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Abstract

Our knowledge to wheel-soil interaction is crucial to the success of Mars rovers, since it
can affect the desired forces and torques of the engine and thus determine the movement
of the robot. Both terrestrial simulations and real-world experiments have been employed
to assist the decision of rovers. However, expensive computations and costs resulting
from intensive simulations and experimental setup have hindered their further develop-
ment.

In this thesis, we use multi-fidelity modeling to fuse data such as wheel trajectory and sur-
face geometry from different fidelity sources. These data act as the input to both neural net-
works and Gaussian process to build efficient multi-fidelity models. In low-fidelity mod-
els, we use lightweight Multilayer perceptron (MLP), Gaussian process regression (GPR)
and convolutional neural networks (CNN) trained by relatively unreliable but abundant
data sources, aiming to extract useful patterns at a lower evaluation cost. These models
are then incorporated with another GP model trained by limited medium fidelity data
using a multi-fidelity framework, Nonlinear autoregressive Gaussian processes (NARGP)
to capture more trustworthy information. Throughout this work, we use two levels of
fidelity sources, build six different models and compare with one another. Among all,
NARGP+CNN model gives the best prediction to the force of the wheeled rover by fus-
ing features of the robots and surface images. It also performs well in terms of certainty
of prediction (CoP), a term we coined. In addition, several choices of kernels are also re-
searched in order to give directions to the future endeavors. Our result demonstrates the
applicability of data-driven approaches in the realm of terramechanics.
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1 Introduction

Data-driven approaches have gained tremendous attention over the past decade. On the
one hand, we are generating much more data and having the ability to store and compute
such exponentially growing amount of data. On the other hand, the rapid development of
machine learning allows us to extract useful information from the data and has potential
to enhance or replace existing methods in many domains. Under the giant umbrella of
machine learning, Gaussian process has always been one of the popular methods due to
its nature to provide reliable estimate to the prediction and the uncertainty [  1 ]. When we
stack multiple Gaussian process together, possibly with many other trivial models, and
feed each one of them with different data sources, it is called multi-fidelity modeling [ 2 ].
Multi-fidelity modeling has been widely used in many disciplines because of its ability
to learn from rather less high fidelity data points and capture useful information from
the abundant low fidelity, noise data. For instance, it is proved to be really successful in
aerospace engineering design [  3 ,  4 ] such as designing rotor blade for a helicopter [ 5 ].

Space exploration is always known to be expensive, since each mission can cost billions of
dollars, not to mention the sophisticated preparations beforehand [ 6 ]. In order to drive the
technological progress forward, scientists and engineers have developed numerous exper-
iments to reduce cost without directly accessing the hardware itself. Virtual simulations
using theoretical or empirical models are particularly successful. For example, normal and
shear force calculations are employed widely in previous models [ 7 ,  8 ]. However, most of
them suffer from either high computational complexity [ 9 ] or unsatisfactory results [ 10 ].
In addition, the extraterrestrial environment has also been replicated as far as possible in
a laboratory to allow researchers to run relatively cheap and frequent experiments [ 11 ].
Although the cost is high, we can still generate real and high-fidelity data that might be
identical to the data retrieved at the surface where real mission is placed.

The space community strongly needs to have fast and accurate models to describe the
exploration rovers. Thankfully, both simulations and real-world experiments can provide
us an enormous amount of data. This brings us to the initial motivation of the thesis.

The goal of the thesis is to explore the applicability of data-driven methods on the loco-
motion of wheeled mobile rovers. Since we have data from different fidelities and each
one can provide different perspectives to the underlying problem, the choice of multi-
fidelity modeling becomes straightforward. With the help of multi-fidelity models, we can
fuse data from different sources, such as low-cost virtual simulations or real-world experi-
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1 Introduction

ments. Not only do we add engine related data to the models, but we also provide surface
geometry information and use CNN to boost the performance of the models.

In section 2, foremost, a small portion of domain knowledge about rover mechanics is
explained. Although it is just the tip of the iceberg, it should be enough to understand
current development of wheeled mobile robot and should help you grasp the concepts
of terramechanics easier. Furthermore, basic idea about neural networks including multi-
layer perceptron and convolutional neural networks is also covered. We will also explain
Gaussian process and then step by step to different forms of multi-fidelity modeling. At
the end of the section, we spend some paragraphs on uncertainty quantification and its
unavoidable existence in machine learning.

Section 3 is devoted to the result of the thesis, which is the major contribution of the work.
We start from a few paragraphs on the motivations and project overview. We then explain
the shape and the properties of the training data and move on to the goal of the thesis
and our chosen evaluation metrics. The majority of the section is the computational ex-
periments section, where we tried multiple models, ranging from MLP to pure GP and
GP+CNN merged by the NARGP framework. The models architectures as well as their
hyperparameters will be revealed in order to reproduce the results. At the end of the sec-
tion, we will discuss all the models altogether and perform another small experiment on
the influence of kernels.

To summarize the thesis, the final section will conclude our results and provide directions
for the further endeavors.
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2 Background Theory

2.1 Rover Mechanics

Over the past few decades, humans have developed many rovers to explore the unknowns,
including but not limited to moon and Mars exploration [ 6 ,  12 ]. Rovers typically consist
of wheels since it is proved to be easier to design and for the rovers to navigate around
[ 13 ], so we sometimes also call them wheeled mobile robots. The surfaces being explored
are generally soft materials like soil or sand. Thus, it is not uncommon for the rovers to be
trapped in such surfaces [ 12 ]. Since the wheel is such an important part of the rovers, and
it is also the only contact to the ground, we can simplify rover mechanics to the physical in-
teractions between wheels and soil. Scientists use both real-world experiments and virtual
simulations to study the behaviors of the rovers during potential planetary explorations.
In the case of real-world experiments, it is typically set up in a laboratory and mimics the
environment of, for example, Mars surface, where there are containers full of sand and
wheels with multiple sensors being installed to measure properties like forces and torques
in multiple directions [  11 ]. Please refer to Figure  2.1 for graphical illustration. As for vir-
tual simulations, various models were proposed, ranging from high-cost but high fidelity
to cheap but relatively deviated models [ 13 ,  14 ]. For instance, one can construct the vir-
tual spaces based on physical formulas and use numerical methods like finite elements
to abstract and approach the problems [ 15 ]. Apart from the physical properties such as
movements, velocities and accelerations, images of the surfaces can also be useful for us
to extract information that can potentially facilitate the decision-making process. In sum-
mary, understanding the wheel-soil interactions is the key to any rover-dependent surface
exploration.

2.2 Neural Networks

Neural networks, as its name suggests, are inspired biologically by the human nervous
system. It is composed of interconnected neurons inspired by the connections in the hu-
man brain. The input of the neurons is a vector of values which is averaged according
to the weights, and activation function can decide how much signal this neuron is going
to send to the next neurons, while in human brain the signal is electrically transferred
and stimulated. During the training process, the predicted result will be compared with
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2 Background Theory

Figure 2.1: Real-world experiment setting of a wheel in a laboratory. This figure is cropped
from [ 11 ].

the ground truth based on objective function (loss function), and the weights will soon be
updated by gradient based methods to achieve better representation of the data.

This section explains the basics of the artificial neural networks (ANN) [  16 ]. We start by
talking about multilayer perceptron (MLP) and closely elaborate its building blocks. More-
over, we take an overview of the convolutional neural network (CNN) including its struc-
tures and components and elaborate how it differs from the brute force neural networks.
We will use these two architectures in chapter 3, so it is necessary to understand its theo-
retical fundamentals and how it works so as to modify and optimize the models.

2.2.1 Multilayer perceptron

MLP is the most common type of neural network, and it often forms the cornerstone of
other advanced neural networks. We also call it dense neural network, where each neuron
in n layer is connected to each neuron in n+1 layer. Figure  2.2 shows an example of an
MLP architecture with three hidden layers. In the following subsections, we are going to
decompose MLP and explain each component one by one in details.

Neurons

In Figure  2.3a , we can see that a neuron can receive impulses from any dendrite. The
impulses then travel through the cell body and to the end of the axon before sending the
impulse to the next neurons. Artificial neuron was created as an analogy to the biological
one. As illustrated in Figure  2.3b , normally we numericalize the property into xi, xi will
then be multiplied by wi. Each neuron summarizes all the wi · xi sent from all previous
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2.2 Neural Networks

Figure 2.2: Graphical representation of an MLP with three hidden layers. Each neuron is
connected to each neuron in the previous and next layer. This figure is down-
loaded from [ 17 ].

neurons and adds a bias bi. Before outputting the signal to the next neurons, the sum will
have to pass through an activation function to give non-linearity to the operation. Both wi
and bi are trainable. Activation function should also be carefully chosen to maximize the
model performance.

(a) A biological neuron.
(b) Single neuron in an ANN. w: weights, x:

input from previous neuron, b: bias.

Figure 2.3: Comparison between a biological neuron and an artificial neuron. Both figures
are from [ 18 ].

Activation functions

The main reason of the activation function is to give non-linearity to the networks so that
it can learn more complex patterns. Since generally people choose gradient-based meth-
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2 Background Theory

ods to optimize the networks’ parameters, the activation functions should be differentiable
across R. Moreover, it is more favorable for the calculation of the gradient to be computa-
tionally cheap. In the following, we introduce some of the most commonly used activation
functions.

• Sigmoid: The function is defined as

σ(z) =
1

1 + e(−z)

and its curve is plotted in Figure  2.4 . Ideally, we want the input to be as close to the
middle as possible, where the gradient is at a reasonable range. Otherwise, we can
see from the graph that as z > 5 or z < −5, the gradient is extremely close to 0, which
would prevent the networks from updating the weights effectively.

Figure 2.4: Sigmoid Function.

• Relu: Relu as shown in the following

R(z) = max(0, z)

is the default choice for a neural network at the moment. Despite empirically hav-
ing better performance, it also has several advantages over others. First of all, the
function itself is really easy to compute, which is fairly significant for inference and
training. Secondly, although it can lead to dead neurons, we can think of it as a
way to filter out weak signal and thus result in a relatively sparse output. Lastly, its
derivative is quite simple. Note that relu is actually not differentiable at z = 0, so
normally the derivative 0 is used at that point. The shape of the function is depicted
in Figure  2.5 .
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2.2 Neural Networks

Figure 2.5: Rectified linear Unit (relu) Function.

• Tanh: The tanh non-linearity, defined as

f(z) = tanh(z)

, is demonstrated in Figure  2.6 . Its functionality and shape is very similar to sigmoid,
where all the real value is mapped to [−1, 1]. Also, we would hope the input to be
close to zero so that the gradient can be more meaningful. Batch normalization [ 19 ]
is really helpful when tackling saturating nonlinearities, so it is also being used in
this thesis.

Loss functions

Loss function is one of the key determining factors to the performance of a neural network,
since it directly defines the objective of a model. The existence of a loss function makes the
training of a neural network possible, since it makes the training process a minimization
problem. In supervised learning, what we’re trying to minimize is the customized distance
between the output of the parameterized neural network and the ground truth.

The choice of a loss function is largely dependent on the concrete problem that we are
trying to solve. Most commonly, Mean Square Error (MSE) (L2 loss) shown in Equation  2.1 

is used as a default choice in regression problem, whereas Cross Entropy Loss in Equation
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2 Background Theory

Figure 2.6: Tanh Function.

 2.2 is popular when dealing with classification problem.

L(θ) =
1

n

n∑
i=1

||f(xi, θ)− yi||22 (2.1)

L(θ) = −
n∑
i=1

n∑
k=1

(f(xik, θ) · log yik) (2.2)

Typically, in a neural network, there are tens of thousands of parameters θ if not millions.
This leads to a multidimensional optimization problem when trying to find the best model.
In the next section, we will show the foundation of all the gradient-based method, gradient
descent.

Gradient descent

Gradient descent (GD) is an iterative optimization algorithm aiming to find the minimum
of a function. The formula of gradient descent is defined as:

θi+1 = θi − α∇θL(θi) (2.3)

where θ represents all the parameters in the neural network, α is the learning rate and L
is the loss function. Theoretically, the minimum point from the initial set of parameters
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2.2 Neural Networks

can be found if we use a while loop to wrap the above formula. We can see that gradient
descent works by subtracting a step of the gradient at that specific point in the parame-
ter space. Since GD takes all the training data into account, it is not uncommon for the
algorithm to be trapped in the local minimum instead of the global one. In addition, by
tuning the learning rate, the convergence speed can be controlled, while a large α can cause
oscillating training curve and a small one can result in tedious training time.

While being a popular method, the followings are some of the most used variants of gra-
dient descent.

• Stochastic Gradient Descent: Stochastic Gradient Descent (SGD) is one of the most
simple and effective way to avoid being trapped in the local minimum [  20 ]. The way
it works is by setting n = k in Equation  2.1 . k is a subset of samples in the training
set, and we call it batch size. It is reported that the expectation can be approximated
with a small subset of the data. It is also somewhat empirical to find the best batch
size. On one hand, while smaller batch size means more variance across gradients
and hence noisier, it has the possibility to help the algorithm break through local
minimum. On the other hand, the choice of larger batch size is mostly limited by
training hardware’s memory.

• Adam: Adam optimizer is often the method of choice for neural networks [ 21 ].
Adam takes the concept of momentum and RMSProp [ 22 ]. Momentum is a way to
take previous gradients into account while stepping toward the next point. For ex-
ample, we would hope the algorithm go faster in the directions where gradients are
accumulated over time. RMSProp was invented by dividing the learning rate by an
exponentially decayed average of squared gradients. It can help dampen the oscilla-
tions in the high-variance directions and travel faster in flat surface. Adam combines
first and second order momentum, meaning the mean and variance of gradients. The
superior performance comes with more hyperparameters, but it generally works fine
to use the default value suggested by authors [  21 ]. This is also the optimizer being
used in this thesis.

Back-propagation

Back-propagation leverages chain rule to compute gradients in a modular way [  23 ]. Please
have a look at Figure  2.7 . Firstly, there is a forward pass where we follow the black arrows
and calculate the output of the function until the result of the loss function is acquired.
Subsequently, the backward pass involves the flow of the gradients (navy blue arrows).
Basically, it allows us to calculate the derivatives of given variables with respect to loss
function easily.
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Figure 2.7: The flow of gradients. The graph is cropped from [ 24 ].

2.2.2 Convolutional Neural Network

Theoretically, with MLP, we should be able to approximate any function. However, when
it comes to spatial or temporal data, blindly flattening the input could make us lose signifi-
cant information. Nowadays, Convolutional Neural Network (CNN) has become de facto
choice for image recognition problem [  25 ]. In the following subsections, we are going to
discuss some of the basic components of a CNN.

Convolutional layer

We can think of convolution as a way to do image filtering. For example, some kernels can
capture the edges better, while some can transform a colorful image into a black-and-white
one. As we can see in Figure  2.8 , for an input of size h×w×d, we need to prepare k kernels
with the shape h′×w′×d′, where h′ ≤ h,w′ ≤ w and d′ = d. Each kernel scans through the
image from left to right, from top to bottom, and does some basic mathematical operations
in the overlapped region. The number of the kernels k becomes the depth d of the next
layer. As for height and width, there are two more parameters called stride s and padding
p. These allow us to define the output height and width as:

houtput =
h− h′ + 2p

s
+ 1, woutput =

w − w′ + 2p

s
+ 1 (2.4)

where stride denotes how long the convolution jumps that the kernel is moving each step
along the direction, and padding is a technique that wraps the input image with layers
of zeros. The output resolution can be reduced with higher stride; hence with reasonable
choice of stride the convolution operation can be more efficient.

10



2.3 Gaussian Process

Figure 2.8: Example of a LeNet-5 CNN architecture. Figure from [ 25 ].

Pooling layer

Please take a look at the step Subsampling in Figure  2.8 . Pooling layer is a process to reduce
the output size by summarizing the values in the pooling window. Some of the common
choices of pooling are max pooling and average pooling, where the output is the maximum
and average value within the pooling window, respectively. It is a useful way to boost the
efficiency of the neural networks since the parameters are significantly reduced.

Architectures

Over the past decade, several popular CNN architectures were proposed. For instance,
LeNet-5 [  25 ] was first initiated, followed by AlexNet [ 26 ] in 2012 and VGGNet [ 27 ] in
2014. ResNet [ 28 ] was created in 2015 to resolve stagnated progress in deeper networks by
introducing the residual block. In general, the arrangement of CNN architecture starts by
several convolutional + pooling layers and ends with few fully connected layers, and we
get the intuition from these masterpieces and design similar CNN models.

2.3 Gaussian Process

In addition to neural networks, we have used Gaussian process (GP) extensively in this
thesis, ranging from pure Gaussian process regression to multi-fidelity Gaussian process
modelling. Therefore, it is necessary to know how GP works.

2.3.1 From Gaussian distribution to Gaussian Process

We cannot start discussing Gaussian process without briefly mentioning Gaussian distri-
bution.

Gaussian distribution, also known as normal distribution, is typically visualized as the bell
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2 Background Theory

shape curve in our mind, where it can simply be represented using mean and variance. The
mean µ determines the center of the bell curve, and variance σ2 influences how widespread
the curve is. The 1D form of its probability function is defined as:

f(x) =
1

σ
√

2π
e−

1
2

(x−µ
σ

)2 (2.5)

If we intend to sample a point from the distribution, meaning performing an inference, we
are going to get a point. Let us generalize the 1-D Gaussian distribution to n-D multivariate
Gaussian distribution which is often defined as:

X ∼ Nn(µ,Σ) (2.6)

where here µ ∈ Rn and Σ ∈ Rn×n is a covariance matrix. Furthermore, µ and Σ are also
defined as:

µ = E[X],Σ = E[(X − µ)(X − µ)] (2.7)

We can get its expectation value simply from the mean and the correlation between Xi

and Xj by looking at the matrix entry Σij . In this case, if we sample it once, we will get n
points, which is essentially a function. This brings us to one of the many statements of GP
where it is a non-parametric model that is used to represent the distribution of functions,
as opposed to parametric models like neural networks. A non-parametric model like GP
means that the data distribution cannot be represented using a finite set of parameters, so
it uses distribution to sample the infinite number of parameters. GP is also defined as a
collection of infinite random variables, any finite number of which have a joint Gaussian
distribution [ 1 ]. Note the word ”infinite”, meaning the number of random variables is not
fixed; therefore, this leads to the typical expression of a Gaussian process:

f(x) ∼ GP (m(x), k(x, x′)) (2.8)

where, similar to a multivariate Gaussian distribution as describe in Equation  2.6 , m(x)
refers to the mean function as well as the expectation value on each input x and k(x, x′) is
commonly known as the kernel function.
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2.3 Gaussian Process

2.3.2 Kernel functions

Let us introduce the concept of kernel functions in detail with the most popular one, radial
basis function (RBF) kernel or squared exponential kernel, which is defined as:

krbf (x, x′) = σ2exp(−||x− x
′||2

2l2
) (2.9)

where σ2 is the variance and l is the lengthscale. σ2 determines the distance that the given
point is away from the mean, and l describes how significant given point’s influence on
neighboring points. Both are free parameters, while the default ones provided by common
packages are sufficient. One interesting thing to know is that x and x′ refer to any arbitrary
point, so what RBF does is that it smoothens the functions sampled by corresponding GP.
Without the kernel, the curves can be quite noisy since there are no constraints on the sam-
pled points, especially the neighboring ones. As we can see from Equation  2.9 , when x and
x′ are close to each other, the covariance matrix entry would be close to σ2. As two points
are further apart, the value is getting closer to zero, meaning less interference between one
another. In addition, we can also notice that RBF kernel is infinitely differentiable, which
makes it extremely smooth. The choice of a kernel is extremely important, since, at the
end of the day, we are trying to find the function f(X) that best represents the correla-
tion between input and output features. RBF has been proven to be robust and reliable in
common machine learning problems, so it will be used throughout this thesis [ 1 ].

In addition to RBF, we have run some small experiments regarding the influence of kernels
at the end of the thesis, and we are going to briefly cover them here.

• Linear kernel: Linear kernel is non-stationary, so absolute location of the inputs can
influence the covariance function. The formula of linear kernel is defined as:

kLinear(x, x
′) = σ2

b + σ2(x− c)(x′ − c)

where σ2
b is a constant variance which adds a height to the function, and c is a offset

that all the functions sampled by posterior have to go through [ 29 ]. When we choose
to use linear kernel in GP, we are essentially using Bayesian linear regression, and its
computational complexity is O(n).

• Matérn kernel: Since RBF kernel is such as success, so we think it might be useful to
try its variant. Matérn kernel is stationary, and it is a generalization of RBF kernel.
It generalizes RBF as well as many others by adding a parameter ν. Its formula is
defined as:

kmatérn(x, x′) =
1

Γ(ν)2ν−1

(√
2ν

l
d(x, x′)

)ν
Kν

(√
2ν

l
d(x, x′)

)
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2 Background Theory

where Kν is the modified Bessel function, d(x, x′) refers to the Euclidean distance
between x and x’, and Γ is the gamma function. When ν = 1

2 , the Matérn kernel
becomes the absolute exponential kernel. Particularly, ν = 3

2 and ν = 5
2 are some of

the most used kernel in physical science since the former one is at least once differen-
tiable and the latter one is at least twice differentiable. Interestingly, it becomes RBF
kernel when ν =∞, since we assume the function being sampled by RBF kernel to be
infinitely differentiable. The flexibility of ν offers us a way to control the smoothness
of the function according to the underlying system. We provide the results when
ν = 3

2 (Matérn32) and ν = 5
2 (Matérn52) in a later section.

• Rational quadratic kernel: Rational quadratic kernel can also be seen as a variant
of RBF kernel. It is an infinite sum of RBF kernel over different lengthscales. There-
fore, the functions sampled by this kernel’s prior might vary a lot in terms of their
smoothness. Its mathematical formula is defined as:

kRationalQuadratic(x, x
′) =

(
1 +

d(x, x′)2

2αl2

)−α

where α is a scale mixture parameter and l is a lengthscale parameter. Interestingly,
while α gets closer to∞, this kernel would be the same as RBF kernel.

I recommend reading the kernel overview given by Dr. Duvenaud before diving into the
problem [  29 ]. Moreover, numerous researches are being done to find more suitable kernels
for GP, while deep learning has been widely used to find specialized kernels from the
training data [ 30 ].

2.3.3 Gaussian Process Regression

The idea of performing regression on the training data is basically a Bayesian inference
problem [ 31 ]. The essential belief of Bayesian inference is that it will update the probability
after receiving new information. In the case of GP regression, the new information refers
to the training data. In this thesis, we start from making m(x) = 0 and k(x, x′) = krbf
in Equation  2.8 . We can understand kernel function as a guess on how the distributions
should be like, or the prior. Before training, we can sample functions from this prior, while
after training, GP can make predictions based on the prior and the measurements, which
is also called posterior. Please kindly refers to Figure  2.9 for graphical representation. We
can see that the sampled functions are fixed after receiving information at two different
points.
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2.3 Gaussian Process

Figure 2.9: (a) shows four functions sampled by prior distribution. (b) shows four func-
tions (dash line) sampled by posterior distribution, while the solid line is the
mean of these four functions. Gray zone represents the confidence interval.
Figure is adapted from [ 1 ].

Here, we can formulate the joint distribution as the following:

PX,Y =

[
X
Y

]
∼ N(0,Σ) = N

([
0
0

]
,

[
ΣXX ΣXY

ΣY X ΣY Y

])
(2.10)

where X is the training data, Y is the testing data and Σ is the covariance matrix or the
kernel. Since our goal is to do inference with Gaussian process regression, let us move
from joint distribution to conditional distribution:

f∗|X,Y, f ∼ N(µpred,Σpred) (2.11)

where
µpred = Σ(Y,X)Σ(X,X)−1f

Σpred = Σ(Y, Y )− Σ(Y,X)Σ(X,X)−1Σ(X,Y )

and f, f∗ are the training and testing value, respectively [ 1 ]. From Equation  2.11 , we can
tell that inference with GP regression is simply a condition of posterior on the training
data. This operation involves an inverse of the covariance matrix, which requires O(n3)
to compute using Cholesky decomposition. While there are other methods to speed up
the computation [  1 ], since the size of the training data is generally huge which results in a
gigantic matrix, this has been a bottleneck for GP to learn from a massive amount of data.
However, a big advantage of GP regression is its natural ability to provide uncertainties,
Σpred, to its predictions. As illustrated in Figure  2.9 , the wider the gray zone is, the less
confident GP is on its prediction at that point. This can be seen from a large Σpred that is
generated.
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2 Background Theory

2.3.4 Training a GP model

As shown in previous subsections, there are several hyperparameters that can affect the
performance of the GP model. Therefore, choosing a suitable set of hyperparameters that
can generate more representative functions becomes absolutely necessary. This is typically
being done by maximizing the log likelihood of the result of the training data with respect
to each hyperparameter. Similar to optimizing artificial neural networks, we tend to use
gradient-based algorithms to find the minimum [ 32 ]. In reality, we generally restart the op-
timization algorithms for a couple of times in order to spread out the initial combinations
in the space, reducing the risk of being trapped in an undesirable local minimum.

Automatic relevance determination (ARD) is a well-known and useful way to further
boost GP’s performance, especially in a multidimensional input setting. The idea is that it
adds a weight parameterwi to each input dimension in Equation  2.9 . The possible scenario
is that some dimensions are more important than others, which can be seen on the value of
its weight. However, the introduction of new hyperparameter in each dimension can dras-
tically increase the training time, since the searching space is growing exponentially. This
is something which is worth considering before applying ARD to the algorithm.

2.4 Multi-fidelity modeling

As we covered the basics of Gaussian process, now we are using it as a building block to
explain multi-fidelity (MF) modelling which we have used extensively in this thesis. In
modern scientific or engineering problems, it is inevitable for our decision to rely on real-
world experiments or measurements. In such areas, data sources usually vary in quantity
or quality, such as measurement errors or simplification of computer simulations. Dif-
ferent decisions regarding the adoption of the data sources could be made based on the
resources at hand and the goal that we are trying to achieve. This is where multi-fidelity
modelling comes into play. MF was developed to take advantage of the correctness of the
high-fidelity data as well as the abundance of the low-fidelity data. In this section, we
will discuss the evolution of multi-fidelity algorithms. We start from the definition of MF
models and moved on to linear and non-linear models, followed by a small example to
demonstrate its concepts.

2.4.1 Multi-fidelity models

Multi-fidelity models, as its name suggests, consists of several models consuming data
from different fidelity sources. In fact, each individual model itself does not have to be a
GP regression model. For example, the model can either be a simple function taking aver-
age across inputs

∑n
i=1

xi
n or a complex deep neural network. Lots of flexibility are offered

here depending on the use cases. Let us simplify the models into low and high fidelities
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ones. Being a low fidelity model means the evaluation workload is much less than eval-
uating a high fidelity one. Although high fidelity model is either more computationally
expensive, more time-consuming or simply costing more, we often assume the result fhigh
to be comparatively similar to the exact underlying function fexact, fhigh ≈ fexact, while
flow often gives terrible approximation if being used alone. Figure  2.10 provides a great
visual overview to their fundamental differences in terms of error and cost. Basically, most
of the models lie close to the line error + costs = constant. Note that normally there can
be several low-fidelity models to choose from according to the needs.

Figure 2.10: Error and cost comparison of high and low fidelity models. Figure from [ 33 ].

2.4.2 Auto-Regressive models (AR1)

Auto-Regressive models (AR1) is the most classical multi-fidelity algorithms, and it has
been used extensively in various engineering design problems [ 34 ]. It is simplistic yet pro-
vides a foundation to all the methods in the future. AR1 is a linear information fusing
framework proposed by Kennedy and O’Hagan [ 35 ]. They assume the models of different
fidelities to be linearly dependent on each other, which can be formulated as the follow-
ing:

ft(x) = ρt−1(x)ft−1(x) + γt(x) (2.12)

where ft(x) and ft−1(x) refer to high and low fidelity models, respectively. γt(x) is a
Gaussian process prior assigned to each level, and ρt−1(x) is the scaling factor that links
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2 Background Theory

different models together. Since it is typically a constant, we can further re-write it to
ρt−1(x) = ρt−1 ∈ R. We also call γt(x) bias function which is a GP with trainable hyperpa-
rameters θ.

Figure  2.11 provides a graphical overview of this recursive process. When it comes to
inference, the lowest fidelity input has to be passed in f1(x) and follow Equation  2.12 . The
result would be fused with higher fidelity models in the next levels. The prediction is
given by the last model fs(x).

Figure 2.11: AR1 Schematic overview cropped from [ 34 ].

In a MF setting, AR1 shows that it should be used instead of plain GP models in order to
take advantage of our prior knowledge to the data sources. Despite the success, AR1 has
been reported to be limited when it comes to more complicated problems [ 34 ]. We will
move on to the generalization of AR1 in the next section.

2.4.3 Nonlinear autoregressive Gaussian processes (NARGP)

Similar to the reason people introduce non-linearity to the neural networks, nonlinear au-
toregressive Gaussian processes (NARGP) was also introduced to tackle more complex
relationships between fidelities [ 36 ]. NARGP is a framework defining how we should in-
terconnect different data sources together. Its concepts can be seen in the following equa-
tion:

ft(x) = gt(x, f
∗
t−1(x)) (2.13)

where gt ∼ GP (ft|0, kt((x, f∗t−1(x)), (x′, f∗t−1(x′)))). The scaling factor ρt−1 and the GP
prior γt(x) in AR1 can be implicitly included by gt in special case. As we can see from
Equation  2.13 , NARGP defines a mapping of Rft−1+1 → R. In simple words, it means that
NARGP collects one output from previous level, adds any given input in current level and
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2.4 Multi-fidelity modeling

produces one output as an input to the next fidelity model. We can think of it as a way
to consolidate the information in lower fidelity model and only provide useful patterns to
higher fidelity models.

Let us illustrate NARGP further by a simple example. In this example, high fidelity func-
tion is defined as:

fexact(x) = fhigh(x) = (x−
√

2)sin2(8πx)

, and low fidelity function is defined as:

flow(x) = sin(8πx)

We can tell that flow has a certain level of connection to fexact but not quite close. Figure
 2.12 shows the prediction where only 12 points (blue) are provided to the GP model. Since
given inputs gather mostly on the right side, the prediction is a bit better than left side, but
it is still far from perfect. The confidence interval is huge throughout all x, and the poste-
rior mean is only close to fexact in the area where data are denser. One interesting discovery
is that between the first and third points, the expectation value is mostly unchanged, i.e.
0, indicating that the GP does not even modify the values due to the remoteness to the
nearest known points.

Figure 2.12: Pure GP result.

As a comparison, we provide 50 more points from low-fidelity model and fuse with high-
fidelity model using NARGP framework. The result is shown in Figure  2.13 . The extra
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50 points are evenly spread across the input domain. The graph demonstrates that the
addition of data, despite being low fidelity, can boost the performance of the model sig-
nificantly. The uncertainty is drastically reduced and accurately overlaps with fexact. With
NARGP, both Mean Square Error (MSE) and Mean Absolute Error (MAE) decrease from
0.237 to 0.0005 and from 0.311 to 0.013, respectively.

Figure 2.13: NARGP result.

The influence of the number of high fidelity points

In previous subsection, we saw that with NARGP framework, the model can learn from
the loosely related low fidelity data points and increase the performance of the model
drastically. Here, we discuss how the number of high fidelity data points can affect the
effectiveness of NARGP. Since we assume the evaluation cost for high fidelity data is much
higher than low fidelity data, the ideal case would be to have acceptable result with the
least number of high fidelity data. In Figure  2.14a , we use only 10 high fidelity points,
and we can see that the prediction is far from ideal, especially in the regions where there
are scarce numbers of high fidelity points. When we add two more points, as shown in
Figure  2.14b , the prediction is much better than before. Interestingly, the two new points
are added in front, but they are able to improve the predictions in the regions which are far
away from them. While 14 high points are used, the prediction is almost the same as fexact
( 2.14c ). This is where we know that there is no need to further increase the number of high
fidelity points, since the accuracy gain is reaching a plateau. In summary, we conclude the
evaluation metrics in Table  2.1 where both MSE and MAE are approximately improved by
an order of 10 whenever 2 more high fidelity points are appended.

20



2.4 Multi-fidelity modeling

(a) NARGP result using 10 high fidelity and 50 low fidelity points.

(b) NARGP result using 12 high fidelity and 50 low fidelity points.

(c) NARGP result using 14 high fidelity and 50 low fidelity points.

Figure 2.14: The results of 10, 12 and 14 high fidelity data points using NARGP framework
with 50 low fidelity samples.
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Table 2.1: Number of high fidelity points and their corresponding MSE and MAE

Evaluation metrics 10 ( 2.14a ) 12 ( 2.14b ) 14 ( 2.14c )
MSE 0.0519 0.0046 3.86 * 10−5

MAE 0.1415 0.0315 0.004

2.5 Uncertainties in machine learning

In the last section of background theory, we are going to briefly explain the uncertainties
in machine learning methods. There are two types of uncertainties, aleatoric and epistemic
uncertainties. The former one refers to the natural and irreducible uncertainty from either
the data itself or the system. In short, this type of uncertainty is unavoidable. Therefore,
the type of uncertainty we are going to cover is epistemic. It represents the ignorance and
reducible part of the uncertainty, which is the part we strive to reduce when it comes to
making prediction in machine learning. Specifically, this is the type of uncertainty that
comes with the prediction in Gaussian process regression.

In Equation  2.10 , we show that Σ is the covariance matrix of the distribution. However, in
many real-world applications, the observed data can be noisy, so we tend to add a noisy
Gaussian noise to the observed ground truth:

Ŷi = Yi + εi

where the noise to defined as εi ∼ N(0, σ2). In this case, the updated covariance matrix
becomes Σ̂ = Σ + σ2I. It can be inserted into Equation  2.11 and get updated Σ̂pred which
is denoted as :

Σ̂pred = Σ(Y, Y ) + σ2I− Σ(Y,X)(Σ(X,X) + σ2I)−1Σ(X,Y )

For reference, now the predicted mean becomes Σ(Y,X)(Σ(X,X) + σ2I)−1f . This small
tune can make the computation more numerically stable since the matrix Σ̂pred is always
invertible even though we do not really inverse the matrix to obtain the results. Therefore,
for the prediction, we can have the predictive variance at given points for free. With the
variance, we can calculate standard deviation as well as the confidence interval to be able
to quantify our predictions.
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3 Data-driven multi-fidelity modeling for
terramechanics

3.1 Motivation and Overview

Figure 3.1: General overview of the flow of multi fidelity modeling.

Before we enter the main part of the thesis, we are going to spend a short paragraph ex-
plaining the goals, a brief overview about the data, the models we use as well as the data
flow.

Long story short, the goal is to accurately predict the force of the mobile wheeled robot
with the data coming from two different fidelity sources, and the way we realize the goal
is to build multi-fidelity models linked by Gaussian processes. We have two set of data
describing the same movement of a robot, but they are simulated in different fidelities.
Both of the data sources possess features including force, torque, velocity, position, angular
velocity and gravity that the robot experiences. Furthermore, the surface images under the
robot are also used to aid the judgement of the models. We decided to let the models infer
force from the rest of the features.

In Figure 3.1, we present a schematic overview of a common nonlinear multi fidelity
model. We generally feed low fidelity data to a f(X) with relatively low evaluation cost. It
can range from a simple average function to a neural network model. In the thesis, we have
employed MLP, GP and CNN as our choices for f(X), and we train this f(X) = forcex
to the best of its ability. In second layer, a GP is used to merge medium fidelity data as
well as the results coming from f(X). This GP is thus trained with information from multi
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3 Data-driven multi-fidelity modeling for terramechanics

fidelity sources, and the result it produces is the final prediction for forcex. In addition
to the multi fidelity settings, we have also built an MLP model as well as GP model to
compare their results.

In the coming sections, we will first elaborate the data in greater details and then move on
to the objective of the models. Before we dive into a variety of the models we use, some
evaluation metrics will be discussed to better understand further analysis. Six different
models will be introduced later in the sections and compared with one another about their
pros and cons. Last but not least, we experiment several promising kernel candidates,
review each one of them and provide directions for future endeavors.

3.2 Training data from the simulation of wheeled mobile robot

We produced the data by conducting experiments ourselves. According to the ways the
data are generated and their reliability, we can categorize them into two different fidelities,
and we call them low and medium fidelity data.

Low fidelity data is generated using TerRA methods [  13 ]. It is a simulation model de-
signed specifically for the movement of a wheeled robot on sandy terrain. Being an em-
pirical model, both normal and longitudinal forces are calculated to describe the behavior.
Normal force calculation includes an elasto-plastic model [ 37 ]. Plastic and dynamic sink-
age computations are also taken into account for wheeled locomotion. The calculation of
longitudinal force depends on the previous records of slip and velocity. Despite being a
low fidelity source, it is proven to require low computational effort; thus, TerRA is an ideal
candidate for on-board applications.

Medium fidelity data is produced by soil contact model (SCM) with improved algorithm
on soil deformation [ 14 ]. SCM is used to model a multi-body system which is composed of
two steps, contact dynamics and soil update steps. In order to better describe the soil flow,
modified SCM introduced three independent parameters and improved the soil deforma-
tion calculation in the original model. The data here is more reliable and hence is used
as the ”pinned points” for our multi-fidelity models. Because of its higher computational
cost, there are fewer data points being used in our modelling.

In the following, we will explain the shape and the properties of both data sources. Re-
gardless of their fidelities, we can get 101 records, namely 101 timestamps, every time we
perform the simulation. Within the time window, we can simulate a wide variety of be-
haviors of the rover and collect relevant data. For each record, there are 4114 columns
of features, which include force, torque, coordinate, velocity, angular velocity and gravity
in x, y, z directions and a 64*64 pixels image. All the values mentioned above are nu-
meric. Figure  3.2 depicts some surface images being scanned by wheeled mobile robot
when performing simulations, which are used as extra information when constructing the
models.
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Figure 3.2: Example of ten gray-scale surface geometry images.

For each fidelity, we have conducted 100 simulations, with each one giving us 101 records.
Thus, we have 10100 data points to train our models. In theory, we can produce as many
results as we can, but in order to keep the experiments simple and to have reasonable
training time, we decide to keep the number of samples at around 10k before feeding
in more data and create more sophisticated models. For all the experiments listed in this
chapter, we choose 5000 low fidelities samples randomly as the training data. As for multi-
fidelity settings, 1000 corresponding medium fidelities samples out of the 5000 chosen low
fidelities entries are selected. In addition to the training data, 1000 samples are picked for
testing the model performances.

3.3 Prediction problem: Forces and Torques

As mentioned in previous section, except for surface images, there are 18 features being
generated from the simulations, namely force, torque, coordinate, velocity, angular veloc-
ity and gravity in x, y, z directions. For instance, here we use forcex to denote force in x
direction. Firstly, we can categorize the features into two groups, active feature and pas-
sive feature. Active features refer to force and torque. These are the characteristics that are
actively controlled by the mobile wheeled robot. Therefore, these are the features that we
would like to predict. Passive features include coordinate, velocity, angular velocity, grav-
ity and surface image. More elements like temperature, pressure and wind speed also fall
into this category. These are the features that are measured by external sensors. We treat
these features as potential inputs to our models. In the future but not within the scope of
this thesis, the ideal scenario is that the mobile wheeled robot can detect the surrounding
environment including arbitrary passive features, feed the input data stream to the model,
and make reasonable decision by controlling its active features.
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3 Data-driven multi-fidelity modeling for terramechanics

In order to make the model as simple as possible, we filtered out coordinatey, angular velocityx,
angular velocityz and gravityy since they remain constant or nearly identical throughout
the whole simulation. This benefits us not only from the model simplicity point of view,
but it also reduces the training time significantly, since less parameter are being optimized
during the training.

At the end, we choose coordinatex ,coordinatez , velocityx, velocityy, velocityz , angular velocityy,
gravityx and gravityz as our input features. For the feature being predicted, we use
forcex as our preliminary target. Ultimately, we are trying to find the models that best
fit f(X) = Y where the length of X vector is 8 and the length of Y vector is 1.

In Figure  3.3 and  3.4 , we can get a glimpse on how features correlate with one another in
both dataset. There are 9 features, with the first eight being the input features and the last
one being the output feature. We can obviously observe some interesting trends between
features, and we are hoping that the models can learn and extract useful patterns for the
predictions.

3.4 Evaluation metrics

In this thesis, we have employed several metrics to evaluate the performance of different
models. The metrics are further explained in the following:

• Time: When it comes to training a machine learning model, time is obviously one
of the most important metrics, since less training time means we can perform more
iterations of experiments within a given time frame. It is even more important when
the amount of data is huge. We want the model to learn as many as possible from the
data under the condition that the training time is reasonable. While we pay lots of
attention to the training time of neural networks, we generally discuss less about the
computing time it takes to train a Gaussian process model. This is due to the fact that
cubic computational complexity has been a bottleneck for GP to be used extensively
in big data applications. For all the computing tasks in this thesis, we are using a
personal laptop with 2.7 GHz Dual-Core Intel Core i5 processor and 8 GB RAM.

There are plenty of ways to measure the time it takes to perform a task. Different
profiling tools and methods come in handy in different scales. The code snippet
shown in Code  3.1 demonstrates how we calculate the training time for a model. We
take a straightforward approach where the training time is calculated by subtracting
start timestamp from end timestamp. For each experiment, we perform it for several
times and take an average to mitigate the CPU performance fluctuations. Since the
order of the training time is around the range of hours, individual instructions or
microseconds differences are negligible.

• Mean Absolute Error (MAE): The formula of MAE is defined as:
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(a) Part of the pairwise plots in the low fidelity dataset.

(b) Part of the pairwise plots in the low fidelity dataset.
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(c) Part of the pairwise plots in the low fidelity dataset.

Figure 3.3: Pairwise relationships of low fidelity dataset. If the axes are the same, a his-
togram is shown; if not, a scatter plot is shown with each point being a sample.
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(a) Part of the pairwise plots in the medium fidelity dataset.

(b) Part of the pairwise plots in the medium fidelity dataset.
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(c) Part of the pairwise plots in the low fidelity dataset.

Figure 3.4: Pairwise relationships of medium fidelity dataset. If the axes are the same,
a histogram is shown; if not, a scatter plot is shown with each point being a
sample.
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1 import time
2

3 start_time = time.time()
4

5 # This is where the training is performed
6

7 end_time = time.time()
8 training_time = end_time - start_time

Source Code 3.1: The way we measure the model training time in Python.

MAE =
1

n

n∑
i=1

|yi − ŷi|

where n is the number of training samples, yi is the predicted output vector (length
is one in our case), ŷi is the ground truth of the output vector. MAE is one of the
most common ways to measure the errors of the observations. We use it to assist the
judgements of other metrics.

• Mean Squared Error (MSE):The formula of MSE is defined as:

MSE =
1

n

n∑
i=1

||yi − ŷi||22

where n is the number of training samples, yi is the predicted output vector (length
is one in our case), ŷi is the ground truth of the output vector. MSE is so widely used,
which makes it the default metrics for any measurement. It penalizes the predictions
which are too far away from the ground truth. This characteristic makes it a better
candidate to evaluate the performance of GP related models, since, overall, we want
the ground truth to be as close to the predicted mean as possible. It is ideal for
the ground truth to lie within the confidence interval, while a value situated several
standard deviations away from the mean cannot be tolerated. The fact that MSE
imposes penalty to distant points tends to provide more desirable GP models.

• Certainty of Prediction (CoP): In order to quantify the certainty of predictions, we
create CoP to help us compare the accuracy of two different models. Please refer
to Figure  3.5 for graphical representation. Since we have to standardize each pre-
dicted value in order to compare between models, the range of CoP is shown as the
following:
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0 ≤ CoP ≤ 1

CoP equals 1 when the mean exactly matches the ground truth, and it is zero when
the predicted mean is infinitely far away from the ground truth.

In our case, there are 1000 testing points, so this gives us a thousand 1-D standard
normal distribution graphs just like Figure  3.5 , which also provides us 1000 distinct
CoP values. We compare the model performance by averaging the CoP across these
1000 testing points.

Figure 3.5: Blue line shows a curve of a 1-D standard normal distribution. If we are given
a red point, then the red region is the Certainty of Prediction (CoP) and is sym-
metrical with respect to y-axis. The graph is plotted by connecting 1000 equidis-
tant points between -3 and 3.

3.5 Computational experiments

We are entering the most interesting part of the thesis where a variety of the models are
used to best find the relationships between inputs and outputs. First of all, we address
the data, architectures and hyperparameters preparation that are shared by all the models.
This paves the foundation to all the upcoming computational experiments. The result
sections start from a simple multilayered perceptron (MLP) model which is simple, quick
to compute and can provide a benchmark to all the other models. Then, we move on to
GPR and feed it with medium fidelity data only. As for the cases to fuse multi-fidelity data
sources, we first use a linear autoregressive model, followed by a more sophisticated non-
linear model. We also tried incorporating MLP into the NARGP framework. In the end, we
provide extra surface geometry information and use CNN to capture the pattern, which
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is also fused using NARGP. Before the end of the section, we conduct extra experiments
where multiple potential kernel candidates are employed to compare against the default
RBF kernel.

3.5.1 Experiment preparation

To be able to compare the performance between models and eliminate as many variables
as possible, we try to standardize the experiment process as far as possible, and we are
going to conclude our approach in this section.

Let us first share how we split the data into the training and testing set. Before revealing the
approach, we have to rewind back to the nature of the datasets. The underlying meaning
of both TerRA and SCM is a trajectory of the movement of the mobile wheeled robot. This
means that the characteristics of the recorded data are continuous. For example, the first
thousand samples might represent a robot moving forward, possibly followed by another
hundred samples describing the process of acceleration, turning, ascending or descending
on the simulated surface.

Therefore, it does not make sense to slice the dataset sequentially with the order train and
test, since it is extremely hard for the model to predict the operations that are unseen.
With this mindset in mind, for both low and medium fidelity datasets, since they are both
simulating exactly the same movement, we first randomly pick 5000 indexes out of all the
samples and get the low fidelity training set by matching these indexes to the low fidelity
samples. The testing set of 1000 are randomly chosen from the rest of the samples. As
for medium fidelity samples, it is selected by randomly picking 1000 indexes out of the
5000 low fidelity indexes and match them to the medium fidelity samples. Our approach
most probably ensures that the models can learn from a variety of movements within the
scope of the simulation. For the surface geometry information, there are 80901 continuous
images depicting the ups and downs of the surface. Among these, we use 80%, 10%,
10% for training, validation and testing a CNN model. In addition, we conduct all the
experiments by fixing the random seed in the dataset splitting process, although different
set of samples can inevitably lead to slightly different results.

We use Python as the programming language of choice since it is the most dominant and
widely used language in the domain of data science. For simplicity purpose, we use scikit-
learn when we want to deal with the construction of dense neural networks [ 38 ]. When it
comes to GP-related models, we use a framework developed by Sheffield machine learning
group, GPy [ 39 ]. It is extremely useful and versatile, allowing us to create any combination
of models. Last but not least, Pytorch is used to build the data pipeline and CNN model
[ 40 ]. Despite its fame in the support of GPU acceleration, we choose it mainly due to its
close integration with native Python.

In the next few subsections, several computational experiments will be introduced with
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detailed explanations.

3.5.2 (1) Multilayered perceptron (MLP) model

For the first computational experiment, we intend to adopt a brute force approach by using
a dense interconnected neural network. We choose only single layer neural network with
100 nodes, and we train the parameters with SCM, namely medium fidelity data only.
Along with the input and output layers, the model has an architecture of 8-100-1 nodes.
Table  3.1 shows the hyperparameters we employed regarding the MLP model.

Table 3.1: The hyperparameters used in (1) MLP model

Activation function Relu
Batch size 32

Learning rate 0.001
Optimizer Adam

Epoch 500

Since the focus of the thesis is to leverage multi fidelity sources, we did not spend too
much effort optimizing the hyperparameters of the neural network, so there is room for
improvement if wanted.

Table  3.2 shows the results of the testing set we got from the MLP model.

Table 3.2: The results of (1) MLP model. Format: average ± standard deviation

MSE 12.872± 0.062
MAE 1.127± 0.023

Training time (s) 0.52± 0.085

The way we calculate the average and the standard deviation here is by fixing the random
seed for the dataset and re-initializing the weights of the neural network for five times.
Each time we start the optimization with a different set of initial parameters is like ran-
domly choosing a starting point in the space spanned over 8 dimensions, aka. the number
of input features. The standard deviation of both MSE and MAE are quite small, suggest-
ing that the neural network is consistently finding local minimums similar in values. In
addition, MLP does not have CoP since the way neural works is by conducting basic math-
ematical operations with trainable weights and biases, so the output is a predicted value
of the feature without any uncertainty estimate.
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3.5.3 (2) Gaussian Process Regression model

In this section, we are presenting a pure GPR model trained solely by medium fidelity
data, as if the low fidelity data does not exist. We do this because it is valuable to com-
pare the differences with the introduction of abundant low fidelity data in multi fidelity
setting in future sections. As mentioned, we choose RBF kernel as the estimated shape
of the function and enable ARD in order to evaluate each dimension independently. The
optimization process of the model is restarted for 20 times to ensure sufficient coverage
of the search space. In addition, bfgs algorithm is used to find the best set of parameters.
It is a qausi-newton method well known for numerical optimization when the number of
training data is relatively small. The results are also generally reported performing bet-
ter than Adam optimizer since it takes curvature into consideration. Table  3.3 shows the
results of the testing set we got from the GPR model.

Table 3.3: The results of (2) GPR model. Format: average ± standard deviation

MSE 14.448± 0.363
MAE 1.308± 0.015
CoP 0.637± 0.004

Training time (s) 178.288± 46.781

We can see that the performance is worse than (1) MLP model in any given metrics. This
is expected since GP alone is not particular good at multidimensional setting, but it does
shine with its ability to provide estimate to the uncertainties. Also, the training time is
burdened by the number of restart times that we choose. It can be reduced with less restart
times, but it might sacrifice the chances to find better set of parameters. Still, the training
time difference is what hinders GP from real-time big data applications.

As a comparison, without ARD, the MSE, MAE and CoP are 15.828, 1.468 and 0.617, re-
spectively. We can clearly notice a distinct decline in all the metrics. However, better per-
formance comes with a cost where the training time gains by approximately 116%. This is
a trade-off to be considered before applying ARD to the model. Since training efficiency is
not a major concern in this work, we are happy to adapt this technique for the performance
gain.

3.5.4 (3) Linear multi-fidelity model

Starting from this section, we are introducing low fidelity data to the models as another
source of information. We decide to employ linear multi fidelity model as the first trial.
For graphical representation, please refer to Figure  2.11 . We can see from the figure as
well as the Equation  2.12 that there are two GP models. One is trained using low fidelity
data and the other is trained using medium fidelity data. The result of the low fidelity
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GP is weighted by a parameter ρ and passed on to the next level. The final prediction is
determined by the sum of weighted low fidelity result and the result from medium fidelity
GP. However, since their results are linked linearly, the quality of the low fidelity data can
greatly influence the final outcomes. Also, models linked linearly might hamper the ability
to express complicated patterns.

We choose the package developed by Andrei et al., Emukit [ 41 ], to tackle the construction
of AR1 model. Emukit is a Python adaptable toolkit aiming to make the prototype of
statistical methods on physical process easier. It helps us reduce the amount of work and
the lines of code for this model. Due to the increasing computing time, we restart the
optimization for five times instead of 20 times in single fidelity GP.

Table  3.4 demonstrates the results of the testing set we got from the AR1 model.

Table 3.4: The results of (3) linear multi-fidelity model. Format: average ± standard devi-
ation

MSE 12.569± 0
MAE 2.002± 0
CoP 0.641± 0

Training time (s) 12995± 2124

The first thing we might notice from the table is the identical result throughout five exper-
iments which lead to zero standard deviation. While we dig into the training log, it shows
that for each optimization restart, we do get different losses for each set of parameters.
This specific set of parameters gives rise to the minimum loss for all the experiments. The
phenomenon indicates that this ”local minimum” might be too easy to achieve but hard
to escape. Nonetheless, MSE and CoP do perform much better than the one from single
level GP despite a poor result in MAE. This shows that the predictions further away from
the ground truth are punished significantly. Another fact we can notice is the staggering
amount of time it needs for training. An increasing time is expected since we provide
additional data for the model. The poor performance might also result from the imple-
mentation details inside this toolkit and the incompatibility to the hardware we use.

To sum up, we still experience the superior performance from the first multi fidelity model
we tried, and this motivates us to build more sophisticated models shown in the next few
sections.

3.5.5 (4) NARGP model

In this section, we introduce a nonlinear multi fidelity model that is linked by a Gaussian
process. In Figure  3.1 , we lay out a general setting for a nonlinear multi fidelity model.
f(X) is chosen to be a Gaussian process, GPlow, in this NARGP model, which can be seen in
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Figure 3.6: Architecture of the data flow for two fidelities NARGP models during training.

Figure  3.6 . The output is then passed as input along with medium fidelity data to another
GP, GPmed, which is where the nonlinearity comes from. For the hyperparameters, we
follow the tradition and keep the restart times to be five so that it can be compared to
the rest of the models on the same baseline. We choose bfgs optimizer and set the max
iteration steps to a thousand. In addition, ARD is also turned on to boost the performance.
The inference step is done by sampling 100 points and taking an average, including the
predicted mean and variance.

Table  3.5 shows the results of the testing samples we got from the NARGP model.

Table 3.5: The results of (4) NARGP model. Format: average ± standard deviation

MSE 10.412± 2.908
MAE 1.122± 0.101
CoP 0.714± 0.019

Training time (s) 4683± 657

You might notice a rather large standard deviation appeared in both MSE and MAE. This is
due to different local minimum that different experiments found. It indicates that there ex-
ists multiple regional minimums during parameters optimization which can be relatively
easy to enter. Since we only set the restart times to five in each experiment, std might
be lower if we restart for more times. MSE can be as low as 8.234 which is much better
than all the models earlier, but in some rare occasions the number can jump up to 13.597
which is even worse than linear multi fidelity model. This tells us again that in the future
we might have to treat the models with larger iterations or restart times. Overall, all the
metrics present us exceptional results as compared to linear MF models, proving its ability
to capture more complex relationship between low and medium fidelity data. The aver-
age training time is an affordable number of 1.3 hour in local laptop, which can be further
reduced if we move the training to a larger computing cluster.
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3.5.6 (5) NARGP+MLP model

Figure 3.7: Architecture of the data flow for two fidelities NARGP+MLP models during
training.

After the success in (4) NARGP model, we decide to enhance the low fidelity evaluation
function f(X) by adding another MLP along with the existing GPlow. We demonstrate the
architecture of this model in Figure  3.7 . Both the MLP and GPlow models consume and
train with the same low fidelity data. There is one more input to the GPmed model since
we add MLP. This gives us 10 input features to the model, namely the existing 8 medium
fidelity features, one force prediction from GPlow and one from MLP. Note that this MLP
model is different from (1) MLP model since this time we provide it with low fidelity data
rather than medium one.

However, we decide to keep using the same architecture and hyperparameters set for this
newly added MLP evaluation, since it is proved to be functional in earlier section. Its
hyperparameters can be found in Table  3.1 . The rest of the setting remain the same as (4)
NARGP model.

Table  3.6 shows the results of the testing samples we got from the NARGP+MLP model.

Table 3.6: The results of (5) NARGP+MLP model. Format: average ± standard deviation

MSE 9.859± 2.362
MAE 1.103± 0.085
CoP 0.709± 0.009

Training time (s) 4834± 457

Both the average MSE and MAE are lower than (4) NARGP model, which shows the im-
portance of a good selection of f(X). Although CoP is a bit lower, it is within 0.7% dif-
ference to previous NARGP model, so it should be negligible. In addition, training time
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is having a 3% increase from the one without MLP, which might even be caused by the
fluctuation of laptop performance. It is certainly tolerable to suffer slightly longer training
time for noticeable metrics improvement.

Overall, the metrics are better than (4) NARGP model. This is somewhat explainable since
from previous computational experiments, MLP is shown to perform better than GP in
single fidelity setting. Therefore, we can understand (5) model as (4) model with better
f(X) so that GPmed gets more reliable input which leads to improved results.

In this section, even though we add one more model and get comparatively better result,
the information is still limited since it is the same data being fed to different models. In
order to boost the performance even further, we are going to introduce more data so that
the model can have different patterns to learn from.

3.5.7 (6) NARGP+CNN model

Figure 3.8: Architecture of the data flow for two fidelities NARGP+CNN models during
training.

For the last model we developed in this thesis, we decide to employ CNN to be able to
include surface geometry information in our multi fidelity model. As shown in Figure  3.8 ,
we replace MLP in previous model with CNN and let the CNN consume only image data
from low fidelity source. The rest of the model remain the same, as GPmed still has 10 input
columns, where 8 of them are medium fidelity features, one from low fidelity feature and
the last one from low fidelity 64*64 images.

We have tried a variety of architectures for CNN, and we end up choosing current model,
a rather small network. In Figure  3.9 , you can see that for the first block we use 16 different
kernels to be able to capture different patterns in the images and cut the width and height
in half by setting stride = 2. It is then followed by a batch normalization layer, an activation
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Figure 3.9: A screenshot of the CNN architecture we used.

layer and a 2d max pooling layer. The second convolution block is really similar. There are
still 16 kernels, but this time each one has depth = 16. At the end of the network, there is
a dense neural network to collect all the 2d spatial information and make prediction from
it. There are only 2801 trainable parameters in this network which is quite tiny in current
benchmark. We try to tune the architecture so that the majority of the parameters lies in
the convolutional blocks.

Table 3.7: The hyperparameters used in the CNN in (6) model

Activation function Relu
Batch size 512

Learning rate 0.00001
Optimizer Adam

Epoch 200
weight decay 0.01

In Table  3.7 , we present the hyperparameters used in the CNN. Since there are more than
60k images for training, we increase the batch size so that each batch is representative
enough to update the network parameters toward meaningful direction. The size also
should not be too large to give the algorithm a chance to break through the local minimum.
In addition, weight decay is one of the regularization techniques to avoid overfitting by
adding a L2 norm of the weights to the loss function. Normally, it can increase the training
loss but reduce the validation loss. Most of the hyperparameters are somewhat empirical,
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but this is the reason why we need a validation set. We adjust the hyperparameters with
the results from the validation set and test the entire network with the test set.

Figure 3.10: Loss curve of the CNN model during training.

The loss curve for the training and validation is shown in Figure  3.10 . We did not set the
training to enable early stopping; instead, we fix the training epoch to be 200 and only
save the model with the best validation loss. The saved model has training, validation
and test loss = 2.29, 2.63 and 6.23, respectively, and the training process takes around one
and half hour. This model is then used as a component in multi fidelity model during
inference.

Table  3.8 shows the results of the testing samples we got from the NARGP+CNN model.

Table 3.8: The results of (6) NARGP+CNN model. Format: average ± standard deviation

MSE 8.448± 0.354
MAE 1.055± 0.01
CoP 0.712± 0.004

Training time (s) 4400± 920

According to the results, both MSE and MAE are less than (4) NARGP and (5) NARGP+MLP
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model with less standard deviation as well. CoP is comparable to NARGP model with triv-
ial difference. However, we expect the training time to be more than the training time of
(4) model, but it is actually less, possibly due to the fluctuation of laptop performance. A
fairer comparison is to add up the training time for CNN to it, which will then give us
around 9854 seconds. To conclude, we achieve the best model by first optimizing the best
CNN model and merge it in NARGP framework.

3.5.8 Evaluation of all the models

After we present all the models in detail, in this section we summarize all the results in
a table and compare them. In addition, the influence of the number of medium fidelity
points in a multi fidelity setting will also be experimented and discussed in order to pro-
vide intuition for future research.

Table  3.9 compares the results from all the models in this thesis.

Table 3.9: A summary of all the results

Models MSE MAE CoP Training time (s)
(1) MLP 12.872± 0.062 1.127± 0.023 N/A 0.52± 0.085
(2) GP 14.448± 0.363 1.308± 0.015 0.637± 0.004 178.288± 46.781

(3) Linear MF 12.569± 0 2.002± 0 0.641± 0 12995± 2124
(4) NARGP 10.412± 2.908 1.122± 0.101 0.714± 0.019 4683± 657

(5) NARGP+MLP 9.859± 2.362 1.103± 0.085 0.709± 0.009 4834± 457
(6) NARGP+CNN 8.448± 0.354 1.055± 0.01 0.712± 0.004 4400± 920

In terms of both MSE and MAE, (6) NARGP+CNN model gives us the best result, which
can probably be attributed to the extra surface geometry information being added to the in-
put. Throughout the five trials, the performance of the model remains rather stable by pro-
viding a small standard deviation. If surface images are limited, (5) NARGP+MLP model
is still a promising candidate given its superior performance to the plain NARGP model.
When it comes to CoP, NARGP is actually the best; however, there is no clear difference
between the last three models. All of them are good at providing reasonable estimates to
forcex as compared to pure GP and liner MF models. MLP model shines at its extremely
short training time comparing to all the models, and it also has possibility to be further
improved by providing more hyperparameter and architecture optimizations.

Overall, with our experiments, NARGP framework is proven to be able to take advantage
of the extra few medium fidelity data and boost the performance. We can clearly notice
the huge gap between NARGP and non-NARGP models in all the metrics. Since training
efficiency is not a huge concern when it comes to the real-world application of wheeled
rovers, we can neglect its poor performance in training time at the moment. Interestingly,
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some models might perform better at MSE but worse at CoP. CoP is a metrics that also put
variance into consideration, so it is also valuable during the comparison if we care about
the uncertainty estimate of the models.

Figure 3.11: Selected 20 sequential points describing the movement of the simulated rover.

Among all the models, we are most interested in basic NARGP model and NARGP with
additional CNN to detect the change of the ground. In the following paragraphs, we
present some figures to demonstrate the benefit of NARGP. Also, in order to properly
spot the marginal improvement when introducing extra abundant low fidelity data, we
also include pure GP model as a baseline for comparison.

In Figure  3.11 , we choose 20 sequential points within a simulation that are unseen to the
models. Model (2), (4) and (6) are compared with each other against the ground truth.
We pick the time interval where forcex remains quite steady and observe the predictions
from these three models. Although we cannot judge a model’s performance simply from
20 selected points, we can still observe some interesting phenomenon from the example.
Also, it is a great way to display the properties of GP based models.

For each model in each point, we can plot a 1d Gaussian distribution since we have its
mean and variance, and we can compare how close the predicted mean is to the ground
truth. We plot the lines with 95% confidence interval, meaning 2 times standard deviation
away from the expected mean. Throughout these 20 points, even if the predictions are
deviated, the true forcex are all situated within the interval. This is a positive sign indi-
cating that the models give reliable predictions. Moreover, we can clearly notice the trend
that NARGP based models perform better than pure GP model, especially when x = 2 and
8. NARGP and NARGP+CNN give similar prediction mean, but NARGP generally has
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larger variance, meaning its CoP should be larger.

Figure 3.12: The influence of the number of medium fidelity points on MSE.

In Figure  3.12 ,  3.13 and  3.14 , we exhibit the impact of the number of medium fidelity points
on models’ MSE, MAE and CoP. Experiments are conducted from 100 points to 2500 points
with each step being 200. Since the number of low fidelity points is 5000, we designed this
so that we can observe the trend where the medium to low fidelity ratio spans from 1:50 to
1:2. In order to design the experiments fairly, we first select a different random seed from
before and pick 2500 samples. For each experiment, we slice the first x samples to make
sure the models are gradually witnessing more data as x increases from 100 to 2500.

In the case of MSE, unfortunately there is no clear trend being found when the number of
medium fidelity points increases. Although NARGP and NARGP+CNN perform the best
when x is over 2000, the rest of the curves fluctuate quite heavily. Judged from the graph,
there is no guarantee showing that more medium fidelity data can reduce MSE effectively.
Some of the newly introduced samples might act as the noise to confuse the models. In
Figure  3.13 , the clear trend is that both NARGP and NARGP+CNN are consistently better
than GP. While NARGP based models are relatively similar in value, there is still no clear
trend regarding the influence of the number of medium fidelity points on MAE. For GP
model, it seems like there is no benefit of adding more medium fidelity data after the ratio
surpasses 1:10.

When it comes to CoP in Figure  3.14 , it is obvious that all the models show an upward
trend when the number of medium fidelity data increases. In both NARGP and NARGP+CNN,
the improvement is significant when the ratio increases from 1:50 to 1:10; however, after
that, the value reaches a plateau where an increase in medium fidelity samples does not
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Figure 3.13: The influence of the number of medium fidelity points on MAE.

Figure 3.14: The influence of the number of medium fidelity points on CoP.
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drastically improve the models’ CoP.

Overall, the trend in this CoP figure is expected since the CoP of GP should steadily in-
crease when it is exposed to more data, and NARGP and NARGP+CNN models do require
certain number of medium fidelity points to fix its predictions across the entire domain
regardless of the ample supply of low fidelity data. Intriguingly, when the number of
medium fidelity data is small, it can be explained that NARGP+CNN performs better than
NARGP because it has extra surface images to aid its decision.

To combine with the computational experiments in the earlier sections, what we learned
from these graphs is that we can achieve similar if not better value in all the metrics if we
only use half of the medium fidelity data, i.e., 500 instead of 1000. Also, this is surprisingly
true not just for NARGP based models but also for pure GP model as well. We hope that
these experiments can provide some insights to the future experiments design.

3.6 Performance differences between kernels

In the last section of the thesis, we decide to explore other kernels other than the default
RBF kernel to see if there are more suitable kernels for the properties of wheeled mobile
rovers, and we are revealing our computational results in the following tables. In NARGP
and NARGP+CNN models, we replace both the kernel of low fidelity GP and the kernel
of the GP to fuse medium fidelity data and low fidelity GP’s output. We choose 4 different
kernels, namely linear, Matérn32, Matérn52 and Rational Quadratic kernels. Except for
the linear kernel, the rest of the kernels can be seen as the extension of RBF kernel, with
different assumptions.

Table  3.10 compares the results of MSE when employing different kernels. We can see that
RBF kernel is almost the worst kernel in all three models. On the contrary, linear kernel
stands out from all the kernels to be the one that gives the GP and NARGP+CNN models
the lowest MSE. From the perspective of the models, the switch of the kernel can provide
the most apparent influence on the GP model, while for NARGP+CNN, the change of
kernel is quite trivial.

Table 3.10: The results of MSE in different kernels

Kernels GP NARGP NARGP+CNN
RBF 14.448 10.412 8.448

Linear 9.432 9.708 8.28
Matérn32 12.947 8.522 8.436
Matérn52 13.391 8.519 8.315

Rational Quadratic 10.912 8.825 8.992
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Table  3.11 compares the results of MAE when using different kernels. The results show
us again that a better MSE does not necessarily lead to a better MAE, despite sharing
a positive correlation. For GP, the model achieves the best result when using rational
quadratic kernel, while for NARGP and NARGP+CNN, Matérn32 kernel gives us the best
result, even though its difference to other kernels is not too large.

Table 3.11: The results of MAE in different kernels

Kernels GP NARGP NARGP+CNN
RBF 1.308 1.122 1.055

Linear 1.192 1.441 1.169
Matérn32 1.159 1.015 1.015
Matérn52 1.207 1.051 1.044

Rational Quadratic 1.11 1.069 1.059

The results of CoP while we apply different kernels on the selected models is shown in
Table  3.12 . The most interesting result still lies in the row of linear kernel. It achieves
the lowest CoP in GP model regardless of the best MSE score. This could indicate small
standard deviations. Furthermore, the usage of linear kernel also makes NARGP and
NARGP+CNN stand out from the rest of the kernels by a huge margin. The reason be-
hind this is yet to know, but it is exciting to know that the assumed function prior can
have tremendous influence on the final results.

Table 3.12: The results of CoP in different kernels

Kernels GP NARGP NARGP+CNN
RBF 0.637 0.714 0.712

Linear 0.483 0.872 0.852
Matérn32 0.673 0.75 0.727
Matérn52 0.658 0.74 0.707

Rational Quadratic 0.665 0.733 0.713

Table  3.13 compares the results of training time when different kernels are used on the
three models. In all the models, rational quadratic kernel makes the training time the
longest, so it is something to be considered before employing. Due to the O(n) complexity,
NARGP as well as NARGP+CNN spend the least amount of time when using linear kernel.
Still, the training time is massively impacted by the performance fluctuation of individual
laptop.

Overall, there is no clear winner on which kernel is the most suitable for our problem.
Some kernels might perform better at certain metrics and on specific models. Linear kernel
does perform surprisingly great on certain scenarios, so it could be an interesting direction
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Table 3.13: The results of training time in different kernels

Kernels GP NARGP NARGP+CNN
RBF 178 4683 4400

Linear 179 3320 3003
Matérn32 202 4725 3618
Matérn52 157 5936 6191

Rational Quadratic 374 6802 7087

to dive in. In the conclusion section, we will disclose some of the state-of-the-art innova-
tions on the construction of kernels being done by others and their applications on several
domains.
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People use both virtual simulations and real-world experiments to drive the development
of the locomotion of rovers in any terrain. These have produced tons of data for data-
driven methods. Depending on the data sources, we can divide them into more reliable
high fidelity data as well as less accurate low fidelity data.

In this thesis, we construct six models to tackle the force prediction problem of wheeled
mobile robot. Neural networks models such as MLP are good at faster training time while
Gaussian process models are known for its ability to estimate the prediction uncertainty.
Out of all the models used in the thesis, multi-fidelity models show promising potential
for terramechanics applications by taking advantage of the fusion of high and low fidelity
data. Specifically, with extra CNN model to detect the change of the surface and fuse into
the low fidelity part of the model, model (6) NARGP+CNN performs the best in both MSE
and MAE. In addition, we also experiment a wide range of medium-low fidelity data ratio
and show that 1:10 can be a possible starting ratio for any future endeavor.

Kernel is the key when it comes to constructing a Gaussian process model. We show
that the choice of kernel can greatly influence the performance of a model. In addition
to RBF kernel, our results indicate that certain kernel can have superior result in certain
scenario, depending on the need. Since kernel function is our guess to the characteristics
of the data, it becomes natural to incorporate the underlying physical properties of the
data. For example, power grid dynamics was incorporated in the prior of PhI-GPR by
solving stochastic differential equations [ 42 ]. Also, Hanuka, A et al. expand the simulation
f(x) from the optimum point and construct the RBF covariance function in their Gaussian
process model [ 43 ]. These methods are called Physics-informed model and have been
widely applied in many domains [ 44 ,  45 ]. Thus, one of the main directions in the future
would be to build kernels specifically for the rovers in sandy terrain.

Data is the fuel to a machine learning model. In this thesis, we train the model with rel-
atively simple rover trajectory, so the movement that the model can learn from is quite
limited. That is to say, we only fill up a tiny portion of the input space spanned by the
selected features. Therefore, it will be both a challenge and an opportunity to train the
models with a variety of trajectories. Sequential or time dependent models might also be
used to understand the locomotion of the rovers. Speaking of data, when we select the data
randomly for training, validation and testing, we usually fix a random seed so that we can
have identical results if we decide to run it again. During our experiments, we find out
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different random seed can significantly impact the result of a model, since some important
snapshots of trajectories might not be selected during the learning process.

CoP is one of the metrics that we use to evaluate the models. It refers to the area under
the probability density function. In the thesis, we assume that a larger CoP represents a
better model, which might only be true to some extent. A larger CoP value means the
ground truth is close to the expected mean. When the CoP of the model is too close to one,
it means all the predicted means are close to the ground truths. Ideally, we do not want
it to happen, since we expect the output of the Gaussian process model to have certain
level of variance. It should be probable for the ground truth to be one or two standard
deviation away from the expected mean. Therefore, we also need a threshold of CoP to
better evaluate and compare the performance.

In conclusion, data-driven methods, especially multi-fidelity models, has shown promis-
ing potential to assist the development of wheeled mobile robot in extraterrestrial envi-
ronment.
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