences between them.
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According to the Figs. 5.8, 5.9 and 5.10 which show the estimated results for NF2
m , hF2

m and
HF2 , respectively. We found that the estimated results are similar to the original values. The
differences for NF2

m is around 10−11 EDU whereas the differences for the other two parameters
are at the level of 10−8 km. However, their relative differences are at the same level. Compared
to the results in scenario 1-1, the results in the current scenario cannot reach the same accuracy
as before due to the correlations among the three parameters. In the following, comparisons
between the original electron density and the reconstructed electron density are given in Figs.
5.11 and 5.12.
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Figure 5.11: Differences between original electron densities and reconstructed electron densi-
ties in scenario 2-3

Scenario 2-4

Another estimation will be performed in the following where some of the constraints are
active during the procedure. In this step, the new constraints for NF2

m and hF2
m are defined as:

0.12 EDU ≤NF2
m ≤ 2.3 EDU

250 km ≤hF2
m ≤ 450 km

(5.4)

for all grid points. The constraints for HF2 remain the same as given in Table 5.5. The com-
parisons between the original and estimated key parameters are presented in Figs. 5.13, 5.14
and 5.15. Due to the constraints for NF2

m , there are two strong deviations located in Midasia
and Canada, which corresponds to the regions where original values are larger than 2.3 EDU
or lower than 0.12 EDU. Besides, the blue area around southern Africa in Fig. 5.12 means, the
hF2

m value smaller than 250 km is changed to 250 km. In other words, the estimation procedure
obeys all the constraints. Furthermore, all three panels that plot the differences show similar
distributions. This means the active constraints will have impacts on all correlated parameters
with inequality constraints.
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Figure 5.12: Map of average absolute electron density differences along vertical profiles in
scenario 2-3

Figure 5.13: Maps of the original key parameter NF2
m , the estimated key parameter in scenario

2-4 and the differences between them.
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Figure 5.14: Maps of the original key parameter hF2
m , the estimated key parameter in scenario

2-4 and the differences between them.

Figure 5.15: Maps of the original key parameter HF2 , the estimated key parameter in scenario
2-4 and the differences between them.
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Scenario 2-5

Until now, we only perform ICO based on simulated data without noise. However, in real
cases, any observation will contain noise. Therefore, in this step, 5% noise will be added to
the electron density computed with simulated key parameters as observations. At the same
time, we set different constraints for each grid point, see Figs. 5.16 and 5.17. Since now we
are performing the closed loop simulation, the constraints are taken as 80% and 120% of the
original values as lower and upper constraints, respectively, which can be written as,

0.8κ ≤ κ̂ ≤ 1.2κ (5.5)

Figure 5.16: Maps of upper bounds of the key parameters in scenario 2-5

The estimated results are given in Fig. 5.18. It can be found that the estimated results still
follow similar distributions to the original values shown in the figures before.

It is of great importance and necessity to compare the relations between the bounds and the
results to see if there is any violation. The differences between upper bounds and results are
presented in Fig. 5.19 while Fig. 5.20 is given for the differences with lower bounds.

It can be seen that all values in Fig. 5.19 are larger than 0 which means the estimated results
are below the upper bounds whereas according to Fig. 5.20, all estimated values are above the
lower bounds. This means there is no violation in the current estimation.

After the check of violation, it can be concluded that the algorithm of ICO can effectively
make the estimated results located within the design bounds. However, it is also important
to evaluate the accuracy of the algorithm. Two strategies are adopted. The first one is to com-
pare the differences between the noise-free electron density (the truth) and the reconstructed
electron density, see Figs. 5.21 and 5.22.

The electron density differences are at the level of 10−3 EDU, because 5% noise is added to the
observations but B-spline expansion can only reconstruct the part without noise. However,
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5.2 Three parameters with inequality constraints

Figure 5.17: Maps of lower bounds of the key parameters in scenario 2-5

Figure 5.18: Maps of estimated results of the key parameters in scenario 2-5
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Figure 5.19: Differences between upper bounds and estimated values in scenario 2-5

Figure 5.20: Differences between lower bounds and estimated values in scenario 2-5
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Figure 5.21: Differences between noise-free electron densities and reconstructed electron den-
sities in scenario 2-5

Figure 5.22: Map of average absolute electron density differences along vertical profiles in
scenario 2-5
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such differences are already smaller than the noise, which means the system is convergent
and the ICO has the ability for resisting the noise.

Another strategy for evaluating our algorithm is to compute the standard deviation based
on the Monte Carlo method. The standard deviation of the current scenario is given in Fig.
5.23.

Figure 5.23: Maps of standard deviations of estimated parameters in scenario 2-5

It can be found that the standard deviations have similar structures as the original values but
obviously with some vibrations, especially for the nonlinear parameter hF2

m and HF2 . However,
the standard deviations are smaller than the noise added to the observations.

5.3 Nine parameters with inequality constraints

In this scenario, the estimations are performed under the condition that nine parameters are
constrained with inequality constraints, which can be presented as:

κ1 =
[

NP
0 , HP, NF2

m , hF2
m , HF2 , NF1

m , hF1
m , NE

m, ND
m

]
κ2 =

[
HF1 , hE

m, HE, hD
m , HD

] (5.6)

Scenario 3-1

Firstly, one vertical profile estimation is performed, which is similar to the experiment in
scenario 2-1. The values of relevant parameters are given in Table 5.6. According to the last
column, all estimated parameters are close to their original values and come to similar relative
differences. For other key parameters, they are adopted with the values shown in Table 5.2.
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Table 5.6: Relevant values in scenario 3-1

Key parameter Original value Lower bound Upper bound Estimated value Difference

NP
0 0.025 EDU 0.02 EDU 0.03 EDU 0.025 EDU 5.1 × 10−10 EDU

HP 80 km 75 km 120 km 80 km 8.1 × 10−7 km

NF2
m 2.5 EDU 2.2 EDU 2.6 EDU 2.5 EDU −4.3 × 10−10 EDU

hF2
m 480 km 220 km 500 km 480 km 8.4 × 10−9 km

HF2 80 km 75 km 120 km 80 km 6.6 × 10−9 km

NF1
m 0.2 EDU 0.1 EDU 0.5 EDU 0.2 EDU −1.1 × 10−10 EDU

hF1
m 250 km 200 km 300 km 250 km −9.1 × 10−9 km

NE
m 0.1 EDU 0.01 EDU 0.5 EDU 0.1 EDU −3.8 × 10−11 EDU

ND
m 0.05 EDU 0.01 EDU 0.2 EDU 0.05 EDU 2.1 × 10−11 EDU
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Figure 5.24: Original electron densities vs. reconstructed electron densities in scenario 3-1
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Fig. 5.24 describes the reconstructed electron density with respect to the original electron
density. It can be found that the two curves still fit well with each other and the average
absolute difference is 3.67 · 10−11 EDU. The differences between the original and reconstructed
electron density are plotted in Fig. 5.25. Since in this scenario, key parameters in the D, E and
F1 layer are taken into consideration, there are also deviations below 250 km. Furthermore,
the largest deviations are still located in the F2 layer.

Figure 5.25: Differences between original electron densities and reconstructed electron densi-
ties in scenario 3-1

Scenario 3-2

In the following, we change several constraints in order to make them active during the esti-
mation. We believe the peak height of the F2 layer should not be higher than 450 km while
the scale height of the F2 layer cannot be smaller than 85 km, and the maximum electron
density of the E layer must be larger than 0.15 EDU. The updated constraints, as well as the
corresponding estimated results, are shown in Table 5.7.

According to the table above, there are no violations in this estimation and all results are
located between the given bounds. However, since the original values of hF2

m , HF2 and NE
m are

out of their bounds, all the other parameters are affected by them due to the correlations. The
original and reconstructed electron densities are illustrated in Fig. 5.26.

Scenarios 3-3 and 3-4

In the next step, 5% noise is added to the observations in one vertical profile. The estimations
are performed again using the constraints in Tables 5.6 and 5.7, which results are presented
in Tables 5.8 and 5.9, Figs. 5.27 and 5.28.
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Table 5.7: Relevant values in scenario 3-2

Key parameter Original value Lower bound Upper bound Estimated value Difference

NP
0 0.025 EDU 0.02 EDU 0.03 EDU 0.02 EDU −0.005 EDU

HP 80 km 75 km 120 km 75 km -5 km

NF2
m 2.5 EDU 2.2 EDU 2.6 EDU 2.31 EDU -0.19 EDU

hF2
m 480 km 220 km 450 km 450 km -30 km

HF2 80 km 85 km 120 km 85 km 5 km

NF1
m 0.2 EDU 0.1 EDU 0.5 EDU 0.1 EDU -0.1 EDU

hF1
m 250 km 200 km 300 km 200 km -50 km

NE
m 0.1 EDU 0.15 EDU 0.5 EDU 0.15 EDU 0.05 EDU

ND
m 0.05 EDU 0.01 EDU 0.2 EDU 0.01 EDU -0.04 EDU
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Figure 5.26: Original electron densities vs. reconstructed electron densities in scenario 3-2
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Table 5.8: Relevant values in scenario 3-3

Key parameter Original value Lower bound Upper bound Estimated value Difference

NP
0 0.025 EDU 0.02 EDU 0.03 EDU 0.027 EDU 0.002 EDU

HP 80 km 75 km 120 km 75 km -5 km

NF2
m 2.5 EDU 2.2 EDU 2.6 EDU 2.49 EDU -0.01 EDU

hF2
m 480 km 220 km 500 km 480.57 km 0.57 km

HF2 80 km 75 km 120 km 80.35 km 0.35 km

NF1
m 0.2 EDU 0.1 EDU 0.5 EDU 0.21 EDU 0.01 EDU

hF1
m 250 km 200 km 300 km 248.99 km -1.01 km

NE
m 0.1 EDU 0 EDU 0.5 EDU 0.096 EDU -0.004 EDU

ND
m 0.05 EDU 0.01 EDU 0.2 EDU 0.057 EDU 0.007 EDU

Table 5.9: Relevant values in scenario 3-4

Key parameter Original value Lower bound Upper bound Estimated value Difference

NP
0 0.025 EDU 0.02 EDU 0.03 EDU 0.02 EDU −0.005 EDU

HP 80 km 75 km 120 km 75 km -5 km

NF2
m 2.5 EDU 2.2 EDU 2.6 EDU 2.32 EDU -0.18 EDU

hF2
m 480 km 220 km 450 km 450 km -30 km

HF2 80 km 85 km 120 km 85 km 5 km

NF1
m 0.2 EDU 0.1 EDU 0.5 EDU 0.1 EDU -0.1 EDU

hF1
m 250 km 200 km 300 km 200 km -50 km

NE
m 0.1 EDU 0.15 EDU 0.5 EDU 0.15 EDU 0.05 EDU

ND
m 0.05 EDU 0.01 EDU 0.2 EDU 0.01 EDU -0.04 EDU
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Figure 5.27: Original electron densities vs. reconstructed electron densities in scenario 3-3

Figure 5.28: Original electron densities vs. reconstructed electron densities in scenario 3-4
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In the two figures, the blue curve corresponds to the truth while the red curve describes the
reconstructed electron density and the black crosses are the electron density observations with
noise. Fig. 5.27 shows that, when nine parameters are estimated with inequality constraints
under 5% noise, the average absolute difference comes to 0.0078 EDU which is smaller than
the average of noise (0.037 EDU). As shown in Fig. 5.28, scenario 3-4 has similar results with
the results in scenario 3-2.

Scenario 3-5

In this section, the nine parameters are estimated with inequality constraints globally. Since
we now have considered many parameters from multiple layers, it is no longer possible to set
the same constraints in all grid points for each parameter. Therefore, the strategy given in Eq.
(5.5) is adopted for this scenario and the lower bounds and upper bounds are plotted in Figs.
5.29 and 5.30.

Figure 5.29: Maps of lower bounds of key parameters in scenario 3-5

It is worth mentioning that the F1 layer will merge into the F2 layer after sunset. Therefore, in
mid right and bottom left panels in Figs. 5.29 and 5.30, the surrounding region has both lower
bounds and upper bounds equal to zero because no F1 layer exists there.

The estimated results are presented in Fig. 5.31 which still follow similar distributions as
the original values. And Figs. 5.32 and 5.33 show their relations with the upper and lower
bounds, respectively. It can be seen that all the results are located in the feasible regions.

Now, we reconstruct the electron density based on the estimated key parameters and perform
a comparison between the original and reconstructed electron densities, see Fig. 5.34. The
differences reach a level of 10−6 EDU. Besides, the average absolute difference along one
vertical profile is presented in Fig. 5.35. It can be seen there are larger variations in North
America, which corresponds to the large values of HP and HF2 .
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Figure 5.30: Maps of upper bounds of key parameters in scenario 3-5

Figure 5.31: Maps of estimated results of the key parameters in scenario 3-5
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Figure 5.32: Differences between upper bounds and estimated values in scenario 3-5

Figure 5.33: Differences between lower bounds and estimated values in scenario 3-5

64



5.3 Nine parameters with inequality constraints

0 0.5 1 1.5 2 2.5 3 3.5

10
5

-6

-4

-2

0

2

4

6

8

10

12

14
10

-6

Figure 5.34: Differences between original electron densities and reconstructed electron densi-
ties in scenario 3-5

Figure 5.35: Map of average absolute electron density difference along vertical profiles in
scenario 3-5
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Scenario 3-6

Similar to the experiments in scenario 2-5, we now add 5% noise to the electron densities
computed from the original key parameters. The constraints are the same as given in scenario
3-5, see Figs. 5.29 and 5.30. The estimated results, as well as their relations with bounds, are
shown in the following figures.

Figure 5.36: Maps of estimated results of the key parameters in scenario 3-6

Although the estimated results contain oscillations because of the noise, they are still located
between the lower and upper bounds and no violation happens. The comparison between the
truth and reconstructed electron densities is given in Figs. 5.39 and 5.40. The differences are
around 0.03 EDU and the average electron density difference along one vertical profile shows
the comparably random distribution but is larger in the regions where the ionosphere is more
active.

5.4 Solution with separability approach

Scenario 4-1

In this section, we stop the tests based on complete simulated data and start the estimation
procedure based on a combination of real observations and simulation. The so-called sepa-
rability approach is applied for the current scenario [Limberger, 2015]. In this approach, the
electron density can be presented as

Ne(φ, λ, h) = VTEC(φ, λ) · p(h) (5.7)

where φ and λ correspond to latitude and longitude whereas h is the height. The VTEC
values are taken from VTEC models. In this thesis, we select DFGI-TUM’s high-resolution
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Figure 5.37: Differences between upper bounds and estimated values in scenario 3-6

Figure 5.38: Differences between lower bounds and estimated values in scenario 3-6
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Figure 5.39: 4: Differences between noise-free electron densities and reconstructed electron
densities in scenario 3-6

Figure 5.40: Map of average absolute electron density differences along vertical profiles in
scenario 3-6
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Global Ionosphere Map (GIM) ’othg’ which comprises a much higher spectral content (up
to spherical harmonic degree n=33) as the GIMs from the Ionospheric Associated Analysis
Centers (IAAC) of International GNSS Service (IAG) [Lalgudi Gopalakrishnan and Schmidt,
2022]. As stated in the IGS Technical Report 2018 [Villiger and Dach, 2018], ’othg’ is one of
the worldwide best GIMs. p(h) means vertical profile function at the horizontal grid point
P(φ, λ) evaluated at height h fulfilling the normalization condition where p(h) is the electron
density at certain height.

p(h) =
p(h)∫ hmax

hmin
p(h)dh

. (5.8)

As constraints, we still use the constraints from scenario 3-5, see Figs. 5.29 and 5.30. The
estimated results are presented in Fig. 5.41.

Figure 5.41: Maps of estimated results of the key parameters in scenario 4-1

The results contain more oscillations than the results in scenario 3-6, which means the noise
in the separability approach is larger than 5%, around 8%. Figs. 5.42 and 5.43 describe the
difference between results and bounds. Since all values in Fig. 5.42 are larger than 0 while all
values in Fig. 5.43 are negative, there is no violation in this estimation.

Similar to before, the original and reconstructed electron densities are compared in the follow-
ing, see Figs. 5.44 and 5.45. It can be found that, the estimation procedure with separability
approach comes to similar but a bit worse accuracy than the simulation scenario with 5%
noise.
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Figure 5.42: Differences between upper bounds and estimated values in scenario 4-1

Figure 5.43: Differences between lower bounds and estimated values in scenario 4-1

70



5.4 Solution with separability approach

0 0.5 1 1.5 2 2.5 3 3.5

10
5

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Figure 5.44: Differences between original electron densities and reconstructed electron densi-
ties in scenario 4-1

Figure 5.45: Map of average absolute electron density differences along vertical profiles in
scenario 4-1
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6 Conclusions and Outlook

Based on the numerical examples presented in this work, the following conclusions have been
drawn and the direction of future works has been given.

6.1 Conclusions

Electron density is one of the most important geodetic parameters in modeling the upper
atmosphere. Therefore, its precise modeling is both necessary and challenging. In this thesis,
the Chapman function is applied for modeling the electron density distribution along vertical
profiles. In total 14 key parameters of the MLCM approach are estimated, and each key
parameter is presented via a series expansion in terms of 2D tensor products of B-spline
functions horizontally. Furthermore, the algorithm of inequality constraint optimization is
adopted in order to estimate the key parameters. With the help of inequality constraints,
physically unrealistic results such as negative peak density values can be avoided and the
estimated results can be located between given bounds. In Chapter 5, different scenarios are
selected and estimated based on simulated data or the combination of simulated data and
real observations. Some important findings from our investigations can be summarized as
follows:

For the scenario in which only one parameter is constrained with inequalities, the result can
reach better accuracy than that with the classical least squares method because the step size
of the inequality constraint optimization can be set smaller than the level of computational
error.

For the scenario with three parameters with inequality constraints, the estimated results can-
not reach the same accuracy as in the scenario with one parameter with inequality constraints.
In the case of noise, it is no longer possible to set the same constraints for each key parameter
in every grid point because this will lead to unrealistic results. The estimated results show
that the inequality constraint optimization has the property of resisting noise.

For the nine parameters with inequality constraints scenario, it has the worst accuracy. How-
ever, all the estimated results are located in the feasible regions and there is no violation.

For the separability approach solution, here, we apply a combination of real observations
(VTEC model values) and vertical profile functions as input data. This means, we now do
not rely on IRI. Although there is more noise in this scenario than before, still no violation
occurs during the estimation. And it leads to a less than 1% deviation in the comparison of
the original and reconstructed electron density.

In our study, the results are quite sensitive to multiple configurations. The initial values of the
unknown parameters and the bounds are the most important ones. Therefore, we should be
very careful when setting the initial values and bounds.
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6.2 Outlook

In the future, there is still work for going deeper into this study. Firstly, more real observations
from multiple techniques such as radio occultation measurements, e.g. from the Constellation
Observing System for Meteorology Ionosphere and Climate (COSMIC) mission need to be
combined. Here, we only use the combination of VTEC data and vertical profile functions.
Although this is independent from IRI, it is worthy to perform the estimated procedure with
pure real observations if more observations are available. The Chapman function, which is
used as the main function for modeling the ionosphere vertically, can also be modified or
other profile functions can be selected according to the local time and space weather, etc.
In the future, if we have a better understanding of the electron density distribution along the
height with a variety of observations, it is also essential to modify the profile functions without
the current assumptions in the Chapman function. Besides, at the parameter level, although
now we already worked with nine inequality constrained parameters, it is still necessary to
give some tests for different combinations of nine parameters, and it is even more challenging
to work with more than nine inequality constrained parameters. Different B-spline levels for
the individual key parameters are also valuable strategies. Furthermore, for the evaluation of
the estimated results, external validation data like ground-based observations should be also
taken into consideration.
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Aragón-Àngel, A., Orús, R., and Zandbergen, R. (2011). Comparative testing of four iono-
spheric models driven with gps measurements. Radio Science, 46(06):1–11.

Fiacco, A. V. and McCormick, G. P. (1990). Nonlinear programming: sequential unconstrained
minimization techniques. SIAM.

Forsgren, A., Gill, P. E., and Wright, M. H. (2002). Interior methods for nonlinear optimization.
SIAM review, 44(4):525–597.

Fritsch, D. (1982). Second order design of geodetic networks: Problems and examples. In
Proceedings of the International Symposium on Geodetic Networks and Computations of the Inter-
national Association of Geodesy.

76



Bibliography

Fritsch, D. (1983a). Optimal design of two-dimensioal fir-filters. In ICASSP.

Fritsch, D. (1983b). Optimal design of two-dimensioal fir-filters. In ICASSP’83. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, volume 8, pages 383–386. IEEE.

Fritsch, D. (1985). Some additional informations on the capacity of the linear complementarity
algorithm. In Optimization and design of geodetic networks, pages 169–184. Springer.

Gallagher, D. L., Craven, P. D., and Comfort, R. H. (2000). Global core plasma model. Journal
of Geophysical Research: Space Physics, 105(A8):18819–18833.

Garcı́a-Rigo, A., Monte, E., Hernández-Pajares, M., Juan, J., Sanz, J., Aragón-Angel, A., and
Salazar, D. (2011). Global prediction of the vertical total electron content of the ionosphere
based on gps data. Radio science, 46(06):1–3.

Gill, P., Murray, W., and Wright, M. (1981). Practical optimization.

Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H. (1984). Procedures for optimization
problems with a mixture of bounds and general linear constraints. ACM Transactions on
Mathematical Software (TOMS), 10(3):282–298.

Goldsmith, M. J. (1999). Sequential quadratic programming methods based on indefinite Hessian
approximations. stanford university.

Goto, Y., Kasahara, Y., and Ide, T. (2012). Improvement of equatorial density distribution of
the global core plasma model using gps-derived tec. Radio Science, 47(05):1–9.

Gould, N. (2003). Some reflections on the current state of active-set and interior-point methods
for constrained optimization.

Gulyaeva, T. (2002). The ionosphere-plasmasphere model software for iso. Acta Geod. Geophys.
Hung., 37(3):143–152.

Gulyaeva, T. L., Huang, X., and Reinisch, B. W. (2002). Plasmaspheric extension of topside
electron density profiles. Advances in Space Research, 29(6):825–831.

Haldoupis, C. (2011). A tutorial review on sporadic e layers. Aeronomy of the Earth’s Atmosphere
and Ionosphere, pages 381–394.

Han, S.-P. (1977). A globally convergent method for nonlinear programming. Journal of opti-
mization theory and applications, 22(3):297–309.

Hargreaves, J. K. (1992). The solar-terrestrial environment: an introduction to geospace-the science
of the terrestrial upper atmosphere, ionosphere, and magnetosphere. Cambridge university press.

Holzworth, R., Kelley, M., Siefring, C., Hale, L., and Mitchell, J. (1985). Electrical measure-
ments in the atmosphere and the ionosphere over an active thunderstorm: 2. direct current
electric fields and conductivity. Journal of Geophysical Research: Space Physics, 90(A10):9824–
9830.

Hoque, M. M., Jakowski, N., and Prol, F. S. (2022). A new climatological electron density
model for supporting space weather services. Journal of Space Weather and Space Climate,
12:1.

Hu, W., Zheng, D., and Nie, W. (2014). Research on methods of regional ionospheric delay
correction based on neural network technology. Survey Review, 46(336):167–174.

77



Bibliography

Huang, X., Reinisch, B. W., Song, P., Green, J. L., and Gallagher, D. L. (2004). Developing an
empirical density model of the plasmasphere using image/rpi observations. Advances in
Space Research, 33(6):829–832.

Kelley, M., Siefring, C., Pfaff, R., Kintner, P., Larsen, M., Green, R., Holzworth, R., Hale,
L., Mitchell, J., and Le Vine, D. (1985). Electrical measurements in the atmosphere and
the ionosphere over an active thunderstorm: 1. campaign overview and initial ionospheric
results. Journal of Geophysical Research: Space Physics, 90(A10):9815–9823.

Kelley, M. C. (2009). The Earth’s ionosphere: Plasma physics and electrodynamics. Academic press.

Koch (1981). Hypothesis testing with inequalities.

Koch, K. R. (1985). First order design: Optimization of the configuration of a network by
introducing small position changes. In Optimization and design of geodetic networks, pages
56–73. Springer.

Kuhn, H. W. and Tucker, A. W. (2014). Nonlinear programming. In Traces and emergence of
nonlinear programming, pages 247–258. Springer.

Lalgudi Gopalakrishnan, G. and Schmidt, M. (2022). Ionospheric electron density modelling
using b-splines and constraint optimization. Earth, Planets and Space, 74(1):1–23.

Liang, W. (2017). A regional physics-motivated electron density model of the ionosphere. PhD thesis,
Technische Universität München.

Limberger, M. (2015). Ionosphere modeling from GPS radio occultations and complementary data
based on B-splines. PhD thesis, Technische Universität München.

Llewellyn, S. K. and Bent, R. B. (1973). Documentation and description of the bent ionospheric
model. Technical report, ATLANTIC SCIENCE CORP INDIAN HARBOUR BEACH FL.

Lötstedt, P. (1984). Solving the minimal least squares problem subject to bounds on the vari-
ables. BIT Numerical Mathematics, 24(2):205–224.

Luenberger, D. G., Ye, Y., et al. (1984). Linear and nonlinear programming, volume 2. Springer.

Lunt, N., Kersley, L., Bishop, G., Mazzella, A., and Bailey, G. (1999). The effect of the protono-
sphere on the estimation of gps total electron content: Validation using model simulations.
Radio Science, 34(5):1261–1271.

Lyche, T. and Schumaker, L. L. (2000). A multiresolution tensor spline method for fitting
functions on the sphere. SIAM Journal on Scientific Computing, 22(2):724–746.

Macalalad, E. P., Tsai, L.-C., Wu, J., and Liu, C.-H. (2013). Application of the taiwan iono-
spheric model to single-frequency ionospheric delay corrections for gps positioning. GPS
solutions, 17(3):337–346.

Maeda, K. and Badillo, V. L. (1966). Equatorial spread-f and tropospheric tropical disturbances.
Journal of the Atmospheric Sciences, 23(6):812–815.

Maes, C. M. (2010). A regularized active-set method for sparse convex quadratic programming.
Stanford University.

Mead, J. L. and Renaut, R. A. (2010). Least squares problems with inequality constraints as
quadratic constraints. Linear Algebra and its Applications, 432(8):1936–1949.

78



Bibliography

Minkwitz, D., Gerzen, T., Wilken, V., and Jakowski, N. (2014). Application of swaci products as
ionospheric correction for single-point positioning: a comparative study. Journal of Geodesy,
88(5):463–478.

More, J. J. and Wright, S. J. (1993). Optimization software guide. SIAM.

Nava, B., Coisson, P., and Radicella, S. (2008). A new version of the nequick ionosphere
electron density model. Journal of atmospheric and solar-terrestrial physics, 70(15):1856–1862.

Nishida, A. (1968). Coherence of geomagnetic dp 2 fluctuations with interplanetary magnetic
variations. Journal of Geophysical Research, 73(17):5549–5559.

Nocedal, J. and Wright, S. J. (1999). Numerical optimization. Springer.

Nsumei, P., Huang, X., Reinisch, B., Song, P., Vasyliunas, V., Green, J., Fung, S., Benson, R., and
Gallagher, D. (2003). Electron density distribution over the northern polar region deduced
from image/radio plasma imager sounding. Journal of Geophysical Research: Space Physics,
108(A2).

Øvstedal, O. (2002). Absolute positioning with single-frequency gps receivers. GPS Solutions,
5(4):33–44.

Park, J., von Frese, R. R., Grejner-Brzezinska, D. A., Morton, Y., and Gaya-Pique, L. R. (2011).
Ionospheric detection of the 25 may 2009 north korean underground nuclear test. Geophysical
Research Letters, 38(22).

Peng, J., Zhang, H., Shong, S., and Guo, C. (2006). An aggregate constraint method for
inequality-constrained least squares problems. Journal of geodesy, 79(12):705–713.

Penndorf, R. (1965). The average ionospheric conditions over the antarctic. Geomagnetism and
Aeronomy: studies in the ionosphere, geomagnetism and atmospheric radio noise, 4:1–45.

Powell, M. J. (1978). A fast algorithm for nonlinearly constrained optimization calculations.
In Numerical analysis, pages 144–157. Springer.

Reinisch, B., Huang, X., Song, P., Green, J., Fung, S., Vasyliunas, V., Gallagher, D., and Sandel,
B. (2004). Plasmaspheric mass loss and refilling as a result of a magnetic storm. Journal of
Geophysical Research: Space Physics, 109(A1).

Reinisch, B. W., Haines, D., Bibl, K., Cheney, G., Galkin, I., Huang, X., Myers, S., Sales, G.,
Benson, R., Fung, S., et al. (2000). The radio plasma imager investigation on the image
spacecraft. In The IMAGE Mission, pages 319–359. Springer.

Rich, F. J., Sultan, P. J., and Burke, W. J. (2003). The 27-day variations of plasma densities
and temperatures in the topside ionosphere. Journal of Geophysical Research: Space Physics,
108(A7).

Rockafellar, R. T. (1973). The multiplier method of hestenes and powell applied to convex
programming. Journal of Optimization Theory and applications, 12(6):555–562.

Roese-Koerner, L. R. (2015). Convex optimization for inequality constrained adjustment prob-
lems. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Landwirtschaftliche
Fakultät . . . .

Rush, C. (1989). Ionospheric mapping-an update of fof2 coefficients. Telecomm. J., 56:179–182.

79



Bibliography

Schaer (1999). Mapping and predicting the Earth’s ionosphere using the Global Positioning System,
volume 59. Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule . . . .

Schittkowski, K. (1986). Nlpql: A fortran subroutine solving constrained nonlinear program-
ming problems. Annals of operations research, 5(2):485–500.
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