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FOREST ECOLOGY

A climate risk analysis of Earth’s forests
in the 21st century
William R. L. Anderegg1,2*, Chao Wu1,2, Nezha Acil3,4, Nuno Carvalhais5,6, Thomas A. M. Pugh3,4,7,
Jon P. Sadler3,4, Rupert Seidl8,9

Earth’s forests harbor extensive biodiversity and are currently a major carbon sink. Forest conservation
and restoration can help mitigate climate change; however, climate change could fundamentally
imperil forests in many regions and undermine their ability to provide such mitigation. The extent of
climate risks facing forests has not been synthesized globally nor have different approaches to
quantifying forest climate risks been systematically compared. We combine outputs from multiple
mechanistic and empirical approaches to modeling carbon, biodiversity, and disturbance risks to conduct
a synthetic climate risk analysis for Earth’s forests in the 21st century. Despite large uncertainty in
most regions we find that some forests are consistently at higher risk, including southern boreal forests
and those in western North America and parts of the Amazon.

E
arth’s forests store carbon, support enor-
mous terrestrial biodiversity, and provide
trillions of dollars each year in ecosys-
tem goods and services to society (1, 2).
Because of their potential carbon seques-

tration capacity and cobenefits there is wide-
spread and growing interest in leveraging
forests for climatemitigation through nature-
based climate solutions (3, 4). However, the
future of forests globally is uncertain as a
result of both land use decisions and climate

change (5–7). Forests face substantial climate
risks that could trigger carbon cycle feedbacks
which would accelerate climate change and
fundamentally undermine their role in climate
mitigation (7–9). Critical climate-sensitive
risks to forest stability, biodiversity, and long-
term carbon storage include disturbance trig-
gered by extreme weather (e.g., fire, drought,
hurricanes), biotic agents and invasive spe-
cies, and large-scale demographic shifts (e.g.,
elevated mortality rates, species turnover,

and/or physiological limits to growth or re-
generation) (7, 10–12).
The large-scale and cross-biome patterns of

climate risks to forests are not well under-
stood. With respect to ecosystems, the Inter-
governmental Panel on Climate Change (IPCC)
defines risk as the potential for adverse con-
sequences for ecological systems and highlights
that risk results from the dynamic interaction
of climate-related hazards, exposure, suscepti-
bility, and (lack of) adaptive capacity of a sys-
tem (5, 13). Threemajor approaches have been
used to examine key determinants of forests’
climate risk, each considering different pro-
cesses and having distinct uncertainties and
limitations: First, global mechanistic vegeta-
tion models, such as those included in Earth
system models, simulate forest carbon fluxes
and pools, climate impacts on those processes,
some key climate-sensitive disturbances such
as fire, and dynamic growth and recovery after
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Fig. 1. Future forest carbon and climate risk projections from mechanistic vegetation models. All panels analyze the change between 2081 to 2100 in Shared
Socioeconomic Pathway 5-8.5 (SSP585) compared with 1995 to 2014 historical simulations and are masked by present forested areas. (A) Multimodel mean and
(B) range of the change in live carbon mass in vegetation (kilograms per square meter) across 23 models. (C) Number of models projecting vegetation carbon losses
in a grid cell over the same time period. (D) Multimodel mean spatial patterns of the percent change in fraction of tree plant functional types in a grid cell.
Gray hatched areas indicate grid cells removed from analysis due to land use-driven forest loss.
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disturbances (14, 15). Second, “climate envelope”
approaches use empirical models based on re-
lationships between observed climate patterns
and forest attributes such as biomass, species
presence/abundance, or ecoregion/life zone
presence (16–18). Third, empirical assessments
of climatic controls on stand-replacing dis-
turbances, typically based on satellite data of
forest loss ormeta-analyses of field studies, are
also common (11, 19). These major approaches
roughly capture different axes of forest climate
risk to: (i) carbon stocks or storage (hereafter,
C risk), (ii) species composition changes (species
risk), and (iii) disturbance regime change
(disturbance risk). These approaches have dif-
ferent inherent strengths and weaknesses, but
a synthesis of approaches at a global scale is
lacking. A multimethod analysis to quantify
risks spatially and estimate which regionsmay
be particularly vulnerable under future cli-

mate conditions is urgently needed to inform
land management, conservation, and climate
mitigation efforts.
We compare results from these three types of

approaches to provide a global assessment of
climate risks facing Earth’s forests in the 21st
century and ask the following: (i) what is the
mean and uncertainty in projections of forest
carbon storage andpotential forest carbon losses
in mechanistic vegetationmodels included in
Earth systemmodels (e.g., C risk); (ii) what do
empirical climate envelope and climate-sensitive
disturbance approaches estimate for spatial and
temporal climate risks to forests (e.g., species and
disturbance risks); and (iii) what broader risk
patterns emerge from the synthesis and com-
parisons of these three different axes of risks?
We first examined simulations of the live

carbon in vegetation in forested areas (C risk)
from mechanistic vegetation models from

the Coupled Model Intercomparison Project
Phase 6 (CMIP6: 23 models total, 13 with
prognostic fire and 6with dynamic vegetation;
table S1), removing the direct influences of
human land use change to contextualize over-
all forest carbon changes (20). Comparing 2081
to 2100 with 1995 to 2014, these models on
average show carbon gains in currently for-
ested areas in both high- and low-emissions
scenarios (Fig. 1 and fig. S1). The multimodel
meanwas positive acrossmost of the world but
there was very high variation and uncertainty
across models, particularly in the tropics and
swaths of the boreal forests (Fig. 1, A and B,
and fig. S1). We examined relative agreement
in spatial patterns of carbon gains and losses
across models and found that spatial corre-
lations across models for carbon changes were
modest with an average of r = 0.30 across the
23 models considered (fig. S2).
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Fig. 2. Global forest risk esti-
mates from climate envelope
approaches. (A) Projected
percent transition (%Trans) of
ecoregions to another ecoregion
with a warming of +2°C above
preindustrial from Dobrowski et al.
2021 (17). (B) Projected percent
transition of climate life zones
between 1979 to 2013 and 2061 to
2080 in a moderate (RCP 4.5)
climate scenario from Elsen et al.
2021 (22). (C) Risk of loss
in species richness [quantified
as an effect size (ES) of –1 ×
log(DSpeciesRichnesshighcc-mitigation/
DSRbaseline)] where higher
numbers indicate more risk of
species loss) in the 2070s in
a high climate change (RCP 8.5)
scenario from Mori et al. 2021 (21).
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We calculated two complementary metrics
of potential climate C risk from these models
as follows: (i) the number of models with car-
bon losses by 2081 to 2100 compared with 1995
to 2014 and (ii) the percent change from tree
functional types to other vegetation in a grid
cell between those two periods for the subset
of models (n = 14) that reported data on veg-
etation change (20). The first metric uses the
inherent variability in the model ensemble and
assumes that the higher the number of models
with C loss, the greater the risk; by contrast,
the second metric directly calculates forest
loss inmodelswhere it is represented.With the
first metric, large areas of the Neotropics, the
Mediterranean region and eastern Europe,
and southwestern North America show nota-
ble risk (Fig. 1C). With the second metric, sub-
tropical and southern boreal regionsweremore
likely to lose tree functional types (Fig. 1D).
We further found that these two metrics
showed similar patterns of higher projected
risk in southern boreal and drier regions in
the Amazon and African tropics. Spatial pat-
terns of carbon changes and climate risks
were broadly similar between emissions sce-
narios (Fig. 1 and fig. S1) and betweenmodels
with versus without prognostic fire simulated
(fig. S3).
We then examined forest species risk, esti-

mated through empirical climate envelope
models in three recently published papers.
Using observed climate relationships at global
scales, twopapers estimated ecoregion/life zone
transitions (i.e., shifts from one ecoregion/life

zone to another), while the third modeled
changes in forest species richness within a
biome (17, 21, 22). Ecoregion transitions were
projected tomost likely occur at current biome
boundaries (subtropic-temperate, temperate-
boreal, and tropical-subtropical biomes; Fig. 2,
A and B).We note that there could be similarly
large transitions in terms of species compo-
sition within individual biomes but that by
their inherent ecoregion-focused structure the
underlying analyses in Fig. 2, A and B would
not capture community-level changes. Consid-
ering the third paper’s analyses, risk of species
loss estimates were highest in boreal regions
and western North America and generally
lower in tropical regions (Fig. 2C).
To quantify climate-sensitive disturbance

risk we used two complementary methods:
(i) an empirical random forest model linking
observed climate to stand-replacing distur-
bance estimates based on satellite data from
2002 to 2014 with human land-use conversion
removed (but harvest included) (20) and (ii)
upscaled climate-dependent rates of distur-
bance in 103 protected areas from temperate
and boreal biomes (19). For both methods, the
models were built with observed relationships
in the historical period. We estimated the
change in stand-replacing disturbance rates
with a climate model output from the same
23 climate models we used for C risk for 2081
to 2100, with a moderate climate scenario
(SSP2-4.5). The model of stand-replacing dis-
turbances indicated that if current forests
were exposed to projected future tempera-

tures and precipitation, the largest increases
of disturbance would be expected to occur
in the tropics and southern boreal forests
(Fig. 3, A and B), whereas upscaled relation-
ships from protected areas indicated high dis-
turbance vulnerability broadly across boreal
forests, although this dataset did not include
tropical forests (Fig. 3B).
We emphasize that these three distinct axes

of risk are capturing different aspects and di-
mensions of climate risks to forests, all of which
are generally considered important responses
of forests to climate change (20). The spatial
and cross-biome relative risk patterns within
each approach are likely what is most insight-
ful and important in these comparisons, rather
than the absolute values. Thus, we compared
the spatial correlations in relative projected risk
patternswith a correlationmatrix andcomputed
spatial covariation of risk percentiles across all
metrics. Notably, none of the different metrics
were significantly spatially correlatedwith each
other (P > 0.05), leading to high variability
across risk metrics in many regions (fig. S4),
and the mechanistic vegetation model projec-
tions tended to be slightly negatively correlated
with the other approaches (Fig. 4B). Despite
this broad-scale disagreement, identification
of regions that are at relatively higher or lower
risk in most approaches can still provide use-
ful information for risk management. Aggre-
gating risk metrics by the average percentile
across all metrics with data in a given grid cell,
southern boreal regions (e.g., central Canada)
and drier regions of the tropics (e.g., southeast
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Fig. 3. Projected change in climate-
sensitive disturbance risks. (A) Average
change in percent disturbed in a grid
cell from random forest model projections
of Landsat-based stand-replacing
disturbances for 2081 to 2100 in a
moderate climate change scenario
[Shared Socioeconomic Pathway 2-4.5
(SSP245)] compared with 1995 to 2014.
(B) Average change in percent disturbed
in a grid cell from protected area
disturbance models for only temperate
and boreal ecosystems in 2081 to 2100 in
a moderate climate change scenario
(SSP245) compared with 1995 to 2014.
Gray hatching in grid cells indicates
no data from this data source.
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Amazonia) emerged as regions with higher-
than-average risk across metrics, consistent
withmultiple observational studies (e.g., 23, 24).
By contrast, eastern North America, western
Amazonia, and southeast Asia exhibited lower
than average risk (Fig. 4A and fig. S5); a recent
pantropical study also observed lower vulner-
ability in southeast Asian tropics (25). These
regional patterns were generally robust in a
sensitivity analysis that sequentially excluded
individual risk maps (fig. S6). Considering
biome-wide patterns, tropical forests had
slightly higher averagemedian risk percentiles
(51%ile and 62%ile for tropicalmoist broadleaf
and tropical/subtropical dry broadleaf forests,
respectively) than boreal (44%ile) or temperate
(35%ile and 42%ile for broadleaf and conifer-
ous, respectively) forests (fig. S7).
All of the different approaches to estimat-

ing forest climate risk have limitations and
different uncertainties that are worth noting.
Mechanistic model projections (C risk axis)
include the benefits of rising atmospheric CO2

concentrations on forest productivity (i.e., CO2

fertilization) as well as coarse estimates of cli-
mate sensitivities of plant functional types and
fire disturbance. However, these models are
generally thought to be lacking a substantial
range of key impacts of climate on tree mor-
tality and other disturbances, making it likely
that risk estimates fromthis approach are overly
conservative and that carbon gains may be
overestimated (26). Furthermore, these models
do not realistically capture current tropical for-
est carbon dynamics (27) and the potential for
biome shifts remains very uncertain in these
models (14, 28) in part because they frequently
neglect processes of tree regeneration (29).

The empirical species distribution and eco-
region biome transition models (species risk
axis) are correlative in nature and do not di-
rectly include mechanistic processes of growth,
mortality, CO2-related effects, or disturbance.
They are nevertheless widely used across the
globe for conservation planning efforts (16, 30)
as they provide a powerful approach to esti-
mate the species pool under given climatic
conditions. Empirical disturbance models
(disturbance risk axis) capture only one key
component of forest carbon cycling and do not
account for regrowth, species turnover, and
other dynamics. Nonetheless, a broad body
of literature has demonstrated that changes
in disturbance regimes have strong leverage
on forest carbon cycling in many ecosys-
tems globally (9, 12, 28). Finally, all of these
approaches treat direct human impacts of land-
use change and management distinctly. For-
est management—as a key disturbance and
arbiter of forest risk—is included implicitly
or explicitly in all methods here. Although
we have made extensive efforts to screen out
changes resulting from land conversion (20),
landmanagement remains an important un-
certainty and caveat in these analyses. A pre-
vious global risk analysis for forest loss with
a single, older mechanistic vegetation model
(31) projected the highest forest loss in the
eastern Amazon, eastern North American
boreal, and broad areas of the European and
Asian boreal forests, which is partially con-
sistent with the species turnover and biome
transition estimates presented here (e.g., Fig.
2A) and the multimethod aggregate map.
Ultimately, our analysis reveals a notably

divergent set of projections when comparing

across awide range ofmethods and approaches
to examine the vulnerability of Earth’s forests
to climate risks. If forests are tapped to play
an important role in climate mitigation, an
enormous scientific effort is needed to better
shed light on when and where forests will be
resilient to climate change in the 21st century.
These results highlight an urgent need for
more detailed treatment of climate-sensitive
disturbances inmechanistic vegetationmodels,
more extensive benchmarking of those models
against disturbance and mortality datasets,
and better identification of agents of change
in observational datasets to underlie more
nuanced empirical approaches. Continuing
the long-termmonitoring efforts that enable
such work will be fundamental to improving
suchmodels. Our results also underscore key
needs to focus on climate-driven biome transi-
tions. Currently, enormousuncertainty remains
regarding the spatial and temporal patterns
of forest vulnerability to climate change. They
further emphasize that the effectiveness of
nature-based climate solutions currently under
discussion (3, 4) faces great uncertainty given
the profound climate impacts on forests ex-
pected in the 21st century.
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