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Abstract

Deoxyribonucleic acid nanotechnology utilizes programmable self-assembly for the rational

design of custom-shaped and functional macromolecules. The compact lattice-based

structures designed with DNA origami produce micrometer-sized objects of defined three-

dimensional shape on the megadalton-scale, by weaving a long DNA template strand

together by using hundreds of shorter unique oligonucleotides. These DNA objects are

investigated and experimentally validated in solution using cryogenic electron microscopy,

generating volumetric electron-density data. Here, we address the problem of accurate

structural interpretation of cryogenic electron microscopy maps of DNA nanostructures

with computational data analysis. By developing semi-automated protocols for molecular

dynamics-based pseudo-atomic model building, we enable annotation and contextualization

of the electron density. The established methodology is distributed as an open-source

software bundle that implements supplementary analysis tools. Among other features,

our pseudo-atomic models enable targeted zoning and inspection of isolated design motifs,

structural comparison of design iterations, and reproducible quantification of global object

properties. In addition to facilitating precision analysis of experimental data on DNA

origami objects, we show that the published pseudo-atomic models provide a reference

resource for the validation of structure prediction models. This increase in available pseudo-

atomic model coordinates allows designers to perform iterative base-pair level design

improvement, creating an interdisciplinary positive feedback loop with computational

structure prediction and modeling.
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Introduction

Scaffolded DNA origami [1] enables scientists to design custom-shaped nanostructures up to

the gigadalton scale [2]. Each of the several thousand nucleotides comprising such structures

can be addressed and modified individually. Their placement in the three-dimensional

assembly is encoded by the sequence of the DNA strand and facilitates the placement of

building blocks with nanometer precision. In recent years, the field of DNA nanotechnology

has achieved a significant increase in structural complexity. Also, efficient experimental

protocols for structure validation have been established. These efforts created an ever-

growing pool of available motifs and functionalities. Most current designs are multilayered,

lattice-based, and enhanced with functional motifs and DNA handles to attach to other

macromolecules [3, 4]. These molecules can be placed with Bohr radius resolution at specific

nucleotides [3–5]. Additionally, lattice types of varying compactness are available, each

with distinct benefits and applications. They range from dense, square-lattice layered DNA

origami to the mostly hollow but extremely versatile Wire-frame [6–8] designs. Design

motifs include hinges [9] and rotary axes [10, 11], control over curvature and twist [12],

shape-complementary connection contacts [10, 13], as well as angle- and force- measuring

features [5, 14]. Advancements in the field also include object stabilization by coating [15,

16] the DNA nanostructure and by chemical modifications [17]. These treatments inhibit

denaturation at low salt concentration and nuclease degradation.

Such DNA nanostructures are used in a broad spectrum of research fields, including

structural biology [10, 16, 18–20], therapeutics [3, 13, 21, 22], and plasmonics [23–25]. As

the desired functionalities strongly depend on the specific shape and function of the DNA

origami nano-object, increasing the stability and precision of these assemblies remains an

important objective.

However, the design process of the nanostructures’ overall shape still relies on abstraction

and simplification of the structures’ core components, B-DNA duplexes [26, 27]. Most of

our current knowledge about the structure of helical DNA is based on diffraction data

generated from crystalline DNA [28, 29]. In the context of DNA origami, the flexibility of



these building blocks is represented by the bending rigidity [30] of B-DNA duplexes. Yet,

for large DNA nanostructures in solution deviations from the crystal structure are common

due to the complex interplay of the lattice topology and the individual double-stranded

segments. On a larger scale, for example, the crossover motif deviates from the naturally

occurring Holliday junction configuration as the arms are aligned within the lattice. On

the nucleotide level, the helical rise and twist are dependent on the sequence, affecting the

overall duplex shape. The impact of these irregularities on megadalton DNA objects is

mostly underrepresented in present design concepts.

Acquisition of high-resolution structural data, in conjunction with the development of

high fidelity computational structure prediction of DNA nanostructures, allows analysis

on a level previously unreachable [31–33]. Nucleotide level accuracy in the verification of

nano-objects facilitates the high-precision iterative design of these structures. Until recently,

only little high-resolution electron density data has been available [33], as most cryogenic

electron microscopy volumetric data of DNA nanostructures is reported at comparatively

low resolutions. As part of a cooperative effort comprising this work, we recently published

26 DNA origami structures [32] including electron density data with sub 5 Å local resolution.

Availability of cryogenic electron microscopy, single-particle analysis for objects at resolu-

tions below 10 Å provides insights into the global shape of nanoscale objects [33]. However,

the driving influences on structural flexibility and deviation from the target shape require

the addressability of individual nucleotides. Neither nucleobase sequence, nor the topology

of the macromolecule or its nucleotide identity with respect to the design, are represented by

the electron-density data. In order to quantify the geometric properties of the nano-object,

localization of each of its constituent building blocks within the volumetric is required.

A solution widely applied for proteins is the construction of pseudo-atomic models fitted

into electron density maps [34, 35]. These models present the structural context needed to

interpret local features and provide a link from the intensity values, stored in each voxel of

these datasets, to the geometry and topology of the object they represent.

A similar construction of pseudo-atomic models of DNA origami structures would enable

the development of standardized analysis workflows and comparative structural studies of

high-resolution experimental data. Yet, most DNA origami structures are too large for

most available computational model building tools [36], due to the non-linearly increasing

computational cost with the number of atoms and the size of nanostructures. The first

pseudo-atomic model was published by Bai et al. in 2012, but only one structure [37] has

been deposited since. In their protocol, designs had to be subdivided with each subset

fitted individually and recombined manually, possibly impeding widespread utilization of

the technique. A specialized tool or protocol for fast pseudo-atomic model building for



DNA origami nanostructures did not exist.

The lack of available pseudo-atomic models of DNA origami structures impacts a majority

of computational models, as they are parametrized on limited data [26, 31, 38, 39].

This restriction drastically limits how the predictions made by these models generalize,

reducing their usability. One way to solve this is to expand the pool of available structural

information. Besides the lack of high-resolution data, the effort associated with the original

protocol [33] likely hindered further developments in recent years. Here, we report a

semi-automated protocol to create pseudo-atomic models for DNA origami designs within

24 hours of computing time on a standard desktop computer. The protocol is tailor-made

for megadalton lattice-based DNA nanostructures and implemented as the Python-based

application called dnaFit that includes customizable analysis workflows.

Research Target

In this work, we present a computational technique designed to complement experimental

high-resolution cryogenic electron microscopy data of DNA origami nanostructures with the

context and geometry provided by pseudo-atomic models. We developed a novel modeling

protocol that accounts for the size of our nano-objects and exploits the particularities

of compact lattice-based DNA origami. The generated pseudo-atomic structural data

enriches the electron density data with the annotation of the atomic identities and the

structure of their geometry. The application of this workflow does not require expert

knowledge and is achievable with standard computational resources on the timescale of

hours. The goal of this effort is to investigate and describe the global shape, flexibility,

and inhomogeneity of DNA nanostructures, as well as to enable feature engineering and

validation with nanometer accuracy. We discuss how the availability of pseudo-atomic

models enables performing high-precision iterative design of 3D DNA origami structures on

the sub-nanometer scale. Also, we introduce software tools that facilitate accurate analysis

of the acquired experimental data. Finally, we use the coordinates from the pseudo-atomic

model to validate and improve computational structure prediction models.

Structure of the Thesis

In Chapter 1, theoretical background on the basics of DNA origami nanotechnology and

the structure of crystalline B-DNA is given. This chapter also includes an overview of

pseudo-atomic model building and computational structure prediction of DNA nanostruc-

tures.



4 CONTENTS

In Chapter 2, our protocol Shrink-Wrap Fitting for building pseudo-atomic models is intro-

duced together with the DNA origami model building framework dnaFit that implements

it.

In Chapter 3, we present the zoning and masking tool FitViewer, which uses structural

annotation provided by the pseudo-atomic models to inspect subsets of electron density

data.

In Chapter 4, several models generated using Shrink-Wrap Fitting are analyzed in more

detail. The geometric information presented by atomic coordinates is used to quantify

their geometry and aid in the iterative design process of DNA nanostructures.

In Chapter 5, we compare our high-resolution data to the latest structure prediction

methods in the field of lattice-based DNA origami nanotechnology. The pseudo-atomic

models from the previous chapters serve as validation for the accuracy of these methods.

In Chapter 6, this work concludes with the discussion of the impact of the availability of

pseudo-atomic model construction on the field of DNA nanotechnology.



Chapter 1

Theoretical Background

Throughout this chapter, we describe the theoretical context of computational structure

prediction and pseudo-atomic modeling of DNA origami nanostructures. We first present

the discovery of the atomic structure of B-DNA (Section 1.1.1) and illustrate how its

distinct topological constraints are utilized in the field of DNA origami nanotechnology

(Section 1.1.1). Then, we introduce the imaging technique of single-particle cryogenic

electron microscopy (cryo-EM) and three-dimensional structure reconstruction (Section 1.2).

These methods generate the experimental data discussed throughout this work, both in

terms of exploratory data analysis and validation of theoretical predictions.

Furthermore, we outline the concepts of molecular dynamics (MD) simulation in general

(Section 1.3.1), with a particular focus on coarse graining and computational structure

prediction of DNA origami nanostructures (Section 1.3.2). Lastly, we describe pseudo-

atomic model building for volumetric electron density data of macromolecular structures

centering on the technique of MD flexible fitting

1.1 DNA Nanotechnology

The B-DNA form exhibits a right-handed double-helical structure [40–43] produced by

a quadripartite nucleotide pairing scheme [28, 44]. Under physiological conditions B-

DNA is the prevalent form of DNA [45] and studied extensively for its role in encoding,

replicating, and transmitting hereditary information [46, 47]. In recent years, the stability,

programmability, bio-compatibility, and well-studied tertiary structure of B-DNA have

promoted its repurposing as a construction material for nanotechnology [48]. Here, we

present an atomic-level overview of the topology, structure, and dynamics of the B-DNA

form required for structure validation, prediction, and coarse-grained modeling of DNA



6 CHAPTER 1. THEORETICAL BACKGROUND

nanostructures. We also provide a terse introduction of the technique of DNA origami

used to construct the nano-objects presented throughout this work.

1.1.1 Atomistic Structure of DNA

In the decades after its discovery, with rapid advancements in imaging technology and

crystallography, the atomic structure of double-helical B-DNA (Figure 1.1A) has been

characterized thoroughly [29, 30, 49–51]. This dataset enables the description of a double-

stranded helical DNA segment in terms of its overall properties like the helical pitch,

diameter, and bending rigidity.

Figure 1.1 | Atomic Structure and Topology of B-DNA: (A) Pseudo-atomic structure of
11 bases long B-DNA duplex from the side (left) and along the helical direction (right, top). The
double-helix can be described in terms of its macroscopic parameters [52] (right, bottom). (B)
Structural formula and nomenclature of a DNA strand of the four common bases adenine, guanine,
thymine, and cytosine.

In addition to this macroscopic perspective, the internal structure can be characterized

at the atomic level (Figure 1.1B). The advent of computational physics and force field

modeling [53–56] at the turn of the century and subsequent computational studies helped to

complete the picture [57–60]. Nomenclature and definitions follow an established standard,

referenced in the following from a review by Shing and Carter [52].

Each DNA strand is composed of a series of four common nucleobases (adenine, guanine,

thymine, and cytosine) connected by the negatively charged sugar-phosphate backbone. In

general atoms of the backbone are differentiated from the nucleobase by denotation with

an apostrophe “prime” after the atom name, which follows the standard numbering scheme.
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Numbering for the sugar starts with the carbon that connects nucleobase and backbone,

while nucleobases start numbering at the nitrogen of the pyrimidine ring. Directionality of

the strand can be determined by the carbon atoms of the backbone, with the standard

being established as C5’ to C3’ “5prime-3prime”.

Figure 1.2 | Nucleotide-Level Structure of B-DNA: (A) Structure formula including atomic
nomenclature of the two canonical purine (R) — pyrimidine (Y) base-pairs. The pairs interact by
forming up to three intermolecular hydrogen bonds. The orientation of the individual nucleotides
determines the grooving of the helix, with the major groove located opposite the deoxyribose. (B)
The conformation of the individual nucleotide is mostly determined by the six dihedral angles
of the sugar-phosphate backbone and the sugar-base axis. (C-F) The structure of B-DNA is
characterized by six base-pair (C), four base-pair helical (D), and six base-step (E) properties based
on a standardized reference frame (F). Adopted from [61].

While forming a double-stranded helix, the two strands interact via hydrogen bonding and

π − π orbital stacking of the nucleobases. The orbital stacking is most important for the

stability of the helix [62, 63].
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For B-DNA only two distinct combinations of one purine (R) and one pyrimidine (Y) are

accessible, with the cytosine-guanine pair forming three hydrogen bonds and the adenine-

thymine pair two (Figure 1.1A). The angle formed by these duplexes causes grooving of

the helix with the minor groove being at the side of the C1’ sugar carbon. With the

nucleobases being planar, the nucleotide conformation is defined by six dihedral angels along

the backbone and one at the attachment site of the nucleobase with the C1’ atom of the

deoxyribose (Figure 1.1B). Deviations from the planar arrangement of the nucleobase-pair

are the second important parameter set that defines the helical conformation. These degrees

of freedom have been combined into a distinct set of observables for both the base-pair and

base-pair steps (Figure 1.1C). Originally perceived on a macroscopic level these properties

are also defined in terms of standardized atomic coordinate reference frame [64, 65].

The study of the sequence dependence of these parameters [59, 66–72] and their correlation

with deviations in the dihedral angels [58, 73, 74] remain active fields of research. The

adequate modeling presents a challenge for atomic-level force fields [75] for MD simulations

as well as coarse-grained modeling [39, 76].

1.1.2 Megadalton Lattice-Based DNA Origami

The programmability of reverse complementary base-pairing, combined with the stability

and relative rigidity of the double helix provides the foundation for modern DNA nanotech-

nology. The flexibility of the DNA backbone facilitates the design of topological motifs that

help connect double-stranded building blocks. Importantly, these connective patterns must

not result in structural weak points. Inspired by nature, Ned Seeman pioneered the field in

the 1980s when he repurposed the Holliday crossover motif [77] as a junction to connect

multiple double-stranded DNA segments in two-dimensional arrays.[48, 78]. The helical

segments, with a persistence length of 450 to 500 Å in a solution of medium to high ionic

strength [30], form the building blocks for DNA nano-objects. The crossover connects this

individual blocks (Figure 1.3A). The sequence specificity of complementary base-pairing

enables chemical addressable self-assembly of artificial structure designs. In 2006, the

method of DNA Origami was established by Paul Rothemund [1], when he created discrete

structures containing up to half a million atoms by using a several thousand nucleotides

long DNA strand (scaffold) that was folded into its tertiary structure by forming crossover

with several shorter DNA strands. These shorter oligonucleotides (staples) are composed

of sections with reverse-complementary sequences of different parts of the scaffold. On

assembly, they “staple” the scaffold to form the outlined nanostructure. Figure 1.3B

shows an exemplary design of the Twisttower object [32] with its scaffold folding topology

(Figure 1.3C).
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Figure 1.3 | DNA Origami. (A) The helical crossover motif of the Holliday junction connects
two double-stranded helices with strand-swap. The connecting oligonucleotides (blue) contain
partially reverse-complementary sequences with each continuous oligonucleotide (orange) causing
the formation of a helix duplex. (B) Combination of multiple junctions organized within a lattice
enables the design of megadalton DNA complexes. The Twisttower object combines 4 domains of
the varying cross-section in square-lattice. (C) To form a DNA origami nanostructure the scaffold
strand is routed through the full structures. During self-assembly, it is folded into the programmed
shape via the designed topology. (D) Experimental cryo-EM electron density data of the Twisttower
Native Twist. Figure panels (B) to (D) adopted from F. Kohler [79].

A more recent study [80] further solidified the suitability of the Holliday motif as the main

junction motif in DNA nanotechnology. Their analysis of X-ray crystallography electron

density data reveals only minor perturbations to duplex stability and solvent interaction

at the junction compared to a regular duplex. The main conformational changes occurred

in the torsional angles in the backbone, with the ξ-dihedral of the sugar-base connection

(C1’-N1(Y)/N9(R)) switching from its syn- to anti-conformation and the β-dihedral of

phosphate-sugar connection (O5’-C5’) flipping around nearly completely. These two

deviations in two successive nucleotides are sufficient to generate the extension and turn

required to form the junction.

The use of three-dimensional lattices enables expanding the crossover network to form

multilayered DNA origami structure [12, 26, 27, 81, 82] and triangulation-based wireframe

DNA origami [6, 83, 84]. The techniques and protocols have since been optimized to

allow more control over the self-assembly [85–88], increased stability against low salt and

degradation [15, 17, 89], and mass production [90] of structures of ever-increasing size [2].

Development of custom scaffold sequences of multiple thousand nucleotides in length [91,

92] facilitates addressability of every single subdomain of the structure.
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Application of DNA nanostructure range from macromolecular measuring instruments [5,

14, 37, 93] and preliminary stages of molecular machinery [10, 16, 18, 19] to biomedical

utilization for drug delivery and vaccination [3, 13, 21, 22].

1.2 High Resolution Volumetric Cryogenic Electron Mi-

croscopy Data

Throughout this work, we evaluate and discuss volumetric electron density data obtained

from cryogenic electron microscopy (cryo-EM). We use computational modeling (Chapter 2)

to enrich the unstructured data with topological and positional information (Chapter 3),

that allows structural evaluation and data mining (Chapter 4). We also utilize the

experimental electron densities as the primary validation source for computational structure

prediction (Chapter 5). Limitations and challenges associated with the generation of these

datasets play an essential role in computational structure validation and prediction.

To add context to this data source, we give a brief overview of the fundamental principles of

single-particle cryo-EM. State-of-the-art methodology for data processing of heterogeneous

systems and challenges associated with imaging of megadalton DNA nanostructures are

introduced. For a general introduction to electron microscopy, we recommend the book

by J. Frank [94], which also serves as the main resource for this section. Publications

associated with the REgularized LIkelihood OptimizatioN (RELION) software suite by

S.H.W. Scheres and coworkers [95–100] represent the leading-edge of single-article analysis

(SPA) research.

The overall dimensions of DNA origami nano-objects are typically around 30 nm (Pointer

Version 1 32×26×44 nm) [33]. In contrast, important structural features are discernible

only at the nucleotide level. To investigate the correct base-pair formation and local

structure of the duplex, imaging at resolutions in the ångström-range are necessary, with

the helical minor groove visible at around 12 Å or better [29]. Modern electron microscopy

setups reach resolutions of up to 1.22 Å [100, 101]. While the theoretical resolution limit of

the accelerated electron beam is defined by its small wavelength, experimental constraints

of sample preparation and the lens/aperture setup of the microscope are the predominant

limiting factors. Currently, the best-reported resolution for DNA origami nanostructures is

4.3 Å [32], with the biggest obstacle being the large heterogeneity of the imaged ensemble.

To avoid deformation of the structures during imaging and properly represent their native

conformation in thermal equilibrium, they are vitrified in amorphous ice by freezing a

thin layer of nano-objects in an aqueous solution in liquid ethane. The support grids that
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contain these samples during the freezing are maintained at low temperatures for use in a

cryogenic electron microscope. Besides properly preserving the native ensemble, cryogenic

electron microscopy (cryo-EM) increases the resolution by direct imaging of the structures

at a random orientation within the thin layer of ice.

In the microscope, a focused electron beam is scattered on the sample and collected at a

detector plane. The scattering causes a phase shift ϕ(r) of the electron wave ψ(r) which is

dependent on the sample’s Coulomb potential V .

ψ(r) = ψ0 exp [iϕ(r)], with ϕ(r) =

∫
V (x, y, z)dz (1.1)

At the electron detector, the intensity distribution of the electron wave ψ(r) induces a

signal from which the image of the sample can be derived. However, this signal and

thereby the resolution of the final image are impaired as the electron wave is obstructed by

apertures and distorted lens aberrations.

Each image generated by transmission electron microscopy represents a projection of the

Coulomb potential of the sample perpendicular to the imaging plane. For the analysis of

multilayer DNA origami nanostructures, the information provided by a single projection is

insufficient. However, a combination of multiple projections of an object can be utilized

to derive its three-dimensional structure via the central-slice theorem [102]. Besides the

resolution of each image, the overall resolution of this 3D reconstruction is dependent on

the number of projections and their angular distribution. In general, more images and a

more uniform orientation distribution result in a higher resolution of the reconstruction.

When imaging bio-molecular materials like DNA constructs, the sample gets destroyed

by the electron beam. Consequently, individual images come from different particles

instead of one unique structure. In single-particle analysis with cryo-EM (SPA) numerous

individual images are taken and collected to represent the native ensemble of the sample.

The homogeneity of the sample is a major limitation for high resolution in SPA with strong

deviations reducing the overall resolution. To counteract this effect sample preparation

is highly optimized and multiple rounds of image classifications are performed on the

projections. Only particles classified to represent similar configurations are used for the 3D

reconstruction, while incomplete or deformed particles are excluded. Due to the one-pot

self-assembly production of the DNA origami method [86], large numbers of individual
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particles can be imaged in a single session. This approach, combined with the extensive

particle classification allows mitigation of the sample inhomogeneity to a certain extent.

Additionally, a good orientation distribution of the set of projections is achieved by

plunge-freezing and cryogenic imaging.

Despite the advantages listed above, DNA origami objects have yet to reach resolutions

close to SPA of protein [100] or X-ray crystallography of DNA crystals [103]. In contrast

to these examples, scaffolded DNA origami nanostructures, composed of several thousand

nucleotides, suffers two disadvantage. First, homogeneity is reduced by structural defects, as

individual particles are compact and stable even without every single staple oligonucleotide

present. Unbound nucleotides or synthesis defects like point mutations and terminal base

deletions might further decrease sample uniformity. Second, DNA origami objects exhibit a

large degree of internal motion due to their size and are often designed to occupy different

conformations. In the case of hinge- or joint-like structural elements, the relative motion is

a feature of the structure. However, the flexibility of the DNA duplex and the degrees of

freedom of the Holliday junction allows for relative motion within the lattice. In Figure 1.3D

the effect of domain motions within the same DNA origami design is most apparent in the

reconstruction of the 2×2 domain which is hardly visible. Since regular SPA aligns the

structure by the biggest overlap, the signal of the flexible 2×2 domain gets smeared most,

significantly reducing the local resolution of this part of the nano-object and likewise the

overall resolution. Although not completely disjoint sub-parts of the structure, the varying

relative orientations of the four domains represent different overall conformations.

These different conformations of individual particles can be resolved with the multi-body

refinement technique [99]. With this technique, the signal of individual domains is picked

apart and reconstructed separately. The approach not only increases the overall resolution

of the individual domain but is also capable of representing the relative motions of these

domains. A similar technique called focused refinement [32] has been shown to mitigate

the effect of lattice breathing motions of multilayer DNA origami and alignment artifacts.

1.3 Prediction & Validation of DNA Nanostructures

This section covers the principles of Molecular Dynamics simulation [104] and its utilization

for structure prediction using all-atom as well as coarse-grained representation of DNA

nanostructures. We also introduce the technique of MD flexible fitting, an MD-based

approach for building pseudo-atomic models for experimental electron density data of

macromolecules. For an extensive introduction the reader might refer to the books of
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Rapaport [105], and Frenkel & Smit [106], which also serve as the main reference for this

section.

1.3.1 Introduction Molecular Dynamics

A Molecular Dynamics simulation (MD) corresponds to the computation of the trajectory

of a classical many-particle system using a discrete time step. The trajectory is generated

by iteratively solving the equations of motion at every successive time step. By analyzing

this time evolution a collection of thermodynamic properties and structural observables

of the ensemble can be computed. Solving the equations of motion requires the position,

velocity, and acceleration of each particle in the system. The forces responsible for their

change are the result of a potential generated by various types of interaction between the

particles in the system, coupling the motion of one particle to the motion of all others.

Within the Born-Oppenheimer approximation the Equations of Motion (EOM) for a

classical system with N particles are:

ṙi =
pi

mi

ṗi = −∇riV = Fi,
(1.2)

with the force Fi exerted on particle i, the particle’s position ri and its momentum pi. The

system of 6N first order differential equations is coupled by the gradient of the potential

energy V. In an MD simulation, these equations are solved numerically in discrete time

intervals ∆t, computing the trajectory of the system. To propagate particle positions and

velocities the forces acting on each particle are determined at each time step by evaluating

their potential energy. In the case of an ergodic system, this time-evolution will adequately

sample all its accessible microstates. The fundamental postulate of statistical mechanics

states the equal probability of any microstate of an isolated system. Following these

propositions leads to the ergodic hypothesis: The temporal average Āt of a trajectory

equals the ensemble average ⟨A⟩ of the macrostate for any observable A(rN,pN).

lim
t→∞

1

t

∫ t

0
dτA(rN(τ),pN(τ)) =

∫
drNdpNf(rN,pN)A(rN,pN)

Āt = ⟨A⟩,
(1.3)

with probability density f(rN,pN) of the microstates (rN,pN).
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However, numerically computation of the EOM is generally Ljapunov instable, meaning

an exponentially increasing error propagation [107]. Consequently, numerically computed

trajectories do not correspond to the real trajectories of a particle due to the finite

accuracy of computer hardware and integration algorithms. The longer a trajectory

becomes, the larger the deviation between computed and real microstate gets. Fortunately,

MD simulation focus on the accurate sampling of a macrostate rather than a singular

trajectory [108]. It is possible to show, that for the group of symplectic algorithms the

probability density function of such a trajectory only deviates by O(∆tn), where n is the

order if the integration algorithm. The use of such an algorithm hence guarantees accurate

sampling of the ensemble.

With the calculation of forces being the computational most expensive at O(N2) for a

system of N interaction sites, algorithms that require fewer evaluations of the interaction

potentials are generally preferred. The 2nd-order velocity Verlet [109], a self-starting and

memory-efficient variant of Størmer-Verlet [110] algorithm.

r(t+∆t) = r(t) + v(t)∆t+
F(t)

2m
∆t2 +O(∆t3)

v(t+∆t) = v(t) +
F(t) + F(t+∆t)

2m
∆t+O(∆t2)

(1.4)

The velocity Verlet algorithm is symplectic and can be derived by combining the regular

and time-reversed Taylor expansion of the position. Despite its accuracy of only 2nd-order,

it is one of the most popular integration algorithms for MD since it allows proper sampling

of the equilibrium ensemble of bigger systems.

The forces exerted on interaction centers during an MD simulated are determined by

interaction potentials. The collection of different interaction potentials present in a

system is called its force field. Similar to the choice of integration algorithm, the devel-

opment of these force fields is focused on maximizing computational efficiency without

compromising the accuracy of the modeled physical interaction. Their functional form

is often derived from theoretical considerations or modeled from experimental data or

Quantum Chemistry simulations. In general, interaction potentials with exponential

terms, square roots, and trigonometric functions are avoided as modern hardware is highly

optimized for addition and multiplication. One example is the regular use of harmonic

oscillators to model covalent bonds. Their evaluation requires only one addition and

two multiplications while representing the bond reasonably well and only requiring two

parameters. Another common example is the Lennard-Jones 12–6 intermolecular pair
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potential [111, 112]. It models short range Pauli repulsion via a − 1
r12

term and long-ranged

attraction of dispersion forces by a 1
r6

term. Notably, only the attractive part is based

on theoretical considerations of London dispersion forces, while the repulsive part has

been chosen for computational efficiency. For the particular case of DNA several iterations

of force fields have been published [53–56, 59, 113, 114], with CHARMM:36 [75] and

AMBER:OL15 [115] most commonly used today. The choice of a particular force field

might depend on both the specific system studied along with the simulation framework used.

The general scheme for any simulation framework can be separated into several main

components, represented in Algorithm 1. First, the system has to be initialized, including

allocation of memory and parsing of initial conformation, simulation parameters, and force

field specifications. Simulation parameters include among others the time step ∆t and

the number of iteration steps M to be executed. For each of the M iterations, forces for

the current conformation are computed according to the force field. Next, the trajectory

comprising position and velocity data of the system are propagated to t+∆t by solving

the EOM using a finite difference integration algorithm. Lastly, thermodynamic averages,

like temperature and pressure, have to be updated according to the conformation of the

system at the subsequent time step. Simulations presented in this work are performed in

the canonical ensemble, with the temperature being controlled by coupling the system by

the first-order response of a thermostat.

Algorithm 1: Basic MD structure

Input: simulation parameters: ∆t, M, N

Initialization();
for M steps do

forces = compute forces();
trajectory += integrate EOM( ∆t, forces, integrator);

[] averages = update averages();

end
return trajectory, averages

To further increase the performance of any MD simulation several tricks are employed

throughout the main loop. For instance, interactions are usually only evaluated for

interaction pairs that are in reasonable proximity. Appropriate cutoff distances are strongly

dependent on the functional form of the interaction potential and require either a negligible

contribution beyond the cutoff or an analytical long-range correction term. The utilization

of neighbor-lists [110] that track potential interaction pairs for several time steps combined

with these interaction cutoffs helps reduce the computational cost significantly.
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Finally, initial configurations are often derived from crystal structures or equilibrium

conformations of a similar macro state. MD simulations therefore usually start in a

thermally excited state and have to be relaxed first. Several computational schemes have

been developed to efficiently reach thermodynamic equilibrium, the DNA origami-specific

example mrDNA [116] is described in more detail in the next subsection. Trajectories

and thermodynamic averages computed throughout this process of relaxation are usually

discarded as they do not sample microstates of the correct ensemble.

1.3.2 Computational Structure Prediction

During the design process of multilayer DNA origami nanostructures, the topology of a

structure is generated based on an idealized crystal lattice toy model [86]. To ensure the

stability of a nano-object, helices have to be sufficiently connected to helical neighbors

via a strand-swap crossover. The choice of a specific subset of connections from the pool

of possible connections between a helix pair determines whether all subdomains of the

object are adequately stabilized. Apart from these topological requirements for the overall

structure of a DNA origami design, the abstraction level of the origami lattice causes

deviations from the true shape of experimentally validated DNA complexes. The model for

double-stranded B-DNA used in these lattices requires the discretization of double-helical

segments into simplified building blocks. Generally, 21 base-pair building blocks comprise

two full helical turns in the lattice, with discontinuities in the backbone due to nick

sites or Holliday junctions treated structurally equivalent to fully double-stranded DNA

segments. Not considered in the model are slight dissimilarities in helical pitch along

with the position of the backbone as influenced by helical grooving. The placement of

crossover motifs forms the core element of the topological connectivity of neighboring

helices, thereby introducing internal stresses and torques. Moreover, short staple-segments

might not be stable enough under experimental conditions and never form the duplex

intended by the designed topology. The staple-segment distribution and staple-breaking

rules [85] also have a strong influence on self-assembly. These effects can lead to both local

and global deformations of the nanostructure, requiring an iterative refinement workflow

for the design of DNA origami nanostructures.

Throughout the iterative development process, designers use experimental and computa-

tional measures to validate or detect issues with their design and update the topology

accordingly. While experimental methods like gel-electrophoresis and electron microscopy

are indispensable as a final means of validation, they are also time-consuming and expensive.

Computational structure prediction is fast and considerably less expensive. It can provide
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insights into several of the issues listed above throughout the design process. Additionally,

the visualization provided by the prediction itself might help guide the design process of

the macromolecule.

The trajectory of an MD simulation can be used to compute a variety of average quantities

that can be a great resource in assessing a design. While the trajectory itself might not

represent the real time-evolution of a single particle, it generates an ensemble of viable

configurations for the specific model. This set of data points can be used to compute

the average structure and quantify the root-mean-square fluctuation of individual parts

around this average. Analysis of this data enables quantifying the overall dimensions and

shape and provides a visualization of the phase space available to the structure. If the

structure can populate several distinct conformations or exhibits strong domain motions,

the trajectory can supplement additional context to the DNA origami design process.

Coarse Grained DNA Models

With up to 5 · 106 atoms for typical multilayer DNA origami, all-atom MD simulations

remain at the limit of modern hardware [31]. This is especially true for slow domain motions

or solvent interaction, due to the required timescale or the number of solvent molecules,

respectively. However, most nanostructure designs do not require atom-level resolution

to validate design goals. By reducing the number of interaction sites the computational

cost of a simulation can be reduced significantly. This process, called coarse-graining,

defines interaction centers that combine the properties of groups of atoms, with specifically

tailored interaction potentials to phenomenologically represent the system. Importantly,

the coarseness of the model is balanced with its predictive power, with a finer model able

to simulate more intricate effects.

Here, we give a brief overview of the most popular coarse-grained structure prediction

models for DNA origami nanostructures, listed from finest to coarsest.

Elastic Network-Guided Molecular Dynamics

The coarse-graining procedure does not necessarily need to be carried out on the molecule

of interest itself. For Elastic Network-Guided Molecular Dynamics (enrgMD) [31] it

is the atoms of the solvent and their effect on the DNA origami that is reduced to a

phenomenological representation. While maintaining an all-atom representation of the

DNA strands, a network of elastic bonds replaces the solvent 1.4A. The purpose and

benefits of the elastic network are multifold. Firstly, this implicit treatment of the solvent

reduces the computational cost by several orders of magnitude, by removing the necessity
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Figure 1.4 | Coarse-Graining of DNA origami nanostructure simulation: (A) For
enrgMD, the solvent molecules are replaced with a network of elastic bonds, while the molecules
of the DNA nano-object retain their atomic level representation. Adopted from [31]. (B) In the
oxDNA model a nucleotide is represented with one interaction site located at the nucleobase and
another one on the backbone. Adopted from [117]. (C) Gradual increase of granularity by increasing
the number of interaction sites of a mrDNA relaxation. Adopted from [116]. (D) Structural motif
classification of SNUPI. Adopted from [39].

to explicitly solve the EOM of the water and salt molecules as well as their contribution

to the potential energy of the DNA strands. Secondly, harmonic bonds inside the DNA

duplex stabilize its structure and prevent the dissociation of base-pairs by mimicking the

effect of the solvent. Thirdly, elastic interactions between helices that are adjacent in the

origami lattice emulate long-range electrostatics, as the repulsion of the DNA backbones

is not entirely shielded by the solvent. Since these long-range effects are covered by the

network, a smaller cutoff can be used for the computation of the interaction term. Finally,

the increased stability of the tertiary structure of the DNA nano-object facilitates the

choice of a larger time-step for the integration operator. These faster dynamics enable

better relaxation and improved sampling of the equilibrium ensemble.

To produce accurate predictions of these effects the elastic model was parametrized using

a single explicit solvent all-atom simulation of the Pointer Version 1 object [33] and

validates against the pseudo-atomic model of its cryo-EM data. The parameter-set of the

network for the Pointer Version 1 object generalizes well to simulations of other structures.

This enables fast structure prediction without compromising accuracy, with a cumulative

speedup of four orders of magnitude [31] compared to explicit solvent MD.
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oxDNA Model

In the oxDNA model [118] each nucleotide of a DNA strand is represented by two interaction

centers. The inner site is located at the position of the nucleobase with interaction terms

for base-pairing and base-stacking. The outer site models the backbone with connectivity

within the strand and electrostatic repulsion of the negatively charged phosphate group.

In its updated version [76], the oxDNA potential is composed of a total of eight interaction

terms, with three targeting next-bonded neighbors and five targeting non-bonded pairs:

V =
∑
n.n.

(
Vbb + Vstack + V ′

exc

)
+

∑
pairs

(Vpair + Vcross−stack + Vcoax−stack + VDH + Vexc)
(1.5)

The backbone connection of bonded neighbors Vbb is modeled using a finitely extensible

nonlinear elastic spring. Hydrogen bonding of complementary nucleobases, Vpair orbital

π− π stacking of adjacent bases within a strand Vstack, coaxial stacking of non-neighboring

bases Vcoax−stack and cross-stacking between base-paired neighbors Vcross−stack enable

prediction of the structural features of a DNA duplex. Helical grooving is achieved by

tuning the angle between the hydrogen-bonding and stacking site with the slightly offset

backbone site. Volume-exclusion terms for neighbors V ′
exc and non-bonded pairs Vexc

prohibit steric clashes. The electrostatic interaction VDH of the backbone is based on the

Debye-Hückel model. This electrostatic potential adds temperature- T and salt-dependence

I to the coulomb potential using the Debye screening length λD:

λD(I, T ) =

√
ϵ0ϵrkBT

2NAe2I
, (1.6)

with the vacuum permittivity ϵ0, the relative permittivity of water ϵr = 80, Avogadro’s

number NA, Boltzmann’s constant kB, and elementary charge e.

Accurate modeling of the backbone repulsion is particularly important for DNA origami

nanotechnology, where solutions of high ionic strength are required to allow compact

packing of multiple helices within the lattice.

As discussed in the previous Section 1.3, interaction potentials are chosen for their functional

form to reproduce an experimentally observed or theoretically predicted effect. Exemplarily,

the stacking potential Vstack of adjacent bases, which is essential for duplex-formation, is

implemented using a Morse potential of the form:
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Vstack(r) = ϵ ·
(
1− e−a·(r−σ)

)2
, (1.7)

with r the distance. The three tunable parameters a, ϵ, and σ affect width, height and

position of the potential well. Notably, the Morse potential contains an exponential term but

is considered more accurate for diatomic bond modeling than the Lennard-Jones potential.

A potential of the same form is used for the sequence-dependent hydrogen-bonding Vpair.

In contrast to a harmonic bond, the Morse potential allows for bond breaking, enabling

bases to hybridize and stack dynamically.

The oxDNA model reduced the number of interaction sites by a factor of roughly 15 for

DNA and treats salt-dependent electrostatic screening of the solvent implicitly. Compared

to all-atom MD simulations this drastically reduces the computational cost, allowing for

structure predictions of DNA origami with up to 10,000 base-pairs within a couple of hours.

The code for oxDNA is implemented in C++ [38, 119] and parallelized for GPU [120].

Several complementary software and web services for simulation (tacoxDNA [121]) and

analysis (oxView [122]) of DNA nanostructures are available. Initial models for simulation

of DNA origami can be generated directly from the caDNAno strand diagram and the

strand sequences. Adaptation of the model has led to the development of the compatible

models oxRNA [123, 124] for RNA and an anisotropic network model for equilibrium

fluctuations of protein components [122].

Multi-Resolution DNA Simulation Framework

Besides the simulation of the dynamics of a system and the proper sampling of the accessible

phase-space, significant resources need to be expended on the preparation of a valid starting

configuration in thermal equilibrium. Relaxation of structures that can only be prepared far

away from valid configuration is particularly computationally intensive and might require

several steps of manual intervention. For instance, the prediction of a DNA origami object

with a corner motif (two lattice-based subdomains fused at an angle) requires pre-alignment

of the two subdomains and careful relaxation of bonds in the corner region. This holds

for both enrgMD and oxDNA, with oxView providing specialized alignment tools. A

similar situation occurs for designs that deviate strongly from the lattice, such as highly

curved structures. These situations cannot be resolved by pre-alignment and require long

relaxation runs.

However, in the early stages of relaxation towards a viable solution structure hardly any

detail is necessary. With the Multi-Resolution DNA Simulation Framework (mrDNA) [116]
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this instance is exploited by computing several coarse lattice-based DNA origami models of

varying granularity. Each model can be converted into the adjacent layers of abstraction.

This facilitates, among other protocols, the creation of a fast relaxation pipeline.

The mrDNA framework is based on the Atomic Resolution Brownian Dynamics [125] bead

model (ARBD). At its coarsest stage, multiple base-pairs are represented by a single bead

with limited interaction potentials. As the simulation progresses the granularity of the

model is increased by introducing more beads, while also increasing the complexity of their

interactions. For relaxation to thermal equilibrium, the model becomes less coarse with

each successive stage (Figure 1.4C).

The ARBD bead model is optimized for GPU and can generate both oxDNA and enrgMD

simulation files. Due to the coarseness of the initial stages and the flexibility of the

framework, nearly all DNA origami designs can be efficiently and accurately relaxed, even

without requiring manual intervention. This approach drastically reduces the computational

cost and enables the relaxation of designs that would not relax reasonably well in oxDNA

or enrgMD alone. Additionally, the framework is developed open-source in Python making

it highly customizable. It also enables the study of the dynamics of DNA nanostructures

in the presence of electric fields and other conditions.

Finite Elements Structure Prediction of DNA Origami

An alternative to MD simulation is the computational prediction by a structural finite ele-

ment (FE) model tailored to lattice-based DNA origami nanostructures. While potentially

not as accurate as the previously introduced techniques, FE allows the incorporation of

sequence-dependent properties and geometries of structural motifs typical for DNA origami

nano-objects into a comparatively coarse model. These models are therefore valuable tools

for fast prototyping, iterative design, and structure prediction.

For SNUPI (Structured NUcleic acids Programming Interface) [39] and its predecessor

CanDo [26, 126, 127], the DNA object is divided into base-pair steps which are differentiated

by the type of motif they represent. In the case of SNUPI these are regular and nicked

base-pair steps, various types of crossover motifs, and single-stranded DNA (Figure 1.4D).

Each motif is further discriminated by sequence, constituting the complete set of available

elements. The parametrization of the relative geometries of these elements and their

structural properties are derived from MD simulations and compared to experimental data.

By implementing a partition & relocation framework [128], SNUPI is capable of predicting

the shape of multidomain DNA origami and DNA Wireframe structures. The structure
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prediction with the FE approach can be computed on the timescale of a few minutes on

standard hardware.

1.3.3 Pseudo-Atomic Model Building

Electron density distributions of macro-molecules measured by cryo-EM or X-ray crys-

tallography are volumetric data sets, that do not explicitly contain any categorization

or annotation. Building a Pseudo-Atomic Model (PAM) is a means to enrich this data

with topological and positional information, along with insights about its constituting

molecules. The resulting structures can be used for exploratory data analysis [129] and the

investigation of their physical properties [34, 35, 130].

Historically, quantitative rigid-body docking [131–137] of models into low- to mid-resolution

electron density data was used to determine solution structures. However, the inherent

flexibility of larger molecular complexes required the development of a more proficient

methodology [138]. By division into rigid units, flexible rearrangement [36, 139], conforma-

tional sampling [140] and deformations [141, 142] of the model enables better overall PAMs.

The main drawback of these approaches is the introduction of ambiguity by the choice of

subunits and the potential creation of nonphysical conformations. These can occur by the

neglecting internal flexibility of the individual domains and coordinated domain motions of

the system.

A possible solution for these challenges is the inclusion of MD simulations within the fitting

process [130, 143]. For these methods, all atoms of the model are steered by a biasing

potential to refine and improve the alignment of the PAM and the electron density data.

Since the properties and dynamics of the full structure are described by the MD simulation,

nonphysical results can be avoided. The designation of rigid elements is no longer required

and conformational changes are governed by the interaction potentials of the MD force

field. Full flexibility of the macromolecule comes at the expense of increased computational

cost associated with the MD simulation but is indispensable, especially at higher resolutions.

A significant benefit of a fitting approach based on a biased MD simulation is the inde-

pendence of its success rate from the size of the system. The introduction of the steering

potential [144], does not significantly increase the computational complexity of the simula-

tion and the optimization of the structure is performed locally for each atom. Contrary, the

global optimization criterion of rigid body-docking and stochastic optimization increases

with the number of degrees of freedom in the system[130].
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This property of MD-based model building is especially important for the field of DNA

nanotechnology as structures are often on the megadalton scale. Additionally, high-

resolution cryo-EM of DNA origami nano-objects has revealed strong internal motion

and deformation within the origami lattice. The internal degrees of freedom, without

the presence of distinctly identifiable subdomains, make conventional fitting techniques

unsuitable.

Molecular Dynamics Flexible Fitting

Molecular Dynamics Flexible Fitting (MDff) was originally developed by the group of

Klaus Schulten in 2008 [130] and remains a key technique for atomic model building. Many

advanced protocols [138, 145–149] are based on its fundamental principles. At its core,

MDff is a steered MD simulation [144, 150] with a grid-based potential [151] that is based

on experimental cryo-EM data (compare Figure 1.5A). Since electron density data are

stored as a volumetric data set, no experimental information is lost during the computation

of the grid.

Figure 1.5 | MD flexible fitting: (A) Cryo-EM data of the ribosome at an overall resolution of
6.7 Å [152] depicted via an iso-surface. The plane represents an arbitrary 2D slice of the volumetric
dataset. (B) Representation of the grid-based potential generated from the slice depicted in A.
Colors depict the strength of the potential, with intensities colored by a rainbow palette. Small
arrows indicate the direction and strength of the resulting forces at each grid point. (C) Initial
configuration (top) and final result (bottom) of MD flexible fitting of acetyl-CoA synthase (PDB
1OAO) of the ribosome data presented in (A). (D) Cascade of six cryo-EM maps of the acetyl-CoA
synthase with increasing resolution. Overall resolution ranges from 20 Å (left) to 5 Å (right). Maps
were generated from atomic coordinates of (PDB 1OAO) using ChimeraX. (A-B) adapted from [145],
(C) from [130].



24 CHAPTER 1. THEORETICAL BACKGROUND

Acquired by cryo-EM, the volumetric data represents the electron distribution of the

macromolecule and solvent. While the contribution of the bulk solvent is smeared by SPA,

high-intensity regions of the volumetric data represent the Coulomb potential Φ(r) of the

macromolecule. Its contribution to the potential energy U(EM) can be defined as:

U(EM) =
N∑
j

wj


ζ

[
1−

Φ(rj)− Φ(thr)

Φ(max) − Φ(thr)

]
if Φ(rj) ≤ Φ(thr),

ζ else.

(1.8)

The total potential collects contributions of all N atomic coordinates rj of the system,

with the weight wj accounting for the type of atom — usually via the atomic mass. Signal

not corresponding to the target molecule are neglected using the threshold value Φ(thr)

and subsequently normalized using the maximum value of the electron density data. The

difference-term reveals the nature of the potential as attractive towards high-intensity

regions, as shown in Figure 1.5B. Consequently, atoms will drift such that they match the

cryo-EM signal as much as permitted by the MD force field (Figure 1.5C).

The scaling factor (ζ > 0) tunes the strength of the resulting force globally, while wj

modulates it on a per-atom bases. The choice of the proper scaling factor requires a balance

of fitting success with a stable trajectory and prevention of overfitting. Strong accelerations

of single atoms caused by large values of ζ might cause a crash of the MD simulation and

potentially force a nonphysical conformation. The grid-force potential must not exceed

values that distorted the macromolecule beyond the boundaries provided by the MD force

field.

An additional measure against overfitting [153] is the use of artificial restraints that

preserve the stereochemical quality of the system. Typically, dihedral angle constraints

and harmonic restraints for hydrogen-bonded atoms are used early in the fitting procedure.

Once approaching the target conformation, the restraints can be released for domains with

sufficiently high electron density resolution. Other techniques like simulated annealing are

also employed to overcome the energy barriers of local minima. Multi-step protocols, that

combine these different methods are commonly developed based on the characteristics of

the targeted macromolecules.

Generally, the MDff technique is extremely versatile and adaptable. In addition to the

compilation of different sets of restraints and simulation parameters, flexible fitting can

be performed for only a subset of atoms in the system. Hydrogen atoms for instance are

generally omitted from interaction with the grid-based potential as their contribution to
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the solution structure is negligible. This is possible because the optimization of MDff is

performed locally, due to the sole dependence of the grid-force term on the gradient at the

particular grid point. The fitting procedure can therefore be applied for any component of

the molecule while maintaining the complete topological context of the complete system.

Quality Assessment of Pseudo-Atomic Models

Most use cases of PAM building and flexible fitting revolve around the model building for

previously characterized structures or conformations. For these structures, all components of

the molecule and their topology are known, facilitating quantitative comparison of previously

constructed models. However, assessment of the quality of the solution conformation is

impeded by the data type of the volumetric electron density and its inherently noisy signal.

The most commonly reported metric is the so-called global cross-correlation coefficient of

model and cryo-EM data. Here, an artificial electron density map is simulated based on the

PAM [154] and computed at the same voxel grid and overall resolution of the experimental

data. The final metric is the Pearson’s correlation coefficient over all voxels of the pair of

experimental and artificial datasets. The term global refers to the complete set of voxels

being used for the computation.

Since the global coefficient depends on all voxels of the experimental data, the background

signal of the bulk solvent and noise also contribute to the overall value. Yet, the size of

the volume box is specified by the electron microscopist, with larger volumes arbitrarily

inflating the correlation metric. To mitigate this effect and more accurately assess the

qualify of the fit, different measures for local cross-correlation coefficient [155] have been

proposed. In the case of masked cross-correlation [156], only voxels that are within a

certain radius of the atomic centers are included in the computation. Other alternative

measures are the computation of a minimal rectangular box, the inclusion of voxels inside

the molecular envelope defined by a threshold value of the electron density, or only regions

with the highest overall intensities. While the first example only partially resolves the

problem of an arbitrary signal contribution of empty box regions, the latter is particularly

well suited for macromolecules with a potentially unclear composition. In all cases the

region of interest is derived from the exterminate data, wherefore electronic signals that

are not matched by the electronic model are particularly penalized [157]. For masked

cross-correlation, the mask is computed from the PAM causing a decrease in the case

of the model containing atoms that are not reflected in the experimental data. This

characterization makes masking highly suitable for DNA origami nanostructures where all

nucleotides of the structure are fully characterized in advance. Correlation metrics can

also be included directly in the fitting process by constantly updating the MDff potential

according to the correlation of the current conformation [149]. However, the computational
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cost associated with the simulation of the artificial electron density renders these techniques

impractical for large structures.

In addition to correlation metrics, the stereochemical quality of the macromolecule can be

assessed to evaluate the quality of a fitted pseudo-atomic model. The tools provided by

the web server MolProbity [34] and the Protein Data Bank (PDB) [158] are considered

community standards, but the geometric information provided by the model also enables

the generation of custom quality metrics.

Cascaded Fitting Procedures

A significant disadvantage of MDff is its reliance on an exclusively attractive grid-force

potential. This is particularly problematic if the initial model deviates strongly from the

target structure. As the grid-based potential is indiscriminate of the molecular identity

and its context within the macromolecule, subdomains can get stuck in the wrong region

of electron density during the initial alignment phase. The local minimum in the energy

landscape of the cryo-EM data frustrates the flexible fitting. Also, strong accelerations

caused by sharp intensity peaks can make the simulation unstable during the first few

stages of the fitting protocol.

Not only initial alignment but also subdomain realignment can be drastically improved if

low-pass filtered electron density data are used instead of data at the original resolution.

Global alignment of subdomains predominantly relies on the long-range information present

in the experimental dataset. Temporary removal of the high-resolution information during

the early stages of the fitting process facilitates the avoidance of local minima. The overall

quality of a PAM can be increased by using a cascaded relaxation protocol (cMDff) [147].

Here, MDff starts with a low-resolution map, which is gradually replaced with a map

of higher resolution once the alignment advances (Figure 1.5D). Using this approach,

alignment is staggered from global to a more local and model arrangement.

In general, cMDff belongs to a group of methods [130, 147, 148, 159] that decouple various

aspects of an MDff simulation — like cryo-EM resolution, simulation temperature, or the

grid-scaling factor — from the fitting target. The underlying idea behind these methods is

harnessing the diverse benefit of multiple distinct stages during the fitting protocol. The

simulated annealing step of the original protocol published with the MDff technique [130]

is an early example of this approach, stating its capability to avoid local minima.



Chapter 2

Pseudo-Atomic Model Building

Remark: The work presented in this chapter was published in Feigl, Kube, Kohler,

et al. Revealing the structures of megadalton-scale DNA complexes with nucleotide

resolution (2020) [32]. Kube, M. and Kohler, F. performed cryo-EM measurements and

data processing of the volumetric data presented here. Electron microscopy data not

published there will be marked accordingly.

Pseudo-atomic model construction enables structuring and quantifying electron density

data of macro-molecules [34, 35, 160]. In recent years, the availability of high-resolution X-

ray crystallography imaging techniques [161] and cryogenic electron microscopy (cryo-EM)

has caused a near exponential increase in imaged macro-molecules [162]. Simultaneously,

computational methods for building pseudo-atomic solution structures have been devel-

oped [36, 130, 141, 157, 163]. However, in contrast to atomic modeling of proteins, few

of these methods are suitable for modeling DNA nanostructures due to the size, of these

objects and the pseudo-symmetry of the origami-lattice.

One method that is scalable for large structures and adaptable for all macromolecules is

Molecular Dynamics based flexible fitting (MDff) [130]. The universal methodology of

MDff has seen constant improvements and modifications [130, 138, 145–147] in recent years.

The currently published cryo-EM density maps of DNA origami nanostructures [32] reach

resolutions of up to 5 Å using cryo-EM. This nucleotide-level resolution is high enough to

render the association of the volumetric data with atomic-level models possible [159].

Here, we present a methodology specifically tailored to construct pseudo-atomic models

(PAM) for DNA origami nanostructures using a semi-automatic protocol based on the tech-

nique of MDff. Most nanostructures assemble from a total of around 16 000 nucleotides [86].

Consequently, the number of interaction sites present in the structures is approximately
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half a million. As computational cost scales with the size of the model, a combination of

multiple steps combining different methods and strategies is necessary to create a fast and

accurate protocol.

In this chapter, we first describe the developed method in detail, discussing the necessity

and benefits of each part. Second, we will present a library of PAMs of DNA origami

nanostructures. Finally, we introduce our DNA origami model building framework dnaFit,

a Python-based pseudo-atomic model building and solution structure analysis framework.

2.1 Shrink-Wrap Fitting

At its core, an electron density map presents a three-dimensional volumetric dataset and

hence inherits challenges associated with this data type. Notably, conventional computer

monitor hardware still requires the representation of three-dimensional data as a two-

dimensional image. A suitable representation is dependent on both the type of the raw data

and the analysis goal. Manipulation of volumetric data is computationally expensive due

to its cubic scaling. As the dimensionality of the represented data increases, the association

of symbolic and spatial aspects of its information enables complexity reduction [164].

One efficient way to facilitate image interpretation is through enrichment of the data

with additional context. Linking the volumetric data to preexisting information helps to

annotate, segment, and structure its content.

For volumetric electron density maps, pseudo-atomic models can provide this link. The

main obstacle to generating these models for common DNA nanostructures is their size. The

protocol Shrink-Wrap Fitting is a combination of several existing methods and strategies.

This way, we can utilize the benefits of each method and couple their strengths with

particular features of DNA origami designs. Consequently, our methodology is tailored to

the field of lattice-based DNA origami nanostructures.

The term Shrink-Wrap Fitting is a figurative synonym for the method’s full descriptive

name Multi-Resolution Elastic Network-Guided Cascaded Molecular Dynamics Flexible

Fitting. While the full name is cumbersome to write, it points at the nature of this protocol.

2.1.1 Protocol

First, an initial pseudo-atomic model is generated using the multi-resolution framework

mrDNA [116]. With the caDNAno strand diagram and the nucleotide sequence as input,

this method creates a structure prediction using increasing levels of detail (also see
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Section 1.3). This technique allows the creation of initial models for a broad spectrum

of lattice-based DNA origami, including structures consisting of multiple subdomains.

After the final step prediction step, mrDNA outputs an atomic-detail model supplemented

with an elastic network produced by enrgMD [31]. The elastic network helps to increase

simulation speed while retaining the structural stability of the nano-object. It also allows

simulating without a solvent, further reducing the computational cost.

Before starting the fitting procedure, the initial model has to be roughly aligned with

the cryo-EM map. This step is required to increase the computational efficiency and

ensures that the globally optimal solution structure can be determined. Currently, manual

pre-aligned is the only remaining non-automated step in the protocol. As simulations are

performed in NAMD2 [165] we recommend VMD [166] for this step.

During the following steps, the initial model is systematically adapted to the electron

density data obtained from cryo-EM. The atomic coordinates are corrected until they fit

the experimental data. Performing accurate structure prediction before the actual fitting

procedure helps decrease simulation time, as fewer changes have to be made during the

adaptation. While not the fastest, mrDNA currently presents the most accurate structure

prediction of DNA origami nanostructures [116]. Its seamless integration with enrgMD

reduces computational overhead significantly. At this point, we like to highlight the

symbiotic connection between structure prediction and model building. On the one hand,

pseudo-atomic models derived from experimental data serve as the basis for parametrization

of structure prediction model [31, 39, 118, 167]. The availability of more and better models

will thereby inevitably improve structure prediction. On the other hand, the fitting of PAMs

into experimental data can be facilitated and enhanced by using these improved predictions.

The fitting procedure is performed using molecular dynamics flexible fitting (MDff) [130].

The cryo-EM data are converted into a grid-based potential [151] which acts in form of an

attractive steering force on all interaction sites of the electron-density map. Voxels with a

stronger signal, which correlate to a higher electron density, cause a stronger attraction.

Consequently, atoms will be drawn towards positions of high intensity in the experimental

data. Simultaneously, both the enrgMD elastic network and the force field of the MD

simulation restrict the motion of atoms to retain the topology.

The pseudo-periodic lattice structure of the volumetric data creates local minima that

increase the risk of helices converging to the wrong position. Local minima are especially

problematic if the initial docking is not optimal or the predicted dimensions of the PAM

do not match the experimental data. To mitigate these issues and increase the chance
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of fitting the global minimum configuration, we use a cascaded relaxation protocol [147].

Here, the electron density data that is used to generate the grid-based potential is initially

low-pass-filtered to produce a low-resolution map with values of 25 Å or above. At this

resolution, individual helices can no longer be discerned, allowing proper alignment of the

whole structure. The low pass filtering is reduced stepwise until the original resolution

is reached again and the correlation between the cryo-EM data and the model increases.

If the initial docking is particularly poor, it can be beneficial to stop the cascade after

the first few stages and restart the cascade of low-pass-filtered maps. Additionally, a

short simulated annealing [106] phase can be included halfway through the cascade. The

increased thermal fluctuations caused by the heating can help subdomains escape local

minima. With these techniques, small misalignments that stem from deviations between

prediction and measured data or insufficient docking can be resolved.

The elastic network provided by enrgMD has two different beneficial effects on the fitting

procedure. First and foremost, it allows a significant speedup by enabling solvent-free

simulation and using a longer time step. Yet, it also ensures structural stability of the DNA

nanostructure throughout the simulation. In the early stages of the cascade, the model

might deform significantly, as helices need to bend or move several nanometers to reach

their target location. Since strong forces might act on the individual atoms and bonds in

the model, individual strands could get mangled. Waiting for the structure to untangle on

its own would cost significant time. Realignment of the helices negates the benefits of using

high-quality prediction for generating the initial model. However, the elastic network acts

as a safety harness against these distortions. The stiffness of the complete network ensures

that the structure retains its original form. This safety feature becomes obsolete once the

cascade reaches the high-resolution domain again. The restraints are now sequentially

released from the enrgMD elastic network. Inter-helical elastic bonds, which enforce the

helical lattice and backbone repulsion, are removed first, at a resolution around 15 Å. At

this point, individual helices are distinguishable in the electron density data. Consequently,

the elastic network’s functionality to mimic the long-range electrostatics of the solvent

is effectively replaced by the grid-based potential. Thereby, the larger simulation time

step can be kept. At a resolution below 10 Å the backbone and helical grooving becomes

discernible. Intra-helical bonds, which previously enforced the internal structure of the

helix, are no longer needed and therefore are discarded. Only the hydrogen-bonding part of

enrgMD, stabilizing base-pairing, remains present throughout the procedure. Without this

base-pair network, the structures would collapse to the center of the helix as the grid-based

potential exceeds the non-bonded interaction of the force-field. These elastic springs might

only be removed once experimental resolution reaches 5 Å for the whole structure and all

individual nucleotides become observable.
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The model building protocol is completed with an energy minimization phase. The phase

consists of gradient descent to equilibrate the structure to the intrinsic potential.[130]

During this step, the strength of the grid-based potential is increased compared to previous

stages.

Figure 2.1 | Shrink-Wrap Protocol: (A) Schematic Shrink-wrap model building illustration,
top to bottom. Overlay of adapted model and current cascade step electron density data with
increasing resolution. The different types of active enrgMD elastic network restraints are depicted by
the symbols next to each step: inter-helical (orange, vertical springs), intra-helical (blue, horizontal
springs), and hydrogen bonded base-pairs (H-O). (B) Exemplary overlay of the map and corrected
pseudo-atomic model for the Twisttower object. (C) Seamless integration of structure prediction
into the workflow, illustrated with the multidomain Corner Study Version 3 object. The multi-
resolution structure prediction (top row) provides the starting configuration for the shrink-wrap
protocol. Therefore, the initial atomic model (bottom left) is as close as possible to the final
model derived from fitting to cryo-EM data (bottom right). (D) The exclusion of single-stranded
passivization poly-thymidine strands termini (red) from MDff. The double-stranded core of the
DNA nanostructure is represented at high resolution in the electron-density data (overlay). Inset
shows zoom-in of 2 passivated helical termini. (E) Subset fitting of the single 4×4 domain from the
Twisttower object. Selected atoms (red) are affected by the electron density data (overlay), while
the remaining structure (gray) performs only a regular enrgMD simulation. Views from different
directions. Panels (A-B) adopted from [32].

A more detailed description of the protocol and the parameters used is given in Section A.2.1.

Figure 2.1A depicts snapshots of the network-driven cascaded relaxation procedure. The

displayed model is a small subsection of the so-called Twisttower object [32]. During

shrink-wrap model building this procedure is performed on the complete cryo-EM data to
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construct a full PAM (see Figure 2.1B).

Note: The protocol presented here is an updated and improved version of the one published

in Feigl, Kube, Kohler, et al. [32]. Deviations from the original protocol include:

• Initial prediction with mrDNA: The Python package enables the utilization of

advanced relaxation for the initial model creation. The multi-resolution prediction of

mrDNA replaces initial models previously generated with enrgMD . These improved

initial models also reduce the overall simulation time. Multidomain structures like

corners and triangles, which otherwise would have required manual intervention in

form of correctly placing the domains relative to each other, can be processed fully

automatically. Figure 2.1C shows snapshots of the initial model building and fitting

for the Corner Study Version 3 object.

• Simulated annealing: Inclusion of this technique [106] makes the protocol more

robust and helps resolve local minima automatically.

• Optional exclusion: The scheme of MDff supports the exclusion of groups of

atoms. We recommend the omission of single-stranded passivization loops from

the MDff force-field due to their insufficient resolution in the electron density data

(Figure 2.1D). Complete removal from the PAM is not recommended as it might

change the topology of the model. Figure 2.1E illustrates how the same methodology

can be utilized to fit subdomain data generated via multi-body processing without

removing contextual topology.

The addition of mrDNA requires GPU-accelerated software, increasing the hardware

requirements. Structure prediction using this framework takes a couple of hours [116]

on a standard GPU. The PAM building is performed in NAMD2, making it compatible

with GPU acceleration. Using our protocol, we can build quasi-atomic models for DNA

origami nanostructures of up to 10,000 base-pairs in less than half a day on a regular

desktop computer. The protocol runs fully automatically, with the only exception being

the rigid-body docking which has to be done at the beginning of the fitting protocol or

after the mrDNA structure prediction. Rigid body docking takes only a couple of minutes,

is not hardware intensive, and can be performed on almost any device.

2.1.2 Validation

To assess the quality of the final pseudo-atomic model we use map-to-model cross-correlation

coefficients (see Section 1.3). First, an artificial electron density map is generated from the

atomic model, which is then compared to the experimental data. The significance of these

correlation coefficients can be increased by selecting only a meaningful subset of voxels.
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A meaningful subset can be generated by defining the minimal enclosing box, cropping

at an iso-volume threshold, or in the context of the fitted PAM. Selection of the map

subset via the atomic model is usually referred to as masked cross-correlation coefficient

(mCCC) [156]. This approach is well suited for DNA origami nanostructures because the

experimental data are well-defined [157]. Due to the designed routing and sequence of the

DNA strands, all molecules present in the sample are identified, and their approximate

location within the assembly is known. For masking, the experimental data are cropped to

include only voxels occupied by the atomic model for the calculation of the cross-correlation.

Utilizing masking removes effects on the correlation of nonzero background signal and noise

in the experimental data, making it independent of the box size. All mCCC data presented

here was masked using the FitViewer tool introduced in the next chapter in Section 3.2.

Additionally, we used cross-validation via Fourier shell correlation [149, 157, 168] with the

experimental volumetric dataset to check for overfitting (Appendix Section B.1).

Since the Pointer Version 1 structure published by Bai et al.[33] has so far served as the

standard reference for quasi-atomic models of DNA origami nanostructures, we remodeled

it using our workflow. Our model matched the previously reported structure with a root-

mean-square deviation of 6.03 Å, which is significantly lower than the reported cryo-EM

resolution. In terms of mCCC, our model also provides a slight improvement from 0.894

to 0.916 compared to the published version (PDB 2YMI). Manual construction of the

structure reportedly took several weeks, highlighting the improvement our semi-automated

approach provides.

2.2 Model Building Framework dnaFit

Executing the full model building protocol and subsequent analysis require experience

in MD simulation with NAMD2 and basic programming skills. These requirements pose

an entry barrier, especially compared to protein model building, where applications with

extensive functionality and intuitive graphical user interfaces exist. To this end, we have

developed the DNA origami model building and analysis framework dnaFit that is designed

to cover the complete PAM building and analysis pipeline. The tool is implemented in

Python 3, easy to install via the standard Python package pipeline, and distributed as

a command-line interface (CLI) with ample documentation and additional resources. It

handles not only preparation with mrDNA and the fitting procedure automatically but also

allows direct conversion of the output data for upload to the PDB, serves as the backend

for the analysis tool FitViewer (see Section 3.2), and facilitates analysis of the quasi-atomic

model.
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2.2.1 Availability and Installation

The package is publicly developed on GitHub at https://github.com/elija-feigl/

dnaFit under the GNU General Public License 3. Development as an open-source Python

package also guarantees seamless integration of improvements and interdependence with

other packages like mrDNA. This package is still under active development and therefore

subject to change. Instructions given below reflect package version 1.0.1.alpha. Please

refer to the official documentation to get the most up-to-date information.

To use dnaFit download/clone the repository and install it with a standard Python

installation frontend. Detailed, up-to-date instructions are available on the project’s

README page (see URL above). As dnaFit acts as an interface for both mrDNA and

NAMD2. Both these programs have to be installed to use the full functionality of the

package.

An extensively documented command-line interface allows the user to browse, select and

execute the various functions of the application layer of dnaFit. The CLI is available

upon installation of the Python package. For more detail on software availability see

Section A.2. A detailed description of the package structure and core routines is presented

in Section A.3.

2.2.2 Functionalities:

Implementing the cascaded mrDNA-driven MD flexible fitting script module, the CLI

exposes several commands to the user. The list of commands and additional information is

also available via the CLI help pages. We first list currently available tools before presenting

an exemplary minimal workflow to illustrate the building process of a pseudo-atomic DNA

origami nanostructure with this package.

Main Workflow: The following three commands represent the complete preparation

and model-building workflow.

1. mrDNA: Starts a mrDNA structure prediction with custom settings optimized

for initial models of lattice-based DNA origami nanostructures, including adapted

settings for multidomain designs. A caDNAno design file, the scaffold strand sequence,

and the experimental cryo-EM data have to be provided. At the end of the mrDNA

run, several processing steps are performed. These steps include the center of mass

docking of electron density and the initial model. The encapsulation of mrDNA and

the processing of the prediction results within one package are intended to simplify

both the initial model generation and the rigid-body docking. Experienced users

https://github.com/elija-feigl/dnaFit
https://github.com/elija-feigl/dnaFit
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might elect to create the initial model directly with mrDNA or enrgMD instead

of using this encapsulation. This step takes 1 to 4 hours on standard hardware,

depending on the size of the structure.

2. vmd info: We suggest using VMD for rigid-body docking. Executing this command

prints instructions, supplementary information, and all required commands for rigid-

body docking with VMD.

3. fit: Performs the complete shrink-wrap fitting protocol as described in Section 2.1.

All relevant parameters and settings are generated automatically. A fully automatic

routine generates the cascade data by internally calling VMD, before successively

executing each step. Progress is monitored and passed to the user via a logging

interface throughout the protocol execution. Upon finalization of the protocol, a final

pseudo-atomic model and a masked volumetric dataset of the electron density data

are generated.

Additional Features: In addition to the core protocol, we present a list of features

and tools implemented with the package. All items listed here are also already part of the

main workflow described above. However, they either expand the functionality presented

in Section 2.1 or are exposed as additional commands to allow their use in customized

workflows.

• Protein Data Bank compatibility The initial PDB format (.pdb) has become

too restrictive to accommodate structures of the size of DNA origami nanostructures.

A common alternative, which presents more flexibility and can accommodate more

metadata, is the Macromolecular Crystallographic Information File (mmCIF) format

(.cif) [169]. This format is dictionary-like and unlimited in terms of the structure’s

size and compatible with the Protein Data Bank. To facilitate deposition of the

pseudo-atomic models to the online database we implemented a conversion tool from

pdb to cif format, specific for DNA nanostructures. The tool has since been moved

out of dnaFit and is developed separately as pdb2cif, available at GitHub https:

//github.com/elija-feigl/pdb2cif. The dnaFit package provides a short wrapper

command for pdb2cif.

All quasi-atomic models generated with dnaFit are also converted to mmCIF and can

therefore directly be uploaded to the PDB without the need for additional conversion

tools. As the current map resolution is not good enough to properly resolve their

position, the removal of Hydrogen atoms (available as an additional option in pdb2cif )

is recommended to reduce the file size.

• Masking: dnaFit also implements functionalities to manipulate the volumetric data

and create masks using an atomic model. The masking command provided by the

https://github.com/elija-feigl/pdb2cif
https://github.com/elija-feigl/pdb2cif
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package generates the voxel envelope of the volumetric dataset and PAM required

for the quality assessment by the mCCC metric.

• Linkage generation: The package not only provides the linkage for caDNAno

design, PAM, and cryo-EM data internally but can also produce human-readable

output. The linkage is also required for the FitViewer tool presented in Section 3.2.

• Low-resolution mode: For maps with an overall resolution over 14 Å we present

an alternative protocol. In contrast to the high-resolution setting, the intra-helical

enrgMD elastic network is never removed. The helical structure is enforced throughout

the fitting process.

• Subdomain mode: The method of MDff provides control over which atoms are

affected by the grid-based potential. For the default workflow, this functionality

excludes single-stranded passivization strands at the edge of the structure. These

strands have a significantly worse resolution due to their mobility. The same approach

can fit incomplete electron density data or subdomain data while maintaining the

context of the full atomic structure. A file defining the subset to be fitted into the

data can be generated using the FitViewer and passed as an optional argument to

the fit command.

2.3 Pseudo-Atomic Models of DNA Nanostructures

Before the first publication of our protocol (Feb 2020) [32] approximately 65,000 base-pair

coordinates of DNA-only structures had been deposited at the PDB. We have since released

around 130,000 base-pair coordinates to the PDB, effectively doubling this metric. The

coordinates stem from eight pseudo-atomic models that have been fitted into high-resolution

cryo-EM data (see Figures 2.2- 2.4). These nanostructures include objects for high precision

twist design (see Twisttower variants Figure 2.2A-B) and a remodeled Pointer Version

1 [33] and its variant Pointer Version 2 [32] (see Figure 2.2C-D).

The capability of our method to create PAMs for DNA nanostructure of varying sizes

is illustrated by two examples in Figure 2.3. The 16-Helix Bundle (Figure 2.3A) with

1033 scaffold bases is a full order of magnitude smaller than the dual scaffold 126-Helix

Bundle object Figure 2.3B. While capable of building pseudo-atomic models of all sizes,

the 126-Helix Bundle took around 72 hours to complete, as contrasted to only around

three hours for the 16-Helix Bundle.

In Figure 2.4 three variants of brick-like structures are displayed. The designs A-Brick and

B-Brick (Figure 2.4A-B) can dimerize using shape complementary recesses and protrusions

on their sides. These pseudo-atomic models were published in Bertosin et al.[16] and are

discussed in more detail in Section 4.1.
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Figure 2.2 | Pseudo-atomic model: high precision. (A) Twisttower Native Twist. (B)
Twisttower Corrected Twist. (C) Pointer Version 1 (remodeled from [33]). (D) Pointer Version 2.
Scaffold (gray), staple (colored). Inserts in the small box show only the scaffold strand colored by
base ID (rainbow).

Figure 2.3 | Pseudo-atomic model: varying size. (A) 126-Helix Bundle. (B) 16-Helix
Bundle. Scaffold (gray), staple (colored). Inserts in the small box show only the scaffold strand
colored by base ID (rainbow).
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Figure 2.4 | Pseudo-atomic model: brick-like (A) A-Brick. (B) B-Brick. (C) 48-Helix
Brick. Scaffold (gray), staple (colored). Inserts in the small box show only the scaffold strand
colored by base ID (rainbow).

In addition to the structures published at the PDB [16, 32], we present a collection of atomic

models created to support the design process for target functionalities of other research

projects. These include design of specific corner angles (Figure 2.5A-B), location specific

placement of moieties (Figure 2.5C-F) and validation of dihedral angles of tubule-forming

triangles [170] (Figure 2.5G-H). To highlight the utility of PAMs, a selection of models

displayed in this section are discussed in more detail in Chapter 4. Overall resolution data,

map-model correlation values and PDB identifiers (published structures only) are listed in

Table B.1 of the Appendix.
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Figure 2.5 | Pseudo-atomic model: unpublished overview (A-B) Two variants of a 45◦

corner objects: Corner Study Version 3 and Corner Study Version 6. (C-D) Two variants of
the high-resolution structure determination platform for functional RNA and DNA: Whopper and
Whopper Version 2 (E) Smaller variant (1033 bases) of the Whopper imaging platform: Whopper
Junior. (F) Triplex Bullet for pH-induced structural changes via DNA triplex crossover formation.
(G-H) Low-resolution models of tubule-forming A-Triangle and B-Triangle [170]. Inserts in the
small box show only the scaffold strand colored by base ID (rainbow).

2.4 Conclusion

Shrink-Wrap Fitting enables the generation of pseudo-atomic models for DNA origami

nanostructures in a semi-automated fashion within less than 24 hours. This presents a

significant speed-up to the previously reported [33] multi-day process that also required

several stages of manual intervention by an expert. As has already been the case for

proteins [36, 157], pseudo-atomic model construction can now be incorporated into the

standard analysis workflow of high-resolution imaging of DNA origami nanostructures.

With dnaFit we presented a model-building framework that makes this protocol easily

accessible for the field. Since its original publication [32], the methodology has seen constant

improvements and is now also capable of automatically fitting multidomain structures by

utilizing the structure prediction tool mrDNA [116]. The Python package is extensively

documented, guiding the user through the fitting procedure and providing final data, that

are readily prepared for upload to the Protein Data Bank.

So far we have published eight atomic models with the data bank, comprising approximately

130,000 base-pair coordinates of electron-density data with a resolution of 10 Å or better.
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In the upcoming years, the resolution of cryo-EM data of DNA origami nano-objects is

expected to improve due to the constant advances in protocols and equipment. Consequently,

the importance of building pseudo-atomic models will increase.

In the future, virtual reality [171, 172] might provide a more native representation of volu-

metric data. However, the annotation and topological context provided by the coordinates

and covalent bonds of the pseudo-atomic models will remain crucial for a high-precision

evaluation of the data.



Chapter 3

Context-Based Zoning & Masking

The dnaFit package presented in the previous Chapter 2.2 not only implements the model

building protocol but also serves as the base for annotation and categorization of the

volumetric cryo-EM data. At its core, this functionality is creating a linkage between the

three formats present in the design pipeline: caDNAno design file, experimental volumetric

electron density, and coordinates of the pseudo-atomic model. Here we present a browser-

based Jupyter notebook [173] called FitViewer that uses this linkage to help analyze the

experimental dataset. The notebook allows its user to interactively select and zone in

on a specific region or design motif. It can also create a PAM of the subset and crop

the volumetric data to contain only those voxels relevant for the selected bases. The

dnaFit package serves as the main resource for this slicing and zoning tool. With the

package already installed, no further preparations are necessary, shortening the installation

procedure and increasing usability.

3.1 Context Based Model to Design Linkage

The representation of volumetric datasets as an iso-surface [174] is a visualization technique

commonly used in electron microscopy. Here, a surface containing all points of constant value

in the volume is drawn. For cryogenic electron density data, this iso-surface corresponds to

the nuclear envelope of the DNA helices if the appropriate threshold value is chosen. These

surfaces are a capable tool to assess the nano-object’s overall shape. But, if used as the

only tool, they are limited in their use for detailed investigation of a structure. Average

multilayered DNA origami consists of around 40 helices, approximately 200 base-pairs

long [26, 86]. Consequently, about half the helices are on the interior and partially hidden

by the iso-surface of the outer helices.
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To properly inspect these helices, the volumetric dataset has to be manipulated to

remove obstructing helices from view. Typical techniques for this are planar slicing or

manually deleting parts of the data, for instance, the outer helices. These procedures

are cumbersome to use and time-consuming, which makes them inefficient analysis tools.

First, planar slicing — where the dataset is cut off along a user-defined plan — cannot

capture the non-planarity of layers in DNA nanostructures [32]. These discrepancies from

the design framework are caused by the flexibility and deviations of the actual geometry

of B-DNA from the idealized DNA origami lattices [33]. Consequently, planar slicing

along one layer will always clip some selected helices, while neighboring helices might

still be partially visible. For twisted and curved objects, this shortcoming is particularly

detrimental. Additionally, the orientation of the slices might be restricted to the axis of

the volumetric grid, not allowing arbitrarily chosen planes. Secondly, manual manipulation,

often performed using a spherical eraser tool within the visualization software (f.i. in

Chimera [175]), is a slow and imprecise technique. Depth perception in 2D renderings of

volumetric data is limited and highly dependent on the rendering technique. To properly

place the eraser tool, the 3D object has to be moved and rotated constantly throughout

the process. If high precision is required for the cutting, multiple erase operations with

varying sphere radii are necessary. This same technique, which might take several hours if

multiple masks are required, is also often used to create masks for focussed refinement

of electron density data, for example with multi-body-reconstruction [99]. Finally, these

approaches do not exploit the inherent connection between the experimental data and its

design. Figuring out which part of the design is represented by which subset of voxels

is left to the user. Thereby experience and expertise are required while the workflow

remains inherently imprecise. Especially for larger structures, navigation of the volumetric

dataset is made difficult by the repetitive nature of the lattice-based design. Another

common strategy for high-resolution maps is crossover-counting. By starting from a

well-resolved structural motif, the design can be traversed by counting the number of

crossovers between the helical pair. Positions between crossovers are then estimated

based on the number of bases passed. However, the incomplete assembly of parts of the

structure and variation in the local resolution of subdomains makes this strategy error-prone.

We tackle these challenges by fully automatizing these zoning & slicing tasks and completely

removing manual data manipulation. Automatization is achieved by using the context

assigned to the data by the PAM. The selection of subdomains is no longer achieved

by manipulating the volumetric data but by using the language of the design process:

caDNAno helix number and base position. Translation from the design space to 3D volume

space is performed by linking the voxel index to the atomic index and hence the coordinates
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of the atoms in the fitted model. This conceptual change allows the user to directly

contextualize a design question with the experimental data represented by the volumetric

data set.

Figure 3.1 | Subset Zoning: (A) Subpart of a seven base-pair long segment of the interior
3×3 helices (orange) of the -JrV3 object selected via model-based linkage. (B) Overlay of full
structure with automatically (orange) and manually (blue) selected subdomain and (C) their direct
comparison.

Thereby, a set of voxels can be selected based on a specific site or motif in the design.

This annotation of the three-dimensional continuous dataset makes design-specific data

analysis possible. It facilitates the creation of a pseudo-atomic model of the selected sub-

set and cropping the volumetric data to only those voxels relevant for the chosen nucleobases.

To illustrate the effectiveness of this approach, we selected a seven base-pair long segment

of nine interior helices of the Whopper Junior object that spans two crossovers motifs

using the Jupyter notebook presented in the next Section 3.2. The subset of this segment

consisting of 63 base-pairs is displayed in Figure 3.1A. Additionally, we compared this

automatically-generated subset to manual zoning using the ChimeraX spherical-eraser tool

(Figure 3.1B-C). Attempting to manually select individual bases at a resolution above

5 Å is difficult, which can be seen by the slight deviations between the two subsets. The

eraser tool acts on the voxel data itself, with the user often visualizing the data using an
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Figure 3.2 | Layer Slicing: (A) Overlay of full structure with automatically (orange) and
manually (blue) selected single base layer at helix position 32 of the Whopper Junior design. (B)
Direct comparison of both techniques. (C) Linkage-based selection (orange) in the context of the
rear half of the structure.

iso-surface. This can cause decoupling of input and visual feedback and hence limits the

precision. Moreover, the ChimeraX spherical-eraser tool required around 10 minutes, while

the zoning via linkage only took a couple of seconds.

The previous example necessitated the use of the spherical eraser as the lattice of the

structure is slightly distorted, resulting in a non-planar alignment of the helices. Hence,

we compare another technique, the ChimeraX planar slicing tool, with our method. One

use case for this tool is the creation and analysis of the cross-sectional slices of the

structures. Figure 3.2 shows the comparison of a single base slice at base-position 32 in

the Whopper Junior design. Planar slicing is fast and intuitive to use. Consequently,

the automatic approach via quasi-atomic model-based linkage is not significantly faster

than manual slicing. However, determining the exact position via manual selection

can be difficult if it does not (as is the case in the chosen example) coincide with a

well-resolved crossover position. Again, the direct comparison of automated and manual

selection (Figure 3.2B) reveals deviations from lattice planarity. The presented example

only displays a negligible effect but especially slices of objects with larger diameter (for

instance the 8×8 domain of the Twisttower or both Pointer variants) can warp strongly.

There, the planar slicing tool is no longer capable of adequately representing the cross-

section of a DNA origami nanostructure at a predetermined base position within the lattice.
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In summary, an automated approach is faster and more accurate than manual selection tools.

Linkage-based selection via a fitted PAM allows specifying locations based on the context of

the designed lattice. Helix ID numbers and base positions are translated to voxels utilizing

the atom identities and coordinates. The accuracy of this zoning is restricted by the fitting

precision alone, with at least 14 Å for high-resolution maps shown in this work. This level

of precision surpasses any manual selection tools that rely on high-resolution landmarks

like crossovers for orientation. Automated linkage is also independent of distortions of the

ideal lattice model, like a twist or barrel-shape deformations [32] that can be observed

regularly. Apart from visual zoning, the context provided by the exact coordinates enables

precise quantification of the selected design subparts and motifs.

3.2 FitViewer: Zoning, Cropping & Masking

The model-building protocol in our dnaFit package is distributed as a command-line

interface. The same approach is not suited well for the zoning workflow described in

the previous section. With the FitViewer Jupyter notebook, we provide a simple-to-use

frontend to perform slicing, zoning, and masking. Here dnaFit acts as a backend performing

the linkage and cropping operations. Using a notebook enables the integration of interactive

widgets, visual representation, and text-based elements. Within the notebook, a set of

instructions and examples is given next to each executable cell. Jupyter notebooks are

browser-based, making them independent of the operating system, and can be hosted

on a server. At the same time, a Jupyter notebook is a fully functional Python shell

making the inclusion of other libraries straightforward. Thereby, FitViewer might also

be seen as a starting-off point to make use of the full potential of the dnaFit library and

create and operate other or more complex tasks and analysis workflow. Notably, we have

used modified versions of the notebook to compute absolute dimensions of the structure,

quantify their twist and generate helical trace images. In Chapter 4 a few examples for

this approach are given.

Figure 3.3 shows an overview of the base interface of the notebook. The notebook is

enhanced with extensive documentation, instructions, and examples to help users execute

and customize the individual steps while likewise ensuring that the full functionality of the

dnaFit package is evident. The capability of a Jupyter notebook to combine Markdown

text and executable code allows seamless integration of both aspects: functionality, and

documentation. These features make this format suitable as an interactive computational

environment for tasks like the linkage selection presented here. All Markdown text is

removed in the figure to provide a better visual overview. The following paragraph covers

a detailed description of the interface’s three main parts:
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Figure 3.3 | FitViewer interface: (1. Input) Selection of file paths and initialization of the
viewer object. (2. Subset Selection) Three different methods for subset selection. Inserts (orange
boxes) in Option-A show a comparative view of the same depiction in caDNAno2. (3. Cropping
and Masking) Code Snippets for output generation.

1. Input: After importing the relevant resources by executing the first cell, all input

files are specified by the filesystem path. These input files are the caDNAno design

file, a plain text file with the scaffold sequence, topology and coordinate file for

the pseudo-atomic model, and the electron density volumetric data. These files are

then parsed to create a Viewer object that can subsequently be used to perform the

individual tasks of the workflow. Parsing of the molecular dynamics simulation data

is performed using the Python package MDAnalysis [176]. For cryo-EM data and

caDNAno design files, we used the packages mrcfile [177] and a customized version of

nanodesign (see Section A.2.4), compatible with Python 3, respectively. Internally a

linkage lookup table is created using the dnaFit package that assigns atoms indices

of the model to the overlapping voxel coordinates of the cryo-EM data and helix and

base position in the design file.

2. Subset Selection (Slicing and Zoning): The notebook presents several options to

select subsets from the provided data. The first option is the selection of helices and

base positions using a widget. The widget is modeled after the caDNAno helix view

and position slider. The second option is to specify their indices manually. Alterna-

tively, custom groups of atoms are selectable based on the PAM using MDAnalysis.

For instance, the example given in the instruction text describes the steps to select all
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staples beginning with the sequence ATCG and their associated scaffold bases. Either

option to select a subset returns an instance of the MDAnalysis AtomGroup class.

These AtomGroups still contain the complete topological, geometrical, and chemical

information about the selected set of atoms. The user can further manipulate or

combine individual groups. These groups are also instrumental for more in-depth

analysis and advanced computation, for instance, distances between atoms.

3. Cropping and Masking: Finally, the selected group of atoms is used to generate

subset data. Via the dnaFit packages, both a pseudo-atomic model file and an electron-

density data file containing only data for the selected subset can be generated and

written to a file. Voxels to be cropped from the full volumetric dataset are selected

by assessing their distance from each atom. All voxels that are closer than a user-

defined cutoff value are included. These cropped maps can be used for validation via

cross-correlation or exported as masks for further post-processing of the experimental

data. An additional flag in the output function ensures required modifications, for

instance retaining the same grid as the original data.

Additionally, the FitViewer can be used to generate the reference files required for subdo-

main fitting. Atoms from the subdomain can be selected using the same options described

above for the zoning.

The notebook is available as open-source under the GNU General Public License 3 on

GitHub https://github.com/elija-feigl/FitViewer.

3.3 High Precision Design Evaluation using FitViewer

To further illustrate the benefits of automated zoning and slicing, we present several

qualitative results generated with the FitViewer notebook.

Firstly, we cut the Twisttower Native Twist object into layers according to the horizontal

helix indices of the caDNAno diagram (Figure 3.4A-B). Analysis of individual slices

facilitates the investigation of the topology of the model in this layer. The global twist of

the 2×2 domain is visible in panels 3.4D-E as the two helices belonging to this domain are

rotated by around 90 degrees. The deformation in this domain is significantly stronger

compared to the other domains. The lower-left corner of the top layer (Panel 3.4D) misses

a potential crossover between the first and second helix, resulting in an outward bend of

the corner. This effect is enhanced by the long unconnected segment between the second

and third helix in the next layer (Figure 3.4E). A prominent structural feature occurring

multiple times in both Twisttower objects is the crossover stack. These stacks connect up

to eight helices with crossovers placed at the same base position and constrict the structure

https://github.com/elija-feigl/FitViewer
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Figure 3.4 | Layer-by-layer analysis of Twisttower Native Twist object via slicing:
(A) Superimposition of cryo-EM data with the complete pseudo-atomic model. (B) Slice scheme
indices in cross-sectional view. Labels indicate the panel in which the layer is displayed. (C-M)
Layers of the cryo-EM data and model sorted by the indices in (B). Each layer is selected from
the quasi-atomic model via the automated linkage and superimposed with the zoned voxel data.
Adopted from [32].

along its entire length. This effect creates an overall distortion that mimics the shape of an

hourglass, observable most notably in panels (F) and (H-K). Crossover stacks are only held
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together by the stacking interaction of helical ends of each Holliday junction. Hence, no

covalent bond passes through them. We hypothesize that helices might shift relative to the

lattice while retaining the closure of the stacks. In particular, the eight helix-wide stack on

the bottom of the seventh layer 8×8 displays misalignment of the central helices below

the stack compared to the remaining structure. Dehybridized base-pairs might further

contribute to this artifact [79] as multiple crossovers are incidentally formed by consecutive

A-T pairs. Layer analysis of the 8×8 domain also reveals that the leftmost helix pair

has no crossover next to the upper edge in any of the four lower layers (panels 3.4I-K).

Periodicity of the square lattice would guarantee another crossover only a few bases higher

(compare six-helix-stack in 6×6 domain in panel 3.4H), but the helices are shorter than

required for this connection. While vertical crossovers stabilize the structure appropriately,

the helix pair is notably bent away from the main body in the last layer (K). The final

layer of the 6×6 domain reveals folding defects at the central crossover stack (panel 3.4M).

These defects are likely caused by stable sequence-specific secondary structures formed

by the staples (see Supplement [32]). To complete the topological analysis, the procedure

ought to be repeated in the vertical direction.

Secondly, we use slices by base position to describe the cross-section-dependent global twist

of square lattice DNA origami structures. A superposition of these slices reveals a global

right-handed twist for unmodified square-lattice DNA origami nanostructures. The twist

decreases with increasing cross-section (Figure 3.5A). The causes of this twist are local

torques [12] produced by the systematic under-winding of eight base helical segments that

define the lattice connectivity. Global deformations can be removed by altering the number

of bases in between crossovers (Figure 3.5B). Then, the effective number of bases per turn

returns from a value of 10.67 dictated by the eight base increments of native square-lattice

to the 10.5 bases per turn used in honeycomb-lattice. The publication by Feigl, Kube,

Kohler, et al. [32] provides quantitative data on the global twist and instructions about its

cross-section-dependent correction.

Finally, we isolate structural features of two distinct designs to highlight experimental

observations of an unintentional sequence-dependent motif. During the DNA origami design

process, staples are arranged to achieve two goals: maximum connectivity of the topology

and optimized self-assembly [85]. To achieve this, the designer might opt for a staple

break in a long segment or directly at a crossover resulting in a half crossover. Presently,

sequence-dependent motifs are not considered in the design workflow. One potential

arrangement arising from this set of rules is a crossover with both staples asymmetrically

ending seven to eight bases after the junction. If the two staples end with a similar

sequence, the motif might turn into two duplexes without a crossover. With high-resolution

cryo-EM inspection guided by the annotation of quasi-atomic models, we located this
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motif with varying degrees of sequence homology in two structures. In the 8×8 domain

of the Twisttower Native Twist, the asymmetrically linked crossover can be found on top

of a crossover stack. As shown in Figure 3.5C, this crossover is present in the electron

density data, although at a reduced resolution compared to the other crossovers in the

stack. The crossover and the topmost helix are only fully-visible at a lower iso-surface

threshold compared to the surrounding structure. The sequence of the first five bases

of the final crossover-binding segment is identical. Due to partial sequence homology,

two different conformations are possible for staple binding. Despite the shorter matching

sequence, binding in the same helix without the crossover is conceivable due to a potential

energy penalty associated with establishing the crossover. The same motif is present in the

Triplex Bullet object with a single mismatched base. Figure 3.5D depicts that the strong

sequence homology prevents the crossover from assembling. Without the pseudo-atomic

model, the motif is not discernible from any other subdomain without a crossover. A

reduced local resolution that could result from the sequence mismatches is concealed by

the lower local resolution of the helix-pair compared to neighboring helices. Not only is

this pair on the exterior of the nanostructures, which reduces the local resolution due to

lattice breathing and center-of-mass alignment artifacts [32]. The missing crossover also

causes increased flexibility due to the decreased connectivity, further smearing its signal.

A subsequence redesign with a non-homologous sequence has shown a highly resolved

crossover (see Appendix Figure B.2). This series of annotated electron-density data subsets

of the same design motif highlights the importance of high-precision design in DNA origami

nanotechnology. We demonstrate how sequence-specific design motifs might play a role in

iterative design. Ambiguous binding conformations of these structural features can either

coexist in equilibrium or be determined by the degree of sequence homology in combination

with the conformational change of the backbone in the Holliday junction crossover motif.
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Figure 3.5 | Qualitative details analysis of structural features retrieved via zoning.
(A) Global twist of square lattice DNA origami of the four domains of a varying diameter of
the Twisttower objects. Twisttower Native Twist (left) versus Twisttower Corrected Twist (right)
designs with cross-sectional slices of the electron density data. The locations of the top (blue) and
bottom slice (red) are displayed in the bottom left overlay with the full cryo-EM map. Angle tokens
represent a measure for the twist angle between the two slices. (B) As in (C) for the honeycomb
lattice object 126-Helix Bundle, displaying no significant global twist. (C) Twisttower Native Twist:
Reduced resolution through partial sequence homology of the top crossover in a triple stack in the
8×8 subdomain. The intended crossover (left) appears equally often in the ensemble, resulting in a
weaker signal than the two other crossovers in the stack. The sequence match of the first five bases
creates a possible alternative conformation (right). (D) Triplex Bullet: Sequence homology of a
single asymmetric crossover. As in C, but with the alternative conformation (bottom) occurring
exclusively in the experimental data. Segments display a matching sequence of 6 out of 7 bases.
Panels (A) and (C-D) adapted from [32].
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3.4 Conclusion

In this chapter, we introduced the interactive Jupyter notebook FitViewer which enables

context-based zoning and slicing of the pseudo-atomic models. Geometric coordinates

for the cryo-EM derived model are linked with the topological information of the DNA

origami design file. Seamless integration with the dnaFit Python package (Section 2.2)

facilitates a streamlined workflow for building and analyzing pseudo-atomic models all

within the same framework. The notebook supplies the interface to perform motif-based

evaluation and inspection of the experimental data based on the annotation provided by the

pseudo-atomic models. By using interactive widgets these subsets can be extracted from

the full volumetric dataset and analyzed independently. At the same time, the complete

information of both designs and fitted models is directly available through dnaFit, which

allows the development of specialized workflows. Inline plotting using Python libraries

like Matplotlib [178] from within the Jupyter notebook enables visualization of acquired

data within the same setup. Some of these more common workflows, like the creation

of post-processing masks for advanced analysis of the electron density data, are directly

available in the notebook.

Thus, we demonstrated the capability of FitViewer by slicing a multilayered DNA origami

in its constituent horizontal helical layers. Cropping the full volumetric dataset of the

Twisttower object to contain only these layers allowed a detailed evaluation of the internal

distortions from the idealized lattice. Slices containing crossover stacks express a strong

constriction at the position of the stack, while omitted crossovers create the opposite effect.

This type of analysis also revealed structural motifs and incorrectly assembled subdomains,

which were hard to detect and interpret in the complete volume data. Exemplarily,

we described a sequence-dependent crossover motif present in two of the studied objects.

Depending on the strength of sequence homology, the motif would, with different proportions

in the ensemble, form a crossover or be present in a topological arrangement without a

Holliday junction. Additionally, slicing the structures perpendicular to the helical direction

yields quantifiable results for the global twist deformation of lattice-based DNA origami

nanostructures [32].

Development of the source code in the public domain invites contributions from the field of

DNA nanotechnology and high-resolution electron-microscopy. dnaFit and FitViewer are

intended to serve as a platform for this development which hopefully includes the creation

and implementation of standard analysis tools and pipelines for nucleotide-level analysis

and precision design of the DNA origami nanotechnology.
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Quantified Structural Analysis

Geometric data obtained from the models have proven a valuable resource for quantifying

and comparing structural motifs. The contextual enrichment of the experimental data

by the pseudo-atomic model (PAM) allows precise evaluation of the complex information

within the volumetric dataset. Here, we use the PAMs to investigate the effect of different

environments on the overall shape of DNA origami structures. We illustrate how these

models can be utilized effectively during the iterative design of novel nano-objects by

localizing areas that require structural improvement. The atomic coordinates yield the

context necessary for computing a target observable, either to assess whether a design goal

was reached or to define and adapt design plans. To this end, we demonstrate the usage

of the model as not only a visual inspection tool but also for the precision placement of

design motifs and non-DNA moieties. Finally, we use the atomic coordinates provided by

the PAM, to compute the duplex step properties of B-DNA.

4.1 Effects on Overall Shape from Coating and Buffer

Changes

Remark: The work presented in this section was published in Bertosin, Stömmer, et al.

Cryo-Electron Microscopy and Mass Analysis of Oligolysine-Coated DNA Nanostructures

(2021) [16]. Bertosin, E. performed cryo-EM measurements and data processing of the

volumetric data.

To achieve self-assembly of DNA nanostructures, electrostatic repulsion of the negative

charge of the DNA backbone phosphates requires shielding. For multilayer DNA origami,

aqueous solutions with monovalent or divalent ions are used to screen the destabilizing
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electrostatic interactions.[26, 85, 179] Consequently, these nanostructures are prone to

electrostatic-induced disassembly at non-optimal salt concentrations. DNA objects are also

affected by nuclease digestion in serum, blood, or other physiological fluids. For biomedical

in vivo applications this causes a decrease of the pharmacokinetic bioavailability of the

DNA nanostructures. However, these effects can be reduced by coating the DNA with

cationic cofactors [15, 89] and impeding nuclease activity by lowering the accessible DNA

surfaces, especially at strand termini.

Here, two shape-complementary [10] structures, A-Brick and B-Brick (see Figure 2.4A-B),

are presented that have been stabilized post-assembly. The structures are stabilized

using oligolysine or polyethylene glycol (PEG)-oligolysine coating [15]. The oligolysine

screens the negatively charged phosphates and decreases nuclease digestion, while the

PEG prevents increased aggregation caused by the coating. We demonstrated, that the

blunt-ended double-helical interfaces of the two shape-complementary structures remained

accessible. However, we observed deformations of the global shape of the nano-objects

induced by the coating. We used helical trace information of low-resolution quasi-atomic

models to investigate these structural changes and the effect of high-density coating on the

internal arrangement of the honeycomb-lattice.

Both structures were prepared at different coating ratios of oligolysine or PEG-oligolysine.

Uncoated structures were also analyzed as control samples. Coating ratios ranged from

0.2:1 (N/P) (nitrogen in lysine to phosphorus in DNA) to 100:1. Only samples coated

with PEG-oligolysine were exposed to physiological conditions. Structures without this

coating are not stable under these conditions and were hence excluded from this part of the

analysis. These origami objects were then imaged using cryogenic electron microscopy. The

overall resolution of 10-12 Å for the uncoated structure is high enough to perform the full

shrink-wrap protocol reported in Chapter 2. For coated structures, the overall resolution

was significantly reduced, despite the same conditions and a similar amount of individual

particle images. Helical grooving could no longer be observed for these structures. The

decrease of discernible details is presumably caused by the cationic coating. Oligolysine

and PEG attach predominantly in the grooves of helical DNA, spanning multiple base-

pairs. For each DNA particle image, the positions of the coating molecules are unique,

smearing their signal. This contribution to the overall intensity covers the helices, occluding

high-resolution features. Nonetheless, the overall shape and topological completeness are

still discernible by crossover locations. While these circumstances prohibit high-resolution

model building, the data are suited for the low-resolution mode of shrink-wrap introduced

in Section 2.2. There, intra-helical bonds restrain the B-DNA shape, including major and

minor grooving, throughout the protocol. Since the electron density in the cryo-EM data
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is highest in the helical center, the atoms will properly converge to the correct position.

This is true even with the signal obscured by the coating. While the PAM created with

this modified procedure is not suitable for nucleotide resolution analysis, global helical

properties are accurately represented. Consequently, positional data of the helical trace, as

well as overall model dimensions, can be used to quantify the experimental data.

We constructed pseudo-atomic high-resolution models for the two uncoated structures

and six low-resolution models for the B-Brick design with different coatings and buffer

conditions. The overall map resolution and mCCC from all models are listed in Appendix

Table B.2. All seven models of the B-Brick are displayed in Figure 4.1A-G. The atomic

coordinates are used to investigate the different structures independent of the cryo-EM

resolution and noise of the cofactors.

Figure 4.1 | B-Brick Pseudo-Atomic Models. (A) Overlay of the cryo-EM data and
pseudo-atomic model of the uncoated B-Brick in 5.5mm MgCl2. The scaffold strand is depicted
in gray, staples are in color. Views from the top (left) and left side (right). (B-G) Single color
quasi-atomic models for different coating ratios and buffer conditions, generated with low-resolution
cryo-EM data. (B) 0.2:1 N/P PEG-oligolysine coating (gray) in 5.5mm MgCl2. (C) 0.75:1 N/P
PEG-oligolysine coating (orange) in 5.5mm MgCl2. (D) 100:1 N/P PEG-oligolysine coating (light
orange) in 5.5mm MgCl2. (E) 0.5:1 N/P K10-oligolysine coating (light blue) in 5.5mm MgCl2.
(F) 0.75:1 N/P PEG-oligolysine coating (green) in phosphate-buffered saline. (G) 100:1 N/P
PEG-oligolysine coating (light green) in phosphate-buffered saline. Adopted from [16].

Selection of the central slice (4.2A) was performed using the FitViewer tool introduced

in Section 3.2. Due to the even number of lattice columns in the B-Brick, the uncoated

structure exhibits a slight bend in the column direction. This deformation is more

pronounced for thin coatings but not visible for an N/P ratio of 100:1 in both 5.5mm
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MgCl2 and phosphate-buffered saline (PBS). For these thick coatings, the PAMs reveal a

transition of the internal structure of the lattice. Helices are shifted to form a compact

square-lattice-like arrangement with a three×eight cross-section. The connectivity of

individual helices in this deformed lattice is shown in Figure 4.2B. The bending deformation

observed for thin coatings likely constitutes a beginning transition to the denser helical

arrangement. The global twist of the object also disappeared for high-density coatings

correlating with the lattice reorganization. However, a similarly distinct deformation is not

possible for any cross-section. In contrast to the B-Brick, the A-Brick design has a larger

cross-section and an odd number of lattice rows. Therefore, it cannot collapse into a single

compact helix rearrangement but only deforms partially. Its low-resolution electron density

data are a superposition of different helical alignments, wherefore a similar analysis is not

possible [16].

Figure 4.2 | B-Brick Structural Changes Due To Coating and Buffers Variation. (A)
A 25 atomic model bases of the central slice (base position 85–100) at the coating and buffer
conditions depicted in Figure 4.1. Helices of the pseudo-atomic model slices are colored by the
honeycomb-lattice column (gray-blue-green-orange) of the caDNAno design file. (B) Structural
transition of the helical pattern from regular honeycomb lattice (left) to compressed honeycomb
(right). The compressed variant is obtained for the B-Brick structure coated with PEG-oligolysine
at a 100:1 N/P ratio. (C) Structure dimension as a function of coating ratio. Directions x and y
are calculated as an average of suitable helical pairs, while z is calculated as an average over all
helical lengths. Data presented were calculated on the core unit (helices 6–29, base position 44–126),
which excludes helical ends and protrusions from dimension measurements. Lines are guides for the
eye. Adopted from [16]

To quantify the changes in dimensions of the B-Brick (4.2C), we defined a core region

that excludes the short helical protrusions of the dimerization motif and the loosely
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connected helical ends from the analysis. Both omitted features are more flexible and often

slightly deformed which reduces their overall resolution and would obfuscate the dimension

measurements. We calculated helical distance in both lattice directions (x- and y-axis)

and overall dimensions along the helices (z-axis). Measurements are averaged over the

midpoints of the C1’ atoms of each base-pair and overall helices, respectively.

All structures in a buffer with high ionic strength are more compact (x-axis and y-axis)

than the uncoated structure, as the coating effectively shields the electrostatic repulsion of

the backbone. Their length along the helical direction (z-axis) remains almost unchanged.

This is even true for the thick coating with an N/P ratio of 100:1, although effects of the

lattice transition are also observable. For structures in PBS, a length reduction of around

10% can be observed along the z-axis. A swelling of approximately 7% in the y-direction

and no change in the x-direction is likely caused by the helical rearrangement of the lattice

deformation.

4.2 Pseudo-Atomic Model-Guided Design

Remark: The work presented in this section is performed in collaboration with Khoshouei,

A., Sachenbacher, K., and Kohler F. and contains cryo-EM data unpublished at the time of

writing. Khoshouei, A. designed the research and performed cryo-EM measurements and

data processing of the Whopper and Whopper Junior objects. Sachenbacher, K. developed

the triplex mediated crossover motif and performed cryo-EM measurements of the Triplex

Bullet objects. Kohler F. established the DNA origami designs of the 45◦ corners (Corner

Study Version 3, Corner Study Version 6 ) and performed cryo-EM. The work presented on

tubules assembly was published in Hayakawa et al. Geometrically programmed self-limited

assembly of tubules using DNA origami colloids (2022) [170].

The availability of high-resolution volumetric electron microscopy data extends the iterative

design pipeline for DNA origami nanostructures. Investigation of nano-objects on the

nucleotide level enables optimization of individual helices. As duplex properties of DNA

vary due to solvent interaction and local torques produced by the lattice [32], base-pair-level

interventions by the designer are required to correct distortions of the global as well as

local structure. The structural insights not only allow the validation of design goals but

also high-precision engineering of additional motifs. These include additional crossovers to

increase the integrity and rigidity of lattice-based origami, but also attachment of functional

moieties for, among others, recognition of proteins [180], fluorescent signaling [11, 17], and

the creation of artificial catalytic centers [181].
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Here we present examples of research projects that used insights provided by pseudo-atomic

modeling throughout the design process. The target objectives for utilization of topology

and coordinates of the models can be assigned to three categories. Firstly, we compare

different design versions using the positional data of the model. Secondly, we evaluate

structural features to perform a high-precision design of additional motifs to extend an

existing DNA origami. Lastly, we validate a predefined design goal by computing a

quantifiable observable from the context of the quasi-atomic structure.

Comparison of cryo-EM data of different design iterations can be difficult because of the

disparity in local resolution. Varying sample and ice quality, the micrograph orientation

distribution, and the number of overall picked particles differ for each dataset. Consequently,

intensity data for each voxel of the volumetric dataset fluctuate dependent on the relative

position within the structure. At resolutions above 10 , this might even cause issues for

precise alignment of two similar datasets using map-map cross-correlation. Additionally, the

use of iso-surfaces for visual inspection and comparison of volumetric datasets is susceptible

to misinterpretation. To overcome this issue, we can use pseudo-atomic coordinates for

the alignment. Using the context provided by the model, we can quantify deviations of

the models using root-mean-square deviations and reduce complexity by computing and

comparing helical traces. Throughout this analysis, the linkage and FitViewer introduced

in the previous Chapter 3 are used.

First, we investigate the influence of minor changes in the internal structure between

the Pointer objects Version 1 and Version 2. Both variants exhibit the same overall

dimension, scaffold routing, and sequence. However, the designs differ in the set of

staple oligonucleotides as Version2 uses predominantly half-crossovers instead of complete

Holliday crossovers. The use of half-crossovers increases the number of possible staple-set

combinations by increasing the number of strand termini placements. This enables a more

homogeneous distribution of staple domains and overall staple length [85] and reduces the

occurrence of backbone nicks. Using these design modifications, the yield and quality of

the folding process could be increased for the Pointer Version 2 [32]. To quantify the

effect on the geometry of the DNA origami nanostructure, we built PAMs for both designs

and used scaffold atoms to align them. To facilitate visual comparison we computed

the helical traces (Figure 4.3A). The two versions do not show significant differences,

emphasized by an overall scaffold RMSD of 7.49 Å, which is below cryo-EM data resolution.

Half-crossovers, which have a nick instead of a backbone connection for one of the two

strands, are also indistinguishable at this resolution, despite the anticipated reduction in

rigidity. We conclude that the topology and sequence are the main factors for the structure
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Figure 4.3 | Variant comparison. (A) Helical trace comparison of the Pointer Version 1 (green)
and Pointer Version 2 (orange). Lines connecting the trace lines (gray) depict the displacement
at every second base position. (B) Overlay of cryo-EM map of the Triplex Bullet object with the
quasi-atomic model of the duplex DNA. A manually added third strand (orange) indicates the
triplex formation visible in the major groove. The rectangular box shows a magnification of a
triplex-forming segment. (C) Comparison of helical trace lines of the Triplex Bullet PAM with
(green) and without triplex formation (blue). Lines connecting the two models (orange) indicate
designated Triplex binding positions. Inset: C1’-C1’ distance of helical pair of the triplex-forming
Triplex Bullet relative to the center of the design. Colors indicate the visibility of the triplex in the
cryo-EM data. Distances were measured using coordinates provided by the PAM.

of DNA origami nano-objects, while the type of crossover and distribution of backbone-

nick sites is negligible. Importantly, this enables the optimization of the folding process

using different strategies for staple placement and variation of the staple length distribution.

Second, we examine the effects of a novel design motif for a regular honeycomb-lattice

DNA origami nanostructure. The Triplex Bullet object extends existing staples using a

triplex-forming sequence that binds to the major groove of the adjacent helix [182, 183]
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via Hoogsteen base-pairing [184]. For this design, eleven additional crossovers (I-XI) of

these overhangs were placed at selected positions. Given the appropriate conditions, the

staple extensions form triplexes to an adjacent helix, here referred to as triplex-crossovers.

Using cryo-EM SPA we were able to validate the pH-dependent formation of triple-helical

DNA. Figure 4.3B shows an exemplary triplex extracted using the FitViewer tool.

To quantify the potential structural change mediated by the formation of the triplexes, we

build PAMs for two different volumetric datasets of the Triplex Bullet. The primary model

was constructed using cryo-EM data of the original Triplex Bullet with helical triplets

formed. The secondary model was built from the same PAM but using electron density

data imaged from a variant of the design without the triplex staple overhangs. In both

cases, triplex-forming oligonucleotides were excluded from the model, as the shrink-wrap

framework of dnaFit dos not support Hoogsteen base-pairing. Nonetheless, the remaining

double-helical segments of the origami lattice facilitate the assessment of the changes to

the overall structure induced by the triplex formation.

The helical trace information computed from the PAM (compare Figure 4.3C) shows

that the structure retains its overall shape. The RMSD between the two versions is with

9.02 Å below the cryo-EM resolution. Comparison of the geometry of these models further

facilitates quantification of the influence of the triplex formation. This is possible, as the

two models are identical in terms of composition and topology. To this end, the distance

between the helices at the position of the triplex-crossover was computed using the dnaFit

Python framework. Using the distance measured between the C1’ atoms (Figure 4.3C

inset), we observe eleven data points with a C1’-C1’ distance of less than 18 Å. All potential

triplex locations below this threshold are classified as properly formed. This classification

is also consistent with cryo-EM readout, with two triplex-crossovers not distinguishable

experimentally due to the reduced resolution at the edges of the structure.

Third, we provide two examples for the utilization of pseudo-atomic models during the

iterative design pipeline of high-precision DNA origami. For the first structure, we strive

to reduce the relative motions of the two arms of the Corner Study Version 6 object

variants. Principle Component Analysis of the cryo-EM data reveals, that changes in the

opening angle account for 23% of the total dataset variance. This relative motion [79] not

only reduces the overall resolution but also impedes the accuracy of angle programming

of the structure. To stabilize the angle at 45◦ double-stranded angle braces are to be

placed between the corner arms to dampen the motion. These motifs are incorporated into

the design by using reverse complementary staple sequences that extend from the inner

helices of the two domains. To ensure the precision design of the angle the length of these

duplexes and their placement is important. Braces of incorrect length either compress or
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Figure 4.4 | Model-guided iterative design. (A) Potential staple bases (orange) for the five
angle braces of the Corner Study Version 6 design (pseudo-atomic model, gray). (B) Exemplary
layer slice of the second angle brace. At the highlighted staple base (orange), the two arms (PAM in
gray, helical trace in blue) are 69.9 Å apart (zoom-in). (C) Whopper PAM colored by local resolution
in helical (top) and cross-sectional view (bottom). The magnified subsection was extracted by the
FitViewer as the 14-base segment with the best local resolution of all exterior helices. The segment
belongs to helix 37 of the design diagram. The phosphate group of highlighted staple base (orange)
at caDNAno position 73 points away from the DNA strand. It is a suitable candidate for moiety
attachment.

force the corner open, while a placement off the helical center (backbone position of the

staple extension) can introduce torques that deform the overall shape. Here we used the

generated PAMs to identify the optimal position for brace placement for the next design

iteration. Additionally, distance measurement of the phosphate atoms of the placement

sides on each corner arm facilitates specification of the number of base-pairs required for

each angle brace (compare Figure 4.4A-B).

The second design goal requires the identification of the ideal position for the placement of

a protein binding moiety. Analysis of the Whopper Junior object is shown exemplarily for

the group of functional RNA platform objects. Like in the previous example, the context

provided by the atomic model enables high precision selection of the appropriate base

position. Using the dnaFit package, we can generate atomic structure files (.pdb) that

contain an additional property of the model describing the experimental data. In this

case, we encoded the local resolution information provided by cryo-EM processing with

RELION [97, 98] into the occupancy field of the structure file. This enables color-coding

of the pseudo-atomic model by local resolution (Figure 4.4C). Using this approach, we

identified a suitable position on one of the exterior helices with maximum local resolution

and staple backbone pointing outwards.
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Figure 4.5 | Tubule forming triangle validation. (A) Tubule formation by the assembly of
triangular subunits. The binding angle ϕ of the triangle specifies the curvature of the cylindrical
tubules. (B) PAM of the V-Triangle fitted into electron density using the low-resolution shrink-
wrap protocol. The markers (blue) indicate the three distinct triangle sides. (C) Measurement
of the dihedral angle of each of the three sides of the V-Triangle (left, top) and X-Triangle (left,
bottom) was performed using atomic coordinates of the PAM. The depicted tubules illustrate target
geometry (right, target) and the expected tubule geometry (right, prediction) based on the model
measurements. Panel (A) and (C) adopted and modified from [170].

Finally, Hayakawa et al. [170] use DNA origami to design triangular subunits for tubule

assembly (compare Figure 4.5A). The diameter and the chirality of the resulting tubules

can be geometrically programmed by tuning the dihedral angles between neighboring

subunits. Cylindrical tubules resulting from this procedure can be characterized by a tuple

(m, n), with m denoting the number of subunits along the direction of the circumference

and n the offset along the second direction of the planar lattice described by an unraveled

tubule. Negative n results in left-handedness, positive n in right-handedness, whereas n=0

defines an achiral tubule. Pseudo-atomic models of two different triangular subunits were

used to quantify and validate the designed dihedral angle (compare Figure 4.5B). Due to an

SPA resolution of >15 Å, the low-resolution protocol described in Section 2.2 was utilized.

Atomic coordinates generated by the model building procedure were then used to define

and compute the three side planes and their angles (Θ1,Θ2,Θ3) relative to the orientation

of the unit. In order to mitigate the increased flexibility of helices on the exterior of the

structure, planes were defined on the interior column of helices for each of the three sides.

Protrusions that form the lock and key mechanism for programmable connection of the

subunits were also removed.

An illustration of the dihedral angle determination and a comparison between designed

and experimentally determined target tubules are shown in Figure 4.5C. The V-Triangle
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structure was designed to form an achiral (5,0) tubule, which requires the target angles

(20.9, 20.9,−10.8). The X-Triangle object is also achiral but exhibits a larger diameter

with (10,0) tubule, resulting in a set of angles half as big (10.4, 10.4,−5.3). The angles

computed from the SPA cryo-EM data of the monomer of the V-Triangle are in agreement

with the designed values at (21.3 ± 0.1, 21.3 ± 0.1,−5.5 ± 0.1). However, angles for the

X-Triangle at (11.4± 0.1, 9.0± 0.1,−6.4± 0.1) are closer to the set forming a (9,-1) tubule.

While (9,-1) and (10,0) tubules are comparable in overall diameter, the experimentally

determined values yield a left-handed chiral tubule.

Psuedo-atomic models of the A-Triangle and B-Triangle, presented in Section 2.3, are

designed to form a binary species (10,0) tubule [170]. However, experimental data showed a

significant deviation from the target angles of the A-Triangle, likely caused by the complex

lock and key mechanism required for dual-species tubules.

4.3 B-DNA Duplex Properties

Within the biological context, the sequence-dependent base-pair level deformability of DNA

is an essential mechanism for the binding of proteins and regulation of gene expression.

Similarly, the effects of its sequence on the conformation of a DNA duplex gain importance

as the method of DNA origami progresses towards higher precision design. Our atomic-level

models, constructed into cryo-EM data, provide a large set of base coordinates of DNA

duplexes in solution. Based on these coordinates we compute the base- and base-pair

properties of B-DNA for a set of almost 40 thousand base-pair steps.

The analysis pipeline of dnaFit implements an interface (see Section A.3 for details) for the

computation of duplex properties based on a standard reference frame [64, 65]. Sequence-

dependent values for the six base-pair step properties are listed in Table 4.1. The dataset

presented in this section was generated from the B-Brick, both Pointer versions, both

Twisttower variants, the 48Helix-Bundle, and the 126-Helix Bundle objects. Steps involving

crossover motifs were excluded from the analysis. Base-pair step properties were computed

by the mean and standard deviation of a harmonic approximation of their interaction [185]

using a Gaussian function.

In comparison to pure enrgMD structure prediction duplex properties (see Appendix B.3)

only minimal variation of the mean values was observed. In general, we observe a stronger

sequence-dependent variability of the mean, than permitted by the elastic network of

enrgMD . Species distributions are broader than compared to the structure prediction.

Noteworthy, base-pair enforcing bonds of the elastic network are still present even at the

final stage of the shrink-wrap protocol. We are encouraged by the deviation from enrgMD
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Step Twist [◦] Roll [◦] Tilt [◦] Rise [Å] Shift [Å] Slide [Å]

AA 38.05 ±4.16 37.99 ±4.68 13.95 ±8.11 3.15 ±0.72 -0.90 ±0.92 -0.12 ±0.58
AC 35.33 ±6.49 37.67 ±6.26 14.86 ±9.07 3.08 ±0.73 -1.36 ±0.75 0.04 ±0.77
AG 37.69 ±5.27 37.75 ±6.01 11.77 ±7.08 3.40 ±0.59 -0.79 ±0.89 -0.12 ±0.65
AT 34.99 ±6.21 36.54 ±6.76 14.40 ±8.93 3.37 ±0.71 -0.80 ±0.96 -0.35 ±0.70
CA 35.41 ±6.38 36.75 ±6.36 12.81 ±8.24 3.57 ±0.74 -0.38 ±1.15 -0.18 ±0.81
GA 37.23 ±5.65 38.05 ±5.59 12.01 ±7.79 3.36 ±0.74 -0.62 ±0.96 0.05 ±0.71
GC 35.56 ±6.70 37.73 ±6.36 12.67 ±8.81 3.10 ±0.82 -0.99 ±0.92 -0.31 ±0.69
GG 38.76 ±5.90 39.98 ±6.90 13.14 ±8.61 3.40 ±0.76 -0.52 ±1.44 0.10 ±0.94

– 36.85 ±5.76 37.77 ±5.96 13.27 ±8.35 3.30 ±0.74 -0.82 ±1.01 -0.12 ±0.72

Table 4.1 | Base-pair step properties. Sequence-dependent base-pair step parameters (three
rotational, three translational) and overall average. Average values are computed using a uniform
base-step distribution. Reported error values represent the spread calculated assuming Gaussian
distributions.

of sequence-depended properties, despite not being able to reproduce trends reported in

previous studies [185–188]. Additionally, we were not able to replicate multi-modal variation

of tetranucleotide sequences [70, 189] caused by backbone structure polymorphism [190–192].

As individual base-pairs are not yet distinguishable visually at cryo-EM resolutions around

10 Å, we anticipate that higher resolution will be required before the data accurately reflect

these effects. Further improvement in SPA of DNA origami nanostructures will likewise

enable the removal of the remaining elastic network restraints present during the model

building, removing its bias.

4.4 Conclusion

Throughout this chapter, we have presented a collection of independent projects that utilized

shrink-wrap fitting for structural analysis and iterative design of DNA nanostructures.

With the goal of each project different, these examples highlight the versatility of the

annotation and context provided by the pseudo-atomic model.

In summary, we have used the geometric data of the PAMs to quantify overall dimensions

and structural changes caused by the coating of DNA structures with cationic cofactors

and variation of buffer conditions. We compared two variants of the Pointer design to

determine that the overall dimensions of compact lattice-based DNA structure are not

strongly affected by the configuration of the staple set as long as the sequence and topology

are unchanged. Similarly, the same atomic models fitted into two different cryo-EM

datasets of the Triplex Bullet facilitated the measurement of structural changes mediated

by the addition of triplex-forming staple extension into a regular honeycomb-lattice design.
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Moreover, we demonstrated how positional information provided by the model-to-design

linkage can be utilized for precision placement of moieties or structural elements during

the iterative design process of the Whopper and Corner Study Version 6, respectively. The

computation of dihedral angles for the accurate prediction of DNA origami B-Triangle ased

tubule assembly highlights the potential of PAM building to answer target-specific research

questions. Finally, we presented the utility of dnaFit to compute sequence-dependent

duplex properties of B-DNA, by computing base-pair step properties and comparing them to

elastic network-driven all-atom structure prediction results. Although the overall cryo-EM

resolution is not yet sufficient to replicate the multimodality of tetranucleotide sequences,

data obtained from a set of almost 40 thousand base-pair steps show variation from the

prediction reference.

The list of collaboration partners at the beginning of each section accentuates the versatility

and demand for structural annotation and exploratory data analysis of cryo-EM volumetric

data. The presented cases display the importance of interdisciplinary synergy for modern

biophysics in general and the field of DNA nanotechnology in particular.



66 CHAPTER 4. QUANTIFIED STRUCTURAL ANALYSIS



Chapter 5

Structure Prediction Validation

Equilibrium ensemble structure prediction of DNA origami nano-objects has been limited

for years by the small number of available atomic coordinates. For almost a full decade,

model parametrization relied on a single pseudo-atomic model [33], low resolution Atomic

Force Microscopy data [3, 27] and MD simulation force fields based on experimental

Nuclear Magnetic Resonance data of DNA duplexes [54–56, 75, 193]. Aside from the elastic

network-guided atomic resolution model enrgMD [31], utilized for shrink-wrap fitting in

Chapter 2, several coarse-grained models suitable for DNA origami have been developed.

Among them are the Finite Element models CanDo [26, 126, 127] and its improved version

SNUPI [39], as well as the coarse MD force fields oxDNA [38, 118], mrDNA [116], and

COSM [167]. The quasi-atomic model of the Pointer Version 1 object served as the main

resource for comparing high-resolution features of the simulation results of these models.

Exceptions are CanDo, which predates the Bai et al., and oxDNA, which was not originally

developed for structure prediction of DNA origami [119, 120], but later improved and

extensively tested for the field of DNA nanotechnology [76, 194]. Validation of these novel

prediction models was hence limited, and it remained unclear how well they generalize for

arbitrary DNA origami designs.

With shrink-wrap fitting, we used the cryo-EM data of the Pointer Version 1 to validate

the correctness of our protocol. The semi-automatic fitting procedure expands the high-

resolution geometric data available for validation of structure prediction methods. So far,

we published eight pseudo-atomic structures to the Protein Data Bank [158] (identifiers are

listed in the Appendix Table B.1), with several more currently in the process of publication.

These designs now cover a broad spectrum of overall size, cross-section, lattice type, design

motifs, and global twist. Consequently, the topological and geometric data of these mod-

els form a suitable dataset for the validation of prediction models and their parametrization.
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In this chapter, we present a comprehensive overview of the predictive power of the

three categories of aforementioned structure prediction models: atomic resolution MD,

coarse-grained MD, and coarse-grained Finite Element simulation. The main focus of this

study lies with the return of investment of each prediction type, signifying the predictive

accuracy in comparison to the compute time spent on the simulations. First, we compare

our pseudo-atomic models (PAMs) with the initial structure prediction of enrgMD . Then,

we simulated a selected set of designs with the most commonly used [195, 196] coarse-

grained structure predictions methods of the remaining two categories, oxDNA and SNUPI .

Thereby, we establish a set of reference predictions intended to serve as a guideline for

determining the appropriate prediction method for various workflows in the field of DNA

origami nanotechnology.

5.1 All-Atom Comparison

Remark: The work presented in this chapter was published as supplementary information

in Feigl, Kube, Kohler, et al. Revealing the structures of megadalton-scale DNA complexes

with nucleotide resolution (2020) [32].

Even for small DNA constructs the computational cost associated with explicit solvation

presents an obstacle for simulation studies of these systems [197, 198]. For enrgMD,

the replacement of the solvent with an elastic network not only removes a majority of

interaction sites from the system but also allows for faster dynamics using a 2 fs time

step. With its development, the computational cost of atomic level simulation could be

reduced by five orders of magnitude [31]. This drastic decrease makes enrgMD atomic-level

structure prediction a viable tool for the DNA origami design process [13, 86, 199]. The

speed-up for overall dynamics and domain motions induced by the elastic network is one of

the main reasons for including enrgMD as a central part of the fitting procedure outlined

in Section 2.1.

As mentioned previously, the Pointer Version 1 object served as the primary source for

the parametrization and validation of the elastic network. To assess how well the model

generalizes we compared all-atom enrgMD structure predictions of six different DNA

origami designs with their quasi-atomic models. Overall resolution and RMSD of prediction

and cryo-EM derived model are listed in table 5.1. In general, all values are above the

resolution of the experimental maps used for fitting. For three of the tested models, RMSD

values are below the reported resolution of 12 Å for the Pointer Version 1 object [33],

indicating excellent predictive power. As the elastic network was parametrized based
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[Å] Resolution RMSD

Pointer Version 2 7.4 9.66

Twisttower Native Twist 7.0 16.46
Twisttower Corrected Twist 8.1 10.99

48-Helix Brick 9.9 14.93
16-Helix Bundle 10.0 10.31
126-Helix Bundle 8.8 13.56

Table 5.1 | Deviation of enrgMD atomic level prediction and cryo-EM derived model.
Overall resolution compared to all-atom RMSD of a subset of six models originally published in [32].
Resolution estimates are computed via Fourier Shell Correlation using RELION [97, 98]. RMSD
values were obtained in VMD [166] from all atoms after alignment.

on data of this resolution, it represents the expected level of accuracy for the prediction

method. With a deviation of less than 9.7 Å, the prediction for Pointer Version 2 matches

experimental data closest, which is to be expected given its similarities to Pointer Version 1.

Nonetheless, it serves as an indicator of the independence of the structure of the model from

staple breaking strategies, as long as the overall connectivity remains unchanged. Structure

prediction with the elastic network also reliably predicts honeycomb-lattice structures with

RMSD < 15 Å, with the 48-Helix Brick object generating the largest deviation. This

highlights the versatility of the elastic network since at the time of its development no

solution structure for honeycomb-lattice was available.

The strongest deviation for any model tested occurred for the Twisttower Native Twist,

which coincidentally reports the best overall resolution at 7 Å of the model subset. To

further assess the cause of these deviations, we compared the helical traces of the atomic

coordinates. For the Twisttower Native Twist object (Figure 5.1A) strong global right-

handed twist deformation and buckling of the individual domains of the different helical

cross-sections are the main cause of the deviation. As the Pointer Version 1 object

(Figure 5.1D) does not exhibit any significant twist, the elastic network appears to not

adequately reflect this property. In addition, the twist deformation causes a buckling of

the domains at sites with strong changes in cross-section, which in turn impedes proper

global alignment of the structure. The effect is most notably in the 2×2 domain with its

strong twist and worst domain alignment. However, the twist-corrected variant of the

Twisttower (Figure 5.1B) is among the best predictions of the set since it does not deviate

as drastically from the idealized lattice grid.

Strong deviations between the fitted model and atomic-level prediction also occur at posi-

tions of omitted crossovers, especially for exterior helices. Lacking topological connectivity,

these helices tend to bend away from the main body due to the electrostatic repulsion

of the DNA backbone. In enrgMD long-range interactions are replaced by harmonic
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Figure 5.1 | Helical trace comparison between enrgMD and shrink-wrap-fitting. [32]
Globally aligned helical trace lines of the pseudo-atomic models (orange) and enrgMD structure
prediction (blue) for the models: (A) Twisttower Native Twist, (B) Twisttower Corrected Twist,
(C) 48-Helix Brick, (D) Pointer Version 2, (E) 126-Helix Bundle and (F) 16-Helix Bundle.
Displacement at every second base position is depicted with connecting lines (gray).

potentials of the elastic network. Consequently, the same helices are either tied to the

structure by the restraints of the elastic network or not repulsed strong enough due to the

lack of long-range interaction, even if no restraint is present. The 48-Helix Brick design
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(Figure 5.1C) shows this flaring feature for two of its corner helices, causing larger RMSD

than the two remaining honeycomb-lattice structures (Figure 5.1E-F).

5.2 Coarse Grained Comparison

For most use-cases in DNA origami design, atomic level predictions are not necessary.

Moreover, the high computational cost, long simulation times, and expertise required for

all-atom MD might make its use impractical. At the start of the development of novel

nano-objects, properties like the overall shape and dimensions necessitate verification. The

analysis of early iterations of a design depends on the topology of the macromolecules and

sufficient connectivity of the individual helices. As the design progresses, base-pair level

details are often the focus of improvement and validation of the design.

Exemplarily, the flexibility of a subdomain or the placement of an additional design motif

might not be apparent from the topology diagram alone. Reviewing the structures presented

in the previous chapters, we compiled a list of hypothetical questions that might have

presented themselves during their design. All these questions can be answered using fast,

coarse-grained structure prediction and do not necessitate atomic-level resolution.

• Twisttower Corrected Twist : Are all four domains completely free of a global right-

handed twist? Has its correction induced any local deformations of the lattice?

• 16-Helix Bundle: Given its small size, are all helical ends sufficiently connected to

form a compact and rigid structure?

• Corner Study Version 3 : Do the two arms of the corner comprise a 45◦ angle?

• 126-Helix Bundle: Are crossovers formed by two scaffold strands distinguishable from

regular scaffold crossovers? How big is the diameter of the hexagonal inner cavity o

the dual-scaffold structure?

In this section, we present the prediction results of a set of ten reference structures. All of

these designs have been imaged using cryo-EM and a PAM is available. This enables the

comparison of the prediction results with the experimental data of the model, quantifying

their predictive power.

Structure predictions were performed with both oxDNA and SNUPI . oxDNA provides a

high level of accuracy within a fraction of the compute time required for all-atom simulations

like enrgMD . As a coarse-grained MD simulation, developed independently of DNA origami

lattices, it is highly flexible and versatile. All oxDNA simulations were performed with

model version 2 which includes, among others, salt dependence and helical grooving [76].
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Additionally, the compatibility of oxDNA with the multi-resolution mrDNA [116] facilitates

a speedup and automatization of the relaxation procedure.

In contrast, the finite elements of SNUPI are optimized or wireframe [6] and lattice-based

origami. Utilization of the Finite Element Method makes SNUPI significantly faster than

MD-based prediction models. While slightly slower than its predecessor CanDo [26], the

added complexity introduced by SNUPI makes it a more viable rapid prediction tool. For

SNUPI predictions version 2.1 was used, which features the partition & relocation [128]

framework. Both SNUPI and oxDNA are actively developed, constantly improved, and

updated.

5.2.1 Validation Structure Set and Protocol

To represent an adequate cross-section of the variation in DNA origami nanostructure

designs, we selected a set of ten structures: Pointer Version 2, Twisttower Native Twist,

Twisttower Corrected Twist, Whopper, Whopper Junior, 16-Helix Bundle, 48-Helix Brick,

126-Helix Bundle, Corner Study Version 3, and B-Triangle. Three of these objects are

built in honeycomb-, seven in square-lattice. Their overall size ranges from a 1033 base

scaffold of the Whopper Junior to scaffolds of 8064 bases of the two Twisttower variants,

48-Helix Brick, and B-Triangle. The dual-scaffold object 126-Helix Bundle is even bigger,

with two times 7560 scaffold bases. The Twisttower variants represent a test set for the

overall twist of square-lattice structures, while the Corner Study Version 3 and B-Triangle

designs represent open and closed angled objects. Designs composed of angled subdomains

are included to test the relaxation procedures of mrDNA and the partition & relocation

framework of SNUPI . Additionally, some objects contain special design motifs, for example,

the large crossover stacks of the Twisttower Native Twist or the dual-scaffold crossover of

the 126-Helix Bundle. The Pointer design, which has been used for parametrization of

both prediction models is included as a baseline reference.

All prediction models are compared to the PAMs generated with the regular shrink-wrap

fitting protocol, except the B-Triangle for which the model was built using the low-

resolution mode. As the abstraction levels of the tools are different, a direct comparison of

the results is not possible. To facilitate numerical comparison, atomic structure (.pdb) files

are generated as the final output for the predictions. However, these atomic coordinate files

have two distinct drawbacks. First, atomic coordinates generated from both SNUPI and

oxDNA do not reflect simulated coordinates but are interpolated rigid nucleotide models

that are placed according to oxDNA base or finite element positions. Consequently, these

configurations can include steric clashes and nonphysical bond lengths. Secondly, each
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program uses its unique pdb-generation script, producing disparate quasi-atomic models.

These models not only differ in atom and strand numbering but also in nomenclature and

even the total number of atoms in the system (for instance, SNUPI places a phosphate at

both 5’ and 3’ ends of a staple, while tacoxDNA does not).

To counteract these drawbacks, we used a modified version of dnaFit to compute helical

trace data (see Appendix B.2.1) for all base-pairs of a structure. These helical midpoints

represent the duplex on a level of complexity that is compatible with the two coarse-grained

structure prediction techniques and the atom-level representation of enrgMD and the model

building protocol. Reducing the complexity for comparison also helps mitigate effects on

the RMSD stemming from the PDB generation. We used the helical trace coordinates

to align the structures and compute their RMSD. These RMSD values, combined with

the compute time for each structure and tool form the core metrics for assessment of

the predictive power of oxDNA and SNUPI . Helical trace data are also used for visual

comparison of the overall structure and design motifs. Simulation protocols and parameter

sets are documented in Section A.4. Importantly, SNUPI simulations were performed

with an electrostatic cutoff twice as large as the default value, resulting in a performance

penalty factor of up to four.

5.2.2 Predictive Power

Simulations for each of the ten DNA origami designs were completed successfully. Timing

data for the coarse-grained simulations are reported in Table B.4 of the Appendix. For

structure prediction with SNUPI, the simulation times range from half a minute for the

smallest structures to approximately 15 minutes for structures with the 8064 base scaffold.

Two structures exceeded this time frame with the Twisttower Native Twist at around 26

minutes and the 126-Helix Bundle at just over 2.5 hours. In the case of the Twisttower,

the increased duration is likely caused by the large crossover stacks that slow down the

convergence rate. The long simulation time for the 126-Helix Bundle is rooted in the non-

linear increase of computation time with the size of the system. Similarly, the dual-scaffold

structure took around 84 hours for the mrDNA/oxDNA protocol, significantly longer than

the 10 to 31 hours for regular designs. Overall, SNUPI is about two orders of magnitude

faster.

The RMSD values between structure prediction and PAM are reported in Table 5.2. All

oxDNA simulations have a trace RMSD better than 16 Å, with an average of 11.1 Å. SNUPI

performs almost as well with all designs better than 19 Å and an average of 14.4 Å. In

both cases, the best results are achieved for the Pointer Version 2 design. Doubling of

the default electrostatics cutoff with SNUPI increased the prediction accuracy by 1.2 Å on
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[Å] oxDNA SNUPI

Pointer Version 2 6.89 7.91

Twisttower Native Twist 14.02 11.02
Twisttower Corrected Twist 11.99 12.48

Whopper 10.03 10.06
Whopper Junior 8.04 9.35

16-Helix Bundle 9.37 11.14
48-Helix Brick 15.43 18.94
126-Helix Bundle 11.25 11.25

Corner Study Version 3 10.71 15.51

B-Triangle 13.23 15.92

Table 5.2 | Trace RMSD: Coarse Grained Models. Helical trace RMSD for the
mrDNA/oxDNA prediction protocol and SNUPI2.1 with an increased electrostatic cutoff of a
subset of ten DNA origami models. Trace data of the pseudo-atomic models of each model were
used as reference.

average compared to the default settings (see Appendix B.3) with significant improvements

for the Twisttower Native Twist (22.7 to 11.0 Å) and 126-Helix Bundle (19.9 to 11.3 Å).

5.2.3 Honeycomb and Square Lattice

Following the overall comparison of RMSD values, we investigated the dependence of

the predictive power on the lattice type of the DNA origami nanostructure. For the

honeycomb-lattice both the small 16-Helix Bundle and the dual-scaffold, 126-Helix Bundle

reach RMSD values below 12 Å. The cavity diameter of the 126-Helix Bundle (Figure 5.2C)

deviates by 10 Å for SNUPI and 6 Å for oxDNA from the value of approximately 171 Å

measured on the PAM. For the 16-Helix Bundle simulations with both tools predict the

flaring of helical ends (see Appendix Figure B.4) also observed in the cryo-EM data. The

48-Helix Brick is predicted well at RMSD values below 19 Å, yet cannot reach the same

accuracy as the other objects. A comparison of the cross-section of the helical trace data

at the two ends of the structure (Figure 5.2B) reveals that both SNUPI and oxDNA

do not represent the slight right-handed twist of honeycomb structures with rectangular

cross-sections [32]. Global misalignment combined with the flaring edge-helices (compare

48-Helix Brick Section 5.1) result in a strong deviation. The RMSD of the 126-Helix

Bundle is close to the cryo-EM resolution of 9.8 Å [32] despite the size of the design. Both

prediction models are capable of handling designs with multiple scaffold strands.
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Figure 5.2 | Coarse prediction for honeycomb-lattice. Visual comparison of the cross-
sectional slice of the reference PAM (gray) to SNUPI (blue, middle) and oxDNA (orange, right).
(A) 126-Helix Bundle object sliced in the center around position 96 of the caDNAno diagram. (B)
48-Helix Brick design with two slices at each end around positions 27 and 170 of the caDNAno
diagram. Lines drawn from helix 3 to helix 44 of the design diagram indicate a global twist and
are colored according to the model. Slice markers (green, dashed) indicate the position of the
cross-section relative to the PAM (left).

The globular square-lattice nano-objects Whopper Junior, Whopper, and Pointer Version

2 did yield the best RMSD values overall with both oxDNA and SNUPI at 10 Å or better

(see Figure 5.3).

In general, the lattice type did not show a significant effect on the predictive power,

with only minor deviations for the potential global right-handed twist deformation of

honeycomb-lattice. The larger cut-off for the electrostatic interaction of SNUPI appears

to benefit larger structures more than structures with less than 3000 scaffold bases. The

effect was particularly noticeable for the 126-Helix Bundle with an RMSD improvement of

8.6 Å. This strong discrepancy is likely due to the large diameter and the barrel-shaped

cross-section.
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Figure 5.3 | Coarse prediction for square-lattice. Visual comparison of the cross-sectional
slice of the reference PAM (gray) to SNUPI (blue, middle) and oxDNA (orange, right). (A)
Whopper design sliced in the center around position 66 of the caDNAno diagram. (B) Pointer
Version 2 design sliced in the center around position 70 of the caDNAno diagram. Slice markers
(green, dashed) indicate the position of the cross-section relative to the PAM (left).

5.2.4 Overall Twist and Non-Standard Design Motifs

Deviation values around 12 Å for both Twisttower variants suggest adequate prediction

of the twist-deformation of square-lattice [32]. Analysis of the cross-section at both ends

of each domain of the Twisttower Native Twist (Figure 5.4A) confirms a correct twist

prediction for all but the 2× 2 domain for SNUPI and only minor deviations in the 4× 4

domain for oxDNA. Inaccurate prediction of the 2 × 2 domain with SNUPI is to be

expected due to the low crossover density of this subdomain which causes disparity from

the regular lattice. The alignment of the individual subdomains is in both cases limited by

the electrostatic long-range interaction. Alignment of the 2× 2 domain is better for SNUPI

than for oxDNA, with SNUPI simulations performed at a larger electrostatic cutoff of 4λD

compared to oxDNA at 3λD [76].

In case of the Twisttower Corrected Twist version (Figure 5.4B), both models show compa-

rable results. The correction of the overall twist deformation is accurately represented for

both approaches. Helical spacing appears slightly more accurate for oxDNA, resulting the

lower RMSD values.
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Figure 5.4 | Coarse global twist prediction. Comparison of the cross-sectional slices of
both variants of the Twisttower object. Reference PAM (gray), SNUPI (blue, middle), and oxDNA
(orange, right) predictions are displayed at four positions that mark both ends of the four subdomains.
(A) Twisttower Native Twist at both ends of the 8 × 8 domain (caDNAno position 171 & 116)
and small domains (caDNAno position 98 & 52). (B) Twisttower Corrected Twist similar to (A),
caDNAno positions are identical. Slice markers (green, dashed) and numbering indicate the position
of the cross-section relative to the PAM (left).

Additionally, both oxDNA and SNUPI predict the barrel-like distortion [32, 79] of the

lower part of the 8 × 8 domain. These distortions are caused by crossover stacks that

span the complete cross-section. No covalent bond of a DNA strand is connecting helical

segments of such a crossover-stack site and the nanostructure is connected by blunt-end

π− π orbital stacking only. Since such stacking interactions are not implemented in the set

of finite elements of SNUPI, these parts of the structure cleave, resulting in a prediction

artifact (Appendix Figure B.5A). The missing interaction between the helices can also

impact the convergence times of the prediction.

The dual-scaffold crossover motif of the 126-Helix Bundle [91] does not differ from a

regular scaffold crossover for both coarse-grained models. This result is consistent with

high-resolution cryo-EM data and the PAM of the design.
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Figure 5.5 | Coarse prediction for honeycomb-lattice. Helical trace comparison of the
reference PAM (gray) to SNUPI (blue, middle) and oxDNA (orange, right). (A) Corner Study
Version 3 origami design compared to the PAM by (1.) the cross-section at both ends of the corner
arms, (2.) the central helix column of the design diagram. (B) Helical cross-section for each of the
three sides of the B-Triangle object. The three slices are oriented relative to the triangle plane of the
PAM (left). Slice markers (green, dashed) and numbering indicate the position of the cross-section
relative to the PAM (left).

Finally, we analyze the capability of the two structure prediction approaches to auto-

matically predict DNA origami designs containing corner motifs [79, 86]. The corner

angle for these designs is adjusted by the length mismatch of helical pairs of the corner

arms. However, the topology close to the corner and the orientation of the base-pair at its

pivot are important factors for the precise engineering of the corner. Modifications of the

crossover distribution and helical orientation can cause deviations from the target angle of

several degrees.

Using the respective multidomain-alignment strategies, both protocols successfully predicted

the target geometry at RMSD values of 16 Å or better. At 11 Å and 13 ÅmrDNA/oxDNA

yields significantly better results compared to the FE method. The cause of the discrepancy

for the 45◦ corner of the Corner Study Version 3 design is a slightly larger opening angle of

the SNUPI prediction when compared to the PAM (Figure 5.5A). Additionally, the complex

topology at the corner, which includes several motifs reliant on stacking interaction, causes

prediction artifacts (Appendix Figure B.5B). Nonetheless, the cross-section comparison for

the helical trace matches the reference model for both predicted configurations. Angle brace
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lengths are within 9 Å and 15 Å within the values established for the PAM (Section 4.2)

for oxDNA and SNUPI respectively.

In case of the closed multidomain B-Triangle object (Figure 5.5B), corner angles are correct

in both cases. For the SNUPI prediction, the alignment of the three sides is slightly shifted,

causing a larger RMSD value. Slight mismatches for the overall dimensions of each side are

the likely reason for the mismatch. The dihedral angles of the triangle sides, which are an

essential design goal for the tubule assembly, are predicted with high accuracy in both cases.

5.2.5 Structure Prediction Guidelines

In summary, both SNUPI and oxDNA are capable of predicting structural features of all

ten designs of the experimental validation set. This includes independence of DNA origami

lattice, scaffold size, and domain geometry. Both coarse-grained models are capable of

simulating structures composed of multiple scaffolds, closed and open topologies, and global

twist-deformation.

With simulation times at the timescale of minutes, SNUPI has become the most viable

prediction tool for iterative DNA origami design. Structure prediction with SNUPI can

be improved significantly by increasing the electrostatic cutoff to at least 3.75 Å (or 3λD),

similar to the value used in the oxDNA model. The simulation time penalty factor of up

to four is mostly insignificant due to the speed of the simulation in general. Either way,

predictions are not fast enough for instant visual feedback, which requires prediction times

within milliseconds or at most a few seconds.

Both models slightly underestimate the global twist deformation of honeycomb-lattice

objects but can predict the twist of square-lattice designs. Other observed deviations from

the global structure are within the resolution limits of the experimental reference data. As

the parametrization of both models is dependent on limited high-resolution cryo-EM data,

further improvements can certainly be achieved by incorporating the data presented in

this work into the model parametrization.

Due to its decisively shorter simulation time and lower hardware demands, SNUPI is

the best model for rapid iterative structure prediction of DNA origami nanostructures.

Average RMSD values around 14 Å for SNUPI, compare favorably to the approximately

11 Å achieved by oxDNA. However, as SNUPI is dependent on the DNA origami lattice,

non-standard design motifs and lattice-independent properties like base-pair hybridization

are not included in the prediction framework. Here, oxDNA presents a feasible alternative
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for structure prediction. Since the model has been developed independently of DNA

origami lattices as a general model for DNA, successful structure prediction does not

rely on lattice motifs. Effects like duplex-formation or dynamics of single-stranded DNA

are equally realizable as non-lattice DNA nano-objects. In cases where the additional

accuracy of oxDNA is required, the average runtime of a single day is also not unreasonable.

Additionally, oxDNA can perform any protocol suitable for an MD simulation. This

includes, among others, advanced sampling techniques and the computation of ensemble

properties. The oxDNA code is developed as open source, enabling custom modification

and extension of the code.

5.3 Conclusion

The advent of structure prediction of macromolecules using computer simulation presents an

opportunity for the field of DNA nanotechnology. Using prediction-guided iterative design

enables the development of more complex and more precisely engineered nanostructures.

Nonetheless, the size of DNA origami nanostructures imposes a high computational cost for

all-atom simulations of these systems. With the implicit solvation provided by the elastic

network of enrgMD, this barrier can be overcome. This development facilitates atomic-level

structure prediction for megadalton DNA nano-objects. By comparison of enrgMD

prediction to pseudo-atomic models of six high-resolution cryogenic electron microscopy

datasets, we highlight the versatility of the approach. Although solely parametrized on

a single square-lattice structure, enrgMD generalizes well to both types of layered DNA

origami lattices and accurately predicts the overall structure for different staple-breaking

rule sets. Apart from its predictive power, the elastic network can be utilized as a

relaxation method for explicit solvation simulations, particularly in combination with the

multi-resolution framework mrDNA. For these reasons, enrgMD is an important utility of

the shrink-wrap-fitting protocol.

However, the atomistic representation of DNA duplexes with enrgMD still necessitates long

simulation times. Due to the associated computational cost, this approach is not viable for

iterative design. By reducing the complexity of the simulated system via coarse-graining,

oxDNA and SNUPI can provide prediction feedback on the timescale of hours and minutes,

respectively. We simulated a test set of ten lattice-based DNA origami structures using the

SNUPI framework. The base-pair-level finite elements can predict the overall structure with

on average 14 Å accuracy in a matter of minutes. Different lattice types, object sizes, and

aspect ratios were equally well predicted as multidomain structures. In contrast to mrDNA

and oxDNA, SNUPI does not require GPU hardware and is compatible with Windows,
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macOS, and Linux. oxDNA simulations for the same validation set do produce at least

equally good structural agreement with the shrink-wrap-fitted PAM reference, compared

to SNUPI . The coarse MD model is also more robust toward non-standard design motifs

like crossover stacks and single-strand DNA segments. But, prediction with SNUPI is

about two orders of magnitude faster than oxDNA, mitigating the lower predictive power.

For most iterative design workflows, SNUPI is the model of choice, due to its rapid

prediction and accurate representation of the overall structure and topology of DNA

origami designs. In cases incompatible with the SNUPI framework or simulations including

non-lattice DNA motifs, oxDNA presents a viable alternative for prediction-guided iterative

design. For computational studies that involve DNA duplex formation or dissociation,

or prediction of thermodynamic ensemble averages, oxDNA is also the more versatile of

the two. Since the code is also available open-source the coarse-grained MD approach

presents more flexibility. The model also allows simulation of mixed systems including

RNA [123, 124] and protein complexes [122]. The oxDNA source code [38, 119, 120] and

its associated tools [121, 122] are under active development with novel features added at

almost a monthly rate.

Despite the limited atomic-level data available at the time of their development, all three

DNA origami models presented here generalize well for a variety of designs. We anticipate,

that the high-resolution pseudo-atomic model data presented in this thesis provide a more

extensive parametrization set for the improvement of existing or the development of novel

prediction models for DNA macromolecules.
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Chapter 6

Conclusion & Outlook

In this thesis, we introduced shrink-wrap-fitting, a protocol that allows fast, semi-automated

pseudo-atomic model building for lattice-based DNA origami nanostructures. The pro-

tocol is a combination of several other methods, coupled to target the characteristics

and topology of these objects specifically. At its core, the protocol is based on the

MDff protocol [130] that, due to its conceptual simplicity, is applicable for megadalton

nano-objects. A cascaded fitting procedure [147] mitigates the effect of local minima

caused by the quasi-periodic lattice, while the elastic network of enrgMD [31] stabilizes

the structure during relaxation and speeds up the dynamics of the system. It makes the

fully automatic fitting of structural data into high-resolution cryogenic electron microscopy

data of megadalton DNA macromolecules possible.

Supplementing the shrink-wrap protocol, we presented the open-source Python package

dnaFit which implements its methodology. dnaFit enables platform-independent model

building for volumetric electron density datasets within 24 hours of computing time on a

standard desktop computer. Additionally, we showcased the browser-based FitViewer tool,

which provides zoning and slicing functionalities. These components are useful for in-depth

analysis of these structures and the generation of masks for further data processing. With

the extensively documented Python package and Jupyter notebook, anyone can build and

analyze quasi-atomic models.

We have constructed several pseudo-atomic models with over 200,000 base-pair coordinates

using this technology. Thereby, the total amount of DNA-only coordinates available in

the PDB was effectively doubled [32]. Due to its hands-on application, easy availability,

and the open-source nature of the package, the method has been quickly adopted by the

field.[11, 16, 170] Consequently, we expect an increase in the number of DNA depositions
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in PDB in the coming years, further expanding the pool of available structural data on

B-DNA.

The functionality of the dnaFit package has recently been expanded. It is now capable of

fitting multidomain structures, provides a low-resolution mode, and facilitates the fitting

of a subset of the structure. With subset fitting, a high-resolution subunit can be modeled

and quantified in the context of the full topology. As cryo-EM of DNA nanostructures

progresses, especially for the resolution of subunits [32, 99], the need may arise to build

models for data with a resolution better than 5 Å. In theory, the MDff protocol is not

limited to any resolution range. However, higher resolutions may eventually allow for

the removal of the base-pair restraints of the elastic network. Even if more elaborate,

and computationally more expensive, fitting schemes [149] should become necessary at

higher resolutions, shrink-wrap will remain relevant as a fast and reliable way of creating a

starting point for further refinement.

We have further demonstrated how the PAMs can be used to compare and quantify several

design aspects with up to nucleotide precision. Slices created using the FitViewer notebook

properly quantify the twist of square lattice-based structures and highlight how these

global deformations impact the planarity of layers along the lattice locally. The zoning and

cropping functionality of the tool was used to extract data of specific design motifs like

crossover stacks and determine the high-precision placements of functional moieties in an

iterative design approach. We identified the effects of co-factor coating and buffer condition

changes on both overall dimensions and internal structure of DNA origami nano-objects.

The flexibility of the protocol enabled its adaptation and use for electron density data with

an overall resolution up to 20 Å. Moreover, we illustrated how this workflow supports the

iterative design process by permitting the calibration of design parameters. For instance,

we measured bevel-angels of tubule forming triangles, without the positional ambiguity

within a volumetric dataset. We used similar workflows to place structure enforcing angle-

braces and compared the effects of modification between different design variants. This

technique also works well in the presence of unresolved subdomains, strongly varying

resolution for different parts of the volumetric dataset, and incorrectly assembled motifs.

Additionally, we demonstrated the utilization of PAM coordinates for the assessment of

the stereochemical quality of the B-DNA duplexes in terms of base-pair step parameters.

The models generated with the shrink-wrap protocol provide an extensive resource to

assess the results of computational structure prediction of DNA origami nanostructures.

We used the atomic coordinates fitted to a handful of high-resolution electron density

maps to establish a base reference of atomic coordinates. This reference was compared



CHAPTER 6. CONCLUSION & OUTLOOK 85

to structural results simulated using three DNA prediction models. The all-atom model

enrgMD with the mrDNA fast relaxation procedure consistently produced RMSF values

below the resolution of the experimental cryo-EM data. Computational cost and the

structural restraint due to the elastic network present the main drawbacks of this model.

Consequently, domains and motifs that deviate strongly from the idealized lattice model

are likely to be predicted with low accuracy. We also compared the results of the two

coarse-grained prediction models oxDNA and SNUPI . Compared to the all-atom approach

with trace RMSF values of up to 16 Å and 19 Å, respectively. However, the average trace

deviations are within a few ångströms of the cryo-EM resolution. We showed that for

iterative design pipelines the reduction in overall predictability is offset by the speedup,

especially with average SNUPI simulation times of less than 15 minutes. This unmatched

speed makes SNUPI a valuable rapid prediction tool, especially in the early stages of the

iterative design process. Additionally, both tools are capable of mitigating at least one

of the disadvantages of enrgMD, by providing more flexibility in the design space. Since

oxDNA is not limited to the simulation of lattice-based DNA origami, the model is capable

of predicting deviations from the origami lattice, base-pair dehybridization, and subdomain

dynamics.

In addition to establishing the strengths and weaknesses of these prediction models, the

availability of multiple pseudo-atomic models provides a broad platform to calibrate and

validate future models. We aim to further increase the number of available coordinates

and diversify their origin to different categories of structures, lattices, and conditions.

Further developments in high-resolution electron microscopy of DNA origami and pseudo-

atomic model-guided data processing [32, 200] will extend the number of available high-

resolution DNA origami structures. With this expected increase, the available atomic

coordinates of DNA-based structures will grow correspondingly. More experimental data

suitable for validation of both atomic-level and coarse-grained models will further enable

the improvement of existing, or parametrization of novel prediction approaches. We are

convinced that these developments foster a positive feedback loop, with rapid prediction-

guided iterative design enabling the engineering of DNA macromolecules of even higher

quality and design precision. Structural insights extracted from these nano-objects will

likewise improve successive prediction tools. In addition, the increase in high-resolution base

coordinates may facilitate the utilization of artificial neural networks for the field of DNA

origami. The same goal was recently achieved for proteins for both structure prediction [201,

202] and cryo-EM data identification [203]. Particularly the AlphaFold2 model [202] is

considered a milestone achievement in protein structure prediction in particular, but also

computational biology in general. Furthermore, high-resolution electron density data will
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help facilitate the development of complex design motifs. Given a sufficient library of

high-resolution motifs and their respective pseudo-atomic structure, the simplification

framework provided by the lattice may no longer be required. Although experimental

data with better resolution is required to investigate the sequence dependency of the DNA

duplex geometry, a set of high-resolution coordinates presents ample chance for exploratory

data analysis.

The methodology and computational tools for computational analysis of lattice-based

DNA origami nanostructures presented in this work represent a multidisciplinary effort

to improve the level of precision for both the design and validation of these megadalton

macromolecules. Development of the software as public and open-source invites adaptation

of the codebase to novel challenges and analysis pipelines. The MD-based core of the

fitting pipeline makes it suitable for extension and improvement, as better results for the

cryo-EM resolutions of DNA nano-objects will be achieved.



Appendix A

Computational Methods

A.1 Cascade Protocol

The relaxation procedure is based on molecular-dynamics flexible fitting (MDff) [130, 145].

The cascade protocol is adopted from cascading MDff [147]. Initial models and elastic

networks for the fitting procedure are generated using enrgMD [31] and mrDNA [116].

A.1.1 Initial Protocol Published in Feigl, Kube, Kohler, et al. (2020):

First, an initial model for a given structure has to be computed and roughly aligned

with the volumetric electron density data. The caDNAno2.3 strand diagram [27] and

the scaffold DNA sequence are used as input to generate an initial pseudo-atomic model

with enrgMD [31]. Manual pre-alignment with the electron density data using VMD-1.9.3-

MacOSX [166] ensures global optimization of the fitting procedure. Prior to the start of

the flexible fitting procedure 4,800 steps of steepest-descent energy-minimization improve

restraints and the bonded-neighbor geometry.

All simulations of the fitting cascade are performed in the MD simulation framework

NAMD2 [165] version 2.12-Linux using the CHARMM:36 [191, 204] force field for nucleic

acids. Intermediate electron density data for the cascade steps and grid-based potentials

for flexible fitting are generated using VMD packages mdff-0.5 and volutil-1.3. Simulations

were performed in the NVT ensemble with short-ranged Coulomb interactions up to 10 Å,

and a switch distance of 8 Å. Smooth truncation of the Lennard-Jones potential was

employed and no PME long-range corrections are applied. Simulations were performed in

a vacuum with dielectric constant 1 and a thermostat at 300K using Langevin forces for
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all non-hydrogen atoms with damping of 0.1 1/ps.

During the flexible fitting procedure a grid-potential weight ζ of 0.3 kcal/mol is used for

the cryo-EM data. For the cascade, a series of eight low-pass filtered volumetric datasets

with a sequentially increasing resolution is generated. Low-pass filtering is performed using

a Gaussian blur of up to 22 Å. For each step of the cascade 12,000 steps of MDff with a

time step of 2 fs are performed. After the first three stages of the cascade, 12,000 steps of

regular elastic-network guided MD is performed without the grid-based potential active.

This step resolves deformations caused by the proper alignment with the cryo-EM data,

which is especially pronounced for poor rigid body docking or multidomain structures.

Now a second cascade is initiated with the final frame of the deformation resolve step as the

initial model with 6,000 steps for each map. Throughout the protocol the harmonic bonds

constituting the elastic network of enrgMD, or a subset thereof, are active. These bonds are

differentiated by the relation of their acting atoms, with long-range connecting atoms of

different helices, short-range bonds connecting atoms within the same helix, and base-pair

bonds connecting the nucleotide pairs connected by hydrogen bonds. For any maps with a

global resolution of 14 Å or better, long-range bonds are turned off, as individual helices

are discernible. For the final step of the cascade, only base-pair restraining bonds are

kept active for 12,000 steps against the original map. Finally, the weight on the EM

density is increased to 1.0 kcal/mol for 18,000 energy-minimization steps to equilibrate

bonded-neighbor restraints of the force field.

After performing the flexible fitting protocol, final coordinate files (.pdb and .mmCIF) are

generated. This post-processing includes the computation of a masked electron-density map

with a masking distance of 4 Å that can be used for computing the masked cross-correlation.

A.1.2 Protocol improvements for dnaFit-1.0 :

Instead of generation with enrgMD and subsequent energy-minimization, the initial model

is generated using the multi-resolution structure prediction framework mrDNA [116]. Since

the initial model will be significantly closer to the solution conformation, cascade 6,000 steps

per cascade map are sufficient for most structures. In addition to relaxing the structure

without the presence of a grid-based potential, an annealing step is added in between the

first and second cascade. Here the system is gradually heated by 100K for 12,000 steps,

before stepwise cooling to the original temperature. Throughout this procedure, the grid-

based potential is active with a reduced weight of 0.01 kcal/mol for MDff. The complete
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post-processing is performed automatically by dnaFit with an additional generation of a

human-readable version of the design- pseudo-atomic model linkage.

By default, all single-stranded residues are excluded from the grid-based potential by

generating a custom grid.pdb file in the context of the caDNAno design file. The subdomain

fitting pipeline is accessible by supplying a grid.pdb file instead of default automatic

generation.

Low-Resolution Fitting Protocol: For electron density data with a resolution of

15 Å or worse, application of the complete protocol is not warranted as base-pair level

detail and helical grooving are not discernible. However, the placement of elastic network

retrained atomic models at the position of helices can be used to approximately annotate

the volumetric dataset. DNA origami design motifs like crossovers are distinguishable at

these resolutions allowing validation of proper global alignment of the helices. For this

purpose the fitting protocol can be followed up to the point of removal of intra-helical

elastic network constraints, directly followed by the minimization step and post-processing.

A.2 Software Availability

All code described here is available on GitHub and is part of the public domain. Release

numbers listed below reflect the version at the time of publication of this work.

The code described in the following section was developed and tested on Unix-like systems,

specifically CentOS Linux and Mac OS X. The Python packages are developed with

Python 3.8, the Jupyter Notebook was tested in Safari but is expected to work in other

environments. Full disclosure of license information and contributions to the code is

available on GitHub. In general, we advise the use of isolated virtual environments for the

installation of the Python packages.

If you encounter any issues, please check out the latest release and use the respective

GitHub-Issue page for reporting errors.

A.2.1 Shrink-Wrap Fitting Package

Package-identifier: dnaFit

URL: https://github.com/elija-feigl/dnaFit

License: GNU Public License Version 3

Version: 1.0.1.alpha

https://github.com/elija-feigl/dnaFit
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Description: A Python 3 package that contains a command-line of scripts related

to the fitting of pseudo-atomic models into cryo-EM maps of DNA-Origami structures.

Implements the Shrink-Wrap Fitting (Multi-Resolution Elastic Network-Guided Cascaded

Molecular Dynamics Flexible Fitting) pseudo-atomic model building protocol.

Requirements:

• Python ≥ 3.8

– numpy ≥ 1.21.0

– click ≥ 8.0.1

– MDAnalysis ≥ 1.1.1

– mrcfile ≥ 1.3.0

– nanodesign ≥ 3.0.0. (@ https://github.com/elija-feigl/nanodesign)

– pdb2cif ≥ 1.0.0 (@ https://github.com/elija-feigl/pdb2cif)

Installation: To install dnaFit either download and unpack the code from GitHub before

installing the package with a package managing frontend like pip:

pip install .

Or use the frontend to install directly from GitHub:

pip install git+https :// github.com/elija -feigl/dnaFit#egg

=dnaFit

Usage: After installation, the package also serves as the entry point for the command-line

interface. To display the documentation of the application execute it by name in the shell.

dnaFit --help

Usage: dnaFit [OPTIONS] COMMAND [ARGS ]...

Cascaded \textit{mrDNA}-driven MD flexible fitting script

module:

dnaFit commands:

main pipeline:

1. mrDNA: \textit{mrDNA} structure prediction with

custom settings for caDNAno file. (includes the

creation of prep folder for fitting)

2. vmd_info: print info for rigid body docking

with VMD
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3. fit: shrink wrap fitting if of rigid body

docked \textit{mrDNA} prediction. (includes mask ,

pdb2cif , and link)

Options:

-v, --version Show __version__ and exit.

-h, --help Show this message and exit.

Commands:

center -on -map Recenter atomic model center -of -mass on

MRC cryo -EM map center and write a structure (.pdb)

file.

fit Cascaded \textit{mrDNA}-driven MD flexible

fitting (shrink wrap fitting) to MRC cryo data.

Creates \textit{dnaFit} folder. This folder will

contain the final results \textit{prefix -last.cif}.

link Links structural information of the

CADNANO design file to fitted atomic model files TOP ,

CONF.

mask Creates a masked MRC map of voxels

occupied by the PAM.

mrDNA \textit{mrDNA} simulation of CADNANO

design file with custom settings followed by

preparation of files for "fit" command.

pdb2cif Generate atomic model in mmCIF format from

NAMD structure files using the pdb2cif package

prep Prepare \textit{mrDNA} results for "fit"

command.

vmd -info Print VMD command for rotation of

structure file (.pdb) around its center of mass.

Reference: When using the dnaFit Python Package in published work, please cite the

following paper:

Feigl E., Kube M., Kohler F., et al. Revealing the structures of megadalton-scale DNA

complexes with nucleotide resolution. Nat Commun 11, 6229 (2020). https://doi.org/

10.1038/s41467-020-20020-7 [32]

https://doi.org/10.1038/s41467-020-20020-7
https://doi.org/10.1038/s41467-020-20020-7
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A.2.2 FitViewer Notebook

Identifier: FitViewer.ipynb

URL: https://github.com/elija-feigl/FitViewer

License: GNU Public License Version 3

Version: 1.3.0

Description: Interactive Jupyter Notebook for context-based zoning and cropping of

cryo-EM maps using pseudo-atomic models fitting into cryo-EM electron density maps of

lattice-based DNA origami nanostructures.

Requirements: FitViewer requires an iPython kernel with the following dependencies:

• Python ≥ 3.8

– dnaFit ≥ 1.0.0 (@ https://github.com/elija-feigl/dnaFit)

– jupyter notebook ≥ 6.4.8

– iPython ≥ 8.0.0

– ipywidgets ≥ 7.6.5

Usage: A Jupyter Notebook can be started from an appropriate editor or in the browser

via shell:

Jupyter Notebook FitViewer.ipynb

Instructions on the use of the notebook are directly incorporated via mark-up cells.

Reference: When using dnaFit Python Package in published work, please cite the

following paper:

Feigl E., Kube M., Kohler F., et al. Revealing the structures of megadalton-scale DNA

complexes with nucleotide resolution. Nat Commun 11, 6229 (2020). https://doi.org/

10.1038/s41467-020-20020-7 [32]

A.2.3 PDB to mmCif Format Conversion

Package-Identifier: pdb2cif

URL: https://github.com/elija-feigl/pdb2cif

License: GNU Public License Version 3

https://github.com/elija-feigl/FitViewer
https://doi.org/10.1038/s41467-020-20020-7
https://doi.org/10.1038/s41467-020-20020-7
https://github.com/elija-feigl/pdb2cif
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Version: 1.0.4

Description: This tool converts protein databank files (.pdb) into mmCIF (.cif) format

for upload to the PDB [158] and use in chimera [175] and ChimeraX [205].

Current supported (.pdb) sources:

• mrDNA

• tacoxDNA

• SNUPI

Requirements:

• Python ≥ 3.8

– numpy ≥ 1.21.0

– click ≥ 8.0.1

Installation: To install pdb2cif either download and unpack the code from GitHub

before installing the package with a package managing frontend like pip:

pip install .

Or use the frontend to install directly from GitHub:

pip install git+https :// github.com/elija -feigl/pdb2cif#

egg=pdb2cif

Usage: Start the command-line interface by typing the name of the package into the

shell.

pdb2cif --help

Usage: pdb2cif [OPTIONS] PDB

Generate atomic model in mmCIF format from NAMD structure

file (.pdb).

PDB is the name of the NAMD configuration file [.pdb]

Options:

-h, --help Show this message and exit.

-v, --version Show __version__ and exit.
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--remove -H Remove hydrogen atoms.

--alt -chain Use alternative chain identifier.

--snupi Convert from \textit{SNUPI} pdb.

--flip -fields Flip the values of occupancy and temperature

fields.

A.2.4 Nanodesign

Package-identifier: nanodesign

URL: https://github.com/elija-feigl/nanodesign

License: Apache-2.0 license

Version: 1.0

Description: A Python 3 port of the currently discontinued nanodesign package https:

//github.com/Autodesk/nanodesign. The package provides a development framework

for DNA nanostructures. Nanodesign offers read and write routines for common DNA

origami design software, including cadnano and creates a dynamic data structure to store

information about the designed macromolecule.

A.3 DnaFit Code Structure

In this section, we describe the overall structure of the dnaFit Python package and detail

the functionality of the most important routines. The package itself acts as a backend

for the FitViewer application and automatized analysis protocols, but also presents a

command line interface for administering the shrink-wrap fitting protocol. The command

line interface is constructed using the Python module click. The package is split into seven

submodules, listed in alphabetical order.

• core: This module contains the mrDNA initial-model generation wrapper, with two

sets of custom parameters for single- and multidomain DNA origami designs. General

utility functions, model parameters, and constants are also stored here.

• data: Class definition for real-life equivalent objects are located in this module.

• fit : Here, the shrink-wrap protocol is implemented and encapsulated in the Cascade

Python class.

• link : Linkage between the atomic structure file and the caDNAno strand diagram is

processed within this module.

https://github.com/elija-feigl/nanodesign
https://github.com/Autodesk/nanodesign
https://github.com/Autodesk/nanodesign
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• resources: NAMD2 force field files, as well as input file templates for NAMD2 and

VMD are located in this folder.

• scripts: This module serves as the entry point for commands defined for the CLI.

• viewer : Functionality exclusively utilized for the FitViewer application is collected in

this module. It Implements various subset selection methods (via widget or method

call) and output routines for modified volumetric and atomic structure files.

In general, the code base is highly encapsulated following an object-oriented programming

paradigm. Consequently, any utility is bound to an abstract object, the most important of

which are discussed in the following.

Data Module

The main objective of the dnaFit packages is the creation of a contextual connection between

the topology of the caDNAno strand diagram and the geometry of the electron-density

data fitted by the atomic model. Consequently, the two main data classes implement these

concepts: the design and the pseudo-atomic model.

The Design class contains the complete information on the DNA origami design. Parsing

of the caDNAno strand diagram is performed with the nanodesign Python package A.2.4.

The existing data structure of nanodesign is subsequently extended by containers for

scaffold and staple strands, as well as a lookup table for identifier and position of all bases

of the system. Additionally, the strand and helix parsing order is resolved to match the

pseudo-atomic model. The Fit class parses and stores information on the PAM via the

MDAnalysis package.

In addition, both these concepts represent a description of DNA, either in terms of its

design or its experimental readout. Since this context is essential for quantitative analysis

of DNA, we implement classes for B-DNA duplexes, hydrogen-bonded base-pairs, and

individual bases. The Base and Basepair class define the coordinate reference frames and

identities of each nucleotide. These coordinates are then used to compute the properties of

a B-DNA duplex (BDna). The current release implement routines for the computation

of base-pair step properties twist, rise, tilt, roll, shift, and slide. Trace data is computed

based on the origin of the base-pair reference frame. Evaluation of base step properties,

crossover angles, and backbone dihedral angels is currently in development.
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Fit Module

The main protocol of shrink-wrap fitting is implemented in this module. Implementation

of the model building workflow is encapsulated in the Cascade class with the parameter

set stored separately in the CascadeData class. First, with subprocess calls to VMD, the

low-pass filtered cascade maps and MDff files are generated. Then, each fitting stage is

executed via NAMD2, before the final processing of the simulation data is performed

with VMD. Finally, the results of the MD simulation are parsed and processed with

dnaFit to mmCIF structure files for PDB upload and masked electron density data for

cross-correlation validation. Additionally, design-to-PAM linkage information is computed

and stored in a human-readable format.

Link Module

The linker class matches DNA strands of PAM and caDNAno strand diagram based on

the topology parsing rules of mrDNA and enrgMD . Once the correct counterpart of each

strand is identified, the base identifier can be matched from the DNA origami design to

the structural model. The identifier pairs are subsequently utilized to enrich the PAM with

the topological and lattice-specific information of the design. Among others, base-pairs,

crossover and nick location, staple color, and lattice position (helix number & base position)

are coordinated with the residue identifiers of the model. The resulting lookup tables are

stored as dictionaries inside a specialized linkage class. Both analysis pipelines based on

dnaFit and the FitViewer Jupyter notebook use the linkage class for contextualizing the

experimental data. The class also implements the human-readable output method for the

linkage information.

A.4 Structure Prediction Protocols

A.4.1 enrgMD Parameters:

Initial models for enrgMD structure prediction were generated using the web server [31]

and the enrgmd -tool provided by the mrDNA [116] package. All simulations are performed

in NAMD2 [165] version 2.12-Linux using the CHARMM:36 [191, 204] force field for

nucleic acids. The simulations were performed in the NVT ensemble with short-ranged

Coulomb interactions up to 10 Å, and a switch distance of 8 Å. Smooth truncation of the

Lennard-Jones potential was employed and no PME long-range corrections are applied.

Simulations were performed in a vacuum with dielectric constant 1 and a thermostat at

300K using Langevin forces for all non-hydrogen atoms with damping of 0.1 1/ps.
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A.4.2 oxDNA Protocol:

All oxDNA simulations presented in this work utilize mrDNA [116] (v1.0a.dev53) for

the relaxation phase. The coarse-grained simulations use model version oxDNA2 [76],

with oxDNA-code version (v2.4). This drastically decreases simulation times and enables

the fully autonomous simulation of multidomain structures. Simulations in mrDNA are

performed at 295K with 10e7 coarse steps and 10e7 fine steps followed by a regular oxDNA

simulation. Sequence information was supplied via the sequence of the scaffold strand with

undefined single-stranded staple bases set as thymidine. For the multidomain B-Triangle

structures, a coarse-bond-cutoff of 600 nm was utilized to enable subdomain alignment.

The subsequent oxDNA relaxation consists of 10e3 steps of energy minimization to reduce

artifacts in the initial configuration and 10e6 regular MD steps for the final equilibration,

followed by 9e6 steps production with a time step of 0.003 fs. The temperature is kept

at 295K using the john thermostat with a diffusion coefficient of 2.5. The overall salt

concentration was set to 20m monovalent ions.

The average ensemble configuration used as the structure prediction result was generated us-

ing the oxDNA Analysis Toolbox [122] and converted to PDB format using tacoxDNA [121].

A.4.3 SNUPI Protocol:

Finite Element prediction using SNUPI 2.01-Mac, was executed with the MacOS command

line version. Simulations were executed with the default setting of 30 time steps at 300K

and 20mm MgCl2. Staple sequences were supplied via caDNAno. The cutoff distance for

electrostatic interactions was increased from the default of 2.5 nm to 5.0 nm, corresponding

to approximately four times [39] the Debye length at 20mm MgCl2. While the standard

settings provide accurate information about the overall shape of the structure, the increased

cutoff value improved the prediction of absolute overall dimensions, resulting in a better

RMSD (see B.3) Gaussian sampling of single-stranded DNA properties was enabled for all

simulations

For multidomain structures, the partition & relocation framework implemented in

SNUPI 2 [128] was utilized. Results of each structure were saved in PDB format, which

was used for helical trace analysis.
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Appendix B

Supporting Information

B.1 Pseudo-Atomic Model Building

For the validation of the model building protocol, PAMs of two independent subsets of

particles from the complete cryo-EM dataset are generated (Figure B.1A). As independent

subsets, the two half-maps 1 & 2 produced during RELION [97, 98] post-processing are used.

For each of the two half-map PAMs as well as the full model, a simulated electron density

map is created at the reported resolution (PAM-map). Using the Fourier Shell Correlation

(FSC) the three simulated PAM-maps can be compared to the experimental data. First, the

FSC of the full cryo-EM map and the final fitted model PAM-map (FSC full) are computed.

Secondly, PAM-map simulated for a half-map 1 is compared to its respective cryo-EM

half-map 1(FSC work). Finally, PAM-maps of half-map 1 are measured against the other,

independent half-map 2 (FSC test). If strong deviations of FSC work and FSC test are

observable, this indicates potential overfitting of the experimental dataset by the model

building protocol (Figure B.1B). The FSC curves generated with half-map data should

also feature the same characteristics as FSC full, yet at a lower resolution. Since the two

half-map FSCs do not differ significantly, shrink-wrap fitting is viable for this dataset ad

can be performed on the high-resolution cryo-EM data (Figure B.1C).
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PDB-id Resolution [Å] mCCC [a.u.]

Pointer Version 1 — 12.0 0.916
Pointer Version 2 7ARE 7.4 0.874

Twisttower Native Twist 7ARV 7.0 0.927
Twisttower Corrected Twist 7ARY 8.1 0.941

Whopper — 7.3 0.867
Whopper Version 2 — 7.6 0.874
Whopper Junior — 8.6 0.896

16-Helix Bundle 7ARQ 10.0 0.940
48-Helix Brick 7ART 9.9 0.932
126-Helix Bundle 7AS5 8.8 0.909

B-Brick 7NPN 11.6 0.951
A-Brick — 10.0 0.878

Triplex Bullet — 7.4 0.895
Triplex Bullet (triplexes formed) — 7.5 0.883

A-Triangle — 20.0 0.938
B-Triangle — 24.1 0.948
X-Triangle — 23.5 0.923
V-Triangle — 23.5 0.909

Corner Study Version 3 — 8.2 0.933
Corner Study Version 6 — 7.1 0.931

Table B.1 | Pseudo-atomic model references. Protein Data Bank identifiers for published
high-resolution models reported overall cryo-EM resolution and masked cross-correlation coefficients.
Experimental resolution estimates are used as input for the model building protocol. Values for the
mCCC were computed using the VMD package mdff-0.5.

Resolution [Å] mCCC [a.u.]

B-Brick (bare Fob5) 11.6 0.951

B-Brick K10 0.5 Fob5 16.4 0.952
B-Brick K10-PEG 0.75 Fob5 12.6 0.925
B-Brick K10-PEG 0.75 PBS 15.1 0.911
B-Brick K10-PEG 0.2 Fob5 12.0 0.933
B-Brick K10-PEG 100 Fob5 16.6 0.896
B-Brick K10-PEG 100 PBS 18.8 0.884

Table B.2 | B-Brick pseudo-atomic model references: Reported overall cryo-EM resolution
and masked cross-correlation coefficients of the B-Brick for various coatings and buffer conditions.
Experimental resolution estimates are used as input for the model building protocol. Values for the
mCCC were computed using the VMD package mdff-0.5.
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Figure B.1 | Fourier Shell Correlation (FSC) validation. (A) Cryo-EM half-map and
simulated map for a PAM build for this data subset. (B) Comparison of the FSC of the full
cryo-EM map and the final PAM (FSC full), half-map 1 to PAM-map 1 (FSC work), and half-map
1 to PAM-map 2 (FSC test). (C) Final results of the model building protocol for the complete
experimental data (left) depicted as model (middle) and map-model overlay (right).
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Figure B.2 | Triplex Bullet. (A) Triplex Bullet (triplexes formed): Sequence homology of
a single asymmetric crossover (top). The intended crossover (middle) does not appear in the
ensemble, with the alternative conformation (bottom) occurring exclusively in the experimental
data (also 4.4D). Segments display a matching sequence of 6 out of 7 bases. (B) Triplex Bullet
(sequence variation): As in (A), but without a sequence homology at the asymmetric crossover,
resulting in a properly formed crossover.
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B.2 B-DNA Duplex Property Computation

Step Twist [◦] Roll [◦] Tilt [◦] Rise [Å] Shift [Å] Slide [Å]

AA 36.73 ±3.49 37.03 ±3.73 12.40 ±7.81 3.28 ±0.53 -0.90 ±0.77 0.12 ±0.42
AC 35.84 ±4.27 36.61 ±4.34 11.14 ±7.09 3.30 ±0.49 -0.98 ±0.66 0.20 ±0.40
AG 36.32 ±4.23 36.38 ±4.65 10.55 ±6.81 3.40 ±0.46 -0.82 ±0.69 0.18 ±0.45
AT 35.87 ±4.43 36.35 ±4.71 11.31 ±8.00 3.43 ±0.51 -0.71 ±0.70 0.12 ±0.45
CA 36.12 ±4.13 36.64 ±4.18 9.59 ±6.99 3.46 ±0.55 -0.58 ±0.65 0.14 ±0.43
GA 36.10 ±4.11 36.72 ±4.15 10.62 ±7.43 3.36 ±0.52 -0.73 ±0.71 0.20 ±0.41
GC 35.78 ±4.75 36.83 ±4.48 10.14 ±8.88 3.32 ±0.50 -0.78 ±0.68 0.11 ±0.40
GG 37.82 ±4.09 37.99 ±4.78 9.50 ±6.35 3.38 ±0.49 -0.64 ±0.75 0.28 ±0.41

– 36.37 ±4.12 36.81 ±4.34 10.82 ±7.46 3.36 ±0.51 -0.78 ±0.72 0.17 ±0.43

Table B.3 | Base-pair step properties. Sequence-dependent base-pair step parameters (three
rotational, three translational) and the overall average of enrgMD prediction. Average values
are computed using a uniform base-step distribution. Reported error values represent the spread
calculated assuming Gaussian distributions. Data extracted from Pointer Version 2, both Twisttower
variants, and the 126-Helix Bundle designs.

B.2.1 Helical Trace Calculation

The linker class of the Python package dnaFit originally matches DNA strands of PAM

and caDNAno strand diagram based on the topology parsing rules of mrDNA and enrgMD .

As both tacoxDNA and SNUPI use different parsing rules, an alternate strand matching

module was developed. This variation of the linkage-routine matches strand identifiers

solely based on their sequence. Using pattern matching principles, this approach is also

robust against random sequence assignment of single-stranded domains and deletion

of terminal single-stranded segments. Since atomic structure file parsing is performed

using the MDAnalysis package [176], no NAMD2 [165] structure file (.psf) is required as

input. dnaFit can automatically determine the appropriate strand matching algorithm.

Importantly, only a subset of functionalities of dnaFit is available for structure files

generated with SNUPI and oxDNA structure prediction tools.

Base-pair coordinate-frames and midpoint are computed based on the standard established

by Dickerson et al. [64, 65] and depicted in Figure B.3. For each pair, a right-handed

coordinate frame is placed at its midpoint such that the x-axis points towards the major

groove and the y-axis along the C1’-C1’ vector in sequence-strand direction. The z-axis is

defined by the right-handed rule resulting in 5’-3’ directionality for B-DNA. The direction

of the x-axis is defined by the pseudo-dyad of the C1’-C1’ vector within the base plane.
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The helical origin is positioned at the intersection of this pseudo-dyad and the vector from

the C6 atom of the pyrimidine base to the C8 atom of the purine nucleobase.

Figure B.3 | Base-pair reference frame and helical trace. (A) Idealized base-pair reference
frame of a purine (R) to pyrimidine pair. (B) Pseudo-atomic model (left) and helical trace (right)
computed from the base-pair midpoints the Pointer Version 2.

B.3 Structure Prediction
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[min] oxDNA SNUPI [default] SNUPI

Pointer Version 2 26 h 36 4.5 13.8

Twisttower Native Twist 45 h 19 11.9 26.8

Twisttower Corrected Twist 31 h 43 5.5 11.9

Whopper 19 h 34 0.7 2.4

Whopper Junior 9 h 47 0.2 0.5

16-Helix Bundle 15 h 18 0.2 0.6

48-Helix Brick 39 h 6 5.2 12.2

126-Helix Bundle 84 h 12 76 157

Corner Study Version 3 17 h 42 2.5 14.0

B-Triangle 33 h 43 3.8 15.1

Table B.4 | Simulation Time. Single-execution timing data for coarse structure prediction
models. SNUPI simulations were performed on a single personal computer (Intel i5–8279U 2.4 GHz
4-core CPU). Simulations with mrDNA and oxDNA were performed on a single GPU (NVIDIA
GeForce GTX 1080)

[Å] oxDNA SNUPI default SNUPI 2Relec.

Pointer Version 2 6.89 13.31 7.91

Twisttower Native Twist 14.02 22.73 11.02

Twisttower Corrected Twist 11.99 14.78 12.48

Whopper 10.03 12.81 10.06

Whopper Junior 8.04 11.54 9.35

16-Helix Bundle 9.37 11.48 11.14

48-Helix Brick 15.43 16.95 18.94

126-Helix Bundle 11.25 19.90 11.25

Corner Study Version 3 10.71 14.80 15.51

B-Triangle 13.23 19.12 15.92

Table B.5 | Trace RMSD: Coarse-Grained Models. Helical trace RMSD for the
mrDNA/oxDNA (version 2) prediction protocol, SNUPI version 2.1 with default settings, and
with doubled electrostatic cutoff for a subset of ten DNA origami models. Trace data of the
pseudo-atomic models of each model were used as reference models.
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Figure B.4 | SNUPI electrostatic cutoff comparison. Comparison of the cross-sectional
slices of the reference PAM (gray, left) to SNUPI with modified (middle, blue) and default settings
(right, light blue). (A) Twisttower Native Twist predictions are displayed at four positions that
mark both ends of the four subdomains. Marked slices mark both ends of the 8 × 8 domain
(caDNAno position 171 & 116) and small domains (caDNAno position 98 & 52) (B) 126-Helix
Bundle object sliced in the center around position 96 of the caDNAno diagram. (C) 16-Helix
Bundle design with flaring ends of helix pair 6-9. Helical trace distance estimates for both prediction
methods are within 10 Å of the reference PAM (left). Slice markers (green, dashed) indicate the
position of the cross-section relative to the PAM (left).



APPENDIX B. SUPPORTING INFORMATION 107

Figure B.5 | SNUPI crossover-stack artifacts. Illustration of the incorrectly depicted
crossover-stack motifs with the SNUPI structure prediction framework. Stacking interactions within
a DNA origami design are not modeled as finite elements. Markers (green, dashed) indicate the
location relative to the PAM (gray, left). (A) Eight-helix crossover-stack (middle) of the Twitter
NativeTwist spanning the entire side of the 8× 8 domain. The two stacking interfaces cause an
opening in the structure resulting from the absence of covalent bonds in the strand diagram (right).
(B) Six-helix crossover-stack (middle) of the Corner Study Version 3 object. As the lower end of
the stack is open, due to a nick in the staple strand diagram (right), the helices can detach from
their lattice position, creating a simulation artifact.
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