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Abstract— Cities can benefit to a great extent from the 

deployment of bicycle-sharing services (BSS). Conceived as 

being an alternative for taxi services and public transport, BSSs 

are used by daily commuters, as well as tourists. Open data 

sharing policies in the US allow data scientists to make use of 

relatively detailed and anonymized data extracts of often station-

based, bicycle-sharing services.  Origin destination matrices (OD 

matrices) allow the representation of flows while leaving out 

detailed information on the specific trajectory and the traffic 

control that influences individual movements. This paper aims 

at reviewing the existing methods for analyzing sharing services 

that operate predominantly using GPS data. We aim to use 

unsupervised clustering learning techniques to analyze GPS 

data and develop insights. We found that combining more than 

one clustering technique is more effective as compared to 

individual techniques. We discuss the merits and demerits of 

individual and combined techniques and their relevance in 

analyzing bike-sharing GPS data. 

I. INTRODUCTION 

Bicycle usage patterns can help us understand the city's 
behaviour and geography [1]. City planners could understand 
the movement of people within and in-out of the city to a 
certain extent. Bicycle usage patterns of a dockless bicycle-
sharing service are different from a docked bicycle-sharing 
service [2]. A new domain of bicycle sharing is electric bicycle 
sharing which is predominantly docked [3]. This research is on 
analysis of GPS data from a dockless electric bicycle sharing 
service implemented in a university campus area. Much of this 
work is on the application of unsupervised machine learning 
techniques where each technique is applied followed by a 
discussion with an emphasis on transport. Clusters, which 
correspond to the locations of interest or hotspots, formed with 
these techniques are related to different modes of transport. 
Key performance indicators have been defined for such service 
with both an operational and performant perspective. 

II. STATE OF THE ART 

In 2021, more than 1,900 different bike-sharing services 
were operating worldwide with around 9.5 million used bikes 
[4]. One of the advantages, these services provide is options 
for last-mile trips between a public transport stop and the place 
of destination [5]. Buck et al. [6]point out the mostly work-
related purpose for BSS bikes in the group of long-term 
members. Besides daily commuters, Krauss et al. [7] identify 
the bike-sharing user group focusing on leisure activities 
during the day for short trips or longer trips up to six hours.  
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In general, we can distinguish between two different types 
of Bike Sharing Systems (BSS): (1) the traditional Station-
Based BSSs (SBBSSs), where users can only start and end 
their trips at static stations and (2) Free-Floating BSSs 
(FFBSSs) where no restriction exists in start and endpoints of 
trips. 

Besides this, it is known that rebalancing methods for 
BSSs are the focus of many research studies, but mainly on 
SBBSSs. Only a few studies focus on the rebalancing of 
FFBSSs [8]. The redistribution of bicycles by the provider 
usually follows the optimization for reducing trips and 
resulting costs, which is more accessible in the case of the 
usage of fixed dock-based stations for bikes [9]. 

The first generation of BSS appeared around 1965 with the 
option of freely available bikes with no fixed stations 
throughout the city [10]. On the other hand, fixed dock-based 
stations usually are implemented near points of interest such 
as restaurants, locations of businesses, leisure activities or 
stops of public transportation [11]. Rixey [12] and Faghih-
Imani et al. [11] discover a relationship between the number 
of rented and returned bikes at locations near points of interest 
and those areas with a higher population or job densities. Some 
studies show that most customers of bike-sharing services do 
not use bike sharing frequently, which is supported by studies 
from for example Chicago [13], Cologne [14] or Paris [15]. 
Additionally, detecting different usage patterns (a) on 
weekends and weekdays or (b) during rush hours and the rest 
of the day are also part of these studies, as well as (c) changing 
demand depending on the weather and course of the year and 
(d) also the duration of bike trips [14]. Etienne et al.[16] 
identify groups of stations with similar usage profiles without 
using the station occupancy details.  

III. OVERVIEW AND DATA DESCRIPTION 

A. Overview of the bicycle sharing experimentation 

The data refers to the NTU Free2move which is an e-
bicycle sharing experiment operated within the campus of 
Nanyang Technological University (NTU) in Singapore. The 
users are students and staff of the university who unlock the 
bicycle by scanning the QR code present on the bicycle via an 
android application. The experiment is free of charge and 
works only on android devices. It is based on a credits system 
where each registered user is given a total of 100 credits and 
each minute of a ride costs 1 credit. Charging stations powered 
by solar energy for charging the batteries of the bicycles and 
incentivizing the users by giving extra credits to bring the 
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bicycles to the charging station are used to ease up the 
operation. 

The data is collected via a GPS device installed on the 
bicycle which uses GSM to share the data to the cloud. The 
data contains the GPS coordinates of the start and end location 
of the ride. Also, intermediate GPS points in the ride are 
collected which can suggest the approximate route of each 
ride. The intermediate GPS points during the ride may not be 
accurate since the bicycle is in motion and the GPS was not 
accurate enough. With that assumption, the ride starting and 
ending points which also use the GPS location of the user’s 
mobile phone were found to be relatively accurate. This 
experiment is implemented for the first time in Singapore. 

B. Description of the data set 

The data used for this research is from bicycle-sharing 
experimentation implemented in the Nanyang Technological 
University campus located in Singapore. It has an uneven 
topography with a total land area of 2 square kilometres. The 
experimentation was rolled out in three phases. The first phase 
was from 5th Feb 2018 to 20th March 2018. It is of 42 days 
which has 30 weekdays and 12 weekend days (trip count: 301) 
The second phase is from 10th April 2018 to 10th May 2018 
i.e., 22 weekdays and 8 weekend days (trip count: 405). And 
finally, the third phase, which is the longest, from 1st Aug 
2018 to 31st Dec 2018 consisted of 108 weekdays and 44 
weekend days (trip count: 710). In the first and the second 
phases, the experimentation was open even on weekend days 
which is not the case with the final phase. During the third 
phase of the experimentation, the experimentation was only on 
weekdays operating from 09.00 hrs. to 18.00 hrs. 

As this research solely relies on the accuracy of the GPS 
data, it is important to understand the accuracy of the data. The 
location of the bicycle when no one is riding is tracked by the 
on-device GPS unit. But the GPS coordinates of the start and 
endpoints of the rides are collected from the GPS coordinates 
indicated by the mobile phones of the users. Hence the 
accuracy of these coordinates highly depends on the signal 
strength and telecom provider. We tried to test the accuracy of 
the data through observations and follow-up questions from 
the riders. We concluded that the actual coordinates lie in a 
range of 50-100m from the original data obtained. This 
assisted us to filter and processing the GPS data during the 
further spatial analysis of the data. 

C. Trip analysis 

a. Land-use 
We categorized the NTU campus by land use to understand 

the popular start and end locations. Open street map data was 
used to classify the buildings and parts of the campus based on 
land use. Certain places on campus were not available with the 
data obtained from the open street maps. Google maps and the 
map given to campus users are used as a basis to understand 
other parts of the campus. Certain corrections and updates are 
made wherever necessary.  

b. Trip description 
i. Average distance 

The average distance of all the trips is about 0.9 km. Which 
represents 25% of the campus loop i.e., the length of the road 
encircling the campus. Since this experiment is used to fulfil 

first and last-mile trips, the data represented a similar pattern. 
All the trips are used to move from one location to another and 
we did not observe any intermediate stops between the start 
and end location of a trip. Figure 1 shows the frequency plot 
of the distance with an interval of 2 kilometres indicating the 
average distance in red.  

 
Figure 1. Trip distance frequency plot. 

ii. Average duration 

The Predominant trip duration is below 10 mins. The 
average duration of trips turned out to be 9.6 mins as shown in 
Figure 2. Trip duration frequency plot. The average speed of 
all the rides is about 6 kilometres per hour which about lower 
than double the walking speed of humans on average. 

 

 
Figure 2. Trip duration frequency plot. 

iii. Temporal Variation 

We observed the peak usage in the afternoon between 
12.00 hrs. and 14.00 hrs., followed by evening time between 
17.00 hrs. and 19.00 hrs. Figure 3 shows the trip count by the 
hour of the day.  We observed that this experimentation was 
not used for morning commutes as compared to the lunch trips 
and evening commutes. 

The next sub-section presents the quality of the GPS data 
as it is common for GPS data to have accuracy issues. 

We intend to apply unsupervised machine learning 
techniques, as mentioned before, to the GPS data hence 
obtained and are interested to learn the advantages and 
disadvantages of applying such techniques on a smaller data 
set. Accordingly, we describe the techniques used for this 



  

research, and analysis followed by possible limitations in the 
next section. 

 
Figure 3. Trip count by the hour of the day. 

IV. METHODOLOGY 

We focused on implementing unsupervised machine 
learning techniques for pick-up and drop-off locations of the 
experimentation. The approach is presented in Figure 4. 

 

Figure 4. Flow chart describing the method. 

A. GPS data: Initial insights 

The first step as mentioned in Figure 4 is post-processing 
of GPS data of trip origins and destinations. Initially, we 
observed that data appeared as a point cloud with 
concentration at a few locations as described in Figure 5. 

 

Although this did give an insight into the location with the 
greatest number of trips, it is not clear about the popular start 
and end locations.  Hence, we investigated further to find out 
the popular locations i.e., administration building, bus stop, 
etc. 

B. Data classification 

Various fields depending on whether image processing, 
data mining or spatial data analysis require specific data 
classification methods. In this research, we are curious to 
implement popular unsupervised clustering techniques to 
identify popular locations. It is reasonable to observe the 
spatial data based on land use and identify the hotspots. While 
such a process is considered reasonable, we intend to use 
unsupervised machine learning techniques to observe if it is 
possible to automate the analysis of similar types of datasets. 
If such a method, it is then possible to extend this analysis for 
larger-scale bike-sharing systems implemented on a city level 
for example.  

Determining the optimal number of clusters in a data set is 
a fundamental issue in partitioning clustering, such as k-means 
clustering, which requires the user to specify the number of 
clusters [17]. The methods to find the optimum number of 
clusters for a data set are categorized into two types. They are 
direct methods and statistic testing methods. The Elbow 
method, a direct method, is used for this research to determine 
the optimum number of clusters. The results found do not 
define a hotspot or a place of importance. Hence, they are used 
as the starting point upon which further method has been 
developed. 

In this research, we used the elbow method considering the 
simplicity of implementation and higher computational 
efficiency [18]. 

Upon using this method, we identified the number of 
clusters into which the entire data was classified. Figure 6 
shows the clusters as suggested by the Elbow method. 

 
Figure 6. Five clusters as suggested by the Elbow method. 

 It is clear by now that the number of clusters does not 
represent significant independent locations as single points but 
rather, but t a group of popular or significant locations. 
Therefore, this method, although computationally efficient, is 
not effective for this data set. Hence, we pursue further 

Figure 5. Unprocessed GPS data. 



  

clustering algorithms such as K-means and density-based 
clustering. 

C. K-means clustering 

K-means algorithm clusters data by trying to separate 
samples in n-groups of equal variances, minimizing a criterion 
known as the inertia of within-cluster sum-of-squares. This 
algorithm requires the number of clusters to be specified. It 
scales well to many samples and has been used across a large 
range of application areas in many different fields [19]. There 
is numerous research effort in the field of K-means clustering 
algorithm ranging from image processing, banking, and spatial 
data analytics. In this research, we implement K-means to 
bike-sharing data and evaluate the applicability of this 
clustering method to bike-sharing data in general.  

D. DBSCAN: Density-based clustering 

The DBSCAN algorithm views clusters as areas of high 
density separated by areas of low density. Due to this rather 
generic view, clusters found by DBSCAN can be any shape, 
as opposed to k-means which assumes that clusters are convex 
shaped. The central component of the DBSCAN is the concept 
of core samples, which are samples that are in areas of high 
density. A cluster is therefore a set of core samples, each close 
to each other (measured by some distance measure) and a set 
of non-core samples that are close to a core sample (but are not 
themselves core samples). There are two parameters to the 
algorithm, min_samples and eps, which define formally what 
we mean when we say dense. Higher min_samples or 
lower_eps indicate higher density necessary to form a cluster 
[19]. 

E. Combining K-means and density-based clustering 

In addition to testing the dataset with K-means and density-
based clustering, we observed the benefit of combining both 
the clustering algorithms. Bike-sharing data, as we have 
observed, form concentrations at specific locations. While that 
stands true, there are cases where users start and end trips at 
locations that do not have any importance. As K-means 
clustering includes all the points of the data set, it is difficult 
to form realistic clusters. When we observed the properties of 
density-based clustering, we observed that it is highly 
parameter sensitive, and it is unable to identify different point 
groups with different densities. For example, it is unable to 
differentiate a bus stop from an administrative building on the 
university campus. 

Upon realizing this, we categorized the data set into 
specific clusters using K-means first and then applied density-
based clustering to each cluster. This method was found 
beneficial to using one of the algorithms alone as it can 
differentiate between different locations which usually have 
different densities or number points which translates to the 
number of trips.  

V.  RESULTS 

In this section, we present the effectiveness of the k-means 
clustering method, density-based clustering and the 
combination of both K-means and density-based clustering in 
the same order. 

A. K-means clustering 

We tested the dataset for different K-values from 1 to 25 
and we observed that no K-value defines all the significant 
locations. For example, we observed that for a k-value of 5 as 
shown in Figure 6, we observed 5 clusters and none of these 
clusters represent a location. When tested with a k-value of 15 
as shown in Figure 7, in cluster 1 there are activities in two 
different places but still, K-means sees it as a single cluster. 
Cluster 2 has significant activity, but the noise points are 
included. Cluster 3 is having few points to be considered a 
hotspot. A lot of noise points are also considered which was 
understood as a limitation of this algorithm. 

 

Figure 7.  K-means result with k=15. 

With further increase in k, for example, k=25, we observed 
that it defines a more clearly location as shown in Figure 8. 
However certain clusters such as cluster 4 show two locations 
which are not realistic. 

 
Figure 8. K-means result with k=25. 

B. Density-based clustering 

In a similar fashion, as mentioned in section 0, we 
investigated the effectiveness of density-based clustering. We 
observed that density-based clustering effectively filtered the 
redundant trip points, or in better terms, noise. However, while 
the algorithm filtered noise, it filtered points that refer to a 
specific location. For example, Figure 9 shows high filtering 



  

when applied to the data set as shown in Figure 5. We observed 
it selects a cluster that meets a specific density between the 
points. Such a method is only useful if the density throughout 
the region is the same. It does not work for locations with 
varying land use. 

 
Figure 9 Density-based clustering with high filtering 

C. Combining K-means and density-based clustering 

K-means gave the poorest clustering result referring to the 
three clusters formed. The DBSCAN algorithm or density-
based clustering gave better results by removing the noise as 
compared to K-means. The approach which combined K-
means and DSBCAN gave better results compared to the other 
two approaches as shown in Figure 10 which indicates the 
clusters by number and location each cluster represents. 

 

 
The initial k-value used for the Elbow method and k-means 

algorithm is applied. Within the individual clusters, data is 
clustered using a density-based clustering method. The next 
section describes the research outcomes, and criticisms 
followed by key insights. 

VI.  DISCUSSION 

For testing, the Python programming language was used to 
apply different algorithms from [19] and QGIS [20] is used for 
geospatial analysis. No single algorithm is found to be 
effective to define a location of interest or a hotspot. The 
underlying issue is that the density of GPS data differs by the 
type of location. In a residential location, the points are spaced 
apart by a longer distance when compared to a train station 
where the points are closely spaced. This was found to be a 
hurdle for all the existing algorithms which predominantly use 
distance as a parameter to classify clusters. A combination of 
existing algorithms has improved the quality of the clusters. 
One specific example is a combination of K- means and 
density-based clustering algorithms that have formed more 
realistic clusters. However, the choice of the number of 
clusters is an input for K means algorithm which was not 
suggested by any existing method. This research does not 
focus on identifying communities for the clusters as 
investigated in [21]. We observed that the knowledge of the 
type of location could significantly improve the results. Also, 
quantifying such knowledge of the location is a known 
challenge.  

VII. CONCLUSION 

With the advancements in computing and the scale of data 
generated, we must consider using intelligent methods to 
analyze transport data. It is important to understand that 
combining multiple unsupervised clustering techniques was 
achieved earlier by many researchers. We aim to use these 
methods and evaluate their effectiveness for bike-sharing GPS 
data. We found that if we understand the pattern of the GPS 
data, it is possible to apply clustering techniques wisely by 
adjusting the parameters of the techniques for suiting the data.   
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