
DEPARTMENT OF PHYSICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Quantum Science and Technology

A Stochastic Tensor Network Method for
Simulating Open Quantum Systems

Aaron Sander

DEPARTMENT OF PHYSICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Quantum Science and Technology

A Stochastic Tensor Network Method for
Simulating Open Quantum Systems

Eine stochastische Tensornetzwerkmethode
zur Simulation von offenen

Quantensystemen

Author: Aaron Sander
First Referee: Prof. Dr. Christian Mendl
Second Referee: Prof. Dr. Stefan Filipp
Submission Date: 31. October 2022

Erklärung

Ich versichere hiermit, dass ich die von mir eingereichte Abschlussarbeit selbst-
ständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel be-
nutzt habe.

München, 31.10.2022, Aaron Sander

Acknowledgments

I would like to first thank my supervisor Prof. Dr. Christian Mendl for his support
and guidance throughout this thesis. I would also like to thank Richard Milbradt, Dr.
Kévin Hémery, and Federico Roy for their help during tricky parts of this work as well
as their experience and opinions on properly representing the results. Finally, I would
like to thank Emiliano Godínez, Emily Haworth, Filippo Romano, and Varun Seshradi
for their exceptional proofreading skills.

Code and Figures

All code in this work was written independently using standard Python libraries and
does not include any outside physics or tensor network packages. All figures were
created independently for this work in Inkscape.

Contents

List of Figures v

List of Tables vii

List of Algorithms ix

1 Introduction 1

2 Fundamentals 2
2.1 Open Quantum Systems . 2

2.1.1 Noise Processes . 2
2.1.2 Derivation of the Lindblad Master Equation 4
2.1.3 Exact Solution - Superoperator Formalism 8

2.2 Tensor Networks . 10
2.2.1 Matrix Product States and Matrix Product Operators 10
2.2.2 Canonical Forms . 11
2.2.3 Decompositions and Normalization 12

2.3 Mathematics of Tensor Networks . 14
2.3.1 Geometry of Matrix Product States 14
2.3.2 Tangent Space . 17

2.4 Time-Dependent Variational Principle (TDVP) 18
2.4.1 Approximating the Schrödinger Equation 18
2.4.2 Implementing TDVP in Tensor Networks 21
2.4.3 Error Analysis . 27
2.4.4 Practical Computational Considerations 32

3 Tensor Network Quantum Jump Method 34
3.1 Quantum Jump Method . 35

3.1.1 Initialization . 35
3.1.2 Non-Unitary Time-Evolution . 36
3.1.3 Calculating Jump Probabilities . 36
3.1.4 Stochastic Application of Jumps . 37
3.1.5 Equivalence to Master Equation . 38

3.2 Tensor Network Quantum Jump Method 39
3.2.1 Adapting the Time Evolution . 39
3.2.2 Adapting the Jump Application . 42

iii

Contents

3.3 Benchmarking . 48
3.3.1 Trajectory Convergence (Noise Regimes) 48
3.3.2 Bond Dimension Convergence (Entanglement Regimes) 51
3.3.3 Computational Time . 56

4 Applications 62
4.1 Coupled Transmons . 62
4.2 Scaling . 66

5 Conclusion and Outlook 70

Bibliography 72

iv

List of Figures

2.1 Open Quantum System . 4
2.2 Tensor Contraction . 11
2.3 Basic application of an MPO to an MPS . 11
2.4 Tensor Canonical Forms . 12
2.5 Shifting the Orthogonality Center of an MPS 14
2.6 Mapping an MPS to a Manfiold . 15
2.7 Time Evolution on a Manifold . 19
2.8 Local Krylov Projector . 21
2.9 Local Filter Projector . 22
2.10 TDVP: Forward Evolution . 25
2.11 TDVP: Environment Update . 26
2.12 TDVP: Backward Evolution . 28
2.13 TDVP: Shifting Sites . 28

3.1 Quantum Trajectories . 35
3.2 Dissipative Sweep . 42
3.3 Calculating Stochastic Terms . 45
3.4 Applying a Quantum Jump to an MPS . 46
3.5 Error vs. Trajectories . 50
3.6 Error vs. Noise Strength . 51
3.7 Entanglement vs. Noise Strength (Changing Timesteps) 53
3.8 Entanglement vs. Noise Strength (Changing Timescale) 54
3.9 Bond Dimension Convergence for L = 16 56
3.10 Computational Time of TN Method vs. Exact and Original Jump Method 58
3.11 Computational Time of Tensor Network Method for a Local Operator . . 59
3.12 Computational Time of Tensor Network Method for a Global Operator . 60

4.1 Coupled Transmon Architecture . 62
4.2 Coupled Transmon Simulation . 65
4.3 Scaling of Local Operator Calculations . 68
4.4 Modification for Allowing More Jumps . 68

v

List of Tables

2.1 Noise Processes . 4

3.1 Noise and Entanglement Regimes . 54

4.1 Coupled Transmon Simulation Parameters 63

vii

List of Algorithms

1 Tensor Contractions . 11
2 MPS Tensor Decompositions . 12
3 Shifting Orthogonality Center Right . 13
4 Forward Evolution . 24
5 Backward Evolution . 27
6 Single Timestep TDVP Algorithm . 29

7 Dissipative Sweep . 41
8 Applying Stochastic Jumps . 44
9 Core Time Evolution Algorithm . 46
10 Tensor Network Jump Method . 47

ix

1 Introduction

Classical simulations are currently one of the most useful tools for comparing quan-
tum theory with experimental results. This allows us to gain a deeper understanding
of quantum systems as well as build and scale more stable, reliable quantum com-
puters. Quantum systems are notoriously difficult to simulate classically due to the
exponential growth of values needed to represent larger systems. This growth leads
to both increasing memory requirements to store exponentially many complex values
and longer computational time in order to perform operations on these systems such
as time evolution. Tensor networks, particularly Matrix Product States (MPS), are fa-
mously at the forefront of quantum simulation as they allow us to reduce the necessary
memory usage and computational time. Rather than represent quantum systems i.e.
quantum states, as vectors that grow exponentially with system size, MPSs allow us to
split it into a tensor train with each tensor representing a local system. This allows us
to perform local operations rather than global operations as well as store the quantum
system with fewer values. The caveat is that the bond dimension grows between these
tensors as the system gets larger. However, the ability to truncate this to much lower di-
mensions has been proven to be a successful approximation method that enables MPSs
to be reliable as a simulation method.

A particularly interesting and useful process to simulate is open quantum systems in
which a quantum system interacts with its environment and gives us a more realistic
description of how it evolves. The environment can cause effects such as relaxation,
dephasing, or thermal excitations in the quantum system that can make the quantum
computing architectures and calculations unreliable. In order to build better systems
and algorithms, we need to understand these noise processes in order to mitigate the
error that they cause. The first step in doing so is to classically simulate these noise
models.

In this thesis, the goal is to combine the power of tensor networks with the usefulness
of open quantum systems in order to extend the simulation capabilities. It focuses
primarily on a stochastic method known as the quantum jump method which already
allows us to represent noise processes as a vector rather than a full density matrix.
The main work in this thesis has been to convert this quantum jump method into a
tensor network algorithm, benchmark its capabilities, and apply it to some toy model
applications. This algorithm is shown to be able to extend the simulation capabilities
for open quantum systems to larger system sizes than are currently possible. Doing so
gives us a fuller understanding of the effect of noise on quantum systems such that we
can mitigate error in the building and scaling of quantum technologies.

1

2 Fundamentals

2.1 Open Quantum Systems

In order to realistically understand quantum systems, various environmental effects
must be taken into account that cause deviation between theoretical models presented
by closed systems and experimental results. The effects can be represented by consid-
ering not only a quantum system in the calculations, but also an environmental system
containing it. The interactions or noise processes between these two systems lead to a
noisy version of the original quantum system which can align better with experimental
results. This in turn gives us a starting point for improving the design of the systems
and the mitigation of error caused by environmental noise.

2.1.1 Noise Processes

Noise is a primary source of error in quantum computing calculations due to the in-
stability of both the qubits and the gate application during algorithms. The ability
to properly simulate these processes would open the door to finding ways to miti-
gate them or utilize them in order to create more stable, reliable quantum hardware
and quantum algorithms. There are several basic noise processes such as relaxation,
dephasing, and thermal excitations. These are primarily the ones considered in this
thesis as they are generally relevant for all quantum computing architectures. Specific
platforms can have additional noise processes such as charge noise and flux noise in
superconducting qubits [9], but they are not directly taken into account in this thesis.
Most of the analysis is not concerned with the specific noise process itself, but rather
its strength relative to other parameters of the system.

Each physical noise process is mathematically represented by a jump operator as well
as an associated coupling factor related to how often it occurs or how strong its effect
is on the system. These coupling factors are typically determined by experimentally
measuring certain timespans in various systems, such as relaxation or dephasing time,
so there can be a variety of possible values. The strength and calculation of the coupling
factors could be different based on the application. They are typically proportional to
the inverse of the timescale in which they occur for example γrelaxation = 1

T1
. This

section will introduce what these noise processes look like mathematically and the
implementation of them in a simulation will be shown later.

A quantum jump can be defined as a sudden transition of a system between one state
and another. This is a drastic change in the system which happens instantaneously,
distinguishing it from a classical process. As with most fundamental quantum physics,

2

2.1. OPEN QUANTUM SYSTEMS

the physicality and philosophy behind this occurring is up for debate, however it gives
relevant results in practice.

Possible noise processes are represented by the jump operators and potential cou-
pling factors found in Table 2.1.

Relaxation is represented by a de-excitation operator performing a jump from a
higher state to a lower state

σ− |0⟩ = 0

σ− |1⟩ = |0⟩

such that in matrix form σ− =

(
0 1
0 0

)
or generalized to a d-level system

σ− |0⟩ = 0

σ− |k⟩ = |k− 1⟩

where {k ∈ Z : 0 ≤ k ≤ d− 1} with matrix elements

σ
jk
− =

{
1 k− j = 1

0 else

The coupling factor is related to the longitudinal decay time T1.
Likewise, thermal excitations are represented by an excitation operator jumping from

a lower to a higher state i.e.

σ− |0⟩ = |1⟩
σ− |1⟩ = 0

such that in matrix form σ− =

(
0 0
1 0

)
or generalized to a d-level system

σ− |d⟩ = 0

σ− |k⟩ = |k + 1⟩

where {k ∈ Z : 0 ≤ k ≤ d− 1} with matrix elements

σ
jk
− =

{
1 j− k = 1

0 else

with coupling factor determined by the temperature T of the environment.
Dephasing is described by a rotation around the z-axis with the Pauli matrix σz.

This was then generalized to d-levels using the generalized spin matrices of the special
unitary group SU(n) i.e. a symmetric diagonal with descending odd integers. The
coupling factor is calculated from the effective transversal decay time T∗2 . One could
also consider idle cross-talk which applies dephasing to multiple qudits simultaneously,
potentially with an exponentially decaying coupling factor based on distance.

3

CHAPTER 2. FUNDAMENTALS

Noise Process Jump Operator Coupling Factor
Relaxation σ− γrelaxation
Dephasing σz γdephasing

Thermal σ+ γthermal

Cross-Talk σ
[i]
z σ

[j]
z γij

Table 2.1: Potenial noise processes and their corresponding jump operator

Figure 2.1: Visualization of a quantum system embedded in its environment with in-
teraction

2.1.2 Derivation of the Lindblad Master Equation

The dynamics of open quantum systems i.e. the interactions between a quantum sys-
tem and its environment are often described by the Lindblad master equation. This
describes the application of non-unitary, irreversible dynamic processes to create a
Markov chain describing the motion of the system. This means that the evolution
of a system is based purely on its state at that specific time and thus has no memory of
its previous states. The Lindblad master equation is thus a key part of understanding
noise processes such as relaxation and dephasing which are utilized later in this thesis
[2] [13].

This section is used as background in order to understand the basis of solving the
dynamics of open quantum systems and what assumptions and considerations are
taken into account when forming the master equation. In order to derive this, consider
a total Hilbert space HT = H⊗HE which contains the Hilbert space of the quantum
system H as well as the Hilbert space of the system’s environment HE. The evolution
of this total system is given by the von Neumann equation which is the quantum
equivalent of the classical Liouville equation

ρ̇T = − i
h̄
[HT, ρT(t)] (2.1)

where the density matrix of the quantum system is given by tracing out the envi-

4

2.1. OPEN QUANTUM SYSTEMS

ronment such that ρ(t) = TrE[ρT]. It is then possible to define a total Hamiltonian
describing the energy of the total system

H = H0 ⊗ 1+ 1⊗ HE + αHI (2.2)

with H0 describing the quantum system, HE describing the environment, and HI de-
scribing the interactions between the system and its environment with strength α≪ 1.
The interaction term can further be decomposed into operators acting on the system
Si ∈ B(H) and operators acting on the environment Ei ∈ B(HE) such that

HI = ∑
i

Si ⊗ Ei (2.3)

where B(H) represents the space of bounded operators on the Hilbert space B : H → H
and B(HE) on the environment B : HE → HE.

The dynamics can then be analyzed in the interaction picture wherein density ma-
trices evolve with time due to the interaction Hamiltonian and operators evolve with
the system and environment Hamiltonians. An arbitrary operator Ô ∈ B(HT) is time-
evolved according to

Ô(t) = ei(H0+HE)tÔe−i(H0+HE)t (2.4)

while the time-evolution of the density matrix is given by

ρ̇T = − i
h̄

α[HI(t), ρT(t)] (2.5)

Integrating this to solve for ρT(t),

ρT(t) = ρT(0)−
i
h̄

α
∫ t

0
dτ[HI(τ), ρT(τ)] (2.6)

This equation is difficult to work with because it depends on the density matrix at all
previous times τ but this can be avoided by substituting it into Eq. (2.5)

ρ̇T = − i
h̄

α[HI(t), ρT(0)]−
α2

h̄2

∫ t

0
dτ

[
HI(t), [HI(τ), ρT(τ)]

]
(2.7)

Repeating the process once more for the ρT(τ) such that the equation is no longer
dependent on previous times τ

ρ̇T = − i
h̄

α[HI(t), ρT(0)]−
α2

h̄2

∫ t

0
dτ

[
HI(t), [HI(τ), ρT(t)]

]
+O(α3) (2.8)

The equation of motion needs to be in terms of the system density matrix ρ rather than
the total density matrix ρT such that tracing over the environment results in

ρ̇ = TrE[ρ̇T] = −
i
h̄

αTrE[HI(t), ρT(0)]−
α2

h̄2

∫ t

0
dτTrE

[
HI(t), [HI(τ), ρT(t)]

]
(2.9)

5

CHAPTER 2. FUNDAMENTALS

This has not yet removed the dependency on the total density matrix ρT(t) and there-
fore ρ(t) is also not yet directly solvable. Therefore, the following assumptions need to
be made. The initial state at t = 0 is assumed to be a separable state in which there
are no correlations between the system and the environment i.e. ρT(0) = ρ(0)⊗ ρE(0).
This means no previous interactions have occurred or if they have, they have been very
short-lived and negligible. The initial state of the environment is also assumed to be a
thermal state described by

ρE(0) =
e
−HE
kBT

Tr
[
e
−HE
kBT

] (2.10)

with Boltzmann constant kB and temperature T. Eq. (2.9) can now be simplified by
applying these assumptions and the definition of HI to the first commutator term

TrE[HI(t), ρT(0)] = TrE

[
∑

i
Si(t)⊗ Ei(t), ρT(0)

]
= TrE

[
∑

i
Si(t)⊗ Ei(t)ρT(0)− ρT(0)Si(t)⊗ Ei(t)

]
= ∑

i

(
Si(t)ρ(0)TrE

[
Ei(t)ρE(0)

]
− ρ(0)Si(t)TrE

[
ρE(0)Ei(t)

]) (2.11)

If no energy has yet been lost to the environment at t = 0, then ⟨Ei⟩ = Tr[EiρE(0)] =
0 ∀i. This simplifies the equation of motion to

ρ̇ = −α2

h̄2

∫ t

0
dτTrE

[
HI(t), [HI(τ), ρT(t)]

]
(2.12)

Due to the fact that this derivation is in the weak-coupling regime (α ≪ 1), the system
and environment remain non-correlated during the entire time evolution. This assumes
that the timescales of correlations and relaxation of the environment are much smaller
than the typical timescale of the system. This results in ρT(t) = ρ(t) ⊗ ρE(0) which
when substituted into the equation of motion

ρ̇ = −α2

h̄2

∫ t

0
dτTrE

[
HI(t), [HI(τ), ρ(t)⊗ ρE(0)]

]
(2.13)

This depends on the initial state and is therefore non-Markovian. In order to obtain a
Markovian equation that is independent of previous states, the integration limit t→ ∞
is extended and a change of variables is performed where τ → t− τ

ρ̇ = −α2

h̄2

∫ ∞

0
dτTrE

[
HI(t), [HI(t− τ), ρ(t)⊗ ρE(0)]

]
(2.14)

Lastly, the commutators are expanded

ρ̇ = −α2

h̄2 Tr
[∫ ∞

0
dτHI(t)HI(t− τ)ρ(t)⊗ ρE(0)−

∫ ∞

0
dτHI(t)ρ(t)⊗ ρE(0)HI(t− τ)

−
∫ ∞

0
dτHI(t− τ)ρ(t)⊗ ρE(0)HI(t) +

∫ ∞

0
dτρ(t)⊗ ρE(0)HI(t− τ)HI(t)

]
(2.15)

6

2.1. OPEN QUANTUM SYSTEMS

Next consider the spectrum of the superoperator H̃A = [H, A] = HA− AH, ∀A ∈
B(H). The eigenvectors of the superoperator form a complete basis of the space of
bounded operators on the Hilbert space B(H) such that the interaction operators can
be expanded in this basis

Si = ∑
ω

Si(ω) (2.16)

where ω are the eigenvalues of the superoperator H̃ and the operators in this basis
fulfill the commutator relation [H, Si(ω)] = −ωSi(ω) or likewise for the conjugate
[H, S†

i (ω)] = ωS†
i (ω). The evolution of these operators in the Schrödinger picture is

used to transform the interaction Hamiltonian

H̃I(t) = ∑
k,ω

e−iωtSk(ω)⊗ Ẽk(t) (2.17)

Applying the eigenvalue decomposition such that HI(t− τ) is in terms of Sk(ω) and
HI(t) in terms of S†

k(ω) results in

ρ̇(t) = ∑
k,ℓ,ω,ω′

(
ei(ω′−ω)tΓkℓ(ω)

[
Sℓ(ω)ρ(t), S†

k(ω
′)
]

+ e−i(ω′−ω)tΓ∗kℓ(ω
′)
[
Sℓ(ω), ρ(t)S†

k(ω
′)
]) (2.18)

where the effects of the environment are represented by the factors

Γkℓ(ω) =
∫ ∞

0
dτeiωτTrE

[
Ẽ†

k (t)Ẽℓ(t− τ)ρE(0)
]

(2.19)

As Eq. 2.15 is able to return non-positive density matrices, the rotating wave approx-
imation (RWA) is applied in order to ensure positivity. This is applied by excluding
fast oscillating terms |ω−ω′| ≫ α2 and in the low-coupling regime where α→ 0, only
resonant terms ω = ω′ remain. This reduces the equation of motion to

ρ̇(t) = ∑
k,ℓ,ω

(
Γkℓ(ω)

[
Sℓ(ω)ρ(t), S†

k(ω)
]
+ Γ∗kℓ(ω

′)
[
Sℓ(ω), ρ(t)S†

k(ω)
])

(2.20)

The dynamics are then divided into Hermitian and non-Hermitian parts such that
Γkl(ω) = 1

2 γkl(ω) + iπkl where

γkℓ(ω) = Γkℓ(ω) + Γ∗kℓ(ω) =
∫ ∞

−∞
dτeiωτTr

[
E†

k (τ)EℓρE(0)
]

(2.21)

πkℓ(ω) = − i
2
(Γkℓ(ω) + Γ∗kℓ(ω)) (2.22)

Returning to the Schrödinger equation, the Hermitian and non-Hermitian parts of the
equation of motion can be separated resulting in

ρ̇(t) = − i
h̄
[H0 + HLS, ρ(t)]

+ ∑
k,ℓ,ω

γkl(ω)

(
Sℓ(ω)ρ(t)S†

k(ω)− 1
2

{
S†

k(ω)Sℓ(ω), ρ(t)
}) (2.23)

7

CHAPTER 2. FUNDAMENTALS

This leads to a term representing the Lamb Shift which renormalizes the system energy
levels due to interactions with the environment such that HLS = ∑k,l,ω πkl(ω)S†

k(ω)Sℓ(ω).
Some final adjustments can be made to obtain the Lindblad master equation. Since

γkl(ω) is defined as the Fourier transform of a positive function (due to the trace), the
summation is diagnonalized. Finally, the Lamb Shift is assumed to be 0. This results
in the overall Lindblad equation which will be considered in this thesis with jump
operators Lm and coupling factors γm

ρ̇(t) = − i
h̄
[H0, ρ(t)] + ∑

m
γm

(
Lmρ(t)L†

m −
1
2

{
L†

mLm, ρ(t)
})

(2.24)

2.1.3 Exact Solution - Superoperator Formalism

For a qudit d-level system with L sites, the density operator is the size dL × dL i.e.
ρ ∈ CdL×dL

. For systems with more levels or more sites, this becomes computationally
expensive and impossible to calculate and forms the basis of the need for simulation
methods and approximations. For benchmarking the methods created later in this the-
sis, it is necessary to solve the master equation exactly and in order to do so, this equa-
tion is converted into a superoperator formalism. This formalism is a straight-forward
way of performing the calculation and the eigenvalue spectrum of the superoperator
itself can contain useful information such as whether the system will decay (i.e. it has
negative eigenvalues).

In order to do this, the master equation is brought into a form such that only a
simple matrix multiplication is required to solve for the time evolution. Just as for some
operator acting on a ket |ψ′⟩ = Ô |ψ⟩ (or matrix acting on a vector), a superoperator
similarly acts on a vectorized operator. This means the Lindbladian superoperator is of
the dimensions L̂ ∈ Cd2L×d2L

such that

|ρ̇(t)⟩⟩ = L |ρ⟩⟩ (2.25)

where the double ket denotes a vectorized density operator |ρ⟩⟩ ∈ Cd2L
of the form

|·⟩⟩ : CdL×dL → Cd2L

∑
i,j

ρij |i⟩ ⟨j| 7→∑
i,j

ρij |i⟩ ⊗ |j⟩ (2.26)

or explicitly

ρ =

 ρ00 · · · ρ0,dL

...
...

ρdL,0 · · · ρdLdL

→ |ρ⟩⟩ =


ρ00

ρ01
...

ρdL,0
...

ρdL,dL


(2.27)

8

2.1. OPEN QUANTUM SYSTEMS

The Liouvillian term of the master equation is ρ̇(t) = −i[H0, ρ(t)] = −i(H0ρ− ρH0)

where the notation of time dependence is dropped for brevity. For the superoperator,
all terms need to act on the operator from the left such that it can be converted into
matrix multiplication. In order to do this, the terms are rewritten as a left L[H0] (not
to be confused with the superoperator L̂ itself since this is just for the derivation) and
right application R[H0] where

L(H0)ρ = ∑
i,j

ρijH0 |i⟩ ⟨j| (2.28)

R(H0)ρ = ∑
i,j

ρij |i⟩ ⟨j|H0 (2.29)

In order to preserve this form, the vectorized form must continue acting on its row or
column element (i.e. |i⟩ and ⟨j|) where

|L(H0)ρ⟩⟩ = ∑
i,j

ρij(H0 ⊗ 1) |i⟩ ⊗ |j⟩ (2.30)

|R(H0)ρ⟩⟩ = ∑
i,j

ρij(1⊗ HT
0) |i⟩ ⊗ |j⟩ (2.31)

This results in the vectorized Liouvillian term

|ρ̇(t)⟩⟩ = −i[(H0 ⊗ 1)− (1⊗ HT
0)] |ρ⟩⟩ =: H |ρ⟩⟩ (2.32)

Likewise, the terms containing each jump operator need to be vectorized. For a single
jump operator Lm this has the following form by expanding the anticommutator

γm

(
LmρL†

m −
1
2

{
L†

mLm, ρ
})

= γm

(
LmρL†

m −
1
2
[L†

mLmρ + ρL†
mLm]

)
(2.33)

Using the same logic as for the Liouvillian term, this can be expressed as

|Dmρ⟩⟩ = γm

(
Lm ⊗ L†

m |ρ⟩⟩ −
1
2
[
(L†

mLm ⊗ 1) |ρ⟩⟩+ (1⊗ LT
mL∗m) |ρ⟩⟩

])
=

γm

2

(
2Lm ⊗ L†

m − L†
mLm ⊗ 1− 1⊗ LT

mL∗m

)
|ρ⟩⟩

(2.34)

where Dm stands for the dissipative term for a single jump operator Lm. Putting these
together and summing over all possible jump operators, the Lindbladian superoperator
has the following form

L̂ = H+ ∑
m
Dm

= −i[(H ⊗ 1)− (1⊗ H)] + ∑
m

γm

2

(
2Lm ⊗ L†

m − L†
mLm ⊗ 1− 1⊗ LT

mL∗m

) (2.35)

This superoperator can then be used on the vectorized density operator to solve Eq.
(2.25).

9

CHAPTER 2. FUNDAMENTALS

2.2 Tensor Networks

Knowledge of tensor networks is essential for understanding the methods used and
created in this thesis. This section looks at the basic components used in this thesis,
first at a very intuitive level and then introduces some of the mathematics required for
a deep dive into the algorithms used. For more extensive explanation, a good starting
point is "Hand-waving and Interpretive Dance: An Introductory Course on Tensor
Networks" [3]. Tensor networks is very diagrammatic which makes it very intuitive
physically, however everyone tends to have different preferences for symbols. In this
work, a square represents a tensor with no specific form, a right-pointing triangle is the
left-canonical form, and a left-pointing triangle is the right-canonical form which will
be discussed in depth later.

2.2.1 Matrix Product States and Matrix Product Operators

First it is necessary to introduce the basic elements of tensor networks that will be used
extensively throughout this thesis. Matrix Product States (MPS) and Matrix Product
Operators (MPO) allow us to better represent many-body systems. Without tensor net-
works, the state of an L site many-body system is described by a vector with dimension
dL where d is the physical dimension. Operators acting on this are of the size dL × dL.
This quickly becomes too large to store in memory or to perform calculations on. All
operators also need to effectively act globally on the entire vector rather than a single
site or locally. However, a tensor network representation of this solves both problems in
that the state can be represented as a product of single site, local tensors and operators
as a chain of local operations. Tensors themselves are generalizations of vectors (order-
1 tensors) and matrices (order-2 tensors) and can be thought of as multi-dimensional
arrays. Any tensor order can be reshaped into another, moving down an order by com-
bining dimensions (flattening a matrix into a vector) or moving up an order by adding
dummy dimensions (a vector of length 3 becomes a matrix (3× 1) or a order 3 tensor
(3× 1× 1).

The most common operation in tensor networks is a contraction in which a common
dimension of neighboring tensors is summed over. This is a generalization of matrix-
vector or matrix-matrix multiplication in that we contract across one dimension of the
first and down a dimension of the second. When contracting dimensions of larger and
larger systems, the most computationally efficient contraction order is not obvious and
is an active area of research [16]. This is represented by connecting two tensors in a
diagram as seen in Fig. 2.2 and described in Algorithm 1.

An MPS is simply an extension of this concept where each tensor represents a single
site. Each tensor has a physical dimension which points outward into which local oper-
ations can be contracted into the site. Typically, downwards facing physical dimensions
represent a ket and upwards facing are the bra or the conjugate. Between each tensor
is a bond dimension which represents entanglement in the system and grows exponen-
tially towards the middle of the chain of sites. If these bond dimensions are full, it is an

10

2.2. TENSOR NETWORKS

Algorithm 1 Tensor Contractions

procedure Contract(A, B, [A dims to contract], [B dims to contract])
Sum along given dimensions of A and B
Example:

(
A = Raℓ−2,aℓ−1 B = Maℓ−1,aℓ,σℓ [right], [left]

)
Caℓ−2,σℓ = ∑aℓ−1

Raℓ−2,aℓ−1Maℓ−1,aℓ,σℓ

end procedure

Figure 2.2: Example of an order 3 tensor with dimensions (a, b, c) and order 2 tensor
with (c, d) contracting along the c dimension

exact representation of the quantum state. However, the exponential growth is prob-
lematic for scaling tensor networks. It is known that truncating these bond dimensions
results in a good approximation of a state and so one can and should reduce it as much
as possible through singular value truncation or compression [17]. MPOs are similarly
represented, but have two physical dimensions which are used to perform operations
on states to transform them into other states. A Hamiltonian applied to a state is shown
as a tensor network in Fig. 2.3.

Figure 2.3: Diagram of the operation H |Ψ⟩ where the MPS is in site canonical form at
site 2

2.2.2 Canonical Forms

The tensors of an MPS can be put into canonical form in which the contraction along
specific dimensions results in the identity. This speeds up calculations as a tensor of
this form can be entirely ignored if it contracts with itself such as in the case of a

11

CHAPTER 2. FUNDAMENTALS

scalar product or local expectation value. A tensor can be in left canonical or right
canonical form which relates to which contractions lead to the identity represented by
a single line in tensor network notation. This is a generalization of the matrix properties
MM† = 1 and M† M = 1 respectively. This can be seen in Fig. 2.4.

(a) Left-Canonical Form (b) Right-Canonical Form

Figure 2.4: Canonical forms which simplify to the identity

2.2.3 Decompositions and Normalization

It is possible to convert between these forms using the QR decomposition or Singular
Value Decomposition (SVD). Since these operations are only defined for matrices, a
basic explanation of how to reshape tensors in order to decompose and update them
can be found in Algorithm 2.

Algorithm 2 MPS Tensor Decompositions

function Matricize(M)
M(aℓ−1σℓ),aℓ ← Maℓ−1,aℓ,σℓ ▷ Combine left bond aℓ−1 and physical dimension σℓ
return Mmat := M(aℓ−1σℓ),aℓ

end function
function Decompose(M, DecompositionType)

Mmat = Matricize(M)
if DecompositionType = SVD then

U, S, V = SVD
(

Mmat)
return U, S, V

else if DecompositionType = QR then
Q, R = QR

(
Mmat)

return Q, R
end if

end function

12

2.2. TENSOR NETWORKS

These can also be combined such that the MPS is in site canonical or mixed canonical
form. This means there is a site selected with no specific form such that everything
left of it is left-canonical and everything right of it is right-canonical. Many tensor
network algorithms such as the Density Matrix Renormalization Group (DMRG) work
by sweeping across the chain of sites. Keeping this in a site canonical form allows
operations to focus purely on that site known as the orthogonality center and ignore
the others. This sweeping algorithm is used often and it is a crucial component of this
thesis. Given an MPS in site canonical form, the orthogonality center can be shifted to
the right by performing a decomposition, setting the eigenvector matrix of the QR or
SVD to the original tensor after reshaping, and contracting the other matrices into the
next site. This can be seen in Algorithm 3 and Fig. 2.5.

In this thesis, states that lose their norm due to noise are used, so it is important to
understand an MPS is normalized. This is done by continuously shifting the orthogo-
nality center through decompositions like above all the way across the chain. Once the
end is reached, the extra matrices such as the R in the QR decomposition or the S, V†

in the SVD hold a singular value which is the previous norm. When normalizing the
state, this can effectively just be dropped after the final decomposition.

Algorithm 3 Shifting Orthogonality Center Right

procedure ShiftOrthogonalityCenterRight(|Ψ⟩, ℓ)
Mℓ = |Ψ[ℓ]⟩ ▷ Current center at ℓth site Matrix of MPS |Ψ⟩
Qℓ, Rℓ = Decompose(Mℓ, DecompositionType=QR) ▷ SVD also valid
Qaℓ−1,aℓ,σℓ

ℓ ← Q(aℓ−1σℓ),aℓ
ℓ ▷ Re-open combined dimensions

|Ψ[ℓ]⟩ ← Qℓ ▷ Update site to be left canonical
if ℓ ̸= L then ▷ L is length of MPS

Mℓ+1 = |Ψ[ℓ+1]⟩
M′ℓ+1 = Contract

(
Rℓ, Mℓ+1 [right], [left]

)
▷ Contract R into next site

|Ψ[ℓ+1]⟩ ← M′ℓ+1
else if ℓ = L then

Rℓ is the norm, ignore it/throw it away if normalizing
end if

end procedure

13

CHAPTER 2. FUNDAMENTALS

Figure 2.5: QR decomposition on the current site to move the orthogonality center to
the right by contracting the R into the next site

2.3 Mathematics of Tensor Networks

In order to properly understand the time evolution algorithm introduced in the next
section, it is important to understand some of the deeper mathematical properties of
tensor networks. This section will re-introduce some concepts already mentioned, but
at a more rigorous level. Understanding these concepts is very useful for further devel-
oping tensor network algorithms.

2.3.1 Geometry of Matrix Product States

First some mathematical properties of MPSs and their ability to represent quantum
states in a Hilbert space need to be introduced. It can be shown that an MPS, being a
set of parameters i.e. elements in tensors, can represent a manifold within the Hilbert
space. The properties and geometry of both the parameter space within which the
MPS lies and its corresponding manifold in Hilbert space will later be used to define
the steps necessary for performing a time-evolution of the quantum state as a tensor
network according to the Dirac-Frenkel Time-Dependent Variational Principle (TDVP).

14

2.3. MATHEMATICS OF TENSOR NETWORKS

Gauge Invariance and Canonical Forms

A parameter space M ⊆ Rη is defined where each point M ∈ M corresponds to an
ordered set of tensors containing parameters that define a Matrix Product State (MPS)
of L lattice sites. The quantities χn−1, χn, dn ∈ Z denote the local left and right bond
dimensions and local physical dimension, respectively, at each site of the lattice. The
MPS can then be defined as a set of tensors M := {Mn ∈ Cχn−1×χn×dn : 1 ≤ n ≤ L}.
Each element of this set is a single tensor Mn corresponding to site n ∈ Z containing
parameters indexed by Man−1,an,σn

n ∈ Mn. Each site has virtual bond indices {an ∈ Z :
1 ≤ an ≤ χn} and physical index {σn ∈ Z : 1 ≤ σn ≤ dn} with a0 = aL = 1. This results
in the dimension of the parameter space η = ∏L

n=1 χn−1χndn.
For a Hilbert space H := C∏L

n=1 dn , there exists a map Ψ from the parameter space M

to a smooth submanifold M ⊆ H such that all points on the manifold |Ψ(M)⟩ ∈ M
correspond to a quantum state described by the parameters of the MPS i.e.

Ψ : M→M ⊆ H
M 7→ |Ψ(M)⟩ ∈ M

(2.36)

Figure 2.6: Wavefunction represented as a map from a parameter space containing
MPSs and a manifold in Hilbert space

The map Ψ is injective such that there exists an orbit A ∈ M where ∀MA ∈ A then
|Ψ(MA)⟩ = |Ψ(M)⟩. Proof that A is an orbit rather than disconnected points can be
found in [8]. From this, it follows that MPSs are gauge-invariant and non-unique for
describing quantum states [5].

Given a group of local gauge transformations on the MPS defined as the direct prod-
uct of linear groups i.e. isomorphisms to the group of invertible matrices

GMPS :=
L

∏
n=1

GL(χn; C)

= GL(χ1, C)×GL(χ2, C)× . . .

(2.37)

15

CHAPTER 2. FUNDAMENTALS

A right group action is defined such that

Γ : M× GMPS →M

(M, G) 7→ M[G]
(2.38)

where (M, G) = ((Mn)L
n=1, (Gn)L

n=1), M[G] = (M[G]
n)L

n=1, M[G]
n = G−1

n−1MnGn, and
G0 = GL. The cancellation of the matrices G−1

n−1Gn leads to the gauge invariance of the
MPS such that

∀G ∈ GMPS, ∀MA ∈ A : |Ψ[G](MA)⟩ = |Ψ(M)⟩ (2.39)

Due to the gauge invariance, there is some choice in the structure of the tensors, so
it is possible to specify certain conditions i.e. fix the gauge of the tensors in order for
them to be more useful in further calculations. Left- and right-gauge fixing conditions
can be applied such that for each Mn ∈ M, the tensors must satisfy conditions which
reduce them to the identity [5].

Definition 2.3.1 (Left Canonical Form (Left-Gauge Fixing)). An MPS tensor is said to be
in left canonical form if the contraction of the left bond dimension and physical dimension of a
tensor Mn and its conjugate Mn reduces to the identity

dn,χn−1

∑
σn,an−1

Man−1,an,σn
n Man−1,an,σn

n = 1χn×χn (2.40)

Definition 2.3.2 (Right Canonical Form (Right-Gauge Fixing)). An MPS tensor is said to
be in right canonical form if the contraction of the right bond dimension and physical dimension
of a tensor Mn and its conjugate Mn reduces to the identity

dn,χn

∑
σn,an

Man−1,an,σn
n Man−1,an,σn

n = 1χn−1×χn−1 (2.41)

Definition 2.3.3 (Mixed Canonical Form). An orthogonality center is defined at some site
{j ∈ Z : 1 ≤ j ≤ L}. This means that all sites n < j are left canonical, the site j itself has no
extra condition applied to it, and all sites n > j are right canonical i.e.

dn,χn−1

∑
σn,an−1

Aan−1,an,σn
n Aan−1,an,σn

n = 1χn×χn : n < j

dn,χn

∑
σn,an

Ban−1,an,σn
n Ban−1,an,σn

n = 1χn−1×χn−1 : n > j

(2.42)

Left- and right-canonical tensors are renamed in tensor network notation to Mn → An

and Mn → Bn respectively. This results in an MPS in mixed canonical form described
by the ordered list M = (A1, . . . , Aj−1, Mj, Bj+1, . . . , BL). This naming convention will
be used from here on.

16

2.3. MATHEMATICS OF TENSOR NETWORKS

Decompositions for Gauge Fixing

These gauge conditions can then be applied to an MPS tensor by using a QR decompo-
sition or Singular Value Decomposition (SVD) such that

Mn = QR = AnCn (2.43)

or
Mn = UnSnV†

n = AnCn = CnBn (2.44)

then setting An = Un, Bn = V†
n , and Cn = SnV†

n or Cn = UnSn where Cn is will be be
referred to later as a bond tensor. Detailed information on the decompositions in tensor
networks can be found in [17].

2.3.2 Tangent Space

A key component for implementing the Dirac-Frenkel Time-Dependent Variational
Principle (TDVP) algorithm is understanding the structure of the tangent space of this
manifold [6].

For each point |Ψ(M)⟩ ∈ M, corresponding tangent space can be defined that is
spanned by all the directional derivatives of the state such that

TMM := span{|∂iΨ⟩ : i = 1, . . . , η} (2.45)

where η denotes the total number of parameters in the MPS. This directional derivative
corresponds to each parameter where i = (n, an−1, an, σn) is a collective index such that

|∂iΨ⟩ :=
∂

∂Mi
|Ψ(M)⟩ = ∂

∂Man−1,an,σn
n

|Ψ(M)⟩ (2.46)

This forms the full tangent bundle for the manifold T M :=
⋃
M
TMM. Each vector in

this tangent space can be defined by the overcomplete basis of directional derivatives
such that [18]

|Φ(N; M)⟩ := ∑
i

Ni ∂

∂Mi
|Ψ(M)⟩ = ∑

i
Ni |∂iΨ(M)⟩ (2.47)

A bundle map is then defined from the tangent space of the orbit to the tangent space
of the manifold where [4]

dΨ : TAM→ TMM
(N, M) 7→ |Φ(N; M)⟩

(2.48)

This allows any operations on the parameters i.e. the MPS to be mapped and under-
stood in the context of the Hilbert space manifold.

17

CHAPTER 2. FUNDAMENTALS

2.4 Time-Dependent Variational Principle (TDVP)

An essential part of this thesis is using the Dirac-Frenkel Time-Dependent Variational
Principle (TDVP) as a tool for unitary time evolution. This was selected as it has the
ability to consider longer-range interactions than nearest-neighbor and also does not
naturally increase the bond dimension of the matrix product states. This could simulate
for example a grid-like MPS where "neighboring" sites are not nearest neighbors in the
chain. For specific applications with pure nearest-neighbor interactions, Time-Evolving
Block Decimation (TEBD) would be a reasonable alternative.

2.4.1 Approximating the Schrödinger Equation

The time evolution of a state on this manifold can then be analyzed wherein the time-
dependent Schrödinger equation is evolved according to a Hamiltonian which is a
self-adjoint operator on the Hilbert space where Ĥ ∈ L(H) and h̄ = 1.

i∂t |Ψ(M(t))⟩ = Ĥ |Ψ(M(t))⟩ (2.49)

Notice that since the left hand side is a partial derivative, it lies within the tangent
space and can be described by tangent vectors

i∂t |Ψ(M(t))⟩ = |Φ(Ṁ; M(t))⟩ (2.50)

where the tangent vector Φ is related to the time-evolved parameters Ṁ. Due to the
definition of the tangent vector in Eq.(2.47), this converts the Schrödinger equation from
a higher-dimensional Hilbert space to a set of non-linear, symplectic partial differential
equations on the manifold which can be mapped to the parameter space. For brevity,
the time-dependence notation is dropped such that the parameters M := M(t).

The application of the Hamiltonian to the right hand side of Eq.(2.49) leads to an
increase in the number of necessary parameters i.e. an increase in the bond dimensions
such that χn ≤ χ̃n and this means a higher-dimensional parameter space M̃ is needed
to describe the evolved quantum state. Due to this, the state evolves away from the
manifold to a larger manifold such that Ĥ |Ψ(M)⟩ ∈ M̃ whereM⊆ M̃.

The time-evolved parameters are then constrained by minimizing the difference be-
tween the true evolution and the tangent vector. From this follows the minimization
problem and the following proposition stated in [18]

Ṁ = argmin
N
∥Ĥ |Ψ(M)⟩ − |Φ(N; M)⟩∥2

2 (2.51)

Proposition 2.4.1. The minimization problem in Eq.(2.51) is equivalent to projecting the time-
evolved state Ĥ |Ψ(M)⟩ onto the tangent space of the initial manifold TMM thus minimizing
the difference between a tangent vector and the states location on the manifold according to an
action principle.

i∂t |Ψ(M)⟩ = PTMMĤ |Ψ(M)⟩ (2.52)

18

2.4. TIME-DEPENDENT VARIATIONAL PRINCIPLE (TDVP)

Figure 2.7: Time evolution of the MPS away from the manifold along its tangent space
followed by a projection back to the manifold

Proposition 2.4.2. The manifoldM is a symplectic submanifold of H.

The previous proposition and following properties are stated in [12]. The inner prod-
uct ⟨·|·⟩ of the Hilbert space which is antilinear in the first argument and linear in the
second argument can be used to define the real bilinear form

ω(|Ψ(M1)⟩ , |Ψ(M2)⟩) = −2Im ⟨Ψ(M1)|Ψ(M2)⟩ (2.53)

For every state |ψ⟩ := |Ψ(M)⟩ ∈ H, there exists a unique projection |w⟩ := PTMM |Ψ(M)⟩
where |Ψ(M)⟩ ∈ TMM such that ω(|v⟩ , |w⟩) = ω(|v⟩ , |ψ⟩) ∀ |v⟩ ∈ TMM. The non-
degeneracy of the two-form ω means that both the manifold and projector are sym-
plectic. In terms of the time-evolution, the two-form can be written as a function of the
time-evolved state

ω(v,
du
dt

) = 2Re ⟨v|Hu⟩ (2.54)

From this, it is possible to analyze certain properties of the dynamics on this manifold.

Theorem 2.4.3 (Energy Conservation). The total energy ⟨H⟩ of a symplectic system is con-
served.

Proof: For some state |u⟩ as defined above and Hamiltonian Ĥ, it can be shown that

d
dt
⟨u| Ĥ |u⟩ = 2Re ⟨u̇|Hu⟩ = ω(|u̇⟩ , |u̇⟩) = 0 (2.55)

Theorem 2.4.4 (Invariants). Let Â be a self-adjoint operator which commutes with the Hamil-
tonian Ĥ such that [H, A] = 0. If this operator acts on states in the manifold such that
Â |u⟩ ∈ TMM ∀ |u⟩ ∈ M then its average ⟨Â⟩ is conserved along variational approximations
|u(t)⟩ such that ⟨u(t)| Â |u(t)⟩ = const.

19

CHAPTER 2. FUNDAMENTALS

Corollary 2.4.5 (Norm Conservation). By setting Â = 1, the norm is conserved such that
⟨u(t)|u(t)⟩ = const.

Projection

During the optimization step, each tensor is optimized site-wise in sweeps similar to
the Density Matrix Renormalization Group (DMRG) algorithm [17] since it is a com-
monly implemented, fundamental algorithm used in tensor networks and thus makes
this TDVP implementation accessible. For the ordered set of tensors (Mn) this means
moving left-right from site n = (1, . . . , L− 1) followed by right-left where n = (L, . . . , 2)
such that at each step a single site tensor Mn is optimized. It is important work with an
MPS in mixed-canonical form such that M = (A1, . . . , Aj−1, Mj, Bj+1, . . . , BL) for some
orthogonality center j in order to greatly simplify the algorithm due to reduction of
tensors to the identity.

Next a left and right bipartition of the Hilbert space around a site j is introduced
such that

H = HL
j ⊗HR

j+1 (2.56)

with HL
j = H1⊗ · · · ⊗Hj and HR

j+1 = Hj+1⊗ · · · ⊗HL. Within this bipartition, left and
right states are defined such that

|ΨL
j ⟩ = ∑

{σn},{an}
M1 . . . Mj |σ1, . . . , σj⟩ (2.57)

|ΨR
j ⟩ = ∑

{σn},{an}
Mj . . . ML |σj, . . . , σL⟩ (2.58)

where σn are the physical dimensions and an are the bond dimensions associated with
each tensor Mn. As full tensors are optimized at a time rather than individual elements,
the indices are removed from the tensors for brevity such that Man−1,an,σn

n → Mn as well
as |Ψ(M)⟩ → |Ψ⟩. This is done often in literature and may be confusing due to Ψ being
the map, the quantum state, and the MPS itself, however from now on it will refer to
the MPS.

Left and right projectors can now be defined which project onto each of these sub-
spaces.

PL
j : H → HL

j ⊗HR
j+1

|Ψ⟩ 7→
[
|ΨL

j ⟩ ⟨ΨL
j | ⊗ 1R

j+1

]
|Ψ⟩

:=
[

∑
{σn}

∑
{σn}

∑
{an}

M1 . . . Mj Mj . . . M1 |σ1 . . . σj⟩ ⟨σ1 . . . σj| ⊗ 1R
j+1

]
|Ψ⟩

(2.59)

PR
j : H → HL

j−1 ⊗HR
j

|Ψ⟩ 7→ (1L
j−1 ⊗ |ΨR

j ⟩ ⟨ΨR
j |) |Ψ⟩

:=
[
1L

j−1 ⊗ ∑
{σn}

∑
{σn}

∑
{an}

ML . . . Mj Mj . . . ML |σj . . . σL⟩ ⟨σj . . . σL|
]
|Ψ⟩

(2.60)

20

2.4. TIME-DEPENDENT VARIATIONAL PRINCIPLE (TDVP)

Figure 2.8: 5-Site local Krylov projector used to fix the orthogonality center at site 2

Note that if the state is in a canonical form, nearly all terms simplify for the left projector
Mi Mi → Ai Ai = 1 and right projector Mi Mi → BiBi = 1.

The local Krylov projectors which are used to fix the orthogonality center to a site j
are now defined as

ΠM
j : H → TMM
|Ψ⟩ 7→ (PL

j−1 ⊗ 1j ⊗ PR
j+1) |Ψ⟩

(2.61)

A filter which projects the state onto its bipartition is defined such that it can remove
any states identical to the original |Ψ⟩. This is used so that the algorithm does not
project back to the original state or an equivalent representation in the parameter orbit.

FM
j : H → TMM
|Ψ⟩ 7→ (PL

j ⊗ PR
j+1) |Ψ⟩

(2.62)

This results in the tangent space projector PTMM by using the above definitions [15]

PTMM : H → TMM

|Ψ⟩ 7→ (
L

∑
j=1

ΠM
j −

L−1

∑
j=1

FM
j) |Ψ⟩

(2.63)

2.4.2 Implementing TDVP in Tensor Networks

When applying the tangent space projector to the Schrödinger equation, it can be split
into L forward- and L− 1 backward-evolving time differential equations which can be
solved site-wise as discussed before with the analogy to DMRG. These correspond to
the L sites and L− 1 bonds of the MPS.

21

CHAPTER 2. FUNDAMENTALS

Figure 2.9: 5-Site local filter projector used to project onto a bipartition

∂t |Ψ(M)⟩ = −iPTMMH |Ψ⟩

= −i(
L

∑
j=1

ΠM
j −

L−1

∑
j=1

FM
j)H |Ψ⟩

= −i
L

∑
j=1

ΠM
j H |Ψ⟩+ i

L−1

∑
j=1

FM
j H |Ψ⟩

(2.64)

From this, it is possible to define the following equations for solving time evolution
at each site j

• Forward-Evolving Equations

∂t |Ψ⟩ = −iΠM
j H |Ψ⟩ (2.65)

• Backward-Evolving Equations

∂t |Ψ⟩ = +iFM
j H |Ψ⟩ (2.66)

These equations can be brought into a form which evolves each site tensor Mj and its
corresponding bond tensor Cj. In order to do this, the MPS starts in a mixed canonical
form at site j as prescribed in Eq.(2.42)

|Ψ⟩ = ∑
{σn},{an}

A1 . . . Aj−1MjBj+1 . . . BL |σ1 . . . σL⟩ (2.67)

Next a single site tensor is defined at site j

|Ψj⟩ = Mj |σj⟩ (2.68)

22

2.4. TIME-DEPENDENT VARIATIONAL PRINCIPLE (TDVP)

as well as the site-wise derivative of the state as prescribed in Eq.(2.46)

|∂Mj Ψ⟩ = ∑
{σn}\σj

{an}\{aj−1,aj}

A1 . . . Aj−1Bj+1 . . . BL |σ1, . . . σj−1, σj+1, . . . , σL⟩ (2.69)

And equivalently, the definition of the left and right bipartition states is used as in
Eq.(2.57) and (2.58), but in left- and right-canonical form around the site j

|ΨL
j−1⟩ = ∑

{σn},{an}
A1 . . . Aj−1 |σ1, . . . , σj−1⟩ (2.70)

|ΨR
j+1⟩ = ∑

{σn},{an}
Bj+1 . . . BL |σj+1, . . . , σL⟩ (2.71)

The tensor product of these can be further defined such that

|ΨL
j−1⟩ ⊗ |ΨR

j+1⟩ = ∑
{σn}\σj

{an}\{aj−1,aj}

A1 . . . Aj−1Bj+1 . . . BL |σ1, . . . σj−1, σj+1, . . . , σL⟩ (2.72)

From these definitions, it is possible to derive several important equivalencies. The
derivative and this bipartition are equivalent such that

|∂Mj Ψ⟩ = |Ψ
L
j−1⟩ ⊗ |ΨR

j+1⟩ (2.73)

The state can then be broken up into partitions of a left-environment, the site itself, and
a right environment

|Ψ⟩ = |ΨL
j−1⟩ ⊗ |Ψj⟩ ⊗ |ΨR

j+1⟩ (2.74)

Finally, the state is a product of its site-wise derivative and that site tensor

|Ψ⟩ = ∂Mj |Ψ⟩ ⊗ |Ψj⟩ (2.75)

These definitions can now be used to bring the forward- and backward-evolving equa-
tions into the proper form [15].

Site Tensor Update

Beginning with the forward-evolving equation Eq.(2.65), ⟨ΨL
j−1| ⊗ ⟨ΨR

j+1| is applied to
both sides starting with the LHS

(⟨ΨL
j−1| ⊗ ⟨ΨR

j+1|)∂t |Ψ⟩ = ∂t[(⟨ΨL
j−1| ⊗ ⟨ΨR

j+1|) |Ψ⟩]
= ∂t[(⟨ΨL

j−1| ⊗ ⟨ΨR
j+1|) |ΨL

j−1⟩ ⊗ |Ψj⟩ ⊗ |ΨR
j+1⟩]

= ∂t |Ψj⟩
= ∂t Mj |σj⟩

(2.76)

where the ket in the final line would be dropped in tensor network notation.

23

CHAPTER 2. FUNDAMENTALS

Likewise, this is applied to the RHS

(⟨ΨL
j−1| ⊗ ⟨ΨR

j+1|)(−iΠM
j H |Ψ⟩) = −i[⟨ΨL

j−1| ⊗ ⟨ΨR
j+1|ΠM

j H] |Ψ⟩
= −i[⟨ΨL

j−1| ⊗ ⟨ΨR
j+1|ΠM

j H] |ΨL
j−1⟩ ⊗ |Ψj⟩ ⊗ |ΨR

j+1⟩

= −iHeff
j |Ψj⟩

= −iHeff
j Mj |σj⟩

(2.77)

with effective Hamiltonian Heff
j = ⟨ΨL

j−1| ⊗ ⟨ΨR
j+1|ΠM

j H |ΨL
j−1⟩ ⊗ |ΨR

j+1⟩.
Due to the mixed canonical form and applying the definition of the local Krylov

projectors, this simplifies into

Heff
j = ⟨ΨL

j−1| ⊗ ⟨ΨR
j+1|ΠM

j H |ΨL
j−1⟩ ⊗ |ΨR

j+1⟩

= ⟨ΨL
j−1| ⊗ ⟨ΨR

j+1|
[

PL
j−1 ⊗ 1j ⊗ PR

j+1

]
H |ΨL

j−1⟩ ⊗ |ΨR
j+1⟩

= ⟨ΨL
j−1| ⊗ ⟨ΨR

j+1|
[
|ΨL

j−1⟩ ⟨ΨL
j−1| ⊗ 1j ⊗ |ΨR

j+1⟩ ⟨ΨR
j+1|

]
H |ΨL

j−1⟩ ⊗ |ΨR
j+1⟩

= ⟨ΨL
j−1| ⊗ ⟨ΨR

j+1|H |ΨL
j−1⟩ ⊗ |ΨR

j+1⟩
= ⟨∂Mj Ψ|H |∂Mj Ψ⟩

(2.78)

Overall, this results in a differential equation for updating each site tensor Mj

∂t Mj = −iHeff
j Mj (2.79)

Mj(t) = e−iHeff
j t Mj (2.80)

As the sweep is performed, this equation is solved for a site j before solving the
backwards-evolving equation i.e. updating the associated bond tensor at bond j. Each
one is then alternated between until they have been solved for all parameter tensors.

Algorithm 4 Forward Evolution

function ForwardEvolve(|Ψ⟩ , H, L, R, δt, ℓ)
Mℓ = |Ψ[ℓ]⟩
Heff = Contract

(
L1:ℓ−1, Mℓ, Hℓ, Rℓ:L

)
Hmat

eff = Matricize
(

Heff
)

Mvec
ℓ = Vectorize

(
Mℓ

)
Mvec′

ℓ = exp
(
−iHmat

eff δt
)

Mvec
ℓ ▷ Applied with Lanczos method

M′ℓ = Reshape
(

Mvec′
ℓ)

|Ψ[ℓ]⟩ ← M′ℓ
end function

24

2.4. TIME-DEPENDENT VARIATIONAL PRINCIPLE (TDVP)

(a) Simplification to forward evolution (site tensor update) to convert it to a DMRG-like sweep
due to site canonical form

(b) Update of site tensor with environments. All right environments are calculated before start-
ing a sweep (so environments from site L to 1, from L to 2, etc.) and then just replaced at
each step.

Figure 2.10: Solving the forward- evolving equation for a single site

Bond Tensor Update

After solving at site j according to Eq.(2.80), the newly time-evolved tensor Mj → M̃j
is decomposed using either a QR decomposition or Singular Value Decomposition as
described in Eq.(2.43) and Eq.(2.44) such that M̃j = ÃjC̃j. This moves the focus from
site j to the following bond.

Now ⟨Ψ̃L
j (Ãj)| ⊗ ⟨ΨR

j+1| can be applied to both sides of the backwards-evolving equa-
tion Eq.(2.66) as done with the forward-evolving equation, however, the updated left

25

CHAPTER 2. FUNDAMENTALS

Figure 2.11: The updated Mj from the forward evolution is decomposed into Mj = AjCj
with a QR decomposition. Then, the site of the MPS is updated to Aj and
the left environment is updated as seen above.

state |Ψ̃L
j (Ãj)⟩ containing the updated canonical tensor Ãj is now applied. Terms with

tilde contain the forward-evolved tensor M̃j. This also sees a gauge transformed state
such that |Ψ̃j(M̃j)⟩ = Cj |Ψ̃j(Ãj)⟩.

(⟨Ψ̃L
j (Ãj)| ⊗ ⟨ΨR

j+1|)∂t |Ψ̃⟩ = ∂t[(⟨Ψ̃L
j (Ãj)| ⊗ ⟨ΨR

j+1|) |Ψ̃⟩]
= ∂t[(⟨Ψ̃L

j (Ãj)| ⊗ ⟨ΨR
j+1|) |ΨL

j−1⟩ ⊗ |Ψ̃j(M̃j)⟩ ⊗ |ΨR
j+1⟩]

= ⟨Ψ̃j(Ãj)| ∂t |Ψ̃j(M̃j)⟩
= ⟨Ψ̃j(Ãj)| ∂tCj |Ψ̃j(Ãj)⟩
= ∂tCj

(2.81)

Likewise for the RHS

(⟨Ψ̃L
j (Ãj)| ⊗ ⟨ΨR

j+1|)(+iFM
j H |Ψ⟩) = +i[⟨Ψ̃L

j (Ãj)| ⊗ ⟨ΨR
j+1| FM

j H] |Ψ⟩
= +i[⟨Ψ̃L

j (Ãj)| ⊗ ⟨ΨR
j+1| FM

j H] |ΨL
j−1⟩

⊗ |Ψ̃j(M̃j)⟩ ⊗ |ΨR
j+1⟩

= +i[⟨Ψ̃L
j (Ãj)| ⊗ ⟨ΨR

j+1| FM
j H] |ΨL

j−1⟩
⊗ Cj |Ψ̃j(Ãj)⟩ ⊗ |ΨR

j+1⟩
= +i[⟨Ψ̃(Ãj)| FM

j H |Ψ̃(Ãj)⟩]Cj

= +iHeff
j Cj

(2.82)

Since the MPS is in mixed canonical form, an effective Hamiltonian is created for the

26

2.4. TIME-DEPENDENT VARIATIONAL PRINCIPLE (TDVP)

bond j by applying the definition of the filter projection such that

Heff
j = ⟨Ψ̃(Ãj)| FM

j H |Ψ̃(Ãj)⟩

= ⟨Ψ̃L
j (Ãj)| ⊗ ⟨ΨR

j+1|
[

P̃L
j ⊗ PR

j+1

]
H(|Ψ̃L

j (Ãj)⟩ ⊗ |ΨR
j+1⟩)

= ⟨Ψ̃L
j (Ãj)| ⊗ ⟨ΨR

j+1|
[
|Ψ̃L

j (Ãj)⟩ ⟨Ψ̃L
j (Ãj)| ⊗ |ΨR

j+1⟩ ⟨ΨR
j+1|

]
H |Ψ̃L

j (Ãj)⟩ ⊗ |ΨR
j+1⟩

= ⟨Ψ̃L
j (Ãj)| ⊗ ⟨ΨR

j+1|H |Ψ̃L
j (Ãj)⟩ ⊗ |ΨR

j+1⟩
= ⟨Ψ̃(Ãj)|H |Ψ̃(Ãj)⟩

(2.83)

It is then possible to update the bond tensor according to

∂tCj = +iHeff
j Cj (2.84)

Cj(t) = e+iHeff
j tCj (2.85)

Combining the site and bond tensor updates above into sweeps results in the full
TDVP algorithm for time-evolving an MPS described in Algorithm 6.

Algorithm 5 Backward Evolution

function BackwardEvolve(
(
|Ψ′⟩ , H, Cℓ, L1:ℓ, Rℓ:L, δt

2 , ℓ
)
)

Mℓ = |Ψ[ℓ]⟩
Bℓ+1 = |Ψ[ℓ+1]⟩ ▷ Following site is canonical
Heff = Contract

(
L1:ℓ, Mℓ, Hℓ, Rℓ:L

)
Hmat

eff = Matricize
(

Heff
)

Cvec
ℓ = Vectorize

(
Cℓ

)
Cvec′
ℓ = exp

(
+iHmat

eff δt
)
Cvec
ℓ ▷ Applied with Lanczos method

C′ℓ = Reshape
(
Cvec′
ℓ)

M′ℓ+1 = Contract
(
C′ℓ, Bℓ+1

)
|Ψ[ℓ+1]⟩ ← M′ℓ+1

end function

2.4.3 Error Analysis

A general differential equation is defined as ẏ = f (y) where y = (x1, . . . , xn) ∈ Rn is a
point in phase space and f (y) is some vector-valued function describing the velocity of
the solution y(t) passing through the given point.

The phase space system has a fundamental property called the flow over time t which
maps an initial value y(0) = y0 to a phase space orbit y(t) (also known as a trajectory,
however not in the sense of a Monte Carlo trajectory). The mathematical definition of
flow is as a group action where

ψ : X×R→ X

(y0, t) 7→ ψ(y0, t) =: y(t)
(2.86)

27

CHAPTER 2. FUNDAMENTALS

(a) Simplification to the backward evolution (bond tensor update) to convert it to a DMRG-like
sweep due to site canonical form

(b) Update of bond tensor with environments. All right environments are calculated before
starting a sweep (so environments from site L to 1, from L to 2, etc.) and then just replaced
at each step.

Figure 2.12: Solving the backward-evolving equation for a single bond

Figure 2.13: The updated Cj from the backward evolution is simply multiplied into the
next site of the MPS in order to repeat the algorithm.

28

2.4. TIME-DEPENDENT VARIATIONAL PRINCIPLE (TDVP)

Algorithm 6 Single Timestep TDVP Algorithm

function InitializeEnvironments(|Ψ⟩ , H)
L1 = 11×1×1

RL:L = 11×1×1 ▷ Environments for first and last site is an identity tensor
for ℓ ∈ [L : 1] do ▷ Right to left sweep

Mℓ = |Ψ[ℓ]⟩
Rℓ:L = Contract

(
Rℓ+1:L, Mℓ, Hℓ, Mℓ

)
▷ Contract previous R into right bonds

end for
return L1, {Rℓ:L}

end function

function UpdateEnvironment(|Ψ⟩ , H, L[1:ℓ−1])
Aℓ, Cℓ = Decompose

(
|Ψ′⟩ , ℓ

)
▷ QR decomposition

|Ψ′[ℓ]⟩ ← Aℓ

L1:ℓ = Contract
(

L1:ℓ−1, Aℓ, Hℓ, Aℓ

)
return L1:ℓ

end function

function TDVP(|Ψ⟩ , H, δt) ▷ L with no subscripts is length of MPS
L1, {Rℓ:L}L

ℓ=1 = InitializeEnvironments
(
|Ψ⟩ , H

)
for ℓ ∈ [1 : L− 1] do ▷ Last site needs to forward evolve full timestep
|Ψ′⟩ = ForwardEvolve

(
|Ψ⟩ , H, L1:ℓ−1, Rℓ:L, δt

2 , ℓ
)

L1:ℓ = UpdateEnvironment
(
|Ψ′⟩ , H, L1:ℓ−1

)
|Ψ′′⟩ = BackwardEvolve

(
|Ψ′⟩ , H, Cℓ, L1:ℓ, Rℓ:L, δt

2 , ℓ
)

end for
|Ψ′′′⟩ = ForwardEvolve

(
|Ψ′′⟩ , H, L1:L−1, RL, δt

2 , L
)

for ℓ ∈ [L : 1] do
Right-left sweep as above but flipped

end for
return |Ψ(t + δt)⟩

end function

29

CHAPTER 2. FUNDAMENTALS

An alternate definition of the flow which mathematically is actually known as a time-t
map is defined by

ψt : Rn → Rn

y0 7→ ψ(y0, t) =: y(t)
(2.87)

From here on, this time-t map will define the exact flow.

Definition 2.4.6 (Time-Symmetry). If the exact flow of a differential equation satisfies the
property

ψ−1
−t = ψt (2.88)

then it is time-symmetric.

The exact flow can be generalized to a discrete flow (also known as the numerical
flow or one-step method) representing a mapping between timesteps

ϕδt : Rn → Rn

y(t) 7→ ϕδt(y(t)) =: y(t + δt)
(2.89)

Definition 2.4.7 (Adjoint Method). If a discrete method satisfies a property similar to the
time-symmetry in Def. 2.4.6 such that

ϕ∗δt = ϕ−1
−δt (2.90)

then it is an adjoint method.

The definitions of the first-order Euler methods are considered where an explicit
Euler method is an evaluation of the function at the next timestep based on an explicit
evaluation of the function at the original timestep i.e.

y(t + δt) = y(t) + δt f (y(t)) (2.91)

and likewise an implicit Euler method is based on an evaluation of the function at that
timestep itself such that

y(t + δt) = y(t) + δt f (y(t + δt)) (2.92)

The local integration error of the first-order Euler methods is given by O(δt2). This
section can be found with more detail in [7].

Structure Preservation and Numerical Error

It is important to use numerical methods that preserve geometric properties of the flow
of the differential equations once discretized

Mj(t + δt) = e−iHeff
j δt Mj(t) (2.93)

30

2.4. TIME-DEPENDENT VARIATIONAL PRINCIPLE (TDVP)

Cj(t + δt) = e+iHeff
j δtCj(t) (2.94)

This means choosing numerical integration methods such as symplectic integrators
for Hamiltonian systems and structure-preserving methods on manifolds that preserve
certain structures in the system. In this case, the symplecticity conserves not only the
energy and operator phase space evolution Ȯ = i{Ĥ, Ô}, but also the symmetries of
single-site operators of the form

U =
L

∏
ℓ=1

u[ℓ] (2.95)

which are especially suited for use in the MPS tensor network representation.
As mentioned in Section 2.4.2, the simplifications to the effective Hamiltonians due

to the mixed canonical form lead to a DMRG-like integration sweep being possible. The
site-wise left to right sweep wherein the discretized equations Eq.(2.93) and (2.94) are
solved is an explicit Euler method and the following right to left sweep is an implicit
Euler method. The combination of these methods, however, leads to an adjoint method
and therefore a second-order symmetric integrator with O(δt3).

Proposition 2.4.8. The Time-Dependent Variational Principle has timestep error O(δt3).

Proof : TDVP is an adjoint method. This means that the error is calculated by com-
paring the results between an exact flow ψt and a discrete flow ϕδt of order p such
that

ϕδt(y0) = ψδt(y0) + C(y0)δtp+1 +O(δtp+2) (2.96)

where C is some first-order coefficient. Likewise, for the adjoint

ϕ∗δt(y0) = ψδt(y0) + (−1)pC(y0)δtp+1 +O(δtp+2) (2.97)

the local error between the exact and discrete flow is thus given by

e = C(y0)δtp+1 +O(δtp+2) (2.98)

and
e∗ = (−1)pC(y0)δtp+1 +O(δtp+2) (2.99)

If ϕδt is adjoint, then e = e∗ and therefore from the RHS

C(y0)δtp+1 +O(δtp+2) = (−1)pC(y0)δtp+1 +O(δtp+2) (2.100)

This means the order p must be even and therefore C(y0) = 0 if p is odd. The maximum
error is given by the minimal possible p such that p = 1 and O(δt3). Taking into
account that there are two sweeps, a half timestep δt→ δt

2 is used for practical reasons
[7]. In order to fulfill the structure preservation as well as speed up the computation
significantly, the Lanczos method as described in [11] and the Suzuki-Trotter expansion
which is also a symplectic integrator and has an error of the order O(Tδt2p) are used
for an elapsed time simulation T = nδt with n timesteps.

31

CHAPTER 2. FUNDAMENTALS

2.4.4 Practical Computational Considerations

TDVP can be a very computationally expensive algorithm due to all of the tensor con-
tractions required. It is absolutely essential to initialize each sweep properly. First,
each step must be in site canonical form or the above algorithms do not hold. Every
site in the overall algorithm shown in Fig. 2.12 and 2.10 would otherwise be required
to be contracted. Next, before a sweep occurs, one should calculate all the possible
right environments. When starting at site 1, all the other sites from L to 2 should be
contracted to create its right environment. This is then stored as well as all the other
right environments for the next steps of the sweep i.e. L to 3 and all the way up to
L to L− 1. Then, the left environments are continuously updated in a similar fashion
while dropping the right environments when they are no longer needed. Once a sweep
left to right is completed, the new right environments are initialized using the previous
left environments and the algorithm is simply reversed. In the code used in this thesis,
right to left sweeps were avoided by simply flipping the tensor network each time and
updating the algorithms accordingly.

32

3 Tensor Network Quantum Jump Method

The quantum jump method, also known as the Monte Carlo Wavefunction Method
(MCWF) or stochastic Schrödinger equation, is a method for simulating open quantum
systems, in particular, by approximating the Lindblad master equation through aver-
aging quantum trajectories [14]. A quantum trajectory can be understood as the path a
quantum system takes through Hilbert space with some stochastic processes added to
it. By averaging many trajectories, it is possible to approximate various physical quan-
tities, in this case, the state resulting from evolution according to the master equation.
This process is created by stochastically applying jump operators representing noise
processes. These jumps are described as sudden, severe changes to the system such as
for example instantaneous relaxation from an excited state |1⟩ to |0⟩. The motivation
for using this method is that it is not necessary to store the full density matrix describ-
ing the system. A system with local physical dimension d ∈ Z and number of sites
L ∈ Z exists in a Hilbert space of the dimensions H = CdL

. The density matrix thus has
dimensions ρ ∈ CdL×dL

. The quantum jump method permits performing all operations
on the state vector ψ ∈ CdL

such that saving d2L complex values is no longer needed,
but rather only dL. This results in an obvious advantage in memory storage but also an
advantage in computation time for the master equation which will be explored later in
Sec. 3.3. The goal of this method is to calculate the time evolution of the state vector up
to some elapsed time T with timesteps δt with stochastic application of jump operators.
After introducing what will now be referred to as the original quantum jump method
or the vector jump method, the tensor network jump method created during this thesis
will be presented and its capabilities benchmarked.

34

3.1. QUANTUM JUMP METHOD

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

<
x

>

Expectation Value vs. Time, N=5, Timesteps=100
Average

(a) Averaging over 5 trajectories

0.0 0.2 0.4 0.6 0.8 1.0
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

<
x

>

Expectation Value vs. Time, N=100, Timesteps=100
Average

(b) Averaging over 1000 trajectories

Figure 3.1: Example of averaging over trajectories for building intuition

3.1 Quantum Jump Method

3.1.1 Initialization

The Lindblad master equation as derived in Sec. 2.1.2 is again defined as

ρ̇ = − i
h̄
[H0, ρ]−∑

m
γm(LmρL†

m −
1
2
{L†

mLm, ρ}) (3.1)

where the Hamiltonian H0 is a self-adjoint operator on the Hilbert space H0 ∈ L(H),
{Lm}m ∈ L(H) is a set of jump operators corresponding to possible jumps in the sys-
tem, {γm}m ∈ R are coupling factors corresponding to the strength of the noise i.e.
related to the likelihood of the jumps, and {·, ·} is the anti-commutator.

A non-Hermitian effective Hamiltonian is constructed using the set of jump operators
and their coupling factors where

H = H0 −
ih̄
2 ∑

m
γmL†

mLm = H0 + HnH (3.2)

with the initial Hermitian part H0 and non-Hermitian part defined by

HnH = − ih̄
2 ∑

m
γmL†

mLm (3.3)

For clarity, these jump operators are all possible jumps for the system. For example,
consider relaxation from the excited state to ground state described by the single site

jump operator σ− = |0⟩ ⟨1| =
(

0 1
0 0

)
. Assuming that all L sites are equivalent i.e. each

site has the possibility of this jump occurring, then the set of jump operators would be

35

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

{σ[ℓ]
− }L

ℓ=1 where each operator corresponds to the relaxation of site l such that

σ
[ℓ]
− = 1⊗ · · · ⊗ 1︸ ︷︷ ︸

sites [1,l−1]

⊗ σ−︸︷︷︸
lth site

⊗1⊗ · · · ⊗ 1︸ ︷︷ ︸
sites [l+1,L]

(3.4)

Likewise, for other noise processes such as excitation, dephasing, etc., the jump opera-
tors are constructed similarly for multi-partite systems.

3.1.2 Non-Unitary Time-Evolution

Once the effective Hamiltonian is initialized, the time-evolution of a state |ψ(t)⟩ ∈ H is
performed by constructing the discretized time-evolution operator

U(δt) = e−
i
h̄ Hδt = 1− i

h̄
Hδt +O(δt2) (3.5)

such that U(δt) |ψ(t)⟩ = |ψ(i)(t + δt)⟩with the superscript (i) denoting this as the initial
time-evolved state before adjusting it stochastically. Numerically, it is best to avoid the
exponentiation of a matrix so the Lanczos method [11] is used in this algorithm. It
is also important to note that this operator is not unitary since H is purposely non-
Hermitian and therefore not norm-preserving, however, this de-normalization is a key
part of calculating when to apply jumps.

3.1.3 Calculating Jump Probabilities

After each timestep, the de-normalization is calculated or in terms of the method, the
probability that a jump has occurred in the system is calculated. Intuitively, this would
mean that a large de-normalization due to the non-unitary time-evolution would lead
to a larger probability that a sudden change has occurred during that timestep. The
probability of each possible jump in the system occurring is calculated by looking at
the de-normalization as follows

⟨ψ(i)(t + δt)|ψ(i)(t + δt)⟩ = ⟨ψ(t)|U†(t)U(t) |ψ(t)⟩

≈ ⟨ψ(t)| (1+
i
h̄

H†δt)(1− i
h̄

Hδt) |ψ(t)⟩

= ⟨ψ(t)|ψ(t)⟩ − δt
i
h̄
⟨ψ(t)|H − H† |ψ(t)⟩

= 1− δt
i
h̄
⟨ψ(t)| (H0 −

ih̄
2 ∑

m
γmL†

mLm)

− (H†
0 +

ih̄
2 ∑

m
γmL†

mLm) |ψ(t)⟩

= 1− δt ∑
m

γm ⟨ψ(t)| L†
mLm |ψ(t)⟩

= 1−∑
m

δpm

= 1− δp

(3.6)

36

3.1. QUANTUM JUMP METHOD

This leads to a stochastic factor corresponding to each possible jump

δpm = δtγm ⟨ψ(t)| L†
mLm |ψ(t)⟩ (3.7)

which is defined by the size of the timestep δt, the coupling factor strength for that
jump γm, and the norm of the jumped state Lm |ψ(t)⟩. The overall stochastic factor
determining if a jump has occurred is given by the sum of these individual terms such
that

δp = ∑
m

δpm (3.8)

Of these terms making up the stochastic factors, only the timestep size can be con-
trolled, so it is important to adjust it such that δp ≪ 1 as jumps are supposed to be a
rare event when averaging trajectories [14].

3.1.4 Stochastic Application of Jumps

Once the jump probabilities have been calculated, the stochastic element can be added
to this method by splitting the next step into one of two regimes. First, a random
number ϵ is selected such that {ϵ ∈ R : 0 ≤ ϵ ≤ 1}. This is then compared to the δp in
order to make a decision after each timestep.

If ϵ ≥ δp, no jump occurred during this timestep and the time-evolved state is simply
normalized before moving onto the next iteration.

|ψ(t + δt)⟩ = |ψ
(i)(t + δt)⟩√

1− δp
(3.9)

This should occur most of the time if δp is sufficiently small.
If ϵ < δp, a quantum jump occurred within the previous timestep. Once this has

been determined, a probability distribution of the terms {δpm} needs to be created by
normalizing it against the total δp

Πm =
δpm

δp
(3.10)

such that ∑m Πm = 1. A jump is selected according to this probability distribution and
normalize the jumped state such that

|ψ(t + δt)⟩ = Lm |ψ(t)⟩√
δp

γmδt

(3.11)

Note that this jump is applied to the state pre-time evolution from t → t + δt since the
jump is determined to have occurred within that timestep. This methodology is then
repeated until the desired elapsed time T is reached, resulting in a single quantum
trajectory and a final state |ψ(T)⟩.

37

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

3.1.5 Equivalence to Master Equation

If the above algorithm is performed N times i.e. forming N total trajectories, this
can be shown to be equivalent to the master equation in the limit of N → ∞. First,
it is necessary to justify that δp is a reasonable stochastic factor to use. Say for N
trajectories, jumps occur in N′ trajectories. Since ϵ is compared against against δp, for
many trajectories this leads to N′

N = δp
max(ϵ)−min(ϵ) =

δp
1 = δp. This justifies that δp is in

fact the probability that a jump occurs in the system [14].

To show the equivalence to the time-evolution of a density matrix according to the
master equation, the density matrix of a single trajectory µi(t) = |ψi(t)⟩ ⟨ψi(t)| is con-
sidered and the average over N trajectories defined as

µ(t) =
1
N

N

∑
j=1
|ψi(t)⟩ ⟨ψi(t)| (3.12)

For N → ∞, a time-evolved state is described by combining the possibilities of a jump
occuring and not such that

µ(t + δt) = (1− δp)
|ψ(i)(t + δt)⟩√

1− δp
⟨ψ(i)(t + δt)|√

1− δp

+ δp ∑
m

Lm |ψ(t)⟩√
δp

γmδt

⟨ψ(t)| L†
m√

δp
γmδt

= (1− i
h̄

Hδt) |ψ(t)⟩ ⟨ψ(t)| (1+
i
h̄

H†δt)

+ δt ∑
m

γmLm |ψ(t)⟩ ⟨ψ(t)| L†
m

≈ |ψ(t)⟩ ⟨ψ(t)| − i
h̄

Hδt |ψ(t)⟩ ⟨ψ(t)|+ |ψ(t)⟩ ⟨ψ(t)| i
h̄

H†δt

+ δt ∑
m

γmLm |ψ(t)⟩ ⟨ψ(t)| L†
m

= µ(t)− i
h̄

Hδtµ(t) + µ(t)
i
h̄

H†δt

+ δt ∑
m

γmLmµ(t)L†
m

(3.13)

38

3.2. TENSOR NETWORK QUANTUM JUMP METHOD

Taking the derivative such that the LHS of the master equation is created

d
dt

µ(t) ≈ µ(t + δt)− µ(t)
δt

= − i
h̄

Hµ(t) + µ(t)
i
h̄

H†

+ ∑
m

γmLmµ(t)L†
m

= − i
h̄

[
(H0 −

ih̄
2 ∑

m
γmL†

mLm)µ(t) + µ(t)(H0 +
ih̄
2 ∑

m
γmL†

mLm)

]
+ ∑

m
γmLmµ(t)L†

m

= − i
h̄
[H0, µ(t)]−∑

m
γm(Lmµ(t)L†

m −
1
2
{L†

mLm, µ(t)})

(3.14)

which has the form of the master equation such that for sufficiently many trajectories
[14]

ρ = lim
N→∞

1
N

N

∑
j=1
|ψj(t)⟩ ⟨ψj(t)| (3.15)

3.2 Tensor Network Quantum Jump Method

In order to implement the original method in tensor networks, the original quantum
jump method is decomposed into an algorithm based mainly on sweeping across tensor
sites and applying the different steps site-wise. For each trajectory, rather than using a
state vector of length dL for L sites, it is represented as an MPS of L tensors as presented
previously in Sec. 2.2 and 2.3. This is a natural step forward for the jump method as it is
expected to allow more sites in a simulation as well as give a more intuitive application
of local noise processes. Tensor networks is known to scale linearly with sites when
truncating the bond dimensions and the ability to keep local d × d jump operators
rather than global dL × dL can speed up the computation significantly.

3.2.1 Adapting the Time Evolution

The core difference from the original quantum jump method is that Strang splitting [12]
is applied to the effective Hamiltonian described in Eq.(3.2) such that a non-Hermitian
Hamiltonian is not used in the TDVP evolution due to its potential numerical instability.
The non-Hermitian Hamiltonian is first split into a product of all site-wise components

39

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

such that it can be represented as a sweep across the tensor network

HnH = − ih̄
2 ∑

m
γmL†

mLm

= − ih̄
2 ∑

ℓ
∑
m

γ
[ℓ]
m L†[ℓ]

m L[ℓ]
m

= ∑
ℓ

H[ℓ]
nH

(3.16)

where [ℓ] indicates a local application to site l. For example, if only relaxation is
considered then the set of jump operators is {σ[ℓ]

− } as defined in Eq.(3.4) for all sites
{ℓ ∈ Z : 1 ≤ ℓ ≤ L}.

This Strang splitting results in the following time-evolution operator comprised of
three sweeping sub-algorithms

U(δt) = e−
i
h̄ Hδt

= e−
i
h̄ (H0+HnH)δt

= e−
i
h̄ HnH

δt
2 e−

i
h̄ H0δte−

i
h̄ HnH

δt
2 +O(δt3)

≈
(
∏
ℓ

e−
i
h̄ H[ℓ]

nH
δt
2
)(

e−
i
h̄ H0δt)(∏

ℓ

e−
i
h̄ H[ℓ]

nH
δt
2
)

= D
[δt

2
]

TDVP
[
δt
]

D
[δt

2
]

(3.17)

where D corresponds to a sweep with the non-Hermitian, dissipative part of the Hamil-
tonian and TDVP the unitary time evolution. To show that the dissipation is indeed a
sweep across all sites, this can be further broken down into a product of all evolutions
according to all possible jumps on that site by inserting its definition from Eq.(3.3)

e−
i
h̄ H[ℓ]

nH
δt
2 = e−

i
h̄

(
− ih̄

2 ∑m γ
[ℓ]
m L†[ℓ]

m L[ℓ]
m

)
δt
2

= ∏
m

e−
1
2 γ

[ℓ]
m L†[ℓ]

m L[ℓ]
m

δt
2

= ∏
m

D[ℓ]
m
[δt

2
] (3.18)

This puts the operator U(δt) in the form of a half timestep dissipation D sweep
across all sites followed by a full timestep Hermitian TDVP evolution of two sweeps
and finally another half timestep dissipation sweep. Reminder here that TDVP is made
of a left-right half-timestep sweep followed by a right-left half-timestep sweep as shown
in Sec. 2.4.3.

The Strang splitting was selected as it benefits from a timestep error of O(δt2) com-
pared to the first-order Baker-Campbell-Hausdorff (BCH) splitting with O(δt) i.e. for
the BCH formula [12]

e(A+B)δt = eAδteBδt +O(δt) (3.19)

40

3.2. TENSOR NETWORK QUANTUM JUMP METHOD

Algorithm 7 Dissipative Sweep

function D(|Ψ⟩, δt, {Lm}, {γm})
for ℓ ∈ [1, L] do ▷ Sweep sites

Mℓ = |Ψ[ℓ]⟩ ▷ ℓth site Matrix of MPS |Ψ⟩
for L[ℓ]

m ∈ {L[ℓ]
m } do ▷ Loop over all jump operators at site

D[ℓ]
m
[

δt
2

]
= e−

1
2 γ

[ℓ]
m L†[ℓ]

m L[ℓ]
m

δt
2 ▷ Lanczos for matrix exponential

M′ℓ = Contract
(
D[ℓ]

m
[

δt
2

]
, Mℓ [physical], [physical]

)
▷ Apply dissipation

end for
ShiftOrthogonalityCenterRight

(
|Ψ⟩ , ℓ

)
▷ Keeps MPS in canonical form

end for
return |Ψ′⟩

end function

and the Strang splitting

e(A+B)δt = eA δt
2 eBδteA δt

2 +O(δt2) (3.20)

For n timesteps or an elapsed time T = nδt however, this decreases the error at the
expense of significantly increasing the computational time due to the extra term. For
A = HnH describing a dissipative sweep and B = H0 a TDVP unitary time evolu-
tion sweep, the ratio between sweeps in the first-order BCH and Strang splitting for n
timesteps is given by

Strang sweeps
BCH sweeps

=
4n
3n

= 1.333 . . . (3.21)

or 33 % more sweeps. Note that this is not directly equivalent to 33 % more computa-
tional time as TDVP sweeps are more expensive than dissipative sweeps.

The form of the Strang splitting can be used to reduce this significantly and still gain
the reduction in timestep error.

For intuition, extending the Strang splitting to two timesteps results in

e(A+B)2δt = (eA δt
2 eBδteA δt

2)(eA δt
2 eBδteA δt

2) +O(δt2)

= eA δt
2 eBδt(eA δt

2 eA δt
2)eBδteA δt

2 +O(δt2)

= eA δt
2 eBδteAδteBδteA δt

2 +O(δt2)

(3.22)

and further for n timesteps or a total elapsed time T = nδt

e(A+B)T = eA δt
2 eBδt(eAδteBδt)n−1eA δt

2 +O(δt2) (3.23)

This forms results in the following ratio

Strang sweeps
BCH sweeps

=
4 + 3(n− 1)

3n
=

3n + 1
3n

= 1 +
1

3n
−−−→
n→∞

1 (3.24)

41

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

Figure 3.2: Dissipative sweep where all jump operators associated with a site are con-
tracted into it using the Lanczos method. Site canonical form is used so
that the state is prepared for TDVP once the sweep is finished. Described in
Algorithm 7.

Therefore, there is effectively no increase in computational time from the first-order
method except a single additional sweep.

Using the identity in Eq.(3.23) and setting A = HnH and B = H0, there is the follow-
ing chain for the time evolution where each term corresponds to a dissipative or TDVP
sweep

U(T) = D
[δt

2
]

TDVP
[
δt
] (

D
[
δt
]

TDVP
[
δt
])n−1

D
[δt

2
]

(3.25)

In order to prepare the MPS for the TDVP sweep as well as the jump application sweep
in the next section, the MPS is continuously kept in site canonical form. This means
after applying a dissipative time evolution to a site, the orthogonality center is shifted
to maintain the site canonical form. TDVP does not implicitly require a canonical form,
but this significantly reduces the contractions needed as all others sites can be ignored.
This is the method described previously in Algorithm 3 and Fig. 2.5.

3.2.2 Adapting the Jump Application

Following each timestep, the jump probabilities need to be calculated and a jump op-
erator applied. This step is done at the following point in the evolution shown by the
vertical arrows (note that the operator application is from right to left):

U(T) = D
[δt

2
]

TDVP
[
δt
] (
↑ D

[
δt
]

TDVP
[
δt
])n−1

↑ D
[δt

2
]

(3.26)

This means jumps are not applied directly on a timestep due to the first term. The
stochastic nature of ths algorithm means there is no effect on the accuracy since δt ≈

42

3.2. TENSOR NETWORK QUANTUM JUMP METHOD

δt
2 for sufficiently small timesteps. When applying this sequence of operators, it is
necessary to simultaneously be able to continue applying jumps at the proper time
while also sampling the result on the timestep rather than at a shifted timestep.

A solution to this is to use a stochastic MPS that is continuously iterated over, which
is denoted Φ, and the actual resulting MPS Ψ sampled from the stochastic MPS which
can be used for calculations such as the expectation value. Functionally what this
means is that the final operators D

[
δt
2

]
TDVP

[
δt
]

are only applied when sampling such
that

|Ψ(nδt)⟩ = D
[δt

2
]

TDVP
[
δt
]
|Φ(nδt)⟩ (3.27)

and
|Φ(nδt)⟩ =

(
↑ D

[
δt
]

TDVP
[
δt
])n−1

↑ D
[δt

2
]
|Φ(0)⟩ (3.28)

This can be seen in Algorithm 9.
When calculating the jump probabilities, the terms are calculated by

δpm = δtγm ⟨Φ(t)| L†
mLm |Φ(t)⟩ (3.29)

in a sweep as done in Sec. 3.1. In order to do this, at each step, a single jump operator
is applied at site l by contracting it into a copy of the MPS to create L[ℓ]

m |Φ(t)⟩. The
scalar product of this state is then used to calculate its corresponding δpm. This is then
repeated for all operators on that site before moving to the next site in the sweep. Once
the sweep is finished, all the probabilities have been calculated just as done in the vector
jump method. Further details can be found in Algorithm 8.

As done previously, whether or not a jump occurs is stochastically selected. If it
has not, the state is normalized. If it has, the jump is applied by contracting the jump
operator Lm into that site and then normalizing. The normalization step in tensor
networks is not as straightforward as simply dividing by a constant such as in the state
vector, so one last sweep is performed in this timestep iteration as described in Sec.
2.3.1. Therefore, once this step is complete, one last sweep from right-left is done such
that the MPS is in right-canonical form (or site-canonical form at site 1) and ready to
perform the next timestep iteration.

43

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

Algorithm 8 Applying Stochastic Jumps

function CalculateStochasticTerms(|Φ⟩, δt, {Lm}, {γm})
for ℓ ∈ [1, L] do ▷ Sweep sites

Mℓ = |Φ[ℓ]⟩ ▷ ℓth site Matrix of MPS |Φ⟩
for L[ℓ]

m ∈ {L[ℓ]
m } do ▷ Loop over all jump operators at site

M′ℓ = Contract
(

L[ℓ]
m , Mℓ

)
▷ Create jumped state

δpm = δtγ[ℓ]
m Contract

(
M′ℓ, M′ℓ

)
ShiftOrthogonalityCenterRight

(
|Φ⟩ , ℓ

)
▷ Keeps MPS in canonical form

end for
end for
δp = ∑m δpm

return {δpm}, δp
end function ▷ Do not jump MPS itself in this function

function CreateProbabilityDistribution({δpm}, δp)
for δpm ∈ {δpm} do

Πm = δpm
δp ▷ Normalize to create probability distribution

end for
return {Πm}

end function

function ApplyJumps(|Φ(t)⟩ , |Ψ(i)(t + δt)⟩ , {Lm}, {γm}, δt)
{δpm}, δp = CalculateStochasticTerms

(
|Φ(t)⟩ , δt, {Lm}, {γm}

)
Select random ϵ where {ϵ ∈ R : 0 ≤ ϵ ≤ 1}
if ϵ ≤ δp then
{Πm} = CreateProbabilityDistribution

(
{δpm}, δp

)
Randomly select m based on probability Πm

m→ Lm =: L[ℓ]
m ▷ Selected jump is related to some site

Mℓ = |Φ[ℓ](t)⟩ ▷ The MPS is jumped at the previous time
M′ℓ = Contract

(
L[ℓ]

m , Mℓ

)
|Φ[ℓ](t + δt)⟩ ← M′ℓ ▷ No need for canonical form since it is normalized next

else
|Φ(t + δt)⟩ ← |Ψ(i)(t + δt)⟩ ▷ Time-evolved state without jump

end if
|Φ(t + δt)⟩ = Normalize

(
|Φ(t + δt)⟩

)
return |Φ(t + δt)⟩

end function

44

3.2. TENSOR NETWORK QUANTUM JUMP METHOD

Figure 3.3: Sweep for calculating stochastic terms δpm by contracting the jump opera-
tor into its given site in site canonical form. This is equivalent to a scalar
product of the jumped state or an expectation value of (L[ℓ]

m)2. Described in
Algorithm 8.

45

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

Figure 3.4: Application of selected jump to state. Described in Algorithm 8.

Algorithm 9 Core Time Evolution Algorithm

function CoreAlgorithm(|Φ(t)⟩, H, δt, timestep, n, {Lm}, {γm})
if timestep = 1 or n = 1 then ▷ ith timestep, n total timesteps
|Ψ(i)(t + δt)⟩ = D(|Φ⟩, δt

2 , {Lm}, {γm}) ▷ Non-unitary dissipative sweep
else
|Ψ′⟩ = TDVP

(
|Φ(t)⟩ , H, δt

)
|Ψ(i)(t + δt)⟩ = D(|Ψ′⟩, δt

2 , {Lm}, {γm})
end if
|Φ(t + δt)⟩ = ApplyJumps

(
|Φ(t)⟩ , |Ψ(i)(t + δt)⟩ , {Lm}, {γm}, δt

)
|Ψ′⟩ = TDVP

(
|Φ(t + δt)⟩ , H, δt

)
|Ψ′′⟩ = D(|Ψ′⟩, δt

2 , {Lm}, {γm})
|Ψ(t + δt)⟩ = Normalize

(
|Ψ′′⟩

)
return |Ψ(t + δt)⟩, |Φ(t + δt)⟩ ▷ Actual MPS Ψ, Stochastic MPS Φ

end function

46

3.2. TENSOR NETWORK QUANTUM JUMP METHOD

Algorithm 10 Tensor Network Jump Method

procedure TN Jump(|Ψ(0)⟩, T, n, N)
δt = T

n ▷ n total timesteps
for trajectory ∈ [1, N] do

for timestep ∈ [1, n] do
|Ψ(t + δt)⟩, |Φ(t + δt)⟩ = CoreAlgorithm

(
|Φ(t)⟩, δt, timestep, n,
{Lm}, {γm}

)
SiteCanonicalForm

(
|Ψ(t + δt)⟩ , ℓ

)
▷ ℓ site where operator is

⟨Ô(t + δt)⟩ = ⟨Ψ(t + δt)| Ô |Ψ(t + δt)⟩ ▷ Running average calculated
Avg⟨Ô(t + δt)⟩ = (trajectory− 1)⟨Ô(t + δt)⟩+ 1

trajectory ⟨Ô(t + δt)⟩
SiteCanonicalForm

(
|Ψ(t + δt)⟩ , ℓ = 0

)
end for

end for
end procedure

47

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

3.3 Benchmarking

There are several important benchmarks considered for this method in order to test its
overall behavior and stability. The Ising model H = −J ∑j σz

j σz
j+1− g ∑j σx

j is used with
J = 1 and g = 0.5 for all tests in this section as well as a starting state |+ · · ·+⟩ corre-
sponding to the x-basis. For the tests, two noise processes, relaxation and dephasing,
are considered which are represented by the operators σ− and σz respectively. Unless
specified otherwise, this system is simulated up to a normalized time T = 1. Many of
the tests in this section are benchmarking the ability to simulate various timescales rel-
ative to the strength of the noise i.e. magnitude of γ. For all tests, the coupling factors
are set such that they occur on a similar timescale with γ := γrelaxation = γdephasing.

3.3.1 Trajectory Convergence (Noise Regimes)

The first test of the tensor network jump method is to analyze its convergence as a
function of trajectories. For this test, it is compared to a small system with L = 5 such
that it is still possible to calculate the exact solution using the superoperator. The error
is then the absolute difference between this exact solution and the result of the tensor
network jump method. This size system was chosen as it is the limit of what can be
calculated in a reasonable timeframe using the superoperator. The MPS is at full-rank
with a max bond dimension χ = 4. The expectation value of an operator ⟨σ[3]

x ⟩ at the
center of the chain at site ℓ = 3 is calculated at each timestep.

This test has been performed performed for three noise regimes, weak noise γ ≪
T−1, medium noise γ ≈ T−1, and strong noise γ≫ T−1. The results of this can be seen
in Fig. 3.5.

In the weak noise regime where the noise is much less than the inverse of the simu-
lation time, there is convergence with a single trajectory regardless of the timestep size,
however the overall error is reduced with more timesteps, converging around 20-50
timesteps at ϵ ≈ 10−6. This regime approaches a noise-less simulation since γ→ 0.

In the regime where the noise is approximately on par with the inverse of the sim-
ulation time, there is more traditional convergence for a stochastic simulation. As is
standard with Monte Carlo methods, the error ϵ should converge with more trajectories
according to ϵ ∼ 1√

N
by the central limit theorem. All timesteps practically converge

around 100 total trajectories according to this test. For 20 timesteps or more, the simu-
lation converges to roughly the same error. For higher timesteps such as 100, it simply
converges to this with less total trajectories. There is an anomaly in that 10 timesteps
performs best and follows the linear slope that would be expected for ϵ ∼ 1√

N
on a

log-log plot. As there is generally the correct linear slope for less than 10 trajectories, it
is possible that this shows an over-convergence or convergence to some base error rate.
This should be investigated further. In the strong noise regime, the simulation imme-
diately converges with very little error regardless of the number of timesteps. This can
be interpreted to mean that the noise simply takes over before any real dynamics can
occur.

48

3.3. BENCHMARKING

100 101 102 103

Trajectories

10 6

10 5

10 4

10 3

Ab
so

lu
te

 E
rro

r
<

[3
]

x
>

Absolute Error vs. Trajectories, L=5, T=1, = 10 6

1 Timestep
5 Timesteps
10 Timesteps
20 Timesteps
50 Timesteps

(a) Weak noise γ = 10−6 ≪ T−1

100 101 102 103

Trajectories

10 4

10 3

10 2

10 1

100

Ab
so

lu
te

 E
rro

r
<

[3
]

x
>

Absolute Error vs. Trajectories, L=5, T=1, = 1

1 Timestep
5 Timesteps
10 Timesteps
20 Timesteps
50 Timesteps
100 Timesteps

(b) Medium Noise γ = 1 ≈ T−1

49

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

100 101 102 103

Trajectories

10 13

10 12

Ab
so

lu
te

 E
rro

r
<

[3
]

x
>

Absolute Error vs. Trajectories, L=5, T=1, = 106

1 Timestep
5 Timesteps
10 Timesteps
20 Timesteps
50 Timesteps

(c) Strong noise γ = 106 ≫ T−1

Figure 3.5: Error relative to number of trajectories for weak, medium, and strong noise
regimes

These results indicate a need to analyze the error over a larger range of noise strengths
with a fixed number of trajectories N = 100, but otherwise with the same parameters
as in the previous test. The results of this are found in Fig. 3.6.

At the limits of this graph, the asymptotic regions plotted in the previous test can be
seen. There is a low error, converging weak noise region from γT = 10−6 to γT = 10−1.
Between γT = 10−1 and γT = 103, there is the medium noise regime, or transition
regime, where the algorithm generally sees convergence for all timesteps, but with
greater error. As this test was done with 100 trajectories, there is oscillation in the
results, but it is expected that this graph would smooth out for N → ∞. Overall, more
timesteps does indeed decrease the error. Finally, there is an abrupt anomaly in the
cutoff between the transition regime and strong noise around γT = 103. The low error,
strong noise regime begins earlier for fewer timesteps. This may simply be an artifact
of the method since the probability of jumps is directly proportional to the magnitude
of the timestep such that a jump is more likely and thus causing it to converge quicker.
All timesteps converge to the same error for higher noise as seen in the previous test.
These regimes are summarized along with other results in Table 3.1.

50

3.3. BENCHMARKING

10 5 10 3 10 1 101 103 105

T

10 11

10 9

10 7

10 5

10 3

10 1

Ab
so

lu
te

 E
rro

r
<

[3
]

x
>

Absolute Error vs. T, L=5, N=100, T=1

1 Timestep
5 Timesteps
10 Timesteps
20 Timesteps
50 Timesteps

Figure 3.6: Error as a function of noise strength γ and simulation time T

3.3.2 Bond Dimension Convergence (Entanglement Regimes)

Now that it has been shown that the method converges with a sufficient number of
timesteps and trajectories for L = 5 and varying γ, the system size can be extended
past an exactly calculable system in order to take advantage of the usage of tensor
networks. For the following tests, the same Ising model as presented previously is used,
but extended to L = 16. Since the Lindblad equation requires a density matrix and/or
superoperator to solve, this is not comparable to how many sites exact diagonalization
without noise processes can calculate which can typically do further than 16. For this
many sites, a max bond dimension χmax = 256 is needed to exactly represent the state.
It is necessary for calculation speed to reduce this as much as possible without losing
too much information about the entanglement. In order to do this, the entanglement
entropy around the center bond is considered. This is calculated by contracting the
center sites at this bond and applying an SVD i.e.

Θal−1,σl ,al+1,σl+1 =
χℓ

∑
aℓ

Maℓ−1,aℓ,σℓ
ℓ Maℓ,aℓ+1,σℓ+1

ℓ+1 (3.30)

The corresponding physical dimension and bond are combined such that they can be
decomposed as a matrix

Θal−1,σl ,al+1,σl+1 → Θ(al−1,σl),(al+1,σl+1) (3.31)

51

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

The SVD is then applied, but only the singular values {si} are needed and are truncated
against machine error. These are normalized such that ∑i s2

i = 1 and the entanglement
entropy is calculated with

S = −∑
i

s2
i log(s2

i) (3.32)

The entanglement is calculated over a range of noise strengths as well as for different
timesteps with 100 trajectories and a max bond dimension χmax = 16. More trajectories
are used to stabilize any oscillations in the values. The results of this can be seen in
Fig. 3.7.

The entanglement is shown to be reduced for more timesteps. This means that for
more timesteps in the simulation, a lower bond dimension can be used. There are also
three distinct entanglement regimes which will be referrred to as the strong entangle-
ment regime, weak entanglement regime, and product state regime. These essentially
correlate with the noise regimes seen previously.

There is an abrupt cut between the weak entanglement and product state regimes
which signifies that a strong enough noise destroys the entanglement. However, this
exact point differs with the number of timesteps in the simulation as it enters the
product state regime at a lower noise strength with less timesteps. This may be a result
of how often jumps are applied as the stochastic factor δp ∝ δt, but further analysis is
necessary. This coincides with the results seen in the trajectory test in Fig. 3.6 and is
summarized later in Table 3.1.

It can also be observed that longer simulation times cause an increase in entangle-
ment which requires a larger bond dimension to capture the dynamics. Although this
is expected, these longer times also converge with noise. This means that with stronger
noise, not only can the dynamics be simulated with a small bond dimension, but also
for a longer period of time without needing to allow it to grow. This can be seen in Fig.
3.8.

All benchmarks up to this point have been for an elapsed time T = 1 which is
equivalent to T = 1

J since the interaction parameter J = 1. Next, the convergence of the
changing max bond dimension is analyzed in the three noise regimes presented earlier
but up to a larger time T = 5 (or T = 5

J). The expectation value is sampled for each
timestep resulting in 100 total points over 100 trajectories. The results of this can be
seen in Fig. 3.9.

It can be noted that in the weak noise regime, the bond dimension necessary to
simulate the dynamics is roughly χmax = 2tJ . A time t = 1

J requires χmax = 2, t = 2
J

requires χmax = 4, etc.
The transition regime sees convergence for all bond dimensions greater than 1. In

this region, it is possible to reasonably simulate the dynamics with χmax = 2. It is
interpreted as the noise destroying enough entanglement to allow the system to be
easily simulated. Luckily, most of the applications would also likely be in this range
especially if simulating the dynamics during the noise process itself which would be a
simulation time of roughly γT ≈ 1. Finally, the strong noise regime sees a convergence

52

3.3. BENCHMARKING

10 5 10 3 10 1 101 103 105

T

2.1

2.2

2.3

2.4

2.5

En
ta

ng
le

m
en

t E
nt

ro
py

Entanglement vs. T, L=16, N=100, T=1, = 16
1 Timestep
5 Timesteps
10 Timesteps

Figure 3.7: Entanglement as a function of noise strength γ and simulation time T for
varying total timesteps

of all bond dimensions such that it continuously remains in a product state with χmax =

1.
Since the bond dimensions represent entanglement within the system and its growth,

some observations can be made about the effect noise has on the entanglement. The
weak noise region requires the largest bond dimension as this becomes closest to the
noise-less simulation. Physically, this means weak noise does not inhibit entanglement
growth in the system.

In the medium noise regime, the values start converging for χmax = 2. This means
that there is entanglement, but the dynamics do not require a large bond dimension to
be represented. In this regime, the noise starts to have an effect on the dynamics of the
system such that it can inhibit entanglement growth, however it does not entirely de-
stroy entanglement within the system. As an addendum, this does sometimes already
see convergence with χmax = 1 if there are many timesteps (100-1000).

Lastly, for strong noise, it is possible to exactly represent the dynamics of the state for
χmax = 1 showing that the system is always in a product state with no entanglement.
This can be interpreted as the noise acting on the system so strongly that it destroys
the entanglement.

The results of these benchmarks can be reasonably summarized into several simu-

53

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

10 5 10 3 10 1 101 103 105

T

2.1

2.2

2.3

2.4

2.5

2.6
En

ta
ng

le
m

en
t E

nt
ro

py
Entanglement vs. T, L=16, N=100, Timesteps=10, = 16

T=1/J
T=2/J
T=3/J
T=4/J
T=5/J

Figure 3.8: Entanglement as a function of noise strength γ and simulation time T for
varying timescales

lation regimes based on the relation between noise strength and simulation time γT.
Note that all tests are simulating up to T = 1 (or T = 1

J), and to build intuition, it
is important to recognize these graphs as a type of normalized noise process per unit
time. For example, a noise process occurring every 1 microsecond, simulated over 1
second will be γT = 10−6. The dynamics of the noise process itself should be able
to be seen around roughly γT ≈ 1. This is due to the noise strength being inversely
proportional to its occurrence in time, that is, γ ∼ 1

Tγ
or γ ∼ 1√

2Tγ
in some cases.

Noise Regime Entanglement Regime γT χmax needed
Weak Noise Strong Entanglement −∞ to 10−1 2 to Full
Transition Weak Entanglement 10−1 to 103 2

Strong Noise Product State 103 to ∞ 1

Table 3.1: Identifiable regimes corresponding noise strength, entanglement, and max
bond dimension needed for the ratio between noise strength γ and simulation
time T

54

3.3. BENCHMARKING

0 1 2 3 4 5
tJ

0.2

0.0

0.2

0.4

0.6

0.8

1.0

<
[8

]
x

>

Expectation Value vs. Time, L=16, N=1, Timesteps=100, = 10 6

max = 1
max = 2
max = 4
max = 8
max = 16
max = 32

(a) Weak noise γ = 10−6 ≪ T−1

0 1 2 3 4 5
tJ

0.0

0.2

0.4

0.6

0.8

1.0

<
[8

]
x

>

Expectation Value vs. Time, L=16, N=100, Timesteps=20, = 1
max = 1
max = 2
max = 4
max = 8
max = 16

(b) Medium Noise γ = 1 ≈ T−1

55

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

0 1 2 3 4 5
tJ

0.0

0.2

0.4

0.6

0.8

1.0

<
[8

]
x

>
Expectation Value vs. Time, L=16, N=1, Timesteps=100, = 106

max = 1
max = 2
max = 4
max = 8
max = 16

(c) Strong noise γ = 106 ≫ T−1

Figure 3.9: Expectation value calculated for various bond dimensions over a time period
in different noise regimes

3.3.3 Computational Time

Finally, the computational time is compared between the superoperator method, the
original vector jump method, and the TN jump method for a single timestep. This
is plotted for several different bond dimensions so that it is possible to see how the
time to simulate each of the previous regimes grows with system size. The following
computational times are calculated with a cutoff at 60 seconds for a single timestep.

This is first shown as a comparison for a low number of sites such that the tensor
network method can be compared to the exact calculation and vector method. This is
plotted in a linear and log scale in Fig. 3.10. First, it is shown that the vector method
is quicker for sites L < 8, but this graph does not capture the additional speedup
from the TN method never needing to initialize more than a d× d-level operator. The
vector method sees a major slowdown in all cases due to having to initialize large
dL× dL jump operators before starting the simulation which can be slow even when the
operators are sparse. This took roughly an hour to generate on a personal computer for
L = 6 (superoperator) and L = 12 (vector method) before even calculating anything.
As expected, tensor networks grows linearly with "small" system sizes, with a higher

56

3.3. BENCHMARKING

slope for higher bond dimensions, eventually hitting a point of exponential growth.
As shown before, these high bond dimensions can be avoided and thus also avoid
unwanted growth in computational time

Now that this method has been compared with the exact calculation and the original
vector method, it is possible to look at how far it could feasibly scale. For this, both
a local operator as done previously as well as global operators have been considered.
Calculating a global operator requires a full sweep calculating expectation values for
each site rather than placing the MPS in site canonical form and calculating a single
site. The results of the local operator calculation can be seen in Fig. 3.11 and the global
operator in Fig. 3.12, both with linear and log scale.

The tensor network method is shown to scale significantly further than the original
vector method. On a personal computer, it is possible to calculate a single timestep
up to 3500 sites in less than a minute. There is also a different scaling factor with the
local and global operator calculations due to the need to sweep for a global calculation.
The global calculation is still well within the same limits, but will slowly scale worse
as the site number is increased even further. In order to calculate a local operator, the
site is shifted from left canonical into site canonical form before calculation, while for
the global operator a sweep is performed. This explains some of the jaggedness or
non-linearity in the local operator calculation, but could most likely also be optimized.

57

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

5 10 15 20 25 30
Sites (L)

0

10

20

30

40

50

60
Ti

m
e

(s
)

Computational Time vs. Sites (Single Timestep, Single Local Operator)
Exact
Vector

max = 1
max = 2
max = 4
max = 8
max = 16
max = 32

(a) Linear Computational Time

5 10 15 20 25 30
Sites (L)

10 3

10 2

10 1

100

101

102

103

Ti
m

e
(s

)

Computational Time vs. Sites (Single Timestep, Single Local Operator)

Exact
Vector

max = 1
max = 2
max = 4
max = 8
max = 16
max = 32

(b) Log Computational Time

Figure 3.10: Comparison between exact superoperator solution, the original vector
method, and tensor networks for various bond dimensions for a single
timestep

58

3.3. BENCHMARKING

0 500 1000 1500 2000 2500 3000 3500 4000
Sites (L)

0

10

20

30

40

50

60

70

80
Ti

m
e

(s
)

Computational Time vs. Sites (Single Timestep, Single Local Operator)

max = 1
max = 2
max = 4
max = 8
max = 16
max = 32

(a) Linear Computational Time

101 102 103

Sites (L)

10 2

10 1

100

101

102

Ti
m

e
(s

)

Computational Time vs. Sites (Single Timestep, Single Local Operator)
max = 1
max = 2
max = 4
max = 8
max = 16
max = 32

(b) Log Computational Time

Figure 3.11: Comparison between tensor networks of various bond dimensions for a
single timestep calculating a local operator at the center site

59

CHAPTER 3. TENSOR NETWORK QUANTUM JUMP METHOD

0 500 1000 1500 2000 2500 3000 3500 4000
Sites (L)

0

10

20

30

40

50

60
Ti

m
e

(s
)

Computational Time vs. Sites (Single Timestep, Global Operator)

max = 1
max = 2
max = 4
max = 8
max = 16
max = 32

(a) Linear Computational Time

101 102 103

Sites (L)

10 2

10 1

100

101

102

Ti
m

e
(s

)

Computational Time vs. Sites (Single Timestep, Global Operator)
max = 1
max = 2
max = 4
max = 8
max = 16
max = 32

(b) Log Computational Time

Figure 3.12: Comparison between tensor networks of various bond dimensions for a
single timestep calculating a global operator

60

4 Applications

4.1 Coupled Transmons

As a first application, a small, realistic system is analyzed such that the capabilities of
this method can be tested. Here a SWAP gate between two superconducting transmon
qubits coupled through a resonator (effectively a fixed-frequency transmon) is simu-
lated. For this, the following effective Hamiltonian found in [10] is used

H = ω1(t)b†
1b1 +

α1

2
b†

1b1(b†
1b1 − 1)

+ ω2(t)b†
2b2 +

α2

2
b†

2b2(b†
2b2 − 1)

+ ωR
2 a†a

+ g1(t)(a + a†)(b†
1b1) + g2(t)(a + a†)(b†

2 + b2)

(4.1)

The architecture that this represents is found in Fig. 4.1. The bi operators correspond
to the ladder operators on the ith qubit and a operator corresponds to the resonator
(and likewise for their conjugates). As superconducting qubits are bosonic systems, the
number of levels in the qubits as well as the resonator can be controlled. This means
the bi operators are d× d matrices and the a operator is a D× D matrix where d is the
number of qubit levels and D the levels of the resonator. In this use case, the levels are
set the same such that d = D, however it is not necessary for the method to work. This
Hamiltonian is essentially a sum over the individual Hamiltonians of the transmons,
the resonator, as well as an interaction term.

The ωi terms are the qubit frequencies, ωR is the resonator frequency, αi are the
anharmonicities, and gi are the coupling strengths between the qubits and the resonator.
The values of the parameters used are found in Table 4.1.

Figure 4.1: Architecture of two transmons coupled through a fixed-frequency resonator
[10]

As this is a tensor network method, this Hamiltonian must be converted into a Matrix
Product Operator (MPO). In order to do this, the system’s layout needs to be defined.

62

4.1. COUPLED TRANSMONS

ω1/2π ω2/2π ωR/2π α1 α2 g1 g2

4.2 4.2 10 -0.32 -0.295 0.307 0.307

Table 4.1: Parameters used for simulating a SWAP gate on two transmons coupled
through a resonator. All units are in GHz.

A 3-site MPS where the outer sites represent the qubits with physical dimensions d
and the interior site is the resonator with physical dimension D is used for this. This
creates a very intuitive representation of the system that mimics the architecture itself.
Each site of the MPO then needs to contain the relevant terms for that site alone. Since
the operators act on different sites, they can be viewed as local operators such that
b1 = b⊗ 1D×D ⊗ 1d×d, a = 1d×d ⊗ a⊗ 1d×d, and b2 = 1d×d ⊗ 1D×D ⊗ b (and likewise
for the creation operators). Note that the identities as well as the zeros matrices in the
MPO must maintain the correct dimension for its site. All together this results in the
following MPO representation:

W1 =
(
ω1(t)(b†b) + α1

2 (b
†b)(b†b + 1), 1, g0(b† + b), 1

)
(4.2)

W2 =


1 0 0 0
0 0 ωRa†a 0

a† + a 0 0 0
0 a† + a 0 1

 (4.3)

W3 =


1

g2(b† + b)
1

ω2(t)(b†b) + α2
2 (b

†b)(b†b + 1)

 (4.4)

The MPS is then initialized in |100⟩ such that one qubit is excited, the resonator
contains 0 excitations, and the other qubit is in the ground state. Tensor networks has
a nice advantage in that it is possible to significantly extend the number of levels very
easily and represent a more realistic bosonic system with many levels. Since no analysis
was done on the entanglement or truncating the bond dimension of d-level systems,
the levels were set to a basic 3-level system for both qubits and the resonator such
that leakage outside of the computational space i.e. to the |2⟩ state can be calculated.
It would be advantageous to raise this as much as possible to get the most realistic
simulation then truncate the bond dimensions.

For this simulation, 1000 timesteps are used as it was seen that the dynamics are
very timestep dependent relative to the previous simulations. At each timestep, the
population of all the possible states is calculated. This is done by taking the expectation
value of operators of the form Pijk = |i⟩ ⟨i| ⊗ |j⟩ ⟨j| ⊗ |k⟩ ⟨k| for all bitstrings ijk. The
leakage is then calculated by L = 1− ∑[ijk] Pijk − Pi2k. This last term is due to the fact
that the resonator is not part of the computational space and it does not matter if it fills
up with excitations.

63

CHAPTER 4. APPLICATIONS

This has been simulated for both the noiseless, perfect simulation as well as a noisy
with relaxation, dephasing, and excitations for N = 1000 trajectories over 80 ns. The
noise strengths are all set equal to occur at a strength γ = 0.00125 ns−1 = 1.25 MHz
(γT = 0.1). This was set arbitrarily as a proof of concept based on the previous results
such that noise disrupts the system but does not completely overwhelm it. Realistic γ’s
would need to be investigated for actual systems.

The results of this simulation are seen in Fig. 4.2. The bitstrings correspond to the
system layout such that the first bit is the state of the first qubit, second is the resonator,
and third is the second qubit. In the noiseless simulation, the expected behavior of a
SWAP between the qubits can be seen. A slight hybridization with the resonator state
010 is visible as the system is not fully in the dispersive regime where the detuning with
the resonator is much greater than the coupling strengths [1]. In the noisy simulation,
a decrease in the amplitudes of the expected SWAP states is visible and an increase in
leakage. There is also a slight increase in the population of 000 and 101 as well as some
hybridization when an excitation is in the resonator.

64

4.1. COUPLED TRANSMONS

0 10 20 30 40 50 60 70 80
Time (ns)

0.0

0.2

0.4

0.6

0.8

1.0
Po

pu
la

tio
n

Population vs. Time (Noiseless), N=1, Timesteps=1000

000
001
010
011
100
101
110
111
Leakage

(a) Noiseless Transmon

0 10 20 30 40 50 60 70 80
Time (ns)

0.0

0.2

0.4

0.6

0.8

1.0

Po
pu

la
tio

n

Population vs. Time (Noisy, = 0.1), N=1000, Timesteps=1000
000
001
010
011
100
101
110
111
Leakage

(b) Transmon with random relaxation, dephasing, and excitations with noise strength strength
γ = 0.00125 ns−1 = 1.25 MHz (γT = 0.1)

Figure 4.2: Comparison between noiseless simulation of coupled transmons and a noisy
simulation with d = 3 levels, relaxation, dephasing, and excitations

65

CHAPTER 4. APPLICATIONS

4.2 Scaling

In this section, the knowledge of the previous benchmarks is used to see how far the
method can be pushed. The goal here is to capture the dynamics of a noise process
itself evolving under the same Ising model presented previously with J = 1 and g =

0.5. Both relaxation and dephasing are still considered with γ = 1 and simulated
up to a time where it is possible to see the dynamics of the relaxation and dephasing
themselves. As seen previously for smaller systems, this is expected to be on a timescale
with the same magnitude as the noise i.e. T ≈ Tγ = 1

γ . Since this is in the transition
regime and weak entanglement regime, it is simulated with a bond dimension χmax =

2.
Seen in Fig. 4.3, the expectation value of an operator at the center of a chain of

5, 16, 50, 100, and 1000 sites is simulated using 100 timesteps and 100 trajectories.
More timesteps and trajectories would cause a smoother curve similar to the coupled
transmon simulation in Fig. 4.1. There is a similar pattern for all system sizes with a
decay into a minimum followed by a slight increase before remaining constant. More
sites leads to this decay occurring in a longer timespan as well as finally ending up in
a higher constant value. This could either be some form of stabilization from the in-
creased number of interactions or the dynamics are simply not being captured properly.
It is noted that for 100 and 1000 sites, there is pure decay and the dip is not visible. It
is currently not possible to check if the dynamics shown are correct as it is not possible
to calculate it exactly and the hardware to compare experimentally does not exist. As
the original method was created with far less sites in mind, further modifications may
need to be included for these larger system sizes.

This method was originally considered for small system sizes in which a jump will
affect the entire system greatly and any single site is also highly likely to be jumped
compared to larger systems. It could be possible that there are simply not enough
jumps occurring for such large systems as the ones considered in this section. If there
are 1000 sites, the number of possible trajectories the system could take is so vast that
it is not possible to capture the true dynamics without significantly more trajectories.
However, it is necessary to avoid this or it will lead to much longer computational time.

If the dynamics in Fig. 4.3 are correct, then nothing needs to be modified from the
original method. If the dynamics are wrong, there is a clear improvement that could
be made to introduce more variance into the trajectories.

Currently, maximum one jump per timestep is allowed. For say L = 5, that means 1
out of 5 i.e. 20 % of the sites experience noise for a single jump. For L = 1000, that is
0.1 %. It could make sense to select more than one jump at a time to introduce more
variation in the trajectories.

With this in mind, a modified method was considered for 100 sites where if a jump
is to occur i.e. δp < ϵ, then 20 % of the sites will experience a jump. No site is able
to experience more than one jump in a timestep meaning for example a site cannot
experience relaxation and dephasing simultaneously. This means after applying the
jump, all possible jump operators on that site are removed by setting them to 0 in the

66

4.2. SCALING

probability distribution followed by renormalizing it. The results of this can be seen in
Fig. 4.4. This modification causes the dip to appear as seen in the smaller system sizes.
Further analysis on whether this is the correct dynamics or not is necessary, but this
result looks positive.

67

CHAPTER 4. APPLICATIONS

0 1 2 3 4 5
T

0.0

0.2

0.4

0.6

0.8

1.0
<

L/
2

x
>

Exp. Value vs. Time, N=100, Timesteps=100, = 1, max = 2

L=5
L=16
L=50
L=100
L=1000

Figure 4.3: Calculation of the expectation value of a local operator at the center site to
attempt to capture the dynamics of a noise process

0 1 2 3 4 5
T

0.2

0.4

0.6

0.8

1.0

<
[5

0]
x

>

Exp. Value vs. Time, L=100, N=100, Timesteps=100, = 1, max = 2
1 jump per timestep
20 % of sites jumped per timestep

Figure 4.4: Modification to allow 20 % of sites to be jumped compared to single jump

68

5 Conclusion and Outlook

This work has introduced the tensor network quantum jump method and demonstrated
its capabilities as a noise simulation method. As with any simulation method, reducing
error and computational time is always desired. There are several possible improve-
ments that can explored and potentially easily implemented in the tensor network
quantum jump method. This includes implementing the two-site TDVP to reduce pro-
jection error as well as using a matrix-free exponential such as the Arnoldi method
rather than the Lanczos method. The Arnoldi method could also potentially allow the
dissipative sweep to be included in the TDVP sweep itself.

A clear next step would be to implement a time-dependent Hamiltonian using this
method to analyze noise processes during gate applications to larger systems than
currently possible. The use of TDVP in this method also opens the door for simulating
2D systems by allowing long-range interactions. This could be facilitated through using
a snaking MPS model in which more than nearest neighbor interactions are included
in the Hamiltonian.

Overall, the creation of this tensor network quantum jump method allows us to scale
noise simulations further than previously possible. This method does not encounter the
exponential growth for solving a Lindblad master equation that is encountered in an
exact calculation or the original quantum jump method. The results of this work have
shown that the tensor network quantum jump method can easily calculate the effect of
noise processes on systems over 100 qubits on a personal computer as well as excellent
scaling to even larger system sizes. This allows us to extend our simulation capabilities
with the intent to be used as a state-of-the-art benchmarking and error mitigation tool
as quantum computing platforms scale to more and more qubits.

70

Bibliography

[1] M. Boissonneault, J. M. Gambetta, and A. Blais. Dispersive regime of circuit qed:
photon-dependent qubit dephasing and relaxation rates. 10 2008. doi: 10.1103/
PhysRevA.79.013819. URL http://dx.doi.org/10.1103/PhysRevA.79.013819.

[2] C. A. Brasil, F. F. Fanchini, and R. de Jesus Napolitano. A simple derivation of
the lindblad equation. 10 2011. doi: 10.1590/S1806-11172013000100003. URL
http://dx.doi.org/10.1590/S1806-11172013000100003.

[3] J. C. Bridgeman and C. T. Chubb. Hand-waving and interpretive dance: An intro-
ductory course on tensor networks. 3 2016. doi: 10.1088/1751-8121/aa6dc3. URL
http://dx.doi.org/10.1088/1751-8121/aa6dc3.

[4] J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pizorn, H. Verschelde, and F. Verstraete.
Time-dependent variational principle for quantum lattices. 3 2011. doi: 10.
1103/PhysRevLett.107.070601. URL http://dx.doi.org/10.1103/PhysRevLett.
107.070601.

[5] J. Haegeman, T. J. Osborne, and F. Verstraete. Post-matrix product state methods:
To tangent space and beyond. 5 2013. doi: 10.1103/PhysRevB.88.075133. URL
http://dx.doi.org/10.1103/PhysRevB.88.075133.

[6] J. Haegeman, M. Marien, T. J. Osborne, and F. Verstraete. Geometry of matrix
product states: Metric, parallel transport, and curvature. Journal of Mathematical
Physics, 55, 2 2014. ISSN 00222488. doi: 10.1063/1.4862851.

[7] E. Hairer, M. Hochbruck, A. Iserles, and C. Lubich. Geometric numerical integra-
tion. Oberwolfach Reports, 2009. doi: 10.4171/owr/2006/14.

[8] P. Kramer and M. Saraceno. Geometry of the Time-Dependent Variational Principle in
Quantum Mechanics, volume 140, pages 112–121. 01 2007. ISBN 978-3-540-10271-7.
doi: 10.1007/3-540-10271-X_317.

[9] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver.
A quantum engineer’s guide to superconducting qubits. 4 2019. doi: 10.1063/1.
5089550. URL http://dx.doi.org/10.1063/1.5089550.

[10] H. Lagemann, D. Willsch, M. Willsch, F. Jin, H. D. Raedt, and K. Michielsen. Nu-
merical analysis of effective models for flux-tunable transmon systems. 1 2022.
doi: 10.1103/PhysRevA.106.022615. URL http://dx.doi.org/10.1103/PhysRevA.
106.022615.

72

http://dx.doi.org/10.1103/PhysRevA.79.013819
http://dx.doi.org/10.1590/S1806-11172013000100003
http://dx.doi.org/10.1088/1751-8121/aa6dc3
http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://dx.doi.org/10.1103/PhysRevB.88.075133
http://dx.doi.org/10.1063/1.5089550
http://dx.doi.org/10.1103/PhysRevA.106.022615
http://dx.doi.org/10.1103/PhysRevA.106.022615

Bibliography

[11] C. Lanczos. An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. Journal of Research of the National Bureau
of Standards, 45, 1950. ISSN 0091-0635. doi: 10.6028/jres.045.026.

[12] C. Lubich. From quantum to classical molecular dynamics : reduced models and numeri-
cal analysis. European Mathematical Society, 2008. ISBN 9783037190678.

[13] D. Manzano. A short introduction to the lindblad master equation. 6 2019. doi:
10.1063/1.5115323. URL http://dx.doi.org/10.1063/1.5115323.

[14] K. Mølmer, Y. Castin, and J. Dalibard. Monte carlo wave-function method in quan-
tum optics. J. Opt. Soc. Am. B, 10:524–538, 3 1993. doi: 10.1364/JOSAB.10.000524.
URL http://opg.optica.org/josab/abstract.cfm?URI=josab-10-3-524.

[15] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U. Schollwöck, and C. Hubig.
Time-evolution methods for matrix-product states. Annals of Physics, 411, 12 2019.
ISSN 1096035X. doi: 10.1016/j.aop.2019.167998.

[16] F. Schindler and A. S. Jermyn. Algorithms for tensor network contraction order-
ing. 1 2020. doi: 10.1088/2632-2153/ab94c5. URL http://dx.doi.org/10.1088/
2632-2153/ab94c5.

[17] U. Schollwoeck. The density-matrix renormalization group in the age of matrix
product states. 8 2010. doi: 10.1016/j.aop.2010.09.012. URL http://dx.doi.org/
10.1016/j.aop.2010.09.012.

[18] L. Vanderstraeten, J. Haegeman, and F. Verstraete. Tangent-space methods for
uniform matrix product states. 10 2018. doi: 10.21468/SciPostPhysLectNotes.7.
URL http://dx.doi.org/10.21468/SciPostPhysLectNotes.7.

73

http://dx.doi.org/10.1063/1.5115323
http://opg.optica.org/josab/abstract.cfm?URI=josab-10-3-524
http://dx.doi.org/10.1088/2632-2153/ab94c5
http://dx.doi.org/10.1088/2632-2153/ab94c5
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.1016/j.aop.2010.09.012
http://dx.doi.org/10.21468/SciPostPhysLectNotes.7

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Fundamentals
	Open Quantum Systems
	Noise Processes
	Derivation of the Lindblad Master Equation
	Exact Solution - Superoperator Formalism

	Tensor Networks
	Matrix Product States and Matrix Product Operators
	Canonical Forms
	Decompositions and Normalization

	Mathematics of Tensor Networks
	Geometry of Matrix Product States
	Tangent Space

	Time-Dependent Variational Principle (TDVP)
	Approximating the Schrödinger Equation
	Implementing TDVP in Tensor Networks
	Error Analysis
	Practical Computational Considerations

	Tensor Network Quantum Jump Method
	Quantum Jump Method
	Initialization
	Non-Unitary Time-Evolution
	Calculating Jump Probabilities
	Stochastic Application of Jumps
	Equivalence to Master Equation

	Tensor Network Quantum Jump Method
	Adapting the Time Evolution
	Adapting the Jump Application

	Benchmarking
	Trajectory Convergence (Noise Regimes)
	Bond Dimension Convergence (Entanglement Regimes)
	Computational Time

	Applications
	Coupled Transmons
	Scaling

	Conclusion and Outlook
	Bibliography

