
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Robotics, Cognition, Intelligence

Development of a Runtime Switch Behavior
for a Multi-level RISC-V Instruction Set to
Register Transfer Fault Injection Simulator

Lasse Urban

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Robotics, Cognition, Intelligence

Development of a Runtime Switch Behavior
for a Multi-level RISC-V Instruction Set to
Register Transfer Fault Injection Simulator

Entwicklung eines
Laufzeittransitionsverhaltens für einen
multi-level RISC-V-Instruktionssatz- zu

Registertransfer-Fehlerinjektionssimulator

Author: Lasse Urban
Supervisor: Prof. Dr.-Ing. habil. Daniel Müller-Gritschneder
Advisor: Johannes Geier, M.Sc.
Supervising Chair: Chair of Electronic Design Automation

TUM Department of Electrical and Computer Engineering
Submission Date: 15. October 2022

Abstract

Systems on Chips (SoCs) have become indispensable in today’s world and the demand for
them is constantly increasing. For this reason, the need for efficient and secure methods
to verify the functionality and safety of the chips is also growing.
An interesting and important approach for this is the fault injection simulation with virtual
prototypes of hardware components and systems. For example, a virtual prototype of a
central processing unit (CPU) can allow the simulation of soft error injection scenarios.
These errors can be injected either at instructional level or at micro-architectural level. For
this purpose, either a very performant instruction set simulator (ISS) or a slower register
transfer level (RTL) core model can be used to implement the CPU of a virtual prototype.
In this work, a runtime switch behavior for fault injection simulators based on virtual
prototypes is presented. It can be used to execute a test program very fast on instruction
level at the beginning. At a certain point in time when more detailed investigations are to
be carried out, e.g., a fault in the micro-architecture, it can be switched to a CPU on RTL.
Later, it is possible to switch back to the ISS level. The whole procedure can accelerate
the simulation by a multiple compared to the simulation running solely on RTL. Using the
Extendable Translating Instruction Set Simulator (ETISS) and an verilated RTL (VRTL)
model of a RISC-V core, RI5CY, a factor of four was observed. The runtime switch
behavior was implemented in the form of a CPU multiplexer that can switch between
different CPU levels of abstraction at runtime. It also makes it possible to have several
CPUs execute the same test program approximately synchronously at the same time.

iii

Contents

Abstract iii

1. Introduction 1
1.1. Motivation . 1
1.2. Related Work . 4

2. Background Information 6
2.1. Virtual Prototyping . 6
2.2. SystemC . 8

2.2.1. SystemC Simulation Kernel and Core Language Concepts 8
2.2.2. Transaction Level Modeling (TLM-2.0) 10

2.3. SystemVerilog . 13
2.4. Verilator . 14
2.5. Extendable Translating Instruction Set Simulator (ETISS) 15

2.5.1. Architecture of ETISS . 15
2.5.2. Plugins for ETISS . 16
2.5.3. Virtual Core Structure in ETISS 16

2.6. RI5CY RTL Core . 17
2.6.1. RISC-V Instruction Set Architecture Overview 17
2.6.2. RI5CY Implementation . 18

2.7. Fault Injection Virtual Platform (FIVP) 19

3. Conceptional Development of a Runtime Switch Behavior for Virtual
Platforms 21
3.1. Definition of a Runtime Switch Behavior 21
3.2. Implementation Concept . 23
3.3. Development Flow . 26

4. Software Model of a CPU Multiplexer 28
4.1. Clock and Reset Signal Forwarding . 28
4.2. Freezing and Waking up CPUs . 28
4.3. TLM Routing for Memory Reads and Writes 29
4.4. Refinement Map . 32
4.5. Interrupt Handling . 33
4.6. Switch Functionality . 35

iv

Contents

5. Experimental Evaluation - Results 37
5.1. Evaluation Approach . 37
5.2. Results . 39

6. Summary and Outlook 42

A. Appendix 43
A.1. Clock Signal Forwarding . 43
A.2. Simulation Results: Performance Measurement 44
A.3. Simulation Results: Reference Performance Measurement 45

Acronyms 46

List of Figures 49

List of Tables 50

List of Listings 51

Bibliography 52

v

1. Introduction

1.1. Motivation

The entire world is controlled by computer chips. They are not always visible, but without
them no modern car would drive today, no plane would take off, no washing machine
would do laundry, and smartphones and tablets would not even exist. And all of this is
only possible because the computer and chip industry has evolved rapidly over the past
60 years since Gordon E. Moore formulated his famous law and the first microprocessors
emerged.

Moore’s law, which the co-founder of Intel published back in 1965, held true until the late
2000s. It states that the packing density of the transistors on a microchip and thus the
performance measured in million instructions per second (MIPS) doubles approximately
every 18 months [1, p. 40]. This development meant that at some point entire computer
systems with several processor cores, caches and other hardware components could be
integrated on a single chip (die). These are referred to as Systems on Chips (SoCs).
However, the predictions made by Moore’s Law regarding the growth of transistor density
on semiconductor chips were no longer valid as of around 2010. For this reason, and due to
limitations in power density (end of Dinnard scaling) and multiprocessing (Amdahl’s law),
the doubling of processor performance has slowed down to approximately every 20 years
[2, p. 5]. Nevertheless, billions are invested every year by the big technology companies in
the research and development of new computer chips and technologies and therefore there
is still rapid progress, always following the motto: smaller, faster, more efficient, cheaper.
While in 2011 the Taiwanese chip manufacturer TSMC produced chips on the basis of
a 28 nm process [3], the company will start producing the Apple M2 Pro chip in 3 nm
technology in 2022 [4]. IBM has even announced the move to 2 nm technology in 2021 [5].

The question arises of how such a microchip, which integrates an entire computer system
with one or more processor cores, is actually developed. And just as important, how the
functionality and security of such an architecture can be verified.
An integral part of the answer to these questions is virtual prototyping. A virtual prototype
is an executable software model of a hardware component, e.g., a central processing unit
(CPU) or an interrupt controller. These virtual prototypes can be assembled into systems
just like real hardware components. If such a system mirrors the full functionality of a
real SoC to the outside world, it is referred to as a virtual platform (VP) [6]. VPs are
usually implemented in parallel with the real hardware at an early stage of development
and provide several advantages. On the one hand, it is not trivial to understand a highly

1

1. Introduction

optimized system as a whole just from looking at it. Computer systems are very complex
and it can therefore be difficult to identify and correct errors. Simulations with VPs are
deterministic, can be started at any time without much effort, and most importantly,
can be debugged more easily. On the other hand, implementing a virtual prototype is
much cheaper than producing a prototype in real hardware at each stage of development.
Another equally important application area of VPs and an active field of research is the
safety and security verification of SoCs and microprocessors.
An example of non-commercial university research in this area is the work of the Chair
of Electronic Design Automation (EDA) at the Technical University of Munich (TUM).
There, the occurrence, the effect and the prevention of so-called soft errors are investigated.
Soft errors are unpredictable, dynamic changes of memory cell states or states in sequential
logic and can be also termed bit-flips. In contrast to hard errors, which are usually
associated with a production defect or permanent damage to the hardware, soft errors can
be caused, for example, by the random collision of radiation particles [2, p. 93], [7].
In order to investigate soft errors as described above, the Fault Injection Virtual Platform
(FIVP) was developed at TUM-EDA, which is part of a so-called fault injection simulator.
The FIVP models a generic, fully functional SoC with a CPU containing a single processor
core. The special feature is that this processor core can be simulated at two different levels
of detail. If one wants to examine the effects of a soft error at instruction or functional
level, the core can be simulated by an instruction set simulator (ISS). An ISS takes the
instruction to be executed on the simulated target instruction set architecture (ISA), e.g.
RISC-V, and translates it just-in-time into an instruction that can be executed on the
host ISA. The host is the computer on which the simulation runs. At TUM-EDA, usually
the Extendable Translating Instruction Set Simulator (ETISS) is used for this purpose,
which can be easily extended by plugins.
Although the simulation on instruction level is relatively efficient and fast, one often wants
to examine errors more precisely and must be able to look into the processor core for
this. The simulation level at which an ISS works obviously cannot provide this. Therefore,
a model of a core at register transfer level (RTL) can also be inserted into the virtual
prototype of the generic CPU. The RTL model describes the entire logic implemented
in hardware in the core, so that the effects of soft errors can be examined much more
precisely. Compared to instruction-level simulation, RTL simulation is more detailed, but
for this reason also much slower. This can make a significant difference in simulation time
when executing several million instructions that a test program may have. Furthermore,
with fault injection, the entire execution up to the injection point of the soft error is of
no interest. If the error has no effect or is masked, the execution after the error is also
uninteresting. For this reason, it would make sense to simulate at instruction level from
the beginning, then switch to RTL shortly before the error is injected, and finally switch
back to instruction level if the error has no further effects.

The objective of this work is to develop such a runtime switch behavior for the described
multi-level fault injection simulator. The initial focus will be on the "switch down" from
the instruction-based simulation to the RTL simulation. In this context, the fault injection

2

1. Introduction

will be disregarded at the beginning, since it has not yet taken place at the time of the
"switch down". Instead, an algorithm is to be found and implemented that can perform
the switch to RTL on any instruction by jump-starting an instance of the CPU’s virtual
prototype with the RTL core, initializing the core, mapping the states from the ISS to the
RTL core, and then letting it run. Thereby, the switch behavior should be implemented as
general as possible, so that it can be applied to different cores or even ISAs. In addition,
it must be taken into account that possibly states of the RTL model, which the ISS does
not model, must be calculated and initialized separately.
In order to be able to verify the functionality of the entire switch behavior, a tandem
simulation is to be developed first, in which a reference RTL core is simulated in parallel
with the ISS. Subsequently, the switch behavior shall be implemented. Afterwards, fault
injection can be performed and an algorithm can be found to decide when a fault has
been masked or is no longer relevant to the following program flow. However, this and the
following switch back would exceed the scope of this work. Nevertheless, if the injected
error has been masked and the RTL core still behaves correctly according to the ISA, the
switch back should be the more trivial of the two switches, since the ISS does the same as
the RTL simulation on just a more abstracted level.

In the following, considerations and existing implementations by other researchers are
discussed and compared with the intention of this work. The next chapter will then
describe the background information needed to understand the present work. VPs, ETISS,
the RISC-V ISA, and the FIVP will be discussed in more detail. Afterwards, the runtime
switch behavior is worked out conceptually in Chapter 3, before Chapter 4 deals with
the implementation. This is done in form of a CPU multiplexer component. Finally, the
performance increase with respect to the simulation time is evaluated experimentally and
the resulting potentials are discussed.

3

1. Introduction

1.2. Related Work

The runtime switch behavior for multi-level simulators has already been studied and
described by a few institutions. For instance, Xing et al. [8] propose a "tandem simulation
(or RTL co-simulation with ISA simulator)" and mention a scenario where the RTL
simulation is jump-started. This is realized with the help of a "cold start" map, which is
part of a so-called refinement map. In response to a personal inquiry, Xing stated that this
refinement map was implemented manually and not optimized. According to him, this is
sufficient for their application scenario, since their problem satement is to verify that the
RTL model sufficiently refines their ISS. Accordingly, no switching back is mentioned or
envisioned in their scenario. However, the refinement map developed by Xing based on
the work of Huang et al. [9] is a good reference for the present work. Huang et al. [9]
likewise describe a verification scenario in a multi-level tandem simulation, but without
mentioning a switch behavior. Nevertheless, they propose to use shared memory in the
simulation, just as the simulation in this work will do.

In 2015, Aarno and Engblom [10] already proposed a multi-level switch behavior for a VP,
which they call gear-shifting. It can switch from an abstracted "Simics model to a detailed
model" only in certain checkpoints. The "detailed model" is not described in detail, but
is likely to correspond to an RTL model. They also describe for the first time a switch
back to instruction level, but remark that switching back is not always trivial either, since
in modern processors with multi-stage pipelines it is not always clear which instruction is
being executed at the moment. As a consequence, they suggest that instead of switching
back, it would be more efficient to stop the detailed simulation and reset the higher-level
simulation to the point in time before the "switch down". Then, this simulation runs fast
up to the point to which the detailed simulation had already come, and continues from
there. The author of the present work has several comments on this approach. First, the
switch behavior developed in the present work should allow switching simulation levels on
every instruction, not just at specific checkpoints. Second, the author suggests jumping
back and continuing execution from the instruction that was last committed. This should
work at least for in-order-execution processors. Third, resetting the simulation is not
straightforward if both simulations share memory and a VP with peripheral components.
Aarno and Engblom do not describe how they handle the problem of peripheral timings
and events that occur during the period that is reset. These would also have to be reset
or repeated too, which the author of this work considers to be difficult. Furthermore, in
the fault injection application scenario of this work the detailed model is manipulated
and if this has consequences for architectural states, it should also be visible in the more
abstracted simulation after the switch back. Accordingly, the idea of Aarno and Engblom,
who describe a switch back for the first time, is not practical for this work.

A dynamic switch behavior for use in a fault injection scenario, where both a "switch
down" and a "switch up" are possible, was proposed by Mueller-Gritschneder et al. [11].
In 2018, they presented the multi-level extension of the instruction set simulator ETISS,
which they call ETISS-ML. This "achieves close-to-RTL-accurate fault injection simulation

4

1. Introduction

results with close-to-ISS simulation performance" [11]. The simulation flow proposed by
Mueller-Gritschneder et al. is shown in Figure 1.1. It illustrates the "switch down" from
the ISS level to RTL, the application of fault injection, and the switch back to the ISS. The
present work is based on this approach and the described simulation flow. Independently
of ETISS-ML, a runtime switch behavior for the FIVP is to be developed, which allows to
switch arbitrarily between instruction-level and RTL simulation.

Figure 1.1.: Multi-level simulation flow suggested by Mueller-Gritschneder [11]

A problem of the ETISS-ML approach is that a pipeline for fault injection and a reference
pipeline are simulated together in one core. For the switch operations and fault injection,
an elaborate and precise definition is necessary of which states should be mapped to which
other states and which micro-architectural signals and states of the two pipelines must be
compared. This is due to the fact that by duplicating the pipeline a fine-grained reference
model is used. In the context of this work, an approach is to be developed in which two
cores (one for fault injection and one as a reference) are run side by side and the comparison
can be made either at micro-architectural level or at architectural level. This could be
referred to as a more coarse-grained reference model, which does not require such complex
and architecture-specific definitions and comparisons. The difference between ETISS-ML
and the principle to be developed in this work is illustrated in Figure 1.2. Furthermore,
RISC-V will be used as the primary simulation target ISA instead of OpenRISC, although
the algorithm itself is universally applicable to other ISAs.

Figure 1.2.: Difference between ETISS-ML and the idea of this work

5

2. Background Information

2.1. Virtual Prototyping

A virtual prototype is an executable software model of a hardware component that can
be run on a host computer and mirrors the functionality of the hardware component [12,
p. 17]. Different virtual prototypes can interact with each other and be assembled into a
larger system. If this virtual system consisting of several virtual components represents a
real computer system or respectively a system on chip (SoC), it is called a virtual platform
(VP). An example of such a VP is the FIVP discussed in Section 2.7.

When implementing a virtual prototype a certain level of abstraction must be defined.
For the functionality of a simulated component and the entire system, it is not necessary
to model the hardware down to the smallest detail. For example, cycle-based state
machines, which are implemented in real hardware with registers and circuit lines but are
not externally visible, can be abstracted in the model by simple variables. By contrast,
registers that are also externally visible in the real hardware and for example represent
interfaces must also exist in the virtual prototype and have the correct value at every
point in time.

Traditionally, it was the case in large technology companies that the hardware was
developed first and then a hardware prototype was available shortly before the start
of production. At that point, the software developers could start implementing the
firmware and drivers and test them with the prototype. Often, the availability of a
first hardware prototype was only shortly before the product release date, so that the
software development and especially the tests on the hardware had to take place under
time pressure.
Virtual prototyping fundamentally changed this process. Nowadays, the implementation
of virtual prototypes and platforms already starts alongside the hardware development.
Due to the abstraction explained in the previous paragraph, these require a much shorter
development time than the real hardware. De Schutter mentions a time difference of 9 to
12 months [12, p. 21]. This enables software developers to start developing, debugging
and validating system software much earlier, since they can do the latter on the virtual
prototypes instead of the real hardware prototypes. In addition to the time availability
described above, the use of virtual prototypes for debugging and testing during the
development of firmware or drivers for new hardware has further advantages:

• Visibility: Virtual prototyping allows to look anytime into the hardware component
with any degree of precision. This means that during simulation it is possible to

6

2. Background Information

look into every single hardware block and to check the status of every register and
signal, as long as it is not abstracted by the simulation. This is not possible with
real hardware because a chip produced at nanometer scale can not at all be opened
to measure signals or register values. Furthermore, the visibility allows parallel
debugging. Since the simulation can be interrupted at any time and it is always clear
at which point of the execution the system software and the hardware simulation
are, one can debug both in parallel. This means, it can be seen what the system
software, e.g., firmware, would like to do and what the hardware does in reality.
This way errors can be found much faster than by debugging with real hardware.

• Control: The software developer has full control over a system of virtual prototypes.
The simulation can be paused at any time, then memory can be examined or
manipulated before the simulation can be resumed without trouble. This is also not
possible with real hardware.

• Determinism: Virtual prototypes are deterministic. Determinism refers to the
property that a program or an algorithm always behaves the same given the same
input, i.e., always produces the same output. For a virtual prototype this means
that it always behaves exactly the same with the same prerequisites such as the
same instructions or the same memory configuration. This is particularly useful for
testing, since errors can be reproduced as often as desired. In test environments for
real hardware, this is not the case, since there can be many external influences, such
as radiation particles that interfere with the electronics.

• Portability: Assuming that the team developing the hardware, the production
facility for the hardware prototype, the team responsible for testing and the firmware
developers are located in completely different places in the world. In this scenario,
hardware components very often have to be shipped around the world. Virtual
prototypes can be easily shared over the internet, which makes the whole process
and deployment much easier.

• Fault Injection: The controllability and visibility properties described above allow
not only testing the correct case but also active fault injection. The injection itself
and the evaluation of the effects are significantly more difficult in real hardware. An
example of using a VP for fault injection is the Fault Injection Virtual Platform
(FIVP) described in Section 2.7.

In summary, it can be said that virtual prototyping is used in many industrial companies
engaged in hardware and software development. They use virtual prototypes to develop
and debug software in parallel with hardware development and to validate the behavior
of the overall system. This shortens the development time, improves the quality of the
product and thus maximizes profit [12].

7

2. Background Information

2.2. SystemC

The de facto standard for the implementation of virtual prototypes and thus VPs is
SystemC TLM-2.0. It is defined in the IEEE standard (IEEE Std. 1666-2011) [13] and
can be used to model the behavior of hardware systems and components at a certain level
of abstraction. Therefore, it is ideal for implementing virtual prototypes.
TLM stands for transaction-level modeling and is as an extension of SystemC also defined
in the SystemC standard. It provides standardized interfaces to simplify the modeling
of data transactions between virtual hardware blocks. The next subsection describes the
simulation kernel and the core language concepts of SystemC, before TLM-2.0 is discussed
in Section 2.2.2.

2.2.1. SystemC Simulation Kernel and Core Language Concepts

A SystemC application is an event-based, discrete real-time simulation. Therefore, the
heart of the SystemC class library is a private simulation kernel that includes a dedicated
scheduler. This can execute processes within the application. The execution of a SystemC
application is now split by the kernel into two phases, the elaboration phase and the
simulation phase. Both are shown in Figure 2.1 and briefly explained below.

The first phase is the elaboration phase. In this phase the kernel instantiates all SystemC
processes and builds up a module hierarchy by instantiating and connecting all modules.
Modules can be instantiated in SystemC by calling the constructor sc_module(). They
can be built hierarchically from other modules and contain ports which are connections to
the outside. These can be thought of as pins of real electronic components. There are three
classes derived from the sc_port class, namely sc_in, sc_out and sc_inout. The latter
can be used as both input and output, the others only as input or output. Modules are
connected via the described inputs and outputs by using so-called primitive channels. The
most commonly used channels are the sc_signals derived from the sc_prim_channel
class. They forward values like wires in real circuits. Besides sc_ports there are also
sc_exports, which are made to connect modules not to the outside but to parent modules.
It is important to note that elements of the type sc_object may only be instantiated
during the elaboration phase. This is the case because SystemC does not support dynamic
creation or modification of objects during simulation time. All elements of the following
classes or classes derived from them are sc_objects:

• sc_module

• sc_port

• sc_export

• sc_channel

At the end of the elaboration phase the time resolution must be defined. It is defined
globally and can also not be modified at simulation time.

8

2. Background Information

Start

Elaboration
Phase

Simulation
Phase

End

Instantiation

Binding the Ports

Setting the Time Resolution

Initialization

Evaluation Phase

Update Phase

Delta Notification Phase

Timed Notification Phase

D
el

ta
C

yc
le

Figure 2.1.: Phases of a SystemC simulation

After the elaboration phase, the simulation phase is started. Figure 2.1 shows the five
steps executed in the simulation phase. The first one is the initialization of the simulation.
Thereby, the update phase, which is described below, is performed once. Then, all
instantiated SystemC processes are added to the pool of runnable processes. Afterwards,
the delta notification phase is run once. After the initialization phase, the phases are
performed as shown in Figure 2.1. First, an evaluation phase is performed in which the
current values of all signals, ports, etc. are calculated. These are then updated in the
update phase. Since SystemC is event-based and sensitivity dependencies can be defined,
it can be the case that new events are triggered due to the previously executed updates or
that signals depending on previously updated signals have to be updated themselves. For
this reason, a delta cycle is executed next. The most important thing about delta cycles is
that the simulated time does not advance. As the loop in Figure 2.1 shows, the simulation
kernel then returns to the evaluation phase. It checks whether dependent values have
changed due to the mentioned events or sensitivities. Sensitivities will be explained when
sc_threads and sc_methods are introduced. The values are updated in the following
update phase if necessary. This procedure is done until no values change in the current
time step due to any dependencies. Then a real time step is made, i.e., the simulation

9

2. Background Information

time is increased to the point when the next event from the event queue must be handled.
The whole simulation runs until the simulation time has expired or the simulation is
manually stopped by the user by calling sc_stop(). [13, p. 12ff]

One of the most important features of SystemC is that parallelism can be simulated.
Therefore, it is important to know that there are processes in SystemC. A process is
an execution line of instructions and several processes can run concurrently. At least
this concurrency is simulated by executing all processes in a delta cycle one after the
other. However, in SystemC there are three kinds of processes: sc_thread, sc_cthread
and sc_method. An sc_thread is executed exactly once and then terminates. Therefore,
endless loops are often used in threads. Sc_cthreads are clocked threads, i.e., there is a
clock specified that triggers it. Finally, sc_methods are processes that are not executed
only once and then terminate, but are executed each time the event to which they are
sensitive is triggered.
Processes can be triggered, e.g., by sc_events, clock events (sc_cthreads), or other
events if a sensitivity list is defined for them in the constructor of the module. In the
constructor sc_threads and sc_methods can be defined as sensitive to any events, e.g., a
function call or a rising edge of a port value. This means that every time this event occurs
the simulation kernel calls the thread or method that is sensitive to this event. Sensitivities
can be defined after the definition of the threads or methods with the sensitivity operator:
sensitive << event;.
Moreover, sc_threads can be paused by calling wait(). Then, they are continued when an
event occurs they are statically sensitive to. If wait() gets the parameter SC_ZERO_TIME,
the process is continued in the next delta cycle. Alternatively, it can be waited for a
specific event. This also allows process synchronization. Sc_methods, to the contrary,
cannot contain waits by definition.

2.2.2. Transaction Level Modeling (TLM-2.0)

As introduced in the previous section, transaction-level modeling (TLM) is an extension
of SystemC and also defined in the SystemC standard [13, p. 413ff]. TLM components
are assembled from SystemC elements and standardize and simplify the simulation of
data transfer operations between TLM components through so-called sockets. The latest
version is TLM-2.0.

Before the main elements of TLM-2.0 can be discussed, the two TLM coding styles must
be introduced:

• Loosely-timed: The loosely-timed coding style uses blocking transport functions
to model data transfers. Here, exactly two timing points of the simulation time
are used. The first timing point is the start of the transport request, i.e., the call
of the function b_transport(). The second point, to which both the sender and
the receiver must adhere, is the beginning of the response. These two points can
be in the same simulation time step or in different and are sufficient to guarantee

10

2. Background Information

a reliable, more or less time-accurate communication without the need for explicit
synchronization at each transmission. Therefore, the loosely-timed coding style is the
optimal choice for the implementation of virtual prototypes and VPs [13, p. 417]. It
allows the modeling of bus systems, timers and interrupts and is accurate enough run
a firmware on the VP or even boot an operating system (OS) on it. At the same time,
the loosely-timed coding style requires only a minimal number of synchronization
points, so that the performance of the simulation is not noticeably harmed by the
TLM communication. In addition, this coding style supports temporal decoupling.
This means that processes may run up to a certain point in time - e.g., a global
quantum or a waiting point for an event - ahead of the simulation time. This again
can increase the performance.

• Approximately-timed: The second coding style is the approximately-timed coding
style. It is more accurate in time than the loosely-timed style but requires four
timing points. These are the beginning and the end of the transport request and
the beginning and the end of the response. Due to the demand for a higher time
accuracy, no temporal decoupling is possible here. This coding style is suitable for
architecture exploration and performance analysis.

As described above, the loosely-time coding style is the optimal style for modeling virtual
prototypes and VPs. For this reason, the use of this coding style is always implicitly
assumed in the following.

In general, TLM-2.0 consists of a set of core interfaces, the global quantum, initiator and
target sockets, the generic payload and base protocol, and some utilities. Each of these
five main components is briefly explained below.

• Core interfaces: TLM-2.0 provides four different transport interfaces: the blocking
and the non-blocking transport interface, the direct memory interface, and the debug
transport interface. As indicated above, with the loosely-timed coding style the
blocking transport interface is primarily used. It provides the pure virtual function
b_transport(), which performs the transaction between two modules. The function
requires two arguments. The first one is a non-constant reference to a TLM generic
payload, which will be introduced below. The second argument is a timing value
indicating the start and end of the transaction.
The non-blocking transport is intended to support the approximately-timed coding
style and is therefore not explained further here. The direct memory interface (DMI)
is a specialized interface that allows direct access to memory of the target. By
bypassing the normal path through the individual connection components, DMI can
accelerate regular memory transactions in loosely-timed simulations. The debug
interface allows transactions to be performed without delay by, so to speak, bypassing
the simulation.

• Global quantum: The global quantum is an sc_time, which is defined globally
for all transactions. The advantage of this is that all transactions use the same time

11

2. Background Information

base and that, e.g., in the case of temporal decoupling a fixed limit is defined up to
which a process may run ahead of the simulation.

• Initiator and target sockets: Sockets are a central element in TLM. Via these sock-
ets modules can exchange data because they contain sc_ports of the type of the inter-
faces defined above. There are tlm_initiator_sockets and tlm_target_sockets
which can be bound together. An initiator socket initiates a data transaction that
the target socket receives and then calls a previously registered callback function.
The initiator socket then receives the result of this on the backward path. Figure 2.2
illustrates how tlm_initiator_sockets and tlm_target_sockets are connected
using the interfaces described above. This connection can be used to send data
packets which have already been introduced above as tlm_generic_payload.

Figure 2.2.: Transaction between a TLM initiator socket and a target socket

• Generic payload and base protocol: A generic payload (GP) is an object that
typically contains attributes such as a tlm_command, an address, data, and a response
status. Usually, only a reference to a GP object is passed from the initiator to
the target. This contains a command, e.g., the tlm_command read, and a memory
address. The data from the specified address is then read by the target and written
into the designated field of the GP before the response status reports back that the
transaction has been completed. The GP is closely linked to the TLM base protocol,
in which rules for communication are defined. In addition to the communication
rules, the protocol also defines the behavior of tlm_sockets, the described transport
interfaces, and the transmission phases request and response.

• TLM utilities: To the utilities namespace belong a set of classes that contribute
to convenience for the programmer and consistency of coding style. For example,
they provide the convenience sockets like the simple_initiator_socket and the
simple_target_socket. These are derived from the original sockets and simplify,
among other things, the registration of callback functions.

12

2. Background Information

2.3. SystemVerilog

SystemVerilog is a unified hardware design, specification, and verification language defined
in the IEEE standard 1800-2017 [14]. It is an extension of the hardware description
language (HDL) Verilog and is designed to describe hardware at register transfer level
(RTL). It also allows convenient testbench verification among other things through provided
application programming interfaces (APIs) and direct programming interfaces (DPIs).

The most important difference between an HDL and a programming language the reader
should know is that an HDL describes the structure and behavior of a hardware logic as
a whole, while a programming language is used to program a sequence of instructions a
central processing unit (CPU) can execute in the given order.

In order to understand the present work it is not necessary to know the structure and
the syntax of SystemVerilog. Therefore, a comprehensive description of SystemVerilog
is omitted here. The reader should note that the core model at RTL used as a target
in this work is the RI5CY core, which is described in Section 2.6. It is implemented in
SystemVerilog and is converted to executable C code using the Verilator tool described in
the next section.

The only change made to SystemVerilog code in the context of this work is the imple-
mentation of DPIs, which have already been introduced above. Therefore they will be
briefly described here. A DPI is an interface between SystemVerilog and another program-
ming language, for example C. This means that functions implemented and exported in
SystemVerilog can be called in C code. Conversely, functions implemented in C can be
imported and called in SystemVerilog code. This feature is used in the present work to
read or manipulate states and variables resembling sequential (flip-flops) or combinational
(nets, signals) logic of the RI5CY core model. Such a state can be, e.g., the instruction
pointer (IP) in the decode stage of the processor or the value of a general-purpose register
(GPR).

13

2. Background Information

2.4. Verilator

Verlilator is an open-source tool that converts hardware designs defined in the HDLs
Verilog or SystemVerilog into C++ or SystemC models. Since code is translated from
one language to another, Verilator must be called a compiler. The verilated RTL (VRTL)
models can then be compiled into an executable binary using a C++ compiler [15]. The
described compilation flow is visualized in Figure 2.3.

Figure 2.3.: Verilator flow

Veripool, the developing organization behind Verilator, states that a compiled Verilog
model executes even in a single thread up to 10 times faster than standalone SystemC [16].
This is achieved mainly through optimizations during Verilator’s synthesis to C++, which
for example include the flattening of module hierarchies and the abstraction of data types.

VRTL models can interact with other SystemC components in two ways. Firstly, the
VRTL model has SystemC ports as inputs and outputs to which SystemC signals can
be bound. Secondly, Verilator also supports the SystemVerilog DPI import and export
instructions. This means that SystemVerilog functions can be called directly from C++
code and vice versa.

14

2. Background Information

2.5. ExtendableTranslating Instruction Set Simulator (ETISS)

The Extendable Translating Instruction Set Simulator (ETISS) is a C++ instruction set
simulator (ISS) developed by the Chair of Electronic Design Automation (EDA) at the
Technical University of Munich (TUM). It simulates instruction execution by translating
the binary code for a given target instruction set architecture (ISA) into C code, which is
then assembled into blocks. Thereafter, each block is compiled into binary code for the
host computer’s ISA and executed. A strength of ETISS is, as the name already says,
that it can be extended very easily by so-called plugins. ETISS supports several target
ISAs. However, in the context of this work only the RISC-V architecture is being used.

2.5.1. Architecture of ETISS

ETISS consists of two main components, as shown in Figure 2.4. One is the initializer and
the other is the CPU core. The Initializer sets up ETISS and ensures that all components
necessary for the CPU core are available and usable. This includes a just-in-time compiler
(JIT), the definition of the target ISA in the CPUArch object and any number of ETISS
plugins. The definition of the target ISA is necessary so that the binary code can be
translated into host-compilable C code by the translation plugin. The JIT is the component
which subsequently compiles the blocks of C code for execution on the host machine.
ETISS supports standard C compilers, e.g., GCC, TCC or LLVM compilers. The plugins
are explained in the next subsection and some examples are provided.

Figure 2.4.: Etiss architecture [17]

When the simulation is started, all plugins are initialized and an endless execution loop
is entered. This loop is shown in Figure 2.5 and is entered through the green statement
block. Unless an exception occurs, the translation plugin is directly tasked with delivering
the next block of translated C instructions. To do this, it gets the current IP, then reads
the next binary instructions without delay via the debug interface and translates them
into a block of C instructions. Next, this block is executed, as shown by the bottom blue
statement block. Afterwards, it is checked if an exception has occurred. With such an
exception the simulation can be terminated, for example. If the exception handling was

15

2. Background Information

successful, possibly other plugins are executed and the loop is continued from the green
statement block.

Figure 2.5.: Etiss core execution loop [18]

2.5.2. Plugins for ETISS

Plugins are a simple and comfortable way to add functionalities to ETISS. They are
included, registered and initialized, and then called once per cycle in the execution loop of
the ETISS CPU core. As already mentioned above the translation of the binary code into
C code is done by a plugin. Likewise, the JIT that compiles the code into host-executable
instructions is included as a plugin. In the following other application areas of plugins are
listed:

• interrupt listening and handling

• reset and termination of the CPU

• logging

• connection to a debugging server, e.g., a GDB server

• timer implementation

2.5.3. Virtual Core Structure in ETISS

The ETISS CPU core contains a simple structure that is a virtual representation of the
core, a so-called VirtualStruct. This is of course highly ISA dependent and must therefore
be defined in the included architecture implementation. In the VirtualStruct, fields can be
defined which are addressed by their name and are connected with the real register values
in ETISS. This could be, e.g., the IP, a GPR or a CSR register. Via the VirtualStruct the
values in ETISS can be read and written at any time.

16

2. Background Information

2.6. RI5CY RTL Core

2.6.1. RISC-V Instruction Set Architecture Overview

RISC-V is a free and open reduced instruction set computer (RISC) ISA developed by the
University of California, Berkeley. It is the fifth generation of RISC architectures and a
simple and widely used load-store ISA. As of 2022, it is used in academia and industry1,
and Hennessy and Patterson even use the integer core ISA of RISC-V as an example
architecture in their book [2]. In the following the main characteristics of the RISC-V ISA
are listed.

• Variants: RISC-V provides a 32-bit, a 64-bit, and a 128-bit instruction set as well
as a variety of extensions for features like floating point arithmetic.

• Registers: RISC-V has 32 general-purpose registers (GPRs) and 32 floating-point
registers (FPRs). In addition, it has multiple control and status registers (CSRs).

• Memory access: RISC-V can access memory only with load or store instructions.

• Addressing Modes: RISC-V offers three addressing modes, which are Register,
Immediate (for constants), and Displacement. The latter two have 12-bit fields to
define the immediate and the displacement respectively.

• Operands: Like most ISAs, RISC-V supports operands of 8-bit, 16-bit, 32-bit,
64-bit, 32-bit floating-point (single precision), and 64-bit floating-point (double
precision).

• Operations: RISC-V supports a list of simple operations of the classes: loads
and stores, ALU operations, branches and jumps, and floating-point operations.
Hennessy and Patterson summarize the set of operations at [2, p. 15f].

• Encoding: If the compressed instruction set extension is not used, all RISC-V
instructions are 32-bit, which simplifies instruction decoding.

• Control flow instructions: RISC-V provides two jump instructions (jump and
link and jump and link register) and a variety of branch instructions. All branches
are conditional.

All properties can be incorporated into the design of a RISC-V processor that is capable
of executing RISC-V instructions. For efficiency reasons, this can be done in the form
of a pipeline in which an instruction passes through multiple stages. There are many
concrete implementations of the RISC-V ISA in real hardware. One of them is the RI5CY
implementation, which is used in the present work and described in the following section.

1More than 60 companies have joined the RISC-V foundation, including AMD, Google, HP Enterprise,
IBM, Microsoft, Nvidia, Qualcomm, Samsung, and Western Digital [2, p. 12]

17

2. Background Information

2.6.2. RI5CY Implementation

RI5CY is an open-source implementation of a 4-stage in-order 32-bit RISC-V processor
core which was developed by the ETH Zurich and the University of Bologna in context
of the Parallel Ultra Low Power (PULP) project. In the meantime, the RI5CY core has
been licensed by the OpenHardwareGroup under the name CV32E40P. For the sake of
comprehensibility, this work will continue to refer to it as the RI5CY core. It supports
the RV32I Base Integer Instruction Set of RISC-V and several extensions like the RV32C
Standard Extension for Compressed Instructions, the RV32M Integer Multiplication and
Division Instruction Set Extension, and some PULP specific extensions which are not
discussed in this work [19]. Figure 2.6 shows the block diagram of the RI5CY processor.

Figure 2.6.: Block diagram of the RI5CY processor [19]

The four pipeline stages of the RI5CY processor and their tasks are listed below.

IF The instruction fetch stage contains a prefetch buffer which fetches instructions from
the instruction memory or cache. It is a 128-bit cache line buffer which means that
it can store four words. The fetching starts at address 0x80.

ID In the instruction decode stage the instructions are decoded in data and control
signals. This stage also contains the register file explained below and in Table 2.1.

EX In the execution stage the instructions are actually executed in the respective
execution unit, e.g., the arithmetic logic unit (ALU) or the optional floating-point
unit (FPU). In addition, the CSRs are written in this stage.

WB The writeback stage contains the load-store unit (LSU), which manages the data
memory interaction. In addition, values are written back to the registers in the ID
stage or forwarded to the EX stage.

18

2. Background Information

All pipeline stages of the RI5CY core are independent of the previous stage. The indepen-
dence means that each stage can finish execution regardless of whether the previous stage
is stalled or not. If a stage and the following stage are in the ready state, the instruction
is moved to the next stage on the next clock edge. [19]

The RI5CY core can be configured to contain either a flip-flop based or a latch-based
register file in the instruction decode stage. In the context of this work a flip-flop based
register file is used. Also, the FPU is not used, so that no FPRs but only GPRs are needed.
This reduces the memory size of the register file. The resulting register file with the 32
GPRs is shown in Table 2.1. Furthermore, it should be noted that the RI5CY core is used
exclusively in machine privilege mode in this work.

Register Name Use
x0 zero The constant value 0
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5-x7 t0-t2 Temporaries
x8 s0/fp Saved register/frame pointer
x9 s1 Saved register
x10-x11 a0-a1 Function arguments/return values
x12-x17 a2-a7 Function arguments
x18-x27 s2-s11 Saved registers
x28-x31 t3-t6 Temporaries

Table 2.1.: RISC-V integer register file with 32 GPRs [20]

2.7. Fault Injection Virtual Platform (FIVP)

The FIVP is a VP developed at TUM-EDA, where it is used to study the effects of soft
errors injected into processor cores. It models a fully functional SoC, which is however kept
as minimalistic as possible, since it is used exclusively for the described fault injection of
studied CPUs. Figure 2.7 shows the various components and the wiring of the FIVP. It has
one system bus to which a CPU is connected via two TLM sockets. The instruction line
of the CPU is connected to one of the sockets and the data line is connected to the other.
Besides the CPU there are a few peripheral components that are also connected to the
system bus. The most important component is the memory (MEM) block, into which the
program to be executed is loaded as an ELF file at the start of the simulation. There is also
an external timer block, a universal asynchronous receiver-transmitter (UART) controller,
a core-local interrupt controller (CLINT) and a platform level interrupt controller (PLIC).
The CLINT is responsible for handling software interrupts or internal timer interrupts,

19

2. Background Information

while other peripherals of the VP that can trigger external interrupts are connected to the
PLIC.

The unique feature of the FIVP is that different cores can be inserted into the CPU.
Either the CPU can be a SystemC wrapper for an ETISS core (see Figure 2.5). Since
ETISS is an ISS, the simulation is in this case done at the instruction level. Alternatively,
a VRTL model of a RISC-V core can be inserted into the CPU. Then, the simulation
is done at RTL. As of 2022, FIVP supports the CVA6 (Ariane), CV32E40P (RI5CY),
and CV32E40S (secure derivative of RI5CY) cores. In the context of this work, only the
RI5CY core is used, which was introduced in Section 2.6. The output signals of the VRTL
core are translated into TLM transactions in an instruction bridge and a data bridge, so
that they can be sent to the system bus.

Figure 2.7.: Block diagram of the FIVP

20

3. Conceptional Development of a Runtime
Switch Behavior for Virtual Platforms

This chapter defines what a runtime switch behavior for virtual platforms (VPs) is and
discusses alternatives for implementing it. Based on the concepts developed in this chapter,
the concrete implementation of a switch behavior that can be used for example in the
previously presented Fault Injection Virtual Platform (FIVP) is described in the following
Chapter 4.

3.1. Definition of a Runtime Switch Behavior

In the context of this work, the term runtime switch behavior describes the ability to
switch during the simulation runtime of a VP between different simulation levels, i.e.,
levels of simulation detail. More precisely, this refers to the simulation level of the CPU
core. As introduced in Section 2.7, in the FIVP there is the possibility to use either a
CPU wrapping an instruction set simulator (ISS) like ETISS or a CPU with a verilated
RTL (VRTL) core model. Table 3.1 lists the properties and advantages of both simulation
levels.

CPU wrapping an ISS CPU with a VRTL core

• simulation on instruction level

• behavior of the CPU imitated as seen
from the outside

• abstraction: architectural states (like
GPRs and CSRs) are available but no
details inside the core are simulated

• high simulation speed (in MIPS)

• simulation at register transfer level
(RTL)

• hardware inside the core simulated

• detailed simulation/investigation pos-
sible

• useful for micro-architectural fault in-
jection

• low simulation speed (in KIPS)

Table 3.1.: Properties and advantages of different simulation levels

Usually the user has to decide before simulation time on which level the simulation
should run. Either, the more performant simulation at ISS level can be chosen, which

21

3. Conceptional Development of a Runtime Switch Behavior for Virtual Platforms

only represents the architectural behavior of the CPU. Alternatively, a more detailed
simulation at RTL can be run, which is slower. For the purpose of fault injection, the
latter is normally chosen, since faults are to be injected and investigated at the micro-
architectural level as well [21]. However, often only short sections of the simulation are
interesting for research. In the fault injection scenario, everything up to the point of
the injection is uninteresting and then follow a few thousand cycles which are to be
investigated. Subsequently, everything is less relevant again because the fault has either
had catastrophic effects, the CPU is still behaving like a CPU, or the fault has been
completely obscured. Nevertheless, in the existing approach, all passages have to be
simulated at the same simulation level and thus speed.

A runtime switch behavior can significantly shorten the simulation time by combining
both simulation levels and their strengths. The simulation can run at ISS level from the
simulation start until the point of interest, e.g., fault injection. Then, a switch to the
core at RTL can be performed. Next, the investigations are done at RTL and maybe it is
possible later to switch back to the fast ISS level. This procedure was already shown in
Section 1.2 when the work of Mueller-Gritschneder [11] was discussed and is shown again
in an abstracted form in Figure 3.1.

Figure 3.1.: General idea of a runtime switch behavior

As indicated in the figure, the switch from ISS level to RTL is not trivial. On the one
hand, the ISS’ architectural states (AS), such as register values, must be mapped to the
states of the RTL. On the other hand, the RTL core must be started, it must reach a valid
state and, if necessary, values must be found for states that are not present in the ISS.
These are described as micro-architectural states (MAS) in Figure 3.1.

Figure 3.2 shows how the runtime switch behavior could be used in the context of fault
injection. First, the simulation is started again at ISS level prior to switching to the RTL.
In this illustration, the RTL core is run for a few cycles after the reset and the mapping of
the states to make sure that it is in a valid state. This is called the warm-up phase. Next,
a clone of the RTL core is created, into which a soft error is injected. This way there is
a faulty core and a non-faulty reference core that can be compared to study the effects

22

3. Conceptional Development of a Runtime Switch Behavior for Virtual Platforms

of the injected error. After the fault injection investigation is finished, it can either be
switched back to the ISS level or the simulation can be finished at RTL. Figure 3.2 shows
the scenario with the switch back.

Figure 3.2.: Use of the runtime switch behavior in the fault injection scenario

3.2. Implementation Concept

In this section, the options for implementing a runtime switch behavior are discussed. On
this basis, the best implementation approach is chosen, whose realization is described in
the next chapter.

Three possible options for implementing the runtime switch behavior can be identified:
Firstly, two instances of the FIVPs could be created and run side by side. This means that
only few adjustments would have to be made to the VP itself and to the used CPU cores.
However, the execution would have to be controlled from the outside, e.g., by a operating
system multi-process environment. In case of a switch, the simulation of the first VP
with the CPU at ISS level would be stopped and all states would be copied out of the
simulation. These values would be copied into the second VP with the core at RTL and
this VP would be started. The external manipulation would be very costly and possibly
not feasible at all. Additionally, it is doubtful how performant this approach would be,
since two SystemC kernels would be needed for two different VPs, which means that most
components would simply be duplicated.

Contrary to the first option, the other two approaches only use one instance of the VP.
The second idea is to swap the CPU or the core itself on a switch during simulation time.
This would mean that when switching from ISS level to RTL, the states of the ISS would
be saved and the CPU model would be removed from the VP. A CPU model with an RTL
core would be instantiated and inserted in the same place. Next, the stored states would

23

3. Conceptional Development of a Runtime Switch Behavior for Virtual Platforms

be transferred to this core so that execution could then continue at RTL. The expected
performance with this approach would certainly be higher than with the first option, since
the overhead of duplicated simulation artifacts would be significantly lower. However, this
option is technically difficult to implement. As described in Section 2.2, standard SystemC
does not support the dynamic creation and binding of objects during runtime. For this
reason, it should be impossible to remove a CPU model from the VP during runtime and
connect another model to the same interface.

The third option is to incorporate multiple CPUs into one VP and develop a generic
component that can activate and pause the individual CPUs. This controller would be
a CPU multiplexer, so to speak, that could switch between different CPUs and forward
the transactions of the respective active CPU to the remaining components of the VP. A
CPU wrapping the ETISS core and a CPU with an RTL core could be connected to the
CPU multiplexer. In addition, this approach can be easily extended if a second CPU with
an RTL core is needed, e.g., as a non-faulty reference during fault injection. Furthermore,
there is no need to instantiate and connect new components in SystemC during runtime,
which is where the second approach failed. All components can be instantiated and
connected during the elaboration phase of the SystemC kernel and the switch is exclusively
controlled by the CPU multiplexer.

For the reasons mentioned above, the third approach will be implemented in this work.
Figure 3.3 shows how the CPU multiplexer can be integrated into the VP and how it can
be connected to different CPUs.
First, it should be noted that the mechanisms for activating and deactivating the individual
CPUs are not shown in Figure 3.3. They are described in Section 4.1 and 4.2. What is
shown, however, is that the CPU multiplexer provides two TLM sockets for each CPU, to
which one instruction line and one data line is connected. As the CPU multiplexer itself is
only connected to the system bus via two sockets, some form of demultiplexing is required.
How the routing of the TLM transactions works and how it is implemented is discussed
in Section 4.3. Likewise, it is noticeable that the interrupt lines are routed via the CPU
multiplexer to the individual CPUs. The reason for this is explained in Section 4.5.

The last section in this chapter covers the development flow of the CPU multiplexer.
Thereby the single steps, in which the development of the component is divided, are
explained and the challenges of each step are emphasized.

24

3. Conceptional Development of a Runtime Switch Behavior for Virtual Platforms

Figure 3.3.: Block diagram of the FIVP with the CPU multiplexer and multiple CPUs

25

3. Conceptional Development of a Runtime Switch Behavior for Virtual Platforms

3.3. Development Flow

When developing a runtime switch behavior, the question arises of how to verify the
correctness of the switch and the jump-started core. To solve this problem, the second
CPU with an RTL core can be used, which is later used as a reference CPU in the fault
injection scenario. This is presented as RTL1 in Figure 3.4. First, the CPU with the ISS
and the reference CPU with the RTL core are started. Both run in parallel (tandem) until
a certain point in time at which the switch takes place. Then, another CPU with an RTL
core is being jump-started and the architectural and the micro-architectural states are set.
Now, the reference CPU with the RTL core that has been running from the beginning
can be used for comparison. Both RTL cores can be compared in each cycle and this
way errors in the switch behavior can be found and the correctness of the switch can be
verified.
However, this requires that the ISS and the reference RTL core were stopped on exactly
the same instruction at the time of the switch. Likewise, the question arises how the ISS
and the reference core can run side by side. Only one of them may commit to the memory,
since they share the entire VP and memory operations may not be executed twice. For
this reason, first a tandem simulation is developed that solves the described alignment
problem and the memory problem. Only in the second step, a switch behavior is developed
that can be verified using the procedure described above and shown in Figure 3.4.
The parallel simulation harms the performance, since in the actual sense the fast ISS is
supposed to run on its own until the switch. Therefore, the reference kernel is removed as
soon as the functionality of the switch behavior has been proved. It can be used later as a
reference core for the fault injection but may then be jump-started as well.

Figure 3.4.: Development approach for the switch from ISS level to RTL

26

3. Conceptional Development of a Runtime Switch Behavior for Virtual Platforms

After the tandem simulation and the switch behavior have been developed, a jump back
to ISS level can be implemented. Since this should be rather trivial if the injected error
has been masked and the RTL core still behaves correctly according to the ISA, the focus
in this work will primarily be on the "switch down" shown in Figure 3.4.

27

4. Software Model of a CPU Multiplexer

This chapter describes the implementation and the exact functionality of the CPU multi-
plexer introduced in Section 3.2 and illustrated in Figure 3.3. The CPU multiplexer is a
virtual prototype of a generic hardware component and is implemented in SystemC.

4.1. Clock and Reset Signal Forwarding

To enable all CPU models with different cores to be connected to the CPU multiplexer,
they must all provide the same interfaces. For this reason all CPUs inherit from an
abstract CPU base class. This class defines SystemC input ports for a reset and a clock
signal, and two TLM initiator sockets. The platform-wide clock and reset signals are
generated by signal generators and sent over wires to all components. Since it should be
possible to execute and reset CPUs independently, these signals must be connected to the
CPUs via the CPU multiplexer. The CPU multiplexer can then control the forwarding
process and forward the clock and reset signals only to the currently active CPU(s). The
CPU wrapping ETISS does not need the clock signal, but since the reset line is necessary,
the clock signal is also forwarded to it for consistency. Possibly another CPU could be
used later at this place, which needs the clock signal.

For forwarding the signals within the CPU multiplexer two sc_methods are defined:
forward_clk and forward_rst. These are sensitive to the corresponding input ports and
forward the signals according to the pseudo code in Listing A.1. The handling of the reset
signals is analog to the sequence shown in Listing A.1. The forwarding function for the
clock signal is also used to make some configurations in the first clock cycle. In addition,
a cycle-based switch can be triggered from here by notifying a start-switch-on-this-cycle
SystemC event.

4.2. Freezing and Waking up CPUs

As indicated above, it must be possible to activate and deactivate each CPU independently.
For the CPUs with the RTL core this is very simple because they can be controlled via
the clock signal. If a CPU is disconnected from the clock signal by the CPU multiplexer,
it is deactivated, and if the clock signal is forwarded to it again, it continues to run. This
is not so easy with the CPU that wraps ETISS. Since it does not use the clock signal,
another way must be found to pause or stop the ISS. For this purpose, the function

28

4. Software Model of a CPU Multiplexer

ISS_CPU::systemCallSyncTime is useful, which ETISS calls at the end of each execution
loop cycle (see Figure 2.5) to resynchronize with the SystemC time. In this function the
check of a flag freeze_cpu is inserted and if the flag is set, a SystemC wait-function is
called, which waits for a wake-up event. Thus, ETISS is deactivated or frozen so to speak
until the event is notified. Via public functions the CPU multiplexer can set the freeze
flag as well as notify the wake-up event.
This way two simple ways were found to activate and deactivate the CPUs with an RTL
core and the CPU with the ISS.

4.3. TLM Routing for Memory Reads and Writes

The handling and demultiplexing of the instruction and data traffic within the CPU
multiplexer is not as trivial as the forwarding of the clock and reset signals. As shown
in Figure 4.1 the CPU multiplexer has two target sockets as interface for each CPU,
one for the instruction traffic and one for the data traffic. For each of these six sockets,
b_transport and transport_dbg functions must be implemented and registered. When
a generic payload (GP) is sent to one of the sockets, the corresponding b_transport or
transport_dbg function is called. This must then forward the GP to one of the two
tlm_initiator_sockets, which can be accomplished with a simple function call. For
the instruction line, this is easy because each CPU is allowed to read any number of
instructions from the instruction memory and the reads do not compete. Therefore all three
tlm_target_sockets of the CPU multiplexer to which the instruction read commands
are sent may forward them directly to the instruction tlm_initiator_socket.

On the data path, however, this is not so simple. Since all three CPUs can run simultane-
ously and all execute the same instructions, they will all perform the same data read and
write operations in the same order. However, the ISS will always run ahead because it
completes one instruction per SystemC cycle. In contrast, for RTL cores it is the case that
in certain cycles no instruction is completed because instructions might be speculatively
fetched and decoded but not executed. This can be the case if a branch was not predicted
correctly. Then, the pipeline is flushed and filled with new instructions which takes at
least two cycles. In ETISS this stalling can not happen because it does not implement a
pipeline on micro-architectural level. Therefore, it always runs ahead of the RTL cores.
For this reason, the read and write accesses via the TLM interfaces will arrive from all
three CPUs at different times. It would be fatal if a write access to the memory would be
allowed three times at different times. Likewise a data read access may not be permitted
three times. For example, when reading from the UART interface, which is implemented
using a receiver buffer register (RBR), the buffer register would be emptied and filled with
a new data packet after each access. For this reason a way must be found to ensure that
each memory read and write access can only be executed once in total. Since the ISS
always runs ahead as stated above, it must wait for the other CPUs after each execution of
a data read or write operation. As blocking transport functions are used in the simulation,
this can be realized directly by a SystemC wait in the b_transport function. The data

29

4. Software Model of a CPU Multiplexer

Figure 4.1.: CPU multiplexer and its TLM sockets

of the read or write access is stored in a buffer in the CPU multiplexer. As soon as the
RTL CPU(s) want(s) to execute the same data read or write instruction, it is checked
whether this is identical to the instruction stored in the buffer. If this is not the case, an
error has occurred and the simulation must be terminated. If the data is identical, a write
operation can return that it has already been executed and a read operation can return
the result of the read access, which is also stored in the buffer. Afterwards the waiting
CPU with the ISS can be woken up and all CPUs can continue their execution. If two
CPUs with RTL cores are part of the simulation, it is always necessary to wait for the
transaction of the last RTL core.

The entire process is illustrated in Figure 4.2. The procedure described here also has the
advantage that CPUs running at the same time are always "approximately" synchronous,
since they are synchronized on all read and write accesses. If only one CPU is run alone,
there is of course no need for waiting and the TLM GPs can be forwarded immediately.

30

4. Software Model of a CPU Multiplexer

CPU wrapping the ISS CPU(s) with RTL cores

Memory data read or
write transaction occurs

Execute data transaction =
forward generic payload GP

Store GP in internal buffer

Freeze ISS CPU

Wait for RTL CPU(s)

Memory data read or
write transaction occurs

Read or write?Read Write

Compare data,
address and length

of request GP
with internal buffer

Write already
done by ISS

Compare address
and length of

request GP with
internal buffer

Load data from
buffer to GP

Confirm GP

Wake ISS CPU up

Figure 4.2.: Routing of TLM data transactions in the CPU multiplexer

31

4. Software Model of a CPU Multiplexer

4.4. Refinement Map

The refinement map contains all the code for the CPU multiplexer, which is processor
specific, i.e., it cannot be used generally for every processor model. The main task of the
refinement map is to define which architectural state in the ISS should be mapped to
which state in the RTL model and how MAS should be treated.

To accomplish this, a so-called VRTLCoreStruct is defined in the refinement map. This
structure is similar to the VirtualStruct in Etiss described in Section 2.5 and defines a list
of registers and signals that are present in the RTL core. These include the instruction
pointer (IP), general-purpose registers (GPRs), control and status registers (CSRs), and a
few other control signals and registers. The VRTLCoreStruct stores both the references
to the signals in the verilated RTL (VRTL) core and the name of the module, as well as
the corresponding register in the ISS. In addition, the refinement map defines read and
write functions for each register and signal that call direct programming interface (DPI)
functions. These were described in Section 2.3 and can read or manipulate the registers
and signals in the RTL core.

Lastly, the refinement map defines a function that can manually flush the RISC-V pipeline
of the corresponding architecture. This is necessary for interrupt handling and switch
functionality, which are described in Section 4.5 and 4.6. Listing 4.1 shows how the
refinement map can be used to control the IP, GPRs and CSRs.

1 VRTLCoreStruct vrtl_core_; // initialization not shown here
2
3 vrtl_core_.IP.read();
4 vrtl_core_.IP.write(0x80);
5
6 vrtl_core_.GPR.at(15).read();
7 vrtl_core_.GPR.at(15).write(0xd08ff);
8
9 for (auto &gpr : vrtl_core_.GPR) // loop over GPRs

10 {
11 gpr.second.read(); // works analogous
12 gpr.second.write(0x0); // for the CSRs
13 }
14
15 vrtl_core_.CSR.at(0x341).read(); // read MEPC
16 vrtl_core_.CSR.at(0x341).write(0xc0a); // write MEPC
17
18 etissVirtualStruct->findName(vrtl_core_.IP.get_name())->read();

Listing 4.1: Example usage of the refinement map to manipulate the VRTL core

32

4. Software Model of a CPU Multiplexer

4.5. Interrupt Handling

As mentioned in Section 3.2 the CPU multiplexer must also intervene in the interrupt
system. The reason for this is that when an interrupt occurs, an interrupt handler is called
that first saves the GPRs to memory. If several CPUs are active at the same time this
may lead to a problem because they share a common memory. To ensure that the GPRs
from all CPUs have the same values, an alignment process must first be performed when
an interrupt occurs. This means that the CPU with the ISS is frozen on an interrupt.
Then, it is waited until all RTL CPUs have arrived at the same point. After that, the
interrupt is forwarded to all CPUs and the CPU with the ISS is woken up so that they all
start executing the interrupt handler at the same time.

The entire algorithm is shown in Figure 4.3 and implemented using an sc_thread that
waits in an infinite loop for new interrupts. When an interrupt occurs, it is first determined
on which interrupt line the interrupt has occurred. Afterwards, it is checked whether a
switch process is currently being executed. If this is the case, it must be waited for its
completion. Next, a flag is set to block all subsequent switch operations which is shown in
the green block in Figure 4.3. It is not possible to execute a switch during the alignment
for the interrupt forwarding. Thereafter, it is still necessary to wait until any memory
access operations that may be taking place have been completed. During these the CPU
with the ISS might be frozen.
If all previous conditions are fulfilled, the ISS CPU is frozen again. Meanwhile the interrupt
is already forwarded to it. This allows a smoother wake-up process later. After that
it is waited until the RTL CPU(s) have the same instruction in the ID stage that the
ISS has stored in its machine exception program counter (MEPC) register. If this is the
case, an additional check is made whether all GPRs of the RTL CPU(s) are equal to the
GPRs of the ISS. If both is the case, all CPUs are aligned and the interrupt can also
be forwarded to the RTL CPU(s). The problem with this is that the interrupt is not
executed immediately by the RI5CY core after it has been raised, but only two cycles
later. For this reason the pipeline must be flushed manually and the MEPC must be also
written manually. Since the flush procedure highly depends on the implementation of the
architecture, the implementation of the flush_vrtl_pipeline_manually function can be
found in the refinement map described in the previous section.
If all this was successful the synchronous execution of the interrupt handler starts and it
can be waited until it is finished. Finally, new interrupts can be waited for in the loop.

At this point it should be noted again that the whole complicated synchronization process
is only necessary if several CPUs are active at the time of the occurrence of the interrupt.
If only one CPU is active, the interrupt can of course be forwarded to it immediately.

33

4. Software Model of a CPU Multiplexer

Wait for next interrupt

Determine interrupt id

Ongoing switch?Yes No

Wait until switch
is finished

Block all incoming
switch requests with flag

Ongoing memory
read/write?Yes No

Wait until memory
read/write is finished

Raise interrupt for ISS
CPU & freeze ISS CPU

Wait for RTL CPU(s)

Raise interrupt for
RTL CPU(s)

Flush pipeline of RTL
CPU(s) and write MEPC

Wake ISS CPU up

Wait until handling is done

Figure 4.3.: Interrupt handling if several CPUs are active at the time of occurrence

34

4. Software Model of a CPU Multiplexer

4.6. Switch Functionality

The execution of a switch in the CPU multiplexer works similar to the interrupt handling
described in the previous section. In the following the single steps are described that are
necessary for switching from the CPU on ISS level to the CPU on RTL. Thereby, the
behavior developed in Chapter 3 is implemented. As already indicated there, the focus is
first placed on the "switch down", i.e., on the switch from ISS to RTL, since this is the
non-trivial switch. It is implemented analogously to Figure 3.4.

Just like the interrupt handling, the switch is implemented with an sc_thread. Its
execution flow is shown in Figure 4.4. First, the sc_thread waits for an sc_event that
triggers the switch. This can be notified, for example, in a certain cycle or depending
on other events. Implementing this ensures that the switch can be triggered at any time.
When a switch process is started, it is first checked whether an interrupt is currently
forwarded within the CPU multiplexer, i.e., the procedure shown in Figure 4.3 is executed.
This is only necessary if a reference RTL core is simulated in parallel to the ISS from
the beginning, e.g., to verify the correctness of the switch. Therefore, the corresponding
decision block in Figure 4.4 is highlighted in yellow. Thereupon, all incoming interrupts
are blocked with the help of a flag. This is the flag used in Figure 4.3 to check if there is
an ongoing switch. Blocking respectively postponing interrupts is not a problem, because
the CPU wrapping the ISS is frozen in the next step. This means that the interrupt would
have to wait until its wake-up anyway. The freezing and waking up of the ISS CPU is
highlighted in blue in Figure 4.4. After freezing the ISS CPU, the reference RTL CPU
must be waited for, if it is used in the above indicated way, and thereafter the jump-start
of the CPU with the RTL core can begin. For this purpose the CPU is first reset.

After the reset all architectural states are copied from the ISS into the RTL core. The
architectural states are the GPRs and the CSRs. At this point, other functions defined in
the refinement map can also be called to initialize the micro-architectural states. However,
this is not necessary for the RI5CY core used in this work. Afterwards, the boot address
of the CPU with the RTL core can be set to the IP of the ISS and the boot process is
started. When the IP arrives in the ID stage of the CPU, the machine trap-vector base
address (MTVEC) CSR of the RTL core has to be set to the corresponding value in the
ISS again, because it is reset during the boot process. After that, the CPU with the RTL
core is ready. If a tandem simulation is to be executed or the CPU wrapping the ISS is
needed again later, e.g., because a return jump is to be executed, it can now be woken
up. From this point on, all interrupts can be processed again. This completes the switch
process.

After a few hundred warm-up cycles, in which all previously unused micro-architectural
states can be set, the RTL core can be cloned into the reference RTL core and, e.g., fault
injection can be performed.

35

4. Software Model of a CPU Multiplexer

Wait for switch

Ongoing inter-
rupt handling?*Yes No

Wait until interrupt
handling is finished*

Block all incoming
interrupts with flag

Freeze ISS CPU

Wait for ref RTL CPU*

Reset RTL CPU

Copy GPRs and CSRs from
ISS to RTL Core

Set RTL boot address to
ISS IP

Wait until RTL CPU has
booted & IP in ID stage
equals IP from the ISS

Copy MTVEC CSR to
RTL core again

Wake ISS CPU up**

Run RTL CPU for a few
hundred cycles (warm-up)

* Only necessary if reference RTL CPU is used to verify the switch
** If no jump back is required the ISS CPU wake up can be omitted

Figure 4.4.: Procedure of a switch from the CPU with ISS to the CPU with RTL core

36

5. Experimental Evaluation - Results

5.1. Evaluation Approach

After the development and implementation of the runtime switch behavior in the form
of the CPU multiplexer, this is now to be tested and evaluated experimentally. The
developed algorithm and its implementation must be examined and evaluated in two
dimensions. The first dimension is the correctness of the functionality. It must be verified
that the switch from ISS level to RTL is always executed correctly and that the CPU with
the RTL core behaves afterwards as if it had been running from the simulation start. In
the second dimension, the performance and speed-up of the simulation must be evaluated.

To evaluate the functionality and the performance of the CPU multiplexer and the FIVP
in which it has been integrated, benchmark programs are required. In the context of this
work, two test scenario programs are used, which are briefly described in the following.

• FreeRTOS: The first test used is a FreeRTOS based test program. FreeRTOS is an
open-source real-time operating system that is especially used on microcontrollers
and small microprocessors [22]. It comes with a lean kernel that includes a scheduler
to execute various tasks. The test program used here first initializes and boots the
FreeRTOS kernel and then executes the main task. In this task a delay function
is called three times with a delay of one millisecond. When the timer interrupt
occurs after one millisecond, a message is printed on the UART. After three ticks,
i.e., three simulated milliseconds, the program execution and thus the simulation is
terminated.

• Dhrystone: The second test program used is the classic Dhrystone benchmark.
The latest version used here is version 2.1 in the programming language C and
was published in 1988 by Reinhold P. Weicker [23]. The first version was also
developed by Weicker in 1984 in the Ada language [24]. Dhrystone is an easy to
use integer benchmark, which is until today one of the standard benchmarks for
CPU and compiler performance measurements especially for microprocessors. It
was developed as an integer-based counterpart to Whetstone, which is also a single-
program benchmark, but based on floating-point arithmetic. For the examination of
the CPU multiplexer 10000 Dhrystone runs are executed.

In order to evaluate the correctness of the functionality of the switch process, both
benchmark programs are used. With the FreeRTOS program the functionality of the
switch behavior can be examined before, during and after interrupts. With the Dhrystone

37

5. Experimental Evaluation - Results

program the functionality can be examined during arithmetic, load, and store operations
of the CPU and it can be ensured that in the long run no errors occur. After all, 10000
Dhrystone runs in an RTL core take over 3.5 million clock cycles. Of course, the switch
functionality cannot be tested on each of these 3.5 million clock cycles. Therefore, a test
script was run that performs 200 random switches per benchmark program. After the
switch, the program was simulated to the end in parallel with Extendable Translating
Instruction Set Simulator (ETISS) and the reference RTL core, and the states of all CPUs
were compared regularly.

To evaluate the performance of the CPU multiplexer and the FIVP, the Dhrystone
program is to be used because it was developed exactly for this purpose. On the one
hand, this evaluation is important because many new SystemC components and function
calls have been added to the simulation. It must be ensured that this overhead does
not slow down the simulation so much that the acceleration of the simulation, which is
supposed to be achieved by the switch concept, is not compensated. On the other hand,
the speed-up achieved and the potential of the runtime switch behavior should also be
described quantitatively.
For this purpose, the following five measurement series with the FIVP and built-in CPU
multiplexer and three reference measurement series with the FIVP without the CPU
multiplexer are conducted:

1. Solo ETISS simulation, with CPU multiplexer, no tracing
2. Solo VRTL simulation, with CPU multiplexer, no tracing
3. Solo VRTLmod1 simulation, with CPU multiplexer, no tracing
4. Tandem simulation of ETISS and one VRTLmod1 core, no tracing
5. Triple simulation of ETISS, one VRTLmod1 core and another reference VRTLmod1

core, no tracing

6. Reference ETISS simulation, without CPU multiplexer, no tracing
7. Reference VRTL simulation, without CPU multiplexer, no tracing
8. Reference VRTLmod1 simulation, without CPU multiplexer, no tracing

As indicated above, in all measurement series 10000 Dhrystone benchmark runs are
executed and the performance is measured in executed clock cycles per second (CPS).
The measurements are performed on the Intel Xeon Gold 6126 CPU @ 2,60 GHz and the
system memory is 287 GiB. The detailed simulation results can be found in the Appendix.
In the next section, the average performance results for all eight measurement series are
presented and discussed.

1The VRTLmod core is a modified version of the verilated RTL (VRTL) core. The modification includes
the Fault Injection API. Therefore, this core is generally slower than the unmodified VRTL core.

38

5. Experimental Evaluation - Results

5.2. Results

The procedure described in the previous section was successfully used to prove the
functionality of the runtime switch behavior. At all 400 randomly selected switch points,
the switch was successful and the simulation subsequently completed without errors. To
the outside, the CPU with the jump-started RTL core and the CPU with the reference
RTL core, which ran from the beginning of the simulation, behaved the same at all times.
Additionally, the comparison with the architectural states of the reference RTL core was
always successful.

To evaluate the performance, the eight scenarios defined in the previous section were
simulated. The average performance values of all measurements with the CPU multiplexer
are shown in the following table.

1. ETISS 2. VRTL 3. VRTLmod 4. Tandem 5. Triple

1.030 · 106 CPS 138.3 · 103 CPS 130.2 · 103 CPS 54.6 · 103 CPS 26.5 · 103 CPS

Table 5.1.: Simulation results average values (see Appendix for all results)

The simulation with the ISS is naturally the fastest. It is faster by a factor of eight than
the simulation with the modified VRTL (VRTLmod) core. This is obviously due to the
different detail levels, as already introduced in Chapter 1. The tandem simulation of
ETISS and a VRTLmod core is 60% slower than the simulation with a VRTLmod core
and the triple simulation is even 80% slower. This can be explained by the fact that the
ISS has to wait for the RTL core(s) at every memory transaction. Also, the cores and
the ISS are not really simulated in parallel, but it must always be jumped back and forth.
This is very expensive and it can be stated that in no case the tandem or triple simulation
should be carried out from start to finish.

Next, the performance with the CPU multiplexer shall be compared to the reference
measurements without the CPU multiplexer. For this purpose, the measured average
performance values of the last three scenarios are listed below.

6. ETISS Reference 7. VRTL Reference 8. VRTLmod Reference

1.274 · 106 CPS 242.9 · 103 CPS 210.8 · 103 CPS

Table 5.2.: Reference simulation results average values (see Appendix for all results)

Comparing the values from Table 5.2 with Table 5.1, it is noticeable that the performance
is generally decreased by the implementation of the CPU multiplexer. This has already
been described in the previous section and can be explained by the fact that the CPU
multiplexer adds many software modules and function calls per simulated cycle and thus
reduces the overall performance of the simulation. Table 5.3 quantifies this performance

39

5. Experimental Evaluation - Results

decrease. It can be seen that the CPU multiplexer slows down the simulation with ETISS
by about 19% and the simulation on RTL by about 40%.

ETISS 6 → 1 VRTL 7 → 2 VRTLmod 8 → 3

1.03− 1.274

1.274
= −19.2%

138.3− 242.9

242.9
= −43.1%

130.2− 210.8

210.8
= −38.2%

Table 5.3.: Solo simulation performance decrease due to CPU multiplexer

Finally, it must be verified and demonstrated that the application of the runtime switch
behavior yields a performance gain that far exceeds the performance decrease shown
in Table 5.3. Of course, the performance gain of the runtime switch behavior without
switching back to the ISS strongly depends on the length of the test program and the
switch point. Therefore, the overall performance of the simulation with switching is to be
examined here in dependence of the switching point. For this, it is assumed that a test
program of one million cycles is used and that a period of 10k cycles is to be examined
after the switch. This period includes the warm-up phase of the RTL cores after the switch.
The period length of 10k cycles is chosen based on [11] where a period of 10k cycles is
used as a reference in experimental evaluation. In this work it is assumed that during
the period of 10 cycles ETISS, a jump-started RTL core and a jump-started reference
RTL core are simulated. This is equivalent to the triple simulation that is Scenario 5 in
the previous section. After the 10k cycles ETISS and the reference core can be stopped
and the simulation is finished on RTL. The overall performance can be calculated with
the following formula. For PRFETISS, PRFTRIPLE and PRFVRTLMOD the corresponding
performance values from Table 5.1 are inserted.

PRFTOTAL =
x · PRFETISS + 104 · PRFTRIPLE + (106 − 104 − x) · PRFV RTLMOD

106

The above function is plotted in blue in Figure 5.1. In addition, the performance of the
simulation with ETISS is plotted in green and with VRTLmod in red. The blue graph
shows that the overall performance for the case of a switch without switch back increases
the later the switch is performed. This is due to the fact that a larger proportion is then
simulated using the fast ISS. Figure 5.1 also shows that the simulation with the switch
outperforms the reference VRTLmod simulation as soon as the switch point lies beyond
the 100000th cycle. If it is before, the reference VRTLmod simulation is faster. For this
reason, a switch back to the ISS should be implemented in the future. Then one would not
have to simulate with the VRTLmod core until the end and could use PRFETISS instead
of PRFVRTLMOD in the last term of the formula above. This would make the middle
term negligibly small and the overall performance would be constant at about PRFETISS.
This is the green graph in Figure 5.1. Compared to the simulation with the reference
VRTLmod core, this could result in a performance gain of about 1030−210.8

210.8 = 389%.

40

5. Experimental Evaluation - Results

0 105 2·105 3·105 4·105 5·105 6·105 7·105 8·105 9·105 106
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

Clock cycle of switch from ISS level to RTL

Si
m

ul
at

io
n

Sp
ee

d
/

P
er

fo
rm

an
ce

in
1
03

C
P

S

Switch down at cycle x, no switch back
ETISS ≈ Switch down at cycle x and
switch back after 10k cycles
VRTLmod
ETISS reference
VRTLmod reference

Figure 5.1.: Performance estimation for different switch cycles with and without switch
back, a fixed warm-up and cool-down length of 10k cycles and a test program
of 1M cycles

41

6. Summary and Outlook

In this work, a runtime switch behavior for virtual platforms (VPs) was developed that
makes it possible to switch between different CPU models during the simulation runtime.
These CPU models can be implemented at different levels of detail, so that it is possible to
switch from a high performance CPU model, simply wrapping an instruction set simulator
(ISS), to a slower CPU containing a core on register transfer level (RTL) that is in turn
much more detailed.

First, the runtime switch behavior was developed conceptually and three ways were shown
to implement it. It turned out that the option of incorporating all CPUs into one VP and
then developing a component that can switch between the CPUs was the most feasible
approach. For this reason, the virtual prototype of a CPU multiplexer was developed,
which, as the name implies, can switch between different CPU models. To do this, it can
activate and deactivate the CPUs individually and independently, control the data flow to
the system bus and manage the interrupt lines. On the one hand the CPU multiplexer
allows to run all CPUs alone, to perform a tandem simulation of one ISS and one RTL
core or to execute a triple simulation with an additional reference RTL core. On the other
hand, it also allows to switch from the CPU with the ISS to a CPU with an RTL core.

Within the scope of this work, all functionalities of the CPU multiplexer were evaluated
experimentally with respect to their functionality and performance. From the functionality
perspective, the CPU multiplexer and the runtime switch behavior implemented therein
work flawlessly. Although the installation of the CPU multiplexer in a VP reduces the
performance compared to the reference simulation with a single CPU by up to 43%, the
simulation with a switch from ISS to RTL outperforms the reference simulation by a
multiple. However, it was also shown that the overall performance strongly depends on
the switch time point, since it is not yet possible to switch back to ISS level as soon as
the detailed simulation of the CPU is no longer required.

Nevertheless, in order to achieve the maximum simulation performance, a switch back
should be implemented in the future. Therefore an algorithm must be found, which can
determine, when a switch back is appropriate and possible. The switch process itself can
then be implemented very easily, because the CPU multiplexer provides all necessary
functionalities. The switch back from the RTL to the ISS level is the more trivial switch,
since the ISS is a more abstract model and all the states that the ISS implements are
simulated in the RTL model.

42

A. Appendix

A.1. Clock Signal Forwarding

1 void CpuMultiplexer::forward_clk()
2 {
3 case SimulationMode::etiss:
4 forward_clk_to_iss_cpu();
5 case SimulationMode::vrtl:
6 forward_clk_to_vrtl_cpu();
7 case SimulationMode::tandem:
8 forward_clk_to_vrtl_cpu();
9 forward_clk_to_iss_cpu();

10 case SimulationMode::switch:
11 forward_clk_to_iss_cpu();
12 if not SwitchStatus::switching
13 forward_clk_to_ref_vrtl_cpu();
14 if SwitchStatus::switching
15 or SwitchStatus::vrtl_active
16 forward_clk_to_vrtl_cpu();
17 }

Listing A.1: Pseudo code of the sc_method that
forwards the clock signal

43

A. Appendix

A.2. Simulation Results: Performance Measurement for the
FIVP with CPU Multiplexer

In each of the five measurement series, 10000 Dhrystone benchmark runs are executed and
the performance is measured in CPS. The measurements are performed on the following
processor: Intel Xeon Gold 6126 CPU @ 2,60 GHz. The system memory is 287 GiB.

Index 1 2 3 4 5 6 7 8 9 10 Avg

Perfor-
mance
[MCPS]

1.027 1.032 1.034 1.026 1.020 1.026 1.027 1.035 1.030 1.040 1.030

Table A.1.: Results Scenario 1 (CPU multiplexer, solo ETISS, no tracing)

Index 1 2 3 4 5 6 7 8 9 10 Avg

Perfor-
mance
[kCPS]

136.1 ���XXX112.3 140.0 139.3 141.2 134.9 137.9 137.6 139.3 ���XXX122.5 138.3

Table A.2.: Results Scenario 2 (CPU multiplexer, solo VRTL, no tracing)

Index 1 2 3 4 5 6 7 8 9 10 Avg

Perfor-
mance
[kCPS]

123.5 131.3 129.5 130.8 130.5 131.4 130.3 130.4 133.5 130.5 130.2

Table A.3.: Results Scenario 3 (CPU multiplexer, solo VRTLmod, no tracing)

Index 1 2 3 4 5 6 7 8 9 10 Avg

Perfor-
mance
[kCPS]

54.5 55.4 54.3 55.5 55.0 54.0 53.9 55.8 53.2 54.8 54.6

Table A.4.: Results Scenario 4 (CPU multiplexer, tandem ETISS-VRTLmod, no tracing)

Index 1 2 3 4 5 6 7 8 9 10 Avg

Perfor-
mance
[kCPS]

26.3 26.5 26.5 26.6 26.6 26.5 26.5 26.6 26.5 26.5 26.5

Table A.5.: Results Scenario 5 (CPU multiplexer, triple ETISS-VRTLmod, no tracing)

44

A. Appendix

A.3. Simulation Results: Reference Performance
Measurement for the FIVP without CPU Multiplexer

In each of the three measurement series, 10000 Dhrystone benchmark runs are executed and
the performance is measured in CPS. The measurements are performed on the following
processor: Intel Xeon Gold 6126 CPU @ 2,60 GHz. The system memory is 287 GiB.

Index 1 2 3 4 5 6 7 8 9 10 Avg

Perfor-
mance
[MCPS]

1.277 1.276 1.282 1.291 1.239 1.271 1.272 1.283 1.275 1.277 1.274

Table A.6.: Results Scenario 6 (reference, no CPU multiplexer, ETISS, no tracing)

Index 1 2 3 4 5 6 7 8 9 10 Avg

Perfor-
mance
[kCPS]

241.0 246.8 238.3 241.3 246.4 241.4 241.6 249.9 243.5 238.7 242.9

Table A.7.: Results Scenario 7 (reference, no CPU multiplexer, VRTL, no tracing)

Index 1 2 3 4 5 6 7 8 9 10 Avg

Perfor-
mance
[kCPS]

208.3 213.6 208.5 208.7 ���XXX158.8 211.7 212.2 ���XXX155.5 209.9 213.7 210.8

Table A.8.: Results Scenario 8 (reference, no CPU multiplexer, VRTLmod, no tracing)

45

Acronyms

ALU Arithmetic Logic Unit. 17, 18

API Application Programming Interface. 13, 38

AS Architectural State. 22, 35

CLINT Core-local Interrupt Controller. 19

CPS Clock Cycles per Second. 38, 39, 41, 44, 45

CPU Central Processing Unit. iii, 1–3, 13, 15, 16, 19–26,
28–40, 42, 49, 50

CSR Control and Status Register. 16–18, 21, 32, 35

DMI Direct Memory Interface. 11

DPI Direct Programming Interface. 13, 14, 32

EDA Electronic Design Automation. 2, 19

ELF Executable and Linkable Format. 19

ETISS Extendable Translating Instruction Set Simulator. iii,
2–5, 15, 16, 20, 21, 24, 28, 29, 38–41, 44, 45, 49, 50

EX Execution Stage. 18

FIVP Fault Injection Virtual Platform. 2, 3, 5–7, 19–21, 23,
25, 37, 38, 49

FPR Floating-point Register. 17, 19

FPU Floating-point Unit. 18, 19

GCC GNU Compiler Collection. 15

GDB GNU Debugger. 16

GP Generic Payload. 12, 29, 30

GPR General-purpose Register. 13, 16, 17, 19, 21, 32, 33,
35, 50

46

Acronyms

HDL Hardware Description Language. 13, 14

ID Instruction Decode Stage. 18, 19, 33, 35

IEEE Institute of Electrical and Electronics Engineers (pro-
fessional association). 8, 13

IF Instruction Fetch Stage. 18

IP Instruction Pointer. 13, 15, 16, 32, 35

ISA Instruction Set Architecture. 2–5, 15–17, 27

ISS Instruction Set Simulator. iii, 2–5, 15, 20–23, 26–30,
32, 33, 35–37, 39–42, 49

JIT Just-in-time Compiler. 15, 16

KIPS Kilo Instructions per Second. 21

LLVM Low Level Virtual Machine. 15

LSU Load-Store Unit. 18

MAS Micro-architectural State. 22, 32, 35

MEM Memory. 19

MEPC Machine Exception Program Counter. 33

MIPS Million Instructions per Second. 1, 21

MTVEC Machine Trap-Vector Base Address Register. 35

OS Operating System. 11

PLIC Platform Level Interrupt Controller. 19, 20

PULP Parallel Ultra Low Power Projekt. 18

RISC Reduced Instruction Set Computer. 17

RTL Register Transfer Level. iii, 2–5, 13, 20–24, 26–30, 32,
33, 35–42, 49

SoC System on Chip. iii, 1, 2, 6, 19

TCC Tiny C Compiler. 15

TLM Transaction-Level Modeling. 8, 10–12, 19, 20, 24,
28–31, 49

TUM Technical University of Munich. 2, 15, 19

47

Acronyms

UART Universal Asynchronous Receiver-Transmitter. 19,
29

VP Virtual Platform (system of Virtual Prototypes). 1–4,
6–8, 11, 19–21, 23, 24, 26, 42

VRTL Verilated Register Transfer Level Model. iii, 14, 20,
21, 32, 38–40, 44, 45, 50, 51

VRTLmod Modified Verilated Register Transfer Level Model.
38–41, 44, 45, 50

WB Writeback Stage. 18

48

List of Figures

1.1. Multi-level simulation flow suggested by Mueller-Gritschneder [11] 5
1.2. Difference between ETISS-ML and the idea of this work 5

2.1. Phases of a SystemC simulation . 9
2.2. Transaction between a TLM initiator socket and a target socket 12
2.3. Verilator flow . 14
2.4. Etiss architecture [17] . 15
2.5. Etiss core execution loop [18] . 16
2.6. Block diagram of the RI5CY processor [19] 18
2.7. Block diagram of the FIVP . 20

3.1. General idea of a runtime switch behavior 22
3.2. Use of the runtime switch behavior in the fault injection scenario 23
3.3. Block diagram of the FIVP with the CPU multiplexer and multiple CPUs 25
3.4. Development approach for the switch from ISS level to RTL 26

4.1. CPU multiplexer and its TLM sockets . 30
4.2. Routing of TLM data transactions in the CPU multiplexer 31
4.3. Interrupt handling if several CPUs are active at the time of occurrence . . 34
4.4. Procedure of a switch from the CPU with ISS to the CPU with RTL core 36

5.1. Performance estimation for different switch cycles with and without switch
back . 41

49

List of Tables

2.1. RISC-V integer register file with 32 GPRs [20] 19

3.1. Properties and advantages of different simulation levels 21

5.1. Simulation results average values . 39
5.2. Reference simulation results average values 39
5.3. Solo simulation performance decrease due to CPU multiplexer 40

A.1. Results Scenario 1 (CPU multiplexer, solo ETISS) 44
A.2. Results Scenario 2 (CPU multiplexer, solo VRTL) 44
A.3. Results Scenario 3 (CPU multiplexer, solo VRTLmod) 44
A.4. Results Scenario 4 (CPU multiplexer, tandem ETISS-VRTLmod) 44
A.5. Results Scenario 5 (CPU multiplexer, triple ETISS-VRTLmod) 44
A.6. Results Scenario 6 (reference, no CPU multiplexer, ETISS) 45
A.7. Results Scenario 7 (reference, no CPU multiplexer, VRTL) 45
A.8. Results Scenario 8 (reference, no CPU multiplexer, VRTLmod) 45

50

List of Listings

4.1. Example usage of the refinement map to manipulate the VRTL core . . . 32

A.1. Pseudo code of the sc_method that forwards the clock signal 43

51

Bibliography

[1] H. Herold, B. Lurz, and J. Wohlrab, Grundlagen der Informatik, 2nd ed. Munich,
Germany: Pearson Deutschland GmbH, 2012.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture, A Quantitative Approach,
6th ed. Cambridge, MA, United States: Morgan Kaufmann, 2019.

[3] TSMC, 28nm Technology. [Online]. Available: https://www.tsmc.com/english/
dedicatedFoundry/technology/logic/l_28nm (visited on 09/18/2022).

[4] J. Rossignol, Apple’s First 3nm Chips for MacBook Pro Expected to Enter Production
This Year, Aug. 22, 2022. [Online]. Available: https://www.macrumors.com/
2022/08/22/3nm-chip-production-for-upcoming-macs-report/ (visited on
09/18/2022).

[5] IBM, IBM Unveils World’s First 2 Nanometer Chip Technology, May 6, 2021.
[Online]. Available: https://newsroom.ibm.com/2021- 05- 06- IBM- Unveils-
Worlds- First- 2- Nanometer- Chip- Technology, - Opening- a- New- Frontier-
for-Semiconductors (visited on 09/18/2022).

[6] ESA, Virtual Platform Technology. [Online]. Available: https://www.esa.int/
Enabling_Support/Space_Engineering_Technology/Microelectronics/Virtual_
Platform_Technology (visited on 09/21/2022).

[7] J. Geier, “Fast RTL-based Fault Injection Framework for RISC-V Cores”, M.S. thesis,
TU Munich, Mar. 6, 2020.

[8] Y. Xing, A. Gupta, and S. Malik, “Generalizing Tandem Simulation: Connecting
High-level and RTL Simulation Models”, in 2022 27th Asia and South Pacific
Design Automation Conference (ASP-DAC), 2022, pp. 154–159. doi: 10.1109/ASP-
DAC52403.2022.9712564.

[9] B.-Y. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and S. Malik,
“Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip
(SoC) Verification”, ACM Transactions on Design Automation of Electronic Systems,
vol. 24, 2018. doi: 10.1145/3282444.

[10] D. Aarno and J. Engblom, Software and System Development using Virtual Platforms,
1st ed. Waltham, MA, United States: Morgan Kaufmann, 2015.

52

https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_28nm
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_28nm
https://www.macrumors.com/2022/08/22/3nm-chip-production-for-upcoming-macs-report/
https://www.macrumors.com/2022/08/22/3nm-chip-production-for-upcoming-macs-report/
https://newsroom.ibm.com/2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology,-Opening-a-New-Frontier-for-Semiconductors
https://newsroom.ibm.com/2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology,-Opening-a-New-Frontier-for-Semiconductors
https://newsroom.ibm.com/2021-05-06-IBM-Unveils-Worlds-First-2-Nanometer-Chip-Technology,-Opening-a-New-Frontier-for-Semiconductors
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Virtual_Platform_Technology
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Virtual_Platform_Technology
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Microelectronics/Virtual_Platform_Technology
https://doi.org/10.1109/ASP-DAC52403.2022.9712564
https://doi.org/10.1109/ASP-DAC52403.2022.9712564
https://doi.org/10.1145/3282444

Bibliography

[11] D. Mueller-Gritschneder, M. Dittrich, J. Weinzierl, E. Cheng, S. Mitra, and U.
Schlichtmann, “ETISS-ML: A Multi-Level Instruction Set Simulator with RTL-level
Fault Injection Support for the Evaluation of Cross-Layer Resiliency Techniques”, in
2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018,
pp. 609–612. doi: 10.23919/DATE.2018.8342081.

[12] T. de Schutter, Better Software. Faster!, 1st ed. Mountain View, CA, United States:
Synopsys Inc., 2014.

[13] IEEE, “IEEE Standard for Standard SystemC Language Reference Manual”, IEEE
Std 1666-2011 (Revision of IEEE Std 1666-2005), pp. 1–638, 2012. doi: 10.1109/
IEEESTD.2012.6134619.

[14] IEEE, “IEEE Standard for SystemVerilog–Unified Hardware Design, Specification,
and Verification Language”, IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012),
pp. 1–1315, 2018. doi: 10.1109/IEEESTD.2018.8299595.

[15] W. Snyder, Verilator Manual, Jul. 2022. [Online]. Available: https://www.veripool.
org/ftp/verilator_doc.pdf (visited on 09/26/2022).

[16] Veripool, Welcome to Verilator. [Online]. Available: https://www.veripool.org/
verilator/ (visited on 09/26/2022).

[17] TUM, Chair of Electronic Design Automation (EDA), ETISS (Extendable Translating
Instruction Set Simulator). [Online]. Available: https://github.com/tum-ei-
eda/etiss (visited on 09/27/2022).

[18] TUM, Chair of Electronic Design Automation (EDA), ETISS 0.8.0. [Online]. Avail-
able: https://tum-ei-eda.github.io/etiss/index.html (visited on 09/27/2022).

[19] A. Traber, M. Gautschi, and P. D. Schiavone, RI5CY: User Manual, ETH Zurich,
Switzerland and University of Bologna, Italy, Apr. 2019. [Online]. Available: https://
www.pulp-platform.org/docs/ri5cy_user_manual.pdf (visited on 09/29/2022).

[20] A. Waterman and K. Asanovic, The RISC-V Instruction Set Manual, May 2017.
[Online]. Available: https://riscv.org/wp-content/uploads/2017/05/riscv-
spec-v2.2.pdf (visited on 09/26/2022).

[21] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra, “Quantitative
Evaluation of Soft Error Injection Techniques for Robust System Design”, in Pro-
ceedings of the 50th Annual Design Automation Conference, Austin, Texas, 2013.
doi: 10.1145/2463209.2488859.

[22] Amazon Web Services, Inc., The FreeRTOS™ Kernel. [Online]. Available: https:
//www.freertos.org/RTOS.html (visited on 10/07/2022).

[23] R. P. Weicker, “Dhrystone benchmark: Rationale for version 2 and measurement
rules”, SIGPLAN Not., pp. 49–62, Aug. 1988. doi: 10.1145/47907.47911.

[24] R. P. Weicker, “Dhrystone: A synthetic systems programming benchmark”, Commun.
ACM, pp. 1013–1030, Oct. 1984. doi: 10.1145/358274.358283.

53

https://doi.org/10.23919/DATE.2018.8342081
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1109/IEEESTD.2018.8299595
https://www.veripool.org/ftp/verilator_doc.pdf
https://www.veripool.org/ftp/verilator_doc.pdf
https://www.veripool.org/verilator/
https://www.veripool.org/verilator/
https://github.com/tum-ei-eda/etiss
https://github.com/tum-ei-eda/etiss
https://tum-ei-eda.github.io/etiss/index.html
https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://doi.org/10.1145/2463209.2488859
https://www.freertos.org/RTOS.html
https://www.freertos.org/RTOS.html
https://doi.org/10.1145/47907.47911
https://doi.org/10.1145/358274.358283

	Abstract
	Contents
	Introduction
	Motivation
	Related Work

	Background Information
	Virtual Prototyping
	SystemC
	SystemC Simulation Kernel and Core Language Concepts
	Transaction Level Modeling (TLM-2.0)

	SystemVerilog
	Verilator
	Extendable Translating Instruction Set Simulator (ETISS)
	Architecture of ETISS
	Plugins for ETISS
	Virtual Core Structure in ETISS

	RI5CY RTL Core
	RISC-V Instruction Set Architecture Overview
	RI5CY Implementation

	Fault Injection Virtual Platform (FIVP)

	Conceptional Development of a Runtime Switch Behavior for Virtual Platforms
	Definition of a Runtime Switch Behavior
	Implementation Concept
	Development Flow

	Software Model of a CPU Multiplexer
	Clock and Reset Signal Forwarding
	Freezing and Waking up CPUs
	TLM Routing for Memory Reads and Writes
	Refinement Map
	Interrupt Handling
	Switch Functionality

	Experimental Evaluation - Results
	Evaluation Approach
	Results

	Summary and Outlook
	Appendix
	Clock Signal Forwarding
	Simulation Results: Performance Measurement
	Simulation Results: Reference Performance Measurement

	Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography

