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Abstract

Rapid expansion of data and its availability demands better and efficient ways to
process, utilize, visualize and interpret it. Dimensionality reduction algorithms are
used to mitigate the curse of dimensionality by extracting useful information and dis-
carding the rest. But most common algorithms follow a linear approach. The intrinsic
dimension of the real-world data may not always be in a linear space and hence the
traditional approaches fail to produce meaningful results in such cases. Manifold
learning algorithms aim to improve on this to also work on non-linear spaces. A
manifold is the intrinsic geometric structure of data that is generated with similar
processes. datafold is an open-source software that provides data-driven models to
find a low-dimensional parametrization of these manifolds in non-linear data such as
point cloud data. datafold provides a hierarchy of sub-packages that deal with creation
of data, non-linear dimensionality reduction algorithms like diffusion maps and so
on. These algorithms basically work with the concept of finding a kernel matrix that
captures similarities between data points and performing eigendecompositions on the
kernel matrices. The eigendecompositions lead to deduction of the intrinsic dimension
of the data. We work with iterative methods for performing eigendecompositions
which consist of numerous matrix-vector multiplications.

GOFMM is a portable and high-performance framework that provides implementa-
tions of operations such as matrix approximations, matrix-vector and matrix-matrix
multiplication using hierarchical algorithms. It contains methods for approximating
dense, symmetric and positive-definite matrices by partitioning the matrix into differ-
ent parts depending on a certain distance metric. The distance metric is applied to
partition relevant points from the points far away as they have almost no influence
on each other. Then the distant points can be approximated. As mentioned above,
eigendecompositions require numerous matrix-vector multiplications which are the
most expensive operations in the process taking up to O(N2) work. As a solution, we
introduce hierarchical algorithms from GOFMM to perform these mat-vec operations
with O(Nlog(N)) work. Then the accuracy of eigendecompositions using scipy solver
and GOFMM are compared. Multi-core and multi-node scalability experiments are
performed on a linux cluster while identifying bottlenecks and analysing performance.

iv



Contents

Acknowledgments iii

Abstract iv

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. State of the art 3
2.1. Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1. PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2. Diffusion Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Datafold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1. datafold.pcfold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2. datafold.dynfold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3. datafold.appfold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. Kernel matrix approximations . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1. Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2. Motivation from N-body problems . . . . . . . . . . . . . . . . . 8
2.3.3. Algebraic compression algorithms . . . . . . . . . . . . . . . . . . 9
2.3.4. Hierarchical decompositions . . . . . . . . . . . . . . . . . . . . . 10

2.4. GOFMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1. Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. Efficient and Scalable Kernel Matrix Approximation using Hierarchical
Decomposition 15
3.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2. Charliecloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3. LinearOperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1. Accuracy Measurements . . . . . . . . . . . . . . . . . . . . . . . . 25

v



Contents

3.2.2. Multi-core performance . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3. Multi node performance . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3. Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. Conclusion and Future Work 39
4.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography 43

Appendix 45

A. Detailed descriptions 47
A.1. Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1.1. Creating Charliecloud image . . . . . . . . . . . . . . . . . . . . . 47
A.2. Compilation and Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vi



1. Introduction

1.1. Motivation

Data-driven approaches to solve real-world problems have led to rapid increase in data
sizes. The potential of such approaches is limited by the current state of computation
power. The space complexity of dense matrices .i.e matrices with mostly non-zero
entries, is O(N2). Similarly, the time complexity for operations such as mat-vec is O(N2).
Therefore, these operations become computationally expensive when the size of the
matrices is large. As a solution to this, we aim to find low-rank approximations of these
matrices using hierarchical algorithms. Geometric-oblivious fast multipole method
(GOFMM) is a novel algorithm for approximating dense symmetric positive definite
matrices so that the quadratic space and time complexity reduces to O(Nlog(N)) with
a small relative error. GOFMM is geometry-oblivious, meaning that it does not require
the geometry information or the knowledge of how the data has been generated [1]. It
just requires the distribution of data as input. Dense SPD matrices appear in areas such
as scientific computing, data analytics and statistical inference. They appear in N-body
methods [2], kernel methods in statistical learning [3], LU factorization [4] and so on.

The use of positive definite kernels in estimation and machine learning methods
has seen a rapid growth in the past couple of decades. Real-world problems require
solving high-dimensional data. Data-driven models assume an intrinsic geometry in
the data, referred to as a manifold and it can be used to extract essential information of
lower dimension. datafold is a python package that provides these data-driven models
to find an explicit manifold parametrization for point cloud data [5] by using kernel
matrices. Kernels correspond to dot products in a high dimensional feature space and
we use them to efficiently solve non-linear cases in machine learning [3].

1.2. Problem Statement

Manifold learning approaches learn the intrinsic geometry of high-dimensional data
without the use of predetermined classifications. There are several manifold learning
algorithms such as isomap, locally linear embedding, hessian embedding and so on but
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1. Introduction

we focus on diffusion maps. Like PCA, diffusion maps also consist of a kernel matrix
computation that describes the relation of data points in the space. The normalized ker-
nel matrix is decomposed to compute the eigen values and vectors. These eigen values
and eigen vectors are used to find an embedding with a lower dimension than that of
the ambient space. Since matrix-vector multiplications in iterative eigendecompositions
is very expensive, especially for huge matrices, hierarchical approaches are applied.
The intention of applying hierarchical algorithms on these kernel matrices is to reduce
the quadratic run-time down to O(Nlog(N)).

As previously discussed, GOFMM provides hierarchical algorithms for large, dense,
symmetric and positive-definite matrices. Let K ∈ RNxN be a dense kernel matrix for
manifold data. Let it also be symmetric K = KT and positive-definite xTKx ∀ x ∈
RN, x 6= 0. Our goal is to find an approximation K̃ such that the matrix-vector
multiplications consume only O(Nlog(N)) work. The approximation must also satisfy
the following condition

||K̃− K||
||K|| ≤ ε, 0 < ε < 1, (1.1)

where ε is a user-defined tolerance. LinearOperator uses implicitly restarted Lanczos
iteration to perform eigendecompositions. The matrix-vector multiplications in every
iteration is then performed using hierarchical methods in GOFMM, where the dense matrix
is first compressed and then evaluated. We want to test the performance of applying
hierarchical algorithms from GOFMM to kernel matrices computed from manifold
learning data in terms of accuracy and performance.

2



2. State of the art

2.1. Dimensionality Reduction

Dimensionality reduction is an approach to alleviate the curse of dimensionality. It
begins with the assumption that data with high-dimensionality has an intrinsic dimen-
sion. Intrinsic dimension is the minimum number of features needed to meaningfully
represent the data. Dimensionality reduction is the transformation of high-dimensional
data into a representation with the aforementioned intrinsic dimension. Consider an
n× D matrix X where n is the number of data points and D is the dimensionality of
the points. The transformation of the data is an n× d matrix such that d� D.

2.1.1. PCA

Principal Component Analysis is a widely known linear dimensionality reduction
algorithm. It aims to embed data X ∈ Rn×D in a d-dimensional linear subspace of
RD along which data has maximum covariance [6]. This is done by finding a linear
mapping V that optimizes the cost function trace(VTX′V) where X’ is the sample
covariance matrix of X [7]. This linear mapping V is formed by d eigen vectors or
principal components of X’ which are obtained by the following eigendecomposition

X′V = λV, (2.1)

where λ consists eigen values of X′ which are also the variances of corresponding eigen
vectors. We take a subset of principal vectors V’ with the largest variance as the new
basis. Then, the low-dimensional representation Y ∈ Rn×d is the mapping of X onto
the new linear basis V’, meaning

Y = XV ′. (2.2)

PCA has a complexity of O(d3) [6]. One of the main drawbacks of PCA is that it is a
linear approach. Given a data set with non-linear intrinsic dimension, it may fail to
produce a meaningful low-dimension representation of the data set.

3



2. State of the art

2.1.2. Diffusion Maps

Diffusion Maps is a non-linear technique of dimensionality reduction. It tries to obtain
information about the manifold encoded in the data without any assumptions on the
underlying geometry. Alternative to euclidean distance or geodesic distance used
in isomaps, we make use of an affinity or similarity matrix obtained using a kernel
function that produces positive and symmetric values. Given a dataset X ∈ {x1, x2...xn}
and a Gaussian kernel function, we can compute the similarity matrix as [8]

Wij = w(i, j) = e

−||xi − xj||22
σ2 . (2.3)

xi and xj are a pair of data points and σ is the radius of the neighborhood around point
xi. The affinity matrix is therefore a measure of similarity or connectivity between pairs
of data points. We can represent the data as a graph with data points as nodes and the
similarity matrix entries as the weighted edges. But since the similarities are collected
with respect to local geometry, the distribution of data affects the approximations. Let
Q denote the degree of each node, meaning that Qi is the sum of all affinities associated
with the node i. In order to make the influence of density Q explicit, we normalize the
weights with a parameter α which consists of values between 0 and 1. If we take α = 0,
the density has maximal influence on how the underlying geometry is captured and
vice versa when α = 1. Therefore we normalize the weights with α = 1 to obtain new
weights [8]

Wα
ij =

Wij

Qα
i ·Qα

j
, (2.4)

where Qi = ∑n
j=1 Wij is the degree of vertex xi. Now a Markov chain can be defined as

Pij =
Wα

ij

Qα
i

, (2.5)

where P is the transition matrix whose entries are probabilities of transition from node
to another. We obtain transition matrix Pt by performing random walks for t time steps.
We then perform eigendecomposition on the transition matrix to compute eigenvalues
λr and eigenvectors ψr of the transition matrix. We obtain the lower dimension by
taking only a fraction of the eigenvalues whose values are larger than a threshold. If δ

is the predetermined precision factor, the lower dimension d(t) can be defined as max{
l : λt

l < δλt
1 } [9]. The mapping of data in a lower dimensional space Rd(t) can then be

given as
Ψt(x) = [λt

1ψ1(x), λt
2ψ2(x), ...λt

d(t)ψd(t)(x)]. (2.6)

4



2. State of the art

The contents of Ψt(x) are called diffusion coordinates. The diffusion distance is formu-
lated as [8]

D2
t (x, y) = ||Ψt(x)−Ψt(y)||22 =

d(t)

∑
j=1

λ2t
j (ψj(x)− ψj(y))2. (2.7)

The diffusion distances are equal to euclidean distances in the lower dimensional space.
The value of Dt(x, y) is small if the nodes x and y are highly connected .i.e there are a
large number of short paths between them. One of the benefits of diffusion distances is
that they are taken over the sum of all paths of length t between x and y and hence are
more robust with noise than geodesic distances [9].
To extend the mapping from the given data to unseen data samples, we approximate
the new eigenvectors from the old ones without having to compute them again for the
new affinity matrix. It is done by Nyström method and is given as [8]

Ψj(y) =
1
λj

n

∑
i=1

Ψi(x) · k(x, y). (2.8)

x and y are points from the old and new data sets respectively and k(y, x) is the kernel
matrix with affinities between embedded data and the new data. The computational
complexity of diffusion maps is O(n3) and the most expensive part is the eigende-
composition. Hence, we will take a look at how we can try to mitigate this by using
hierarchical matrix approximations.

2.2. Datafold

Point cloud data is a set of unordered points in high-dimensional space. Time series data
is a series of data points taken in successive equally spaced points in time. datafold is
a python package that provides data-driven models for finding a parametrization of
manifolds in the aforementioned point cloud data and to identify non-linear dynamical
systems from time-series data [5]. The software architecture contains integrated models
that have been implemented in a modularized fashion and an API that has been
templated from scikit− learn library. The architecture as shown in Figure 2.1 consists of
three layers and describes the hierarchy of workflow.

layer 1
datafold.appfold

layer 2
datafold.dynfold

layer 3
datafold.pcfold

Figure 2.1.: Workflow hierarchy of datafold
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2. State of the art

2.2.1. datafold.pcfold

datafold.pcfold is the lowest layer in the workflow hierarchy that provides data structures
and algorithms directly associated with data. The two data structures belonging to the
layer are PCManifold and TSCDataFrame.

PCManifold

PCManifold is a class with data structures and algorithms to be applied on point cloud
data. It is derived from numpy.ndarray and has a kernel function to compute similarity
matrix using different distant metrics and eigen pairs [5]. As shown in Figure 2.2, the
classes PCManifoldKernel, TSCManifoldKernel, DmapKernelFixed for the kernel functions
is derived from BaseManifoldKernel. These classes further sub-classes for different types
of kernel functions. Functions like estimate_cutoff() and estimate_scale() compute the
threshold and ε for Gaussian radial basis kernel respectively.

Kernel

BaseManifoldKernel

TSCManifoldKernel

ConeKernel

PCManifoldKernel

ContinuousNNKernel RadialBasisKernel

CubicKernel GaussianKernel MultiquadricKernel InverseMultiquadricKernel QuinticKernel

DmapKernelFixed

Figure 2.2.: Class inheritance diagram for datafold.pcfold

TSCDataFrame

TSCDataFrame deals with collections of time series data. It is derived from
pandas.DataFrame and is used mainly to identify non-linear dynamical systems on the
underlying geometry. It consists of classes such as TSCKFoldTime, TSCMetric, TSCScoring

for K-fold splits on time values, computing metrics for time series collection, creating
scoring function for the metrics respectively. All the aforementioned classes inherit from
a base class named TSCCrossValidationSplit. Please refer to the software documentation
on the website for datafold as it contains information about every function in detail.

2.2.2. datafold.dynfold

This layer contains models that can be used in analysis tasks and in meta-models
in the higher layer of the workflow hierarchy. There are three types of models in
this layer. The first type of models are subclasses of TSCTransformMixin and include

6



2. State of the art

methods to compute a new representation of data. For example, DiffusionMaps is used
to find a lower-dimensional embedding of data, TSCPrincipalComponent for computing
principal components of time series data and so on. The second type of models
are derived from the class sklearn.base.RegressorMixin. They provide, for example,
LaplacianPyramidsInterpolator which is a model for interpolation of function values on
manifolds. The third and final type of model contains sub-classes of TSCPredictMixin

which inherits from DMDBase. Dynamic mode decomposition algorithms linearly
decompose time series data to spatial and temporal components which can be used to
predict time series [5].

2.2.3. datafold.appfold

datafold.appfold is the highest layer in the hierarchy workflow. It contains meta-models
that capture complex processing pipelines. These meta-models act as a single point
of access for other sub-models in the class. They are intended to solve complex data-
driven analysis tasks in the machine learning process. They consist of models that
are sub-classes of sklearn.pipeline.Pipeline and sklearn.model_selection.GridSearchCV. The
former pipeline provides extended dynamic mode decomposition algorithms to predict
time series. The latter cross-validation pipeline searches user-defined parameter space
that includes parameters over all the sub-models and includes data-splitting schemes
for time series data [5].

2.3. Kernel matrix approximations

In this chapter, we define kernel matrices using an example and discuss general matrix
approximation methods. We then explain hierarchical matrix representations and
compare how these techniques perform in terms of space and run-time complexities.

2.3.1. Kernels

Consider a domain X with n input points xi that map to target points yj in Y , where
i, j ∈ {1...n}. We want to predict y ∈ Y for a new input x ∈ X such that it is similar to
the training examples. To be able to do this, we need a similarity measure in X and Y .
Kernels are functions that take two inputs and output their similarity. To simplify, let
us consider the binary classification problem .i.e y ∈ {±1}. A kernel function for X is
defined as

k : X ×X → R, (x, x′) 7−→ k(x, x′) and (2.9)

7



2. State of the art

k(x, x′) = Φ(x)TΦ(x′), (2.10)

where Φ is the feature map of kernel k that maps into a dot product space of input
domains called the feature space [3]. Thus the kernel or Gram matrix with kernel k and
inputs x1, x2..xn ∈ X can be defined as

K := k(xi, xj)ij. (2.11)

A kernel matrix is symmetric positive definite if

K = KT and (2.12)

∑
i,j

cicjKij ≥ 0, ∀ci ∈ R. (2.13)

2.3.2. Motivation from N-body problems

N-body problems are associated with predicting an object or an entity’s behavior with
respect to the interactions with n-1 other objects near or far from it. Examples include
celestial body simulations, Coulomb’s law, data analysis in geostatistics and so on. Let
us consider Coulomb’s law where there are N points xi ∈ Rd. If xi is the target point,
xj is the source and wj is the weight at the source point, the potential at target point
can be computed as [10]

ui = u(xi) =
N

∑
j=1

K(xi, xj)wj. (2.14)

This is in the form of matrix-vector multiplication which has a computational complexity
of O(N2). The approach to reduce these costs is to perform near-far pruning. Since the
near-by points have a higher contribution to the potential, it makes sense to separate
points by some bounds on the distance. We split the points into two sets Neari and
Fari, where Neari consists of points at distance less than a given threshold σ and Fari
contains points further away. The potential then becomes

ui = ∑
p∈Neari

K(xi, xp)wp + ∑
p∈Fari

K(xi, xp)wp. (2.15)

The computations for Neari are done individually without neglecting any points. But
since Fari do not contribute much to the potential ui, the idea is to perform low-rank
approximations on these points to reduce the number of computations.

8



2. State of the art

2.3.3. Algebraic compression algorithms

In this section we discuss a couple of matrix approximation methods for general
matrices.

Reduced Singular Value Decomposition

Consider the matrix-vector product from Equation (2.14),

u = Kw. (2.16)

The idea is to compute an approximation of kernel matrices like K by methods like SVD.

The singular value decomposition of matrix A ∈ Cmxn is given by

A = UΣV∗, (2.17)

where A ∈ Cm×n is a matrix of rank r, U ∈ Cm×n and V ∈ Cnxn are unitary matrices.
Σ ∈ Rm×n is a non-negative diagonal matrix whose entries are singular values or principal
values of A. Singular values {σ1, σ2...σr} are non-negative square roots of eigen values
of AA∗ and A∗A. SVD can be used to generate a low-rank matrix from a higher rank
matrix [11]. It is called the reduced singular value decomposition. To obtain a low-rank
approximation Â of rank p from A of rank r, we sort the rows of Σ in descending order
to get Σ̂. We then set all elements of Σ̂ to zero except the first p entries .i.e the p largest
singular values [12] to obtain the reduced singular value decomposition

Â = UΣ̂V∗. (2.18)

This approach thus helps with dimensionality reduction but its still costs O(mn2) (m ≥
n) to compute the matrix products.

Interpolative Decomposition

Despite the high accuracy provided by SVD, there are certain drawbacks such as
O(mn2) computational costs. Hence we look at interpolative decomposition method
that uses A’s own rows and columns to generate a factorization with a simple geometric
interpretation. The factorization is given as

A = Acol · B, (2.19)

where A ∈ Cm×n with rank k < min(m, n) and Acol ∈ Cm×k is a matrix consisting of a
subset of columns from A. B ∈ Ck×n consists of a identity matrix of size k× k and all of

9



2. State of the art

its values are less than 2 in absolute value. The cost of computing such a factorization
is O(mnk). Although the costs are lower than that of SVD, there are disadvantages
to this method such as loss in accuracy due to norms of B being greater than 1 and
the non-uniqueness of the factorization. Interpolative decomposition can be calculated
using QR decomposition as [13]

Acol B = AΠ = QR =
[

Qle f t Qright
][ R11 R12

0 R22

]
. (2.20)

Q ∈ Cm×n has orthonormal columns and R ∈ Rn×n is an upper triangular matrix.
Disregarding R22 since ||R22|| = O(σk+1), Equation (2.20) can be further simplified to

Acol B = AΠ = Qle f t
[
R11 R12

]
. (2.21)

From Equation (2.21) we write

Acol = Qle f tR11. (2.22)

Combining Equations (2.21) and (2.22), we get

Qle f tR11B = Qle f t
[
R11 R12

]
, (2.23)

R11B =
[
R11 R12

]
and (2.24)

B =
[
Ik×k

R12

R11

]
. (2.25)

A faster randomized procedure is introduced in [14] that applies a structured random
matrix Rl×m, l > k to each column of A with cost proportional to O(mnlog(k) + l2(m +

n)).

2.3.4. Hierarchical decompositions

The hierarchically low-rank approximation K̃ of the kernel matrix K is given as [14, 15]

K̃ = D + S + UV, (2.26)

where D is a block-diagonal matrix with every block being an H-matrix, S is a sparse
matrix and U, V are low rank matrices. The H-matrix K̃ is to be computed such that

||K̃− K||
||K|| ≤ ε, (2.27)

10



2. State of the art

where ε is the user defined tolerance and 0 < ε < 1. If S is zero in Equation (2.26), K̃ is
called hierarchically off-diagonal low-rank approximation and additionally if D is also
zero, the approximation is called hierarchically semi-separable. The construction of K̃
and matrix-vector product both take O(NlogN) work.

2.4. GOFMM

In this section, we discuss the algorithm and operations introduced in [1], to compute
the hierarchical low-rank approximation of dense symmetric positive matrices. The
algorithm has a compression and an evaluation phase.

2.4.1. Compression

The compression algorithm from GOFMM [1] is listed in Algorithm 1.

Algorithm 1 Compression(K)

1: HierarchicalPartitioning()
2: NeighborBasedPruning()
3: Skeletonization()

Hierarchical partitioning

The first step of compression is to construct the hierarchical structure of the given
matrix K using near-far pruning. This is done by taking all points as the root node of a
binary metric ball tree and splitting the node until maximum leaf node size m, using a
distance metric. The idea of the distance metric is to separate indices that are near to
each other from those that are far away since their contribution is negligible. Recall
from Section 2.3.2, we have N points {x1, x2...xN}. We now consider the following three
[1] types of distances

Geometric distance The geometric distance is given by

dij = ||xi − xj||2. (2.28)

The points are partitioned such that the distance dij between points belonging to the
same partition is minimum. The splitting terminates when the number of leaf nodes is
equal to the predetermined maximum m. This distance metric takes O(NlogN) work.

11



2. State of the art

Kernel distance As we can recall from section 2.3.1, kernel or gram matrix is a set
of gram vectors such that Kij =< φi, φj >. We compute kernel distance using three
entries of the kernel matrix as follows

dij = ||φi − φj||2 = Kii + Kjj − 2Kij. (2.29)

Angle distance Both kernel and angle distances require O(N2) work without
sampling. Angle distance uses the angle between the gram vectors which is the sine
distance between the inner product spaces. It is given as

dij = sin2( 6 φi, φj) = 1 −
K2

ij

KiiKjj
. (2.30)

An approximate centroid is defined using a small sample of gram vectors belonging to
the given node of points. A median split is applied with respect to the centroid to all
nodes starting from the root node that consists of all points.

Neighbor based pruning

Once we have a tree with hierarchical partitions of the matrix, we perform neighbor-
based pruning by computing three lists namely neighbor list N (α), near interaction list
Near(α) and far interaction list Far(α). As shown in Algorithm 2, N (α) is obtained by
exhaustively searching and then merging all neighbors j ∈ α for each i ∈ α such that
dij is small. The tree splitting and pruning is repeated until either 10 iterations have
finished or until 80% accuracy is attained.

Algorithm 2 N (α)

1: for all i ∈ α do
2: for all j ∈ α do
3: if dij is small then
4: N (α) = N (α) ∪ j
5: end if
6: end for
7: end for

Similarly, Near(α) is obtained in Algorithm 3 by adding MortonIDs of the all the
indices present in N (α). Morton Id of a node is a bit array that represents the path
from root to the node. The set of near points Near(α) represents the dense blocks
that cannot be approximated. Therefore, to stop the list from growing and therefore
increasing the cost of computation, the parameter computation budget is introduced such

12
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Algorithm 3 Near(α)

1: for all i ∈ N (α) do
2: Near(α) = Near(α) ∪MortonId(i)
3: end for

Algorithm 4 Far(α)

1: for all β ∈ leaf nodes do
2: if α ∩ Near(β) 6= φ then . there are near interactions between α and β

3: Far(le f t_childα)

4: Far(right_childα)

5: else
6: Far(α) = Far(α) ∪ β

7: end if
8: end for
9: Far(α) = Far(le f t_childα) ∩ Far(right_childα)

10: Far(le f t_childα) = Far(le f t_childα) \ Far(α)
11: Far(right_childα) = Far(right_childα) \ Far(α)

that the |Near(α)| < N
m .

Finally for Far(α), each leaf node β is traversed to check if α ∩ Near(β) = φ. As shown
in Algorithm 4, if the condition is true, it means that α and β have no near interactions
and β can be added to the list of Far(α). If it is false, then the process is recursively
continued with the left and right children. The common nodes in left and right child
are extracted and added to the parent node Far(α) to expand the size of off-diagonal
blocks that can be later approximated.

Skeletonization

The off-diagonal blocks are approximated using interpolative decomposition. A skeleton
of the off-diagonal block is obtained by taking a subset of columns from the block. The
decomposition is similar to Equation (2.19) and is given as

KIβ = KI β̃ · P, (2.31)

where β is a leaf node and I is a set complement of β. P is the matrix with interpolation
coefficients and KI β̃ is the skeleton with β̃ being a subset of columns of the leaf node.
For all non-leaf nodes, skeletons of the left and right children are computed recursively
and combined to obtain the decomposition of the parent block.

13
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2.4.2. Evaluation

Matrix-Vector product of kernel matrix K and weights w is performed using the Near
and Far lists to compute the potential u. For all the Far nodes, the skeleton basis K

β̃α
is

Algorithm 5 Evaluate(u) [1]

1: N2S(α) . Computes skeleton weights w̃
2: S2S(α) . Apply skeleton basis K

β̃α

3: S2N(α) . Accumulate skeleton potentials ũ
4: L2L(α) . Accumulate direct matvec for Near(β)

used to approximate the product. In the first step, the skeleton weights w̃ of each leaf
node are computed using a post-order traversal. This is done by computing a product
of the corresponding interpolation coefficients with the skeleton weights of the leaf
node. The internal nodes are recursively computed using the skeletons of left and right
children nodes. In the second step, the skeleton basis K

β̃α
is applied to the skeleton

weights w̃. Finally, the skeleton potentials ũ are accumulated by preorder traversal of
the binary tree. The potentials of Near(β) are not approximated and thus direct matvec
is performed on these blocks.

14



3. Efficient and Scalable Kernel Matrix
Approximation using Hierarchical
Decomposition

3.1. Implementation

3.1.1. Overview

In this section, we discuss an instance of a LinearOperator with a matvec implementation
using GOFMM methods. GOFMM [1] methods are used on python data structures using
Simplified Wrapper Interface Generator (SWIG). SWIG generates an interface for the
GOFMM C++ methods and generates code for the target language, in our case Python.
We can then use the C++ methods in Python scripts without additional compilation.
We exploit this to generate manifold learning data using datafold and performing
hierarchical decomposition on kernel matrices using GOFMM methods.
The integrated environment has been provided in a docker container. Since the Linux
cluster at LRZ does not provide docker support, we convert the docker image to a
Charliecloud image [16]. We export the Charliecloud image to the Linux cluster and
gather accuracy measurements for datasets such as uniform sampling data, Swiss roll
and s-curve. Furthermore, we also perform a pairwise comparison of eigenvectors,
fit out-of-sample data and compare the results with the scipy eigen solvers. We then
perform strong and weak scaling with multiple cores and also multiple nodes. We
collect the run-time information to inspect the scalability of the integrated environment
on the Linux cluster.

3.1.2. Charliecloud

We have a docker image containing GOFMM that has been augmented in order to be
used with Python data structures. The Linux cluster at LRZ does not provide docker
support since it requires admin rights. Hence Charliecloud container technology [16] is
used as an alternative.
Containers are lightweight and simple to use. We begin by building a docker image
on a local machine using a dockerfile with all the required softwares and dependencies.
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The dockerfile contains commands to install all the run-time dependencies followed by
installation of GOFMM and datafold. It is also required to set the correct environment
variables. Once the environment variables are set, GOFMM is compiled. Then the
SWIG interface file is compiled to generate Python versions of GOFMM’s C++ meth-
ods. The instructions to build the image and the dockerfile can be found in the appendix.

Charliecloud is first installed on the local machine from the github repository and
then any docker image can be converted to a Charliecloud image using the command
ch-builder2tar <docker-image> /dir/to/save. The Charliecloud image is then ex-
ported to the Linux cluster and unpacked with the command
ch-tar2dir <charliecloud-image> /dir/to/unpack.
Now we can run our code inside the Charliecloud container with the command ch-run

�set-env=./gofmm/ch/environment -w ./gofmm � bash, where gofmm is the image. -w
mounts the image with read-write permissions while the default is read-only. �set-env
sets the environment for the container since by default it inherits the environment of
the host system. The environment variables are very important since without them
there will be compilation, linker and/or execution errors.

3.1.3. LinearOperator

SciPy [17] is an open-source free software with modules for common tasks of Science
and Engineering such as linear algebra, solvers, interpolation etc. Our focus in this
thesis will be on scipy.sparse package which provides methods for sparse matrices. It
contains seven matrix and array classes for different types of representations such
as sparse row matrix, column matrix, coordinate format etc. It also accommodates
methods to build various kinds of sparse matrices and two submodules csgraph and
linalg. The submodule linalg provides an abstract interface named LinearOperator that
uses iterative solvers to perform matrix-vector products. This interface consists of
methods such as matmat(x), matvec(x), transpose(x) for matrix-matrix multiplication,
matrix-vector multiplication and transpose of matrix respectively. A concrete class
or subclass of LinearOperator can be built by implementing either one of _matvec or
_matmat methods and the properties shape and dtype. Depending on the type of matri-
ces at hand, corresponding matvec methods may also be implemented.
scipy.sparse.linalg also provides methods for computing matrix inverses, norms, decom-
positions and linear system solvers. The functionality we are interested in is the matrix
decomposition. In Table 3.1, we can take a look at various decomposition methods
that are present in the module. The method we use to decompose data obtained from
datafold is scipy.sparse.linalg.eigsh [17]. This method requires either an ndarray, a sparse
matrix or LinearOperator as parameters. It optionally takes k, which is the number of
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desired eigen values and eigen vectors. It solves Ax[i] = λix[i] and returns two arrays -
λ[] for eigen values and k vectors X[: i], where i is the column index corresponding to
the eigen value. Other optional parameters can be referred at the SciPy documentation
website.

scipy.sparse.linalg.eigsh is a wrapper ARPACK functions SSEUPD and DSEUPD which
use implicitly restarted Lanczos method to solve the system for eigen values and vectors
[18]. Lanczos process belongs to a class called Krylov subspace projection methods.
Arnoldi method generalizes Lanczos to deal with non-symmetric matrices [19].

Table 3.1.: Matrix Factorizations in scipy.sparse.linalg.

scipy.sparse.linalg.eigs Finds eigen values and vectors of square matrix

scipy.sparse.linalg.eigsh
Finds eigen values and vectors of real symmetric or
complex hermitian matrix

scipy.sparse.linalg.lobpcg
Locally Optimal Block Preconditioned Conjugate Gra-
dient Method

scipy.sparse.linalg.svds Partial Singular Value Decompositions

scipy.sparse.linalg.splu LU decomposition of sparse square matrix

scipy.sparse.linalg.spilu Incomplete LU decomposition of sparse square matrix

scipy.sparse.linalg.SuperLU LU factorization of a sparse matrix

Implicitly restarted Arnoldi method

Implicitly restarted Arnoldi method is a variation of Arnoldi process. Arnoldi process
builds on the power iteration method which computes Ax, Ax2, Ax3... for an arbitrary
vector x, until it converges to the eigen vector of the largest eigen value of matrix A.
To overcome the drawbacks of so many unnecessary computations for a single eigen
value and its corresponding eigen vector, Arnoldi method aims to save the successive
vectors as they contain considerable information that can be further exploited to find
new eigen vectors. The saved vectors form a Krylov matrix and is given as [20]

Kn = Span[x, Ax, A2x...An−1x]. (3.1)

Orthonormal vectors x1, x2, x3... that span a Krylov subspace are extracted using Gram-
Schmidt orthogonalization from each column of Krylov matrix. The k-step Arnoldi
iteration is given in Algorithm 6 [19]. H is the orthogonal projection of A in the Krylov
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Algorithm 6 k-step ArnoldiFactorization(A,x)

1: x1 ←
x
||x|| . Computes first krylov vector x1

2: w← Ax1 . Computes new candidate vector
3: α1 ← xH

1 w
4: r1 ← w− α1x1

5: X1 ← [x1] . Orthonormal basis of krylov subspace
6: H1 ← [α1] . Upper Hessenberg matrix
7: for all j = 1...k− 1 do . For k steps, compute orthonormal basis X
8: . and the projection of matrix A on the new basis

9: β j ← ||rj|| ; xj+1 ←
rj

β j

10: Xj+1 ← [Xj, xj+1] ; Ĥj ←
[

Hj, β jeT
j

]T

11: z← Axj
12: h← XH

j+1z; rj+1 ← z− Xj+1h . Gram-Schmidt Orthogonalization
13: Hj+1 ← [Ĥj, h]
14: end for

subspace. It is observed that eigen values of the upper Hessenberg matrix H, namely
Ritz values converge to eigen values of A. When rj = 0, the Ritz pairs become eigen
pairs of A.

One of the drawbacks of Arnoldi process is that the number of iterations taken for
convergence is not known prior to the computation of well-approximated Ritz values
[19]. This causes the computation of Hessenberg matrix to cost O(k3) at the k-th step.
To mitigate this problem, the computation of Ritz values are halted when desired
accuracy is achieved. Then a polynomial ψ(A) is constructed from the obtained Ritz
values and applied to unwanted components [21] as shown in the equations below

x1 ← ψ(A)x1 and (3.2)

x1 ←
x1

||x1||
. (3.3)

This approach is called explicitly restarted Arnoldi method. A more efficient approach
named implicitly restarted Arnoldi method uses implicitly shifted QR-iteration. It avoids
storage and numerical difficulties associated with the standard approach by compress-
ing the necessary information into a k-dimensional Krylov subspace.
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Arnoldi factorization of length m = k + p looks like

AXm = XmHm + rmeT
m. (3.4)

The implicit restarting method aims to compress this to length k by using QR steps to
apply p shifts resulting in [19]

AX+
m = X+

m H+
m + rmeT

mQ (3.5)

where V+
m = VmQ, H+

m = QT HmQ and Q = Q1Q2...Qp. Qj is the orthogonal matrix
associated with the corresponding shift µj. The first k− 1 values of eT

mQ are zero and
thus the factorization becomes

AX+
k = X+

k H+
k + r+k eT

k . (3.6)

The residual r+m can be used to apply p steps to obtain back the m-step form. A
polynomial of degree p, ∏

p
1(λ− µj) is obtained from these shifts. The roots of this

polynomial are used in the QR process to extract unwanted information from the
starting vector.

Implicitly restarted Lanczos method

Consider the Equation 3.4 for Arnoldi factorization. Xm are orthonormal columns and
Hm is the upper Hessenberg matrix. If A is a Hermitian matrix, it becomes Lanczos
factorization. So Arnoldi is basically a generalization to non-hermitian matrices. For
Lanczos method, Hm is a real, symmetric and tridiagonal matrix and the Xm are called
Lanczos vectors. The algorithms hence remain the same as the ones described for
Arnoldi. The methods scipy.sparse.linalg.eigs uses Arnoldi iteration since it deals with
real and symmetric matrices while scipy.sparse.linalg.eigsh invokes implementation of
Lanczos methods.

Python script

Everything is put together in a python script as shown in Figure 3.1. Point cloud
data is generated using PCManifold class from the pcfold sub-package. DiffusionMaps

instance is created with the point cloud data in order to perform the diffusion maps al-
gorithms. A class FullMatrix is derived from LinearOperator interface which belongs
to scipy.sparse.linalg package. In short, the kernel matrix from DiffusionMaps

instance is used by FullMatrix to perform eigendecompositions with GOFMM algorithms.

FullMatrix will provide an implementation of matvec method using GOFMM meth-
ods as shown in Listing 3.1. FullMatrix has member variables such as problem_size,
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Figure 3.1.: UML diagram of implementation of the python script

executable etc. which are necessary to build a gofmmTree. The constructor initializes
all the member variables and also loads the numpy matrix into the SWIG interface
methods. The method LoadDenseSpdMatrixFromConsole converts the numpy matrix
to an object of type SPDMATRIX_DENSE. In matvec, an instance of gofmmTree is cre-
ated with the correct parameters. With self.wData as a vector consisting of ones,
MultiplyDenseSpdMatrix is called to perform the compression and evaluation phases
of the hierarchical algorithm.

1 import numpy as np

2 import scipy.sparse.linalg

3 from sympy import product

4 import tools

5 from scipy.linalg import eig, eigh

6 from scipy.sparse.linalg import LinearOperator

7

8 class FullMatrix( LinearOperator ):
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9 def __init__( self,

10 executable,

11 problem_size,

12 max_leaf_node_size,

13 num_of_neighbors,

14 max_off_diagonal_ranks,

15 num_rhs,

16 user_tolerance,

17 computation_budget,

18 distance_type,

19 matrix_type,

20 kernel_type,

21 spd_matrix,

22 weight,

23 dtype="float32" ):

24 self.executable = executable

25 self.problem_size = problem_size

26 self.max_leaf_node_size = max_leaf_node_size

27 self.num_of_neighbors = num_of_neighbors

28 self.max_off_diagonal_ranks = max_off_diagonal_ranks

29 self.num_rhs = num_rhs

30 self.user_tolerance = user_tolerance

31 self.computation_budget = computation_budget

32 self.distance_type = distance_type

33 self.matrix_type = matrix_type

34 self.kernel_type = kernel_type

35 self.spd_matrix = np.float32( spd_matrix )

36 self.denseSpd = tools.LoadDenseSpdMatrixFromConsole( self.spd_matrix )

37 self.weight = np.float32( weight )

38 self.wData = tools.LoadNumpyMatrixFromConsole( self.weight )

39 self.lenMul = self.problem_size * self.num_rhs

40 self.shape = self.spd_matrix.shape

41 self.dtype = np.dtype( dtype )

42

43 def _matvec( self, x ):

44 gofmmCalculator = tools.GofmmTree( self.executable,

45 self.problem_size,

46 self.max_leaf_node_size,

47 self.num_of_neighbors,
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48 self.max_off_diagonal_ranks,

49 self.num_rhs,

50 self.user_tolerance,

51 self.computation_budget,

52 self.distance_type,

53 self.matrix_type,

54 self.kernel_type,

55 self.denseSpd )

56

57 a = x.reshape( self.problem_size,1 )

58 c = gofmmCalculator.MultiplyDenseSpdMatrix( self.wData, self.lenMul )

59 spdMatrix_mul = np.resize( c, ( self.problem_size, self.num_rhs ) )

60 return spdMatrix_mul

Listing 3.1: class FullMatrix

Datasets

Datasets are created as shown in the tutorial section of datafold repository [5]. The first
example as shown in Listing 3.2 contains samples drawn from a uniform distribution.

1 import datafold.pcfold as pfold

2 import numpy as np

3

4 random_state = 42

5 problem_size = 16384

6

7 rng = np.random.default_rng( random_state )

8 data = rng.uniform( low = ( -2, -1 ), high = ( 2, 1 ), size = (

problem_size, 2 ) )

9

10 pcm = pfold.PCManifold( data )

11 pcm.optimize_parameters()

Listing 3.2: Uniform sampling of point cloud data

An instance rng of Generator is created which is then used to draw uniformly dis-
tributed samples from the given interval. The above example is a rectangle with 16384
samples and values ranging from [-2,-1] to (2, 1) as shown in Figure 3.2. Then point
cloud representation is created by instantiating PCManifold with the data. We further
calculate parameters such as cut_off and epsilon which are the threshold for pairwise

22



3. Efficient and Scalable Kernel Matrix Approximation using Hierarchical Decomposition

distances between points and the kernel bandwidth respectively.

Figure 3.2.: Uniform sampling of size 16384 with values between [-2,-1] and (-2,-1)

Embedding

Once we have the point cloud data, we want to find an emebedding using diffusion
maps algorithm. This is done as shown in Listing 3.3 for the uniform sampling data.
An instance of DiffusionMaps class is created from dynfold with a GaussianKernel.
The embedding is obtained by the method fit and the eigenvalues and vectors can be
queried from the instance like dmap.eigenvectors_ and dmap.eigenvalues_.

1 dmap = dfold.DiffusionMaps( kernel=pfold.GaussianKernel(

2 epsilon=pcm.kernel.epsilon),

3 n_eigenpairs=5,

4 dist_kwargs=dict(cut_off=pcm.cut_off), )
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5 dmap.fit(pcm, store_kernel_matrix=True)

Listing 3.3: DiffusionMaps instantiation

The dmap.kernel_matrix_ is a square matrix of size N × N where N is the number of
samples. Due to its large size, it becomes computationally expensive to compute eigen
pairs. Hence we use the stored kernel matrix to perform hierarchical decompositions
as in Listing 3.4.

1 K = dmap.kernel_matrix_

2 K_sparse = K.copy()

3 K = K.todense()

4

5 kernel_matrix_OP = FullMatrix( executable,

6 problem_size,

7 max_leaf_node_size,

8 num_of_neighbors,

9 max_off_diagonal_ranks,

10 num_rhs, user_tolerance,

11 computation_budget,

12 distance_type,

13 matrix_type,

14 kernel_type,

15 K, w,

16 dtype=np.float32 )

17

18 n_eigenpairs = 5

19 solver_kwargs = {

20 "k": n_eigenpairs,

21 "which": "LM",

22 "v0": np.ones(problem_size),

23 "tol": 1e-14,

24 }

25

26 eigenvalues, eigenvectors = scipy.sparse.linalg.eigsh(K_sparse,

27 **solver_kwargs)

28 eigenvalues_gofmm, eigenvectors_gofmm = scipy.sparse.linalg.eigsh(K,

29 **solver_kwargs)

Listing 3.4: Eigendecomposition with scipy solver matvec and GOFMM matvec
evaluations
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The stored kernel matrix is converted to a sparse representation and used to perform
eigendecompositions using the scipy solver which uses implicitly restarted Arnoldi
iteration if the matrix is symmetric and implicitly restarted Lanczos method otherwise.
The FullMatrix instance is used as a parameter to the scipy solver to make it use the
GOFMM algorithm. The eigen values and vectors obtained from both the algorithms
can then be compared by computing a norm and plotting the eigen vectors. Along
with the accuracy measurements, we also explore the scalability of these integrated
softwares on CoolMUC-2, CoolMUC-3 by strong and weak scaling experiments on both
multiple core and multiple nodes. The run-time measurements are done using Intel

VTune Amplifier [22]. This tool is used to profile code, obtain system performance,
bottlenecks and various other purposes.

3.2. Experiments and Results

The integration of operations from GOFMM and point cloud data from datafold is run
on the CoolMUC-2 cluster with 28-way Intel Xeon E5-2690 v3 ("Haswell") based nodes
and FDR14 Infiniband interconnect. CoolMUC-2 has 812 nodes with 64GB memory
per node. On the other hand, multiple node scaling is conducted on CoolMUC-3
cluster with 64-way Knights Landing 7210-F many-core processors and Intel Omnipath
OPA1 interconnect. It has 148 nodes with 64 cores per node and 4 hyper threads per
core. Therefore, the accuracy measurements and multi-core scaling experiments with
OMP number of threads less than 28 are conducted on the compute node lxlogin1 of
CoolMUC-2 and the rest on lxlogin8 of CoolMUC-3.

3.2.1. Accuracy Measurements

The resultant eigenvalues of both scipy solver and the one with GOFMM compression
and evaluation are recorded. Then Froebius error norm [23] is calculated as shown in
Equation 3.7.

||ErrorF|| =
[ 5

∑
i=1

abs(xi)
2
] 1

2
, (3.7)

where xi are the five largest eigen values. The error is then divided by the number of
eigen values.

As the first dataset, we consider two-dimensional uniform sampling of different sizes
ranging from 2048 to 16384 asshown in Figure 3.2. We work with the same data set for
all our experiments. Firstly, the accuracy is measured for varying problem sizes and
max_leaf_node_size while the other parameters are fixed as following:
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1 executable = "./test_gofmm"

2 num_of_neighbors = 0

3 max_leaf_node_size = 0.5*problem_size

4 max_off_diagonal_ranks = max_leaf_node_size

5 num_rhs = 1

6 computation_budget = 0.00

7 user_tolerance = E-5

8 distance_type = "kernel"

9 matrix_type = "dense"

10 kernel_type = "gaussian"

Listing 3.5: Parameter values for max_leaf_node_size vs. user_tolerance

For simplicity, let us denote problem size as N and maximum leaf node size as m.
Therefore we have a matrix of size N × N and every leaf node in the tree has a
maximum leaf node size m. The error norms are computed by sorting eigen values of
both algorithms in descending order as shown in Listing 3.6.

1 exact_eigen_values, exact_eigen_vectors = scipy.sparse.linalg.eigsh(

2 K_sparse, **solver_kwargs)

3 sorted_exact_eigen_indices = np.argsort(-exact_eigen_values)

4 sorted_exact_eigen_values = exact_eigen_values[sorted_exact_eigen_indices

]

5 sorted_exact_eigen_vectors = exact_eigen_vectors[:,

6 sorted_exact_eigen_indices]

7

8 approx_eigen_values, approx_eigen_vectors = scipy.sparse.linalg.eigsh(

9 kernel_matrix_OP,

10 **solver_kwargs)

11 sorted_approx_eigen_indices = np.argsort(-approx_eigen_values)

12 sorted_approx_eigen_values = approx_eigen_values[

13 sorted_approx_eigen_indices]

14 sorted_approx_eigen_vectors = approx_eigen_vectors[:,

15 sorted_approx_eigen_indices]

16

17 n_eigenpairs=5

18 error = np.linalg.norm(sorted_exact_eigen_values -

19 sorted_approx_eigen_values)/n_eigenpairs

Listing 3.6: Sort eigenvalues and their corresponding eigen vectors
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It can be observed in Table 3.2 that the errors converge to the order of 10−3 and 10−4

for m values of 0.5N and 0.25N and seem to decrease for decreasing values of m, which
is the expected behavior.

The parameters maximum leaf node size m and maximum off-diagonal rank s are the

N
m

0.5N 0.25N 0.125N 0.0625N

16384 8.84E-4 9.87E-4 1.48E-2 1.34E-1
8192 1.15E-3 1.08E-3 1.73E-2 1.50E-2
4096 1.15E-3 8.84E-4 1.28E-2 7.46E-2
2048 1.08E-3 1.00E-3 2.36E-2 1.58E-1
1024 1.41E-3 1.17E-3 1.41E-2 1.70E-1

Table 3.2.: problem_size vs. maximum_leaf_node_size

most important in terms of accuracy [24]. m determines the size of sparse blocks and s
determines the maximum approximation rank of the off-diagonal blocks. Therefore,
theoretically increasing values of m and s must produce more accurate results. Next we

stol
m

0.5N 0.25N 0.0625N

E-3 1.38E-3 2.43E-3 1.08E-1
E-5 1.15E-3 1.08E-3 1.30E-1
E-7 6.91E-3 8.75E-4 nan

Table 3.3.: user_tolerance vs. maximum_leaf_node_size for problem size N=8192

collected accuracies for varying user tolerance stol and m values for the problem size
8192 in Table 3.3. stols do not seem to have a huge impact on the accuracy. The eigen
values for m = 0.0625N and stol = E-7 are NaN and this could be due to reasons such
as overflows.

For the above experiments we’ve maintained m = s and to find out which of the
two parameters have a bigger influence on the accuracy, we vary the values of s against
m. For problem size 4096, as shown in Table 3.4, the accuracy seems to vary with
varying values of s. This behavior in accuracy is consistent with the experiments
conducted in [25]. It makes sense that the higher values of s result in higher accuracies
because s is the maximum rank of the approximation applied to the off-diagonal blocks.
More information is lost when low-rank approximations are performed, thus causing
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m
s

0.5N 0.25N 0.125N

0.5N 1.08E-3 9.73E-4 2.23E-2
0.25N 1.17E-3 1.05E-3 1.54E-2
0.125N 3.83E-3 5.55E-3 1.52E-2

Table 3.4.: maximum_leaf_node_size vs. max_off_diagonal_ranks for problem size N=4096

less accurate results.

Finally, since only the 5 largest values were considered for the error norms, a bet-
ter illustration required the calculation of more eigen values. Figure 3.3 shows 512
eigen values computed in a problem size of 16384 for both matvec operations. The
difference in larger eigen values can be seen at the top of the plot whereas the smaller
eigen values almost converge.

(a) scipy solver (b) GOFMM

Figure 3.3.: 512 Eigen values for N=16384

3.2.2. Multi-core performance

GOFMM employs OpenMP parallelism and hence can be used to speed up our matrix-
vector products. We first take a fixed set of parameters and perform two types of scaling
with multiple cores on a single node. Before the aforementioned runs, C++ code for the
SWIG interface file was restructured. The methods LoadDenseSpdMatrixFromConsole,
LoadNumpyMatrixFromConsole load numpy matrices into the C++ data structures
SPDMATRIX_DENSE, DATA_s respectively and return them by value. SWIG allocates a
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new object for these data structures and it is up to the user to deallocate them when
it is no longer needed. But since the scope of these variables is inside the function,
deallocation is also not possible and thus causes memory leaks. To mitigate this, we
declare the data structure variables globally and return a reference to them. For scaling,
we collect run time in seconds and also calculate speed-up or efficiency as the ratio of
time taken by a single thread versus time taken by multiple threads.

Strong scaling

For strong scaling, we consider the problem sizes 8192 and 16384. Scaling up to
28 threads was done on CoolMUC− 2 and runs with 56 threads were performed on
CoolMUC− 3. CoolMUC− 2 has a peak performance of 1400 TFlop/s and CoolMUC− 3

has 459 TFlop/s. The speed-up bar plot for 8192 can be seen in Figure 3.4 for various
OMP_NUM_THREADS starting from 1 to 56. The speed-up increases almost ideally
for up to 4 threads. Speed-up for threads 8, 16 and 28 stays constant while for 56
threads, there is a speed-down of 0.42. We suspect this could be due to reasons such
as communication and synchronization overhead. Run times for problem size 16384
can be seen in Table 3.5. Time taken by 1 thread exceeds 48 hours of run time while
slowly scaling with increasing ranks. But we notice an increase in run time for a higher
number of threads, similar to the scaling of problem size 8192.

1 2 4 8 16 28 56
OMP_NUM_THREADS
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Strong scaling
N=8192
ideal

Figure 3.4.: Strong scaling for problem size 8192.
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N
n_t

1 2 4 8 16 28 56

8192 11935 6006 4173 4369 4353 4488 27952
16384 >172k 72924 52454 48774 38460 43106 >172k

Table 3.5.: Run time in seconds for problem sizes 8192 and 16384 with various
OMP_NUM_THREADS

Weak scaling

Weak scaling was done with the same sequence of OMP_NUM_THREADS as that of
strong scaling. We deal with square matrices and keeping problem size per thread
constant would mean that the number of threads increases quadratically. Since we only
have a limited number of cores, we have increased the threads linearly as shown in
Table 3.6. Load per thread can be given as

problem_size
thread

=
N × N

1
. (3.8)

The load per thread doubles when problem size of the square matrix is doubled while
increasing the number of threads linearly as shown in Equation 3.9.

problem_size
thread

=
2N × 2N

2
= 2× N × N

1
. (3.9)

We then expect the ideal efficiency to ideally reduce by a fraction of number of
omp threads. We observe in Table 3.6 that the efficiency reduces by more than the
aforementioned factor. This behavior can also be explained by the reasons mentioned
in Section 3.2.2 as we increase the load per thread similar to strong scaling.

N OMP NUM THREADS Run time in sec Efficiency
1024 1 125 1
2048 2 432 0.28
4096 4 605 0.20
8192 8 4369 0.028
16384 16 38460 0.003

Table 3.6.: Weak scaling with multiple cores

Weak scaling with OMP_NUM_THREADS 1, 4 and 16 can be viewed in the Figure
3.5. The line plot describes the ideal behavior while the blue and orange bars are the
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efficiency of 512 and 1024 problem sizes per thread respectively. Efficiency does not
stay constant and rather decreases rapidly and this could be due to load imbalance,
granularity and communication overhead.

1 4 16
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Figure 3.5.: Weak scaling

3.2.3. Multi node performance

GOFMM uses MPI parallelization and hence can be used on larger problem sizes. In
order to utilise this feature, we write the kernel matrix computed from the instance
of DiffusionMaps as shown in Listing 3.3 into a binary file. We then use the binary file
as input to run the mpi executable of gofmm. The decision to not use the python
script was made because it is required to write a new SWIG interface for the MPI
methods and using mpiexec to run a python script will not work. Therefore it requires
distributing the problem in the python script using mpi4py. Given that there is not a lot
of support provided for mpi4py [23] with SWIG, it is not known if it could work and
also may cause performance drawbacks. Note that using GOFMM without scipy means
that we will not be using the iterative method to perform eigendecomposition. Instead,
kernel matrices are hierarchically decomposed and evaluated using an arbitrary vector.
This means that instead of recording time for several iterations, time-taken to perform
one decomposition and one matrix-vector evaluation is recorded for experiments in
this section.
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Strong scaling

All the multi-node runs were performed on lxlogin8 node on CoolMUC− 3. Firstly, we
recorded the influence of OMP threads with MPI. In Table 3.7, the run times for a matrix
of size 16384, with 2 MPI ranks and varying OMP number of threads distributed across
2 nodes are shown. The run time for 2 threads is the highest with the least percentage
of CPU utilization. Although the CPU utilization increases with the increasing OMP
number of threads, there is not a lot of difference in the run times. The top hotspot for
2 OMP threads was the BLAS method for matrix multiplication. For more than 2 OMP
threads, locking and synchronization methods consumed the most amount of time.

OMP NUM THREADS Run time in sec % CPU utilization
2 57.529 0.8
4 44.199 1.3
8 38.108 2.7
16 37.164 5.5
32 38.085 10.7

Table 3.7.: Run time for problem size 8192 with 2 MPI tasks distributed and different
OMP_NUM_THREADS on 2 nodes

Then we fix the OMP number of threads to 8 and vary the number of MPI ranks for
the two problem sizes. As shown in Figure 3.6, speed-up for N=8192 increases almost
ideally until 4 MPI ranks and behaves similarly to what we observed in Figure 3.4. On
the other hand, problem size 16384 scales better than expected for 16 ranks and is due
to a better distribution of computational load among the nodes.

N
MPI tasks

1 2 4 8 16 32

8192 1 1.48 3.48 3.12 5.26 5.46
16384 1 1.51 5.14 11.499 17.33 21.46

Table 3.8.: Speed up for various number of MPI tasks distributed across 2 nodes

We also performed strong scaling for N=16384 while varying the number of nodes
along with the MPI ranks as shown in Figure 3.7. We observed that the problem
performs better when distributed across 2 nodes and decreases with the increase in the
number of nodes. This is evidently due to load imbalance and reduced CPU utilization.
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Figure 3.6.: Strong scaling for problem sizes 8192 and 16384 distributed across 2 nodes.
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Figure 3.7.: Strong scaling for problem size 16384 on 2,4 and 8 nodes.
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Weak scaling

For weak scaling on multiple nodes, we have the same problem as in Section 3.2.2.
Since we work with square matrices, we need to increase the number of MPI ranks
quadratically to keep the problem size per thread constant. Due to limited resources,
we increase them linearly. This means that the problem_size per thread is doubled each
time, implying that ideally the run time also doubles. Figure 3.8 shows run times with
this type of scaling for 1, 2 and varying nodes. Time taken on 1 node stays constant
up to 4 ranks and sharply increases for 8 and 16 ranks. The same trend is observed
for scaling on 2 nodes. Even though the load per problem size is increased, the run
time is lower than the ideal run time for all three cases. This is similar to the behavior
observed in strong scaling. Although the run times were highest in the case of varying
nodes, it is still lower than the ideal times.
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Figure 3.8.: Problem size per rank increases in powers of 2

3.3. Performance analysis

To explain and confirm the observations made in scaling experiments, analysis of per-
formance has been recorded. The following study is done for a problem size N=16384
with 32 ranks and 8 OMP_NUM_THREADS, distributed across 2 nodes. Effective CPU
utilization is the highest at almost 20% with 32 ranks as shown in Figure 3.9. Elapsed
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time is the wall clock time taken for the program to complete executing and is 17.5 sec
for 32 ranks and 379.3 sec with 1 rank.

(a) Node mpp3r03c05s01 (b) Node mpp3r03c05s03

Figure 3.9.: Effective CPU utilization and elapsed time

Node mpp3r03c05s01 Node mpp3r03c05s03
.Elapsed Time 17.514 16.129

.CPI rate 2.082 2.130

.Average CPU frequency 1.5GHz 1.5GHz

.Total thread count 144 144

Table 3.9.: Elapsed time on both the nodes

Low CPU utilization implies that there is low utilization of logical CPU cores which
in turn is caused by load imbalance, granularity, synchronization overhead. This could
be improved by analyzing the sub-metrics that improve the parallelism. Each node has
256 logical cores and average effective CPU utilization of each can be seen in Table 3.10.
The percentage of MPI busy wait time is very high on both nodes causing a lot of CPUs
to stay idle for most of the time.
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Node mpp3r03c05s01 Node mpp3r03c05s03
.Effective CPU Utilization 19% 20.4%

.Average effective CPU
utilization out of 256

48.544 52.254

.MPI Imbalance 1.794 1.472

.MPI Busy Wait Time 9.6% 8.0%

Table 3.10.: Effective CPU utilization

Figure 3.10 is a histogram that shows a percentage of wall clock time where the
CPUs were running simultaneously. Y-axis is the elapsed time and the X-axis is the
number of logical CPUs that run simultaneously. The average effective CPU utilization
is 12.4 while the target utilization is the total number of logical cores which is 256.
The poor indicator below the X-axis implies that the utilization is less than 50% of the
maximum. This low thread efficiency can be improved by inspecting the top hot spots
in the program execution and finding if they can be reduced or eliminated.

Figure 3.10.: Histogram of average effective utilization of CPUs

Another way to reduce the run time is to take a look at CPU time. Overall CPU time
is the total time spent by all the CPUs during the execution. CPU time is split into
effective time, spin time and overhead time as shown in Table 3.11. Effective time is
the time that the CPUs spend actively executing user code. Spin time as shown in the
aforementioned figure is divided into several factors such as lock contention, imbalance
and busy-wait time. Overhead time is the time spent for synchronization of threading
libraries such as OpenMP and communication between threads. We observe that the
overhead is the most time-consuming and that the ratio of effective time versus spin
and over time is small. This means that there is a need to improve the parallelism and
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efficiency of threads.

Node mpp3r03c05s01 Node mpp3r03c05s03
.CPU Time 816.054 809.035

.Effective Time 203.816 197.487

.Spin Time 242.079 241.766
.Imbalance or Serial Spinning 62.069 63.036
.Lock Contention 114.400 119.093
.MPI Bust Wait Time 28.701 23.547
.Other 36.910 36.090

.Overhead Time 370.159 369.782

Table 3.11.: CPU time in seconds

This is also evident in the percentage of parallelism, as can be seen in Figure 3.11,
which is a metric of effective CPU utilization during actual computations. On the other
hand, microarchitecture usage indicates how effective our program is on the current
microarchitecture and can be impacted by long-latency memory, floating-point or SIMD
operations and so on [22].

(a) Node mpp3r03c05s01 (b) Node mpp3r03c05s03

Figure 3.11.: Parallelism

Lastly, we take a look at the most time-consuming methods in Figure 3.12.
mpigofmm :: Compress takes 132.9 sec followed by mpigofmm :: SelfTesting with 44.5 sec
which contains the multiplication of a compressed matrix with a random vector. Lock
contention is also maximum in the compression method which is expected since
most of the parallelization happens during this phase. The third highest hot spot
is PMPI_Init_thread, which initializes the MPI environment and the fourth highest is
hmlp :: SPDMatrix < float >:: SPDMatrix, which reads the data from the user and loads
it into the data structure.
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Figure 3.12.: Top hot spots during the execution of GOFMM using MPI
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4. Conclusion and Future Work

In Section 1, we define the problem and also discuss motivation to solve the problem.
Section 2 describes dimensionality reduction techniques such as PCA, DiffusionMaps

and a brief discussion on the design of datafold package. It is followed by definition
of kernel matrices, detailed explanation of compression algorithms and GOFMM’s
hierarchical algorithms. Section 3 contains the main part of the thesis that includes
implementation of an instance of LinearOperator that uses GOFMM’s matrix-vector
multiplication methods via SWIG. Then various computational experiments on accuracy,
scalability and performance are presented. Finally, this section provides a summary of
the thesis and insights into further improvements.

4.1. Conclusion

With ever-growing applications with non-linear high-dimensional data in Machine
learning and AI, it becomes more and more difficult to process it efficiently. We utilize
an approach called manifold learning to reduce the dimensionality of such non-linear
data. We recognize that one of the time consuming modules of the manifold learning
techniques is performing eigen decomposition. Depending on the type of matrix,
algorithm and the number of eigen pairs, eigen decompositions may have a time com-
plexity of up to O(N3). We mainly deal with dense SPD matrices in our thesis which
have a space complexity of O(N2). Eigen decompositions requires many matrix-vector
computations, which have a time complexity of O(N2). As the problem size increases,
it becomes almost impossible to perform computations on such a large scale. We apply
hierarchical algorithms from GOFMM library to perform matrix-vector multiplications
since it has been shown to have a time complexity of O(NlogN).

We used the provided SWIG interface to write a python script that creates an in-
stance of DiffusionMaps and LinearOperator. We provide an implementation for the
method matvec in FullMatrix, which is derived from LinearOperator. We then collect the
eigen values and vectors computed by scipy.linalg.sparse.eigsh that uses matvec provided
in the library and compare them to the values computed by the matvec provided in the
GOFMM library. Froebius error norms were gathered for various problem sizes starting
from 1024 going up to 16384 and we obtained an order of convergence in 10−4. We
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observed that when max_leaf_node_size decreases, the accuracy also decreases which is
what is expected since with increasing rank, the number of data points being approxi-
mated decreases. When max_off_diagonal_ranks is kept the same as max_leaf_node_size
while varying max_leaf_node_size and user_tolerance, the error norms stayed in the same
order for all user_tolerance values. We also gathered error norms for varying the val-
ues of max_leaf_node_size and max_off_diagonal_ranks and found that as the values of
max_off_diagonal_ranks decreased, the errors increased and this checks out with the
theory provided in [1]. We then plotted 512 eigen values computed using both matvec

methods and they are almost equal except for a few first largest and smallest values.

In integrating these two softwares and scaling them on a linux cluster, we made the
following observations about scalability:

• Scaling on single node .i.e multi-core was done by varying the number of
OMP_NUM_THREADS which means that it is pure OpenMP parallelization.
Strong scaling on problem size of 8192 with threads starting from 1 to 56 showed
that the OpenMP does not provide enough parallelism. The problem scaled
ideally until 4 threads and almost stays constant with increasing threads.

• Problem size 16384 takes more than 48 hours to run with 1 and 56 threads. Run
time reduces up to 16 threads and then increases for 28 and 56 threads.

• A comprehensive weak scaling could not be performed as the number of threads
should be increased quadratically to keep a constant problem size per thread
while the number of cores on the linux clusters we were provided is limited.
Hence, the number of threads were increases linearly and expected the run times
to double with increasing number of threads. But the efficiency decreases than the
expected values and this can be explained by the fact that there is an enormous
increase in the problem size per thread and probably could not be handled just
by OpenMP parallelization.

• Although, we could not do it in full-scale, we conducted weak scaling with a
problem size per thread equal to 1024 using 1, 4, 16 threads and observed that it
does not scale well due to factors such as increased overhead time.

• Multi-node scaling could not be performed with the SWIG interface as it does
not support mpiexec. Therefore data was written to a binary file and sent as a
command line argument to GOFMM.

• Strong scaling on 2 nodes and various OMP_NUM_THREADS confirmed that the
percentage of parallelism provided by OpenMP is quite small. On the other hand,
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strong scaling on 2 nodes with varying MPI ranks showed that the efficiency is
better than the ideal efficiency for a bigger problem size such as N=16384. It
is explained by better effective CPU utilization. Scaling performed on varying
number of nodes along with MPI ranks confirmed that with the problem sizes at
hand, our code performs the best when distributed across 2 nodes.

• A comprehensive performance analysis was performed to identify bottlenecks
and top hotspots such as mpigofmm :: compress. It was noted that the overall
parallelism could be improved by improving algorithms such that effective CPU
time increases and overhead, spin time reduces.

• Similar to the scaling performed on a a single node, the number of MPI ranks
were doubled while also doubling the problem size. Performance was better
for the case with varying the number of nodes along with MPI ranks while the
performance on 2 and 4 nodes remained similar.

Therefore we have results that suggest that hierarchical algorithms from GOFMM not
only scale well on the linux clusters available to us but also produce results with
considerable accuracy.

4.2. Future Work

Having identified the drawbacks, hot spots and bottlenecks, we can work on the
following topics to improve the current state of the software:

• datafold has been used with different solvers such as SLEPc/PETc, scipy and now
GOFMM. The next step would be make all these options available to the users
such that they just specify which one to use and datafold takes care of the rest.
This would include designing the software in way that it makes sense with respect
to performance, refactorization, writing a wide variety of tests and so on.

• This thesis mainly focused on uniform sampling of data with a Gaussian ker-
nel. This could be expanded to test different types of data distributions and
applications.

• We identified some bottlenecks and factors causing reduced CPU utilization,
thread efficiency, parallelization etc. We can now realize solutions to these
problems and actualize them to improve run times and scalability.

• Testing scalability on higher number of nodes and larger systems with differ-
ent micro-architectures while testing the limits in terms of problem sizes and
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variations of data. The scalability tests should include strong and weak scaling
especially because we were limited by computational resources when it comes to
weak scaling.

• GOFMM requires various parameters from users. Therefore we could benefit from
a study on hyper-parameters and identifying a set of parameters for specific types
of data.

Identifying bottlenecks and improving the methods that slow down the execution as
discussed above would further incentivize the use of GOFMM for kernel matrices from
datafold. To then unlock full potential, numerous datasets could be used on larger
machines to test the functionality of the integration. Providing a SWIG interface with
mpi4py to use the MPI methods through a python script would opens up numerous
possibilities. Finally, a user-friendly interface to use datafold, with various eigendecom-
position methods from libraries such as GOFMM, scipy, etc. in the back-end would
improve the usability and accessibility.
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A. Detailed descriptions

The following section has instructions on how to install the integrated software on a
local machine or the Linux cluster at LRZ. Please note that Linux cluster and CoolMUC-
2, CoolMUC-3 are used interchangeably in the following section. It also provides a
python script that illustrates the computation of kernel matrices from datafold and eigen
decomposition of these matrices.

A.1. Installation

Docker has been used to package and deploy the software on the local machine. But
since there is no docker support on the Linux cluster, we use Charliecloud container
technology [16]. The installation can be done as shown below:

1 $ git clone https://gitlab.lrz.de/ge25duq/gofmm_datafold.git

2 $ cd gofmm_datafold

3 $ rm -rf gofmm

4 $ module load charliecloud

5 $ ch-tar2dir gofmm.tar.gz .

6 # IMPORTANT : The last line may not work if there is no git-lfs installed.

Then a normal download of the tarball should be done.

Since git-lfs is not installed on the cluster, the files may not be fetched correctly. Hence
alternatively, the charliecloud container can be downloaded as shown below:

1 $ rm -rf gofmm.tar.gz

2 $ wget https://www5.in.tum.de/~reiz/keerthi/gofmm.tar.gz

3 $ module load charliecloud

4 $ ch-tar2dir gofmm.tar.gz .

A.1.1. Creating Charliecloud image

Charliecloud image is created from the docker image on the local machine and has
to be transferred to the Linux cluster. Once the repository is downloaded, the docker
image can be built as shown below:
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1 $ cd gofmm_datafold/docker4datafold/dockerTest_gcc/files_4_jupyterlab/

2 $ docker build -f ../dockerfiles/Dockerfile_test-gcc_gofmm-python-

jupyterlab:shared --tag=gofmm:latest . | tee test-gcc:gofmm-python-

jupyterlab-shared.build.log

The docker image gofmm : latest can then be converted to a charliecloud image by
installing charliecloud in the local machine and then executing A.1.1 the following
command that creates a tarball in the current directory.

1 $ ch-builder2tar gofmm .

A.2. Compilation and Execution

Once the tarball is extracted, compilation can be done as follows:

1 $ ch-run --set-env=./gofmm/ch/environment -w ./gofmm -- bash

2 $ cd workspace/gofmm/build

3 $ source ../set_env_mpi.sh && cmake ..

4 $ make

5 $ make install

6 $ ./compile_swig_mpigofmm.sh #compile swig interface files

It is important to give correct paths to all the necessary libraries in the environment
file set_env_mpi.sh, otherwise the code will fail to work. Now the python script can be
executed on the cluster using the following commands:

1 $ salloc

2 $ module load charliecloud

3 $ ch-run --set-env=./gofmm/ch/environment -w ./gofmm -- python3 /

workspace/gofmm/test_linoperator.py

Performance analysis is done using Intel VTune Amplifier on lxlogin8 using the follow-
ing commands:

1 $ salloc --nodes=2 --nodes-per-task=2

2 $ export OMP_NUM_THREADS=8

3 $ mpiexec -n 4 amplxe-cl -collect hotspots -r results ./test_mpigofmm

16384 4096 0 4096 1 E-7 0.01 kernel dense kernel16k.bin

Intel parallel studio must be available on lxlogin8 for the above commands to work.
After the execution is completed, 2 results folders will be available. These folders
contain performance analysis information that can be viewed in a csv format or with
the help of a graphical user interface. The GUI can be invoked with the command
shown below:
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A. Detailed descriptions

1 $ amplxe-gui results.<node_id>/results.<node_id>.amplxe

With the help of the GUI, we can obtain a comprehensive analysis of the bottlenecks,
parallelization and microarchitecture usage and so on.
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