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Abstract

The knowledge of the thermospheric density is of great importance to determine the air drag
acceleration perturbing on the Low-Earth Orbiting (LEO) satellites. Generally, the thermo-
spheric density is computed from the empirical thermosphere models such as the NRLMSISE-
00 model which, however, has limited accuracy. In order to improve the empirical model and
further improve the accuracy of Precise Orbit Determination (POD) of LEO satellites, new
observations from geodetic techniques such as Satellite Laser Ranging (SLR) can be incorpo-
rated to perform the numerical integration of the satellite orbit. In this study, the empirical
NRLMSISE-00 model is transformed into B-spline representations which allow the data in-
corporation within the context of 2-D, 3-D, and 4-D. The resolutions in different dimensions
are 2.5◦ × 5◦ in latitude and longitude, 20 km in height, and 5 min in time. Exclusively the
trigonometric B-splines are deployed in the longitudinal direction in the global modeling, the
endpoint-interpolating polynomial B-splines are applied to model the thermospheric density
in latitude, height, and time in the global modeling, and all dimensions in the regional mod-
eling. In the case of global modeling, the resolution levels are chosen as J1 = 4 dependent on
latitude, J2 = 3 dependent on longitude, and J3 = 4 dependent on height.

The modeling result shows, the relative difference of 10−3 for the estimated neutral densities
are acquired in 2-D and 3-D representation. But the 3-D B-spline transformation outperforms
the 2-D since the standard deviation (STD) values of 3-D modeling are smaller than those of
2-D modeling by a factor of 2. And the STDs of B-spline coefficients and the estimated neutral
densities are latitude-dependent and height-dependent with values decreasing from the polar
region to the equator and from lower altitudes to high altitudes but always with values of
4-order smaller than the original observations. With respect to the result of 4-D modeling, it
performs much better than that of 2-D and 3-D modeling since only a small region is involved
in the B-spline transformation.

In addition, one of the most important challenges in this study is the handling of height-
dependent modeling due to its exponential decay in the vertical dimension, which is solved
desirably, on one hand, by the serious choice of vertical sampling interval and the level of
B-splines in height based on the pre-test of modeling the single vertical density profile, and
on the other hand, by the introduction of the logarithmic model and appropriate weighting
strategy dependent on the altitude.

Keywords: thermosphere; neutral density; NRLMSISE-00 model; B-spline representation;
multi-dimensional modeling
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1 Introduction

1.1 Motivation

The Precise Orbit Determination (POD) of satellites is a fundamental prerequisite of a range
of geo-scientific applications such as remote sensing, satellite gravity missions, and satellite
altimetry. For example, the orbit with an accuracy of a few millimeters for Low-Earth Or-
biting (LEO) satellites is essential for the accurate monitoring of the sea level change; the
determination of the precise position of Global Navigation Satellite System (GNSS) satellites
in space is a prerequisite for achieving Precise Point Positioning (PPP). In POD of a satellite,
the different kinds of perturbations acting on it need to be represented or/and modeled as
well as possible in order to compute the satellite’s position in the force fields.

However, even today, it is still a great challenge to model the non-gravitational acceleration
acting on the satellites, which comprises within the equation of motion of the satellite the
direct radiation pressure, the pressure due to Earth’s albedo and infrared radiation, drag-like
parts due to the thermospheric drag and the solar wind pressure as well as other effects. For
satellites at high altitudes like the GNSS satellites, the direct solar radiation pressure is the
major non-gravitational effect. For LEO satellites below 1000 km, however, the atmospheric
drag mainly depending on the thermospheric density is the largest non-gravitational pertur-
bation [Walker, 1987] and thus, a major problem in the POD of these satellites. Consequently,
the knowledge and study of the thermospheric density are of crucial importance for the POD
of LEO satellites.

The thermosphere is a layer of the Earth’s atmosphere that is directly above the mesosphere
and below the exosphere (Fig. 1.1). It extends from about 90 km to between 500 and 1000
km above the Earth’s surface. Normally, thermospheric densities at LEO satellite positions
are calculated by empirical atmosphere models such as the Jacchia-Bowman 2008 (JB2008)
model [Bowman et al., 2008], the COSPAR International Reference Atmosphere 1986 (CIRA86)
model [Fleming et al., 1990], Naval Research Laboratory Mass Spectrometer Incoherent Scatter
Radar Extended 2000 (NRLMSISE-00) model [Picone et al., 2002] and the Drag Temperature
Model 2013 (DTM2013) [Bruinsma, 2015] which are generally driven by globally defined
space weather parameters such as the F10.7 index reflecting the solar activity. In this study, the
NRLMSISE-00 model is selected to globally determine thermospheric densities, considering
1) its advantages in height coverage and the time span as well as the precision; and 2) the
consistency of model usage in our ”Development of High-precision Thermosphere Models
for Improving Precise Orbit Determination of Low-Earth Orbiting Satellites (TIPOD)” project
at DGFI-TUM, which is the framework of this study.

In fact, all the empirical atmosphere models have limited accuracy. However, today, the infor-
mation from different geodetic observation techniques such as Satellite Laser Ranging (SLR)
can be used to precisely determine the satellite orbits and thus, to improve neutral densities
obtained from the empirical atmosphere models. SLR provides highly accurate travel time
measurements of laser pulses reflected at laser retro-reflector arrays (RRA) mounted on the
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satellite surface which has been emitted from telescopes on the Earth’s surface [Panzetta et al.,
2018]. Due to the high accuracy (how close a given set of observations are to their true value)
and precision (how close the observations are to their mean value) of such measurements as
well as its sensitivity to the perturbation acceleration acting on the satellite, it is highly appro-
priate in further investigations to use SLR observations to improve empirical thermosphere
models and further to improve the precision of satellite orbits. For the improvement of empir-
ical thermosphere models, our approach in the TIPOD project, i.e. combining the background
information from the empirical thermosphere model and the measurements from geodetic ob-
serving techniques, is generally based on a fully dynamic POD of the selected spherical satel-
lites using the DGFI Orbit and Geodetic parameter estimation Software (DOGS) [Bloßfeld,
2015].

Basically, the empirical NRLMSISE-00 model can be evaluated at any spatial point and at any
time moment. Hence, the evenly or unevenly distributed grids representing thermospheric
densities can be derived from the thermosphere model, which is rather intuitive and readable.
In the next step, different procedures can be applied such as data assimilation or transform-
ing the model into another representation which allows to incorporate new observations from
SLR in order to improve the empirical thermosphere model. One option for such a model
transformation is the application of a statistical approach, e.g., the Principal Component Anal-
ysis (PCA) to the model under investigation, i.e., NRLMSISE-00. An alternative is the repre-
sentation of the model in form of a purely mathematical approach, e.g., a multi-dimensional
B-spline model [Schmidt et al., 2015]. Between these, the latter approach transforms the em-
pirical atmosphere model into a set of B-spline coefficients which largely saves storage and is
convenient to transmit. Additionally, it allows for the optimal handling of heterogeneously
distributed observations and data gaps. On the other hand, B-spline modeling has never
been applied to thermospheric densities even if it already has many applications with good
achievements in ionosphere-related research [Zeilhofer, 2008; Goss et al., 2019; Zeitler et al.,
2021], hence, it is significantly meaningful and valuable to investigate and apply the B-spline
approach under the circumstance of thermosphere considering the different characteristics of
ionosphere and thermosphere in terms of density magnitudes and density distribution in par-
ticular in height dependency. As a subpart in the framework of the TIPOD project, the work in
this study is significant to providing highly precise multi-dimensional B-spline models of the
thermosphere, and more accurate thermospheric density data at the satellite’s orbit followed
by better improvement for the empirical thermosphere model, as a consequence, the more
precise orbit for the satellite is more likely to be determined.
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Figure 1.1: The atmosphere structure

1.2 State of the art

In the past, various thermosphere models have been developed with output parameters com-
prising density and temperature by taking into account the complex interactions between
the atmosphere and the solar as well as the geomagnetic activity. In general, thermosphere
models can be categorized into empirical and physical ones.

The first category is identified with empirical models based on long-term observations, which
play several indispensable roles in atmospheric research, data analysis, specification, and pre-
diction, particularly in upper atmospheric research. For example, there are the NRLMSISE-00
model [Picone et al., 2002] and its follow-up, the Naval Research Laboratory Mass Spec-
trometer Incoherent Scatter Radar (NRLMSIS) 2.0 model [Emmert et al., 2021], the JB2008
model [Bowman et al., 2008], the DTM2013 model [Bruinsma, 2015], and the CH-Therm2018
model [Xiong et al., 2018]. Generally, the empirical models provide a condensed represen-
tation of the historical record of observations and thereby serve as benchmarks for testing
new observations and techniques. For over a decade, the Mass Spectrometer Incoherent
Scatter Radar (MSIS)-class models describe the atmospheric composition, total mass den-
sity, and temperature. The acronym MSIS derives from the space-based mass spectrometer
and ground-based Incoherent Scatter Radar (ISR) measurements on which the model was
originally based [Emmert et al., 2021]. In this class, the first developed MSIS-86 [Hedin,
1987] model ranges upward from 90 km, followed by Mass Spectrometer Incoherent Scatter
Radar Extended (MSISE)-90 [Hedin, 1991] extending from the ground to the exobase; and the
NRLMSISE-00 empirical model retains the calling sequence and arguments of MSISE-90 and
earlier MSIS models, which is a major upgrade of the MSISE-90 model in the thermosphere.
This release was focused primarily on the thermosphere and included the assimilation of
new middle thermosphere O2 data, more recent ISR measurements, mass density data de-
rived from satellite orbit decay, and the introduction of an anomalous oxygen component that
accounts for additional mass in the upper thermosphere attributed to a hot population of
atomic oxygen and atomic oxygen ions. The latest NRLMSIS 2.0 assimilates extensive new
(since 2000) measurements and can be regarded as a whole-atmosphere empirical model. For
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Jacchia-Bowman (JB)-class, JB2008 model is developed as an improved revision to the JB 2006
model which is based on Jacchia’s diffusion equations. The DTM2013 is a semi-empirical
model describing the temperature, density, and composition of the Earth’s thermosphere.
The CH-Therm-2018 model of the thermospheric mass density is derived from 9-year (from
August 2000 to July 2009) accelerometer measurements from the CHAllenging Mini-satellite
Payload (CHAMP) satellite at altitudes from 460 to 310 km. In conclusion, for calculating total
mass density, the NRLMSISE-00 model is comparable to or even better than the JB-class mod-
els since numerous orbital drag and accelerometer data sets have been included in generating
the model [Picone et al., 2002].

The other type of model is the physical model which fundamentally considers the physical
coupling processes between the neutral thermosphere and the charged ionosphere. An exam-
ple is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM)
developed by the National Center of Atmospheric Research (NCAR). It provides a compre-
hensive, three-dimensional (3-D), non-linear representation of the coupled thermosphere and
ionosphere system [Qian et al., 2014].

In addition to the development of thermosphere models which are based on slightly different
input data sets and thus, may lead to rather different results, there are many studies focus-
ing on the comparison or the improvement of empirical thermosphere models with external
geodetic measurements. Doornbos et al. [2007] used the Doppler Orbitography by Radioposi-
tioning Integrated on Satellite (DORIS), SLR and radar altimeter data of the European Remote
Sensing Satellite (ERS)-2 and Envisat to evaluate the performance of density model calibration.
A reduction from 23.5% to 17.1% Root Mean Square (RMS) error was found by analyzing esti-
mated density scale factors after adjusting the NRLMSISE-00 model using 10 parameters per
day, which means these scale factors allow the reduction of long-period density model errors
using tracking data. Flanagan [2015] determined the air drag coefficients of the Atmospheric
Neutral Density Experiment (ANDE)-2 satellites over their life spans by using SLR data of the
ANDE-2 satellites in union with gas-surface interaction equations. These drag coefficients are
then used to determine the atmospheric densities experienced by these satellites over various
days so that inaccuracies in the atmospheric models can be observed. Panzetta et al. [2018]
tested four thermospheric models, namely CIRA86, NRLMSISE-00, JB2008 and DTM2013 by
performing POD of a spherical satellite called ANDE-Pollux over a period of 49 days using
SLR observations to this satellite by estimating scale factors of density values from these mod-
els. As a consequence, information on the discrepancies between the various models and
the true density can be derived from SLR measurements. Rudenko et al. [2018] used SLR
observations to two ANDE-2 satellites, that is ANDE-Castor and ANDE-Pollux, as well as
Special Purpose INexpensive Satellite (SpinSat) with altitudes between 248 km and 425 km to
calibrate the CH-Therm-2018 model, as well as four other empirical models of thermospheric
density, namely namely CIRA86, NRLMSISE-00, JB2008 and DTM2013. Zeitler et al. [2021]
brought together thermospheric density corrections for the NRLMSISE-00 model in terms of
scale factors derived from SLR and accelerometer measurements. From their comparison, a
rather similar behavior with correlations of up to 80% was noticed.

However, the representation of neutral densities with B-splines is totally new for the thermo-
sphere, although B-spline modeling has been applied to the ionosphere at DGFI-TUM for a
long period: Schmidt et al. [2011] presented an approach for modeling Vertical Total Electron
Content (VTEC) generally depending on space and time defining the 3-D system of base func-
tions as tensor products of trigonometric B-spline functions for the longitude and two sets of
endpoint-interpolating B-spline functions for latitude and time, respectively. And they also
compared this approach to a spherical harmonic expansion with similar resolution and show
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how data gaps influence the accuracy of VTEC maps even in areas with good data coverage.
Schmidt et al. [2015] gave a detailed overview of the mathematical modeling of ionospheric
parameters such as the electron density by means of B-spline expansions. In Goss et al. [2020],
a two-step model (TSM) is introduced comprising a global model as the first step and a re-
gional model as the second step. The TSM provides both, a global and a regional VTEC map
at the same time.

The B-spline technique is developed extremely robust, however, due to the exponential decay
of thermospheric densities with increasing height, it is a challenging task to model neutral
densities dependent on height as accurately as possible. Consequently, the handle of height-
dependent modeling for thermospheric density using B-spline expansions is a critical topic,
also a valuable study direction in the future.

1.3 Goals and contributions

In this study, the B-spline representation is applied first to the thermospheric densities com-
puted globally from the NRLMSISE-00 model on a spatial grid at defined time moments.
Afterwards, two-dimensional (2-D) models depending on latitude and longitude at given dis-
crete heights and time moments are generated. In the next step, these models are extended to a
3-D representation depending on latitude, longitude, and height. Finally, this approach is gen-
eralized to a four-dimensional (4-D) model representing the thermospheric density in latitude,
longitude, height, and time. Additionally, the empirical model NRLMSISE-00 is transformed
with respect to the thermospheric density into a multi-dimensional B-spline model within a
period of varying solar activity, e.g., within a year in which at least one major solar event took
place.

Therefore, the global neutral density data from 23/11/2014 to 14/03/2016 covering 64 GPS
weeks (called ”64 GPS-week data”) generated from the NRLMSISE-00 model is used to in-
vestigate the variation of thermospheric densities, which contains St. Patrick’s storm day on
17 March 2015. Moreover, two small datasets are selected in order to perform the B-spline
modeling of thermospheric densities, which are 23/11/2014 - 30/11/2014, and 15/03/2015 -
22/03/2015, called the ”quiet period” and the ”storm period”, respectively. In addition, the
B-spline modeling results are evaluated and analyzed in terms of the modeling differences to
the model-derived ”true” neutral densities, modeling precision, and computational time. The
specific contents are as follows:

(1) The supporting theoretical background in the framework of the TIPOD project, including
the equation of motion of satellites, the principle for the improvement of empirical thermo-
sphere models, the brief introduction of SLR technique and POD software DOGS, as well as
the description of NRLMSISE-00 model.

(2) The pre-analysis of so-called ”64 GPS-week data” used in this study by means of Continuous
Fourier Transform (CFT), in particular the spectral content of empirical NRLMSISE-00 model.

(3) The principles of B-spline expansions to model thermospheric densities with the use of
polynomial B-spline and trigonometric B-spline basis functions in one-dimensional (1-D), 2-D,
3-D, and 4-D cases.

(4) The introduction of the experiment including data characteristics, experiment procedures,
and evaluation approaches.
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(5) The analysis and discussion of the modeling result.

1.4 Outline of the thesis

According to the study contents explained above, there are in total 7 chapters in this thesis:
Chapter 1 firstly gives the introduction of the research background and significance, as well
as the description of various thermosphere models and empirical thermosphere model-based
studies, from which the modeling approach used in this study is introduced. In Chapter 2, the
theoretical background in the framework project TIPOD is described and explained mainly in-
cluding the perturbations acting on LEO satellites and the use of SLR measurements. Chapter
3 describes the drivers of the NRLMSISE-00 model to compute thermospheric densities in
detail, and the procedures of data acquisition and preparation, as well as the results of data
pre-analysis by means of CFT. In Chapter 4, it explains the generation and characteristics of
two kinds of 1-D B-spline basis functions - polynomial and trigonometric B-splines, which can
be extended to higher-dimensional modeling in similar ways. Chapter 5 gives the experiment
implementation including algorithm test and real data modeling parts, and the evaluation ap-
proach is provided in order to assess the accuracy and reliability of modeling results. And the
experiment results and relative discussion are presented and analyzed in Chapter 6, followed
by the summary and outlook of this thesis in the final Chapter 7.
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2 Project background

2.1 Theoretical background

The equation of motion of a satellite refers to its total acceleration or the second derivative of
the satellite’s position vector rsat(t) with respect to time t, that is,

d2rsat(t)
dt2 = asat = aG + aNG, (2.1)

where the total acceleration of the satellite asat is expressed as the sum of the gravitational
acceleration aG and the non-gravitational acceleration aNG.

In the satellite orbit determination, the assessment of the non-gravitational perturbations is
one of the major problems since they are caused by the interactions between the satellite sur-
face and its environment which depends on the specific physical parameters of the satellites.
Specifically, aNG consists of the acceleration caused by solar radiation pressure (SRP) asrp, the
acceleration caused by Earth radiation pressure (ERP) aerp, the aerodynamics acceleration aaero
due to the atmosphere and other acceleration effects aothers, such as the radiation pressure of
the Moon [Doornbos, 2012], satellite thermal emission:

aNG = asrp + aerp + aaero + aothers. (2.2)

Amongst these non-gravitational perturbations, the aerodynamic acceleration is the largest
one for LEO satellites with altitudes lower than 1000 km which is around the maximum
height of the thermosphere, thus, the aerodynamic perturbations represent the main error
source within a LEO satellite POD. The aerodynamic acceleration is expressed as

aaero =
1
2

Are f

m
caero ρM vrel

2 (2.3)

where Are f is the effective cross-sectional area of the satellite interacting with the atmosphere,
m is the satellite mass, caero denotes the dimensionless aerodynamic coefficient vector depend-
ing on the geometry and orientation of the satellite, ρM is the thermospheric neutral density,
and vrel=|vrel | represents the velocity of the satellite relative to the atmosphere [Doornbos,
2012]. The relative velocity vector vrel reads as the sum

vrel = vr,i + vr,c + vr,w (2.4)

of the inertial velocity vector vr,i of the satellite along the orbit, the velocity vector vr,c caused
by the rotation of the atmosphere and the velocity vector vr,w caused by winds in the atmo-
sphere.

In the project TIPOD, SLR tracking measurements are used to implement the POD of LEO
satellites in order to improve the calculated thermospheric density based from NRLMSISE-00.
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The spherical LEO satellites are tracked by SLR. They are ideally affected only by one compo-
nent of the total aerodynamic perturbation, that is, the atmospheric drag. The drag accelera-
tion is always pointing in opposite direction to the relative velocity vector vrel in Eq. (2.4) and
leads to a deceleration of the satellite. Consequently, the spacecraft loses kinetic energy due
to the atmosphere friction which results in a decrease of the semi-major axis (orbit decay) and
the eccentricity (orbit becomes more circular) [Vallado, 2001]. For a perfectly spherical satel-
lite, the other two components of the aerodynamic perturbation, namely the lift and the side
acceleration, disappear because the normal of a sphere is always parallel to the drag direction.
In general, the air drag acceleration is obtained from

adrag =
1
2

Are f

m
cD ρM vrel

2 x, (2.5)

where cD is the dimensionless aerodynamic drag coefficient describing the interaction of the
atmosphere with the satellite surface, and the unit vector x = vr,i/ |vr,i| is introduced repre-
senting the along-track component of the aerodynamic acceleration. In the literature, the term
Are f
m cD is called the satellite-specific ballistic coefficient.

2.2 Satellite Laser Ranging

With the information from SLR which is the most accurate technique to determine the geocen-
tric position of LEO satellites among the modern space geodetic techniques since it provides
instantaneous sub-cm level measurements of the satellite range from the observation tele-
scope on the Earth surface [Panzetta et al., 2018], the observation equation of one-way range
measurement ρ together with its error eρ is formulated as

ρ + eρ = ||rsat(tM + ∆t)− rsta(tM + ∆t)| |+ ∆ρ, (2.6)

where on the right-hand side only the geometrical distance ρ between the retro-reflector on
the satellite and the observation telescope is expressed and all the remaining corrections are
contained in the term ∆ρ [Bloßfeld, 2015]. In Eq. (2.6), rsat is the position vector of the satellite’s
Center of Mass (CoM) in the Geocentric Celestial Reference System (GCRS), rsta is the position
vector of the station converted from the International Terrestrial Reference System (ITRS) to
GCRS using Earth orientation parameters, tM means the time epoch of reflection of the laser
pulse at the satellite, and ∆t means the time bias of the measurement [Zeitler et al., 2021].

Since we want to improve the thermospheric neutral density, a scale factor is introduced [Panzetta
et al., 2018; Rudenko et al., 2018; Zeitler et al., 2021]. Therefore, Eq. (2.5) is extended by the
time-dependent scale factor fs,SLR = fs,SLR(t), such that the modified drag acceleration is
expressed as

adrag =
1
2

fs,SLR
Are f

m
cD ρM vrel

2 x. (2.7)

In general, for LEO satellites with the spherical shape which are much frequently used in
SLR, we can assume that the quantities Are f , m, cD and vrel have been determined precisely,
the scale factor fs,SLR thus can be interpreted as a pure scaling of the thermospheric density
ρM generated by the empirical thermosphere model [Zeitler et al., 2021]. Under such cases,
the scale factors in time dependency, also the estimated thermospheric densities having ab-
sorbed the scaling can be generated through performing the POD of LEO satellites using SLR
measurements.
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2.3 DGFI Orbit and Geodetic Parameter Estimation Software

At DGFI-TUM, the POD of satellites is performed by the DGFI Orbit and Geodetic Parameter
Estimation Software - DOGS [Bloßfeld, 2015] which is used to process geodetic observations
like SLR, DORIS, and Very Long Baseline Interferometry (VLBI) as well as their combination
at various levels of the Gauss-Markov model. The orbit computation (OC) component of
DOGS enables four modi, such as (1) orbit computation, (2) simulation of observations, (3)
generation of normal equations, and (4) parameter correction. In the TIPOD project, the last
modus is used where the numerical integration of a satellite orbit is performed together with
adjusting a set of model parameters to the SLR observations applying an iterative least squares
estimation.

Numerical integration is applied for orbit determination for the solution of the equations of
motion as shown in Eq. (2.1) and of the variational equations. This requires on one hand
the knowledge of all acting forces on the satellite with the same accuracy level and on the
other hand numerical stability of the orbit integration. The mathematical realization of the
numerical integration using Cowell or Encke method [Brouwer, 1937] can be done by various
methods. Generally, polynomials are approximated to a time series of sample values. Then
arbitrary orbit points can be interpolated or extrapolated. A commonly well-known single-
step approach is the Runge-Kutta method [Butcher, 1996]. Here a Taylor series with a specific
order is used as extrapolation function. A special attribute of single-step methods is that only
the last integration step is used for extrapolation.
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3 Thermospheric density computation

In our numerical investigations, we apply in the sequel the empirical thermosphere model
NRLMSISE-00, which describes the neutral temperature and densities from the Earth’s sur-
face to the lower exosphere (0-1000 km). This model is the basis for computing thermospheric
neutral densities in this study, which provides the thermospheric density grids used for ap-
plying B-spline transformation within the context of different dimensions.

3.1 Drivers of NRLMSISE-00 model

The model possesses an extensive underlying database covering several decades, it is there-
fore driven by various data sets such as accelerometer and orbit-derived density data, inferred
temperature from incoherent scatter radar, ultraviolet (UV) occultation measurements, and
globally defined space weather parameters such as solar radio flux at a wavelength of 10.7
cm (F10.7) and magnetic activity indices (Kp), as well as other parameters such as local time
and position. Specifically, a variety of parameters are needed as inputs of computation func-
tions with calculating the output variables listed in Table 3.1. At altitudes above 500 km, the
contributions from ”anomalous oxygen” are included to account for the contribution of non-
thermospheric species to satellite drag at high altitudes and permit the user to compute both
the ”thermospheric mass density” (or total neutral mass density) provided by past generations
of MSIS and an ”effective” mass density, which denotes the sum of the thermospheric mass
density and the anomalous oxygen contribution at altitudes near the exobase [Picone et al.,
2002]. NRLMSISE-00 model takes statistical variability into account while interpolating, or
extrapolating, the underlying data sets to estimate composition, temperature, and density for
times, where geophysical conditions and locations are not covered by the database. Therefore,
the NRLMSISE-00 model can be evaluated at any time and geographical position.

3.2 Thermospheric density grids

According to the routine of thermospheric density computation, the multi-dimensional ther-
mospheric density data from NRLMSISE-00 model can be determined in the investigation
period. Generally, the study of the empirical model NRLMSISE-00 is reasonable to include
a period of varying solar activity, i.e, include high and low solar activity since the perfor-
mance of the thermosphere model shall be observed as well during the solar event like the St.
Patrick’s storm day on 17 March 2015. As the first super geomagnetic storm of solar cycle 24
(2008-2019), the Disturbance Storm-Time (Dst) index of the St. Patrick’s storm day is less than
-200 categorized as the major (intense or great) storm [Wu et al., 2016], thus, the year 2015 is
selected as the main investigated period in this study. More specifically, the neutral density
dataset between 23/11/2014 - 14/03/2016 is computed and prepared which in total covers 64
full GPS weeks, thus, called ”64 GPS-week data” in this thesis.
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3 Thermospheric density computation

Table 3.1: Drivers of the empirical NRLMSISE-00 model

INPUTS Description
IYD YEAR AND DAY AS YYDDD
SEC UT(SEC)
ALT ALTITUDE(KM)

GLAT GEODETIC LATITUDE(DEG)
GLONG GEODETIC LONGITUDE(DEG)

STL LOCAL APPARENT SOLAR TIME
F107A 81 day AVERAGE OF F10.7 FLUX (centered on day DDD)

F107 DAILY F10.7 FLUX FOR PREVIOUS DAY
AP MAGNETIC INDEX(DAILY)

MASS MASS NUMBER
D(1) HE NUMBER DENSITY(CM-3)
D(2) O NUMBER DENSITY(CM-3)
D(3) N2 NUMBER DENSITY(CM-3)
D(4) O2 NUMBER DENSITY(CM-3)
D(5) AR NUMBER DENSITY(CM-3)
D(6) TOTAL MASS DENSITY(GM/CM3)
D(7) H NUMBER DENSITY(CM-3)
D(8) N NUMBER DENSITY(CM-3)
D(9) Anomalous oxygen NUMBER DENSITY(CM-3)
T(1) EXOSPHERIC TEMPERATURE
T(2) TEMPERATURE AT ALT

In the first step of data acquisition and preparation, the generated thermospheric densities
from NRLMSISE-00 model shall have a dense temporal structure which is mainly determined
by the characteristics of this study, that is, we are not able to define appropriate resolution in
different dimensions before we investigate the spatio-temporal content of the NRLMSISE-00
model using the neutral densities computed based on it. Therefore, the relatively dense res-
olution in time like several minutes can provide adequate data to make a first impression on
the estimated densities, also on the empirical thermosphere model. In this study, the thermo-
spheric density data with the sampling interval of 5 min is firstly computed which can also
be used to extract the data with other resolutions like 10 min, 30 min, etc.

For the spatial resolution of thermospheric density data, the homogeneous spacing in latitude
and longitude is chosen very frequently in numerical modeling and investigations because it
is easy to generate homogeneously distributed data from a model compared to the inhomoge-
neous data, and it is the best way for the numerical data to cover the global Earth. Therefore,
a grid spacing of 2.5◦x5◦ in latitude and longitude is used which is a common pair of sam-
pling adopted in a grid-like global representation like ionosphere [Goss et al., 2019]. However,
the determination of resolution in height dependency for the thermospheric densities needs
to be seriously considering the exponential expansion of them as a function of altitude at a
specific grid point. Similarly, the thermospheric density layers at each 5 m are generated in
order to rebuild the exponential distribution as close as possible to the realistic profile, and
also to guarantee an adequate test dataset. Additionally, with respect to the height range, the
densities between 0 km and 1000 km are generated initially.
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3.3 Data pre-analysis

Figure 3.1 gives an exemplary graph that contains 9 subfigures presenting the spatial distri-
bution of thermospheric densities derived from the NRLMSISE-00 model at different altitudes
at one specific time moment. It can be seen that although the maps at different heights have
similar global distributions except for the map at 200 km, their magnitudes differ significantly.
In order to observe the decaying behavior of thermospheric densities along the height, Fig.
3.2 illustrates two density profiles at the (-30◦, 0◦) grid point corresponding to two epochs
within the quiet period and within the storm period, respectively. Obviously, the exponential
decaying can be found in the NRLMSISE-00 model which is consistent with the theoretical
knowledge of the thermosphere. Moreover, two outputs of thermospheric density in Fig. 3.2
present different performances, in particular in the upper thermosphere, with faster decaying
speed for the profile during the quiet period than that during the storm period. It proves that
space weather activity has a visible influence on the thermospheric density.

Figures 3.1 and 3.2 leave an initial impression on the thermospheric densities from the empir-
ical NRLMSISE-00 model. Firstly, the density profile as a function of altitude turns at around
200 km and decays slower than the density below 200 km. Besides, starting from 300 km to
its upper, the global densities distribute differently compared to density maps below 300 km.
By taking the impression above and the height range of the thermosphere as well as the orbit
height of LEO satellites into account, the neutral densities between 300 and 1000 km are used
for further B-spline transformation.

Figure 3.1: Thermospheric density maps at different altitudes with the resolution of 2.5◦x5◦ in
latitude and longitude derived from the NRLMSISE-00 model at the defined time moment.

3.3 Data pre-analysis

The pre-analysis of thermospheric density data is indispensable, in particular, the frequency
content, prior to the B-spline transformation of multi-dimensional density grids. For an-
alyzing the spectral contents contained in the NRLMSISE-00 thermosphere model, Fourier
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3 Thermospheric density computation

Figure 3.2: Exemplary sketch of thermospheric density from NRLMSISE-00 model as a func-
tion of altitude at one specific grid point with the resolution of 5m.

analysis is a powerful tool to transform the density signal from the time domain to the fre-
quency domain. Considering CFT can help to generate spectral information of a signal at any
reasonable assigned frequency, which is a distinguished advantage compared to Fast Fourier
Transform (FFT), it is used to detect the distinct frequency information with the time series of
thermospheric densities of a long period. In CFT Equation (3.1), F(w) represents the Fourier
Transform of the corresponding time-dependent function f (t) as

F(w) =
∫ +∞

−∞
f (t) e−i2πwt dt, (3.1)

where w is the frequency one would like to investigate, t is the time, and i =
√
−1. This

expression means that the signal along the entire time axis is needed for deriving the Fourier
transform calculated at an individual frequency w.

Since a real signal is usually given within the finite time interval t ∈ [t1, t2], the Eq. (3.1) can
be written as

F(w) =
∫ t2

t1

f (t) e−i2πwt dt. (3.2)

Then the amplitude spectrum A(w) can be derived from corresponding F(w) through the
formula

A(w) =
2
√

S f f (w)

t2 − t1
=

2
√

F(w) · F∗(w)

t2 − t1
. (3.3)

with the same unit of the original signal f (t). And S f f denotes the Fourier spectrum.

With the method described above, Fig. 3.3 presents the time series of thermospheric density
at 500 km in the study period and the corresponding amplitude spectrum derived by CFT.
For the periods below one month to be investigated, the spacing of 10 min is adopted, while
the interval of one day is selected for the period above one month. It can be observed in Fig.
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3.3 Data pre-analysis

3.4 that there are four regional peaks in the amplitude spectrum: 24 h, 12 h, 8 h, 6 h with
amplitudes of 2.94e-13 kg/m3, 6.06e-14 kg/m3, 5.37e-15 kg/m3, 9.40e-15 kg/m3, respectively.
The peak at 24 h is apparently caused by the day-night behavior, however, the appearance of
the other three peaks at 12 h, 8 h, and 6 h is not concerning the physical reason. Generally,
the real signal in nature does not perfectly conform to harmonic functions but is composed
of a set of harmonic components. As a consequence, the frequency such as half-day, 1/3
day, and 1/4 day is probably detected by Fourier transform. Amongst the four peaks, the
period of 24 h is dominating with the largest amplitude. The similar results appear in the
time series at remaining attitudes as well, and it is worth mentioning that the amplitudes of
one regional peak at different attitudes, e.g. 24 h, also apply to exponential decaying, which
can be observed in Fig. 3.5.
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Figure 3.3: An example of amplitude spectrum derived by CFT (bottom) of the series of ther-
mospheric density (top) in the investigation period.

However, in Fig. 3.3 a period around 340 d can be found which is not far from the annual
period. It shows the variation of thermospheric densities containing the annual period, but it
is not exactly 365 d in the investigation period. This is because this so-called ”64 GPS-week
data” only covers one complete annual period, which results in the desired annual period not
being perfectly detected by CFT. This reason is proved by a small test: a periodical signal
exclusively containing sine functions with 2 cycles in the assigned time domain is generated,
which is transformed by CFT. As a result, the period with the highest amplitude in the
frequency domain deviates from 2π which is the assigned basis period in the original test
signal (see Fig. 3.6). However, the result is nearly 6.28 when the signal is repeated to 10
cycles (see Fig. 3.7). It means only 2 cycles are not enough to detect the basis frequency
successfully. Similarly, for acquiring the peak at the annual period in the real neutral density
series, longer-term data is required. As shown in Fig. 3.8 which illustrates a 15-year series
of thermospheric density also at 500 km and at (-30◦, 0◦) in latitude and longitude and the
corresponding result derived by CFT, apart from four regional peaks at 24 h, 12 h, 8 h, and 6
h which have been found in the ”64 GPS-week data”, the annual and semi-annual frequency
can also be observed in the long-term density series. However, the largest amplitude still
appears on the daily period and is the most dominating frequency component existing in the
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Figure 3.4: Local enlarged view of amplitude spectrum derived by CFT (bottom) of the series
of thermospheric density (top) in the investigation period.

Figure 3.5: The amplitude spectrum at the period of 24 h derived by CFT as a function of
altitude.
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3.3 Data pre-analysis

thermosphere NRLMSISE-00 model.

Nevertheless, the test results in Fig. 3.6 and Fig. 3.7 only prove that the signal with more
repeating cycles can be used to detect the basis frequency better than that with fewer repeating
cycles. It is not proper to suppose, the result in Fig. 3.6 is wrong because the period of 6.54 is
also close to 2π. When it comes to the time series of thermospheric density and the Fourier
transform in Fig. 3.3 which is also fine, it can be concluded that the annual variation in the
investigation period is not exactly one year, and the annual period is not that distinct due to
the short-term time series of neutral densities.

Furthermore, considering that 6 h is the minimum period found in the thermospheric density
series, it is appropriate to generate the thermosphere model represented by B-splines with the
temporal resolution of 1 h, which is a compromise between the computational work and the
great description of density variations with time.

X 6.53

Y 2.01948

Figure 3.6: A CFT test (right) performed on a periodical sin signal with basis period of 2π
repeating 2 cycles (left).
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X 6.29

Y 2.00072

Figure 3.7: A CFT test (right) performed on a periodical sin signal with basis period of 2π
repeating 10 cycles (left).
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Figure 3.8: An example of amplitude spectrum derived by CFT (bottom) of the 15-year series
of thermospheric density (top).
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4 Thermospheric density modeling approach -
B-spline modeling

In this study, we rely on B-splines as basis functions for thermosphere modeling. The main
characteristics of this approach are primarily defined by the disadvantages of other parametriza-
tion techniques such as Spherical Harmonics (SH): 1) The basis functions are compactly sup-
ported, namely, only non-zero in a local environment on the sphere to allow for the modifi-
cation of present data or incorporation of new data into the model without causing a global
effect. 2) The representation is continuous within the modeling region. [Limberger, 2015]
By combining the one-dimensional basis functions by means of tensor products, multidimen-
sional models can be constructed easily.

4.1 B-splines

For this purpose, polynomial and trigonometric B-splines with local support have been se-
lected as appropriate basis function candidates for representing the thermospheric informa-
tion derived from the empirical NRLMSISE-00 model in the space. In contrast to SH, which
are defined on a sphere and related to latitude and longitude via the associated Legendre
polynomials, B-spline basis functions are commonly defined in the Euclidean space R2 and
therefore need to be constrained in case of global spherical modeling. However, since space
observations for thermosphere modeling are typically available with heterogeneous distribu-
tion and quality, the feature of compact support clearly outweighs the issue of applying global
constraints [Limberger, 2015]. Furthermore, B-splines can be used to generate a Multi-scale
representation (MSR) [Schmidt et al., 2015; Schmidt, 2007a]. In the following sections, two
kinds of basis functions, namely normalized quadratic polynomial B-splines and normalized
periodic trigonometric B-splines are described.

4.1.1 Normalized Polynomial Quadratic B-splines

In the following, the normalized polynomial quadratic B-splines Nn
J,k(x) with degree n = 2

of resolution level J1 ∈ N0 and shift k1 = 0, 1, ..., KJ1 − 1 identifying a specific spline func-
tion is applied to model the latitude-dependent variations of thermospheric density within a
bounded interval, that is,

ϕJ1
k1
(φ) := N2

J1,k1
(φ) (4.1)

where ϕJ1
k1
(φ) is the 1-D scaling function depending on latitude φ.

Specifically speaking, a total of KJ1 = 2J1 + 2 B-splines are located along a meridian depending
on the latitude φ ∈ [−90◦, 90◦]. The model resolution is controlled by the level, i.e., the higher
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4 Thermospheric density modeling approach - B-spline modeling

J1, the finer the signal structures that can be resolved. To construct the KJ1 B-spline functions,
the sequence

−90◦ = ϕJ1
0 = ϕJ1

1 = ϕJ1
2︸ ︷︷ ︸

Boundary multiplicity

< ϕJ1
3 < ... <︸ ︷︷ ︸

Internal sequence

ϕJ1
KJ1

= ϕJ1
KJ1+1 = ϕJ1

KJ1+2 = 90◦︸ ︷︷ ︸
Boundary multiplicity

(4.2)

of knot points ϕJ1
k1

is established, where, at the boundaries, multiple knots have to be linked
to a specific coordinate point. The consideration of multiple knot points at the poles is
called ”endpoint-interpolating” and ensures the closing of the modeling interval. The con-
stant difference between two consecutive knots ϕJ1

k1
and ϕJ1

k1+1 for k1 = 2, ..., KJ1 − 1 amounts to
180◦/2J1 [Goss et al., 2019]. Referring to Schumaker and Traas [1991] and Stollnitz et al. [1995]
the normalized quadratic polynomial B-spline can be computed with the recursive relation

Nn
J1,k1

(φ) =
φ − φJ1

k1

φJ1
k1+n − φJ1

k1

Nn−1
J1,k1

(φ) +
φJ1

k1+n+1 − φ

φJ1
k1+n+1 − φJ1

k1+1

Nn−1
J1,k1+1(φ) (4.3)

with n = 1, 2 from the initial values

N0
J1,k1

(φ) =

{
1 if φJ1

k1
≤ φ < φJ1

k1+1 and φJ1
k1
< φJ1

k1+1

0 others,
(4.4)

where in Eq.4.3 a factor is set to zero if the denominator is equal to zero.

Figure 4.1: Normalized quadratic polynomial B-splines with different levels J1 = 0, 1, 2, 3 and
accordingly different numbers of B-splines KJ1 = 3, 4, 6, 10

.

Fig. 4.1 provides examples of endpoint-interpolating polynomial B-spline functions of degree
n = 2 regarding different levels J1 = 0, 1, 2, 3. The number of splines varies with J1 where the
subplots are related to J1 = 0 → K0 = 3 (top-left), J1 = 1 → K1 = 4 (top-right), J1 = 2 →

20



4.1 B-splines

K2 = 6 (bottom-left) and J1 = 3 → K3 = 10 (bottom-right). Special features of polynomial
B-splines are in particular given by the endpoint-interpolation, i.e., adaptation of the splines
to a bounded interval, and localization, i.e., they are different from zero only within a small
subinterval of length δJ1 ≈ 3 · hJ1 where

hJ1 =
180◦

2J1 + 1
(4.5)

means the approximate distance between two consecutive B-splines along the meridian [Schmidt
et al., 2011].

It can be clearly seen from the plots, that the first two and last two splines are different
with respect to the interior spline functions contributing to the endpoint-interpolation in the
bounded interval. A comparison of all four figures demonstrates how the B-spline support
interval changes with J1, i.e., the higher the level the smaller the influenced area and the
sharper the peaks. From Fig. 4.1 it becomes visible that always three adjacent splines are
overlapping, i.e., a single data point contributes to the determination of exactly three B-spline
coefficients [Limberger, 2015]. As the level J1 determines the total number KJ1 of B-splines, the
increasing J1 can be used to model the finer structures of density variations. Therefore, the
model resolution is defined by J1 and should be adapted to the input data density to overcome
data gaps. For the case of homogeneous data sampling, the selection of the level J1 relates
to the sampling interval ∆φ of the input data in latitude dependency according to [Schmidt
et al., 2011]

∆φ < hJ1 . (4.6)

Combining Eq. 4.5 and Eq. 4.6, the inequality constraint

J1 ≤ log2 (
180◦

∆φ
− 1) (4.7)

is solved.

4.1.2 Normalized Trigonometric B-splines

In the modeling of variations of thermospheric densities in longitudinal direction, we apply
trigonometric B-splines T3

J2,k2
(λ) of order 3 with the resolution level J2 ∈ N0 and shift k2 =

0, 1, ..., KJ2 − 1, that is,
ϕJ2

k2
(λ) := T3

J2,k2
(λ) (4.8)

where ϕJ2
k2
(λ) is the 1-D scaling function depending on longitude λ.

To be more specific, the total number KJ2 = 3 · 2J2 of trigonometric B-splines are located along
the parallels of the chosen spherical coordinate system within the interval λ ∈ [0◦, 360◦). For
constructing KJ2 B-spline functions, the sequence of knot points

0◦ = λJ2
0 < λJ2

1 < ... < λJ2
k2
< ... < λJ2

KJ2−1 < 360◦ (4.9)

with additional knots
λJ2

KJ2+i = λJ2
i + 360◦ for i = 0, 1, 2 (4.10)

for considering the periodicity is established. Consequently, the first and the last two B-spline
functions within the interval [0◦, 360◦) are completed by the so-called ”wrapping around”
effect. This constraint allows trigonometric B-splines to be defined in two different ways:
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4 Thermospheric density modeling approach - B-spline modeling

1. Following Schumaker and Traas [1991], Jekeli [2005] and Limberger [2015] periodic
trigonometric B-splines can be calculated by a recurrence relation similar to Eq. (4.3).
Thereby, additional constraints have to be introduced to force the periodicity of the series
coefficients.

2. The second option was introduced by Lyche and Schumaker [2000] and used by Schmidt
et al. [2011], Schmidt et al. [2015] and Goss et al. [2019]. It will be described in the
following in more detail.

Similar to the polynomial B-splines, the distance between two consecutive knots λJ2
k2

and λJ2
k2+1

for k2 = 0, 1, ..., KJ2 − 1 reads

hJ2 =
360◦

KJ2

=
120◦

2J2
. (4.11)

Following Lyche and Schumaker [2000], the functions are defined as

MJ2,k2(λ) = T3
J2,k2

(λ) = T3
hJ2
(λ − λJ2

k2
) (4.12)

with setting hJ2 = h and λ − λJ2
k2
= Θ for the sake of simplification, thus, the function T3

hJ2
(λ −

λJ2
k2
) = T3

h (Θ) can be computed via

T3
h (Θ) =



sin2(Θ/2)
sin(h/2) sin(h)

for 0 ≤ Θ < h

1
cos(h/2)

− sin2((Θ − h)/2) + sin2((2h − Θ)/2)
sin(h/2) sin(h)

for h ≤ Θ < 2h

sin2((3h − Θ)/2)
sin(h/2) sin(h)

for 2h ≤ Θ < 3h

0 others.

(4.13)

Finally, the basis functions are obtained as

ϕJ2
k2
(λ) =

{
MJ2,k2(λ) for k2 = 0, ..., KJ2 − 3
MJ2,k2(λ) + MJ2,k2(λ − 360◦) for k2 = KJ2 − 2, KJ2 − 1.

(4.14)

As can be seen from Fig. 4.2 which provides examples of trigonometric B-spline functions
regarding different levels J2 = 0, 1, 2, 3. The number of splines varies with J2 where the
subplots are related to J2 = 0 → K0 = 3 (top-left), J2 = 1 → K1 = 6 (top-right), J2 = 2 → K2 =
12 (bottom-left) and J2 = 3 → K2 = 24 (bottom-right), the length of the non-zero subinterval
of a B-spline function is given as δJ2 = 3 · hJ2 = 360◦/2J2 . Similarities to the polynomial
B-spline functions can be found in the local support and the overlap of three splines at each
point along x-axis. The main difference is related to the boundary splines where, in contrast to
the endpoint-interpolation of polynomial splines, the periodicity is visible. Although different
colors have been chosen for each function, it can be clearly seen that every sub-spline at one
boundary is continued at the opposite boundary. For instance in the top-left illustration for
J2 = 0, the yellow spline on the right can be connected with the yellow spline on the left
without any discontinuation. Similar to the polynomial B-splines, the choice of the level J2
depends on the sampling interval ∆λ of input data in the longitudinal direction. Parallel
to Eq. 4.6, the inequal constraint ∆λ < hJ2 needs be fulfilled. Solving the inequality above
together with Eq. 4.11, we obtain

J2 ≤ log2 (
120◦

∆λ
). (4.15)
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4.1 B-splines

Figure 4.2: Trigonometric B-splines with different levels J2 = 0, 1, 2, 3 and accordingly different
number of B-splines KJ2 = 3, 6, 12, 24.

4.1.3 B-spline tensor products

The earth sphere S can be defined as

RS := {(φ, λ) : −90◦ ≤ φ ≤ 90◦ and 0 ≤ λ < 2π} (4.16)

with coordinates φ (unit: degree) and λ (unit: radius) in an angular system mapped on a
rectangle RS in a 2-D space R2. In order to represent multidimensional information on the
rectangular modeling surface as introduced in Eq. (4.16), tensor products of B-spline basis
functions shall be applied in an orthogonal coordinate system. Details about tensor product
techniques for surface modeling can, e.g., be found in Dierckx [1984]; Meyling and Pfluger
[1987]; Zeilhofer [2008].

For a 2-D case representation, the approximation function s can be constructed from

s(x1, x2) =

KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

dJ1,J2
k1,k2

ϕJ1
k1
(x1) ϕJ2

k2
(x2), (4.17)

where tensor products of two linearly independent 1-D B-spline functions ϕJ1
k1

and ϕJ2
k2

have

been introduced together with the corresponding series coefficients dJ1,J2
k1,k2

. It should be noticed

that ϕJ1
k1

and ϕJ2
k2

may differ but can also be of the same type.

Firstly, the 2-D basis is generated from the combination of polynomial and trigonometric B-
spline functions, which is generally corresponding to the case of global modeling on the Earth.
Therefore, the basis is defined as

x1 → ϕ3
k1
(φ) and x2 → ϕ2

k2
(λ) (4.18)
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for different levels J1 = 3 and J2 = 2 with endpoint-interpolation in the x1 (latitude) and
continuity in the x2 (longitude) direction. Figure 4.3 shows the support area for ϕ3

4(φ) and
ϕ2

7(λ) in this spline constellation. The right subplot additionally shows the 3-D shape of a 2-D
tensor B-spline product basis related to the emphasized splines of the left graph.

Figure 4.3: Combination of polynomial B-splines with level J1 = 3 and trigonometric B-splines
with level J2 = 2. A specific spline combination identified by k1 = 4 and k2 = 7 has
been highlighted and plotted in the center part of the left subplot. Accordingly, a 3-D
representation of the tensor product is given on the right-hand side.

For each additional dimension, a new set of basis functions can be incorporated, i.e., the B-
spline expansion can easily be adapted to higher or lower dimensions by means of the tensor
product technique. For example, a 3-D modeling basis is accordingly defined as

s(x1, x2, x3) =

KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

KJ3−1

∑
k3=0

dJ1,J2,J3
k1,k2,k3

ϕJ1
k1
(x1) ϕJ2

k2
(x2) ϕJ3

k3
(x3). (4.19)

Further details about B-spline expansions for multidimensional modeling are, for instance,
published by Schmidt et al. [2015]. These generally derived formulations for basis representa-
tions with normalized quadratic polynomial B-splines and normalized periodic trigonometric
B-splines, individual and combined in tensor products, will now be adapted for thermosphere
modeling.

4.2 Thermosphere modeling with B-splines

Different function characteristics are crucial to select a suitable set of basis functions. It has
been shown that polynomial B-splines are rather convenient for regional modeling applica-
tions due to the endpoint-interpolation while trigonometric B-splines are preferable for global
modeling. A more concrete formulation for thermosphere modeling is provided and ten-
sor products of 1-D B-spline scaling functions for the multidimensional representation in the
spatio-temporal domain are introduced.
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4.2.1 Two-dimensional thermosphere modeling

The thermospheric density depending on latitude and longitude is firstly considered at a
certain time moment and a specific altitude. This signal is transformed into a B-spline repre-
sentation in terms of a 2-D tensor products of two 1-D basis functions depending on latitude
and longitude. The 2-D thermospheric density signal Q(φ, λ) plus the error e(φ, λ) can be
represented as the series expansion [Schmidt, 2007b]

Q(φ, λ) + e(φ, λ) =

KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

dJ1,J2
k1,k2

ϕJ1,J2
k1,k2

(φ, λ) (4.20)

in terms of 2-D basis functions

ϕJ1,J2
k1,k2

(φ, λ) = ϕJ1
k1
(φ) ϕJ2

k2
(λ) (4.21)

as the tensor product of of two 1-D basis functions ϕJ
k(x) depending on x ∈ {φ, λ} with

unknown series coefficients dJ1,J2
k1,k2

. ϕJ
k(x) is of resolution level J ∈ N0 (J ∈ {J1, J2}) and shift

k ∈ N0 (k ∈ {k1, k2}) [Liang, 2017].

According to the discussion above, the polynomial and trigonometric B-splines as basis func-
tions in latitudinal and longitudinal directions are applied to form a 2-D tensor product with
unknown B-spline coefficients of number which depends on resolution levels J1 and J2. Ac-
cording to Table 4.1 in Goss et al. [2019] which shows numerical values for the B-spline levels
J1 and J2, and the corresponding required input data sampling interval ∆φ and ∆λ. If the
global sampling intervals ∆φ and ∆λ are known, the two level values J1 and J2 can be cal-
culated from Eqs. (4.7) and (4.15). A 2.5◦ x 5◦ resolution in latitude and longitude used in
thermospheric density grids matches the level values J1 ≤ 6 and J2 ≤ 4. However, the fi-
nal choice for two resolution levels J1 and J2 shall be discussed based on the knowledge of
ionosphere modeling.

In the ionosphere modeling, most of the Global Ionosphere Models (GIM) are based on series
expansions in terms of SH with a maximum degree of nmax = 15. This value fits a block size
of about 12◦ × 12◦ on the sphere ΩH with radius RH = RE + H, where H is the single-layer
height and RE is the radius of the Earth [Goss et al., 2019]. In contrast, a grid spacing of
2.5◦ × 5◦ corresponds to a maximum SH degree of around n = 36. As a matter of fact, a
reliable computation of the corresponding SH series coefficients requires a global input data
coverage of the same spatial sampling. Due to the limitation of observation distribution, the
maximum degree nmax = 15 is generally used in SH. Referring to Goss et al. [2019], based on
nmax = 15, we obtain the assumptions J1 = 4 (for nmax = 17) and J2 = 3 (for nmax = 12) for the
two B-spline levels J1 and J2, which can be seen as the spectrally closest representation to the
current International GNSS Service (IGS) solutions.

Therefore, based on the experience in ionosphere modeling, J1 = 4 and J2 = 3 are chosen
for 2-D thermospheric density modeling in this thesis. For J1 = 4 and J2 = 3, the modeling
system has KJ1 = 18 polynomial B-splines and KJ2 = 24 trigonometric B-splines, thus, totally
KJ1 · KJ2 = 324 B-spline coefficients.

In the next step, the unknown B-spline coefficients are estimated in the linear adjustment
system with thermospheric densities as input observations and 2-D tensor products in the
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Table 4.1: Numerical values for the B-spline levels J1 and J2, the input data sampling intervals
∆φ and ∆λ by evaluating the inequalities from Eq. (4.7) and Eq. (4.15); the left part of the
table presents the numbers along a meridian (Eq. (4.7)), and the right part presents the
numbers along the equator and its parallels according to Eq. (4.15).

Latitude Longitude
J1 1 2 3 4 5 6 J2 1 2 3 4 5 6

∆φ 60◦ 36◦ 20◦ 10.5◦ 5.45◦ 2.85◦ ∆λ 60◦ 30◦ 15◦ 7.5◦ 3.75◦ 1.875◦

design matrix. For this purpose, Eqs. (4.20) and (4.21) need to be rewritten in vector and
matrix notation. We introduce the KJ1 × 1 vector

ϕJ1
(φ) =

[
ϕJ1

0 (φ) ϕJ1
1 (φ) · · · ϕJ1

KJ1−1(φ)
]T

, (4.22)

the KJ2 × 1 vector

ϕJ2
(λ) =

[
ϕJ2

0 (λ) ϕJ2
1 (λ) · · · ϕJ2

KJ2−1(λ)
]T

(4.23)

and the KJ1 × KJ2 coefficient matrix

DJ1,J2 =


dJ1,J2

0,0 dJ1,J2
0,1 · · · dJ1,J2

0,KJ2−1

dJ1,J2
1,0 dJ1,J2

1,1 · · · dJ1,J2
1,KJ2−1

...
...

. . .
...

dJ1,J2
KJ1−1,0 dJ1,J2

KJ1−1,1 · · · dJ1,J2
KJ1−1,KJ2−1

 . (4.24)

Considering the computation rules for the Kronecker product ”
⊗

” [Koch, 1999], Eq. (4.20)
can be written as

Q(φ, λ) + e(φ, λ) = (ϕJ2
(λ)

⊗
ϕJ1

(φ))TvecDJ1,J2

= ϕJ1,J2
(φ, λ) vecDJ1,J2

(4.25)

where ϕJ1,J2
(φ, λ) = (ϕJ2

(λ)
⊗

ϕJ1
(φ))T, and ”vec” refers to the vec operator. which is defined

as

vec
[

X Y
U V

]
=


X
U
Y
V

 . (4.26)

In the case of 2-D global modeling, there is one grid presenting the thermospheric density
expressed as

Q(φ, λ) =


Q(φ1, λ1) Q(φ1, λ2) · · · Q(φ1, λn)
Q(φ2, λ1) Q(φ2, λ2) · · · Q(φ2, λn)

...
...

. . .
...

Q(φm, λ1) Q(φm, λ2) · · · Q(φm, λn)

 (4.27)

where m, n are the numbers of discrete latitude and longitude values of the thermospheric
density grid.
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4.2 Thermosphere modeling with B-splines

And the tensor product needs to be computed for each grid point obtaining

TP(φ, λ) =


ϕJ1,J2

(φ1, λ1) ϕJ1,J2
(φ1, λ2) · · · ϕJ1,J2

(φ1, λn)

ϕJ1,J2
(φ2, λ1) ϕJ1,J2

(φ2, λ2) · · · ϕJ1,J2
(φ2, λn)

...
...

. . .
...

ϕJ1,J2
(φm, λ1) ϕJ1,J2

(φm, λ2) · · · ϕJ1,J2
(φm, λn)

 . (4.28)

Therefore, the functional model in B-spline modeling describing a linear adjustment system
where ŷ means the corrected observations which is related to the original observations y by
the error vector e, and x̂ means the vector of estimated unknown parameters, is expressed
based on Eq. (4.25) as

ŷ2D = A2Dx̂2D (4.29)

with the N × 1 (N = m · n) matrix

ŷ2D = vec Q(φ, λ) + e = y2D + e, (4.30)

the N × K (K = KJ1 · KJ2) matrix
A2D = vec TP(φ, λ), (4.31)

the K × 1 matrix
x̂2D = vec DJ1,J2 . (4.32)

In real work, the generation of the design matrix in B-spline transformation is the key pro-
cedure since it has to be arranged in the same sequence of observations in terms of latitude
and longitude. Algorithm 4.1 describes how the design matrix in 2-D adjustment system is
generated by several for-loops. In this algorithm, the location of observations is traversed
in a latitude-first way, that is, for one fixed longitude, all grid points along the correspond-
ing meridian are arranged followed by those corresponding to the next longitude. The way of
longitude-first is feasible as well once the arrangement of observations and 2-D tensor product
in terms of locations is in the same sequence.

As a consequence, the B-spline coefficients are estimated by the least-squares adjustment with
the introduction of weighting matrix P2D, reading as

x̂2D = (AT
2DP2DA2D)

−1AT
2DP2Dy2D. (4.33)

Generally, the arrangement of the weighting matrix P2D in the estimation of B-spline coeffi-
cients for thermosphere has three widely used options:

1. The first one is directly using a unit matrix with the dimension of N × N, that is,

P2D = IN×N (4.34)

stating that all the input observations in one horizontal plane keep the same weight.

2. The second one regards the inversion of the N × N variance-covariance matrix K2D of
the observations as the weighting matrix. In this case,

P2D = K−1
2D. (4.35)
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4 Thermospheric density modeling approach - B-spline modeling

Algorithm 4.1: DesignMatrix − 2D (LAT,LON,J1,d1,J2)
Input: A latitude vector LAT, a longitude vector LON, the level and degree for

polynomial B-splines in latitude dependency J1, d1, the level for trigonometric
B-splines in longitude dependency J2

Output: The design matrix A in 2-D B-spline modeling

1 KJ1 = 1 : (2J1 + d1);
2 KJ2 = 1 : (3 ∗ 2J2);
3 r = 0;
4 for i2 = 1 : length(LON) do
5 for i1 = 1 : length(LAT) do
6 r = r+1;
7 c = 0;
8 for k2 = 1 : length(KJ2) do
9 for k1 = 1 : length(KJ1) do

10 c = c+1;
11 A(r,c) = polynomial-

b(J1,d1,k1 − 1,LAT(i1),min(LAT),max(LAT))*trigonometric-
b(J2,k2,LON(i2)); ▷ polynomial-b, trigonometric-b = functions to
generate polynomial and trigonometric B-splines

3. The last one is to set up a weighting number for each observation dependent on the
location of observations, e.g. latitude. This is raised according to the sphere shape of
the earth, leading to the smaller amount of observations in the polar region compared
to the equator, which consequently makes it reasonable to assign the weighting number
to observations based on latitude. The cosine function can be used to describe desirably
this weighting relationship. Nevertheless, the cosine value in the polar region is 0 which
is not the real case, thus, a small value of 0.01 is added to each weighting number for all
latitudes.

Amongst these options, the first one is the easiest, and the second cannot be achieved due
to the lack of variance-covariance information of observations as they are derived from the
empirical thermosphere model. Whereas the third option introduces the latitude-dependent
number in the weighting matrix, which can be computed by the cosine value of latitude.
This is because the higher latitude, the less amount of observations, in reality, resulting in
less weight in the linear squares adjustment system, which can be described desirably by the
cosine function. In this study, the third option (see Algorithm 4.2) is chosen since it considers
the changing of observation volume observed with geodetic techniques, in particular, only
one grid point in the polar region.

Finally, the reconstructed thermospheric densities can be computed as well by means of Eq.
(4.29), which exactly represents the rebuilt part of input neutral densities purely derived by the
B-spline model, in other words, the difference between reconstructed ŷ and original densities y
represents the observation part beyond the abilities of B-spline modeling with specific levels.
Furthermore, the neutral density at one grid point which never appears in the grid points
of observations can be estimated as well with the involvement of all B-spline coefficients,
obtaining as

Q(φ′, λ′) = ϕJ1,J2
(φ′, λ′)x̂2D. (4.36)
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4.2 Thermosphere modeling with B-splines

Algorithm 4.2: WeightingMatrix − 2D (LAT, LON)
Input: A latitude vector LAT, a longitude vector LON
Output: The weighting matrix P2D in 2-D B-spline modeling

1 r = 0;
2 for i2 = 1 : length(LON) do
3 for i1 = 1 : length(LAT) do
4 r = r+1;
5 P(r, r) = cos(LAT(i1)) + 0.01; ▷ The addition of 0.01 is for avoiding the problem

of singularity

4.2.2 Three-dimensional thermosphere modeling

It is certainly possible to introduce any vertical profile function to combine it with mathemat-
ical B-spline basis functions [Zeilhofer, 2008]. The exponential function is used for fitting the
variations of vertical profiles in thermosphere-related applications. However, as a B-spline-
oriented study, it is also valuable to include the additional B-spline basis functions for the
third dimension, the height h, which is the way adopted for 3-D thermospheric density mod-
eling in this thesis. Besides, the polynomial B-spline basis function is applied in the height
dimension due to the characteristics at the boundaries.

The three-dimensional thermospheric density signal Q(ϕ, λ, h) can be represented as the series
expansion

Q(φ, λ, h) + e(φ, λ, h) =
KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

KJ3−1

∑
k3=0

dJ1,J2,J3
k1,k2,k3

ϕJ1,J2,J3
k1,k2,k3

(φ, λ, h) (4.37)

in terms of 3-D basis function

ϕJ1,J2,J3
k1,k2,k3

(φ, λ, h) = ϕJ1
k1
(φ) ϕJ2

k2
(λ) ϕJ3

k3
(h) (4.38)

as the tensor product of of three 1-D basis functions ϕJ
k(x) depending on x ∈ {φ, λ, h} with

unknown series coefficients dJ1,J2,J3
k1,k2,k3

. ϕJ
k(x) is of resolution level J ∈ N0 (J ∈ {J1, J2, J3}) and

shift k ∈ N0 (k ∈ {k1, k2, k3}) [Schmidt, 2007b; Liang, 2017].

Compared to the 2-D B-spline modeling, the 3-D model not only represents the density vari-
ations in latitude and longitude but also includes the profiles along the height at each grid
point globally. In other words, the 3-D tensor product is computed by three 1-D basis func-
tions depending on latitude, longitude, and height. However, with a totally different variation
pattern from that in 2-D model having a comparatively smooth change of numerical values of
thermospheric densities, the vertical profile above one grid point on the ground presents the
exponential attenuation with the increasing height. Therefore, the representation of neutral
densities in height dependency is a new and key issue in B-spline modeling.

The linear adjustment system in 3-D modeling is not totally the same as that in 2-D modeling
in terms of the tensor product, observation vector, and vector of B-spline coefficients since the
variable of height needs to be included. We introduce the KJ3 × 1 vector

ϕJ3
(h) =

[
ϕJ3

0 (h) ϕJ3
1 (h) · · · ϕJ3

KJ3−1(h)
]T

(4.39)
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4 Thermospheric density modeling approach - B-spline modeling

, then Eq. (4.37) can be rewritten as

Q(φ, λ, h) + e(φ, λ, h) = (ϕJ3
(h)

⊗
(ϕJ2

(λ)
⊗

ϕJ1
(φ)))TvecDJ1,J2,J3

= ϕJ1,J2,J3
(φ, λ, h) vecDJ1,J2,J3

(4.40)

where ϕJ1,J2,J3
(φ, λ, h) = (ϕJ3

(h)
⊗
(ϕJ2

(λ)
⊗

ϕJ1
(φ)))T, and ”vec” refers to the vec operator.

Specifically speaking, the observation vector y3D is expressed as

y3D =


vecQ(φ, λ, h1)
vecQ(φ, λ, h2)

...
vecQ(φ, λ, hs)

 (4.41)

where s is the number of discrete layers along the height and

Q(φ, λ, h) =


Q(φ1, λ1, h) Q(φ1, λ2, h) · · · Q(φ1, λn, h)
Q(φ2, λ1, h) Q(φ2, λ2, h) · · · Q(φ2, λn, h)

...
...

. . .
...

Q(φm, λ1, h) Q(φm, λ2, h) · · · Q(φm, λn, h)

 (4.42)

And the design matrix in 3-D B-spline representation is written as

A3D =


vecTP(φ, λ, h1)
vecTP(φ, λ, h2)

...
vecTP(φ, λ, hs)

 (4.43)

with

TP(φ, λ, h) =


ϕJ1,J2,J3

(φ1, λ1, h) ϕJ1,J2,J3
(φ1, λ2, h) · · · ϕJ1,J2,J3

(φ1, λn, h)
ϕJ1,J2,J3

(φ2, λ1, h) ϕJ1,J2,J3
(φ2, λ2, h) · · · ϕJ1,J2,J3

(φ2, λn, h)
...

...
. . .

...
ϕJ1,J2,J3

(φm, λ1, h) ϕJ1,J2,J3
(φm, λ2, h) · · · ϕJ1,J2,J3

(φm, λn, h)

 . (4.44)

It is difficult to describe the arrangement of the design matrix in 3-D modeling purely with
matrix entry because only 2-D matrices can be written in the paper. Thus, algorithm 4.3 helps
describe how the design matrix in 3-D adjustment system is generated. Similarly, a fixed and
consistent sequence to arrange the observations and design matrix in terms of locations of
grid points is needed in order to guarantee the correct B-spline coefficients to be estimated. In
algorithm 4.3, on the basis of the latitude-first traverse, the longitude is traversed next for one
fixed height.

As a result, the unknown B-spine coefficients in 3-D modeling are obtained with the same
method in 2-D modeling as

x̂3D = (AT
3DP3DA3D)

−1AT
3DP3Dy3D, (4.45)
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4.2 Thermosphere modeling with B-splines

Algorithm 4.3: DesignMatrix − 3D (LAT, LON, H, J1, d1, J2, J3, d3)
Input: A latitude vector LAT, a longitude vector LON, a height vector H, the level

and degree for polynomial B-splines in latitude J1, d1, the level for
trigonometric B-splines in longitude J2, the level and degree for polynomial
B-splines in height J3, d3

Output: The design matrix A3D in 3-D B-spline modeling

1 KJ1 = 1 : (2J1 + d1);
2 KJ2 = 1 : (3 ∗ 2J2);
3 KJ3 = 1 : (2J3 + d3);
4 r = 0;
5 for i3 = 1 : length(H) do
6 for i2 = 1 : length(LON) do
7 for i1 = 1 : length(LAT) do
8 r = r+1;
9 c = 0;

10 for k3 = 1 : length(KJ3) do
11 for k2 = 1 : length(KJ2) do
12 for k1 = 1 : length(KJ1) do
13 c = c+1;
14 A(r,c) = polynomial-b(J1,d1,k1 − 1,LAT(i1),min(LAT),max(LAT))

*trigonometricb(J2,k2,LON(i2))*polynomial-
b(J3,d3,k3 − 1,H(i3),min(H),max(H)); ▷ polynomial-b,
trigonometric-b = functions to generate polynomial and
trigonometric B-splines
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4 Thermospheric density modeling approach - B-spline modeling

which is arranged by

x̂3D = vecDJ1,J2,J3 =


vecDJ1,J2(0)
vecDJ1,J2(1)

...
vecDJ1,J2(KJ3 − 1)

 (4.46)

and

DJ1,J2(k3) =


dJ1,J2,J3

0,0,k3
dJ1,J2,J3

0,1,k3
· · · dJ1,J2,J3

0,KJ2−1,k3

dJ1,J2,J3
1,0,k3

dJ1,J2,J3
1,1,k3

· · · dJ1,J2,J3
1,KJ2−1,k3

...
...

. . .
...

dJ1,J2,J3
KJ1−1,0,k3

dJ1,J2,J3
KJ1−1,1,k3

· · · dJ1,J2,J3
KJ1−1,KJ2−1,k3

 . (4.47)

Additionally, the weighting matrix P3D needs to be considered seriously due to the expo-
nential distribution of thermospheric densities in height dependency. Similarly, the latitude-
dependent strategy is still applied in the weighting at one specific height. But the weighting
along the height has several possibilities. The first one is a unit matrix in height dependency,
which assumes the standard deviations of observations at different heights to be the same.
However, due to the different magnitudes of observations dependent on height, the standard
deviations of them are more likely to be at different levels, resulting in different weighting in
the adjustment system. Therefore, the way of weighting can be that observations of high alti-
tudes have more weight than those of lower altitudes. Due to the lack of precision information
for original observations, there is no other choice but to set up the weighting matrix in 3-D
thermosphere modeling with the precision information derived in 2-D modeling. For exam-
ple, the standard deviation (STD)s of estimated observations at each altitude in 2-D B-spline
transformation can be used to compute the weighting number corresponding to each height.
Algorithm 4.4 describes the procedure of generating the weighting matrix of 3-D modeling,
which is essentially the combination of options 2 and 3 in the weighting strategies raised in
Section 4.2.1.

Algorithm 4.4: WeightingMatrix − 3D (LAT, LON, H)
Input: A latitude vector LAT, a longitude vector LON, a height vector H
Output: The weighting matrix P3D in 3-D B-spline modeling

1 r = 0;
2 for i3 = 1 : length(H) do
3 for i2 = 1 : length(LON) do
4 for i1 = 1 : length(LAT) do
5 r = r+1;
6 P(r, r) = (cos(LAT(i1)) + 0.01)/std(i3)2; ▷ The addition of 0.01 is for

avoiding the problem of singularity; std(h) corresponds to the average of
standard deviations of estimated neutral densities at height h derived
from 2-D modeling
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4.2 Thermosphere modeling with B-splines

4.2.3 Four-dimensional thermosphere modeling

On the basis of three-dimensional modeling, the representation of thermospheric densities
can be extended to the context of 4-D by including temporal variations in the time domain.
In this case, the tensor product is generated by the multiplication of four 1-D basis functions
with exclusively trigonometric B-splines in longitude dependency.

The 4-D thermospheric density signal D(ϕ, λ, h, t) can be represented as the series expansion

Q(φ, λ, h, t) + e(φ, λ, h, t) =
KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

KJ3−1

∑
k3=0

KJ4−1

∑
k4=0

dJ1,J2,J3,J4
k1,k2,k3,k4

ϕJ1,J2,J3,J4
k1,k2,k3,k4

(φ, λ, h, t) (4.48)

in terms of 4-D basis function

dJ1,J2,J3,J4
k1,k2,k3,k4

(φ, λ, h, t) = ϕJ1
k1
(φ) ϕJ2

k2
(λ) ϕJ3

k3
(h) ϕJ4

k4
(t) (4.49)

as the tensor product of of four 1-D basis functions ϕJ
k(x) depending on x ∈ {φ, λ, h, t} with

unknown series coefficients dJ1,J2,J3,J4
k1,k2,k3,k4

. ϕJ
k(x) is of resolution level J ∈ N0 (J ∈ {J1, J2, J3, J4})

and shift k ∈ N0 (k ∈ {k1, k2, k3, k4}).

The functional model in 4-D B-spline modeling reads as

ŷ4D = A4Dx̂4D (4.50)

with ŷ4D the corrected neutral densities with the dimension of M × 1 (v is the number of
time epochs and M = m · n · s · v), A4D the design matrix in spatio-temporal modeling with
the dimension of M × O (O = KJ1 · KJ2 · KJ3 · KJ4), and x̂4D the B-spline coefficients with the
dimension of O × 1.

It has been known it is complicated to present matrices mentioned above using different
variables, thus, only the algorithm to generate the design matrix in 4-D modeling is placed
as shown in algorithm 4.6. The variables of four dimensions are traversed in the sequence of
latitude, longitude, height, and time epoch, and the input observations are arranged in this
sequence as well. In the next step, the B-spline coefficients are estimated by

x̂4D = (AT
4DP4DA4D)

−1AT
4DP4Dy4D. (4.51)

The choice of weighting matrix in spatio-temporal modeling of the thermosphere is similar to
that in 3-D modeling, that is, the combination of options 2 and 3 in the weighting strategies
raised in Section 4.2.1. And for the temporal dimension, the unit weighting is adopted due to
the smooth variations in the time domain. Nevertheless, the different point is the average of
STD values is computed with STDs covering all the time epochs for one specific height in one
4-D model as shown in algorithm 4.5.
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4 Thermospheric density modeling approach - B-spline modeling

Algorithm 4.5: WeightingMatrix − 4D (LAT, LON, H, T)
Input: A latitude vector LAT, a longitude vector LON, a height vector H, a time

vector T
Output: The weighting matrix P4D in 4-D B-spline modeling

1 r = 0;
2 for i4 = 1 : length(T) do
3 for i3 = 1 : length(H) do
4 for i2 = 1 : length(LON) do
5 for i1 = 1 : length(LAT) do
6 r = r+1;
7 P(r, r) = (cos(LAT(i1)) + 0.01)/std(i3)2; ▷ The addition of 0.01 is for

avoiding the problem of singularity; std(h) corresponds to the average
of standard deviations of estimated neutral densities at height h
derived from 2-D modeling involving the whole time period
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Algorithm 4.6: DesignMatrix − 4D (LAT, LON, H, T, J1, d1, J2, J3, d3, J4, d4)
Input: A latitude vector LAT, a longitude vector LON, a height vector H, a time

vector T, the level and degree for polynomial B-splines in latitude J1, d1, the
level for trigonometric B-splines in longitude J2, the level and degree for
polynomial B-splines in height J3, d3, the level and degree for polynomial
B-splines in time J4, d4

Output: The design matrix A4D in 4-D B-spline modeling

1 KJ1 = 1 : (2J1 + d1);
2 KJ2 = 1 : (3 ∗ 2J2);
3 KJ3 = 1 : (2J3 + d3);
4 KJ4 = 1 : (2J4 + d4);
5 r = 0;
6 for i4 = 1 : length(T) do
7 for i3 = 1 : length(H) do
8 for i2 = 1 : length(LON) do
9 for i1 = 1 : length(LAT) do

10 r = r+1;
11 c = 0;
12 for k4 = 1 : length(KJ4) do
13 for k3 = 1 : length(KJ3) do
14 for k2 = 1 : length(KJ2) do
15 for k1 = 1 : length(KJ1) do
16 c = c+1;
17 A(r,c) =

polynomial-b(J1,d1,k1 − 1,LAT(i1),min(LAT),max(LAT))
*trigonometricb(J2,k2,LON(i2))*polynomial-
b(J3,d3,k3 − 1,H(i3),min(H),max(H))*polynomial-
b(J4,d4,k4 − 1,T(i4),min(T),max(T)); ▷ polynomial-b,
trigonometric-b = functions to generate polynomial and
trigonometric B-splines
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5 Experiment and evaluation

This chapter describes in detail the organization and implementation of the experiment, in-
cluding the algorithm test using simulated data, and the computation using real density data
derived based on NRLMSISE-00 thermosphere model. And the approach to evaluating the
precision and accuracy of B-spline representation results is given afterwards.

5.1 Experiment design

5.1.1 Algorithm test

The correctness of the algorithms for B-spline transformation is tested using artificially gener-
ated data within the context of 1-D, 2-D and 3-D, which is allowed to achieve by the so-called
”close-loop validation”. Specifically speaking, a set of B-spline coefficients is estimated from
the original input signal with the generation of a reconstructed signal at the same time. Then
the reconstructed signal is reused as the new input signal to estimate a new set of coefficients
and generate a new reconstructed signal. Basically, the new reconstructed signal and the old
reconstructed signal only differ at the level of computational accuracy, i.e. 10−15 to 10−14,
which means the success of ”close-loop validation” and the correctness of the algorithms. Fig-
ure 5.1 depicts the procedures of close-loop validation, which starts from the original input
signal and ends with the new reconstructed signal.

In terms of how the simulated data looks like, it differs from 1-D to 3-D modeling. Firstly,
the signal where all elements are 1 can be selected generally with different dimensions since
it can be used directly as the so-called ”new input signal” in close-loop validation. On the
other hand, the harmonic signal on the basis of cosine and sine functions is chosen typically
because it is a basic component included in the most of real signals in the Earth system.
Furthermore, apart from the constant and harmonic signals, it is necessary to consider expo-
nentially distributed signals as well in 3-D modeling because of the distribution characteristic
of real thermospheric density along the height. Similarly, linear signals, quadratic signals, and
cubic signals can also be considered in the 1-D test.

5.1.2 Thermospheric density modeling

In the experiment using real data, the thermospheric densities between 23/11/2014 and
14/03/2016 are chosen as the research dataset considering both the quiet period and storm
period, i.e., St. Patrick’s Day on 17–19 March 2015. Therefore, there are further mainly two-
week data remarkable, which are 23/11/2014 - 30/11/2014 marked as ”quiet period” and
15/03/2015 - 22/03/2015 marked as ”storm period”, so that the characteristics of B-spline
transformation can be studied in both data pools in the changing space environment.
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Figure 5.1: The sketch graph describing the procedures of close-loop validation.

With respect to the input data for estimating B-spline coefficients in the linear adjustment
system, pre-processing is probably necessary due to the characteristic of the exponential dis-
tribution dependent on height and the extremely small number for thermospheric densities
ranging from 10−11 to 10−15. Specifically speaking, there are three different cases with respect
to pre-processing of input observations.

1. For 2-D B-spline transformation where the thermospheric variations are dependent on
latitude and longitude, the magnitudes of densities are the same, e.g. the neutral densi-
ties are always at the level of 10−12 kg/m3 at 400 km altitude, thus, all the input densities
can be multiplied by 1012 used for the further estimation which makes the computation
easier and more efficient.

2. The condition changes in 3-D and 4-D cases due to the involvement of height-dependent
variations, for example, the magnitudes of thermospheric densities range from 10−11

at 300 km to 10−15 at 1000 km. Similarly, an appropriate number, e.g. 1013, can be
multiplied with height-dependent thermospheric densities by which the input data in-
volved in the adjustment system still distributes exponentially but with easier scientific
notations.

3. Another method introduces the logarithmic model which firstly transforms exponential
numbers E into logarithmic numbers L by

L = ln(E). (5.1)

In this way, the exponentially distributed data is changed to the same magnitude prepar-
ing for further B-spline modeling.
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5.2 Evaluation approach

In terms of 3-D and 4-D B-spline modeling, both method 2 and method 3 are possible to be
deployed. The test and comparison between these two methods are performed prior to the
derivation of products in Chapter 6.

In conclusion, the generated products in this study include:

1. The B-spline coefficients, the reconstructed thermospheric densities estimated in 2-D B-
spline modeling within the investigation period. The spatial resolution is 2.5◦ × 5◦ in
latitude and longitude and 20 km in height.

2. The products derived from 2-D B-spline modeling are generated at each 5 min, from
which a video consisting of sequentially layered figures can be provided.

3. The B-spline coefficients, the reconstructed thermospheric densities estimated in 3-D B-
spline modeling within the investigation period. The spatial resolution is 2.5◦ × 5◦ in
latitude and longitude and 20 km in height.

4. The products derived from 3-D B-spline modeling are generated at each 5 min, from
which a video consisting of sequentially layered figures can be provided.

5. The B-spline coefficients, the reconstructed thermospheric densities estimated in 4-D B-
spline modeling within the investigation period. The spatial resolution is 2.5◦ × 5◦ in
latitude and longitude and 20 km in height. The temporal resolution is 5 min. There
is no video produced because the temporal characteristic has been included in the 4-D
model.

5.2 Evaluation approach

5.2.1 Comparison with model-derived densities

It is assumed that the thermospheric densities derived from the empirical NRLMSISE-00
model are error-free, thus, they are regarded as so-called ”true” values and can be used to
compare with density-grids represented by B-splines. Apart from the differences between es-
timated and input densities as shown in Eq. (5.2), the relative differences with respect to the
input values are also regarded as an evaluation index, since the values of input observations
differ significantly.

Qdi f f = Qest − Qmodel

Qrelative = Qdi f f /Qmodel
(5.2)

5.2.2 Stochastic model in least-squares adjustment

The least-squares adjustment is a key procedure to estimate B-spline coefficients and thus, the
stochastic model in the adjustment including forming the weighting matrix and computing
standard deviations of the estimated coefficients and reconstructed densities is an indispens-
able tool to evaluate the results of B-spline representation. In the least-squares adjustment
model, the co-factor matrix of observations Qyy is set up which is just the inverse matrix
of the weighting matrix of the observations used for adjustment, i.e., Pyy = Q−1

yy . Besides,
we define n, u as numbers of observations and estimated B-spline coefficients, respectively,
e = ŷ − y as the difference vector between adjusted observations and original observations,
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5 Experiment and evaluation

and matrix A ∈ {A2D, A3D, A4D} as the design matrix involved in the adjustment. Then, the
posterior unit variance σ̂2

0 , the variance-covariance matrix of estimated coefficients Kx̂x̂ and
reconstructed observations Kŷŷ are expressed as

σ̂2
0 =

êTPyyê
n − u

Qx̂x̂ = (ATPyyA)−1 K̂x̂x̂ = σ̂2
0 Qx̂x̂

Qŷŷ = AQx̂x̂AT K̂ŷŷ = σ̂2
0 Qŷŷ.

(5.3)

Each element in the matrices Kx̂x̂ and Kŷŷ is related to a geographical position on the Earth.
Hence, the arrangement and demonstration of them according to their positions is extremely
helpful to assess the precision of modeling results and spatial dependency of the precision
index.

Additionally, it is worth mentioning that, the consistency amongst the magnitudes of standard
deviations of estimated B-spline coefficients and reconstructed neutral densities in the mod-
eling with different dimensions is supposed to be guaranteed, which means the weighting
strategy in height dependency needs to be considered seriously.
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6 Results and discussion

In this chapter, the results for the algorithm test and B-spline modeling with model-derived
dataset are presented and analyzed within the context of 2-D, 3-D, and 4-D representations.
Besides, the comparison among these results is performed in terms of B-spline coefficients,
represented thermospheric densities, standard deviations of them, and computational effi-
ciency.

6.1 Algorithm test

6.1.1 One-dimensional signal

In this section, the simulated 1-D signals are represented either by polynomial or by trigono-
metric B-splines. As we know, the B-spline modeling can achieve the best precision when the
original signal is constant, in which case, the difference between the reconstructed signal and
the original signal is at the computational accuracy level. Figs. 6.1 and 6.3 show such results
with the difference of 10−15 in the bottom figure and prove the correctness of the algorithm.
Moreover, the sine function is used to generate a harmonic signal repeating 4 cycles in the
time domain, which is modeled by trigonometric and polynomial B-splines of levels 5 and 3,
respectively, resulting in the difference at 10−3 level as shown in Figs. 6.2 and 6.4. It can be
seen that the use of harmonic signal results in the larger difference between the reconstructed
and the original signal compared to the constant signal. This is because B-spline functions
are not composed of standard harmonic functions even if they have similar shapes, thus, the
standard harmonic signal cannot be reconstructed perfectly by B-spline basis functions.

6.1.2 Two-dimensional signal

Similarly, the 2-D constant signal in Fig. 6.5 is transformed to a set of B-spline coefficients
via the tensor products computed by polynomial and trigonometric B-spline basis functions
with the result of random difference at the 10−15 level. And Figs. 6.6 and 6.7 give a close-loop
validation with the simulated 2-D harmonic signal. Specifically speaking, the original signal in
Fig. 6.6 is used to compute the unknown B-spline coefficients and estimate the reconstructed
signal, resulting in the difference at 10−3 level. Then the reconstructed signal in Fig. 6.6
is reused as the input signal in B-spline modeling to estimate the new B-spline coefficients
as shown in Fig. 6.7, which results in the random difference at the computational accuracy
level.
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6 Results and discussion

Figure 6.1: The 1-D simulation of the constant signal represented by polynomial B-splines
with the resolution level of 5.

Figure 6.2: The 1-D simulation of the harmonic signal represented by polynomial B-splines
with the resolution level of 5.
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Figure 6.3: The 1-D simulation of the constant signal represented by trigonometric B-splines
with the resolution level of 3.

Figure 6.4: The 1-D simulation of the harmonic signal represented by trigonometric B-splines
with the resolution level of 3.
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6 Results and discussion

Figure 6.5: The 2-D simulation of the constant signal represented by polynomial and trigono-
metric B-splines with the resolution level of 4 and 3, respectively.

Figure 6.6: The 2-D simulation of the harmonic signal represented by polynomial and trigono-
metric B-splines with the resolution level of 4 and 3, respectively.
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Figure 6.7: The 2-D close-loop validation of the harmonic signal represented by polynomial
and trigonometric B-splines with the resolution level of 4 and 3, respectively.

6.1.3 Three-dimensional signal

Considering it is the first time to model the thermospheric density dependent on height using
polynomial B-splines, there is no good reference to know the appropriate spatial resolution
and level of B-splines. Therefore, a small test is set up in order to check the feasibility of
B-spline representation in height dependency and how the different resolutions and levels
are related to the different accuracy. The test is performed by transforming the 3-D modeling
question to 1-D modeling question, i.e., modeling the 1-D profile of thermospheric densities as
a function of altitude. For example, at 00:00:00 on 23/11/2014, one can select one specific grid
point, for instance, (-30◦, 0◦) where the density profiles with different spatial intervals can be
extracted as the observations. Since the height range involved in B-spline modeling is between
300 and 1000 km, 5 km, 10 km, 20 km, and 25 km can be possible spatial resolutions to be
evaluated. In addition, two kinds of observations can be used, that is, logarithmic numbers
of original thermospheric densities, and the multiplication of original observations with the
number of 1013, so that one can compare the accuracy of results derived from two kinds of
input observations, and determine which one is used for performing real 3-D modeling.

Firstly, with respect to the comparison of results between two kinds of input observations,
the relative differences between the reconstructed vertical profile and the original profile are
presented in Figs 6.8 to 6.11. Obviously, the relative difference derived with the logarithmic
model is smaller than that with the multiplication of original observations. More test exam-
ples on other locations and at other time moments are performed as well for the reliability
of the test, and the same conclusion that the logarithmic model performs better is acquired.
Therefore, the comparison in the following would focus on different pairs of spatial resolution
of observations and resolution level of B-splines. Table 6.1 shows the test result at (-30◦, 0◦)
at 00:00:00 on 23/11/2014 with the different selection of height interval and resolution level
of B-splines as well as the average value of absolute of relative difference between B-spline
represented profile and original profile. It can be observed that for one fixed height interval
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6 Results and discussion

Table 6.1: Test of single profile modeling at (30◦, 0◦) at 00:00:00 on 23/11/2014.

Height interval [km] Resolution level J3 Relative difference average
5 3 3.90e-04
5 4 5.79e-05
5 5 1.62e-05
5 6 1.02e-05
5 7 1.17e-06
10 3 4.04e-04
10 4 5.95e-05
10 5 1.68e-05
10 6 3.71e-06
20 3 4.43e-04
20 4 5.69e-05
20 5 9.22e-06
25 3 4.38e-04
25 4 5.82e-05

which means the number of observations along a vertical profile is fixed, the accuracy of the
result improves with the increase of the resolution level of polynomial B-splines because the
higher level represents the finer structure to be modeled. However, the highest level that can
be used for a fixed height interval is limited due to the requirement of the numbers of observa-
tions and unknowns in least-squares estimation, and meanwhile, it needs more computational
memory and time. Therefore, the aim is to find a compromise between the accuracy of vertical
modeling for thermospheric densities and computational efficiency. In Table 6.1, the height
interval of 20 km and the resolution level of 5 is the best choice considering the problem of
computational efficiency and modeling accuracy. Nevertheless, the 3-D tensor product with
the levels of 4,3,5 in latitude, longitude and height used for B-spline coefficients estimation is
too large to perform the inversion of matrix in the adjustment due to the problem of mem-
ory. And the use of level 4 has reached the relative difference of 10−5 for a single vertical
profile. As a consequence, 20 km and level 4 are adopted for modeling vertical variations of
thermospheric densities in 3-D B-spline modeling.

The test described above proves the feasibility of modeling vertical variations of thermospheric
density even if the single vertical profile of the thermosphere is studied each time because B-
spline representation on a horizontal plane gets successful in the experiment of 2-D modeling.
Extending from modeling height-dependent thermospheric densities individually at each grid
point to modeling them as the third dimension in global modeling, it is reasonable to apply
the height interval and resolution level selected based on the single profile test.
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6.1 Algorithm test

Figure 6.8: The 1-D thermospheric density with the resolution of 5 km as a function of altitude
derived from the NRLMSISE-00 model and reconstructed from B-spline modeling with the
resolution level of J3 = 3 at (-30◦, 0◦) at 00:00:00 on 23/11/2014.

Figure 6.9: The 1-D thermospheric density with the resolution of 5 km as a function of altitude
derived from the NRLMSISE-00 model and reconstructed from B-spline modeling with the
resolution level of J3 = 6 at (-30◦, 0◦) at 00:00:00 on 23/11/2014.
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6 Results and discussion

Figure 6.10: The 1-D thermospheric density with the resolution of 20 km as a function of
altitude derived from the NRLMSISE-00 model and reconstructed from B-spline modeling
with the resolution level of J3 = 4 at (-30◦, 0◦) at 00:00:00 on 23/11/2014.

Figure 6.11: The 1-D thermospheric density with the resolution of 20 km as a function of
altitude derived from the NRLMSISE-00 model and reconstructed from B-spline modeling
with the resolution level of J3 = 5 at (-30◦, 0◦) at 00:00:00 on 23/11/2014.
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6.2 Two-dimensional B-spline modeling

6.2 Two-dimensional B-spline modeling

In this section, the thermospheric density grids at 300-1000 km with the interval of 20 km
are transformed into a set of B-spline coefficients which are performed individually at each
discrete altitude. The following presents some examples of 2-D modeling in terms of B-spline
coefficients, reconstructed neutral densities, and the related assessment of them.

Figure 6.12 presents the global thermospheric densities at 500 km at a specific epoch derived
from empirical NRLMSISE-00 model, with a spatial resolution of 2.5◦ × 5◦ in latitude and
longitude. It can be seen that the neutral densities in nearly half areas are more closed to the
lower end of the colorbar with the smallest density value concentrated in the Middle East area
and the highest peak located in the Pacific ocean. Compared to the northern hemisphere, the
density along longitude in the southern hemisphere varies more frequently, which is appar-
ently determined by the time epoch the map is presenting. Figure 6.13 containing 9 subfigures
shows the temporal change of spatial distribution of thermospheric densities within one day.
Obviously, all the subfigures maintain similar spatial patterns but shift from east to west
continuously from one midnight to the next midnight. The 2-D B-spline transformation is
performed taking observations in Fig. 6.12 as an example. Totally, there are density grids
with the number of 73 · 73 in the original density map. The grid points at -180◦, however,
share the same values with those at 180◦ in longitude due to the global characteristic of the
earth, thus, 73 · 72 grid points, are in principle involved in the estimation of B-spline coeffi-
cients. According to Eqs. (4.7) and (4.15), the highest levels one can select for polynomial and
trigonometric B-splines are set to J1 = 6, J2 = 4, respectively. Amongst those combinations of
J1 and J2, 4 and 3 are the compromises between the resolution of neutral densities modeled
by B-splines and the computational time in latitude and longitude dependency. In addition,
the input observations used for parameter estimation shown in Fig. 6.12 are multiplied by
1012 which is the corresponding order of neutral densities at 500 km. And the pre-processed
density values are used as observations for estimating B-spline coefficients in the adjustment.
In order to guarantee the correctness of the final results, the estimated B-spline coefficients,
and reconstructed neutral densities are multiplied by 10−12 after the adjustment.

Following the modeling approach described in Section 4.2.1, B-spline coefficients are estimated
from original neutral densities using 2-D tensor products, which is illustrated as a global
map in Fig. 6.14. 18 polynomial B-splines and 24 trigonometric B-splines are calculated in
latitudinal direction and longitudinal direction, representing 18 and 24 B-spline coefficients,
respectively. The distribution pattern of estimated coefficients is extremely close to that of
original thermospheric densities, which is consistent with the expectation since the tensor
product itself does not depend on the observation variation but exclusively depends on the
location of the observation and B-spline-related parameters such as resolution level, restriction
range. Moreover, the magnitudes of unknown coefficients in Fig. 6.14 are same with those of
neutral densities in Fig. 6.12 because the magnitudes of the tensor product are below 1. As a
consequence, it can be concluded that the variations of thermospheric densities dependent on
latitude and longitude are reflected by changes in B-spline coefficients.

Since the 2-D B-spline modeling can be regarded as a linear adjustment system, the recon-
structed neutral densities which have the same spatial resolution as the original observations
can be easily computed from the tensor products used for unknowns estimation and estimated
B-spline coefficients by multiplication of them. In Fig. 6.15 which presents reconstructed den-
sities, it can be seen that there are no obvious differences between reconstructed ones and
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Figure 6.12: The global map presenting original neutral densities derived from the empirical
NRLMSISE-00 model at 500 km at 00:00:00 on 23/11/2014 in 2-D modeling.

Figure 6.13: The global maps presenting original neutral densities derived from the em-
pirical NRLMSISE-00 model at 500 km between 00:00:00 on 23/11/2014 and 00:00:00 on
24/11/2014.
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6.2 Two-dimensional B-spline modeling

Figure 6.14: The global map presenting B-spline coefficients estimated from original neutral
densities with resolution levels J1 = 4, J2 = 3 in latitude and longitude at 500 km at 00:00:00
on 23/11/2014 in 2-D modeling.

original ones in Fig. 6.12 visible. Therefore, the differences between them, i.e. the recon-
structed minus the original, are plotted in Fig. 6.16. Besides the green color meaning nearly
zero difference which accounts for a large part of the map, the chess-like structure composed
of values close to the peak (red) and those close to the bottom (blue) of the colorbar can be
observed in Fig. 6.16, in particular in the southern region of South America. It is a common
structure observed in the difference maps of B-spline representation which is determined by
the characteristics of B-splines themselves. As known, the global 2-D tensor product results in
a pattern of 3-dimensional knobs instead of completely flat, and there is an overlay region be-
tween adjacent B-splines, which can cause the underestimation or overestimation of B-spline
coefficients at a specific grid point. As a consequence, the differences between reconstructed
data and original data result in a chess-like pattern composed of red and blue colors. Never-
theless, the region where this special pattern appears depends on the input observations but
not on the geographical locations.

Furthermore, the relative differences between the estimated neutral densities and the original
ones are helpful for assessing the deviations of neutral densities represented by B-splines and
those derived directly from the empirical NRLMSISE-00 model. Fig. 6.17 shows the maximum
relative difference value is around 1.3 · 10−3, and the chess-like structure is more visible.

In terms of stochasticity of the B-spline adjustment system, the STDs of B-spline coefficients
and estimated thermospheric densities are computed and illustrated in Figs. 6.18 and 6.19,
respectively. Consistent with the weighting strategy used in the adjustment system, the STDs
of estimated coefficients and reconstructed densities are latitude-dependent as well, and the
values are symmetric with respect to the equator decreasing from high latitude to low latitude.
In Fig. 6.18, the STDs are completely longitude independent, and they are 4-order smaller than
the magnitude of estimated unknown coefficients in Fig. 6.14, from which one can consider
the precision of unknowns estimation reaches up to the level usually found in numerical
investigations. Whereas the STDs of reconstructed neutral densities in Fig. 6.19 distribute
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6 Results and discussion

Figure 6.15: The global map presenting neutral densities reconstructed from B-spline coeffi-
cients at 500 km at 00:00:00 on 23/11/2014 in 2-D modeling.

Figure 6.16: The global map presenting differences between neutral densities reconstructed
from B-spline coefficients and original densities at 500 km at 00:00:00 on 23/11/2014 in 2-D
modeling.
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Figure 6.17: The global map presenting relative differences between neutral densities re-
constructed from B-spline coefficients and original densities at 500 km at 00:00:00 on
23/11/2014 in 2-D modeling.

as a grid pattern. On one hand, the STDs of estimated densities are latitude-dependent as
well with the same variation trend as STDs of B-spline coefficients. On the other hand, the
STD values in Fig. 6.19 are longitude dependent regularly, in other words, there are constant
STD values at one specific latitude with smaller values at some specific locations, which is
determined by the structure of B-splines.

It is interesting to investigate the precision information derived in 2-D modeling at different
altitudes. Due to the lack of satellites below 300 km, we only select the altitudes of 300-100
km as the investigation range in this study. For convenience, Figs. 6.20 and 6.21 only show
the STDs of unknown coefficients and reconstructed thermospheric densities derived from
individual 2-D B-spline representation at each 100 km. It can be seen that the STD values at
all heights present the same distribution as analyzed above, but with the exponential decaying
order from 10−14 to 10−18 as the height increases. This is because the original observations
have the decreasing density values with increasing height, resulting in smaller differences
between reconstructed neutral densities and original densities derived from the NRLMSISE-00
model. Consequently, the modeling results at higher altitudes have the smaller posterior unit
standard deviation and thus, smaller STD values.
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Figure 6.18: The global map presenting STDs of B-spline coefficients estimated from original
neutral densities with resolution levels J1 = 4, J2 = 3 in latitude and longitude at 500 km at
00:00:00 on 23/11/2014 in 2-D modeling.

Figure 6.19: The global map presenting STDs of neutral densities reconstructed from B-spline
coefficients at 500 km at 00:00:00 on 23/11/2014 in 2-D modeling.
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Figure 6.20: The global map presenting STDs of B-spline coefficients estimated from original
neutral densities with resolution levels J1 = 4, J2 = 3 in latitude and longitude at 300-1000
km at 00:00:00 on 23/11/2014 in 2-D modeling.

Figure 6.21: The global map presenting STDs of neutral densities reconstructed from B-spline
coefficients at 300-1000 km at 00:00:00 on 23/11/2014 in 2-D modeling.
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Additionally, it is worth checking the computational time needed for 2-D B-spline transforma-
tion. Since the design matrix involved in 2-D adjustment becomes completely the same if the
original densities have the same spatial range and resolution, which is exactly the condition in
this study, i.e., all the original thermospheric densities at all altitudes and at any epoch have
the same resolution of 2.5◦ × 5◦, the generation of 2-D B-spline products can share one design
matrix A. For the generation of 2-D tensor product matrix A, it takes around 30 s; And for the
estimation of B-spline coefficients and the computation of relative precision, it takes around 15
s for one set of observations. Therefore, taking producing 1-week products including B-spline
coefficients, reconstructed neutral densities, and STDs of them at each 5 min and at each 20
km as an example, almost one-day time is needed. The products covering a period of time
can be presented in the format of a video to not only show the product itself but also show
changes in products over time.

Nevertheless, what we discussed above is the case that the reconstructed neutral densities
maintain the same grids as the original observations, that is, they have the same spatial res-
olution. However, one of the most important characteristics of B-spline modeling is that the
inhomogeneous data can be dealt with, which means the neutral density at any specific grid
point can be computed once the B-spline coefficients have been computed in one model.
Therefore, a new thermospheric density map at 500 km but with a different spatial resolution
can be generated. In this case, B-spline basis functions are needed to compute the new tensor
product. By multiplying the new tensor product with the estimated B-spline coefficients, the
thermospheric density grid with the different resolution is computed. Fig. 6.22 shows the
thermospheric density grid with the spatial resolution of 2◦ × 2◦ using B-spline coefficients
shown in Fig. 6.14.

Figure 6.22: The global map presenting neutral densities reconstructed from B-spline coeffi-
cients with the resolution of 2◦ × 2◦ at 500 km at 00:00:00 on 23/11/2014 in 2-D modeling.

It has been known that the original thermospheric densities derived from the NRLMSISE-00
model are considered error-free, thus, the superposition of random noise can be used for
studying the impact of noise on B-spline modeling results. The thermospheric densities at
500 km at 00:00:00 on 23/11/2014 are still taken as an example. In Fig. 6.23, the 5% random
noise is superposed into the original neutral densities derived from the empirical model.
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By the same approach, the B-spline coefficients are estimated and illustrated in Fig. 6.22.
Afterwards, the new thermospheric densities are reconstructed and presented in Fig. 6.24.
The differences between the reconstructed densities and original densities are illustrated in
Fig. 6.25, where it can be seen most of difference values is close to zero with the largest
value of 2.2 · 10−13. However, the largest difference is approximately equal to 10% of input
observations instead of 5%. This is because a set of random numbers are generated according
to Gaussian distribution with 5% of input observations as the expectation. Consequently, the
maximum noise superposed into the input observations reaches 10%, which is the reason why
the ends of colorbar in Fig. 6.25 reach 10% of input observations. It can be concluded that the
amount of noise superimposed into the input observations is reflected by the final differences
between B-spline-represented thermospheric densities and noised observations.

Figure 6.23: The global map presenting original neutral densities derived from the empirical
NRLMSISE-00 model with 5% noise at 500 km at 00:00:00 on 23/11/2014 in 2-D modeling.

6.3 Three-dimensional B-spline modeling

In this section, the thermospheric densities with multi-layers in height dependency at a spe-
cific epoch are transformed into a set of B-spline coefficients by 3-D B-spline modeling. The
logarithmic model of thermospheric density is used because it can model the exponential dis-
tribution along the height more accurately, which has been proved in Section 6.1.3. Therefore,
the corresponding logarithmic numbers of thermospheric observations are involved in the
linear squares adjustment but with the different tensor product as that in 2-D case.

In 3-D B-spline modeling, the selection of resolution level and observation interval dependent
on height is a serious question, since it directly determines the accuracy of height-dependent
profile modeling. A small test in Section 6.1.3 helps to solve this problem. The conclusion is,
that the resolution level for modeling height-dependent profile is selected as 4, and the levels
of B-splines in latitude and longitude maintain as 4 and 3. With respect to the resolution of
observations, 20 km is decided due to the more accurate result, and the spatial resolution of
2.5◦ × 5◦ is still assigned to observations at each layer. Still, the epoch 00:00:00 on 23/11/2014
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Figure 6.24: The global map presenting neutral densities reconstructed using noised original
densities at 500 km at 00:00:00 on 23/11/2014 in 2-D modeling.

Figure 6.25: The global map presenting differences between neutral densities reconstructed
from B-spline coefficients and original densities with 5% noise at 500 km at 00:00:00 on
23/11/2014 in 2-D modeling.
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is taken as the example to show the modeling result in 3-D case. Fig. 6.26 presents the part
of observations at 00:00:00 on 23/11/2014 used for 3-D B-spline representation due to the
limitation of the figure space. Nevertheless, the estimated B-spline coefficients in the static
3-D case are arranged and exhibited in the form of multi-maps that corresponds to different
altitudes of B-splines in height dependency as shown in Fig. 6.27. There is no simple corre-
spondence between original observations in Fig. 6.26 and the estimated B-spline coefficients
in terms of height due to the different intervals among B-splines, which is different from 2-D
modeling in which the map presenting B-spline coefficients and the map of observations have
one-to-one correspondence. Therefore, all the B-spline coefficients derived in the static 3-D
modeling are supposed to be used to estimate the reconstructed density at any position. Sim-
ilarly, all the neutral densities with the same positions as original observations are computed
and illustrated in Fig. 6.28.

Figure 6.26: The global map presenting original neutral densities derived from the empirical
NRLMSISE-00 model at 300-1000 km at 00:00:00 on 23/11/2014 in 3-D modeling.

In Fig. 6.29 which shows the differences between the neutral densities reconstructed from
estimated B-spline coefficients (Fig. 6.28) and the original densities at different altitudes. It
can be seen that most of difference values are close to zero and show the characteristic of
randomness. With the increase of altitude, the difference values are changing smaller which
is consistent with the trend in 2-D modeling.

Again, it is meaningful to compute the relative differences between neutral densities estimated
from 3-D B-spline modeling and original densities as observations, which can be used for the
comparison of performance between 3-D and 2-D, since products of them have the same height
interval between 300 km and 1000 km. As can be seen in Fig. 6.30, the relative differences at all
altitudes (also including those not shown in the figure) are at the level of 10−3. Compared with
the result at 500 km shown in Fig. 6.17 where the relative differences ranging from −1.3−3 to
1.3−3 are derived in the individual B-spline modeling at 500 km, the result at the same altitude
but derived by 3-D representation has larger relative differences. The same condition can also
be observed in products at other altitudes. This is because more constraints are applied
in 3-D modeling, that is, B-splines along latitude, longitude and height together represent
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Figure 6.27: The global maps presenting B-spline coefficients estimated from original neutral
densities with resolution levels J1 = 4, J2 = 3, J3 = 4 in latitude, longitude, and height at
00:00:00 on 23/11/2014 in 3-D modeling.

Figure 6.28: The global map presenting neutral densities reconstructed from B-spline coeffi-
cients at 300-1000 km at 00:00:00 on 23/11/2014 in 3-D modeling.
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Figure 6.29: The global maps presenting differences between neutral densities reconstructed
from B-spline coefficients and original densities at 300-1000 km at 00:00:00 on 23/11/2014
in 3-D modeling.

Figure 6.30: The global maps presenting relative differences between neutral densities re-
constructed from B-spline coefficients and original densities at 300-1000 km at 00:00:00 on
23/11/2014 in 3-D modeling.
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variations of thermospheric density. Therefore, it is difficult to reach the same accuracy as the
modeling in the horizontal plane in 3-D modeling due to the additional constraints in height
dependency.

When it comes to the standard deviations of estimated B-spline coefficients and of recon-
structed neutral densities, they are presented as the format of maps in Figs. 6.31 and 6.32.
There are in total 18 maps representing k3 = 1, 2, ..., 18 to show STD values of B-spline co-
efficients ranging from 10−15 to 10−18, which means the STD values decrease with respect
to the increase of height. For each layer, the STD values are completely latitude-dependent
reducing from high-latitude to low-latitude, which is consistent with the distribution in 2-D
case. In addition, the orders of STD values decrease exponentially, which can be influenced
by the weighting matrix applied in the adjustment. In other words, the setup of weighting
matrix in3-D modeling in particular dependent on height has an impact on the values of STD
of estimated unknowns and thermospheric densities. And for the STDs of estimated densities,
they distribute latitude-dependent and longitude-dependent, which is also similar to that in
the result of 2-D modeling.

Figure 6.31: The global maps presenting STDs of B-spline coefficients estimated from original
neutral densities with resolution levels J1 = 4, J2 = 3, J3 = 4 in latitude, longitude and
height at 300-1000 km at 00:00:00 on 23/11/2014 in 3-D modeling.

However, when comparing the STDs of estimated B-spline coefficients and neutral densities
in 3-D modeling with those in 2-D modeling, it can be found that the STD values derived
from 3-D modeling are smaller than those from 2-D modeling by a factor of 2. This is because
even if there are additional constraints along the height, the weighting factor as a function of
height is computed based on the STD values derived in 2-D modeling. Specifically speaking,
for a specific epoch, the average value of STD values with a specific altitude is computed
so that a set of average values are acquired which are used for computing the weighting
factor corresponding to each altitude. For example, the average STD at 500 km is a, then the
weighting factor corresponding to 500 km used in 3-D modeling is 1

a2 .
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Figure 6.32: The global maps presenting STDs of neutral densities reconstructed from B-spline
coefficients at 300-1000 km at 00:00:00 on 23/11/2014 in 3-D modeling.

As for the computational efficiency in 3-D B-spline transformation, it takes around 3 days
to generate the global tensor product. And for the estimation of unknown coefficients and
reconstructed thermospheric densities, it takes around 1 day to produce them covering a one-
week data period.

6.4 Four-dimensional B-spline modeling

According to the analysis of ”64 GPS-week data” in terms of the frequency spectrum, the
shortest period that can be detected in Fourier analysis is 4h. Therefore, a sequence of 4-D
B-spline models with the time interval of 1 h is appropriate to be modeled since 1 h is below
the minimum repeating period and does not bring burden to the computational time. It
means 13 time epochs are involved in the representation of one 4-D modeling with the time
interval of 5 min. However, even if only a short term in the temporal dimension is added in
the transformation with B-splines, it takes much longer time to generate the tensor product
computed by four B-spline basis functions. The duration for generation of 4-D tensor product
is too long to perform 4-D B-spline representation globally. The best solution is that we still
keep the completeness of observation in height dependency because it is the most crucial part
of thermosphere modeling. Nevertheless, the regional thermospheric densities are used as
observations instead of global ones. In this study, the region with latitudes (-15◦, 15◦) and
longitudes (30◦, 90◦) is selected and it still has the resolution of 2.5◦ × 5◦. Therefore, there are
13 · 13 observations at a specific height and epoch.

The new issue is to choose the appropriate resolution level in the temporal dimension. 3 is
the best one due to the number of time epochs involved in one 4-D B-spline modeling. For
the height dependency, it remains at 4 as the resolution level, and the levels in latitude and
longitude are adjusted to 3 and 3 due to the change of the modeling region. Besides, the
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logarithmic model is used in 4-D modeling due to the involvement of height dimension in
it.

Due to the limitation of thesis space, only the results at the first epoch in 4-D modeling
are illustrated in the following. Figure 6.33 presents the input observations derived from
NRLMSISE-00 model at different altitudes. It can be seen that the spatial distribution of
thermospheric densities in this region differs from altitudes, which is likely to happen due
to the contraction of the region compared to the global earth. The 4-D neutral densities are
transformed into a series of B-spline coefficients, and obviously, the coefficients when k4 = 1
correspond to the first epoch as shown in Fig. 6.34. Still, there are 18 subfigures corresponding
to 18 B-splines along the height, from which and 4-D tensor product, the reconstructed neutral
densities are estimated and shown in Fig. 6.35.

In Fig. 6.36 which shows the differences between reconstructed densities derived from 4-D
modeling and original densities, the difference values range from 10−15 to 10−20. Due to the
regional characteristics, the difference values do not distribute completely randomly, and they
are much smaller compared to values in 2-D and 3-D modeling. This is because the 4-D B-
spline representation is performed within the context of regional modeling instead of global
modeling, meaning fewer observations being constrained by similar number of B-splines,
which consequently results in better accuracy for B-spline modeling. The relative differences
shown in Fig. 6.37 also prove it with the level of 10−4 or 10−5.

Furthermore, the standard deviations of B-spline coefficients and reconstructed neutral den-
sities in 4-D modeling are presented in Figs. 6.38 and 6.39. It is worth mentioning, that the
weighting matrix used in 4-D modeling is computed based on the average STD values con-
cerning all the time epochs involved in one 4-D adjustment, which means the weighting matrix
used for different observations is different. For the example presented in this study, the STD
values of estimated B-spline coefficients and reconstructed densities decrease with the increas-
ing height from 10−15 to 10−19, which are smaller than values in 2-D and 3-D modeling due to
the regional modeling. For STDs of estimated neutral densities, they have larger values at the
edge of the region compared to the central zone. This is caused by the ”end-interpolating”
characteristic of polynomial B-splines.
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Figure 6.33: The regional map presenting original neutral densities derived from the empirical
NRLMSISE-00 model at 300-1000 km at 00:00:00 on 15/03/2015 in 4-D modeling.

Figure 6.34: The regional maps presenting B-spline coefficients estimated from original neutral
densities with resolution levels J1 = 3, J2 = 3, J3 = 4, J4 = 3 in latitude, longitude, height
and time at 00:00:00 on 15/03/2015 in 4-D modeling.
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Figure 6.35: The regional map presenting neutral densities reconstructed from B-spline coeffi-
cients at 300-1000 km at 00:00:00 on 15/03/2015 in 4-D modeling.

Figure 6.36: The regional maps presenting differences between neutral densities reconstructed
from B-spline coefficients and original densities at 300-1000 km at 00:00:00 on 15/03/2015
in 4-D modeling.
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Figure 6.37: The regional maps presenting relative differences between neutral densities re-
constructed from B-spline coefficients and original densities at 300-1000 km at 00:00:00 on
15/03/2015 in 4-D modeling.

Figure 6.38: The regional maps presenting STDs of B-spline coefficients estimated from orig-
inal neutral densities with resolution levels J1 = 3, J2 = 3, J3 = 4, J4 = 3 in latitude,
longitude, height and time at 300-1000 km at 00:00:00 on 15/03/2015 in 4-D modeling.
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Figure 6.39: The regional maps presenting STDs of neutral densities reconstructed from B-
spline coefficients at 300-1000 km at 00:00:00 on 15/03/2015 in 4-D modeling.
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7 Conclusion and outlook

The precise modeling of the thermosphere is of great importance since the thermospheric
drag depending on the neutral density is the main error source in the POD of LEO satellites.
Usually, the thermospheric density is computed from empirical thermosphere models such
as the NRLMSISE-00 model which, however, has limited accuracy. In order to improve the
thermospheric density obtained from the empirical model and further improve the accuracy of
POD for LEO satellites, new observations from geodetic tracking techniques such as SLR can
be incorporated. In this process, the numerical integration of the satellite orbit is performed
together with the estimation of a set of model parameters such as the time-dependent scale
factors of the neutral density. In this study, the transformation of the thermospheric density
with B-spline basis functions is applied because the B-spline coefficients are convenient to
absorb new observations, and meanwhile, they can handle inhomogeneous data even with
large gaps.

The characteristics of the empirical NRLMSISE-00 model are investigated firstly in the pre-
analysis part. Starting from the determination of spatial resolution of thermospheric den-
sity grids, the derivation of the empirical model-based observations, the spectral content
in the NRLMSISE-00 model is investigated by applying the CFT in the investigation period
23/11/2013 - 14/03/2016. It can be observed that the typical exponential decay appears along
one single vertical profile of the thermospheric density grid. And the annual, semi-annual,
daily and sub-daily periods are detected clearly in the time series of the neutral density.

In the next step, the artificially simulated data such as the constant signal, and the harmonic
signal is generated for verifying the correctness and feasibility of algorithms related to B-spline
representation by means of close-loop validation. Afterwards, the B-spline representation is
applied to the thermosphere modeling within the context of 2-D, 3-D and 4-D. Importantly,
the resolution levels of B-splines are chosen according to the characteristics of original observa-
tions and computational efficiency. Finally, the related products including B-spline coefficients
and reconstructed thermospheric densities are generated, and the precision and accuracy of
modeling results are evaluated based on the difference between estimated neutral densities
and model-derived densities, and STD values of B-spline coefficients and reconstructed neu-
tral densities.

The modeling results show, the use of the B-spline expansions achieves good performance
in terms of thermosphere modeling. The relative difference of 10−3 for the estimated neu-
tral densities is acquired in 2-D and 3-D representation. But the 3-D B-spline transformation
outperforms the 2-D since the STD values of 3-D modeling are smaller than those of 2-D mod-
eling by a factor of 2. With respect to the spatial distribution of STDs of B-spline coefficients
and the estimated neutral densities, they are latitude-dependent and height-dependent with
values decreasing from the polar region to the equator and from lower altitudes to high al-
titudes but always with values of 4-order smaller than the original observations. It is worth
mentioning that the weighting matrix used in 3-D representation is on the basis of the result
of 2-D representation due to the exponential distribution of the thermospheric density depen-
dent on height. In principle, the results of 4-D modeling perform worse than those of 2-D and
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3-D modeling due to the additional constraints in temporal dependency, which however is
not shown in this thesis because only the regional modeling is performed within the context
of 4-D.

In addition, one of the most important challenges in this study is the handling of height-
dependent modeling due to its exponential decay in the vertical dimension, which is solved
desirably, on one hand, by the serious choice of vertical sampling interval and the level of
B-splines in height based on the pre-test of modeling the single vertical density profile, and
on the other hand, by the introduction of the logarithmic model and appropriate weighting
strategy dependent on the altitude.

In conclusion, the use of B-splines is a good choice to model the thermospheric density be-
cause the deviations of reconstructed neutral densities from original densities are small, and
there are only random differences. The ability of B-spline modeling is determined by the
resolution levels in different dimensions, hence, the higher levels, the lower differences. The
estimated B-spline coefficients can be used to compute the neutral density at any geograph-
ical location. Besides, the compactly supported B-spline functions allow for the appropriate
handling of the heterogeneous data distribution and the incorporation of new observations.

From the perspective of B-spline representation applied in thermosphere modeling, the 4-D
experiment can be extended to the global case in the future. And the weighting strategy used
in the least-squares adjustment can be considered probably in different ways. Furthermore,
the spatial gaps can be added to the input observations in order to compare the performance of
B-spline transformation starting with different input observations. Besides, the improvement
of the neutral density computed from the empirical thermosphere model can be performed
through the POD of LEO satellites by combining new information from geodetic observing
techniques, while the B-spline coefficients provide good background information in this pro-
cess. Additionally, the empirical thermosphere model NRLMSIS 2.0 can be considered the
basic model to evaluate the performance of the new thermosphere model.
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Kusche, J. (2021). Scale factors of the thermospheric density: A comparison of satellite
laser ranging and accelerometer solutions. Journal of Geophysical Research: Space Physics,
126(12):e2021JA029708.

73


	Introduction
	Motivation
	State of the art
	Goals and contributions
	Outline of the thesis

	Project background
	Theoretical background
	Satellite Laser Ranging
	DGFI Orbit and Geodetic Parameter Estimation Software

	Thermospheric density computation
	Drivers of NRLMSISE-00 model
	Thermospheric density grids
	Data pre-analysis

	Thermospheric density modeling approach - B-spline modeling
	B-splines
	Normalized Polynomial Quadratic B-splines
	Normalized Trigonometric B-splines
	B-spline tensor products

	Thermosphere modeling with B-splines
	Two-dimensional thermosphere modeling
	Three-dimensional thermosphere modeling
	Four-dimensional thermosphere modeling


	Experiment and evaluation
	Experiment design
	Algorithm test
	Thermospheric density modeling

	Evaluation approach
	Comparison with model-derived densities
	Stochastic model in least-squares adjustment


	Results and discussion
	Algorithm test
	One-dimensional signal
	Two-dimensional signal
	Three-dimensional signal

	Two-dimensional B-spline modeling
	Three-dimensional B-spline modeling
	Four-dimensional B-spline modeling

	Conclusion and outlook

