Chair of Communication Networks 'I'I.I'I'I

School of Computation, Information and Technology
Technical University of Munich

Impact of Software Availability on System
Reliability

Carmen Mas-Machuca
Shakthivelu Janardhanan
Yagiz Ozkan

September 19-21, 2022, Compiegne, France

RNDM-

International Workshop on Resilient |
/ Networks Design and Modeling 4

Bavarian Ministry of Economic Affairs, Regional DevelopmenMameﬁ‘erﬁf as y;rt of the project "6G Future Lab Bavaria“
German Research Fundation (DFG) under grant numbers MA 6529/4-1 and KE 1863/10-1.

bt

-

©2022 Technical University of Munich

TUT

Ubiquity and magnitude of software failures

= Software bugs contribute more than 35% of critical network outages [Google2016]
= According to Gartner, the average cost of IT downtime is $5,600 per minute. Amazon may lose

millions$ in an hour [Forbes Technology Council, April 2021]

Apache T
av y & ﬁgud LOGYJ

1 . Al
02.09.2021 0 14.07.22 T:49AM(CET). 08.05.22 23:45 to 09.05.2022 1:4! 10.12.21

AWS Direct Google Infrastructure Confi¢ the Canadian Centre for Cyber Security (CCCS) issued a security

Event in the 1 Twitter outage brings th failing advisory regarding a critical vulnerability = Apache Log4j, a widely

NORTHEAST- Incident affecting Google Cloud used open-source tool for logging and recording activity=> would-be

https://br.com/tech/tw Directory, Cloud CDN, Cloud Loa attackers to run malicious code on a remote device.-> Quebec shut

https://aws.an around-the-world-right:

Approval, Google App Engine, A down almost 4,000 websites.
de/messag

https://status.cloud.google.com https://carleton.ca/polisci/?p=33162

PST: Pacific Standard Time
CET: Central European Time 2

Outline

Terms and Taxonomy

Software Dependability Problem

Addressed questions:
= How reliable is a new software release?
= How reliable is a component?

= How reliable is a system?

Conclusions

Terms and Taxonomy

Dependability

Turstworthiness of
computing system

Source: IFIP WG10.4 Dependable Computing and Fault Tolerance https://www.dependability.org/wg10.4/

Threats

Factors affecting
dependability

Attributes

Metrics to quantify

dependability

Ways to improve
dependability

Fault
Error

Failure

Availability
Reliability
Maintenability
Safety

Fault prevention
Fault removal
Fault tolerance

Fault forecasting

Terms and Taxonomy

Threats Fault

Factors affecting Error

dependability Failure

= Fault: Adjudged or hypothesized cause of an error.

= Error: Part of a system state which is liable to lead to failure.
= Failure: Deviation of the delivered service according to its specification.

Design Incorrect state Manifestation
mistake | in the memory when data is
embedded in 100100110 used
executable })
code
100101110
I |
<— Fault dormancy < Error latency ."
Fault Error Failure
- Active: it produces an error - Detected: it has manifestated as failure
- Dormant: it has not produced an error - Latent: it has not been detected

Time

Terms and Taxonomy

Availabilit
Attributes v

Reliability

Metrics to quantify Maintenability

dependability Safety

= Availability: The ability of an item to perform its required function, under environmental
and operational conditions at a stated instant of time.

= Reliability: The ability of an item to perform its required function, under environmental and
operational conditions, for a stated period of time.

= Maintenability: the probability of performing a successful repair and maintenance action
within a given time.

= Safety: Ability of an item to provide its required function without the occurrence of

catastrophic consequences on the user(s) and the environment.

Source: ISO 8402 and British Standard BS 4778 6

Terms and Taxonomy

Means Fault prevention

Fault removal

Ways to improve Fault tolerance

dependabilit
. 3 Fault forecasting

= Fault prevention is attained by quality control techniques employed during the design and
manufacturing of hardware and software.

= Fault removal is performed both during the development phase (verification, diagnosis,
and correction), and during the operational life of a system (either corrective or preventive
maintenance).

= Fault tolerance is intended to preserve the delivery of correct service in the presence of
active faults.

= Fault forecasting is conducted by performing an evaluation of the system behaviour with
respect to fault occurrence or activation: either qualitative (identify, classify, rank the failure

modes), or quantitative (probabilities to which some of the attributes are satisfied).

Source: “Fundamental Concepts of Dependability” A. Avizienis et al.

Terms and Taxonomy: Software faults

Threats Fault

Factors affecting Error

dependability Failure

= Software fault = bug

= Types of software faults:

Bohrbugs
(deterministic)

Description »solid” logical
faults

Fault handling
strategies

Remove

Path Computation
Element (PCE)
Example able to create
tunnel with
negative
bandwidth

Terms and Taxonomy: Software faults

Threats Fault

Factors affecting Error

dependability Failure

= Software fault = bug

= Types of software faults:

Bohrbugs Mandelbugs
(deterministic) (non-deterministic)
Description ,solid“ logical zrelative® logical
faults faults
Fault han.dllng Remove Retry, replicate
strategies
Path Computation
Element (PCE) et
Distributed
Example able to create database locking
tunnel with in ONOS
negative

bandwidth

Terms and Taxonomy: Software faults

Threats Fault

Factors affecting Error

dependability Failure

= Software fault = bug

= Types of software faults:

Bohrbugs
(deterministic)

Mandelbugs
(non-deterministic)

Ageing-related bugs

Description »solid” logical ,relative” logical Degradation with
faults faults time
Fault handling Remove Retry, replicate Rejuvenate
stategies Flows still
Path Computation reported in oper
Example Ealglrg ?Q tc(rzgti) Distributed data store after
tunnel with database locking they have been
neaative in ONOS deleted from both
o config and
bandwidth network

10

TUT

Limitations of the State of the Art

= Threat analysis focus on independent component
Threats failures
; = Focused on hardware failures
Factors affecting _
dependability = Software related failures neglected or
oversimplified (e.g., as single failure mode)

- , €.g.,
Dependability Attributes = reliability, does not precisely describe
software behaviour
Turstworthiness of Metrics to quantify o .
computing system dependability = Reliability growth due to maturity
= Reliability degradation due to ageing
Means = Means focus on structural protection

= Fault prevention, removal and forecasting

Ways to improve
" P have been overlooked

dependability

Source: IFIP WG10.4 Dependable Computing and Fault Tolerance https://www.dependability.org/wg10.4/ 11

Software Dependability Problem

« Softwarized components/systems/networks

» Open source code

12

Software Dependability Problem

« Softwarized components/systems/networks

* Open source code

Target: Realistic and practical dependability analysis

Specific problems:

..
* * .

How reliableisanew : : How reliable is a
release? - component?

R i R i
| 1 i |
| 1 i |
| 1 I |
| 1 i |
| 1 i |
| 1 I |
| 1 i |
| I I et 4 :
| 1 I |
I [I L [
' ' ' SwW '
I I I I
| open source |

| P : i HW :
| 1 I |
| 1 i |
| 1 i |
| 1 I |
: L |

13

Software Dependability Problem

« Softwarized components/systems/networks

* Open source code

Target: Realistic and practical dependability analysis
Specific problems:

--
*

How reliable is a new
release?

open source

14

5

120

How reliable is a new release? IR Ry
Data Collection ol
Bug trackers/ s |
Repositories (e.g., Jira) A
a4 i
Detected bugs o T
Resolved bugs
20‘15 20‘16 20‘1?r 20‘18 20‘19 20‘20 20‘21 20‘22
Issue | ONOS-8153 | ONOS-6401 |
Status In progress Closed
Priority Major Crititcal
Affected Versions 230 1.9.2, 1.10.0, 1.8.5, 1.8.6
First Affected Version 2.3.0 1.8.5
Resolution Unresolved Fixed
Create Date 2022-04-08 07:06:16 2017-05-00 09:29:49
Create Date from Start 2916 days 1114 days
Resolved Date None 2017-05-02 21:29:49
Time to Solve (in hours) None 313.97
Time to Solve (in days) None 13
Month Number from Project Start 96 37
Week Number from Project Start 416 159

ONOS bugs examples 15

How reliable is a new release?

Bug History Analysis

Best Models (e.qg.,
SRGM)

Expected time between
detected/resolved bugs
Residual bug content

Bugs first found in Kingfisher per hour

—-—
o o 5

Residual bug content

r(t) = Ela— N(t)] = a — m(t)

o
—% g 5 3
== 2 c
80 1
GOMP &l '§
—— LOGIST ol @
701 —— Actual bug count & 8
v
60 - ©
u i
2 i
o 50 1 | |
s i i
H 1 |
£ 401 :
3 1
2]
1
30 !
]
1
]
204 1
1
1
1
10 :
1
]
1
0 7 v . . L . .
0 1000 2000 3000 4000 5000 6000 7000 8000

Time in hours

SRGM: Software Reliability Growth Models

B r(ty) = 14.0

50

40

30

20

10

“f

tfreo:-zze

2000

/I\’I’J.me [h]

release

t

4000 6000 8000

16

How reliable is a new release?

Estimation accuracy

improvement

+Code Metrics

-1.0
com™ X . . . \ -0.55 -0.28 I . .
ncrease estimation
-08
mn;}f:({?:c ~ o]] !) 015 0014 -0.11 | 0. accu raCy
'p'\i‘gj:r. - o . ! . . -0.3 -0.23
Pl o . ! . 37 | 0.0092
2.5 L ® predicted
pen 07 o ex]1]
® ex[2]
© ® ex[3]
e 1OC 2 2.04
1+
£
©
1o 2115
¢
- - 0.014 -0.047 g
g .0 ! 3 1.0
H
B, e 3® = °
L T 0.5 o
° o
\;uq,("{ I : L]
70 6 0.0 3 T T T T
: 06 f 07 g 08 h 09 |

of releases

17

How reliable is a new release?

abs{exp_bug - real_val)freal_val

2.5 1

™~
o
.

=
w
L

[y
o
L

I
]
L

0.0

® predicted
o ex[1]
e ex[2]
e ex[3]
°
[]
° L] L
° °
®
[
. . g '
06_| 07 g 08_h 09 i

of releases

abs(exp_bug - real_val)/real_val

2.5 1

™
o
!

=
w
L

=
o
L

e
w
L

0.0 -

Estimation accuracy

improvement

+Code Metrics

+Metrics from other codes

Increase estimation
accuracy

L] ® predicted
® ex[1]
® ex[2]
® ex[3]
°
° °
°
L] L]
06 f 07 g 08 h 09 i

of releases

18

How reliable is a new release?

Estimation accuracy

improvement

+Code Metrics
+Metrics from other codes
+Metrics from prev. rel.

Increase estimation
accuracy

14 4
12 A

10 A o

o
410 80 04500 ©Sgo00
600 0000

o-éé éiééé&aaaﬁ@eeuﬁ]

error as abs(presicted - real)/real
o

T T
1 2 7 8 9lDll12131415161?181920212223
of releases used for prediction

How reliable is a new
release?

open source

How reliable is a

component?

- |
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
: L 1

1
: SW 1
i HW :
1 1
1 1
1 1
1 1
1 1
L e —_— -

How reliable is a system?

20

Component reliability considering software dependability

« Hardware & Software

« Software: Propiertary & open-source

Models

Homogeneous Markov Chains

failed >(

ASW m
SwW <

Stochastic Petri Nets/ Stochastic Activity Networks (SANS)

SW fan:d\
contr.

HW failure [

(HW failure
Hsw \9 HH
[/; K contr.

Repair

contr.

___\

/H\:;eu led

21

Component reliability considering software dependability

Example: SDN controller

Software maturity model

resolved_bugs

active_bugs detect bug_dbtected debug

unresolyed_bugs

2. Software ageing I

try_again

short term variations of
software reliability

Controller state (ageing) Software failure recovery

,,/". i
Yﬁient_err catch_except Wansient_em_det opry

N | ~ N |
> » »

nging_proc reponse timer hanging_proc_det roqian

W

i | '. L

cirl_crash heartbeat cirl_crash_det [510ad

Operating system|

- os_failed os_reboo @ "=
os_crash i
os_fail_1 - os_repair
Computing hardware
hw_fail N |

hw_failed

hw_fail_1

spare_hw hw_repair U" der_repair

TUT

1. Software reliability growth

long term variations of
software reliability

3. Nature of failures

manifestation

transientfailure

hang and freeze
crash

recovery
retry - restart - reload

4. Operating system

5. General purpose
Hardware

22

TUT

Component reliability considering software dependability

Example: SDN controller- SSA analysis
[Ros14] assumed much higher

= At least two controllers are needed to achieve “3-nines” availability availability of SDN controller
A >0.999975

Component | Controller SW 0s HW
Availability 0.99889 0.99956 | 0.99981 | 0.99951

= |dentification of the most critical parameters (local sensitivity analysis)

rate hw replace

rate hw fail Critical parameters
rate restart .
E p 0s reboot a) External failure rates
i...Jate sw failage, (well studied and documented)
rate os fail .
rate reload b) Software ageing rate

p restart (prob)
rate os reboot
p retry (prob)
rate hw repair
rate os repair
rate sw age
rate timeout
rate heartbeat
rate retry

(uncertain, load dependant)

0 -50%
rate catch except B +50%

0.9984 0.986 0.9988 0.9990 0.9992 0.9994
23

Component reliability considering software dependability

Example: SDN controller-> Failure frequency and downtime distribution

Around 50 failures per year with total duration of 9.68 hours per year are expected.

I transient failures (SW) I ctrl. crash (SW) [HW failures

I hanging failures (SW) B OS failures 1.0
100%
. 0.8
o . .
80% i Median outage duration
o 0.6 ~3.6 min
60% E |
5
0.4
40% 3
2
o 0.2
20%
0% 0.0
° 10° 10?% 10' 10° 10' 10° 10°
Failure frequency Downtime contribution Td [min]

= Software failures lead to more frequent, but shorter, outages
= Software failures account for 84% of all failures, but contribute to only 38% of downtime
= Hardware failures represent less then 4% of all failures but contribute to 44% of downtime
= 80% of the failures resulted in outages shorter than 10 min; median being 3.6 min

24

Component reliability considering software dependability
Example: Switch

= Several components: ASIC, Memory, CPU, Line Cards, Switch fabric, ..
= Each component:

= Regular HW and SW failures
= Ageing for HW and SW

| M ~]
—i - = ==l
O | O/ >—>O—»
ASIC_HW_fail ASIC_HW_restart ASIC_HW Tepair_failed
ASIC_HW repair ASIC_HW repair worked q ASIC_HW replace

\

(o
ASIC_OK

Initial Token=1 & ASIG.fail

ASIC_SW _repair ASIC_SW _repair_worked_qg
ASIC_SW fail ASIC_SW._restart

._..CT>_> Q_.F—

]

Component reliability considering software dependability

Example: Switch

ul o} 2 Al] L A 2
xS =] 31 el v 18] 2 o >)
Wi e 2 o 2 g e o o i o
o2 o2 o2 2 2 2 o? o? o? o?
N -50%
[] - -25%

____________________ 1rate MEM_ageing | oy . +50%

E +25%

MRT_MEM_HW -

lrate_Odev_ageing 1

ob_Odev_SW_repair_worked

MRT_Odev_SW -

prob_MEM_HW _ageing

Lrate_OS_ageing 1

HW

Odev_SW_availability_mean

prob_MEM_HW_repair_worked 4

prob_OS_SW _repair_worked -

Input Parameter

1/rate_LC_ageing 1

MRT_OS_SW

L~ Proprietary hardware = ==m==
switches (e.g., Cisco)

1rate_CPU_ageing

1/rate_SF_ageing -

MRT_LC_HW

T T T T T T T T T
—0.0004389 —0.0003511 —0.0002633 —0.0001756 —0.0000878 0.0000000 0.0000878 0.0001756 0.0002633 0.0003511 0.0004389

Deviation in availability

= Most critical parameters:
= Memory Ageing and HW _reparation times
= Other SW Dev ageing and successful repair

26

Component reliability considering software dependability

Example: Switch

HW

L~ Proprietary hardware = ===
switches (e.g., Cisco)

= Software failures lead to more frequent, but shorter outages

Failure Frequency vs Down Time

100%

75%

SW

50%

25%

HW

0%

Traditional switch failure %

Traditional switch Downtime %

SW

HW

= Software failures account for 80% of all failures, but contribute to only 35% of downtime

= Hardware failures represent less then 20% of all failures but contribute to 65% of downtime

= Swich availability-> 0,998)

MDT~10,1 hours/year

W os
[Odev
W MEM
W SF

@ Omisc
I LC

B CPU
B ASIC

27

Component reliability considering software dependability

Example: Switch

1 1 1 1 1
I I
1 i 1 1 1
1 I 1 — : 1 7 1
1 I 1 1
[Sw : i Sw i : o :
1 I 1 1
1 1 L 1
I ! I ! I
i HW Lo HW o i
: P! L HW ‘
!] P !
! P P !
I
L~ Proprietary hardware f——a L P4 Hardware Target 2 L__ P4 Software Target ,__J

switches (e.g., Cisco) switch (e.g., Intel Tofino) switch (e.qg., t4p4s)

Availability

Component reliability considering software dependability

Example: Switch

ComTTTTTTT [VT
1 1 1
1 1 : @ 1 1 é‘—:? 1
| = L = - |
1
! Sw / i - Sw b I
: I : 1 : SW :
: Lo | :
i HW Lo HW b i
| . Ll HW |
i b o i
I : | i]
1 1 1
L~ Proprietary hardware = L P4 Hardware Target L L__ P4 Software Target ,__J
switches (e.g., Cisco) switch (e.g., Intel Tofino) switch (e.qg., t4p4s)
Switch Availability comparison Switch Mean Down Time comparison
1.0000 12
S 10
0.9995 o
£ 8
|_
0.9990 c 6
5
a 4
0.9985 c
0.9980 = 0
Traditional Switch P4-HW target P4-SW target Traditional Switch P4-HW target P4-SW target

Type of switch Type of switch

TUTI

Component reliability considering software dependability

Example: Switch

Comparison of switches based on failure frequency Comparison of switches based on mean down time
SW_targ 100%

W oS

[0 Odev

¥ MEM

B SF

B Omisc 50%

[LC

B CPU

B ASIC 25%

100%

75% 75%

50%

25%

0%

0% Traditional switch HW Target switch SW Target switch

Traditional switch HW Target switch SW Target switch Downtime % Downtime % Downtime %

failure % failure % failure %

= P4 software target has higher software failure frequency (92%) than other switches (82%)
= Software failures are faster to repair-> P4 software target switch more MDT due to
software failures—> SW _targ is the most critical component

= HW Target switch has faster SW restoration time thanks to their modular SW.
30

How reliable is a new
release?

open source

How reliableis a
component?

SW
HW

: How reliable is a system? :

Core (FC)

Aggregate (CSV\'

ToR (RSW)

31

System reliability

« Aggregation/connected set of components
» First studies towards sovereignty—> data center use case
» Best topology?

 How many manufacturers?

* How they should be placed?

Core

Aggregate

ToR

Servers

System reliability

Data Centers (DC)

DC
Modeling

3 Tier Leaf Spine
Fat Tree

AB-Fat tree
Facebook 4-post
Facebook Fabric

Random

Left-Right

Left-Right Sequential
Pod-wise

Failure
Generation

Small (1K Servers)
Medium(32K Servers)
Large(64K Servers)
Mega(100K Servers)

1.0

0.8

0.6

0.4 /
0.2

b

102 107! 10 10! 102 10® 10*
Flow size (KB)

Sovereignty
Analysis

Destination

33

System reliability

Data Centers (DC)

DC Failure
Modeling Generation

Different failure scenarios:
- For each layer (ToR, aggregation, core)
- For each manufacturer/set of manufacturers
- Hardware manufacturers
- Software developers
- Native developers
- Other software developers

Evaluate the impact on the topology connectivity and survivable
traffic.

34

System reliability

Data Centers (DC)

Failure

Generation

Heat maps and robustness surfaces on connectivity and max-flow
between ToR pairs

Compare

» Different topologies

 Different manufacturers

» Different arrangements

Evaluate sensitivity analysis

35

System reliability

Data Centers (DC)

Random

Left-Right Sequential

Left-Right

Arrangement

Pod-wise

DC

Modeling

Heat Map of Mean Max Flow
T T

Failure
Generation

!
20368 |
|

169 GB 136 GB |

i
187 GB 160 GB §

123 GB

116 GB

130GB | 97GB

1
20768 158GB
|
E
171 GB
10 20 30

50 60
Percentage of components from failing manufacturer

40 70

Left-Right Sequential Best
If operator aims at survival traffic
210GB-> at least 3 manufacturers

240GB~-> at least 4 manufacturers

36

System reliability

Data Centers (DC)

DC Failure
Modeling Generation

- 100

5 HW manufacturers

5 SW manufacturers
F&an

&0

Failure Batches

(=1 SRS,).

012345678 91011121314

Failure Configurations
Rn: Ratio of man. SW dev. to all SW failures

160 -

Mean - Average Max Flow (GB)

B
=

—
B
L=]

et
J
=

100

=]
=

[=1]
o

Failure Batches

37

Data center operators guidelines

In small DCNs (less than 5000 servers)—> Leaf-Spine
In larger DCNs - Clos-network-based topology (e.g., fat tree)

The higher the requirements, the more manufacturers are needed->
market and law limited

Severity of SW failures—> critical parameter to determine number of
required developers

The more HW manufacturers, the less non-native SW developers are
required

38

Conclusions

op ™ T - - - -,

o B
) S ————

op ™ T - - -,

Presented bottom-up approach

Ageing and bugs

Impact of software failures

39

—
—

Questions?

40

