
Chair of Communication Networks
School of Computation, Information and Technology
Technical University of Munich

©2022 Technical University of Munich

September 19-21, 2022, Compiegne, France

Impact of Software Availability on System

Reliability

Carmen Mas-Machuca

Shakthivelu Janardhanan

Yagiz Özkan

Bavarian Ministry of Economic Affairs, Regional Development and Energy as part of the project "6G Future Lab Bavaria“

German Research Fundation (DFG) under grant numbers MA 6529/4-1 and KE 1863/10-1.

02.09.2021 07:30 (JST)

AWS Direct Connect

Event in the Tokyo (AP-

NORTHEAST-1) Region

https://aws.amazon.com/

de/message/17908/

14.07.22 7:49AM(CET).

Twitter outage brings the website offline

 https://bgr.com/tech/twitter-is-suffering-a-major-outage-

around-the-world-right-now/

 Software bugs contribute more than 35% of critical network outages [Google2016]

 According to Gartner, the average cost of IT downtime is $5,600 per minute. Amazon may lose

millions$ in an hour [Forbes Technology Council, April 2021]

Ubiquity and magnitude of software failures

PST: Pacific Standard Time
CET: Central European Time

08.05.22 23:45 to 09.05.2022 1:45 (PST).

Google Infrastructure Configuration Server operation requests

failing

Incident affecting Google Cloud DNS, Google Cloud Networking, Service

Directory, Cloud CDN, Cloud Load Balancing, Cloud Armor, Access

Approval, Google App Engine, Anthos Service Mesh

 https://status.cloud.google.com/incidents/2Hd52dn3PqYGTD5zdp7v

10.12.21

the Canadian Centre for Cyber Security (CCCS) issued a security

advisory regarding a critical vulnerability  Apache Log4j, a widely

used open-source tool for logging and recording activity would-be

attackers to run malicious code on a remote device. Quebec shut

down almost 4,000 websites.

 https://carleton.ca/polisci/?p=33162

2

 Terms and Taxonomy

 Software Dependability Problem

 Addressed questions:

 How reliable is a new software release?

 How reliable is a component?

 How reliable is a system?

 Conclusions

Outline

3

Source: IFIP WG10.4 Dependable Computing and Fault Tolerance https://www.dependability.org/wg10.4/ 4

Terms and Taxonomy

 Error

- Detected: it has manifestated as failure

- Latent: it has not been detected

 Fault: Adjudged or hypothesized cause of an error.

 Error: Part of a system state which is liable to lead to failure.

 Failure: Deviation of the delivered service according to its specification.

Time

 Fault

- Active: it produces an error

- Dormant: it has not produced an error

Design

mistake

embedded in

executable

code

Incorrect state

in the memory

Failure

Manifestation

when data is

used

Fault dormancy Error latency

5

Terms and Taxonomy

 Availability: The ability of an item to perform its required function, under environmental

and operational conditions at a stated instant of time.

 Reliability: The ability of an item to perform its required function, under environmental and

operational conditions, for a stated period of time.

 Maintenability: the probability of performing a successful repair and maintenance action

within a given time.

 Safety: Ability of an item to provide its required function without the occurrence of

catastrophic consequences on the user(s) and the environment.

Source: ISO 8402 and British Standard BS 4778 6

Terms and Taxonomy

Terms and Taxonomy

 Fault prevention is attained by quality control techniques employed during the design and

manufacturing of hardware and software.

 Fault removal is performed both during the development phase (verification, diagnosis,

and correction), and during the operational life of a system (either corrective or preventive

maintenance).

 Fault tolerance is intended to preserve the delivery of correct service in the presence of

active faults.

 Fault forecasting is conducted by performing an evaluation of the system behaviour with

respect to fault occurrence or activation: either qualitative (identify, classify, rank the failure

modes), or quantitative (probabilities to which some of the attributes are satisfied).

Source: “Fundamental Concepts of Dependability” A. Avizienis et al. 7

Terms and Taxonomy: Software faults

 Software fault = bug

 Types of software faults:

Bohrbugs

(deterministic)

„solid“ logical
faults

Remove

Path Computation
Element (PCE)
able to create

tunnel with
negative

bandwidth

Mandelbugs

(non-deterministic)

„relative“ logical
faults

Retry, replicate

Distributed
database locking

in ONOS

Ageing-related bugs

Degradation with
time

Rejuvenate

Flows still
reported in oper
data store after
they have been

deleted from both
config and
network.

Fault handling

strategies

Description

Example

8

Terms and Taxonomy: Software faults

 Software fault = bug

 Types of software faults:

Bohrbugs

(deterministic)

„solid“ logical
faults

Remove

Path Computation
Element (PCE)
able to create

tunnel with
negative

bandwidth

Mandelbugs

(non-deterministic)

„relative“ logical
faults

Retry, replicate

Distributed
database locking

in ONOS

Ageing-related bugs

Degradation with
time

Rejuvenate

Flows still
reported in oper
data store after
they have been

deleted from both
config and
network.

Fault handling

strategies

Description

Example

9

Terms and Taxonomy: Software faults

 Software fault = bug

 Types of software faults:

Bohrbugs

(deterministic)

„solid“ logical
faults

Remove

Path Computation
Element (PCE)
able to create

tunnel with
negative

bandwidth

Mandelbugs

(non-deterministic)

„relative“ logical
faults

Retry, replicate

Distributed
database locking

in ONOS

Ageing-related bugs

Degradation with
time

Rejuvenate

Flows still
reported in oper
data store after
they have been

deleted from both
config and
network

Fault handling

strategies

Description

Example

10

Limitations of the State of the Art

Source: IFIP WG10.4 Dependable Computing and Fault Tolerance https://www.dependability.org/wg10.4/ 11

 Threat analysis focus on independent component

failures

 Focused on hardware failures

 Software related failures neglected or

oversimplified (e.g., as single failure mode)

 Attributes, e.g.,

 reliability, does not precisely describe

software behaviour

 Reliability growth due to maturity

 Reliability degradation due to ageing

 Means focus on structural protection

 Fault prevention, removal and forecasting

have been overlooked

Software Dependability Problem

• Softwarized components/systems/networks

• Open source code

12

Software Dependability Problem

• Softwarized components/systems/networks

• Open source code

Target: Realistic and practical dependability analysis

Specific problems:

13

How reliable is a

component?

How reliable is a system? How reliable is a new

release?

SW

HW

Software Dependability Problem

• Softwarized components/systems/networks

• Open source code

Target: Realistic and practical dependability analysis

Specific problems:

14

How reliable is a

component?

How reliable is a system? How reliable is a new

release?

SW

HW

How reliable is a new release?

15

Data Collection

Bug trackers/

Repositories (e.g., Jira)

Detected bugs

Resolved bugs

ONOS bugs examples

Detected bugs

Resolved bugs

How reliable is a new release?

16

Data Collection

Bug trackers/

Repositories (e.g., Jira)

Detected bugs

Resolved bugs

Bug History Analysis

Best Models (e.g.,

SRGM)

Expected time between

detected/resolved bugs

Residual bug content

Residual bug content

SRGM: Software Reliability Growth Models

trelease tfreeze

How reliable is a new release?

17

Data Collection

Bug trackers/

Repositories (e.g., Jira)

Detected bugs

Resolved bugs

Bug History Analysis

Best Models (e.g.,

SRGM)

Expected time between

detected/resolved bugs

Residual bug content

Estimation accuracy

improvement

+Code Metrics

Increase estimation

accuracy

How reliable is a new release?

18

Data Collection

Bug trackers/

Repositories (e.g., Jira)

Detected bugs

Resolved bugs

Bug History Analysis

Best Models (e.g.,

SRGM)

Expected time between

detected/resolved bugs

Residual bug content

Estimation accuracy

improvement

+Code Metrics

+Metrics from other codes

Increase estimation

accuracy

How reliable is a new release?

19

Data Collection

Bug trackers/

Repositories (e.g., Jira)

Detected bugs

Resolved bugs

Bug History Analysis

Best Models (e.g.,

SRGM)

Expected time between

detected/resolved bugs

Residual bug content

Estimation accuracy

improvement

+Code Metrics

+Metrics from other codes

+Metrics from prev. rel.

Increase estimation

accuracy

20

How reliable is a

component?

How reliable is a system? How reliable is a new

release?

SW

HW

Component reliability considering software dependability

21

• Hardware & Software

• Software: Propiertary & open-source

Models

Homogeneous Markov Chains Stochastic Petri Nets/ Stochastic Activity Networks (SANs)

Component reliability considering software dependability

22

Example: SDN controller

1. Software reliability growth

3. Nature of failures

4. Operating system

2. Software ageing

short term variations of
software reliability

long term variations of
software reliability

manifestation
transientfailure
hang and freeze

crash

recovery
retry - restart - reload

5. General purpose

Hardware

Component reliability considering software dependability

23

Example: SDN controller SSA analysis

 At least two controllers are needed to achieve “3-nines” availability

 Identification of the most critical parameters (local sensitivity analysis)

[Ros14] assumed much higher

availability of SDN controller

A > 0.999975

Critical parameters

a) External failure rates

(well studied and documented)

b) Software ageing rate

(uncertain, load dependant)

Component reliability considering software dependability

24

 Software failures lead to more frequent, but shorter, outages

 Software failures account for 84% of all failures, but contribute to only 38% of downtime

 Hardware failures represent less then 4% of all failures but contribute to 44% of downtime

 80% of the failures resulted in outages shorter than 10 min; median being 3.6 min

Around 50 failures per year with total duration of 9.68 hours per year are expected.

Median outage duration

~3.6 min

Example: SDN controller Failure frequency and downtime distribution

Component reliability considering software dependability

25

Example: Switch

 Several components: ASIC, Memory, CPU, Line Cards, Switch fabric, ..

 Each component:

 Regular HW and SW failures

 Ageing for HW and SW

Component reliability considering software dependability

26

Example: Switch

HW

SW

Proprietary hardware

switches (e.g., Cisco)

 Most critical parameters:

 Memory Ageing and HW_reparation times

 Other SW Dev ageing and successful repair

Component reliability considering software dependability

27

Example: Switch

HW

SW

HW

SW
SW

HW

P4 Hardware Target

switch (e.g., Intel Tofino)

Proprietary hardware

switches (e.g., Cisco)

P4 Software Target

switch (e.g., t4p4s)

SW

HW

SW

HW

 Software failures lead to more frequent, but shorter outages

 Software failures account for 80% of all failures, but contribute to only 35% of downtime

 Hardware failures represent less then 20% of all failures but contribute to 65% of downtime

 Swich availability 0,9988 MDT~10,1 hours/year

Component reliability considering software dependability

28

Example: Switch

HW

SW

HW

SW
SW

HW

P4 Hardware Target

switch (e.g., Intel Tofino)

Proprietary hardware

switches (e.g., Cisco)

P4 Software Target

switch (e.g., t4p4s)

Component reliability considering software dependability

29

Example: Switch

HW

SW

HW

SW
SW

HW

P4 Hardware Target

switch (e.g., Intel Tofino)

Proprietary hardware

switches (e.g., Cisco)

P4 Software Target

switch (e.g., t4p4s)

Component reliability considering software dependability

30

Example: Switch

 P4 software target has higher software failure frequency (92%) than other switches (82%)

 Software failures are faster to repair P4 software target switch more MDT due to

software failures SW_targ is the most critical component

 HW Target switch has faster SW restoration time thanks to their modular SW.

31

How reliable is a

component?

How reliable is a system? How reliable is a new

release?

SW

HW

System reliability

32

• Aggregation/connected set of components

• First studies towards sovereignty data center use case

• Best topology?

• How many manufacturers?

• How they should be placed?

Servers

ToR

Aggregate

Core

Pod

System reliability

33

Data Centers (DC)

DC
Modeling

Failure
Generation

Sovereignty
Analysis

DC Topology DC Size

3 Tier Leaf Spine Small (1K Servers)

Fat Tree Medium(32K Servers)

AB-Fat tree Large(64K Servers)

Facebook 4-post Mega(100K Servers)

Facebook Fabric

Arrangement Traffic

Random

Left-Right

Left-Right Sequential

Pod-wise

System reliability

34

Data Centers (DC)

DC
Modeling

Failure
Generation

Sovereignty
Analysis

Different failure scenarios:

- For each layer (ToR, aggregation, core)

- For each manufacturer/set of manufacturers

- Hardware manufacturers

- Software developers

- Native developers

- Other software developers

Evaluate the impact on the topology connectivity and survivable

traffic.

System reliability

35

Data Centers (DC)

DC
Modeling

Failure
Generation

Sovereignty
Analysis

Heat maps and robustness surfaces on connectivity and max-flow

between ToR pairs

Compare

• Different topologies

• Different manufacturers

• Different arrangements

Evaluate sensitivity analysis

System reliability

36

Data Centers (DC)

DC
Modeling

Failure
Generation

Sovereignty
Analysis

Left-Right Sequential Best

If operator aims at survival traffic

210GB at least 3 manufacturers

240GB at least 4 manufacturers

System reliability

37

Data Centers (DC)

DC
Modeling

Failure
Generation

Sovereignty
Analysis

5 HW manufacturers

5 SW manufacturers

Rn: Ratio of man. SW dev. to all SW failures

Data center operators guidelines

38

In small DCNs (less than 5000 servers) Leaf-Spine

In larger DCNs  Clos-network-based topology (e.g., fat tree)

The higher the requirements, the more manufacturers are needed

market and law limited

Severity of SW failures critical parameter to determine number of

required developers

The more HW manufacturers, the less non-native SW developers are

required

39

Conclusions

Presented bottom-up approach Impact of software failures Ageing and bugs

 Questions?

40

