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Abstract

The potential cost associated with damage caused by severe hail storms is becoming an
increasingly considered aspect of natural catastrophe modelling in the insurance industry.
To calculate this potential cost we need to understand both the damage an event would
cause, and the probability of said event. This thesis focuses on the latter and uses recently
released meteorological data to develop a regression model for the probability of severe
hail.
We first discuss the meteorological theory of the development of thunderstorms and how
severe hail grows, followed by the necessary statistical theory to analyse and fit regression
models to our data. We then preprocess and perform a statistical analysis on our data.
A generalised additive model and logistic model are fit for the probability of a thunder-
storm and severe hail given that there is a thunderstorm respectively. These two models
can then be multiplied to calculate the probability of severe hail. We compare our two
separate models to those from another study to verify our results.
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1 Introduction

Severe hail is a phenomenon which threatens both life and property [26], so it is of interest
to the public, meteorologists and the insurance industry to know when and where severe
hail will occur. The growth of hail is a microphysical process which occurs on a very small
scale within a severe convective storm (thunderstorm). The scale on which thunderstorms
occur is large enough that they can be resolved and numerically modelled in high resolution
weather forecasts, as seen in [13] and [9]. However, neither severe hail nor thunderstorms
develop on a scale which can be numerically modeled using most historical data sets,
including the ERA5 reanalysis data set used in this thesis, as discussed in [27].
We will use a probabilistic method to model severe hail. Some current statistical models
used to calculate the probability of severe hail focus on the long-term applicability of
the model, for example in [23], where one of their foci is the long-term variability of the
probability of hail over a time period of 60 years, or [28], which focuses on applying their
model to future climate scenarios. This thesis, however, uses data only from the years
2007 to 2018. We seek to improve upon current statistical models focusing on the current
climate, such as [27], using recently released, more detailed data to fit a logistic model
for the probability of severe hail. This is calculated as in Equation (1.0.1) by multiplying
the probability of a thunderstorm by the probability of severe hail, given that there is a
thunderstorm:

p(hail) = p(storm)× p(hail|storm). (1.0.1)

To determine the probabilities of a thunderstorm and severe hail during a thunderstorm,
we will fit two regression models.
This thesis is structured in the following manner: firstly, Chapter 2 will give an overview
of the physics governing the initiation of thunderstorms, the growth of hail and the rea-
soning behind why we have chosen to investigate the considered covariates. Chapter 3
then discusses the required theory for the binary regression models applied later in the
thesis, including the fitting of a generalised linear model (GLM), specifically the case of
logistic regression, overdispersion and the fitting of a generalised additive model (GAM).
Chapter 4 then discusses the method used to preprocess the data so that it is in a form
ready for analysis. In Chapter 5 the exploratory data analysis is performed. For both the
thunderstorm and hail models we propose a logistic model and a GAM, then analyse the
goodness of fit of each of these to select the most appropriate models. Finally we compare
predicted values from our selected models to predicted values from the models presented
in [28].
This thesis has been written together in partnership with Munich RE, and it is a major
goal that in the future the work from this thesis will be applied by the meteorologists
with whom we worked to aid in the understanding and modelling of the damages caused
by severe hail events in Europe.



2 2 METEOROLOGICAL BACKGROUND

2 Meteorological Background

This section provides a brief meteorological background to the variables used in the model,
thunderstorm initiation and hail formation.

2.1 Meteorology Glossary

A small dictionary is provided containing frequently used technical meteorological terms
and abbreviations.

Severe hail: Hail stones with a diameter of at least 2 cm.

Thunderstorm: A severe convective storm with cloud to ground lightning.

Convection: Refers to the transport of a quantity, typically heat, due to fluid or gas
rising or sinking, for further detail see Page 1 of [5]. In the context of a storm, this is due
to warm air rising in an ‘updraft’ and cooler, denser air sinking in a ‘downdraft’ [5].

Orography: The terrain of a region, for example, mountains, hills or valleys. The height
is reported in metres above sea level [10].

Sea breeze: Onshore wind which develops due to the differences in heating between a
landmass and body of water. Warm, inland air rises and is replaced by cooler air from
over the ocean, for further detail see Page 90 of [12].

Frontal system: The transition zone between two air masses which have different den-
sities is called a front, Page 298, [1]. This can be caused, for example, by different
temperatures or humidities of the air masses as seen in Section 8.1.2 of [32]. It is interest-
ing to note that increased air humidity will decrease the density of the air, because water
has a smaller molecular mass than air.

Air parcel: A volume of air which weighs 1 kg (approximately 0.77 m3).

Free convection layer [m]: The height in the atmosphere at which a parcel of air lifted
from the ground has positive buoyancy relative to the environment conditions, discussed
in Section 3.1 of [20]. This means that the parcel of air, when lifted to this height, would
rise in relation to its surrounding environment.

Equilibrium layer [m]: The height in the atmosphere at which a parcel of air lifted from
the ground has 0 buoyancy, meaning that there is no longer a force causing the parcel to
rise, discussed in Section 3.1 of [20].

usfc, u6 km [m s−1]: The eastward component of the windspeed at surface level and at 6 km
above ground level. A negative value represents a westward direction.

vsfc, v6km [m s−1]: The northward component of the windspeed at surface level and at
6 km above ground level. A negative value represents a southward direction.

ESWD: European Severe Weather Database.1

ECMWF: European Centre for Medium Range Weather Forecasts.2

1www.eswd.eu
2www.ecmwf.int

www.eswd.eu
www.ecmwf.int


2.2 Thunderstorm Initiation 3

EUCLID: European Cooperation for Lightning Detection.3

Resolution (of a data set): The distance between measurements, measured in degrees
for latitude and longitude, and hours for time.

Reanalysis data: A combination of weather forecasts and observations used to give a
best estimate for historic weather conditions [11].

ERA5: Released in 2020, this is the 5th generation of reanalysis global climate and
weather data produced by the European Centre for Medium Range Weather Forecasts
(ECMWF). Data is available dating back to 1950 and has a resolution in (time, latitude,
longitude) of (hourly, 0.25◦ and 0.25◦). The data also contains 37 pressure levels from
1000 hPa to 1 hPa, see [8] and [7].

ERA-interim: This is the 4th generation of reanalysis climate and weather data released
by the ECMWF, with resolution in (time, latitude, longitude) of (6 hourly, 0.75◦, 0.75◦).
The data also contains 37 pressure levels from 1000 hPa to 1 hPa [6].

Grid box: A one hour by 0.25◦ by 0.25◦ ‘box’ representing the conditions at this point
in time and space.

lat, lon : latitude, longitude.

Case: A case is a gridbox which has at least one report of hail, or one cloud to ground
lightning detection, for hail cases and lightning cases respectively.

Data point: Used as a synonym for a statistical observation. The word ‘observation’ has
distinct and different meanings in statistics and meteorology, thus ‘data point’ is used to
avoid confusion as to the context in which the word is meant.

2.2 Thunderstorm Initiation

Thunderstorms are a spectacular example of severe weather phenomena. To the insurance
industry however, these events represent a large potential loss due to their associated
hazards. The focus of this thesis, severe hail, is associated with both crop damage and
damage to buildings and motor vehicles as discussed and shown in the introduction and
Table 1 of [26]. This table of hail stone size and the frequency of damage types is shown
in Figure 1.
To develop, thunderstorms require moisture in the atmosphere at ground level, instability
in the atmosphere and a trigger mechanism as discussed in Section 1.1.b of [5]. Instability
is measured by the difference in temperature at different heights in the atmosphere. A
trigger mechanism creates ‘lift’, where the elevation of a parcel of air is increased relative
to its surrounding environment. Examples of trigger mechanisms are sea breezes, frontal
systems, heating caused by the sun and orography, see Section 2.1 of [28]. The effect of
orography is clearly visible in Figure 2 which shows many more thunderstorms in closer
proximity to the European Alps in the lower region of the figure.
Additionally, the type and longevity of thunderstorms is affected by deep layer wind shear
(DLS), as discussed in Section 3 of [24]. DLS is explained in further detail in Section 2.5.
The following paragraphs describe the different types of convection in thunderstorms, fol-
lowing Section 2.1.6 of [28].

3www.euclid.org

www.euclid.org
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Figure 1. This figure is from [26], and shows the type of damage caused by hail, the size of hail and how
many times this type of event was reported.

- The most short lived thunderstorms have singlecellular convection and are typ-
ically associated with small values of deep layer wind shear. Singlecellular thun-
derstorms are usually short lived because the downdraft of air from higher in the
atmosphere falls into the updraft, thus the thunderstorm loses its supply of warm,
moist air and decays, see Section 2.1.6.1 of [28].

- Moderate values of deep layer wind shear increase the chance of multicellular con-
vection occurring. This is the result of the storm becoming tilted and the downdraft
sliding under the updraft, which then triggers new storms as the previous ones de-
cay. Multicellular thunderstorms typically have a longer lifetime than singlecellular
thunderstorms, see Section 2.1.6.2 of [28].

- Supercellular convection is much less common than the two previously mentioned
types of convection, however it is associated with producing the most hazardous and
long-lived storms, see Section 2.1.6.3 of [28]. This type of convection is associated
with large values of deep layer wind shear and has one rotating updraft, see [33] and
[28]. Supercellular storms are known to produce large (hail stone diameter ≥ 2 cm
[26]) and very large (hail stone diameter ≥ 5 cm [26]) hail along with tornadoes and
other extreme weather phenomena, see [2].
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Figure 2. The number of thunderstorm cases detected across Germany and surrounds between 2008 and
2017. The cloud to ground lightning was detected by EUCLID with a grid resolution of one hour by
0.25◦ by 0.25◦.
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2.3 Hail Formation

The microphysical process by which hail forms is detailed in Section 2 of [2], and the
following section draws on this paper to explain the formation of hail. Hail requires an
‘embryo’, which is most often a small frozen particle, to begin growth. Hail can undergo
two types of growth: ‘wet’ or ‘dry’, both of which require the air to be sufficiently moist.
Wet growth, called ‘accretion’, occurs when supercooled liquid water accumulates on the
surface of the hail stone before freezing at a later point in time. This type of growth leads
to clear ice because the supercooled water fills in any air bubbles or gaps on the surface of
the hail stone. Dry growth, called ‘riming’, occurs when supercooled liquid water freezes
as soon as it accumulates on the hail stone. This leads to a more opaque colour because
air bubbles are trapped. Hail stones can go through multiple periods of each type of
growth leading to a layered looking hail stone. This only means that it has experienced
different types of growth, not necessarily that it has circulated through a cloud multiple
times, see [2].
Hail formation also requires time, hence embryos which rise too quickly in a strong updraft
rise out of the growth zone before they grow much larger than the initial nucleus. For a
hail stone to continue growing, force balance must occur between gravity acting on the
stone and the updraft of the storm, resulting in the stone remaining in the growth zone
for an extended period of time, see [5].
The size of a hailstone is also affected by the zero degree level, the height in the atmosphere
where the air temperature is 0 ◦C. This is the altitude below which a hail stone will melt,
thus the lower the zero degree level the less time a hail stone has to melt before it reaches
the ground, see Page 15 of [28]. The number of severe hail cases across Germany and
surrounds from 2008 to 2017 are shown in Figure 3, using data from the ESWD. Here
we can see several regions which have higher numbers of reports, and very few reports
over the centre of the European Alps. This is expected due to not only the relatively low
population density, but mostly because the cold, dry air above the year round snow over
the highest parts of the Alps does not provide suitable conditions for the development of
severe storms or hail.

2.4 Convective Available Potential Energy

‘Convective available potential energy’ (CAPE) relates to the strength of the updraft of
a storm, and is the amount of buoyancy a parcel of 1 kg of air has. It can be calculated
using the following formula from Equation 9.47 in [12]

CAPE =

∫ heq

hfcl

g
Tparcel − Tenv

Tenv
dh [J kg−1], (2.4.1)

where g = 9.8067 m s−2 is the acceleration due to gravity, hfcl is the height of the free
convection layer, heq is the height of the equilibrium layer, Tparcel is the temperature of
the parcel and Tenv is the temperature of the environment, both of which are measured in
Kelvin. CAPE is a measure of the amount of energy which could be released if a parcel
of air was lifted to the free convection layer, where the parcel would become buoyant and
begin rising in the atmosphere.
CAPE is related to the ‘maximum updraft speed’ (wmax) via the following equation, using
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Figure 3. The number of severe hail cases reported across Germany and surrounds between 2008 and
2017. The reports were gathered by the ESWD and are gridded with a resolution of one hour by 0.25◦

by 0.25◦.
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Equation 9.47 in [12]:
wmax =

√
2× CAPE [m s−1]. (2.4.2)

The updraft speed is a key element in large hail formation because this is the force which
counteracts the force of gravity on a hail stone thus preventing it from falling to the
earth’s surface.

2.5 Deep Layer Wind Shear

‘Deep layer wind shear’ (DLS) is related to the type and severity of thunderstorms. The
DLS has been calculated using the following formula from Equation 2.15 from [28]:

DLS =
√

(usfc − u6 km)2 + (vsfc − v6 km)2 [m s−1], (2.5.1)

where u is the eastward wind component and v the northward wind component. DLS is
sometimes approximated using the 500 hPa pressure level as in Equation (2.5.2),

DLSapprox =
√

(uground − u500 hPa)2 + (vground − v500 hPa)2 [m s−1], (2.5.2)

instead of the 6 km level, for example in [27]. This paper focused on severe hail under
multiple climate scenarios until the year 2100. Here the 500 hPa approximation was used
due to insufficient pressure levels being available in weather simulations based on the
future climate scenarios.

2.6 Standard Deviation of Orography

The ‘standard deviation of orography’ represents the ruggedness or steepness of features
of the terrain which are on a smaller scale than the resolution of the data. Hills, valleys
and mountains are examples of this, and the steeper these features are, the larger the
value of the standard deviation of orography. Orography can act as a trigger for the
initiation of a thunderstorm as detailed in Section 2.1.3 of [28].

2.7 Zero Degree Level

The ‘zero degree level’ is the height in atmosphere at which the air temperature is 0 ◦C.
Frozen water will melt when the temperature is higher than approximately 0 ◦C. This
means that hail stones will begin melting at the zero degree level, and continue melting
until they fall to the ground as discussed in Section 2.2.2 of [28].

2.8 Relative Humidity

The ‘relative humidity’ is the saturation of water in the air, where water in both solid and
liquid phase is considered. This is expressed as a percentage and has a maximum value
of 100 percent. Here we consider the average relative humidity between the 500 hPa and
850 hPa pressure levels. The importance of moisture for the initiation of a thunderstorm
is discussed in Section 3.4 of [33].
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3 Binary Regression

This section details methods which can be used to fit regression models to binary data.
We first discuss the exponential family of distributions, followed by the procedures of
fitting a Generalised Linear Model (GLM) and a Generalised Additive Model (GAM).

3.1 Exponential Family Distributions

A distribution belongs to the exponential family if its probability density function can be
written in the form:

f(y; θ, φ) = exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
, (3.1.1)

see Section 4.1 of [31]. Here a, b and c are arbitrary scalar functions, while θ and φ are
the canonical and dispersion parameters, respectively. Consider an independent binomial
random variable Yi with realisation yi for i = 1, ..., n, where n is the number of responses,
which has a binomial distribution:

Yi ∼ Bin(ni, pi), (3.1.2)

where ni is the number of trials and pi the probability of success. The probability mass
function is:

f(ni, pi) =

(
ni
pi

)
pyii (1− pi)ni−yi , (3.1.3)

see, for example, Equation 4.1 of [35]. The distribution of Y s
i := Yi

ni
, with realisations

ysi , is called the scaled binomial distribution, and is a member of the exponential family,
see Page 30 of [4]. Following [4] and using Equation (3.1.3) we can show that the scaled
binomial distribution of the Y s

i is a member of the exponential family by writing the
equation in the same form as Equation (3.1.1) with canonical parameter θi and functions
ai, b and ci which are expressed as follows:

θi = ln
pi

1− pi
, (3.1.4)

ai(φ) =
φ

ni
, φ = 1, (3.1.5)

b(θi) = ln(eθi + 1), (3.1.6)

and

ci(y
s
i ;φ) = ln

(
ni
nysi

)
. (3.1.7)

The expected value of Y s
i is calculated as in [4] as follows:

µi := E[Y s
i ] = nipi, (3.1.8)

and the variance of Y s
i is calculated as in [4] as follows:

V ar(Y s
i ) = nipi(1− pi). (3.1.9)
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3.2 Generalised Linear Model Construction

In the following section we define the components of which a Generalised Linear Model
(GLM) is comprised. Let Yi and yi for i = 1, ..., n denote the ith response variable
and its realisations respectively. The ith corresponding covariate is denoted by xi =
(1, xi1, ..., xik)

T , where the number of regression parameters, p, is defined by p := k + 1.

3.2.1 GLM Components

We define a GLM as in Section 4.4 of [15] to have a random, systematic and link compo-
nent.
The random component requires that the responses, or Yi, are independent. Furthermore
Yi has a probability mass function from the exponential family with a canonical parameter
θi and dispersion parameter φ > 0, as defined in Equation (3.1.1).
The systematic component is defined in Equation (3.2.1) for the linear predictor, ηi(β):

ηi(β) := xTi β = β0 + β1xi1 + ...+ βkxik, (3.2.1)

where β = (β0, ..., βk)
T are p unknown regression parameters.

The link component consists of the link function, defined in Equation (3.2.2):

g(µi) := ηi(β), (3.2.2)

which defines the relationship between the linear predictor, ηi, defined in Equation (3.2.1),
and µi, where µi is the mean of the response Yi.

3.2.2 Properties of a GLM

Using the above definitions we now discuss some further definitions and properties as-
sociated with GLMs, along with the maximum likelihood estimate method for fitting
regression coefficients.
We first define the log likelihood for a GLM with observed data y = (y1, y2, ..., yn)T as in
Definition 3.7 of [4]:

l(β, φ|y) :=
n∑
i=1

ln

(
f(yi|θi, φ)

)
=

n∑
i=1

li(µi, φi|yi), (3.2.3)

for a response variable, Yi, which has a distribution from the exponential family.
Using Equation (3.1.1), Equation (3.2.3) becomes:

l(β, φ|y) =
n∑
i=1

(
yiθi − b(θi)
ai(φ)

+ ci(yi, φ)

)
, (3.2.4)

for Yi with canonical parameter θi and dispersion parameter φ.
The expectation and variance function are, as shown in Theorem 3.3 and Section 3.2 of
[4]:

E[Yi] = b′(θi) = µi, (3.2.5)
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and
V (θi) := b′′(θi). (3.2.6)

To determine the maximum likelihood estimates of β, we need to, as the name suggests,
maximise the log likelihood, l. Therefore we maximise Equation (3.2.3) with respect to
β:

∂

∂βj
l =

n∑
i=1

∂li
∂βj

=
n∑
i=1

∂li
∂µi

dµi
dηi

∂ηi
∂βj

. (3.2.7)

Using Equation (3.2.2) we can see that:

∂ηi
∂βj

= xij. (3.2.8)

Using Equations (3.2.5) and (3.2.4) the following can be shown:

∂li
∂µi

=
∂li
∂θi
∂µi
∂θi

=
yi − b′(θi)
a(φ)b′′(θi)

. (3.2.9)

Thus using Equations (3.2.8) and (3.2.9), Equation (3.2.7) becomes:

n∑
i=1

∂li
∂βj

=
n∑
i=1

yi − µi
a(φ)b′′(θi)

dµi
dηi

xij = 0. (3.2.10)

We define the weights for a generalised linear model as in Definition 3.8 of [4] as:

Wi := Wi(β) :=
(dµi
dηi

)2

b′′(θi)
. (3.2.11)

Combining Equations (3.2.10) and (3.2.11) we define the unscaled score equations in
Equation (3.2.12), as in Definition 3.9 of [4]:

sj(β,y) :=
n∑
i=1

∂li
∂βj

=
n∑
i=1

Wi(yi − µi)
dηi
dµi

xij = 0, (3.2.12)

for j = 1, .., p, where ηi and xij are defined in Equation (3.2.1). We now solve to find β̂,
the value of β such that the log likelihood is maximised.
Typically these equations need to be solved numerically, for example, by using the Fisher
scoring method, see Page 35 of [4]. We define the unscaled Hessian as in Definition 3.10
of [4] with entries:

Hjk =
∂sj(β,y)

∂βk
, (3.2.13)

for j, k = 1, ..., p. The Fisher information matrix, I, is defined as in Definition 3.10 of [4]
as:

I(β) := E[−H(β,Y )] (3.2.14)

It is shown on Page 36 of [4] that the (j, k)th element of I(β) from Equation (3.2.14) can
be expressed as:

Ij,k(β) =
n∑
i=1

1

b′′(θi)

(
dµi
dηi

)2

xi,kxi,j =
n∑
i=1

Wixi,kxi,j, (3.2.15)
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where Wi is defined in Equation (3.2.11) for j, k = 1, ..., p. Expressing this in matrix form
we have the following:

I(β) = XTW (β)X, (3.2.16)

where XT = (x1, ...,xn) ∈ Rp×n and W (β) = diag(Wi(β)) ∈ Rn×n where diag denotes
the diagonal matrix as follows:

diag(Wi(β)) =


W1(β) 0 · · · 0

0 W2(β) · · · 0
...

...
. . .

...
0 0 · · · Wn(β)

 .

We then use this to construct the Fisher scoring algorithm as in Algorithm 3.12 of [4] as
follows:

1. Select initial values β0 and ε.

2. For k > 0 we define the following:

βk+1 := βk + (I(βk)−1s(βk,y) (3.2.17)

where s(β,y) = (s1(β,y), ..., sp(β,y))T .

3. If ||βk+1 − βk|| < ε, define estimates of β as follows: β̂ := βk+1

This can also be expressed as an iterative weighted least squares algorithm. For this, we
first express Equation (3.2.17) as in Equation 3.17 of [4] as:

I(βk)βk+1 := I(βk)βk + s(βk,y). (3.2.18)

Following Page 37 of [4] this can be expressed as:

n∑
i=1

Wi(β
k)xijZ

k
i =

n∑
i=1

Wi(β
k)xijη

k+1
i , (3.2.19)

for j = 1, ..., p, where ηki = xTi β
k, µki = g−1(ηki ) and Zk

i = ηki + (yi − µki )
dηki
dµki

, which is

called the adjusted dependent variable. We then define the inverse mean function as in
Definition 3.6 of [4] as the inverse of b′(·):

h(·) := [b′]−1(·), (3.2.20)

Now we can construct the iterative weighted least squares algorithm as in Algorithm 3.12
of [4]:

1. Select initial values β0 and ε.
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2. For the current estimate of β, βk, calculate the following for i = 1, ..., n:
η̂ki = xTi β

k, µ̂ki = g−1(η̂ki ), θ̂ki = h(µ̂ki ),

Zk
i = η̂ki + (yi − µ̂ki )

(
dηki
dµki

)∣∣∣∣
µki =µ̂

k
i

, (3.2.21)

W k
i =

[
b′′(θi)

∣∣∣∣
θi=θ̂ki

(
dηki
dµki

)∣∣∣∣
µki =µ̂

k
i

]−1
. (3.2.22)

3. Regress Zk
i on xi1, ..., xip using weights [W k

i ]−1 to calculate the updated the esti-
mates βk+1.

4. Repeat from step 2 until ||βk+1 − βk|| < ε, then define estimates of β as follows:
β̂ := βk+1.

3.2.3 Goodness of Fit of GLMs

We now look at a measure of goodness of fit, namely the deviance, to determine how well
the model fits the data. We first define the fitted means as on Page 40 of [4] as follows:

µ̂i := g−1(xTi β̂), (3.2.23)

where the function g is defined in Equation (3.2.2) and β̂ are the estimated regression
parameters.
We can now define the scaled deviance as in Definition 3.17 of [4]:

Ds(µ̂,y, φ) = −2

(
l(µ̂, φ|y)− l(y, φ|y)

)
, (3.2.24)

which, using Equation (3.2.4) can also be written as:

= 2
n∑
i=1

yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)

a(φ)
, (3.2.25)

where a and b are the functions defined in Equation (3.1.1), θ̂i = h(µ̂i) and θ̃i = h(yi).
We can also assess the goodness of fit of a GLM using the Pearson residuals. Following
Section 4.4 of [4], we consider the fitted probability of success:

p̂i =
ex

T
i β

ex
T
i β + 1

. (3.2.26)

The Pearson residuals are defined as in Definition 3.23 of [4] as:

ePi =
yi − µ̂i

(V (µ̂i))0.5
, (3.2.27)

for i = 1, ..., n, where µ̂i := nip̂i are the fitted means and V (·) is the variance function.
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3.2.4 Logistic Regression Example

In this section we look at logistic regression, an example of a GLM, and some of the above
equations in this case. Here we consider the logit link from Equation 3.7 of [4] as defined
in Equation (3.2.28):

g(µ) = ln

(
µ

1− µ

)
. (3.2.28)

Using Section 3.1 where we showed that the scaled binomial distribution belongs to the
exponential family, as in Definition 4.16 of [4], we can show that the log likelihood from
Equation (3.2.4) becomes:

l(β,ys) =
n∑
i=1

ni

(
ysix

T
i β − ln(ex

T
i β + 1)

)
+ C, (3.2.29)

where C ∈ R is independent of β. We can also calculate that Equation (3.2.6) can be
written as:

V (θi) =
ex

T
i β

(ex
T
i β + 1)2

, (3.2.30)

where θi = pi = (ex
T
i β + 1)−1 The scaled score equations are defined as in Definition 4.17

of [4] as:

s(β,ys)sj :=
∂l(β|ys)
∂βj

, (3.2.31)

which can also be written as:

s(β,ys)sj =
n∑
i=1

nixij

(
ysi −

ex
T
i β

ex
T
i β + 1

)
, (3.2.32)

for j = 1, ..., p. This allows us to define the scaled Hessian, as on Page 67 of [4]:

Hs :=
∂ss(β,ys)

∂β
∈ Rp×p, (3.2.33)

the (k, l)th element of which can be expressed as follows:

Hs
kl = −

n∑
i=1

nip(xi)(1− p(xi))xikxil. (3.2.34)

We will be interested in examining the empirical logits as part of the exploratory data
analysis later in this thesis. We define the empirical logit, li, as in Definition 4.15 of [4]:

li = ln

(
yi + 1

2

ni − yi + 1
2

)
, (3.2.35)

for i = 1, ..., n, where n is the number of responses, yi is the number of successes and ni
is the number of trials. One half has been added to both the numerator and denominator
in Equation (3.2.35) to account for the case where yi = 0 or yi = ni. This continuity
correction is explained on Page 61 of [4].
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As shown in Definition 4.13 of [4], for the category i with score, s(i), the logistic model
can be rewritten with s(i) as the covariate,

p(i) = P (Y = 1|X = i) =
eβ0+β1s(i)

1 + eβ0+β1s(i)
, (3.2.36)

where it is assumed that the logits are linear in terms of the scores as in Equation (3.2.37)

logit(p(i)) = β0 + β1s(i). (3.2.37)

3.2.5 Overdispersion

So far we have discussed a method for fitting regression coefficients for a GLM, along with
techniques to asses the goodness of fit. We now turn our attention to the case where there
is overdispersion present in the data.
One indicator for the presence of overdispersion in a data set is the condition D > n− p,
where D is the deviance, n the number of responses and p the number of regression
parameters, see Remark 5.2 of [4].
We now define the latent random variable, vi, as in definition 5.4 of [4]: for Yi successes
in ni trials we define the random success probability, vi, also called the latent random
variable, for i = 1, ..., n. Additionally, we assume the Yi given vi are independent, with:

E[vi] = pi, (3.2.38)

and
V ar(vi) = φipi(1− pi), (3.2.39)

where φ is the unknown scale parameter and pi := p(xi). Section 5.3 of [4] shows that the
expectation and variance of Yi are:

E[Yi] = nipi, (3.2.40)

for i = 1, ..., n and
V ar(Yi) = nipi(1− pi)(1 + (ni − 1)φ), (3.2.41)

for i = 1, ..., n. We now define the beta-binomial logistic model, where vi ∼ Beta(ai, bi)
as in Section 5.4 of [4]. The expectation and variance of vi are given by:

E[vi] =
ai

ai + bi
= pi, (3.2.42)

V ar(vi) =
aibi

(ai + bi)2(ai + bi + 1)
=

pi(1− pi)
(ai + bi + 1)

. (3.2.43)

For the case 1
(ai+bi+1)

= φ for all i = 1, ..., n we obtain the beta-binomial logistic model,

where the vi are independent and follow the Beta(ai, bi) distribution for ai = 1−φ
φ
pi and

bi = 1−φ
φ

(1− pi). Note that the pi remain unchanged from the previously defined logistic
model. To fit the regression coefficients for our beta-binomial model using maximum
likelihood estimation we follow Page 106 of [4] and express the likelihood as follows:

L(β|y) =
n∏
i=0

∫ 1

0

f(yi|vi)f(vi|ai, bi)dvi, (3.2.44)
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which can also be written as:

L(β|y) =
n∏
i=0

(
ni
yi

)
B(yi + ai, ni − yi + bi)

B(ai, bi)
. (3.2.45)

Page 106 of [4] explains that the optimisation of Equation (3.2.44) must be performed
numerically.



3.3 Construction of GAM model 17

3.3 Construction of GAM model

We now consider the construction of a GAM. This type of model can either be used for
exploratory data analysis, or in the case that a model with more flexibility than a GLM is
required can be used as a model in its own right, see Section C of [4]. The use of a GAM
requires choosing a basis, fitting model coefficients and selecting a smoothing parameter.
Once a basis has been chosen we can reformulate the GAM to have the same form as a
GLM.
Here we define a GAM as in Section 6.1 of [37]:

g(µi) = Aiγ +
k∑
j=1

fj(xij), (3.3.1)

for j = 1, ..., k and i = 1, ..., n, where n is the number of responses, µi := E[Yi] and
the probability density function of the response Yi belongs to the exponential family
distribution. The yi are assumed to be independent given µi. Ai is the ith row of a
parametric model matrix with corresponding parameter vector γ and fj is a smooth
function of the covariate vector xj , where xij is the ith element of xj and k is the number
of smooth functions.
This allows for more flexibility when compared to a GLM; however this model requires a
basis to be chosen and the selection of a smoothing parameter, in addition to the fitting
of model coefficients.

3.4 Basis Selection

In this section we want to choose a basis, or way of representing the fj from Equation
(3.3.1). There are many different options to select a basis ranging from polynomials
through to splines. One particular method suited to large and complex datasets is the
tensor product spline covered later in this section. The goal of all of these methods is
to choose a basis which compromises between goodness of fit and the curvature of the
function or over-fitting. We first consider the polynomial basis example from Section 4.2
of [37].

3.4.1 Polynomial Basis

Consider a model with only one covariate, x:

yi = f(xi) + εi, with εi
ind.∼ N (0, 1), (3.4.1)

for i = 1, ..., n, where yi is a dependent variable, xi is the ith element of x, the covariate,
and f is a smooth function. To estimate f , we want to express it so that Equation (3.4.1)
becomes a linear model. We do this by choosing a basis consisting of M basis functions
and approximating f by fapprox,

fapprox(x) =
M∑
l=1

bl(x)βl, (3.4.2)
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for l = 1, ...,M , where fapprox is an element of the function space spanned by the basis.
In this case bl is the lth basis function and the βls are coefficients which will be fitted in
Section 3.6.
For this example we will consider a cubic polynomial:

b1(x) = 1, b2(x) = x, b3(x) = x2, b4(x) = x3. (3.4.3)

Equation (3.4.2) becomes:

fapprox(x) =
4∑
l=1

xl−1βl, (3.4.4)

and Equation (3.4.1) becomes:

yi =
4∑
l=1

xl−1i βl + εi. (3.4.5)

The trade off for the simplicity of this model comes from Taylor’s Theorem as discussed
in Section 4.2.1 of [37]. Taylor’s Theorem implies that this method is only useful for very
localised areas, not for the whole domain of f .

3.4.2 Cubic Spline

The choice of a spline as a basis results in a method more useful across a larger domain
of the smooth f . The most commonly used spline is the cubic spline, see Section 1.8
and the Preface of [22], providing a good compromise between approximation power and
computational speed. Here we follow Section 5.1.1 of [37] and Section C of [4]. Our
representation of fj from Equation (3.3.1) is as follows:

fj(x) = βjx+ sj(x), (3.4.6)

for j = 1, ..., k, where βj are the regression coefficients for the parametric component.
The non parametric component, sj(x), is a spline which consists of m − 1 piece-wise
polynomials, pl(x), which are joined at a set of knots x′1, ..., x

′
m as shown in [4]:

sj(x) = pl(x), (3.4.7)

where x′l ≤ x ≤ x′l+1 for l = 1, ...,m − 1, where the pl polynomials of degree d fulfill the
following:

phl (x
′
l) = phl+1(x

′
l), (3.4.8)

for h = 1, .., d−1. The case of a cubic spline corresponds to d = 3. Consider the responses
yi and covariate elements xi for i = 1, ..., n. The parameter λ controls the weighting
between the fit of the function f to the data and penalising the curvature of f , we will
show how this parameter is chosen in Section 3.7. For knots a ≤ x′1 ≤ x′2 ≤ ... ≤ x′m ≤ b
we choose f such that the following equation, as in Equation C.5 of [4], is minimised:

A(f) =
n∑
i=1

(yi − f(xi))
2 + λ

∫ a

b

f ′′(x)2dx. (3.4.9)
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We now consider the case where we have k smooth functions, sj(x), for j = 1, ..., k. The
penalty, P ′j , for sj is defined as follows:

P ′j :=

∫ uj

vj

s′′j (x)2dx, (3.4.10)

where uj = min(xij, 1 ≤ i ≤ n) and vj = max(xij, 1 ≤ i ≤ n) for j = 1, ..., k. Since we
have defined sj(x) to be a cubic polynomial, we can expand sj(x) as in Equation C.3 of
[4] as follows:

sj(x) =

qj∑
k=1

βj,kbjk(x), (3.4.11)

for j = 1, ..., qj, where the βj,k are coefficients and the bjk are the basis functions. Using
this, as in Section C.3 of [4], we can then write:

P ′j = βTj Pjβj, (3.4.12)

where βj is a vector of length qj containing the coefficients from Equation (3.4.11) and
Pj ∈ Rqj×qj defined as follows:

(Pj)lk =

∫ vj

uj

bjl(x)bjk(x)dx. (3.4.13)

The overall penalty matrix, Pλ is defined as in Section C.3 of [4] as follows:

Pλ := diag(λ1P1, ..., λkPk), (3.4.14)

where the λ > 0 are the smoothing parameters, which will be fit in Section 3.7.

3.4.3 Tensor Product Smooths

We now consider a more complex basis best suited for cases with multiple covariates. This
section follows directly from Section 5.6 of [37], which recommends using tensor product
smooths for large multidimensional data sets due to their computational favourability.
First, consider a smooth function f(x, z) with marginal bases fx, fz of order N and M
respectively, for covariates x and z:

fx(x) =
N∑
j=1

αjaj(x), (3.4.15)

fz(z) =
M∑
k=1

βkbk(z), (3.4.16)

where aj is the jth basis function and a smooth function of x for j = 1, ..., N and bk is the
kth basis function and a smooth function of z for k = 1, ...,M . The marginal penalties Jx
and Jz can then be expressed as in Section 5.6.2 of [37]:

Jx(fx(x)) = αTSxα (3.4.17)
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Jz(fz(z)) = βTSzβ (3.4.18)

where α = (α1, ..., αN)T ∈ RN and β = (β1, ..., βM)T ∈ RM are vectors of the coefficients
αj and βk from Equations (3.4.15) and (3.4.16) and Sx and Sz are penalty coefficient
matrices defined as on Page 226 of [37] as follows:

(Sx)ij =

∫ vx

ux

ai(x)aj(x), (3.4.19)

where vx and ux are max(x) and min(x) respectively. Similarly for z:

(Sz)ij =

∫ vz

uz

bi(x)bj(x), (3.4.20)

where vz and uz are max(z) and min(z) respectively. Now we want to make fx(x) vary
smoothly in z. We can use Equation (3.4.16) to express a function varying smoothly in z,
which we now use to express αj as a function of z. We must now take into account that
each αj will have a coefficient vector. We now define a coefficient matrix for all αj,

B = (β1,β2, ...,βN) ∈ RM×N , (3.4.21)

where each of the N βj ∈ RM represent the vector coefficient for the corresponding αj.
Note that these are not βj, which we used to denote the element of a single coefficient
vector. Thus each αj(z) can be expressed as follows:

αj(z) =
M∑
l=1

Bljbl(z), (3.4.22)

for j = 1, ..., N , where Blj is the lth element of the jth column of B, or the lth coefficient of
the function αj, which depends on the covariate z. Using Equations (3.4.22) and (3.4.15),
f(x, z) can be expressed as in Section 5.6.1 of [37] as:

f(x, z) =
N∑
j=1

M∑
l=1

Bljbl(z)aj(x). (3.4.23)

Now that we have constructed the tensor product basis, we measure the contribution of
higher order terms to f , or ‘wiggliness’, as in [37] by using penalties induced from marginal
penalties. We measure this by considering first the wiggliness in f with respect to x with
fixed z, then with respect to z with fixed x. We denote f where z is fixed as fx|z and f
where x is fixed as fz|x. fx|z is defined as follows:

fx|z(x) =
N∑
j=1

αj(z)aj(x), (3.4.24)

and fz|x is defined similarly. Let Jx|z and Jz|x denote the marginal penalties with fixed z
and x respectively. Let Jx|z(fx|z(x)) measure the wiggliness of f(x, z) for fixed z.



3.5 Equivalence of a GAM to a GLM 21

Thus,
∫
Jx|z(fx|z(x))dz is proportional to the average wiggliness at x. Using the same

argument for z, the penalty can be written as:

J(f(x, z)) = λx

∫
Jx|z(fx|z(x))dz + λz

∫
Jz|x(fz|x(z))dx, (3.4.25)

where λx and λz are coefficients, see Section 5.6.2 of [37]. If we consider the marginal
bases to be cubic splines as in the previous section, then the penalty becomes:

J(f(x, z) =

∫ (
λx

(
∂2f

∂x2

)2

+ λz

(
∂2f

∂z2

)2)
dxdz (3.4.26)

The reader is referred to [37] for further detail. Using the design matrix X, basis f(x, z),
and penalty J(f(x, z)), the coefficients and smoothing parameters can be estimated.

3.5 Equivalence of a GAM to a GLM

Once the basis and penalty have been chosen the model can be reformulated as a GLM
as shown in Section C of [4]. This allows us to use model fitting techniques discussed
under the GLM framework, however, this can lead to overfitting due to a high number of
parameters as argued in Section C of [4].
Consider smooth components sj(x) with qj basis functions bjk(x):

sj(x) =

qj∑
k=1

βj,kbjk(x), (3.5.1)

for j = 1, ..., qj where the βj,k are the regression coefficients. We can define the transformed
ith observation as follows:

zi = (1, xi1, ..., xik, b11(xi1), ..., b1q1(xi1), ..., bk1(xik), ..., bkqk(xik)) ∈ RP , (3.5.2)

where the number of parameters, P , is defined as:

P = 1 + k +
k∑
j=1

qj. (3.5.3)

Similarly we can define the regression coefficients as:

β = (β0, ..., βk, β1,1, ..., β1,q1 , ..., βk,1, ..., βk,qk) ∈ RP . (3.5.4)

Then the design matrix can be written as:

Z = (z1, ...,zn)T ∈ Rn×P , (3.5.5)

and the regression coefficients fitted, as shown in Section C of [4].
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3.6 Fit Using Penalised Iterative Least Squares

In this section our aim is to fit the regression coefficients, β. Before defining the algo-
rithm which we will use to fit β, namely the penalised iterative least squares (PIRLS)
algorithm shown in Section 3.6.1, we first cover all definitions and assumptions required
for the algorithm.
The following algorithm from Section 6.1 of [37] fits a logistic GAM with penalised like-
lihood maximisation, using penalised iterative least squares (PIRLS). Thus, we want to
maximise the penalised log likelihood as defined in [37]. Using [4], Equations (3.5.4) and
(3.4.14) and the log likelihood defined in Equation (3.2.3) we define the penalised log
likelihood, lpen as follows:

lpen(β|y) = l(β|y)− 1

2
βTPλβ. (3.6.1)

Using Equation (3.2.2), the following equations are used to initialise and update µ̂ and η̂:

η̂i = zTi β̂i (3.6.2)

µ̂i = g−1(η̂i) (3.6.3)

Define α as in Equation (3.6.4):

α(µi) := 1 + (yi − µi)
(
V ′(µi)

V (µi)
+
g′′(µi)

g′(µi)

)
, (3.6.4)

where g is the link function as defined in Equation (3.2.2), and V is defined in Equation
(3.2.6).

3.6.1 PIRLS Algorithm

1. Using Equations (3.6.2), (3.6.3), (3.2.6) and (3.6.4) calculate:

wi =
α(µ̂i)

V (µ̂i)g′(µ̂i)2
(3.6.5)

and

zi =
g′(µ̂i)(yi − µ̂i)

α(µ̂i)
+ η̂. (3.6.6)

2. UseW := diag(wi) and ||a||2W := aTWa, to choose β so that the following equation
is minimised:

||z −Xβ||2W + βTPλβ, (3.6.7)

3. Update η̂i and µ̂i using Equations (3.6.2), (3.6.3).

The β which is chosen to minimise Equation (3.6.7) is defined as the fitted regression
coefficients, β̂. Note that α(µi) can be set to 1 to correspond to the Fisher scoring case,
where the Hessian of the log likelihood is replaced by its expectation, see Section 6.1.1 of
[37].
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3.7 Smoothing Parameter Selection

The smoothing parameter λ should be chosen such that a balance is achieved between a
sufficiently smooth function and the fitted function f̂(x) being as close as possible to the
true function f(x). Ordinary cross validation (OCV), defined in [37] Section 4.2.1, can
be used to choose λ to minimise the cross validation score:

νo =
1

n

n∑
i=1

(f̂ [−i] − yi)2

where f̂ [−i] is the fit excluding (yi, xi), where X = (xT1 , ...,x
T
n )T ∈ Rn,k. The OCV score

can be expressed as

νo =
1

n

n∑
i=1

(yi − f̂i)2

(1−Aii)2
, (3.7.1)

as shown in Section 4.2.3 of [37]. The hat matrix A is defined as ŷ = Ay where ŷ are the
fitted values. Generalised cross validation (GCV) is often used in practise since it is less
computationally expensive than OCV, see [37], this involves replacing the Aiis with their
mean and Equation (3.7.1) becomes:

νg = n
n∑
i=1

(yi − f̂i)2

(n− tr(A))2
, (3.7.2)

where tr(A) is the trace of A. See Pages 169 to 171 of [37] for the derivation of the
ordinary and generalised cross validation scores. These methods are computationally
expensive for binary data, see Page 7 of [16], thus Section 6.2.5 of [37] advises to adjust
the GCV method to use the deviance, which is defined in Equation (3.2.25). Thus the
cross validation score becomes:

νg(λ) =
nDs(µ̂,y, φ)

(n− γτ)2
, (3.7.3)

where τ =
∑n

i=1
∂ŷi
∂yi

is the model effective degrees of freedom and γ is the parameter for

the smoothness of the model, which is usually set to 1 [37].
We have now discussed the theory of fitting a GLM and GAM to binomial data, along with
how to account for an overdispersed data set. This allows us to move on to preprocessing
our data, so that we may fit and select the hail and thunderstorm models.
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4 Data Analysis: Preprocessing

In this chapter we prepare the raw data to be ready for the statistical analysis in the next
chapter. First we ensure that all of the data has the same time and location grid. We
then define our dependent variables for the hail and thunderstorm models, and calculate
the considered covariates. Finally, we investigate whether we can increase the ratio of
successes to failures for both the thunderstorm and hail models, without excluding a
large number of successes. The aim of this is to improve the stability of the model fitting
algorithms we use later, see [17] for an argument as to the difficulties associated with
models for very rare events.

4.1 Short Description of Data Sets and Their Indices

Recall the goal to fit two models, one for the probability of a thunderstorm, and a second
for the probability of severe hail given that a thunderstorm is occurring.
This thesis combines the following data sources as given in Table 1 to construct the
covariates for the thunderstorm and hail models.
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Data set Description Source
Lightning data The number of cloud to ground EUCLID

lightning detections per grid box www.euclid.org

Hail data Reports of hail stones with a diameter larger than 2 cm ESWD
www.eswd.eu

Reanalysis data Reanalysis atmospheric conditions within each grid box ECMWF
www.ecmwf.int

Table 1. Description of agencies which provided the data sets used in this thesis.

Index Description Domain
i latitude 45◦N to 55◦N 45 + 0.25l, for l = 0, 1, ..., 40
j longitude 5◦E to 15◦E 5 + 0.25k, for k = 0, 1, ..., 40
t time 00:00 01/01/2008 until 23:00 31/12/2017, m = 0, 1, ..., 87672

expressed as hours since 00:00 01/01/2008
p pressure level 200 + 50n for n = 0, 1, ..., 11

200 hPa to 1000 hPa and 775 + 25q for q = 0, 1, ..., 9

Table 2. All indices and their domains which are discussed in this thesis.

The data frames used in this thesis have indices latitude, longitude and time denoted by i,
j and t respectively. Some variables used in intermediate calculations also have the index
p which represents pressure level, as shown in Table 2. A grid box refers to a unique i
(latitude), j (longitude) and t (time), for example 51.0◦N, 11.75◦E, 15:00 31/1/2008. Table
3 shows all variables used in this thesis. The northward and eastward wind components
used to calculate Dijt and the relative humidity levels used to calculate Rijt also have the
index pressure level which ranges from 200 hPa to 1000 hPa, measured in 50 hPa intervals
from 200 hPa to 750 hPa, then in 25 hPa intervals to 1000 hPa. The variables Sijt and
Hijt are the dependent variables for the thunderstorm and hail models respectively. We
have defined the detection of a thunderstorm to be the detection of one or more cloud to
ground lightning detections within a grid box. The value of the dependent variable Hijt

(hail) is 1 if there is a hail case in a grid box where Sijt = 1 (thunderstorm case), and 0
if there is no hail case in a grid box where the value of Sijt = 1. All grid boxes where Sijt
= 0 are excluded from the hail model.

An example from the combined, preprocessed data sets is shown in Table 4. Only data
points with Sijt (thunderstorm) = 1 and Cijt (CAPE) larger than 100 J kg−1 are included
in the hail model.

4.2 Number of Data Points Within Data Sets

The total number of data points for the thunderstorm and hail models are shown in Table
5. The cutoff values for Cijt (CAPE), below which data points have been excluded, have
been calculated and are explained in Section 4.4. Here we note that we have a large data
set, however, shail in particular is small compared to nhail, which can be seen in Table 5.

www.euclid.org
www.eswd.eu
www.ecmwf.int
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Variable Variable Type Domain Description
Sijt Binary {0, 1} Detection of a thunderstorm

at latitude i, longitude j and time t.

Hijt Binary {0, 1} Report of severe hail at latitude i,
longitude j and time t, where Sijt = 1 .

Cijt Continuous ∈ R≥0 The value of CAPE in J kg−1

at latitude i, longitude j and time t.

Dijt Continuous ∈ R≥0 The value of DLS in m s−1

at latitude i, longitude j and time t.

Oij Continuous ∈ R≥0 The value of the standard deviation of
orography at latitude i, longitude j and time t.

Zijt Continuous ∈ R≥0 The height in the atmosphere where the
temperature is 0 ◦C, in m at latitude i,

longitude j and time t.

Rijt Continuous ∈ R≥0 The average relative humidity in the
atmosphere between 500 hPa and 850 hPa

at latitude i, longitude j and time t.

rijtp Continuous ∈ R≥0 The relative humidity in
the atmosphere at latitude i, longitude j,

time t and pressure level p.

uijtp Continuous ∈ R≥0 The eastward wind speed at latitude i,
longitude j, time t and pressure level p.

vijtp Continuous ∈ R≥0 The northward wind speed at latitude i,
longitude j, time t and pressure level p.

Gijtp Continuous ∈ R≥0 The geo potential at latitude i, longitude j,
time t and pressure level p.

hijtp Continuous ∈ R≥0 The height above ground level at latitude i,
longitude j, time t and pressure level p.

Table 3. This table gives an overview of all variables used in this thesis. The first section contains the
dependent variables, the second section contains the independent variables used in the thunderstorm and
hail models and the third section contains all intermediate variables used for calculations.
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Variable Name Value 1 Value 2
i latitude 51.0 51.0 ...
j longitude 11.75 11.75 ...
t time 5:00 1/1/2008 6:00 1/1/2008 ...
Sijt thunderstorm 1 0 ...
Hijt hail 0 0 ...
Cijt CAPE [J kg−1] 11.01 16.75 ...
Dijt DLS [m s−1] 39.22 37.83 ...
Oij std. orography 39.3 39.3 ...
Zijt zero degree level [m] 0 0 ...
Rijt relative humidity [%] 51.85 52.03 ...

Table 4. This is an example from the data sets after they have been combined for the thunderstorm
model and shows some values for the independent and dependent variables.

Number of Data Points and Successes For The Two Models
nstorm = 55,002,099: The total number of Sijt or data points used

for the thunderstorm model.
sstorm = 1,039,367: The total number of Sijt = 1 or thunderstorm

cases reported within nstorm.
nhail = 727,615: The total number of Hijt or data points

used for the hail model .
shail = 2230: The total number of Hijt = 1 or hail

cases within nhail.

Table 5. The number of data points and successes for both the thunderstorm and hail models, after
preprocessing.
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4.3 Data Preprocessing

The lightning, reanalysis and hail data sets were preprocessed using python, predom-
inantly so that the packages xarray [14] and iris [21] could be used. These packages
have functions built to specifically deal with large files of type network common data
form (netcdf), and have the advantage of not immediately loading the entire data frame
into working memory. This makes selecting specific parts of the data frame quicker and
simpler.

4.3.1 Lightning Data Preprocessing

The lightning detection data was provided by the European Cooperation for Lightning
Detection (EUCLID) which has a network of sensors to detect cloud to ground lightning
strikes. The number of lightning strikes per hour within each 0.25◦ by 0.25◦ grid box is de-
tected. We were only interested in whether a thunderstorm occurred or not, so the counts
of lightning detections were converted to a binary format to indicate the presence of at
least one cloud to ground lightning detection, and therefore a thunderstorm. Thunder-
storms are also associated with intra-cloud lightning, typically producing a combination
of both types of lightning, however, we assume that the number of thunderstorms with
only intra-cloud lightning is negligible. We see in Section 4.3.2 that this assumption is
consistent with our hail data.

4.3.2 Hail Data Preprocessing

The hail report data was provided by the European Severe Weather Database (ESWD)
as a comma separated values (csv) file with the report location in latitude and longitude,
location accuracy, observation quality, time, the time accuracy of the report and hail stone
diameter or hail depth. The ESWD have four grades for the quality of reports, see [18],
which are listed below in order of lowest to highest quality:

- QC0 : received but unverified report

- QC0+ : report is plausible, for example weather reports show thunderstorm activity
in the area at the time of the reported incident.

- QC1 : report has been confirmed by a reliable source

- QC2 : report is part of a scientific study

In this thesis events with the quality grade QC0 were excluded due to the lack of relia-
bility in the reports. It is also worth noting that very few observations satisfy the QC2
requirements. Reports with a time accuracy of plus minus thirty minutes or less were
considered and the rest excluded. These measures were taken to ensure that the hail re-
ports corresponded to the correct storm and atmospheric conditions. The ESWD records
events with either hail stones larger than 2 cm in diameter, or very large quantities of
small hail which result in a layer of hail lying on the ground which is 10 cm or deeper.
Events with only depth recorded were excluded because this thesis is specifically inter-
ested in the occurrence of severe hail events where the diameter of hail stones is 2 cm or
larger. Table 6 shows these requirements for hail reports to be included in tabular form,
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Requirements for Hail Report Inclusion
Report Quality Time Accuracy Hail Stone Diameter [cm]

QC0+, QC1 or QC2 ≤ ±30 minutes ≥ 2 cm

Table 6. The requirements for hail reports to be included in this thesis.

Examples of Included and Excluded Hail Reports
included / excluded quality time accuracy hail stone diameter depth on ground

included QC1 ±15 minutes 3 cm na
excluded (diameter) QC0+ ±5 minutes 1 cm 11 cm

excluded (time accuracy) QC0+ ±60 minutes 4 cm na

Table 7. Examples of hail reports which would be included or excluded from analysis in this thesis.

and Table 7 shows some examples of hail reports, their report information and whether
they would be included or excluded.

The goal of the hail data preprocessing was to create a data frame in the same format
as the lightning data set. The ESWD requirement for hail reports with quality grades
QC0+, QC1 and QC2 is that thunderstorm activity is present in the general vicinity of
the report, which is usually checked using radar records. Furthermore, it is unphysical for
hail to occur without the presence of a thunderstorm. This means we expect each report
of severe hail in the hail data set to coincide in time and space with a cloud to ground
lightning detection in the lightning data set. It can be seen in Table 8 that only 16 hail
reports were excluded because they did not coincide with a lightning detection. Thus we
conclude that our definition of hail occuring during a thunderstorm is consistent with our
data.

Many hail reports had time or location uncertainties which made it unclear which grid
box the hail report took place in. For this reason a matching algorithm was developed
to determine the closest grid box to the hail report which also had a thunderstorm. The
grid box in which the hail event was reported, and the surrounding 26 (33 - 1 = 26) grid
boxes with plus or minus one grid box in terms of time, latitude and or longitude were
investigated. The distance from the hail report to the centre of each grid box was calcu-
lated for time, latitude and longitude, in terms of grid boxes. These were sorted and the
grid box with the smallest distance to the hail report which also had a lightning report

Number of reports not matched to a grid box with a thunderstorm 16
Number of reports matched to a grid box with a thunderstorm 3777

Number of cases in total 2445

Table 8. The number of hail reports from the ESWD which have and have not been matched to a grid
box where there is a thunderstorm (Sijt = 1), and the total number of Hijt or hail cases. Note that
mutiple reports matched to a single grid box are counted as one case.
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was defined to be the location of the hail report.

4.3.3 Disagreement Between Lightning and Hail

Despite attempts to match hail reports with lightning detections within the vicinity of
each hail report, not all hail reports could be matched. Some of these hail reports were
investigated in detail. The case in Figure 4 shows a hail report with surrounding cloud to
ground lightning activity, but outside of the neighbouring grid cells which were investi-
gated. Other reports also showed lightning activity in the general vicinity of unmatched
hail reports. This could also occur when only cloud to cloud lightning is present, when
high winds blow hail a long way before it reaches the ground, or for storm clouds which
are strongly tilted, resulting in hail landing on the ground at a different location to the
lightning activity. A successfully matched case is shown in Figure 5.

4.3.4 Atmospheric Data Preprocessing

The data for atmospheric conditions was downloaded from European Centre for Medium-
Range Weather Forecasts (ECMWF). The variables Cijt (CAPE), Zijt (zero degree level)
and Oij (standard deviation of orography) were downloaded with no additional prepro-
cessing.
The variable Dijt (DLS) was calculated as in Equation (2.5.1) using vijtp (the northward
wind component) and uijtp (the eastward wind component) downloaded from ECMWF.
Furthermore, the pressure level corresponding to a height of 6 km needed to be calculated.
The height was calculated using Equation (4.3.1):

hijtp =
Gijtp

g
m, (4.3.1)

where the acceleration due to gravity, g = 9.8067 m s−2.
After determining the hijtp for each unique combination of i, j, t and p, we then needed
to calculate, for each unique combination of i, j and t, for which p is the value of hijtp
closest to 6000 (6 km).
The variable Rijt (relative humidity) was calculated as an average of rijtp (relative humid-
ity at each pressure level) over the pressure levels from 500 hPa to 8500 hPa, as shown in
Equation (4.3.2)

Rijt =

∑850
p=500 rijtp

P
, (4.3.2)

where P = 10 is the number of pressure levels between 500hPa and 850hPa.

4.4 Reducing The Number of Non Hail Cases Using Physical
Justifications

In this section we want to increase the ratio of successes to failures for our hail model.
We know from common experience that hail stones larger than 2cm in diameter are very
rare. From a societal perspective this is good because the damage caused by severe hail
is often expensive to repair, see [25], and at its most extreme can lead to loss of life, see
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Figure 4. The presence of thunderstorms is shown in yellow, and a hail report is marked in red. This
shows one of the 16 hail reports which was not matched to a thunderstorm. Thunderstorm activity is
visible in the image, however it is further away from the report than the matching algorithm takes into
account, and it cannot be known with 100 percent accuracy why this hail report did not coincide with a
thunderstorm, therefore it is excluded from the analysis.

Figure 5. The presence of thunderstorms is shown in yellow, and a hail report is marked in red. This
shows a hail report which was matched to a thunderstorm, and recorded as a case.
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[3]. However, as we discussed at the beginning of this chapter, we want to increase the
ratio of successes to failures to improve the stability of the model fitting algorithm used
next chapter. Thus we use our knowledge from Section 2 to exclude data which represents
physical conditions not favourable for the growth of hail stones.

Atmospheric conditions with very low CAPE are not favourable conditions for hail forma-
tion and growth. This is because the maximum updraft speed provides the effect which
opposes the effect of gravity acting on a hail stone as seen on Page 226 of [5]. We look for
values of Cijt and Dijt below which we see very few Hijt = 1 (hail cases), in this case less
than 10 percent of the total number of Hijt = 1. Cijt and Dijt were investigated because
these two covariates were selected first by stepwise regression shown in Table 16 of the
Appendix 7, however, we expect Dijt to show little effect because it is physically possible
for severe hail to grow in conditions of very low DLS as seen in Section 2.1.5 of [28].
We constructed heatmap style plots to investigate the frequency of Hijt = 1 and the ratio
of Hijt = 1/Hijt = 0, whilst excluding data points with progressively larger values of Cijt
and Dijt.
Figure 6 shows the frequency of Hijt = 1 excluding data points below the values of Cijt
and Dijt. The red contour lines showing this as a fraction of the total number of Hijt = 1.
For example the top right red point (Cijt, Dijt) = (140,20) includes only data points with
Cijt > 140 and Dijt > 20. We can see that approximately 1000 Hijt = 1 satisfy this
condition.
The bottom left red point at (Cijt , Dijt ) = (50,0) includes only data points with Cijt > 50
and Dijt > 0. Approximately 2300 Hijt = 1 (hail cases) satisfy this condition. This point
is also close to the contour line of 0.95, which shows where 95 percent of Hijt = 1 remain
and 5 percent of Hijt = 1 have been excluded.
Figure 7 shows the factor by which the ratio of Hijt = 1 to Hijt = 0 is increased for given
Cijt and Dijt values, below which all data is excluded in the same way as above.
We use Figure 8 to select Cijt and Dijt ‘cutoff’ values below which all data is excluded.

We want to select values which lead to the largest improvement in the ratio of Hijt = 1
to Hijt = 0 whilst excluding at most 10 percent of Hijt = 1. This means we choose Cijt
and Dijt values close to the red 0.90 contour with the largest value shown by the colour
map. Values of Cijt = 100 and Dijt = 0 were chosen because meteorologists often work
with CAPE in steps of 50 J kg−1, the ratio of Hijt = 1 to Hijt = 0 was improved and less
than 10 percent of Hijt = 1 were excluded.
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Figure 6. This plot shows the frequency of Hijt = 1 when excluding all data points below the values of
Cijt and Dijt, with the contour lines showing the fraction relative to the total number of Hijt.
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Figure 7. This plot shows the factor increase in the ratio of Hijt = 1 to Hijt = 0 using the same cutoffs
for Cijt and Dijt as the above figure, with contours are overlaid in white.
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Figure 8. This plot shows Figure 7 overlaid with the red contour lines from Figure 6. The x axis shows
Cijt, and the y axis shows Dijt. This plot was used to decide on the best choice of cutoff values for Cijt

and Dijt to increase the ratio of Hijt = 1 to Hijt = 0 with at least 90 percent of the Hijt = 1 remaining.
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4.5 Reducing The Number of Non Thunderstorm Cases Using
Physical Justifications

In this section we want to increase the ratio of successes to failures for our thunderstorm
model as we did for the hail model. Thunderstorms require warm, moist air to initiate as
discussed in Section 2.2. As expected, Table 18 in the Appendix 7 shows that Cijt and
Rijt are the first two covariates chosen when performing a step wise regression.

We constructed heatmap style plots as in the previous section to investigate the frequency
of Sijt = 1 and the ratio of Sijt = 1/Sijt = 0 whilst excluding all data points with
increasing values of Cijt and Rijt. Using Figure 9 Cijt = 5 and Rijt = 0 were chosen as
cutoff values. Additional plots for the number of Sijt = 1 excluded and the increase factor
for the ratio of Sijt = 1 to Sijt = 0 can be seen in the the Appendix 7.1. In Chapter
5 exploratory data analysis will be performed using the points remaining after all of the
data preprocessing steps have been completed.
We have now formatted and processed our data such that we are ready to perform our
statistical analysis and choose our thunderstorm and hail models in the following chapter.
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Figure 9. This plot is analogous to Figure 8, but for the thunderstorm model. The x axis shows Cijt,
and the y axis shows Rijt. This plot was used to decide on the best choice of cutoff values for Cijt and
Rijt to increase the ratio of Sijt = 1 to Sijt = 0 with at least 90 percent of the Sijt = 1 remaining.
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5 Exploratory Data Analysis

The Sections 5.1 and 5.3 show the results from the exploratory data analysis (EDA) for
the thunderstorm and hail models with covariates Cijt (CAPE), Dijt (DLS), Oij (standard
deviation of orography), Zijt (zero degree level) and Rijt (relative humidity). Pairs plots,
histograms, box plots and empirical logit plots were calculated after the preprocessing
in Section 4 was complete. All plots except for the surface plots were constructed using
the ggplot2 package, see [34], in R. The upper surface plots were constructed using the
package MGCV from [36] and the lower surface plots were constructed using the package
plot3D [29].
Models have been suggested for both the hail and thunderstorm cases using data which
has been grouped, and are discussed in Sections 5.2 and 5.4.

5.1 EDA Plots For Hail Model

This section contains the pairs plots, box plots, histograms, empirical logit plots, trans-
formation analysis and interaction effect plots for the hail model. These were calculated
after the data preprocessing was complete, so all data points have Cijt ≥ 100. The first
set of plots we look at are pairs plots in Figure 10 and 11. We see no strong relationship
between any of the covariates, however, the large number of data points make these plots
inconclusive.
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Figure 10. Hail Data: Pairs plots of the covariates (Cijt, Dijt, Oij , Zijt and Rijt) calculated from the
reanalysis data for data points only with Hij = 1.

Figure 11. Hail Data: Pairs plots of the covariates (Cijt, Dijt, Oij , Zijt and Rijt) calculated from the
reanalysis data for data points only with Hij = 0.
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5.1.1 Analysis of Individual Considered Covariates

We now want to analyse the covariates individually. The covariates have been grouped
with respect to their quantiles, and the mean defined as the score for each interval so that
the logits could be plotted against the scores and the assumption of linearity checked.
The two most extreme groups have been excluded because these represent very rare me-
teorologial conditions. For the covariates Oij and Rijt an additional two groups of the
smallest values were removed. This was because many data points had the same value, so
multiple groups had the same score which caused issues computationally. The first plots
for the individual covariate analysis that we look at are the box plots. In Figure 12 we see
that Cijt has a moderate effect, with the plots of remaining covariates being inconclusive.
Following this we look at the histograms shown in Figure 13, where we see that our data
is not uniformly distributed over all covariate values, as expected. Using this information
we decided to calculate covariate groups with respect to quantiles. We decided on 50
groups as this provided a compromise between enough groups to see relationships in the
plots of the empirical logits, which are discussed next and shown in Figure 14, and causing
numerical issues due to multiple groups having the same covariate value.
We now investigate the empirical logits of the grouped covariates in Figure 14. Here we
see the original empirical logits, the empirical logits after a transformation of the covariate
and the studentised residuals of a polynomial fit of the transformed variables as covariates
and the empirical logits as response. All covariates appear to have non-linear relationships
with the response variable empirical logit. Log transforms were chosen for the covariates
Cijt, Dijt and Oij based on the shape of the empirical logit plots. The covariates Zijt and
Rijt were not transformed.
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Figure 12. Hail Data: Box plot of the covariates (Cijt, Dijt, Oij , Zijt and Rijt). The box plots were
calculated separately for data points with Hijt = 1 and Hijt = 0. The two left most columns show the
extremes, and the two right most columns show the whiskers of the same box plots.
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Figure 13. Hail Data: Histograms of the covariates (Cijt, Dijt, Oij , Zijt and Rijt). Histograms were
calculated separately for data points with Hijt = 1 (left column) and Hijt = 0 (right column).
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Figure 14. Hail Data: These plots show the empirical logits calculated for all grouped covariates
(Cijt, Dijt, Oij , Zijt and Rijt), before and after transformations have been applied. The empirical logit
points calculated with the covariates prior to transformation are shown with their 95 percent confidence
band. The red line shows a GAM fit. Cijt, Dijt and Oij have been transformed with the log function.
The empirical logit points calculated with the transformed covariates are shown with their 95 percent
confidence band. The red line shows a GAM fit and the blue line shows a polynomial fit, the equations
for which can be seen in Models (5.2.1),(5.2.2), (5.2.3), (5.2.4) and (5.2.5). Additionally, the studentised
residuals of polynomial fits using the empirical logits, l, as response and the transformed variables, have
been plotted against their fitted values, with the zero line shown in red. For an ith order polynomial of
covariate x with coefficient vector β = (β0, ..., βi)

T the residuals of the following fit would be plotted:
l = β × poly(x, i).
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5.1.2 Analysis of Interaction Effects

We now investigate for any possible interaction effects using the transformed covariates
from the previous section, in Figure 15. For each interaction effect we investigate we must
now consider a grouping with respect to two covariates. Thus each covariate is divided
into 5 groups and the empirical logits calculated for 25 groups for each intereaction effect
plot. This number of groups was chosen as a compromise between the number of groups
being large enough such that any relationships could be seen whilst ensuring that the
number of observations in each group was large enough (or the number of groups small
enough) so that the empirical logits were smooth enough and not dominated by noise.
The plots showing the interactions of Cijt and Dijt, Dijt and Oij and Cijt and Zijt showed
some cross over between groups. Interaction effects between these covariates are also of
interest from a meteorological perspective based on consultation with meteorologists at
Munich Re and from the theory on supercellular thunderstorms discussed in Chapter 2.
The fact that the surfaces in Figures 16, 17 and 18 are not planes suggests that there
could be interaction effects. Furthermore we see that the shapes of the GAM tensor and
empirical logit surfaces are in general agreement.
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Figure 15. Hail Data: Interaction effects between the transformed covariates (Cijt, Dijt, Oij , Zijt and
Rijt). Cijt, Dijt and Oij have been transformed with the log function. The empirical logits have been
calculated where the covariates have been grouped into 25 (5 x 5 = 25) groups with respect to their
quantiles and are shown along with their confidence limits.
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Figure 16. Hail Data: Interaction effects between the covariates log(Cijt) and log(Dijt) and the response
Hijt using a GAM tensor product surface (above) and the empirical logits (below).
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Figure 17. Hail Data: Interaction effects between the covariates log(Dijt) and log(Oijt) and the response
Hijt using a GAM tensor product surface (above) and the empirical logits (below).
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Figure 18. Hail Data: Interaction effects between the covariates log(Cijt) and Zijt and the response
Hijt using a GAM tensor product surface (above) and the empirical logits (below).
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5.2 Fitting of Models on Grouped Data For The Hail Model
Case

We now investigate several proposed models for grouped data in the hail model case. We
continue using the groups from the previous section where each covariate was divided
into 5 levels. This provides a trade off between computational speed for model fitting and
retaining the information contained in, or not over simplifying, the full data set. This
results in a reduction of the hail data from 727615 to 3125 (55 = 3125) data points. Thus,
Cijt, Dijt, Oij, Zijt and Rijt now correspond to Ck, Dk, Ok, Zk and Rk respectively, for
k = 1, ..., 3125. Note that where higher order effects have been included, the function
‘poly’ from the software R has been used due to its computational stability. This is
denoted poly(X, a)b where X is the covariate, a the highest order of the polynomial and
b the order of the specific term.

5.2.1 Univariate Binomial Models

For each covariate we now consider a univariate binomial regression: a logistic model with
a quadratic effect for the log transform of Ck,

MH
logC2 : logit(pk) = β0 + β1poly(log(Ck), 2)1 + β2poly(log(Ck), 2)2 (5.2.1)

a logistic model with a quadratic effect for the log transform of Dk,

MH
logD2 : logit(pk) = β0 + β1poly(log(Dk), 2)1 + β2poly(log(Dk), 2)2, (5.2.2)

a logistic model with a quadratic effect for the log transform of Ok,

MH
logO2 : logit(pk) = β0 + β1poly(log(Ok), 2)1 + β2poly(log(Ok), 2)2, (5.2.3)

a logistic model with a cubic effect for Zk,

MH
Z3 : logit(pk) = β0 + β1poly(Zk, 3)1 + β2poly(Zk, 3)2 + β3poly(Zk, 3)1, (5.2.4)

and a logistic model with a linear effect for Rk,

MH
R : logit(pk) = β0 + β1Rk, (5.2.5)

for k = 1, ..., 3125, where the βk are the regression coefficients. The models are named
using superscript to indicate the dataset, in this case H to denote hail data, and subscript
to denote the covariates included in the model. The summaries for Models (5.2.1), (5.2.2),
(5.2.3), (5.2.4) and (5.2.5) are shown in Table 9 for the grouped data. We see that for each
of the univariate models the residual deviance is much larger than the residuals degrees of
freedom, thus showing a lack of fit for all of these models. This leads us to next consider
a model with multiple covariates. As the highest order term is significant in all of the
univariate models we need to include both the highest order and all lower order terms for
each of the covariates. Summaries for the ungrouped data are shown in the Appendix 7
in Table 17.
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MH
logC2 Estimate Std. Error z value Pr(> |z|)

(Intercept) -6.0033 0.0264 -226.97 0.0000
poly(log(C),2)1 37.8838 1.3765 27.52 0.0000
poly(log(C),2)2 -4.1683 1.4100 -2.96 0.0031

Null deviance: 4930.8 on 3068 degrees of freedom
Residual deviance: 3890.3 on 3066 degrees of freedom

MH
logD2 Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.8846 0.0241 -243.91 0.0000
poly(log(D),2)1 28.3184 1.5145 18.70 0.0000
poly(log(D),2)2 -5.0257 1.3396 -3.75 0.0002

Null deviance: 4930.8 on 3068 degrees of freedom
Residual deviance: 4471.3 on 3066 degrees of freedom

MH
logO2 Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.8446 0.0231 -253.26 0.0000
poly(log(O),2)1 -17.2385 1.3974 -12.34 0.0000
poly(log(O),2)2 -17.8958 1.2774 -14.01 0.0000

Null deviance: 4930.8 on 3068 degrees of freedom
Residual deviance: 4589.4 on 3066 degrees of freedom

MH
Z3 Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.9188 0.0249 -238.04 0.0000
poly(Z,3)1 29.9815 1.6628 18.03 0.0000
poly(Z,3)2 0.2552 1.3199 0.19 0.8467
poly(Z,3)3 5.4733 1.2179 4.49 0.0000

Null deviance: 4930.8 on 3068 degrees of freedom
Residual deviance: 4367.5 on 3065 degrees of freedom

MH
R Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.7998 0.0218 -265.55 0.0000
R -14.0753 1.0926 -12.88 0.0000

Null deviance: 4930.8 on 3068 degrees of freedom
Residual deviance: 4771.3 on 3067 degrees of freedom

Table 9. Hail Data: Summaries of univariate binomial models for the grouped data for each variable
after transformation.
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5.2.2 Full Models

We see that for each univariate regression in Section 5.2.1 the highest order term is
significant. Therefore all lower order terms must be kept in each model with higher order
terms. A binomial regression was performed on the grouped data using all covariates
investigated in the univariate models of Section 5.2.1. The following binomial model was
fit:

MH
full logit(pk) = β0 + β1poly(log(Ck), 2)1 + β2poly(log(Ck), 2)2 + β3poly(log(Dk), 2)1

+ β4poly(log(Dk), 2)2 + β5poly(log(Ok), 2)1 + β6poly(log(Ok), 2)2

+ β7poly(Zk, 3)1 + β8poly(Zk, 3)2 + β9poly(Zk, 3)3 + β10Rk

+ β11 log(Ck) : log(Dk) + β12 log(Dk) : log(Ok) + β13 log(Ck) : Zk,
(5.2.6)

for k = 1, ..., 3125, where βl for l = 0, ..., 13 are the regression coefficients. This was
compared to the following GAM:

MH
fullGAM logit(pk) = s(log(Ck)) + s(log(Dk)) + s(log(Ok)) + s(Zk) + s(Rk)

+ te(log(Ck), log(Dk)) + te(log(Dk), log(Ok)) + te(log(Ck), Zk),
(5.2.7)

for k = 1, ..., 3125, where s and te denote the smooths used to fit a GAM using the package
MGCV [36].
Smaller models were chosen using the forward selection technique based on AIC, defined
in Equation (5.2.8), using the software R and package MASS [30]. The AIC is defined as
in [4] as follows:

AIC := −2loglik ± 2p, (5.2.8)

where loglik is the log likelihood and p is the number of parameters of the model. These
models with one to four covariates are shown in the Appendix 7.
The summary outputs for Models (5.2.6) and (5.2.7) are shown in Tables 10 and 11. We
see that for Model (5.2.6) the residual deviance has a value close to the residual degrees
of freedom, giving no indication of a lack of fit. The log likelihood is slightly smaller than
that of Model (5.2.7). In both models the ratio of residual deviance to null deviance is
larger than 0, suggesting that both models are explaining some of the variability in the
data. The number of trials, number of successes and number of failures for each group
in the above binomial regressions are shown in Figure 19. The left most plot shows that
most groups contain only Hijt = 0, as expected. The right most plot shows that most
groups had between 0 and approximately 500 observations. There are a few groups with
a very large number of observations, however, we are satisfied that the grouping used for
the hail model has found a suitable trade off to select number of groups.
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Figure 19. Hail Data: The number of trials, number of successes and number of failures for each group
within the grouped data used for the binomial models. The modes for the plots from left to right are
(x,z) = (0,2067), (100,763), (100,758)

MH
full Estimate Std. Error z value Pr(> |z|)

(Intercept) -8.0181 0.7079 -11.33 0.0000
poly(log(C), 2)1 3.5574 6.9194 0.51 0.6072
poly(log(C), 2)2 -6.7900 1.5302 -4.44 0.0000
poly(log(D), 2)1 33.1609 10.2391 3.24 0.0012
poly(log(D), 2)2 -5.1951 1.3801 -3.76 0.0002
poly(log(O), 2)1 6.7364 5.5114 1.22 0.2216
poly(log(O), 2)2 -19.2809 1.3842 -13.93 0.0000

poly(Z, 3)1 -43.8793 11.1352 -3.94 0.0001
poly(Z, 3)2 -7.3231 1.5549 -4.71 0.0000
poly(Z, 3)3 9.7184 1.2323 7.89 0.0000

R -0.0086 0.0011 -7.88 0.0000
log(C):log(D) 0.0495 0.0273 1.81 0.0699
log(D):log(O) -0.0928 0.0251 -3.70 0.0002

log(C):Z 0.0001 0.0000 4.38 0.0000

Null deviance: 4930.8 on 3068 degrees of freedom
Residual deviance: 2841.1 on 3055 degrees of freedom

Log-likelihood: -2634.782 (df = 14)

Table 10. Hail Data: Summary of the full binomial model for data grouped into 5 levels for each
transformed covariate.
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MH
fullGAM Estimate Std. Error z value Pr(> |z|)

(Intercept) -6.27744 0.03323 -188.9 <2e-16
edf Ref.df Chi.sq p-value

s(log(C)) 2.689 2.919 206.37 <2e-16
s(log(D)) 2.310 2.438 336.27 <2e-16
s(log(O)) 2.380 2.438 86.70 <2e-16

s(Z) 3.000 3.000 29.35 1.92e-06
s(R) 2.026 2.351 66.51 3.74e-14

te(log(C),log(D)) 2.248 11.000 23.46 1.27e-06
te(log(D),log(O)) 3.210 11.000 26.08 9.43e-09

te(log(C),Z) 2.858 11.000 28.81 1.26e-06
residual deviance
null deviance

= 0.44
Log-likelihood: -2599.427 (df = 21.72225)

Table 11. Hail Data: Summary of the full GAM model for data grouped into 5 levels for each transformed
covariate.
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5.2.3 Model Selection and Assessing Goodness of Fit

We now have two proposed models, one GLM and one GAM. We need to decide which
model is best based on a trade off between goodness of fit, simplicity and the time it
takes to fit the model. In Figure 20 we see plots of the Pearson residuals, fitted values
against empirical estimates and the fitted values of the GAM and binomial models plotted
against each other. The residuals show no large outliers or strong pattern or relationship.
Most fitted values cluster around the diagonal line when plotted against the empirical
estimates, and similarly the GAM and logistic fitted values cluster around the diagonal
line when plotted against each other. In addition, the log likelihoods of the two models
have a relative difference of approximately 1 percent. The use of a logistic model as
opposed to a GAM is much more favourable computationally thus we select the logistic
model, MH

full, defined in Model (5.2.6).
Finally, we plot look up tables of our results and compare them to the results of [28].
In Figures 21, 22 and 23 we consider the covariates C and D whilst holding O, Z and R
constant at their 5th, 50th and 95th percentile values to produce look up tables for Models
5.2.6 and 5.2.7. We can compare this qualitatively to plots (c) and (d) of Figure 24, where
we see that the plots have the same general shape.
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Figure 20. Hail Data: Plots of the fitted values vs empirical estimates and fitted values vs the Pearson
residuals for Models 5.2.6 and 5.2.7, MH

full and , MH
fullGAM . The Pearson residuals were calculated as

in [4] and the fitted values calculated using the R function prediction. Additionally the fitted values for
both models have been plotted against each other. The red lines show the zero line and the blue lines
show the diagonal line.



56 5 EXPLORATORY DATA ANALYSIS

Figure 21. Thunderstorm Data: lookup tables for the probability of H = 1|S = 1 for values of C and
D, whilst holding O constant at the 5th percentile and R and Z constant at the 5th, 50th and 95th for the
logistic model above and the GAM below.
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Figure 22. Thunderstorm Data: lookup tables for the probability of H = 1|S = 1 for values of C and
D, whilst holding O constant at the 50th percentile and R and Z constant at the 5th, 50th and 95th for
the logistic model above and the GAM below.
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Figure 23. Thunderstorm Data: lookup tables for the probability of H = 1|S = 1 for values of C and
D, whilst holding O constant at the 95th percentile and R and Z constant at the 5th, 50th and 95th for
the logistic model above and the GAM below.
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Figure 24. Hail Data: This figure shows the lookup table for LI and D whilst holding O, Z and R
constant and LI and R whilst holding D, O and Z constant for the generalised additive and logistic hail
models from [28]. LI is qualitatively similar to C, and was used because the available data was too coarse
to calculate C. Larger values of C correspond to more negative values of LI.
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5.3 EDA Plots For Thunderstorm Model

We now consider the analysis for the thunderstorm model, following the same structure
as for the hail model. This section contains the pairs plots, box plots, histograms, empir-
ical logit plots, transformation analysis and interaction effect plots for the thunderstorm
model. These were calculated after the data preprocessing was complete, so that for all
data points Cijt ≥ 5. In the pairs plots in Figures 25 and 26 we again see no strong rela-
tionship between any of the covariates, however, as for the hail model, the large number
of data points make these plots inconclusive.
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Figure 25. Thunderstorm Data: Pairs plots of the covariates (Cijt, Dijt, Oij , Zijt and Rijt) for data
points only with Sijt = 1.

Figure 26. Thunderstorm Data: Pairs plots of the covariates (Cijt, Dijt, Oij , Zijt and Rijt) for data
points with only Sijt = 0.



62 5 EXPLORATORY DATA ANALYSIS

5.3.1 Analysis of Individual Considered Covariates

We now want to analyse the covariates individually. Again, the covariates have been
grouped with respect to their quantiles, and the mean defined as the score for each in-
terval. Looking at the box plots shown in Figure 27 we see that Cijt has a moderate
effect, with the plots of remaining covariates being inconclusive. Next we look at the his-
tograms in Figure 28, where we again see that our data is not uniformly distributed over
all covariate values, as expected, thus the covariate groups were calculated with respect
to quantiles. For the same reasons as in the exploratory data analysis for the hail model
we decide to work with 50 groups.
We now examine the empirical logits in Figure 29, which, as in the hail model EDA, show
the original empirical logits, the empirical logits after the transformation of the covariates
and the studentised residuals of a polynomial fit of the transformed variable as covariates
and the empirical logits as response. Again, all covariates appear to have non-linear rela-
tionships with the response variable empirical logit. Log transforms were chosen for the
covariates Cijt and Oij based on the shape of the empirical logit plots and the covariates
Dijt, Zijt and Rijt were not transformed.



5.3 EDA Plots For Thunderstorm Model 63

Figure 27. Thunderstorm Data: Boxplots of the covariates (Cijt, Dijt, Oij , Zijt and Rijt). The
boxplots were calculated separately for data points with Sijt = 1 and Sijt = 0. The two left most
columns show the extremes and the two right most columns show the whiskers of the same box plots.
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Figure 28. Thunderstorm Data: Histograms and empirical logit plots of the covariates (Cijt, Dijt,
Oij , Zijt and Rijt). Histograms were calculated separately for data points with Sijt = 1 and Sijt = 0.
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Figure 29. Thunderstorm Data: These plots show the empirical logits calculated for all covariates
(Cijt, Dijt, Oij , Zijt and Rijt), before and after the transformations have been applied. The left column
shows the empirical logit points calculated with the covariates prior to transformation, which have been
grouped into 50 groups with respect to their quantiles, and are shown with their 95 percent confidence
band. The red line shows a GAM fit. Cijt and Oij have been transformed with the log function. The
middle column shows the empirical logit points calculated with the transformed covariates which have
again been grouped into 50 groups with respect to their quantiles, and are shown with their 95 percent
confidence band. The red line shows a GAM fit and the blue line shows a polynomial fit, the equations
for which can be seen in Models (5.4.1),(5.4.2), (5.4.3), (5.4.4) and (5.4.5). Additionally, the studentised
residuals of polynomial fits of the empirical logits, l, and the transformed covariates have been plotted
against their fitted values, shown in the right column. For an ith order polynomial of covariate x with
coefficient vector β = (β0, ..., βi)

T the residuals of the following fit would be plotted: l = β × poly(x, i).
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Figure 30. Thunderstorm Data: Interaction effects between all covariates (Cijt, Dijt, Oij , Zijt and
Rijt). The empirical logit points have been calculated with the covariates grouped into 100 (20 x 5 =
100) groups with respect to their quantiles, and are shown with their 95 percent confidence band.

5.3.2 Analysis of Interaction Effects

After completing the analysis of each individual covariate we now investigate for interac-
tion effects using the transformed covariates from the previous section. As in the case of
the hail model, for each plot we must consider a grouping with respect to two covariates.
As this data set is larger than that for the hail model, we increase the number of groups,
but only for the covariate shown on the x-axis of each plot. Again, this number of groups
provides a compromise between the smoothness of the empirical logit plots, and any re-
lationships being visible.
Consider Figure 30, we see that the plots showing the interactions of Cijt and Dijt, Dijt

and Zijt and Dijt and Rijt show some cross over between groups. Thus we investigate
further by looking at surface plots in Figures 31, 32 and 33 for the covariates Cijt and
Dijt, Dijt and Zijt and Dijt and Rijt. As in the hail model EDA we see that the shapes
of the GAM tensor and empirical logit surfaces are in agreement, but not planes, thus
suggesting possible interaction effects between these covariates.
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Figure 31. Thunderstorm Data: Interaction effects between the covariates log(Cijt) and Dijt and the
response Sijt using a GAM tensor product surface (above) and the empirical logits (below)
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Figure 32. Thunderstorm Data: Interaction effects between the covariates Dijt and Zijt and the
response Sijt using a GAM tensor product surface (above) and the empirical logits (below).
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Figure 33. Thunderstorm Data: Interaction effects between the covariates Dijt and Rijt and the
response Sijt using a GAM tensor product surface (above) and the empirical logits (below).
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5.4 Fitting of Models on Grouped Data For The Thunderstorm
Model Case

We now investigate several proposed models for grouped data in the thunderstorm model
case. Each of the 5 covariates were grouped into 10 levels reducing the thunderstorm data
from 55,002,099 to 100,000 (105 = 100,000) data points. Thus, Cijt, Dijt, Oij, Zijt and
Rijt now correspond to Cm, Dm, Om, Zm and Rm respectively, for m = 1, ..., 100000.

5.4.1 Univariate Binomial Models

For each covariate we consider a univariate binary regression: a logistic model with a
cubic effect for the log transform of Cm,

MS
logC3 : logit(pm) = β0 +β1poly(log(Cm), 3)1+β2poly(log(Cm), 3)2+β3poly(log(Cm), 3)3,

(5.4.1)
a logistic model with a cubic effect for the log transform of Dm,

MS
D5 : logit(pm) = β0 + β1poly(Dm, 5)1 + β2poly(Dm, 5)2 + β3poly(Dm, 5)3

+ β4poly(Dm, 5)4 + β5poly(Dm, 5)5, (5.4.2)

a logistic model with a quadratic effect for the log transform of Om,

MS
logO3 : logit(pm) = β0+β1poly(log(Om), 3)1+β2poly(log(Om), 3)2+β3poly(log(Om), 3)3,

(5.4.3)
a logistic model with a quadratic effect for Zm,

MS
Z2 : logit(pm) = β0 + β1poly(Zm, 2)1 + β2poly(Zm, 2)2, (5.4.4)

and a logistic model with a quadratic effect for Rm,

MS
R4logit(pm) = β0 +β1poly(Rm, 4)1 +β2poly(Rm, 4)2 +β3poly(Rm, 4)3 +β4poly(Rm, 4)4,

(5.4.5)
for m = 1, ..., 100000, where the βl are the regression coefficients. The summaries for
Models (5.4.1), (5.4.2), (5.4.3), (5.4.4) and (5.4.5) are shown in Table 19. The residual
deviance is much larger than the residual degrees of freedom for each of these models, thus
showing a lack of fit and suggesting we should consider a model with multiple covariates.
The highest order term is significant in all of the univariate models meaning all lower
order terms for each of the covariates must be included. Summaries for the ungrouped
data are shown in the Appendix 7 in Table 19.
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MS
logC3 Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.1785 0.0025 -2078.85 0.0000
log(C)1 383.3814 0.6845 560.12 0.0000
log(C)2 -96.2823 0.6917 -139.19 0.0000
log(C)3 -40.0898 0.5394 -74.32 0.0000

Null deviance: 1600768 on 99318 degrees of freedom
Residual deviance: 753471 on 99315 degrees of freedom

MS
D3 Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.4369 0.0013 -3368.87 0.0000
D1 -92.5459 0.5465 -169.35 0.0000
D2 -16.2035 0.4414 -36.71 0.0000
D3 -9.4235 0.3967 -23.75 0.0000
D4 11.1923 0.3892 28.75 0.0000
D5 -1.7759 0.3855 -4.61 0.0000

Null deviance: 1600768 on 99318 degrees of freedom
Residual deviance: 1562159 on 99313 degrees of freedom

MS
logO3 Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.4848 0.0014 -3292.52 0.0000
log(O)1 121.4215 0.4482 270.90 0.0000
log(O)2 32.5787 0.4381 74.36 0.0000
log(O)3 -10.1596 0.4189 -24.25 0.0000

Null deviance: 1600768 on 99318 degrees of freedom
Residual deviance: 1491908 on 99315 degrees of freedom

MS
Z2 Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.7939 0.0020 -2400.92 0.0000
Z1 314.1897 0.7463 420.97 0.0000
Z2 -131.7958 0.5480 -240.48 0.0000

Null deviance: 1600768 on 99318 degrees of freedom
Residual deviance: 1281221 on 99316 degrees of freedom

MS
R4 Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.7088 0.0021 -2219.48 0.0000
R1 269.2659 1.1626 231.61 0.0000
R2 -152.8784 1.0657 -143.46 0.0000
R3 -63.6848 0.6290 -101.24 0.0000
R4 5.0942 0.4598 11.08 0.0000

Null deviance: 1600768 on 99318 degrees of freedom
Residual deviance: 1366052 on 99314 degrees of freedom

Table 12. Thunderstorm Data: Summaries of univariate binomial models for each covariate after
transformation.
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5.4.2 Full Models

All highest order terms were significant in the univariate regressions in Section 5.4.1,
therefore no lower order terms could be removed from the model. A binomial regression
was performed on the grouped data using all covariates investigated in the univariate
models of Section 5.4.1 as in the hail model EDA. The following binomial model was fit

MS
fulllogit(pm) = β0 + β1poly(log(Cm), 3) + β2poly(log(Cm), 3)2 + β3poly(log(Cm), 3)3

+ β4poly(Dm, 5)1 + β5poly(Dm, 5)2 + β6poly(Dm, 5)4

+ β7poly(Dm, 5)5 + β8poly(log(Om), 3)1 + β9poly(log(Om), 3)2

+ β10poly(log(Om), 3)3 + β11poly(Zm, 2)1 + β12poly(Zm, 2)2

+ β13poly(Rm, 4)1 + β14poly(Rm, 4)2 + β15poly(Rm, 4)3

+ β16poly(Rm, 4)4 + β17 log(Cm) : Dm + β18Dm : Zm, (5.4.6)

for m = 1, ..., 100000, where βl for l = 1, ..., 18 are the regression coefficients. This was
also compared to the following GAM:

MS
fullGAM logit(pm) = s(log(Cm)) + s(Dm) + s(log(Om)) + s(Zm) + s(Rm)

+ te(log(Cm), log(Dm)) + te(Dm, Zm), (5.4.7)

for m = 1, ..., 100000, where s and te denote the smooths used to fit a GAM using the
package MGCV [36].
As in the hail model case, smaller models for one to four covariates were chosen using
forward selection based on the AIC, defined in Equation (5.2.8) using the software R and
package MASS [30], and are defined in the Appendix 7. The number of trials, number
of successes and number of failures for each group in the above binomial regressions are
shown in Figure 34, where we see most groups have between 0 and 2000 observations,
with a very small number of groups having a larger number of observations, thus we are
satisfied that our chosen grouping has found an acceptable trade off to select number
of groups. The summary output for the logistic model, Model (5.4.6), MS

full, is shown
in Table 13. The residual deviance is much larger than the residual degrees of freedom
indicating possible overdispersion. Thus a beta-binomial model was fit, the summary of
which can be seen in Table 14. Here we see that for the overdispersion parameter, φ, the
ratio of its estimate, 5.766× 10−3, to standard error, 4.363× 10−5, is approximately 130.
Furthermore, looking at the right most histogram in Figure 34, we see that the number of
observations, nm for m = 1, ..., 100000, in most groups ranges between 0 and 2000. Recall
Equation (3.2.41), and in particular the overdispersion factor (1 + (nm − 1)φ). For most
groups (nm−1)×φ is not negligible, suggesting overdisperson is present in the data. The
package aod was used to fit the beta-binomial model, see [19]. The summary output for
Model (5.4.7), MS

fullGAM is shown in Table 15. We see that the ratio of the residual to
null deviance is 0.85 suggesting the model explains some of the variability in the data,
however, log likelihood is somewhat smaller than that of the beta-binomial model, with
a relative difference of approximately 20 percent.

5.4.3 Model Selection and Goodness of Fit

We now have two proposed models for the the thunderstorm model: a GAM and a beta-
binomial logistic model. As in the case of the hail model we want to choose the best
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Figure 34. Thunderstorm Data: The number of trials, number of successes and number of failures for
each group within the grouped data used for the binomial models. The modes for the plots from left to
right are (x,z) = (10,14591), (500,13002), (500,12818).

MS
full

Estimate Std. Error z value Pr(> |z|)
(Intercept) -6.8563 0.0177 -387.22 0.0000

poly(log(C),3)1 316.3599 0.9770 323.81 0.0000
poly(log(C),3)2 -52.6994 0.6895 -76.43 0.0000
poly(log(C),3)3 -36.5564 0.5402 -67.68 0.0000

poly(D,5)1 -278.5434 4.7919 -58.13 0.0000
poly(D,5)2 -8.6570 0.4782 -18.10 0.0000
poly(D,5)3 -10.5874 0.4088 -25.90 0.0000
poly(D,5)4 7.0541 0.3985 17.70 0.0000
poly(D,5)5 -3.2509 0.3940 -8.25 0.0000

poly(log(O),3)1 100.1817 0.4842 206.92 0.0000
poly(log(O),3)2 40.8011 0.4614 88.42 0.0000
poly(log(O),3)3 19.7247 0.4279 46.10 0.0000

poly(Z,2)1 224.0155 1.2404 180.60 0.0000
poly(Z,2)2 -93.9203 0.5614 -167.28 0.0000
poly(R,4)1 305.7326 1.5186 201.32 0.0000
poly(R,4)2 -64.8773 1.0809 -60.02 0.0000
poly(R,4)3 -51.6417 0.6371 -81.06 0.0000
poly(R,4)4 4.1589 0.4690 8.87 0.0000

log(C):D 0.0010 0.0001 12.73 0.0000
D:Z 0.0000 0.0000 42.92 0.0000
D:R 0.0006 0.0000 52.34 0.0000

Null deviance: 1600768 on 99318 degrees of freedom
Residual deviance: 257077 on 99298 degrees of freedom

Table 13. Thunderstorm Data: Summary of the full binomial model for data grouped into 10 levels
for each transformed covariate. The residual deviance is much larger than the residual degrees of freedom
indicating overdispersion.



74 5 EXPLORATORY DATA ANALYSIS

MS
full,betabin

Estimate Std. Error z value Pr(> |z|)
(Intercept) -5.210e+00 8.042e-03 -6.478e+02 0.000e+00

poly(log(C), 3)1 2.970e+02 1.265e+00 2.347e+02 0.000e+00
poly(log(C), 3)2 -5.224e+01 8.763e-01 -5.962e+01 0.000e+00
poly(log(C), 3)3 -3.430e+01 7.736e-01 -4.434e+01 0.000e+00

poly(D, 3)1 -3.929e+01 2.206e+00 -1.781e+01 0.000e+00
poly(D, 3)2 7.737e-01 7.090e-01 1.091e+00 2.752e-01
poly(D, 3)3 -1.150e+01 6.841e-01 -1.682e+01 0.000e+00

poly(log(O), 2)1 9.247e+01 7.349e-01 1.258e+02 0.000e+00
poly(log(O), 2)2 4.280e+01 7.146e-01 5.990e+01 0.000e+00

poly(Z, 2)1 2.153e+02 1.056e+00 2.039e+02 0.000e+00
poly(Z, 2)2 -8.171e+01 8.668e-01 -9.427e+01 0.000e+00
poly(R, 4)1 3.333e+02 1.804e+00 1.847e+02 0.000e+00
poly(R, 4)2 -5.845e+01 1.651e+00 -3.539e+01 0.000e+00
poly(R, 4)3 -5.087e+01 1.065e+00 -4.779e+01 0.000e+00
poly(R, 4)4 6.068e+00 7.934e-01 7.648e+00 2.043e-14

log(C):D -4.082e-04 1.009e-04 -4.045e+00 5.224e-05
D:Z 4.009e-06 2.000e-13 2.004e+07 0.000e+00

Overdispersion coefficients:
Estimate Std. Error z value Pr(> |z|)

phi.(Intercept) 5.766e-03 4.363e-05 1.322e+02 0e+00
Log-likelihood statistics:

Log-lik nbpar df res. Deviance AIC
-2.234e+05 18 99301 2.108e+05 4.468e+05

Table 14. Thunderstorm Data: Summary of the full beta-binomial model for data grouped into 10
levels for each transformed covariate.

MS
full,GAM

Estimate Std. Error z value Pr(> |z|)
(Intercept) -5.145610 0.002509 -2051 <2e-16

edf Ref.df F p-value
s(log(C)) 6.966 6.972 23498.9 <2e-16

s(D) 6.098 6.161 478.4 <2e-16
s(log(O)) 6.924 6.997 98668.7 <2e-16

s(Z) 6.957 6.965 8061.7 <2e-16
s(R) 6.979 7.000 309746.7 <2e-16

te(D,Z) 52.198 53.000 15654.8 <2e-16
te(log(C),D) 50.435 53.000 5132.3 <2e-16

residual deviance
null deviance

= 0.85
Log Likelihood: -280382.9 (df=137.5574)

Table 15. Thunderstorm Data: Summary of the full GAM for data grouped into 10 levels for each
transformed covariate.
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model weighing between fitting the data well, simplicity, computational speed and ease
of application in the setting of a company. In Figure 35 we see plots of the Pearson
residuals, fitted values against empirical estimates and the fitted values of the GAM
and beta-binomial models plotted against each other. The GLM residuals show no large
outliers or strong pattern or relationship. The large residuals from the GAM fit were
investigated more closely, and all were found to have very small group sizes. Most fitted
values cluster around the diagonal line when plotted against the empirical estimates, and
similarly the GAM and beta-binomial fitted values cluster around the diagonal line when
plotted against each other. Thus both Models (5.4.6) and (5.4.7), MS

full and MS
fullGAM , can

be considered as potential models for the thunderstorm data. Since this thesis has been
written in collaboration with a company with the goal that the hail and thunderstorm
models can be applied to business problems in the future, we take particular note of the
ease of application criterion. The team with which we collaborated for this thesis are
familiar with the use of GAMs in modelling and coding, and a model of this type can be
implemented correctly into operational code with greater ease. Additionally the package
MGCV [36], which was used for all coding involving GAMs in this thesis, has thorough
function documentation, which may prove very helpful for the case that the code used
for this thesis is used or updated for future applications or projects. Whilst the beta
binomial logistic model has a log likelihood somewhat larger than the GAM model with a
relative difference between the two log likelihoods of approximately 20 percent, we place
more importance on the time it would take for our industry partners to become familiar
with beta binomial models and the software packages needed to apply these models to
new data sets. Thus we select the GAM as our final model.
Finally, we verify our results with those of [28] by comparing look up table plots. In
Figures 36, 37 and 38 we consider the covariates C and R whilst holding D, O and Z
constant at their 5th, 50th and 95th percentile values to plot look up tables for Models
5.4.6 and 5.4.7. As for the hail model, we see that both the above plots and those from
plots (a) and (b) of Figure 39 have the same general shape.
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Figure 35. Thunderstorm Data: Plots of the fitted values vs empirical estimates and fitted values vs
the Pearson residuals for Models 5.4.6 and 5.4.7, MS

full and , MS
fullGAM . The Pearson residuals were

calculated as in [4] and the fitted values calculated using the R function prediction. Additionally the
fitted values for both models have been plotted against each other with the diagonal shown in blue. We
see that the GAM residuals show some very large values. These groups all have very small sample sizes
and extreme covariate values thus we are not concerned about our model fitting our data poorly in this
region of our data.
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Figure 36. Thunderstorm Data: lookup tables for the probability of S = 1 for values of C and R,
whilst holding O constant at the 10th percentile and D and Z constant at the 10th, 50th and 90th for the
beta-binomial logistic model and the GAM below.
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Figure 37. Thunderstorm Data: lookup tables for the probability of S = 1 for values of C and R,
whilst holding O constant at the 50th percentile and D and Z constant at the 10th, 50th and 90th for the
beta-binomial logistic model above and the GAM below.
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Figure 38. Thunderstorm Data: lookup tables for the probability of S = 1 for values of C and R,
whilst holding O constant at the 90th percentile and D and Z constant at the 10th, 50th and 90th for the
beta-binomial logistic model and the GAM below.
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Figure 39. Thunderstorm Data: This figure shows the lookup table for LI and R whilst holding D, O
and Z constant for the thunderstorm generalised additive and logistic models from [28]. LI is qualitatively
similar to C, and was used because the available data was too coarse to calculate C. Larger values of C
correspond to more negative values of LI.
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6 Conclusion

The aim of this thesis was to develop two models for the probability of a thunderstorm
and severe hail given that there is a thunderstorm. We first covered the meteorological
background of these severe weather phenomena, and why we expected to see a relation-
ship between the covariates and the probability of a thunderstorm or severe hail. We
then discussed the statistical theory for binary regression, which we would be applying
later in this thesis, including the fitting of a generalised linear model, specifically the case
of logistic regression, overdispersion and the fitting of a generalised additive model. The
following chapter detailed the extensive preprocessing applied to the data set used in this
thesis, prepared so as to be ready for exploratory data analysis techniques to be applied.
During the exploratory data analysis both models showed non-linear relationships to the
covariates, consequently, for both models a logistic model was compared to a GAM. In the
case of the thunderstorm model a beta-binomial logistic model was considered, to allow
for overdispersion in the data.
We see from the analysis conducted in Sections 5.1 and 5.2 that the GLM and GAM
approach lead to hail models with very similar results. The log likelihood values from
the two summary outputs have a relative difference of approximately 1 percent, and the
fitted values from the two models agree with each other, see Figure 20. In addition we
see that Figures 21, 22 and 23 are in agreement with Figure 24, suggesting that our hail
models are consistent with those in [28]. Thus we choose to recommend Model (5.2.6) as
our hail model, because a GLM is simpler and faster to calculate than a GAM.
As with the hail model, the analysis conducted in Sections 5.3 and 5.4 showed that the
GAM and beta-binomial logistic model approaches lead to thunderstorm models with
similar results. Whilst the log likelihood of the beta-binomial logistic regression model is
larger than that of the GAM with a relative difference of approximately 20 percent, Figure
35 shows that the fitted values from the two models agree with each other. In addition
we see that Figures 36, 37 and 38 are in agreement with Figure 39, suggesting that our
thunderstorm models are consistent with those in [28]. We also take into account that this
thesis has been written together in partnership with Munich RE, and that it is a major
goal that in the future the work from this thesis will be applied by the meteorologists
with whom we worked. The team with which we collaborated for this work are familiar
with the use of GAMs, along with the way in which these models can be applied to new
data sets using the software packages discussed in this thesis. The simplicity of choosing
a model type with which the industry partners of this thesis have experience applying
provides the greatest benefit as it will dramatically aid the application of the results to
current projects. Thus we choose to recommend Model (5.4.7) as our thunderstorm model.



82 7 APPENDIX

7 Appendix

Additional plots for the selection of the thunderstorm cutoff value have been included,
along with additional model fitting analysis.

7.1 Additional Thunderstorm Cutoff Plots

This section contains the two plots which were combined to make Figure 9, which was
used to choose the CAPE cutoff value for the thunderstorm model.
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Figure 40. The number of thunderstorm cases remaining when all data points with values for CAPE
(Cijt) and relative humidity (Rijt) less than the cutoff values which are shown on the x and y axes are
excluded. The contour lines show the fractions remaining (0.95, 0.925, 0.90 and 0.875)

Figure 41. The factor by which the ratio of thunderstorm successes to failures increases when all data
points with values for CAPE (Cijt) and relative humidity (Cijt) less than the cutoff values which are
shown on the x and y axes are excluded.
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7.2 Additional Smaller Models for One to Four Covariates for
the Hail Model

Here additional fits for the hail model are shown. The smaller models for the hail data
are defined below: the binomial model for one covariate, C,

MH
lnC2 : logit(pi) = β0 + β1 ln(Ci) + β2(ln(Ci))

2, (7.2.1)

the binomial model for two covariates, C and D,

MH
lnCD2 : logit(pi) = β0 + β1 ln(Ci) + β2(ln(Ci))

2 + β3 ln(Di) + β4(ln(Di))
2, (7.2.2)

the binomial model for three covariates, C, D and O,

MH
lnCDO2 : logit(pi) =β0 + β1 ln(Ci) + β2(ln(Ci))

2 + β3 ln(Di) + β4(ln(Di))
2+

β5 ln(Oi) + β6(ln(Oi))
2, (7.2.3)

and the binomial model for four covariates, C, D, O and Z,

MH
lnCDO2,Z3 : logit(pi) =β0 + β1 ln(Ci) + β2(ln(Ci))

2 + β3 ln(Di) + β4(ln(Di))
2+

β5 ln(Oi) + β6(ln(Oi))
2 + β7Zi + β8Z

2
i + β9Z

3
i , (7.2.4)

where βi are the regression coefficients. The summary outputs for Models (7.2.1), (7.2.2),
(7.2.3) and (7.2.4) are shown in Table 16. Additionally the summary output for univariate
binary logistic regressions of the ungrouped data are shown in Table 17.
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MH
lnC2

Estimate Std. Error z value Pr(> |z|)
(Intercept) -6.0033 0.0264 -226.97 0.0000

ln(C)1 37.8838 1.3765 27.52 0.0000
ln(C)2 -4.1683 1.4100 -2.96 0.0031

Null deviance: 4930.8 on 3068 degrees of freedom
Residual deviance: 3890.3 on 3066 degrees of freedom

MH
lnCD2

Estimate Std. Error z value Pr(> |z|)
(Intercept) -6.1430 0.0292 -210.24 0.0000

ln(C)1 39.9216 1.3804 28.92 0.0000
ln(C)2 -4.9004 1.4121 -3.47 0.0005
ln(D)1 31.2359 1.5235 20.50 0.0000
ln(D)2 -4.7732 1.3456 -3.55 0.0004

Null deviance: 4930.8 on 3068 degrees of freedom
Residual deviance: 3326.1 on 3064 degrees of freedom

MH
lnCDO2

Estimate Std. Error z value Pr(> |z|)
(Intercept) -6.2112 0.0305 -203.60 0.0000

ln(C)1 39.2703 1.3803 28.45 0.0000
ln(C)2 -4.7564 1.4125 -3.37 0.0008
ln(D)1 30.8308 1.5283 20.17 0.0000
ln(D)2 -4.6605 1.3457 -3.46 0.0005
ln(O)1 -14.7472 1.4132 -10.44 0.0000
ln(O)2 -18.5136 1.2957 -14.29 0.0000

Null deviance: 4930.8 on 3068 degrees of freedom
Residual deviance: 3030.1 on 3062 degrees of freedom

MH
lnCDO2,Z3

Estimate Std. Error z value Pr(> |z|)
(Intercept) -6.2391 0.0313 -199.34 0.0000

ln(C)1 38.9610 1.4965 26.03 0.0000
ln(C)2 -4.5687 1.4198 -3.22 0.0013
ln(D)1 30.7938 1.5473 19.90 0.0000
ln(D)2 -4.4355 1.3472 -3.29 0.0010
ln(O)1 -13.8458 1.6189 -8.55 0.0000
ln(O)2 -19.5445 1.3538 -14.44 0.0000

Z1 4.4597 1.8981 2.35 0.0188
Z2 -4.1568 1.3625 -3.05 0.0023
Z3 10.8704 1.2258 8.87 0.0000

Null deviance: 4930.8 on 3068 degrees of freedom
Residual deviance: 2945.4 on 3060 degrees of freedom

Table 16. Hail Data: Summaries of the binomial models for one through to four covariates for data
grouped into 5 levels for each transformed covariate. The covariates were chosen using step-wise regres-
sion.
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MH
lnC2 Estimate Std. Error z value Pr(> |z|)

(Intercept) -6.0198 0.0267 -225.46 0.0000
ln(C)1 582.5054 22.8438 25.50 0.0000
ln(C)2 41.7480 16.7434 2.49 0.0127

Null deviance: 30194 on 715817 degrees of freedom
Residual deviance: 29036 on 715815 degrees of freedom

MH
lnD2 Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.8999 0.0250 -235.62 0.0000
ln(D)1 483.0693 32.7193 14.76 0.0000
ln(D)2 -15.1913 31.3023 -0.49 0.6275

Null deviance: 30194 on 715817 degrees of freedom
Residual deviance: 29712 on 715815 degrees of freedom

MH
lnO2 Estimate Std. Error z value Pr(> |z|)

(Intercept) -6.2053 0.0481 -129.14 0.0000
ln(O)1 1472.8223 154.7045 9.52 0.0000
ln(O)2 -1333.6531 106.9105 -12.47 0.0000

Null deviance: 30194 on 715817 degrees of freedom
Residual deviance: 29744 on 715815 degrees of freedom

MH
Z3 Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.9739 0.0309 -193.44 0.0000
Z1 657.5119 55.2061 11.91 0.0000
Z2 -255.1010 71.6961 -3.56 0.0004
Z3 198.7689 40.9344 4.86 0.0000

Null deviance: 30194 on 715817 degrees of freedom
Residual deviance: 29565 on 715814 degrees of freedom

MH
R Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.8078 0.0220 -263.76 0.0000
R -236.9935 17.6622 -13.42 0.0000

Null deviance: 30194 on 715817 degrees of freedom
Residual deviance: 30015 on 715816 degrees of freedom

Table 17. Hail Data: Summaries of univariate logitstic models for the ungrouped data for each variable
after transformation, where ln denotes the log transformation. We see that the coefficient for the quadratic
effect of D is not significant, which is highlighted in bold.
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7.3 Additional Smaller Models for One to Four Covariates for
the Thunderstorm Model

Here additional fits for the thunderstorm model are shown. The smaller models for the
thunderstorm model are defined below: the binomial model for one covariate, C,

MS
lnC3 : logit(pi) = β0 + β1 ln(Ci) + β2(ln(Ci))

2 + β3(ln(Ci))
3, (7.3.1)

the binomial model for two covariates, C and D,

MS
lnC3,R4 : logit(pi) = β0+β1 ln(Ci)+β2(ln(Ci))

2+β3(ln(Ci))
3+β4Ri+β5R

2
i +β6R

3
i +β7R

4
i ,

(7.3.2)
the binomial model for three covariates, C, D and O,

MS
lnC3,R4,Z2 : logit(pi) =β0 + β1 ln(Ci) + β2(ln(Ci))

2 + β3(ln(Ci))
3 + β4Ri + β5R

2
i+

β6R
3
i + β7R

4
i + β8Zi + β9Z

2
i + β10Z

3 + β11Z
4, (7.3.3)

and the binomial model for four covariates, C, D, O and Z,

MS
lnC3,R4,Z2,lnO2 : logit(pi) =β0 + β1 ln(Ci) + β2(ln(Ci))

2 + β3(ln(Ci))
3 + β4Ri + β5R

2
i+

β6R
3
i + β7R

4
i + β8Zi + β9Z

2
i + β10Z

3 + β11Z
4

+ β12 ln(Oi) + β13(ln(Oi))
2 + β14(ln(Oi))

3, (7.3.4)

where βi are the regression coefficients. The summary outputs for Models (7.3.1), (7.3.2),
(7.3.3) and (7.3.4) are shown in Table 18. Additionally the summary output for univariate
binary logistic regressions of the ungrouped data are shown in Table 19.
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MS
lnC3

Estimate Std. Error z value Pr(> |z|)
(Intercept) -5.1785 0.0025 -2078.85 0.0000

ln(C)1 383.3814 0.6845 560.12 0.0000
ln(C)2 -96.2823 0.6917 -139.19 0.0000
ln(C)3 -40.0898 0.5394 -74.32 0.0000

Null deviance: 1600768 on 99318 degrees of freedom
Residual deviance: 753471 on 99315 degrees of freedom

MS
lnC3,R4

Estimate Std. Error z value Pr(> |z|)
(Intercept) -5.6689 0.0032 -1774.85 0.0000

ln(C)1 406.3911 0.6868 591.68 0.0000
ln(C)2 -69.3715 0.6866 -101.03 0.0000
ln(C)3 -45.9254 0.5393 -85.16 0.0000

R1 411.1570 1.1879 346.13 0.0000
R2 -152.6116 0.9637 -158.36 0.0000

Null deviance: 1600768 on 99318 degrees of freedom
Residual deviance: 449317 on 99313 degrees of freedom

MS
lnC3,R4,Z2

Estimate Std. Error z value Pr(> |z|)
(Intercept) -5.8217 0.0033 -1742.22 0.0000

ln(C)1 354.6892 0.7003 506.47 0.0000
ln(C)2 -51.8639 0.6869 -75.51 0.0000
ln(C)3 -41.7084 0.5387 -77.43 0.0000

R1 419.2269 1.1777 355.98 0.0000
R2 -130.1974 0.9573 -136.01 0.0000
Z1 207.1160 0.7618 271.88 0.0000
Z2 -108.1027 0.5510 -196.18 0.0000

Null deviance: 1600768 on 99318 degrees of freedom
Residual deviance: 342900 on 99311 degrees of freedom

MS
lnC3,R4,Z2,lnO2

Estimate Std. Error z value Pr(> |z|)
(Intercept) -5.9272 0.0034 -1721.13 0.0000

ln(C)1 324.6230 0.7087 458.07 0.0000
ln(C)2 -52.3752 0.6868 -76.26 0.0000
ln(C)3 -38.3078 0.5392 -71.04 0.0000

R1 435.0256 1.1963 363.65 0.0000
R2 -129.2099 0.9665 -133.68 0.0000
Z1 263.4182 0.8103 325.09 0.0000
Z2 -95.6833 0.5512 -173.59 0.0000

ln(O)1 100.8414 0.4736 212.91 0.0000
ln(O)2 48.0208 0.4374 109.78 0.0000

Null deviance: 1600768 on 99318 degrees of freedom
Residual deviance: 271251 on 99309 degrees of freedom

Table 18. Thunderstorm Data: Summaries of the binomial models for one through to four covariates
for data grouped into 5 levels for each transformed covariate.
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MS
lnC3 Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.1822 0.0025 -2099.17 0.0000
ln(C)1 8928.0792 16.3876 544.81 0.0000
ln(C)2 -1263.8584 14.2384 -88.76 0.0000
ln(C)3 -1382.6578 10.2701 -134.63 0.0000

Null deviance: 6909968 on 52693121 degrees of freedom
Residual deviance: 6044957 on 52693118 degrees of freedom

MS
D5 Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.4559 0.0014 -3165.19 0.0000
D1 -2644.8376 17.5260 -150.91 0.0000
D2 -1801.3218 24.3006 -74.13 0.0000
D3 -1019.1025 19.5650 -52.09 0.0000

Null deviance: 6909968 on 52693121 degrees of freedom
Residual deviance: 6867755 on 52693118 degrees of freedom

MS
lnO2 Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.4832 0.0014 -3295.81 0.0000
ln(O)1 2215.1431 11.8632 186.72 0.0000
ln(O)2 2006.4976 9.7985 204.78 0.0000

Null deviance: 6909968 on 52693121 degrees of freedom
Residual deviance: 6802569 on 52693119 degrees of freedom

MS
Z2 Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.8419 0.0022 -2220.95 0.0000
Z1 8116.5961 20.5560 394.85 0.0000
Z2 -3075.2982 14.3971 -213.61 0.0000

Null deviance: 6909968 on 52693121 degrees of freedom
Residual deviance: 6583958 on 52693119 degrees of freedom

MS
R2 Estimate Std. Error z value Pr(> |z|)

(Intercept) -4.7776 0.0020 -2355.51 0.0000
R1 7034.6489 20.0688 350.53 0.0000
R2 -5767.2379 18.7481 -307.62 0.0000

Null deviance: 6909968 on 52693121 degrees of freedom
Residual deviance: 6667705 on 52693119 degrees of freedom

Table 19. Thunderstorm Data: Summaries of univariate logitstic models for each covariate after
transformation, where ln denotes the log transformation.
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