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Abstract

Nowadays, lending is one of the activities that contributes significantly to the income and profit

of banks and fintech companies. Therefore, credit rating/scoring and risk assessment tools play

very important roles to minimize credit risk, defined by the client’s inability to repay the loan

which the bank has granted. In this thesis, we will propose a novel method which utilizes resid-

ual neural networks for credit scoring. The proposed approach converts tabular data sets into

black/white images and thus allows the application of a residual neural network with 50 layers

(ResNet50) in credit scoring. Each pixel of the image corresponds to a feature bin of the tabular

data set. The predictions from the ResNet50 are interpreted using the SHAP method. We did

the experiments for the proposed method and logistic regression for two publicly available data

sets of different sizes. Based on the results, our proposed approach shows superiority compared

to logistic regression, especially, if the sample size is large.
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Chapter 1

Introduction

The turmoil in the financial markets after the subprime mortgage crisis of 2007-2008 has em-

phasized that performance depends on consumer lending. Nowadays, the majority of a bank’s

profits come from lending activities. Credit granting is one of the activities that contribute sig-

nificantly to the income and profit of banks, but it also entails numerous possible risks (Za-

krzewska [2007]). The main risk of this activity for the bank is the client’s inability to repay the

loan that the bank has granted. Such clients are called default/bad clients. On the other hand,

the decision of whether to provide a loan to a client often depends on the qualifications and

experience of the credit appraisers (Thomas [2000]). In addition, the basis for granting credit

to a client is based on a number of rating criteria, some of which are very difficult to measure

accurately. For example, the 5C (Abrahams and Zhang [2008]) standard when granting credit

is based on the bank’s assessment of the applicant’s qualifications, capacity, capital, collateral,

and conditions. It goes without saying that some criteria, such as the applicant’s qualifications,

are difficult factors to assess and thus can lead to mistakes in credit-granting decisions.

In addition, the 5C-based credit rating method is expensive, and there can be inconsisten-

cies in credit-granting decisions between different credit appraisers for the same application.

Because of these limitations, banks as well as financial institutions need to use reliable, con-

sistent, objective, and low-cost methods for credit evaluation (Akhavein, Frame and White

[2005]). In addition, according to Thomas [2002], banks need a credit rating method that sat-

isfies the following criteria: (1) low cost and easy to operate, (2) fast and stable, (3) consistent

decision based on the objective information that is independent of human emotions and subjec-

tive feelings, and (4) the effectiveness of the credit rating methodology can be easily checked

and adjusted at any time in order to timely adjust to changes in policy or economic conditions.

For the credit scoring problem to discriminate default from non-default clients, the tradi-

tional approach is based on statistical methods such as multivariable linear regression (Meyer

and Pifer [1970]), and logistic regression (Desai, Jonathan, and George [1996]). In recent

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: An example of image classification for the cat classification.

years, there have appeared a number of new credit classification models utilizing approaches

of machine learning (Provenzano et al. [2020]) and artificial intelligence (Liu, Huang and Lu

[2019]). Unlike previous approaches, these new methods do not make any of the strict model

assumptions required by statistical approaches. Instead, these new approaches try to seek to

exploit and generate insights to produce output or predictions based only on observations and

historical data. Some typical machine learning models such as artificial intelligence network

(Huang, Chen, Hsu, Chen and Wu [2004]), support vector machine (Huang, Chen, Hsu, Chen

and Wu [2004]), k-nearest neighbors (Aida [2015]) and random forest (Sharma [2011]) have

demonstrated many advantages in terms of accuracy and reliability compared to some tradi-

tional classification models.

Following this trend, in this thesis, we will propose a method which applies the knowl-

edge of computer vision and convolutional neural network (LeCun [1998]) to solve the

credit scoring problem and study its performance on the two publicly available data sets:

German Credit (Hans [1995]) and Home Credit (Kaggle [2018]). The main idea of our

method is based on image classification, one of the most fundamental tasks in computer vi-

sion. It is the task of assigning one (single-label classification) or more (multi-label classifica-

tion) labels to a given image by discovering patterns and characteristics in the image. Figure 1.1

represents an example of a cat image which is correctly classified by detecting characteristics

of the nose, eyes and ears via a neural network. We apply this idea to classify default or non-

default by proposing a way to convert the tabular information of a client, such as age, salary and

health, to an image format. Next, we apply a convolutional neural network to predict default or

non-default.

This thesis is organized as follows. Chapter 2 gives a review of the theoretical concepts of

(1) methods for transforming tabular data to the image format, (2) convolutional neural net-

works and residual neural networks with 50 layers (ResNet50) and (3) the SHAP method for

model interpretation. Chapter 3 contains the model performances of the ResNet50 and logistic
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regression for the two above-mentioned data sets and model interpretation for the ResNet50.

Chapter 4 gives the conclusions and outlines the future work.



Chapter 2

Theoretical background

2.1 Feature transformation to the image format

2.1.1 Weight of evidence (WOE) and information value (IV)

WOE and IV (Siddiqi [2005]) are common methods for feature transformation and selection.

They are widely used in credit risk models to measure the power to classify good and bad

applicants separately and to transform the continuous and categorical independent variables

into discrete categories automatically. Moreover, the advantages of the WOE are:

• Tackle missing/not available information and outliers.

• No need for performing dummy encoding.

• By applying a proper binning technique, monotonic relationships between the indepen-

dent and the dependent variables can be detected. For example, the higher an independent

variable is, the higher the probability of default is.

• Evaluate contribution of the independent variables to the target by applying the IV.

Background

Suppose that we have a binary dependent random variable Y and a set of independent variables

X1, . . . ,Xp with observations x1, . . . , xp.

The WOE/IV method is based on the following relationship for the j-th independent variable:

log
P (Y = 1∣xj)
P (Y = 0∣xj)

= log
P (Y = 1)
P (Y = 0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unconditional log−odds

+ log
fj(xj ∣Y = 1)
fj(xj ∣Y = 0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
WOE(xj)

, (1)

4



2.1. FEATURE TRANSFORMATION TO THE IMAGE FORMAT 5

where fj(xj ∣y) denotes the conditional probability density function at xj of the covariate Xj

given Y = y. This relationship expresses that the conditional logit of P (Y = 1∣xj) can be

written as the sum of the overall log-odds (i.e., the “intercept”) and the log-density ratio (also

known as the WOE).

It is evident that the WOE and the conditional log odds of Y = 1 are perfectly dependent, as

the “intercept” is constant. Hence, the higher the value of the WOE is, the higher the probability

of observing Y = 1 is. In fact, when the WOE is positive, the probability of observing Y = 1
is higher than average and vice versa when the WOE is negative. The log odds are simply

equal to the unconditional log odds when the WOE is equal to 0. We see that the left-hand

side of the equation (1) is exactly what a logistic regression model should predict. Hence, when

training a logistic regression model, the WOE is hence likely the most popular method for

feature transformation in the credit scoring industry.

We can use the WOE to measure the predictive power of xj – i.e., how well it helps us to

classify goods (Y = 0) and bads (Y = 1) correctly. This is estimated by the information value

(IV) for the variable Xj which is defined as:

IVj = ∫ log(
fj(xj ∣Y = 1)
fj(xj ∣Y = 0)

)(fj(xj ∣Y = 1) − fj(xj ∣Y = 0))dxj. (2)

The IV is a weighted “sum” of all the individual WOE values where the weights include the

absolute difference between the numerator and the denominator (the WOE captures the relative

difference). While (fj(xj ∣Y = 1)−fj(xj ∣Y = 0)) can be negative, the integrand in (2) is always

positive.

Estimating the WOE

The most common approach to estimate the conditional densities needed to calculate the WOE

is to select bins for the variable Xj and then use a histogram-type estimation.

If B1, . . . ,BKj
denote the bins for Xj , the WOE of Xj for bin k can be estimated as:

ŴOEk = log
P̂ (Xj ∈ Bk∣Y = 1)
P̂ (Xj ∈ Bk∣Y = 0)

, for k = 1, ...,Kj

where P̂ (Xj ∈ Bk∣Y = 1) and P̂ (Xj ∈ Bk∣Y = 0) are estimated as:

P̂ (Xj ∈ Bk∣Y = 1) =
nY =1,Xj∈Bk

nY =1,Xj∈Bk
+ nY =0,Xj∈Bk

P̂ (Xj ∈ Bk∣Y = 0) =
nY =0,Xj∈Bk

nY =1,Xj∈Bk
+ nY =0,Xj∈Bk

where nY =1,Xj∈Bk
is the number of observations i ∈ {1, .., n} with Yi = 1 and xij ∈ Bk and
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nY =0,Xj∈Bk
is the number of observations i ∈ {1, .., n} with Yi = 0 and xij ∈ Bk, respectively.

This means that the IV for variable Xj can be estimated as:

ÎVj =
Kj

∑
k=1
(P̂ (Xj ∈ Bk∣Y = 1) − P̂ (Xj ∈ Bk∣Y = 0)) × ŴOEk.

According to Siddiqi [2005], by convention the value of the IV statistic can be interpreted as

follows. If the IV statistic is:

• Less than 0.02, then the predictor has no relationship to the goods versus bads odds ratio

• 0.02 to 0.1, then the predictor has only a weak relationship to the goods versus bads odds

ratio

• 0.1 to 0.3, then the predictor has a medium strength relationship to the goods versus bads

odds ratio

• 0.3 or higher, then the predictor has a strong relationship to the goods versus bads odds

ratio.

2.1.2 Algorithm for transforming the data into the WOE vectors

Classification and regression trees (CART)

Classification and regression trees (CART) (Breiman [1984]) is a classification method used to

construct decision trees by using the Gini’s impurity as a criterion for splitting. This algorithm

works by splitting a node into two child nodes repeatedly. Its steps will be presented as below:

• Step 1: For each independent variable Xj with the number of unique values Dj , we find

the best split by considering Dj − 1 possible splits for each independent variable Xj

with Dj different values. We take the split which maximizes the splitting criterion. The

resulting set of splits contains the best splits (one for each independent variable).

• Step 2: We find the node’s the best split by taking the split of the variable X∗j which

maximizes the criterion among the best splits from Step 1.

• Step 3: Using the optimal node split from Step 2 to split the node and repeat from Step 1

until the stopping criterion is satisfied. The stopping criterion is defined by the user. For

example, it can be that the maximum depth of a tree is less than a pre-specified number

or the number of observations in the node is less than a pre-specified limit.
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For a binary classification, we use the Gini’s impurity index for the splitting criterion. The Gini’s

impurity index is estimated for node t as:

Ĝ(t) = 1 − P̂ (1∣t)2 − P̂ (0∣t)2,

where P̂ (1∣t) = #{i: xij∈ node t,Yi=1}
#{i: xij∈ node t} and P̂ (0∣t) = #{i: xij∈ node t,Yi=0}

#{i: xij∈ node t}

For example, we have note t ∶Xj ≤ c, we define

nt =#{i ∶ xij ≤ c}

ngood,t =#{i ∶ xij ≤ c, Yi = 0}

nbad,t =#{i ∶ xij ≤ c, Yi = 1}

then

Ĝ(t) = 1 − P̂ (bad∣t)2 − P̂ (good∣t)2 = 1 − (
nbad,t

nt

)2 − (
ngood,t

nt

)2.

Chi-square automatic interaction detection (CHAID)

Chi-squared automatic interaction detection (CHAID) (Kass [1980]), is a classification algo-

rithm for constructing decision trees by using the χ2 statistics to find the best split. Only cat-

egorical independent variables are accepted by the CHAID. Continuous independent variables

are converted into ordinal variables before usage.

Merging The main idea of this step is that, for each independent variable Xj , we merge

categories which are most similar to each other. Each final category of the independent variable

will lead to one child node if the independent variable Xj is used to split the node. The merging

step also computes the adjusted p-value and this will be used in the splitting step. In more detail,

the following steps need to be performed:

1. If the number of categories for the independent variable Xj is 1, stop and the adjusted

p-value will be set to be 1.

2. If the number of categories for the independent variable Xj is 2, go to Step 8.

3. Else, for all categories of independent variableXj , find pairs of categories which are most

similar. The most similar pair is defined as the pair whose test statistic has the highest

value for p-value with respect to the dependent variable Y . The formulation of the test

statistic and its p-value estimation will be described later.

4. For the pair with the largest p-value (most similar), if its p-value is greater than αmerge,

which is specified by the user, this pair is merged into a single compound category. Then
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a set of new categories of the independent variable Xj is created. If p-value is less than

αmerge, then go to Step 7.

5. (Optional) If three or more original categories are included in the new set, then we find

the best binary split within the compound category for which the p-value is the smallest.

Perform this binary split if its p-value is not greater than an αsplit−merge, which is specified

by the user.

6. Go to Step 2.

7. (Optional) Any category having too few observations (as compared with the user-

specified minimum segment size) is merged with the most similar other category, as de-

termined by the largest of the p-value.

8. The adjusted p-value is computed for the merged categories by applying the Bonferroni

adjustments.

P-value calculation Calculations of p-value depend on the type of dependent variable.

The merging step needs the p-value for a pair of categories of Xj , and sometimes needs the

p-value for all categories of Xj . When p-value for a pair of Xj categories is needed, only part

of data in the current node is relevant. Let D denotes the relevant data. Suppose in D, Xj takes

on values {xj1, ..., xjDj
} and there are 2 categories of Y (binary). Since the dependent variable

Y is binary, the null hypothesis of independence of the variable Xj and the dependent variable

Y is tested. To do the test, a contingency table is formed using classes of Y as columns and

categories of the predictor Xj as rows. The expected cell frequencies under the null hypothesis

are estimated. The observed cell frequencies and the expected cell frequencies are used to cal-

culate the Pearson χ2 statistic (Pearson [1900]) or the likelihood ratio statistic (King [1989]).

The p-value is computed based on either one of these two statistics. Under the null hypothe-

sis of independence of Y and Xj , the Pearson’s χ2 statistic or the likelihood ratio statistic are

respectively,

χ2 =
2

∑
c=1

Dj

∑
d=1

(ndc − m̂dc)2
m̂dc

LR2 = 2
2

∑
c=1

Dj

∑
d=1
ndc ln(

ndc

m̂dc

),

where ndc is the observed cell frequency and m̂dc is the estimated expected cell frequency for

the cell (xij = xjd, Yi = c). Their formulations are given as follows:

ndc =
n

∑
i=1

1{xij=xjd,Yi=c}
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mdc =
nd.nc.

n..

with

nd. =
2

∑
c=1
ndc, nc. =

Dj

∑
d=1
ndc, n.. =

2

∑
c=1

Dj

∑
d=1
ndc.

Then, the corresponding p-value is given by:

• p = P (χ2
d > χ2) for the Pearson’s χ2 test

• p = P (χ2
d > LR2) for the likelihood ratio test

where χ2
d follows a χ2 distribution with degrees of freedom d = (J − 1)(I − 1).

Bonferroni adjustments The adjusted p-value is calculated as the p-value times a Bon-

ferroni multiplier. The Bonferroni multiplier adjusts for multiple tests. Consider an independent

variable with I original categories that, after the merging step, is reduced to r categories. The

number of ways that I categories can be merged into r categories is known as the Bonferroni

multiplier B. For r = I,B = 1. For 2 ≤ r ≤ I , use the equation derived by Kass [1980]

B =
r−1
∑
v=0
(−1)v (r − v)

I

v!(r − v)!
.

Splitting The “best” split for each independent variable is found in the merging step. The

splitting step selects which independent variable to be used to best split the node. The selection

is accomplished by comparing the adjusted p-value associated with each independent variable.

The adjusted p-value is obtained as the merging step. Its steps will be presented as below:

1. Select the independent variable X∗j that has the smallest adjusted p-value (i.e., most sig-

nificant for the dependence of Y and the independent variable Xj).

2. Using the “best” split of the variable from Step 1 to split the node and repeat from the

merging step and Step 1 until the stopping criterion is satisfied. The stopping criterion is

defined by the user, for example, the maximum depth of a tree is less than a pre-specified

number or the number of observations in the node is less than a pre-specified limit.

For example, we have the dependent variable Y and two independent variables X1 and X2. Y

is the binary variable, X1 is the categorical one with 5 values: 1, 2, 3, 4 and 5 and X2 is the

categorical one with 3 values: 1, 2 and 3. Next, we perform the merging step on X1 and X2.

Based on the results of the merging step, suppose thatX1 has the smallest adjusted p-value (Step

1) and we use the “best” split of X1 from the merging step to split the node (Step 2). Therefore,
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for example, we have node t1 = {i ∶ xi1 ∈ {1,2,3}} = nt1 and t2 = {i ∶ xi1 ∈ {4,5}} = nt2 . Next,

we repeat the merging step, Step 1 and Step 2, on nt1 and nt2 respectively, to split these nodes.

We repeat these 3 steps on the next nodes until the stopping criterion is satisfied.

Algorithm for transforming the data into the WOE vectors

The algorithm for searching for the best encoding of predictors is as follows:

• For continuous independent variables, first a default encoding is derived using the CART.

If the number of categories is fewer than 20, the algorithm will explicitly search through

all possible partitions (combinations of default groups) to achieve the least number of

groups with the greatest estimated the information value (ÎV ). When the number of cate-

gories is greater than 20, the CHAID will be used.

• For categorical (discrete) predictors, the default (original) grouping is adjusted by using

the CHAID algorithm with the differences in the WOE between bins as the criterion for

combining/splitting.

2.1.3 Conversion of tabular data into images

After each variable is transformed into the categorical format of the WOE bins, all predictors

have the categorical format now. Next, we will transform the categorical format of the predictors

of each applicant to an image. Let’s say that we have an applicant i with p predictors, xi =
(xwoe

i1 , ..., xwoe
ip )T , where xwoe

ij is the bin number ∈ {1, ...,Kj} of predictor Xj for j ∈ {1, ..., p}
for client i. Then, the feature image representation Ii of this record is

Ii = [f1(xwoe
i1 ), f2(xwoe

i2 ), ..., fp(xwoe
ip )], (3)

where fj: xj ↦ {0,1}K is a function to perform dummy encoding for a predictor xj and K is

defined as a maximum number of distinct bins of all features, i.e K = max{Kj}pj=1.

age salary (Euro) job type

[-Inf,18) [-Inf,40000) full-time

[18,50) [40000,80000) part-time

[50,Inf) [80000,Inf)

Table 2.1: Table of the WOE bins for example.

For example, we have a data set with three predictors which are age (numeric), salary (nu-

meric) and job type (qualitative). By applying the WOE transformation, the optimal bins for
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Figure 2.1: Feature image representation of the applicant A whose age is [18,50) (bin 2 - at-

tribute 1), salary is in [80000, Inf) (bin 3 - attribute 2) and job type is full-time (bin 1 - attribute

3).

these 3 variables are given in Table 2.1.

Let’s say that an applicant A whose age is 40 has a full-time job with a salary of 85000 Euro.

By applying Table 2.1, we have

xA = (xwoe
A,age, x

woe
A,salary, x

woe
A,job type)T = ([18,50), [40000,80000), full-time)T .

Next, by applying equation (3) with K = max{Kage,Ksalary,Kjob type} = max{3,3,2} = 3, we

have

f(xwoe
age ) =

⎛
⎜⎜⎜
⎝

0

1

0

⎞
⎟⎟⎟
⎠

f(xwoe
salary) =

⎛
⎜⎜⎜
⎝

0

0

1

⎞
⎟⎟⎟
⎠

f(xwoe
job type) =

⎛
⎜⎜⎜
⎝

1

0

0

⎞
⎟⎟⎟
⎠

This implies the matrix IA =
⎛
⎜⎜⎜
⎝

0 0 1

1 0 0

0 1 0

⎞
⎟⎟⎟
⎠

which is represented as the binary image given in

Figure 2.1.



2.2. NEURAL NETWORKS 12

2.2 Neural networks

An artificial neural network is a non-linear application in terms of its input parameters θ that

associate to an entry x an output y = f(x,θ). Y is assumed to be unidimensional for simplicity,

but it could actually be multidimensional. For this application f has a particular form that we

will make. The neural networks can be applied to classification or regression. The parameters

θ are estimated from a learning sample, as is customary in machine learning. The function

to minimize is not convex, leading to local minimizers. The method’s success was based on a

universal approximation theorem because of Cybenko [1989] and Hornik [1991]. Furthermore,

the backpropagation of the gradient, which LeCun [1986] proposed as an effective method of

computing a neural network’s gradient, makes it simple to find a local minimizer of the quadratic

criterion.

2.2.1 Artificial neuron

An artificial j-th neuron of a network is a function fj of the input x = (x1, . . . , xp)T weighted

by a vector of connection weights wj = (wj,1, ...,wj,p)T , completed by a neuron bias bj ∈ R, and

associated to an activation function ϕ ∶ R→ R, given by

hj = fj(x) = ϕ(wT
j x + bj)

= ϕ(
p

∑
k=1

wjkxk + bj).

Some activation functions are usually considered.

The identity function ϕ(x) = x, x ∈ R

The sigmoid function ϕs(x) =
1

1 + exp(−x)
(4)

The hyperbolic tangent function (“tanh”) ϕt(x) =
exp(x) − exp(−x)
exp(x) + exp(−x)

= exp(2x) − 1
exp(2x) + 1

The hard threshold function ϕβ(x) = 1x≥β

The rectified linear unit (ReLU) activation function ϕReLu(x) =max(0, x)

The Figure 2.2 represents a sample artificial neuron, and Figure 2.3 represents the activation

functions described above.

2.2.2 Multilayer perceptron

A neural network is made up of vertically stacked components, called layers. Usually, a neural

network has 3 types of layers.
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Figure 2.2: A sample artificial neuron. (Source: andrewjames turner.co.uk).

Figure 2.3: Activation functions.
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Figure 2.4: A basic neural network. (Source : http://blog.christianperone.com).

• Input layer – the first type is the input layer. This layer accepts the data as input and pass

it to the next layers.

• Hidden layer – the second type is the hidden layer. A neural network contains one or

more hidden layers. Hidden layers are responsible for the “learning” mechanism of neural

networks. They perform multiple functions at the same time such as data transformation,

feature creation, etc.

• Output layer – the last type of layer is the output layer. The output layer holds the result

or the output of the problem.

A multilayer perceptron (or neural network) is a structure composed by one input layer,

one output layer and several hidden layers of neurons. Regarding these hidden layers, the output

of the first hidden layer will become the input of the next hidden layer. On the last layer, we

may apply a different activation function to the output of hidden layers depending on the type of

problem which is regression or classification. The Figure 2.4 represents a neural network with

three input variables, one output variable, and two hidden layers (each of the hidden layers has

4 neurons).

A multilayer perceptron is an architecture where each neuron of a layer is connected to all

the units of the next layer, but has no link with the neurons of the same layer. The parameters
of the network architecture are the number of hidden layers and of neurons in each layer. The

activation functions are also chosen by the user. As was previously mentioned, the activation

function for the output layer is typically different from that of the hidden layers. In the case

of regression, we use no activation function for the output layer. For binary classification, the

output gives a prediction of P (Y = 1∣X). Since this value is in [0,1], the sigmoid activation

function (given in (4)) is generally utilized. For multiclass classification, the output layer con-

tains one neuron per class i, giving a prediction of P (Y = i∣X). The sum of all these values
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has to be equal to 1. The multidimensional function softmax is generally used. However, in this

thesis, we only focus on binary classification.

Let’s summarize the mathematical formulation of a multilayer perceptron with L hidden layers.

We set h0 = x ∈ Rp.

• For k = 1, ..., L (hidden layers), assuming there are Nk neurons in the hidden layer k, we

have

a(k) = b(k) +W(k)h(k−1)

h(k) = ϕ(a(k)) ∶=
⎛
⎜⎜⎜
⎝

ϕ(a(k)1 )
⋮

ϕ(a(k)Nk
)

⎞
⎟⎟⎟
⎠

with W (k) ∈ RNk×p for k = 1, W (k) ∈ RNk×Nk−1 for k = 2, ..., L and b(k) ∈ RNk .

• For k = L + 1 (output layer), we have

a(L+1) = b(L+1) +W(L+1)h(L)

h(L+1) = ψ(a(L+1)) ∶= f̂(x,θ)

with W (L+1) ∈ R1×NL and b(L+1) ∈ R.

where ϕ is the activation function for k = 1, ..., L hidden layers and ψ is the output layer activa-

tion function. For binary classification problem, ψ is a sigmoid function given in (4). The h(k),
b(k) and W(k) is the neuron, bias and a weight matrix respectively at layer k.

2.2.3 Universal approximation theorem

Hornik [1991] showed that any bounded and regular function f ∶ Rp → R can be approximated

at any given precision by a neural network with one hidden layer containing a finite number

of neurons, having the same activation function, and one linear output neuron. This result was

earlier proved by Cybenko [1989] in the particular case of the sigmoid activation function.

More precisely, the Hornik’s theorem can be stated as follows.

THEOREM 1. Let ϕ be a bounded, continuous and non-decreasing (activation) function

on R. Let Kp be some compact set in Rp and C(Kp)) the set of real valued continuous functions

defined on Kp. Let f ∈ C(Kp)). Then for all ϵ > 0, there exists N ∈ N, real numbers vi, bi and

Rp -vectors wi such that, if we define
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f̂(x) ∶=
N

∑
i=1
viϕ(wT

i x + bi)

then we have

∀x ∈Kp, ∣f̂(x) − f(x)∣ ≤ ϵ.

From a theoretical perspective, this theorem is intriguing. Practically speaking, this is not

very helpful due to the hidden layer’s potential abundance of neurons. The depth in number of

hidden layers of the networks is the strength of deep learning.

2.2.4 Estimation of the parameters

Following the selection of the network’s architecture, a training data set must be used to estimate

the parameters (the weights W and biases b). As usual, the estimation is performed by using a

gradient descent technique to minimize a loss function. First, we must select the loss function.

Loss function for classification

The traditional method of parameter estimation is to maximize likelihood (or equivalently the

logarithm of the likelihood). This corresponds to the minimization of the loss function which is

the negative of the log likelihood. Denoting θ the vector of parameters to estimate, we consider

the expected loss function.

L(θ,x) = −E(log(P (Y ∣x,θ)),

where P (.∣x,θ) is the probability mass function of Y given input X = x
For binary classification, with Y ∈ {0, 1}, maximizing the log likelihood corresponds to the

minimization of the cross-entropy. Setting p(x,θ)) = P (Y = 1∣x,θ) ∈ (0,1),

L(θ,x) = −E[Y log(p(x,θ)) + (1 − Y ) log(1 − p(x,θ))].

The sigmoid activation function and this loss function work well together because the use of the

logarithm prevents the gradient of L(θ,x) from having too small values.

Penalized empirical risk

For the estimation of the parameters θ, a training sample (xi, yi)1≤i≤n will be used. In particular,

we mininize the empirical loss defined by

L̂n(θ,x) =
1

n

n

∑
i=1
(ℓ(yi, f(xi,θ)),
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where ℓ(yi, f(xi,θ)) is the empirical loss for observation i when predicting f(xi,θ) while the

actual answer is yi in the training sample.

Backpropagation algorithm for the binary classification with the cross entropy

The binary classification case will be considered and explained how to compute the gradient

of the empirical loss by the backpropagation algorithm. The output for the binary classification

problem is

p(x,θ) =
⎛
⎜
⎝

P (Y = 0∣x,θ) ∈ (0,1)
P (Y = 1∣x,θ) ∈ (0,1)

⎞
⎟
⎠
=
⎛
⎜
⎝

1 − ϕs(aL+1)
ϕs(aL+1)

⎞
⎟
⎠

We assume that the output activation function ψ is the sigmoid function ϕs, already defined in

(4). Let’s make a useful computation to compute the gradient of sigmoid function ϕs.

∂ϕs(x)
∂x

= ϕs(x)(1 − ϕs(x)).

We introduce the notation

(p(x,θ))y =
1

∑
c=0

1y=c(p(x,θ))c,

where (p(x,θ))1 = P (Y = 1∣x,θ) and (p(x,θ))0 = P (Y = 0∣x,θ). Then we have

ℓ(y,p(x,θ)) = − log(p(x,θ))y = −
1

∑
c=0

1y=c log(p(x,θ))c

for the loss function ℓ associated to the cross-entropy. Using the notations of Section 2.2.2, we

want to compute the gradients

Output weight
∂ℓ(y,p(x,θ))
∂W(L+1) Output biases

∂ℓ(y,p(x,θ))
∂b(L+1)

Hidden weight
∂ℓ(y,p(x,θ))

∂W(k) Hidden biases
∂ℓ(y,p(x,θ))

∂b(k)

for 1 ≤ k ≤ L. We use the chain-rule: if z(x) = ϕ(a(x)), then

∂z

∂x
= ∂z
∂a

∂a

∂x

Therefore

∂ℓ(y,p(x,θ))
∂a(L+1)

= ∂ℓ(y,p(x,θ))
∂(p(x,θ))y

∂(p(x,θ))y
∂a(L+1)

we have,
∂ℓ(y,p(x,θ))
∂(p(x,θ))y

= −1
(p(x,θ))y

∂ℓ(y,p(x,θ))
∂a(L+1)

= −1
(p(x,θ))1

∂ϕs(a(L+1))
∂a(L+1)

1y=1
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+ −1
(p(x,θ))0

∂(1 − ϕs(a(L+1)))
∂a(L+1)

1y=0

= −1
(p(x,θ))1

ϕs(a(L+1))(1 − ϕs(a(L+1)))1y=1

+ −1
(p(x,θ))0

ϕs(a(L+1))(−1 + ϕs(a(L+1)))1y=0

= (−1 + (p(x,θ))1)1y=1 + (p(x,θ))01y=0

Therefore we obtain

▽a(L+1)ℓ(y,p(x,θ)) = p(x,θ) − e(y).

where y ∈ {0,1} and e(y) = 1y=1. We now obtain easily the partial derivative of the loss function

with respect to the output bias b(L+1).

∂ℓ(y,p(x,θ))
∂b(L+1)

= ∂ℓ(y,p(x,θ))
∂(p(x,θ))y

∂(p(x,θ))y
∂a(L+1)

∂a(L+1)

∂b(L+1)

Since
∂a(L+1)

∂b(L+1)
= 1

Therefore

▽b(L+1)ℓ(y,p(x,θ)) = p(x,θ) − e(y).

Let us now compute the partial derivative of the loss function with respect to the output weights

∂ℓ(y,p(x,θ))
∂W(L+1) = ∂ℓ(y,p(x,θ))

∂a(L+1)
∂a(L+1)

∂W(L+1)

and
∂a(L+1)

∂W(L+1) = h(L)

Therefore

▽W(L+1)ℓ(y,p(x,θ)) = (p(x,θ) − e(y))h
(L).

Let us now compute the gradient of the loss function at hidden layers k. We use the chain rule

∂ℓ(y,p(x,θ))
∂h(k−1)

= ∂ℓ(y,p(x,θ))
∂a(k)

∂a(k)

∂h(k−1)

We recall that

a(k) = b(k) +W(k)h(k−1)

Therefore
∂ℓ(y,p(x,θ))

∂h(k−1)
= ∂ℓ(y,p(x,θ))

∂a(k)
W(k)

▽h(k−1)ℓ(y,p(x,θ)) =W(k)▽a(k) ℓ(y,p(x,θ)).
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Recalling that h(k) = ϕ(a(k)),

∂ℓ(y,p(x,θ))
∂a(k)

= ∂ℓ(y,p(x,θ))
∂h(k)

ϕ′(a(k))

Therefore,

▽a(k)ℓ(y,p(x,θ)) = ▽h(k)ℓ(y,p(x,θ))(ϕ′(a(k))).

This leads to
∂ℓ(y,p(x,θ))

∂W(k) = ∂ℓ(y,p(x,θ))
∂a(k)

∂a(k)

∂W(k)

= ∂ℓ(y,p(x,θ))
∂a(k)

h(k−1)

Finally, the gradient of the loss function with respect to hidden weights is

▽W(k)ℓ(y,p(x,θ)) = ▽a(k)ℓ(y,p(x,θ))h(k−1).

The last step is to compute the gradient with respect to the hidden biases. We simply have

∂ℓ(y,p(x,θ))
∂b(k)

= ∂ℓ(y,p(x,θ))
∂a(k)

and

▽b(k)ℓ(y,p(x,θ)) = ▽a(k)ℓ(y,p(x,θ)).

We can now summarize the backpropagation algorithm.

• Forward pass: we fix the value of the current parameters θ(r) =
(W(1,r),b(1,r), ...,W(L+1,r), b(L+1,r)), and we compute the predicted values f(Xi,θ

(r))
and all the intermediate values (a(k,r),h(k,r)) = ϕ(a(k,r)))1≤k≤L+1 that are stored. In the

following, we suppress the dependence on r and use W(k), a(k) and h(k) to ease notation

• Backpropagation algorithm:

– Compute the output gradient ▽a(L+1)ℓ(y,p(x,θ)) = p(x,θ) − e(y),

– For k = L + 1 to 1

– Compute the gradient at the hidden layer k

▽W(k)ℓ(y,p(x,θ)) = ▽a(k)ℓ(y,p(x,θ))h(k−1)

▽b(k)ℓ(y,p(x,θ)) = ▽a(k)ℓ(y,p(x,θ)).

– Compute the gradient at the previous layer

▽h(k−1)ℓ(y,p(x,θ)) =W(k)▽a(k) ℓ(y,p(x,θ))

and

▽a(k−1)ℓ(y,p(x,θ)) = ▽h(k−1)ℓ(y,p(x,θ))ϕ′(a(k−1)).
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Initialization

Before training, all input data needs to be normalized so that its range will be the same approx-

imately. Then, we initialize all parameters. We can initialize 0 to all the bias values. However,

there are some rules for the weight initialization. Firstly, the weights must not be initialized to 0

since the derivative at 0 of the tanh activation function ϕt(x) is 0, a saddle point. Secondly, the

weights must not be initialized with the same numbers, otherwise, all the neurons of a hidden

layer would have the same updating behavior. We generally initialize the weights randomly: the

values of W(k) are i.i.d. uniform on [−d, d] with possibly d =
√
6

Nl+Nl−1
where Nl is the number

of the hidden layers in the neural network. Another option is to initialize the weights with a

normal distribution N(0,0.01) (see Glorot and Bengio [2010]).

Optimization algorithm

In order to minimize the criterion L̂n(θ,x), we use a stochastic gradient descent (SGD) algo-

rithm. In particular, the backpropagation algorithm, introduced by Rumelhart et al. [1988],

will be used to compute the gradient.

The stochastic gradient descent algorithm performs the following steps:

• Initialization of θ = (W(1),b(1), ...,W(L+1), b(L+1))T .

• For N iterations:

− For each training observation (xi, yi),

θ = θ − ϵ 1
m
∑
i∈B
[▽θℓ(yi, f(xi,θ))],

where ϵ is learning rate, m is a batch size and ▽θℓ(yi, f(xi,θ)) is the gradient of

ℓ(yi, f(xi,θ)) at θ. The value of ϵ must not be too small to prevent optimization from becom-

ing stuck at a local minimum and causing the convergence to happen very slowly. However,

the network will bounce around an optimal point if its value is too high, failing to stabilize and

converge. A traditional solution to this problem is to change its value during the training of the

model. It is advised to start with a high value of ϵ, such as 0.1, and to reduce its value during the

successive iterations. However, there is no universal guideline for adjusting the learning rate,

thus the engineer’s experience in observing how the loss function changes over time will be

more useful in determining how to proceed.

Note that, in the algorithm presented above, when updating a parameter, we do not com-

pute the gradient for the loss function using the entire training data at each iteration. Instead,
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a subset m, called a batch, of training examples are randomly selected from {1, ..., n} with-

out replacement to compute the gradients, and the average of the m corresponding gradients is

used to update the parameters. This procedure is called batch learning. An iteration over all

the training examples is called an epoch. In deep learning, the number of epochs is also in-

cluded in the parameter sets. The total number of iterations equals the number of epochs times

the sample size n divided by m, the size of a batch. For example, if the batch size m is 1/10

times the sample size n, an epoch corresponds to 10 batches. The predetermined number nb of

epochs are used in the process iterations. Another stopping rule, called early stopping is also

employed: it considers a validation sample and terminates learning whenever the loss function

for this validation sample stops dropping. Batch learning is utilized for computational purposes

since, as we have seen, the backpropagation algorithm requires the storage of all intermediate

values computed during the forward step in order to compute the gradient during the backward

pass, which is not possible for large data sets, such as those containing millions of images. This

is made even more difficult by the fact that deep networks must calibrate millions of param-

eters. The batch size m is also a parameter to calibrate. Smaller batches typically have better

generalization characteristics. On-line gradient descent refers to a specific scenario involving

batches of size 1. The lengthy computing time of this process is a drawback.

Let us summarize the classical SGD algorithm.

ALGORITHM 1 Stochastic Gradient Descent algorithm

• Fix the parameters ϵ: learning rate, m : batch size, nb : number of epochs.

• For l = 1 to nb epochs

− Take a random batch of size m without replacement in the learning sample:

(xi, yi)i∈Bl
.

− Compute the gradients with the backpropagation algorithm

▽̃θ =
1

m
∑
i∈Bl

▽θℓ(yi, f(xi,θ)).

− Update the parameters

θnew = θold − ϵ▽̃θ.

Since the choice of the learning rate is delicate and very influential on the convergence of

the SGD algorithm, variations of the algorithm have been proposed. They are less sensitive

to the learning rate. The principle is to add a correction when we update the gradient, called

momentum. For more details, see Polyak [1964], Nesterov [1983] and Sutskever et al. [2013].
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2.3 Convolutional neural networks

In general, multilayer perceptrons are not well suited for some specific data types, such as

images. In order to deal with images, we typically convert them to numeric vectors, which

frequently results in the loss of some of the spatial information, including shapes. The extraction

of variables from features served as the foundation for the image learning in the past, however,

this method requires extensive expertise in the image processing. The convolutional neural
networks (CNN) introduced by LeCun [1998] have revolutionized the image processing, and

eliminated the need for human feature extraction. The CNN acts directly on matrices, or even

on tensors for images with three RGB color channels. The CNN is now commonly utilized

for a variety of applications, including object and face recognition, image segmentation, and

classification.

2.3.1 Layers in the CNN

A convolutional neural network is composed by several layers: convolutional layers,

pooling layers and fully connected layers.

Convolution layer

For 2-dimensional signals such as images, we consider the 2D-convolution

Z(i, j) = (K(conv) ∗ I)(i, j) =
n1

∑
k1=1

n2

∑
k2=1

I(i + k1 − 1, j + k2 − 1)K(conv)(k1, k2),

where K(conv) ∈ Rn1×n2 is a matrix convolution kernel applied to a 2D signal (or image) matrix

I ∈ Rm1×m2 . As shown in Figure 2.5, the principle of the 2D convolution is to drag a convolution

kernel on the image. At each position, we get the convolution between the kernel and the part

of the image currently treated. Then, the kernel moves by a number s of pixels, s is called

the stride. When the stride is small, we get redundant information. Sometimes, we also add a

zero padding, which is a margin of size p containing zero values around the image in order to

control the size of the output.

Assume that we apply a kernel (also called filters) K(conv) with the size of n1 × n2 on an image

with the size m1 ×m2, the size of the convolution output is W0 ×H0, where

W0 =
m1 − n1 + 2p

s
+ 1

H0 =
m2 − n2 + 2p

s
+ 1.
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Figure 2.5: 2D convolution with the stride s = 1 and no padding. (Source:

https://i2.wp.com/khshim.files.wordpress.com).

The convolution operations are combined with an activation function ϕ (generally the ReLu

activation function ϕReLu). The activation is obtained by sliding is:

A(i, j) = ϕ([
n1

∑
k1=1

n2

∑
k2=1

I(i + k1 − 1, j + k2 − 1)K(conv)(k1, k2)] + b(conv)),

where b(conv) ∈ Rn1×1 is a convolution bias.

It is in the convolution layer that we find the power of the CNN. Indeed, the CNN will learn

the filters (or kernels) that are the most useful to the task that we have to do (such as classifi-

cation). Another advantage is that several convolution layers can be considered: the output of a

convolution becomes the input of the next one.

Pooling layer

Additionally, the CNN has pooling layers that enable dimension reduction, also known as sub-

sampling, by taking the mean or the maximum on the selected picture patches (mean-pooling
or max-pooling). Pooling layers act on small portions of the image similarly to convolutional

layers, we also have a stride. If we consider 2 × 2 patches (pooling size = 2), over which we

take the maximum value to define the output layer, and a stride s = 2, we divide by 2 the width
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Figure 2.6: Maxpooling and effect on the dimension. Only the maximum for each color is

maintained. (Source: http://www.wildml.com).

and height of the image. In general, the dimensions of output obtained after applying a pooling

layer on an input with the size of m1 ×m2 is

W0 =
m1 −R
s

+ 1

H0 =
m2 −R
s

+ 1,

where s is the stride and R is the pooling size. Figure 2.6 represents an example of the max

pooling.

Of course, it is also possible to reduce the dimension with the convolutional layer, by taking

a stride larger than 1, and without zero padding, but another advantage of the pooling is that it

makes the network less sensitive to small translations of the input images.

Fully connected layers for binary classification

The CNN generally finishes with one or more fully connected layers after numerous convo-

lution and pooling layers. Additionally, fully connected layers vectorize and concatenate the

output of last pooling layer as input (see Figure 2.7). Let z is the output after concatenation and

vectorization,

z = C(fv(Pout(i))i=1,..,Lp),

where Pout is the last pooling layer with size of p1 × p2 for each output channel, Lp is the

number of output channels in the last pooling layer, fv is the function for vectorization and C

is the function for concatenation. The above equation denotes the process of vectorizing the
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Figure 2.7: The CNN structure used in Zhifei [2016].

output of each channel by column scan and concatenating them to form a whole string.

Then, the whole string is the input into the activation function for predicting the class labels.

p̂ =
⎛
⎜
⎝

p̂0

p̂1

⎞
⎟
⎠
= ϕs(W(L+1)z + b(L+1)),

where p̂c = P̂ (Y = c∣x) for c ∈ {0,1}, W(L+1) ∈ R1×(p1×p2×L), b(L+1) ∈ R and ϕs is softmax

function.

Backpropagation in CNN

We choose cross-entropy as the loss function. The cross-entropy loss is specified as below:

ℓ(yi, f(xi,θ)) = −
1

∑
c=0

1yi=c log(p̂c)

Similar to a neural network, we still begin with performing forward propagation to generate p̂
with initial value of the weight and bias in convolution layer and fully connection layer. Then

we resort to the gradient descent to update the weights and bias from fully connection layer to

convolution layer.

For fully connection layer, we perform similar steps as in the backpropagation for the neutral

network in Section 2.2.4.

∂ℓ

∂W(L+1) =
∂ℓ

∂p̂
∂p̂

∂W(L+1)

= (p̂ − e(c)) ∂a
(L+1)

∂W(L+1)
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= (p̂ − e(c))z.
∂ℓ

∂b(L+1)
= ∂ℓ
∂p̂

∂p̂
∂b(L+1)

= (p̂ − e(c)).

where e(c) = 1c=1.

For convolution layer with K(conv) ∈ Rn1×n2 and I ∈ Rm1×m2 , we have

∂ℓ

∂K(k)(conv)(k1, k2)
= ∂ℓ

∂A(i, j)
∂A(i, j)

∂K(k)(conv)(k1, k2)

=
m1

∑
i=1

m2

∑
j=1

∂ℓ

∂A(i, j)
∂(ϕ([∑n1

k1=1∑
n2

k2=1 K(k)(conv)(k1, k2)I(i + k1 − 1, j + k2 − 1)] + b(k)(conv)))

∂K(k)(conv)(k1, k2)

=
m1

∑
i=1

m2

∑
j=1

∂ℓ

∂A(i, j)
A(i, j)(1 −A(i, j))X(i − k1, j − k2)

=
m1

∑
i=1

m2

∑
j=1
α(i, j)X(i − k1, j − k2)

=
m1

∑
i=1

m2

∑
j=1
α ∗X,

where α = ∂ℓ
∂A(i,j)A(i, j)(1 −A(i, j)) and ∂ℓ

∂A(i,j) can be obtained by taking the derivative of the

vectorized matrix and reorganizing as a matrix ∂ℓ
z by using a size p1×p2 of the last pooling layer

Pout,

∂ℓ

z
= ∂ℓ
∂p̂

∂p̂

z

= − 1
p̂

W

∂ℓ

∂Pout

= C−1(∂ℓ
∂z
)

∂ℓ

∂A(i, j)
= p1p2

∂ℓ

∂Pout

([ i
p1
,
j

p2
]).

∂ℓ

∂b(k)(conv)
= ∂ℓ

∂A(i, j)
∂A(i, j)
∂b(k)(conv)

=
m1

∑
i=1

m2

∑
j=1

∂ℓ

∂A(i, j)
× 1

=
m1

∑
i=1

m2

∑
j=1
p1p2

∂ℓ

∂Pout

([ i
p1
,
j

p2
]).

Then, we update these parameters as mentioned in Section 2.2.4.

W(L+1) =W(L+1) − ϵ ∂ℓ

∂W(L+1)
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Figure 2.8: Architecture of a classical convolutional neural network (CNN).

b(L+1) = b(L+1) − ϵ ∂ℓ

∂b(L+1)

K(k)(conv)(k1, k2) = K(k)(conv)(k1, k2) − ϵ
∂ℓ

∂K(k)(conv)(k1, k2)

b(k)(conv) = b(k)(conv) − ϵ
∂ℓ

∂b(k)(conv)

where ϵ is the learning rate.

2.3.2 Architectures of the CNN

We have described the different types of layers included in the CNN. In order to design a

network, we need to arrange these layers properly. However, designing an architecture is very

complicated. Therefore, we only study the architectures which have proved to be effective and

powerful. The classical CNN models usually start with an input layer, then some convolution

layers are added to be followed by a pooling layer and end with a fully connected layer (see

Figure 2.8).

In 2014, a network, GoogLeNet (Szegedy, Ioffe, Vanhouche and Alemi [2016]), was the

winner of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). It is a new kind

of the CNN, not only composed of the successive convolution and pooling layers, but also on

the new modules, called inception, which are some kind of network in the network. An example

is represented in Figure 2.9.

The most recent innovation is the ResNet network (Szegedy, Ioffe, Vanhouche and Alemi

[2016]). The idea of the ResNet is to add a connection linking the input of a layer (or a set of

layers) with its output. The GoogleNet and ResNet are much deeper than the previous CNN, but

contain much fewer parameters. They are nevertheless more costly in memory than the classical
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Figure 2.9: Inception modules in Szegedy, Ioffe, Vanhouche and Alemi [2016].

CNN. My thesis utilizes the ResNet network.

2.4 Residual network (ResNet)

The ResNet is a special and outstanding CNN network. Its model size is bigger than the

MobileNet or LeNet. It was firstly launched in 2015 in Kaiming et al. [2015] and very soon to

gain the first rank on the ILSVRC 2015.

The idea of the ResNet is that we construct a CNN architecture, then we add batch nor-

malization and skip connection to each block. It allows us to tune the model’s depth according

to our requirement as flexible as possible. Some variations of the ResNet depth version are

ResNet18, ResNet34, ResNet50, ResNet101, ResNet152. The main difference between these

variations is the number of blocks and such blocks are stacked in side by side from the start to

the end, which enables us to adjust the output shape being gradually smaller.

2.4.1 Batch normalization

The ResNet is the very first CNN architecture which applies batch normalization inside each

block. Batch normalization helps to keep gradient descent algorithms stable and fastens the

training process convergence to the optimal point.

Batch normalization is applied on each mini-batch by standard N(0,1) normalization. For

example, given the input x over a mini-batch of size m, Bi = {x1, x2, ..., xm}. All the input

samples are re-scaled as follows:

x̂i =
xi − µB

σB
, where
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Figure 2.10: Training error (left) and test error (right) on the CIFAR-10 data set with 20-layer

and 56-layer plain networks. The deeper network has higher training error, and thus test error.

(Source: https://arxiv.org/pdf/1512.03385.pdf).

µB =
1

m

m

∑
i=1
xi

σ2
B =

1

m

m

∑
i=1
(xi − µ)2

It is usually used for m = 128 or 256.

2.4.2 Skip connection

Szegedy, Ioffe, Vanhouche and Alemi [2016] thoroughly studied the efficiency of the changes

in depth to the model accuracy. Actually, when the model depth increases, we meet accuracy

saturation, further increasing in the depth may lead to degradation (Figure 2.10). From this

evidence state, it follows that in order to improve the model accuracy, it is not simply make it

deeper.

Therefore, Szegedy, Ioffe, Vanhouche and Alemi [2016] used a deep residual learning

framework as a main solution. They intentionally allowed these layers to fit a residual mapping

rather than hoping that each few stacked layer would directly fit a desired underlying mapping.

Formally, denoting the desired underlying mapping asH(x), the authors let the stacked nonlin-

ear layers fit another mapping of F(x) = H(x) − x. The original mapping is recast as F(x) + x.

According to their theory, optimizing the residual mapping is simpler than optimizing the orig-

inal and unreferenced mapping. In the extreme, if an identity mapping was optimal, it would be

easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.

The formulation of F(x)+x can be realized by a feedforward neural network with the shortcut
connections (Figure 2.11). The shortcut connections are those skipping one or more layers. In
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Figure 2.11: Residual learning: a building block.

our case, the shortcut connections simply perform the identity mapping, and their outputs are

added to the outputs of the stacked layers. More generally,

y = F(x,{W(k)}) + x,

Here, x and y are the input and output vectors of the layers considered. The function

F(x,{W(k)}) represents the residual mapping to be learned. The identity shortcut connec-

tions add neither extra parameter nor computational complexity. The entire network can still

be trained end-to-end by the SGD with backpropagation.

Another step they applied is a convolutional mapping before the skip connection from input

layers to output layers in order to allow feature learning,

y = F(x,W(k)) +Conv(x).

To keep the shape of output unchanged and reduce the total parameters, convolution map-

ping normally has the kernel size of 1 × 1 (Figure 2.12).

2.4.3 Network architecture

In this thesis, we will choose the ResNet50 architecture as a main method to train our image

data set. This architecture is represented in Figure 2.13. In particular, we assume

• Zero-padding pads of the input with size of (3,3)

• Stage 1

– The 2D convolution has 64 filters of shape (7,7) and uses a stride = 2.
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Figure 2.12: A regular block (left) and a residual block (right).

Figure 2.13: The ResNet50 architecture. “X 3” means we stack 3 blocks together.
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– The batchnorm is applied to the channels axis of the input.

− The maxpooling uses a window with size of (3,3) and a stride with size of 2.

• Stage 2

– The convolutional block uses three set of filters of size [64,64,256] with the shape

(3,3) and a stride with size of 1 for each filter.

– The two identity blocks use three set of filters of size [64,64,256] with the shape

(3,3) for each filter.

• Stage 3

– The convolutional block uses three set of filters of size [128,128,512] with the shape

(3,3) and a stride with size of 2 for each filter.

– The three identity blocks use three set of filters of size [128,128,512] with the shape

(3,3) for each filter.

• Stage 4

– The convolutional block uses three set of filters of size [256, 256, 1024] with the

shape (3,3) and a stride with size of 2 for each filter.

– The five identity blocks use three set of filters of size [256, 256, 1024] with the shape

(3,3) for each filter.

• Stage 5

– The convolutional block uses three set of filters of size [512, 512, 2048] with the

shape (3,3) and a stride with size of 2 for each filter.

– The two identity blocks use three set of filters of size [512, 512, 2048] with the

shape (3,3) for each filter.

• The 2D average pooling uses a window of shape (2,2).

• The fully connected layer reduces its input to the number of classes using a softmax

activation ϕs.

2.5 SHAP

The SHAP (SHapley Additive exPlanations) was developed by (Scott and Lee [2017]), based on

the game theoretically optimal Shapley values (Shapley [1953]). The SHAP is a game theoretic
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approach to explain the output of machine learning models by computing the Shapley values for

each feature. The SHAP applies the main idea of coalition game theory (Roger [1991]), where

we have players, a game and a payout. The purpose of game theory is to distribute the payout

between the players based on their contributions.

2.5.1 Shapley value and cooperative game theory

Consider a cooperative game with M players aiming at maximizing a payoff, and let S ⊆ M =
{1,2, ...,M} be a subset of the features inM. Assume that we have a function v(S) that maps

subsets of players to the real numbers, called the contribution of the coalition S . It explains

the total expected sum of payoffs that the members of S can obtain through collaboration. The

Shapley value (Shapley [1953]) is one method to distribute the total payout to the players,

given that everyone cooperates. According to the Shapley value, the amount that player j gets

(or the contribution of player j) is

ϕj(v) = ϕj = ∑
S⊂M∖{j}

∣S∣!(M −∣S∣ − 1)!
M !

(v(S ∪ {j}) − v(S)), j = 1, ...,M, (5)

Keep in mind that this sum also includes the empty set S = ∅. The following is how the formula

can be understood: imagine the coalition being established for one player at a time, with each

player demanding their contribution v(S ∪ {j}) − v(S) as a fair compensation. Then, for each

player, compute the average of this contribution over all possible combinations in which the

coalition can be formed, yielding the weighted mean given in (5).

To illustrate the application of (5), let us consider a game with three players such that M =

{2,3,4}. Then, there are 8 possible subsets; ∅,{2},{3},{4},{2,3},{2,4},{3,4}, and {2,3,4}.
Using (5), the Shapley values for the three players are given by

ϕ2 =
1

3
(v({2,3,4}) − v({3,4}) + 1

6
(v({2,3}) − v({3}) + 1

6
(v({2,4}) − v({4}) + 1

3
(v({2}) − v({∅})

ϕ3 =
1

3
(v({2,3,4}) − v({2,4}) + 1

6
(v({2,3}) − v({2}) + 1

6
(v({3,4}) − v({4}) + 1

3
(v({3}) − v({∅})

ϕ4 =
1

3
(v({2,3,4}) − v({2,3}) + 1

6
(v({2,4}) − v({2}) + 1

6
(v({3,4}) − v({3}) + 1

3
(v({4}) − v({∅}).

Let’s define the non-distributed gain ϕ0 = v(∅), that is, the fixed payoff which is not associated

with any activities of the players, although this is often zero for coalition games. By using

the right hand side above, it is clear to us that they add up to the total worth of the game:

ϕ0 + ϕ2 + ϕ3 + ϕ4 = v({2,3,4})
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2.5.2 Shapley value for prediction explanation

Consider a classical machine learning model where our training data set has n observations with

p features

(yi,xT
i )T ∶= (yi, xi1, xi2, ..., xip)T , i = 1, ..., n,

We use this data set to train a predictive model denoted by f̂(x) attempting to resemble a

response value y as closely as possible. Assume now that we want to interpret the prediction

for an observation i from the model. Strumbel and Kononenko [2010] suggest doing this using

the Shapley value. By moving from game theory to decomposing an individual prediction into

feature contributions, the single prediction corresponds to the payout, and the features take the

place of the players (M = p). We have that the prediction f̂(xi) at xi is decomposed as follows:

f̂(xi) = ϕ0 +
M

∑
j=1
ϕij,

where ϕ0 = β0+∑p
j=1 βjE(Xj) = EX(f(X)) if f̂ is linear in X , ϕij is the contribution of feature

j for the prediction at xi and M is the number of players (features). That is, the Shapley value

explains the difference between the prediction f̂(xi) and the global average prediction. A model

of this form is an additive feature attribution method.

Suppose we have a linear model and we want to explain the prediction for an observation xi

with p predictors. The prediction for xi is

f̂(xi) = β̂0 + β̂1xi1 + ... + β̂pxip.

By considering p predictors as M players and the prediction is the payout. Let ϕij be a contri-

bution of predictor j on f̂(xi). According to Kjersti, Martin and Anders [2019], the Shapley

value takes the simple form:

ϕ̂0 = β̂0 +
M

∑
j=1
β̂jE(Xj), and ϕ̂ij = β̂j(xij −E(Xj)), j = 1, ...,M (6)

where E(Xj) is the expected value for feature j. If all feature contributions are summed up, the

result is
M

∑
j=1
ϕij =

M

∑
j=1
(βjxij −E(βjXj))

=
⎛
⎝
β0 +

M

∑
j=1
βjxij

⎞
⎠
−
⎛
⎝
β0 +

M

∑
j=1
E(βjXj)

⎞
⎠

=f̂(xi) −
M

∑
j=1
E(βjXj) − β0
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=f̂(xi) −EX(f̂(X)).

This is the predicted value for the data point xi minus the expected predicted value. Feature

contributions can be negative. According to Kjersti, Martin and Anders [2019], no explicit

formula like (6) exists for the general case of dependent features with non-linear models. Since

the number of possible coalitions exponentially grows as more features are added, using (5)

directly to determine the exact solution is exceedingly challenging. As a result, based on (5),

Strumbel and Kononenko [2014] suggested an approximate approach to calculate the Shapley

value.

ϕ̂ij =
1

M ′

M ′

∑
m′=1
(f̂(xm′

i,+j) − f̂(x
m′
i,−j)), (7)

whereM ′ is chosen to be≪∣S∣with S ⊆ {1,2, ...,M}∖{j}, f̂(xm′
i,+j) is the prediction for record

xi, but with a random number of feature values replaced by some feature values from a random

data vector z in the original data set with the exception of the respective value for feature j. The

prediction f̂(xm′
i,−j) is identical to f̂(xm′

i,+j) but the respective value of feature j is taken from

a feature value of z. The steps of the approximate Shapley value estimation are represented as

below.

Approximate Shapley value estimation for single feature value:

• Input: Number of iterations M ′, instance of interested observation xi, feature index j,

original data matrix X, and machine learning model f̂ .

• Output: Shapley value for the value of the j-th feature.

• For all m′ = 1, ...,M ′.

– Draw random instance z from the data matrix X.

– Instance of interested observation xi: xi = (xi1, ..., xij, ..., xip).

– Instance zi: zi = (zi1, ..., zij, ..., zip).

– Construct two new instances.

* xm′
i,+j = (xi1, ..., xi,j−1, xij, zi,j+1, ..., zip).

* xm′
i,−j = (xi1, ..., xi,j−1, zi,j, zi,j+1, ..., zip).

– Compute marginal contribution ϕ̂m′
ij = f̂(xm′

i,+j) − f̂(xm′
i,−j).

• Estimate the Shapley value as the average ϕ̂ij(xi) = 1
M ′ ∑M ′

m=1 ϕ̂
m′
ij .

For images, by considering a player to be a pixel and prediction of the response is the payout.

We can apply the above process to estimate the contribution of each pixel to the prediction of

the response. In this way, we can identify which pixel has a positive/negative contribution to the

prediction of the response depending on the sign of the Shapley value of the pixel.



Chapter 3

Residual network based credit scoring for
two data sets

In this thesis, we used the two data sets, which are the German Credit Data (Hans [1995]) and

the Home Credit Data (Kaggle [2018]), for our experiment for training the ResNet50 network

for credit scoring. Besides, we used the logistic regression as a baseline model to compare the

performance of our ResNet50 network.

For both methods, we performed a cross-validation with 5 folds and evaluated their perfor-

mances by four metrics: AUC, Accuracy, Recall and Precision.

We implemented the network training in Python using the keras library and implemented

the WOE transformation in R using the scorecard library. We trained our network on a com-

puter with the CPU Intel Core i5-7300 HQ, RAM 8GB. On this CPU, our training process

took 8 minutes for one epoch for the German Credit Data and 1 hour for one epoch for the

Home Credit Data. With the 5 folds of the cross-validation, we used from 40 to 45 epoches for

German Credit Data and from 25 to 30 epoches for Home Credit Data.

3.1 Evaluation metrics

Suppose we have a binary classification model and its prediction for client i is p̂i = P (Yi =
1∣Xi = xi) for a threshold c. Yi is classified as 1 (positive)⇔ p̂i ≥ c.
Then, for a given threshold c, we have

TP (c) = number of true positives using threshold c

FP (c) = number of false positives using threshold c

TN (c) = number of true negatives using threshold c

36
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FN (c) = number of false negatives using threshold c

P (c) = number of positives in ground truth using threshold c

N (c) = number of negatives in ground truth using threshold c

True Positive Rate (TPR(c)) = TP (c)

TP (c) + FN (c)

False Positive Rate (FPR(c)) = FP (c)

FP (c) + TN (c)

Accuracy(c) = TP
(c) + TN (c)

P (c) +N (c)

Recall(c) = TP (c)

TP (c) + FN (c)

Precision(c) = TP (c)

TP (c) + FP (c)

Accuracy is simply a ratio of correctly predicted observations to the total number of observa-

tions. It measures how correct our model predicts in general. Precision is the ratio of correctly

predicted positive observations to the total predicted positive observations. It measures how cor-

rect, or precise, our model’s positive predictions are. Recall is the ratio of correctly predicted

positive observations to all actual positive observations. It measures how many of the actual

positive instances we are able to be correctly predicted.

The ROC curve plots TPR(c) versus FPR(c) at different classification thresholds c. AUC
measures the entire two-dimensional area underneath the entire ROC curve, and it is the mea-

sure of the ability of a classifier to distinguish between classes across all possible classification

thresholds.

All these metrics are commonly used to evaluate binary classification models. The higher

the value of these metrics, the better the model is.

3.2 Data

For two data sets, we applied some rules for data processing. Firstly, we only used variables

with the missing rate < 10%. Secondly, we only used predictive variables by selecting ones

with the IV > 2%. Since for the Home Credit Data, the default rate is about 8%, we decided to

increase this rate to 30% by decreasing the number of non-default observations. Table 3.1 gives

a short overview to both data sets before and after applying the mentioned rules.
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Table 3.1: Overview of the German Credit Data and the Home Credit Data before and after

data preparation steps.

German Credit (before) German Credit (after)

sample size 1000 1000

non-defaults 700 700

defaults 300 300

default rate 30% 30%

variables 20 10

categorical 13 8

continuous 7 2

Home Credit (before) Home Credit (after)

sample size 307511 82750

non-defaults 282686 57925

defaults 24825 24825

default rate 8% 30%

variables 122 18

categorical 16 5

continuous 106 13
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3.2.1 German Credit Data

This public data set is available on (https://archive.ics.uci.edu/ml/datasets/). It classifies 1000

applicants described by a set of attributes/variables as goods (non-default) or bads (default) and

the percentage of bad clients is 30%. The 10 attributes for our training data are defined as:

• Attribute 1: chk acct - status of existing checking account (qualitative)

– A11 : ... ≤ 0 DM

– A12 : 0 ≤ ... ≤ 200 DM

– A13 : ... ≥ 200 DM / salary assignments for at least 1 year

– A14 : no checking account

• Attribute 2: age - age in years (numerical)

• Attribute 3: duration - duration in month (numerical)

• Attribute 4: credit hist - credit history (qualitative)

– A30 : no credits taken/all credits paid back duly

– A31 : all credits at this bank paid back duly

– A32 : existing credits paid back duly till now

– A33 : delay in paying off in the past

– A34 : critical account/other credits existing (not at this bank)

• Attribute 5: purpose - purpose (qualitative)

– A40 : car (new)

– A41 : car (used)

– A42 : furniture/equipment

– A43 : radio/television

– A44 : domestic appliances

– A45 : repairs

– A46 : education

– A47 : vacation

– A48 : retraining

– A49 : business
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– A410 : others

• Attribute 6: saving acct - savings account/bonds (qualitative)

– A61 : ...< 100 DM

– A62 : 100 ≤ ... < 500 DM

– A63 : 500 ≤ ... < 1000 DM

– A64 : ... ≥ 1000 DM

– A65 : unknown/no savings account

• Attribute 7: present emp - present employment since (qualitative)

– A71 : unemployed

– A72 : ... < 1 year

– A73 : 1 ≤ ... < 4 years

– A74 : 4 ≤ ... < 7 years

– A75 : ... ≥ 7 years

• Attribute 8: property - property (qualitative)

– A121 : real estate

– A122 : if not A121 : building society savings agreement/life insurance

– A123 : if not A121/A122 : car or other, not in attribute 6

– A124 : unknown / no property

• Attribute 9: other install - other installment plans (qualitative)

– A141 : bank

– A142 : stores

– A143 : none

• Attribute 10: housing - housing (qualitative)

– A151 : rent

– A152 : own

– A153 : for free.
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3.2.2 Home Credit Data

This public dataset is available on the Kaggle (https://www.kaggle.com/competitions/home-

credit-default-risk/overview). This data set classifies the repayment abilities (default and non-

default) of thousands of clients. The 18 attributes for our training data are defined as:

• Attribute 1: AMT ANNUITY - loan annuity (numerical)

• Attribute 2: DAYS BIRTH - client’s age in days at the time of application (numerical)

• Attribute 3: DAYS REGISTRATION - how many days before the application did client

change his registration (numerical)

• Attribute 4: DAYS ID PUBLISH - how many days before the application did client

change the identity document with which he applied for the loan (numerical)

• Attribute 5: DAYS EMPLOYED - how many days before the application the person started

current employment (numerical)

• Attribute 6: AMT CREDIT - credit amount of the loan (numerical)

• Attribute 7: DAYS LAST PHONE CHANGE - how many days before application did client

change phone (numerical)

• Attribute 8: AMT GOODS PRICE - for consumer loans, it is the price of the goods for

which the loan is given (numerical)

• Attribute 9: EXT SOURCE 2 - normalized score from external data source (numerical)

• Attribute 10: OCCUPATION TYPE - what kind of occupation does the client have (Clean-

ing staff, Sales staff,etc.) (qualitative)

• Attribute 11: REGION POPULATION RELATIVE - normalized population of region

where client lives (higher number means the client lives in more populated region) (nu-

merical)

• Attribute 12: NAME INCOME TYPE - client’s income type (working, maternity leave,etc.)

(qualitative)

• Attribute 13: REGION RATING CLIENT W CITY - our rating of the region where client

lives with taking city into account (1,2,3) (qualitative)

• Attribute 14: NAME EDUCATION TYPE - level of highest education the client achieved

(qualitative)
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• Attribute 15: REGION RATING CLIENT - our rating of the region where client lives

(1,2,3) (qualitative)

• Attribute 16: AMT INCOME TOTAL - income of the client (numerical)

• Attribute 17: CODE GENDER - gender of the client (qualitative)

• Attribute 18: REG CITY NOT WORK CITY - flag if client’s permanent address does not

match work address (1 = different, 0 = same, at city level) (qualitative).

3.3 WOE calculation and transformation to the image for-
mat

3.3.1 WOE calculation

We applied the method presented in Section 2.1 to calculate the WOE for all variables in the

data set. As an example, we are considering the duration variable in the training data in the

first fold of cross-validation performed on the German Credit Data. Table 3.2 illustrates the

results of the WOE calculation for the duration variable.

Table 3.2: Result of the WOE calculation for the duration variable (IV = 0.302) of the

German Credit Data. The goods are non-defaults and the bads are defaults.

duration

interval

Count Count

Prob

Good

clients

Good

Prob

Bad

clients

Bad

Prob

WOE Bin.IV

[-Inf,8) 73 0.091 66 0.118 7 0.029 -1.403 0.125

[8,16) 271 0.339 206 0.368 65 0.270 -0.309 0.030

[16,32) 314 0.392 217 0.388 97 0.404 0.040 0.001

[32, Inf) 142 0.178 71 0.126 71 0.297 0.857 0.147

Total 800 560 240 0.302

The continuous duration variable is bucketed into 4 bins: [-Inf,8), [8,16), [16,32) and

[32, Inf). Each bin contains at least 5% of data and there is no bin with 0 count of either bads

(defaults) or goods (non-defaults). For each bin,

• We estimate the probability of good and bad clients falling into a bin by dividing the

number of good/bad clients respectively of each bin by the total of number good/bad
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clients in the data. For example, the probability of good and bad clients of the duration

variable in the bin [-Inf,8) are estimated as follows:

P̂ (Xduration ∈ B[-Inf,8)∣Y = 1) =
7

240
= 0.029

P̂ (Xduration ∈ B[-Inf,8)∣Y = 0) =
66

560
= 0.118.

• We estimate the probability of clients falling into a bin (probability of count) by dividing

the number of clients of a bin by the total of number of clients in the data. For example,

the probability of count of the duration variable in the bin [-Inf,8) are estimated as

follows:

P̂ (Xduration ∈ B[-Inf,8)) =
73

800
= 0.091.

• We take the log of the probability of bad over the probability of good of each bin to obtain

the value of the WOE for the corresponding bin. For example, the estimated WOE of the

duration variable for the bin [-Inf,8) is estimated as:

ŴOE[-Inf,8) = log
P̂ (Xduration ∈ B[-Inf,8)∣Y = 1)
P̂ (Xduration ∈ B[-Inf,8)∣Y = 0)

= log(0.029
0.118

) = −1.403.

• We take the difference between the probability of bad and the probability of good then

multiply this difference by the WOE of the corresponding bin to get the IV value. For

example, the IV of the duration variable for the bin [-Inf,8) is estimated as:

ÎV duration[-Inf,8) = (P̂ (Xduration ∈ B[-Inf,8)∣Y = 1) − P̂ (Xduration ∈ B[-Inf,8)∣Y = 0)) × ŴOE[-Inf,8)

= (0.029 − 0.118) × −1.403 = 0.125.

The IV of the duration variable is the sum of the IV of all bins and it equals 0.302.

Figure 3.1 represents the distribution of the duration variable and the WOE trend after

being transformed by the WOE technique. Each column in this figure represents the probability

of count of each bin and the blue line is the trend of WOE across all bins. We can clearly see

that the WOE is showing an increasing trend. It means that the longer the duration is, the higher

probability of a bad credit is.

We applied the WOE technique to transform all continuous and categorical variables into

discrete categories. The list below is the details of each variable after the WOE transformation in

the first fold of the cross-validation performed on German Credit Data and the fifth fold of the

cross-validation performed on Home Credit Data respectively. Note that the list could change

when we apply the WOE technique to different training data in other folds of cross-validation.
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Figure 3.1: Distribution of duration variable after being transformed by the WOE technique.

German Credit Data

• Attribute 1: chk acct

1. No account (A14)

2. ...< 200 DM (A12,A11)

3. ...≥ 200 DM (A14)

• Attribute 2: age

1. [-Inf,26)

2. [26,35)

3. [35,37)

4. [37,53)

5. [53,Inf)

• Attribute 3: duration

1. [-Inf,8)

2. [8,16)

3. [16,32)
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4. [32, Inf)

• Attribute 4: credit hist

1. critical account/other credits existing (A34)

2. existing credits paid back duly till now (A32)

3. delay in paying off in the past (A33)

4. no credits taken/all credits paid back duly (A31,A30)

• Attribute 5: saving acct

1. ...≥ 500 DM (A64,A63,A65)

2. 100 ≤...< 500 DM (A62)

3. ...< 100 DM (A61)

• Attribute 6: purpose

1. car(used) and retraining (A41,A48)

2. radio/television and repairs (A43,A45)

3. furniture/equipment (A42)

4. business and domestic appliances (A49,A44)

5. others, car(new) and education (A410,A40,A46)

• Attribute 7: property

1. real estate (A121)

2. building society savings agreement/life insurance (A122)

3. car or other (A123)

4. unknown / no property (A124)

• Attribute 8: present emp

1. ...≥ 7 years (A75)

2. 4 ≤ ... < 7 years (A74)

3. 1 ≤ ... < 4 years (A73)

4. unemployed and ...< 1 (A72, A71)

• Attribute 9: housing
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1. own (A152)

2. rent (A151)

3. for free (A153)

• Attribute 10: other install

1. none (A143)

2. bank (A141)

3. stores (A142).

Home Credit Data

• Attribute 1: AMT ANNUITY

1. missing

2. [-Inf,16000)

3. [16000,36000)

4. [36000,44000)

5. [44000, Inf)

• Attribute 2: DAYS BIRTH

1. [-Inf,-20000)

2. [-20000,-17000)

3. [-17000,-13500)

4. [-13500, Inf)

• Attribute 3: DAYS REGISTRATION

1. [-Inf,-9000)

2. [-9000,-7000)

3. [-7000,-1000)

4. [-1000, Inf)

• Attribute 4: DAYS ID PUBLISH

1. [-Inf,-4200)

2. [-4200,-3200)
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3. [-3200,-1900)

4. [-1900, Inf)

• Attribute 5: DAYS EMPLOYED

1. [-Inf,-4400)

2. [-4400,-3000)

3. [-3000,-1400)

4. [-1400,0)

5. [0, Inf)

• Attribute 6: AMT CREDIT

1. [-Inf,300000)

2. [300000,650000)

3. [650000,900000)

4. [900000,1300000)

5. [1300000, Inf)

• Attribute 7: DAYS LAST PHONE CHANGE

1. [-Inf,-2100)

2. [-2100,-1100)

3. [-1100, Inf)

• Attribute 8: AMT GOODS PRICE

1. [-Inf,150000)

2. [150000,300000)

3. [300000,500000)

4. [500000,700000)

5. [700000,1200000)

6. [1200000, Inf)

• Attribute 9: EXT SOURCE 2

1. [-Inf,0.16)

2. [0.16,0.46)
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3. [0.46,0.66)

4. [0.66,0.72)

5. [0.72, Inf)

• Attribute 10: OCCUPATION TYPE

1. missing

2. The remaining types

3. Cleaning staff, Sales staff, Cooking staff, Laborers, Security staff and Waiters/bar-

men staff

4. Drivers and Low-skill Laborers

• Attribute 11: REGION POPULATION RELATIVE

1. [-Inf,0.02)

2. [0.02,0.022)

3. [0.022,0.032)

4. [0.032,0.036)

5. [0.036, Inf)

• Attribute 12: NAME INCOME TYPE

1. Student and Pensioner

2. State servant

3. Commercial associate

4. Working, Unemployed and Maternity leave

• Attribute 13: REGION RATING CLIENT W CITY

1. 1

2. 2

3. 3

• Attribute 14: NAME EDUCATION TYPE

1. Academic degree and Higher education

2. Incomplete higher, Secondary / secondary special and Lower secondary

• Attribute 15: REGION RATING CLIENT
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1. 1

2. 2

3. 3

• Attribute 16: AMT INCOME TOTAL

1. [-Inf,70000)

2. [70000,220000)

3. [220000,310000)

4. [310000, Inf)

• Attribute 17: CODE GENDER

1. F, N/A

2. M

• Attribute 18: REG CITY NOT WORK CITY

1. 0

2. 1.

3.4 Image transformation

After having constructed the WOE bins for each variable, we converted this information to an

image format. For example, considering the first applicant in training data in the first fold of

cross-validation performed on the German Credit data. This applicant has:

• checking account < 200 DM (Attribute 1 - bin 3)

• age in 35 - 37 (Attribute 2 - bin 4)

• duration > 32 (Attribute 3 - bin 4)

• credit history is no credits taken/all credits paid back duly (Attribute 4 - bin 4)

• saving account is ≥ 500 DM (Attribute 5 - bin 1)

• purpose is radio/television and repairs (Attribute 6 - bin 2)

• property is real estate (Attribute 7 - bin 1)
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Figure 3.2: The binary image for the first client of the German Credit data resulting using the

bins for each attribute determined by the WOE technique. Here, the columns 1 - 10 represent

the attributes and rows 1 - 5 correspond to the WOE based bins. A pixel is colored white if the

attribute value of the client falls into the associated bin.

• present employment is 1 and < 4 years (Attribute 8 - bin 3)

• housing is rented (Attribute 9 - bin 2)

• other install is stores (Attribute 10 - bin 3).

The associated binary image is given in Figure 3.2.

3.5 Credit scoring results

In order to evaluate performances of the ResNet50 and logistic regression for classification, we

performed cross-validation with 5 folds. For logistic regression, we performed dummy encoding

on categorical variables and kept numeric variables unchanged. This means that all continuous

attributes enter linearly into the logistic model. We would like to mention that this might not be

the best logistic model to be selected for the data at hand, since nonlinear effects of the attributes

and interaction effects are not considered. For the ResNet50, we transformed the transformed

information of each client to a binary image. At each fold of cross validation, we trained the

ResNet50 and logistic regression on the training data and predicted/evaluated on the test data.

The final results were aggregated since each observation is included in the test data of a fold.

Figure 3.3 represents the comparisons of prediction performances of the ResNet50 and lo-
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gistic regression on the German Credit Data in terms of four metrics discussed before. In

terms of Accuracy (Figure 3.3b), logistic regression performs better than the ResNet50 for

thresholds from 15% to 60% while the ResNet50 performs better for thresholds > 60%. We

see that logistic regression has a higher recall compared to the ResNet50 (Figure 3.3c) while

the ResNet50 has a higher precision (Figure 3.3d). In terms of AUC (Figure 3.3a), the ResNet50

performs slightly better than logistic regression. Combining all plots, we can conclude that even

though the ResNet50 performs slightly better than logistic regression, logistic regression has a

better ability in predicting default cases correctly.

(a) AUC (b) Accuracy

(c) Recall (d) Precision

Figure 3.3: Comparison of prediction performances of the ResNet50 and logistic regression on

the German Credit Data.
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(a) AUC (b) Accuracy

(c) Recall (d) Precision

Figure 3.4: Comparison of prediction performances of ResNet50 and logistic regression on

Home Credit Data.

Now, we consider the much larger data set, which is Home Credit Data. Figure 3.4 repre-

sents the comparisons of prediction performances of the ResNet50 and logistic regression. It is

obvious that the ResNet50 performs better than logistic regression in terms of all criteria. This

is what we are expecting since the neural network analysis usually works well on a large data

set.

3.6 Shuffle row, column and both of image

When we transform each client’s information with the WOE bins to a binary image, there is

no rule how to choose the row or column order. Therefore, “How does the model performance

change when we change the order of variables or bins? ” will be raised. In order to answer this
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question, we considered 3 scenarios: shuffle in rows, shuffle in columns and shuffle in both rows

and columns. We applied these 3 scenarios to both data sets and then retrained the model and re-

evaluated the model’s performance. Firstly, we considered the first fold of the cross-validation

for the German Credit Data.

Table 3.3: The order of columns and rows applied on the first fold of the cross-validation on the

German Credit Data. The row order is 1 - 5 and the column order is 1 - 10.

bin 1,chk acct 2,age 3,duration 4,credit his 5,saving acct

1 A12,A11 <26 <8 A31,A30 A61

2 A13 [26,35) [8,16) A32 A62

3 A14 [35,37) [16,32) A33 A64,A63,A65

4 [37,53) ≥ 32 A34

5 ≥ 53

bin 6,purpose 7,property 8,present emp 9,housing 10,other install

1 A41,A48 A121 A72, A71 A151 A141

2 A410,A40,A46 A122 A73 A152 A142

3 A42 A123 A74 A153 A143

4 A43,A45 A124 A75

5 A49,A44

Table 3.3 shows the rules of column and row order applied to the first fold of the cross-

validation for the German Credit Data. We applied this rule to convert each client’s informa-

tion with the WOE bins to a binary image, called an original image. Then, we randomly shuffled

the order of column/row, based on the three mentioned scenarios. The shuffled orders are shown

as follows:

• The shuffled row order: 5, 2, 3, 1, 4.

• The shuffled column order: other install, purpose, present emp, duration,

property, chk acct, saving acct, housing, credit his and age.

• The shuffled column and order order: combining the shuffled row order and the shuffled

column order.

Table 3.4 presents the AUC results of these 3 scenarios. It is obvious that model performance is

almost unchanged. Next, we considered the second fold of the cross-validation for the German
Credit Data.
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Table 3.4: AUC for these 3 scenarios on the first fold of the cross-validation on the German
Credit Data.

Rule AUC

images with shuffle in columns 0.795

images with shuffle in rows 0.795

images with shuffle in both columns and rows 0.797

original images 0.798

Table 3.5: The order of columns and rows applied on the second fold of the cross-validation on

the German Credit Data. The row order is 1 - 6 and the column order is 1 - 10.

bin 1,chk acct 2,age 3,duration 4,credit his 5,saving acct

1 A12,A11 <24 <8 A31,A30 A61

2 A13 [24,26) [8,14) A32 A62

3 A14 [26,33) [14,16) A33 A64,A63,A65

4 [33,35) [16,32) A34

5 [35,39) [32,44)

6 ≥ 39 ≥ 44

bin 6,purpose 7,property 8,present emp 9,housing 10,other install

1 A43 A121 A72, A71 A151 A141,A142

2 A44-46,A410 A122 A73 A152 A143

3 A48,A41 A123 A74 A153

4 A4,A45 A124 A75

5 A49,A42,A40

6

Table 3.6: AUC for these 3 scenarios on the second fold of the cross-validation on the German
Credit Data.

Rule AUC

images with shuffle in columns 0.8085

images with shuffle in rows 0.8087

images with shuffle in both columns and rows 0.8085

original images 0.808
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Table 3.5 shows the rules of column and row order applied to the third fold of the cross-

validation for the German Credit Data. Then, we randomly shuffled the order of column/row,

based on the three mentioned scenarios. The shuffled orders are shown as follows:

• The shuffled row order: 1, 2, 6, 3, 5, 4.

• The shuffled column order: housing, age, purpose, chk acct, present emp,

duration, other install, saving acct, credit his and property.

• The shuffled column and order: combining the shuffled row order and the shuffled column

order.

Table 3.6 presents the AUC results of these 3 scenarios. It is obvious that model performance is

almost unchanged.

We can conclude that a shuffle in the image column or row has no influence on the model

results. This is because convolutional neural networks work by splitting images to many small

parts and extracting insights from each part, then aggregating these insights to predict. Hence,

no matter how an image is changed, the network still detects similar insights of the image.

3.7 Interpretation of the credit scoring results

For each data set, we randomly chose some images in the test data. Then, we predicted the target

class for these randomly selected images. Next, we applied the SHAP technique to identify the

contribution of each pixel to the prediction of the response.

Figure 3.5 and Figure 3.7 present some SHAP interpretation for some predictions in the

German Credit Data and the Home Credit Data respectively. The red pixels represent the

positive SHAP values that contributed to classifying that image as that particular class, and blue

pixels represent the negative SHAP values that contributed to not classifying that image as that

particular class. In both figures, the first column is the original image, the second column is the

SHAP interpretation for the “Good” label and the last column is the SHAP interpretation for

the “Bad” label.

To interpret the prediction in the data context, we focus on the pixels which overlap between

the original image and the SHAP interpretation image. These overlaps are used to identify which

the pixel contributes more/less to the prediction of a particular class. We focus on the pixels

contributing more to the prediction and use the list of WOE bins in Section 3.3.1 to explain

these pixels in sentences.
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Figure 3.5: The SHAP interpretation for 3 random applicants in the first fold of cross-validation

performed on the German Credit Data. True label for each original image is good, good and

bad respectively.
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Figure 3.6: An example of the SHAP interpretation for the first applicant in the German Credit
Data.

For example, we used the first applicant (the first row) in Figure 3.5 and explain why this ap-

plicant was classified as “Good”. We looked for pixels which are overlaps between the original

image and the SHAP value image for the “Good” label then we selected pixels with the positive

SHAP values (red color). As a result (see Figure 3.6), we identified 6 pixels, which can be used

to explain why this client is a good client, out of 10 white pixels from the original image. The

pixels 1, 4 and 5 identified in Figure 3.6 contribute the most to the prediction for the “Good”

label. By looking at the WOE binning list in Section 3.3.1 for these 6 pixels, we can say that

the reasons why this applicant should be a good one are:

• Existing checking account is greater than 200 DM (pixel 1 in Figure 3.6)

• Age is greater than or equal 53 (pixel 2 in Figure 3.6)

• Duration is less than 8 months (pixel 3 in Figure 3.6)

• Savings account/bonds is [100, 500 DM) (pixel 4 in Figure 3.6)

• Purpose is car (used) and retraining (pixel 5 in Figure 3.6)

• No other installment plans (pixel 6 in Figure 3.6).

This makes sense in reality since this applicant is of working age, has lots of money in both

saving and checking account, and no installment plans and is asking for a short-term loan.

Therefore, predicting the “Good” for this applicant seems reasonable.

The Listing 3.1 is the summary of the logistic regression model in the first fold of cross-

validation performed on the German Credit Data. Based on the column of p-value on the

Listing 3.1, chk acct, duration, credit hist, saving acct and property are sta-

tistically significant predictors. These variables also have the highest value for the estimated
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coefficients, especially chk acct and saving acct. Although the ResNet50 and logistic

regression result in different lists of important predictors, the list of two predictors (chk acct

and saving acct) with the highest contribution is similar for both methods.

Listing 3.1: The output of logistic regression for the first fold of the German Credit Data.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.000293 0.618522 -4.851 1.23e-06 ***
chk_acctA11 1.606089 0.227343 7.065 1.61e-12 ***
chk_acctA12 1.104251 0.227187 4.861 1.17e-06 ***
chk_acctA13 0.641936 0.389731 1.647 0.09953 .

age -0.007136 0.008778 -0.813 0.41623

duration 0.029680 0.007395 4.013 5.98e-05 ***
credit_hisA30 1.237034 0.448233 2.760 0.00578 **
credit_hisA31 1.397768 0.408390 3.423 0.00062 ***
credit_hisA32 0.612747 0.214386 2.858 0.00426 **
credit_hisA33 0.535870 0.328342 1.632 0.09267 .

saving_acctA61 0.717890 0.246736 2.910 0.00362 **
saving_acctA62 0.627417 0.343375 1.827 0.06767 .

saving_acctA63 0.135612 0.444718 0.305 0.76041

saving_acctA64 -0.532901 0.540305 -0.986 0.32399

propertyA121 -1.045480 0.402939 -2.595 0.00947 **
propertyA122 -0.708346 0.395527 -1.791 0.07331 .

propertyA123 -0.774547 0.387474 -1.999 0.04561 *
present_empA71 0.042881 0.374324 0.115 0.90880

present_empA72 0.293965 0.283115 1.038 0.29912

present_empA73 0.075037 0.246439 0.304 0.76076

present_empA74 -0.638943 0.302595 -2.112 0.03473 *
housingA151 0.766898 0.453344 1.692 0.09071 .

housingA152 0.370612 0.428779 0.864 0.38740

other_installA141 0.635844 0.247090 2.573 0.01007 *
other_installA142 0.492443 0.394455 1.248 0.21188

purposeA40 0.20348 0.29746 0.684 0.49393

purposeA41 -0.76656 0.37736 -2.031 0.04222 *
purposeA410 0.75080 0.68134 1.102 0.27048

purposeA42 0.06023 0.31116 0.194 0.84652

purposeA43 -0.53094 0.30287 -1.753 0.07960 .

purposeA44 0.75080 0.75115 1.000 0.31753

purposeA45 0.43273 0.53161 0.814 0.41564

purposeA46 0.59670 0.40950 1.457 0.14507

purposeA48 -1.03992 1.08933 -0.955 0.33976

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’

Now, we give another example using the Home Credit Data by considering the first appli-

cant (the first row) in Figure 3.7. Similarly, we identified 10 pixels, which will be used to explain

why this client is a bad client, out of 18 white pixels from the original image (see Figure 3.8).

The pixels 7 and 9 contributed the most to the prediction. By looking at the WOE binning list

in Section 3.3.1 for these 10 pixels, we can say that the reasons why this applicant should be a

bad one are:
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Figure 3.7: The SHAP interpretation on 3 random applicants in the fifth fold of cross-validation

performed on the Home Credit Data. The true label for each original image is bad, bad and

good respectively.

Figure 3.8: An example of the SHAP interpretation for the first applicant in the Home Credit
Data.
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• DAYS ID PUBLISH is [-4200,-3200) (pixel 1 in Figure 3.8)

• AMT CREDIT is [1300000, Inf) (pixel 2 in Figure 3.8)

• AMT GOODS PRICE is [300000,500000) (pixel 3 in Figure 3.8)

• REGION POPULATION RELATIVE is [0.022,0.032) (pixel 4 in Figure 3.8)

• NAME INCOME TYPE is working, unemployed and maternity leave (pixel 5 in Figure

3.8)

• REGION RATING CLIENT W CITY is 3 (pixel 6 in Figure 3.8)

• NAME EDUCATION TYPE is incomplete higher, secondary / secondary special and lower

secondary (pixel 7 in Figure 3.8)

• REGION RATING CLIENT is 3 (pixel 8 in Figure 3.8)

• AMT INCOME TOTAL is [-Inf,70000) (pixel 9 in Figure 3.8)

• CODE GENDER is M (pixel 10 in Figure 3.8).

This interpretation is reasonable since this applicant has a low level of education, income and

annuity, and has the worst rating of living place but is applying for a large loan. Therefore, the

“Bad” label should be tagged for this applicant.

The Listing 3.2 is the summary of logistic regression model in the fifth fold of cross-

validation performed on the Home Credit Data. Based on the column of p-value on the Listing

3.2, REGION POPULATION RELATIVE, OCCUPATION TYPE, NAME EDUCATION TYPE

and AMT INCOME TOTAL are not statistically significant predictors. Among statistically sig-

nificant predictors, EXT SOURCE 2 has the highest contribution to the prediction of the re-

sponse. Since there is a big difference in the two methods’ performance, we expect the lists of

important predictors to be different as well.

Listing 3.2: The output of logistic regression for the first fold of the Home Credit Data.

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.495e+02 1.240e+01 12.051 < 2e-16 ***
DAYS_BIRTH 2.320e-05 2.960e-06 7.838 4.57e-15 ***
AMT_ANNUITY 9.757e-06 1.037e-06 9.411 < 2e-16 ***
DAYS_REGISTRATION 1.650e-05 2.828e-06 5.835 5.37e-09 ***
DAYS_ID_PUBLISH 6.671e-05 6.243e-06 10.684 < 2e-16 ***
DAYS_EMPLOYED 8.221e-05 5.229e-06 15.722 < 2e-16 ***
AMT_CREDIT 2.783e-06 1.421e-07 19.589 < 2e-16 ***
DAYS_LAST_PHONE_CHANGE 7.236e-05 1.180e-05 6.131 8.75e-10 ***
AMT_GOODS_PRICE -3.390e-06 1.597e-07 -21.222 < 2e-16 ***
EXT_SOURCE_2 -2.267e+00 4.734e-02 -47.884 < 2e-16 ***
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REGION_POPULATION_RELATIVE 7.238e-01 8.194e-01 0.883 0.37709

OCCUPATION_TYPE -2.000e-01 1.290e-01 -1.550 0.12115

OCCUPATION_TYPEAccountants -4.454e-01 1.398e-01 -3.186 0.00144 **
OCCUPATION_TYPECleaning.staff -9.096e-02 1.439e-01 -0.632 0.52745

OCCUPATION_TYPECooking.staff -1.061e-01 1.393e-01 -0.761 0.44637

OCCUPATION_TYPECore.staff -3.114e-01 1.310e-01 -2.378 0.01741 *
OCCUPATION_TYPEDrivers -5.867e-02 1.321e-01 -0.444 0.65705

OCCUPATION_TYPEHigh.skill.tech.staff -3.191e-01 1.367e-01 -2.335 0.01956 *
OCCUPATION_TYPEHR.staff -2.204e-01 2.621e-01 -0.841 0.40040

OCCUPATION_TYPEIT.staff -3.545e-01 2.704e-01 -1.311 0.18984

OCCUPATION_TYPELaborers -9.725e-02 1.285e-01 -0.757 0.44912

OCCUPATION_TYPELow.skill.Laborers 8.276e-02 1.542e-01 0.537 0.59136

OCCUPATION_TYPEManagers -2.540e-01 1.327e-01 -1.914 0.05558 .

OCCUPATION_TYPEMedicine.staff -2.933e-01 1.395e-01 -2.103 0.03549 *
OCCUPATION_TYPEPrivate.service.staff -3.983e-01 1.636e-01 -2.434 0.01492 *
OCCUPATION_TYPERealty.agents -2.181e-02 2.186e-01 -0.100 0.92055

OCCUPATION_TYPESales.staff -1.339e-01 1.291e-01 -1.037 0.29994

OCCUPATION_TYPESecretaries -2.457e-01 1.953e-01 -1.258 0.20837

OCCUPATION_TYPESecurity.staff -9.916e-02 1.393e-01 -0.712 0.47659

NAME_INCOME_TYPEBusinessman -3.823e+00 2.332e+00 -1.639 0.10116

NAME_INCOME_TYPECommercial.associate -1.093e+00 1.022e+00 -1.069 0.28514

NAME_INCOME_TYPEPensioner -1.789e+02 1.255e+01 -14.257 < 2e-16 ***
NAME_INCOME_TYPEState.servant -1.214e+00 1.023e+00 -1.187 0.23541

NAME_INCOME_TYPEUnemployed -1.775e+02 1.256e+01 -14.132 < 2e-16 ***
NAME_INCOME_TYPEWorking -9.686e-01 1.022e+00 -0.948 0.34335

REGION_RATING_CLIENT_W_CITY 3.030e-01 6.171e-02 4.910 9.12e-07 ***
REGION_RATING_CLIENT -1.266e-01 6.103e-02 -2.075 0.03802 *
NAME_EDUCATION_TYPEAcademic.degree -1.481e+00 5.754e-01 -2.573 0.01008 *
NAME_EDUCATION_TYPEHigher.education -3.482e-01 2.500e-02 -13.928 < 2e-16 ***
NAME_EDUCATION_TYPEIncomplete.higher -1.448e-01 5.013e-02 -2.888 0.00388 **
NAME_EDUCATION_TYPELower.secondary 7.014e-02 7.479e-02 0.938 0.34828

AMT_INCOME_TOTAL 3.784e-08 3.384e-08 1.118 0.26348

CODE_GENDERF -2.068e-01 2.205e-02 -9.379 < 2e-16 ***
REG_CITY_NOT_WORK_CITY 8.700e-02 2.131e-02 4.082 4.46e-05 ***
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’



Chapter 4

Conclusion

In this thesis, we propose a novel method which utilizes residual neural networks for credit

scoring. The proposed approach converts tabular data sets into images and thus allows the ap-

plication of a residual neural network with 50 layers (ResNet50) in credit scoring. Each pixel of

the image corresponds to a feature bin of the tabular data set. We did the experiments for the pro-

posed method and logistic regression for the German Credit Data and the Home Credit Data.

Based on the results, our proposed approach shows superiority to logistic regression, especially,

if the sample size is large. We also performed some interpretation for the ResNet’s prediction

by using the SHAP method. It estimates the contribution of each pixel to the prediction of the

response. In this way, we can identify which pixel has a positive/negative contribution to the

prediction of the response depending on the sign of the Shapley value of the pixel. To inter-

pret them in the data context, all important pixels were linked to their respective bins that were

obtained by the WOE transformation.

We believe that neural networks in computer vision show the great promise for the credit

scoring industry since they show good results and allow for nice visualization. There are several

possible extensions to improve its performance in the credit scoring industry:

• Apply feature engineering methods to make predictors more predictive (Jeff [2017]).

• Apply feature selection methods to reduce the number of predictors (Isabelle and Andre

[2003]).

• Apply the GAN-based augmentation or adversarial training to make training data less

imbalanced (Goodfellow [2016]).

• Apply other deep neural networks such as long short-term memory neural networks or

deep graph neural networks (Sepp and Jürgen [1997]).
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