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Abstract

Synaptic changes underlying learning and memory are believed to be implemented
by synaptic plasticity based on the patterns of neuronal activity. While many studies
have focused on synaptic plasticity at excitatory synapses, fewer have investigated
synaptic plasticity at inhibitory synapses.

In my dissertation, I investigate the functional role of long-term plasticity at in-
hibitory synapses and the interaction with plasticity at excitatory synapses. I use
computational and mathematical approaches to gain a mechanistic understanding
of how plasticity shapes the connectivity and neuronal activity structure in feed-
forward and recurrent networks. My work reveals that a novel form of inhibitory
plasticity, which depends nonlinear on the postsynaptic firing rate, is a sufficient
mechanism to homeostatically stabilize firing rates and excitatory weight dynamics,
while simultaneously enabling the learning of new representations. Furthermore,
I suggest together with my co-author Auguste Schulz that inhibitory plasticity is
the underlying mechanism regulating neuronal responses to familiar versus novel
stimuli. Together with my co-author Yue Kris Wu, I summarize the recent lit-
erature on the role of inhibitory plasticity and outline future directions and open
questions. Based on experimental findings by our collaborators from the laboratory
of Prof. Dr. Robert Froemke, I show how the interaction of homosynaptic and het-
erosynaptic plasticity at excitatory and inhibitory synapses can lead to a set-point
for cortical excitatory-inhibitory balance. Finally, I summarize together with my
co-author Sebastian Onasch the current literature on the formation of certain re-
current structures, i.e. assemblies, based on excitatory synaptic plasticity and I show
as a contributing author with Dr. Lisandro Montangie how such assemblies can
emerge spontaneously without structured external input. Taken together, I extend
the existing work on the functional role of excitatory and, specifically, inhibitory
synaptic plasticity in neuronal circuits.
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Zusammenfassung

Es wird allgemein angenommen, dass synaptische Plastizität, also die Änderung
der Stärke von synaptischen Verbindungen auf Basis der Aktivität des presynaptis-
chen und des postsynaptischen Neurons, der unterliegende Mechanisms für Lernen
und das Formen von Erinnerungen ist. Bisher haben sich die meisten Studien auf
synaptische Plastizität an exitatorischen Synapses fokussiert.

In meiner Dissertation untersuche ich die funktionellen Eigenschaften von synap-
tischer Plastizität an exitatorischen und besonders inhibitorischen Synapsen. Ich
verwende Computersimulationen und mathematische Methoden um ein mecha-
nistisches Verständnis davon zu bekommen, wie Plastizität neuronale Verbindun-
gen und Aktivitätsmuster in verschiedenen Netzwerkstrukturen beeinflusst. Meine
Arbeit zeigt, dass eine neue Form der inhibitorischen Plastizität ausreichend ist um
neuronale Aktivität und exitatorische Plastizität zu stabilisieren, und gleichzeitig
das Erlernen von neuen Repräsentationen erlaubt. Weiters schlage ich mit meiner
Co-Autorin, Auguste Schulz, vor, dass inhibitorische Plastizität der Mechanis-
mus ist, der die neuronalen Aktivitätsmuster zu "erwarteten" und "unerwarteten"
Stimuli kontrolliert. Zusammen mit meinem Co-Autor Yue Kris Wu fasse ich
die aktuelle Literatur zur Rolle der inhibitorischen Plastizität zusammen und gebe
einen Überblick über zukünftige Forschungsfragen. Ich zeige, basierend auf den
experimentellen Studien von unserem Kollaborateur, Prof. Dr. Robert Froemke,
dass homosynaptische und heterosynaptische Plastizität zusammen einen sogenan-
nten "Set-Point" an exitatorischer und inhibitorischer Balance erreichen. Zusät-
zlich fasse ich mit meinem Co-Autor Sebastian Onasch die derzeitige Literatur
zur Entstehung von bestimmten neuronalen Verbindungen, sogenannten "Assem-
blies", zusammen und ich zeige als beitragender Autor mit Dr. Lisandro Montangie
wie Assembly-Strukturen spontan aus unstrukturiertem externen Input entstehen
können.
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1 Introduction

In the field of neuroscience, the underlying hypothesis is that neurons encode
information in their activity patterns. High activity, or firing rates, of neurons
in response to a sensory stimulus is interpreted as a representation of this stimulus
(Kriegeskorte & Diedrichsen, 2019). The activity of a neuron is determined by
the relative amount of excitatory and inhibitory inputs it receives. Changes in the
strength of either excitatory or inhibitory synaptic connections can lead to changes
in neuronal activity and, therefore, also to changes in stimulus representation. The
mechanism based on which synaptic strength is modified is called synaptic plas-
ticity and depends on the activity of the two neurons the synapse is connecting.
Hence, a cycle of interaction emerges, where neuronal activity is affected if synap-
tic connection strength changes, which follows from modifications via synaptic
plasticity which, to close the circle, depends on neuronal activity (Fig. 1.1). Many
experimental and theoretical studies have investigated certain aspects of this circu-
lar interaction between activity and connectivity. In my dissertation, I contribute
to a further understanding of how activity and connectivity influence each other
via the process of synaptic plasticity, with a specific focus on the role of synaptic
plasticity at inhibitory synapses.

Neuronal activity as a representation of sensory stimulus
features

Many decades of research have led to the conclusion that neuronal activity encodes
information about the environment. A prominent example is the study by Hubel
& Wiesel, 1962 in which the authors show that neurons in the cat visual cortex
strongly respond to a visual stimulus consisting of a bar with a certain orientation.
Following this pioneering work, researchers have found that neurons in many brain
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1 Introduction

Figure 1.1: Activity - connectivity cycle. Activity of excitatory neurons (blue triangles)
and inhibitory neurons (red circles) follows from the connectivity among those neurons,
while activity leads to a change in connectivity via the mechanisms of excitatory and in-
hibitory synaptic plasticity.

regions and different animal models are reliably activated when a specific stimulus is
presented or a specific condition is met. For example neurons in the somatosensory
cortex in mice respond to whisker deflection (reviewed e.g. in Maravall & Dia-
mond, 2014), neurons in the auditory cortex respond to auditory stimuli (reviewed
e.g. in Shamma & Fritz, 2014), space is represented via place cells in Hippocampus
(O’Keefe et al., 1971; O’Keefe, 1976) and grid cells in the entorhinal cortex (Fyhn
et al., 2004; Hafting et al., 2005), and many more. While much evidence exists that
neurons are selectively highly responsive (or ‘tuned’) to specific stimulus features,
it has also been suggested that for neuronal coding also exact spike timings, inter-
spike intervals, and correlations matter (Insanally et al., 2019; Panzeri et al., 2022).

An important concept that determines the activity of a neuron and, therefore, to
which stimulus feature the neuron is tuned, is the balance of excitatory and in-
hibitory inputs (E/I balance) onto the neuron. E/I balance can be broadly defined
as the proportionality of total excitatory and inhibitory inputs (Froemke, 2015).

12



Experimental and theoretical work has found different forms of E/I balance, de-
pendent on its spatial and temporal properties (Hennequin et al., 2017). If exci-
tatory and inhibitory inputs are co-tuned, i.e. E/I balance exists across stimulus
space, the balance is termed ‘detailed’ (Dorrn et al., 2010; Froemke et al., 2007; Wehr
& Zador, 2003), and ‘global’ if excitatory and inhibitory inputs are not co-tuned
(Brunel, 2000; van Vreeswijk & Sompolinsky, 1996). In addition, if excitatory and
inhibitory inputs are balanced on short timescales (milliseconds), the E/I balance is
termed ‘tight’ (Okun & Lampl, 2008), and ‘loose’ otherwise (Denève & Machens,
2016). Tight and detailed balance, as found experimentally (Bhatia et al., 2019; Rup-
precht & Friedrich, 2018), is called ‘precise’ E/I balance. Disruption or mismatch
of E/I balance has been identified as underlying neurodevelopmental and neurode-
generative disorders in the brain, like autism, schizophrenia, and epilepsy (Lopatina
et al., 2019).

The neuronal responses to sensory inputs are not fixed but depend on the his-
tory of previous sensory input. A prominent change in neuronal responses on the
timescales of seconds to hours is ‘adaptation’ (Whitmire & Stanley, 2016). Experi-
mental studies find that neuronal responses in many sensory areas are reduced (or
adapted) for repeated (or predictable) stimuli, while novel (or unpredictable) stim-
uli elicit strong neuronal responses (Fairhall, 2014; Homann et al., 2022; Näätänen
et al., 1982; Natan et al., 2015; Weber & Fairhall, 2019). These findings suggest
the dependence of neuronal responses on the predictability of the stimulus. Evi-
dence for the differential response to familiar versus novel stimuli has been found at
the whole-brain-level, where EEG measurements show different responses to a re-
peated and a deviant stimulus (termed mismatch negativity; Ross & Hamm, 2020),
on the level of population of neurons using calcium imaging (Homann et al., 2022),
down to the level of single neurons, where a repeated tone leads to a decrease in
neuronal responses (Natan et al., 2015). In my work, we have studied the emer-
gence of adapted and novelty responses in a recurrent network model (Schulz et al.,
2021) (see Chapter 3.2).
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1 Introduction

Synaptic connectivity shapes neuronal activity

Synaptic connections between neurons determine neuronal activity. Studies prob-
ing the connection patterns between neurons find evidence for structured, nonran-
dom connectivity. With different experimental methods, like electrophysiology,
optogenetic stimulation, or electron microscopy, the connectivity between differ-
ent neurons has been probed. Structures have been found on various spatial scales,
ranging from large-scale connectivity between brain regions to overrepresented
local connectivity motifs (Bassett & Sporns, 2017; Lynn & Bassett, 2019).

A well-studied structure is a neuronal assembly, which I define as a group of
strongly recurrently connected neurons, in contrast to a neuronal ensemble, which
I define as a group of neurons with correlated activity. Although both concepts are
often interpreted as equivalent in the literature, it is important to distinguish them
clearly (as we argue in more depth in Miehl et al., 2022). Nevertheless, it is often
assumed that the correlated activity of the ensemble is determined by strong recur-
rent connectivity (i.e. the assembly). Experimental evidence has accumulated over
the years, showing that ensembles exist upon stimulus presentation (Berkes et al.,
2011; Harris et al., 2003; Miller et al., 2014), during spontaneous activity (Cossart et
al., 2003; MacLean et al., 2005; Mao et al., 2001) and has been suggested to underlie
behavior (Carrillo-Reid et al., 2019; Choi et al., 2011; Jennings et al., 2019; Josselyn
& Frankland, 2018; Liu et al., 2012; Marshel et al., 2019). Experimental work also
shows that connectivity is structured, where specifically bidirectional connections
seem to be over-represented (Campagnola et al., 2022; Guzman et al., 2016; Jouhan-
neau et al., 2015; Song et al., 2005; Turner et al., 2022), but see (Lefort et al., 2009).
Furthermore, neurons are more likely to be connected if they share common input
(Yoshimura et al., 2005), target the same postsynaptic neurons (Brown & Hestrin,
2009), have common neighbors (Perin et al., 2011; Turner et al., 2022), or are sim-
ilarly tuned (Ko et al., 2011; Lee et al., 2016; Rossi et al., 2020; Wertz et al., 2015).
But a clear experimental link between the concept of an assembly and an ensemble
is still missing.

It has been hypothesized that assemblies are the basic unit of cortical cognition
(Buzsáki, 2010; Eichenbaum, 2018; Huyck & Passmore, 2013; Yuste, 2015). As-
semblies have several advantages over the neuron-centric view, where single neu-
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rons code for specific features. First, assemblies are more robust, allowing single
neurons to malfunction. Second, due to the strong recurrence also weaker stimuli
can lead to a strong response. Third, assemblies allow for pattern completion, where
an incomplete pattern can activate the whole representation. Fourth, the assembly
neurons can stay active after the stimulus is removed. Some computational studies
have investigated the power of assemblies as the basis for any computation. This
is sometimes referred to as ‘assembly calculus’ (Papadimitriou & Friederici, 2022;
Papadimitriou et al., 2020), where the formation of assemblies and connections be-
tween assemblies are mathematically abstracted in basic operations.

If assemblies are the basic unit of computation, they need to be learned. This could
be done in two ways: First, assemblies form during early development, and these
structures are later used by forming associations between them (Holtmaat & Ca-
roni, 2016). In support of this view, evidence exists that cells stemming from the
same progenitor display increased reciprocal connectivity (Tarusawa et al., 2016;
Yu et al., 2009). Also, the formation of assemblies based on structured ‘spontaneous
activity’, as evident in the early developmental stages of an organism (Richter &
Gjorgjieva, 2017), has been suggested. Second, assemblies are learned or modified
during the adult life of an animal, following from the vast experimental literature
finding that synapses are plastic (Abbott & Nelson, 2000). Since both possibilities
are not mutually exclusive, the brain probably has implemented both strategies,
depending on the task and brain region.

Nonrandom connectivity also extends to inhibitory neurons, with experimental
work showing, for example, in the auditory cortex that excitatory and inhibitory
neurons with similar stimulus tuning are strongly connected (Znamenskiy et al.,
2018). In computational studies, this specific inhibitory feedback has been suggested
to support network stability (Wu & Zenke, 2021; Znamenskiy et al., 2018), changes
in neuronal variability (Rost et al., 2018), and decision making (Najafi et al., 2020).

But do experimentally-verified learning mechanisms support the formation of
assemblies? Multiple computational studies have investigated this question. In our
review (Miehl et al., 2022) (see Chapter 3.5), we have identified four basic building
blocks of assembly formation in the modeling literature: Synaptic plasticity, sym-
metry breaking, competition, and stability (Figure 1.2). The two closely related
concepts of symmetry breaking and competition describe how a specific group of
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1 Introduction

neurons is selected as an assembly and how this assembly is clearly separated from
other assemblies. Stability refers to the question of how learned representations
can remain stable over long periods of time. Probably the most important building
block for assembly formation is long-term synaptic plasticity at excitatory-to-
excitatory synapses.

Figure 1.2: The basic building blocks of assembly formation. A. The four key com-
ponents of assembly formation in computational models are: synaptic plasticity, symmetry
breaking, competition, and stability. B. Due to symmetry breaking, a subpopulation of
neurons fires at a high rate and/or with highly correlated activity compared to the remain-
ing neurons. Synaptic plasticity promotes mutual connections within the assembly, while a
competition mechanism decreases the across-assembly weights. The newly formed assem-
bly structure is stable over time. Figure adapted from Miehl et al., 2022.

Excitatory synaptic plasticity

First suggested by Donald Hebb (Hebb, 1949), it is now widely hypothesized
that plasticity at excitatory-to-excitatory synapses, often referred to as excitatory
plasticity, is the underlying mechanism of structure formation (Abbott & Nel-
son, 2000; Brea & Gerstner, 2016; Feldman, 2009; Magee & Grienberger, 2020;
Suvrathan, 2019). Experimental studies have shown that excitatory long-term
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depression (LTD) and long-term potentiation (LTP) can be induced dependent
on the firing rates (Kirkwood et al., 1996) or precise spike-timing of the pre- and
postsynaptic neuron (Bi & Poo, 1998). In computational studies, phenomenologi-
cal descriptions of both rate-based and spike-based synaptic plasticity mechanisms
have been defined (Fig. 1.3; see Methods and mathematical framework). The find-
ing of rate-dependent plasticity has inspired multiple theoretical learning rules, like
Oja’s rule (Oja, 1982), the covariance rule (Sejnowski, 1989), and the Bienenstock-
Cooper-Munro (BCM) rule (Bienenstock et al., 1982). For example in the BCM
rule, rate-dependent synaptic weight change is based on a nonlinear function of
the firing rate of the postsynaptic neuron (Fig. 1.3A; see Methods and mathemat-
ical framework). Here, if the firing rate is above a certain value (the LTD/LTP
threshold) LTP is induced, while if the firing rate is below the LTD/LTP threshold,
LTD is induced.
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Figure 1.3: Rate-based and spiking-timing-dependent excitatory synaptic plastic-
ity. A. Rate-based plasticity curve of excitatory-to-excitatory weights ( ¤𝑤𝐸𝐸 , blue) as a
function of the firing rate of the excitatory postsynaptic neuron a𝐸 . The postsynaptic
LTD/LTP threshold 𝑐𝐸𝑝𝑜𝑠𝑡 is set to 1. Panel adapted from Miehl & Gjorgjieva, 2022. B.
Weight change of the synapse from neuron 𝑗 to neuron 𝑖, Δ𝑤𝑖 𝑗 , via the pairwise STDP
rule as a function of the time difference between post (𝑡𝑖 ) and presynaptic spike (𝑡 𝑗 ) with
long-term potentiation (LTP) parameters 𝐴+ and 𝜏+ and long-term depression (LTD) pa-
rameters 𝐴− and 𝜏− . Panel adapted from Miehl et al., 2022. C. Same as B but for the
minimal triplet STDP rule. LTP is induced using triplets of spikes, where the time differ-
ence between two postsynaptic spikes Δ𝑡2 shapes the LTP window. Panel modified from
Gjorgjieva et al., 2011.

Performing experiments where single pre- and postsynaptic spikes are paired at
different time delays uncovered that spike-timing-dependent LTP is induced if a
postsynaptic spike follows a presynaptic spike within approximately 10 ms, while
spike-timing-dependent LTD is induced if a presynaptic spike follows a postsy-
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1 Introduction

naptic spike within 10-100 ms (Bi & Poo, 1998; Markram et al., 1997). These
observations led modelers to formulate pairwise STDP rules (Gerstner et al., 1996;
Kempter et al., 1999). Here, the time difference between a pre- and postsynaptic
spike pair indicates the direction and strength of synaptic weight change (Fig. 1.3B;
see Methods and mathematical framework). In experiments, the exact shape of
the STDP function depends on multiple aspects, like the position of the synapse
alongside the dendritic tree (Letzkus et al., 2006), the presence of neuromodula-
tors (like acetylcholine, dopamine, and noradrenaline) (Froemke et al., 2013, 2007),
and other factors (Caporale & Dan, 2008). Furthermore, experiments have found
that STDP has a firing-rate dependency (Sjöström et al., 2001). To account for
this aspect, theoretical studies have incorporated STDP rules based on three spikes,
the triplet STDP rule (Gjorgjieva et al., 2011; Pfister & Gerstner, 2006). For the
minimal triplet STDP rule, which describes the experimental findings well (Pfis-
ter & Gerstner, 2006), LTP is induced by triplets of spikes (one presynaptic and
two postsynaptic spikes) where the time difference between the two postsynap-
tic spikes determines the LTP window (Fig. 1.3C; see Methods and mathematical
framework). In my work, we study the formation of assemblies based on the triplet
STDP rule (Montangie et al., 2020) (see Chapter 3.6).

Homeostatic mechanisms

A well-known problem of synaptic plasticity at excitatory synapses is that synap-
tic dynamics are inherently unstable (Miller & MacKay, 1994). An increase in
the excitatory synaptic strength leads to an increase in postsynaptic firing rates,
which in turn leads to an increase in excitatory synaptic strength, leading to an
unstable feedback loop. The instability of excitatory weight dynamics following
from Hebbian plasticity is often termed ‘Hebbian runaway dynamics’ (Turrigiano
& Nelson, 2004). Therefore, additional mechanisms are necessary to counteract
this uncontrolled growth of excitatory synaptic strength. Both, experimental and
theoretical work suggested a multitude of possible homeostatic mechanisms. In
computational studies, a straight-forward way to implement stability of weight
dynamics is to use a normalization mechanism that preserves the total input (or
output) synaptic weight strength (Miller & MacKay, 1994; Oja, 1982), which is
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often linked to the mechanism of synaptic scaling or heterosynaptic plasticity.

Synaptic scaling

One solution to counteract Hebbian runaway dynamics is the phenomenon of
synaptic scaling, a multiplicative up- or down-scaling of the total synaptic strength
as a consequence of prolonged low or high activity levels (Turrigiano, 2008).
In experiments, blocking neuronal activity leads to a homeostatic up-scaling of
synaptic inputs, while high neuronal activity leads to a homeostatic down-scaling
(Turrigiano et al., 1998). Despite the clear advantage of synaptic scaling to stabilize
circuit activity, it has been argued that the timescales of synaptic scaling are too
slow to counteract Hebbian runaway dynamics (Zenke et al., 2013). While synaptic
plasticity can be induced on the timescales of minutes, synaptic scaling usually takes
hours to days (Gainey & Feldman, 2017; Keck et al., 2017). This discrepancy is
sometimes referred to as the ‘temporal paradox’ of integrating synaptic scaling and
long-term plasticity (Zenke & Gerstner, 2017; Zenke et al., 2017).

Heterosynaptic plasticity

An alternative mechanism to counteract Hebbian runaway dynamics is heterosy-
naptic plasticity (Bliss & Lømo, 1973; Chistiakova et al., 2015; Lynch et al., 1977).
Heterosynaptic plasticity describes synaptic plasticity changes at synapses that were
not directly presynaptically stimulated. Computational models have shown that
heterosynaptic plasticity can stabilize synaptic weight dynamics (Chen et al., 2013;
Kirchner & Gjorgjieva, 2021; Volgushev et al., 1994). Stability in these models
follows because heterosynaptic plasticity usually induces weight changes in the op-
posite direction of homosynaptic plasticity, i.e. homosynaptic LTP (LTD) leads to
heterosynaptic LTD (LTP) at nearby synapses, in line with experimental evidence
(Royer & Paré, 2003; White et al., 1990). In my work, we study the role of het-
erosynaptic plasticity at excitatory and inhibitory synapses related the formation of
E/I balance set-points (Field et al., 2020) (see Chapter 3.4).

However, the existing experimental and computational literature does not agree
on how exactly heterosynaptic plasticity might be implemented at the neuronal
level. The different hypotheses can be grouped into five (partially overlapping)
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1 Introduction

categories: (1) Following experiments measuring the paired-pulse ratio (Volgushev
et al., 1997; Volgushev et al., 2000) it is thought that heterosynaptic plasticity de-
pends on the predisposition of the synapse, i.e. strong synapses undergo LTD while
weak synapses undergo LTP (Chen et al., 2013; Volgushev et al., 2016). (2) Based on
experiments in the Hippocampus (Abraham et al., 2001), an alternative hypothesis
argues that presynaptic (spontaneous) activity is critical to induce heterosynaptic
plasticity (Benuskova & Abraham, 2007; Jedlicka et al., 2015). (3) Heterosynaptic
plasticity follows from internal signaling mechanisms which are triggered by in-
duction of homosynaptic plasticity (Oh et al., 2015). (4) Heterosynaptic plasticity
follows from competition for resources (Antunes & Simoes-de-Souza, 2018; Tri-
esch et al., 2018). (5) Alternatively, the synaptic tag-and-capture hypothesis has
been suggested to explain how heterosynaptic plasticity might occur (Okuno et al.,
2012, 2018).

Intrinsic plasticity

Another alternative homeostatic mechanism is intrinsic plasticity, which describes
the adjustment of the intrinsic excitability of single neurons (Debanne et al.,
2019; Desai et al., 1999). For example, intrinsic plasticity has been suggested to be
important for the recovery of firing rates after sensory deprivation (Wu et al., 2020).

Short-term plasticity

Short-term plasticity is defined as a change in synaptic strength on the timescale of
up to 100 milliseconds (Zucker & Regehr, 2002). Input spikes that occur within a
short time window can cause short-term facilitation or depression of the postsynap-
tic potentials (Motanis et al., 2018). These modifications are short-term in the sense
that there are no persistent changes to the synaptic signaling machinery. Since
short-term plasticity changes with stimulus intensity, i.e. higher input frequencies
lead to more short-term depression, is a good candidate to control neuronal firing
rates (Reyes, 2011; Tsodyks et al., 1998).

Metaplasticity

Another homeostatic mechanism, first suggested in computational studies, is ‘meta-
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plasticity’ (Bienenstock et al., 1982; Yger & Gilson, 2015). This mechanism induces
dynamics of the plasticity rule itself, usually by assuming that the threshold be-
tween LTD and LTP is dynamic. This shift in plasticity threshold has later been
confirmed in sensory deprivation studies (Cooper & Bear, 2012; Kirkwood et al.,
1996; Kuo & Dringenberg, 2009; Philpot et al., 2003), or direct stimulation of
input pathways (Abraham, 2008; Huang et al., 1992). A widely-used metaplastic
framework is the Bienenstock-Cooper-Munro (BCM) rule (Bienenstock et al.,
1982; Cooper & Bear, 2012). In the BCM rule, higher (lower) postsynaptic rates
lead to higher (lower) excitatory LTD/LTP thresholds, making it harder to induce
LTP (LTD).

Hard- and soft upper bounds

A common strategy in many computational models is to assume upper bounds
on synaptic weight strength. A ‘hard’ upper bound means that synaptic weights
can not grow above this maximal synaptic strength value. ‘Soft’ upper bounds,
also termed ‘weight-dependent’ plasticity, assume that synaptic weight change is
proportional to the inverse of the strength of the weights (Gütig et al., 2003; Rubin
et al., 2001; van Rossum et al., 2000). Soft bounds have the problem of leading
to unimodal weight distributions, hence counteracting learning of connectivity
structures (Morrison et al., 2007).

Although these different homeostatic mechanisms are usually discussed separately,
evidence exists that they are not mutually exclusive. For example, the concepts of
metaplasticity and heterosynaptic plasticity are highly intertwined (Benuskova &
Jedlicka, 2012; Jedlicka et al., 2015), and possibly also metaplasticity and synaptic
scaling (Keck et al., 2017). Despite recent efforts in computational studies to inte-
grate and study the interaction of Hebbian and various homeostatic mechanisms
(Wu et al., 2020; Zenke et al., 2013), many questions remain unresolved, includ-
ing the problem of timescales, detecting homeostatic plasticity in vivo, the overlap
and distintiveness of cellular and molecular mechanisms underlying homeostasis,
and many more (Fox & Stryker, 2017; Turrigiano, 2017; Yee et al., 2017). One
unresolved question is related to the contribution of inhibition and inhibitory plas-
ticity to homeostasis of firing rate and synaptic weight dynamics. In my work, I
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1 Introduction

have shown that inhibitory plasticity can be a sufficient homeostatic mechanism and
that homeostasis via inhibition can be linked to metaplasticity (Miehl & Gjorgjieva,
2022) (see Chapter 3.1).

Inhibitory synaptic plasticity

Long-term synaptic plasticity is also present at inhibitory-to-excitatory synapses.
Over the past few years, many experimental studies have investigated inhibitory
plasticity in different brain regions and multiple animal models (for reviews, see
Capogna et al., 2021; Chen & Nedivi, 2013; Chiu et al., 2019; Froemke, 2015;
Gandolfi et al., 2020; Kripkee & Froemke, 2017). To induce inhibitory plasticity,
concurrent presynaptic hyperpolarization and postsynaptic depolarization are nec-
essary (Chiu et al., 2018; Mellor, 2018; Song et al., 2022; Udakis et al., 2020; Wang &
Maffei, 2014; Woodin et al., 2003). Experiments have shown that inhibitory plastic-
ity can be induced via high-frequency stimulation of input pathways (Caillard et al.,
1999; Shew et al., 2000) or pairing of presynaptic and postsynaptic spikes (D’amour
& Froemke, 2015; Haas et al., 2006; Holmgren & Zilberter, 2001; Udakis et al.,
2020; Woodin et al., 2003).

pre - I

post - E
Asymmetric anti-HebbianAsymmetric Hebbian Symmetric Hebbian Symmetric anti-Hebbian

 < 0

depression
potentiation

0

> 0

Figure 1.4: Different learning windows of inhibitory spike-timing-dependent plas-
ticity. Inhibitory plasticity can be parameterized into different learning windows as a func-
tion of the timing difference between pre- and postsynaptic spikes Δ𝑡 , leading to either
inhibitory long-term potentiation (Δ𝑤𝐸𝐼 > 0, green) or inhibitory long-term depression
(Δ𝑤𝐸𝐼 < 0, orange): asymmetric Hebbian (Kleberg et al., 2014; Luz & Shamir, 2012), asym-
metric anti-Hebbian (Kleberg et al., 2014), symmetric Hebbian (Schulz et al., 2021; Vogels
et al., 2011), and symmetric anti-Hebbian (Agnes et al., 2020). Figure adapted from Wu
et al., 2022.

Computational studies have implemented both, rate-based inhibitory plasticity
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(Bourjaily & Miller, 2011; Clopath et al., 2016; Miehl & Gjorgjieva, 2022; Pedrosa
& Clopath, 2020; Vogels et al., 2011) or spike-based inhibitory plasticity. Following
from the experimental diversity of inhibitory STDP window shapes (Hennequin
et al., 2017), computational studies have investigated asymmetric Hebbian (Kle-
berg et al., 2014; Luz & Shamir, 2012, 2014), asymmetric anti-Hebbian (Kleberg
et al., 2014), symmetric Hebbian (Vogels et al., 2011), and symmetric anti-Hebbian
(Agnes et al., 2020) shapes (Fig. 1.4).
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Figure 1.5: Inhibitory control of excitation at different scales. A. At the network level
(top), inhibition has a significant effect on network activity (bottom). Excessive inhibition
can silence network activity, and insufficient inhibition can lead to the explosion of net-
work activity, while an appropriate amount of inhibition stabilizes network dynamics and
maintains network activity at a steady level. B. At the single neuron level (top), inhibition
has a significant effect on somatic firing (bottom). Excessive inhibition generates very little
spiking, insufficient inhibition leads to high levels of spiking, while an appropriate amount
of inhibition leads to biologically realistic spiking levels. C. At the dendritic level (top), inhi-
bition influences the local calcium level (bottom). Excessive inhibition leads to an extremely
low calcium level locally on the dendrite, insufficient inhibition leads to extraordinarily high
local calcium level, while an appropriate amount of inhibition leads to an appropriate local
calcium level. Figure adapted from Wu et al., 2022.

As outlined in detail in our review (Wu et al., 2022) (see Chapter 3.3), inhibitory
plasticity has mostly been suggested to control excitation at different spatiotempo-
ral scales, from the whole network level, single cell level, and the level of dendritic
branches (Fig. 1.5). At the network level, inhibition maintains excitatory neurons
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1 Introduction

in a state of neither hyper- nor hypo-excitability (Turrigiano & Nelson, 2004)
(Fig. 1.5A). Hence, inhibitory plasticity operates as a homeostatic mechanism to
control network firing rate levels (Gainey & Feldman, 2017). Various computa-
tional studies have proposed how inhibitory plasticity regulates firing rates at the
single neuron level. They all rely on a negative-feedback mechanism, in which
high postsynaptic excitatory firing rates lead to inhibitory LTP, while low post-
synaptic excitatory firing rates lead to inhibitory LTD (Akil et al., 2021; Kleberg
et al., 2014; Luz & Shamir, 2012; Vogels et al., 2011). Besides regulating firing rates,
inhibitory plasticity has a more nuanced role in controlling the firing patterns of
single neurons (Fig. 1.5B). Inhibitory plasticity can affect spike generation and spik-
ing statistics, e.g. spike regularity and pairwise correlations (Brunel, 2000; Cardin,
2018; Carvalho & Buonomano, 2009). On the smallest scale, the level of inhibi-
tion can control local dendritic calcium levels (Chiu et al., 2013; Hattori et al., 2017;
Inglebert et al., 2020) (Fig. 1.5C). Since, as mentioned above, excitatory plasticity
depends on factors like pre- and postsynaptic firing rates and spike timing, inhi-
bition has been suggested to affect not only the activity of excitatory neurons but
also plasticity at excitatory synapses (Chiu et al., 2019; Hattori et al., 2017; Paulsen &
Moser, 1998; Vogels et al., 2013). While these studies suggest a prominent role of in-
hibition and inhibitory plasticity in controlling excitatory firing rates and synaptic
plasticity, a detailed understanding of the interaction of excitatory and inhibitory
plasticity have been missing.
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2 Methods and mathematical
framework

In my work, I used computational models and mathematical approaches of different
types. In the following I provide an overview of the methods used in my work. The
types of models I used can broadly be split into the type of network, feedforward
or recurrent (Fig. 2.1) and the type of neuron model, spiking or rate-based. While
spiking neuron models are more biologically-plausible approximations of neuron
dynamics, rate-based models allow for a more intuitive mathematical formalism.
The choice of the neuron model also determines which implementation of synaptic
plasticity I chose, either based on the exact timings of the pre- and postsynaptic
spikes or the instantaneous rates of the pre- and postsynaptic neuron.

Homosynaptic
excitatory plasticity

Homosynaptic 
inhibitory plasticity

Heterosynaptic 
inhibitory plasticity

Heterosynaptic
excitatory plasticity

Excitatory neuron

Inhibitory neuron

Excitatory structure (assembly)

Inhibitory structure

Figure 2.1: Two levels of modeling: single neuron and network level. Left: A single
excitatory neuron receives input from excitatory neurons (blue triangles) and inhibitory
neurons (red circles). Stimulation of input pathways can induce (homosynaptic) excitatory
and inhibitory plasticity, while non-stimulated input pathways can undergo heterosynaptic
excitatory and inhibitory plasticity. Right: A recurrently connected network of excitatory
(blue triangles) and inhibitory (red circles) neurons. In the network, strong recurrent con-
nections among a subset of neurons indicates excitatory structures, so called ‘assemblies’
(green triangles) and inhibitory structures (green circles).

25



2 Methods and mathematical framework

Firing rate-based models and their plasticity mechanisms

The following description is a summarized version of the Methods used in Miehl
& Gjorgjieva, 2022, for more details on the exact implementation and parameters
I refer the reader to the article (see Chapter 3.1).

Rate-based neuron models describe how the firing rate of a neuron changes over
time. Here, I consider a feedforward neuron model, meaning that a single exci-
tatory neuron receives input from presynaptic excitatory and inhibitory neurons
(Fig. 2.1; left). The postsynaptic firing rate a𝐸 then changes according to:

𝜏𝐸𝐹𝑅 ¤a
𝐸 = −a𝐸 +


𝑁𝐸∑︁
𝑗=1

𝜌𝐸𝑗𝑤
𝐸𝐸
𝑗 −

𝑁 𝐼∑︁
𝑘=1

a 𝐼
𝑘
𝑤𝐸𝐼
𝑘

+ , (2.1)

where index 𝑗 refers to all presynaptic excitatory neurons and index 𝑘 refers to all
presynaptic inhibitory neurons. The postsynaptic neuron receives input from 𝑁 𝐸

presynaptic excitatory neurons with firing rates 𝜌𝐸𝑗 through synapses with weight
strength 𝑤𝐸𝐸

𝑗 , and 𝑁 𝐼 presynaptic inhibitory neurons with firing rates a 𝐼
𝑘

through
synapses with weight strength 𝑤𝐸𝐼

𝑘
. The bracket []+ denotes a rectification that

sets negative values to zero and 𝜏𝐸
𝐹𝑅

represents the time constant of excitatory firing
rate dynamics.

The firing rate of inhibitory neurons a 𝐼
𝑘

follow similar dynamics:

𝜏 𝐼𝐹𝑅 ¤a
𝐼
𝑘
= −a 𝐼

𝑘
+


𝑁𝐸∑︁
𝑗=1

𝜌𝐸𝑗𝑤
𝐼𝐸
𝑗 + 𝜌𝐼

𝑘

+ . (2.2)

Here, the inhibitory neurons are driven by the same 𝑁 𝐸 presynaptic excitatory
populations with firing rates 𝜌𝐸𝑗 through synapses with weights𝑤 𝐼𝐸

𝑗 and additional
external input with firing rate 𝜌𝐼

𝑘
. The time constant of inhibitory firing rate

dynamics is denoted by 𝜏 𝐼
𝐹𝑅

.

Following from experimental evidence which suggests that excitatory plasticity de-
pends nonlinearly on the postsynaptic firing rate a𝐸 (Cooper & Bear, 2012; Kirk-
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wood et al., 1996; Philpot et al., 2003), I model (homosynaptic) plasticity at E-to-E
synaptic connections 𝑤𝐸𝐸 as (note that for clarity we drop here the index 𝑗 ):

𝜏𝐸𝑤 ¤𝑤𝐸𝐸 = 𝜌𝐸a𝐸
(
a𝐸 − 𝑐𝐸𝑝𝑜𝑠𝑡

)
, (2.3)

where 𝜏𝐸𝑤 is the timescale of excitatory plasticity (Fig. 1.3A). The variable 𝑐𝐸𝑝𝑜𝑠𝑡 is
the postsynaptic excitatory LTD/LTP thresholds, which refers to the postsynaptic
rate at which excitatory plasticity changes sign.

Similarly, the (homosynaptic) inhibitory plasticity can be described as a function of
pre- and postsynaptic firing rates. A classic implementation of plasticity at I-to-E
synapses has a linear dependency on the postsynaptic firing rate a𝐸 (Clopath et al.,
2016; Vogels et al., 2011):

𝜏 𝐼𝑤 ¤𝑤𝐸𝐼 = a 𝐼
(
a𝐸 − 𝑐𝐼𝑝𝑜𝑠𝑡

)
, (2.4)

with timescales of inhibitory plasticity 𝜏 𝐼𝑤 and postsynaptic inhibitory LTD/LTP
threshold 𝑐𝐼𝑝𝑜𝑠𝑡 . In Miehl & Gjorgjieva, 2022, we suggest a novel form of inhibitory
plasticity which, similarly to excitatory plasticity, also depends nonlinearly on the
postsynaptic firing rate a𝐸 :

𝜏 𝐼𝑤 ¤𝑤𝐸𝐼 = a 𝐼a𝐸
(
a𝐸 − 𝑐𝐼𝑝𝑜𝑠𝑡

)
. (2.5)

The advantage of formulating neuronal dynamics and synaptic plasticity change as
a function of firing rates is that it makes the system analytically tractable.

Spiking-based models and their plasticity mechanisms

In contrast to rate-based models, spiking-based models are neuron models which
include a spiking mechanism. In my work, I have used three different types of
conductance-based spiking models: the leaky integrate-and-fire (LIF) neuron
model (Field et al., 2020), the exponential leaky integrate-and fire (EIF) neuron
model (Schulz et al., 2021) and the Poisson neuron model (Montangie et al., 2020).
In the following, I provide a short overview of these spiking neuron models. For
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2 Methods and mathematical framework

more details on the implementation and parameters, I refer the reader to the re-
spective articles (see Chapters 3.2, 3.4 and 3.6).

(Exponential) leaky integrate-and-fire neuron model

In LIF and EIF models, the neuron ‘spikes’ when the membrane potential reaches
a certain threshold, and the membrane potential dynamics is modeled based on the
following equation (following from Litwin-Kumar & Doiron, 2014; Schulz et al.,
2021):

𝐶
𝑑

𝑑𝑡
𝑉 (𝑡) = − 𝑔𝐿 (𝑉 (𝑡) −𝑉rest) − 𝑔𝐸𝐸 (𝑡) (𝑉 (𝑡)

+ 𝑔𝐿Δ𝑇 exp

(
𝑉 (𝑡) −𝑉𝑇

Δ𝑇

)
−𝑉 𝐸

rev) − 𝑔𝐸𝐼 (𝑡) (𝑉 (𝑡) −𝑉 𝐼
rev),

(2.6)

where 𝑉 (𝑡) is the membrane potential of the modeled neuron, 𝐶 the membrane
capacitance, 𝑔𝐿 the membrane conductance, 𝑉rest is the neuron resting potential,
𝑉

𝐸/𝐼
rev is the excitatory, respectively inhibitory, reversal potential, Δ𝑇 is the slope

factor of the exponential rise and 𝑉𝑇 the spiking threshold. The terms 𝑔𝐸𝐸 (𝑡) and
𝑔𝐸𝐼 (𝑡) are the excitatory or inhibitory conductances:

𝑔𝑋𝑌
𝑖 (𝑡) = 𝐹𝑌 (𝑡) ∗

(
𝐽𝑋𝑌
𝑒𝑥𝑡 𝑠

𝑋𝑌
𝑖,𝑒𝑥𝑡 (𝑡) +

∑︁
𝑗

𝐽𝑋𝑌
𝑖 𝑗 𝑠𝑌𝑗 (𝑡)

)
. (2.7)

Here, 𝑋 and 𝑌 either represent an excitatory or inhibitory population
(𝑋,𝑌 ∈ [𝐸, 𝐼 ]). 𝑠𝑌𝑗 (𝑡) is the spike train of neuron 𝑗 in the network and 𝑠𝑋𝑌

𝑖,𝑒𝑥𝑡

denotes the spike train of the external input to neuron 𝑖, and 𝐽𝑋𝑌
𝑖 𝑗 the synaptic

strength from recurrent neurons and 𝐽𝑋𝑌
𝑒𝑥𝑡 the synaptic strength from the input

neurons to the network neurons (instead of the parameter 𝐽 , I sometimes use the
parameter 𝑤 to indicate synaptic strength). The function 𝐹𝑌 (𝑡) describes the
synaptic kernel, which is modeled as a difference of two exponential functions

𝐹𝑌 (𝑡) = exp

−𝑡
𝜏𝑌
decay − exp

−𝑡
𝜏𝑌
rise

𝜏𝑌decay − 𝜏𝑌rise
. (2.8)
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with rise and decay times 𝜏𝑌decay and 𝜏𝑌rise. In Field et al., 2020 I have used a simple
exponential decay for the synaptic kernel.

Above equations hold for both, excitatory and inhibitory neurons. However, usu-
ally only excitatory neurons are modeled as EIF neurons, and inhibitory neurons as
LIF neurons and the parameters between excitatory and inhibitory neurons differ
(see publications Field et al., 2020; Schulz et al., 2021 for details). In LIF neurons,
the term 𝑔𝐿Δ𝑇 exp

(
𝑉 (𝑡 )−𝑉𝑇

Δ𝑇

)
in Eq. 2.6 is not included. The EIF neuron model is

considered to have a more realistic spike generation mechanism compared to the
LIF neuron model (Fourcaud-Trocmé et al., 2003).

Spike-timing-dependent plasticity (STDP)

A prominent implementation of synaptic plasticity in spiking neuron models is
spike-timing-dependent plasticity (STDP). STDP rules describe how synaptic
weights change based on the relative time-difference of the pre- and postsynap-
tic spike (Fig. 1.3B,C). In my articles, I have used two forms of STDP rules: the
pairwise STDP (Field et al., 2020) and the triplet STDP rule (Montangie et al., 2020;
Schulz et al., 2021). In contrast to the pairwise STDP rule, the triplet STDP rule
can capture the experimentally-verified dependency of plasticity on the firing rates
(Gjorgjieva et al., 2011; Pfister & Gerstner, 2006; Sjöström et al., 2001).

In the triplet STDP rule, four spike accumulators, 𝑟1, 𝑟2, 𝑜1, and 𝑜2, increase by one,
once a spike at the presynaptic or the postsynaptic neuron occurs at time 𝑡pre or 𝑡post

and otherwise decrease exponentially depending on their respective time constant
𝜏+, 𝜏𝑥 , 𝜏−, and 𝜏𝑦 (Pfister & Gerstner, 2006; Schulz et al., 2021):

𝑑𝑟1(𝑡)
𝑑𝑡

= −𝑟1(𝑡)
𝜏+

if 𝑡 = 𝑡pre then 𝑟1 → 𝑟1 + 1,

𝑑𝑟2(𝑡)
𝑑𝑡

= −𝑟2(𝑡)
𝜏𝑥

if 𝑡 = 𝑡pre then 𝑟2 → 𝑟2 + 1,

𝑑𝑜1(𝑡)
𝑑𝑡

= −𝑜1(𝑡)
𝜏−

if 𝑡 = 𝑡post then 𝑜1 → 𝑜1 + 1,

𝑑𝑜2(𝑡)
𝑑𝑡

= −𝑜2(𝑡)
𝜏𝑦

if 𝑡 = 𝑡post then 𝑜2 → 𝑜2 + 1.

(2.9)

The weight update is then implemented as
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2 Methods and mathematical framework

Δ𝐽 (𝑡) = −𝑜1(𝑡) [𝐴−
2 +𝐴−

3 𝑟2(𝑡 − 𝜖)] if 𝑡 = 𝑡pre,

Δ𝐽 (𝑡) = 𝑟1(𝑡) [𝐴+
2 +𝐴+

3𝑜2(𝑡 − 𝜖)] if 𝑡 = 𝑡post,
(2.10)

with 𝐴+, 𝐴− corresponds to the LTP or LTD amplitude, and the subscript refers
to the triplet (3) or pairwise term (2). The parameter 𝜖 ensures that the weights
are updated before the spike accumulators are updated. Oftentimes, the ‘minimal’
triplet STDP rule is used, where 𝐴−

3 is set to zero (Fig. 1.3C). To implement the
pairwise STDP rule, both triplet amplitudes 𝐴−

3 and 𝐴+
3 are set to zero (Field et al.,

2020; Gerstner et al., 1996) (Fig. 1.3B). The sign of𝐴−
2 and𝐴+

2 determines the shape
of the STDP window, as shown in Fig. 1.4.

At inhibitory synapses, we used a slightly different implementation of the pairwise
STDP window (Schulz et al., 2021). Here, the STDP window is symmetric and
downshift, which has been first implemented by Vogels et al., 2011 (Fig. 1.4; sym-
metric Hebbian). Here, the weight updated follows

Δ𝐽𝑖 𝑗 (𝑡) = 𝑜1(𝑡) − 2𝑟0𝜏𝑦 if 𝑡 = 𝑡pre

Δ𝐽𝑖 𝑗 (𝑡) = 𝑟1(𝑡) if 𝑡 = 𝑡post,
(2.11)

where 𝑟0 corresponds to the target firing rate of the excitatory neuron.

In Field et al., 2020 we have used a inhibitory STDP window without any down-
shift, i.e. 𝑟0 = 0.

Heterosynaptic plasticity

Heterosynaptic plasticity is defined as synaptic plasticity at synapses which where
not directly activated presynaptically by the plasticity protocol (Fig. 2.1; left). Mul-
tiple alternative models of heterosynaptic plasticity have been suggested (Chen et
al., 2013; Chistiakova et al., 2015; Jedlicka et al., 2015; Triesch et al., 2018; Volgushev
et al., 2016). In my model of excitatory and inhibitory heterosynaptic plasticity, we
implement the mechanism in close correspondence to experimental findings in L5
pyramidal neurons in the mouse primary auditory cortex, for details see Field et al.,
2020 (see Chapter 3.4).

Heterosynaptic potentiation or depression of synapse 𝑗 is modeled based on an in-
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ternal trace𝑇 𝐸/𝐼
𝑗

, which increases for each incoming spike by𝑇 𝐸/𝐼
𝑗

→ 𝑇
𝐸/𝐼
𝑗

+𝑤𝐸/𝐼
𝑗

and otherwise decreased 𝜏
𝐸/𝐼
𝑇

𝑑𝑇
𝐸/𝐼
𝑗

𝑑𝑡
= −𝑇 𝐸/𝐼

𝑗
with time constant 𝜏

𝐸/𝐼
𝑇

. The
weights are then updated based on the mean trace per input channel, follow-
ing: 𝑤𝐸/𝐼

𝑐,𝑚𝑎𝑥 → 𝑤
𝐸/𝐼
𝑐,𝑚𝑎𝑥 − [

𝐸/𝐼
ℎ𝑒𝑡

[𝑇 𝐸/𝐼
𝑐 ]𝑚𝑎𝑥 . Here [ℎ𝑒𝑡 is the learning rate of het-

erosynaptic plasticity, 𝑐 corresponds to the input channel and 𝑚𝑎𝑥 refers to the
strongest input channel. To ensure that heterosynaptic plasticity is only induced
if also homosynaptic plasticity is induced, we used a learning dependent trace
𝑇𝑒𝐿𝑇𝑃 → 𝑇𝑒𝐿𝑇𝑃 + Δ𝑤𝐸

𝑗 which accumulates the excitatory LTP at synapse 𝑗 , and
decreases otherwise 𝜏𝑇𝑒𝐿𝑇𝑃

𝑑𝑇𝑒𝐿𝑇𝑃

𝑑𝑡
= −𝑇𝑒𝐿𝑇𝑃 . When 𝑇𝑒𝐿𝑇𝑃 reaches the threshold

\𝑜𝑛, heterosynaptic plasticity is switched "on", and if𝑇𝑒𝐿𝑇𝑃 falls below the threshold
\𝑜 𝑓 𝑓 , heterosynaptic plasticity is switched "off".

Poisson neuron model and the structural motif framework

Instead of explicitly modeling the membrane potential dynamics as in the LIF or
EIF neuron model, an alternative is the Poisson neuron model. Here, spiking activ-
ity follows an inhomogenious Poisson process, where the instantaneous firing rate
_(𝑡) is the basis of random spike initiation. Considering a network of linear Pois-
son neurons allows to use the analytical approach of Hawkes processes (Hawkes,
1971). This approach allows to decompose STDP rules into contribution of ‘struc-
tural motifs’, which describe how a spike influences the correlation between two
neurons (Jovanović & Rotter, 2016; Montangie et al., 2020; Ravid Tannenbaum &
Burak, 2016; Trousdale et al., 2012). We have used this approach to describe the
contribution of higher-order correlations on weight changes based on the triplet
STDP rule (Montangie et al., 2020). Based on this framework, one can derive the
mean synaptic weight change ⟨ ¤𝑤𝑖 𝑗 ⟩ as a sum of structural motif terms of different
‘order of contribution’ (as we describe in detail in Montangie et al., 2020 and in a
more general way in Miehl et al., 2022, see Chapters 3.5 and 3.6):

⟨ ¤𝑤𝑖 𝑗 ⟩ = ⟨ ¤𝑤𝑖 𝑗 ⟩ (0) + ⟨ ¤𝑤𝑖 𝑗 ⟩ (1) + ⟨ ¤𝑤𝑖 𝑗 ⟩ (2) + ... (2.12)

In this framework, the first term describes the contribution of mean pre- and post-
synaptic firing rates (𝑟𝑖 , 𝑟 𝑗 ) to the mean synaptic weight change:
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2 Methods and mathematical framework

⟨ ¤𝑤𝑖 𝑗 ⟩ (0) = 𝑟𝑖𝑟 𝑗𝑀0, (2.13)

where 𝑀0 is the zero-order motif coefficient, which is defined as the area under
the curve of the plasticity rule (i.e. integral over the STDP window in Fig. 1.3B).
The second term describes the first-order structural motif, how a spike in either
the pre- or postsynaptic neuron affects the mean synaptic weight change

⟨ ¤𝑤𝑖 𝑗 ⟩ (1) = 𝑟 𝑗𝑤𝑖 𝑗𝑀1,0 + 𝑟𝑖𝑤 𝑗𝑖𝑀0,1, (2.14)

where 𝑀1,0 and 𝑀0,1 are calculated based on the shape of the EPSC and the STDP
parameters (see Montangie et al., 2020 for details).
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3 Results

In this dissertation, I investigate the functional roles of synaptic plasticity, with
a specific focus on inhibitory plasticity. In total I have contributed to six peer-
reviewed journal articles. I am the first or co-first author on four of these articles,
where two are original research articles (Miehl & Gjorgjieva, 2022; Schulz et al.,
2021) and two articles are reviews (Miehl et al., 2022; Wu et al., 2022), and I am a
contributing author on two original research articles (Field et al., 2020; Montangie
et al., 2020). In my work, I

1. show how a novel form of inhibitory plasticity, which depends nonlinearly on
the postsynaptic firing rate, is a sufficient mechanism to homeostatically sta-
bilize firing rate and excitatory weight dynamics (Miehl & Gjorgjieva, 2022);

2. show based on my work together with my co-author Auguste Schulz how
inhibitory plasticity can affect the neuronal responses to familiar versus novel
stimuli (Schulz et al., 2021);

3. summarize together with my co-author Yue Kris Wu the literature on how
inhibitory plasticity regulates circuit organization and function (Wu et al.,
2022);

4. show together with our experimental collaborators how the interaction of ho-
mosynaptic and heterosynaptic plasticity at excitatory and inhibitory synapses
can determine a set-point for E/I balance (Field et al., 2020);

5. summarize together with my co-author Sebastian Onasch the state-of-the-
art literature on the formation of assemblies (Miehl et al., 2022);

6. show as a contributing author together with Dr. Lisandro Montangie how
assemblies can spontaneously emerge via the triplet spike-timing-dependent
plasticity rule (Montangie et al., 2020).
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3 Results

In the following, I provide a one-page summary for each of these articles, indicate
my contribution and include the full article in the Appendix. Finally, I will discuss
the relevance, connections and future research directions following from the work
contained in this dissertation.
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3.1 Stability and learning in excitatory synapses by nonlinear inhibitory plasticity

3.1 Stability and learning in excitatory synapses by
nonlinear inhibitory plasticity

In Miehl & Gjorgjieva, 2022, we investigate a novel inhibitory plasticity mecha-
nism leading to stability and flexible learning in excitatory synapses. We find that:

1. A (classically studied) linear inhibitory plasticity mechanism fails to robustly
stabilize synaptic weight dynamics.

2. Our newly proposed nonlinear inhibitory plasticity mechanism can robustly
counteract runaway dynamics of excitatory synaptic weights.

3. We identify two components of robust stabilization of weight dynamics
via inhibitory plasticity: dominant inhibition over excitation, and overlap-
ping excitatory and inhibitory LTD/LTP thresholds. Furthermore, we sug-
gest how the assumption of overlapping excitatory and inhibitory LTD/LTP
thresholds can be relaxed based on a novel dynamic matching mechanism.

4. We show that inhibitory plasticity regulates the network response to input
perturbations, link it to the phenomenon of metaplasticity and to experiments
studying sensory deprivation.

5. We further study how the nonlinear inhibitory plasticity mechanism estab-
lishes E/I balance and leads to a fixed excitatory to inhibitory weight ratio,
similarly as described in experimental results.

6. Finally, we study additional functional consequences of the nonlinear in-
hibitory plasticity mechanism, showing that feedforward receptive fields and
recurrent assembly structures can be gated via a disinhibitory signal.

The work has been completed together with my supervisor Prof. Dr. Julijana
Gjorgjieva. I contributed to each section and figure in the article: conceptualiza-
tion, formal analysis, investigation, methodology, software, visualization, writing
- original draft, writing - review and editing.

The full article was published on 2 December 2022 in PLoS Computational Biology
and is reproduced in Appendix I. Stability and learning in excitatory synapses by nonlin-
ear inhibitory plasticity under the Creative Commons Attribution 4.0 International
License.

35



3 Results

3.2 The generation of cortical novelty responses through
inhibitory plasticity

In Schulz et al. (2021), we investigate how inhibitory plasticity can explain differ-
ences in neuronal responses to familiar or novel stimuli. We find that:

1. In an a recurrent spiking network model, inhibitory plasticity leads to adap-
tation of responses to familiar stimuli, while responses to novel stimuli remain
high.

2. The novelty response amplitude depends on the exact choice of the stimulation
paradigm, in qualitative agreement with experimental findings.

3. Periodicity of the familiar stimuli presentation is not required for the gener-
ation of a novelty response, allowing us to formulate experimentally-testable
predictions.

4. Inhibitory plasticity allows for adaptation on multiple timescales.

5. The timescale of recovery from adaptation depends on the inter-repetition
interval.

6. Stimulus-specific adaptation follows from inhibitory plasticity and tuning of
both excitatory and inhibitory neurons.

7. A disinhibitory mechanism can flexibly amplify novelty responses.

The work has been completed together with my co-author Auguste Schulz,
my supervisor Prof. Dr. Julijana Gjorgjieva and our experimental collaborator
Prof. Dr. Michael J. Berry II. I contributed in equal parts with Auguste Schulz
in each section and figure in the article to: conceptualization, resources, software,
formal analysis, investigation, visualization, methodology, writing - original draft,
writing - review and editing.

The full article was published on 14 October 2021 in eLife and is reproduced in
Appendix II. The generation of cortical novelty responses through inhibitory plasticity under
the Creative Commons Attribution 4.0 International License.
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3.3 Regulation of circuit organization and function through inhibitory synaptic plasticity

3.3 Regulation of circuit organization and function
through inhibitory synaptic plasticity

In Wu et al., 2022, we review the recent literature on the functional role of in-
hibitory plasticity. We:

1. provide an overview of inhibition throughout development and adulthood.

2. show how inhibitory plasticity controls excitation at different spatiotemporal
scales.

3. summarize how inhibition and inhibitory plasticity controls excitatory plas-
ticity.

4. provide evidence that inhibitory plasticity is an important component in the
formation of structured networks and their computation.

5. review recent interneuron-specific plasticity mechanisms and their functional
implications.

6. provide future perspectives and formulate outstanding questions.

The work has been completed together with my co-author Yue Kris Wu and my
supervisor Prof. Dr. Julijana Gjorgjieva. I contributed in equal parts with my co-
author Yue Kris Wu in each section and figure in the article to: conceptualization,
visualization, writing - original draft, writing - review and editing.

The full article was published on 28 October 2022 in Trends in Neuroscience and
is reproduced in Appendix III. Regulation of circuit organization and function through
inhibitory synaptic plasticity under Creative Commons CC-BY License.
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3.4 Heterosynaptic Plasticity Determines the Set Point
for Cortical Excitatory-Inhibitory Balance

In Field et al., 2020, we investigate together with our experimental collaborators
how interacting homosynaptic and heterosynaptic plasticity at excitatory and in-
hibitory synapses determines the set-point of excitatory-inhibitory balance. We
find that:

1. Heterosynaptic plasticity is induced at excitatory and inhibitory synapses in
parallel to homosynaptic plasticity via a paring experiment in layer 5 of mouse
auditory cortex.

2. The strongest excitatory and inhibitory inputs onto layer 5 neurons change
most drastically via heterosynaptic plasticity.

3. Based on a probabilistic and a biophysical computational model, we find that
the experimentally-verified heterosynaptic plasticity mechanism determines
the set-point for excitatory-inhibitory balance.

4. In our model, the relative strength of homosynaptic to heterosynaptic plastic-
ity determines the exact set-point of excitatory-inhibitory balance, suggesting
a different set-point in adult and young mice.

5. Experiments indicate that calcium release from internal stores is necessary for
heterosynaptic plasticity to be induced.

The article is a collaborative work together with experimentalists (Rachel E. Field,
Dr. James A. D’amour, Prof. Dr. Robin Tremblay, Prof. Dr. Bernardo Rudy and
Prof. Dr. Robert C. Froemke). Together with my supervisor Prof. Dr. Julijana
Gjorgjieva, I contributed to the article the computational model (Fig. 3, Suppl.
Fig. S7), and to the writing of the manuscript and the reviewing process.

The full article was published on 3 June 2020 in Neuron and is reproduced in
Appendix IV. Heterosynaptic Plasticity Determines the Set Point for Cortical Excitatory-
Inhibitory Balance under the Creative Commons Attribution - Non Commercial -
No Derivatives 4.0 International (CC BY-NC-ND 4.0) License.
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3.5 Formation and computational implications of assemblies in neural circuits

3.5 Formation and computational implications of
assemblies in neural circuits

In Miehl et al., 2022, we review the recent computational literature on the formation
and functional implications of assemblies. We:

1. identify the four basic building blocks of assembly formation: synaptic plas-
ticity, symmetry breaking, competition, stability.

2. review experimental evidence of ensembles (group of neurons with correlated
activity) and assemblies (group of strong recurrently connected neurons).

3. provide a detailed understanding which types of plasticity rules favor assembly
formation.

4. show why symmetry breaking and competition are key components of as-
sembly formation.

5. discuss the importance of stability of representations.

6. provide an overview of recent ideas on the functional role of assemblies.

The work has been completed together with my co-author Sebastian Onasch,
with contributing author Dr. Dylan Festa and my supervisor Prof. Dr. Julijana
Gjorgjieva. I contributed in equal parts with my co-author Sebastian Onasch in
each section and figure in the article to: conceptualization, visualization, writing -
original draft, writing - review and editing.

The full article was published on 6 September 2022 in Journal of Physiology and
is reproduced in Appendix V. Formation and computational implications of assemblies in
neural circuits under the Creative Commons Attribution 4.0 International License.
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3.6 Autonomous emergence of connectivity assemblies
via spike triplet interactions

In Montangie et al., 2020, we investigate the formation of neuronal assemblies with-
out structured external input. We find that:

1. Based on the Hawkes framework, the second and third order cumulant can
be reformulated in terms of motif contribution of up to any order, allowing
analytical tractability of synaptic weight dynamics based on the triplet spike-
timing-dependent plasticity rule.

2. Assembly structures emerge spontaneously when the triplet STDP rule, or
the synaptic transmission is modulated.

3. We identify which motifs contribute to the spontaneous formation of assem-
blies.

The work has been done together with lead author Dr. Lisandro Montangie and
my supervisor Prof. Dr. Julijana Gjorgjieva. To this publication I contributed to
each section and specifically figures Fig. 5,8,11 and supplementary figures S1-S5 in
the article to: formal analysis, investigation, methodology, software, visualization,
writing - review and editing.

The full article was published on 8 May 2020 in PLoS Computational Biology
and is reproduced in Appendix VI. Autonomous emergence of connectivity assemblies via
spike triplet interactions under the Creative Commons Attribution 4.0 International
License.

40



4 Discussion

In the articles containing my dissertation, I have used multiple different computa-
tional and analytical approaches to answer questions related to the functional role
of different plasticity mechanisms, with a specific focus on inhibitory plasticity. In
the sections below, I discuss the key points following from my work.

Inhibitory plasticity as a homeostatic mechanism and a solution to the
stability-flexibility problem

A problem in computational models is the trade-off between stability and flexi-
bility of neuronal connectivity. On the one side, stimulus representations need to
remain stable to ensure reliable interpretation and long-term storage of those stim-
uli, while on the other hand flexible re-learning, or learning of new representations
should remain possible (Fusi, 2017). The question of how connectivity structures
can remain stable is tightly linked to the problem of Hebbian runaway dynamics
of excitatory plasticity.

In my work, I identify the conditions under which inhibitory plasticity is sufficient
to stabilize excitatory weight and rate dynamics (Miehl & Gjorgjieva, 2022). A
key component is the ‘dominance’ of inhibitory over excitatory weight dynamics,
meaning that inhibitory synapses change with a higher magnitude than excitatory
synapses. This condition is met by our newly proposed nonlinear inhibitory plastic-
ity rule. Interestingly, experiments have found that inhibitory synapses do change
more drastically than excitatory synapses when performing plasticity-induction-
protocols (D’amour & Froemke, 2015). The second component to ensure stability
is that the LTD/LTP thresholds of excitatory and inhibitory plasticity need to be
matched, either by having the exact same value or by having a dynamic matching
mechanism (as we suggest in Miehl & Gjorgjieva, 2022 or as has been discussed in
Keck et al., 2017). These two components ensure stability in the system, i.e. that
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4 Discussion

for a certain postsynaptic firing rate no synaptic plasticity is induced, or in other
words that plasticity is "off" if the neurons fire at the rate of the LTD/LTP thresh-
old. Perturbations of the postsynaptic firing rates, however, can be a flexible way
to gate synaptic plasticity "on". In my articles I highlight disinhibition as a possible
mechanism allowing to gate synaptic plasticity and learning (Miehl & Gjorgjieva,
2022; Schulz et al., 2021; Wu et al., 2022). This is in line with multiple experimental
results, suggesting disinhibition as a gating mechanism for synaptic plasticity and
learning (Canto-Bustos et al., 2022; Letzkus et al., 2015). In my models, I stayed ag-
nostic about how disinhibition is triggered, I simply apply an inhibitory input to the
inhibitory population. In experiments, disinhibition can be induced either via neu-
romodulation (Froemke, 2015; Froemke et al., 2007) or via a disinhibitory pathway
involving vasoactive intestinal peptide (VIP)-expressing inhibitory neurons and so-
matostatin (SST)-expressing inhibitory neurons (Adler et al., 2019; Canto-Bustos
et al., 2022; Hattori et al., 2017; Krabbe et al., 2019; Williams & Holtmaat, 2019).
Therefore, we suggest that gating plasticity "on" or "off" via disinhibition is one
stop towards solving the stability-flexibility problem.

Inhibitory plasticity also offers a solution to the ‘temporal paradox’ of integrating
homeostatic mechanisms (like synaptic scaling) and Hebbian plasticity (Zenke &
Gerstner, 2017; Zenke et al., 2017). Since inhibitory plasticity acts on the same
timescale as excitatory plasticity (D’amour & Froemke, 2015; Field et al., 2020), it
does not have the problem of mismatching timescales.

Inhibitory plasticity beyond homeostasis

In my work, I have extended the current understanding of the role of inhibitory
plasticity. While previous computational models have mostly focused on inhibitory
plasticity as a mechanism to stabilize firing rates and the E/I balance (Baker et al.,
2020; Kleberg et al., 2014; Luz & Shamir, 2012; Rubin et al., 2015; Vogels et al.,
2011), I could show that a novel nonlinear inhibitory plasticity mechanism can
be sufficient to homeostatically regulate also excitatory synaptic weight dynamics
(Miehl & Gjorgjieva, 2022). Furthermore, we suggest inhibitory plasticity as the
mechanism underlying the difference in cortical responses to familiar and novel
stimuli (Schulz et al., 2021). Therefore, I extend recent efforts in computational
studies to show additional functional properties of inhibitory plasticity beyond sta-
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bilization of excitatory firing rates. Previous models have studied inhibitory plas-
ticity in the context of emergence of receptive fields (Clopath et al., 2016; Kleberg
et al., 2014; Luz & Shamir, 2012; Vogels et al., 2011), place and grid fields (Weber &
Sprekeler, 2018), ensuring diversity of tuning curves (Larisch et al., 2021), and the
formation of recurrent structures as neuronal assemblies (Litwin-Kumar & Doiron,
2014) and chain-like structures (Maes et al., 2020; Zhang et al., 2014).

My analysis indicates that inhibitory plasticity can control excitatory plasticity in
a similar manner as the BCM metaplastic rule (Miehl & Gjorgjieva, 2022). This
provides additional evidence for recent experimental and theoretical work, which
suggests that inhibition can control the sign and amplitude of excitatory plasticity
(Hiratani & Fukai, 2017; Paille et al., 2013; Vogels et al., 2013; Wang & Maffei,
2014; Wu et al., 2022). For example, it has been shown in an experiment that
application or blockage of inhibition leads to a shift of excitatory LTD/LTP thresh-
olds (Steele & Mauk, 1999), similarly to a metaplastic learning rule. I, therefore,
suggest that inhibition and specifically inhibitory plasticity might be one of the
underlying mechanisms of the sliding LTD/LTP threshold as used in the BCM
rule, potentially acting on fast timescales. The link between inhibitory plasticity
and metaplasticity might be specifically interesting in relation to the problem of
‘catastrophic forgetting’, which is a well-described problem in artificial networks
where previously learned tasks are forgotten when new tasks are learned (Parisi
et al., 2019). Metaplasticity is a promising candidate solving the problem of catas-
trophic forgetting (Jedlicka et al., 2022).

Inhibitory plasticity as an alternative mechanism underlying the responses
to familiar versus novel stimuli

Most computational studies modeling the different responses to familiar versus novel
stimuli have assumed that short-term plasticity at feedforward input synapses is the
underlying mechanism (Park & Geffen, 2020; Yarden & Nelken, 2017). Especially
in the context of stimulus-specific adaptation, the ‘Adaptation of Narrowly Tuned
Modules’ (ANTM) model has been extensively studied for adaptation to tone fre-
quencies (Hershenhoren et al., 2014; Mill et al., 2011a,b, 2012; Taaseh et al., 2011).
In our work, we present an alternative mechanism underlying adaptation to re-
peated stimuli and generation of novelty responses, which is inhibitory plasticity
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4 Discussion

(Schulz et al., 2021). The hypothesis that inhibition and inhibitory plasticity is an
important mechanism to gain a full understanding of adaptive phenomena is sup-
ported by several recent experimental findings in the mammalian cortex (Chen
et al., 2015a; Garrett et al., 2020; Hamm & Yuste, 2016; Heintz et al., 2020; Kato
et al., 2015; Natan et al., 2015, 2017), in Aplysia (Fischer et al., 1997; Ramaswami,
2014), in Drosophila melanogaster (Das et al., 2011; Glanzman, 2011) and by theoret-
ical considerations (Barron et al., 2017; Ramaswami, 2014). We especially suggest
inhibitory plasticity being a key component for adaptation on longer timescales of
several seconds to minutes and hours. Experimental studies find timescales of adap-
tation on the order of hundreds of milliseconds to seconds (Lundstrom et al., 2010;
Ulanovsky et al., 2004) and in the context of habituation up to multiple days (Haak
et al., 2014; Ramaswami, 2014).

The detection of unexpected (or novel) stimuli is related to the predictive coding
framework. In this framework, the brain is viewed as a prediction machine, where
internal models of the world are constantly compared to incoming sensory inputs
(Clark, 2013; Friston, 2018; Rao & Ballard, 1999). Usually, predictive coding is
thought of being implemented based on two population of neurons, the prediction
error neurons that signal the mismatch between the internal model and the sensory
stimulus, and the neurons which reflect the internal model of the world. In our
model, we suggest that primary sensory areas might allow for detection of unex-
pected stimuli without the need for an additional population of error neurons. Our
network of excitatory and inhibitory neurons can represent the stimulus features
and allow for detection of unexpected events via inhibitory plasticity (Schulz et al.,
2021).

Interaction of homo- and heterosynaptic plasticity

We show that the interaction of experimentally-verified homo- and heterosynaptic
excitatory and inhibitory plasticity determines the set-point for cortical E/I balance
(Field et al., 2020). Based on our model, we suggest that the relative strength of
homo- versus heterosynaptic plasticity mechanism can determine such a set-point,
where dominant homosynaptic plasticity leads to high E/I ratio set-points and
dominant heterosynaptic plasticity leads to low E/I ratio set-points. Interestingly,
low and high E/I ratio set-points can be linked to the developmental stage of the
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animal. Low (or uncorrelated) excitatory and inhibitory inputs correspond to an
early developmental stage of the animal (Dorrn et al., 2010). High correlations
between excitatory and inhibitory tuning curves might reflect the maturity of the
circuit, allowing for precise spiking of neurons to sensory stimuli. It can be spec-
ulated that high E/I correlations, or detailed E/I balance, is an important factor for
learned representations, e.g. allowing for precise spiking in response for stimulus
presentation.

Excitatory plasticity underlying assembly formation

In the context of excitatory plasticity, we extended the understanding of how as-
semblies can form under different circumstances. Following from the finding that
in the zebrafish larvae optical tectum assemblies form even in the absence of struc-
tured external input (i.e. in the case of removed eyes) (Pietri et al., 2017), we show
that assemblies can form only based on internal correlations without structured ex-
ternal input (Montangie et al., 2020). We extend existing computational studies
which investigate assembly formation based on high external input rates (Clopath
et al., 2010; Litwin-Kumar & Doiron, 2014, 2012; Miconi et al., 2016; Schulz et al.,
2021; Zenke et al., 2015), correlations in the input spike trains (Gilson et al., 2009b;
Ocker & Doiron, 2019; Wu et al., 2020) or without structured external input but
with dominant rate-contributions in the plasticity rule (Babadi & Abbott, 2013;
Burkitt et al., 2007; Gilson et al., 2009a; Manz & Memmesheimer, 2022; Ocker &
Doiron, 2019; Ocker et al., 2015). In a similar approach, Ravid Tannenbaum & Bu-
rak, 2016 have shown that assemblies can form without external structured input
and a minimal rate-contribution, but the authors required a non-Hebbian STDP
rule. We furthermore show that assembly formation based on external correlated
input can follow from the interaction of excitatory and inhibitory plasticity, with-
out the need for any fast homeostatic mechanism (Miehl & Gjorgjieva, 2022). This
and other findings indicate the importance of inhibition and inhibitory plasticity
in the formation of excitatory structures, as discussed in detail in our review Wu
et al., 2022.
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Open Questions and Outlook

Following my work, many open questions and interesting future research direc-
tions emerge. A natural extension of my work is to combine homo- and heterosy-
naptic excitatory and inhibitory plasticity dynamics also with other mechanisms,
like short-term plasticity and intrinsic plasticity. Also, evidence exists for plas-
ticity at excitatory-to-inhibitory and inhibitory-to-inhibitory synapses. Recent
computational studies have started implementing synaptic plasticity at all synapses
into their models (Eckmann & Gjorgjieva, 2022; Mackwood et al., 2021; Soldado-
Magraner et al., 2021), but how all of these mechanisms would interact in the case
of e.g. familiar versus novel stimulus presentation is not clear.

Inhibitory neurons are diverse in their electrical properties, connectivity and func-
tion (Tremblay et al., 2016), and also recent experimental studies suggest neuron-
specific synaptic plasticity rules (Chen et al., 2015b; Chiu et al., 2018; Lagzi et al.,
2021; Song et al., 2022; Udakis et al., 2020; Yap et al., 2021). Therefore, extending
my work by studying the differential role of PV, SST, and potentially VIP neurons
with neuron-specific plasticity rules should be the next step. Specifically adding the
VIP-SST or VIP-PV pathway is a biologically-plausible way to induce disinhibi-
tion, acting as a gating mechanism for synaptic plasticity.

My models are based on the assumption that the neuronal dynamics can be ap-
proximated by point neurons. However, neurons have dendrites and evidence ac-
cumulates suggesting that dendrites are important for various computations (see
e.g. Larkum, 2022; Poirazi & Papoutsi, 2020). For example, a recent study has
highlighted the difference in bottom-up versus top-down signals in apical versus
basal dendrites in the context of processing of unexpected (or novel) stimulus fea-
tures (Gillon et al., 2021). Other computational studies suggest synaptic plasticity
is regulated locally on dendritic trees (Ebner et al., 2019; Kirchner & Gjorgjieva,
2021). Especially to fully understand the interaction of excitatory and inhibitory
plasticity, local calcium dynamics need to be considered, as shown experimentally
(Hayama et al., 2013; Paille et al., 2013) and suggested in computational models
(Agnes & Vogels, 2021; Hiratani & Fukai, 2017; Mikulasch et al., 2021). There-
fore, adding dendritic compartments to the models used in my work might be an
interesting future perspective.
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Abstract

Synaptic changes are hypothesized to underlie learning and memory formation in the brain.

But Hebbian synaptic plasticity of excitatory synapses on its own is unstable, leading to

either unlimited growth of synaptic strengths or silencing of neuronal activity without addi-

tional homeostatic mechanisms. To control excitatory synaptic strengths, we propose a

novel form of synaptic plasticity at inhibitory synapses. Using computational modeling, we

suggest two key features of inhibitory plasticity, dominance of inhibition over excitation and

a nonlinear dependence on the firing rate of postsynaptic excitatory neurons whereby inhibi-

tory synaptic strengths change with the same sign (potentiate or depress) as excitatory syn-

aptic strengths. We demonstrate that the stable synaptic strengths realized by this novel

inhibitory plasticity model affects excitatory/inhibitory weight ratios in agreement with experi-

mental results. Applying a disinhibitory signal can gate plasticity and lead to the generation

of receptive fields and strong bidirectional connectivity in a recurrent network. Hence, a

novel form of nonlinear inhibitory plasticity can simultaneously stabilize excitatory synaptic

strengths and enable learning upon disinhibition.

Author summary

An important task the brain needs to solve is the so-called ‘stability-flexibility problem’.

On the one hand, any representation in the brain, for example a long-lasting memory, has

to be stable for a long time. On the other hand, new representations need to be flexibly

learned at any time. Learning and memory formation are implemented through the plas-

ticity of synaptic connections, which describe how the activity in neurons is translated into

changes of synaptic strength between these neurons. We propose a novel form of synaptic

plasticity at synapses from inhibitory to excitatory neurons as a mechanism to stabilize

learned representations, while a gating signal triggers the learning of new representations.

We identify the dominance of inhibition over excitation and a nonlinear dependence of

inhibitory plasticity on the postsynaptic firing rate as important aspects of our newly pro-

posed plasticity mechanism. Our computational model allows us to uncover the underly-

ing mechanism behind various experimental findings related to synaptic plasticity and

sensory perturbations, and we formulate multiple experimentally-testable predictions.
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Introduction

Learning and memory formation in the brain are hypothesized to be implemented by synaptic

changes undergoing Hebbian plasticity whereby joint pre- and postsynaptic activity increase

the strength of synaptic connections [1, 2]. However, Hebbian long-term plasticity of excit-

atory synapses to other excitatory neurons, referred to as excitatory plasticity, is inherently

unstable [3]. Increasing excitatory synaptic strengths leads to an increase in the firing rates of

excitatory postsynaptic neurons which in turn further increases synaptic strengths. This posi-

tive feedback loop is called ‘Hebbian runaway dynamics’ [4]. To counteract unstable synaptic

growth and control resultant rate dynamics, some form of homeostatic control is needed.

Experimental studies have uncovered multiple homeostatic mechanisms. One prominent

mechanism is synaptic scaling, where synaptic connections onto a given excitatory neuron

potentiate or depress, while preserving relative strengths, to maintain a target level of activity

[5, 6]. An alternative mechanism that has gained much recent attention is heterosynaptic plas-

ticity [7, 8], which occurs both at excitatory and inhibitory synapses that have not been directly

affected by the induction of plasticity [9]. A third plausible homeostatic mechanism with sig-

nificant experimental evidence is intrinsic plasticity which affects the intrinsic excitability of

single neurons by adjusting the distribution of different ion channel subtypes [10, 11].

Various computational studies have benefited from this plethora of experimental evidence

for homeostatic control of firing rates and synaptic strengths, and implemented a range of

computational models from purely phenomenological ones to detailed biophysical ones. Some

relatively straightforward ways to stabilize firing rates and control synaptic strengths in models

include imposing upper bounds on synaptic strengths, applying normalization schemes which

adjust synaptic strengths by preserving the total sum of incoming weights into a neuron [3, 12]

and assuming that the plasticity mechanism modifying synaptic strengths is itself plastic—

called ‘metaplasticity’ [13–16]. These can often be linked to the above experimentally described

homeostatic mechanisms. Computational studies have also begun to uncover the various,

often complementary, functional roles of different homeostatic mechanisms, e.g. of synaptic

scaling versus intrinsic plasticity [16] or heterosynaptic plasticity [9]. However, how exactly

synaptic plasticity and homeostatic mechanisms interact to control synaptic strengths, and yet

enable learning, is still partially unresolved [17–19]. Part of the challenge is that the experimen-

tally measured timescales of synaptic scaling are too slow to stabilize the Hebbian runaway

dynamics in computational models, where much faster normalization schemes are used

instead [16, 20–23]. This is sometimes referred to as the ‘temporal paradox’ of homeostasis

[24–26]. A related problem to the integration of plasticity and homeostasis is the trade-off

between stability and flexibility. While stimulus representations need to be stable, for instance

to allow long-term memory storage, the system also needs to be flexible to allow re-learning of

the same, or learning of new representations [27]. This has been successfully achieved in some

circumstances. For example, implementing metaplasticity in the excitatory connections

through a sliding threshold between potentiation and depression can generate weight selectiv-

ity and firing rate stability [13, 14, 16, 24]. Additionally, heterosynaptic plasticity has been

modeled to stabilize synaptic weight dynamics, while still allowing learning [9, 28–30], includ-

ing behavioral learning [31]. A strong candidate for stabilizing synaptic weights is the induc-

tion of homosynaptic LTP (LTD) together with heterosynaptic LTD (LTP) at nearby synapses,

referred to as the ‘Mexican hat’ profile of homo- and heterosynaptic plasticity [32, 33].

Here, we investigate an alternative, under-explored mechanism to control and stabilize

excitatory synaptic strengths and their dynamics: long-term plasticity of inhibitory-to-excit-

atory (I-to-E) synapses, also referred to as inhibitory plasticity. Experimental paradigms have

characterized diverse forms of inhibitory plasticity, usually via high-frequency stimulation
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[34–36] and via pairing of presynaptic and postsynaptic spikes [37, 38]. Inhibition has been

shown to control the plasticity mechanisms regulating connection strengths between excit-

atory neurons depending on their firing rates [39] as well as precise spike timing [40–42].

Inhibitory plasticity can even dictate the direction of excitatory plasticity, shifting between

depression or potentiation [43]. Computational models have shown that different forms of

inhibitory plasticity can stabilize excitatory rates [44–46]. Given this potential of inhibitory

plasticity to affect so many different aspects of synaptic strength and firing rate dynamics in a

network, it remains unclear what properties are important for achieving stability, while still

enabling neural circuits to learn.

Using computational modeling, we characterize a novel mechanism of inhibitory plasticity

with two key features. First, we propose that inhibitory plasticity should depend nonlinearly

on the firing rate of an excitatory postsynaptic neuron to robustly control and stabilize the

strengths of excitatory synaptic connections made by that neuron. This means that for low

postsynaptic rates, I-to-E synapses should depress, for high postsynaptic rates I-to-E synapses

should potentiate and without any postsynaptic activity undergo no plasticity. This nonlinear

dependence of inhibitory plasticity on the postsynaptic firing rate is sufficient for stability,

without the need for additional homeostatic mechanisms. Second, we require a dominance of

inhibition, which can be reflected in the larger number of synaptic connections, faster plastic-

ity dynamics of inhibitory synapses or overall higher firing rates of inhibitory neurons relative

to excitatory ones. Dominance of inhibition has already been demonstrated in circuits in the

visual cortex which operate as inhibition-stabilized networks (ISNs) [47–49]. A direct conse-

quence from our proposed novel mechanism of nonlinear inhibitory plasticity is the emer-

gence of a fixed ratio of excitatory-to-inhibitory synaptic strengths when input rates are

constant, in agreement with experimental data [37]. Besides stability, our proposed inhibitory

plasticity mechanism can also support flexible learning of receptive fields and recurrent net-

work structures by gating excitatory plasticity via disinhibition [50, 51]. Therefore, our results

provide a plausible solution to the stability-flexibility problem by identifying key aspects of

inhibitory plasticity, which provide experimentally testable predictions.

Results

A linear inhibitory plasticity rule fails to robustly stabilize weight dynamics

To investigate the plausibility of inhibitory plasticity as a control mechanism of excitatory syn-

aptic strengths, we initially considered a model based on a feedforward inhibitory motif prom-

inent in many brain circuits (Fig 1A). Here, a population of presynaptic excitatory neurons

projects to a population of inhibitory neurons and both populations project to a single post-

synaptic excitatory neuron. Such a motif could resemble, for instance, the excitatory input

from the thalamus to excitatory and inhibitory neurons in a primary sensory cortical area [52].

We described the activity of neurons by their firing rates. We considered a network consisting

of an excitatory postsynaptic neuron with a linear threshold transfer function and firing rate

νE, receiving input from NE excitatory presynaptic neurons (each with index j) with firing rates

rE
j through excitatory weights wEE

j , and from NI inhibitory presynaptic neurons (each with

index k) with firing rates nIk through inhibitory weights wEI
k :

tEFR _nE ¼ � nE þ
XNE

j¼1

rE
j w

EE
j �

XNI

k¼1

nIkw
EI
k

" #

þ

; ð1Þ

where []+ denotes a rectification that sets negative values to zero. The inhibitory neurons fol-

low similar dynamics and are driven by the same NE presynaptic excitatory neurons with firing
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rates rE
j through excitatory weights wIE

j and additional external input with firing rate rI
k,

tIFR _nIk ¼ � n
I
k þ

XNE

j¼1

rE
j w

IE
j þ r

I
k

" #

þ

: ð2Þ

Here, tEFR; t
I
FR denote the time constants of the firing rate dynamics. For simplicity, we do not

use subscripts for neuron identity and interpret all variables as mean values and hence can

denote the total excitatory input to the postsynaptic neuron as NEρEwEE and the total inhibi-

tory input as NIνIwEI. The synaptic weights wEE and wEI are plastic according to different plas-

ticity rules (see below).

Experimental studies have shown that the sign and magnitude of excitatory plasticity

depends nonlinearly on the firing rates [53–55]. Inspired by these findings, we implemented

plasticity of E-to-E synaptic connections wEE (or weights) as a nonlinear function of the post-

synaptic rate νE (Fig 1B):

tEw _wEE ¼ rEnEðnE � cEpostÞ: ð3Þ

Fig 1. Linear inhibitory plasticity fails to stabilize weights for high postsynaptic firing rates. A. Schematic of a feedforward inhibitory motif.

A single postsynaptic excitatory neuron with rate νE receives input from NE excitatory presynaptic neurons, with firing rate ρE and weight wEE

and NI inhibitory presynaptic neurons, with firing rate νI and weight wEI. The inhibitory neurons receive external excitatory input with rate ρI

and input from the presynaptic excitatory neurons via wIE. B. Plasticity curve of E-to-E weights ( _wEE, blue) as a function of the postsynaptic rate

νE. The postsynaptic LTD/LTP threshold cEpost is set to 1. C. E-to-E weight change ( _wEE) as a function of the presynaptic excitatory rate ρE for

different I-to-E weights wEI ranging from 0 to 1.5. The presynaptic LTD/LTP threshold cEpre is shown for wEI = 0.75 (vertical dashed line). D.

Plasticity curves of E-to-E ( _wEE, blue) and I-to-E ( _wEI , red) weights as a function of the postsynaptic rate νE. The excitatory and inhibitory LTD/

LTP thresholds are identical (cEpost ¼ cIpost). The black cross marks the postsynaptic rate where the plasticity curves cross beyond which the weight

dynamics become unstable. E. Phase portrait of the dynamics of E-to-E (wEE) and I-to-E (wEI) weights. Gray arrows indicate the direction of

weight evolution over time, points represent three different weight initializations, ½wEE
0
;wEI

0
� ¼ f½1:5; 1:8�; ½1:5; 0:5�; ½2:5; 1�g, and green lines

represent the weight evolution for each case. The two colored points represent initial weights in F. Black line indicates the line attractor and the

dashed line separates stable from unstable initial conditions (Methods, Eq 20). F. E-to-E (wEE, blue) and I-to-E (wEI, red) weights as a function

of time for stable (solid lines, ½wEE
0
;wEI

0
� ¼ ½1:5; 0:5�) and unstable (dashed lines, ½wEE

0
;wEI

0
� ¼ ½2:5; 1�) initial conditions.

https://doi.org/10.1371/journal.pcbi.1010682.g001
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Here, ρE denotes the excitatory presynaptic rate and tEw is the timescale of excitatory plasticity.

We refer to the postsynaptic rate at which the plasticity changes sign as the ‘postsynaptic LTD/

LTP threshold’, denoted by cEpost. If the firing rate νE is smaller than the threshold cEpost, then the

change in synaptic strength is negative leading to long-term depression (LTD), while if νE is

larger than cEpost, then the change in synaptic strength is positive leading to long-term potentia-

tion (LTP) (Fig 1B and S1 Fig). This means that increasing the excitatory postsynaptic firing

rate will lead to potentiation of excitatory weights, and in a positive feedback loop will further

increase the neuron’s firing rate—known as the classical problem of ‘Hebbian runaway

dynamics’.

Hence, we wanted to determine a plausible mechanism to counteract excitatory runaway

dynamics. We postulated that regulating the inhibitory input into the postsynaptic neuron

provides an efficient way to stabilize excitatory weights and firing rates. In our framework,

inhibitory neurons can affect excitatory plasticity in three equivalent ways. (1) The number of

inhibitory synapses NI onto the postsynaptic neuron can change, for example, through the

growth or removal of synapses via structural plasticity. (2) The strength of I-to-E synapses wEI

can change via inhibitory plasticity. (3) Finally, the rate of inhibitory neurons νI can also

change through the external excitatory input to the inhibitory neurons ρI or the excitatory-to-

inhibitory weight wIE. Various experimental studies have revealed that the plasticity of I-to-E

synapses can be induced via the stimulation of the relevant input pathways [34, 35, 43]. Given

this experimental evidence for the plasticity of I-to-E synapses, we examined the influence of

changing the strength of I-to-E synapses, wEI, on the strength and magnitude of E-to-E synap-

ses, wEE (Fig 1C).

We found that stronger wEI weights rates require higher presynaptic excitatory rates to

induce LTP, while weaker wEI weights require lower presynaptic excitatory rates to induce

LTP. This effectively leads to a shift of the threshold between LTD and LTP as a function of the

presynaptic excitatory firing rate as wEI changes. We refer to the presynaptic excitatory firing

rate at which the plasticity changes sign between potentiation and depression as the ‘presynap-

tic LTD/LTP threshold’, denoted by cEpre (Fig 1C). In contrast to the fixed postsynaptic LTD/

LTP threshold, cEpost(Fig 1B), this presynaptic LTD/LTP threshold depends, among others, on

the strength of I-to-E synapses (Fig 1C; Methods, Eq 13).

Rather than hand-tuning the strength of I-to-E synapses, here we propose that a particular

inhibitory plasticity rule can dynamically adjust their strength as a function of presynaptic

inhibitory and postsynaptic excitatory activity. However, the exact form of this plasticity has

not yet been mapped experimentally. Therefore, we first investigated an inhibitory plasticity

rule widely-used in computational models which depends linearly on the postsynaptic rate νE

[44, 56] (Fig 1D, _wEI):

tIw _wEI ¼ nIðnE � cIpostÞ: ð4Þ

Here, tIw denotes the timescale of inhibitory plasticity. As for excitatory plasticity, we refer to

the postsynaptic rate at which inhibitory plasticity changes from LTD to LTP as the ‘inhibitory

postsynaptic LTD/LTP threshold’, denoted by cIpost. This threshold determines the ‘target rate’

of the postsynaptic neuron [44]. If the excitatory postsynaptic neuron fires at higher rates than

cIpost, inhibitory LTP leads to a decrease of its firing rate, while if the neuron fires at lower rates

than cIpost, inhibitory LTD increases its rate. To prevent an unstable scenario where excitatory

(Eq 3) and inhibitory plasticity (Eq 4) push the postsynaptic excitatory neuron towards two

different firing rates, here we assume that the excitatory and inhibitory thresholds are matched

(Fig 1D, cEpost ¼ cIpost).
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To investigate the effect of this ‘linear inhibitory plasticity’ mechanism on the temporal evo-

lution of excitatory and inhibitory synaptic weights, wEE and wEI, we plotted the flow field in

the phase plane wEI vs. wEE (Fig 1E). We found that the interaction of excitatory and inhibitory

plasticity generates a line of stable fixed points (i.e. a line attractor) where both synaptic

weights do not change any more (Fig 1E, black solid line; see Methods). The initial weights

determine whether the weights ultimately converge to the line attractor and stabilize. When

the initial E-to-E weights wEE are much larger than the initial I-to-E weights wEI (Fig 1E, below

the dashed line), the weights become unstable (Fig 1E and 1F). Equivalently, the weights

become unstable when the postsynaptic rate νE is beyond the crossover point of the excitatory

and inhibitory plasticity curves as a function of the postsynaptic excitatory rate (Fig 1D, black

cross). For firing rates beyond this crossover point, the E-to-E weights increase faster than the

I-to-E weights, leading to runaway dynamics.

In summary, our results suggest that a well-known form of inhibitory plasticity with a linear

dependence on the postsynaptic excitatory firing rate can control excitatory weight changes

only for a range of initial conditions. There exists a whole range of initial conditions (specifi-

cally where the E-to-E are larger than the I-to-E weights) where the postsynaptic excitatory fir-

ing rate is sufficiently large and where the weight dynamics explode. This scenario could be

problematic if during normal development in the animal, the E-to-E and I-to-E weights are set

up in this range, and implies the need for careful tuning to prevent unlimited weight growth.

A novel nonlinear inhibitory plasticity rule as a robust mechanism to

stabilize excitatory weights

To ensure weight stability without fine tuning of the initial E-to-E and I-to-E weights, we pro-

posed a novel inhibitory plasticity rule. The rule depends nonlinearly on the postsynaptic rate

νE, similarly to excitatory plasticity (Eq 3, Fig 2A):

tIw _wEI ¼ nInEðnE � cIpostÞ: ð5Þ

As before, to prevent a scenario where the two, excitatory and inhibitory, plasticity rules

push the postsynaptic excitatory neuron towards two different firing rates, we assume here

that the excitatory and inhibitory thresholds are matched cEpost ¼ cIpost. However, as we show

later, this assumption can be relaxed. Differently from the linear inhibitory plasticity rule

(Eq 4), the nonlinear inhibitory plasticity rule ensures that I-to-E synapses do not change in

the case where the postsynaptic firing rate is zero (Fig 2B, beyond gray line), as shown in

experiments where postsynaptic activity or depolarization is needed to induce inhibitory plas-

ticity [43]. Additionally, the nonlinear rule eliminates the region of initial weight configura-

tions in the phase space where the weights grow out of bound; instead the weights converge to

the line attractor (Fig 2B). Indeed, the E-to-E weights, I-to-E weights and the postsynaptic rate

reach a stable configuration over time (Fig 2C). We calculated the condition leading to stable

weight dynamics (Methods, Eqs 14–17) as a function of the excitatory and inhibitory input

rates (νI, ρE), the number of synapses (NE, NI) and the timescale of the plasticity mechanisms

(tEw; t
I
w):

NIðnIÞ
2

tIw
>

NEðrEÞ
2

tEw
: ð6Þ

This condition ensures stable weight dynamics whenever inhibition is more ‘dominant’ than

excitation, either by having more inhibitory synapses (NI), higher inhibitory rate (νI), a faster
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timescale of inhibitory plasticity (tIw) or a combination thereof. From now on, we assume a

faster timescale of inhibitory relative to excitatory plasticity (Methods). An alternative way to

achieve stability involves a feedback connection from the postsynaptic neuron to the inhibitory

population (S2A Fig). In this case, sufficiently strong E-to-I feedforward and feedback weights

guarantee stability in the presence of this feedback inhibitory motif (S2B–S2D Fig).

We found that the line attractor depends on several model parameters (see Methods, Eq 14)

(Fig 2D)

wEI ¼
NErE

NInI
wEE �

cpost
NInI

: ð7Þ

Under the assumption that the LTD/LTP thresholds of excitatory and inhibitory plasticity are

the same, cpost ¼ cEpost ¼ cIpost, we found that the slope of the line attractor can be written as

NEρE/(NIνI), while the intersection of the line attractor with the abscissa can be written as cpost/
(NEρE). Therefore, by changing any of the network parameters we can predict the stable con-

figuration to which the weights will converge.

Taken together, we have proposed a novel form of nonlinear inhibitory plasticity which can

counteract excitatory runaway weight dynamics without the need for fine tuning. The pro-

posed rule eliminates the need for additional homeostatic mechanisms and upper bounds on

Fig 2. A novel nonlinear inhibitory plasticity rule can counteract runaway dynamics of excitatory-to-excitatory

weights. A. Plasticity curves of E-to-E ( _wEE, blue) and I-to-E ( _wEI , red) weights as a function of the postsynaptic rate νE.

The excitatory and inhibitory LTD/LTP thresholds are identical (cEpost ¼ cIpost). B. Phase portrait of the dynamics of E-

to-E (wEE) and I-to-E (wEI) weights. Gray arrows indicate the direction of weight evolution over time, points represent

three different initial conditions of the weights, ½wEE
0
;wEI

0
� ¼ f½1:5; 1:8�; ½1:5; 0:5�; ½2:5; 1�g, and green lines represent

the weight evolution for each initial condition. The two colored points represent initial weights in C. Black line

indicates the line attractor and the gray line separates the space at which the postsynaptic firing rate is zero (no

dynamics) or larger than zero (Methods, Eq 18). C. E-to-E (wEE, blue) and I-to-E (wEI, red) weight dynamics and

postsynaptic rate dynamics (νE, gray) as a function of time for two initial conditions in B, ½wEE
0
;wEI

0
� ¼ ½1:5; 0:5� (solid

lines) and ½wEE
0
;wEI

0
� ¼ ½2:5; 1� (dashed lines). D. The slope and intersection of the line attractor with the abscissa (black

line) depend on the number and firing rates of excitatory and inhibitory neurons and the LTD/LTP threshold.

https://doi.org/10.1371/journal.pcbi.1010682.g002
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the weights to stabilize weight dynamics. Our modeling approach allows us to dissect the exact

dependencies of the stability condition on number of synapses, firing rates and plasticity time-

scales of excitatory and inhibitory neurons.

Dynamic matching of the excitatory and inhibitory postsynaptic thresholds

between LTD and LTP

What happens if the postsynaptic thresholds between LTD and LTP for excitatory and inhibi-

tory synapses are not identical, as might be the case in most biological circuits (Fig 3A)? We

found that this leads to the disappearance of the line attractor (see Methods Eq 14). When the

excitatory postsynaptic threshold is lower than the inhibitory postsynaptic threshold

(cEpost < cIpost), both E-to-E and I-to-E weighs grow unbounded (Fig 3B). E-to-E weights cannot

stabilize as they continue to potentiate ( _wEE > 0) even though the postsynaptic neuron is con-

trolled by the fast inhibitory plasticity and approaches the target rate nE ¼ cIpost (Fig 3C).

Fig 3. Dynamic matching of the excitatory and inhibitory postsynaptic LTD/LTP thresholds. A. Plasticity curves of E-to-E ( _wEE, blue) and I-to-E

( _wEI , red) weights as a function of the postsynaptic rate νE with static, non-identical LTD/LTP thresholds (cEpost ¼ 0:7, cIpost ¼ 1:3). B. Phase portrait of

the dynamics of E-to-E (wEE) and I-to-E (wEI) weights for the scenario with static thresholds in A. Gray arrows indicate the direction of weight

evolution over time, points represent three different initial conditions of the weights, ½wEE
0
;wEI

0
� ¼ f½1:5; 1:8�; ½1:5; 0:5�; ½2:5; 1�g, and green lines

represent the weight evolution for each initial condition. The colored point represents initial weight in C and E-F. Black lines indicate the nullclines

and the gray line separates the space at which the postsynaptic firing rate is zero (no dynamics) or larger than zero (Methods, Eq 18). C. Excitatory

(wEE, blue) and inhibitory (wEI, red) weight dynamics and postsynaptic rate dynamics (νE, gray) for one initial condition in B, ½wEE
0
;wEI

0
� ¼ ½1:5; 0:5�.

The thresholds are static as in A. D. Postsynaptic LTD/LTP thresholds cEpost and cIpost shift dynamically depending on recent postsynaptic rate νE. For

lower postsynaptic rate than the excitatory postsynaptic LTD/LTP threshold (nE < cEpost), cEpost decreases, and for nE > cEpost , cEpost increases. For higher

postsynaptic rate than the inhibitory postsynaptic LTD/LTP threshold (nE > cIpost), c
I
post decreases, and for nE < cIpost , c

I
post increases (see Methods).

E. Evolution of excitatory (cEpost , blue) or inhibitory (cIpost , red) postsynaptic LTD/LTP thresholds for two different initial conditions (cEpost;0 ¼ cIpost;0, full

lines and cEpost;0 ¼ 0:7, cIpost;0 ¼ 1:3, dashed lines). Same initial weight condition as in C, ½wEE
0
;wEI

0
� ¼ ½1:5; 0:5�, but for dynamic thresholds shown in

D. F. Excitatory (wEE, blue) and inhibitory (wEI, red) weight dynamics and postsynaptic rate dynamics (νE, gray) for two different initial conditions

(cEpost;0 ¼ cIpost;0, full lines and cEpost;0 ¼ 0:7, cIpost;0 ¼ 1:3, dashed lines). Same initial weight condition as in C, ½wEE
0
;wEI

0
� ¼ ½1:5; 0:5�, but for dynamic

thresholds shown in D. See E for the legend.

https://doi.org/10.1371/journal.pcbi.1010682.g003

PLOS COMPUTATIONAL BIOLOGY Stability and learning by nonlinear inhibitory plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010682 December 2, 2022 8 / 34



Therefore, stability of firing rates does not imply stability of synaptic weights, especially in the

case when the postsynaptic thresholds between LTD and LTP are non-equal. In the case of

cEpost > cIpost, E-to-E and I-to-E weights steadily decrease.

Motivated by experimental findings and theoretical considerations that the excitatory

threshold can slide [13, 57], here we proposed that the inhibitory threshold can also be dynam-

ically regulated with both excitatory and inhibitory thresholds shifting into opposite directions

(Fig 3D; see Methods). When the postsynaptic rate is lower than the excitatory postsynaptic

LTD/LTP threshold (nE < cEpost), the excitatory postsynaptic LTD/LTP threshold should

decrease, while when the postsynaptic rate is higher than the threshold (nE > cEpost), the excit-

atory threshold should increase. Similarly, when the postsynaptic rate is higher than the inhibi-

tory postsynaptic LTD/LTP threshold (nE > cIpost), the inhibitory postsynaptic LTD/LTP

threshold should decrease, while when the postsynaptic rate is lower than the threshold

(nE < cIpost), the inhibitory threshold should increase. Eventually, these dynamics lead to the

matching of excitatory and inhibitory LTD/LTP thresholds (Fig 3E). Therefore, the rates and

weights can both be simultaneously stabilized (Fig 3F). The excitatory and inhibitory LTD/

LTP thresholds can be matched, and the postsynaptic firing rate and synaptic weights stabi-

lized also for other initializations of the LTD/LTP thresholds (S3A–S3C Fig). Implementing

this dynamic threshold adjustment process generates different postsynaptic LTD/LTP thresh-

old configurations (Fig 3E) and postsynaptic rates (Fig 3F, gray lines). Therefore, for different

initializations of the LTD/LTP thresholds, a wide variety of stable postsynaptic rates is

possible.

The nonlinear inhibitory plasticity rule can regulate the network response

to perturbations

Excitatory and inhibitory LTD/LTP thresholds can be dynamically matched under most con-

ditions, even if they are unequal (S3 Fig). Therefore, from now on we assumed that they are

equal and static (as shown in Fig 2A). Next, we wanted to investigate how the new nonlinear

inhibitory plasticity rule adjusts the network response following a perturbation. Inspired by

sensory deprivation experiments [53, 54, 58] or direct stimulation of input pathways [59, 60],

we investigated the network response to perturbing the excitatory presynaptic input rate

(Fig 4A).

Independent of the direction of the perturbation, we found that the nonlinear inhibitory

plasticity rule brings the excitatory postsynaptic rate back to the target rate (Fig 4B). The inhib-

itory rate νI also readjusts because the inhibitory population receives input from the perturbed

excitatory population. But the new inhibitory rate is different than the rate before the perturba-

tion (Fig 4B). We found that a perturbation which decreases the excitatory input rate, leads to

the depression of both type of weights wEE and wEI; in contrast, a perturbation which increases

the excitatory input rate leads to their potentiation (Fig 4C). The firing rate response and syn-

aptic weight changes to these perturbations are consistent with previous experimental results

[61–66]. Since we used a threshold-linear neuron model (Eqs 1 and 2), our framework can

even predict the steady values of the E-to-E and I-to-E synaptic weights, as well as their ratio,

by calculating the line attractor in the phase space of wEE and wEI weights as a function of the

perturbed parameter (Fig 4D).

Interestingly, we observed that this adjustment occurs by modulation of the presynaptic

threshold between LTD and LTP for both excitatory and inhibitory plasticity. Decreasing the

excitatory input rate decreases the excitatory presynaptic LTD/LTP threshold, hence limiting

the range of presynaptic firing rates that generate depression. The reduction in the LTD/LTP
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threshold follows from the relatively stronger depression of inhibitory compared to excitatory

weights allowing the excitatory postsynaptic neuron to fire at the target rate even when the

excitatory input is decreased. In contrast, we found that increasing the excitatory input rate

increases the LTD/LTP threshold (Fig 4E). Such a shift in the plasticity threshold for excitatory

synapses based on presynaptic activity has been measured in sensory deprivation experiments

[53, 54, 58], and while restoring vision after sensory deprivation [54, 55] (although depriva-

tion-induced effects occur on much slower timescales than in our plasticity model, see Discus-

sion). Similarly to excitatory plasticity, perturbations in the excitatory input rate also shift the

presynaptic threshold between LTD and LTP for inhibitory plasticity (Fig 4F). Since there is

no experimental evidence for this effect, we propose it as a prediction for the shift between

LTD and LTP for I-to-E weights (wEI) in the presence of these perturbations. Even when

implementing the plasticity rules with dynamic thresholds, performing the perturbations still

leads to stable weight and rate configurations (S3D–S3F Fig).

In summary, the proposed nonlinear inhibitory plasticity can adjust the network response

and synaptic strengths to excitatory input rate perturbations, similar to experimental findings.

We predict that this shift occurs by modulating the presynaptic LTD/LTP thresholds for both

excitatory and inhibitory plasticity.

Fig 4. Nonlinear inhibitory plasticity can regulate the network response to perturbations. A. Schematic of perturbing the excitatory

presynaptic rate in the inhibitory feedforward motif. We use the nonlinear inhibitory plasticity rule with identical excitatory and inhibitory

LTD/LTP thresholds from Fig 2A. B. Effect of increasing (solid lines, rE
disr ¼ 2:5) or decreasing (dashed lines, rE

disr ¼ 1:5) excitatory input rates

from a baseline of rE
base ¼ 2 on excitatory (blue) and inhibitory (red) firing rates. C. Same as B but for the wEE and wEI weights. D. The line

attractor for the baseline input rE
base and two input perturbations rE

disr. E. E-to-E weight change _wEE as a function of the presynaptic excitatory

rate ρE for the baseline input rE
base and for two input perturbations rE

disr. F. I-to-E weight change _wEI as a function of the inhibitory rate νI for the

baseline input rE
base and for two input perturbations rE

disr.

https://doi.org/10.1371/journal.pcbi.1010682.g004
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The nonlinear inhibitory plasticity rule affects the excitatory-to-inhibitory

weight ratio

We next wanted to investigate plausible functional roles of the newly proposed nonlinear

inhibitory plasticity besides controlling excitatory and inhibitory firing rates and weights.

Given our ability to calculate the steady states of the weights having used a linearly rectified

neuron model (Fig 4D), we studied the ratio of E-to-E and I-to-E weights:

RE=I ¼
wEE

wEI
¼

NInIwEI þ cpost
NErEwEI

¼
NIðNErEwIE þ rIÞwEI þ cpost

NErEwEI
ð8Þ

with νI = NEρEwIE + ρI (Methods). For strong I-to-E weights wEI, the E/I weight ratio approxi-

mates to:

RE=I
1
¼

NInI

NErE
¼

NIðNErEwIE þ rIÞ

NErE
ð9Þ

(Fig 5A, inset; see Methods). Therefore, the E/I weight ratio is mainly determined by the ratio

of excitatory and inhibitory input rates and the number of synapses, and is independent of the

plastic synaptic weights (wEE and wEI). A fixed E/I weight ratio can be reached when the input

Fig 5. The nonlinear inhibitory plasticity rule maintains an excitatory-to-inhibitory weight ratio. A. The steady state E/I weight ratio REI
1

as a

function of the presynaptic excitatory rate ρE. Inset: RE/I approaches the steady state NIνI/(NEρE) (dashed line) for large I-to-E weights. B-F Based on

a random initial weight configuration drawn from a uniform distribution in the range of [0, 3], excitatory and inhibitory plasticity was induced for

100 ms. Extreme initial E/I ratios (RE=I before > 12) were excluded from the analysis. B. Phase portrait of the dynamics of E-to-E (wEE) and I-to-E

(wEI) weights. Gray arrows indicate the direction of weight evolution over time, colored points represent three different weight initialization,

½wEE
0
;wEI

0
� ¼ f½1:5; 1:8�; ½1:5; 0:5�; ½2:5; 1�g, colored lines represents the weight evolution for each case and the cross marks the weights after plasticity

induction. The firing rates dynamics are similar as in Fig 2. C. E/I ratio before and after plasticity induction. Crosses indicate examples in B. Gray

dashed line indicates the identity line and gray line indicates RE=I
1

. D. E-to-E weight change ΔwEE versus I-to-E weight change ΔwEI after plasticity

induction in percent of initial synaptic weights. Dashed gray line indicates initial I-to-E weight strength and crosses indicate examples in B. E. E-to-

E weight change ΔwEE as a function of E/I ratio RE/I before plasticity in percent of initial weights. Dashed gray line indicates initial E-to-E weight

strength and crosses indicate examples in B. F. Same as E but for I-to-E weight change ΔwEI.

https://doi.org/10.1371/journal.pcbi.1010682.g005
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rates are constant. The E/I ratio decreases as the presynaptic excitatory rate ρE increases (Fig

5A; Eq 8). This can be explained by considering that a higher excitatory input rate ρE generates

more excitatory LTP (Fig 1C), which is counteracted by even more inhibitory LTP to stabilize

weight dynamics. Analytically, this corresponds to a line attractor with a steeper slope (Figs 2D

and 4D for increasing ρE) since the E/I ratio RE=I
1

corresponds to the slope of the line attractor

(Fig 2D; Methods).

Inspired by experiments [37], we evaluated the E/I ratio RE/I before and after inducing

excitatory and inhibitory plasticity for multiple initial weight configurations (Fig 5B and 5C;

Methods). As predicted analytically (Fig 5A), the E/I ratio after plasticity in these simulations

approaches RE=I
1

(Fig 5C), matching experiments in the mouse auditory cortex where inducing

excitatory and inhibitory plasticity generates a fixed E/I ratio [37]. Large E/I ratios before plas-

ticity induction show the most drastic changes, with high postsynaptic firing rates resulting

from dominant excitation needing to be overcome by fast and drastic weight changes by non-

linear inhibitory plasticity. Indeed, we observed that the I-to-E weights exhibit more change

than E-to-E weights (Fig 5D). This suggests that nonlinear inhibitory plasticity affects the E/I

ratio more prominently than excitatory plasticity (Fig 5E and 5F). With the linear inhibitory

plasticity rule [44], a fixed E/I ratio for constant input rates is only reached for initial weights

which ultimately converge to the line attractor (Fig 1E).

Performance of the nonlinear inhibitory plasticity rule under varying

presynaptic input and postsynaptic firing rate

We next investigated the effect of varying the presynaptic input or the postsynaptic firing rate

on the stability of weight dynamics. Adding noise or a sinusoidal input to the postsynaptic fir-

ing rate νE (Methods) maintains synaptic weights within a certain range despite fluctuations

(Fig 6A and 6B). We can understand the weight dynamics by studying how a varying input to

the postsynaptic neuron affects the line attractors in the phase plane of the wEE and wIE

weights. Adding an input to the postsynaptic neuron shifts only the point where the line

attractor intersects the abscissa but does not change the slope (Fig 6C; Methods). Therefore,

the weights remain constrained within a narrow region, without runaway dynamics. Even

when implementing the plasticity rules with dynamic thresholds, adding postsynaptic noise or

sinusoidal input leads to stable weight and rate configurations (S4 Fig).

The picture changes when the presynaptic input rate ρE varies (Methods). Here, both excit-

atory and inhibitory weights begin to slowly drift towards higher values while average firing

rates remain stable (Fig 6D and 6E). The drift is due to a change in the presynaptic rate which

affects the slope of the line attractors (see also Figs 2D and 4D). In the case of presynaptic sinu-

soidal input rate, the weights slowly increase while oscillating between the line attractors (Fig

6F). Therefore, while on a short timescales the interaction of only excitatory and inhibitory

plasticity mechanisms seems to be sufficient to regulate weight and rate stability, we suggest

that additional homeostatic mechanisms are necessary to regulate synaptic weight dynamics

over longer timescales in the presence of noise or variability in the presynaptic input.

Gating of receptive field formation via a disinhibitory signal

What functional implications does the proposed nonlinear inhibitory plasticity rule have on

setting up network circuitry? Other than controlling excitatory and inhibitory rates and

weights, here we wanted to examine if the nonlinear inhibitory plasticity rule can also enable

flexible learning. Various forms of synaptic plasticity have been observed to support receptive

field formation and generate selectivity to stimulus features in the developing cortex [67]. To

investigate the function of interacting excitatory and inhibitory plasticity at the network level,
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we first extended the feedforward circuit motif to two independent pathways with pathway-

specific inhibition (Fig 7A). We found that perturbing the presynaptic excitatory rate of both

inputs in opposite directions, decreasing for input 1 and increasing for input 2, differently

shifts the input-specific excitatory presynaptic LTD/LTP thresholds and establishes different

E/I ratios (Fig 7B). This shift in the model is in agreement with experimental studies in the hip-

pocampus which have shown that the thresholds between the induction of LTD and LTP are

synapse-specific [59, 68]. These results suggest that the control of E-to-E weight dynamics via

nonlinear inhibitory plasticity is input-specific.

Applying disinhibition by inhibiting the inhibitory population is a widely considered mech-

anism to ‘gate’ learning and plasticity [50, 51, 69]. To test the potential of the circuit with non-

linear inhibitory plasticity to learn, we applied a disinhibitory signal by decreasing the external

excitatory input onto the inhibitory populations. We found that this decreases the inhibitory

input onto the postsynaptic neuron and potentiates E-to-E synapses, wEE (Fig 7C, ρI< 1). In

contrast, increasing the input onto the inhibitory populations depresses E-to-E synapses (Fig

7C, ρI> 1). Therefore, disinhibition via perturbation of the inhibitory neurons has the capacity

to induce plasticity at E-to-E synapses and can gate excitatory plasticity.

How do the current results generalize to larger circuits with multiple independent inputs?

In addition to pathway-specific inhibition, in this extended circuit we also introduced an

unspecific inhibitory population (Fig 7D). We presented different inputs to each of ten path-

ways in random order, corresponding to oriented bars in the visual cortex, or different single

tone frequencies in the auditory cortex (Methods). We found that disinhibiting via the

Fig 6. Performance of the nonlinear inhibitory plasticity rule under varying presynaptic input and postsynaptic firing rate. A. Adding

noise to the postsynaptic firing rate. Top: E-to-E (wEE, blue) and I-to-E (wEI, red) as a function of time. Bottom: Postsynaptic rate dynamics (νE,

gray) as a function of time. B. Same as A but after adding a sinusiodal input to the postsynaptic firing rate. C. Left: The line attractors in the wEE

and wEI phase plane at the maximum and minimum of the postsynaptic firing rate after the addition of sinusoidal input (black lines) and the

weight dynamics from B (green). Right: Zoom in of the phase plane. D. Same as A but after adding the noise to the presynaptic input rate. E.

Same as B but after using a sinusoid for the presynaptic input rate. F. Same as C but after using a sinusoid for the presynaptic input rate with

weight dynamics from E (green).

https://doi.org/10.1371/journal.pcbi.1010682.g006
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unspecific inhibitory population does not selectively potentiate E-to-E weights, and hence

does not generate competition among the different inputs. In this case, the selective potentia-

tion of E-to-E weights corresponding to the inputs stimulated at a given time is counteracted

by the potentiation of I-to-E weights specific to the stimulated inputs. This fast cancellation of

any input-specific excitatory plasticity by input-specific inhibitory plasticity generates very

small changes in the postsynaptic firing rate (Fig 7E, bottom). In contrast, equally disinhibiting

Fig 7. Gating of receptive field formation via a disinhibitory signal. A. Two independent inputs onto the same postsynaptic excitatory

neuron. We perturb the presynaptic excitatory rate from input 1 or 2 (rE
disr;1;2). B. Plasticity curve of E-to-E weights for input 1 or 2 ( _wEE

1;2
) as a

function of the presynaptic excitatory rate ρE for different input-specific perturbations rE
disr;1;2. Inset: E/I weight ratio RE/I for different input-

specific perturbations. C. Plasticity curve of E-to-E weights for input 1 and 2 ( _wEE
1;2

) as a function of the external excitatory rate onto the

inhibitory neurons ρI, corresponding to a perturbation rI
disr of the inhibitory populations. Perturbing ρI below 1 Hz (dashed line) is interpreted

as a disinhibitory signal. Inset: We perturb the external excitatory rate onto the inhibitory neurons rI
disr. D. Ten independent inputs onto the

same postsynaptic excitatory neuron with one inhibitory population unspecific to the input (yellow) and ten inhibitory populations each specific

to one input (red). E. Top: Evolution of excitatory weights over time. Purple bars indicate the time window where either the unspecific (yellow)

or all specific (red) inhibitory populations is disinhibited by applying a negative input onto the inhibitory neurons (Methods). Input number

color coded in green. Bottom: Postsynaptic firing rate νE over time. F. Left: Network connectivity of recurrently connected excitatory neurons

(triangles) after disinhibition. The number and the color indicates the input to which each neuron formed a receptive field (10 inputs in total).

The thickness of the connection indicates the strength, only weights above 0.03 are shown. Distance and position of neurons is for visualization

purposes only. Right: Ordered recurrent E-to-E connectivity matrix. Input number color coded in green as in panel E.

https://doi.org/10.1371/journal.pcbi.1010682.g007
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via all ten specific inhibitory populations strongly increases the E-to-E weights corresponding

to only a subset of inputs, a process also called receptive field formation (Fig 7E). In this case,

the selective potentiation of E-to-E weights corresponding to the inputs stimulated at a given

time is counteracted by the potentiation of all unspecific I-to-E weights. Therefore, inhibitory

plasticity does not cancel input-specific excitation. The random presentation order of the dif-

ferent inputs generates input-specific differences in excitatory weights and hence leads to com-

petition. The input-specific potentiation is reflected in the fluctuating postsynaptic firing rate

which increases only when the winning input is presented (Fig 7E, bottom).

Finally, we implemented a network of 30 recurrently connected excitatory neurons where

each neuron in the circuit receives inputs from ten inputs and an unspecific and a specific

inhibitory population (as in Fig 7D). In addition to the feedforward excitatory and inhibitory

synapses, all recurrent E-to-E weights are also plastic. Similar as with a single postsynaptic neu-

ron, we found that each of the excitatory neurons in the recurrent circuit forms a receptive

field by becoming selective to one of the inputs (Fig 7F, left; number next to the neuron). In

addition, strong bidirectional connections form among recurrent excitatory neurons with sim-

ilar receptive fields due to their correlated activity (Fig 7F). This is consistent with strong bidi-

rectional connectivity described in multiple experimental studies [70–72].

In summary, the newly proposed nonlinear inhibitory plasticity rule does not only ensure

stable synaptic weights and activity, but also enables the formation of feedforward and recur-

rent structures upon disinhibition which gates synaptic plasticity.

Discussion

Hebbian excitatory synaptic plasticity is inherently unstable, requiring additional homeostatic

mechanisms to control and stabilize excitatory-to-excitatory weight dynamics [4]. Here, we

proposed a novel form of inhibitory plasticity (Fig 2), which can control excitatory and inhibi-

tory firing rates and synaptic weights and enable stable and flexible learning of receptive fields

in circuit models of the sensory cortex. We identified the dominance of inhibition over excita-

tion (Eq 6) and identical postsynaptic thresholds between LTD and LTP for excitatory and

inhibitory plasticity (compare Fig 2A and Fig 3A–3C) as two necessary features for stabiliza-

tion of weight dynamics in our model. However, the latter requirement can be relaxed with a

suitable dynamic mechanism that enables self-adjusting of the plasticity thresholds in opposite

directions for excitatory and inhibitory plasticity (Fig 3D–3F). This novel form of nonlinear

inhibitory plasticity can also regulate the network response to perturbations of excitatory input

rates (Fig 4). Inhibitory plasticity affects the E/I weight ratio and establishes a fixed E/I ratio

when input rates are constant (Eq 8), in agreement with experiments in the mouse auditory

cortex where inducing excitatory and inhibitory plasticity sets a fixed E/I ratio [37] (Fig 5). We

find that varying the presynaptic inputs or the postsynaptic firing rate differently affects stabil-

ity (Fig 6). Besides stability, the proposed form of inhibitory plasticity enables receptive field

formation following disinhibition to input-specific inhibitory populations and in recurrent

networks supports the formation of strong bidirectional connectivity among neurons with

similar receptive fields (Fig 7), suggesting a possible solution for the stability-flexibility

problem.

Inhibitory plasticity as a control mechanism of excitatory-to-excitatory

weight dynamics

In the last decades, experimental studies have uncovered multiple possible mechanisms to

counteract Hebbian runaway dynamics, including synaptic scaling [5, 73], heterosynaptic plas-

ticity [7, 8], and intrinsic plasticity [10, 11]. At the same time, computational studies have
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included multiple homeostatic mechanisms, some of them the same as the experimental ones,

to stabilize rates and weight dynamics, including upper bounds on the E-to-E weights, normal-

ization mechanisms [3, 12, 16, 20, 21, 23], metaplastic changes of the plasticity function [13–

16, 24], heterosynaptic plasticity [9, 29, 30] and intrinsic plasticity and synaptic scaling [16].

However, the spatial and temporal scales for integrating Hebbian and homeostatic plasticity

continue to be subject of investigation [18, 25, 26]. This is especially the case for synaptic scal-

ing which experimentally operates on timescales too slow to counteract the faster Hebbian syn-

aptic plasticity (hours and days, vs. seconds and minutes). Heterosynaptic plasticity has been

suggested as a more natural solution to the ‘temporal paradox’ problem since it operates on a

similar timescale as Hebbian plasticity [9, 28, 29].

In our study, we instead proposed a novel inhibitory plasticity rule at inhibitory-to-excit-

atory synapses which depends nonlinearly on the postsynaptic firing rate as a solution to the

temporal paradox problem. While nonlinear excitatory plasticity rules have been identified in

experimental studies [53–55], less data is available for inhibitory plasticity. For example, pre-

synaptic stimulation (hyperpolarization) and postsynaptic depolarization, have been shown to

be required for inhibitory plasticity induction [74–77]. Additionally, high-frequency stimula-

tion of presynaptic input pathways has been shown to potentiate inhibitory synapses [34–36].

Finally, the amount of inhibitory LTP has been shown to depend on the postsynaptic rate [43].

We designed our nonlinear inhibitory plasticity mechanism to be consistent with these find-

ings: both, pre- and postsynaptic activity is necessary to induce inhibitory plasticity and the

amount of LTP depends on the postsynaptic rate. Nonetheless, our rule is inconsistent with

some experimental data which found no inhibitory plasticity for very high postsynaptic rates

[43].

Several computational models have explored the functional roles of inhibitory spike-tim-

ing-dependent plasticity (iSTDP) operating at inhibitory-to-excitatory synapses. A commonly

investigated plasticity rule has a symmetric learning window, where pre- and postsynaptic

spikes close in time lead to LTP, and spikes further apart lead to LTD [44]. Similar symmetric

learning windows have been identified experimentally in the auditory cortex [37], in the orbi-

tofrontal cortex [78], and in the hippocampus [77]. Asymmetric learning windows, in which

pre-post spike pairs lead to LTP and post-pre spike pairs lead to LTD have been observed in

the entorhinal cortex [79], and also used in computational studies [45, 46]. For an inhibitory

plasticity rule to successfully stabilize postsynaptic excitatory firing rates, it needs to implement

a negative feedback mechanism whereby for high postsynaptic firing rates the inhibitory syn-

aptic strength increases, while for low rates the inhibitory strength decreases, as is the case for

our rule as well as others [44–46]. The nonlinear inhibitory plasticity we propose in our study

is probably closest to a recent implementation of inhibitory plasticity via the voltage rule [80],

since the voltage rule has a nonlinear dependency on postsynaptic firing rates [81].

Inhibitory plasticity as a metaplastic mechanism

The ability of the proposed nonlinear inhibitory plasticity to control the sign and magnitude of

excitatory plasticity resembles metaplasticity, i.e. a plasticity mechanism that is plastic itself

[13, 15]. We found that input perturbations modulate the excitatory presynaptic LTD/LTP

threshold via a change of the I-to-E weights and inhibitory rates consistent with metaplasticity

(Fig 4). Previous computational work has already suggested that a linear inhibitory plasticity

rule can implement a metaplastic mechanism [56]. What mechanism underlies the sliding

LTD/LTP threshold during the induction of plasticity is still an open question. Some

experimental studies have suggested that inhibition can control the sign and magnitude of

excitatory plasticity [40, 41, 43, 82]. Most intriguingly, it has been shown that application of
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gamma-Aminobutyric acid (GABA) can increase the excitatory LTD/LTP threshold, while

blocking GABA can decrease the excitatory LTD/LTP threshold [39], supporting our findings

(Fig 1C).

The metaplasticity of excitatory plasticity was first suggested theoretically with the Bien-

enstock-Cooper-Munro (BCM) rule [13], and was later confirmed in sensory deprivation

and restoration experiments [53, 54, 55, 58]. In the BCM rule, the metaplastic mechanism is

implemented by a sliding LTD/LTP threshold depending on the excitatory postsynaptic rate

[83, 84]. Higher (lower) postsynaptic rates lead to a higher (lower) postsynaptic LTD/LTP

threshold making LTP (LTD) induction harder. Various implementations of the BCM rule

have demonstrated its ability to achieve weight selectivity and firing rate stability without

any inhibitory plasticity [13, 14, 24, 85]. Differently from the BCM model, in our nonlinear

inhibitory plasticity rule the metaplastic sliding of the LTD/LTP threshold cEpre depends on

the presynaptic excitatory rate (Fig 1C), whereas the postsynaptic LTD/LTP threshold cEpost is

fixed (except in Fig 3D–3F and S3 Fig). This apparent difference can be resolved by assuming

that homeostatic mechanisms operate at two different timescales: fast and slow. Slow homeo-

stasis has been linked to synaptic scaling which we (and others, e.g. [57]) hypothesize to be a

possible mechanism behind changes in the postsynaptic threshold. It is usually observed on

the timescales of many hours to days [6, 86, 87] but can also occur on the timescale of a few

hours [88]. Fast homeostasis might be linked to disinhibition and inhibitory plasticity [89],

which is induced on the timescale of minutes [9, 37, 90]. We suggest this is the case during

sliding of the presynaptic LTD/LTP threshold mediated by our inhibitory plasticity rule.

Nonetheless, it is plausible that both, presynaptic and postsynaptic metaplasticity exist in

neuronal circuits. An advantage of achieving homeostasis via inhibitory plasticity, rather

than a direct influence on the E-to-E weights, might be that there is no interference with

stored information in E-to-E connections.

We used the metaplasticity of the nonlinear inhibitory plasticity rule to describe firing rate

and weight changes in the model following perturbations of excitatory input (Fig 4) such as

during sensory deprivation experiments [53, 54, 58]. For example, the decrease in inhibitory

firing rates and weights after decreasing excitatory input in our model is consistent with the

decrease in inhibitory activity following sensory deprivation [69, 87, 91]. Specifically, sensory

deprivation has been shown to depress inhibitory synaptic strengths, decrease in the number

of inhibitory synapses [62–66] (but see [92, 93]) and depress excitatory synaptic strengths [61,

94]. Increasing excitatory input in our model potentiates inhibitory weights, in agreement

with experiments where up-regulating activity potentiates I-to-E synapses [95, 96]. We note

that the plasticity induced by these sensory deprivation experiments occurs on much longer

timescales of hours to days (see e.g. [57, 89]) compared to the shorter plasticity timescales of

seconds or minutes in our model, suggesting that other mechanisms than the proposed non-

linear inhibitory plasticity drive the experimentally observed changes. Moreover, in our model

we instantaneously and permanently change the input firing rate in contrast to the more com-

plex changes in input patterns occurring during sensory deprivation. Therefore, the applied

perturbation in our model could be better related to direct simulation of input pathways when

similarly fast LTD/LTP threshold changes have been measured experimentally [59, 60, 97]).

Key features of the nonlinear inhibitory plasticity rule

For the novel inhibitory plasticity rule to stabilize E-to-E weight dynamics, two key features

need to be fulfilled. First, I-to-E weight changes need to be more ‘dominant’ than E-to-E

weight changes (Fig 2). More dominant means that I-to-E weights need to change with a

higher magnitude at each time step compared to E-to-E weights, for all postsynaptic rates. If
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excitatory plasticity exceeds inhibitory plasticity for a certain postsynaptic rate as in the case of

linear inhibitory plasticity, weight dynamics will be unstable (Fig 1D–1F). In our model, domi-

nance of nonlinear inhibitory plasticity is guaranteed by the condition in Eq 6, which involves

relative number of synapses, presynaptic rates and plasticity timescales of excitation and inhi-

bition to determine stability. Previous experimental work has reported that inhibitory synapses

change more drastically than excitatory synapses [37], but inhibitory plasticity may be delayed

relative to excitatory plasticity [50].

Second, the excitatory and inhibitory postsynaptic LTD/LTP thresholds need to be matched

for stable weight dynamics, whereby excitatory and inhibitory synaptic change occur in the

same direction for a given firing rate (Fig 2A–2C versus Fig 3A–3C). However, implementing

a mechanism that dynamically shifts these thresholds in the opposite directions for excitatory

vs. inhibitory plasticity based on experimental evidence [57], suggests that this match is not

needed at all times. An interesting consequence from this dynamic threshold shift is the ability

to achieve a range of firing rates. A limitation of the suggested dynamic threshold matching

mechanism is that it is non-local whereby the thresholds for all input pathways converge to the

same value. While this can still achieve stable weight dynamics and postsynaptic firing rates

(S3G–S3I Fig; Methods), it can no longer induce competition among different inputs. Future

work needs to investigate whether a different dynamic matching of excitatory and inhibitory

LTD/LTP thresholds, perhaps one that is input-specific, can achieve the stable formation of

receptive fields.

We found that the newly proposed nonlinear inhibitory plasticity rule achieves a fixed E/I

ratio for constant input rates (Fig 5) in agreement with experimental data in the mouse audi-

tory cortex where the induction of excitatory and inhibitory plasticity established a fixed E/I

ratio [37]. We observed that inhibitory plasticity is the more dominant mechanism to achieve

this. The dominance of inhibitory plasticity suggests a possible solution to the temporal para-

dox problem of integrating Hebbian excitatory plasticity and homeostasis [25], eliminating the

requirement for additional fast stabilizing mechanisms in our model. While the relative time-

scales of excitatory and inhibitory plasticity mechanisms remain an open question, most

computational models agree on the need for faster inhibitory than excitatory plasticity dynam-

ics [25, 98].

Our framework is robust when noise or a varying input is added to the postsynaptic firing

rate but not when the presynaptic rate varies (Fig 6). This suggests that additional homeostatic

mechanisms are necessary to robustly counteract drift of synaptic weights when the input or

the firing rates vary.

Functional implications of the nonlinear inhibitory plasticity rule

The interaction of the nonlinear inhibitory and excitatory plasticity in our model and the over-

lap of excitatory and inhibitory LTD/LTP thresholds lead to a fixed E/I weight ratio when

input rates are constant (Fig 5A and 5C and Eq 8). This is consistent with several experimental

studies which have suggested that inhibitory plasticity maintains a stable E/I ratio [9, 37, 43,

50, 96, 99–102]. For example, as our model would predict, some studies have found that the

amount of inhibitory plasticity depends on the E/I ratio before plasticity induction (Fig 5F)

[37, 103]. In these experiments, a change in E/I ratio is observed on the timescale of induction

of plasticity (5–10 min) [37]. When we perturb the excitatory input rate as a model of sensory

deprivation the E/I ratio increases (Fig 5A), consistent with sensory deprivation experiments

[66, 69, 91, 94]. Despite the ability of the new nonlinear inhibitory plasticity rule to establish

and maintain E/I balance, we acknowledge that there are various additional mechanisms that

contribute, including heterosynaptic plasticity [9].
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The emergence of fixed E/I ratio for constant input rates following from the stabilization of

postsynaptic rates driven by the novel inhibitory plasticity rule ensures E/I balance. E/I balance

is more broadly defined as the proportionality of total excitatory and inhibitory input onto a

neuron [104]. In our model, once the neuron fires with a firing rate equal to the LTD/LTP

threshold there is no more synaptic plasticity. To induce further weight changes, an additional

gating signal is necessary that perturbs the postsynaptic firing rate. In our model, there are

three ways to gate plasticity: (1) directly changing the postsynaptic rate (Fig 1B); (2) perturbing

the excitatory input pathway (Fig 4); and (3) perturbing the inhibitory population (Fig 7C).

The idea that inhibition gates excitatory plasticity is well-documented in the experimental lit-

erature [105–107].

Experimentally, both neuromodulation [50, 108] and disinhibitory circuits [51, 90, 109–

111] can directly control the activity of inhibitory neurons and lead to excitatory plasticity.

Based on this, we investigated the gating of plasticity via a disinhibitory signal in the context of

receptive field formation. While receptive field formation has already been demonstrated in

multiple computational studies [13, 45, 56], we propose that it can occur solely from the inter-

action of excitatory and inhibitory plasticity without any additional mechanism to induce

competition among different inputs (Fig 7D and 7E). Recurrently connecting multiple post-

synaptic excitatory neurons and allowing the connections between them to be plastic leads to

receptive field formation of each excitatory neuron in the recurrent circuit and the formation

of strong bidirectional connectivity between neurons with similar receptive fields (Fig 7F).

This is in agreement with various experimental data indicating that similarly responsive neu-

rons are more strongly connected [70–72, 112]. The formation of strongly recurrently con-

nected neurons, often referred to as assemblies, via synaptic plasticity has been shown in

previous computational studies [20–23, 113]. In contrast to our framework, these studies rely

on a fast normalization mechanism in addition to excitatory and inhibitory plasticity to reli-

ably learn assemblies.

We found that gating of receptive field formation via disinhibition depends on the specific-

ity of the targeted inhibitory population to the inputs. While disinhibiting the unspecific popu-

lation does not form receptive fields, disinhibiting all specific inhibitory populations induces

competition between different inputs and forms receptive fields. If inhibitory plasticity coun-

teracts excitatory plasticity in an input-specific way, no competition between input pathways

can emerge because small biases in the E-to-E weights in one input are immediately balanced

by I-to-E weights in the same input. Therefore, disrupting the specific inhibitory populations

allows the strengthening of a subset of inputs. This result is similar to the findings of [56],

where receptive field formation was shown to depend on the specificity of the inhibitory

neurons.

The inhibitory populations in our model can be linked to the two main inhibitory neuron

types in the cortex, somatostatin-expressing (SOM) and parvalbumin-expressing (PV) inhibi-

tory interneurons. Specificity of the inhibitory neuron type to excitatory inputs can be inter-

preted as tuning of the inhibitory neurons to input features. In the visual [114, 115] and the

auditory cortex [116], tuning of SOM interneurons is sharper than PV interneurons, although

conflicting evidence exists [117]. Therefore, in our model the specific inhibitory neuron type

could represent SOM interneurons while the unspecific inhibitory population could represent

PV interneurons. Supporting this interpretation of SOM interneurons being the specific inhib-

itory population, experimental studies find that a suppression of SOM neurons gates excitatory

plasticity [106, 111, 118]. In contrast to this interpretation, the specific inhibitory neurons in

our model might be interpreted as PV neurons. This is supported by experimental evidence

which shows that PV neurons strongly inhibit pyramidal neurons which have similar selectiv-

ity [119].

PLOS COMPUTATIONAL BIOLOGY Stability and learning by nonlinear inhibitory plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010682 December 2, 2022 19 / 34



Predictions

Using rate-based units in our model enabled us to treat it analytically and offered an in-depth

mechanistic understanding of the involved processes leading to experimentally testable predic-

tions and making our model assumptions falsifiable. A main feature of our model is that inhib-

itory plasticity depends nonlinearly on the rate of the postsynaptic excitatory neuron. This can

be tested experimentally by inducing inhibitory plasticity while varying the rate of an excit-

atory neuron and keeping the inhibitory input to this neuron constant. A second feature of

our model is that excitatory and inhibitory plasticity have an identical postsynaptic LTD/LTP

threshold. This could be tested by inducing plasticity at excitatory and inhibitory pathways

onto the same excitatory neuron, and measuring the LTD/LTP thresholds as a function of the

rate of that neuron.

Based on the perturbation experiment (Fig 4), we can formulate multiple predictions. First,

we hypothesize that the mechanism behind the metaplastic mechanism is a change in the level

of inhibition (see Figs 1C and 4E). Therefore, blocking inhibitory plasticity experimentally

should also disrupt the metaplastic mechanism. Second, we predict that the shape of inhibitory

plasticity as a function of the inhibitory rate is reversed compared to excitatory plasticity, and

perturbations of the excitatory input lead to specific metaplastic changes of inhibitory plastic-

ity. Decreasing the excitatory input should lower the inhibitory LTD/LTP threshold as a func-

tion of the presynaptic inhibitory rate and decrease the inhibitory LTP magnitude (Fig 4F).

Third, since the line of stable fixed point depends on several model parameters (Fig 2C and Eq

7), especially on the excitatory input rate (Fig 4D), we hypothesize that different E/I ratios can

be achieved following input perturbations. Decreasing the excitatory input rate should lead to

higher E/I ratios, while increasing it to lower E/I ratios.

The proposed rule suggests a new functional role of inhibitory plasticity, namely controlling

E-to-E weight dynamics. Therefore, we extend previously studied roles of inhibitory plasticity,

which include the stabilization of excitatory rates [44, 98], decorrelation of neuronal responses

[120], preventing winner-take-all mechanisms in networks with multiple stable states [20] or

generating differences among novel versus familiar stimuli [23]. Recent computational studies

also include novel ways of inhibitory influence, like presynaptic inhibition via GABA spillover

[121], an input-dependent inhibitory plasticity mechanism [122] and co-dependency of excit-

atory and inhibitory plasticity rules [123]. Our model includes a single type of inhibitory plas-

ticity. Yet, recent studies have found that cortical circuits have abundance of different

inhibitory interneuron types and that inhibitory plasticity depends on the inhibitory neuron

type [75–78]. Our result on inhibitory population-dependent effects in gating receptive field

formation suggests that subtype-specific plasticity rules might have non-trivial influences on

the network, as some recent models have proposed [78, 124]. Furthermore, other homeostatic

mechanisms will influence the stability of weight dynamics, E/I ratios and the effect different

perturbations have on the network dynamics.

Conclusion

Taken together, our study proposed a novel form of nonlinear inhibitory plasticity which can

achieve stable firing rates and synaptic weights without the need for any additional homeo-

static mechanisms. Moreover, our proposed plasticity is fast, and hence could provide a solu-

tion to the temporal paradox problem because it can counteract fast Hebbian excitatory

plasticity. Functionally, our proposed inhibitory plasticity can establish and maintain a fixed

E/I ratio for constant input rates at which the postsynaptic firing rate is exactly at the LTD/

LTP threshold. For such postsynaptic firing rates, no synaptic plasticity is induced, i.e. plastic-

ity is “off”. Perturbing the postsynaptic firing rate, e.g. via disinhibition, can act as a gate,
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turning plasticity “on”. This enables the competition among input streams leading to receptive

field formation in feedforward and recurrent circuits. Therefore, our nonlinear inhibitory plas-

ticity mechanism provides a solution to the stability-flexibility challenge.

Methods

Rate-based model

We studied rate-based neurons to allow us to analytically investigate the dynamics of firing

rates and synaptic weights in the model. In the feedforward motif (Fig 1A), we considered a

network consisting of one excitatory postsynaptic neuron with a linear threshold transfer func-

tion and firing rate νE, see Eq 1. The inhibitory neurons also follow a similar dynamics, see Eq

2. All parameters are given in Table 1. In the mean-field sense, the number of neurons can be

traded-off with the rates or the synaptic weights, hence we assume NE = NI = 1 (Table 1).

Rate-based plasticity

For the plasticity of E-to-E synaptic weights wEE, we used a learning rule that depends nonli-

nearly on the postsynaptic rate νE (Fig 1B) [53–55]:

tEw _wEE ¼ rEnEðnE � cEpostÞ: ð10Þ

Here, tEw is the timescale of excitatory plasticity, which can be also thought of as the inverse of

the learning rate, with correcting units Hz2. This timescale is much longer than the timescale

of the neuronal dynamics. The plasticity changes sign at the ‘postsynaptic LTD/LTP threshold’,

cEpost. During experimental induction of plasticity, low frequency stimulation (1,3 or 5 Hz)

induces LTD, while high frequency stimulation (10–20 Hz) induces LTP [53]. Therefore, a nat-

ural value of the LTD/LTP threshold is between 5 and 10 Hz. We chose 1 Hz as the LTD/LTP

threshold (Table 1), nonetheless, our findings will still hold with higher LTD/LTP thresholds.

For the plasticity of I-to-E synaptic weights wEI, we used two learning rules. First, we used

an inhibitory plasticity rule common in computational models [44, 56], which depends linearly

on the postsynaptic rate νE (Fig 1D, _wEI):

tIw _wEI ¼ nIðnE � cIpostÞ: ð11Þ

Table 1. Parameter values for figures, ? denotes that values are provided in the figure captions.

Sym. Description Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Fig 7B and 7C S2 Fig S3 Fig

wEE
0

Initial E-to-E weight ? 1.5 ? 1 0.7 1.5 ?

wEI
0

Initial I-to-E weight ? 0.5 ? 1 0.5 ?

wIE E-to-I weight 0.5 ? 0.5

ρE Presynaptic E rate (Hz) 2 ? 2 ? 2 ?

ρI Ext. E rate onto I neurons (Hz) 0.5 ? 0.5

NE Number of presyn. E neurons 1 ?

NI Number of I neurons 1 ?

t
E=I
FR

Time const. E/I rate dyn. (s) 0.01

tEw Timescale E plasticity (Hz2) 1 0.5 1

tIw Timescale I plasticity (Hz or Hz2) 0.2 1 0.2

cEpost E postsyn. LTD/LTP thresh. (Hz) 1 ? 1 ?

cIpost I postsyn. LTD/LTP thresh. (Hz) 1 ? 1 ?

https://doi.org/10.1371/journal.pcbi.1010682.t001
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Here, tIw denotes the timescale of inhibitory plasticity (or the inverse of the learning rate) with

correcting units Hz, which again is much longer than the timescale of the neuronal dynamics.

As for excitatory plasticity, inhibitory plasticity changes from LTD to LTP at the ‘inhibitory

postsynaptic LTD/LTP threshold’, cIpost, which sets the ‘target rate’ of the postsynaptic neuron

[44]. In our paper, we proposed a novel inhibitory plasticity rule, which also depends nonli-

nearly on postsynaptic excitatory activity just like excitatory plasticity (Fig 2A):

tIw _wEI ¼ nInEðnE � cIpostÞ: ð12Þ

For both inhibitory plasticity rules, we assumed that the excitatory and inhibitory thresholds

are matched (cEpost ¼ cIpost) to prevent excitatory and inhibitory plasticity pushing the postsynap-

tic excitatory neuron towards two different firing rates. The exception for this was the dynamic

mechanism for threshold matching in Fig 3 and S3 Fig.

LTD/LTP plasticity thresholds. As can be see in the equations for excitatory and inhibi-

tory plasticity, the postsynaptic LTD/LTP thresholds, which determine the sign of plasticity as

a function of postsynaptic excitatory activity, are fixed. However, in the main text we also

introduce the concept of a presynaptic LTD/LTP threshold, defined as the presynaptic excit-

atory rate at which no synaptic plasticity is induced. We consider νE at steady state (νE = [NEρE-

wEE − NIνIwEI]+) and assume that the dynamics of the rates are in the region where the transfer

function is linear. Therefore, we can drop the linear rectifier and solve for ρE at which Eq 3 is

zero. We derive the presynaptic LTD/LTP threshold as:

cEpre ¼
cpost þ NInIwEI

NEwEE
: ð13Þ

Stability analysis. To investigate the stability of the weights, we first calculated the

nullclines, where we assumed that the postsynaptic excitatory rate is at steady state

νE = [NEρEwEE − NIνIwEI]+. By setting Eqs 10 and 12 to zero and dropping the linear recti-

fier, i.e. νE = NEρEwEE − NIνIwEI, we can write:

wEI ¼
NErEwEE � cEpost

NInI
;

wEI ¼
NErEwEE � cIpost

NInI
:

ð14Þ

We see that the two equations are identical if cEpost ¼ cIpost. Therefore, only for identical

LTD/LTP thresholds (cEpost ¼ cIpost) a line of fixed points emerges. The fixed points are

½wEE
�
;wEI
�
� ¼ ½x; ðNErEx � cpostÞ=ðNInIÞ�, where we require that x� cpost/(NEρE) to avoid nega-

tive weights. To calculate the stability of the line of fixed points, we calculate the eigenval-

ues. We can rewrite Eqs 10 and 12, as:

_wEE ¼
rE

tEw
ðNErEwEEÞ

2
þ ðNInIwEIÞ

2
� 2NENIrEnIwEEwEI � NErEwEEcpost þ NInIwEIcpost

� �
¼ f

_wEI ¼
nI

tIw
ðNErEwEEÞ

2
þ ðNInIwEIÞ

2
� 2NENIrEnIwEEwEI � NErEwEEcpost þ NInIwEIcpost

� �
¼ g

ð15Þ

where we drop the linear rectifier by assuming that the dynamics of the rates are in the

region where the transfer function is linear. We find that the entries of the Jacobian matrix
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at the fixed points are:

J� ¼

@f
@wEE

@f
@wEI

@g
@wEE

@g
@wEI

0

B
B
B
@

1

C
C
C
A
¼

NEðrEÞ
2cpost

tEw
�
NIrEnIcpost

tEw

NErEnIcpost
tIw

�
NIðnIÞ

2cpost
tIw

0

B
B
B
B
B
@

1

C
C
C
C
C
A

: ð16Þ

The trace of the Jacobian is TrðJ�Þ ¼
NEðrEÞ2cpost

tEw
�

NI ðnI Þ2cpost
tIw

and the determinant is zero Det(J�)
= 0, therefore we find that the eigenvalues are:

l1;2 ¼
1

2
TrðJ�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðJ�Þ
2
� 4DetðJ�Þ

q� �

¼
TrðJ�Þ;

0:

(

ð17Þ

This means that if Tr(J�) < 0, the system is stable. Reordering this condition leads to the sta-

bility condition derived in the main text as Eq 6. By reordering the terms in the nullclines

given in Eq 14, we derive the line attractor equation as given in the main text in Eq 7.

The nonlinear excitatory and inhibitory plasticity rules have a fixed point when the postsyn-

aptic excitatory firing rate is νE = 0. Therefore, in the phase plane of wEE and wEI weights there

is a region where the total inhibitory input is larger than the total excitatory input, NEρEwEE<

NIνIwEI, resulting in no postsynaptic firing (Fig 2B, above gray line). The line equation separat-

ing the space with and without weight dynamics is:

wEI ¼
NErEwEE

NInI
: ð18Þ

In the case of the linear inhibitory plasticity rule, stability depends on the initial weights. The

line which separates stable from unstable initial weights can be calculated by taking the ratio of

Eqs 10 and 11 and equating that to the slope of the line attractor (Eq 7):

_wEI

_wEE
¼

tEwn
I

tIwr
EðNErEwEE � NInIwEIÞ

¼
NErE

NInI
ð19Þ

which leads to:

wEI ¼
NErE

NInI
wEE �

nItEw

NEðrEÞ
2
tIw
; ð20Þ

which is the equation of the dashed line in Fig 1E. The slope of the line attractor is the same for

linear and nonlinear inhibitory plasticity.

In Eqs 13–20, the inhibitory firing rate can be replaced by its steady state value νI = NEρEwIE +

ρI. For the stability condition (Eq 6) this leads to:

NIðNErEwIE þ rIÞ
2

tIw
>

NEðrEÞ
2

tEw
: ð21Þ

and for the line attractor (Eq 7) to:

wEI ¼
NErE

NIðNErEwIE þ rIÞ
wEE �

cpost
NIðNErEwIE þ rIÞ

: ð22Þ
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The perturbations of the presynaptic firing rate rE
disr in Fig 4 are defined as instantaneous

and permanent increases or decreases from the initial presynaptic firing rate rE
base.

Dynamic threshold matching

The equations for the dynamics of the postsynaptic LTD/LTP thresholds in Fig 3D–3F and S3

Fig are:

tcEpost
_cEpost ¼ _wEE

tcIpost
_cIpost ¼ � _wEI

ð23Þ

and therefore cEpost increases (decreases) if the postsynaptic neuron fires at nE > cEpost (nE < cEpost)
and cIpost decreases (increases) if the postsynaptic neuron fires at nE > cIpost (nE < cIpost). The

amount of increase or decrease of the postsynaptic thresholds is scaled by the amount of plas-

ticity induction, and we used a timescale of tE=Ic ¼ 2 ms, which is faster than the timescale of

excitatory and inhibitory plasticity (Table 1). We point out that modifications in the LTD/LTP

thresholds lead to changes in the induction of plasticity as well as the postsynaptic firing rate.

For two different initializations of the postsynaptic thresholds, cEpost < cIpost and cEpost > cIpost,
the synaptic weights, postsynaptic firing rate and postsynaptic threshold dynamics can be sta-

bilized (Fig 3D–3F and S3A–S3C Fig). The same also holds when applying input perturbations

(S3D–S3F Fig). For multiple input streams (S3G–S3I Fig), the dynamic postsynaptic LTD/LTP

thresholds change based on the total excitatory (or inhibitory) weight change, leading to a

non-local sliding mechanism which is independent of the input stream. A condition for the

stabilization is that the weights do not reach their lower bounds at zero, because zero weights

prevent plasticity and promote the continuous increase of LTD/LTP thresholds preventing

firing rates from stabilizing.

E/I ratio

We can calculate the E/I weight ratio RE/I in Eq 8 by rewriting Eq 14 and dividing one of the

nullclines by wEI. For large weights, or in mathematical terms for wEI!1, the E/I ratio

becomes limwEI!1RE=I ¼ RE=I
1
¼ NInI

NErE
. This derivation is only valid for NI(NEρEwIE + ρI)wEI�

cpost. Therefore, the parameters of the input firing rates ρE and ρI, the synaptic weights wEI and

wIE, as well as number of excitatory and inhibitory neurons NE and NI need to be chosen

appropriately. This inequality is satisfied for the parameters in Fig 5 when the steady state syn-

aptic weights wEI are sufficiently large (Table 1).

The existence of a fixed E/I ratio for constant input rates can be directly related to the line

attractor. The line attractor (Eq 7) expresses the I-to-E weight wEI as a multiple of the E-to-E

weight wEE minus the offset term cpost/(NIνI). Therefore, the ratio of excitatory to inhibitory

weight strengths, RE/I (Eq 8), can be expressed as the sum of two terms: one constant term

equal to the slope of the line attractor, which is independent of the E-to-E and I-to-E weights,

wEE and wEI, and a second term, called an offset, which depends on wEI. When this weight is

sufficiently large, the offset term can be ignored, leading to an E/I ratio, RE=I
1

, independent

from the E-to-E and I-to-E weights.

In the feedforward circuit (Fig 1A), we can write:

RE=I
1
¼

NInI

NErE
¼

NIðrI þ wIErEÞ

NErE
¼

NI

NE

rI

rE
þ wIE

� �

: ð24Þ

Assuming that NE = NI, for larger excitatory input rate ρE the E/I ratio reaches RE=I
1
� wIE (see
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Fig 5A, where wIE = 0.5). Therefore, the E/I ratio has a lower bound which depends on the

strength of the connection from the excitatory to inhibitory population.

In Fig 5, we link our model to the experimental findings on how the interaction of excit-

atory and inhibitory plasticity can lead to fixed E/I ratios [37]. In [37], the authors induce plas-

ticity with a spike-pairing protocol, in which pre-post spikes elicit excitatory LTP, while post-

pre spikes elicit LTD. Inhibitory LTP was induced for short time differences between the pre-

and postsynaptic spikes (independent of the order of the spikes) and inhibitory LTD for longer

time differences of the spike pairs. Since in the experiments the presynaptic stimulation was

done with a stimulation electrode, the excitatory and inhibitory inputs did not have to be func-

tionally related. In the model, we randomly drew initial E-to-E and I-to-E weights and induced

plasticity for a limited amount of time (100 ms) based on the rate-based plasticity rules (Eqs 10

and 12). We choose 100 ms so not all synaptic weights have reached the line attractor yet and

so we can compare the E/I ratios reached in our model to those measured experimentally [37]

which would most likely also not be in steady state.

The E/I balance can also be defined by the total excitatory input divided by the total inhibi-

tory input onto the postsynaptic neuron:

RE=I
tot ¼ ðNEwEErEÞ=ðNIwEInIÞ: ð25Þ

This leads to:

RE=I
tot ¼ ðNIðNErEwIE þ rIÞwEI þ cpostÞ=ðNIðNErEwIE þ rIÞwEIÞ: ð26Þ

However, since we calculate the E/I balance at steady state, the total E/I balance is equal to the

weight E/I balance multiplied by a constant, i.e.:

~RE=I ¼ RE=INErE=ðNInIÞ: ð27Þ

Therefore, the results in Fig 5 also hold with this alternative E/I ratio definition.

Noise and sinusoidal input

In Fig 6, we add a varying input either by modifying the presynaptic input rate ρE or adding an

additional term to the postsynaptic neuron (adding ρadd to Eq 1):

tEFR _nE ¼ � nE þ ½NErEwEE � NInIwEI þ radd�þ: ð28Þ

In the case of postsynaptic noise (Fig 6A), ρadd is a normally distributed random variable with

mean zero and standard deviation 0.01. In the case of additional sinusoidal input to the post-

synaptic neuron (Fig 6B), ρadd(t) = 0.25 � sin(0.01t). Recalculating the slope of the line attractor

(Eq 7) based on Eq 28 leads to:

wEI ¼
NErE

NInI
wEE �

cpost � radd

NInI
; ð29Þ

meaning that ρadd only affects the intersection, but not the slope of the line attractor. We note

that the line attractor is calculated at steady state firing rates, meaning that the line attractor

will actually never be reached by a varying input.

In the case of presynaptic noise (Fig 6D), we add a normally distributed random variable

with mean zero and standard deviation 0.3 to the presynaptic firing rate ρE. For the sinusoidal

input (Fig 6E), we chose ρE(t) = 2 + 0.5 � sin(0.01t).
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Gating of receptive field formation and recurrent clustering

Here, we explore a feedforward network with multiple inputs and two inhibitory neuron pop-

ulations (Fig 7C). To form receptive fields, we provide a random patterned input to the net-

work. An input pattern is defined by a high firing rate of 4 Hz at a subset of four excitatory

input neurons for a time of 100 ms. In Eqs 1 and 2, this is reflected by a subset of the NE inputs

having rE
m ¼ 4 Hz, where m corresponds to the presynaptic neurons being part of the respec-

tive input pattern. After a time of 100 ms, a new subset of four excitatory neurons fire at high

firing rates. We then disinhibit the postsynaptic neurons by inhibiting either the total unspe-

cific or specific inhibitory populations for 60 s by inducing an inhibitory input of 2 onto the

respective inhibitory neuron population (we set rI
spec ¼ � 2 or rI

unsp ¼ � 2). Disinhibition needs

to be applied for a sufficiently long time to ensure that inhibitory plasticity can induce compe-

tition and form receptive fields. We model the release of disinhibition for the specific inhibi-

tory population as slow and gradual over a time course of 100 s to avoid complete silencing of

the postsynaptic excitatory neurons. We also note that here we used instantaneous integrators,

i.e. tEFR ¼ t
I
FR ¼ dt (Table 2), because we only wanted to focus on the interaction of excitatory

and inhibitory plasticity in the model, though see [125].

For the recurrent circuit, we connected recurrently 30 postsynaptic neurons with feedfor-

ward circuits with specific and unspecific inhibition as described above (see also Fig 7D and

7E). In addition to feedforward excitatory and inhibitory weights, also recurrent excitatory

weights were plastic based on the plasticity mechanism of Eq 10. We allowed the input pat-

terns to each of the recurrent excitatory neuron to be correlated. Initial recurrent excitatory

weights were randomly drawn from the interval [0,0.18]. We calculated the mean weight per

input pattern and chose the maximum of those to be the input to which the neurons formed

a receptive field. The clustering graph in Fig 7F (left) was done with the digraph function in

Matlab where the distance between neurons is only used to visualize clusters of neurons with

similar tuning.

Table 2. Parameter values for Fig 7E and 7F.

Symbol Description Fig 7E Fig 7F

wEE
0

Initial E-to-E weight 0.03 [0,0.18]

wEI
spec;0 Initial specific I-to-E weight 0.01

wEI
unsp;0 Initial unspecific I-to-E weight 0.01

wIE
spec Specific E-to-I weight (fixed) 0.2 0.002

wIE
unsp Unspecific E-to-I weight (fixed) 0.02 0.001

ρE Presynaptic E rate (Hz) 1

rI
spec External E rate onto specific I neurons (Hz) 0

rI
unsp External E rate onto unspecific I neurons 0

NE Number of presyn. E neurons (Hz) 40

NI
spec Number of specific I neurons 20

NI
unsp Number of unspecific I neurons 20

tEFR Timescale for E neuron model (s) 0.0001

tIFR Timescale for I neuron model (s) 0.0001

tEw Timescale for E plasticity (Hz2) 1

tIw Timescale for I plasticity (Hz2) 0.2

cEpost E postsyn. LTD/LTP threshold (Hz) 1

cIpost I postsyn. LTD/LTP threshold (Hz) 1

https://doi.org/10.1371/journal.pcbi.1010682.t002
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The simulations were performed using Matlab programming language. Euler integration

was implemented using a time step of 0.1. Code implementing our model is available here:

https://github.com/comp-neural-circuits/Nonlinear-inhibitory-plasticity.

Supporting information

S1 Fig. Plasticity of excitatory-to-excitatory synapses as a function of presynaptic and post-

synaptic firing rates. Excitatory plasticity _wEE (Eq 3) is normalized to the maximum value of

long-term potentiation (1) and the maximum value of long-term depression (−1), respectively.

(EPS)

S2 Fig. Feedback inhibitory motif leads to additional stability. A. Schematic of the feedback

inhibitory motif. The inhibitory population receives input from the presynaptic excitatory

population with weight strength wIE
FF and the excitatory postsynaptic neuron with weight

strength wIE
FB. B. Plasticity of E-to-E ( _wEE, blue) and I-to-E ( _wEI , red) weights as a function of

the postsynaptic rate νE. The excitatory and inhibitory LTD/LTP thresholds are identical

(cEpost ¼ cIpost). C. E-to-E (wEE, blue) and I-to-E (wEI, red) and rate dynamics of the postsynaptic

(gray line) and the inhibitory population (gray dashed line) as a function of time. D. Stability

of weight dynamics as a function of the excitatory-to-inhibitory weights wIE
FB and wIE

FF. Star indi-

cates the values shown in panel C.

(EPS)

S3 Fig. Dynamic matching of the excitatory and inhibitory postsynaptic LTD/LTP thresh-

olds and networks response to input perturbations. A. Postsynaptic LTD/LTP thresholds

cEpost and cIpost shift dynamically depending on the recent postsynaptic rate νE. For lower postsyn-

aptic rate than the excitatory postsynaptic LTD/LTP threshold (nE < cEpost), c
E
post decreases, and

for nE > cEpost, c
E
post increases. For higher postsynaptic rate than the inhibitory postsynaptic

LTD/LTP threshold (nE > cIpost), c
I
post decreases, and for nE < cIpost, c

I
post increases (see Methods).

B. Evolution of excitatory (cEpost, blue) or inhibitory (cIpost, red) postsynaptic LTD/LTP thresh-

olds for initial conditions cEpost;0 ¼ 1:3, cIpost;0 ¼ 0:7. C. Excitatory (wEE, blue) and inhibitory

(wEI, red) weight dynamics and postsynaptic rate dynamics (νE, gray) for the initial condition

cEpost;0 ¼ 1:3, cIpost;0 ¼ 0:7. D. Effect of increasing (solid lines, rE
disr ¼ 2:5) or decreasing (dashed

lines, rE
disr ¼ 1:5) excitatory input rates from a baseline of rE

base ¼ 2 on excitatory (blue) and

inhibitory (red) firing rates. E. Same as D but for the cEpost and cIpost weights. F. Same as D but for

the wEE and wEI weights. G. Plasticity curve of E-to-E weights for input 1 or 2 ( _wEE
1;2

) as a func-

tion of the presynaptic excitatory rate ρE for different input-specific perturbations rE
disr;1;2. H.

Evolution of excitatory (cEpost , blue) or inhibitory (cIpost, red) postsynaptic LTD/LTP thresholds

for the case in G. I. Excitatory (wEE, blue) and inhibitory (wEI, red) weight dynamics for the

case in G. Compare A-C to Fig 3, D-F to Fig 4 and G-I to Fig 7B.

(EPS)

S4 Fig. Performance of the nonlinear inhibitory plasticity rule under varying postsynaptic

firing rate with dynamic excitatory and inhibitory LTD/LTP threshold matching. A. Add-

ing noise to the postsynaptic firing rate. Top: E-to-E (wEE, blue) and I-to-E (wEI, red) as a func-

tion of time. Middle: Excitatory (cEpost, blue) and inhibitory (cIpost , red) postsynaptic LTD/LTP

threshold as a function of time. Bottom: Postsynaptic rate dynamics (νE, gray) as a function of

time. B. Same as A but after adding a sinusiodal input to the postsynaptic firing rate.

(EPS)
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Abstract Animals depend on fast and reliable detection of novel stimuli in their environment.

Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli.

Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses.

Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses

generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases

the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli

remains low, leading to a network novelty response. The generation of novelty responses does not

depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of

inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest

that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity

provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli,

enabling us to make experimentally testable predictions.

Introduction
In an ever-changing environment, animals must rapidly extract behaviorally useful information from

sensory stimuli. Appropriate behavioral adjustments to unexpected changes in stimulus statistics are

fundamental for the survival of an animal. We still do not fully understand how the brain detects

such changes reliably and quickly. Local neural circuits perform computations on incoming sensory

stimuli in an efficient manner by maximizing transmitted information or minimizing metabolic cost

(Simoncelli and Olshausen, 2001; Barlow, 2013). Repeated or predictable stimuli do not provide

new meaningful information. As a consequence, one should expect that responses to repeated stim-

uli are suppressed – a phenomenon postulated by the framework of predictive coding (Clark, 2013;

Spratling, 2017). Recent experiments have demonstrated that sensory circuits across different

modalities can encode a sequence or expectation violation and can detect novelty (Keller et al.,

2012; Natan et al., 2015; Zmarz and Keller, 2016; Hamm and Yuste, 2016; Homann et al., 2017).

The underlying neuronal and circuit mechanisms behind expectation violation and novelty detection,

however, remain elusive.

A prominent paradigm used experimentally involves two types of stimuli, the repeated (or fre-

quent) and the novel (or deviant) stimulus (Näätänen et al., 1982; Fairhall, 2014; Natan et al.,

2015; Homann et al., 2017; Weber et al., 2019). Here, the neuronal responses to repeated stimuli

decrease, a phenomenon that is often referred to as adaptation (Fairhall, 2014). Adaptation can

occur over a wide range of timescales, which range from milliseconds to seconds (Ulanovsky et al.,

2004; Lundstrom et al., 2010), and to multiple days in the case of behavioral habituation

(Haak et al., 2014; Ramaswami, 2014). We refer to the elevated neuronal response to a novel stim-

ulus, compared to the response to a repeated stimulus, as a ‘novelty response’ (Homann et al.,

2017). Responses to repeated versus novel stimuli, more generally, have also been studied on
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different spatial scales spanning the single neuron level, cortical microcircuits and whole brain

regions. At the scale of whole brain regions, a widely studied phenomenon is the mismatch negativ-

ity (MMN), which is classically detected in electroencephalography (EEG) data and often based on

an auditory or visual ‘oddball’ paradigm (Näätänen et al., 1982; Hamm and Yuste, 2016). The

occasional presentation of the so-called oddball stimulus among frequently repeated stimuli leads to

a negative deflection in the EEG signal – the MMN (Näätänen et al., 2007).

Experiments at the cellular level typically follow the oddball paradigm with two stimuli that, if pre-

sented in isolation, would drive a neuron equally strongly. However, when one stimulus is presented

frequently and the other rarely, the deviant produces a stronger response relative to the frequent

stimulus (Ulanovsky et al., 2003; Nelken, 2014; Natan et al., 2015). The observed reduction in

response to the repeated, but not the deviant, stimulus has been termed stimulus-specific adapta-

tion (SSA) and has been suggested to contribute to the MMN (Ulanovsky et al., 2003). SSA has

been observed in multiple brain areas, most commonly reported in the primary auditory cortex

(Ulanovsky et al., 2003; Yaron et al., 2012; Natan et al., 2015; Seay et al., 2020) and the primary

visual cortex (Movshon and Lennie, 1979; Hamm and Yuste, 2016; Vinken et al., 2017;

Homann et al., 2017). Along the visual pathway, SSA has also been found at different earlier stages

including the retina (Schwartz et al., 2007; Geffen et al., 2007; Schwartz and Berry, 2008) and

the visual thalamic nuclei (Dhruv and Carandini, 2014; King et al., 2016).

To unravel the link between multiple spatial and temporal scales of adaptation, a variety of mech-

anisms has been proposed. Most notably, modeling studies have explored the role of adaptive cur-

rents, which reduce the excitability of the neuron (Brette and Gerstner, 2005), and short-term

depression of excitatory feedforward synapses (Tsodyks et al., 1998). Most models of SSA in pri-

mary sensory areas of the cortex focus on short-term plasticity and the depression of thalamocortical

feedforward synapses (Mill et al., 2011a; Mill et al., 2011b; Park and Geffen, 2020). The contribu-

tion of other mechanisms has been under-explored in this context. Recent experimental studies sug-

gest that inhibition and the plasticity of inhibitory synapses shape the responses to repeated and

novel stimuli (Chen et al., 2015; Kato et al., 2015; Natan et al., 2015; Hamm and Yuste, 2016;

Natan et al., 2017; Heintz et al., 2020). Natan and colleagues observed that in the mouse auditory

cortex, both parvalbumin-positive (PV) and somatostatin-positive (SOM) interneurons contribute to

SSA (Natan et al., 2015). Furthermore, neurons that are more strongly adapted receive stronger

inhibitory input than less adapted neurons, suggesting potentiation of inhibitory synapses as an

underlying mechanism (Natan et al., 2017). In the context of habituation, inhibitory plasticity has

been previously hypothesized to be the driving mechanism behind the reduction of neural responses

to repeated stimuli (Ramaswami, 2014; Barron et al., 2017). Habituated behavior in Drosophila, for

example, results from prolonged activation of an odor-specific excitatory subnetwork, which leads to

the selective strengthening of inhibitory synapses onto the excitatory subnetwork (Das et al., 2011;

Glanzman, 2011; Ramaswami, 2014; Barron et al., 2017).

Here, we focus on the role of inhibitory spike-timing-dependent plasticity (iSTDP) in characteriz-

ing neuronal responses to repeated and novel stimuli at the circuit level. We base our study on a

recurrent spiking neural network model of the mammalian cortex with biologically inspired plasticity

mechanisms that can generate assemblies in connectivity and attractors in activity to represent the

stimulus-specific activation of specific sub-circuits (Litwin-Kumar and Doiron, 2014; Zenke et al.,

2015; Wu et al., 2020). We model excitatory and inhibitory neurons and include stimulus-specific

input not only to the excitatory but also to the inhibitory population, as found experimentally

(Ma et al., 2010; Griffen and Maffei, 2014; Znamenskiy et al., 2018). This additional assumption

readily leads to the formation of specific inhibitory-to-excitatory connections through inhibitory plas-

ticity (Vogels et al., 2011), as suggested by recent experiments (Lee et al., 2014; Xue et al., 2014;

Znamenskiy et al., 2018; Najafi et al., 2020).

We demonstrate that this model network can generate excess population activity when novel

stimuli are presented as violations of repeated stimulus sequences. Our framework identifies plastic-

ity of inhibitory synapses as a sufficient mechanism to explain population novelty responses and

adaptive phenomena on multiple timescales. In addition, stimulus-specific inhibitory connectivity

supports adaptation to specific stimuli (SSA). This finding reveals that the network configuration

encompasses computational capabilities beyond those of intrinsic adaptation. Furthermore, we sug-

gest disinhibition to be a powerful regulator of the amplification of novelty responses. Our modeling

framework enables us to formulate additional experimentally testable predictions. Most intriguing,
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we hypothesize that neurons in primary sensory cortex may not signal the violation of periodicity of

a sequence based on bottom-up input, but rather adapt to the distribution of presented stimuli.

Results

A recurrent neural network model with plastic inhibition can generate
novelty responses
Recent experimental studies have indicated an essential role of inhibitory circuits and inhibitory plas-

ticity in adaptive phenomena and novelty responses (Chen et al., 2015; Kato et al., 2015;

Natan et al., 2015; Hamm and Yuste, 2016; Natan et al., 2017; Heintz et al., 2020). To under-

stand if and how plastic inhibitory circuits could explain the emergence of novelty responses, we

built a biologically plausible spiking neuronal network model of recurrently connected 4000 excit-

atory and 1000 inhibitory neurons based on recent experimental findings on tuning, connectivity,

and inhibitory and excitatory STDP in the cortex (Materials and methods). Excitatory-to-excitatory

(E-to-E) synapses were plastic based on the triplet spike-timing-dependent plasticity (eSTDP) rule

(Sjöström et al., 2001; Pfister and Gerstner, 2006; Gjorgjieva et al., 2011; Figure 1—figure sup-

plement 1). The triplet STDP rule enabled the formation of strong bidirectional connections among

similarly selective neurons (Gjorgjieva et al., 2011; Montangie et al., 2020). Plasticity

of connections from inhibitory to excitatory neurons was based on an inhibitory STDP (iSTDP) rule

measured experimentally (D’amour and Froemke, 2015), and shown to stabilize excitatory firing

rate dynamics in recurrent networks (Vogels et al., 2011; Figure 1—figure supplement 1). In con-

trast to other frameworks which have found short-term plasticity as key for capturing adaptation

phenomena, we only included long-term plasticity and did not explicitly model additional adaptation

mechanisms.

We targeted different subsets of excitatory and inhibitory neurons with different external stimuli,

to model that these neurons are stimulus-specific (‘tuned’) to a given stimulus (Figure 1A, left, see

Materials and methods). One neuron could be driven by multiple stimuli. Starting from an initially

randomly connected network, presenting tuned input led to the emergence of excitatory assemblies,

which are strongly connected, functionally related subsets of excitatory neurons (Figure 1—figure

supplement 2C, left). Furthermore, tuned input also led to the stimulus-specific potentiation of

inhibitory-to-excitatory connections (Figure 1—figure supplement 2E, left). We refer to this part of

structure formation as the ‘pretraining phase’ of our simulations (Materials and methods). This pre-

training phase imprinted structure in the network prior to the actual stimulation paradigm as a

model of the activity-dependent refinement of structured connectivity during early postnatal devel-

opment (Thompson et al., 2017).

To test the influence of inhibitory plasticity on the emergence of a novelty response, we followed

an experimental paradigm used to study novelty responses in layer 2/3 (L2/3) of mouse primary

visual cortex (V1) (Homann et al., 2017). In Homann et al., 2017, a single stimulus consisted of 100

randomly oriented Garbor patches. Three different stimuli (A, B, and C) were presented in a

sequence (ABC) (Figure 1A, right). The same sequence (ABC) was then repeated several times in a

sequence block. In the second-to-last sequence, the last stimulus was replaced by a novel stimulus

(N). In the consecutive sequence block, a new sequence with different stimuli was presented (we

refer to this as a unique sequence stimulation paradigm). The novel stimuli were also different for

each sequence block. In this paradigm, we observed elevated population activity in the excitatory

model population at the beginning of each sequence block (‘onset response’) and a steady reduc-

tion to a baseline activity level for the repeated sequence presentation (Figure 1B). Upon presenting

a novel stimulus, the excitatory population showed excess activity, clearly discernible from baseline,

called the ‘novelty response’. This novelty response was comparable in strength to the onset

response. Sorting spike rasters according to sequence stimuli revealed that stimulation leads to high

firing rates in the neurons that are selective to the presented stimulus (A, B, or C) (Figure 1C).

When we used a different set of stimuli in the stimulation versus the pretraining phase to better

match the randomly oriented Gabor patches presented in Homann et al., 2017 (Figure 1—figure

supplement 3A, see Materials and methods), we found the same type of responses to repeated and

novel stimuli (Figure 1—figure supplement 3B). When examining a random subset of neurons, we

found general response sparseness and periodicity during sequence repetitions (Figure 1D), very
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similar to experimental findings (Homann et al., 2017). More concretely, sparse population activity

for repeated stimuli in our model network was the result of each stimulus presentation activating a

subset of excitatory neurons in the network, which were balanced by strong inhibitory feedback.

Therefore, only neurons that directly received this feedforward drive were highly active, while most

other neurons in the network were instead rather silent. Periodicity in the activity of single neurons

resulted from the repetition of a sequence.

In the model, the fraction of active excitatory neurons was qualitatively similar for novel, adapted

and onset stimuli (Figure 1—figure supplement 4). The relatively sparse novelty response in our

model was the result of increased inhibition onto all excitatory neurons in the network, with activity

remaining mainly in the neurons tuned to the novel stimulus. In contrast, Homann et al., 2017 found

that a large fraction of neurons respond to a novel stimulus, suggesting a dense novelty response.
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Figure 1. Generation of novelty responses in a recurrent plastic neural network model. (A) Left: A recurrently

connected network of excitatory (E) neurons (blue triangles) and inhibitory (I) neurons (red circles) receiving tuned

input. Excitatory neurons tuned to a sample stimulus A are highlighted in dark blue, the inhibitory counterparts in

dark red. E-to-E synapses and I-to-E synapses were plastic, and all other synapses were fixed. Right: Schematic of

the stimulation protocol. Multiple stimuli (A, B, and C) were presented in a sequence (ABC). Each sequence was

repeated n times in a sequence block. In the second-to-last sequence, the last stimulus was replaced by a novel

stimulus (N). Multiple sequence blocks followed each other without interruption, with each block containing

sequences of different stimuli. (B) Population average firing rate of all excitatory neurons as a function of time after

the onset of a sequence block. Activity was averaged (solid line) across multiple non-repeated sequence blocks

(transparent lines: individual blocks). A novel stimulus (dark gray) was presented as the last stimulus of the second-

to-last sequence. (C) Spiking activity in response to a sequence (ABC) in a subset of 1000 excitatory neurons where

the neurons were sorted according to the stimulus from which they receive tuned input. A neuron can receive

input from multiple stimuli and can appear more than once in this raster plot. (D) A random unsorted subset of 50

excitatory neurons from panel C. Time was locked to the sequence block onset.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Excitatory and inhibitory synaptic plasticity functions for different pairing frequencies.

Figure supplement 2. Strong connections form between excitatory and excitatory, as well as inhibitory and
excitatory neuron groups that are tuned to the same stimulus.

Figure supplement 3. Different stimuli in the pretraining and stimulation phases generate similar synaptic weight
and firing rate dynamics.

Figure supplement 4. Quantifying response density in the unique sequence stimulation paradigm.

Figure supplement 5. Normalization time step Dt does not affect the occurrence of a novelty response.
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Since the increase in inhibition seems to be responsible for the absence of a dense novelty response

in our model, in a later section we suggest disinhibition as a mechanism to achieve the experimen-

tally observed dense novelty responses in our model.

Our results suggest that presenting repeated stimuli (and repeated sequences of stimuli) to a

plastic recurrent network with tuned excitatory and inhibitory neurons readily leads to a reduction of

the excitatory averaged population response, consistent with the observed adaptation in multiple

experimental studies in various animal models and brain regions (Ulanovsky et al., 2003;

Hamm and Yuste, 2016; Homann et al., 2017). Importantly, the model network generates a novelty

response when presenting a novel stimulus by increasing the excitatory population firing rate at the

time of stimulus presentation (Näätänen et al., 2007).

The dynamics of novelty and onset responses depend on sequence
properties
To explore the dynamics of novelty responses, we probed the model network with a modified stimu-

lation paradigm. Rather than fixing the number of sequence repetitions in one sequence block

(Figure 1A, right), here we presented a random number of sequence repetitions (nine values

between 4 and 45 repetitions) for each sequence block. This allowed us to measure the novelty and

onset responses as a function of the number of sequence repetitions. Novelty and onset responses

were observed after as few as four sequence repetitions (Figure 2A). After more than 15 sequence

repetitions, the averaged excitatory population activity reached a clear baseline activity level

(Figure 2A). The novelty response amplitude, measured by the population rate of the novelty peak

minus the baseline population rate, increased with the number of sequence repetitions before satu-

rating for a high number of sequence repeats (Figure 2B, black dots). The onset response amplitude

after the respective sequence block followed the same trend (Figure 2B, gray dots). Next, we varied

the number of stimuli in a sequence, resulting in different sequence lengths across blocks (3 to 15

stimuli per sequence). By averaging excitatory population responses across sequence blocks with

equal length, we found that the decay of the onset response depends on the number of stimuli in a

sequence (Figure 2C). Upon fitting an exponentially decaying function to the activity of the onset

response, we derived a linear relationship between the number of stimuli in a sequence and the

decay constant (Figure 2D).

In summary, we found that novelty responses arise for different sequence variations. Our model

network suggests that certain features of the novelty response depend on the properties of the pre-

sented sequences. Changing the number of sequence repetitions modifies the onset and novelty

response amplitude (Figure 2A,B), while a longer sequence length leads to a longer adaptation

time constant (Figure 2C,D). Interestingly, both findings are in good qualitative agreement with

experimental data that presented similar sequence variations (Homann et al., 2017). An exponential

fit of the experimental data found a time constant of t ¼ 3:2� 0:7 repetitions when the number of

sequence repetitions was varied (Homann et al., 2017). The time constant in our model network

was somewhat longer (t ¼ 9� 1 repetitions), but on a similar order of magnitude (Figure 2B). Simi-

larly, our model network produced a linear relationship between the adaptation time constant and

sequence length with a slope of m ¼ 1:6� 0:04 (Figure 2D), very close to the slope extracted from

the data (m ¼ 2:1� 0:3) (Homann et al., 2017). Therefore, grounded on biologically-plausible plas-

ticity mechanisms, and capable of capturing the emergence and dynamics of novelty responses, our

model network provides a suitable framework for a mechanistic dissection of the circuit contributions

in the generation of a novelty response.

Stimulus periodicity in the sequence is not required for the generation
of a novelty response
Experimental studies have often reported novelty or deviant responses by averaging across several

trials due to poor signal-to-noise ratios of the measured physiological activity (Homann et al., 2017;

Vinken et al., 2017). Therefore, we investigated the network response to paradigms with repeated

individual sequence blocks (Figure 3A), which we refer to as the repeated sequence stimulation par-

adigm. We randomized the order of the sequence block presentation to avoid additional temporal

structure beyond the stimulus composition of the sequences. Repeating sequence blocks dampened

the onset response at sequence onset compared to the unique sequence stimulation paradigm
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(compare Figure 1B and Figure 2A,B with

Figure 3A). Next, we wondered whether the

excitatory and inhibitory population responses to

repeated and novel stimuli are related. We found

that both excitatory and inhibitory populations

adapt to the repeated stimuli and show a promi-

nent novelty peak that is larger than the respec-

tive averaged onset response (Figure 3B,C).

Based on these findings, we make the following

predictions for future experiments: (1) A novelty

response is detectable in both the excitatory and

inhibitory populations. (2) The sequence onset

response is dampened for multiple presentations

of the same sequence block compared to the

presentation of unique sequence blocks.

Next, we investigated whether the generation

of novelty responses observed in the model net-

work depends on the sequence structure. If the

novelty responses were to truly signal the viola-

tion of the sequence structure or the stimulus

predictability in a sequence, we would expect a

novelty response to occur if two stimuli in a

sequence were swapped, that is, ACB instead of

ABC. We found that swapping the last and sec-

ond-to-last stimulus, instead of presenting a

novel stimulus, does not elicit a novelty response

(Figure 3D). Additionally, we asked whether the

periodicity of the stimuli within a sequence influ-

ences the novelty response. Shuffling the stimuli

within a sequence block still generates a novelty

response and adaptation to the repeated stimuli,

similar to the strictly periodic case (Figure 3E,

compare to Figure 3A). Finally, we investigated if

the novelty peak depends on the input firing rate

of the novel stimulus. We found that a reduction

of the input drive decreases the novelty peak,

revealing a monotonic dependence of the novelty

response on stimulus strength (Figure 3F). Based

on these results, we make two additional predic-

tions: (3) The periodicity of stimuli in the

sequence is not required for the generation of a novelty response. Hence, the novelty response enc-

odes the distribution of presented stimuli, rather than the structure of a sequence. (4) A novelty

response depends on the strength of the novel stimulus.

Increased inhibition onto highly active neurons leads to adaptation
To gain an intuitive understanding for the sensitivity of novelty responses to stimulus identity but

lack of sensitivity to stimulus periodicity in the sequence, we more closely examined the role of inhib-

itory plasticity as the leading mechanism behind the novelty responses in our model. We found that

novelty responses arise because inhibitory plasticity fails to sufficiently increase inhibitory input and

to counteract the excess excitatory input into excitatory neurons upon the presentation of a novel

stimulus. In short, novelty responses can be understood as the absence of adaptation in an otherwise

adapted response. Adaptation in the network arises through increased inhibition onto highly active

neurons through selective strengthening of I-to-E weights (Figure 4A).

To determine how inhibitory plasticity drives the generation of novelty responses or, equivalently,

adaptation in our model, we studied the evolution of inhibitory weights. The inhibitory weights onto

stimulus-specific assemblies tuned to the stimuli in a given sequence increased upon presentation of
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Figure 2. Dependence of the novelty response on the

number of sequence repetitions and the sequence

length. (A) Population average firing rate of all

excitatory neurons for a different number of sequence

repetitions within a sequence block. Time is locked to

the sequence block onset. (B) The response amplitude

of the onset (gray) and the novelty (black) response as

a function of sequence repetitions fit with an

exponential with a time constant t . (C) Population

average firing rate of all excitatory neurons for varying

sequence length fit with an exponential function (red).

Time is locked to the sequence block onset. (D) The

onset decay time constant (fit with an exponential, as

shown in panel C) as a function of sequence length.

The simulated data was fit with a linear function with

slope m. (B, D) Error bars correspond to the standard

deviation across five simulated instances of the model.
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the corresponding sequence block, and decreased otherwise (Figure 4B). The population firing rate

during repeated presentation of a sequence decreased (adapted) on the same timescale as the

increase of the inhibitory weights related to this sequence (Figure 4C). When a stimulus was pre-

sented to the network for the first time, the total excitatory input to the corresponding excitatory

neurons was initially not balanced by inhibition. Hence, the neurons within the assembly tuned to

that stimulus exhibited elevated activity at sequence onset, leading to what we called the ‘onset

response’ (Figure 1B). The same was true for the novelty responses as reflected in low inhibitory

weights onto novelty assemblies relative to repeated assemblies (Figure 1—figure supplement 2D,

E). Consequently, the generation of a novelty response did not depend on the specific periodicity of

the stimuli within a sequence (Figure 3). Swapping two stimuli did not generate a novelty response

since the corresponding assemblies of each stimulus were already in an adapted state. Therefore,
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Figure 3. Stimulus periodicity in the sequence is not required for the generation of a novelty response. (A–F)

Population average firing rate of all excitatory neurons (and all inhibitory neurons in B,C) during the presentation

of five different repeated sequence blocks. The population firing rate was averaged across ten repetitions of each

sequence block. Time is locked to sequence block onset. (A) A novel stimulus was presented as the last stimulus

of the second-to-last sequence. (B) Same as panel A but for both excitatory and inhibitory populations

(transparent lines: individual sequence averages). (C) Comparison of baseline, novelty, and onset response for

inhibitory and excitatory populations. Error bars correspond to the standard deviation across the five sequence

block averages shown in B. (D) In the second-to-last sequence, the last and second-to-last stimulus were swapped

instead of presenting a novel stimulus. (E) Within a sequence, stimuli were shuffled in a pseudo-random manner

where a stimulus could not be presented twice in a row. A novel stimulus was presented as the last stimulus of the

second-to-last sequence. (F) A novel stimulus was presented as the last stimulus of the second-to-last sequence.

Each sequence had a different feedforward input drive for the novel stimulus, indicated by the percentage of the

typical input drive for the novel stimulus used before.
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our results suggest that the exact sequence structure of stimulus presentations is not relevant for

the novelty response, as long as the overall distribution of stimuli is maintained.

Interestingly, we found that adaptation occurs on multiple timescales in our model. The fastest is

the timescale of milliseconds on which inhibitory plasticity operates, the next slowest is the timescale

of seconds corresponding to the presentation of a sequence block, and finally the slowest is the

timescale of minutes corresponding to the presentation of the same sequence block multiple times

(Figure 4D, top; also compare Figure 1B and Figure 3A). The slowest decrease in the population

firing rate was the result of long-lasting changes in the average inhibitory weights onto the excitatory

neurons tuned to the stimuli within a given sequence. Hence, the average inhibitory weight for a

given sequence increased with the number of previous sequence block presentations of that

sequence (Figure 4D, bottom).

Using a different set of stimuli in the stimulation versus the pretraining phase to match the ran-

domly oriented Gabor patches presented in Homann et al., 2017, led to qualitatively similar firing

rate and synaptic weight dynamics (Figure 1—figure supplement 3C,D, see also Materials and

methods). Differences in the mean inhibitory weights onto different stimulus-specific assemblies in a

given sequence were due to random initial differences in assembly size and connection strength

(Figure 4B,C, see Materials and methods). Differences in early, intermediate, and late inhibitory

weight changes, however, were consistent across different experiments and model instantiations

(Figure 4D, Figure 1—figure supplement 3D, right).

Furthermore, we observed that the dynamics of inhibitory plasticity and the generation of a nov-

elty response did not depend on the exact parameters of the pretraining phase (Figure 4—figure
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Figure 4. Inhibition onto neurons tuned to repeated stimuli increases during sequence repetitions. (A) Schematic

of increased inhibitory weights onto two stimulus-specific assemblies upon the repeated presentation of stimuli A

and B (indicated in dark blue and turquoise) relative to neurons from other assemblies (light blue). (B) Evolution of

the average inhibitory weights onto stimulus-specific assemblies. Colored traces mark three stimulus-specific

assemblies in sequence 1: A, B, and C. Arrows indicate time points of early, intermediate, and late sequence block

presentation shown in C and D. (C) Top: Population average firing rate of all excitatory neurons during the

repeated presentation of sequence 1 at an early time point (see panel B). Time is locked to sequence onset.

Bottom: Close-up of panel B (rectangle). Time is locked to sequence onset. (D) Top: Same as panel C (top) but at

intermediate and late time points (see panel B). Bottom: Corresponding dynamics of the average inhibitory

weights onto all three stimulus-specific assemblies from sequence 1 at early, intermediate and late time points

(see panel B). The dark purple trace (early) corresponds to the average of the three colored traces in C (bottom).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Pretraining parameters do not qualitatively influence the novelty response.

Figure supplement 2. Fast inhibitory plasticity is key for the generation of a novelty response.
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supplement 1). Specifically, increasing the number of repetitions in the pretraining phase increased

the height of the novelty peak, but eventually reached a plateau at 10 repetitions (Figure 4—figure

supplement 1A). Increasing the number of stimuli decreased the height of the novelty peak (Fig-

ure 4—figure supplement 1C). However, these pretraining parameters only affected some aspects

of the novelty response, but preserved the generation of the novelty response. Even without a pre-

training phase (zero number of repetitions), a novelty response could be generated.

Based on our result that inhibitory plasticity is the underlying mechanism of adapted and novelty

responses in our model, we wondered how fast it needs to be. Hence, we tested the influence of the

inhibitory learning rate (h) in the unique sequence stimulation paradigm. We found that inhibitory

plasticity needs to be fast for both results, the generation of a novelty response (Figure 4—figure

supplement 2A,B) and adaptation to repeated stimuli (Figure 4—figure supplement 2C). Whether

such fast inhibitory plasticity operates in the sensory cortex to underlie the adapted and novelty

responses is still unknown.

In summary, we identified the plasticity of connections from inhibitory to excitatory neurons

belonging to a stimulus-specific assembly as the key mechanism in our framework for the generation

of novelty responses and for the resulting adaptation of the network response to repeated stimuli.

This adaptation occurs on multiple timescales, covering the range from the timescale of inhibitory

plasticity (milliseconds) to sequence block adaptation (seconds) to the presentation of multiple

sequence blocks (minutes).

The adapted response depends on the interval between stimulus
presentations
Responses to repeated stimuli do not stay adapted but can recover if the repeated stimulus is no

longer presented (Ulanovsky et al., 2004; Cohen-Kashi Malina et al., 2013). We investigated the
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Figure 5. Longer inter-repetition intervals decrease the level of adaptation due to the recovery of inhibitory

synaptic weights. (A) Population average firing rate of all excitatory neurons in the unique sequence stimulation

paradigm for varying inter-repetition intervals (varying sequence length). Time is locked to the sequence block

onset. (B) Evolution of the average inhibitory weights onto stimulus-specific assembly A (identical in all runs) for

varying inter-repetition intervals. Time is locked to the sequence block onset. (C) Population average firing rate of

stimulated excitatory neurons for a 300 ms inter-repetition interval. Time is locked to the sequence block onset.

One step in the schematic corresponds to one stimulus in a presented sequence. (D) Difference of the onset

population rate (measured at the onset of the stimulation, averaged across runs) and the baseline rate (measured

before novelty response) as a function of the inter-repetition interval. (E) Absolute change of inhibitory weights

onto stimulus-specific assembly A from the start until the end of a sequence block presentation as a function of

inter-repetition interval.
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recovery of adapted responses in the unique sequence stimulation paradigm (Figure 5A). Similar to

Figure 2C, we changed the number of stimuli in the sequence, which leads to different inter-repeti-

tion intervals of a repeated sequence stimulus (the interval until the same stimulus is presented

again). For example, if two repeated stimuli (A, B) are presented, the inter-repetition interval for

each stimulus is 300 ms because each stimulus is presented for 300 ms (Figure 5C). If four repeated

stimuli are presented (A, B, C, D), the inter-repetition interval for each stimulus is 900 ms. We

defined the adaptation level as the difference of the onset population rate, measured at the onset of

the stimulation, and the baseline rate, measured shortly before the presentation of a novel stimulus.

We found that an increase in the inter-repetition interval reduced the adaptation level of the excit-

atory population (Figure 5A,D) due to a decrease of inhibitory synaptic strength onto stimulus-spe-

cific assemblies (Figure 5B,E). More specifically, the population average of all excitatory neurons

tuned to stimulus A was high when stimulus A was presented and low when stimulus B was pre-

sented (Figure 5C). Hence, inhibitory weights onto stimulus-specific assembly A increased while A

was presented and decreased otherwise (Figure 5B).

In summary, longer inter-repetition intervals provide more time for the inhibitory weights onto

stimulus-specific assemblies to decrease, hence, weakening the adaptation.

Inhibitory plasticity and tuned inhibitory neurons support stimulus-
specific adaptation
Next, we investigated whether inhibitory plasticity of tuned inhibitory neurons support additional

computational capabilities beyond the generation of novelty responses and adaptation of responses

to repeated stimuli on multiple timescales. Therefore, we implemented a different stimulation para-

digm to investigate the phenomenon of stimulus-specific adaptation (SSA). At the single-cell level,

SSA typically involves a so-called oddball paradigm where two stimuli elicit an equally strong

response when presented in isolation, but when one is presented more frequently, the elicited

response is weaker than for a rarely presented stimulus (Natan et al., 2015).

We implemented a similar paradigm at the network level where the excitatory neurons corre-

sponding to two stimuli A and B were completely overlapping and the inhibitory neurons were par-

tially overlapping (Figure 6A). Upon presenting stimulus A several times, the neuronal response

gradually adapted to the baseline level of activity, while presenting the oddball stimulus B resulted

in an increased population response (Figure 6B). Therefore, this network was able to generate SSA.

Even though stimuli A and B targeted the same excitatory cells, the network response adapted only

to stimulus A, while generating a novelty response for stimulus B. Even after presenting stimulus B,

activating stimulus A again preserved the adapted response (Figure 6B). This form of SSA exhibited

by our model network is in agreement with many experimental findings in the primary auditory cor-

tex, primary visual cortex, and multiple other brain areas and animal models (Nelken, 2014). In our

model network, SSA could neither be generated with adaptive neurons and static synapses

(Figure 6C, top; Materials and methods), nor with inhibitory plasticity without inhibitory tuning

(Figure 6C, bottom). In fact, including an adaptive current in the model neurons (Brette and Gerst-

ner, 2005) did not even lead to adaptation of the response to a frequent stimulus since firing rates

rapidly adapted during stimulus presentation and completely recovered in the inter-stimulus pause

(Figure 6C, top).

We investigated the dynamics of inhibitory weights to understand the mechanism behind SSA in

our model network. During the presentation of stimulus A, stimulus-specific inhibitory weights corre-

sponding to stimulus A (average weights from inhibitory neurons tuned to stimulus A onto excitatory

neurons tuned to stimulus A, see Figure 1—figure supplement 2A, right) increased their strength,

while stimulus-specific inhibitory weights corresponding to stimulus B remained low (Figure 6D).

Hence, upon presenting the oddball stimulus B, the stimulus-specific inhibitory weights correspond-

ing to stimulus B remained sufficiently weak to keep the firing rate of excitatory neurons high, thus

resulting in a novelty response.

We next asked about the recovery of the adapted response in this SSA paradigm (Figure 6—fig-

ure supplement 1). After a 9 s pause, the response remained adapted (Figure 6—figure supple-

ment 1A). Only after more than 200 s the response fully recovered (Figure 6—figure supplement

1B). In contrast to the results in Figure 5, here, the adaptation level remained high due to the

absence of network activity between stimulus presentations. Adaptation slowly recovered as the

time between stimulus presentations increased.
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In summary, our results suggest that the combination of inhibitory plasticity and inhibitory tuning

can give rise to SSA. Previous work has argued that inhibition or inhibitory plasticity does not allow

for SSA (Nelken, 2014). However, this is only true if inhibition is interpreted as a ‘blanket’ without

any tuning in the inhibitory population. Including recent experimental evidence for tuned inhibition

into the model, (Lee et al., 2014; Xue et al., 2014; Znamenskiy et al., 2018), can indeed capture

the emergence of SSA.

Disinhibition leads to novelty response amplification and a dense
population response
Beyond the bottom-up computations captured by the network response to the different stimuli, we

next explored the effect of additional modulations or top-down feedback into our network model.

Top-down feedback has been frequently postulated to signal the detection of an error or irregularity

in the framework of predictive coding (Clark, 2013; Spratling, 2017). Therefore, we specifically

tested the effect of disinhibitory signals on sequence violations by inhibiting the population of inhibi-

tory neurons during the presentation of a novel stimulus (Figure 7A). Recent evidence has identified

a differential disinhibitory effect in sensory cortex in the context of adapted and novelty responses
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Figure 6. Stimulus-specific adaptation follows from inhibitory plasticity and tuning of both excitatory and inhibitory

neurons. (A) Stimuli A and B provided input to the same excitatory neurons (dark blue and turquoise). Some

neurons in the inhibitory population were driven by both A and B (dark red and rose) and some by only one of the

two stimuli (dark red or rose). (B,C) Population average firing rate of excitatory neurons over time while stimulus A

was presented 20 times. Stimulus B was presented instead of A as the second-to-last stimulus. Time is locked to

stimulation onset. (B) Top: Population average of all excitatory neurons in the network with inhibitory plasticity

(iSTDP) and inhibitory tuning. Bottom: Population average of stimulated excitatory neurons only (stimulus-specific

to A and B). (C) Top: Same as panel B (top) for neurons with an adaptive current in a non-plastic recurrent network.

Bottom: Same as panel B (top) for the network with inhibitory plasticity (iSTDP) and no inhibitory tuning. (D)

Weight evolution of stimulus-specific inhibitory weights corresponding to stimuli A and B and average inhibitory

weights.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Recovery of adapted responses in the SSA paradigm.
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(Natan et al., 2015). However, due to the scarcity of detailed knowledge about higher order feed-

back signals or within-layer modulations in this context, we did not directly model the source of

disinhibition.

When repeating the SSA experiment (Figure 6) and applying such a disinhibitory signal (inhibition

of the inhibitory population) at the time of the novel stimulus B, our model network amplified the

novelty response (Figure 7B, shaded green, also compare to Figure 6B, top). Disinhibition also

increased the density of the network response which corresponds to the number of active excitatory

neurons (Figure 7C, left). Indeed, disinhibition increased the fraction of active excitatory neurons,

which we defined as the fraction of neurons that spike at least once in a 100 ms window during the

presentation of a stimulus (Figure 7C, right). Dense novelty responses have been recently reported

experimentally, where novel stimuli elicited excess activity in a large fraction of the neuronal popula-

tion in mouse V1 (Homann et al., 2017). Without a disinhibitory signal, the fraction of active neurons

for a novel stimulus in our model was qualitatively similar as for repeated stimuli and therefore there

was no dense novelty response (Figure 1—figure supplement 4A). Given that the inclusion of a dis-

inhibitory signal readily increases the density of the novelty response, we suggest that disinhibition

might underlie these experimental findings.
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Figure 7. Disinhibition leads to a novelty response amplification and a dense population response. (A) Stimuli A

and B provided input to the same excitatory neurons (dark blue and turquoise). Some neurons in the inhibitory

population were driven by both A and B (dark red and rose) and some by only one of the two stimuli (dark red or

rose). Inhibition (light green) of the entire inhibitory population led to disinhibition of the excitatory population. (B)

Population average firing rate of all excitatory neurons over time while stimulus A is presented 20 times. Stimulus

B was presented instead of A as the second-to-last stimulus. During the presentation of B, the inhibitory

population was inhibited. Time is locked to stimulation onset. (C) Left: Raster plot of 250 excitatory neurons

corresponding to the population average shown in panel B. The 50 neurons in the bottom part of the raster plot

were tuned to stimuli A and B. Time is locked to stimulation onset. Right: Fraction of active excitatory neurons (at

least one spike in a 100 ms window) measured directly after the onset of a stimulus. The raster plot and the

fraction of active excitatory neurons are shown for the presentation of stimulus B (with disinhibition) and the

preceding presentation of stimulus A (standard). (D) Population average peak height during disinhibition and the

presentation of stimulus B, as a function of the disinhibition strength. Arrow indicates the population average peak

height of the trace shown in panel B. Results are shown for five simulations. (E) Fraction of active excitatory

neurons during disinhibition as a function of the disinhibition strength. Arrow indicates the data point

corresponding to panel C. Results are shown for five simulations.
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In sum, we found that by controlling the total disinhibitory strength (Materials and methods), dis-

inhibition can flexibly amplify the novelty peak (Figure 7D) and increase the density of novelty

responses (Figure 7E). Therefore, we propose that disinhibition can be a powerful mechanism to

modulate novelty responses in a network of excitatory and inhibitory neurons.

Discussion
We developed a recurrent network model with plastic synapses to unravel the mechanistic underpin-

ning of adaptive phenomena and novelty responses. Using the paradigm of repeated stimulus

sequences (Figure 1A, right), our model network captured the adapted, sparse and periodic

responses to repeated stimuli (Figure 1B–D) as observed experimentally (Fairhall, 2014;

Homann et al., 2017). The model network also exhibited a transient elevated population response

to novel stimuli (Figure 1B), which could be modulated by the number of sequence repetitions and

the sequence length in the stimulation paradigm (Figure 2), in good qualitative agreement with

experimental data (Homann et al., 2017). We proposed inhibitory synaptic plasticity as a key mech-

anism behind the generation of these novelty responses. In our model, repeated stimulus presenta-

tion triggered inhibitory plasticity onto excitatory neurons selective to the repeated stimulus,

reducing the response of excitatory neurons and resulting in their adaptation (Figure 4). In contrast,

for a novel stimulus inhibitory input onto excitatory neurons tuned to that stimulus remained low,

generating the elevated novelty response. Furthermore, we showed that longer inter-repetition

intervals led to the recovery of adapted responses (Figure 5).

Based on experimental evidence (Ohki and Reid, 2007; Griffen and Maffei, 2014), we included

specific input onto both the excitatory and the inhibitory populations (Figure 1A, left). Such tuned

inhibition (as opposed to untuned, ‘blanket’ inhibition commonly used in previous models) enabled

the model network to generate SSA (Figure 6). Additionally, in the presence of tuned inhibition, a

top-down disinhibitory signal achieved a flexible control of the amplitude and density of novelty

responses (Figure 7). Therefore, besides providing a mechanistic explanation for the generation of

adapted and novelty responses to repeated and novel sensory stimuli, respectively, our network

model enabled us to formulate multiple experimentally testable predictions, as we describe below.

Inhibitory plasticity as an adaptive mechanism
We proposed inhibitory plasticity as the key mechanism that allows for adaptation to repeated stim-

ulus presentation and the generation of novelty responses in our model. Many experimental studies

have characterized spike-timing-dependent plasticity (STDP) of synapses from inhibitory onto excit-

atory neurons (Holmgren and Zilberter, 2001; Woodin et al., 2003; Haas et al., 2006;

Maffei et al., 2006; Wang and Maffei, 2014; D’amour and Froemke, 2015; Field et al., 2020). In

theoretical studies, network models usually include inhibitory plasticity to dynamically stabilize recur-

rent network dynamics (Vogels et al., 2011; Litwin-Kumar and Doiron, 2014; Zenke et al., 2015).

In line with recent efforts to uncover additional functional roles of inhibitory plasticity beyond the

stabilization of firing rates (Hennequin et al., 2017), here, we investigated potential functional con-

sequences of inhibitory plasticity in adaptive phenomena. We were inspired by recent experimental

work in the mammalian cortex (Chen et al., 2015; Kato et al., 2015; Natan et al., 2015;

Hamm and Yuste, 2016; Natan et al., 2017; Heintz et al., 2020), and simpler systems, such as

Aplysia (Fischer et al., 1997; Ramaswami, 2014) and in Drosophila (Das et al., 2011; Glanz-

man, 2011) along with theoretical reflections (Ramaswami, 2014; Barron et al., 2017), which all

point towards a prominent role of inhibition and inhibitory plasticity in the generation of the MMN,

SSA, and habituation. For example, Natan and colleagues observed that in the mouse auditory cor-

tex, both PV and SOM interneurons contribute to SSA (Natan et al., 2015), possibly due to inhibi-

tory potentiation (Natan et al., 2017). In the context of habituation, daily passive sound exposure

has been found to lead to an upregulation of the activity of inhibitory neurons (Kato et al., 2015).

Furthermore, increased activity to a deviant stimulus in the MMN is diminished when inhibitory neu-

rons are suppressed (Hamm and Yuste, 2016).

Most experimental studies on inhibition in adaptive phenomena have not directly implicated

inhibitory plasticity as the relevant mechanism. Instead, some studies have suggested that the firing

rate of the inhibitory neurons changes, resulting in more inhibitory input onto excitatory cells, effec-

tively leading to adaptation (Kato et al., 2015). In principle, there can be many other reasons why
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the inhibitory input increases: disinhibitory circuits, modulatory signals driving specific inhibition, or

increased synaptic strength of excitatory-to-inhibitory connnections, to name a few. However, follow-

ing experimental evidence (Natan et al., 2017) and supported by our results, the plasticity of inhibi-

tory-to-excitatory connections emerges as a top candidate underlying adaptive phenomena. In our

model, adaptation to repeated stimuli and the generation of novelty responses via inhibitory plastic-

ity do not depend on the exact shape of the inhibitory STDP learning rule. It is only important that

inhibitory plasticity generates a ‘negative feedback’ whereby high excitatory firing rates lead to net

potentiation of inhibitory synapses while low excitatory firing rates lead to net depression of inhibi-

tory synapses. Other inhibitory STDP learning rules can also implement this type of negative feed-

back (Luz and Shamir, 2012; Kleberg et al., 2014), and we suspect that they would also generate

the adapted and novelty responses as in our model.

One line of evidence to speak against inhibitory plasticity argues that SSA might be independent

of NMDA activation (Farley et al., 2010). Inhibitory plasticity, on the contrary, seems to be NMDA

receptor-dependent (D’amour and Froemke, 2015; Field et al., 2020). However, there exists some

discrepancy in how exactly NMDA receptors are involved in SSA (Ross and Hamm, 2020), since

blocking NMDA receptors can disrupt the MMN (Tikhonravov et al., 2008; Chen et al., 2015).

These results indicate that a further careful disentanglement of the underlying cellular mechanisms

of adaptive phenomena is needed.

In our model, the direction of inhibitory weight change (iLTD or iLTP) depends on the firing rate

of the postsynaptic excitatory cells (see Vogels et al., 2011). Postsynaptic firing rates above a ‘tar-

get firing rate’ will on average lead to iLTP, while postsynaptic firing rates below the target rate will

lead to iLTD. In turn, the average magnitude of inhibitory weight change depends on the firing rate

of the presynaptic inhibitory neurons (see Vogels et al., 2011). Therefore, if the background activity

between stimulus presentations in our model is very low, recovery from adaptation will only happen

on a very slow timescale (as in Figure 6—figure supplement 1). However, if the activity between

stimulus presentations is higher (either because of a higher background firing rate or because of

evoked activity from other sources, for example other stimuli), the adapted stimulus can recover

faster (as in Figure 5). Therefore, we conclude that our model can capture the reduced adaptation

for longer inter-stimulus intervals as found in experiments (Ulanovsky et al., 2004; Cohen-

Kashi Malina et al., 2013) when background activity in the inter-stimulus interval is elevated.

Alternative mechanisms can account for adapted and novelty responses
Undoubtedly, mechanisms other than inhibitory plasticity might underlie the difference in network

response to repeated and novel stimuli. These mechanisms can be roughly summarized in two

groups: mechanisms which are unspecific, and mechanisms which are specific to the stimulus. Two

examples of unspecific mechanisms are intrinsic plasticity and an adaptive current. Intrinsic plasticity

is a form of activity-dependent plasticity, adjusting the neurons’ intrinsic excitability (Debanne et al.,

2019) and has been suggested to explain certain adaptive phenomena (Levakova et al., 2019).

Other models at the single neuron level incorporate an additional current variable, the adaptive cur-

rent, which increases for each postsynaptic spike and decreases otherwise. This adaptive current

leads to a reduction of the neuron’s membrane potential after a spike (Brette and Gerstner, 2005).

However, any unspecific mechanism can only account for firing-rate adaptation but not for SSA

(Nelken, 2014; Figure 6C). Examples of stimulus-specific mechanisms are short-term plasticity and

long-term plasticity of excitatory synapses. Excitatory short-term depression, usually of thalamocorti-

cal synapses, is the most widely hypothesized mechanism to underlie adaptive phenomena in cortex

(Nelken, 2014).

Short-term plasticity (Abbott, 1997; Tsodyks et al., 1998) has been implicated in a number of

adaptation phenomena in different sensory cortices and contexts. One example is an already estab-

lished model to explain SSA, namely the ‘Adaptation of Narrowly Tuned Modules’ (ANTM) model

(Nelken, 2014; Khouri and Nelken, 2015). This model has been extensively studied in the context

of adaptation to tone frequencies (Mill et al., 2011a; Taaseh et al., 2011; Mill et al., 2012;

Hershenhoren et al., 2014). Models based on short-term plasticity have also been extended to

recurrent networks (Yarden and Nelken, 2017) and multiple inhibitory sub-populations (Park and

Geffen, 2020). Experimental work has shown that short-term plasticity can be different at the synap-

ses from PV and SOM interneurons onto pyramidal neurons, and can generate diverse temporal

responses (facilitated, depressed and stable responses) in pyramidal neurons in the auditory cortex
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(Seay et al., 2020). Short-term plasticity can also capture the differences in responses to periodic

versus random presentation of repeated stimuli in a sequence (Yaron et al., 2012; Chait, 2020).

Finally, short-term plasticity has been suggested to explain a prominent phenomenon in the auditory

cortex, named ‘forward masking’ (Brosch and Schreiner, 1997), in which a preceding masker stimu-

lus influences the response to a following stimulus (Phillips et al., 2017). This highlights short-term

plasticity as a key player in adaptive processes in the different sensory cortices, although it likely

works in tandem with long-term plasticity.

Timescales of plasticity mechanisms
The crucial parameter for the generation of adaptation based on short-term plasticity is the time-

scale of the short-term plasticity mechanism. Experimental studies find adaptation timescales from

hundreds of milliseconds to tens of seconds (Ulanovsky et al., 2004; Lundstrom et al., 2010;

Homann et al., 2017; Latimer et al., 2019), and in the case of habituation even multiple days

(Haak et al., 2014; Ramaswami, 2014). At the same time, the timescales of short-term plasticity can

range from milliseconds to minutes (Zucker and Regehr, 2002). Hence, explaining the different

timescales of adaptive phenomena would likely require a short-term plasticity timescale that can be

dynamically adjusted. Our work shows that inhibitory plasticity can readily lead to adaptation on

multiple timescales without the need for any additional assumptions (Figure 4). However, it is

unclear whether inhibitory plasticity can act sufficiently fast to explain adaptation phenomena on the

timescale of seconds, as in our model (Figure 4C,D). Most computational models of recurrent net-

works with plastic connections rely on fast inhibitory plasticity to stabilize excitatory rate dynamics

(Sprekeler, 2017; Zenke et al., 2017). Decreasing the learning rate of inhibitory plasticity five-fold

eliminates the adaptation to repeated stimuli and the novelty response in our model (Figure 4—fig-

ure supplement 2). Experimentally, during the induction of inhibitory plasticity, spikes are paired for

several minutes and it takes several tens of minutes to reach a new stable baseline of inhibitory syn-

aptic strength (D’amour and Froemke, 2015; Field et al., 2020). Nonetheless, inhibitory postsynap-

tic currents increase significantly immediately after the induction of plasticity (see e.g. D’amour and

Froemke, 2015; Field et al., 2020). This suggests that changes of inhibitory synaptic strength

already occur while the plasticity induction protocol is still ongoing. Hence, we propose that inhibi-

tory long-term plasticity is a suitable, though not the only, candidate to explain the generation of

novelty responses and adaptive phenomena over multiple timescales.

Robustness of the model
We probed our findings against key parameters and assumptions in our model. First, we tested if

the specific choice of pretraining parameters and complexity of presented stimuli affects the genera-

tion of adapted and novelty responses. Varying the pretraining duration and the number of pretrain-

ing stimuli did not qualitatively change the novelty response and its properties (Figure 4—figure

supplement 1). In addition, presenting different stimuli in the stimulation phase compared to the

pretraining phase (Materials and methods) to mimic the scenario of randomly oriented Gabor

patches in Homann et al., 2017, preserved the adaptation to repeated stimuli and the generation

of a novelty response (Figure 1—figure supplement 3).

Second, we explored how the timescale of inhibitory plasticity and of the normalization mecha-

nism affects the generation of adapted and novelty responses. In many computational models, nor-

malization mechanisms are often justified by experimentally observed synaptic scaling. In our model,

like in most computational work, the timescale of this normalization was much faster than synaptic

scaling (Zenke et al., 2017). However, slowing normalization down did not affect the generation of

adapted and novelty responses (Figure 1—figure supplement 5). Since the change in inhibitory syn-

aptic weights through iSTDP is the key mechanism behind the generation of adapted and novelty

responses, the speed of normalization was not crucial as it only affected the excitatory and not the

inhibitory weights. In contrast, we found that the learning rate of inhibitory plasticity needs to be

‘sufficiently fast’ . Slow inhibitory plasticity failed to homeostatically stabilize firing rates in the

network. Hence, the network no longer showed an adapted response to repeated stimuli and nov-

elty responses became indiscernible from noise (Figure 4—figure supplement 2).
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Disinhibition as a mechanism for novelty response amplification
Upon including a top-down disinhibitory signal in our model network, we observed: (1) an active

amplification of the novelty response (Figure 7B); (2) a dense novelty response (Figure 7C), similar

to experimental findings (Homann et al., 2017) (without a disinhibitory signal, the novelty response

was not dense, see Figure 1—figure supplement 4); and (3) a flexible manipulation of neuronal

responses through a change in the disinhibitory strength (Figure 7D,E).

In our model, we were agnostic to the mechanism that generates disinhibition. However, at least

two possibilities exist in which the inhibitory population can be regulated by higher-order feedback

to allow for disinhibition. First, inhibitory neurons in primary sensory areas can be shaped by diverse

neuromodulatory signals, which allow for subtype-specific targeting of inhibitory neurons

(Froemke, 2015). Second, higher order feedback onto layer 1 inhibitory cells could mediate the

behavioral relevance of the adapted stimuli through a disinhibitory pathway (Letzkus et al., 2011;

Wang and Yang, 2018). Hence, experiments that induce disinhibition either via local mechanisms

within the same cortical layer or through higher cortical feedback can provide a test for our postu-

lated role for disinhibition.

In our model, the disinhibitory signal was activated instantaneously. If such additional feedback

signals do indeed exist in the brain that signal the detection of higher-order sequence violations, we

expect them to arise with a certain delay. Carefully exploring if the dense responses arise with a tem-

poral delay accounting for higher-order processing and projection back to primary sensory areas

might shed light on distributed computations upon novel stimuli. These experiments would probably

require recording methods on a finer temporal scale than calcium imaging.

Experimental data which points towards a flexible modulation of novelty and adapted responses

already exists. The active amplification of novelty responses generated by our model is consistent

with some experimental data (Taaseh et al., 2011; Hershenhoren et al., 2014; Hamm and Yuste,

2016; Harms et al., 2016), but see also Vinken et al., 2017. Giving a behavioral meaning to a

sound through fear conditioning has been shown to modify SSA (Yaron et al., 2020). Similarly, con-

trast adaptation has been shown to reverse when visual stimuli become behaviorally relevant

(Keller et al., 2017). Other studies have also shown that as soon as a stimulus becomes behaviorally

relevant, inhibitory neurons decrease their response and therefore disinhibit adapted excitatory neu-

rons (Kato et al., 2015; Makino and Komiyama, 2015; Hattori et al., 2017). Attention might lead

to activation of the disinhibitory pathway, allowing for a change in the novelty response compared

to the unattended case, as suggested in MMN studies (Sussman et al., 2014). Especially in habitua-

tion, the idea that a change in context can assign significance to a stimulus and therefore block

habituation, leading to ‘dehabituation’, is widely accepted (Ramaswami, 2014; Barron et al., 2017).

Hence, we suggest that disinhibition is a flexible mechanism to control several aspects of novelty

responses, including the density of the response, which might be computationally important in sig-

naling change detection to downstream areas (Homann et al., 2017). Altogether, our results sug-

gest that disinhibition is capable of accounting for various aspects of novelty responses that cannot

be accounted for by bottom-up computations. The functional purpose of a dense response to novel

stimuli are yet to be explored.

Functional implications of adapted and novelty responses
In theoretical terms, our model is an attractor network. It differs from classic attractor models where

inhibition is considered unspecific (like a ‘blanket’) (Amit and Brunel, 1997). Computational work is

starting to uncover the functional role of specific inhibition in static networks (Rost et al., 2018;

Najafi et al., 2020; Rostami et al., 2020) as well as the plasticity mechanisms that allow for specific

connectivity to emerge (Mackwood et al., 2021). These studies have argued that inhibitory assem-

blies can improve the robustness of attractor dynamics (Rost et al., 2018) and keep a local balance

of excitation and inhibition (Rostami et al., 2020). We showed that specific inhibitory connections

readily follow from a tuned inhibitory population (Figure 1A, Figure 1—figure supplement 2). Our

results suggest that adaptation is linked to a stimulus-specific excitatory/inhibitory (E/I) balance. Pre-

senting a novel stimulus leads to a short-term disruption of the E/I balance, triggering inhibitory

plasticity, which aims to restore the E/I balance (Figure 4; Vogels et al., 2011; D’amour and

Froemke, 2015; Field et al., 2020). Disinhibition, which effectively disrupts the E/I balance, allows

for flexible control of adapted and novelty responses (Figure 7). This links to the notion of
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disinhibition as a gating mechanism for learning and plasticity (Froemke et al., 2007; Letzkus et al.,

2011; Kuhlman et al., 2013).

A multitude of functional implications have been suggested for the role of adaptation

(Weber et al., 2019; Snow et al., 2017). We showed that one of these roles, the detection of unex-

pected (or novel) events, follows from the lack of selective adaptation to those events. A second,

highly considered functional implication is predictive coding. In the predictive coding framework,

the brain is viewed as an inference or a prediction machine. It is thought to generate internal models

of the world which are compared to the incoming sensory inputs (Bastos et al., 2012; Clark, 2013;

Friston, 2018). According to predictive coding, the overall goal of our brain is to minimize the pre-

diction error, that is the difference between the internal prediction and the sensory input (Rao and

Ballard, 1999; Clark, 2013; Friston, 2018). Most predictive coding schemes hypothesize the exis-

tence of two populations of neurons. First, prediction error units that signal a mismatch between the

internal model prediction and the incoming sensory stimuli. And second, a prediction population

unit that reflects what the respective layer ‘knows about the world’ (Rao and Ballard, 1999;

Clark, 2013; Spratling, 2017). Our model suggests that primary sensory areas allow for bottom-up

detection of stimulus changes without the need for an explicit population of error neurons or an

internal model of the world. However, one could also interpret the state of all inhibitory synaptic

weights as an implicit internal model of the recent frequency of various events in the environment.

Predictions and outlook
Our approach to mechanistically understand the generation of adapted and novelty responses leads

to several testable predictions. First, the most general implication from our study is that inhibitory

plasticity might serve as an essential mechanism underlying many adaptive phenomena. Our work

suggests that inhibitory plasticity allows for adaptation on multiple timescales, ranging from the

adaptation to sequence blocks on the timescale of seconds to slower adaptation on the timescale of

minutes, corresponding to repeating multiple sequence blocks (Figure 4C,D). A second prediction

follows from the finding that both excitatory and inhibitory neuron populations show adaptive

behavior and novelty responses (Figure 3B,C). Adaptation of inhibitory neurons on the single-cell

level has already been verified experimentally (Chen et al., 2015; Natan et al., 2015). Third, we fur-

ther predict that a violation of the sequence order does not lead to a novelty response. Therefore,

the novelty response should not be interpreted as signaling a violation of the exact sequence struc-

ture (Figure 3D,E). However, previous work has found a reduction in the response to repeated stim-

uli if the stimuli are presented periodically, rather than randomly, in a sequence (Yaron et al., 2012)

(but see Mehra et al., 2021). Fourth, the height of the novelty peak in the population average

depends on the input drive, where decreasing the input strength decreases the novelty response

(Figure 3F). This could be tested, for example, in the visual system, by presenting visual stimuli with

different contrasts.

In our modeling approach, we did not distinguish between different subtypes of inhibitory neu-

rons. This assumption is certainly an oversimplification. The main types of inhibitory neurons, parval-

bumin-positive (PV), somatostatin-positive (SOM), and vasoactive intestinal peptide (VIP) expressing

neurons, differ in their connectivity and their hypothesized functional roles (Tremblay et al., 2016).

This is certainly also true for adaptation, and computational studies have already started to tackle

this problem (Park and Geffen, 2020; Seay et al., 2020). Studies of the influence of inhibitory neu-

rons on adaptation have shown that different interneuron types have unique contributions to adapta-

tion (Kato et al., 2015; Natan et al., 2015; Hamm and Yuste, 2016; Natan et al., 2017;

Garrett et al., 2020; Heintz et al., 2020). It would be interesting to explore the combination of

microcircuit connectivity of excitatory neurons, PVs, SOMs, and VIPs with subtype-specific short-

term (Seay et al., 2020; Phillips et al., 2017) and long-term inhibitory plasticity mechanisms

(Agnes et al., 2020) on the generation and properties of novelty responses.

In sum, we have proposed a mechanistic model for the emergence of adapted and novelty

responses based on inhibitory plasticity, and the regulation of this novelty response by top-down

signals. Our findings offer insight into the flexible and adaptive responses of animals in constantly

changing environments, and could be further relevant for disorders like schizophrenia where

adapted responses are perturbed (Hamm et al., 2017).
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Materials and methods
We built a biologically plausible spiking neuronal network model of the mammalian cortex based on

recent experimental findings on tuning, connectivity, and synaptic plasticity. The model consists of

4000 excitatory exponential integrate-and-fire (EIF) neurons and 1000 inhibitory leaky integrate-and-

fire (LIF) neurons (Table 1). Excitatory (E) and inhibitory (I) neurons were randomly recurrently con-

nected (Table 2). Excitatory-to-excitatory and inhibitory-to-excitatory connections were plastic (see

below). In addition, excitatory-to-excitatory weight dynamics were stabilized by a homeostatic mech-

anism (Fiete et al., 2010), which preserved the total sum of all incoming synaptic weights into an

excitatory neuron. All other synapses in the network were fixed. Both excitatory and inhibitory neu-

rons received an excitatory baseline feedforward input in the form of Poisson spikes. Furthermore,

different subsets of excitatory and inhibitory neurons received excess input with elevated Poisson

rate to model the presentation of stimuli (see below, Figure 1A, left; Table 4).

Dynamics of synaptic conductances and the membrane potential
The membrane dynamics of each excitatory neuron was modeled as an exponential integrate-and-

fire (EIF) neuron model (Fourcaud-Trocmé et al., 2003):

C
d

dt
VðtÞ ¼�gLðVðtÞ�VE

restÞþ gLDTexp
VðtÞ�VT

DT

� �

� gEEðtÞðVðtÞ�VE
revÞ� gEIðtÞðVðtÞ�V I

revÞ; (1)

where VðtÞ is the membrane potential of the modeled neuron, C the membrane capacitance, gL the

membrane conductance, and DT is the slope factor of the exponential rise. The membrane potential

was reset to Vreset once the diverging potential reached the threshold peak voltage Vpeak. Inhibitory

neurons were modeled via a leaky-integrate-and-fire neuron model

C
d

dt
VðtÞ ¼�gLðVðtÞ�V I

restÞ� gIEðtÞðVðtÞ�VE
revÞ� gIIðtÞðVðtÞ�V I

revÞ: (2)

Once the membrane potential reached the threshold voltage Vthr, the membrane potential was

reset to Vreset. The absolute refractory period was modeled by clamping the membrane voltage of a

neuron that just spiked to the reset voltage Vreset for the duration t abs. In this study, we did not

model additional forms of adaptation, such as adaptive currents or spiking threshold VT adaptation.

To avoid extensive parameter tuning, we used previously published parameter values (Litwin-

Kumar and Doiron, 2014; Table 1).

Table 1. Parameters for the excitatory (EIF) and inhibitory (LIF) membrane dynamics (Litwin-

Kumar and Doiron, 2014).

Symbol Description Value

NE Number of E neurons 4000

NI Number of I neurons 1000

t

E ,t I E, I neuron resting membrane time constant 20 ms

VE
rest

E neuron resting potential - 70 mV

V I
rest

I neuron resting potential - 62 mV

DT Slope factor of exponential 2 mV

C Membrane capacitance 300 pF

gL Membrane conductance C/t E

VE
rev

E reversal potential 0 mV

V I
rev

I reversal potential - 75 mV

Vthr Threshold potential - 52 mV

Vpeak Peak threshold potential 20 mV

Vreset E, I neuron reset potential - 60 mV

t abs E, I absolute refractory period 1 ms
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We compared this model to one where we froze plasticity and included adaptive currents

wadapt (Figure 6C, top). We modeled this by subtracting wadaptðtÞ on the right hand side of Equation 1

(Brette and Gerstner, 2005). Upon a spike, wadaptðtÞ increased by bw and the sub-threshold dynamics

of the adaptive current were described by t w
d
dt
wadaptðtÞ ¼ �wadaptðtÞ þ awðVðtÞ � VE

restÞ, where aw = 4

nS denotes the subthreshold and bw = 80.5 pA the spike-triggered adaptation. The adaptation time

scale was set to t w = 150 ms.

The conductance of neuron i which is part of population X and is targeted by another neuron in

population Y was denoted with gXYi . Both X and Y could refer either to the excitatory or inhibitory

population, that is X; Y 2 E; I½ �. The shape of the synaptic kernels FðtÞ was a difference of exponen-

tials and differed for excitatory and inhibitory input depending on the rise and decay times t

Y
decay

and t

Y
rise:

FYðtÞ ¼
e

�t

t

Y
decay � e

�t

t

Y
rise

t

Y
decay � t

Y
rise

: (3)

This kernel was convolved with the total inputs to neuron i weighted with the respective synaptic

strength to yield the total conductance

gXYi ðtÞ ¼ FYðtÞ � JXYext s
XY
i;extðtÞþ

X

j

JXYij sYj ðtÞ

 !

; (4)

where sYj ðtÞ is the spike train of neuron j in the network and sXYi;ext denotes the spike train of the exter-

nal input to neuron i. The external spike trains were generated in an independent homogeneous

Poisson process. The synaptic strength from the input neurons to the network neurons, JXYext , was

assumed to be constant.

Excitatory and inhibitory plasticity
We implemented the plasticity from an excitatory to an excitatory neuron JEE based on the triplet

spike-time-dependent plasticity rule (triplet STDP), which uses triplets of pre- and postsynaptic

Table 2. Parameters for feedforward and recurrent connections (Litwin-Kumar and Doiron, 2014).

Symbol Description Value

p Connection probability 0.2

t

E
rise

Rise time for E synapses 1 ms

t

E
decay

Decay time for E synapses 6 ms

t

I
rise

Rise time for I synapses 0.5 ms

t

I
decay

Decay time for I synapses 2 ms

�rEEext Avg. rate of external input to E neurons 4.5 kHz

�rIEext Avg. rate of external input to I neurons 2.25 kHz

JEEmin
Minimum E to E synaptic weight 1.78 pF

JEEmax
Maximum E to E synaptic weight 21.4 pF

JEE0 Initial E to E synaptic weight 2.76 pF

JEImin
Minimum I to E synaptic weight 48.7 pF

JEImax
Maximum I to E synaptic weight 243 pF

JEI0 Initial I to E synaptic weight 48.7 pF

JIE Synaptic weight from E to I 1.27 pF

JII Synaptic weight from I to I 16.2 pF

JEEx Synaptic weight from external input population to E 1.78 pF

JIEx Synaptic weight from external input population to I 1.27 pF
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spikes to evoke synaptic change (Sjöström et al., 2001; Pfister and Gerstner, 2006). The addition

of a third spike for the induction of synaptic plasticity modifies the amount of potentiation and

depression induced by the classical pair-based STDP, where pairs of pre- and postsynaptic spikes

induce plasticity based on their timing and order (Bi and Poo, 1998). The triplet eSTDP rule has

been shown to capture the dependency of plasticity on firing rates found experimentally, whereby a

high frequency of pre- and postsynaptic spike pairs leads to potentiation rather than no synaptic

change as predicted by pair-based STDP (Sjöström et al., 2001; Pfister and Gerstner, 2006;

Gjorgjieva et al., 2011; Table 3). In the triplet rule, four spike accumulators, r1; r2; o1; and

o2, increase by one, once a spike of the corresponding neuron occurs and otherwise decrease expo-

nentially depending on their respective time constant t þ; t x; t �; and t y:

dr1ðtÞ

dt
¼�

r1ðtÞ

t þ
if t¼ tpre then r1 ! r1 þ 1;

dr2ðtÞ

dt
¼�

r2ðtÞ

t x

if t¼ tpre then r2 ! r2 þ 1;

do1ðtÞ

dt
¼�

o1ðtÞ

t �
if t¼ tpost then o1 ! o1 þ 1;

do2ðtÞ

dt
¼�

o2ðtÞ

t y

if t¼ tpost then o2 ! o2 þ 1:

(5)

The E-to-E weights were updated as

DJEEðtÞ ¼�o1ðtÞ½A
�
2
þA�

3
r2ðt� �Þ� if t¼ tpre;

DJEEðtÞ ¼ r1ðtÞ½A
þ
2
þAþ

3
o2ðt� �Þ� if t¼ tpost;

(6)

where the Aþ;A� corresponds to the excitatory LTP or LTD amplitude, and the subscript refers to

the triplet (3) or pairwise term (2). The parameter �>0 ensures that the weights are updated prior to

increasing the respective spike accumulators by 1. Spike detection was modeled in an all-to-all

approach.

The plasticity of inhibitory-to-excitatory connections, JEI , was modeled based on a symmetric

inhibitory pairwise STDP (iSTDP) rule, initially suggested on theoretical grounds for its ability to

homeostatically stabilize firing rates in recurrent networks (Vogels et al., 2011). According to this

rule, the timing but not the order of pre- and postsynaptic spikes matters for the induction of synap-

tic plasticity. Other inhibitory rules have also been measured experimentally, including classical Heb-

bian and anti-Hebbian (e.g. Holmgren and Zilberter, 2001; Woodin et al., 2003; Haas et al.,

2006; for a review see Hennequin et al., 2017), and some may even depend on the type of the

interneuron (Udakis et al., 2020). We chose the iSTDP rule because it can stabilize excitatory firing

rate dynamics in recurrent networks (Vogels et al., 2011; Litwin-Kumar and Doiron, 2014) and was

Table 3. Parameters for the implementation of Hebbian and homeostatic plasticity (Pfister and

Gerstner, 2006; Litwin-Kumar and Doiron, 2014).

Symbol Description Value

t � Time constant of pairwise pre-synaptic detector (+) 33.7 ms

t þ Time constant of pairwise post-synaptic detector (-) 16.8 ms

t x Time constant of triplet pre-synaptic detector (-) 101 ms

t y Time constant of triplet post-synaptic detector (+) 125 ms

Aþ
2

Pairwise potentiation amplitude 7:5� 10
�10 pF

Aþ
3

Triplet potentiation amplitude 9:3� 10
�3 pF

A�
2

Pairwise depression amplitude 7� 10
�3 pF

A�
3

Triplet depression amplitude 2:3� 10
�4 pF

t

inhib
y

Time constant of low-pass filtered spike train 20 ms

h Inhibitory plasticity learning rate 1 pF

r0 Target firing rate 3 Hz
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recently verified to operate in the auditory cortex of mice (D’amour and Froemke, 2015). The plas-

ticity parameters are shown in Table 3. The two spike accumulators yE=I , for the inhibitory pre- and

the excitatory post-synaptic neuron, have the same time constant t

inhib
y . Their dynamics were

described by

dyIðtÞ

dt
¼�

yIðtÞ

t

inhib
y

if t¼ tpre=I then yI ! yI þ 1 and

dyEðtÞ

dt
¼�

yEðtÞ

t

inhib
y

if t¼ tpost=E then yE ! yE þ 1:

(7)

The I-to-E weights were updated as

DJEIij ðtÞ ¼ hðyEi ðtÞ� 2r0t
inhib
y Þ if t¼ tpre=I

DJEIij ðtÞ ¼ hyIj ðtÞ if t¼ tpost=E;
(8)

where h is the learning rate, and r0 corresponds to the target firing rate of the excitatory neuron. In

Figure 4—figure supplement 2 we investigated the inhibitory learning rate h. Figure 1—figure

supplement 1 shows the excitatory and inhibitory STDP rules for different pairing frequencies.

Additional homeostatic mechanisms
Inhibitory plasticity alone is considered insufficient to prevent runaway activity in this network imple-

mentation. Hence, additional mechanisms were implemented that also have a homeostatic effect. To

avoid unlimited weight increase, the synaptic weights were bound from below and from above, see

Table 2. Subtractive normalization ensured that the total synaptic input to an excitatory neuron

remains constant throughout the simulation. This was implemented by scaling all incoming weights

to each neuron every Dt ¼ 20 ms according to

DJEEij ðtÞ ¼�

P

jJ
EE
ij ðtÞ�

P

jJ
EE
ij ð0Þ

NE
i

; (9)

where i is the index of the post-synaptic and j of the pre-synaptic neurons. NE
i is the number of excit-

atory connections onto neuron i (Fiete et al., 2010). In Figure 1—figure supplement 5 we investi-

gated the effect of the normalization timestep Dt on the novelty response.

Stimulation protocol
All neurons received external excitatory baseline input. The baseline input to excitatory neurons rEext

was higher than the input to inhibitory neurons rIext (Table 4). An external input of rEext ¼ 4:5 kHz can

be interpreted as 1000 external presynaptic neurons with average firing rates of 4.5 Hz (compare Lit-

win-Kumar and Doiron, 2014).

The stimulation paradigm was inspired by a recent study in the visual system (Homann et al.,

2017). In Homann et al., 2017, the stimulation consisted of images with 100 randomly chosen,

superimposed Gabor patches. Rather than explicitly modeling oriented and spatially localized Gabor

patches, in our model, stimuli that correspond to Gabor patches of a given orientation were

Table 4. Parameters for the stimulation paradigm and stimulus tuning.

Symbol Description Value

rEext External baseline input to E 4.5 kHz

rIext External baseline input to I 2.25 kHz

rEstim Additional input to E during stimulus presentation 12 kHz

rIstim Additional input to I during stimulus presentation 1.2 kHz

rIdisinh Additional input to I during disinhibition �1.5 kHz

pEmember
Probability for an E neuron to be driven by a stimulus 5%

pImember
Probability for an I neuron to be driven by a stimulus 15%
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implemented by simultaneously co-activating subsets of cells by strongly driving them. Hence, the

model analog of the presentation of a sensory stimulus, in our experiments, is increased input to a

subset of neurons. Every time a particular stimulus is presented again, the same set of neurons

receives strong external stimulation, rEstim and rIstim. Therefore, while a stimulus in our stimulation par-

adigm is functionally similar to presenting Gabor patches with similar orientations, it does not repre-

sent the Gabor patches themselves.

We first implemented a pretraining phase. In this phase, we sequentially stimulated subsets of

neurons that are driven by all stimuli (repeated and novel stimuli) eventually used in the stimulation

phase. The stimuli were presented in random order, leading to a change in network connectivity that

is only stimulus but not sequence-dependent (Figure 4B, first 100 s shown here for five repetitions

of each stimulus). Hence, the pretraining phase is a phenomenological model of the development

process to generate a structure in the network connections prior to the actual stimulation paradigm.

This can be interpreted as imprinting a ‘backbone’ of orientation selective neurons, where cells

which are selective to similar features (e.g. similar orientations) become strongly connected due to

synaptic plasticity (as seen in experiments, see for e.g. Ko et al., 2011; Ko et al., 2013).

Next, we implemented a stimulation phase where we presented the same stimuli used during the

pretraining phase according to the repeated sequence stimulation paradigm. To match the ran-

domly oriented Gabor patches presented in Homann et al., 2017, we also performed additional

simulations where in the stimulation phase we activated different, randomly chosen, subsets of neu-

rons (Figure 1—figure supplement 3) (note that there is some overlap with the imprinted orienta-

tion selective subsets).

In the standard repeated sequence stimulation paradigm (Figure 3 and Figure 4), a total of 65

stimuli were presented (5 x 3 repeated + 5 x 10 novel stimuli) during pretraining. In Figure 4—figure

supplement 1, we tested if changes in the pretraining phase, such as a change in the number of rep-

etitions of each stimulus or the total number of stimuli, affect our results.

The timescales of the experimental paradigm in Homann et al., 2017 and the model paradigm

were matched, that is the neurons tuned to a stimulus received additional input for 300 ms simula-

tion time. Stimuli were presented without pauses in between, corresponding to continuous stimulus

presentation without blank images (visual) or silence (auditory) between sequence blocks. Table 4

lists the stimulus parameters.

In contrast to several previous plastic recurrent networks, we did not only consider the excitatory

neurons to have stimulus tuning properties but included inhibitory tuning as well. The probability of

an excitatory neuron to be driven by one particular stimulus was 5%, leading to roughly 200 neurons

that responded specifically to this stimulus. We modeled inhibitory tuning to be both weaker and

broader. The probability of an inhibitory neuron to be driven by one particular stimulus was 15%,

leading to roughly 150 neurons that responded specifically to this stimulus. There was overlap in

stimulus tuning, that is, one neuron could be driven by multiple stimuli. Given this broader tuning of

inhibitory neurons compared to excitatory neurons, a single inhibitory neuron could strongly inhibit

multiple excitatory neurons which were selective to different stimuli, effectively implementing lateral

inhibition.

Stimulus tuning in both populations led to the formation of stimulus-specific excitatory assemblies

due to synaptic plasticity, where the subsets of excitatory neurons receiving the same input devel-

oped strong connections among each other as noted above (Figure 1—figure supplement 2C) and

found experimentally (Ko et al., 2011; Miller et al., 2014; Lee et al., 2016). The strong, bidirec-

tional connectivity among similarly selective neurons in our model was a direct consequence of the

triplet STDP rule (Gjorgjieva et al., 2011; Montangie et al., 2020). Additionally, the connections

from similarly tuned inhibitory to excitatory neurons also became stronger, as seen in experiments

(Lee et al., 2014; Xue et al., 2014; Znamenskiy et al., 2018; Najafi et al., 2020). The number of

stimulus-specific assemblies varied depending on the stimulation paradigm and corresponded to the

number of unique stimuli presented in a given paradigm. We did not impose topographic organiza-

tion of these assemblies (for e.g. tonotopy in the auditory cortex) since it would not influence the

generation of adapted and novelty responses, but increase model complexity. Such spatial organiza-

tion could, however, be introduced by allowing the assemblies for neighboring stimuli to overlap.

Disinhibition in the model was implemented via additional inhibiting input to the inhibitory popu-

lation rIinhib. This was modeled in a purely phenomenological way, and we are agnostic as to what

causes the additional inhibition.
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Simulation details
The simulations were performed using the Julia programming language. Further evaluation and plot-

ting was done in Python. Euler integration was implemented using a time step of 0.1 ms. Code

implementing our model and generating the stimulation protocols can be found here: https://

github.com/comp-neural-circuits/novelty-via-inhibitory-plasticity (Schulz, 2021; copy archived at

swh:1:rev:d368b14a2368925b290923c2c11411d7b7a40bd1).
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Regulation of circuit organization and function
through inhibitory synaptic plasticity

Yue Kris Wu ,1,2,3 Christoph Miehl ,1,2,3 and Julijana Gjorgjieva 1,2,*

Diverse inhibitory neurons in themammalian brain shape circuit connectivity and
dynamics throughmechanisms of synaptic plasticity. Inhibitory plasticity can es-
tablish excitation/inhibition (E/I) balance, control neuronal firing, and affect local
calcium concentration, hence regulating neuronal activity at the network, single
neuron, and dendritic level. Computational models can synthesize multiple ex-
perimental results and provide insight into how inhibitory plasticity controls cir-
cuit dynamics and sculpts connectivity by identifying phenomenological
learning rules amenable to mathematical analysis. We highlight recent studies
on the role of inhibitory plasticity in modulating excitatory plasticity, forming
structured networks underlying memory formation and recall, and implementing
adaptive phenomena and novelty detection. We conclude with experimental and
modeling progress on the role of interneuron-specific plasticity in circuit compu-
tation and context-dependent learning.

Inhibition throughout development and adulthood
Long-term synaptic plasticity is widely considered to underlie circuit assembly and connectivity
refinement during early postnatal development, as well as learning and memory in adulthood
[1]. Over the past few decades, extensive studies have characterized the plasticity of synapses
between excitatory neurons [2–5]. Consistent with Hebbian principles, coincident pre- and post-
synaptic activity potentiates synaptic strength, which enhances the correlation between pre- and
postsynaptic activity and further potentiates synaptic strength, potentially leading to runaway
synaptic growth and abnormal seizure-like activity [6]. To prevent excessive excitation and main-
tain stable activity levels, neural circuits employ various mechanisms to dynamically coordinate
changes in excitation and inhibition [7,8]. The modulation of inhibitory synapses onto excitatory
neurons, called inhibitory plasticity (see Glossary), is one such mechanism encountered in dif-
ferent regions of the mammalian brain [9–14] (Box 1). Yet, understanding inhibitory plasticity and
its functional implications in shaping network connectivity and dynamics remains challenging be-
cause of the different roles inhibitory plasticity might play, depending on the varying demands
across an animal’s lifetime, as well as the considerable anatomical, electrophysiological, and
functional diversity of interneurons, which can undergo different forms of plasticity [15–17].

During early development, it has long been thought that themain inhibitory neurotransmitter in the
adult, gamma-aminobutyric acid (GABA), is depolarizing [18,19]. The early excitatory action of
GABA has been implicated in the activity-dependent growth and differentiation of neurons and
the establishment of neural circuits [20,21]. However, while GABA depolarizes immature cortical
neurons in vivo, its action at the network level (at least in the neocortex) appears to be inhibitory
[22–24]. The maturation of GABAergic synaptic transmission triggers the onset of a critical period
in which sensory circuits are highly plastic and sensitive to perturbations [25]. During develop-
ment and early life, the plasticity of inhibitory GABAergic synapses interacts with excitatory
plasticity [10]. Multiple computational studies have demonstrated that this interaction shapes

Highlights
Inhibitory synapses are continuously
modified by experience through synaptic
plasticity. Different learning rules have
been proposed to describe the depen-
dence of plasticity on firing rates, spike
timing, calcium levels, and membrane
potential.

Inhibitory plasticity affects dendritic, cellu-
lar, and network dynamics and influ-
ences excitatory plasticity at all levels.

Inhibitory plasticity shapes the formation
of feedforward receptive fields and struc-
tured connectivity in recurrent circuits,
supporting the formation and recall of
memories and the generation of adaptive
and novelty responses. of memories and
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Multiple inhibitory neuron subtypes and
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roles in supporting the stability and com-
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network structures and establishes the appropriate network connectivity driven by developmen-
tal patterns of spontaneous activity and sensory experience [26–28]. Following sensory depriva-
tion, especially during the critical period, inhibitory plasticity can regulate the balance of excitation
and inhibition (E/I balance) and contribute to firing rate homeostasis [29,30]. To adapt to more
complex environments, inhibitory plasticity continues to shape learning and network dynamics
throughout adulthood. For example, different interneuron subtypes and interneuron-specific
plasticity support diverse computations from context-dependent information processing to pre-
dictive coding [16,31–34]. Therefore, through plasticity, inhibition can adjust to the needs of the
organism at various stages from development to adulthood.

Here, we present recent experimental and theoretical advances on inhibitory plasticity and the
control it exerts on circuit connectivity and dynamics. We outline how inhibitory plasticity controls
network firing rates and correlations, as well as the plasticity of excitatory connections. We
discuss how the interaction of excitatory and inhibitory plasticity can influence the formation of

Box 1. Inhibitory plasticity in experiments and models

Inhibitory plasticity has been observed in different regions of the mammalian brain [9–12,35]. Experimentally, inhibitory
plasticity can be induced by concurrent presynaptic hyperpolarization and postsynaptic depolarization [16,36–39], for in-
stance, via high-frequency stimulation of input pathways [40,41] or pairing of pre- and postsynaptic spikes [16,36,42–44]
(see [13] for an extensive summary of experimental studies on inhibitory plasticity).

In computational models, inhibitory plasticity is implemented by phenomenological learning rules, which simplify the
underlying complex molecular and biochemical processes [13,14]. In these models, inhibitory synaptic change can
depend on firing rates, precise spike times, or membrane potential based on the induction protocol used experimentally
[45–49]. A commonly used inhibitory learning rule, which depends on spikes [also called inhibitory spike-timing-
dependent plasticity (iSTDP)], is the symmetric Hebbian learning rule (see Figure I in Box 1). It has a symmetric
window as a function of the time difference between pre- and postsynaptic spikes. Spikes near each other in time,
independent of their order, lead to inhibitory long-term potentiation (LTP) , whereas pre- and postsynaptic spikes far
from each other lead to inhibitory long-term depression (LTD) [45]. A similar symmetric iSTDP window has been found
experimentally in the auditory cortex [44], in the orbitofrontal cortex [50], and in the hippocampus [16]. To account for the
diversity of experimentally observed iSTDP windows, computational models have also investigated other learning window
shapes, including asymmetric Hebbian, where pre-post spike pairs lead to LTP and post-pre spike pairs lead to LTD
[51,52], as observed in entorhinal cortex [43]; asymmetric anti-Hebbian, where pre-post spike pairs lead to LTD and
post-pre spike pairs lead to LTP [52]; and symmetric anti-Hebbian window, where spikes near each other in time lead
to LTD, while spikes far from each other lead to LTP [53], as observed in hippocampus [36] (see Figure I in Box 1).
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Figure I. Different learning windows of inhibitory spike-timing-dependent plasticity. Inhibitory plasticity can be
parameterized into different idealized learning windows as a function of the timing difference between pre- and
postsynaptic spikes Δt, leading to either inhibitory long-term potentiation (ΔwEI > 0, green) or inhibitory long-term
depression (ΔwEI < 0, orange): asymmetric Hebbian [51,52], asymmetric anti-Hebbian [52], symmetric Hebbian [45],
and symmetric anti-Hebbian [53].
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Glossary
Anti-Hebbian learning rule: a learning
rule in which long-term depression is
induced by presynaptic followed by
postsynaptic spikes, the opposite of
Hebb’s principle.
AsymmetricHebbian learning rule: a
learning rule that is an asymmetric
function of the difference in spike times
of pre- and postsynaptic neurons. For
asymmetric learning rules, pre-post
spike pairs have the opposite impact on
the weight change to that of post-pre
spike pairs.
Disinhibition: loss or reduction of
inhibition. Disinhibition can be induced in
multiple ways, for example, via
neuromodulators that reduce GABA
release from inhibitory neurons onto
excitatory neurons, or via increasing
inhibition onto inhibitory neurons that
target excitatory neurons.
Excitatory plasticity: the plasticity of
synapses from an excitatory to another
excitatory neuron.
Gamma-aminobutyric acid (GABA):
a major inhibitory neurotransmitter in the
adult brain.
Hebbian learning rule: a learning rule
in which long-term potentiation is
induced by presynaptic followed by
postsynaptic spikes, in agreement with
Hebb’s principle.
Inhibition-stabilized network (ISN): a
network consisting of excitatory and
inhibitory neurons with strong recurrent
excitation, which is stabilized by strong
feedback inhibition generated in the
circuit.
Inhibitory plasticity: the plasticity of
synapses from an inhibitory to an
excitatory neuron.
Inhibitory spike-timing-dependent
plasticity (iSTDP): a process that
adjusts the (inhibitory) synaptic strength
based on the timing of presynaptic and
postsynaptic spikes.
Long-term depression (LTD): a
process involving the weakening of
synapses between neurons.
Long-term potentiation (LTP): a
process involving the
strengthening of synapses between
neurons.
Symmetric Hebbian learning rule: a
learning rule that is a symmetric function
of the difference in spike times of
pre- and postsynaptic neurons. For
symmetric learning rules, pre-post spike
pairs have the same impact on the
weight change to that of post-pre spike
pairs.



different network connectivity structures, including, but not limited to, receptive fields and assem-
blies, modulate these structures during learning and memory formation, and generate adapted
and novelty responses. Based on experimental evidence of different interneuron subtypes and
their connectivity profiles, we also present modeling studies that explore differences in the plasticity
at these synapses. Throughout, a picture emerges that highlights inhibition and inhibitory plasticity as
key factors that control circuit dynamics, ensure appropriate circuit function, and provide a substrate
for flexible and complex computations driving behavior throughout the entire life of an organism.

Inhibitory plasticity controls excitation at different spatiotemporal scales
To maintain stable activity levels, inhibitory plasticity can dynamically adjust the amount of inhibi-
tion at different spatial and temporal scales during both normal circuit operation and perturbation
(Figure 1). At the network level, inhibition is thought to maintain healthy firing rates to prevent run-
away dynamics leading to epileptic activity or decreases leading to complete silence (Figure 1A).
However, in heavily interconnected neural circuits, the relationship between inhibition and net-
work dynamics is more complicated. In such recurrently dominated networks, strong feedback
inhibition generated by the circuit is needed to balance strong recurrent excitation. Both theoret-
ical and experimental studies have put forward such inhibition stabilization as an essential prop-
erty of cortical networks [54,55]. Inhibition-stabilized networks (ISNs) can perform various
computations, including input amplification, response normalization, and network multistability
[56–58]. A signature of inhibition stabilization is widely considered to be the paradoxical effect,
whereby injecting excitatory currents into inhibitory neurons (e.g., via optogenetic stimulation of
inhibitory neurons) decreases inhibitory firing [59]. Several circuit aspects, including recurrent ex-
citatory-to-excitatory connection strengths and network activity, can dynamically shape inhibition
stabilization [57,60]. For example, in networks where neuronal dynamics are nonlinear, changing
the connection from inhibitory to excitatory neurons affects network activity and puts the network
in different inhibition-stabilized regimes, as evaluated by the presence of the paradoxical effect
(Figure 1B, [57,58,60]). Yet, detecting ISNs via the paradoxical effect is experimentally challenging
due to the sensitivity of optogenetic stimulation strength [61] and the complexity introduced by
multiple interneuron subtypes [62]. While inhibition stabilization is necessary for various computa-
tions, it is still unclear how it can be maintained in the presence of synaptic plasticity, for example,
during learning, though recent work addresses this question in the context of balanced excitatory
and inhibitory receptive field formation [63].

More broadly, inhibitory plasticity can operate as a homeostatic process and control network
activity following perturbation [64,65]. A classical paradigm to explore this process experimentally
is elevating or suppressing the activity of cultured neurons, which triggers the potentiation or
depression of spontaneous inhibitory synaptic currents into the perturbed neurons [66,67]. In
the living animal, a perturbation may involve sensory deprivation, for example, the removal of
whiskers in the somatosensory system or the closure of an eye in the visual system [68,69].
Here, inhibitory plasticity could be involved both during the initial circuit response leading to the
decrease in network firing rates, as well as later on during their recovery. Initially, the strong
potentiation of recurrent inhibition onto excitatory neurons could contribute to the early decrease
of network firing rates [30,70,71]. The subsequent gradual upregulation of firing rates could be
triggered by the loss of inhibitory synapses onto excitatory neurons [72,73], or the decreased
spontaneous inhibitory current frequency [74,75] and amplitude [64,68]. In sum, inhibitory plasticity
could act as a common driver behind the homeostatic regulation of network activity immediately
after or during a prolonged period following sensory perturbation across sensory cortices.

How could inhibitory plasticity achieve this homeostatic regulation of excitatory firing rates? One
answer lies in the concept of E/I balance, which inhibitory plasticity can establish and maintain at
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the network, cellular, and subcellular level, with different computational implications for circuit pro-
cessing (Box 2) [29,74–78]. E/I balance is typically quantified by the E/I ratio, defined as the ratio
of excitatory to inhibitory input currents. The E/I ratio can in return also affect the amount of inhib-
itory plasticity, with high initial E/I ratios resulting in stronger inhibitory potentiation, as shown in the
mouse auditory cortex [44,79].

Various inhibitory plasticity rules have been proposed to regulate E/I balance in computational
models [45,51,52,80–82]. The best-studied model of inhibitory plasticity, which has a symmetric
Hebbian learning window (see Figure I in Box 1), can establish a precise E/I balance at the single-
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Figure 1. Inhibitory control of excitation at different scales. (A) At the network level (top), inhibition (Inh) affects
excitatory population activity (bottom). Excessive inhibition can silence excitatory activity, insufficient inhibition can lead to
the explosion of excitatory activity, while the appropriate amount of inhibition stabilizes network dynamics and maintains
excitatory activity at a modest level. (B) Left: Assessing inhibition stabilization via the paradoxical effect by perturbing the
inhibitory population. Middle: For weak inhibitory weights (wEI), network activity is high and the network is in the inhibition-
stabilized network (ISN) regime. Injecting additional excitatory currents into inhibitory neurons (‘perturb Inh’) leads to a
paradoxical decrease of the inhibitory population response. Right: For strong wEI, network activity is low and the network
is in the non-ISN regime. Injecting additional excitatory currents into inhibitory neurons (‘perturb Inh’) does not generate a
paradoxical response. (C)At the single neuron level (top), inhibition affects somatic firing (bottom). Excessive inhibition
generates very little spiking, insufficient inhibition leads to high levels of spiking, while appropriate amount of inhibition
leads to appropriate spiking levels. (D) At the dendritic level (top), inhibition influences the local calcium level (bottom).
Excessive inhibition leads to extremely low calcium level locally on the dendrite, insufficient inhibition leads to extraordinarily
high local calcium level, while the appropriate amount of inhibition leads to an appropriate local calcium level.
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neuron level on a millisecond timescale [45,83]. The learning rule achieves the balance by a neg-
ative feedback mechanism, which increases inhibitory synaptic strength for high postsynaptic fir-
ing rates and decreases inhibitory strength for low firing rates to counteract deviations from a
target firing rate (Figure 1C), therefore maintaining a firing rate set-point for each individual neuron.
How such a negative feedback mechanism might be implemented biologically remains an open
question (see [14] for a discussion of the molecular mechanisms underlying inhibitory plasticity).
Due to the resulting robust homeostatic properties, this rule is commonly used in recurrent net-
work models [28,45]. Computational work has proposed several alternatives, including an
input-dependent inhibitory plasticity rule [84], or a voltage-dependent plasticity rule [49], both of
which can achieve firing rate heterogeneity as observed experimentally [69,85]. One caveat of
all these inhibitory plasticity rules is the mismatch between timescales assumed in models and
timescales measured in experiments. Most computational models rely on fast inhibitory plasticity

Box 2. Different types of E/I balance

Neural circuits are known to maintain E/I balance [7,10]. E/I balance generally refers to the coregulation of excitation and
inhibition and is typically measured by the ratio of excitatory and inhibitory inputs [10]. When excitation and inhibition are
balanced at the population level but not necessarily at the single neuron level, the E/I balance is known as global balance
[95,102]. Global balance can be achieved via input-dependent inhibitory plasticity rules [84]. If excitatory and inhibitory in-
put currents onto a single neuron are balanced, or co-tuned, across the stimulus space, this is referred to as detailed bal-
ance [76–78,103]. Detailed balance can be established via inhibitory plasticity rules, which maintain a target firing rate at
the single neuron level [45]. Additionally, when excitatory and inhibitory inputs are balanced also on amillisecond timescale,
as observed experimentally [104,105], the E/I balance is known as tight balance, and loose balance otherwise [106]. The
coexistence of tight and detailed balance is referred to as precise E/I balance and has been observed in several circuits,
such as the zebrafish homolog of olfactory cortex [107] andmammalian hippocampus [108], where it is involved in efficient
memory storage, millisecond-range input gating, and subthreshold gain control.
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Figure I. Different types of excitation/inhibition (E/I) balance. (A) Global balance is characterized by a high degree of
correlation between excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs) at the
population level but a low degree of correlation for individual neurons across stimuli. Each dot represents a neuron–
stimulus pair. Data for different neurons are marked in different colors. (B) Detailed balance is characterized by a high
degree of correlation between EPSCs and IPSCs at the individual neuron level across stimuli. (C) Loose balance is
characterized by a low degree of correlation between EPSCs and IPSCs over time. (D) Tight balance is characterized by
tightly correlated EPSCs and IPSCs on a millisecond timescale. Panels (A) and (B) are adapted from [107].
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to guarantee homeostasis and establish an E/I balance [48,65]; however, it takes several tens of
minutes to reach a stable baseline of inhibitory synaptic strength following plasticity induction in
the mouse auditory cortex [44,76,78].

Recent experimental evidence suggests that E/I balance can even extend to local dendritic
segments of single neurons [86] (Figure 1D). Inhibitory synapses form and change in strength
to complement the dendritic organization of excitatory synaptic inputs, which often form local
clusters based on coactivation [87,88], to regulate excitatory synaptic dynamics and plasticity
[86,89,90]. For example, in the hippocampus, stimulating clustered excitatory synapses has
been shown to trigger the de novo formation of inhibitory synapses [91], and a push–pull plasticity
mechanism has been found to maintain the balance of local dendritic excitatory and inhibitory
strength [92]. Also, inhibitory synapses in the neocortex remain stable if located in the proximity
of excitatory synapses during normal visual experience [72]. Thus, while the presence of E/I
balance on local stretches of dendrites is supported by experimental data, how it emerges during
early postnatal development and how it is maintained during learning and perturbations remains
an open question.

Besides regulating E/I balance and firing rates, inhibitory plasticity plays a more nuanced role in
controlling the firing patterns of single neurons. By regulating the precise arrival of inhibitory inputs
relative to excitatory inputs, experiments in the hippocampus have showed that inhibition can
close or open the time window in which a spike is triggered [93]. Inhibitory plasticity can therefore
dramatically affect the spike generation properties and spiking statistics of excitatory neurons,
including neuronal input–output functions [94], pairwise spike correlations and spiking regularity
[95,96], and criticality [97,98]. Both experimental and modeling work have showed that potenti-
ating inhibition can decorrelate network activity [24,99,100] and switch network firing regimes
[95] from oscillatory states supporting memory consolidation [101] to asynchronous irregular
states supporting high memory capacity, despite the presence of noise [81]. Such switching
could occur at different behavioral state transitions (e.g., from sleep to wake). Yet, direct evidence
of inhibitory plasticity contributing to a dynamical switching between network firing regimes
remains to be examined experimentally.

Inhibitory control of excitatory plasticity
Experimental evidence has revealed that excitatory plasticity is jointly determined by factors like pre-
and postsynaptic firing rates [2,4], spike timing [3,4], and dendritic calcium levels [5]. Since inhibition
can influence all of these factors, it naturally also affects excitatory plasticity [12,109–111].

In experiments, the frequency of presynaptic stimulation can determine the sign of excitatory
synaptic plasticity, with low-frequency stimulation favoring excitatory LTDand high-frequency
stimulation inducing excitatory LTP [2]. Decreasing inhibition decreases the excitatory LTD/LTP
threshold, making LTP induction easier, while increasing inhibition increases the LTD/LTP thresh-
old and makes LTP induction more difficult [112] (Figure 2A). Based on these results, computa-
tional studies have demonstrated that a change of the inhibitory input (e.g., via inhibitory
plasticity) can shift the threshold between LTP and LTD [47,48]. By keeping the firing rates exactly
at the LTD/LTP threshold, inhibitory plasticity has been suggested as a mechanism to effectively
switch excitatory plasticity off [48] (Figure 2A). Any deviation of the firing rates (e.g., via
disinhibition) can then turn on excitatory plasticity. Such gating of excitatory plasticity has also
been modeled at the level of individual inhibitory inputs on dendritic trees by affecting the
amplitude of backpropagating action potentials and calcium spikes [113,114] (Figure 2B).
Therefore, changes in inhibition can switch excitatory plasticity on or off, regulate how much
plasticity is induced, or even dictate the sign of excitatory plasticity [38,115].
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Multiple experimental studies have suggested disinhibition as a mechanism for the gating of
excitatory plasticity [116]. Disinhibition can be induced by neuromodulators, including but not
limited to acetylcholine, noradrenalin, and oxytocin [10,76], or by disinhibitory pathways involving
multiple interneuron subtypes [117,118] (Box 3). For instance, elevated activity in vasoactive
intestinal peptide (VIP)-expressing inhibitory neurons receiving top-down inputs can suppress
activity in somatostatin (SST)-expressing inhibitory neurons and, as a result, disinhibit excitatory
neurons and control excitatory plasticity [111,117–120].

At the dendritic level, inhibitory input onto the dendrite can affect postsynaptic calcium concen-
tration at nearby excitatory spines [111,121] and, therefore, influence local excitatory plasticity
[122,123]. Computational models have proposed that the dynamic local balancing of excitation
by inhibition can change the shape of the learning rule for excitatory synapses [124–126]. For
example, blocking inhibitory inputs can flip the spike-timing-dependency of excitatory plasticity
[125], consistent with previous experimental findings [115] (Figure 2C). Furthermore, local
changes in excitatory and inhibitory synapses are coordinated with each other via crosstalk,
giving rise to the codependence of excitatory and inhibitory plasticity [7,8]. While these works
clearly show that inhibitory synapses can control excitatory plasticity at multiple spatial scales,
how this control is used during learning and its impact on behavior remains to be explored.

Inhibitory plasticity in the formation of structured networks and resulting
computation
Non-random structure is a hallmark of biological networks. Multiple computational studies have
demonstrated that various network structures can form from the coordinated interaction between
excitatory and inhibitory plasticity. This includes the emergence of receptive fields [45,47,48],
place fields [27], and grid fields [27] through the refinement of feedforward excitatory and inhibi-
tory connectivity, typically in settings with a single postsynaptic neuron based on input statistics
[51–53]. In recurrent circuits, inhibitory plasticity also shapes neuronal assemblies [26,48]
and chain-like structure [127,128], as well as ensuing tuning diversity and efficient sensory
representation [100].

(C) E

I
with inh
without inh

(B)

bAP

with inh, no bAP
without inh, bAP

(A)

Stimulation frequency

0

high

low

Inh

TrendsTrends inin NeurosciencesNeurosciences

Figure 2. Inhibitory control of excitatory plasticity. (A) The level of inhibition (Inh), modulated by inhibitory weights (wEI) or
inhibitory firing rates, controls excitatory plasticity (ΔwEE). Higher (lower) level of inhibition leads to higher (lower) long-term
depression (LTD)/long-term potentiation (LTP) threshold of excitatory plasticity as a function of the presynaptic stimulation
frequency. Different dots represent corresponding LTD/LTP thresholds that separate the depression (ΔwEE< 0) and
potentiation (ΔwEE> 0) of excitatory synapses onto excitatory neurons. Different grays represent different levels of
inhibition. Panel (A) is adapted from [48,112]. (B) Strong inhibitory input can switch excitatory plasticity on or off via gating
of a backpropagating action potential (bAP). In the absence of inhibition, the bAP propagates into the dendrite and spike-
timing-dependent plasticity at the excitatory synapse is induced (green). By contrast, in the presence of inhibition, the bAP
is suppressed and no synaptic plasticity is induced (purple). Panel (B) is adapted from [113]. C. (C) Local inhibitory input
can affect calcium concentration in the dendritic spine and flip the excitatory spike-timing-dependent plasticity. Panel (C) is
adapted from [115,125].
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Strongly interconnected groups of excitatory neurons form assemblies, which have been
proposed to be the basis of associative memory [129,130]. Inhibition can influence excitatory
assemblies in two distinct ways. First, inhibitory neurons may be nonspecific and nonpreferentially
target different excitatory assemblies, known as ‘blanket of inhibition’ [131] (Figure 3A). Second,
inhibition may be stimulus-specific if distinct inhibitory neurons receive stimulus-specific feedforward
drive, or if excitatory and inhibitory neurons with a similar stimulus tuning connect more strongly and
form E/I assemblies, known as stimulus-specific feedback inhibition [132] (Figure 3B).

While many mechanisms are involved in the formation of excitatory assemblies [133], computa-
tional models have proposed an important role of inhibitory plasticity in preventing runaway exci-
tation that results from the assemblies’ repeated coactivation and preventing winner-take-all
dynamics whereby a single assembly is always active [26,28,48]. Specific to forming E/I assem-
blies, both inhibitory synapses onto excitatory neurons and excitatory synapses onto inhibitory
neurons need to be plastic in the recurrent circuit [63,134]. The resulting co-tuned feedback inhi-
bition in networks with E/I assemblies can support network stability [60,132], changes in neuronal
variability [135], and decision making in the presence of noise [136].

Irrespective of whether inhibition is unspecific or specific, modeling studies suggest that the
plasticity of lateral inhibitory connections across assemblies can ensure that different memories
encoded by different assemblies are easily discriminated [50,137]. Concurrently, multiple
experimental studies have found evidence for the role of inhibition in memory recall. For instance,
inactive memories can be unmasked by suppressing inhibitory neurons [138]. Using E/I
assemblies as a model for associative memories, the inactive memories seem to remain in the
quiescent state until being recalled by disinhibition [138,139]. Recent work in the human
neocortex has further suggested that specific inhibition can avoid inappropriate interference of
overlapping memories and permit continual learning [140,141].

The activation of E/I assemblies shaped by inhibitory plasticity has also been hypothesized to
underlie the adaptation of behavioral responses to repeated stimulation (i.e., ‘habituation’)
[139,142]. The ability to adapt to repeated stimuli, detect unexpected stimuli in the environment,
and identify their relevance to execute appropriate behavioral reactions is important for survival.
Inhibitory plasticity has been suggested to be important in shaping adaptation to repeated re-
sponses also at the cellular level in the mouse auditory cortex [143]. A recent computational
study has provided a mechanistic insight on how inhibitory plasticity can shape the responses
to repeated and novel stimuli [144]. While the repeated presentation of a stimulus evokes initially
high activity of the excitatory assembly representing the stimulus, the subsequent increase of

Box 3. Interneuron diversity

Interneurons exhibit high anatomical, electrophysiological, and functional diversity [157,158]. In the mouse neocortex,
three major classes of interneurons expressing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide
(VIP) constitute more than 80% of GABAergic interneurons [15]. Distinct interneuron subtypes target different domains
of pyramidal cells. More specifically, PV neurons preferentially target perisomatic regions of pyramidal neurons, whereas
SST neurons target distal dendritic regions of pyramidal neurons that also receive inhibition from neuron-derived
neurotrophic factor (NDNF)-expressing interneurons in layer 1 [15,159].

The multiplicity of interneuron subtypes is implicated in diverse computations and cognitive functions, such as locomotion-
induced gain modulation [160], selective attention [127], context-dependent modulation [31,33], predictive processing
[32,161], and gating of synaptic plasticity [117,120]. For instance, long-range cortico-cortical projections activating
upstream VIP neurons in the primary visual cortex exert spatially specific top-down modulation of visual processing,
resembling selective attention [127]. In predictive processing framework, mismatches between sensory inputs and
internally generated predictive signals evoke the activity of prediction-error neurons [32]. In the layer 2/3 of the primary
visual cortex, prediction-error neurons balance inhibitory visual input mediated by SST against excitatory motor-related
predictive input targeting VIP [161].
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inhibitory synaptic strengths suppresses the ensuing responses upon stimulus repetition. By
contrast, a novel stimulus evokes a high response of its corresponding excitatory assembly
since the inhibitory synapses onto the assembly do not potentiate ( Figure 3C). While both blanket
and stimulus-specific inhibition can capture adapted and elevated responses to repeated and
novel stimuli, stimulus-specific inhibition is necessary for other adaptive phenomena [144]. This
includes stimulus-specific adaptation, whereby excitatory neurons that are equally driven by
two stimuli exhibit a higher response to the rarely presented stimulus, but a lower response to
the frequently presented stimulus [145].

Interneuron-specific plasticity and its functional implications
Inhibitory neurons can be divided into multiple distinct subtypes based on their electrophysiolog-
ical, morphological, and transcriptomic properties (Box 3). Accumulating evidence also suggests
that synapses from and to different interneuron subtypes undergo distinct forms of synaptic plas-
ticity [16,17,37,146,147]. Computational models have capitalized on these experimental results
of interneuron-specific plasticity and explored its role in different settings. In feedforward net-
works, modeling work has showed that the receptive field of a neuron may not be solely deter-
mined by the feedforward excitatory weight profiles, but is heavily modulated by inhibition from
different pathways [53]. By exploring several candidate plasticity rules for the different inhibitory
pathways, the authors found that the neuron’s receptive field strongly depends on the
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Figure 3. Unspecific versus specific inhibitory connectivity and the generation of adaptive and novelty
responses. (A) Network with unspecific inhibition, in which different excitatory assemblies are inhibited by a single
inhibitory population. (B) Network with stimulus-specific feedback inhibition, in which distinct excitatory assemblies are
inhibited by non-overlapping inhibitory subpopulations. (C)The repeated and novel stimuli activate distinct excitatory
assemblies, E1 and E2, respectively (activation marked with bold circles). Repeated presentation of the same stimulus
leads to an increase of specific inhibitory synaptic strength onto the E1 assembly and a reduction of the evoked response
(blue), while presenting the novel stimulus triggers a high response due to the weak inhibitory synaptic strength onto the
E2 assembly (green).

Trends in Neurosciences
OPEN ACCESS

Trends in Neurosciences, Month 2022, Vol. xx, No. xx 9



modulatory state of inhibition as an example of context-dependence [53].

Recent studies in the rodent hippocampus have identified learning rules describing the LTD of
parvalbumin (PV) synapses and the LTP of SST synapses onto excitatory pyramidal neurons in
CA1 during physiological activity patterns [16]. As PV and SST mainly target perisomatic regions
receiving inputs from CA3 and distal dendritic regions receiving inputs from pyramidal neurons in
entorhinal cortex, respectively, both experiments and modeling suggest that interneuron-specific
plasticity might prioritize inputs from one pathway over another [16] (Figure 4A). As stronger inhi-
bition resulting from the potentiation of SST synapses onto excitatory neurons can limit excitatory
plasticity [120], modeling has suggested that interneuron-specific plasticity can promote the
stability of place cells [16]. Recent experiments in CA1 suggest that even synapses from different
interneurons targeting the same perisomatic regions of excitatory neurons can undergo opposite
changes when animals explore novel environments [17] (Figure 4B). Since these two types of
interneurons preferentially receiving different inputs fire at different phases of network theta rhythms
associated with memory encoding and retrieval [148], the opposite regulation of interneuron-
specific plasticity may impact memory formation and maintenance. Future computational models
could help uncover how the opposing plasticity mechanisms support long-term memories.

In addition to hippocampus, interneuron-specific plasticity rules based on spike timing have been
reported in layer 2/3 of mouse orbitofrontal cortex and implicated in assembly formation in
recurrent network models [50]. More specifically, PV synapses onto excitatory neurons follow a
symmetric Hebbian learning rule and appear to be important for network stability; by contrast,
SST synapses onto excitatory neurons follow an asymmetric Hebbian learning rule and appear
to enhance competition between assemblies [50] (Box 1). Although a learning rule has not yet
been characterized for neuron-derived neurotrophic factor (NDNF)-expressing interneurons,
experimental studies have revealed that inhibition mediated by NDNF interneurons in layer 1 of the
auditory cortex changes after associative auditory fear conditioning , and have suggested that
NDNF interneurons and their plasticity are involved in the formation of associative memories [149].

While significantly less studied, recent work has begun to explore synapses between inhibitory
neurons, including their impact on E/I balance in recent connectomic studies [150], on generating
long neuronal timescales that support working memory, and on memory storage in computa-
tional models [151,152]. Yet, little is known about the plasticity of these inhibitory-to-inhibitory
connections experimentally. Computational models here play an important role in revealing the
functional consequences of this type of plasticity. For instance, a two-stage model showed that
an initial stage of SST to PV plasticity guides the subsequent plasticity of excitatory-to-excitatory
connections in a recurrent network underlying visual stimulus selectivity [153]. Recent modeling
work has also begun investigating recurrent network models where multiple synapse types are
simultaneously plastic and found that experimentally observed dynamics and computations
can emerge from the complex interplay of many plasticity mechanisms. Given the high-
dimensional space of learning rule parameters, when such models succeed in finding stable
regimes, they can provide predictions for the learning mechanisms in real biological circuits.
Deriving learning rules via optimizing a desired function has provided a new promising
approach to study plasticity [154,155]. In an elegant example, recent studies derived plasticity
rules from the perspective of optimizing a loss function to achieve firing rate set-points; the
emergent networks could then generate self-sustained, inhibition-stabilized dynamics [156] and
stimulus-specific feedback inhibition [134]. Even without deriving novel learning rules, combining
classical Hebbian plasticity with synapse-type-specific competition for synaptic resources can
yield novel dynamics such as the development of stimulus selectivity, E/I balance, decorrelated
neural activity, assembly structures, and response normalization [63].
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Concluding remarks and future perspectives
Over the past two decades, our understanding of the inhibitory control of circuit organization and
dynamics, as well as the potential to modulate this control via plastic inhibition, has significantly
grown. Inhibitory synapses in the brain are highly dynamic and regulated by various plasticity
mechanisms, including short-term plasticity operating at the timescale of milliseconds to seconds
[162] as well as long-term plasticity acting at the timescale of minutes to hours [44]. Here, we
summarized studies on the long-term plasticity of inhibitory-to-excitatory synapses, referred to
as inhibitory plasticity. As discussed in this review, abundant evidence suggests that inhibitory
plasticity is important for establishing and maintaining E/I balance, achieving firing rate homeosta-
sis, controlling excitatory plasticity, and shaping network connectivity throughout the entire life of an
organism. Nonetheless, it remains unclear if the learning rules that characterize inhibitory plasticity
in development are the same as those operating in adulthood (see Outstanding questions).
Complementary to the growing number of experimental studies on inhibitory plasticity, theoretical
and computational approaches have played an important role in synthesizing the available data to
reveal how inhibition regulates various aspects of circuit function. This has generated mechanistic
insights into the function of inhibitory plasticity at several spatial scales, from the local dendritic
regulation of E/I balance, to the cellular control of spiking properties, and the maintenance of stable
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Figure 4. Interneuron-specific plasticity. (A) Inhibitory synapses from parvalbumin (PV)- (red) and somatostatin (SST)-
(orange) expressing neurons onto hippocampal CA1 pyramidal neurons (blue) are weakened and enhanced, respectively,
during physiological firing patterns [16]. This interneuron-specific plasticity can prioritize proximal input from CA3 over
distal input from entorhinal cortex. (B) Perisomatic inhibitory synapses from PV- (red) and cholecystokinin (CCK)-
expressing (brown) neurons onto recently activated hippocampal CA1 pyramidal neurons (blue) undergo long-term
potentiation and long-term depression, respectively when animals are engaged in novel environments [17].
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Outstanding questions
Neuronal activity during development
is typically generated spontaneously
in the absence of sensory experience.
This activity operates on much slower
timescales (hundreds of milliseconds)
compared with the sensory-driven
activity patterns (few to tens of
milliseconds) in adulthood. Do the
activity-dependent learning rules that
characterize inhibitory plasticity
integrate activity at different timescales
in development and adulthood?

The phenomenological learning rules
that determine how inhibitory
plasticity depends on rates and
spike timing can be modulated by
various external factors. How do
different neuromodulators, behavioral
states, and environmental perturbations
affect inhibitory plasticity rules?

How are phenomenological descriptions
of inhibitory plasticity implemented with
the biological machinery of molecular
interactions?

Distinct forms of E/I balance might be
beneficial for different demands in
development versus adulthood. How
are different types of E/I balance
dynamically regulated by inhibitory
plasticity over multiple timescales to
serve specific goals?

E/I balance also exists at different
spatial scales. Are there shared
principles underlying the establishment
of E/I balance across these different
scales? What are the functional
implications of breaking E/I balance at
some spatial scales but not others?

Interneurons come in diverse subtypes,
receive inputs from different pathways,
and target excitatory neurons in
different locations (e.g., cell body
versus dendrite). This diversity is also
reflected in the types of plasticity rules
experienced at the synapses. How
can interneuron-specific plasticity rules
be described as a function of firing
rates, spike timing, and calcium level?

Inhibitory plasticity rules might also
differ across brain regions. How do
different brain regions coordinate the
potentially different forms of inhibitory
plasticity they express to maintain
biologically reasonable activity levels
and process information?



activity patterns and connectivity structures at the network level. At the same time, we have
highlighted that inhibitory control also occurs at multiple temporal scales from the regulation of
fast spiking to the slower calcium dynamics and even slower timescales at which measurable
changes in synaptic strength can be observed.

Despite this progress, many open challenges remain due to the high diversity of inhibitory
neurons and the interneuron-specific plasticity at different synapse types. Experimentally, the
development of transgenic and recording techniques opens new possibilities to record activity
from multiple interneuron subtypes simultaneously and probe the rules that govern synaptic
plasticity. Concurrently, computational models and theories are becoming paramount. First, they
are essential to understand the complex interactions of different plasticity mechanisms, especially
in highly recurrent circuits with non-intuitive dynamics. Second, models can explore candidate
plasticity mechanisms and study their functional implications. Last, theoretical work also enables
the exploration of more abstract concepts, like inhibition-stabilization, as general frameworks for
circuit processing, which can be established and modulated through inhibitory plasticity.
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SUMMARY

Excitation in neural circuits must be carefully
controlled by inhibition to regulate information pro-
cessing and network excitability. During develop-
ment, cortical inhibitory and excitatory inputs are
initially mismatched but become co-tuned or
balanced with experience. However, little is known
about how excitatory-inhibitory balance is defined
at most synapses or about the mechanisms for es-
tablishing or maintaining this balance at specific set
points. Here we show how coordinated long-term
plasticity calibrates populations of excitatory-inhibi-
tory inputs onto mouse auditory cortical pyramidal
neurons. Pairing pre- and postsynaptic activity
induced plasticity at paired inputs and different
forms of heterosynaptic plasticity at the strongest
unpaired synapses, which required minutes of activ-
ity and dendritic Ca2+ signaling to be computed.
Theoretical analyses demonstrated how the relative
rate of heterosynaptic plasticity could normalize
and stabilize synaptic strengths to achieve any
possible excitatory-inhibitory correlation. Thus,
excitatory-inhibitory balance is dynamic and cell
specific, determined by distinct plasticity rules
across multiple excitatory and inhibitory synapses.

INTRODUCTION

In mature cortical networks and elsewhere throughout the adult

nervous system, excitation is regulated by a complex set of

inhibitory circuits. g-aminobutyric acid-ergic (GABAergic) inhibi-

tion is important for many functions, including spike generation,

dendritic integration, synaptic plasticity, sleep, learning, and

prevention of pathological activity such as epilepsy (Cossart

et al., 2001; Hattori et al., 2017; Isaacson and Scanziani, 2011;

Oliveira et al., 2011; Scharfman and Brooks-Kayal, 2014). This

requires inhibitory synapses to be calibrated or balanced with

the relative strengths of excitatory synapses to ensure that neu-

rons and networks are neither hypo- nor hyper-excitable for

prolonged periods. Although the term ‘‘excitatory-inhibitory bal-

ance’’ is widely used, it has been difficult to precisely define. In

particular, implicit in the concept of balance is a stable set point

to which synaptic strengths and/or network activity returns via

negative feedback after disruptions of excitability (including pos-

itive feedback processes such as excitatory plasticity).

Excitatory-inhibitory balance hasbeen quantified as correlation

between excitation and inhibition over a stimulus dimension, such

as visual orientation or sound frequencies, or the temporal corre-

lation betweenpatterns of excitationand inhibition. The term ‘‘bal-

ance’’ suggests near-perfect matching between excitation and

inhibition, and thishasbeenobservedexperimentally in somesys-

tems (Tan andWehr, 2009), but not in every case. Even in mature

circuits (Dorrn et al., 2010; Marlin et al., 2015; Okun and Lampl,

2008; Wehr and Zador, 2003), correlation values are not always

perfect (i.e., linear correlation coefficient r: 1.0) but instead are

often lower (r: 0.4–0.9). It is unclearwhether it isdifficult tomaintain

higher levels of balance in biological neural networks or whether

the set point at which excitation and inhibition are in equilibrium

is actively maintained at a lower level.

In sensory cortex, inhibitory responses and excitatory-inhibi-

tory balance are established during early postnatal development

(Cai et al., 2018; Dorrn et al., 2010; Gandhi et al., 2008; House

et al., 2011; Kuhlman et al., 2013; Takesian and Hensch, 2013).

Excitatory-inhibitory balance must also be dynamically main-

tained throughout life, because experience-dependent modifi-

cation of excitatory synapses requires corresponding changes

to inhibition (Dorrn et al., 2010; Froemke, 2015; House et al.,

2011; Kuhlman et al., 2013). Computational studies supported

by experimental data indicate that disruptions of excitatory-

inhibitory balance can rapidly produce epileptiform activity and
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seizures (Avoli et al., 2016; Cossart et al., 2001; Dehghani et al.,

2016; Ren et al., 2014; Toader et al., 2013), meaning that

compensatory mechanisms need to act quickly to re-stabilize

neural circuits before pathological activity emerges. At least

some homeostatic adjustments take place over hours to days

(Lissin et al., 1998; Thiagarajan et al., 2005; Turrigiano et al.,

1998; Turrigiano, 2008). It remains unclear whether these

processes could correct for changes in excitability on shorter

timescales of activity-dependent plasticity (seconds to minutes)

in the input-specific manner required to preserve or promote dif-

ferential computations. This may depend on different set points

for excitatory-inhibitory balance, based on the function of the

neuron or neural circuit (e.g., single-spike firing versus bursting

or narrow versus broad stimulus feature tuning).

An alternative to regulating overall excitability is heterosynap-

tic plasticity, defined as modifications to inputs not activated

during induction of long-term potentiation (LTP) or other forms

of long-term plasticity triggered at specific inputs (Chistiakova

et al., 2015; Froemke, 2015; Hiratani and Fukai, 2017; Zenke

et al., 2017). Heterosynaptic modifications at specific inputs

have been observed after excitatory LTP at paired homosynaptic

sites (Basu et al., 2016; Christie and Abraham, 1992; Lynch et al.,

1977; Muller et al., 1995; Royer and Pare, 2003; Scanziani et al.,

1996), including in vivo, where these changes affect cortical

receptive fields (Dorrn et al., 2010; Froemke et al., 2013) at

specific identifiable inputs (El-Boustani et al., 2018). It is unclear

whether inhibitory synapses also undergo heterosynaptic modi-

fications or how changes across multiple inputs might be coor-

dinated to alter excitatory-inhibitory balance. Recently, we

showed that spike-timing-dependent plasticity (STDP) could

be induced at co-activated excitatory and inhibitory synapses

(D’amour and Froemke, 2015). Spike pairing induced excitatory

and inhibitory LTP, with the degree of inhibitory potentiation de-

pending on the initial amplitude of co-evoked excitatory events.

Similar forms of inhibitory plasticity that require activation of

excitatory synapses and NMDA receptors have been described

in cortex and hippocampus (Chiu et al., 2018; Horn and Nicoll,

2018; Huang et al., 2005). This naturally led to a normalization

of the excitation-inhibition ratio at the paired inputs.

Here we ask whether spike pairing also induces heterosynap-

tic plasticity and whether these changes affect overall organiza-

tion of excitation and inhibition. If so, inducing synaptic

modifications could be used as a bidirectional perturbation to

determine the set points for excitatory-inhibitory balance. We

aimed to determine the learning rules by which populations of

excitatory and inhibitory inputs could be collectively modified,

the mechanisms for these changes, and the degree of excit-

atory-inhibitory co-tuning that could be achieved.

RESULTS

Spike Pairing Induces STDP and Heterosynaptic
Excitatory and Inhibitory Plasticity
To examine how homosynaptic and heterosynaptic modifica-

tions might synergistically affect cortical excitatory-inhibitory

balance, we made 177 whole-cell recordings from layer 5 pyra-

midal neurons in slices of auditory cortex of young and adult

mice. A stimulation electrode array was placed in layer 4 and

used to sequentially evoke 4–8 sets of excitatory postsynaptic

currents (EPSCs) and inhibitory postsynaptic currents (IPSCs)

recorded in voltage clamp (Figure 1A). This recruited separate

populations of excitatory and inhibitory presynaptic inputs with

a low degree of overlap across channels (Figures 1B and S1),

mimicking recruitment of thalamocortical inputs onto cortical

neurons in vivo by sensory stimulation (Froemke et al., 2007;

Hackett et al., 2011; Lee et al., 2004; Miller et al., 2001). The

apparent overlap seemed to result mainly from activation of den-

dritic conductances that led to sublinear summation (Froemke

et al., 2010b; Rosenkranz, 2012; Tran-Van-Minh et al., 2015;

Urban and Barrionuevo, 1998), instead of shared presynaptic in-

puts across channels (Figure S1). After measuring baseline

events for 5–20 min, recordings were switched to current clamp

to pair inputs evoked by one channel with single postsynaptic

spikes (Bi and Poo, 1998; D’amour and Froemke, 2015; Feld-

man, 2000). Other stimulation channels were not activated

during pairing. Following pairing, we resumed sequential stimu-

lation of all channels and monitored paired and unpaired EPSCs

and IPSCs for >16 min.

Pairing pre- and postsynaptic activity induced long-term

synaptic modifications at multiple inputs, including inputs not

activated during pairing. Some of these changes could be vari-

able from cell to cell, but we consistently found that the strongest

unpaired excitatory and inhibitory inputs (the original best inputs)

were specifically modified minutes after pairing. For example, in

the recording shown in Figure 1C, repetitively pairing presynap-

tic activation of channel S4 with postsynaptic spiking (pre/post

pairing) induced excitatory and inhibitory LTP at the paired chan-

nel (Figure 1C, red), whereas the original best unpaired inputs

(excitation at S3 and inhibition at S2) were both depressed

(Figure 1C, blue). On average, other unpaired inputs were not

substantially affected (Figure 1C, black). Thus, spike pairing

induces rapid and specific heterosynaptic modifications, in addi-

tion to STDP at paired (homosynaptic) inputs.

These selective modifications to the paired and original best

inputs acted together to reorganize the overall profile of excita-

tion and inhibition (i.e., the excitatory-inhibitory balance). As a

metric of excitatory-inhibitory balance, we used the linear corre-

lation coefficient rei of EPSCs and IPSCs evoked across stimula-

tion channels. Linear correlation has previously been used to

quantify excitatory-inhibitory balance in vivo (Dorrn et al., 2010;

Higley and Contreras, 2006; Okun and Lampl, 2008; Tan and

Wehr, 2009; Wehr and Zador, 2003) and in vitro (Graupner and

Reyes, 2013; Xue et al., 2014). For this cell, initial IPSC ampli-

tudes were mostly unrelated to EPSCs across stimulation

channels (Figure 1D, left, rei-before: 0.25). This was unsurprising,

because a priori, excitatory and inhibitory synapses activated by

extracellular stimulation need not be functionally related despite

spatial proximity near each electrode. However, correlation

increased after pairing as EPSCs and IPSCs evoked by each

stimulation site becamemore similar across channels (Figure 1D,

right, rei-after: 0.48). This was a consequence of coordinated

modifications to the paired input (Figure 1D, red arrow) and

original best unpaired inputs (Figure 1D, blue arrowheads).

Such activity-dependent changes over multiple paired and

unpaired synapses, which collectively act to improve excit-

atory-inhibitory balance, are similar to experience-dependent
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changes to excitatory and inhibitory synaptic tuning curves in

young rodent auditory cortex in vivo (Dorrn et al., 2010).

The relative timing of pre- and postsynaptic spiking during pair-

ing determined the sign of heterosynaptic plasticity at the original

best inputs. In 25 recordings from developing auditory cortex

(post-natal day [P] 12–P26), pre/post pairing induced LTP at

paired inputs, together with heterosynaptic long-term depression

(LTD) at the original best excitatory and inhibitory inputs (Figures

2A, S2A, and S3A). Although from cell to cell and channel to chan-

nel there could be some change to unpaired inputs, no other sys-

tematic changes after pairing were detected (Figure 2A, bottom),

and such plasticity was unrelated to the degree of apparent chan-

nel overlap (Figure S4), indicating that there may be other forms of

input-specific heterosynaptic plasticity. In 11 other recordings

from young auditory cortex, post/pre pairing induced excitatory

LTD and inhibitory LTP at paired inputs, together with

heterosynaptic LTP at original best excitatory and inhibitory inputs

(Figures 2B, S2B, and S3B). Because pre/post pairing

Figure 1. Spike Pairing Modifies Excitation

and Inhibition at Paired and Unpaired Inputs

(A) Whole-cell recordings from mouse auditory

cortical layer 5 pyramidal cells in slices with 8-

electrode stimulation array (channels S1–S8) in

layer 4. Scale, 250 mm.

(B) Left: baseline and postpairing EPSCs at �70 mV

(black) and IPSCs at �30 mV (gray). Scale: 500 ms,

200pA.Right: input summation,measuring inputsS3,

S4, and S5 separately and together; predicted versus

measured summed response. Scale: 50 ms, 100 pA.

(C) Strengths of multiple excitatory (left) and inhib-

itory inputs (right) onto the same neuron before and

after pairing one channel with postsynaptic spiking.

Top: excitatory and inhibitory plasticity induced by

pre/post pairing at channel S4 (red, Dt: 0.5 ms).

Dashed line, prepairing mean. Top middle: hetero-

synaptic LTD at the strongest unpaired inputs

(blue). Bottom middle: other inputs (black). Bottom:

series and input resistance.

(D) Increased excitatory-inhibitory balance after pair-

ing; same cell as (C). Excitatory-inhibitory correlation

beforepairing (rei-before: 0.25, dashed lines) andafter

pairing (rei-after: 0.48, solid lines). Red arrow, paired

channel. Blue arrowheads, original best excitation

(filled) and inhibition (open). Error bars, SEM.

potentiates paired inhibitory inputs,

heterosynaptic inhibitory LTD provides a

mechanism for bi-directional regulation of

inhibitory synaptic strength. Furthermore,

heterosynaptic excitatory LTP might

compensate for reductions in excitability af-

ter homosynaptic LTD at the paired excit-

atory input.

Heterosynaptic Plasticity
Normalizes Excitatory-Inhibitory
Correlation
These coordinated synapticmodifications,

induced by either pre/post or post/pre

pairing, affected overall excitatory-inhibitory correlation rei in

similar ways. When the correlation coefficient was initially low

in developing cortex (rei-before < 0.4), correlation increased after

either pre/post or post/pre pairing (Figures 2C and S2). How-

ever, when the excitatory-inhibitory correlation was initially high

(rei-before > 0.4), correlation instead decreased after pairing (Fig-

ures 2C and S3). In the absence of postsynaptic spiking, no

STDPwas induced, and excitatory-inhibitory correlation was un-

changed regardless as of the initial correlation value (Figure 2C,

bottom, no pairing).

Changes in excitatory-inhibitory correlation mainly resulted

from heterosynaptic modifications, especially when initial corre-

lation was low. Computing rei-after assuming only modifications

of paired inputs led to smaller correlation changes than only

considering modifications to unpaired inputs (Figure 2D).

Despite EPSC/IPSC amplitude variability from event to event,

correlation values were consistent during the first half versus

the second half of the baseline period, as well as the first half
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versus the second half of the postpairing period (Figure S5). This

indicates that the change in correlation is not simply regression

to the mean but rather a specific consequence of synaptic mod-

ifications and directed toward a certain value.

We askedwhat would happen if pairing was performed at orig-

inal best inputs (Figure S6). Homosynaptic and heterosynaptic

modifications might nullify each other, or perhaps one form of

plasticity might win out; either case would informmodels relating

plasticity rules to excitatory-inhibitory correlation. After pre/

post pairing, paired inhibition reliably increased, whereas

changes to excitation were more variable (Figures S6A and

S6C). By contrast, post/pre pairing led to significant excitatory

LTDand inhibitory LTP at original best/paired inputs (Figures S6B

andS6C). The second-best but unpaired excitatory and inhibitory

inputs were unchanged, indicating that heterosynaptic modifica-

tions were not differentially engaged at other inputs instead

(Figure S6C). These changes after post/pre pairing did not

affect overall correlation rei (FigureS6D).However, in the absence

of other reliable heterosynaptic changes, pre/post pairing at

original best inputs greatly increased rei, beyond the nominal level

of 0.4 usually observed at these ages. For 7/9 recordings, rei-

before began <0.7; in each case, after changes predominantly

to homosynaptic inputs, rei increased by 0.36 ± 0.14 (p < 0.04).

Thus, spike pairing rapidly induces heterosynaptic plasticity to

effectively normalize excitatory-inhibitory balance in developing

auditory cortex, adjusting the relation of inhibition to excitation to

Figure 2. Heterosynaptic Plasticity Normal-

izes Excitatory-Inhibitory Correlation

(A) Summary of pre/post experiments on paired

inputs (top, red; paired EPSCs increased 40.3% ±

10.5% 16–25 min postpairing, n = 25, p < 0.0009,

Student’s paired two-tailed t test, 18/25 cells with

significant excitatory LTP; paired IPSCs increased

53.7% ± 13.9%, p < 0.0008, 19/25 cells with signifi-

cant inhibitory LTP), original best inputs (middle, blue;

originally largest EPSCs decreased�21.7%± 4.1%,

p < 10�4, 21/25 cells with significant heterosynaptic

excitatory LTD; originally largest IPSCs decreased

�15.4%± 6.0%, p < 0.02, 16/25 cells with significant

heterosynaptic inhibitory LTD), and other unpaired

inputs (bottom, black; EPSCs increased by 1.4% ±

8.0%, p > 0.8; IPSCs increased by 0.7%± 4.6%, p >

0.8). Filled symbols, excitation; open symbols, inhi-

bition. Error bars, SEM.

(B) Summary of post/pre pairing experiments on

paired inputs (paired EPSCs decreased �17.0% ±

6.4%, n = 11, p < 0.03, 9/11 cells with significant

excitatory LTD; paired IPSCs increased 37.9% ±

12.4%, p < 0.02, 8/11 cells with significant inhibitory

LTP), original best inputs (originally largest EPSCs

increased 15.6% ± 4.4%, p < 0.006, 7/11 cells with

significant heterosynaptic excitatory LTP; originally

largest IPSCs increased 25.1% ± 8.6%, p < 0.02, 7/

11 cells with significant heterosynaptic inhibitory

LTP), and other unpaired inputs (bottom, black;

EPSCs increased 4.1% ± 5.1%, p > 0.4; IPSCs

increased 2.7% ± 11.5%, p > 0.8). Error bars, SEM.

(C) Normalization of excitatory-inhibitory correlation

after pairing. Top, rei-before versus rei-after, pre/

post pairing (left, n = 25) or post/pre pairing

(n = 11). Red line, rei: 0.4. Bottom, changes in

excitatory-inhibitory correlation after pairing (Drei;

when initially r < 0.4 for pre/post pairing:

0.30 ± 0.06, n = 14, p < 0.0005; post/pre pairing:

0.11 ± 0.03, n = 5, p < 0.02; and no postsynaptic

spiking: 0.002 ± 0.03, n = 5, p > 0.9; Student’s

paired two-tailed t test) (when initially r > 0.4 for

pre/post pairing: �0.29 ± 0.13, n = 11, p < 0.05;

post/pre pairing: �0.13 ± 0.05, n = 6, p < 0.05;

and no pairing controls without postsynaptic

spiking: 0.006 ± 0.03, n = 10, p > 0.8).

(D) Heterosynaptic modifications to unpaired inputs refined excitatory-inhibitory balance. Considered separately, plasticity only at paired inputs was less effective

than changes to remaining inputs (paired only;Drei when initially r < 0.4 for pre/post pairing: 0.07 ± 0.06, n = 14, p > 0.2, and post/pre pairing:�0.08 ± 0.08, n = 5,

p > 0.3, and Drei when initially r > 0.4 for pre/post pairing:�0.20 ± 0.11, n = 11, p > 0.1, and post/pre pairing:�0.10 ± 0.08, n = 6, p > 0.2; Student’s paired two-

tailed t test) (unpaired only;Drei when initially r < 0.4 for pre/post pairing: 0.24 ± 0.07, p < 0.005, and post/pre pairing: 0.13 ± 0.02, p < 0.005, and when initially r >

0.4 for pre/post pairing: �0.27 ± 0.09, p < 0.02, but not post/pre pairing: �0.06 ± 0.05, p > 0.2). *p < 0.05; **p < 0.01. Error bars, SEM.
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promote correlation of �0.4. This value is close to that observed

in rat auditory cortex in vivo during the critical period for fre-

quency tuning (Dorrn et al., 2010), suggesting this value is a

set point actively maintained by an orchestrated array of plas-

ticity mechanisms during this stage of cortical development.

Intuitively, when the excitatory-inhibitory correlation was initially

low, this occurred at least partly because the original best excit-

atory and inhibitory inputs were activated by different channels

(in 12/14 pre/post and 5/5 post/pre pairing recordings). Het-

erosynaptic plasticity at the best excitatory and inhibitory inputs

would naturally make those inputs more similar, because they

were both depressed after pre/post pairing and potentiated af-

ter post/pre pairing. Moreover, when excitatory-inhibitory cor-

relation was initially too high, changes to the paired channel

normalized the correlation. These results show that single neu-

rons have mechanisms for sensing and selectively modifying

input strengths to achieve a range of excitatory-inhibitory co-

tuning. It may be computationally advantageous to not perfectly

match excitation and inhibition, especially during developmental

critical periods when cortical plasticity is important for initializing

sensory processing circuits.

Heterosynaptic Plasticity Determines the Set Point for
Excitatory-Inhibitory Balance
To quantitatively assess this capacity in a theoretical framework,

we simulated homosynaptic and heterosynaptic plasticity onto a

model postsynaptic neuron driven by 12 excitatory and inhibitory

inputs. We first considered the effects of pre/post pairing in a

probabilistic model, in which 50,000 excitatory and inhibitory

tuning curves were generated randomly by sampling from a uni-

form distribution across channels (Figure 3A, rei-before). This re-

sulted in initial correlation rei-before values ranging from �0.9 to

0.9. One channel was chosen as the paired channel (excitation

and inhibition were increased), and the original best excitatory

and inhibitory channels were decreased by a fixed amount (Fig-

ure 3A, rei-after). The degree of homosynaptic plasticity was

similar to the experimentally measured increase (�65%; Fig-

ure 2A), whereas the magnitude of simulated heterosynaptic

Figure 3. Heterosynaptic Plasticity Determines the Set Point for Excitatory-Inhibitory Balance

(A) Example tuning curves for a probabilistic model before and after synaptic weight adjustment.

(B) Results of all simulations; probability of rei increasing (black) or decreasing (gray) after plasticity as function of initial correlation. Where lines cross at probability

0.5 is the equilibrium point (rei-equil) at which homosynaptic and heterosynaptic plasticity are balanced and rei values stabilize. Top, ratio of heterosynaptic to

homosynaptic plasticity: 0.6. Bottom, plasticity ratio: 1.2.

(C) Equilibrium point (rei-equil) as a function of the heterosynaptic-to-homosynaptic plasticity ratio.

(D) Example tuning curves for a biophysical model of plasticity at time 0 and after 80 min.

(E) rei over time during a single simulation (top) and mean rei for 25 different tuning curve initializations (bottom). Ratio of heterosynaptic to homosynaptic learning

rates: ðhEhet =hEwÞ= 1:3 � 10�2 ðhEhet = 1:3 �10�5ms�1 and hIhet = 1:3 �10�4 ms�1Þ. Error bars, SD.
(F) rei depends on the excitatory heterosynaptic-to-homosynaptic learning rate ratio ðhEhet =hEwÞ.
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plasticity varied across different runs of the model (decreasing

between �14% and �98%). Following weight modification, we

recomputed excitatory-inhibitory correlation rei across channels.

As expected, the probability of rei increasing or decreasing

strongly depended on the initial correlation rei-before. When ho-

mosynaptic plasticity was stronger than the heterosynaptic

changes, the probability of rei increasing was higher than the

probability of decreasing. However, with sufficiently strong het-

erosynaptic plasticity, a crossover occurred between the proba-

bility of rei increasing and the probability of rei decreasing. This

value of the ratio between heterosynaptic and homosynaptic

plasticity is an equilibrium point at which excitatory-inhibitory

correlation would eventually settle as increases and decreases

of rei were balanced (Figure 3B). As in the experiments (Figure 2),

correlation values initially higher than this set point (rei-equil)

were likely to decrease, whereas correlation values initially lower

than rei-equil were more likely to increase. The main influence on

rei-equil was determined by the strength of heterosynaptic rela-

tive to homosynaptic plasticity (Figure 3C). This equilibrium point

decreased as heterosynaptic plasticity strength was increased

relative to homosynaptic plasticity strength. Thus, by titrating

the relative strengths of heterosynaptic and homosynaptic plas-

ticity, the system can in principle achieve nearly any correlation

value, i.e., an arbitrary set point for stable excitatory-inhibitory

balance.

To ask whether this relationship between excitatory-inhibitory

correlation and relative strengths of heterosynaptic versus ho-

mosynaptic plasticity holds under more realistic conditions and

over multiple consecutive pairings, we simulated a single post-

synaptic integrate-and-fire neuron driven by 12 excitatory and

inhibitory input channels. Each channel consisted of 10 excit-

atory and 10 inhibitory presynaptic conductance-based inputs,

with weights modified by homosynaptic versus heterosynaptic

activity-dependent plasticity (Figures 3D and S7A). During the

simulation, we made paired and unpaired channels fire at

different rates to elicit postsynaptic spiking only during paired

channel activation. Homosynaptic and heterosynaptic plasticity

were implemented with biophysical traces that tracked pre- and

postsynaptic activation online, and we presented an alternating

sequence of consecutive paired and unpaired stimulation

phases. Despite high correlation variability during the simulation,

rei fluctuated around a constantmean (Figure 3E, top), consistent

across different initial conditions (Figure 3E, bottom). This finding

indicates that heterosynaptic plasticity can normalize excitatory-

inhibitory correlation over the course of multiple pairings. As

indicated in the probabilistic model (Figures 3A–3C), excit-

atory-inhibitory correlation converged to a value that depended

on the relative learning rates of heterosynaptic versus homosy-

naptic plasticity (Figure 3F).

In particular, when homosynaptic plasticity was dominant (i.e.,

the homosynaptic learning rate was faster than the heterosynap-

tic rate), rei was high and the excitatory and inhibitory weights

gradually increased over the simulation. In contrast, when heter-

osynaptic plasticity was dominant, rei was low and the excitatory

and inhibitory weights during training gradually decreased.

Reducing the rate of homosynaptic LTD also led to dominance

of homosynaptic LTP and higher rei set points (Figure S7B).

When the effective strengths (i.e., rates) of homosynaptic and

heterosynaptic plasticity were approximately balanced, excit-

atory and inhibitory weights were relatively stable during an

extended period of training (Figure S7C) and rei converged to

0.45–0.5, close to the values observed experimentally. Note

that balanced rates here means that the heterosynaptic modifi-

cations are necessarily slower than homosynaptic changes.

These simulations demonstrate that heterosynaptic plasticity

can powerfully control the positive feedback of homosynaptic

plasticity and achieve a range of possible correlation rei values

by simply adjusting the degree of heterosynaptic modifications

relative to homosynaptic plasticity.

Plasticity Rates Determine the Excitatory-Inhibitory Set
Point in Young and Adult Cortex
This model predicts that homosynaptic and heterosynaptic plas-

ticity learning rates are dissociable and affect overall change in

rei, especially for pre/post pairing. Specifically, when heterosy-

naptic plasticity is rapid and strong (relative to a nominal amount

of homosynaptic plasticity), the set point for rei should be lower;

conversely, when heterosynaptic plasticity is slower andweaker,

then the homosynaptic changes dominate and rei should be

higher.

Therefore, we experimentally determined learning rates for

expression of synaptic modification at the paired and best inputs

(Figure 4). Given both the predictions of themodel and the results

of pairing at the best inputs (Figure S6), we focused on effects of

pre/post pairing, but not post/pre pairing. Rates of modifica-

tion were quantified in twoways, both by determining the earliest

time point of continued (3+ min) statistically different strengths

after pairing compared with baseline and by fitting single

exponentials to excitatory and inhibitory strengths over time.

Although each method might be noisy, there was general agree-

ment between these approaches.

After pre/post pairing in developing auditory cortex, homo-

synaptic changes to excitation and inhibition were faster than

heterosynaptic changes. For the cell from Figure 1, significant

excitatory potentiation was detected by the fourth minute after

pairing and maintained thereafter (Figure 4A). The single expo-

nential fitted to this process had a time constant of �1.0 min.

Similarly, paired inhibition was significantly increased starting

at the ninth minute after pairing, and the exponential time

constant was �0.6 min. Heterosynaptic modifications were

considerably slower; changes to the original best channel were

significant only after 20 min for excitation and 15 min for inhibi-

tion, with longer time constants of 4.8 and 9.1min for exponential

fits to the synaptic weights (Figure 4A). Over the 25 pre/post

pairing experiments, rates of heterosynaptic modifications

were slower than rates of homosynaptic changes (Figure 4B).

Furthermore, across recordings, relative rates of heterosynaptic

versus homosynaptic modifications were related to the excit-

atory-inhibitory correlation after pairing, both for excitatory plas-

ticity (Figure 4C, top) and for inhibitory plasticity (Figure 4C,

bottom). This closely matches the results of simulations in

Figure 3.

Correlations between excitatory and inhibitory responses

in vivo are generally higher in adult than in developing auditory

cortex (Dorrn et al., 2010). We asked whether plasticity might

lead to higher correlation values after spike pairing in vitro in
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adult mouse auditory cortex (animals aged 2–3 months).

We found that pre/post pairing induced LTP of paired excit-

atory and inhibitory inputs in adult cortex. Heterosynaptic mod-

ifications, while present, were minimal in adult cortex, and

changes to the original best excitatory and inhibitory inputs

were not statistically significant (Figures 5A–5C). Regardless,

excitatory-inhibitory correlation values were greatly increased

after pairing to higher levels than in younger auditory cortex (Fig-

ure 5D). For the 8/13 adult cells for which rei-before < 0.7,

changes to paired inputs alone contributed about twice as

much to rei-after as changes to unpaired inputs (Figure 5E).

This was qualitatively different from in young cortex, where excit-

atory-inhibitory correlation change mainly resulted from hetero-

synaptic modifications. Thus, homosynaptic plasticity may be

more reliable and heterosynaptic plasticity less pervasive in

mature cortical circuits, leading to different set points for overall

excitatory-inhibitory balance.

Heterosynaptic Plasticity Requires Dendritic Ca2+

Signaling and Internal Stores
We next examined biological mechanisms that enable selective

heterosynaptic plasticity at original best unpaired inputs. We

used two-photon Ca2+ imaging tomeasure dendritic Ca2+ events

in layer 5 pyramidal cells during spike pairing (Figure S8A). Both

pre/post and post/pre pairing led to broader backpropagat-

ing action potential-evoked Ca2+ transients (Figures S8B and

S8C; normal solution). This enhanced Ca2+ signaling triggered

by spike pairing might be related to Ca2+-induced Ca2+ release

from internal stores (Larkum et al., 2003; Lee et al., 2016), which

would provide a rapid signal for intracellular communication

across disparate synapses and is implicated in heterosynaptic

Figure 4. Heterosynaptic Modifications Lag

Changes to Paired Inputs

(A) Time course of changes to paired EPSCs (top left)

and IPSCs (bottom left) for the cell from Figure 1,

measuredwith single exponentials and running t tests

(asterisks, p < 0.05 versus baseline) to determine

when significant modifications were first expressed.

(B) Summary for pairedhomosynaptic (red) and original

best heterosynaptic modifications (blue); exponential

fits (left; paired excitation t: 2.3 ± 0.9 min, original best

excitation t: 7.0 ± 1.6 min, p < 0.02; paired inhibition t:

4.1 ± 1.1 min, original best inhibition t: 14.4 ± 1.8 min,

p < 0.001) and running t tests (right; paired excitation:

6.3 ± 1.2 min, original best excitation: 11.0 ± 1.7 min,

p < 0.03; paired inhibition: 6.1 ± 0.8 min, original best

inhibition: 11.6 ± 1.9 min, p < 0.03). Error bars, SEM.

(C) rei-after inversely correlated with the ratio of heter-

osynaptic versus homosynaptic ts; higher rei values

were associated with weaker/slower heterosynaptic

plasticity, and lower rei values were associated with

faster heterosynaptic modifications for excitation (r:

�0.63) and inhibition (r: �0.34).

modifications in amygdala (Royer and

Pare, 2003) and hippocampus (Nishiyama

et al., 2000). We found that depleting inter-

nal Ca2+ stores via intracellular perfusion

with thapsigargin (10 mM) prevented broad-

ening of the Ca2+ event such that transients evoked during pre/

post and post/pre pairing were no different from transients due

to postsynaptic spikes alone (Figures S8B and S8C;

thapsigargin).

Ca2+-induced Ca2+ release was also the major mechanism for

heterosynaptic plasticity (Figure 6). Either intracellular thapsigar-

gin (10 mM, Figures 6A and 6E) or ruthenium red (which blocks

Ca2+ release from internal stores, 20 mM; Figures 6D and S9) pre-

vented heterosynaptic modifications but spared changes to

paired excitatory and inhibitory inputs after pre/post or

post/pre pairing (Figure 6B). Long-term synaptic modifications

required NMDA receptors, because bath application of APV

(50 mM) prevented all changes to paired and unpaired inputs (Fig-

ure 6C). Therefore, intracellular Ca2+ signaling initiated by activa-

tion of NMDA receptors at paired excitatory synapses triggered

other modifications to paired inhibitory synapses and original

best unpaired excitatory and inhibitory synapses, perhaps via

Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation

and broader patterns of Ca2+ release from internal stores that

interact with large synaptic events in a winner-takes-all manner

for heterosynaptic depression (Figure 7).

Heterosynaptic Plasticity Is Induced at Relative Best
Inputs Minutes after Pairing
These results show that heterosynaptic plasticity can be selec-

tively induced at a specific subset of excitatory and inhibitory

inputs onto individual postsynaptic neurons. The original best

inputs are not necessarily globally maximal, because only a frac-

tion of the total inputs received by these neurons were activated

by the stimulation electrodes. Because heterosynaptic changes

were expressed �20 min after pairing, we hypothesized that

Neuron 106, 1–13, June 3, 2020 7

Please cite this article in press as: Field et al., Heterosynaptic Plasticity Determines the Set Point for Cortical Excitatory-Inhibitory Balance, Neuron
(2020), https://doi.org/10.1016/j.neuron.2020.03.002



these locally maximal inputs were computed by postsynaptic

cells within this brief postpairing period. To test this prediction,

we performed a final set of experiments in which for 10 min

immediately following pairing, the original best excitatory and

inhibitory inputs (selected to be on the same input channel)

were not stimulated.

We found that during this 10-min period, the second-largest

inputs (relative best inputs), rather than the original best inputs,

were selectively affected by heterosynaptic modifications for

both pre/post pairing (Figure 8) and post/pre pairing (Fig-

ure S10). In the recording shown in Figure 8A, channel S8 evoked

the originally largest EPSCs and IPSCs, channel S6 evoked the

second-largest EPSCs and IPSCs, and channel S4 was the

paired channel. After pre/post pairing, channel S8 was turned

off for 10 min. During that period, the paired EPSCs and IPSCs

increased, while heterosynaptic LTD was induced at the relative

best EPSCs and IPSCs evoked by channel S6. When channel S8

was reactivated, the EPSCs and IPSCs at that channel remained

at their initial amplitudes and were stable until the end of the

recording. Over all of these recordings, the relative best inputs,

Figure 5. Pairing Increased Excitatory-Inhibi-

tory Correlation in Adult Cortex via Homosy-

naptic Changes

(A) Top: example of excitatory LTP (left) and inhibi-

tory LTP (right) induced in adult cortex by pre/post

pairing at channel S4 (red,Dt = 4ms). Middle: original

best inputs were minimally affected (blue). Bottom:

series and input resistance.

(B) Increased rei; same cell as (A) (rei-before: �0.34;

rei-after: 0.64). Red arrow, paired channel. Blue ar-

rowheads, original best excitation (filled) and inhibi-

tion (open).

(C) Adult excitatory and inhibitory STDP after pre/

post pairing (paired EPSCs increased 23.1%± 9.2%,

n = 13, p < 0.03; paired IPSCs increased 36.7% ±

11.5%, p < 0.008; originally largest unpaired EPSCs

decreased �11.2% ± 5.4%, p > 0.05; originally

largest unpaired IPSCs increased 4.0% ± 2.8%,

p > 0.1; other unpaired EPSCs decreased �0.8% ±

6.4%, p > 0.9; other unpaired IPSCs increased

12.6% ± 6.0%, p > 0.05). Error bars, SEM.

(D) Pre/post pairing and Drei in adult cortex (n = 13).

Red line, rei: 0.7 (when rei-before < 0.7, change of rei:

0.30 ± 0.12, n = 8, p < 0.05; Student’s paired two-

tailed t test).

(E) In adult neurons, mainly homosynaptic modifi-

cations increased rei (paired only: Drei when initially

r < 0.7: 0.23 ± 0.09, n = 8, p < 0.04, Student’s paired

two-tailed t test; unpaired only: Drei when initially

r < 0.7 for pre/post pairing: 0.13 ± 0.11, p > 0.2).

rather than the original best inputs, were

selectively affected by heterosynaptic

modifications (Figure 8B). Similarly, when

the original best input was not presented af-

ter post/pre pairing, the relative best input

instead experienced heterosynaptic plas-

ticity—in this case, heterosynaptic LTP of

excitation and inhibition (Figure S10).

This experiment demonstrates that het-

erosynaptic plasticity can be specifically directed to occur at

whichever inputs were most strongly activated in a restricted

postpairing period. Furthermore, these results show that cortical

neurons have aCa2+-dependentmechanism for determining and

adjusting overall excitation and excitatory-inhibitory balance in a

rapid and stimulus-specific manner.

DISCUSSION

Excitatory-inhibitory balance is a fundamental feature of neural

networks (Froemke, 2015; Takesian and Hensch, 2013; Wehr

and Zador, 2003; Xue et al., 2014). However, it has remained un-

clear how this organization is set up and calibrated online in

response to changes of excitatory synapses important for

learning and memory. Here we described how forms of long-

term homosynaptic and heterosynaptic plasticity selectively

adjust populations of inputs onto cortical pyramidal neurons to

achieve a particular set point for excitatory-inhibitory balance.

Instead of a slower global optimization process, which might

be difficult to implement biologically, our results demonstrate
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that a restricted set of activity-dependent changes is sufficient to

normalize excitatory-inhibitory balance within minutes,

enhancing the relation between inhibition and excitation when

mismatched or reducing this value if inhibition is too restrictive.

Our theoretical analysis indicates that the definition of excit-

atory-inhibitory balance can be dynamic, and the set point is

determined by the relative degree to which heterosynaptic

modifications are engaged. Consequentially, heterosynaptic

plasticity and inhibitory plasticity work together to reorganize

cortical inputs after induction of long-term excitatory modifica-

tions to update information storage and enable flexible computa-

tion without disrupting overall network function.

Cortical excitation and inhibition are not perfectly matched in

all cases, especially before extensive exposure or experience

with particular stimuli. For frequency tuning curves measured

in the young adult and adult rodent auditory cortex in vivo, mag-

nitudes of tone-evoked excitatory and inhibitory responses can

be highly correlated, with average values of 0.7 to >0.9 (Froemke

et al., 2007; Tan and Wehr, 2009; Wehr and Zador, 2003),

although the range across the population can be quite variable

(Dorrn et al., 2010). In younger animals, however, frequency tun-

ing tends to be initially broad or erratic; excitatory inputs mature

within the first 1–2 weeks of postnatal life in rodents, but inhibi-

tory tuning requires experience over weeks 2–4 to balance exci-

tation (Chang et al., 2005; de Villers-Sidani et al., 2007; Dorrn

et al., 2010). In developing rat auditory cortex in vivo, repetitive

sensory stimulation generally increases excitatory-inhibitory

correlation levels to higher levels regardless of the initial baseline

correlation (Dorrn et al., 2010). Here we identified a complemen-

tary mechanism in young mouse auditory cortex in which paired

pre- and postsynaptic spiking can increase correlations when

initially quite low but otherwise seems to maintain the excit-

atory-inhibitory correlations at intermediate levels before adult-

hood. Although there could be species differences in the learning

rules or excitatory-inhibitory set points, a more likely hypothesis

is that repetitive patterned stimulation with pure tones in vivo

more aggressively engages homosynaptic plasticity, which pre-

dominates over heterosynaptic modifications. This is consistent

with the findings of Dorrn et al. (2010) in terms of heterosynaptic

potentiation and increases of excitatory-inhibitory correlations

and consistent with the model presented here: when homosy-

naptic plasticity is faster and/or stronger than heterosynaptic

plasticity, the set point for excitatory-inhibitory correlation is

higher.

Figure 6. Mechanisms of Input-Specific Het-

erosynaptic Plasticity

(A) Thapsigargin in a whole-cell pipette (10 mM)

prevented heterosynaptic excitatory and inhibitory

LTD after pre/post pairing. Top: excitatory inhibi-

tory LTP induced by pre/post pairing at channel S4

(red, Dt = 4 ms). Middle, thapsigargin prevented

heterosynaptic LTD. Bottom: Rs and Ri.

(B) Spike pairing with normal solutions and artificial

cerebrospinal fluid (ACSF) on paired inputs (red),

original best unpaired inputs (blue), and other un-

paired inputs (black); same recordings as Figures 2A

and 2B. Filled bars, excitation; open bars, inhibition.

Error bars, SEM.

(C) Blocking NMDA receptors (50 mm APV in bath)

preventedplasticity (pre/post,n=6:pairedEPSCs,p

> 0.7, Student’s paired two-tailed t test; paired IPSCs,

p > 0.4; originally largest unpaired EPSCs, p > 0.6;

originally largest unpaired IPSCs, p > 0.5; and post/

pre,n=4:pairedEPSCs,p>0.8;paired IPSCs,p>0.7;

originally largest unpaired EPSCs, p > 0.6; originally

largest unpaired IPSCs, p > 0.5). Error bars, SEM.

(D) Intracellular ruthenium red (20 mm) spared homo-

synaptic plasticity but prevented heterosynaptic

plasticity at original best inputs (pre/post, n = 9:

paired EPSCs, p < 0.02; paired IPSCs, p < 0.05;

originally largest unpaired EPSCs, p > 0.6; originally

largest unpaired IPSCs, p > 0.3; and post/pre, n = 9:

paired EPSCs, p < 0.004; paired IPSCs, p < 0.006;

originally largest unpaired EPSCs, p > 0.9; originally

largest unpaired IPSCs, p > 0.6). Error bars, SEM.

(E) Intracellular thapsigargin (10 mm) spared homo-

synaptic plasticity but prevented heterosynaptic

plasticity (pre/post, n = 12: paired EPSCs,

p < 0.006; paired IPSCs, p < 0.003; originally largest

unpaired EPSCs, p > 0.05; originally largest un-

paired IPSCs, p > 0.1; and post/pre, n = 10: paired

EPSCs, p < 0.01; paired IPSCs, p < 0.006; originally

largest unpaired EPSCs, p > 0.05; originally largest

unpaired IPSCs, p > 0.2). Error bars, SEM.
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Even in adult animals, correlated excitatory and inhibitory re-

sponses to complex sounds such as vocalizations can require

experience. Spiking responses to infant mouse distress calls

are weak in adult virgin female auditory cortex because of imbal-

anced (uncorrelated) excitation and inhibition; after maternal

experience with pups, excitation and inhibition become more

closely matched to enable reliable action potential generation

(Marlin et al., 2015). Even inputs that are patently artificial can

lead to meaningful neural and behavioral responses, perhaps

partly because of mechanisms of cortical plasticity. Rodents

can learn to use intracortical electrical microstimulation as a

behaviorally meaningful input (Long and Carmena, 2013), and

analogously, humans can learn to use cochlear implants despite

what might be initially random patterns of electrically evoked ac-

tivity (Wilson, 2015; Glennon et al., 2020).

Our experiments might emulate how novel inputs recruit

initially unrelated populations of excitatory and inhibitory synap-

ses, becoming functionally coupled via experience-dependent

plasticity. One caveat is that these recordings were made at

the soma, perhaps electrotonically far from the sites of activated

inputs. Thus, somatic values of rei might not be the most relevant

for regulating NMDA receptors or generating dendritic spikes,

although presumably these values are more accurate in terms

of excitatory-inhibitory control of spike generation at the axon

hillock. Although inputs evoked by each stimulation channel

may not initially be functionally related, these inputs become

bound together via repetitive co-activation, together with post-

synaptic spiking. Initially high response variability might also

facilitate this plasticity. In particular, relatively imbalanced inhibi-

tion might make it easier for incoming input to activate NMDA

receptors, leading to long-term modifications, which in turn bal-

ance inhibition with excitation (D’amour and Froemke, 2015).

Regulation of cortical inhibition in this way is believed to be

important for the opening and closing of developmental critical

periods (Dorrn et al., 2010; Hensch and Fagiolini, 2005; Kuhlman

et al., 2013; Takesian et al., 2018). Our results indicate that these

phenomena are not independently induced (which might pose

challenges for dynamic control of excitatory-inhibitory balance)

but are effectively coordinated over a timescale of minutes by

activity-dependent mechanisms.

Part of this process involves computing local maxima of

incoming inputs for selective modifications of specific synapses.

Combined with slower forms of homeostatic plasticity (Turri-

giano, 2008), individual cortical neurons have the capability to

integrate or accumulate recent activity over minutes to hours,

enabling flexible representations of external stimuli and control

over excitability on multiple short and long timescales. Different

patterns of coordinated pre- and postsynaptic spiking might

engage distinct mechanisms or forms of synaptic plasticity,

such as those seen here for pairing at non-best versus best in-

puts. Long-term plasticity depends on many different variables,

including baseline amplitude of synaptic strengths, number and

frequency of pre- and postsynaptic spiking, postsynaptic mem-

brane potential, and the dendritic location of synaptic inputs

(Sjöström et al., 2001; Froemke et al., 2005, 2010a; Wang

et al., 2005). At high spiking rates or levels of postsynaptic depo-

larization, LTP is reliably induced irrespective of precise spike

timing; other more global homeostatic mechanisms for normal-

izing overall synaptic strengthsmight then be engaged. Similarly,

synaptic plasticity might be regulated by other factors such as

neuromodulation or critical periods (Froemke, 2015), and we

observed that heterosynaptic modifications were less prevalent

in older than in developing auditory cortex. Regardless, the re-

sults of our models might be generally applicable, suggesting

that as long as there are analogous forms of plasticity, there

can be stable set points for excitatory-inhibitory inputs to be

balanced in potentially any system. This is reminiscent of find-

ings that many forms of inhibitory STDP can lead to balanced

networks and equilibrium states in simulations (Vogels et al.,

2011; Luz and Shamir, 2012).

In terms of mechanism, CaMKII activation because of Ca2+

influx through NMDA receptors enhances excitatory transmis-

sion through AMPA receptors (Malenka and Nicoll, 1999;

Froemke, 2015), and a growing literature implicates CaMKII in

potentiation of inhibitory transmission (Huang et al., 2005; Chiu

et al., 2018). These local phenomena affecting paired synapses

must then set in motion a more wide-ranging process involving

release from thapsigargin-sensitive internal stores to selectively

downregulate the largest unpaired incoming events. Conse-

quentially, the total synaptic strength is roughly conserved

(Royer and Pare, 2003; Froemke et al., 2013), while fine-scale

patterns of co-activated excitatory and inhibitory inputs become

relatively larger or smaller together. Beyond the paired and orig-

inal best inputs, certain other inputs seem to be modified, but

these might vary from cell to cell. The detailed mechanisms by

which these modifications occur remain to be determined,

including how specific inhibitory events are adjusted after excit-

atory synaptic activation and how heterosynaptic plasticity is

regulated over development or by experience to allow the set

point for excitatory-inhibitory balance to be dynamic.

Figure 7. Hypothesized Plasticity Mecha-

nisms

Green, excitatory input; red, inhibitory input. Ho-

mosynaptic modifications depend on NMDA

receptors, L-type Ca2+ channels, and kinase acti-

vation. Integrated over minutes, Ca2+ release from

internal stores is sensitive to the largest inputs in a

winner-takes-all manner, inducing input-specific

heterosynaptic depression.
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Figure 8. Postsynaptic Neurons Compute

Maximally Strong Inputs

(A) Deactivating the original best input channel led to

heterosynaptic excitatory and inhibitory LTD at the

second-best (relative best) channel after pre/post

pairing. Top: excitatory and inhibitory LTP induced

by pre/post pairing at channel S4 (red, Dt = 4 ms).

Top middle: original best inputs at S8 were unaltered

when inactivated for 10 min after pairing. Bottom

middle: LTD was induced at the relative best inputs

at S6. Bottom: Rs and Ri.

(B) Pre/post experiments with the original best

input channel deactivated for 10 min after pairing

(red: paired EPSCs: 22.7% ± 8.4%, n = 8, p < 0.04,

Student’s paired two-tailed t test, and paired IPSCs:

19.8% ± 6.0%, p < 0.02; dark blue: originally largest

EPSCs: 2.8% ± 5.6%, p > 0.6, and originally largest

IPSCs: 9.0% ± 12.1%, p > 0.4; light blue: relative

best EPSCs:�20.6% ± 4.8%, p < 0.004, and relative

best IPSCs: �18.2% ± 4.4%, p < 0.02; black: other

EPSCs: 1.6% ± 9.2%, p > 0.8, and other IPSCs:

�0.5% ± 6.6%, p > 0.9). Filled, excitation; open, in-

hibition. Error bars, SEM.
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STAR+METHODS

KEY RESOURCES TABLE

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Dr. Robert

C. Froemke (robert.froemke@med.nyu.edu).

Materials Availability Statement
This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved under NYU School of Medicine IACUC protocols, in accordance with NIH guidelines. Animals were

housed in fully-equipped facilities in either the NYU School of Medicine Skirball Institute or Science Building (New York City). The

facilities were operated by the NYU Division of Comparative Medicine. Wild-type C57BL/6 mice (Jackson Labs; Stock No.

000664) of both sexes were used in all experiments; animals were between P9-P90.

METHOD DETAILS

Slice preparation- mouse auditory cortex
Acute slices of auditory cortex were prepared from juvenile (P9-35) and adult (P60-90) C57BL/6 mice, an age range spanning the

critical period for excitatory-inhibitory balancing in rodent auditory cortex (de Villers-Sidani et al., 2007; Dorrn et al., 2010). Animals

were deeply anesthetized with a 1:1 ketamine/xylazine cocktail and decapitated. The brain was rapidly placed in ice-cold dissection

buffer containing (in mM): 87 NaCl, 75 sucrose, 2 KCl, 1.25 NaH2PO4, 0.5 CaCl2, 7 MgCl2, 25 NaHCO3, 1.3 ascorbic acid, and 10

dextrose, bubbled with 95%/5% O2/CO2 (pH 7.4). Slices (300–400 mm thick) were prepared with a vibratome (Leica), placed in

warm (33-35�C) dissection buffer for �10 min, then transferred to a holding chamber containing warm artificial cerebrospinal fluid

(ACSF, in mM: 124 NaCl, 2.5 KCl, 1.5 MgSO4, 1.25 NaH2PO4, 2.5 CaCl2, and 26 NaHCO3,). Slices were kept at room temperature

(22-24�C) for at least 30 minutes before use. For experiments, slices were transferred to the recording chamber and perfused

(2–2.5 mL min�1) with oxygenated ACSF at 33�C.

Electrophysiology
Somatic whole-cell recordings were made from layer 5 pyramidal cells in current-clamp and voltage-clamp mode with a Multiclamp

700B amplifier (Molecular Devices) using IR-DIC video microscopy (Olympus). Patch pipettes (3-8 MU) were filled with intracellular

solution (in mM: 135 K-gluconate, 5 NaCl, 10 HEPES, 5 MgATP, 10 phosphocreatine, and 0.3 GTP). For pharmacological studies,

either thapsigargin (10 mM) or ruthenium red (20 mM) was included in the internal solution. In one experiment, 1 mM thapsigargin

was added directly to the bath solution. Mean resting potential was �68.1 ± 6.4 mV (standard deviation, SD), series resistance

(Rs) was 26.9 ± 12.0 MU, and input resistance (Ri) was 295.91 ± 129.6 MU, determined by monitoring cells with hyperpolarizing

pulses (50 pA or 5-10 mV for 100 msec). Recordings were excluded from analysis if Ri changed > 30% compared to the baseline

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Thapsigargin Tocris Cat#: 1138

Ruthenium red Millipore Sigma Cat#: R2751

APV Millipore Sigma Cat#: A8054

Alexa Fluor Tocris Cat#: 6625

Fluo-4 Tocris Cat#: 6255

Experimental Models: Organisms/Strains

C57BL/6 mice Jackson Labs Stock No. 000664

Software and Algorithms

Model code This manuscript https://github.com/cmiehl/

heterosynplast2018
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period. Data were filtered at 2 kHz, digitized at 10 kHz, and analyzed with Clampfit 10 (Molecular Devices). Focal extracellular

stimulation (0.033-0.2 Hz) was applied with a monopolar metal electrode 8-channel array (AMPI Master-9, stimulation strengths

of 0-10 V for 6-300 msec) located < 150 mm from the recording electrode. Cells were held in voltage clamp at twomembrane potentials

alternating between –40 to –30mV for measuring IPSCs and –80 to –70mV for measuring EPSCs. Mean peak EPSC (2msecwindow)

was used tomeasure excitatory strength. For IPSCs, a larger window (5-20msec) was used. The ‘best’ inputs were not pre-selected,

but determined by analysis after each recording.

To determine the synaptic overlap between different stimulation channels, recordings were performed in voltage-clamp mode; in

some experiments we used a different internal solution (in mM: 130 Cs-methanesulfonate, 1 QX-314, 4 TEA-Cl, 0.5 BAPTA, 4MgATP,

0.3 Na-GTP, 10 phosphocreatine, 10 HEPES, pH 7.2). We interleaved stimulation of all channels individually with summation of the

paired channel plus one other channel, and compared the measured summed E/IPSC to the predicted sum based on the amplitudes

of each event individually (Figure S1). On average, the degree of synaptic overlap was minimal (�10%–20%), and lower in the exper-

iments containing the Cs+/QX-314-based internal solution (�5%–10%), indicating that these channels activated separate inputs

(Froemke et al., 2005; Tran-Van-Minh et al., 2015; Urban and Barrionuevo, 1998).

For monitoring long-term changes in synaptic strength, stable baselines were first established with 5-20 min of stimulation.

Synaptic strength after induction was measured 16-25 min after the end of the induction protocol. During induction, postsynaptic

spiking was evoked with brief depolarizing current pulses. Presynaptic spike timing was defined as EPSP onset, and postsynaptic

spike timingwasmeasured at the peak of the action potential. All statistics and error bars are reported asmeans ±SEMand statistical

significance assessed with paired two-tailed Student’s t test, unless otherwise noted.

Two-photon Ca2+ imaging
Whole-cell recordingswereperformedwithcurrent-clamp intracellular solutioncontainingAlexaFluor (100mM) tovisualize thedendritic

arbor and Fluo-4 (100-200 mM) to monitor Ca2+ signals. In some experiments, thapsigargin (10 mM) was also added to the internal so-

lution. Ca2+ imaging began at least 30min after breakin to allow for dye diffusion, equilibration, and assessing stability of the recording.

Two-photon laser scanning microscopy of Ca2+ signals was performed using an upright microscope (BX61WI, Olympus), equipped

with a slice recording chamber, 40X, 0.8 NA water immersion objective, and a Ti:Sapphire (MaiTai DeepSee, Spectra-Physics,

Mountain View, CA) laser tuned to 810 nm to excite both Alexa Fluor 594 and Fluo-4. Imaging of dendritic segments was acquired

with Fluoview software (Olympus) at 4X digital zoom, every 50 ms. Images were analyzed in ImageJ (NIH, Bethesda, MD, USA).

Simulations: probabilistic model
We modeled the interaction between homosynaptic and heterosynaptic plasticity in a probabilistic model with 12 excitatory and

inhibitory inputs onto a single postsynaptic neuron. Excitatory and inhibitory tuning curveswere initialized by generating the individual

weights from a uniform distribution, where each value represented the total synaptic excitatory (or inhibitory) strength of one channel.

For each tuning curve, one channel was chosen as the ‘paired’ channel where excitation and inhibition were increased, and the best

excitatory and inhibitory channels were decreased by a fixed amount. The amount of increase due to homosynaptic plasticity for both

excitatory and inhibitory channels was fixed at 65%, and the amount of decrease due to heterosynaptic plasticity was varied on each

trial over the range �14 to �98% depression. We compared the Pearson correlation coefficient between excitatory and inhibitory

weights before induction of any plasticity (‘rei-before’) and after synaptic weight adjustments (‘rei-after’). This procedurewas repeated

for 50,000 pseudo-random tuning curve initializations. From all initializations, we computed the probability that the excitatory-inhib-

itory correlation rei-after was greater than or less than rei-before. All code for simulations can be found at: https://github.com/cmiehl/

heterosynplast2018

Simulations: biophysical model
Similar to the probabilistic model, we modeled 12 input channels, each consisting of 10 excitatory and 10 inhibitory neurons, onto a

single postsynaptic neuron. These channels represented the extracellular stimulation of a population of excitatory and inhibitory

neurons converging onto the postsynaptic neuron. The postsynaptic neuron was modeled as a conductance-based leaky inte-

grate-and-fire model:

tm
dV

dt
= Eleak � V +

X
j

gE
j

�
EE
rev �V

�
+
X
j

gI
j

�
EI
rev �V

�
:

When the membrane potential reached a certain threshold Vthresh, a spike was fired and the membrane potential was reset to Vreset.

Each synaptic conductance increased with an input spike by: g
E=I
j /g

E=I
j +w

E=I
j and otherwise decreased: t

E=I
g ðdgE=I

j =dtÞ= � g
E=I
j .

Changes to excitatory and inhibitory synaptic strength were based on a pair-based STDP plasticity rule. For the excitatory learning

window we used a classical asymmetric learning window where pre/post spike pairing ðDt = tpost �tpre R0Þ led to excitatory LTP

and post/pre spike pairing led to excitatory LTD ðDt < 0Þ:

WEðDtÞ =
�

AEe�Dt=tE ; for DtR0

�AEeDt=tE ; for Dt < 0
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For the inhibitory window we used a symmetric window where both pre/post and post/pre spike pairings led to inhibitory LTP:

WIðDtÞ =
�
AIe�Dt=tI ; for DtR0

AIeDt=tI ; for Dt < 0:

The synaptic weights evolved as:w
E=I
j /w

E=I
j + h

E=I
w WE=IðDtÞwith learning rates hEw for excitatory and hIwfor inhibitory synaptic weights.

The heterosynaptic decrease of synaptic weights wasmodeled based on an internal trace. The trace of each synapse increased with

an incoming spike: T
E=I
j /T

E=I
j +w

E=I
j and otherwise decreased: t

E=I
T ðdTE=I

j =dtÞ= � T
E=I
j . Based on the mean trace per input channel

T
E=I
c (where the channel index c ranges from 1 to 12), the synaptic weights corresponding to the maximum trace per channel were

decreased by: w
E=I
c;max/w

E=I
c;max � h

E=I
het½TE=I

c �max.

Occasionally, when the synaptic weightsw
E=I
j for several channels were similar, this mechanism induced heterosynaptic plasticity at

the channel which was not the best-tuned channel – this was the result of the internal trace T
E=I
j not being a perfect measure of the syn-

aptic weight strength. Due to the imbalance between potentiation and depression achievedby the STDP rules (namely, excitatory STDP

can give rise to both potentiation and depression, while inhibitory STDP can only give rise to potentiation), the inhibitory heterosynaptic

plasticity was faster, hEhet < hIhet. To enable the induction of heterosynaptic plasticity only after homosynaptic plasticity, we introduced a

learning dependent trace TeLTP, which could switch the heterosynaptic plasticity ‘‘on’’ or ‘‘off’’ based on accumulated excitatory LTP.

Following the induction of LTP, TeLTP/TeLTP +DwE
j and otherwise decayed exponentially: tTeLTPðdTeLTP =dtÞ= � TeLTP. Whenever TeLTP

reached the threshold qon, heterosynaptic plasticity was switched ‘‘on’’ and implemented as described above. Following the drop of the

learning-dependent trace TeLTP below the threshold qoff , heterosynaptic plasticity was switched ‘‘off’’ again.

The inputs were modeled as Poisson spike trains. In the paired phase, the firing rate of the activated channel was 75 Hz for each

input (no activation of the other channels). In the unpaired phase, all channels other than the channel which was activated during

paring, had a firing rate of 0.5 Hz. These values led to postsynaptic activation only during the pairing phase, with very few postsyn-

aptic spikes induced during the unpaired phase. The paired phase lasted for 1.5 s, the unpaired phase for 6 s and we presented

multiple alternating sequences of paired and unpaired stimulation phases to the postsynaptic neuron. The initial values of the syn-

aptic weights per channel for both excitatory and inhibitory synapses were drawn randomly from the interval [0.2-0.35]. All code for

simulations can be found at: https://github.com/cmiehl/heterosynplast2018

Biophysical Model Parameters

Parameter Description Value

AE Excitatory STDP learning amplitude 1

AI Inhibitory STDP learning amplitude 1

tE Excitatory learning time constant 20 ms

tI Inhibitory learning time constant 20 ms

tET Excitatory trace time constant 1 s

tIT Inhibitory trace time constant 1 s

tTeLTP Learning-dependent trace time constant 5 s

qon Threshold above which heterosynaptic

plasticity is ‘‘on’’

0.7

qoff Threshold below which heterosynaptic

plasticity is ‘‘off’’

0.1

hEw Excitatory learning rate 1 s-1

hIw Inhibitory learning rate 1 s-1

hEhet Excitatory heterosynaptic learning rate varied

hIhet Inhibitory heterosynaptic learning rate 10 hEhet

tm Membrane time constant 20 ms

EE
rev Excitatory reversal potential 0 mV

EI
rev Inhibitory reversal potential �80 mV

Eleak Leak reversal potential �70 mV

Vthresh Spiking threshold �50 mV

Vreset Reset membrane potential �70 mV

tEg Excitatory conductance decaying constant 5 ms

tIg Inhibitory conductance decaying constant 5 ms
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QUANTIFICATION AND STATISTICAL ANALYSIS

Student’s t test was used for comparisons between two groups, with paired or unpaired tests used when appropriate. One- or two-

way analysis of variance (ANOVA) was used for analysis between three or more groups. Statistical analyses were performed using

Prism 6.0 GraphPad andMATLAB (MathWorks). Statistical tests used, p values, and the number of cells are reported in the main text

describing each figure. All quantifications are the result of data from at least 3 different animals, unless otherwise indicated. Data

reported in the text are generally shown as mean ± standard error of the mean (s.e.m), unless otherwise indicated.

DATA AND CODE AVAILABILITY

Upon request to the Lead Contact, data are immediately available.
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Figure S1. Assessment of synaptic overlap between different stimulation channels in auditory 

cortical slices, Related to Figure 1.  

(A) EPSC summation across channels. Top, example traces for one recording; there were four 

active stimulation electrodes (S1-S4), and S1 was the paired channel. Activating S1 together with 

either S2, S3, or S4 showed approximately linear summation of EPSC pairs, indicating minimal 

overlap between inputs activated by S1 and S2, S3, or S4. Scale: 10 msec, 100 pA. Middle, 

summary of channel overlap percentage across all cells with ‘current-clamp’ K+-based internal 

pipette solution used for STDP experiments (120 µm inter-channel distance); 0% overlap indicates 

independent summation (120 µm from paired channel: 16.5±11.7% overlap, mean±SD, n=40; 240 

µm from paired channel: 17.2±11.1% overlap, n=37; 360 µm from paired channel: 13.9±14.0% 

overlap, n=27; 480 µm from paired channel: 14.9±8.9% overlap, n=17; 600 µm from paired 

channel: 13.2±18.0% overlap, n=3). Bottom, summary of channel overlap percentage in different 

cells recorded with ‘voltage-clamp’ Cs+-and QX-314-based internal pipette solution (120 µm from 
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paired channel: 13.1±4.7% overlap, n=6; 240 µm from paired channel: 6.2±4.9% overlap, n=6; 

360 µm from paired channel: 15.6±4.3% overlap, n=9; 480 µm from paired channel: 5.0±5.5% 

overlap, n=7). 

(B) IPSC summation across channels. Top, example traces from same cell as in A, showing IPSCs 

evoked by stimulation of the four active channels. Scale: 50 msec, 100 pA. Middle, summary of 

IPSC overlap across channels (120 µm from paired channel: 18.2±13.6% overlap, n=40; 240 µm 

from paired channel: 16.7±18.0% overlap, n=39; 360 µm from paired channel: 13.1±13.7% 

overlap, n=21; 480 µm from paired channel: 15.3±10.1% overlap, n=20; 600 µm from paired 

channel: 13.2±4.8% overlap, n=3). Bottom, channel overlap percentage with ‘voltage-clamp’ 

solution (120 µm from paired channel: 5.9±3.9% overlap, n=6; 240 µm from paired channel: 

13.1±2.9% overlap, n=4; 360 µm from paired channel: 3.1±6.5% overlap, n=4; 480 µm from 

paired channel: 7.8±10.4% overlap, n=7). 
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Figure S2. Examples of paired and heterosynaptic STDP increasing excitatory-inhibitory 

correlation when initially low, Related to Figure 2. 

(A) Example of excitatory and inhibitory plasticity induced by pre→post pairing at channel S4 

(red, ∆t: 4 msec; EPSCs before pairing: −124.8±7.5 pA; EPSCs after pairing: −135.2±4.4 pA, 
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increase of 8.3%; IPSCs before pairing: 32.7±2.0 pA; IPSCs after pairing: 71.7±2.4 pA, increase 

of 119.2%). Dashed line, pre-pairing mean. Upper middle, heterosynaptic LTD at the strongest 

unpaired inputs onto this cell (blue, EPSCs at best channel S5 before: −214.2±9.8 pA, EPSCs after: 

−178.0±7.0 pA, decrease of −16.9%; IPSCs at best channel S1 before: 81.3±7.7 pA, IPSCs after: 

66.4±4.0 pA, decrease of −18.4%). Lower middle, example other inputs (black, EPSCs at channel 

S1 before: −165.9±8.4 pA, EPSCs after: −156.2±4.3 pA, decrease of −5.8%; IPSCs at channel S2 

before: 39.3±3.6 pA, IPSCs after: 42.1±3.2 pA, increase of 7.1%). Bottom, series and input 

resistances were stable (Rs before: 19.0±0.5 MΩ, Rs after: 20.7±0.2 MΩ, increase of 9.0%; Ri 

before: 496.8±11.2 MΩ, Ri after: 448.9±7.4 MΩ, decrease of −9.6%). Right, increase in 

excitatory-inhibitory correlation across all channels (rei-before: 0.22; rei-after: 0.32). Red arrow, 

paired channel. Blue arrowheads, original best excitation (filled) and inhibition (open).  

(B) Example of plasticity induced by post→pre pairing at channel S4 (red, ∆t: −4 msec; EPSCs 

before pairing: −363.8±14.2 pA; EPSCs after pairing: −316.7±11.9 pA, decrease of −12.9%; IPSCs 

before pairing: 38.4±4.3 pA; IPSCs after pairing: 72.9±13.2 pA, increase of 89.7%). Upper middle, 

heterosynaptic LTP at the strongest unpaired inputs onto this cell (blue, EPSCs at best channel S5 

before: −370.1±15.6 pA, EPSCs after: −390.2±11.4 pA, increase of 5.4%; IPSCs at best channel 

S1 before: 183.9±7.4 pA, IPSCs after: 237.1±10.4 pA, increase of 28.9%). Lower middle, example 

other inputs (black, EPSCs at channel S6 before: −314.7±20.3 pA, EPSCs after: −313.7±15.6 pA, 

decrease of −0.3%; IPSCs at channel S6 before: 41.8±2.2 pA, IPSCs after: 48.7±5.0 pA, increase 

of 16.5%). Bottom, series and input resistances were stable (Rs before: 10.9±0.5 MΩ, Rs after: 

12.5±0.2 MΩ, increase of 15.0%; Ri before: 143.8±1.6 MΩ, Ri after: 161.4±2.8 MΩ, increase of 

12.3%). Right, increase in excitatory-inhibitory correlation across all channels (rei-before: −0.83; 

rei-after: −0.72).  
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Figure S3. Examples of paired and heterosynaptic STDP decreasing excitatory-inhibitory 

correlation when initially high, Related to Figure 2. 

(A) Example of excitatory and inhibitory plasticity induced by pre→post pairing at channel S4 

(red, ∆t: 4 msec; EPSCs before pairing: −38.0±2.6 pA; EPSCs after pairing: −78.3±7.1 pA, 
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increase of 105.9%; IPSCs before pairing: 19.7±2.4 pA; IPSCs after pairing: 23.8±2.4 pA, increase 

of 20.8%). Upper middle, heterosynaptic LTD at the strongest unpaired inputs onto this cell (blue, 

EPSCs at best channel S6 before: −306.5±12.4 pA, EPSCs after: −182.6±11.0 pA, decrease of 

−40.4%; IPSCs at best channel S6 before: 64.4±3.1 pA, IPSCs after: 59.3±3.9 pA, decrease of 

−7.9%). Lower middle, example other inputs (black, EPSCs at channel S1 before: −48.6±19.9 pA, 

EPSCs after: −51.5±10.6 pA, increase of 6.1%; IPSCs at channel S5 before: 33.5±4.1 pA, IPSCs 

after: 35.8±4.0 pA, increase of 6.8%). Bottom, series and input resistances were stable (Rs before: 

6.8±0.02 MΩ, Rs after: 6.0±0.1 MΩ, decrease of −11.2%; Ri before: 272.4±6.5 MΩ, Ri after: 

193.4±6.3 MΩ, decrease of −28.9%). Right, decrease in excitatory-inhibitory correlation across 

all channels (rei-before: 0.80; rei-after: 0.46). Red arrow, paired channel. Blue arrowheads, original 

best excitation (filled) and inhibition (open).  

(B) Example of plasticity induced by post→pre pairing at channel S4 (red, ∆t: −5 msec; EPSCs 

before pairing: −108.9±12.1 pA; EPSCs after pairing: −52.9±6.6 pA, decrease of −51.4%; IPSCs 

before pairing: 214.3±23.7 pA; IPSCs after pairing: 394.8±12.4 pA, increase of 84.2%). Upper 

middle, heterosynaptic LTP at the strongest unpaired inputs onto this cell (blue, EPSCs at best 

channel S3 before: −151.8±8.2 pA, EPSCs after: −222.0±5.0 pA, increase of 46.2%; IPSCs at best 

channel S3 before: 366.6±15.6 pA, IPSCs after: 580.2±9.9 pA, increase of 58.3%). Lower middle, 

example other inputs (black, EPSCs at channel S5 before: −130.0±11.7 pA, EPSCs after: 

−136.6±5.0 pA, increase of 5.1%; IPSCs at channel S5 before: 88.8±7.4 pA, IPSCs after: 96.7±3.9 

pA, increase of 8.9%). Bottom, series and input resistances were stable (Rs before: 13.7±0.6 MΩ, 

Rs after: 11.3±0.3 MΩ, decrease of −17.8%; Ri before: 240.1±13.2 MΩ, Ri after: 263.5±6.5 MΩ, 

increase of 9.7%). Right, decrease in excitatory-inhibitory correlation across all channels (rei-

before: 0.80; rei-after: 0.59). 
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Figure S4. No significant correlations between synaptic overlap and heterosynaptic plasticity 

across channels, Related to Figure 2.  

(A) Predicted amount of synaptic modification for EPSCs computed from overlap with paired 

channel for unpaired channels (i.e., sublinear summation as in Figure S1 across inputs and cells) 

vs. experimentally-measured modification of each EPSC after pairing. Filled circles, pre→post 

pairing experiments (‘r+’: –0.08, p=0.58, solid line); open circles, post→pre pairing experiments 

(‘r-’: –0.15, p=0.43, dashed line).  

(B) As in A but for unpaired IPSCs (‘r+’: –0.04, p=0.79, solid line; ‘r-’: 0.05, p=0.81, dashed line).  

(C) For post→pre pairing, paired IPSCs and the original best IPSCs were both potentiated on 

average (Figure 2B); there was no significant correlation between the predicted inhibitory LTP 

(from the measured  amount of synaptic overlap between paired and best inhibitory inputs) vs. the 

experimentally-measured heterosynaptic LTP (‘r-’: 0.25, p=0.46). 
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Figure S5. Minimal drift in excitatory-inhibitory correlation during baseline and 16-25 minutes 

after pairing, Related to Figure 2.  

(A) Excitatory and inhibitory strengths from cell in Figure 1. Left, during first half of baseline 

period (top, rei-first half: 0.22) and second half of baseline period (top, rei-second half: 0.34) before 

pairing. Full baseline rei-before: 0.25. Right, rei during 16-20 minutes after pairing (top, rei-first 
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half: 0.55) and 21-25 minutes after pairing (top, rei-second half: 0.42). Full 16-25 minutes rei-after: 

0.48. 

(B) Differences between rei for first half and second half of baseline period and 16-25 minutes after 

pairing compared to value from entire period (‘rei drift’). Left, individual recordings from Figure 

2. Right, average difference in rei between first or second halves of baseline period and full baseline 

(rei drift pre→post pairing, first half: 0.10±0.02, second half: 0.11±0.02; rei drift post→pre pairing, 

first half: 0.08±0.03, second half: 0.08±0.03), and for first and second halves of post-pairing period 

compared to full 16-25 minutes (rei drift pre→post pairing, first half: 0.10±0.02, second half: 

0.09±0.01; rei drift post→pre pairing, first half: 0.06±0.02, second half: 0.05±0.02). Filled symbols 

and bars, pre→post pairing; open symbols and bars, post→pre pairing. 

  



10 
 

 
Figure S6. Spike pairing at the best inputs, Related to Figure 2.  

(A) Example of pre→post pairing at the original best channel S4 for both excitation and inhibition 

(∆t: 4 msec; EPSCs before pairing: −277.9±6.4 pA; EPSCs after pairing: −308.5±9.5 pA, increase 

of 11.0%; IPSCs before pairing: 115.9±18.8 pA; IPSCs after pairing: 153.8±7.7 pA, increase of 

32.7%). 

(B) Example of post→pre pairing at the original best channel S4 for both excitation and inhibition 

(∆t: −4 msec; EPSCs before pairing: −151.1±4.9 pA; EPSCs after pairing: −144.9±5.1 pA, 

decrease of −4.1%; IPSCs before pairing: 370.2±12.9 pA; IPSCs after pairing: 498.2±10.0 pA, 

increase of 34.6%). 

(C) Summary of experiments with pairing at original best input channels for pre→post pairing 

(left, paired/best EPSCs increased by 17.7±21.7%, n=9, p=0.44, Student’s paired two-tailed t-test; 
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2nd best but unpaired EPSCs decreased by −2.1±12.8%, p=0.88; paired/best IPSCs increased by 

49.2±14.9%, p<0.02; 2nd best but unpaired IPSCs increased by 16.1±16.1%, p=0.35; unpaired 

EPSCs decreased by −8.9±5.9%, p=0.17; unpaired IPSCs increased by 6.5±11.4%, p=0.59), and 

post→pre pairing (right, paired/best EPSCs decreased by −19.5±6.9%, n=6, p<0.04; 2nd best but 

unpaired EPSCs decreased by −4.7±10.6%, p=0.68; paired/best IPSCs increased by 17.4±6.3%, 

p<0.05; 2nd best but unpaired IPSCs increased by 8.7±3.8%, p=0.07; unpaired EPSCs decreased 

by −2.6±5.7%, p=0.67; unpaired IPSCs increased by 3.0±3.8%, p=0.65).  

(D) Excitatory-inhibitory correlation before (rei-before) and after (rei-after) pre→post pairing (left, 

n=9) or post→pre pairing (n=6).  
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Figure S7. Biophysical model of homosynaptic and heterosynaptic plasticity, Related to Figure 

3.  

(A) Schematic of the biophysical model with a single postsynaptic neuron receiving inputs from 

different channels consisting of excitatory (green) and inhibitory (red) populations, with 

alternating sequences of paired and unpaired stimulation phases. 

(B) Reducing the amount of homosynaptic LTD to 75% of original leads to higher rei set-points. 
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(C) Weight dynamics of a simulation with an excitatory heterosynaptic to homosynaptic learning 

rate ratio of: 𝜂𝜂ℎ𝑒𝑒𝑒𝑒
𝐸𝐸

𝜂𝜂𝑤𝑤𝐸𝐸
= 1.3 ∗ 10−2, with 𝜂𝜂ℎ𝑒𝑒𝑒𝑒𝐸𝐸 = 1.3 ∗ 10−5 𝑚𝑚𝑚𝑚−1, 𝜂𝜂ℎ𝑒𝑒𝑒𝑒𝐼𝐼 = 1.3 ∗ 10−4 𝑚𝑚𝑚𝑚−1. Left, 

excitatory inputs; right, inhibitory inputs. Insets, weight dynamics between timepoints 21.5-22.75 

minutes. Inhibitory weight dynamics usually change the order of the strongest to weakest channel 

faster than the excitatory weights, leading to changes in rei. Color is used just to highlight dynamics 

of two different channels (red, channel #4; blue, channel #7).  
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Figure S8. Spike pairing leads to release of dendritic Ca2+ from internal stores, Related to Figure 

6.  

(A) Example of two-photon imaging of pairing-induced Ca2+ signals in apical dendrites of layer 5 

pyramidal neurons; dashed box, analysis region. Scale: 15 µm. 

(B) Examples of Ca2+ transients evoked by single postsynaptic spikes (black dashed line) and 

postsynaptic spikes paired with presynaptic stimulation (black solid line). Shown are single 

exponential fits to each transient (thin gray lines). Thapsigargin (10 µM) included in the whole-

cell pipette prevented the broadening of dendritic Ca2+ after both pre→post pairing and post→pre 

pairing.  

(C) Summary of pairing-induced Ca2+ release quantified by time constant τ of single exponential 

fits. With normal intracellular solution, pairing broadened the evoked Ca2+ signals for both 

pre→post pairing (top, postsynaptic spike alone, τ: 155.2±29.9 msec; pairing, τ: 295.3±60.6 msec, 

n=7, p<0.04) and post→pre pairing (bottom, postsynaptic spike alone, τ: 164.1±40.4 msec; 

pairing, τ: 324.9±92.9 msec, n=7, p<0.04). This broadening of the Ca2+ event was prevented by 

thapsigargin (10 µM) in the internal solution (pre→post pairing, postsynaptic spike alone, 

τ: 191.6±46.5 msec; pairing, τ: 203.6±43.1 msec, n=4, p>0.4; post→pre pairing, postsynaptic 

spike alone, τ: 244.7±34.6 msec; pairing, τ: 229.7±34.1 msec, n=3, p>0.1). 
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Figure S9. Intracellular blockade of Ca2+ store signaling with ruthenium red prevents 

heterosynaptic changes at the best inputs but spares STDP at paired inputs, Related to Figure 6.  

(A) Ruthenium red in the whole-cell pipette (20 µM) prevents heterosynaptic excitatory and 

inhibitory LTD after pre→post pairing. Top, example of excitatory LTP (left) and inhibitory LTP 

(right) induced by pre→post pairing at channel S4 (red, ∆t=1 msec; EPSCs before pairing: 

−112.6±5.8 pA, EPSCs after pairing: −143.3±6.3 pA, increase of 27.3%; IPSCs before pairing: 

45.2±2.0 pA, IPSCs after pairing: 67.8±2.7 pA, increase of 49.9%). Dashed line, pre-pairing mean. 
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Middle, ruthenium red prevented heterosynaptic LTD at the strongest unpaired inputs onto this 

cell (blue, EPSCs at channel S3 before: −163.1±6.1 pA, EPSCs after: −167.2±5.0 pA, increase of 

2.5%; IPSCs at channel S3 before: 123.9±4.9 pA, IPSCs after: 164.3±4.9 pA, increase of 32.6%). 

Bottom, series and input resistance were stable (Rs before: 25.9±0.6 MΩ, Rs after: 27.6±0.3 MΩ, 

increase of 7.0%; Ri before: 330.4±20.7 MΩ, Ri after: 405.3±22.2 MΩ, increase of 13.8%). 

(B) Ruthenium red prevents heterosynaptic excitatory and inhibitory LTP after post→pre pairing. 

Top, example of excitatory LTD (left) and inhibitory LTP (right) induced by post→pre pairing at 

channel S4 (red, ∆t=−2 msec; EPSCs before pairing: −108.6±3.9 pA, EPSCs after pairing: 

−93.8±2.1 pA, decrease of −13.7%; IPSCs before pairing: 180.3±7.2 pA, IPSCs after pairing: 

249.1±6.3 pA, increase of 38.1%). Middle, ruthenium red prevented heterosynaptic LTP at the 

strongest unpaired inputs onto this cell (blue, EPSCs at channel S2 before: −139.7±4.3 pA, EPSCs 

after: −132.4±4.1 pA, decrease of −5.2%; IPSCs at channel S3 before: 299.2±7.3 pA, IPSCs after: 

318.9±6.9 pA, increase of 6.6%). Bottom, series and input resistance were stable (Rs before: 

18.7±0.4 MΩ, Rs after: 21.8±0.2 MΩ, increase of 16.9%; Ri before: 103.6±3.4 MΩ, Ri after: 

147.6±13.6 MΩ, increase of 13.6%). 
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Figure S10. Heterosynaptic modifications to relative best inputs when original best input not 

presented in ten minutes following post→pre pairing, Related to Figure 8.  

(A) Deactivating original best input channel led to heterosynaptic excitatory and inhibitory LTP 

at the second best (‘relative best’) channel after post→pre pairing. Top, example of excitatory LTD 

(left) and inhibitory LTP (right) induced by post→pre pairing at channel S4 (red, ∆t=4 msec; 
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EPSCs before pairing: −129.0±1.9 pA, EPSCs after pairing: −99.4±2.6 pA, decrease of −22.9%; 

IPSCs before pairing: 119.7±5.9 pA, IPSCs after pairing: 149.1±7.2 pA, increase of 24.6%). 

Dashed line, pre-pairing mean. Upper middle, original best inputs evoked by S8 were unaltered 

when this channel was turned off for ten minutes immediately after pairing (dark blue, original 

best EPSCs before: −256.6±3.2 pA, original best EPSCs after: −242.6±9.0 pA, decrease of −5.5%; 

original best IPSCs before: 167.8±6.8 pA, original best IPSCs after: 183.2±10.5 pA, increase of 

9.2%). Lower middle, heterosynaptic depression was induced at the relative best inputs evoked by 

S6 (light blue, relative best EPSCs before: −189.7±8.4 pA, relative best EPSCs after: −208.5±8.3 

pA, increase of 9.9%; relative best IPSCs before: 131.8±11.0 pA, relative best IPSCs after: 

167.2±7.2 pA, increase of 26.8%). Bottom, series and input resistance (Rs before: 33.3±0.2 MΩ, 

Rs after: 28.7±0.3 MΩ, decrease of −13.8%; Ri before: 197.6±2.3 MΩ, Ri after: 196.6±0.7 MΩ, 

decrease of −0.5%). 

(B) Summary of post→pre experiments with original best input channel deactivated for the ten-

minute after-pairing period. Shown are changes to paired inputs (red; paired EPSCs decreased by 

−19.9±6.7% at 16-25 minutes post-pairing, n=14, p<0.02, Student’s paired two-tailed t-test; paired 

IPSCs increased by 27.2±7.1%, p<0.005), original best inputs (dark blue; originally-largest EPSCs 

decreased by −9.7±1.9% at 16-25 minutes post-pairing, p<0.01; originally-largest IPSCs increased 

by 1.2±4.2%, p>0.7), relative best inputs (light blue; EPSCs increased by 15.8±6.1% at 16-25 

minutes post-pairing, p<0.04; IPSCs increased by 16.1±3.7%, p<0.002), and averaged other inputs 

(black; EPSCs decreased by −16.6±7.6% at 16-25 minutes post-pairing, p<0.03; IPSCs increased 

by 11.6±10.6%, p>0.2). Filled symbols, excitation; open symbols, inhibition. Left, time course 

(compare with Fig. 2B); right, summary of changes at 16-25 minutes after pairing. 
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Abstract In the brain, patterns of neural activity represent sensory information and store it in
non-random synaptic connectivity. A prominent theoretical hypothesis states that assemblies,
groups of neurons that are strongly connected to each other, are the key computational
units underlying perception and memory formation. Compatible with these hypothesised
assemblies, experiments have revealed groups of neurons that display synchronous activity,
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either spontaneously or upon stimulus presentation, and exhibit behavioural relevance. While
it remains unclear how assemblies form in the brain, theoretical work has vastly contributed
to the understanding of various interacting mechanisms in this process. Here, we review the
recent theoretical literature on assembly formation by categorising the involved mechanisms into
four components: synaptic plasticity, symmetry breaking, competition and stability. We highlight
different approaches and assumptions behind assembly formation and discuss recent ideas of
assemblies as the key computational unit in the brain.

(Received 20 May 2022; accepted after revision 22 August 2022; first published online 6 September 2022)
Corresponding author Julijana Gjorgjieva: School of Life Sciences, Technical University of Munich,
Maximum-von-Imhof-Forum 3, Freising 85354, Germany. Email: gjorgjieva@tum.de

Abstract figure legend Assembly formation. Assemblies are groups of strongly connected neurons formed by the inter-
action of multiple mechanisms and with vast computational implications. Four interacting components are thought to
drive assembly formation: synaptic plasticity, symmetry breaking, competition and stability.

Introduction

Originating from the ideas of Lorente de Nó (1938)
and Donald O. Hebb (1949), a prominent theoretical
hypothesis proposed that groups of neurons instead of
single neurons are the basic unit of perceptive integration
(Buzsáki, 2010; Eichenbaum, 2018; Huyck & Passmore,
2013; Yuste, 2015). It is now widely accepted that groups
of neurons that display synchronous activity represent
key computational units and are often referred to as
‘assemblies’, ‘ensembles’ or ‘engrams’. These terms are not
always used consistently in the literature; therefore, in
this review, we propose the following disambiguation. An
‘ensemble’ refers tomultiple neurons that express a certain
degree of synchronous activity without any hypothesis
about their connectivity. An ‘assembly,’ on the other hand,
is defined as a group of neurons that has stronger or denser
synaptic connections (called thewithin-assemblyweights)
among the neurons that constitute it, as opposed to the
weights going into or coming out of the assembly (called
the across-assembly weights), without necessarily having
highly synchronous activity. Finally, an ‘engram’ describes
multiple ensembles or assemblies interconnected and
spread across multiple layers and even brain areas.

0 Christoph Miehl and Sebastian Onasch are PhD students in the research group of Professor Julijana
Gjorgjieva at the Max Planck Institute for Brain Research in Frankfurt and the School of Life Sciences at
the Technical University in Munich. They joined the Gjorgjieva group during their master degrees and
became fascinated by the idea of applying mathematical tools and computational approaches to neuro-
science questions. Their interests lie within computational modelling of neuronal microcircuits inspired
and constrained by experimental data.

Although it is often hypothesised that highly
synchronous activity within a group of neurons
(ensemble) follows from strong synaptic connectivity
among these neurons (assembly), distinguishing between
activity and connectivity is important. Experimental
studies usually investigate ensembles. This is despite
the development of new recording techniques which
have made it possible to image and manipulate the
activity of groups of neurons and link them to behaviour
(Carrillo-Reid et al., 2017; Wenzel & Hamm, 2021),
and is due to the challenge to directly measure synaptic
connectivity between specific neurons experimentally.
Despite recent efforts to show experimentally that an
ensemble also consists of strong, connected neurons (e.g.
Alejandre-García et al., 2022), a clear link is still missing.
Due to the readily accessible information about

connectivity and activity in in silico network models,
theoretical studies can bridge the gap between activity
and connectivity, seeking a mechanistic understanding
of assembly formation and stability. An early example
is Hebb’s suggestion that long-term synaptic plasticity
mechanisms favour the formation of assemblies among
neurons that activate synchronously (Hebb, 1949). In
this review, we examine contemporary literature on

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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assembly formation in recurrent networks, outlining
the key components that, in addition to Hebb’s basic
principle where ‘cells that fire together wire together’
(Shatz, 1992), allow for the formation and stability
of assembly structures. We identify four components:
synaptic plasticity, symmetry breaking, competition and
stability (Fig. 1A), and highlight how computational
studies use different assumptions combining these four
components in relation to experimental literature. Finally,
we discuss recent ideas of how the concept of assemblies
is useful in understanding how brains might ‘compute’
and we point towards open challenges and possible future
research directions. Before diving into the computational
perspective, we briefly review experimental findings on
ensembles and assemblies.

Experimental evidence for ensembles, assemblies and
their formation

Evidence of ensembles in neural activity. Ensembles
of neurons have been identified by their temporally
coordinated activity patterns in many species and across

areas. These patterns appear upon stimulus presentation,
such as in the mouse hippocampus (Harris et al., 2003)
and visual cortex (Miller et al., 2014), the ferret
visual cortex (Berkes et al., 2011) and the zebrafish
(Romano et al., 2015). In addition, coordinated neural
activity has been measured during spontaneous activity
and even in in vitro preparations (Cossart et al., 2003;
MacLean et al., 2005; Mao et al., 2001), hinting at the
possibility that these patterns are generated by under-
lying local network structures (i.e. assemblies) rather than
by common feedforward inputs. Therefore, one proposal
supported by experimental evidence is that ensembles
observed during spontaneous activity define the realm
of possible activity patterns during stimulus presentation
(Kenet et al., 2003; Luczak et al., 2009; Malvache et al.,
2016; Miller et al., 2014; but see Avitan et al., 2021;
Stringer et al., 2019).
The activation of neural ensembles not only correlates

with stimulus presentation but also plays an important
role in expressing specific behaviours. Precise optogenetic
manipulation of ensembles induces, enhances or impairs
expressed behaviour, for example in the hippocampus

   Synaptic
Plasticity Symmetry

 Breaking

Stability

Synaptic Plasticity

Competition

Symmetry Breaking

Competition Stability

A subpopulation of neurons has 
high and/or correlated activity

Across-assembly connections 
decrease

High/correlated actvity

Low/uncorrelated activity

The assembly remains stable 
over a longer time period

Synapses strengthen and form 
bidirectional connectivity
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Figure 1. The basic building blocks of assembly formation
A, assembly formation is based on four key components in computational models: synaptic plasticity, symmetry
breaking, competition and stability. B, due to symmetry breaking, a subpopulation of neurons fires at a high rate
and/or with highly correlated activity compared to the remaining neurons. Synaptic plasticity promotes mutual
connections within the assembly, while a competition mechanism decreases the across-assembly weights. The
newly formed assembly structure is stable over time.
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(Liu et al., 2012), the visual cortex (Carrillo-Reid et al.,
2019; Marshel et al., 2019) and the orbitofrontal cortex
(Jennings et al., 2019). Animals can also be trained to
directly report the activation of a cell ensemble composed
of fewer than 20 neurons in the barrel cortex and the
olfactory bulb, even in the absence of a sensory stimulus
(Dalgleish et al., 2020; Gill et al., 2020). However, it is
unclear what generates the highly synchronous activity
of the neurons within an ensemble: for example, whether
the ensembles that lead to specific behaviours are strongly
recurrently connected into assemblies or are strongly
driven by common input. Additionally, it is unclear to
what extent ensemble configuration and its function are
preserved over longer time periods, such as days or
months. Some recent work has shown that the cortical
representation of natural images (Deitch et al., 2021) and
odours (Schoonover et al., 2021) slowly shifts over time, a
phenomenon termed ‘representational drift’ (Rule et al.,
2019). Representational drift depends on the stimulus
type (Marks & Goard, 2021) and is area-dependent, with
representations in motor areas being especially stable
(Jensen et al., 2022).

Evidence of assemblies in neural connectivity. Direct
measures of neural connectivity based on electro-
physiology, optogenetic stimulation and electron micro-
scopy often reveal that network structure is far from
random. In particular, bidirectional connections occur
much more frequently compared to what would be
expected if connections were random (Campagnola et al.,
2022; Guzman et al., 2016; Jouhanneau et al., 2015; Song
et al., 2005; Turner et al., 2022; but see Lefort et al., 2009).
Although bidirectional connectivity does not uniquely
define an assembly, it is consistent with the idea that
neurons in the same assembly should have a denser and
stronger mutual connectivity compared to the rest of the
population.
Other studies have revealed that neurons aremore likely

to be connected when they share common neighbours
(Perin et al., 2011; Turner et al., 2022), i.e. common input
(Yoshimura et al., 2005) or common postsynaptic targets
(Brown & Hestrin, 2009). Furthermore, highly correlated
cells (Cossell et al., 2015; Ko et al., 2011) or cells that
are tuned to the same stimuli have a higher probability
of being connected (Ko et al., 2011; Lee et al., 2016;
Rossi et al., 2020; Wertz et al., 2015). In the same vein,
cells stemming from the same progenitor show similar
selectivity for visual stimuli (Li et al., 2012; Ohtsuki et al.,
2012) and display high connection probability as well as
an increase in reciprocal connectivity (Tarusawa et al.,
2016; Yu et al., 2009; but see Cadwell et al., 2020). The
fact that functionally related neurons are more likely to be
connected suggests that these groups of neurons can be
considered assemblies.

Synaptic plasticity as a mechanism for assembly
formation. It is widely believed that long-term
synaptic plasticity is the underlying mechanism behind
connectivity structure formation, including assembly
formation (Abbott & Nelson, 2000; Brea & Gerstner,
2016; Feldman, 2009; Magee & Grienberger, 2020;
Suvrathan, 2019). Multiple experimental studies have
shown that the long-term plasticity of a synapse depends
on firing rates and exact spike timing (Maffei, 2018).
Long-term potentiation can be evoked by high firing rates
(Kirkwood et al., 1996) or pairs of spikes which fire in
a causal manner, whereby a postsynaptic spike follows a
presynaptic spike (Bi & Poo, 1998; Markram et al., 1997).
Therefore, groups of neurons firing at high rate and in
a correlated manner (ensembles) should form strong
synaptic connections among each other, forming an
assembly.
However, experimentally it has been difficult to link

synaptic plasticity directly to assembly formation. Recent
findings in the mouse barrel cortex have suggested that
the probability of neurons firing together increases when
repeatedly activating them in vivo, tying this effect to
long-lasting connectivity changes (Kim et al., 2016).
Furthermore, fear memories could be artificially induced
by stimulating neurons in the hippocampal region CA3
with a protocol that probably induces within-layer
synaptic plasticity (Oishi et al., 2019).
A couple of experimental studies have attempted

to imprint assemblies by repeatedly evoked spiking
patterns in a selected subgroup of neurons (Carrillo-Reid
et al., 2016; Zhang et al., 2020). While this increased
correlated firing and spontaneous reactivations of the
stimulated subgroup of neurons over days, the underlying
mechanism has remained unclear. Long-term synaptic
plasticity that leads to stronger recurrent inputs is
one possibility (Zhang et al., 2020), but a change
in the neuron’s intrinsic excitability is also possible
(Alejandre-García et al., 2022; Debanne et al., 2019; Zhang
& Linden, 2003). Increased intrinsic excitability also plays
an important role in memory formation. Studies in the
hippocampus and amygdala have shown that cells with
high intrinsic excitability during memory formation are
likely to be part of the newly formed ensembles that
correlate with the learned fear memories (Cai et al., 2016;
Rashid et al., 2016). However, while recent studies suggest
that memory formation requires changes in feedforward
synapses between those ensembles (Abdou et al., 2018;
Nabavi et al., 2014), it is unclear whether the same is true
for recurrent synapses, i.e. whether memory formation
relies on assembly formation.
Therefore, we conclude that despite the abundance

of experimental data on the existence and formation of
ensembles and assemblies, a clear link between howhighly
correlated activity and strong recurrent connectivity is still
missing.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Formation of assemblies

To complement these experimental findings regarding
the existence and relevance of neural ensembles and
assemblies, computational studies have proven extremely
useful in developing models linking synaptic plasticity
to the formation of assemblies. We propose that the
problem of stable assembly formation in neural circuits
can be understood through four fundamental components
(Fig. 1A).

The first component, synaptic plasticity, promotes
assemblies by strengthening bidirectional connections
of within-assembly neurons. The second component,
symmetry breaking, represents a form of bias that
influences neural activity, and thus can be used by
synaptic plasticity to refine and shape assemblies. The
third component, competition, strengthens synaptic
connections within an assembly and weakens connections
across assemblies. Lastly, stability prescribes that learned
assemblies remain resilient to fluctuations and keep their
connectivity structure intact over time.

Synaptic plasticity. To describe synaptic plasticity,
computational models have defined phenomenological
descriptions of the interactions between pre- and post-
synaptic spikes in the form of learning rules. We first
consider one of the best studied rules: Hebbian pairwise
spike timing-dependent plasticity (STDP), where a pre-
synaptic spike followed by a postsynaptic spike leads to
long-term potentiation (LTP), whereas a postsynaptic
spike followed by a presynaptic spike leads to long-term
depression (Bi & Poo, 1998). The magnitude of the
synaptic change depends on the time difference between
the spikes, increasing as the events occur closer in time
(Fig. 2A). At the circuit level, this rule does not favour
the formation of neural assemblies, but rather it disrupts
them (Ravid Tannenbaum & Burak, 2016), as it tends
to cancel bidirectional connections between neurons
(Abbott & Nelson, 2000; Clopath et al., 2010; Song &
Abbott, 2001; Song et al., 2000) including synaptic loops
that involve multiple neurons (Kozloski & Cecchi, 2010).
This is due to the potentiation/depression profile of the
rule (Fig. 2A). For example, if neuron j spikes before
neuron i the synaptic weight that goes from j to i, wi j,
will increase; however, the reciprocal connection from
neuron i to neuron j, wji, will decrease (Fig. 2A, red
vertical lines). Therefore, synaptic plasticity rules with
an anti-symmetric profile, as in the Hebbian case, can
produce a continuous competition between reciprocal
connections, resulting in a ‘winner-take-all’ mechanism
that leaves only one direction intact (Abbott & Nelson,
2000; Song et al., 2000; Song & Abbott, 2001).

To understand the effect of STDP rules on bidirectional
connections more generally, computational models
describe the dependency between synaptic weight

changes, firing statistics and plasticity rule parameters.
The firing rates of single neurons and the pairwise
correlations between the neurons’ spike trains together
with the parameters of the STDP rule determine the mean
weight change (Kempter et al., 1999; Fig. 2B). However,
any change of synaptic weights can, in turn, produce
changes in the neurons’ firing rates and correlation
structure. Decomposing synaptic plasticity into structural
motifs is a widely used theoretical approach that captures
this complex relationship (Hu et al., 2013, 2014; Jovanović
& Rotter, 2016; Montangie et al., 2020; Ocker, Hu et al.,
2017; Ocker, Josić et al., 2017; Pernice et al., 2011; Ravid
Tannenbaum & Burak, 2016; Trousdale et al., 2012). The
structural motif framework is based on two assumptions:
first, synaptic plasticity occurs on amuch slower timescale
than the dynamics of neural firing; and second, the neural
dynamics follows an approximately linear behaviour.
When the first assumption holds, the (slow) weight
update does not depend on specific realisations of neural
firing, but is instead determined by mean firing rates and
by the correlation structure between the neurons’ spike
trains (Kempter et al., 1999). The second assumption of
linearity allows us to compute the full firing statistics
analytically from the network weights (Jovanović et al.,
2015). This leads to a self-consistent solution (Ocker et al.,
2015), where at each iteration first the firing statistics are
derived from fixed weights, and then the weights are
updated following the interaction between those statistics
and synaptic plasticity. While this framework applies to
any synaptic plasticity rule, for simplicity here we explain
it in the context of the pairwise STDP rule.
Structural motifs are defined as the connectivity paths

that a given spike from neuron k in a network travels
to neuron j and neuron i, consequently affecting the
correlation between neuron j and i. Using this framework,
we can formulate the mean synaptic weight change of a
synapse from neuron j to neuron i, 〈 ·

wij〉, as a sum of terms
which depend on structural motifs with a certain ‘order of
interaction’ (Montangie et al., 2020; Ravid Tannenbaum
& Burak, 2016; Fig. 2C). The order of interaction refers to
the total number of synapses a spike from any neuron in
a network needs to travel to affect the mean connection
strength 〈wi j〉 between presynaptic neuron j and post-
synaptic neuron i, indicated below with the number in the
superscript:

〈 ·
wij〉 = 〈 ·

wij〉(0) + 〈 ·
wij〉(1) + 〈 ·

wij〉(2) + 〈 ·
wij〉(3) + · · · (1)

Hence, each of the terms of different orders of inter-
action consists of the product of different activity statistics
(rates, correlations) and motif coefficients that scale each
term’s contribution. The first term in eqn (1) represents
the zero-order structural motif (order of interaction 0),
also referred to as the rate motif. This term describes the

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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mean weight change as a function of only the pre- and
postsynaptic firing rates (r j, ri):

〈 ·
wij〉(0) = rir jM0 (2)

where M0 is the zero-order motif coefficient and can be
calculated as the area under the plasticity rule (Fig. 2A).
The second term in eqn (1) represents the first-order
structural motif (order of interaction 1), describing how
a spike in either the pre- or the postsynaptic neuron can
affect 〈wi j〉:

〈 ·
wij〉(1) = r jwijM1,0 + riwjiM0,1. (3)

The first-order motif coefficients, M1,0 and M0,1, and
in general other higher-order motif coefficients, can
be calculated based on the shape of the excitatory
postsynaptic current (EPSC) and the STDP parameters
(Fig. 2D). As the order of the interaction increases, the
contributions on the weight dynamics become smaller
because more synapses are involved, and therefore higher
orders of interaction are often truncated (Montangie et al.,
2020; Ravid Tannenbaum & Burak, 2016).
Given the importance of bidirectional connections for

the formation of assemblies, the above mathematical
framework can be used to describe the mean weight
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Figure 2. The effect of spike timing-dependent plasticity (STDP) on the formation of bidirectional
connections
A, weight change of the synapse from neuron j to neuron i, �wi j , via the pairwise STDP rule as a function of
the time difference between post- ( ti ) and presynaptic spike ( t j ), with long-term potentiation (LTP) parameters
A+ and τ+ and long-term depression (LTD) parameters A− and τ−. Red vertical lines indicate weight change of
reciprocal connections for one time difference of spikes in neuron j and i. The total area under the STDP rule is
A+τ+ + A−τ−. B, the mean synaptic weight change (yellow area) can be computed as the area under the product
of two curves: the pairwise STDP rule as in A (blue line) and the correlation density (black line). C, example of a

structural motif with order of interaction 3 as one part of the decomposition of synaptic weight change (〈 ·
wij〉(3),

see eqn 1). A spike in neuron k travels through one synapse to the presynaptic neuron j and through two synapses
to the postsynaptic neuron i, influencing the correlation between neuron j and neuron i and therefore the weight
change at synapse wi j (adapted from Montangie et al., 2020). D, the structural motif with order of interaction
1 (also called the first-order motif) contributes to the mean weight change of synapse wi j with two terms, M1,0
and M0,1 (see eqn 3). The first-order motif coefficient M1,0 can be calculated by multiplication of the STDP area
(blue) with the EPSC area (magenta). The EPSC here is defined as E (t ) = exp(−t/τe ) for t > 0 with decay time
constant τe. The first-order motif coefficients are M1,0 = A+ τ+τe/(τ+ + τe ) (yellow area under the curve in the
right panel), andM0,1 = A− τ−τe/(τ− + τe ) (not shown) (adapted from Montangie et al., 2020). E, weight change
as a function of the pre- and postsynaptic firing rates for a pairwise STDP rule (left, see also A) with dominant
potentiation, i.e. positive total area under the STDP rule A+τ+ + A−τ− > 0 (meaning that the zero-order motif
coefficient is positive M0 > 0), and the mean weight dynamics depend on pre- and postsynaptic firing rates.
Weight change as a function of the pre- and postsynaptic firing rates for a triplet (right) STDP rule which has
a rate-dependent zero-order contribution that depends non-linearly on the postsynaptic firing rate and depends
linearly on the presynaptic rate. In both panels, the pre- and postsynaptic neurons fire independently. Potentiation
(orange) and depression (blue) are normalised to their respective maximum value (adapted from Litwin-Kumar &
Doiron, 2014).
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dynamics for the reciprocal weights between neuron j
and i as follows, considering only the zero- and first-order
structural motifs (eqns 2 and 3):

〈 ·
wij〉(0,1) = rir jM0 + r jwijM1,0 + riwjiM0,1, (4)

〈 ·
wji〉(0,1) = rir jM0 + riwjiM1,0 + r jwijM0,1. (5)

Simplifying this for the case where the pairwise STDP
plasticity rule has the same area of long-term depression
(LTD) and LTP (i.e. A+ τ+ = −A−τ−, see Fig. 2A), the
motif coefficients can be calculated asM0 = 0 andM0,1 =
−M1,0 , which we call simplyM, yielding:

〈 ·
wij〉(0,1) = (

r jwij − riwji
)
M, (6)

〈 ·
wji〉(0,1) = (

riwji − r jwij
)
M. (7)

Therefore, it is easy to see that an increase ofwi j leads to
a decrease of the reciprocal connection wji and vice versa.
Furthermore, the weight changes depend on the weight
strength, leading to a ‘winner-take-all mechanism’, where
only one synaptic weight ‘wins.’ However, this is only
true in the case of approximately equal areas of LTD and
LTP and has been pointed out by multiple computational
studies as the inability of the asymmetric pair-based STDP
rule to generate bidirectional connections and, as a result,
assemblies (Abbott & Nelson, 2000; Clopath et al., 2010;
Song et al., 2000; Song & Abbott, 2001). For an STDP rule
which has dominant potentiation, the zero-order motif
coefficient is positive (M0 > 0), and the mean weight
dynamics depend on pre- and postsynaptic firing rates
(Fig. 2E, left). Notably, this can lead to bidirectional
connectivity (Babadi & Abbott, 2013).

Another way to promote bidirectional connections
is using a symmetric STDP rule which has dominant
depression (Manz & Memmesheimer, 2022) or without
any LTD (Ravid Tannenbaum & Burak, 2016). In this
setting, synaptic weights grow linearly with the pre- and
postsynaptic rates, and further increase bidirectionally
when neurons fire close in time, regardless of the firing
order. Finally, a third possibility is to introduce synaptic
delays (Babadi & Abbott, 2013; Gilson, Burkitt & van
Hemmen et al., 2010; Ravid Tannenbaum & Burak,
2016). It is likely that a combination of multiples of
these mechanisms operates in real biological circuits
and here the computational models provide a principled
mathematical investigation of each contribution.

While the pairwise STDP rule describes excitatory
plasticity in the case of specific induction protocols,
other plasticity rules have been proposed that can
capture plasticity induced by more naturalistic induction
protocols or directly resulting from well-defined
molecular components. For example, to explain plasticity

in response to increasing stimulation frequencies during
classical pre–post pairing, Pfister and Gerstner (2006)
proposed that triplets of spikes, in addition to pairs
of spikes, contribute to synaptic plasticity. As a result,
this triplet STDP rule is sensitive to higher-order
firing statistics (Gjorgjieva et al., 2011). In the motif
expansion framework, the rule adds a positive zero-order
contribution that grows quadratically with the post-
synaptic firing rate and linearly with the presynaptic rate
(Montangie et al., 2020). This non-linear component
generates a threshold between LTD and LTP that
depends on presynaptic and postsynaptic firing rates
(Litwin-Kumar & Doiron, 2014; Fig. 2E, right): when
two neurons fire above threshold, both synaptic weights
between them increase, promoting the bidirectionality
needed for assemblies. Other computational models of
assembly formation use similar non-linear dependencies
of the weight change on the postsynaptic firing rate
in the plasticity rules they implement, including the
voltage-based STDP rule (Clopath et al., 2010; Ko et al.,
2013; Miconi et al., 2016), the calcium rule (Graupner &
Brunel, 2012) and the nearest-neighbour implementation
of the pairwise STDP rule (Izhikevich & Desai, 2003;
Izhikevich et al., 2004). The strong rate dependency
in plasticity rules (Fig. 2E) justifies modelling neuronal
dynamics based purely on the firing rate to study assembly
formation (Eckmann&Gjorgjieva, 2022;Mackwood et al.,
2021; Miehl & Gjorgjieva, 2022; Sadeh & Clopath, 2021).
Besides synaptic plasticity, assembly formation may

also emerge from other mechanisms. We highlight
structural plasticity, which refers to the activity-dependent
pruning and sprouting of synapses (Gallinaro & Rotter,
2018; Gallinaro et al., 2022; Lu et al., 2019). A structural
plasticity mechanism aiming to stabilise excitatory firing
rates can lead to the formation of assemblies in which
the number of connections, rather than connection
strength, is increased among neurons within the assembly
(Gallinaro et al., 2022).
In summary, theoretical frameworks have made

important progress in explaining how the properties
of the synaptic plasticity rule affect the formation of
different connectivity structures, especially assemblies.
We have focused on pair-based or triplet-based STDP
rules, with the requirement that they should promote, and
not hinder, the formation of bidirectional connections,
a fundamental building block for the formation of
assemblies. Bidirectional connections alone, however, do
not guarantee an assembly-like structure. Consider, for
example, the degenerate case of an all-to-all connected
network, or a network with prominent bidirectional
connectivity, but still no clear separation among groups of
neurons. The two closely related principles of symmetry
breaking and competition tackle this issue. As we discuss
below, the former imposes an intrinsic or external bias
that induces heterogeneity in the circuit and acts as a
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learning signal. The latter provides a mechanism for
consolidating within-assembly weights while reducing
across-assembly weights.

Symmetry breaking. The most straightforward way to
induce symmetry breaking for assembly formation is to
train network weights via synaptic plasticity by structured
external input. One possibility is to simultaneously
stimulate neurons expected to be in one assembly
with a high input rate, and neurons which are not
part of the assembly with a low input rate (Fig. 3A).
A synaptic plasticity rule dominated by firing rates
will then potentiate bidirectional connections within
the stimulated subpopulation (Clopath et al., 2010;
Litwin-Kumar & Doiron, 2012, 2014; Schulz et al., 2021).
Another possibility is to maintain constant firing rates
across the neural population, but drive neurons expected
to be in the same assembly by correlated inputs (Gilson
et al., 2009a; Ocker & Doiron, 2019; Wu et al., 2020;
Fig. 3B). Both of these assembly training paradigms are
similar in that they impose a structure on the network
via an external input. During the training protocol
subpopulations of neurons (the future assemblies) are
sequentially stimulated multiple times (Fig. 3C). In the
correlation-based approach it is also possible to stimulate
subpopulations of neurons in parallel (Ocker & Doiron,
2019).
Besides assuming an already selective external feed-

forward input performing symmetry breaking, input
synapses can also be plastic and the external selectivity

can be learned in parallel with the formation of assemblies
(Clopath et al., 2010; Gilson et al., 2009a; Gilson, Burkitt,
Grayden et al., 2010; Miconi et al., 2016; Zenke et al.,
2015). This is in line with experimental studies suggesting
that feedforward input becomes stimulus specific before
strong recurrent connections form (Ko et al., 2011,
2013). The formation of feedforward selectivity could
potentially be guided by recurrent gap junctions (as
modelled by Crodelle & McLaughlin, 2021; Ko et al.,
2013). These connections are observed during early
development preferentially between cells that stem from
the same progenitor and seem to play a crucial role in the
formation of chemical synapses between these cells (Yu
et al., 2009, 2012).
Experiments in the sensory deprived zebrafish larvae

have shown that assemblies can also formwithout external
input, only due to network-intrinsic activity (Pietri et al.,
2017). Such assembly formation without structured input
has been obtained in computational models with different
forms of STDP based on the two frameworks discussed
above: either mainly driven by the rate contribution
(zero-order motif) (Babadi & Abbott, 2013; Burkitt et al.,
2007; Gilson et al., 2009b; Ocker et al., 2015; Ocker &
Doiron, 2019), or by higher-order motifs arising from
internal correlation structure with the rate contribution
minimised (Montangie et al., 2020; Ocker et al., 2015;
Ocker & Doiron, 2019; Ravid Tannenbaum & Burak,
2016), or a combination thereof (Manz&Memmesheimer,
2022). When network-intrinsic correlations contribute
significantly to assembly formation, symmetry breaking in

A

C D

B

External
Input

Intrinsic
Excitability

RecurrentInput

Inhibition

Low
input rates

High
firing rates

Low
correlations

High
correlations

Figure 3. Symmetry breaking via external input
A, strong external input onto a subpopulation of neurons (blue ellipse) leads to high firing of the targeted neurons
(grey triangles). B, same as A, but for strongly correlated external input. C, training protocol in which three distinct
subpopulations of neurons (blue outlines) are stimulated sequentially. D, different mechanisms can contribute
to symmetry breaking: structured external input, recurrent input that reflects existing structures, inhibition and
changes in intrinsic excitability.
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the network develops either due to random fluctuations in
an otherwise symmetric network, or due to an initial bias
in the connectivitymatrix (Ocker &Doiron, 2019; Triplett
et al., 2018).

Experimental studies have suggested additional
mechanisms that might drive symmetry breaking: for
example, neuronswhich become part of an engramduring
memory formation first have a higher excitability during
the memory-encoding phase that seems to be partially
due to cell-intrinsic mechanisms (Alejandre-García et al.,
2022; Josselyn & Tonegawa, 2020). This highlights that
the effect of symmetry breaking is probably a result of
many interacting mechanisms: structured external input,
recurrent input from already existing structures, intrinsic
excitability, and also local inhibition or disinhibition
(Fig. 3D).

In summary, the symmetry breaking mechanism is
necessary to enable the potentiation of synapses by
synaptic plasticity within the assembly. However, while
successfully promoting weight potentiation within each
assembly, symmetry breaking does not guarantee that
weights across assemblies do not also increase, due to
random rate fluctuations, or due to synaptic plasticity
rules biased towards potentiation. Hence, the overall
increase in synaptic strength might eventually lead to
unstable dynamics, preventing the formation of desired
assembly structure, as the assemblies tend to merge
together. Below, we outline how competition can solve this
problem.

Competition. Competition describes a mechanism
to decrease across-assembly weights while increasing
within-assembly weights. Competition therefore enables
a clear separation of assembly from non-assembly
neurons and prevents assemblies from merging. In some
configurations, symmetry breaking driven by external
inputs together with a plasticity rule is sufficient to induce
competition between the synapses within and across
assemblies. When a plasticity rule depends non-linearly
on firing rates, such as the triplet STDP rule (Pfister &
Gerstner, 2006), it is possible to choose the firing rates
of external inputs such that within-assembly weights
potentiate while across-assembly weights depress (Ocker
& Doiron, 2019).

To conceptualise this, we consider a toy example with
three neurons, of which only two belong to an assembly
(Fig. 4A, red). We use a plasticity rule where potentiation
and depression depend on firing rates, as for example the
triplet STDP rule introduced in Fig. 2E (right). During
the training protocol (see Fig. 3C), neurons within the
assembly have high firing rates, while the outside neuron
has low firing rates (Fig. 4B, left). The plasticity rule
then leads to strong potentiation of within-assembly
weights (Fig. 4C, left, purple star) and weak potentiation

of weights into the assembly (Fig. 4C, left, green star).
If the outside neuron joins another assembly at a later
time, the situation reverses, with high rates outside
the assembly (green neuron) and low rates within it
(Fig. 4B, right). In this scenario, the weights into the
assembly decrease more (Fig. 4C, right, green star) than
the within-assembly weights (Fig. 4C, right, purple star).
The weights out of the assembly always change in an
opposite manner to the weights into the assembly when
the pre- and postfiring rates are reversed (Fig. 4C, black
star). Averaged throughout the whole training protocol,
this leads to an increase in the within-assembly weights
(Fig. 4A, purple arrow). In contrast, the weights onto
the neuron outside the assembly decrease (Fig. 4A, black
dashed arrow). However, the weights into the assembly
only decrease if the connected outside neuron is part
of a distinct assembly that is trained at a later time
point (Fig. 4A, green dashed arrow). In this example,
synaptic competition follows directly from the plasticity
rule in combination with the symmetry breaking of
the training protocol with different input firing rates. A
pairwise symmetric STDP rule dominated by depression
can also induce competition without such structured
external input (Manz &Memmesheimer, 2022). Here, the
relative contributions of the zero- and higher-ordermotifs
regulate assembly size.
Many computational studies include additional

mechanisms for more robust and flexible assembly
formation. A widely used mechanism is synaptic weight
normalisation (Fiete et al., 2010; Tetzlaff et al., 2011, 2013,
2015), which is often linked to synaptic scaling, suggesting
that synaptic weights are down- (up-) regulated if the
firing rates of the neurons are high (low) (Turrigiano et al.,
1998; Turrigiano, 2008), and heterosynaptic plasticity,
where the induction of potentiation (depression) in
synapses is accompanied by depression (potentiation)
at nearby synapses (Chistiakova et al., 2015; Field et al.,
2020; Lynch et al., 1977).
Weight normalisation keeps the sum (or sum of

squares) of all outgoing or incoming weights (or
both) constant for each neuron. This mechanism, first
introduced in the context of feedforward receptive-field
formation (Miller & MacKay, 1994; Miller, 1996), induces
synaptic competition. Any increase in a group of synaptic
weights due to synaptic plasticity leads to a decrease
in the remaining connections due to normalisation.
To emphasise this point, we revisit the toy example
mentioned above with the additional constraint that the
sum of the incoming weights remains constant (Fig. 4D).
Here, we consider subtractive normalisation that affects
all incoming weights by subtracting an equal amount
independent of their strength. Thismechanism introduces
competition by depressing the weights into the assembly
despite the potentiation induced by synaptic plasticity
(Fig. 4D, left) or potentiating in the within-assembly
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weights despite the depression by synaptic plasticity
(Fig. 4D, right). Subtractive normalisation results in a
winner-take-all competition (Miller & MacKay, 1994),
whereby at the fixed point, i.e. the point at which synaptic
weights no longer change, the weight with the highest
potentiation (or equivalently the lowest depression) rate
will ‘win’ (Fig. 4D, yellow diamond). Including weight
normalisation enables synaptic plasticity rules that do
not introduce competition themselves – like symmetric
pairwise STDP – to generate assembly structures (Ravid
Tannenbaum & Burak, 2016) because the normalisation
mechanism amplifies small asymmetries in the weight
dynamics. At the same time, weight normalisation also
enables more reliable assembly formation even in cases
where it is not explicitly needed to generate assemblies
(Litwin-Kumar & Doiron, 2014; Schulz et al., 2021; Wu
et al., 2020; Zenke et al., 2015).

In contrast to subtractive normalisation, divisive
normalisation induces less competition and does not lead
to a winner-take-all mechanism, but to a stable fixed
point where weights are proportional to their respective
potentiation strengths (Miller & MacKay, 1994; Fig. 4E,
yellow diamond; compare with Fig. 4D, left). A divisive
effect is in line with the biological idea that synapses
compete for molecular resources (Triesch et al., 2018),
and it has been used, for example, in a model of assembly
formation that can disambiguate input features (Eckmann
& Gjorgjieva, 2022).
Metaplasticity, a dynamic change of the plasticity

mechanism itself (Abraham, 2008), can also induce
competition. A stimulus which results in a high
postsynaptic firing rate leads to an increase in the
LTD/LTP threshold, hence making it harder for a sub-
sequent stimulus to induce LTP. A classic rate-based
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Figure 4. Competition between within- and across-assembly weights
A, a toy model schematic to explain the concept of competition. Two neurons (red) are part of an assembly, one
neuron (mint) is not. The neurons are connected by synapses within the assembly (purple), into the assembly
(green) and out of the assembly (black). The dotted line indicates the weights, which should decrease due to
competition to form the assembly. B, firing rates and spikes for the three neurons in A, for two scenarios when
training assemblies (left and right). Left: the within-assembly neurons have a high firing rate while the outside
neuron fires with a low firing rate. Right: the firing rates of the within-assembly vs. outside-assembly neurons are
reversed relative to the left (adapted from Ocker & Doiron, 2019). C, weight change as a function of the pre- and
postsynaptic firing rates for the triplet STDP rule (as in Fig. 2E). The stars correspond to the pre- and postsynaptic
rates in the scenarios sketched in B, with filling colour matching the scheme in A (adapted from Ocker & Doiron,
2019). D, phase plane of weight dynamics, showing weight into the assembly (x-axis, green arrow in A) versus
within-assembly-weight (y-axis, purple arrow in A). The dynamics follow from the weight changes depicted in C,
induced by the scenario in B. Grey arrows indicate the unconstrained weight dynamics, the blue arrow shows the
weight change following the unconstrained synaptic plasticity dynamics, the red arrow shows the counteracting
effect of the subtractive normalisation, the black arrow indicates the net weight change and the yellow diamond
indicates the fixed point of the constrained weight evolution (adapted from Clopath et al., 2016). E, same scenario
as in D (left) but with divisive normalisation.
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plasticity rule implementing metaplasticity is the
Bienenstock–Cooper–Munro (BCM) rule, which has
been studied extensively in the context of competition
in feedforward networks (Bienenstock et al., 1982; Yger
& Gilson, 2015), and can be linked to the triplet STDP
rule if one of the rule’s parameters changes with ongoing
activity (Gjorgjieva et al., 2011). Metaplasticity in the
context of assembly formation is an important part of the
voltage-based STDP rule (Clopath et al., 2010; Miconi
et al., 2016), and adding metaplasticity to STDP ensures
assembly formation over a broader range of parameters
(Zenke et al., 2015).

Recent work has proposed that inhibition and the
plasticity of inhibitory-to-excitatory synapses also
play an important part in the competition between
assemblies (Herpich & Tetzlaff, 2019; Lagzi et al.,
2021; Miehl & Gjorgjieva, 2022; Sadeh & Clopath,
2021). Specifically, inhibitory plasticity can be linked to
BCM-like metaplasticity and therefore can control the
induction of LTD or LTP at excitatory synapses (Clopath
et al., 2016; Miehl & Gjorgjieva, 2022).

In summary, multiple mechanisms to induce
competition between within- and across-assembly
weights have been suggested, including weight
normalisation, metaplasticity and inhibitory plasticity.
While all these mechanisms aid reliable formation of
assemblies, the last outstanding question pertains to
maintaining stable assemblies in the face of ongoing
synaptic plasticity.

Stability of representations. Maintaining stable
assemblies, or representations in general, faces two
main challenges: first, how to control synaptic weight
changes to prevent pathological firing rates in the
network; and second, how to preserve the difference
between within- and across-assembly weight strength so
that the learned structure does not disappear over time
(Fig. 5A).
Synaptic plasticity mechanisms lead to unbounded

growth of the synaptic weights due to positive feed-
back between activity and plasticity, termed ‘Hebbian
runaway dynamics’ (Turrigiano & Nelson, 2004).
Solutions to this problem are weight normalisation
(Fig. 4), metaplasticity mechanisms or applying upper
bounds on the weights. Two types of upper bounds are
often considered, ‘hard’ and ‘soft’. Soft upper bounds
implement ‘weight-dependent’ plasticity assuming that
the weights change proportionally to the inverse of their
strength (Gütig et al., 2003; Rossum et al., 2000; Rubin
et al., 2001). Although soft bounds ensure stability, they
can lead to unimodal weight distributions and, therefore,
might counteract the formation of assemblies (Morrison
et al., 2007). Similarly, metaplasticity and normalisation
mechanisms might also stabilise weight growth at the
expense of reducing competition (Yger & Gilson, 2015).
Theoretical work has proposed that the key aspect to
ensuring stable weight dynamics is the relative timescales
of synaptic plasticity versus stabilising mechanisms
(Zenke et al., 2013).

Time

A

B

Figure 5. Stability of representations
A, the neurons of a given assembly remain the same over time, providing a stable representation of a sensory
percept. B, the neurons of a given assembly change over time, leading to a representational drift.
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When a network remains plastic after learning
assemblies, learning additional assemblies or ongoing
spontaneous activity alone can degrade the learned
structure. Therefore, the network ‘forgets’ these
representations (Fusi, 2017). It has been suggested that
reactivation of the learned structure through the high
activity of assembly neurons can reinforce the assembly
structure (Fauth & van Rossum, 2019; Litwin-Kumar
& Doiron, 2014). Essentially, the network transitions
from learning due to external input to learning due
to internal structure (see section Symmetry Breaking)
and thus self-stabilises. Additional mechanisms, such as
short-term plasticity, have also been suggested to keep
the firing rates in the network in a healthy regime (Fauth
& van Rossum, 2019; Hiratani & Fukai, 2014; Mongillo
et al., 2005; Vasilaki & Giugliano, 2014; Zenke et al.,
2015). An alternative to self-stabilisation via high firing
rate reactivation is self-stabilisation via spiking statistics,
for example when storing assemblies in a ‘silent’ fashion.
In this framework, plasticity at inhibitory-to-excitatory
synapses can maintain a stable balance of excitation and
inhibition after learning, such that assembly neurons
have similar firing rates to other neurons in the network
(Barron et al., 2017; Ramaswami, 2014). Despite this,
assembly neurons show higher correlations and spiking
irregularities during spontaneous activity, which can
stabilise and improve the long-term storage of the
imprinted assemblies (Gallinaro & Clopath, 2021; Ocker
& Doiron, 2019). The assemblies can then be accessed by
disinhibitory mechanisms (Barron et al., 2016), or even
be read out in seemingly quiet stages, by downstream
neurons through synapses with short-term plasticity
(Gallinaro & Clopath, 2021).
However, should the goal be to maintain stable

assemblies at all? Experimental work suggests
that assemblies may change over time, known
as ‘representational drift’ (Rule et al., 2019). In
computational models, ongoing synaptic plasticity
after assembly formation results in single neurons
dropping in and out of assemblies, leading to a drift
of the assembly structure (Kossio et al., 2021; Manz &
Memmesheimer, 2022; Raman & O’Leary, 2021; Triplett
et al., 2018; Fig. 5B). Hence, an important question is
how such unstable neuronal representations can lead to
stable task performance (Mau et al., 2020; Rule et al.,
2019). Current solutions to this problem propose that
assemblies should be considered in conjunction with their
readouts, for example by assuming that the connections
from assemblies to downstream neurons can be also
plastic. This leads to a constant readout despite changing
assemblies (Kossio et al., 2021; Rule & O’Leary, 2022).
Another possible solution to the stability problem

is to break free from the assumption that synaptic
plasticity is ‘on’ at all times, continuously changing learned
structures. To turn off, or gate, synaptic plasticity several

mechanisms have been suggested, including inhibition of
the inhibitory population, i.e. disinhibition as a gating
signal (Froemke et al., 2007; Letzkus et al., 2011) or
‘three-factor plasticity rules’, where neuromodulators that
convey a learning signal can regulate weight change in
addition to the pre- and postsynaptic activity (Frémaux &
Gerstner, 2016). Another mechanism is synaptic tagging
and capture, where activity-dependent synaptic plasticity
needs an additional stabilising internal signal to allow
persistent connectivity changes (Luboeinski & Tetzlaff,
2021; Redondo & Morris, 2011).
In summary, multiple solutions have been proposed

to ensure the stability of the learned assemblies: from
self-stabilisation by activity (Litwin-Kumar & Doiron,
2014) or spiking statistics (Gallinaro & Clopath, 2021;
Ocker & Doiron, 2019), to plastic downstream readouts
despite drifting representation (Rule et al., 2019) and
gating of synaptic plasticity.

Conclusions and outlook

Inspired by the wealth of experimental results on
the existence and computational relevance of neural
ensembles and assemblies, various computational models
have investigated how synaptic plasticity mediates their
formation and stability. In this review, we have identified
four fundamental computational principles behind this
process (Fig. 1). First, synaptic plasticity can lead to
strong, bidirectional connectivity among neurons, but
it needs to be accompanied by a second component,
a symmetry breaking signal, to break up neurons into
multiple assemblies. To prevent distinct assemblies from
merging requires a third component, competition. Finally,
the last component ensures the stability of assembly
structures or of their representations.
While recent experimental work has made great

advances in understanding synchronous activity
(ensembles), a clear link between ensembles, assemblies
and the formation of assemblies via synaptic plasticity
mechanisms is still lacking. Computational models have
proven indispensable in providing the missing link
because they allow multiple mechanisms to be studied
one at a time or in combination. An outstanding question
that we did not address pertains to the functional and
computational consequences of learned assemblies, which
remains an important future direction. Nonetheless, we
include a short overview on the functional relevance of
assemblies.
The idea of assemblies, or ensembles, as the basic units

of cognition has recently replaced the neuron-centric view
(Buzsáki, 2010; Eichenbaum, 2018; Huyck & Passmore,
2013; Yuste, 2015). An emergent core assumption from
this framework is that each ensemble represents a specific
concept or feature, acting as the fundamental unit for
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memory storage (Neves et al., 2008). One advantage
of having strong recurrent connectivity (assembly)
compared to only considering correlated rates (ensemble)
is stimulus amplification (Peron et al., 2020), thus enabling
weaker stimuli to elicit a recognisable response and to
increase robustness whereby the malfunction or death of
single neurons or synapses will not affect the represented
concept. Consequently, an incomplete stimulus can be
sufficient to evoke the complete assembly – a phenomenon
named pattern completion, which is especially relevant
for memory retrieval (Guzman et al., 2016). Moreover,
recurrent interactions alone may be sufficient to keep an
assembly active after stimulation, thus enabling the brain
to decouple intrinsic activity from external stimulation
and modify learned concepts independently from specific
external inputs (Harris, 2005).

One can think of assemblies as the basis of any
computation (Byrne & Huyck, 2010; Herpich & Tetzlaff,
2019; Ranhel, 2012), also referred to as ‘assembly calculus’
(Papadimitriou et al., 2020; Papadimitriou & Friederici,
2022). In this view, plastic changes of within- and
across-assembly weights are abstracted in mathematically
tractable basic operations. These basic operations describe
how new assemblies are formed and how existing
assemblies can be combined with each other. This
framework allows us, for example, to build the full
architecture of language syntax (Papadimitriou et al.,
2020; Papadimitriou & Friederici, 2022). In general,
assemblies can be combined in two distinct ways. First,
chains of assemblies can form directed sequences, which
has been suggested specifically in the hippocampus, and
lead to reliable and even reversed reactivation after
learning (Holtmaat & Caroni, 2016). For example, it
has been shown that learning assemblies in a sequence
can generate clock-like neuronal dynamics, enabling
the learning of different spatiotemporal patterns (Maes
et al., 2020, 2021). Second, assemblies can be associated
with each other. Association models can be based on
chaining models, where the association is encoded in
the connection strength between the assemblies. Another
option to encode associations is hierarchical models,
where the associated concept is encoded in a newly formed
assembly that only activates if both pre-existing assemblies
are active (Pokorny et al., 2020).

Although most computational studies on assembly
formation begin with an unstructured network from
which assemblies and associations between assemblies
are learned, this probably is not the case in the adult
brain. There are two possibilities. First, assemblies might
be formed in early development, and be later used
as a ‘backbone’ to learn new sequences or associate
new features (Holtmaat & Caroni, 2016). Cortical
areas generate stereotypical structured ‘spontaneous
activity’ during early development that is important for
connectivity refinement (Richter & Gjorgjieva, 2017)

and can drive assembly formation without structured
external input (Loidolt et al., 2020; Montangie et al.,
2020; Ravid Tannenbaum & Burak, 2016). Second, new
assemblies might also form in the adult brain, where they
should be integrated into an existing network structure
without ‘forgetting’ previously learned representations
and potentially allowing overlap between assemblies. This
possibility is closely related to the existence of engrams,
large-scale representations potentially spanning multiple
brain regions. Experimental studies have identified
various mechanisms of engram formation, such as plastic
changes in synapses between regions, or modulated
intrinsic excitability of recruited neurons (Holtmaat &
Caroni, 2016; Josselyn & Tonegawa, 2020). Going one step
further, Buzsáki (2010) suggested that assemblies should
be defined from the perspective of a readout mechanism,
as done, for example, in the context of drifting assemblies
(Kossio et al., 2021; Rule & O’Leary, 2022). Future
work needs to carefully study assembly formation and
association in the context of existing network structures.
Once established, assembly structures shape ongoing

network activity and generate distinct activity patterns
often called discrete attractor dynamics (Aljadeff et al.,
2021; Hopfield, 1982). These dynamics can also show
sustained elevated activity independent of external cues
which links to working memory tasks (Amit et al., 1994;
Durstewitz et al., 2000). When multiple assemblies are
embedded in a network, their activation can switch
stochastically between different assemblies (Mazzucato
et al., 2015). The resulting activity patterns are termed
‘metastable dynamics’, and closely relate to experimental
findings (Abeles et al., 1995; La Camera et al., 2019).
In the rat gustatory cortex, they have been linked to
expectation: by reducing the stability of attractors via
an external cue, the switching rate increases and stimuli
can be detected faster (Mazzucato et al., 2019). Discrete
attractor dynamics are also investigated in more abstract
models called associative memory models and support
the view of ensembles as computing units. As advanced
significantly by Hopfield (1982), patterns of neuronal
activation are imprinted in the network connectivity and
can be activated even with incomplete stimuli, due to the
attractor dynamics. Interestingly, the abstract assumptions
correspond, especially as formulated for example by
Tsodyks (1989), to the four components we identified
when reviewing the literature on assembly formation:
a Hebbian learning rule establishes bidirectional
connections within an assembly based on well-defined
memory patterns, which when imprinted, determine
which neurons should be active, hence acting as a
symmetry breaking mechanism. The abstractions in these
models have enabled extensive theoretical results related
to these attractor networks, including the theoretical
limit for the number of patterns or concepts stored in
a recurrent network (Amit et al., 1985; Gardner, 1988).
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Various aspects in the models have also been made more
biologically realistic, for example sparse coding (Amari,
1989; Gripon et al., 2016), asymmetric connections
(Tsodyks, 1989) or context dependency (Podlaski et al.,
2020). It is interesting to compare the abstracted learning
rules of associative memory models with their more
biologically plausible local and dynamic learning counter-
parts, as they are used in studies on assembly formation.
These associative memory models have an advantage in
the clear benchmarks they provide, such as the number of
stored patterns, thus making it easier to compare different
modelling approaches. Such a comparison is still an open
research direction for assembly formation with more
biologically inspired mechanisms. A formal integration
of these two concepts will yield further insights, as initial
efforts are already gaining some traction (Aljadeff et al.,
2021).
In this review, we have focused on assemblies as a

prominent type of connectivity structure described in
many neural circuits in the brain. Beyond assemblies,
at a smaller scale, specific connectivity motifs are either
over- or under-represented than expected by chance
(Song et al., 2005). At a larger scale, synfire chains, hub
networks and other structures have been described in
network neuroscience (Bassett & Sporns, 2017). Future
work needs to show how these different, small- and
large-scale, connectivity structures are related and how
they can be learned via synaptic plasticity, leading to
diverse activity dynamics and complex computations.
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Abstract

Non-random connectivity can emerge without structured external input driven by activity-

dependent mechanisms of synaptic plasticity based on precise spiking patterns. Here we

analyze the emergence of global structures in recurrent networks based on a triplet model of

spike timing dependent plasticity (STDP), which depends on the interactions of three pre-

cisely-timed spikes, and can describe plasticity experiments with varying spike frequency

better than the classical pair-based STDP rule. We derive synaptic changes arising from

correlations up to third-order and describe them as the sum of structural motifs, which deter-

mine how any spike in the network influences a given synaptic connection through possible

connectivity paths. This motif expansion framework reveals novel structural motifs under

the triplet STDP rule, which support the formation of bidirectional connections and ultimately

the spontaneous emergence of global network structure in the form of self-connected

groups of neurons, or assemblies. We propose that under triplet STDP assembly structure

can emerge without the need for externally patterned inputs or assuming a symmetric pair-

based STDP rule common in previous studies. The emergence of non-random network

structure under triplet STDP occurs through internally-generated higher-order correlations,

which are ubiquitous in natural stimuli and neuronal spiking activity, and important for cod-

ing. We further demonstrate how neuromodulatory mechanisms that modulate the shape of

the triplet STDP rule or the synaptic transmission function differentially promote structural

motifs underlying the emergence of assemblies, and quantify the differences using graph

theoretic measures.

Author summary

Emergent non-random connectivity structures in different brain regions are tightly

related to specific patterns of neural activity and support diverse brain functions. For

instance, self-connected groups of neurons, known as assemblies, have been proposed to

represent functional units in brain circuits and can emerge even without patterned exter-

nal instruction. Here we investigate the emergence of non-random connectivity in

recurrent networks using a particular plasticity rule, triplet STDP, which relies on the

interaction of spike triplets and can capture higher-order statistical dependencies in
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neural activity. We derive the evolution of the synaptic strengths in the network and

explore the conditions for the self-organization of connectivity into assemblies. We dem-

onstrate key differences of the triplet STDP rule compared to the classical pair-based rule

in terms of how assemblies are formed, including the realistic asymmetric shape and influ-

ence of novel connectivity motifs on network plasticity driven by higher-order correla-

tions. Assembly formation depends on the specific shape of the STDP window and

synaptic transmission function, pointing towards an important role of neuromodulatory

signals on formation of intrinsically generated assemblies.

Introduction

The synaptic wiring between neurons—originally proposed as a mechanism for learning and

memory—is sculpted by experience and has become a most relevant link between circuit struc-

ture and function [1]. The original formulation of Hebbian plasticity, whereby “cells that fire

together, wire together” [2, 3], fostered the concept of ‘cell assemblies’ [4], defined as groups of

neurons that are repeatedly co-activated leading to the strengthening of synaptic connectivity

between individual neurons. This has suggested that activity-dependent synaptic plasticity,

including both long-term potentiation and long-term depression, is a key mechanism for the

emergence of assemblies in the organization of neural circuits [5–7]. These interconnected

groups of neurons have become an important target for many theories of neural computation

and associative memory [8–11]. Recent technological developments that enable multiple neu-

rons to be simultaneously recorded have provided the much needed physiological evidence of

assembly organization [12–15]. For instance, synaptically connected neurons tend to receive

more common input than would be expected by chance, [12, 16–18] and cortical pyramidal

neurons tend to be more strongly connected to neurons that share stimulus preference [13, 19,

20], providing evidence for clustered architecture. It has been proposed that this organization

enables the cortex to intrinsically generate reverberating patterns of neural activity when rep-

resenting different stimulus features [1, 21]. Thus, neuronal assemblies can be interpreted as

the building blocks of cortical microcircuits which are differentially recruited during distinct

functions, such as the binding of different features of a sensory stimulus [7, 17, 22]. In addition

to cortical circuits, neuronal assemblies have also been observed in the optic tectum (a struc-

ture homologous to the superior colliculus in mammals [23]) in the developing zebrafish larva

[24–27]. Experiments in sensory deprived larvae have demonstrated that the basic structure of

spontaneous activity and functional connectivity emerges without intact retinal inputs, sug-

gesting that neuronal assemblies are intrinsically generated in the tectum and not just the

product of correlated external inputs [25–27]. This raises the important question of what

drives the emergence of these clustered structures, and whether patterned external input is

necessary.

To understand the emergence of such non-random connectivity, a growing body of theo-

retical and computational work has been developed to link connectivity architecture to the

coordinated spiking activity of neurons, especially in recurrent networks [28–41]. These stud-

ies can be divided into two classes: those that examine the influence of externally structured

input on activity-dependent refinement [42–47], and those that investigate the autonomous

emergence of non-random connectivity in the absence of patterned external input, purely

driven by emergent network interactions [5, 6, 48]. Specifically, assemblies in recurrent net-

works can be imprinted based on internally-generated network interactions [6] or through

rate-based plasticity where inputs with higher firing rates to subsets of neurons strengthen
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recurrent connections [49, 50]; assemblies can also be initially determined by externally pat-

terned input but maintained by internal correlations [51].

Despite this success, all of these studies have assumed pair-based models of STDP, which

induce plasticity based on the precise timing and order of a pair of pre- and postsynaptic spikes

[52, 53]. Here, we consider a spike-based learning rule, “the triplet STDP model” [54], which

uses sets of three spikes (triplets) to induce plasticity. Specifically, we focus on the ‘minimal’

triplet STDP model, where only potentiation depends on the interval between the pre- and

postsynaptic spikes, and on the timing of the previous postsynaptic spike. This triplet learning

rule has been shown to explain a variety of synaptic plasticity data [55, 56] significantly better

than pair-based STDP [54]. We have previously shown a tight correspondence between the

triplet STDP rule and the well-known Bienenstock-Cooper-Munro (BCM) synaptic learning

rule, which maximizes the selectivity of the postsynaptic neuron, and thereby offers a possible

explanation for experience-dependent cortical plasticity such as orientation and direction

selectivity [57]. In addition, triplet STDP can also induce selectivity for input patterns consist-

ing of up to third-order correlations, here referred to as higher-order correlations (HOCs).

HOCs have been experimentally measured in several brain areas [58], and shown to account

for a substantial amount of information transfer in sensory cortex [58–61]. HOCs are also

important for characterizing the firing of a postsynaptic neuron [62, 63], circuit function and

coding [64, 65], and the synchronous firing and the distribution of activity in a neuronal pool

[66–69]. Here we investigated the functional significance of such HOCs for shaping recurrent

network structure through synaptic plasticity.

First, we investigate how HOCs up to third order affect the development of connectivity in

recurrent networks of Poisson spiking neurons in the absence of structured external stimuli,

where the stochastic activity of each neuron is described by a mutually exciting Hawkes pro-

cess [70]. Assuming a slow change of synaptic efficacies and fast spiking dynamics, we develop

a formal analytical framework for the evolution of synaptic connections in the network based

on the second- and third-order cumulants of spike timing interactions, which arise from

assuming an STDP rule governed by pairs and triplets of spikes [54, 55]. The simplified

neuronal model allows us to write exact and self-consistent equations for the synaptic change

depending on the full network connectivity by taking into account non-local interactions

between different neurons in the network and writing them as a sum of structural motifs of

varying orders. We demonstrate differences to the classical pair-based STDP rule [52, 71] that

ignores those HOCs, and compare the relative strength of the emergent structural motifs up to

third-order induced by triplet STDP. Second, we examine the biological conditions which pro-

mote the formation of assembly structures of self-connected neurons without externally struc-

tured inputs under the triplet STDP rule. We find that this is achieved either by modulating

the shape of the STDP function through neuromodulators or the shape of the evoked postsyn-

aptic current (EPSC) and characterize changes in functional connectivity in terms of graph

theoretic measures [25–27]. Third, we show that the novel structural motifs, and specifically

‘loop’ motifs, which follow from the triplet STDP rule, are crucial for the spontaneous emer-

gence of assemblies. Finally, we compare them to assemblies generated via correlated external

input.

Results

We present two main results: first, we derive a formal analytical framework for the evolution

of synaptic weights depending on the second- and third-order cumulants of spike time interac-

tions under the triplet STDP rule by expressing them as a sum of structural motifs; second, we
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discuss the functional implications of this framework and present the biological conditions

which promote the formation of assemblies without external instruction.

Average synaptic modification due to the interaction of pairs and triplets

of spikes in recurrent networks

To study the autonomous emergence of assemblies in a recurrent network from a general

form of STDP that includes the contribution of pairs and triplets of spikes to synaptic plastic-

ity, we require a minimal theoretical representation of the network with plastic synapses

driven by internal correlations in the spike timing statistics. In our model, structure is given

by the connectivity matrix W between all excitatory neurons in the network (“all-to-all con-

nectivity”), where the synaptic efficacy element Wij denotes the connection strength between

postsynaptic neuron i and presynaptic neuron j. The analytical description of the dynamics

in recurrent networks can be dauntingly complex. On the one hand, to rigorously analyze

the impact of STDP on the formation of functional structures it is indispensable to take into

account the precise timing of action potentials or spikes. Therefore, models of neural activity

that are based on rates cannot fulfill this criterion [72]. More elaborate models such as Hodg-

kin-Huxley with multiple ion channels [73] and even the simpler spiking leaky integrate-

and-fire (LIF) models are much more accurate in reproducing the spiking dynamics of a

population of neurons [74–76]. Although they are computationally tractable, to extract

extensive and exact mathematical features from these models remains an elusive task. Under

certain conditions of approximately asynchronous firing, the spiking statistics in networks of

LIF neuron can be described by a linear theory [29]. Using this approach, here we make

approximations for the spiking dynamics of each individual excitatory cell and treat each

pre- and postsynaptic spike train as if they follow inhomogeneous Poisson statistics [6, 44,

52, 57].

In this model we assume that the probability of each neuron emitting an action potential at

a certain time (the ‘intensity’ or mean activity) is proportional to the weighted sum of the pre-

ceding activity of all the other cells in the network and a constant, unstructured external input

(Fig 1A). The activity of each neuron in this network is a stochastic process, also referred to as

a ‘mutually exciting point process’ or a Hawkes process [70]. The availability of an exact

expression for spike correlations in this model allows us to develop a precise theory for the syn-

aptic efficacies’ dynamics that are governed by different forms of STDP. To prevent runaway

excitation, we also consider that the firing of excitatory neurons is modulated by the activity of

a population of inhibitory neurons (Fig 1A). We assume that the total inhibitory input to each

excitatory neuron is tuned in order to balance the sum of inhibitory efficacies with the sum of

the excitatory ones (Methods) [6, 77–79].

Given the connectivity matrix W and assuming a slow learning rate (much slower than

the dynamics of neural activity), the rate of change in the strength of synaptic efficacy h _Wiji

between postsynaptic neuron i and presynaptic neuron j, can be expressed in terms of the

product of the time dependent cumulants of different orders and the STDP function, accord-

ingly (Methods). Specifically, we consider STDP learning rules where plasticity depends on

the timing and order of pairs and triplets of spikes, referred to as pair-based and triplet

STDP. Initially, we make no assumptions about the shape of these learning rules keeping the

framework general. The sign and magnitude of the net weight modification depends on

the time interval between the firing of the pre- and postsynaptic neurons, and also on the rel-

ative spike times of individual pre- and postsynaptic neurons (Fig 1B). The exact expression

for the evolution of the average (denoted by h�i) synaptic efficacy in the recurrent
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network due to STDP is

h _W STDP
ij i ¼

Z1

� 1

ðCijðt1Þ þ rirjÞL2ðt1Þdt1

þ

ZZ1

� 1

ðKijðt1; t2Þ þ riðCijðt1Þ þ Cijðt2 � t1ÞÞ þ rjCiiðt2Þ þ r2

i rjÞL3;yðt1; t2Þdt1 dt2

þ

ZZ1

� 1

ðKijðt1; t3Þ þ rjðCijðt1Þ þ Cijðt3 � t1ÞÞ þ riCjjðt3Þ þ rir
2

j ÞL3;xð� t1; � t3Þdt1 dt3:

ð1Þ

Fig 1. Framework set-up. A. A network of excitatory neurons (light blue triangles) fire stochastically, while their activity is driven by

unstructured external input (red arrows) and modulated by a population of inhibitory neurons (yellow circles). Excitatory connections

among the neurons can be weak (gray dashed arrows) or strong (black solid arrows), unidirectional or bidirectional. B. Cumulants of the

spike trains (see Eq 1). The second-order cumulants Cij, Cii and Cjj are calculated based on the time difference between a pair of spikes (cross-

covariance in green; auto-covariances in orange/red). The third-order cumulant Kij is calculated based on the time differences between three

spikes (purple). The spike triplets can be two post- and one presynaptic spikes, or one post- and two presynaptic spikes. The time differences

are: τ1 between a presynaptic spike and a postsynaptic spike, τ2 between different postsynaptic spikes and τ3 between different presynaptic

spikes. C. STDP-induced plasticity by pairs and triplets of spikes. Left: An example of a classical pair-based STDP rule, with a learning

window denoted by L2. Potentiation is triggered by a postsynaptic following a presynaptic spike (τ1 = tpost − tpre> 0), whereas if a presynaptic

spike follows a postsynaptic spike (τ1 = tpost − tpre < 0), depression is induced. The total potentiation (depression) is given by the red (blue)

area under the curve. Right: Examples of triplet STDP rules denoted by L3,y and L3,x. Potentiation (red) and depression (blue) are given by

triplets of spikes: post-pre-post with a time difference t2 ¼ tpost � t0post, and pre-post-pre with a time difference t3 ¼ tpre � t0pre, respectively. D.

Minimal triplet STDP rule where potentiation depends on triplets of spikes L3 and depression on pairs of spikes L2.

https://doi.org/10.1371/journal.pcbi.1007835.g001
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Here ri and rj denote the mean firing rates of neuron i and j, respectively; Cij is the cross-

covariance between neuron i and neuron j, with Cii and Cjj being the auto-covariances (note

that all of these covariance terms, Cij, Cii and Cjj, make up the second-order cumulant); and

Kij is the third-order cumulant between neuron i and neuron j. These quantities represent

internal (i.e. not driven by external input) correlations in the network and are calculated as

functions of the excitatory postsynaptic current (EPSC), and assumed to be identical for

every pair of neurons. Both the second-order cumulants C and the third-order cumulants K
are probability densities of pairs and triplets of spikes separated by the given time lapses τ
accordingly (Fig 1B). τ1 is the time difference between a spike emitted by the presynaptic

neuron and one from the postsynaptic neuron, whereas τ2 and τ3 are the time intervals

between different spikes from the postsynaptic neuron and the presynaptic neuron, respec-

tively. The cumulant Kij is calculated for both ‘post-pre-post’ or ‘pre-post-pre’ spike triplets

and therefore depends on combinations of τ1 and τ2 or τ3, according to each case.

The STDP functions that describe how potentiation or depression depend on the spike tim-

ing intervals are given by L2 for pairs of spikes, and L3,x and L3,y for triplets of spikes. The sub-

indices x and y correspond to the triplet sets ‘pre-post-pre’ and ‘post-pre-post,’ respectively.

While Eq 1 can be calculated for any shape of the STDP function that depends on pairs and

triplets of spikes, an illustrative example for these learning rules, commonly used in other stud-

ies based on fits to experimental data [54, 55, 71], is given in Fig 1C.

The average synaptic efficacy change (Eq 1) is sufficient to describe the plasticity dynamics

when the learning rate is small relative to the spiking dynamics, and noise in the STDP dynam-

ics, arising from random fluctuations, is averaged out. Furthermore, Eq 1 is combined with

heterosynaptic competition [80] to restrict the amount of connections a neuron can make

with the rest and prevent the dominance of a few (Methods). For the sake of simplicity, in the

next steps we consider that triplets of spikes contribute only to potentiation and thus L3,y(τ1,

τ2) = L3(τ1, τ2) and L3,x(τ1, τ3) = 0, for all τ1 and τ3, in agreement with the so-called ‘minimal’

triplet STDP rule [54] (Fig 1D). Nevertheless, if spike triplets would also be taken into account

for depression, the derivation would be identical, with the corresponding modification to the

variables involved. We can rewrite Eq (1) in the Fourier domain as

h _W STDP
ij i ¼ rirj

�
~L2ð0Þ þ ri~L3ð0; 0Þ

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Independent spikes

þ

ZZ1

� 1

h
~Cijðo1Þ

~L2ð� o1Þdðo2Þ þ rið~Cijðo1Þdðo2Þ þ
~Cijðo2Þdðo1 þ o2ÞÞ

~L3ð� o1; � o2Þ
i
do1 do2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pre-post pairwise correlations ð�Þ

þrj

ZZ1

� 1

~Ciiðo2Þ
~L3ð� o1; � o2Þdðo1Þdo1do2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Post-post pairwise correlations ð��Þ

þ

ZZ1

� 1

~Kijðo1;o2Þ
~L3ð� o1; � o2Þdo1 do2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Post-pre-post triplet correlations ð���Þ

ð2Þ

where we use the notation ~f for the Fourier transform of a function f and δ is the Dirac delta

function. It should be noted that Eq 2 is not the Fourier transform of Eq 1 but rather an equiva-

lent expression of the latter. This comes about because we can express the integral of the prod-

uct of two functions as the convolution of the Fourier transform of those functions, evaluated

at zero.
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This formulation of the previous equation allows us to clearly break down the contribution

of spike interactions of different orders to the average synaptic efficacy in the recurrent net-

work. The first term of Eq 2 considers the change in synaptic efficacy that is obtained from

independent spiking and thus depends on the first-order cumulant (the mean firing rates) of

the activity of both the pre- and postsynaptic neurons, rj and ri, respectively. As firing rates

increase, ‘chance’ contributions to plasticity can occur. The second and third term account for

the probability of observing changes to the mean synaptic efficacy due to pairwise correlations

in the pre- and postsynaptic neurons. Cij refers to the family of probabilities that generate pair-

wise cross-correlations (second-order cumulant) between neurons i and j, depending on

spikes of other neurons in the network (Fig 1B, green). Accordingly, Cii includes the family of

probabilities that generate pairwise auto-correlations in the same neuron i due to the spiking

activity of all other neurons in the network (Fig 1B, orange). Therefore, the second (�) and

third (��) terms describe the total contribution of correlated spike pairs to plasticity through

the pair-based STDP rule L2 (Fig 1C, left) and the triplet STDP rule L3 (Fig 1C, right). In the

case of the latter, the first-order cumulant of the uncorrelated single postsynaptic neuron’s

spikes, ri, is also included in the second term (�) and the first-order cumulant of the uncorre-

lated single presynaptic neuron’s spikes, rj, in the third term (��). The fourth term (���)

describes the total contribution of correlated spike triplets (third-order cumulant) to plasticity.

Thus, Kij includes the family of probabilities for third-order correlations, where the relative

spike timing interacts with the triplet STDP learning window L3 to induce plasticity (Fig 1B,

purple and Fig 1C, right).

In conclusion, we have derived an exact analytical expression for the average change in syn-

aptic efficacy due to firing rates, pairwise and triplet correlations under a general STDP rule

that includes pairwise and triplet spike interactions. The resulting cumulants of up to third

order can depend in non-trivial ways on the full recurrent connectivity in the network.

Novel structural motifs emerge under triplet STDP compared to pair-based

STDP

The calculation of the cumulants involved in the equation for the average weight dynamics (Eq

2) depends on the full network connectivity. Therefore, the second- and third-order cumulants

in Eq 2 can be written as a sum over contributions from different structural motifs, following

the convention of [6]. These structural motifs determine all possible connectivity paths that a

given spike from a source neuron k travels to the postsynaptic neuron i or presynaptic neuron

j, and as a consequence affects the synaptic weight Wij. Thus, to calculate each term in Eq 2

we break down the second- and third-order cumulants Cij, Cii and Kij into expressions that

include the contribution of every spike propagated in the network through existing synaptic

connections, taking into account the full recurrence in the network (Methods). These expres-

sions consist of products of the corresponding synaptic efficacies along the two paths to the

presynaptic and postsynaptic neuron, the firing rate of the source neuron and the motif coeffi-

cient functions M, which depend on the number of synapses along the two paths, the EPSC

function, E, and the STDP learning rules, L2 and L3. The probability that neurons i and j jointly

fire a spike is transiently modulated whenever a neuron anywhere in the network produces a

spike. We can write the pairwise cross-covariance from Eq 2 as

ð�Þ �
XN

k¼1

rk
X

a;b

ðWaÞikðW
bÞjkðM

pair
a;b þ riM

trip
a;b Þ ð3Þ

which combines the contribution of structural motifs from the pair-based and triplet STDP

rules to a change in the connectivity matrix W. The expression consists of sums over two
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aspects to provide an intuitive description of the contribution of the pairwise cross-covariance

Cij between neurons i and j to plasticity of the connection Wij. The first sum takes into account

all spiking neurons in the network, while the second sum takes into account all possible ‘paths’

by which spikes originating from a ‘source’ neuron k affect the cross-covariance Cij. Specifi-

cally, α and β constitute the ‘path lengths’ of synapses from source neuron k to the postsynaptic

neuron i and the presynaptic neuron j, respectively (Fig 2A; see also [6]). We refer to the total

path length of a motif, α + β, as the ‘order’ of the motif.

The contribution of the pair-based STDP rule includes the motif coefficient functions,

Mpair
a;b , which are calculated in the Fourier domain (Eq 29 in Methods). The pairwise correla-

tions between i and j also contribute to plasticity of Wij based on the triplet STDP rule through

the motif coefficient functions Mtrip
a;b (Eq 30 in Methods). Examples of some motifs common

for both the pair-based and the triplet STDP rule are provided in Fig 3A. Their contribution to

plasticity through the EPSC function E and the STDP rules L2 and L3 is illustrated in Fig 3B.

In addition to the α and β path lengths, to derive the contribution of the triplet STDP rule

to the average change in synaptic efficacy, we also introduced the γ-path so that now motifs

have order α + β + γ. γ is the synapse path length from the source neuron k to the postsynaptic

neuron i, including a time delay relative to the α path from k to i, to account for the second

postsynaptic spike of the triplet (Fig 3C and 3D). Thus, for the auto-covariance term in Eq 2,

we obtain (Fig 2B)

ð��Þ �
XN

k¼1

rk
X

a;g

ðWaÞikðW
gÞikrjM

trip
a;g ð4Þ

Fig 2. Second-order cumulant contributions to plasticity. A. The cross-covariance Cij between the presynaptic

neuron j and the postsynaptic neuron i is obtained by summing over all the possible α- and β-paths from every

possible source neuron k in the network. Each path is calculated via the corresponding weights in the connectivity

matrix and the EPSC function (see Eq 3). B. Same as A but for the auto-covariance Cii of the postsynaptic neuron i (see

Eq 4). In this case, γ is the second index to sum over the path from the source neuron k to the postsynaptic neuron i. It

should be noted that the main difference between the α- and γ-path is given by the time dependence of the EPSC

function, here represented in the Fourier domain for convenience.

https://doi.org/10.1371/journal.pcbi.1007835.g002
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Fig 3. Structural motifs in the network under pair-based and triplet STDP. A. Examples of structural motifs common for both the pair-based and triplet STDP

framework. Here α and β constitute the path lengths of synapses from the source neuron to the postsynaptic neuron i and the presynaptic neuron j. α = 1, β = 0:

Presynaptic neuron j projects to the postsynaptic neuron i. α = 0, β = 1: Postsynaptic neuron i projects to the presynaptic neuron j. α = 1, β = 1: Common input from

source neuron k to presynaptic neuron j and postsynaptic neuron i. α = 2, β = 0: Presynaptic neuron j projects to the postsynaptic neuron i through another neuron k
in the network. B. Illustration of the calculation of the common input motif with α = 1 and β = 1 framed in purple in A (there are also additional terms which are not

illustrated). The motif coefficients Mα=1,β=1 (right) are calculated as the total area under the curve resulting from the product of the convolution of the EPSC function E
(left) and the STDP functions (pair-based L2 and triplet L3, middle). C. Examples of structural motifs found only in the triplet STDP framework, where γ denotes the
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where the motif coefficient function involving the triplet STDP rule is given in the Methods

(Eq 31).

For third-order interactions, however, it is possible that the paths by which spikes are prop-

agated branch out from a neuron other than the source neuron. Therefore, the third-order

cumulant Kij (Eq 2) is broken down into four sums:

ð� � �Þ �
XN

k¼1

rk
X

a;b;g

ðWaÞikðW
gÞikðW

bÞjkM
trip
a;b;g

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
No branching ðstraight pathsÞ

þ
XN

k;l¼1

rk
X

a;b;g;z

ðWzÞlkðW
aÞikðW

bÞjlðW
gÞilM

trip
ða;zÞ;b;g

þ
XN

k;l¼1

rk
X

a;b;g;z

ðWzÞlkðW
aÞilðW

bÞjkðW
gÞilM

trip
a;ðb;zÞ;g

þ
XN

k;l¼1

rk
X

a;b;g;z

ðWzÞlkðW
aÞilðW

bÞjlðW
gÞikM

trip
a;b;ðg;zÞ:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

Branched paths

ð5Þ

The first term in Eq 5 sums over the paths to the presynaptic neuron j and postsynaptic neuron

i from a source neuron k in the network that do not branch out. In other words, it considers

that the ‘distance’ to each respective spike of the triplet is given by α, β and γ (Fig 4A). The

remaining terms include the sum over possible branches in the network ‘tree’: z� 1 is the syn-

apse path length from the source neuron k to the neuron l that is the branching point (Fig 4B–

4D). It should be noted that the branched paths all have a total path length of at least four (i.e.

α + β + γ + z� 4) so that the motif order is at minimum four, since at least one synapse must

be taken into account before the splitting of the path. The corresponding motif coefficients for

the ‘straight’ triplet motif (Fig 4A, see Eq 32), and for the ‘branching’ motifs (Fig 4B–4D, see

Eqs 33, 34 and 35) are provided in the Methods.

This analysis reveals novel motifs in the triplet STDP rule which have the potential to pro-

mote particular connectivity structures that are not possible with pair-based STDP [6] (Fig

3C). These include motifs which directly exclude the presynaptic neuron j but can still impact

the synaptic weight, Wij (Fig 3C, left and middle). This can be achieved, for example, through

an additional neuron k that does not directly affect the weight Wij but projects to the postsyn-

aptic neuron i through the synaptic weight Wik (Fig 3C, left and middle). Because these motifs

exclude the presynaptic neuron j, they do not impact the pairwise cross-covariance term Cij
and do not have influence on the weight Wij through pair-based STDP. For example, in the

case when α = 2 and γ = 0 (Fig 3C, middle), the postsynaptic neuron i is both the source neu-

ron and the neuron involved in the path with the additional neuron k. We call this path involv-

ing the synaptic efficacies Wik and Wki a ‘loop’. These loops involve a different neuron in

addition to the pre- and postsynaptic neuron of the weight Wij, and are a unique feature of

incorporating spike triplets in the STDP rule. Loops include a neuron as both the source and

target for the spike in the corresponding path, so that a ‘loop’ closes on itself. The direction

time-delayed path length from the source neuron to the postsynaptic neuron i. α = 1, γ = 1: Source neuron k projects twice to postsynaptic neuron i with a different

time delay. α = 2, γ = 0: Feedback loop through another neuron k in the network (source and projecting neuron are the postsynaptic neuron i). α = 1, β = 1, γ = 1:

Source neuron k projects to the presynaptic neuron j and postsynaptic neuron i via all the three possible paths. D. Illustration of the calculation of the motif with α = 1

and γ = 1 for the triplet STDP rule framed in purple in C, compare to B.

https://doi.org/10.1371/journal.pcbi.1007835.g003
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of the edges are relevant for this definition. We propose that motifs with these ‘loop’ character-

istics promote the formation of connections between clusters of neurons, and therefore

assemblies.

To illustrate motifs of different orders and their relationship to cumulants of different

orders, we depict all motifs up to third order arising from the expansion of the second- and

the third-order cumulants (Fig 5). While it is clear that the full network connectivity through

motifs of different orders from the cross-covariance Cij influences plasticity under pair-based,

as well as triplet STDP (Fig 5, first row), we also reveal novel motifs from the auto-covariance

Cii and the third-order cumulant Kij that influence plasticity uniquely under triplet STDP (Fig

5, second and third row).

Taken together, our motif expansion framework reveals novel structural motifs under the

triplet STDP rule that have the potential to form assemblies without structured external input.

We next investigated the role of the different structural motifs (specifically the ‘loop’ motifs)

on the emergence of assemblies under triplet STDP.

Fig 4. Third-order cumulant contributions to plasticity can be broken down into four terms. A. The first term

contains all the α-, β- and γ-paths originating from the source neuron k to the spiking neurons i and j. B-D. The other

terms take into account the possibility of an intermediate neuron l that acts as a new source neuron for two of the

paths. These are referred to as ‘branched paths’, and the path length from the source neuron k to the intermediate

neuron l is denoted with z. The branching describes the individual terms in Eq 5.

https://doi.org/10.1371/journal.pcbi.1007835.g004
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Modulation of the triplet STDP rule promotes the autonomous emergence

of assemblies

So far, we considered general STDP rules that depend on the precise timing between pairs and

triplets of spikes, without taking into account the exact dependence of potentiation or depres-

sion on these spikes. To further study the complex relationship between plasticity and network

correlations, we considered a particular biologically identified STDP rule that relies on third-

order interactions (Methods; Fig 1C). This rule has an asymmetric shape around the time lag

of 0 (where pre- and postsynaptic spikes are coincident), similar to the classical pair-based

STDP rule [71]. However, while synaptic depression is induced by the relative timing of pairs

of presynaptic and postsynaptic spikes, the minimal triplet STDP model uses sets of three

spikes to induce potentiation: the amount depends on the timing between pre- and postsynap-

tic spike pairs and in addition, on the timing between the current and the previous postsynap-

tic spike (Fig 1D). This minimal model successfully captures experimental data, where the

Fig 5. Second- and third-order cumulants can be described in terms of structural motifs that contribute to weight change. All motifs up to third order as they

arise from the cross-covariance Cij (top row and Eq 3), the auto-covariance Cii (middle row and Eq 4) (both Cij and Cii together represent the second-order cumulant)

or the third-order cumulant Kij (bottom row and Eq 5). The gray boxes indicate the ‘loop’ motifs. The novel motifs which follow from the triplet STDP rule are those

that include the path γ (second and third row).

https://doi.org/10.1371/journal.pcbi.1007835.g005
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pairing frequency of pre- and postsynaptic spikes was varied, equally well compared to a full

model that also uses triplets of spikes for depression [54].

Implementations of classical Hebbian learning, such as STDP, use joint pre- and postsynap-

tic activity to induce potentiation and depression, while neglecting other potential factors such

as heterosynaptic plasticity [81], or the location of synaptic inputs on the dendritic tree [82].

However, recent experimental studies have highlighted an important role of neuromodulators

in regulating plasticity across the brain [83–86], as they convey information about novelty or

reward. Indeed, neuromodulators such as dopamine, acetylcholine and noradrenaline, but

also brain-derived neurotrophic factor (BDNF) and gamma-aminobutyric acid (GABA), can

predominantly act via two mechanisms: by reshaping the learning window for STDP or by reg-

ulating neuronal activity at the level of synaptic transmission [84, 86]. Therefore, we next

investigated how neuromodulation of synaptic plasticity affects recurrently connected net-

works considering that pairwise and triplet spike interactions determine plasticity. We assume

that the shape of the STDP function can be modulated via the modulation parameter η− which

preserves the overall level of depression by trading off the depression learning rate A− and the

depression time constant τ− (Methods; Fig 6A). Such a modification of the learning rule has

been observed in the lateral amygdala due to the action of dopamine via D2 receptors [85, 87],

or in rat visual cortex slices with the activation of both the noradrenaline pathway through β-

adrenergic receptors and the acetylcholine pathway through M1-muscarinic receptors [84, 86,

88]. A similar modulation parameter could similarly be included for potentiation.

To determine contributions to plasticity arising due to internal network correlations and

not just differences in neuronal firing rates [5], we consider the case in which the plasticity

rule is balanced, such that ~L2ð0Þ þ ri~L3ð0; 0Þ ¼ 0. We use this condition to calculate all motif

coefficients, Mα,β, that arise from the cross-covariance Cij (Eqs 47–56 in Methods). We con-

sider only motifs up to third-order in the evolution of the weights (Eq 2) since higher-than-

third-order motif contributions are negligible (S1 Fig). Thus, we no longer include the

branched path motifs of Eq 5 as they are higher-than-third-order motifs (Fig 4B–4D). This

leaves us with a handful of motifs which arise from the second-order cumulant (consisting

of the cross-covariance Cij and the auto-covariance Cii) and the third-order cumulant Kij

(Methods; Fig 5). This simplification allows us to study the spontaneous emergence of assem-

blies under the triplet STDP rule based on both the triplet rule contributions to the cross-

covariance Cij (Eq 3, Fig 5, top row) and the influence of the novel branching structures that

follow from the auto-covariance Cii (Eq 4, Fig 5, second row, including the loop motifs in the

gray boxes) and the third-order cumulant Kij (Eq 5, Fig 5, third row).

To systematically study how the dependence of these up to third-order motif coefficients

on the shape of the STDP rule affects connectivity structure in the network, we visualized the

connectivity matrices obtained by integrating the motif expansion up to third-order (Eqs 42–

46) numerically, using experimentally-fitted parameters for the triplet STDP rule and the

EPSC function (Table 1). Specifically, we investigated the emergence of global network struc-

tures, or assemblies, as a function of the modulation parameter η−. This parameter has a direct

influence on the motifs which follow from the cross-covariance Cij (Fig 5) and the LTD win-

dow in the minimal triplet STDP rule (see Eqs 49–58 and S2 Text). A key requirement for the

emergence of assemblies is the formation of bidirectional or reciprocal connections among

groups of neurons. We compare the reciprocal connections of the first-order motif contribu-

tions to gain intuition:

h _W STDP
ij i

ð1Þ
¼ rjWijM1;0 þ riWjiM0;1;

h _W STDP
ji i

ð1Þ
¼ riWjiM1;0 þ rjWijM0;1:

ð6Þ
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Fig 6. Spontaneous emergence of assemblies via modulation of the triplet STDP rule. A. The shape of the STDP function changes as a function of the

modulation parameter η−, which preserves the overall level of depression by trading off the depression learning rate and the depression time constant. B. Motif

coefficients as the modulation parameter η− increases. Points of interest given by the crossovers of the strength of particular motifs are indicated by a small arrow.

Inset: Amplified scale around zero. Motif coefficients including γ paths are not illustrated, since they are always constant and positive in η− and do not provide a

meaningful comparison to the other motifs. C. Top: Examples of connectivity matrices obtained with different values of η− at steady state. Unidirectional
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Since in the triplet STDP rule M1,0 > 0 (Fig 6B, red), the two bidirectional connections com-

pete if M0,1 < 0, and potentiate if M0,1 > 0. Therefore, the sign of the motif coefficient M0,1,

which depends on the contribution from the triplet STDP rule, determines the formation of

bidirectional connections. Indeed, increasing η− supports the formation of bidirectional con-

nections (Fig 6C) as the motif coefficient M0,1 changes sign (Fig 6B, blue, see inset). In con-

trast, as previously shown, the classical pair-based STDP rule is unable to support the

formation of assemblies and bidirectional connections due to its asymmetric shape [89, 90],

although under certain conditions (dominant potentiation) it can promote bidirectional con-

nections [51, 91]. Under the asymmetric pair-based STDP rule, M1,0> and M0,1 < 0 result in

competition between the two reciprocal connections. To autonomously generate self-con-

nected assemblies without structured network input requires a symmetric pair-based STDP

rule (which is not biologically motivated) and a sufficiently large synaptic latency [6]. In this

case, the prominence of the common input motif driven by the M1,1 motif coefficient over all

other motif coefficients in the network supports assembly formation [6].

Under the triplet STDP rule, small increases in η− increase the motif coefficient M1,1, result-

ing in the formation of bidirectional connections and assemblies, similarly to the symmetric

pair-based STDP rule. However, despite its asymmetric shape, the triplet STDP rule can

robustly generate bidirectional connections and assemblies even when the M1,1 motif coeffi-

cient has already saturated and other motif coefficients dominate (Fig 6C–6E), upon further

increases in η−. This is because higher-order structural motifs also contribute to the formation

of bidirectional connections and assemblies. To understand this, we consider the motif contri-

butions of feedforward motif coefficients—the motifs for which the α-path is longer than the

β-path, M1,0, M2,1, M2,0 and M3,0—and reciprocal motif coefficients, where the β-path is longer

than the α-path, M0,1, M1,2, M0,2 and M0,3. Given the asymmetry of triplet STDP, the feedfor-

ward motif coefficients are stronger. The reciprocal motifs, M0,1, M1,2, M0,2 and M0,3 play an

important role in the formation of bidirectional connections as they change sign from negative

to positive with increasing η− (Fig 6B). A positive contribution from all motifs supports the

connections are shown in black, bidirectional connections in orange. Matrices are reordered using the k-means clustering algorithm (see Methods). Bottom: Mean

fraction of unidirectional and bidirectional connections for 100 trials with different initial synaptic efficacies as a function of η−. Error bars represent the standard

error of the mean. D. Graphs of the connectivity matrices in C. E. Averaged connectivity matrices over 100 trials at steady state. Note that the tighter clusters

emerging near the edges of the matrices are the result of the clustering algorithm but do not affect the quantification of connectivity.

https://doi.org/10.1371/journal.pcbi.1007835.g006

Table 1. Parameter values for figures. ? denotes that values are provided in the figures.

Symbol Description Fig 6 Fig 7 Fig 8 Fig 9 Fig 10 Fig 11

N Number of neurons 48

μ External input firing rate 150 Hz

wmax Upper bound for each individual weight 0.17

Wmax Upper bound for total row/ column weight 0.85

A− Depression learning rate 0.01

τ− Depression time constant 33.7 ms [54]

τ+ Potentiation time constant 16.8 ms [54]

τy Second potentiation time constant 114 ms [54]

η− Depression modulation parameter ? 1 ?

τε First membrane time constant 5 ms

τι Second membrane time constant 5 ms ? 5 ms

ν Scaling parameter of learning rate 3.5 ×10−4

ψ Heterosynaptic competition scaling parameter 0.7

https://doi.org/10.1371/journal.pcbi.1007835.t001
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robust formation of bidirectional connections in the network as the competition between

reciprocal connections decreases. Together with the strong common input motif driven by the

M1,1 motif coefficient, this leads to the robust emergence of assemblies. In this scenario, η−
controls the competition between feedforward (Wji) and reciprocal connections (Wij), with

large η− enabling the potentiation of both. This is not possible under the classical asymmetric

pair-based STDP rule as previously discussed.

In summary, we find that the spontaneous formation of self-connected assemblies depends

on the modulation parameter η−, which influences most of the motifs arising from the cross-

covariance Cij. Furthermore, self-connected assemblies can be formed under triplet STDP

even when motifs other than the common input motif M1,1 dominate. This occurs despite the

asymmetric shape of the triplet STDP rule, in contrast to pair-based STDP which requires a

symmetric shape to promote M1,1. Importantly, the dependence of assembly formation on the

specific form of the STDP window points towards an important role of neuromodulatory sig-

nals on formation of intrinsically generated assemblies.

Characterizing emergent assembly structures

To determine the conditions on the learning rule and EPSC properties for the emergence of

self-connected assemblies, it is convenient to represent the functional organization of the net-

work given a connectivity matrix as a mathematical graph. In our context, graphs are com-

posed of a set of nodes or neurons with pairs of them joined by edges or synaptic efficacies.

The resulting graphs can be described by standard metrics, whose dependence on the shape of

the learning rule and the EPSC function might yield insight into the emergent structures dur-

ing circuit organization driven by spontaneous activity. We focused on common quantities for

describing graph structure, including the clustering coefficient, the global efficiency and the

modularity [92, 93], used previously in experimental systems like the zebrafish tectum and the

mammalian cortex [25, 94].

The clustering coefficient quantifies the existence of densely interconnected groups of

nodes in the graph [95]. It represents a measure of segregation, based on counting the number

of connection triangles around a node (Methods). In this manner, it reflects the prevalence of

clustered connectivity around individual nodes by calculating the fraction of neighbors of that

particular node that are also neighbors of each other. As a result, the mean clustering coeffi-

cient of a network determines the prevalence of three-neuron-clusters in the network architec-

ture. We find that as the modulation parameter η− increases, the mean clustering coefficient

also increases until it reaches a plateau (Fig 7A). Ensuring that the motif coefficients M0,1 and

M1,2 are positive is sufficient for the formation of clusters beyond the critical value of η−� 5

(Fig 6B and 6C), where the clustering coefficient begins to increase (Fig 7A). The value of η− at

which the clustering coefficient saturates corresponds to the emergence of more robust assem-

blies where all the motif coefficients are positive (Fig 6B and 6C). Although strong bidirec-

tional connections are localized within clusters, connections from one cluster to some others

still exist globally. This is different to the clustering enabled by strong symmetric interactions

in which the motif M1,1 dominates, considered previously by a symmetric pair-based STDP

rule [6], where the clusters would be unconnected (i.e. isolated from each other) and the clus-

tering coefficient would be much higher.

Complementary to the clustering coefficient, the global efficiency is a measure of functional

integration, which determines how easily nodes can communicate between each other through

sequences of edges [96]. Consequently, the lengths of the paths estimate the potential for the

flow of information between nodes, with shorter paths denoting stronger capacity for integra-

tion. Then, global efficiency is defined as the average inverse shortest path length of the
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network (Methods). In comparison to the clustering coefficient, this quantity initially remains

approximately constant and then decreases until the point at which strong assemblies emerge

autonomously since network structure no longer varies with the parameter η− (Fig 7B). We

find that as for the clustering coefficient, the value of η− for which the motif coefficients M0,1

and M1,2 become positive (η−� 5) constitutes a landmark for the formation of assemblies,

after which global efficiency significantly decreases.

Finally, modularity is a graph theoretic measure that describes how strongly a network can

be divided into modules, by comparing the relative strengths of connections within and out-

side modules to the case when the network has randomly chosen weights [93, 97, 98]. Recently,

it was shown that even in models with rate-based dynamics, increasing modularity amplifies

the recurrent excitation within assemblies evoking spontaneous activation [48]. With increas-

ing η−, modularity increases until strong assemblies are formed in a similar fashion as the clus-

tering coefficient (Fig 7C). Interestingly, the critical value of η−� 5 where assemblies begin to

form robustly is consistent with experimental evidence of the shape of STDP where the time

constant for depression has been found to be approximately 5 times longer than for potentia-

tion [55, 99].

Contribution of the novel structural motifs under triplet STDP on

assembly formation

So far we demonstrated that the spontaneous emergence of assemblies via modulation of trip-

let STDP depends on the interaction of different motifs that primarily arise from the second-

order cross-covariance Cij (Figs 5 and 6), which is also present under pair-based STDP. How-

ever, whether the novel structural motifs that are unique to triplet STDP (Figs 2B and 3–5)

play a role remains unclear. We hypothesize that the ‘loop’ motifs, which do not appear for the

pair-based STDP rule (Fig 5; gray box) are important for assembly formation.

To investigate the implications of these novel ‘loop’ motifs, we compare the three graph

measures in four different scenarios: Using the motifs (1) only from the cross-covariance Cij
(Fig 5, top row); (2) from all cumulants (Cij, Cii and Kij) without the ‘loop’ terms (Fig 5 all

except the gray boxes in the second row); (3) from the cross-covariance plus the two additional

‘loop’ terms (Fig 5, top row plus the gray boxes in the second row); and (4) from all cumulants

(Fig 5, all). We find that cases (1) and (2) have worse performance in all three graph measures

compared to cases (3) and (4) (Fig 8). Adding the third-order cumulant Kij and the ‘non-loop’

terms from the second-order auto-covariance Cii (case 4) even worsens the graph measures.

We find that the third-order cumulant Kij alone has almost no influence on the spontaneous

Fig 7. Graph measures of the stable network configuration. A. Mean clustering coefficient versus the modulation parameter η−. B. Mean global

efficiency versus the modulation parameter η−. C. Mean modularity versus the modulation parameter η−. All results are calculated from 100 trials at

steady state connectivity. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1007835.g007
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emergence of assemblies (S2 Fig), since its contribution to the weight change is small, as

shown before [100]. We conclude that the additional ‘loop’ terms, which arise as novel struc-

tural motifs from the triplet STDP rule (Fig 5), have a significant contribution to spontaneous

assembly formation.

The triplet STDP rule and the EPSC together modulate network structure

The spontaneous emergence of assemblies discussed so far requires a relatively high value of

the STDP modulation parameter η−, raising the issue of biological plausibility. Although sev-

eral experimental studies on induction of STDP indeed find longer depression than potentia-

tion time constants [55, 99], we demonstrate an alternative mechanisms for the assembly

formation by regulating the synaptic transmission of action potentials between neurons

through the shape of the EPSC function. In this case, the strength of internally generated corre-

lations can be changed independently of the STDP functions, L2 and L3. We investigated how

the rise of the EPSC function modulated by delay of the spike transmission in the synapse, τι
(Fig 9A), shapes motif coefficients (Methods; Fig 9B).

The parameter τι has a prominent impact on plasticity in the network. Even small shifts in

the peak of the EPSC function by a few milliseconds have a strong impact on the cumulants of

different orders, as reflected in the values of the motif coefficients (Fig 9A and 9B). Different to

the modulation with the parameter η−, the parameter τι affects all motif coefficients. However,

the influence of τι on the auto-covariance Cii and the third-order cumulant Kij is negligible.

Therefore, although the main cumulant driving plasticity is the second-order cross-covariance

Fig 8. Spontaneous emergence of assemblies for four different motif combinations. Considering only motifs related to the cross-covariance Cij (blue), from all

cumulants (Cij, Cii and Kij) without the ‘loop’ terms (red), from the cross-covariance Cij plus the ‘loop’ terms (yellow) and from all cumulants (purple). A. Averaged

connectivity matrices over 100 trials at steady state for four different motif combinations and modulation parameter η− = 13. Matrices are reordered using the k-means

clustering algorithm (see Methods). B. Mean clustering coefficient versus the modulation parameter η−. C. Mean global efficiency versus the modulation parameter η−.

D. Mean modularity versus the modulation parameter η−. All results are calculated from 100 trials at steady state connectivity. Error bars represent the standard error of

the mean.

https://doi.org/10.1371/journal.pcbi.1007835.g008
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Cij, which exists even under pair-based STDP (Fig 5), assemblies easily form under the triplet

STDP rule (Fig 9C). The common input motif M1,1 abruptly assumes dominance over all oth-

ers as τι increases (Fig 9B). However, we observed that the reciprocal motif coefficients M0,1,

M1,2, M0,2 and M0,3 remain negative for all values of τι, in contrast to when we modulated the

Fig 9. Spontaneous emergence of assemblies due to the modulation of synaptic transmission. A. Varying the time constant τι changes the shape of the EPSC

function, shifting its peak by a few milliseconds. B. Relative value of the motif coefficients as a function of τι. While the common input motif M1,1 rapidly assumes

dominance, the motif coefficient M1,2 crosses over in strength with the feedback motifs M0,1, M0,2 and M0,3. C. Averaged connectivity matrices over 100 trials at steady

state and different values of the time constant τι. Matrices are reordered using the k-means clustering algorithm (see Methods). D. Mean clustering coefficient versus

the time constant τι. E. Mean global efficiency versus the time constant τι. F. Mean modularity versus the the time constant τι. All results are calculated from 100 trials

at steady state connectivity. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1007835.g009
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STDP learning rule (Fig 6B). This tells us that assemblies in the network are spontaneously

formed in a different fashion (by promoting the potentiation of reciprocal connections in each

cluster due to the common input motif, M1,1) than when modulating the STDP rule through

η−. In fact, assemblies emerge for minor modulations in τι (Fig 9C).

These differences in assembly formation become apparent when we consider the mean clus-

tering coefficient, the global efficiency and the modularity as functions of τι (Fig 9D–9F): the

three measures reflect the connectivity matrices as M1,2 crosses the motif coefficients M0,1, M0,2

and M0,3, in the case when M1,1 is already large. When the motif coefficient M1,2 becomes more

negative than M0,3 (τι� 20 ms), bidirectional connections are strongly promoted and assemblies

robustly form. Even for τι> 20 ms, where the EPSC function does not change significantly (Fig

9A), one sees noticeable changes in the ‘tightness’ of the assemblies as observed in the averaged

connectivity matrices (Fig 9C). Interestingly, as M1,2 decreases below M0,2 (τι� 25 ms), the

value of the clustering coefficient (� 0.1) and the modularity (� 0.7) correspond to the values

where the clustering coefficient, the modularity, and the global efficiency saturate when modu-

lating the STDP function (compare Figs 7 and 9D–9F). This means that the network structure is

very similar (compare Fig 6E, right, with Fig 9C, second from left). Nevertheless, further increas-

ing τι leads to more refined assemblies (Fig 9C, third from left) when M1,2 <M0,2. However, for

τι≳ 35 ms where M1,2 <M0,1, the clustering coefficient slightly decreases (Fig 9D) suggesting

the existence of optimal regions in the parameter space of τι to obtain the ‘tightest’ assemblies.

Taken together, our analytical framework enables us to interpret changes in the motif coef-

ficients as changes in the connectivity structure in terms of the formation of self-organized

assemblies. Modifying either the shape of the learning rule, or the shape of the EPSC function,

can achieve this, however, with different consequences on the nature of the formed structures

as demonstrated by the graph theoretic measures.

Comparison with assemblies generated via external correlated input

Until now, we sought to understand the mechanisms that contribute to the autonomous emer-

gence of assemblies in neural circuits without any structured external input. Yet, the training

of assemblies and plasticity of recurrent connections has been more frequently studied when

these networks are driven by structured external input, both in simulations [49, 89] and analyt-

ically [42–45, 51]. Significant experimental evidence also exists for the emergence of functional

connectivity underlying feature selectivity in the visual cortex around the time of eye opening,

which is presumably influenced by structured visual input through the open eyes [14]. There-

fore, we wanted to compare the formation of assemblies without structured external input

under the triplet STDP rule to that with structured external input. To investigate spatiotempo-

ral input patterns in our framework, we studied the overall mean impact of an external pair-

wise correlated input. This was implemented by assuming that the driving signal, which could

for instance represent retinal input in the optic tectum or visual cortex, is correlated for a pair

of neurons in the network, so that the structure of the input is represented as common input

to that particular pair of neurons.

We write the covariance as a sum of the internal correlation and a novel term that conveys

the external structured activity as common input [40]:

~CðoÞ ¼ ~C intðoÞ þ
�
I � ~EðoÞW

�� 1

~EðoÞ~CextðoÞ~Eð� oÞ
�
I � ~Eð� oÞWT

�� 1

: ð7Þ

Here, Cint denotes the covariance matrix (see Eq 22) and Cext is the covariance matrix of the

external input. We model the input signal as a correlated pattern that promotes the joint activ-

ity of pairs of neurons that belong to a certain assembly.
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Using the standard parameters of the minimal triplet model (Table 1; Fig 9C, η− = 1) assem-

bly formation is difficult when the feedforward motif coefficients dominate (the motifs for

which the α-path is longer than the β-path). However, a significantly stronger external correla-

tion relative to internally generated network correlations can promote the common input

motif, M1,1, and support assembly formation. As a function of the external correlation matrix,

we quantify the structure of the resulting self-connected assemblies of neurons via the same

graph measures used previously (Fig 10). The tight assemblies observed for the modulation of

the STDP and the EPSC functions (Figs 6E and 9C) can now be formed for values of correla-

tion strength one order of magnitude smaller than the synaptic upper bound.

Disrupting the balance between potentiation and depression affects

assembly formation

We considered an STDP rule that is balanced in the total potentiation and depression, because

disrupting this balance by increasing some firing rater over others favors the particular circuit

motifs affected by those rates, as shown before [5, 45, 101]. When the balance is disrupted, the

firing rate contribution to plasticity from chance spike coincidences dominates over internal

correlations. When the zero-order term of the motif expansion (Eq 42) is non-zero, the mean

change in the synaptic efficacies has a term that only depends on the firing rates. In this case,

the firing rates of the pre- and postsynaptic neurons are the main drivers of network structure.

This means that the overall impact of motifs in the network is diminished [5]. We explored the

possible departures from balance through the inclusion of a perturbation parameter δ that can

be either positive or negative and we scaled this parameter in proportion to the learning rate

(Methods).

Therefore, to study the sensitivity of the emergence of network structure to perturbations

on the depression vs. potentiation balance we consider that the zero-order ‘rate’ motif is differ-

ent from zero. We find that departures from the balanced regime impact plasticity signifi-

cantly. In the case of a depression dominated imbalance, δ< 0, all connections depress no

matter the strength of the modulation through η−, even for small absolute value of δ = −0.0001.

In the case of potentiation, δ> 0, one might expect that all synaptic efficacies will just saturate;

however, due to heterosynaptic competition, some network structure still forms when δ is

small (Fig 11). If the perturbation is sufficiently strong, the autonomous emergence of

Fig 10. Emergence of assemblies in the presence of structured external input. A. Mean clustering coefficient versus the pairwise correlation

coefficient of the input pattern. The strength of the correlation was provided as ratios (0.01, 0.05, 0.125, 0.25, 0.375 and 0.5) of the possible maximum

weight of each individual synaptic connection wmax. B. Mean global efficiency versus the pairwise correlation coefficient of the input pattern. C. Mean

modularity versus the pairwise correlation coefficient of the input pattern. The rapid increase of the clustering coefficient and the modularity combined

with a decrease of the global efficiency is a feature of robust assembly formation. Sufficiently strong correlations in the external signal generate tight

assemblies. All results are calculated from 100 trials at steady state connectivity. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1007835.g010
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assemblies by increasing the parameter η− is disrupted. This is also evidenced when computing

the graph measures for the resulting network structures (Fig 11B–11D). In summary, we find

that considering an unbalanced STDP rule where either depression or potentiation dominates,

prevents the autonomous emergence of assemblies.

Discussion

We developed a self-consistent theoretical framework to study the impact of HOCs, specifi-

cally up to third order, on the plasticity of recurrent networks by using the triplet STDP rule.

We derived the dependence of the drift in synaptic efficacy on network structure, taking into

account contributions from structural motifs of different orders, and demonstrated the emer-

gence of global network structures i.e. assemblies, from these local motifs. Based on recent

work on the calculation of beyond second-order cumulants of mutually exciting Hawkes pro-

cesses [37, 102], we broke down the spike interactions (including pairs and triplets of spikes)

to include the influence of spikes from any source neuron in the network on the firing of the

pre- and postsynaptic neurons via paths of different length thus taking into account the full

network recurrence (Figs 2 and 4). We characterized structural motifs that arise from these

spike interactions, including novel motifs arising due to triplet STDP, and analyzed their

impact on the internal up to third-order correlation structure and plasticity in the network

through the motif coefficients (Figs 3 and 5). While linearization of neuronal dynamics was

required for this approach, it is a common technique used to approximate the dynamics of

more realistic biophysical neurons [5, 34]. We found that motif contributions to plasticity

Fig 11. Impact of perturbations in the balance of potentiation and depression of the triplet STDP rule. A. Averaged connectivity matrices over 100 trials at steady

state for the four different cases of the perturbation parameter δ and modulation parameter η− = 13. B. Mean clustering coefficient versus the modulation parameter η−.

C. Mean global efficiency versus the modulation parameter η−. We removed the cases δ = [0.01, 0.1] here since the global efficiency cannot be computed for weight

matrices where all entries are identical. D. Mean modularity versus the modulation parameter η−. All results are calculated from 100 trials at steady state connectivity.

Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1007835.g011
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from the second-order cross-covariance Cij support assembly formation under triplet STDP.

However, since these same motifs exist also under pair-based STDP, we wondered if the novel

motifs unique to triplet STDP are important for assembly formation. Indeed, we showed that

several novel motifs and specifically the ‘loop’ motifs, which emerge under the triplet STDP,

have an important contribution to the formation of assemblies (Fig 8).

We investigated the contribution of up to third-order structural motifs on assembly forma-

tion using an asymmetric minimal triplet STDP rule, in which depression is induced by pairs of

spikes and, conversely, potentiation is induced by triplets of spikes (Fig 1D). This rule has been

shown to describe plasticity experiments that the classical STDP rule, based on pairs of spikes,

has failed to capture; for instance, plasticity experiments in which the pairing frequency during

plasticity induction was varied [54, 55]. As such, the triplet STDP rule is sensitive to third-order

correlations, here referred to as HOCs. HOCs have not only been measured in the brain, but

also shown to play an important role in visual coding and representing experimental data [58,

59, 103, 104]. HOCs are ubiquitous in sensory stimuli, such as natural stimuli and speech signals

[105, 106]. These correlations have been previously utilized in learning rules, such as the BCM

rule, to extract the independent components or features in natural images resulting in simple

cell receptive fields as seen in V1 [105, 107–109]. Because of its mapping to the BCM rule [57],

we can interpret the triplet STDP rule as a method for performing similar computations.

Modulating either the STDP rule (Fig 6) or the EPSC function (Fig 9) enabled the spontane-

ous formation of self-connected assemblies without the need for externally patterned inputs

[49–51] or assuming a symmetric pair-based STDP rule [6]. We quantified the nature of the

emergent assemblies using three graph theoretic measures used to characterize spontaneous

assemblies in the tectum of zebrafish larvae [25]. Directly comparing the values of these mea-

sures between the experimental data and our model results is difficult given inhomogeneities

in the size of biological network assemblies and a multitude of mechanisms that shape their

formation during development. Yet, comparing how these measures change as a function of

the STDP rule or the EPSC kernel in our model could offer insights into how modulating plas-

ticity and synaptic transmission affect network structure through spontaneous activity under

minimal assumptions (Fig 7). Interestingly, the final assemblies formed by modulating the

EPSC function were more consistent across networks with different initial connectivity than

the assemblies generated through the modification of the STDP function. This could be seen

by the ‘tighter’ structures in the average connectivity matrices (Figs 6E and 9C), and the higher

values of graph measures (Figs 6 and 9D–9F). The ultimate connectivity structure was deter-

mined by the relative strength of motifs which were regulated differently by each modulatory

mechanism. In particular, modifying the EPSC function reinforced the influence of the com-

mon input motif (driven by the motif coefficient M1,1) over all others (Fig 9B). In comparison,

the modulation of the STDP rule by extending the time constant for depression over potentia-

tion reduced the competition between reciprocal connections by maintaining a strong feedfor-

ward drive (driven by the feedforward motif coefficients M1,0, M2,1, M2,0 and M3,0) and

making the corresponding reciprocal motif coefficients (M0,1, M1,2, M0,2 and M0,3) positive.

Therefore, assembly formation was driven by the strengthening of reciprocal connections,

even though the M1,1 coefficient was still strong (Fig 6B). Although experimental evidence

exists for a longer time constant for depression over potentiation in STDP [55, 99], the much

longer values of the STDP modulation parameter η− needed for our results raise the question

of whether this mechanism is biologically plausible. This might make the modulation of the

EPSC function under triplet STDP more suitable for explaining the autonomous emergence of

self-connected assemblies. It is probably the case that both mechanisms are used in biological

circuits. Studying the effects of neuromodulation, which can alter the shape of STDP or the

synaptic transmission function, on the plasticity of connections in many brain regions is
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possible with recent advances in experimental techniques [84–86]. Understanding the conse-

quences of changing the properties of the underlying plasticity mechanisms on network

dynamics can further elucidate the process of learning and memory storage in recurrent net-

works found everywhere in the brain [84–86].

Applying external correlated input led to the emergence of self-organized assemblies (Fig

10) that were similar to the assemblies from changing the EPSC function. Consequently, we

propose that the mechanisms that promote the formation of assemblies can be diverse in dif-

ferent circuits depending on the nature of the plasticity rules, synaptic transmission (EPSC

function) or the structure of external input that dominate in these circuits.

Our framework enabled us to derive global connectivity structures that emerge in recurrent

networks such as assemblies, which have been abundantly observed in experimental data. Con-

nectivity matrices of large recurrent networks are generally difficult to assay experimentally,

requiring multiple cells to be patched simultaneously [110], although recent developments in

the field of connectomics offer potential for these matrices to be obtained in the future [111,

112]. However, a good experimental determinate of assemblies may be derived from functional

interactions among neurons, inferred from physiological experiments that simultaneously

record the activity of a large number of neurons. While it is clear that neuronal activity exhibits

structure in response to sensory input, assemblies are present even during spontaneous activity

and have similar spatial organization [21, 25, 26]. This has suggested that these self-organized

assemblies are biologically relevant for the processing of information in these networks and for

the representation of sensory stimulus attributes [21]. In the rodent visual cortex, a given stim-

ulus, of the form of a natural scene or an orientated grating, consistently activates a specific

assembly [21]. On the behavioral scale, recent experiments suggest that functional circuit con-

nectivity may be intrinsically adapted to respond preferentially to stimuli of biological rele-

vance for the survival of the animal, such as catching prey or avoiding predators [24, 27].

Our analytical approach offers a precise description of how synaptic plasticity shapes connec-

tivity in recurrent networks driven by spontaneous activity (though we also considered the role

of structured external input). Such spontaneous activity is especially common during early post-

natal development, where it activates neural networks before the onset of sensory experience

and the maturation of sensory organs. In the rodent visual system, for instance, eye opening

only occurs during the second postnatal week of development [113]. Prior to this, spontaneous

patterns of activity propagate throughout the entire visual system, including the retina, thalamus

and cortex [114], which are known to instruct different aspects of circuit organization [115].

Interestingly, during very early postnatal development of somatosensory cortex in rodents

(postnatal day 4), spontaneous activity exhibits a highly correlated state consisting of cell assem-

blies where multiple neurons show correlated activity [116]. By the second postnatal week this

spontaneous activity transitions to a much more decorrelated state that lacks a clear spatial

structure. A similar sparsification of spontaneous activity during development is also observed

in the visual cortex, though lacking the spatial structure observed in the somatosensory cortex

[117]. Since these two studies argue that over development functional connectivity becomes

more desynchronized, this framework is more consistent with our analysis of the depression

window of the STDP rule becoming smaller over development (Fig 6). This broadening of the

depression window in early development is consistent with a previously described burst-tim-

ing-dependent plasticity where the temporal integration of activity occurs over much longer

timescales on the order of several hundred milliseconds than in adulthood [115, 118, 119].

Assembly formation has been the goal of many other previous works, typically instructed

by externally structured input in recurrent network models with balanced excitation and inhi-

bition [42–47]. These assemblies exhibit attractor dynamics which have been argued to serve

as the substrate of different computations, such as predictive coding through the spontaneous
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retrieval of evoked response patterns [49, 50, 120]. We investigated the generation of assem-

blies through triplet STDP driven by higher-order correlations generated internally in the net-

work. Other works have also studied the emergence of non-random structure in the absence of

structured external input [5, 6, 48]; our work takes a similar approach of incorporating the full

recurrence in the network through the expansion into structural motifs as [6]. As it becomes

evident from these studies, the investigation of STDP in recurrent networks for unsupervised

learning involves a lot of parameters and additional mechanisms (including short-term plastic-

ity, heterosynaptic plasticity and inhibitory plasticity) which make the identification of general

rules difficult. Nevertheless, the precise theoretical description of triplet STDP in recurrent

networks provided by our framework highlights a set of novel motifs absent in the case of pair-

based STDP that promote assembly formation, in the process highlighting an important role

of HOCs in the generation of global network structure from local motifs.

Methods

Network dynamics

The time dependent activity of a neuron i is given by a stochastic realization of an inhomoge-

neous Poisson process [70], with expectation value

liðtÞ ¼ mi þ
XN

k¼1

Wik½E � Sk�ðtÞ; ð8Þ

where μi is the external input firing rate, W is the synaptic weight matrix, S(t) is the spike train

and E(t) is the EPSC function, which we assume to be identical for all N neurons. Then, the

product WE(t) is referred to as the interaction kernel. The operator ‘�’ corresponds to the

convolution operation. In all plasticity simulations, the connectivity weight matrix is divided

into an excitatory and an inhibitory component, such that the effective connectivity matrix is

calculated as Weff = W −Winh. The inhibitory weight matrix Winh is updated to balance the

excitatory (see section ‘Additional plasticity mechanisms besides STDP’). For simplicity in

notation, we refer to Weff as W in the manuscript.

Averaged synaptic efficacy dynamics for pair-based and triplet STDP rules

Plasticity of the connectivity matrix W is determined by pair-based and triplet STDP rules. We

assume ‘all-to-all’ interactions between spikes, where each postsynaptic spike interacts with

every previous pre- and postsynaptic spike and vice-versa [52, 121–123].

Plasticity due to the pair-based STDP can be expressed as:

_W pair STDP
ij ðtÞ ¼

Z1

� 1

SiðtÞSjðt � t1ÞL2ðt1Þdt1 ð9Þ

and plasticity due to the triplet STDP rule as:

_W triplet STDP
ij ðtÞ ¼

ZZ1

� 1

SiðtÞSjðt � t1ÞSiðt � t2ÞL3;yðt1; t2Þdt1 dt2

þ

ZZ1

� 1

SjðtÞSiðt � t1ÞSjðt � t3ÞL3;xð� t1; � t3Þdt1 dt3

ð10Þ

L2 corresponds to the pair-based STDP rule and L3 to the triplet STDP rule. The additional
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subscripts x and y denote that the triplets which contribute to plasticity are two pre- and one

postsynaptic spikes and one pre- and two postsynaptic spikes, respectively. τ1 is the time differ-

ence between the spikes of the pre- and the postsynaptic neuron. τ2 is the time difference

between two postsynaptic spikes and τ3 is the time difference between two presynaptic spikes

(Fig 1B). It should be highlighted that this derivation is independent of the specific shape of

the STDP functions.

Assuming slow learning in comparison to neuronal dynamics and that pairs and triplets of

spikes between the pre- and postsynaptic neurons are relevant to plasticity [54, 57], the mean

evolution of the synaptic efficacies due to STDP is given by

h _W STDP
ij ðtÞi ¼

Z1

� 1

hSiðtÞSjðt � t1ÞiL2ðt1Þdt1 þ

ZZ1

� 1

hSiðtÞSjðt � t1ÞSiðt � t2ÞiL3;yðt1; t2Þdt1 dt2

þ

ZZ1

� 1

hSjðtÞSiðt � t1ÞSjðt � t3ÞiL3;xð� t1; � t3Þdt1 dt3

ð11Þ

where h�i denotes averaging over different realizations of the Poisson neuronal dynamics for

different connectivity.

We define the mean rates of the pre- (j) and postsynaptic neuron (i) as rj and ri. We con-

sider both to be stationary at equilibrium. The second-order correlation between the pre- and

postsynaptic neurons with time delay τ1 is hSi(t)Sj(t − τ1)i and we define the covariance matrix

(second-order cumulant) C (Fig 1B) as

Cijðt1Þ ¼ hSiðtÞSjðt � t1Þi � rirj: ð12Þ

Note that [6, 37] use a different convention for signs.

The third-order correlation between the triplet of spikes ‘post-pre-post’ with time delays

between the pre and one post τ1 and between the two post τ2 is hSi(t)Sj(t − τ1)Si(t − τ2)i and we

define the third-order cumulant as [57]

Kijðt1; t2Þ ¼ hSiðtÞSjðt � t1ÞSiðt � t2Þi � riðCijðt1Þ þ Cijðt2 � t1ÞÞ � rjCiiðt2Þ � r2
i rj: ð13Þ

Analogously, for the ‘pre-post-pre’ third-order correlation hSj(t)Si(t − τ1)Sj(t − τ3)i, we can

define the third-order cumulant

Kijðt1; t3Þ ¼ hSjðtÞSiðt � t1ÞSjðt � t3Þi � rjðCijðt1Þ þ Cijðt3 � t1ÞÞ � riCjjðt3Þ � rir2
j : ð14Þ

With these definitions, Eq 11 becomes Eq 1 of the main text.

Calculation of cumulants

The definition of cumulants in the Fourier space is imperative for the derivation of our results.

Assuming stationarity, the expected firing rate (i.e. the first order cumulant) vector r = hλ(t)i
no longer depends on time and can be written as

r ¼
�
I � ~Eð0ÞW

�� 1

μ; ð15Þ

where ~Eð0Þ ¼ F ½EðtÞ�jt¼0 denotes the Fourier transform of the EPSC function evaluated at
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zero. For all the calculations, we define the Fourier transform as

F ½f ðtÞ� ¼ ~f ðoÞ ¼
Z1

� 1

f ðtÞe� jotdt: ð16Þ

The second-order cumulant, consisting of the cross- and auto-covariance, can be calculated

in the time domain as [37, 102]

Cijðt1Þ ¼
XN

k¼1

rk

Z 1

� 1

RikðuÞRjkðu � t1Þdu; ð17Þ

where RðtÞ ¼
P

n�0

G�nðtÞ is defined as a ‘convolution power series’ [37, 102] of the interaction

kernel G(t) = WE(t), with

G�nðtÞ ¼

IdðtÞ; if n ¼ 0

Rt

� 1

G�ðn� 1Þðt � sÞGðsÞds ¼
Rt

� 1

ðWEðt � sÞÞ�ðn� 1ÞWEðsÞds; if n � 1:

8
><

>:
ð18Þ

Since W does not depend on the integration domain, the convolution in the operation �n is cal-

culated on E, while for W it becomes a power operation. Formally, the computation of each

element Rmn(t) consists of calculating the probability of a spike from neuron m at time t given

that neuron n fired at time 0. Therefore, in Eq 17 we write the covariance for the spike trains

of neurons i and j as the probability of a pair of spikes in neurons i and j at a time lag τ1 given

that neuron k fired, where k can be any neuron in the network. This representation provides a

convenient formalism for representing causality of spiking events in our model. Then, consid-

ering the definition of ‘path lengths’ α and β from the source neuron k to the postsynaptic neu-

ron i and the presynaptic neuron j (Fig 2A), we can rewrite Eq 17 as

Cijðt1Þ ¼
X

a;b

Z 1

� 1

E�aðuÞE�bðu � t1Þdu
XN

k¼1

rkðW
aÞikðW

bÞjk: ð19Þ

Here, E�κ denotes a series of convolutions of the EPSC function

E�kðtÞ ¼ EðtÞ � EðtÞ � . . . � EðtÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k terms

:
ð20Þ

For the auto-covariance Cii for path lengths α and γ from the source neuron k to the postsyn-

aptic neuron i (Fig 2B), we analogously obtain

Ciiðt2Þ ¼
X

a;g

Z 1

� 1

E�aðuÞE�gðu � t2Þdu
XN

k¼1

rkðW
aÞikðW

gÞik: ð21Þ

Since each R function consists of the convolution of the EPSC functions, then its Fourier trans-

form is the product of the Fourier transforms of each of those functions, which simplifies cal-

culations. Therefore, the cross-covariance Cij in the frequency domain (i.e. the Fourier

transform of Eq 17) is given by (detailed derivation in S1 Text)

~CijðoÞ ¼
XN

k¼1

rk~RikðoÞ
~Rjkð� oÞ; ð22Þ
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and, finally we obtain the expression

~CijðoÞ ¼
X

a;b

~EaðoÞ ~Ebð� oÞ
XN

k¼1

rkðW
aÞikðW

bÞjk: ð23Þ

It should be noted that Eq 23 was also derived in previous works using a different approach

[6, 70]. However, for the third-order cumulant Kij (Fig 4) that same approach is not possible.

Therefore, it is convenient to write Kij in the time domain in terms of the previously defined R
[37, 102] as

Kijðt1; t2Þ ¼
XN

k¼1

rk

Z 1

� 1

RikðuÞRjkðu � t1ÞRikðu � t2Þdu

þ
XN

k;l¼1

rk

ZZ1

� 1

RikðuÞRjlðv � t1ÞRilðv � t2ÞClkðv � uÞdv du

þ
XN

k;l¼1

rk

ZZ1

� 1

Rjkðu � t1ÞRilðvÞRilðv � t2ÞClkðv � uÞdv du

þ
XN

k;l¼1

rk

ZZ1

� 1

Rikðu � t2ÞRilðvÞRjlðv � t1ÞClkðv � uÞdv du;

ð24Þ

where additionally

ΨðtÞ ¼ RðtÞ � I dðtÞ ¼
X

n�1

G�nðtÞ: ð25Þ

In Eq 24,Clk(v − u) is the probability density of the event that a spike from neuron k at a time

v − u = 0 causes a neuron l (different from neuron k) to emit a spike at a time v − u 6¼ 0, after

at least one synaptic connection. The function C is necessary in Eq 24 to take into account the

branching structures in the calculation of Kij (Fig 4B–4D). In addition to α, β and γ, z is the

path length from the source neuron k to the neuron l where the synaptic connection path

branches out and is equal to or larger than one. Then, replacing both the R and C functions by

their corresponding definitions in terms of the connectivity matrix W and EPSC function E(t)
yields

Kijðt1; t2Þ ¼
X

a;b;g

Z1

� 1

E�aðuÞE�bðu � t1ÞE
�gðu � t2Þdu

XN

k¼1

rkðW
aÞikðW

gÞikðW
bÞjk

þ
X

a;b;g

X

z�1

ZZ1

� 1

E�aðuÞE�bðv � t1ÞE
�gðv � t2ÞE

�zðv � uÞdv du
XN

k;l

rkðW
aÞikðW

bÞjlðW
gÞilðW

zÞlk

þ
X

a;b;g

X

z�1

ZZ1

� 1

E�bðu � t1ÞE
�aðvÞE�gðv � t2ÞE

�zðv � uÞdv du
XN

k;l

rkðW
bÞjkðW

aÞilðW
gÞilðW

zÞlk

þ
X

a;b;g

X

z�1

ZZ1

� 1

E�gðu � t2ÞE
�aðvÞE�bðv � t1ÞE

�zðv � uÞdv du
XN

k;l

rkðW
gÞikðW

aÞilðW
bÞjlðW

zÞlk:

ð26Þ
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As with the second-order cumulant, we can calculate the Fourier transform of the third-order

cumulant Kij from Eq 24 as (detailed derivation in S1 Text)

~Kijðo1;o2Þ ¼
XN

k¼1

rk~Rikðo1 þ o2Þ
~Rjkð� o1Þ

~Rikð� o2Þ

þ
XN

k;l¼1

rk~Rikðo1 þ o2Þ
~Rjlð� o1Þ

~Rilð� o2Þ
~C lkðo1 þ o2Þ

þ
XN

k;l¼1

rk~Rilðo1 þ o2Þ
~Rjkð� o1Þ

~Rilð� o2Þ
~C lkð� o1Þ

þ
XN

k;l¼1

rk~Rilðo1 þ o2Þ
~Rjlð� o1Þ

~Rikð� o2Þ
~C lkð� o2Þ:

ð27Þ

Finally, we obtain the third-order cumulant Kij in the Fourier domain in terms of the connec-

tivity matrix W, the EPSC function E(t), and the path lengths α, β, γ and z as

Kijðo1;o2Þ ¼
X

a;b;g

~Eaðo1 þ o2Þ
~Ebð� o1Þ

~Egð� o2Þ
XN

k¼1

rkðW
aÞikðW

gÞikðW
bÞjk

þ
X

a;b;g

X

z�1

~Eaþzðo1 þ o2Þ
~Ebð� o1Þ

~Egð� o2Þ
XN

k;l¼1

rkðW
zÞlkðW

aÞikðW
bÞjlðW

gÞil

þ
X

a;b;g

X

z�1

~Eaðo1 þ o2Þ
~Ebþzð� o1Þ

~Egð� o2Þ
XN

k;l¼1

rkðW
zÞlkðW

aÞilðW
bÞjkðW

gÞil

þ
X

a;b;g

X

z�1

~Eaðo1 þ o2Þ
~Ebð� o1Þ

~Egþzð� o2Þ
XN

k;l¼1

rkðW
zÞlkðW

aÞilðW
bÞjlðW

gÞik:

ð28Þ

Calculation of motif coefficients

Extending the work of [6], who artificially tuned the values of motif coefficients to investigate

the consequences on the network structures, we derive them analytically as a function of the

STDP rule and the EPSC function. To obtain the expression for the motif coefficients neces-

sary for Eqs 3, 4 and 5, we first need to insert Eqs 23 and 28, i.e. the definitions of the second-

and third-order cumulants in the frequency domain, in Eq 2. Then, it can easily be seen that it

is possible to separate the part that depends on the products of the connectivity matrix W from

the rest. This way we define the motif coefficients as the integral of the products of the Fourier

transforms of the STDP functions and the EPSC functions, considering the appropriate path

lengths α, β, γ and z (Fig 3B and 3D). In particular, for the motif coefficients in Eq 3 we derive

Mpair
a;b ¼

Z1

� 1

~Eaðo1Þ
~Ebð� o1Þ

~L2ð� o1Þdo1: ð29Þ

and

Mtrip
a;b ¼

ZZ1

� 1

�
~Eaðo1Þ

~Ebð� o1Þ dðo2Þ þ
~Eaðo2Þ

~Ebð� o2Þ dðo1 þ o2Þ
�

~L3ð� o1; � o2Þdo1 do2: ð30Þ
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We note that this definition combines motif coefficients where α is the index corresponding to

paths to the postsynaptic neuron, regardless of which of the two postsynaptic spike of the spike

triplet it refers to (Fig 1C). For the motif coefficient in Eq 4 we derive

Mtrip
a;g
¼

ZZ1

� 1

~Eaðo2Þ
~Egð� o2Þ

~L3ð� o1; � o2Þ dðo1Þdo1 do2: ð31Þ

Lastly, for the ‘straight’ triplet motif (Fig 4A) in Eq 5 we get:

Mtrip
a;b;g ¼

ZZ1

� 1

~Eaðo1 þ o2Þ
~Ebð� o1Þ

~Egð� o2Þ
~L3ð� o1; � o2Þ do1 do2 ð32Þ

while for the ‘branching’ motifs (Fig 4B–4D) in Eq 5:

Mtrip
ða;zÞ;b;g ¼

ZZ1

� 1

~Eaþzðo1 þ o2Þ
~Ebð� o1Þ

~Egð� o2Þ
~L3ð� o1; � o2Þ do1 do2; ð33Þ

Mtrip
a;ðb;zÞ;g ¼

ZZ1

� 1

~Eaðo1 þ o2Þ
~Ebþzð� o1Þ

~Egð� o2Þ
~L3ð� o1; � o2Þ do1 do2; ð34Þ

and

Mtrip
a;b;ðg;zÞ ¼

ZZ1

� 1

~Eaðo1 þ o2Þ
~Ebð� o1Þ

~Egþzð� o2Þ
~L3ð� o1; � o2Þ do1 do2: ð35Þ

These expressions give us a concise representation of how the spiking activity interacts with

network structure to impact plasticity.

Synaptic dynamics

To calculate the values for the motif coefficients in Eqs 29–35, we define the EPSC function

E(t) as

EðtÞ ¼

( tεþti
t2ε

e
� t
tε 1 � e

� t
ti

� �
if t � 0

0 if t < 0:

ð36Þ

This function depends on two time constants τε and τι that define the onset and decay of the

increase in the membrane potential with each spike. In particular, when τι! 0 the current is

instantaneous and decays exponentially. The function is normalized to have an integral equal

to 1, so that on average the number of postsynaptic spikes with the arrival of a presynaptic

spike scales with the same order of magnitude as the synaptic efficacy. Its Fourier transform is

~EðoÞ ¼ 1þ
ti
tε

� �
1 � jtεo
1þ t2

εo
2
�
ti
tε

1 � j tεti
tεþti

o

1þ
tεti
tεþti

� �2

o2

: ð37Þ

With respect to the choice of STDP function, we consider the minimal triplet STDP rule

[54, 57] that consists of the pair-based STDP function for depression and of a triplet STDP
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function for potentiation (Fig 1C). Furthermore, we introduce a ‘modulation parameter’ η− to

model the reshaping of the depression window of the STDP function via modulatory effects.

The depression window of the STDP function can be written as

L2ðt1Þ ¼

(
�

A�
Z�
e

t1
Z� t� if t1 < 0

0 otherwise;
ð38Þ

where τ1 = tpost − tpre denotes the time difference between a post- and a presynaptic spike, A−

is the depression learning rate, τ− is the depression time constant and η− is the depression

modulation parameter. The potentiation window of the STDP function depends on the timing

of spike triplets (tpre, tpost, t0post)

L3ðt1; t2Þ ¼

(
Aþe

�
t1
tþe�

t2
ty if t1 � 0; t2 � 0

0 otherwise;
ð39Þ

where again τ1 = tpost − tpre denotes the time difference between a post- and a presynaptic

spike and t2 ¼ tpost � t0post is the time difference between the two postsynaptic spikes; A+ is the

potentiation learning rate, τ+ is the potentiation time constant and τy is the second potentia-

tion time constant.

While the ‘A’ parameters scale the amplitude of weight changes, the ‘τ’ coefficients deter-

mine how synchronous pre- and post-synaptic spikes must be to drive plasticity. The η−
parameter enables the modification of the shape of the STDP function. This additional param-

eter does not affect the total depression and potentiation in the rule and one can easily recover

the ‘standard’ expressions for η−! 1.

The Fourier transforms for these two functions are

~L2ðo1Þ ¼ � A� t�
1þ jZ� t� o1

1þ Z2
�
t2
�
o2

1

; ð40Þ

and

~L3ðo1;o2Þ ¼ Aþtþty
1 � jtþo1

1þ t2
þ
o2

1

1 � jtyo2

1þ t2
yo

2
2

: ð41Þ

Motif expansion up to third-order

After including Eqs 3, 4 and 5 into Eq 2, we can rewrite it in terms of the order of interactions

in which they contribute to the averaged synaptic modification:

h _Wiji ¼ h
_Wiji

ð0Þ
þ h _Wiji

ð1Þ
þ h _Wiji

ð2Þ
þ h _Wiji

ð3Þ
þ . . . ð42Þ

Assuming non-zero mean rates, no self-excitation (i.e. Wii = 0) and that terms of order higher

than three can be disregarded in comparison to lower order ones, the terms of Eq 42 are

h _Wiji
ð0Þ
¼ rirjM0

ð43Þ

for the zeroth-order contributions,

h _Wiji
ð1Þ
¼ rjWijM1;0 þ riWjiM0;1

ð44Þ
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for the first-order contributions,

h _Wiji
ð2Þ
¼
X

k6¼i;j

rkWikWjkM1;1 þ rjðW
2ÞijM2;0 þ riðW

2ÞjiM0;2

þ
X

k6¼i;j

riWikWkirjM
trip
a¼2;g¼0 þ

X

k6¼i;j

rkW
2

ikrjM
trip
a¼1;g¼1

þrjW2
ijM

trip
a¼1;b¼0;g¼1;

ð45Þ

for the second-order contributions, and finally

h _Wiji
ð3Þ
¼
X

k6¼i;j

rkðW
2ÞikWjkM2;1 þ

X

k6¼i;j

rkWikðW
2ÞjkM1;2 þ rjðW

3ÞijM3;0

þriðW
3ÞjiM0;3 þ

X

k6¼i;j

rkðW
2ÞikWikrjðM

trip
a¼2;g¼1 þMtrip

a¼1;g¼2Þ

þr2
j ðW

3ÞiiM
trip
a¼3;g¼0 þ

X

k6¼i;j

rkW
2

ikWjkM
trip
a¼1;b¼1;g¼1

ð46Þ

for the third-order contributions. Examples and illustrations of these motifs are given in Figs 3

and 5. For conciseness, we grouped motif coefficients arising from the pair-based STDP rule

and from the triplet STDP rule that shared values of α and β and relabeled them as

M0 ¼
~L2ð0Þ þ ri~L3ð0; 0Þ; ð47Þ

M1;0 ¼ riM
trip
a¼1;b¼0; ð48Þ

M0;1 ¼ Mpair
a¼0;b¼1 þ riM

trip
a¼0;b¼1; ð49Þ

M2;0 ¼ riM
trip
a¼2;b¼0; ð50Þ

M0;2 ¼ Mpair
a¼0;b¼2 þ riM

trip
a¼0;b¼2; ð51Þ

M1;1 ¼ Mpair
a¼1;b¼1 þ riM

trip
a¼1;b¼1; ð52Þ

M3;0 ¼ riM
trip
a¼3;b¼0; ð53Þ

M0;3 ¼ Mpair
a¼0;b¼3 þ riM

trip
a¼0;b¼3; ð54Þ

M2;1 ¼ Mpair
a¼2;b¼1 þ riM

trip
a¼2;b¼1; ð55Þ

M1;2 ¼ Mpair
a¼1;b¼2 þ riM

trip
a¼1;b¼2: ð56Þ

Using the defined functions for the EPSC (Eq 37) and STDP functions (Eqs 40 and 41) we

calculated the motif coefficients in Eqs 29–32, and consequently Eqs 47–56. Note, we excluded

the higher-than-third-order motif coefficients in Eqs 33–35. The truncated approximation of

motifs up to third-order is valid, since the difference of the weight change from the full contri-

bution and the weight change from up to third-order motif truncation is very small (S1 Fig).
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These quantities represent the strength of contributions of each particular combination of

paths from the source neuron to the pre- and postsynaptic neurons involved in the synaptic

connection. In principle, also the motifs Mα=0,γ=2 and Mα=0,γ=3 from the auto-covariance and

the motifs Mα=2,β=0,γ=1 and Mα=1,β=0,γ=2 from the third-order cumulant would need to be con-

sidered, however we find that the contribution of these motifs is zero and therefore we did not

include them in our analysis. Since we assume a learning rule balanced in potentiation and

depression,

M0 ¼ 0; ð57Þ

and thus

� A� t� þ riAþtþty ¼ 0; ð58Þ

which is independent of the modulation parameter η−, this allows us to rewrite these motifs so

that they are independent of the mean firing rate of the postsynaptic neuron. Since the firing

rate ri is not fixed, it should be noted that this assumption implies that the amplitude of the

LTP window A+ adjusts to balance the learning rule, similar to metaplasticity [57]. However,

we verify that the firing rates in the system are relatively stable over the time of the simulation

(S5 Fig) and therefore A+ does not vary much. We analyze the evolution of these quantities in

the main text, because they involve only α and β paths and remain constant throughout the

numerical integration, in contrast to the motif coefficients in Eqs 45 and 46 which involve

both α and γ paths, and which have an additional rate dependence. The expressions for the

motif coefficients defined by Eqs 47–56 in terms of the EPSC and STDP functions’ parameters

are given in S2 Text.

Perturbation of the zero-order motif

We consider a small perturbation δ to the zero-order (or rate) motif

M0 ¼ �d: ð59Þ

A minus sign indicates that the balance is tilted towards depression and, conversely, a plus

sign conveys a potentiation-dominated regime. Then, given the minimal triplet STDP rule, we

obtain that

� A� t� þ riAþtþty ¼ �d: ð60Þ

Since the firing rate contribution to plasticity is now different from zero, chance spike coinci-

dences impact the averaged evolution of the synaptic efficacies as follows

h _Wiji ¼ rirjð�dÞ þ � � � ð61Þ

In this new scenario, the motif coefficients calculated from the triplet rule (equations given in

S2 Text) now scale with (A− τ− ± δ). All weights depress to zero for δ< 0 because we impose a

lower bound on the weights at 0, and do not include any growth terms independent of synaptic

potentiation.

Additional plasticity mechanisms besides STDP

Although we did not formally model inhibitory plasticity, we assume that the overall effect of

the inhibitory population on the synaptic efficacies among excitatory neurons is to balance

the network activity. Thus, the sum of inhibitory synapses into each neuron is dynamically

adjusted to match the sum of the excitatory synaptic efficacies, such that each element of the
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inhibitory connectivity matrix is equal to the average of the excitatory input as

W inh ¼

winh
1

..

.

winh
N

2

6
6
6
6
4

3

7
7
7
7
5
½1 � � � 1� � Dinh ð62Þ

where

winh
l ¼

1

N � 1

X

k

Wlk ð63Þ

is the value of each row element and

Dinh ¼

winh
1
� � � 0

0 . .
.

0

0 � � � winh
N

2

6
6
6
6
4

3

7
7
7
7
5

ð64Þ

is a diagonal matrix to take into account there is no self-connectivity. Then, the effective con-

nectivity weight matrix is calculated as Weff = W −Winh. The inhibitory connections are fast

and updated in each integration step. As mentioned earlier, we refer to Weff as W in the manu-

script. It should be noted that deviations from this perfect balance between excitation and inhi-

bition, modeled with an inhibitory multiplicative factor δinh which scales the overall inhibitory

inputs to deviate from a perfect balance, do not affect the emergence of network structure (S4

Fig). Furthermore, we find that the formation of network structure does somewhat depend

on the input rate μi but not on heterogeneity in the input firing rates (S3 Fig). The input rates

effectively determine the mean firing rates of the network throughout the whole simulation

(S5 Fig).

We also implement heterosynaptic competition based on previous work [6, 80] as an addi-

tional mechanism for the plasticity dynamics to restrict the maximum number of strong con-

nections a neuron can make, and thus keep the spectral radius of the connectivity matrix

lower than one. The total synaptic input and output of each neuron is limited: the sum of the

inbound (afferent) connections to each postsynaptic neuron i and the sum of outbound (effer-

ent) excitatory synaptic efficacies from each presynaptic neuron j have an upper bound Wmax.

The plasticity due to heterosynaptic competition can be written as

h _W hc
ij i ¼

�
Wmax �

X

k

Wki

�
H
�X

k

Wki � Wmax

�
þ
�
Wmax �

X

k

Wjk

�
H
�X

k

Wjk � Wmax

�
; ð65Þ

where H is the Heaviside function. Imposing an upper bound wmax for each synaptic efficacy

restricts the possible number of connections a neuron can make to
Wmax
wmax

. Therefore, the average

amount of plasticity is the sum of the change due to STDP based on Eq 2 and heterosynaptic

competition based on Eq 65.

h _Wiji ¼ n
�
h _W STDP

ij i þ ch
_W hc

ij i
�
: ð66Þ

Here, the learning rate scale ν ensures that the synaptic efficacy increments in each integration

step are small. The relative contribution of heterosynaptic competition to overall plasticity is

determined by the heterosynaptic competition term ψ. The values for these parameters can be
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found in Table 1. The values for the parameters in the Supplementary Figures can be found in

Table 2.

Numerical integration of connectivity matrices

To generate the different connectivity matrices in each Figure, we integrate Eq 2 numerically.

The plasticity dynamics are implemented using the Euler method with an adaptive time step.

The maximal amount that a weight can change in each integration step is 0.00035. Although

the weight evolution is deterministic and determined by the plasticity parameters (Table 1),

final connectivity matrices depend on initial connectivity matrices. The initial connection

weights are chosen independently from a uniform distribution between 0 and Wmax/N ×
0.001, and each one of these initial conditions corresponds to a different “trial”. The numerical

integration for each initial condition is continued until the network connectivity achieves a

steady state (no longer changes).

Averaged ordered connectivity matrices

The connectivity matrices resulting from integrating Eq 2 numerically are ordered to reflect

the graph structure of the network [6] (Fig 6C). K-means classification groups neurons that

share similar connectivity using a squared Euclidean distance. We then reorder the connectiv-

ity matrix based on the groups identified by the k-means clustering. Since the structures stud-

ied depend on initial conditions, despite the deterministic nature of our approach, we average

the rearranged synaptic efficacy matrix over many trials with different (but random and weak)

initial connectivity to obtain the most likely connectivity (Figs 6E and 9C). Assemblies on the

edges of the connectivity matrices have sharper edges due to an artifact created by the ordering

algorithm, but this does not affect results.

Network analysis

We calculated graph theoretic measures for directed networks using algorithms of the Brain

Connectivity Toolbox [124] from http://www.brain-connectivity-toolbox.net. All graph mea-

sures were calculated at the steady state and increased during a simulation as network organi-

zation improved.

Table 2. Parameter values for supplementary figures. ? denotes that values are provided in the figures.

Symbol Description S1 Fig S2 Fig S3 Fig S4 Fig S5 Fig

N Number of neurons 12 48

μ External input firing rate 150 Hz ? 150 Hz ?

wmax Upper bound for each individual weight 0.17

Wmax Upper bound for total row/ column weight 0.85

A− Depression learning rate 0.01

τ− Depression time constant 33.7 ms [54]

τ+ Potentiation time constant 16.8 ms [54]

τy Second potentiation time constant 114 ms [54]

η− Depression modulation parameter 13 ? 13

τε First membrane time constant 5 ms

τι Second membrane time constant 5 ms

ν Scaling parameter of learning rate 3.5 ×10−4

ψ Heterosynaptic competition scaling parameter 0.7

https://doi.org/10.1371/journal.pcbi.1007835.t002
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Clustering coefficient. For each connectivity matrix we computed the clustering coeffi-

cient [95]. For node i, this is

Ci ¼
number of complete triplets
number of all possible triplets

: ð67Þ

The number of complete triplets is obtained from the product of the corresponding edges of

the node (from the adjancency matrix), and the total number of triplets depends on network

size. Then, the average of the clustering coefficients of all the vertices N is given by [92]

�C ¼
1

N

XN

i¼1

Ci: ð68Þ

Global efficiency. The efficiency in the communication between nodes i and j can be

defined to be inversely proportional to the shortest distance. The average efficiency of a net-

work is calculated as [96]

E ¼
1

NðN � 1Þ

X

i6¼j

1

dði; jÞ ð69Þ

where N denotes the nodes in the network and d(i, j) is the length of the shortest path between

a node i and a different node j. As an alternative to the average path length, the global effi-

ciency of a network is defined as

Eglob ¼
E

Eðfull networkÞ ð70Þ

where the efficiency is scaled by an ideal graph where all the possible edges exist (i.e. full net-

work). The difference between these measures is that the first measure quantifies the efficiency

in a network where only one packet of information is being moved through it and the global

measure quantifies the efficiency where all the vertices are exchanging packets of information

with each other [96].

Modularity. The modularity Q of a connectivity matrix is a measure of the strength of its

division into clusters or modules. Formally, modularity can be calculated as [93]

Q ¼
1

2m

X

vw

Avw �
kvkw
2m

� �
svsw þ 1

2
ð71Þ

where A is the adjancency matrix of the graph, k is the node degree, v and w are the nodes’

indices and s is a variable that determines if the node belongs to a community or not. Modular-

ity is the non-randomly distributed proportion of the edges that belong to the given cluster in

a graph. It is positive if the number of edges within groups exceeds the number expected at

random and depends on the chosen method for community detection.

The first algorithm we used for community detection, referred to as ‘spectral clustering’

algorithm, is based on the fact that modularity of a network is closely related to the structure

of the eigenvalue spectrum of its weight matrix [93, 125, 126], high modularity means more

strongly embedded communities. This is reflected in the spectra of the connectivity matrices

as the separation of eigenvalues into a group with most eigenvalues and another of outliers, the

number of which is often used to estimate the number of communities present in the network

[93, 125, 126].
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The second algorithm, called the Louvain method [98, 124] is a greedy optimization

method. First, smaller cliques are found by optimizing modularity locally on all nodes, then

each small-sized community is grouped into one node and the first step is repeated. The com-

plete modularity is then calculated by maximizing this value over all the divisions of the net-

work into clusters [98, 124]. We did not find any relevant differences between the Louvain

method [98] and the spectral clustering algorithm [93, 125, 126], which were used to define

community structure (see Fig 7C).

Supporting information

S1 Fig. The truncated weight change including motifs up to third-order provides a good

match for the full weight change including motifs of all orders. The total weight change is

calculated either by including motifs up to third-order, or using the full contribution of all

motifs based on the integral of Eq 2 (main text) in Fourier space. Each dot represents the

respective weight change calculated with the truncated (abscissa) and the full version (ordi-

nate) starting with a random set of initial connectivity weights. The axis are normalized to the

maximum weight change. Parameters used are the ones used in the manuscript, except for

N = 12 (to speed up calculations) and η− = 13.

(TIF)

S2 Fig. Spontaneous emergence of assemblies does not depend on the third-order cumu-

lant. Considering only (up to third order) motifs related to the second-order cross-covariance

Cij (blue) leads to generally worse graph measures compared to the case when adding motifs

from the second-order auto-covariance Cii (red) and the case where all motifs are considered

(yellow). A. Mean clustering coefficient versus the modulation parameter η−. B. Mean global

efficiency versus the modulation parameter η−. C. Mean modularity versus the modulation

parameter η−. All results are calculated from 100 trials at steady state connectivity. Error bars

represent the standard error of the mean.

(TIF)

S3 Fig. Network structure at steady state is sensitive to the external input firing rate, but

not to heterogeneities in the input firing rates. A. Mean clustering coefficient, mean global

efficiency and modularity versus the external input firing rate. Assembly formation breaks

down for very large input firing rates. B. Mean clustering coefficient, mean global efficiency

and modularity versus the standard deviation of firing rate distribution, σ, to introduce hetero-

geneity in the external input firing rates. Varying σ preserves assembly formation as can be

seen from the different graph measures. The mean external input rate was chosen to be 150

Hz. The modulation parameter used is η− = 13 and all other parameters are taken as in the

main text. Note that the abscissa is logarithmic.

(TIF)

S4 Fig. Departures from the balance of excitation and inhibition do not effect assembly

formation. Mean clustering coefficient, mean global efficiency and modularity versus the

inhibitory multiplicative factor δinh = {0.5, 0.8, 1.2, 1.5}, which scales the overall inhibitory

matrix (see Methods). Increasing or decreasing δinh does not disrupt assembly formation as

can be seen from the comparison of the different graph measures. The modulation parameter

used is η− = 13 and all other parameters are taken as in the main text.

(TIF)

S5 Fig. The network converges to steady firing rates during ongoing plasticity. The differ-

ent curves indicate different external input firing rates and in each case the network converges
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to the same rate as the external input firing rate. The modulation parameter used is η− = 13

and all other parameters are taken as in the main text.

(TIF)

S1 Text. Fourier transform of the second- and third-order cumulants.

(PDF)

S2 Text. Calculation of motif coefficients up to third-order.

(PDF)
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103. Luczak A, Barthó P, Marguet SL, Buzsaki G, Harris KD. Sequential structure of neocortical spontane-

ous activity in vivo. Proc Natl Acad Sci USA. 2007; 104(1):347–352. https://doi.org/10.1073/pnas.

0605643104 PMID: 17185420

104. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP. Spatio-temporal

correlations and visual signalling in a complete neuronal population. Nature. 2008; 454(7207):995–

999. https://doi.org/10.1038/nature07140 PMID: 18650810

105. Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse

code for natural images. Nature. 1996; 381(6583):607–609. https://doi.org/10.1038/381607a0 PMID:

8637596

106. Simoncelli EP, Olhausen BA. Natural Image Statistics and Neural Representation. Annu Rev Neu-

rosci. 2001; 24:1193–1216. https://doi.org/10.1146/annurev.neuro.24.1.1193 PMID: 11520932

107. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolu-

tion. Neural Comp. 1995; 7(6):1129–1159.

108. Intrator N, Cooper LN. Objective function formulation of the BCM theory of visual cortical plasticity: Sta-

tistical connections, stability conditions. Neural Networks. 1992; 5(1):3–17.

109. Blais BS, Intrator N, Shouval H, Cooper L. Receptive field formation in natural scene environments.

Comparison of single-cell learning rules. Neural Comp. 1998; 10(7):1797–1813.
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