
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Robotics, Cognition, and Intelligence

Learning Fluid Dynamics Models that
Exhibit Turbulent Behavior

Thana Guetet

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Robotics, Cognition, and Intelligence

Learning Fluid Dynamics Models that
Exhibit Turbulent Behavior

Lernen von Modellen für turbulente
Strömung

Author: Thana Guetet
Supervisor: Prof. Dr. Hans-Joachim Bungartz
Advisor: Dr. Felix Dietrich
Submission Date: 15.07.2022

I confirm that this master’s thesis in robotics, cognition, and intelligence is my own
work and I have documented all sources and material used.

Munich, 15.07.2022 Thana Guetet

Acknowledgments

This work would not have been possible without the support of many people. Many
thanks to my advisor, Dr. Felix Dietrich, for the continuous feedback and the enriching
discussions. Also thanks to my supervisor, Prof. Dr. Hans-Joachim Bungartz, for
facilitating my work with the chair for Scientific Computing in Computer Science. I
would like to also thank all the members of the SCCS chair and the audience that
attended my talk presenting my thesis. And finally, thanks to my family and friends
who supported me and showed interest in my progress throughout the entirety of my
project.

Abstract

Turbulent flows are an important research topic in fluid dynamics, as they exhibit
a complex behavior over a large range of spatial orders. Despite their complexity,
turbulent flows are a common phenomenon in day to day life, which fuels the moti-
vation behind studying, understanding, and approximating them. Partial differential
equations (PDE) have been used successfully to describe a multitude of physical and
engineering problems, turbulent flows being one example. The Navier-Stokes equations
(NSE) are the PDE that exhibit turbulent flows. To approximate solutions of the NSE,
traditionally, numerical solvers for turbulence models are used. Although, fluid flows
are very accurately described by the NSE, many important cases in other disciplines
are yet to be explained. In those cases, considering a data-driven approach that learns
the equations directly from data observed from the phenomenon is an intriguing and
interesting topic. Since numerical simulations have facilitated the generation and collec-
tion of PDE solutions, machine learning has been increasingly employed in problems
related to partial differential equations. The application of machine learning for PDE
has been split into data-driven solution of PDEs and the data-driven learning of PDEs.
This thesis tackles the latter problem. As a non-turbulent toy example, PDE-Net is used
to learn the differential operators and coefficients of the diffusion equation. Physics-
informed neural networks are used to the learn the parameters of the parameterized
NSE for laminar flows and flows that exhibit turbulent behavior. PDE-Net shows good
results for simple diffusion examples. PINN can accurately capture the parameters for
laminar flows, however, for turbulent flows the predicted parameters do not accurately
approximate those invoked in the NSE.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 State of the art 4
2.1 The Navier-Stokes Equations . 4
2.2 Turbulence Modeling with Computational Fluid Dynamics (CFD) . . . 7

2.2.1 What is turbulence? . 8
2.2.2 Simulating Turbulent Flows . 9
2.2.3 RANS Turbulence Modeling . 10
2.2.4 CFD software: OpenFOAM . 13

2.3 Data-Driven Methods to infer the solutions of the Partial Differential
Equations . 17
2.3.1 DeepONets . 18
2.3.2 Fourier Neural Operator . 21

2.4 Data-Driven Methods to learn the Partial Differential Equations 22
2.4.1 Physics Informed Neural Network (PINN) 23
2.4.2 PDE-Net . 24

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior 30
3.1 The difference between solving and learning the PDE using data-driven

methods . 30
3.2 The experiments . 31

3.2.1 Diffusion Equation: scalarTransportFoam 31
3.2.2 Learning Process: PDE-Net for learning the diffusion equation . 33
3.2.3 Laminar and Turbulent Fluid Flow simulation with pimpleFoam 35
3.2.4 Learning Process: PINN for learning NSE 39

3.3 Results . 42
3.3.1 PDE-Net for learning the diffusion equation 42
3.3.2 PINN for learning the parameters of the NSE 48

3.4 Learning turbulent flow models . 57

v

Contents

4 Conclusion 61

Bibliography 64

vi

Acronyms

k − ω (SST) k − ω Shear Stress Transport. 15

2D 2-dimensional space. 1

3D 3-dimensional space. 2

ANNs artificial neural networks. 18

CFD computational fluid dynamics. 1

DL deep learning. 2

FNO Fourier Neural Operator. 21

NSE Navier-Stokes Equations. 1

OpenFOAM Open Field Operation and Manipulation. 3, 13

PDE partial differential equation. 1

PDE-FIND PDE functional identification of nonlinear dynamics. 30

PINN physics-informed neural network. 2, 23

POD proper orthogonal decomposition. 31

Re Reynolds number. 5

SINDy sparse identification of nonlinear dynamics. 30, 62

UATs Universal Approximation Theorems. 18

VOF Volume of Fluid. 37

vii

1 Introduction

Understanding the natural phenomena has always driven humans to innovation, inven-
tion, and searching for answers. As defined in Encyclopedia Britannica [82], Science, on
the simplest level, is the knowledge of the world of nature. To acquire this knowledge,
the first approach was observation and experimentation, however, for more complex
problems theories and mathematical models were constructed to better understand
these problems. With physics being the branch of science concerned with the study
of properties and interactions of space, time, matter, and energy [6], fluid dynamics
[23] emerged as a subdiscpline of fluid mechanics that describes the flow of fluids,
liquids, and gasses. Fluid dynamics brought together applied mathematics, physics,
engineering, and mechanics [18] to study real-world flows.
Traditionally, science and engineering was divided into an experimental and a theo-
retical part. The theory is based on theorems, assumptions, and postulation, where
mathematics helps in quantification and understanding. Whereas experimental analysis
is based on observations and measurements of experiments carried out in the real
world. As these two previously mentioned approaches to science have their limitations
and drawbacks a third pillar has emerged in the 1950s, modeling and simulation.
This technique facilitates solving and predicting solutions to real world problems,
unable to be solved by theoretical or experimental analysis [55]. A particular technique
of simulation and modeling is computational fluid dynamics (CFD). This technique
predicts the flow behavior by numerically solving the governing equations of fluid
flows. Using numerical methods, the coupled partial differential equation (PDE) are
transformed into an algebraic set of equations, which can be solved iteratively [55]. CFD
has facilitated the study of fluid dynamics, in particular laminar and turbulent flows,
which are witnessed at different scales from water falling from a tap to wind flow over
mountains, or islands. The results obtained from CFD simulations are mostly reliable
and in agreement with the observed real-world scenarios. As an example, figure 1.1
shows the von Kármán vortex street generated by the Rishiri Island in Japan and the
flow behind a cylinder generated by a CFD software. The Navier-Stokes Equations
(NSE), introduced in chapter 2, are a PDE that describes the motion of fluids based
on the momentum conservation principle [20]. The three central points of every PDE
are about existence, uniqueness, and smooth dependency on initial data. For the NSE,
mathematically proven answers to these three points are available in 2-dimensional

1

1 Introduction

Figure 1.1: Top: Flow over the Rishiri island in Japan. Bottom: Flow over a cylinder

space (2D), in fact 2D-NSE with smooth initial data, has unique solutions, that stay
smooth forever, which was proven in the 1960s. In 3-dimensional space (3D), only local
existence and uniqueness are known. As a result, proving the existence and smoothness
of solutions to the NSE in three-dimensional space is one of the seven Millennium Prize
Problems [73].
In engineering, the NSE have been solved with help of turbulence models. Understand-
ing turbulence modeling is at the center of this work, as it describes a very complex, yet
common phenomenon, turbulent flows. Given the importance and complexity of turbu-
lent flows, learning the models that describe them especially using reliable simulation
data is the driving motivation behind this thesis, and which gives it an introductory as-
pect to future innovation. In fact, where the NSE can accurately describe turbulent flow,
many other phenomena lack such a compact description, which conveys importance
to the problem of learning equations from data observed in such phenomena. In this
work, the focus is on numerically obtained solutions of the NSE in 2D and 3D spaces.
Besides, simulating classical examples of fluid flows, another field that has gained an
influx of attention over this decade, as a powerful data-driven method, is utilized in this
thesis, namely, deep learning (DL). Deep learning has proven its powerful predictive
and expressive benefits in a multitude of fields [36, 33, 35, 16]. Fluid dynamics, which
are described by PDEs started benefiting from this ongoing success. Using the powerful
expressive and predictive function approximation of Neural Networks, multiple studies
used DL to solve the Partial Differential Equations, for example physics-informed neu-

2

1 Introduction

ral network (PINN) [66, 29, 7, 62], where a physics-informed loss was used to ensure
the predicted flow follows the physical laws. In [78, 13, 2, 21], mostly used for computer
vision, Convolutional Neural Networks, are used to learn filters that approximate the
flow at each pixel and should sum up to a low error. Gaussian Process regression
[56] has be used for approximating the PDE solution . In a different approach , [43,
81, 44, 37, 38] learn the Neural Operator that learns the mapping of a function from
the infinite dimensional space to another function in the infinite dimensional space,
which is the solution space of PDE. Deep Learning can also be used to accelerate the
predictions of CFD, as in [69, 32, 79]. A final application of Deep Learning in fluid
dynamics is the data-driven discovery of differential equations. In [70], [11], and [40]
use symbolic regression to find out the most fitting equation to the observed data from
a pre-computed dictionary. While [4] use data-driven methods to learn the spatial
derivatives of PDEs, [65] [63], and [42], focus on learning the parameters of the linear
and nonlinear PDEs. Finally, PDE-Net [42, 40] uses convolutional filters to approximate
differential operators and forms the PDE describing the given data.
This work will study the performance of PDE-Net [42] and PINN [65], when learn-
ing parametrized PDEs, as a semi-supervised problem with data simulated using the
open-source CFD software Open Field Operation and Manipulation (OpenFOAM) [52].
The chapters are defined as follows, in 2, the NSE and turbulence models will be
defined, as well as the general functioning of simulating in OpenFOAM [52]. Then,
The state-of-the-art models, that have been used in fluid dynamics will be reviewed.
In chapter 3 then the training process of both PDE-Net and PINN will described, the
defined experiments will be presented, as well as the resulting parameters and learned
CFD models. Finally, this thesis will be concluded in 4.

3

2 State of the art

This chapter introduces the NSE and turbulence models, it highlights the state-of-the-
art methods used to infer the solutions of PDEs, as well as learn Partial Differential
equations.

2.1 The Navier-Stokes Equations

Given below is the definition of a partial Differential Equation as it appears in [67].
Definition: For a function F that is sufficiently smooth with respect to variables
x,t,u,uxi , ut, uxi xj,... such that at least one of the derivatives Fuxi

, Fut , Fuxi xj , ... is nonzero
over a suitable domain, then an equation of the form

F(x, t, u, uxi , ut, uxi xj, ...) = 0, for (x, t) ∈ Ω1, (2.1)

and is called the general partial differential equation for a function u=u(x,t) with
(x, t) ∈ Ω1. The order of 2.1 is the order of the highest derivative of u appearing in the
equation.Besides their orders, PDEs can be classified based of their linearity type [67]:

• Linear equation: if the function F is linear with respect to any of the variables
present in F u, uxi , ut, uxi xj,..., and the coefficient functions depend on the inde-
pendent variables x1, ..., xn and t only;

• Semilinear equation if the principle part of the equation is linear, and the coeffi-
cients are functions of (n+1)independent variables x1, ..., xn and t;

• Quasilinear equation if the principle part of the equation is linear, the coefficients
are functions of (n+1) independent variables and also of the dependent variable
u(x,t), and at least one coefficient function appearing in lower order terms depends
on (n+1) independent variables and also on some lower order derivative of the
function u;

• Fully nonlinear equation if it is not a quasilinear equation

4

2 State of the art

The 3D unsteady form of the Navier-Stokes Equations are shown, as derived inde-
pendently by G.G. Stokes and M. Navier in the early 1800’s [50]:

Continuity:
δρ

δt
+

δ(ρu)
δx

+
δ(ρv)

δy
+

δ(ρw)

δz
= 0

X-Momentum:
δ(ρu)

δt
+

δ(ρu2)

δx
+

δ(ρuv)
δy

+
δ(ρuw)

δz
= −δp

δx
+

1
Re

[
δτxx

δx
+

δτxy

δy
+

δτxz

δz

]
Y-Momentum:

δ(ρv)
δt

+
δ(ρuv)

δx
+

δ(ρv2)

δy
+

δ(ρvw)

δz
= −δp

δy
+

1
Re

[
δτxy

δx
+

δτyy

δy
+

δτyz

δz

]
Z-Momentum:

δ(ρw)

δt
+

δ(ρuw)

δx
+

δ(ρvw)

δy
+

δ(ρw2)

δz
= −δp

δz
+

1
Re

[
δτxz

δx
+

δτyz

δy
+

δτzz

δz

]
Energy:

δ(Et)

δt
+

δ(uEt)

δx
+

δ(vEt)

δy
+

δ(wEt)

δz
= −δ(up)

δx
− δ(vp)

δy
− δ(wp)

δz

− 1
RePr

[
δqx

δx
+

δqy

δy
+

δqz

δz

]
+

1
Re

[
δ

δx
(uτxx + vτxy + wτxz) +

δ

δy
(uτxy + vτyy + wτyz) +

δ

δz
(uτxz + vτyz + wτzz)

]
,

where (x,y,z) are the coordinates, t is time, p is the pressure,

(u,v,w) are the velocity components, τ is the stress tensor,

Re the Reynolds number, Pr the Prandtl Number, and Et is the total energy (2.2)

The Reynolds number (Re) "is the ratio of the scaling of the inertia of the flow to the
viscous forces in the flow" [50]. The Prandtl number Pr "is the ratio of the viscous
stresses to the thermal stresses" [50]. The stress tensor τ has 9 components, where each
component is the second derivative of the velocity components [50]. The terms on the
left side of the momentum equations are known as the convection terms. Convection
describes the physical process that transports some property of the gas by the ordered
motion of the flow [22, 50]. The tensor components multiplied by the inverse of the
Reynolds number are the diffusion terms. "Diffusion is a physical process that occurs
in a flow of gas in which some property is transported by the random motion of the
molecules of the gas" [50]. Turbulence, and boundary layers (laminar, or turbulent) are
the result of diffusion. Precedent to the formulation of the NSE, the Euler equations [19],
were used to approximate the flow, however viscosity is neglected, which means that
these equations cannot describe turbulent flows. The NSE describe the relation between
the pressure, velocity, and density of a moving fluid, which makes the NSE a set of
coupled equations. The independent parameters are the time and space coordinates,
whereas pressure, velocity components, density ρ, and temperature T (contained in
the energy equation) are all dependent. Due to all dependent variables appearing in

5

2 State of the art

each equation, to solve the flow, all five equations must be solved simultaneously. The
equation of state [50], that related pressure, density, and Temperature of a gas is also
needed to solve the coupled system.
Due to the difficulty of solving these equations simplifications need to be introduced.
In CFD, the stress tensor is approximated by turbulence models, which are introduced
later in 2.2.3.
Another simplification is the assumption of incompressiblity of the fluid. In case of a
low fluid velocity, the fluid can be considered incompressible and its density ρ to be
constant δρ

δt = 0. In this case and for an incompressible single-phase fluid, the flow
motion equations can be written in tensor form [23] as:

Continuity equation:

∇v = 0

The stress tensor for incompressible viscous fluids:

τ = µ(∇v +∇vT)

∇ · τ = µ∇2v

Momentum balance equation:

ρ
δv
δt

+ ρ(v.∇)v = −∇p + µ∇2v

momentum equation divided by the constant ρ:
δv
δt

+ (v.∇)v = −1
ρ
∇p + ν∇2v,

where
δρv
δt

+ ρ(v.∇)v is the inertia, ∇p is the pressure gradient,

µ∇2v is the viscous force, µ the dynamic viscosity,

and ν =
µ

ρ
is the kinematic viscosity

(2.3)

The Reynolds number Re = UL
ν is a dimensionless number that helps classify the

regimes of flow. Here U is the velocity scale, L is the length scale, and ν is the kinematic
viscosity. U and L are related to the geometry of the flow. If Re<1, the inertia effects
are negligible in front of the viscous forces and Navier-Stokes 2.3 becomes the Stokes
equation. The effect of increasing the Reynolds number on the flow over a cylinder is
shown in 2.1. The resulting regimes shown in 2.1 are:

• Re<5: Laminar Attached Steady.

• 5<Re<40: Laminar Separated Steady.

6

2 State of the art

Figure 2.1: Experimental observations on the effect of increasing the Reynolds number
Re on the flow over a cylinder [74].

• 40<Re<200: Laminar Separated Periodic.

• 200<Re<350K: Laminar Separation/Turbulent Wake Periodic.

• 350K<Re: Turbulent Separation Chaotic.

The laminar flow follows the object shape. Whereas, the turbulent flow besides being
dominated by the object shape and dimension, it exhibits motion and evolution of
small eddies [74]. Turbulent flow is challenging to compute due to its unsteady
aperiodic motion, the fluid properties exhibit random spatial variations in 3D, and
the flow depends strongly from the initial conditions and contains a wide range of
scales (eddies). This implicates that the turbulent simulation must be always three-
dimensional and time accurate with extremely fine grids. In the next section the
problem of computing turbulent flow will be tackled from the CFD point of view.

2.2 Turbulence Modeling with Computational Fluid Dynamics
(CFD)

As mentioned in the introduction, CFD has become a very relevant technique to
understand and model fluid flow [55]. As PDEs cannot be solved analytically expect
in special cases, numerical methods facilitate approximating a solution, by using a
dicretization method, which approximates the PDE by a system of algebraic equations

7

2 State of the art

Table 2.1: The characteristics of turbulence.
High Reynolds number Re ≫ 1.
Rotationality Strong three-dimensional vortex generation mechanism.

Dissipation
The turbulent kinetic energy is transformed
into internal energy by shear stress.

Diffusivity
The diffusivity of turbulence causes rapid mixing
and increased rates of momentum, heat, and mass transfer.

Irregularity
Turbulence is not random since there exits a correlation
between the velocities measured in two nearby points.
Yet the movement of fluid particles is chaotic.

that can be solved iteratively by a computer [20]. One possible application is the
simulation of turbulent flow.

2.2.1 What is turbulence?

Turbulence is an extremely complex concept, that was described as earliest as 500
years ago by Leonardo da Vinci which he depicted in many sketches. He describes
the observed flow of water:"...the smallest eddies are almost numberless, and large things
are rotated only by large eddies and not by small ones and small things are turned by small
eddies and large" [31]. Multiple definitions of turbulence have been suggested over
the years. In more modern definitions, S.Rodriguez linked turbulence to the use of
approximations to provide solutions "Turbulent flows is the dynamic superposition of an
extremely large number of eddies with random (irregular) but continuous spectrum of sizes
and velocities that are interspersed with small, discrete pockets of laminar flow (as a result
of the Kolmogorov eddies that decayed, as well as in the viscous laminar sublayer and in the
intermittent boundary). In this sense, turbulent flows are intractable in its fullest manifestation;
this is where good, engineering common sense and approximations can deliver reasonable
solutions, albeit approximate." [68]
The characteristics of turbulence are explained in table 2.1 [51]. There are two types
of turbulence structures: the macrostructure, which refers to the largest turbulence
dimensions and depends on the length scale L and the velocity scale U, and its
counterpart the microstructure.
For very large Reynolds numbers the nonlinear processes dominate the macrostructure,
and the viscous effects are negligeable. At the limit where Re → ∞, the macrostructure
is independent from the Reynolds number. In this case, the large-scale structure is
also independent from the fluid, given that the fluid is parameterized by its kinematic
viscosity ν, which appears in the Reynolds number. This principle summarizes the

8

2 State of the art

"Reynolds similarity: Turbulence is a property of the flow, not the fluid." [51].

2.2.2 Simulating Turbulent Flows

Here, the light is shed on two of the most popular numerical approaches to solving the
NSE [20] for laminar and turbulent flows:

• Direct Numerical Simualtion (DNS): No modeling is required in this type of
simulations. In such simulations all the scales of motions are resolved. However,
DNS is only possible for low/moderate Reynolds number flows plus simple
geometries (high number of grid points is needed).

• Simulation of turbulence with Models: the Navier-Stokes equations can be
averaged, in time or in space. This averaging leads to the mean equations
containing non linear correlations involving the unknown fluctuating variables.
We speak of a closure problem. In this case, models are used to approximate
expressions, or equations for the unknown correlations.

– Large Eddy Simulations (LES): Here the NSE equations are filtered over
space, which eliminates the need to compute small scales. Large eddies are
resolved and small eddies are modeled. Simulations are 3D and unsteady.
Here all variables are filtered in space and the sub-grid scale stress tensor
τSGS needs to be modeled.

– Reynolds-Averaged Navier-Stokes equations (RANS): Here the averaging
is over time [20], describe by the equation 2.9 .All turbulence scales are
modeled and simulations can be 2D or 3D with a steady or unsteady flow.

DNS simulations are correlated with high computational costs, besides that the de-
tailed information delivered by DNS simulations is far more than the engineering
requirements, which makes it unsuitable as a design tool. LES and RANS both lead
to additional terms (closure terms) in the governing equations that must be modeled.
Consequently, turbulence models equations are not the exact NSE since additional
equations to close the system are added. In the following, the focus will be on RANS
simulation as they are widely used for computational predictions of industrial flows
[20]. Following is the process of obtaining the averaged NSE. Reynolds-averaged
quantities are defined as:

ui(xk, t) = ui(xk) + u′
i(xk, t) (2.4)

ui(xk) = lim
T→∞

1
T

∫ T

0
ui(xk, t)dt, (2.5)

9

2 State of the art

where T is the averaging interval. This interval must be large compared to the typical
time scale of the fluctuations. The mean of the fluctuating term u′

i = 0. The average of
two chosen variables uiϕ results in the following expression:

uiϕ = (ui + u′
i)(ϕ + ϕ′) = uiϕ + uiϕ′ + u′

iϕ + u′
iϕ

′ (2.6)

fluctuations have a zero average which leads to:

uiϕ′ = u′
iϕ = 0 (2.7)

uiϕ = uiϕ + u′
iϕ

′. (2.8)

The latter term of the last equation 2.8 u′
iϕ

′ involving the two fluctuating terms is zero
only if the two quantities are uncorrelated, which is not the case for turbulent flows.
These terms are called the Reynolds stresses. The tensor notation of the continuity and
momentum equations is:

δ
(ρui)

δxi
= 0 (2.9)

(ρui)

δt
+

δ

δxj
(ρuiuj + ρu′

iu
′
j) = − δP

δxi
+

δτij

δxj
(2.10)

τij are the mean viscous stress tensor components:

τij = µ(
δui

δxj
+

δuj

δxi
). (2.11)

2.2.3 RANS Turbulence Modeling

To solve the closure problem, the Reynolds stresses need to be expressed in terms
of the known averaged quantities. One approach is to represent the turbulence as
an increased viscosity [20]. This leads to the eddy-viscosity model for the Reynolds
stresses, where the Reynolds stresses are described by the equation:

− ρu′
iu

′
j = µt(

δui

δxj
+

δuj

δxi
)− 2

3
ρδijk, (2.12)

where k is the turbulent kinetic energy modeled as:

k =
1
2

u′
iu

′
i =

1
2
(u′

xu′
x + u′

yu′
y + u′

zu′
z), (2.13)

where µt is the turbulent viscosity. This model reduces the number of unknowns from 6
(every components of the Reynolds stress tensor) to the turbulent viscosity. According
to [20], the eddy-viscosity hypothesis is not correct in detail, however due to its easy
implementation, and the good results it provides when it is carefully applied, it is

10

2 State of the art

widely used. In a simplistic way, turbulence can be characterized by its kinetic energy
k, or a velocity q =

√
2k, and a length scale L. A dimensional analysis determines µt as

[20]:
µt = CµρqL, (2.14)

where Cµ is a dimensionless constant whose value is usually 0.09 [52]. To define the
eddy viscosity µt, the velocity scale and the length scale should be defined. A model
for the turbulent kinetic energy k is defined by [20]:

δρk
δt

+
δ(ρujk)

xj
=

δ

δxj
(µ

δk
δxj

)− δ

δxj
(

ρ

2
u′

ju
′
iu

′
i + p′u′

j)− ρu′
iu

′
j
δui

δxj
− µ

δu′
i

δxk

δu′
i

δxk
.

In the latter equation derived in 2.2.3, the terms on the left-hand side of the equation
and the first term of the right-hand side need no modeling. The last term on the right-
hand side of the equation represent the product of the density ρ and the dissipation ε,
defined as "the rate at which turbulence energy is irreversibly converted into internal
energy " [20]. The second term on the right-hand side is the turbulent diffusion of
kinetic energy, which almost always modeled by use of a gradient-diffusion equation:

− (
ρ

2
u′

ju
′
iu

′
i + p′u′

j) ≈
µt

σk

δk
δxj

. (2.15)

The main weakness of the eddy viscosity is that it is a scalar, which limits its ability to
represent general turbulent processes. This is mitigated by other models that are out of
the scope of this thesis. The third term on the right-hand side of equation 2.2.3 is the
rate of production of turbulent kinetic energy by the mean flow:

Pk = −ρu′
iu

′
j
δui

δxj
≈ µt(

δui

δxj
+

δuj

δxi
)

δui

δxj
. (2.16)

After applying all the above mentioned modeling, the evolution of the turbulent kinetic
energy can be calculated. However, the length scale is still undetermined, this can be
done by the following observation [20]:

ε ≈ k3/2

L
, (2.17)

where ε is the dissipation, k is the turbulent kinetic energy and L is the length scale. A
detailled formula for the dissipation and the intuition behind the mentioned relation

11

2 State of the art

Table 2.2: RANS and LES turbulence models
Number of equations Examples of turbulence models

RANS
Zero-equation/algebraic models Mixing length, Cebeci-Smith, Baldwin-Lomax
One-equation models Wolfstein, Baldwin-Barth, Spalart-Allmaras, k-model
Two-equation models k-ε, k-ω, k-τ, k-L
three-equation model k-ε-A
four-equation model v2-f model

LES

Zero-equation/ algebraic models
Smagorinsky, WALE, Germano dynamic model,
Algebraic WMLES S-Omega Model Formulation

can be found in [20].
A formula for the eddy viscosity µt depending of all computed values is:

µt = ρCµ

√
kL ≈ ρCµ

k2

ε
. (2.18)

This specific model is referred to as the k − ε model as it adds two equations to the
RANS equations one for k and one for ε to fully determine the eddy viscosity and
Reynolds stresses. One change affects the momentum equation, that is the dynamic
viscosity µ becomes µe f f = µ + µt.
The k − ε model is one of 200 eddy viscosity models which are classified in terms of
the number of transport equations solved in addition to the RANS equations. Table 2.2
summarizes the typically used RANS models and some examples of LES turbulence
models [74]. The LES models differ in the filter function used to eliminate the very
small turbulence scales, while for the two-equation RANS models,for instance, the
main difference is behavior near the walls of the computational domain.

Turbulence modeling is a very complex, yet very important field. As a matter of
fact, most natural and engineering flows are turbulent, which justifies the necessity of
turbulence modeling. The goal of turbulence modeling is to develop equations that
predict the time averaged velocity, pressure, and temperature fields without calculating
the complete turbulent flow pattern as a function of time. Simulating turbulent flows in
any general CFD solver requires selecting a suitable turbulence model, defining initial
and boundary conditions for the closure equations of the turbulent model, selecting a
near-wall modeling treatment, and choosing runtime parameters. A concrete example
of CFD is used to simulate turbulent flows is presented in the next subsection.

12

2 State of the art

Figure 2.2: The classification of the utilities and applications offered by OpenFOAM
[52].

2.2.4 CFD software: OpenFOAM

OpenFOAM [52] is an open-source CFD software released in 2004. It is foremost a C++
library, used to create excecutables, know as applications. The applications are divided
into solvers, " designed to solve a specific problem in continuum mechanics" [52] , and
utilities that performs tasks on data manipulation. The utilities are used for pre- and
post-processing tasks, the user can define their customized applications as well. A
summary of the OpenFOAM utilities and their classifications can be seen in Figure 2.2
Setting up a simulation case in OpenFOAM requires modifying the dictionary files
in the case folder, as an integrated graphical user interface (GUI) for pre-processing,
solver setting and monitoring the simulations does not exist. The general structure of a
case setup in OpenFOAM is presented in the figure 2.3.
In directory 0, the initial and boundary conditions of the fields are defined. As in
incompressible flows, the pressure itself is a diagnostic variable, and has no physical
meaning [61], its boundary conditions are set only to satisfy the continuity equations.
Most of the simulations are conducted in control volumes that have a single inlet and a
single outlet, the boundary condition of the pressure at the outlet is mostly defined by a
fixed value in time, generally equal to the atmospheric pressure (in the order of 1e5Pa)
or equal to 0 Pa. At the inlet and walls, in the case of this work, the fixedFluxPressure
boundary is applied, which "sets the pressure to the provided value such that the flux
on the boundary is that specified by the velocity boundary condition" [52]. For the
velocity, the inlet boundary condition is defined by a fixed value in time, and at the
outlet boundary a zeroGradient boundary is chosen, which sets the boundary value to
a constant in space. For the walls, a slip (Neumann boundary) or a no slip (Dirichlet
boundary) boundary condition is applied for fixed walls, or a movingWallVelocity
boundary condition, which corrects the flux ϕ = U.S f due to mesh motion so that the
total flux through the moving wall is zero [52]. The fvSchemes dictionary defines the
discretization schemes, in particular the time marching and the convections schemes.
The equation solvers, tolerance and algorithm controls (SIMPLE, PISO) are specified

13

2 State of the art

Figure 2.3: Schematic of the main directories and files in an OpenFOAM case setup.

14

2 State of the art

in the fvSolution dictionary in the system directory. The solvers in question here are
the linear-solvers used for each discretised equation. A linear-solver is "a method
of number-crunching to solve a matrix equation" [52]. An application, simpleFoam,
pimpleFoam is a solver that describes the entire set of equations and algorithms to solve
a particular problem, this solver is specified in the controlDict dictionary, along side
with the start and end times. As for the choice of the turbulence model, defined in the
Rasproperties dictionary in the constant directory, k − ω is the turbulence model suitable
for studying near wall behavior, and k − ϵ is suited for flow away from the wall. A
model that facilitates the study of flow behavior near and far from the wall boundaries
is k − ω Shear Stress Transport (k − ω (SST)) [52], which is the turbulence model
employed in the experiments of this thesis. k − ω SST introduces two closure equations
to model the turbulence kinetic energy, k, and the turbulence specific dissipation rate ω.
The model equations and initialisation are defined later in section 3.2.3. To define the
wall boundary conditions for the turbulence model’s variables there exist three options
depending on the range of the wall distance y+:

• use wall functions (30<y+<300)

• use insensitive wall functions (1<y+<300)

• resolve boundary layer (y+<6)

To compute the wall distance units y+ = ρ×Uτ×y
µ = Uτ×y

ν . y is the distance to the first

cell center normal to the wall, and Uτ =
√

τω
ρ is the friction, where τω is the wall shear

stresses [74].
Typical wall functions boundary conditions for the state variables of the turbulence
model equations are summarized in table 2.3 [75]. The pre-processing utility blockMesh is
the first command ran when running a simulation. It generates parametric meshes with
grading and curved edges. The geometry is always defined in 3D since OpenFOAM
only considers 3D geometries. First the vertices are defined then lists of 8 vertices are
grouped into hexahedral blocks, and the number of cells in x, y, and z directions are
defined for each block. blockMesh characterizes the different boundary layers as well.

After setting the initial and boundary conditions, and running the pre-processing
applications, the central part of simulating is introduced next: the solver. The Navier-
Stokes equations are solved in a sequential manner using predictor-corrector projection
algorithms. The pressure-velocity coupling is handled numerically by different solution
strategies. Two algorithms are highlighted here: the SIMPLE and PISO algorithm.
The SIMPLE algorithm The SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-
tions) allows to couple the Navier-Stokes equations with an iterative procedure, which
can be summed up in the algorithm 1 [77].

15

2 State of the art

Table 2.3: Typical wall functions for the fields of turbulence models.
Field Wall functions-High RE Resolved BL-Low RE
nut nut(-)WallFunction

or nutUSpaldingWall-
Function

nutUSpaldingWallFunction, nutk-
WallFunction, nutUWallFunction,
nutLowReWallFunction or fixed-
Value

k, q, R kqRWallFunction
kwall = k

kqRWallFunction or kLowReWall-
Function

epsilon epsilonWallFunction
ϵwall = ϵ

epsilonWallFunction (with inlet
value) or zeroGradient or fixed-
Value (with 0 or a small number)

omega omegaWallFunction
ωwall = 10 6ν

βy2 , β =

0.075

omegaWallFunction or fixedValue
(both with a large number)

nutTilda - fixedValue (one to ten times the
molecular viscosity, a small num-
ber, or 0)

Algorithm 1 SIMPLE algorithm

1: while t<= End time step do
2: Initialise u and p using latest available values
3: Construct the momentum equations
4: Under-relax the momentum equation
5: Solve the momentum equation to obtain an approximation for u
6: Construct the pressure equation
7: Solve the pressure equation for p
8: Correct the flux for ϕ

9: Under-relax p
10: Correct the velocity for u
11: if converged = False then
12: Continue
13: else
14: Stop and print results
15: end if
16: end while

16

2 State of the art

Table 2.4: Behavior of the problems solved by the algorithms over time
algorithm transient steady-state

PISO/PIMPLE YES YES
SIMPLE NO YES

The PISO algorithm The PISO (Pressure Implicit with Splitting of Operators) [76]
is used for solving the Navier-Stokes equations in unsteady problems. The main
difference from the SIMPLE algorithm are:

• No under-relaxation is applied.

• The momentum corrector step is performed more than once.

Table 2.4 shows that the SIMPLE algorithm, and subsequently the OpenFOAM solver
based on it simpleFoam, solves problems that are constant with respect to time. PIMPLE
algorithm, however, solves unsteady problems that achieve a steady-state as well. For
the case of unsteady or transient incompressible flow the icoFoam, pimpleFoam, pisoFoam
solvers are suitable. Given that turbulent flows are usually unsteady the pimpleFoam,
pisoFoam solvers are suitable here, as differently from icoFoam, they deal with turbulent
flows.

Since PDEs describe many complex science end engineering problems, many ap-
proaches have been adapted to solve them. Often times a fine discretization is needed
to capture the phenomena being modeled, which leads traditional numerical solvers
to be slow [37]. Especially in the domain of engineering, design leads to the necessity
of repeatedly testing different parameters and solving the corresponding equations
with use of numerical solvers, which leads to very time consuming experiments and
high computational expenses. These limitations motivated the work on faster methods
especially with the use of machine learning that can be trained offline, then used to
give flow predictions fast in real-time. Data-driven methods used for partial differential
equations can be employed either for the task of solving the PDE or the task of discovery
of the PDE. The upcoming sections will highlight the state of the art methods for both
tasks.

2.3 Data-Driven Methods to infer the solutions of the Partial
Differential Equations

There has been multiple works on solving partial differential equations using data-
driven methods. Mesh-dependent methods such as CNNs [24] interpret the input

17

2 State of the art

initial and boundary conditions and the output flow as images. During training, the
network re-learns the solutions and can then be tested on unseen scenarios of boundary
and initial conditions to verify its generalization ability. Other approaches like Physics-
informed Neural Networks [48], introduce a physics-informed loss that ensures that
the governing equations are respected by the NN’s predictions. Newer methods have
tackled the problem of implicitly learning the solution operator. Two prime examples
of this method are introduced: DeepONet and Fourier Neural Operator.

2.3.1 DeepONets

In this paper [43], the authors discuss the efficiency of relying on classical calculus
and partial differential equations to represent new and emergent fields (e.g., social
dynamics), due to their slow development. As an alternative, framework that facilitates
learning dynamical systems. The new framework, named DeepONets, rely on the
universal approximation theorem for operator [14]. The widely used theorem for neural
network is the universal approximation theorem for functions. Next, both theorems are
introduced.

universal approximation theorem for functions

In the mathematical theory of artificial neural networks (ANNs), Universal Approx-
imation Theorems (UATs) establish the density of a class of NNs within a space of
mappings. Per this definition, one can derive that NNs represent a variety of mappings
in the presence of appropriate weights and biases [84]. A NN can be characterized
by its activation function (e.g., ReLU, sigmoid, etc.), its width (the number of neurons
per layer), its depth (the number of layers), and its connectivity (e.g., feedforward or
recurrent) [84]. In 1969, Minsky and Papert demonstrated that a two-layer perceptron
(input and output layers) cannot approximate functions outside of some special cases
(e.g AND, OR operators) [26]. What followed is the formulation of the universal approx-
imation theorem for functions, which states that the standard multilayer feed-forward
networks with a single hidden layer that containing a finite number of hidden neurons,
and utilizing an arbitrary activation function are able of approximating continuous or
other kinds of functions defined on compact sets in Rn [26].

Definition of a function, functional, and operator

Functions are the mapping from from Rd
1 → Rd

2. Meaning that image classification,
segmentation, and regression, etc., used for the different applications in research and
industry, can be understood as function approximation that rely on the universal
approximation theorem for functions. Functionals are a further generalization of

18

2 State of the art

functions. They map from a ∞ − dim function → Rd Finally, Operators represent the
mapping from an ∞ − dim function to another ∞ − dim function. Examples are the
derivative and integral operators, dynamic systems, etc. [43].

Universal Approximation Theorem for Operator

In 1995, Chen and Chen introduced the Universal Approximation Theorem for Operator
[14]. The theorem as presented in [43] reads as follows: Suppose that σ is a continuous
non-polynomial function, X is a Banach Space, K1 ⊂ X, K2 ⊂ Rd, are two compact sets
in X and Rd, respectively, V is a compact set in C(K1), G is a nonlinear continuous
operator, which maps V into C(K2), then for any ε > 0, there are positive integers n,p,m,
constants ck

i , ξk
ij, θk

i , ζk ∈ R, wk ∈ Rd, xj ∈ K1, i = 1, ..., n, k = 1, ..., p, j = 1, ..., m, such that:

|G(u)(y)−
p

∑
k=1

n

∑
i=1

ck
i σ(

m

∑
j=1

ξk
iju(xj) + θk

i)σ(wk.y + ζk)| < ε (2.19)

holds for all u ∈ V and y ∈ K2. The universal approximation theorem ensures the
possibility of learning linear and nonlinear operators using NNs.
The figure 2.4 shows the general architecture of DeepONet and the constraints made
on the inputs. Besides the usual factors that affect the efficiency and speed of train-
ing for NNs such as the optimization parameters and network size, here depending
the complexity of the space of the input functions, the number of sensors defined to
sample these input function is problem dependent. For higher dimensional problems,
y the output sampling locations is a vector with d components, where m the num-
ber of sensors locations for the input functions u is different from the dimension of
the output locations y, which calls to using two separate networks to handle each of
[u(x1), u(x2), .., u(xm)] and y. Due to the non-specific structure of the inputs, using
convolutional neural networks does not make the favorable choice, the authors opt to
using feed forward neural networks as a baseline [43]. The Universal Approximation
Theorem for Operator, proves the existense of a NN with one hidden layer that approx-
imates the operator, DeepONet, however, uses multiple hidden layers, as known from
other deep learning models (CNNs, RNNs .etc.), which boosts the expressive power of
the NNs.
The architecture of DeepONet is composed of two NNs as mentioned before due to
the different dimensions of the sensor locations x and the output locations y. This
upcoming paragraph describes the different implementations of DeepONet. Stacked
DeepONet:
In this case, the authors utilize the previous equation 2.19 to determine the architecture
of DeepONets as follows:

19

2 State of the art

Figure 2.4: (A) For DeepONet to learn the Operator G: u → G(u) it takes the input
functions u evaluated at a fixed number of sensors [u(x1), u(x2), .., u(xm)]
and random locations y. (B) shows the training data with the input functions
u evaluated at the same x1, x2, ...xm sensors, while the number and location
of y is random [43].

Figure 2.5: Stacked DeepONet: p stacked branch networks and one trunk network [43].

• Branch network:
n

∑
i=1

ck
i σ(

m

∑
j=1

ξk
iju(xj) + θk

i), (2.20)

• Trunk network:
σ(wk.y + ζk), (2.21)

where p branch networks are stacked. p being the number of summations of the
multiplication of the two activation functions in 2.19. A schematic representation of the
stacked DeepONet is given by the figure below 2.5.
Unstacked DeepONet:
In this case, one trunk network and one branch network constitute the DeepONet. The
trunk network is the same as in the stacked DeepONet2.3.1. However, the p branch

20

2 State of the art

Figure 2.6: Unstacked DeepONet: one branch network and one trunk network [43].

networks are merged into one network.A schematic of the unstacked DeepONet is
seen in the figure below 2.6. Both stacked and unstacked DeepONet lead to G(u)(y) ≈
∑

p
k=1 bktk + b0, where bk is the output of the k-th branch net or the k-th output of the

branch net (for the unstacked DeepONet) and tk is the k-th output of the trunk network.
Different experiments in [43] demonstrated that DeepONets can learn various explicit
operators (e.g integrals, fractional Laplacians etc.) as well as implicit operators in the
form of deterministic ordinary and statistical partial differential equations. To simplify
the operator learning task prior knowledge can be made use of as well which results in
Physics-informed-DeepONets[81, 80].
Similar to DeepONet, however for the specific case of Partial Differential Equations,
Fourier Neural Operator (FNO) [37] was introduced based on Graph Kernel Networks
[39] to learn the mapping from any functional parametric dependence to the solution
of the PDE.

2.3.2 Fourier Neural Operator

The Fourier Neural Operator builds on the Graph Kernel Network, which is a class of
Neural Operators that represents the infinite-dimensional mapping by composing non-
linear activation functions and a class of integral operators with the kernel integration
computed by message passing on graph networks [45].In [83], it has been proven that
the Graph Kernel Network is unstable when the number of hidden layers is increased.
In the case of the Fourier Neural Operator, the operator is learned by parameterizing
the integral kernel directly in Fourier space.

The Fourier Layer starts from the input v, then applies a Fourier transform F. It then
applies a a linear transform on the lower Fourier modes and filters out the higher
modes.Finally, the inverse Fourier Transform F−1 is applied and summed with the

21

2 State of the art

Figure 2.7: Fourier Neural Operator: (a) The architecture of the Fourier Neural Operator,
(b) Fourier Layer [37].

linear transform of the initial input v. The output of the Fourier Layer is then obtained
as the result of the activation function applied on the constructed sum. A summarizing
schematic of FNO is presented in 2.7.
In this section two emergent methods that can be applied for predicting the solutions of
partial differential equations were introduced, DeepONet and Fourier Neural Operator.
In this case the aim is to implicitly learn the nonlinear Operator and apply it to
retrieve the solutions. Besides learning the solutions of partial differential equations,
machine learning has been employed for the discovery of governing equations from
data observations or from numerical solutions.

2.4 Data-Driven Methods to learn the Partial Differential
Equations

Extracting the governing equations from data or observations is a task of high im-
portance as it can utilize the high expressive power of deep learning to re-produce
ODEs/PDEs. This conveys more transparency to the black-box property of NNs. And
given the complexity of turbulence modeling obtaining reliable deep learning models
for this special case uncovers knowledge about the amount of data, the pre-processing,
and the overall training, validation, and testing process needed to describe such a fun-
damental problem. This knowledge can then motivate identifying governing equations
for other emerging system dynamics that are yet to be mathematically describes. In this
section two deep learning methods able of learning PDEs are introduced: The physics
informed neural networks and the PDE-Net.

22

2 State of the art

Figure 2.8: Physics Informed Neural Network [25].

2.4.1 Physics Informed Neural Network (PINN)

PINN is a class of NNs that gained a lot of attention as it brought together machine
learning and physical laws. In relation to PDEs, PINNs had two applications. Firstly,
the solution of partial differential equations in the case of both the presence of sparse
and scattered data or the unsupervised case. Secondly, the discovery of the partial
differential equations with the help of a limited number of points extracted from a
pre-computed solution [48, 65]. In this case, we focus on the case of the discovery of
the partial differential equations. Here again, there exit two approaches depending
of the problem at hand: the discrete time models, typically related to ODEs, and the
continuous time models, typically related to PDEs. For the continuous time PINN
models, the general form of the studied parameterized and nonlinear partial differential
equations is defined by :

ut + N[u, λ] = 0, x ∈ Ω, t ∈ [0, T], (2.22)

The left hand-side of the equation is defined by f (t, x) the PDE of the given data and
that should be minimized by PINN. In the schematic 2.8, x are locations scattered in
space, t are discrete time steps, û is the output of the Feed Forward NN. The latent
variable û is then differentiated, using Automatic Differentiation [5], to construct the

23

2 State of the art

flow variables and the their partial derivatives involved in the PDE. PINN approximates
both the solution of the problem u(t,x) and the parameters lambda conditioning the
governing equations: ut + N[u; λ] = 0
f= ut + N[u; λ], with f the PDE part of the loss function to be minimized. The Mean
Squared Error is defined as follows:

J(θ) = MSEu + MSE f (2.23)

MSEu =
1
N

N

∑
i=1

|ûi − u(xi, ti)|2, (2.24)

MSE f =
1
N

N

∑
i=1

| f (xi, ti)|2, (2.25)

(2.26)

N is the number of training points in the space-time domain. MSE f requires the NN to
satisfy the constraints of the partial differential equation, therefore the form of the PDE
need to be known beforehand [25].
θ are the weights and biases parameters of the FNN. The loss function 2.23 is minimized
by optimizing the aforementioned parameters following the formula [25]:

w∗ = argminw∈θ(J(w)) (2.27)

b∗ = argminb∈θ(J(b)). (2.28)

(2.29)

For the studied experiments, the network is able to identify the underlying partial
differential equation with remarkable accuracy, even in the case where the scattered
training data is corrupted with noise [65].

Instead of using a feed forward NN, Gaussian process regression [63, 62] was used
for PINN to predict the parameters from two consecutive time steps. As GPs lose
efficiency in high dimensional spaces, FNN is deemed more efficient and robust to
noise.
To construct the loss function of the PINN, the form of the PDE should be known, one
approach that requires less constraints about the form of the PDE is PDE-Net.

2.4.2 PDE-Net

The introduction of PDE-Net [42] is the result of studying previous methods that
tackled the same problem of " deducing optimal equations of motion from observations
of time-dependent behavior" as stated in the 1987 work of Crutchfield and McNamara
[15]. Multiple works [8, 72, 70, 9, 11] used symbolic and sparse regression to search

24

2 State of the art

the space of ordinary differential equations and choose the one that best fit the data.
[65] presented a framework that can be employed when the form of the nonlinear
response of a PDE is known, except for some scalar parameters. Physics informed
neural networks, presented previously 2.4.1, can learn the unknown parameters by
introducing regularity between two consecutive time steps using a Gaussian process
[63] and later with NNs in [65] .

Different works using NNs for predictive purposes, can confirm that deeper neural
networks have more expressive power and therefore can be used for more complex
dynamics. However, the limitation of deep learning nowadays is the sole focus on
expressive power and prediction accuracy. These networks usually lack transparency to
unravel underlying PDE systems, although they may perfectly fit the observed data and
perform accurate predictions, as seen in the applications of section 2.3. Therefore, the
proposed methods need to combine both Deep Learning and applied mathematics so
that one can learn the underlying PDEs of the dynamics and make accurate predictions
at the same time [42]. Such an approach is a feed-forward network, named PDE-Net,
based on the following generic nonlinear PDE equation:

ut = F(x, u,∇u,∇2u, ...), x ∈ Ω ⊂ R2. (2.30)

The objective of the proposed NN is to learn the form of the nonlinear response F and
to perform accurate predictions. Unlike PINNs, the PDE-Net approach requires only a
minor knowledge of the form of the nonlinear response F. It only requires the highest
order of the differential operators involved, however, it doesn’t require any knowledge
about which differential operators are involved.
The nonlinear response F can be learned using neural networks, while the discrete
approximations of the differential operators are learned using convolution kernels (i.e
filters) jointly with the learning of the response F. The data is presented as a series of
measurements of some physical quantities u(t, .) : t = t0, t1, ... on the spatial domain
Ω ∈ R2, with u(t,.): Ω ∈ R.
In the 2-dimensional space the general form of the PDE associated with the observed
data is:

ut(t, x, y) = F(x, y, u, ux, uy, uxx, uxy, uyy, ...), (x, y) ∈ Ω ⊂ R2, t ∈ [0, T] (2.31)

The architecture of PDE-Net has two components:

• First a part to automatically determine the differential operators involved in the
PDE and their discrete approximations.

• A second part to approximate the nonlinear response function F.

Next, the connection between the order of sum rules of filters and the order of differen-
tial operators is explained.

25

2 State of the art

Convolutions and Differentiations

The work of Cai et al. [10], introduced the relation between the variational and the
wavelet frame methods for image restoration. The variational method views images as
functions defined on a continuum (analog images), whereas the wavelet frame based
approach aims to restore a sequence from an observed sequence in a digital image [10].

Definition of the order of sum rules: for a fitter q, α is said to be the order of sum
rules of q, where α = (α1, α2), α ∈ Z2

+, under the condition that

∑
k∈Z2

kβq[k] = 0, (2.32)

for all β = (β1, β2) ∈ Z2
+ with |β| = β1 + β2 ≤ |α|,

and for all β ∈ Z2
+, with |β| = |α|

If 2.32 holds for all β ∈ Z2
+with|β| < K, except for β ̸= β0 with certain β0 ∈ Z2

+ and
|β0| = J < K, then we say q to have total sum rules of order K\(J+1)

Relation between a filter and a differential operator: Let q be a filter with sum
rules of order α ∈ Z2

+. Then for a smooth function F(x) on R2, we have

1
ε|α| ∑

k∈Z2

q[k]F(x + εk) = Cαδα/δxαF(x) + O(ε), as ε → 0 (2.33)

Cα defined in 2.33 is equal to

Cα =
1
α! ∑

k∈Z2

kαq[k] (2.34)

If in addition, q has the total sum rules of order K\α +1 for some K>|α|, then

1
ε|α| ∑

k∈Z2

q[k]F(x + εk) = Cαδα/δxαF(x) + O(εK−|α|), as ε → 0 (2.35)

If K = |α|, then the approximation is of first order. According to this work [17], an αth
order differential operator can be approximated by the convolution of a filter with α

order of sum rules. And according to 2.35, one can obtain a high order approximation
of a given differential operator if the corresponding filter has an order of total sum
rules with K>|α|+k, k ≥ 1

26

2 State of the art

Moment Matrix: For a given filter, the moment matrix is be used to constrain filters
in the PDE-Net. For an N x N filter q, the moment matrix q is defined as:

M(q) = (mi,j)NxN , where mi,j =
1

(i − 1)!(j − 1)! ∑
k∈Z2

ki−1
1 kj−1

2 q[k1, k2], for i,j =1,2,..N.

(2.36)

The (i,j)-element of M(q) is called the (i-1,j-1)-moment of q. Combining 2.36 and
2.33, one can design the filter q to approximate any differential operator at any given
approximation order by imposing constraints of M(q). For example, if the goal is to
approximate δu

δx up to a constant by convolution q ∗ u, where q is a 3 x 3 Filter. The
moment matrix can take, in this case, one of the presented shapes:

M(q) =

0 0 ∗
1 ∗ ∗
∗ ∗ ∗



M(q) =

0 0 0
1 0 ∗
0 ∗ ∗


The * entry means that there is no constraint on the value. The Moment matrix 2.4.2
guarantees that the approximation accuracy is at least of first order, whereas 2.4.2
guarantees an approximation of at least second order.In the case that all entries are
pre-determnined as in:

M(q) =

0 0 0
1 0 0
0 0 0


In this case, the corresponding filter can be uniquely determined,Here we speak of a
"frozen" filter.In the PDE-Net all filters are learned subject to partially defined moment
matrices. The trade-off here is between the size of the filters and the memory overhead
and computation costs. As bigger filters have a stronger representation capability, to
approximate higher order differential operators, however can lead to memory overhead.

Architecture of PDE-Net

In the proposed PDE-Net [42], the considered time discretization is the forward Euler.
The training for long-time prediction is performed layerwise, one layer is called a
δ-Block.

27

2 State of the art

One δt-Block:
Let ũ(ti+1, .) be the predicted value of u at time ti+1 based on the value of u at ti

ũ(ti+1, .) = D0u(ti, .) + ∆t.F(x, y, D00u, D10u, D01u, D20u, D11u, D02u, ...) (2.37)

Here D0 and Dij are convolution operators with the underlying filters denoted by
q0 and qij, i.e D0u = q0 ∗ u and Diju = qij ∗ u.
The operators D10, D01, D11etc. approximate differential operators ,i.e Dij ≈ δi+ju

δixδjy . In-
stead of using the identity, the authors opted to using average operatorsD0 and D00

to improve stability and enable the network to learn more complex dynamics. The
sole assumption on the governing equation is that it is of the form 2.31 and its highest
order is smaller or equal to a pre-defined scalar. Approximating F is equivalent to a
multivariate regression problem, using a neural network with shared weights across
the computation domain Ω [42].

PDE-Net (Multiple δt-Block:) One δt-Block only guarantees the accuracy of one-step
dynamics, which does not take error accumulation into consideration. This leads to
instability in the prediction. To enable stability and long-term prediction multiple
δt-Blocks are stacked to construct a deep network.
Loss function: Considering a data set uj(ti, .) : i, j = 0, 1, ..., where j indicates the j-th
solution in dimension j with a certain initial condition of the unknown dynamics.
The PDE-Net is trained with n δ-blocks. For a given n ≥ 1, every pair of the data
uj(ti, .), uj(ti+n, .), for each i and j, is a training sample, where uj(ti, .) is the input and
uj(ti+n, .) is the ground truth to be matched to the output of the PDE-Net. Here, the l2
loss function is used:

L = ∑
ij

lij , where lij =
∥∥uj(ti+n, .)− ũj(ti+n, .)

∥∥, (2.38)

where ũj(ti+n, .) is the output of the PDE-Net with uj(ti, .) as input.
Constraining the filters: All filters can be constrained thanks to the aforementioned
moment matrices. In the case of the average filters q0 and q00

(M(q0))1,1 = 1(M(q00))1,1 = 1 (2.39)

in the case of the filters qij that control the parameters Dij where i + j > 0

(M(qi,j))k1,k2 = 0, k1 + k2 ≤ i + j + 2, (k1, k2) ̸= (i + 1, j + 1) (2.40)

(M(qi,j))i+1,j+1 = 1

A schematic representation of the δt-Block and the overall PDE-Net architecture for n
stacked δt-Blocks is presented in figure 2.9 and 2.10 respectively.

28

2 State of the art

Figure 2.9: δt-Block [42].

Figure 2.10: PDE-Net:n δt-Blocks [42].

29

3 Learning Fluid Dynamics Models that
Exhibit Turbulent Behavior

This section represents the main methods and results derived in this thesis. First, the
numerical experiments for data generation are introduced, then the architectures and
training process of both PDE-Net and PINN are explained. Finally, the results of the
different experiments are presented.

3.1 The difference between solving and learning the PDE using
data-driven methods

Since the invention of calculus, ODEs and PDEs have been the most used class of models
to describe and understand natural phenomena. Due to the difficulty of solving partial
differential equations, even with the numerical methods simplifications it requires
expert knowledge to design numerical solvers and setup experiments that reliably
approximate the solutions, which itself requires high computational power. However,
with the rise of data-driven methods and improvement of run time for simulations,
formed the idea of defining a semi-supervised problem and training NNs to work as
solvers for PDEs. The process is as follows, given a PDE L(u) = f , for which the domain,
initial and boundary conditions are known, the task is to compute an approximation
of the solution to the PDE, knowing that NNs are universal approximators for any
function or operator given proper definition and training. Independently from the
deep learning model used, the goal is to minimize the Mean Squared Error (MSE)
∥L(û)− f ∥ for the training data and generalize to unseen scenarios. This approach
produces end-to-end differential simulators, that can be optimized by back-propagation.
The problem of data-driven discovery of equations for system control [46], or differential
equations either ordinary or partial has been a prominent topic of research since the
1980s. For ODE discovery, sparse regression was proven to be a suitable approach to
approximate dynamical systems governed by ODEs, sparse identification of nonlinear
dynamics (SINDy) being the latest development for the application of sparse dynamics.
Building on this methods, PDE functional identification of nonlinear dynamics (PDE-
FIND), attempts at discovering an ODE describing the data obtained as a solution of

30

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

PDE. This is achieved by applying dimensionality reduction methods, such as proper
orthogonal decomposition (POD), to the high-dimensional PDE solutions, to obtain
only a few dominant coherent structures. Due to the importance of high-dimensionality
in PDE, which leads numerical solutions to suffer from the curse of dimensionality in
the case of complex problems, newer methods that identify PDE systems directly from
their solutions were introduced. Here two main approaches have emerged. On the
one hand, inferring the parameters of a given parametrized PDE, from a given set of
observations of the solutions. This line of research introduced a new family of NNs
known as the Physics-informed Neural Networks 2.4.1. On the other hand, to offer more
generalization, other approaches aimed at learning the derivative and differentials that
define the PDE as well, one model is PDE-Net 2.4.2, which approximates the differential
operators using convolutional networks. While both data-driven models used to solve
or learn PDEs approximate a function F that approximates the PDE solutions, the
models that learn PDE predict an additional equation that describe the PDE used to
generate the data.

3.2 The experiments

The computational experiments for this work consist of the data generation using the
open-source CFD software OpenFOAM [52] and the deep learning models’ training.
The numerical problems solved here are governed by:

• the Diffusion equation which is a PDE that describes the physical phenomena
where particles,energy, or other physical quantities are propagated in a physical
system [12].

• The Navier-Stokes equations explained in section 2.1

3.2.1 Diffusion Equation: scalarTransportFoam

The scalarTransportFoam solver uses a complete convection-diffusion equation, in the
incompressible form (the equation is divided by the density) [71]:

δT
δt

+∇(UT)−∇2(DT) = 0, (3.1)

where T is the transported scalar, U is the fluid velocity, and D[m2s−1] is a constant
representing the fluid diffusivity divided by the fluid density In this case we set the
fluid velocity to 0, and we deal with the just the diffusion problem (no convection).
Using the blockMeshDict dictionary, a 3-dimensional mesh is defined, with x, y, and

31

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

z all ranging from [0, 2π]. The convertToMeters keyword is set to 1 meaning that the
geometry is defined in meters. Eight vertex coordinates are introduced, which are then
used to define the hexahedral block and the mesh size. Since the simulation is run in
2-dimensional space, only one cell was reserved for the z-direction, while 150 cells were
defined for each the x and y directions. The boundary keyword defines the boundary of
the mesh as list of patches or regions. Each patch is assigned a name that describes its
functionality (e.g. inlet, outlet, wall, etc.) and contains information about:

• type: the patch type, a type patch means that some boundary conditions are
applied.

• faces: a list of block faces that make up the patch. a face is a list of vertices
ordered in a counter-clockwise manner.

A patch of type empty is used to omit block faces especially in the case of a problem in
2-dimensional space. For the diffusion case, two boundary types are defined an inlet
with on faces and the rest being side boundaries. The controlDict dictionary helps setting
the essential input parameters. As the OpenFOAM solvers begin all run by creating
a database, which controls the input and output data [53]. Since the output data is
requested at intervals of time during the run, time control and writeInterval parameters
are mandatory. The time control defines the start and end time of the simulation, and
its time step deltaT. The time step ∆t, the length between mesh elements ∆x, and the
magnitude of the velocity u define a dimensionless value named the Courant number,
which satisfies the Courant-Friedrichs-Lewy (CFL) condition, which states that "the
distance that any information travels during the time step length within the mesh must
be lower than the distance between mesh elements. In other words, information from a
given cell or mesh element must propagate only to its immediate neighbors" [27]. The
equation for the Courant number is:

C = u
∆t
∆x

. (3.2)

The Courant number must be below 1 and should ideally be below 0.7. " If the Courant
number exceeds 1, the time step is too large to see the particle in one cell, it “skips” the
cell. If it is smaller than 0.7, the particle stays in the cell for at least two time steps" [27].
In controlDict, the entry maxCo can set the maximum Courant number allowed, and
adjustTimeStep can be used to adjust deltaT to satisfy the condition on maxCo. From
the data writing entries, only the writeInterval entry is mandatory to define, which is a
scalar that specifies the exact time point data is saved to the database. Other entries
are set to default values and can be modified if needed. Finally, in addition to time
control, the control dictionary offers the possibility to import libraries and run function

32

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

Table 3.1: General parameters for the scalar transport experiment
command Dictionary parameters

blockMesh blockMeshDict
150x150x1 cells
2 patches (inlet, sides)

setExprField setExprFieldsDict
sets the initial value of
the scalar according to 3.3

scalarTransportFoam
controlDict/
fvSchemes/fvSolution

startTim:0
EndTime:0.6
deltaT:0.015
writeInterval:0.015

postProcess
-func internalCloud

internalCloud
150x150 grid
cellPoint
interpolation scheme

at run-time. These functions range from field calculation to sampling for graph plotting.
After running the simualtion, Paraview [57] is an open-source, multi-platform data
analysis and visualization application that can be used to visualize the OpenFOAM
simulation results and export field values a selection of locations to text files. However,
since the mesh might be denser in some areas and coarser in other (in the upcoming
fluid flow experiment), the postProcess utility from OpenFOAM can write out the values
of fields interpolated to a specified cloud of points. The command line postProcess
-func "samplingFunc" is ran in the experiment directory and outputs a postProcessing
directory with the field values at the defined regular grid and fol the different saved
time steps. The interpolation scheme used to define the grid is cellPint, which given the
cell centre values and the vertex values, decomposes into tetrehedra and perform linear
interpolation with them [52].
The table 3.1 summarizes the parameters necessary to run the scalar transport experi-
ment.

3.2.2 Learning Process: PDE-Net for learning the diffusion equation

The code used for training PDE-Net was modified from the official PDE-Net implemen-
tation [59]. The used Machine Learning framework is PyTorch [58]. While the initial
implementation uses an older version of PyTorch, 0.3.1, this work uses a newer and
stable version 1.10.2 and Python 3.9.7, created as an Anaconda [3] environment to train
and test the deep learning models. The training process of PDE-Net is a layer-wise
training, where each δ-block, as explained previously in subsection 2.4.2, represents
a layer. Meaning that a 10-layer PDE-Net with δt=0.015 and starting from time step

33

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

Figure 3.1: Left: initial value of U, Right: values of U at last timestep.

0, the output of PDE-Net will be an approximation of the solution at time step 0.15.
To construct the data set we follow a similar scheme to the one proposed in [41]. The
initial value of u0(x, y) is

u0(x, y) = ∑
|k|,|l|≤N

λk,l cos(kx + ly) + γk,l sin(kx + ly), (3.3)

where N=9, λk,l , γk,l ∼ N (0, 1
50), and k and l are two random integers ranging from -9

to 9. The evolution of the field from the initial values to t=0.6 can be seen in the plots
from figure 3.1. As mentioned before the solution is interpolated to a 150x150 mesh.
To ensure robustness to limited and lower-resolution data, the data fed for training is
downsampled from the originally generated data to a 50x50 mesh. Each grid value at
the initial time step are considered input and the grid values at the final time step are
the true output values. The training is done batch-wise, here we choose a batch size
of 24, meaning that before training a layer l=i, 24 simulation will be generated on the
fly with different initial conditions for each simulation. The options for the training,
such as the batch size, number of layers, filter size, and constraint on moment matrix
2.4.2, are summarized in a YAML file. The constraint option can be set to: free, frozen,
moment. If set to free PDE-Net is a CNN, if set to frozen all entries in the moment
matrix are defined and the convolutional kernel can be deterministically determined.
In case of the moment constraint, for the first δ-block, PDE-Net is trained with frozen
moments matrices and a batch of data, this is the warm-up step. The resulting filters
are used as initialization and the training is restarted from the first δ-block. In [42], this
was proven to speed up the training. This procedure is repeated until all n-δ-blocks
are trained. All parameters are shared between the layers, which also speeds up the
training. After training each layer, the difference between the predicted and true values
is calculated. According to [41], training layer-wise opposing to training the entire

34

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

network directly, prevents the failure of training and slow convergence. As for the
filter sizes, the dimension of the filter should be higher than the highest order of the
differential operators, to be able to represent every possible differential operator than
can occur in the PDE. Here, the maximum order pre-defined is 2 and tested filters were
of sizes 3x3 and 7x7. The authors provide an applied mathematics pyTorch extension
(aTEAM) [59] to help set the constraints to the moment matrices, convert the moment
matrix to the convolutional kernel, perform interpolation, and use Finite Difference to
approximate partial derivatives. The total number of trainable parameters per δ-block
is approximately 16k. A batch containing 24 samples is used to training each δ-block,
δ=0.015, and considering that PDE-Net was trained for 10 layers, meaning that 240 data
samples are required per batch. During training, the L-BFGS optimizer [34] is used,
with F is the function to optimize, the coefficients with the frozen contraint as an initial
guess and 1500 maximum iterations of the L-BFGS algorithm. The results of training
PDE-Net to learn the diffusion equation are presented in subsection 3.3.1.

3.2.3 Laminar and Turbulent Fluid Flow simulation with pimpleFoam

The solver used here is pimpleFoam, which merges both the PISO and Simple algorithms
introduced previously in section 2.2.4. It solves the continuity equation, and the
momentum equation defined as follows:

∇ · U = 0, (3.4)
δU
δt

+∇ · (UU)−∇ · R = −∇p + SU , (3.5)

R = µ(∇U +∇UT)− 2/3µI(∇ · U), (3.6)

SU = −(µD + 1/2ρUF)U, (3.7)

where U is the velocity vector, p the pressure, R the stress tensor, and S⃗U the Momentum
source. For incompressible, turbulent flow of Newtonian fluids the momentum equation
can be written as follows:

δv
δt

+ (v · ∇)v = −∇p + (ν + νt)∇2v, (3.8)

where ν is the kinematic viscosity, and νt is the eddy viscosity introduced by the
turbulence model.
The turbulence model used here is k-omega Shear Stress Transport (SST) [30], which
is a RANS turbulence model. It adds two closure equations for the turbulence model.
The first equation describes the turbulence kinetic energy defined by:

D
Dt

(ρk) = ∇ · (ρDk∇k) + ρG − 2
3

ρk(∇ · u)− ρβ∗ωk + Sk, (3.9)

35

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

and the second equation is the turbulence specific dissipation rate equation given by:

D
Dt

(ρω) = ∇· (ρDω∇ω)+
ργG

ν
− 2

3
ργω(∇· u)− ρβω2 − ρ(F1 − 1)CDkw + Sω. (3.10)

Using these two equations, the turbulence viscosity can be obtained as:

νt = a1
k

max(a1ω, b1F23S)
, (3.11)

where F1 and F23 are the first and second blending functions respectively, and the model
default coefficients are defined in [49]. Besides, the initialisation of U and p, k, omega,
and νt need to be initialized. For homogeneous isotropic turbulence, the turbulence
kinetic energy can be estimated by:

k =
3
2
(I|ure f |)2, (3.12)

where I is the turbulence intensity, I = u′

U , where u′ is the root-mean-square of the
turbulent velocity fluctuations and U is the Reynolds averaged mean velocity, and
ure f is a reference velocity. In the experiments, k is initialised to 3.75e-3m2s−2. The
turbulence specific dissipation rate is initialized as:

ω =
k0.5

C0.25
µ L

, (3.13)

where Cµ is a constant equal to 0.09, and L is the turbulence length scale, which is a
physical quantity describing the size of large energy-containing eddies in a turbulent
flow. ω = 0.1s−1 is the initialization of the turbulent specific dissipation rate.

2D fluid flow around a cylinder

The flow past a cylinder is a classical case in CFD. Here, the case is adapted from [54]
to simulate the flow over a rectangular cylinder, with incrementally higher Reynolds
number:

Re =
UL
ν

, (3.14)

where U is the streamwise far-field flow speed (in this case U= 1.0 ms1), L is the
characteristic length (the diameter of the cylinder = 1 m), and µ is the kinematic
viscosity of the fluid in m2s1 . The general process to simulate this case is summarized
in table 3.2

36

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

Table 3.2: General parameters for the laminar/turbulent fluid flow in 2D
command Dictionary parameters

blockMesh blockMeshDict
32 vertices
8 blocks
5 patches

pimpleFoam
controlDict
/fvSchemes/fvSolution

startTim:0
EndTime:20
deltaT:0.001
writeInterval:0.1

postProcess
-func internalCloud

internalCloud
80x80 grid
cellPoint
interpolation scheme

Fluid Flow in 3D

For the 3D case with an external obstacle object, the geometry needs to be extracted first
using surfaceFeatureExtract, which extracts all edges whose adjacent surface normals
are at an angle less than the angle defined in the surfaceExtractDict dictionary. In
this case a 180 degree angle extracts all edges and one of zero degrees selects no
edges. After the 3D object is extracted, snappyHexMesh is used to iteratively fit the
mesh created by blockMesh to the triangulated surface geometries from the object’s .stl
file. The decomposePar utility can be used here to split the generated mesh to multiple
processors and run the solver in parallel, and finally, after the run is terminated, run
reconstructPar to attach the mesh. The two cases studied here are adapted from the
tutorial cases provided by OpenFOAM in tutorials/multiphase/interFoam/RAS/DTCHull
and tutorials/incompressible/simpleFoam/airFoil2D. Airfoils have been a classical example
to study aerodynamics, as they are cross-sections of wings, blades of propellers, rotors,
or turbines. The general parameters to construct the mesh and run the simulation
are summarized in table 3.3. The Duisburg Test Case (DTC) is a hull design, that
can be compared to that of container ships. It was introduced for benchmarking and
validation of numerical methods. Simulation parameters are defined in table 3.4. This
case helps simulate a hydrodynamics problem, for this case a multiphase solver called
interFoam [28] is used. It solves the NSE for 2 incompressible, isothermal immiscible
fluids. This means that the material properties are constant in the region filled by one
of the two fluids except at the interphase. It uses the Volume of Fluid (VOF) approach
for phase-fraction capturing, which utilizes optimal mesh motion and mesh topology

37

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

Table 3.3: General parameters for 3D airfoil case
command Dictionary parameters
surfaceFeatureExtract
blockMesh
snappyHexMesh
createPatch

surfaceFeatureExtractDict
blockMeshDict
snappyHexMeshDict
createPatchDict

angle: 150
8 vertices
9 patches

pimpleFoam
controlDict
/fvSchemes/fvSolution

startTim:0
EndTime:0.1
deltaT:0.001
writeInterval:0.001

postProcess
-func internalCloud

internalCloud
20x20x20 tensor
cellPoint
interpolation scheme

Table 3.4: General parameters for the 3D DTCHull case
command Dictionary parameters
surfaceFeatureExtract
blockMesh
topoSet
refineMesh
snappyHexMesh

surfaceFeatureExtractDict
blockMeshDict
topoSetDict
refineMeshDict
snappyHexMeshDict

angle: 150
28 vertices
6 boxes
6 patches

interFoam
controlDict
/fvSchemes/fvSolution

startTim:0
EndTime:0.1
deltaT:0.001
writeInterval:0.001

postProcess
-func internalCloud

internalCloud
50x10x50 tensor
cellPoint
interpolation scheme

38

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

changes including adaptive re-meshing. The momentum equations is defined as [28]:

δ(ρui)

δt
+

δ

δxj
(ρujui) = − δp

δxi
+

δ

δxj
(τij + τtij) + ρgi + fσi , (3.15)

where u represents the velocity, gi the gravitational acceleration, p the pressure, τij and
τtij are the viscose and turbulent stresses respectively, and fσi is the surface tension. The
density ρ is defined as follows:

ρ = αρ1 + (1 − α)ρ2, (3.16)

where α is 1 inside fluid 1 with density ρ1 and 0 inside inside fluid 2 with the density
ρ2. At the interphase between the two fluids α varies between 0 and 1. For the DTC hull
case, fluid 1 is water (ρ1 = 998.9 kg

m3) and fluid 2 is air (ρ2 = 1 kg
m3). The surface tension

fσi is modeled by the equation:

fσi = σκ
δα

δxi
, (3.17)

σ is the surface tension constant and κ the curvature approximated as follows:

κ = −δni

δxi
= − δ

δxi

(
δα/δxi

|δα/δxi|

)
(3.18)

3.2.4 Learning Process: PINN for learning NSE

As the computational domain defined to solve the NSE in OpenFOAM is composed of
hundreds of thousands of points, the region of interest where most the field changes
occur is downstream of the geometry. This observation enables us to define 3D or 2D
meshes to sample the velocity and pressure fields in a rectangular region downstream
of the obstacle and construct the data set that will be used to train the PINN. Two
examples of the rectangular region chosen for the flow over the rectangular cylinder
and the DTC hull are shown in figure 3.2. For the DTC hull case, Red represents water,
blue is air and the orange colored box is the area in question placed in air as well and
in both cases the outlet boundary is defined Generally, Nx =6400 locations were used
to sample the 2D flow, and Nx =8000 locations were used to sample the 3D flow.
The trained models for PINN were modified from the first official implementation of
PINN [60]. The Machine Learning platform used is Tensorflow 1.13.1 [1]. This older
version used for the initial implementation was kept, due to the moderate size of the
fully connected neural network, the graph creation and optimization is not the most
time consuming task, computing the automatic differentiations of the latent functions
using tf.gradient with Tensorflow CPU-only is time consuming while training. That is
why it is not suspected that the performance would be higher using a newer and more

39

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

efficient Tensorflow version.
To facilitate, post processing and analyzing the results, I added the utility to save
the models (for performing predictions and testing), loss, and learned parameters
during training. In addition, the implementation has been modified to be able to input
3D location points and construct the momentum equation in 3D, while making the
true assumption about the latent function 3.21 to predict the velocities in x, y, and
z-direction while fulfilling the continuity equation. The feed forward NN output a
variable x̂ = [p, Ψ], where Ψ is a latent function for the velocity field. The pressure
needs to be learned directly and not computed from Ψ as for the velocity field, because
the pressure is not a solution of the NSE, but is approximated so that the continuity
equation is enforced. the pressure gradient that appears in the momentum equation is
needed to solve the NSE and consequently its approximation error should be minimized.
The velocity fields are derived from Ψ to satisfy the continuity equation: ∇ · u⃗ = 0. Let
u, v, and w denote the flow velocity in x, y , and z-direction respectively. In the work of
Raissi, Perdikaris, and Karniadakis [64], u and v are defined as follows:

u = Ψy, (3.19)

v = −Ψx,

Ψi =
δΨ
δi

,

ux + vy = 0.

As explained previously in subsection 2.4.1, the loss function in PINN is composed of
the velocity loss and the constructed PDE loss. With use of automatic differentiation of
u and v, the momentum equations is built as follows:

f = ut + λ1(uux + vuy) + px − λ2(uxx + uyy), (3.20)

g = vt + λ1(uvx + vvy) + py − λ2(vxx + vyy).

In 3D, I define u, v, and w using Ψ as follows:

u = Ψyz, (3.21)

v = −0.5Ψxz,

w = −0.5Ψxy,

ux + vy + wz = 0.

The physical laws added to the loss function here are defined as follows:

f = ut + λ1(uux + vuy + wuz) + px − λ2(uxx + uyy + uzz), (3.22)

g = vt + λ1(uvx + vvy + wvz) + py − λ2(vxx + vyy + vzz),

h = wt + λ1(uwx + vwy + wwz) + pz − λ2(wxx + wyy + wzz).

40

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) Selected area for the flow over a cylinder case. The
velocity colored area shows the area in question.

(b) Selected area for the 3D DTC Hull case.

Figure 3.2: selected area for training data in the flow over a cylinder and DTC hull case.

41

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

The feed forward NN for most cases is composed of 8 layers with 20 neurons per
layer. The ADAM optimizer (with a tanh activation function) is used to optimize the
weights of the FNN with a learning rate of 0.001 for 10000 iterations. Then, the L-BFGS
optimizer, is ran for 2500 iterations to further optimize the λ parameters.

3.3 Results

In this section, the results of training the PDE-Net and PINN for learning the two PDE
equations will be shown.

3.3.1 PDE-Net for learning the diffusion equation

To show the possibility identifying the diffusion equation using PDE-Net. A 10-layer
PDE-Net was trained, where the maximum order assumed is 2, and assuming the Euler
temporal dicretization with ti+1 = ti + ∆t, then the filed values at time ti+1 can be
determined from the previous time step as follows:

The Euler approximation method:

T(ti+1, .)− T(ti, .)
∆t

≈ δT
δt

, (3.23)

In general, the time derivative of T is described by the PDE:
δT
δt

= F(T, Tx, Ty, ...), (3.24)

In the case of the diffusion equation:
δT
δt

= Dt∇2T (3.25)

The parametrized F function learned by PDE-Net is:

T̃(ti+1, .) = D0T(ti, .) + ∆t(C00T + C10Tx + C01Ty + C11Txy + C20Txx + C02Tyy), (3.26)

where Cij are the coefficients of the differential operators that appear in the PDE, C00

being an averaging coefficient. Tij =
δT
δiδj . Meaning that for the diffusion equation,

the coefficient C20 and C02 should be equal to the diffusion coefficient D. To show the
expressive power of PDE-Net to predict the time evolution of the diffusion phenomenon,
and its ability to uncover the differential operator involved in the PDE and their
respective coefficients, multiple 10-layer PDE-Nets, with 24 data samples per batch per
layer (δt-block), with 1500 iterations for the L-BFGS optimizer, and 7x7 convolutional
kernels, were trained with data produced using different magnitudes of the diffusion
coefficients, namely D = 0.02, 0.2, and 1.0. The results of the learned coefficients and
the long-time prediction on one test sample are shown in the figures below. The

42

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) Learned coefficients for test sample. (b) The true, predicted dynamics, and error for the
diffusion case.

Figure 3.3: Failed experiment for D = 0.2 for wrong initialization of field values.

coefficients depicted in the figures show the local prediction of the PDE coefficient
Cij from equation 3.26 at each grid point (x,y) for a test case generated using the
distribution defined in equation 3.3 to initialize the case. First starting with D = 0.2,
multiple experiments deemed unsuccessful, especially in identifying the coefficients.
An example for one test case can be seen in the figures of 3.3. As can be seen when
comparing the true and predicted dynamics in figure 3.3b, the initial conditions (0 δt)
does not show a random distribution, as the initial value function 3.3 was composed
of only two sine and cosine terms, which might lead to overfitting during training
explaining the ability to recreate the dynamics but not learning the coefficients and
their associated differential operators as seen in coefficient images 3.3a. Another factor
that was studied is the magnitude of δt the temporal discretization parameter or the
step between two time steps, in most experiment δt was chosen to be 0.015, in one
test case it was set to 0.05. The results here were similar to those from 3.3, which
proves the necessity of using a sufficiently small time increments, to make sure the
Euler discretization still approximates the time evolution of T. In a third experiment,
a 10-layer PDE-Net was trained with data ranging from the start time zero till 0.15.
This experiment does not produce the right PDE nor the long time predictions. A test
case for this experiment is presented in figure 3.4, where in image 3.4a the learned
coefficients are noisy, despite the average of each coefficient is approximately equal
to the true coefficient. In image of 3.4b, the first row shows the true field values at 5
different time steps, the second row shows the predicted solution of the learned PDE at
the same time steps, and the last row is the difference between the true and predicted

43

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) Learned coefficients for test sample. (b) The true, predicted dynamics, and error for
the diffusion case.

Figure 3.4: Failed Experiment for D = 0.2. using data in the interval [0,015)

solution for the test case. The first two time steps 0δt and 10δt correspond to the first
and last layers of the trained PDE-Net and the last 3 time steps 20δt, 60δt, and 70δt are
constructed by applying the learned PDE, which explains the low error at the first two
time step by the minimal change in the solution, which leads to low coefficient values
T(ti+1, .) ≈ T(ti, .), and the inability to predict long-time behavior. Trial and error led
to using training data with time steps ranging from 30δt = 0.45 to 40δt = 0.55, this
leads to achieving good results for both the learned coefficients and solution prediction.
Results for one test example can be seen in figure 3.5. The image 3.5a shows a uniform
prediction of all coefficients, which are in agreement with the true coefficients. Image
3.5b also shows a small error for time steps outside the range using for training as
well (10δt and 20δt). Despite not being mentioned in the initial PDE-net paper [42], the
implementation shows the use of a scaling factor of 100 to the data, which in the case
of this work does not show a noticeable improvement in the convergence of the L-BFGS
algorithm. The scaling factor of 100 explains the higher magnitude of the values in
the color maps in image 3.5b. To study the influence of the size of the convolutional
kernel, a small filter size was used for training, 3x3 kernel size and smaller batch
size of 8, the results for a test sample are shown in figure 3.6. Here the long-time
prediction ability of this PDE-Net model was tested, since the data used for training is
located between the 30th and 40th timesteps, the solution for the test case was shown
for time steps before and after the range used for training. The observation here is
the presence of scattered noise in the C00 coefficient, which can be related to the less
expressive power of the model now with less parameters. This argumentation justifies
using a higher size for the convolutional kernel and a higher batch size to obtain more

44

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) Learned coefficients for test sample. (b) The true, predicted dynamics, and error for the
diffusion case.

Figure 3.5: Experiment for D = 0.2 and data scaling of 100. Success in PDE coefficient
approximation and long-time prediction for test case.

(a) Learned coefficients for test sample. (b) The true, predicted dynamics, and error for the
diffusion case.

Figure 3.6: Experiment for D = 0.2, Kernel size 3x3, and batch size 8. Appearance of
scattered noise in C00.

45

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

Figure 3.7: Prediction errors of the PDE-Net with 7x7 (blue) and 3x3 (orange) filters.
In each plot, the horizontal axis indicates the time of the of prediction in
the interval (0, 30∗δt] = (0, 0.45], and the vertical axis shows the error value.
The banded curves indicate the 25% and 75% percentile of the error value
among 30 test samples.

training data. To compare the prediction errors of the PDE-Net with 7x7 filters and
3x3 filters, the plot 3.7 is to be referred to. The error values show that using 7x7 filters
outperforms the 3x3 filters after the warm-up layer, both models have higher errors in
the initial layers, but converge to lower error values towards the later layers. A further
experiment decreasing the diffusion coefficient 10 magnitude order to D = 0.02 and
training a 10-layer PDE-Net with 7x7 filters, and 24 batch size, and data in the interval
[0.45,0.55) produces the coefficients and predictions presented in figure 3.8. The learned
coefficients show non-zero values for the C00 coefficient, signifying a dependency on
the previous time step value. This can be justified by the slow modification of the field
values, due to smaller Diffusivity. One final experiment, uses a diffusion coefficient
D = 1.0, leads to high errors between the true and predicted solutions, despite learning
the true coefficients. These observations are reported in figure 3.9. Computing the loss
values for 30 test cases confirms this observation 3.10

46

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) Learned coefficients for test sample. (b) The true, predicted dynamics, and error for the
diffusion case.

Figure 3.8: Experiment for D = 0.02.

(a) Learned coefficients for test sample. (b) The true, predicted dynamics, and error for the
diffusion case.

Figure 3.9: Experiment for D = 1.0.

47

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

Figure 3.10: Prediction errors of the PDE-Net. The horizontal axis indicates the time
of the of prediction in the interval (0, 30∗δt] = (0, 0.45], and the vertical
axis shows the error value. The banded curves indicate the 25% and 75%
percentile of the error value among 30 test samples generated with D = 1.0.

3.3.2 PINN for learning the parameters of the NSE

For the majority of the experiments in the section the Reynolds number is calculated by
the following formula:

Re =
UL
ν

, (3.27)

where U=1ms−1, L=1m, and the varying factor is the kinematic viscosity ν. For the flow
over a cylinder, flows with a Reynolds number small than 200 are laminar, above this
number the regime of the flow is increasingly turbulent, the results of applying PINN
to identify the NSE is presented in this section.

2D flow over a cylinder

Re=20: in this case the Reynolds number is equal to 20 for the case of the kinematic
viscosity (ν = 0.05m2.s−1). 200 data samples in the time interval [0,20) are used for
training, with 6400 for each data sample and running the ADAM optimizer for 5000
iterations and the L-BFGS optimizer for 2500 iterations leads to the parametrization of
the PDE as in the table 3.5.
Re=100: in this case the Reynolds number is equal to 100 for the case of the kinematic
viscosity (ν = 0.01m2.s−1). The number of training samples and parameters are identical

48

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

Table 3.5: The correct and identified PDE for Re=20.

Correct PDE
ut + (uux + vuy) = −px + 0.05(uxx + uyy)

vt + (uvx + vvy) = −py + 0.05(vxx + vyy)

Identified PDE
ut + 0.97184(uux + vuy) = −px + 0.04808158(uxx + uyy)

vt + 0.97184(uvx + vvy) = −px + 0.04808158(vxx + vyy)

Table 3.6: The correct and identified PDE for Re=100.

Correct PDE
ut + (uux + vuy) = −px + 0.01(uxx + uyy)

vt + (uvx + vvy) = −py + 0.01(vxx + vyy)

Identified PDE
ut + 0.94420(uux + vuy) = −px + 0.00978612(uxx + uyy)

vt + 0.94420(uvx + vvy) = −py + 0.00978612(vxx + vyy)

to those defined in the previous paragraph. The correct and identified PDE are given
in the table 3.6. Figure 3.11 shows the convergence of both parameters λ1 and λ2 to the
true values 1.0 and 0.01 respectively.
Re=200: in this case the Reynolds number is equal to 200 for the case of the kinematic

viscosity (ν = 0.005m2.s−1). In this case, 10000 iterations were used for the ADAM
optimizer while keeping the other parameters identical to the previous experiments.
The velocity profile at the last time step (t=20) showing the turbulent wake periodic
regime is presented in figure 3.12 and the learned PDE in table 3.7.
Re=500: This experiment was motivated by the failure in identifying the PDE in a

highly turbulent case ν = 1.5e − 5m2.s−1, where λ1 = 0.96328 and λ2 = 0.01048093
after training. To closely study the reasoning behind the previous results, I slowly
increase the kinematic viscosity’s value to ν = 0.002m2.s−1 this results in Re=500. In
this case the velocity profile starts showing separation of the eddies as can observed
in figure 3.13. As a reminder, the turbulence model models a turbulent viscosity
that is summed to the kinematic viscosity νE f f = ν + νt, which is used to solved the
momentum equation. The plots in figure 3.14, show the norm of the turbulent viscosity
over space for each time step for the Re=100 and Re=500 cases. For the Re=100 case

Table 3.7: The correct and identified PDE for Re=200.

Correct PDE
ut + (uux + vuy) = −px + 0.005(uxx + uyy)

vt + (uvx + vvy) = −py + 0.005(vxx + vyy)

Identified PDE
ut + 0.94299(uux + vuy) = −px + 0.00528514(uxx + uyy)

vt + 0.94299(uvx + vvy) = −py + 0.00528514(vxx + vyy)

49

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) The evolution of λ1. The true value for λ1 = 1.0

(b) The evolution of λ2. The true value for λ2 = 0.01

Figure 3.11: The learned parameter values for Re=100.

Figure 3.12: The velocity magnitude for time 20 for Re=200.

50

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

Figure 3.13: The velocity magnitude for time 20 for Re=500.

the turbulent viscosity converges to low values instantly, which justifies ignoring its
influence. This observation is in alignment with the case setup as laminar. However,
for Re=500, despite the convergence of the eddy viscosity the overall magnitude is
considered high in comparison with the kinematic viscosity, and its influence cannot be
neglected. The previously mentioned reasoning for neglecting the eddy viscosity in the
case of laminar flow, enables us to feed the learned λ2 value and re-run the simulation.
The resulting space averaged eddy viscosities are in agreement with each and their
magnitudes can be compared in figure 3.15. Using 200 data samples for the Re=500
case leads to an approximation of of λ1 that is close to the true value 1.0, however, λ2

is approximated to be in the orders of 0.006. This value compared to the kinematic
viscosity 0.002 value could be explained by the addition of the eddy viscosity that
change magnitude in time and space. To limit the change of the eddy viscosity in time,
the data samples are limited to two from the initial 200, the space averaged νt ≈ 0.00076,
meaning νE f f ≈ 0.00276. In this case, a 150x150 mesh is used to sample the simulation
leading to 22500 points per data sample, a wider FNN is used here with 8 layers and
80 neurons per layer. After running the ADAM optimizer for 10000 iterations, and
the L-BFGS for 5000 iterations, the resulting learned parameters are λ1 ≈ 0.57, and
λ2 ≈ 0.0033. Figure 3.16 shows the evolution of λ1, λ2, and the PINN loss function. The
loss function is decreasing and can achieve order of magnitude lower than 1, meaning
that a higher number of iterations would lead to better approximation of the parameters.
A higher learning rate (compared to the 0.001 used here) as well could lead to faster
convergence of the parameters as the evolution shows slow convergence.
To be able to use a higher number of data samples calls for using methods that are able
to learn spatially varying values which will be discussed in the next section.

51

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) The space averaged eddy viscosity for Re=100.

(b) The space averaged eddy viscosity for Re=500.

Figure 3.14: The averaged eddy viscosity for Re=100 and Re=500.

52

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) The space averaged eddy viscosity for Re=100.

(b) The space averaged eddy viscosity for Re=100 for the simulation ran using the learned λ2.

Figure 3.15: The averaged eddy viscosity for Re=100.

53

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) The learned λ1 parameter for Re=500. The true λ1=1.0.

(b) The learned λ2 parameter for Re=500. (b) The PINN loss for Re=500.

Figure 3.16: λ1, λ2, and loss function for Re=500.

54

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

Learning the PDE for turbulent flows in 3D

Up to this point, the results discussed were for 2D turbulence, which is a simplification
introduced by RANS/URANS simulations. In 2D turbulence, small eddies disappear
and merge in larger eddies, leading to more energy produced by the mean flow and
less energy in the fluctuations. However, in 3D, with the presence of vortex stretching,
the problem is much more complex and is rela As previously introduced, two 3D cases
were studied for the 3D turbulent flow: firstly the multiphase flow for the DTC hull
case, and the airflow around an airfoil.

The DTC Hull case Here the reference velocity U = 1.668m.s−1 in x-direction,
the characteristic length L = 0.244m, and the kinematic viscosity of air is set to
ν = 0.001m2.s−1. The resulting Reynolds number is Re = 406.992. Considering the
PDE solved by the interFoam solver defined in equation 3.15, and the PDE added to
the PINN loss function 3.22, the momentum equation for the z velocity component is
slightly changed to equate for the z component of the gravity acceleration as seen in
equation 3.28.

h = wt + λ1(uwx + vwy + wwz) + pz − λ2(wxx + wyy + wzz) + 9.81. (3.28)

10 data samples in the time interval [0.001,0.01] with 25000 points per samples were used
for training. An 8-layer FNN with 80 neurons per layer is used. The images of figure
3.17, show the evolution of the learned parameters, the PINN loss function, and the
space average eddy viscosity. Despite the eddy viscosity being in the order of ≈ 7e − 6,
the learned λ1 = 0.084, λ2 = −0.04922. Looking at the different components of the
PINN loss function, the difference between the true and predicted velocity in x direction
is approximately 1.7e − 3, the difference between the true and predicted velocity in
y direction is approximately 5.7e − 1, the difference between the true and predicted
velocity in z direction is approximately 3.08, and the difference between the true and
predicted pressure is approximately 9.99e − 1. Seeing the high error value especially
for the pressure and the velocity in z-direction could signify an inherent problem
in structuring the latent function Ψ as defined in 3.21 and might suggest bypassing
defining the velocities with help of the latent function to satisfy the continuity equation,
and rather predict u, v, and w with the FNN directly and add the continuity equation
to the PINN loss function. In addition, the high error for the pressure could be an
indication to use a deeper NN to be increase the expressive power.

The 3D airfoil case Here the reference velocity U = 1.0m.s−1 in x-direction, the
characteristic length (Local chord length of the airfoil) L = 1m, and the kinematic

55

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) The learned λ1 parameter for the 3D DTC hull case. The true λ1=1.0.

(b) The learned λ2 parameter for the 3D DTC hull case.

(c) The PINN loss for the 3D DTC hull case.

(d) The space averaged turbulent viscosity for the 3D DTC hull case.

Figure 3.17: λ1, λ2, loss value, and averaged turbulent viscosity for the DTC hull case.

56

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

viscosity of air is set to ν = 1e − 5m2.s−1. The resulting Reynolds number is Re = 1e5.
The results for this case are similar to the previous case and due to the higher Reynolds
number, the turbulent viscosity is higher as can be seen in the fourth image of figure
3.18. Due to the change of magnitude of νt, only two data samples with 8000 points
per sample were used for training. The results for both the learned λ1, and λ2 are
reported in figure 3.18, plus the higher loss hints to the significance of using multiple
parameters, specifically 6 instead of two, which leads to a more complex line search for
L-BFGS and significantly higher iteration number for the problem to converge.

3.4 Learning turbulent flow models

The machine learning models studied in this section show that PDE-Net can be used
to learn the governing equations, namely of linear PDEs, and in this case diffusion
equation. A second version of PDE-Net [40] uses symbolic regression and Equation
Learner (EQL) [46], to group (limited to summation and muliplication for the time
being) the learned differential operators and can then equate for nonlinear PDEs. Figure
3.19 is a schematic of SymNet, where each layer is given all the differential operators
identified by PDE-Net and output a the multiplication of a number of differential
operators, this new term is passed to the next layer. In the last layer the coefficients
that parameterize each differential operator are determined. This extension enables
PDE-Net to learn nonlinear PDEs and motivates future work in using it to learn the
NSE.

However, as seen for the turbulent flow cases from PINN, learning two scalars cannot
capture the turbulence. As explained previously turbulence is a flow’s property and
not a fluid’s property. Meaning that there is less dependency on the fluid’s kinematic
viscosity ν and the flow motion is dominated by the eddy viscosity νt. This explains the
experiments being limited to laminar flow (Re=100) in the PINN works [65], [63], and
[62]. Given the relevancy of eddy viscosities for turbulent flows, a separate Machine
Learning model can be used for its modelling. In fact, as νt is modeled using the
turbulent kinetic energy, and the turbulent dissipation as introduced in section 2.2.3, a
PINN can be used used to learn the models for both the turbulent kinetic energy and
dissipation rate, then subsequently construct the eddy viscosity νt. This can mitigate
the problem when using one scalar λ2 to quantify the turbulence, this case fails due to
inferring a summation of the kinematic viscosity and an average over space and time
of the eddy viscosity. Recently, there has been surrogate Machine Learning method for
RANS modeling acceleration [47] that can predict the pointwise steady-state turbulent
eddy viscosities, which can be utilised not only for steady-state eddy viscosity but for
time increment changes in said turbulent viscosities. A final discussion point, despite

57

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

(a) The learned λ1 parameter for the 3D airfoil case. The true λ1=1.0.

(b) The learned λ2 parameter for the 3D airfoil case. (c) The PINN loss for the 3D airfoil case.

(d) The space averaged turbulent viscosity for the 3D airfoil case.

Figure 3.18: λ1, λ2, loss value, and averaged turbulent viscosity for the 3D airfoil case.

58

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

Figure 3.19: SymNet as defined for PDE-Net 2.0 [40].

59

3 Learning Fluid Dynamics Models that Exhibit Turbulent Behavior

RANS simulations being computationally cost effective and widely used, the Reynolds
averaging approach introduces a simplification that cannot be applied for experimental
data, as the fluctuation terms cannot be computed by an equation as assumed for
RANS. Meaning that for higher fidelity simulations, the RANS model solution should
be compared with experimental data, or one should turn to LES or DNS simulations,
which solve most (all in the case of DNS) the time and space dependencies in 3D. One
can conclude that in the case of turbulent flows in 3D, high fidelity simulation data is
needed and a method that learns time and spatially varying coefficients is needed.

60

4 Conclusion

This work is the intersection of multiple fields of mathematics, engineering, physics,
and Machine Learning. It brings together calculus, numerical methods, fluid dynamics,
computational fluid dynamics, and Deep Learning. In calculus, PDEs as the equations
that govern system dynamics were introduced, and different methods to analytically
and numerically solving them. As it is difficult to compute closed form solutions
of PDEs, numerical methods have gained popularity to approximate the solutions
of Fluid Dynamics problems, since they provide reliable and consistent results with
experimental results. Here the method used is computational fluid dynamics (CFD).
This work focuses on turbulent flows, which are a central topic of fluid dynamics in
general and fluid mechanics in particular. In chapter 2, an introduction into turbulent
flows was given, where the PDE describing turbulent flows and the simplifications
that made it possible to obtain approximations of the PDE solution for turbulent flows
from the assumption of incompressibility to the different turbulence models were
introduced. Then, the state of the art deep learning models for solving and learning
partial differential equations were introduced. In chapter 3, after defining the data
generation process, different results of the trained deep learning models when learning
the PDEs in question (Diffusion equation and Navier-Stokes equations) were reported.
The Navier-Stokes equations are the PDEs that describe turbulent flows. In the context
of CFD, turbulence models introduce closure equations to be able to solve the NSE. As
an example of the Reynolds-Averaged Navier Stokes turbulence models, is the k − ε

model, which adds two equations modeling the turbulent kinetic energy, and turbulent
dissipation rate. These two additional models help define a turbulent viscosity that
describes the formation of turbulent eddies.
Recently, Machine Learning in general, and Deep Learning in particular have been
applied in different fields. After the success of deep neural networks in computer
vision and function approximation, research has emerged in applying ML for PDEs.
The application of ML for PDEs takes two forms, either solving the PDEs, or identifying
the PDEs from experimental or numerical solutions.
For solving PDEs, CNNs have been mainly used for supervised function approximation
from a given set of boundary and initial conditions. The class of physics informed neural
networks has been used to infer the solutions of PDEs from a small number of available
data points. As neural networks are known to be universal function approximators,

61

4 Conclusion

PINNs results in data-efficient neural networks that encode underlying physical laws
in its loss function. Recently, the universal approximation theorem for operators, which
states that neural networks are operator approximators, and is a generalization of
the universal approximation theorem for functions, was utilized to introduce a new
class of neural networks the DeepONets, which implicitly approximates the operator
that governs the given data, and as a result infers the solutions to partial differential
equations.
Identifying ODEs from data was mainly a task of applied mathematics for the first
works on this topics. PDE functional identification of nonlinear dynamics (PDE-FIND)
utilized sparse regression in a similar manner to SINDy to identify ordinary differential
equations that describe reduced PDE solution. High-dimensionality being one of the
most important properties of PDE, called to developing data-driven methods that do
not modify the PDE solutions, only in this manner can the partial differential equations
be uncovered.

The thesis focused on studying and evaluating two models that learn PDEs in two dif-
ferent approaches. PDE-Net approximates the differential operators using convolutional
kernels, then construct the equations by learning the associated coefficients.PINNs can
learn the parameters of given parameterized nonlinear partial differential equations.
This work focused mainly on using PDE-Net and PINN to discover the equations that
govern dynamic models. As the training data was obtained from computational fluid
dynamics solvers, the governing equations are known and can serve as knowledge
to compare the resulting PDEs with the true ones. As diffusion is a critical part of
turbulence formation, PDE-Net succeeds in learning the diffusion equations, however
the limitation of this implementation is its limited application to linear PDEs. This
limitation is reported to be mitigated using symbolic regression, in a fellow-up work,
which was not tested in the scope of this work. PINNs succeed in uncovering the
momentum equations for 2D laminar and wake turbulent periodic flows. However,
for turbulent flows in 3D, the problem of uncovering the momentum equations and
turbulence models is more complex due to the addition of an eddy viscosity, which is a
spatio-temporal varying coefficient. In fact, a PINN can be used to learn the equations
for the turbulent kinetic energy and the turbulent dissipation rate, which are used
to calculate the eddy viscosity in the used turbulence model. Other methods have
been used to learn the pointwise eddy viscosity from the PDE solutions [47]. Future
work can bring together PINN with the previously mentioned ML surrogate models
to identify the PDE for each spatio-temporal point in function of the eddy viscosity.
To test this blended model, a number of points outside the defined area for training
data can be chosen and their eddy viscosity values can be predicted then the learned
PINN can be used to infer the solution of the PDEs. Finally, the inferred solution is to
be compared with the true solution.

62

4 Conclusion

As a final point, an observation that can be made while reviewing the literature for this
work is the difference in quantity between the research on solving PDEs in comparison
with learning PDEs using machine learning. While the former seems to gain more at-
tention from the research community, the latter is rather limited to a limited number of
deep learning methods, PINNs being the most famous of them. In fact, the introduction
of DeepONets [43] hints to the shift towards calculus-agnostic methods, which do not
resort to prior calculus knowledge, but train deep neural networks to learn nonlinear
operators implicitly. Despite the possibility of these models to express complex systems
using experimental or numerical data, formulating governing equations, especially for
emerging disciplines, such as social dynamics, is of great importance for mathemati-
cians to be able to prove the existence and smoothness of solutions mathematically.
With this being said, future work can use the newer version of PDE-Net [40] to learn
the NSE of laminar flows to first get an overview of the parameters needed to learn the
nonlinear PDE, in a second step, as convolutional filters are used for this model, and
the original work have used space varying convection terms, one can attempt to use
this property to learn the varying eddy viscosity.

63

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. “Tensorflow: A system for large-scale machine learning.”
In: 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). 2016, pp. 265–283.

[2] Y. Afshar, S. Bhatnagar, S. Pan, K. Duraisamy, and S. Kaushik. “Prediction of
aerodynamic flow fields using convolutional neural networks.” In: (2019). doi:
https://doi.org/10.48550/arXiv.1905.13166.

[3] Anaconda Software Distribution. Version Vers. 2-2.4.0. 2020.

[4] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. “Learning data driven
discretizations for partial differential equations.” en. In: Proceedings of the National
Academy of Sciences 116.31 (July 2019). arXiv: 1808.04930, pp. 15344–15349. issn:
0027-8424, 1091-6490. doi: 10.1073/pnas.1814058116.

[5] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. “Automatic
differentiation in machine learning: a survey.” en. In: arXiv:1502.05767 [cs, stat]
(Feb. 2018). arXiv: 1502.05767.

[6] J. Bernstein. A Palette of Particles. Harvard University Press, 2013. isbn: 9780674072510.

[7] M. Bode, M. Gauding, Z. Lian, D. Denker, M. Davidovic, K. Kleinheinz, J. Jitsev,
and H. Pitsch. “Using physics-informed enhanced super-resolution generative
adversarial networks for subfilter modeling in turbulent reactive flows.” en. In:
Proceedings of the Combustion Institute 38.2 (2021), pp. 2617–2625. issn: 15407489.
doi: 10.1016/j.proci.2020.06.022.

[8] J. Bongard and H. Lipson. “Automated reverse engineering of nonlinear dynam-
ical systems.” In: Proceedings of the National Academy of Sciences 104.24 (2007),
pp. 9943–9948. doi: 10.1073/pnas.0609476104. eprint: https://www.pnas.org/
doi/pdf/10.1073/pnas.0609476104.

[9] S. L. Brunton, J. L. Proctor, and J. N. Kutz. “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems.” en. In: Proceedings
of the National Academy of Sciences 113.15 (Apr. 2016), pp. 3932–3937. issn: 0027-
8424, 1091-6490. doi: 10.1073/pnas.1517384113.

64

https://doi.org/https://doi.org/10.48550/arXiv.1905.13166
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1016/j.proci.2020.06.022
https://doi.org/10.1073/pnas.0609476104
https://www.pnas.org/doi/pdf/10.1073/pnas.0609476104
https://www.pnas.org/doi/pdf/10.1073/pnas.0609476104
https://doi.org/10.1073/pnas.1517384113

Bibliography

[10] J.-F. Cai, B. Dong, S. Osher, and A. Shen. “Image Restoration: Total Variation,
Wavelet Frames and Beyond.” In: Journal of the American Mathematical Society 25
(Oct. 2012), pp. 1033–1089. doi: 10.2307/23265126.

[11] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. “Data-driven discovery of
coordinates and governing equations.” en. In: Proceedings of the National Academy
of Sciences 116.45 (Nov. 2019), pp. 22445–22451. issn: 0027-8424, 1091-6490. doi:
10.1073/pnas.1906995116.

[12] S. Chandrasekhar. “Stochastic Problems in Physics and Astronomy.” In: Rev. Mod.
Phys. 15 (1 Jan. 1943), pp. 1–89. doi: 10.1103/RevModPhys.15.1.

[13] J. Chen, J. Viquerat, and E. Hachem. U-net architectures for fast prediction in fluid
mechanics.

[14] T. Chen and H. Chen. “Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical
systems.” In: (1995). doi: https://doi.org/10.1109/72.392253.

[15] J. P. Crutchfield and B. S. McNamara. “Equations of Motion from a Data Series.”
In: Complex Systems 1 (1987), pp. 417–452.

[16] B. Debus, H. Parastar, P. Harrington, and D. Kirsanov. “Deep learning in analytical
chemistry.” en. In: (2021). doi: https://doi.org/10.1016/j.trac.2021.116459.

[17] B. Dong, Q. Jiang, and Z. Shen. “Image Restoration: Wavelet Frame Shrinkage,
Nonlinear Evolution PDEs, and Beyond.” In: Multiscale Modeling & Simulation
15.1 (2017), pp. 606–660. doi: 10.1137/15M1037457.

[18] M. Eckert. The Dawn of Fluid Dynamics: A Discipline Between Science and Technology.
Jan. 2006. isbn: 978-3-527-40513-8. doi: 10.1002/9783527610730.

[19] Euler Equations. https://www.grc.nasa.gov/WWW/k-12/rocket/eulereqs.html.

[20] J. H. Ferziger, M. Perić, and R. L. Street. Computational Methods for Fluid Dynamics.
2020.

[21] B. Font, G. D. Weymouth, V.-T. Nguyen, and O. R. Tutty. “Deep learning of
the spanwise-averaged Navier-Stokes equations.” en. In: Journal of Computational
Physics 434 (June 2021). arXiv: 2008.07528, p. 110199. issn: 00219991. doi: 10.
1016/j.jcp.2021.110199.

[22] Gas properties. https://www.grc.nasa.gov/WWW/k-12/rocket/gasprop.html.

[23] P. R. Guido Visconti. Fluid Dynamics. Springer Cham. doi: https://doi.org/10.
1007/978-3-030-49562-6.

65

https://doi.org/10.2307/23265126
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1103/RevModPhys.15.1
https://doi.org/https://doi.org/10.1109/72.392253
https://doi.org/https://doi.org/10.1016/j.trac.2021.116459
https://doi.org/10.1137/15M1037457
https://doi.org/10.1002/9783527610730
https://www.grc.nasa.gov/WWW/k-12/rocket/eulereqs.html
https://doi.org/10.1016/j.jcp.2021.110199
https://doi.org/10.1016/j.jcp.2021.110199
https://www.grc.nasa.gov/WWW/k-12/rocket/gasprop.html
https://doi.org/https://doi.org/10.1007/978-3-030-49562-6
https://doi.org/https://doi.org/10.1007/978-3-030-49562-6

Bibliography

[24] X. Guo, W. Li, and F. Iorio. “Convolutional Neural Networks for Steady Flow
Approximation.” In: Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2016).

[25] Y. Guo, X. Cao, B. Liu, and M. Gao. “Solving Partial Differential Equations Using
Deep Learning and Physical Constraints.” In: Applied Sciences 10.17 (2020). issn:
2076-3417. doi: 10.3390/app10175917.

[26] K. Hornik, M. StinchCombe, and H. White. “Multilayer Feedforward Networks
are Universal Approximators.” In: (1989). doi: https://doi.org/10.1109/72.
392253.

[27] How To Keep the Courant Number Below 1? https://www.simscale.com/knowledge-
base/what-is-a-courant-number/.

[28] InterFoam. https://openfoamwiki.net/index.php/InterFoam.

[29] X. Jin, S. Cai, H. Li, and G. E. Karniadakis. “NSFnets (Navier-Stokes Flow nets):
Physics-informed neural networks for the incompressible Navier-Stokes equa-
tions.” en. In: Journal of Computational Physics 426 (Feb. 2021). arXiv: 2003.06496,
p. 109951. issn: 00219991. doi: 10.1016/j.jcp.2020.109951.

[30] k-omega Shear Stress Transport (SST). https://www.openfoam.com/documentation/
guides/latest/doc/guide-turbulence-ras-k-omega-sst.html.

[31] A. Kiselev. “Small scales and singularity formation in fluid mechanics.” In: (Dec.
2018). doi: 10.1007/s00332-018-9452-3.

[32] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer.
“Machine learning–accelerated computational fluid dynamics.” In: Computational
Science – ICCS 2021 pp 373–385 (2021). doi: https://doi.org/10.1007/978-3-
030-77964-1_29.

[33] A. Krizhevsky, I. Sutskeve, and G. E. Hinton. “ImageNet classification with deep
convolutional neural networks.” en. In: Advances in neural information processing
systems (2017).

[34] L-BFGS algorithm. https://docs.scipy.org/doc/scipy/reference/optimize.
minimize-lbfgsb.html.

[35] M. Lai. “Deep Learning for Medical Image Segmentation.” en. In: (May 2015).
doi: 10.1007/978-3-030-76508-8_21.

[36] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning.” en. In: Nature (2015). doi:
https://doi.org/10.1038/nature14539.

66

https://doi.org/10.3390/app10175917
https://doi.org/https://doi.org/10.1109/72.392253
https://doi.org/https://doi.org/10.1109/72.392253
https://www.simscale.com/knowledge-base/what-is-a-courant-number/
https://www.simscale.com/knowledge-base/what-is-a-courant-number/
https://openfoamwiki.net/index.php/InterFoam
https://doi.org/10.1016/j.jcp.2020.109951
https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence-ras-k-omega-sst.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence-ras-k-omega-sst.html
https://doi.org/10.1007/s00332-018-9452-3
https://doi.org/https://doi.org/10.1007/978-3-030-77964-1_29
https://doi.org/https://doi.org/10.1007/978-3-030-77964-1_29
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html
https://doi.org/10.1007/978-3-030-76508-8_21
https://doi.org/https://doi.org/10.1038/nature14539

Bibliography

[37] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar. “Fourier Neural Operator for Parametric Partial Differential
Equations.” en. In: arXiv:2010.08895 [cs, math] (May 2021). arXiv: 2010.08895.

[38] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar. “Multipole Graph Neural Operator for Parametric Partial Dif-
ferential Equations.” en. In: arXiv:2006.09535 [cs, math, stat] (Oct. 2020). arXiv:
2006.09535.

[39] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A.
Anandkumar. “Neural Operator: Graph Kernel Network for Partial Differential
Equations.” In: (2020). doi: https://doi.org/10.48550/arXiv.2003.03485.

[40] Z. Long, Y. Lu, and B. Dong. “PDE-Net 2.0: Learning PDEs from Data with A
Numeric-Symbolic Hybrid Deep Network.” en. In: Journal of Computational Physics
399 (Dec. 2019). arXiv:1812.04426 [physics, stat], p. 108925. issn: 00219991. doi:
10.1016/j.jcp.2019.108925.

[41] Z. Long, Y. Lu, and B. Dong. “Supplementary Materials for PDE-Net.” In: (2018),
p. 3.

[42] Z. Long, Y. Lu, X. Ma, and B. Dong. “PDE-Net: Learning PDEs from Data.” en.
In: (2018), p. 9.

[43] L. Lu, P. Jin, and G. E. Karniadakis. “DeepONet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem
of operators.” en. In: arXiv:1910.03193 [cs, stat] (Apr. 2020). arXiv: 1910.03193.

[44] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. “Learning nonlinear oper-
ators via DeepONet based on the universal approximation theorem of operators.”
en. In: Nature Machine Intelligence 3.3 (Mar. 2021), pp. 218–229. issn: 2522-5839.
doi: 10.1038/s42256-021-00302-5.

[45] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, and G. E. Karniadakis.
“A comprehensive and fair comparison of two neural operators (with practical
extensions) based on FAIR data.” In: (2021). doi: https://doi.org/10.48550/
arXiv.2111.05512.

[46] G. Martius and C. H. Lampert. Extrapolation and learning equations. en. Number:
arXiv:1610.02995 arXiv:1610.02995 [cs]. Oct. 2016.

[47] R. Maulik, H. Sharma, S. Patel, B. Lusch, and E. Jennings. “Accelerating RANS
turbulence modeling using potential flow and machine learning.” In: (Oct. 2019).

[48] P. P. Maziar Raissi and G. E. Karniadakis. “Physics Informed Deep Learning (Part
I): Data-driven Solutions of Nonlinear Partial Differential Equations.” In: (2017).

67

https://doi.org/https://doi.org/10.48550/arXiv.2003.03485
https://doi.org/10.1016/j.jcp.2019.108925
https://doi.org/10.1038/s42256-021-00302-5
https://doi.org/https://doi.org/10.48550/arXiv.2111.05512
https://doi.org/https://doi.org/10.48550/arXiv.2111.05512

Bibliography

[49] F. Menter, M. Kuntz, and R. Langtry. “Ten years of industrial experience with the
SST turbulence model.” In: Heat and Mass Transfer 4 (Jan. 2003).

[50] Navier-Stokes Equations 3-dimensional-unsteady. https://www.grc.nasa.gov/WWW/
k-12/rocket/nseqs.html.

[51] F. T. M. Nieuwstadt, B. J. Boersma, and J. Westerweel. The Characteristics of
Turbulence. Cham: Springer International Publishing, 2016, pp. 55–74. isbn: 978-3-
319-31599-7. doi: 10.1007/978-3-319-31599-7_4.

[52] OpenFOAM. https://www.openfoam.com/.

[53] OpenFOAM v9 User Guide. https://doc.cfd.direct/openfoam/user-guide-
v9/.

[54] OpenFOAM-pimpleFOAM-RectangularCylinder − main. https://github.com/
Interfluo/OpenFOAM-Cases-Interfluo/.

[55] D. S. N. Pachpute. An Introduction To Computational Fluid Dynamics (CFD). https:
//cfdflowengineering.com.

[56] G. Pang, L. Yang, and G. E. Karniadakis. “Neural-net-induced Gaussian process
regression for function approximation and PDE solution.” en. In: Journal of Com-
putational Physics 384 (May 2019). arXiv: 1806.11187, pp. 270–288. issn: 00219991.
doi: 10.1016/j.jcp.2019.01.045.

[57] ParaView. https://www.paraview.org.

[58] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.
Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M.
Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala.
“PyTorch: An Imperative Style, High-Performance Deep Learning Library.” In:
Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035.

[59] PDE-Net. https://github.com/ZichaoLong/PDE-Net/blob/PDE-Net/linpdeplot.
py.

[60] PINNs. https://github.com/maziarraissi/PINNs.

[61] Pressure in OpenFOAM. url: https://www.cfd-online.com/Forums/openfoam-
solving/190173-pressure-openfoam.html.

[62] M. Raissi. Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential
Equations. en. arXiv:1801.06637 [cs, math, stat]. Jan. 2018.

68

https://www.grc.nasa.gov/WWW/k-12/rocket/nseqs.html
https://www.grc.nasa.gov/WWW/k-12/rocket/nseqs.html
https://doi.org/10.1007/978-3-319-31599-7_4
https://www.openfoam.com/
https://doc.cfd.direct/openfoam/user-guide-v9/
https://doc.cfd.direct/openfoam/user-guide-v9/
https://github.com/Interfluo/OpenFOAM-Cases-Interfluo/
https://github.com/Interfluo/OpenFOAM-Cases-Interfluo/
https://cfdflowengineering.com
https://cfdflowengineering.com
https://doi.org/10.1016/j.jcp.2019.01.045
https://www.paraview.org
https://github.com/ZichaoLong/PDE-Net/blob/PDE-Net/linpdeplot.py
https://github.com/ZichaoLong/PDE-Net/blob/PDE-Net/linpdeplot.py
https://github.com/maziarraissi/PINNs
https://www.cfd-online.com/Forums/openfoam-solving/190173-pressure-openfoam.html
https://www.cfd-online.com/Forums/openfoam-solving/190173-pressure-openfoam.html

Bibliography

[63] M. Raissi and G. E. Karniadakis. “Hidden Physics Models: Machine Learning of
Nonlinear Partial Differential Equations.” en. In: Journal of Computational Physics
357 (Mar. 2018). arXiv:1708.00588 [cs, math, stat], pp. 125–141. issn: 00219991.
doi: 10.1016/j.jcp.2017.11.039.

[64] M. Raissi and G. E. Karniadakis. “Machine Learning of Linear Differential Equa-
tions using Gaussian Processes.” en. In: Journal of Computational Physics 348 (Nov.
2017). arXiv: 1701.02440, pp. 683–693. issn: 00219991. doi: 10.1016/j.jcp.2017.
07.050.

[65] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics Informed Deep Learning
(Part II): Data-driven Discovery of Nonlinear Partial Differential Equations.” en.
In: arXiv:1711.10566 [cs, math, stat] (Nov. 2017). arXiv: 1711.10566.

[66] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics Informed Deep Learning
(Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.” en. In:
(2017). doi: https://doi.org/10.1016/j.trac.2021.116459.

[67] A. K. Razdan and V. Ravichandran. “Fundamentals of Partial Differential Equa-
tions.” In: (2022). doi: https://doi.org/10.1007/978-981-16-9865-1.

[68] S. Rodriguez. Applied Computational Fluid Dynamics and Turbulence modeling: Practi-
cal Tools, Tips and Techniques. Springer Cham. doi: https://doi.org/10.1007/978-
3-030-28691-0.

[69] K. Rojek, R. Wyrzykowski, and P. Gepner. “AI-Accelerated CFD Simulation Based
on OpenFOAM and CPU/GPU Computing.” In: Computational Science – ICCS
2021 pp 373–385 (2021). doi: https://doi.org/10.1007/978-3-030-77964-1_29.

[70] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. “Data-driven discovery of
partial differential equations.” en. In: arXiv:1609.06401 [nlin] (Sept. 2016). arXiv:
1609.06401.

[71] ScalarTransportFoam. https://openfoamwiki.net/index.php/ScalarTransportFoam.

[72] M. Schmidt and H. Lipson. “Distilling Free-Form Natural Laws from Experimen-
tal Data.” In: Science 324.5923 (2009), pp. 81–85. doi: 10.1126/science.1165893.
eprint: https://www.science.org/doi/pdf/10.1126/science.1165893.

[73] M. Shinbrot. concerning the Navier-Stokes equations. http://www.navier-stokes-
equations.com/. 2012.

[74] Simulation of Turbulent Flows. http : / / web . stanford . edu / class / me469b /
handouts/turbulence.pdf.

[75] C. Soulaine. Introduction to open-source computational fluid dynamics using Open-
FOAM®technology. https://www.cypriensoulaine.com/openfoam.

69

https://doi.org/10.1016/j.jcp.2017.11.039
https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/10.1016/j.jcp.2017.07.050
https://doi.org/https://doi.org/10.1016/j.trac.2021.116459
https://doi.org/https://doi.org/10.1007/978-981-16-9865-1
https://doi.org/https://doi.org/10.1007/978-3-030-28691-0
https://doi.org/https://doi.org/10.1007/978-3-030-28691-0
https://doi.org/https://doi.org/10.1007/978-3-030-77964-1_29
https://openfoamwiki.net/index.php/ScalarTransportFoam
https://doi.org/10.1126/science.1165893
https://www.science.org/doi/pdf/10.1126/science.1165893
http://www.navier-stokes-equations.com/
http://www.navier-stokes-equations.com/
http://web.stanford.edu/class/me469b/handouts/turbulence.pdf
http://web.stanford.edu/class/me469b/handouts/turbulence.pdf
https://www.cypriensoulaine.com/openfoam

Bibliography

[76] The PISO algorithm in OpenFOAM. https://openfoamwiki.net/index.php/
OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM.

[77] The SIMPLE algorithm in OpenFOAM. https://openfoamwiki.net/index.php/
OpenFOAM_guide/The_SIMPLE_algorithm_in_OpenFOAM.

[78] N. Thuerey, K. Weissenow, L. Prantl, and X. Hu. “Deep Learning Methods for
Reynolds-Averaged Navier-Stokes Simulations of Airfoil Flows.” en. In: (2018).
doi: https://doi.org/10.48550/arXiv.1810.08217.

[79] K. Um, R. Brand, Yun, Fei, P. Holl, and N. Thuerey. “Solver-in-the-Loop: Learn-
ing from Differentiable Physics to Interact with Iterative PDE-Solvers.” en. In:
arXiv:2007.00016 [physics] (Jan. 2021). arXiv: 2007.00016.

[80] S. Wang and P. Perdikaris. “Long-time integration of parametric evolution equa-
tions with physics-informed DeepONets.” en. In: arXiv:2106.05384 [physics] (June
2021). arXiv: 2106.05384.

[81] S. Wang, H. Wang, and P. Perdikaris. “Learning the solution operator of para-
metric partial differential equations with physics-informed DeepOnets.” en. In:
arXiv:2103.10974 [cs, math, stat] (Mar. 2021). arXiv: 2103.10974.

[82] L. P. Williams. history of science. https://www.britannica.com/science/history-
of-science. Feb. 2022.

[83] H. You, Y. Yu, M. D’Elia, T. Gao, and S. Silling. “Nonlocal Kernel Network (NKN):
a Stable and Resolution-Independent Deep Neural Network.” In: (2022). doi:
https://doi.org/10.48550/arXiv.2201.02217.

[84] A. Yu, C. Becquey, D. Halikias, M. E. Mallory, and A. Townsend. “Arbitrary-
Depth Universal Approximation Theorems For Operator Neural Networks.” In:
(2021). doi: arXiv:2109.11354v1[cs.LG].

70

https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM
https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PISO_algorithm_in_OpenFOAM
https://openfoamwiki.net/index.php/OpenFOAM_guide/The_SIMPLE_algorithm_in_OpenFOAM
https://openfoamwiki.net/index.php/OpenFOAM_guide/The_SIMPLE_algorithm_in_OpenFOAM
https://doi.org/https://doi.org/10.48550/arXiv.1810.08217
https://www.britannica.com/science/history-of-science
https://www.britannica.com/science/history-of-science
https://doi.org/https://doi.org/10.48550/arXiv.2201.02217
https://doi.org/arXiv:2109.11354v1 [cs.LG]

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of the art
	The Navier-Stokes Equations
	Turbulence Modeling with Computational Fluid Dynamics (CFD)
	What is turbulence?
	Simulating Turbulent Flows
	RANS Turbulence Modeling
	CFD software: OpenFOAM

	Data-Driven Methods to infer the solutions of the Partial Differential Equations
	DeepONets
	Fourier Neural Operator

	Data-Driven Methods to learn the Partial Differential Equations
	Physics Informed Neural Network (PINN)
	PDE-Net

	Learning Fluid Dynamics Models that Exhibit Turbulent Behavior
	The difference between solving and learning the PDE using data-driven methods
	The experiments
	Diffusion Equation: scalarTransportFoam
	Learning Process: PDE-Net for learning the diffusion equation
	Laminar and Turbulent Fluid Flow simulation with pimpleFoam
	Learning Process: PINN for learning NSE

	Results
	PDE-Net for learning the diffusion equation
	PINN for learning the parameters of the NSE

	Learning turbulent flow models

	Conclusion
	Bibliography

