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Abstract

The ionosphere is the region of the atmosphere extending from about 50 km above the Earth’s
surface gradually transitioning into the plasmasphere containing electrons and ions formed from
the ionization process due to the solar wind, Extreme Ultraviolet (EUV) and X-ray radiation.
Electron density is the most important ionospheric parameter in geodesy and its space and time
dependent, i.e., four-dimensional (4D) magnitude needs to be accurately known, e.g. for positioning,
and navigation applications. The ionosphere affects electromagnetic wave propagation and causes
signal delays due to its dispersive behavior at specific frequencies. The objective of this thesis is the
development of a 4D electron density model. The combined electron density of the individual D,
E, F1, F2 layers and the plasmasphere is described using the multi-Chapman layer model which
is parameterized by a set of so-called key parameters, namely, the peak density, the peak height
and the scale height for the first four layers as well as the basis density and the scale height of the
plasmasphere.
The spatial variation of the key parameters of this multi-layer representation is described by series
expansions in tensor products of localizing B-spline basis functions. We use polynomial B-splines
along latitude and trigonometric B-splines along longitude. The Chapman profile function is chosen
to define the electron density along the altitude. The sets of coefficients of these basis functions
are the unknown parameters to be estimated. This way, the electron density modeling (EDM) is
setup as a parameter estimation problem. The global navigation satellite systems (GNSS) provide
accurate information on the electron density distribution within the ionosphere in the form of Slant
Total Electron Content (STEC), which is the integral of the electron density along the signal path
between transmitter and receiver. The space-based GNSS radio occultation (RO) measurements
allow the calculation of electron density profiles (EDPs) with high vertical resolution and global
coverage. Ionospheric radio occultation (IRO) from the Formosat-3/COSMIC mission and the
GRACE satellites as well as GNSS data are used as observations in this work. Additionally, electron
density observations are generated from the vertical total electron content (VTEC) maps and vertical
profile function from the IRI model.
The prior knowledge of the Chapman key parameters is expressed as constraints e.g., a non-negativity
bound for peak density, minimum and maximum bounds for peak height. Due to the limited ability
of the classical methods such as least squares to include inequality constraints on the unknown
parameters, a novel constraint optimization approach is used in this work. Subsequently our global
4D EDM problem is transformed into an inequality constrained optimization problem (ICOP).
The Gauss-Markov model with B-spline coefficients as unknowns is combined with the equality
and inequality constraints, to give the Lagrangian function, on which the optimality conditions are
then applied to get the estimation model equations, also referred to as the Karush-Kuhn-Tucker
(KKT) equations. This method involves transforming the inequality constraints to equalities using
the Lagrange multiplier and the slack variables as additional unknown parameters. Together with
B-spline coefficients they form the three set of unknown parameters. The KKT equations are
then iteratively solved for the unknown parameters using an optimization algorithm called the
interior point method. The modeled key parameters are validated using independent data from
selected ionosonde stations, IRI model data (in the form of closed loop validation) as well as in-situ
observations from Langmuir probe on board the SWARM satellites.
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Zusammenfassung

Die Ionosphäre ist der Bereich der Atmosphäre ab ca. 50 km über der Erdoberfläche und geht
allmählich in die Plasmasphäre über. Sie enthält Elektronen und Ionen, welche durch den Ionisierung-
sprozess infolge des Sonnenwindes, extremer Ultraviolett- (EUV) und Röntgenstrahlung entstehen.
Die Elektronendichte ist der wichtigste Ionosphärenparameter für die Geodäsie. Ihre raum- und
zeitabhängige, das heißt vierdimensionale (4D), Größe muss genau bekannt sein, beispielsweise für
Positionsbestimmungs- und Navigationsanwendungen. Die Ionosphäre beeinflusst die Ausbreitung
elektromagnetischer Wellen und verursacht aufgrund ihrer dispersiven Eigenschaften bei bestimmten
Frequenzen Signalverzögerungen.
Das Ziel dieser Dissertation ist die Entwicklung eines 4D-Elektronendichtemodells. Die kombin-
ierte Elektronendichte der einzelnen Layer D, E, F1 und F2 und der Plasmasphäre wird durch
das Multi-Chapman-Layer-Modell beschrieben, welches durch einen Satz sogenannter Schlüssel-
parameter parametrisiert wird, nämlich die Maximaldichte, die Höhe der Maximaldichte und die
Skalenhöhe der ersten vier Layer sowie die Basisdichte und die Skalenhöhe der Plasmasphäre.
Die räumliche Variation der Schlüsselparameter dieser Multi-Layer-Repräsentation wird durch
Reihenentwicklungen in Tensorprodukten lokalisierender B-Spline-Basisfunktionen beschrieben.
Wir nutzen polynomiale B-Splines entlang der Breite und trigonometrische B-Splines entlang der
Länge. Die Chapman-Profilfunktion wird zur Definition der Elektronendichte entlang der Höhe
verwendet. Die Koeffizientensätze dieser Basisfunktionen sind die zu schätzenden Unbekannten.
Die Elektronendichtemodellierung (EDM) wird somit als ein Parameterschätzungsproblem aufge-
setzt. Die Globalen Navigationssatellitensysteme (GNSS) liefern genaue Informationen über die
Elektronendichteverteilung in der Ionosphäre in der Form des Slant Total Electron Content (STEC),
der das Integral der Elektronendichte entlang des Signalweges zwischen Sender und Empfänger
ist. Die weltraumgestützten GNSS-Radio-Okkultationsmessungen (RO) ermöglichen die Berech-
nung von Elektronendichteprofilen (EDP) mit hoher vertikaler Auflösung und globaler Abdeckung.
Ionosphärische Radio-Okkultationen (IRO) von der Formosat-3/COSMIC-Mission und den GRACE-
Satelliten sowie GNSS-Daten werden in dieser Arbeit als Beobachtungen verwendet. Zusätzlich
werden Beobachtungen der Elektronendichte aus Karten des Vertical Total Electron Content (VTEC)
und der vertikalen Profilfunktion des IRI-Modells generiert.
Vorwissen über die Chapman-Schlüsselparameter wird in Form von Bedingungsgleichungen eingeführt,
so beispielsweise eine Nicht-Negativitätsbedingung für die Maximaldichte und untere und obere
Grenzwerte für die Höhe der Maximaldichte. Da klassische Verfahren wie der Ausgleichung nach der
Methode den kleinsten Quadrate nur begrenzt in der Lage sind, Ungleichheitsbedingungen für die Un-
bekannten einzubeziehen, wird in dieser Arbeit ein neuartiger Optimierungsansatz für eine bedingte
Ausgleichung verwendet. Hierfür wird das globale 4D-EDM-Problem in ein Optimierungsproblem
mit Ungleichheitsbedingunen (Inequality Constrained Optimization Problem, ICOP) umgewandelt.
Das Gauß-Markoff-Modell mit B-Spline-Koeffizienten als Unbekannte wird mit den Gleichheits-
und Ungleichheitsbedingungen kombiniert, um die Lagrange-Funktion zu erhalten, auf die dann
die Optimierungsbedingungen angewendet werden, um die Gleichungen für das Schätzmodell zu
erhalten, die auch als Karush-Kuhn-Tucker-Gleichungen (KKT) bezeichnet werden. Diese Methode
beinhaltet eine Transformation der Ungleichheitsbedingungen in Gleichheitsbedingungen unter
Nutzung des Lagrange-Multiplikators und von Schlupfvariablen als zusätzliche Unbekannte. Sie
bilden zusammen mit den B-Spline-Koeffizienten die drei unbekannten Parametersätze. Die KKT-
Gleichungen werden dann iterativ nach den Unbekannten gelöst, wobei das Innere-Punkte-Verfahren
als Optimierungsalgorithmus verwendet wird. Die modellierten Schlüsselparameter werden gegen
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Zusammenfassung

unabhängige Messungen ausgewählter Ionosondenstationen, IRI-Modelldaten (in Form einer Closed-
Loop-Validierung) sowie In-situ-Beobachtungen der Langmuir-Sonde an Bord der SWARM-Satelliten
validiert.
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1 Introduction

The Sun’s radiation has important impact on different components of the Earth system, for instance
on the sub-components thermosphere, ionosphere and plasmasphere consisting of neutral and
charged particles as well as plasma with different chemical compositions1 and physical properties
such as mass, temperature etc. The precise knowledge of the particle number density within these
regions is important to many applications, e.g. positioning, navigation, satellite orbit determination,
collision avoidance manoeuvres, trajectory forecasting of space debris and orbital mission lifetime
predictions. Of particular interest in this work, is the ionosphere and plasmasphere where the
neutral gas molecules dissociate into free electrons and ions.

The number density of electrons is the most important key parameter to describe the state
of the ionospheric plasma varying with latitude, longitude, altitude and time for geodetic
applications.

Particularly, the four dimensional (4D) space and time dependent electron density needs to be
accurately known for satellite navigation and telecommunication, since electromagnetic waves are
strongly affected on their path through the plasmasphere and the ionosphere. The 4D electron
density is a highly variable function: amongst others it reflects fluctuations with periods less than a
few minutes, diurnal and seasonal variations, long-period changes following the solar cycle of 11
years as well as the impact of space weather events such as solar flares and coronal mass ejections
(CME). If the 4D electron density would be known everywhere within the plasmasphere and the
ionosphere at any time moment, we could correct every measurement of space-geodetic observation
techniques such as the Global Navigation Satellite Systems (GNSS), in particular GPS, GLONASS
and Galileo, Satellite Altimetry (SA), the French satellite tracking system Doppler Orbitography and
Radiopositioning Integrated by Satellite (DORIS) or Very Long Baseline Interferometry (VLBI) for
the plasmaspheric and ionospheric impact. Vice versa all these measurement techniques including the
space-based GNSS technique of measuring Ionospheric Radio Occultations (IRO) provide valuable
information on the state of the plasmasphere and the ionosphere and thus, for modeling the electron
density.

1.1 Motivation and objectives of the thesis
The prediction of orbital position as well as velocity accuracy of satellites or space debris along a
Low Earth Orbit (LEO) depends on the accuracy of the determination of the atmospheric drag,
which in-turn depends on the neutral density; see Hastings (1995), Montenbruck and Gill (2001),
Leonard et al. (2012), Vielberg et al. (2018). Due to a constant exchange of energy between the
neutral and the charged particles during the ionization and recombination processes, a dynamic
coupling exists between the thermosphere and the ionosphere2; see de Wit and Bruinsma (2017),
Fuller-Rowell et al. (2018). The understanding of the coupling processes is critical to scientific and

1Nitrogen, Oxygen and other atmospheric gases have different concentration at various altitudes and owing to their
respective ionization potential, they play a key role in the total electron density of each individual layer during the
nominal and extreme space weather conditions; see e.g. Hanslmeier (2002).

2More generally there is a coupling between the lithosphere, the magnetosphere, the thermosphere and the ionosphere
but for the sake of simplicity and relevance to this work, the coupling related aspects will not be discussed and
instead referred to e.g. Liperovsky et al. (2008), Luehr et al. (2011)
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1 Introduction

commercial applications, e.g. accurate computation of the drag forces acting on LEO satellites and
the space debris so that their trajectories are precisely determined (Leonard et al. (2012), Doornbos
(2012b), Lühr et al. (2012)). Therefore, a high-accuracy and high-resolution global 4D electron
density model is required so that it can be assimilated with e.g. a physical thermosphere model to
yield improved estimates of neutral density.

Hence, the main objective of this thesis is to develop a 4D global electron density model
(EDM) on the basis of multi-layer approach.

This problem is approached by considering the total electron density as the sum of the electron
densities of the individual ionosphere layers3 and using a novel constraint optimization algorithm for
parameter estimation. The following sub-objectives are identified to accomplish the above primary
objective:

• express an EDM as an inequality constrained optimization problem (ICOP) of the form
according to Eq. (4.25)

• develop the inequality constrained optimization algorithm (ICOA) (The entire Chapter 4 is
dedicated to the description of our developed ICOA)

• apply the ICOA from Chapter 4 to our global 4D electron density modelling (EDM) and
perform an independent validation; see Chapter 5 and Chapter 7

• perform experiments on the developed EDM by varying the inequality constraint bounds; see
Chapter 6 and Appendix C.1

1.2 Organization and structure of the thesis
For the scope of this work, unless otherwise stated, the following nomenclature and conventions
apply:

• The phrase ”IRI model data” refers to the Chapman key parameters obtained from the
International Reference Ionosphere (IRI) model.

• The phrase ”performance of optimization algorithm” refers to the resulting accuracy, a
quantified measure of which will be shown in Chapters 6 and 7; see Eqs. (7.2), (7.3), (A.9)
and (A.10).

• The phrase ”adverse space weather” refers to either solar EUV4 condition characterized by
F10.7 ≥ 100 SFU or high geomagnetic5 activity with Kp ≥ 5. On contrary, nominal ionosphere
condition refers to F10.7 < 100 SFU and Kp < 5. It shall be noted that these thresholds are
only meant subjectively for the scope of this work. In general there can be other definitions of
extreme conditions as well.

As shown in Fig. 1.1, this thesis is a compilation of 8 chapters with each one focussing on a certain
key aspect pertaining to the objectives mentioned above. The Chapter 2 introduces the ionosphere
modelling and the role of the Chapman key parameters. It also provides the state of art in EDM
and highlights the main novelties in this work. The observation techniques relevant for this work
are introduced in Chapter 3. Chapter 4 is a major contribution to this work and consists of the
theoritical and practical fundamentals of the ICOA and its application to EDM in Chapter 5 and
its validation in Chapter 7. For validation we use simulated as well as ionosonde observations.

3The individual layers are described in detail in Chapter 2.
4Solar extreme ultra-violet (EUV) is a quantified measure of the input energy mainly absorbed by the Earth’s

atmosphere; see e.g. Schunk (1988), Hapgood (2017).
5Kp value of 5 to 9 denote NOAA Space Weather Scale Geomagnetic Storm Levels from G1 to G5 respectively. Source:

https://www.swpc.noaa.gov/sites/default/files/images/u2/TheK-index.pdf accessed on 17 September
2022.
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Figure 1.1: Outline of the thesis and the relation of the chapters to one another.

For the specific case of using IRI model to obtain the simulated data for validation, we show the
performance of the ICOA using a closed loop validation (CLV). This aspect is substantiated in
Chapters 6 and 7.
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2 Introduction to ionosphere

G. Marconi1 performed the first trans-atlantic radio transmission through the electrically conductive
layer in the atmosphere to be later termed as the ionosphere. A few years later E.V. Appleton2

published the theory of radio wave propagation in plasma describing the physical and the electrical
properties of the ionosphere; see Appleton and Beynon (1940). It further led to the development of
the theory of the ionospheric refractive index3 as a function of the plasma frequency (Appleton and
Beynon (1947)). Hence it can be appreciated that the subject of ionosphere research is at least as
old and as important as the radiowave propagation itself. Since then, the era of ionosphere probing
and space weather studies had already begun.
The ionosphere is colocated within the lower part of the thermosphere which is located between 50
km and 1000 km altitudes comprising of electrons and atoms; see Groves (1972), Doornbos (2012a).
It absorbs the ultra-violet (UV) radiation and results in the dissociation of molecules as well as the
ionization of atoms; see e.g. Schunk (1988), Hanslmeier (2002). Ionization is caused by both the
solar radiation and the energetic particles. Accordingly they are called the photo-ionization and
the particle-ionization, respectively, with the latter being dominant during adverse space weather
conditions; see Rishbeth and Garriott (1969), Davies (1990).
This chapter is organized as follows: First, a brief summary of selected empirical models will be
provided in Section 2.1. Subsequently, in Section 2.2, the three ionospheric key parameters, namely,
(1) Slant Total Electron content (STEC), (2) Vertical Total Electron content (VTEC) and (3) the
electron density will be introduced. A short introduction to the ionosphere stratification and a
comprehensive list of previous relevant work on this topic will be presented in Section 2.3 and
Section 2.4, respectively. In Section 2.5, some of the key challenges in EDM will be introduced and
thereafter, in Section 2.6, the novelties introduced in this work will be listed.
As there are many textbooks, e.g. Schunk (1988), Hanslmeier (2002), Zolesi and Cander (2014),
Jakowski (2017) and literature on this topic as summarized in Sections 2.4 and 2.5, the major
parts of this thesis will focus on the development of ICOA as well as application to EDM and their
numerical evaluations in the Chapters 4, 5 and 6 respectively.

2.1 Empirical models

Empirical models of the atmosphere are an important set of a tool suite4 used by both the operational
as well as the scientific communities. For the scope of this chapter, we will consider the following
two categories of empirical models, namely, (1) the empirical thermosphere model (ETM) and
(2) the empirical ionosphere model (EIM). Both the ETM as well as the EIM use proxy indices

1Guglielmo Marconi was an Italian inventor and electrical engineer, also regarded as the inventor of radio and shared
the 1909 Nobel Prize in Physics.

2Sir Edward Victor Appleton was an English physicist and pioneer in radiophysics. He won the Nobel Prize in
Physics in 1947 for his seminal work proving the existence of the ionosphere during experiments carried out in
1924.

3Refractive index is the ratio of the speed of light in a vacuum to that in a second medium of greater density
4A tool suite is a combination of many software sub-routines with or without a user-interface for operating the

underlying software; e.g. an empirical model such as the IRI.
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2.1 Empirical models

such as F10.75, Kp 6 for the characterization of space weather conditions. Selected space weather
indices along with their description and temporal resolution are shown in Table 2.1. The relation
between Kp and ap is shown in https://www.ngdc.noaa.gov/stp/GEOMAG/kp_ap.html. The
ap index related information can be found in https://impc.dlr.de/affects/geomagnetic-i
ndices/ae-index/index.html. The Dst index is an index of magnetic activity derived from a
network of near-equatorial geomagnetic observatories that measures the intensity of the globally
symmetrical equatorial electrojet (the ”ring current”), as quoted from https://www.ngdc.noa
a.gov/stp/geomag/dst.html. The F10.7 is measured in solar flux units (SFU) with 1 SFU =
10−22Wm−2Hz−1; see e.g. Maruyama (2010). The correlation between selected SWI and VTEC
is graphically shown in Figure 2.1 and their respective correlation coefficients tabulated in Table
2.2, where only F10.7 shows a value exceeding 0.5. It is known that during adverse space weather
conditions, there is a spatio-temporal variation of both the neutral as well as the electron density
in the thermosphere-ionosphere system; see Richmond (1996), Jakowski et al. (2002). Empirical
models are based on past data and describe an average climatology but are not expected to provide
accurate model output values corresponding to adverse space weather input conditions. This can
also be seen from the study of the estimated scale factors to the empirical thermosphere models
based on SLR observations to spherical satellites by Panzetta et al. (2019), Zeitler et al. (2021).

Table 2.1: Description of selected SWI along with their temporal resolution

.

Index Description Temporal
resolution

Kp “planetarische Kennziffer” is obtained from 3 hour
averaging the indices from 13 mid-latitude observatories (no units)

ap ap is a related index obtained from Kp 3 hour
(whereas Kp is roughly logarithmic, ap is roughly linear).

Ap is a running 24 hr average of ap
AE Auroral Electrojet is designed to give measure of 1 minute

auroral zone magnetic activity. (units: nT)
Dst Disturbance storm index is used to compare the intensity 1 hour

of geomagnetic storms based on the average value
of the horizontal component of the Earth’s magnetic field (units: nT)

F10.7 Solar f lux emitted at 2800 MHz with wavelength of 10.7 cm 8 hours
(units: solar flux units (SFU))

Generally, the ETMs are expected to provide neutral density and neutral temperature but not the
ionosphere parameters such as the electron density or the electron temperature. Therefore dedicated
EIMs e.g. IRI (Bilitza (2000)) or NeQuick (Di Giovanni and Radicella (1990)) are commonly used
to obtain those or any other ionospheric parameters such as the total electron content (TEC), ion

5The F10.7 index has been measured consistently in Canada since 1947, first at Ottawa, Ontario; and then at the
Penticton Radio Observatory in British Columbia, Canada.

6The estimated 3-hour planetary Kp-index is derived at the National Oceanic and Aerospace Administration (NOAA)
Space Weather Prediction Center (SWPC) using data from the following ground-based magnetometers: Sitka,
Alaska; Meanook, Canada; Ottawa, Canada; Fredericksburg, Virginia; Hartland, UK; Wingst, Germany; Niemegk,
Germany; and Canberra, Australia. These data are made available thanks to the cooperative efforts between
SWPC and data providers around the world, which currently include the U.S. Geological Survey, Natural Resources
Canada (NRCAN), the British Geological Survey, the German Research Centre for Geosciences (GFZ), and
Geoscience Australia. Quoted from source: https://www.swpc.noaa.gov/products/planetary-k-index accessed
17 September 2022.
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2 Introduction to ionosphere

temperature etc. Analogously, the EIMs also do not directly provide any thermosphere parameters.
It shall be noted that both the ETMs as well as the EIMs are driven by similar (and in most cases
the same) space weather indices; see e.g. Maruyama (2010), de Wit and Bruinsma (2017), Jackson
et al. (2020).
Due to limitations with spatio-temporal resolution of especially the F10.7 and the Kp, as shown in
Table 2.1, the empirical models cannot take into account the real-time atmosphere variability at
a high temporal resolution7. Even though the thermospheric models are not used in this thesis,
for the sake of completeness, we mention here that the two commonly used ones are the Jacchia-
Bowman 2008 (JB2008) model (Bowman et al. (2008)) and the Naval Research Laboratory’s Mass
Spectrometer Incoherent Scatter Extension 2000 (NRLMSISE-2000) model (Picone et al. (2002)).
On the other hand, the IRI model (version 2012) has been used by Limberger (2015) and Liang
(2017) as well as in this work. The above mentioned empirical models have been developed from
different measurement campaigns over many years and have been extensively validated as well; see
e.g. Coiosson et al. (2005), Maruyama (2010), Altadill et al. (2013), Bjoland et al. (2016), Endeshaw
(2020).

Figure 2.1: Comparison between four selected space weather indices (SWI) obtained from http://omni
web.gsfc.nasa.gov and 2 hour sampled VTEC time series data obtained from DGFI-TUM
generated GIM over 2014 - 2016.

Table 2.2: Correlation coefficient between selected space weather indices (SWI) and VTEC over a period of
three years from 2014 - 2016. The first three SWI are already defined in Table 2.1 and the last
row contains the rate of magnetic field intensity denoted by δBmag. VTEC used in analysis was
obtained from DGFI-TUM generated global ionospheric map (GIM).

Chosen SWI for correlation with VTEC Correlation coefficient
F10.7 0.78

Ap 0.09
Dst 0.14

δBmag 0.11

7Typically the EIM run with a maximum spatial resolution of upto 1○ along the latitude and longitude and a nominal
temporal resolution of 30 minutes to 1 hour.
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2.2 Ionospheric key parameters

Contrary to the above mentioned empirical models, there are physical models which can provide
both the neutral as well as the electron densities as direct model outputs. The physical models are
based on the themodynamics, electrodynamics, optics laws and hence are considerably different8

compared to empirical ones. One example is TIEGCM9, which is a thermosphere-ionosphere coupled
model (Richmond et al. (1992)). It uses the fluid convection10 and momentum exchange processes11

to calculate both electron and neutral density among the other TIEGCM output parameters
(Richmond et al. (1992)). TIEGCM takes the interplanetary magnetic field (IMF) and the solar
wind12 parameters to calculate the high latitude electric potential using the Weimer model (Weimer
(2005)) or the Heelis model (Heelis (2004)). Other similar physical models are DTM (Bruinsma
(2015)) and CTIPe (Codrescu et al. (2012)). Although such models enable a detailed study of
the atmospheric coupling processes but also have limitations with regard to the spatial coverage
especially along the altitude range above 600 km or in the polar regions; see Richmond et al.
(1992). For example, the TIEGCM version 1.92 has an altitude limitation of 590 km; see Qian et al.
(2014). Depending on the chosen input scenario, the execution of the physical models can also be
computationally exhaustive and configuring them with realistic atmospheric conditions remains
challenging.

Even with the physical models, the thermospheric density is still determined on the basis
of thermodynamic principles, but still not on the basis of input ionospheric parameters.
Therefore despite having a variety of empirical and physical models, the ionosphere electron
density modelling is still a highly sought-after topic of research in aeronomy and geodesy.

This is the primary motivation to develop a global 4D EDM at high spatial and temporal resolution.
Although we will not discuss the thermospheric models any further in this thesis but the above
discussion helps in the context, relevance as well as the need for a high accuracy global 4D EDM.
The remaining chapters of this thesis will describe the development of our EDM in detail. However,
before we go into the mathematical details on the observation modelling (see Chapter 3) and
parameter estimation (see Chapter 4), the next section will introduce the three ionospheric key
parameters13.

2.2 Ionospheric key parameters
This section begins with the modelling of the electron density function

Ne(φ, λ, h, t) (2.1)

depending on the latitude φ, the longitude λ, both defined in an Earth-centered coordinate system,
on the height h = r −R above the surface of a spherical Earth with a constant radius R and r being
the radial distance and on the time t with high accuracy and high resolution. Since modelling a
4D function is rather challenging, for a long time the electron density was transferred into the 3D
VTEC depending on the two spatial variables latitude and longitude as well as the time. Integrating

8Especially with regard to their functional procedures to generate an output parameter e.g. the neutral density or
the dependencies of the different intermediate parameters e.g. electric and magnetic field intensities to the neutral
density.

9TIEGCM is an acronym for Thermosphere Ionosphere Electrodynamics General circulation Model
10Convection is mass transfer due to the bulk motion of a fluid; see Richmond et al. (1992)
11A physical law that describes the transport of mass and pertaining to the conservation of momentum; see Richmond

et al. (1992)
12The solar wind is a stream of charged particles released from the Sun consisting of the electrons, the protons and the

alpha particles with kinetic energy between 0.5 and 10 keV; c.f. https://en.wikipedia.org/wiki/Solar_wind
accessed on 27 March 2022

13It shall be made clear that the ionospheric key parameters are different from the Chapman key parameters. The
latter will be presented in Chapter 5.
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2 Introduction to ionosphere

the electron density (2.1) along the ray-path between the transmitting satellite P S and the receiver
PR the Slant Total Electron Content (STEC)

STEC(P S , PR, t) = ∫
PR

P S
Ne(φ, λ, h, t)ds (2.2)

is obtained. Due to the dispersive property of the plasmasphere and the ionosphere the ray-path
with the differential line element ds is depending on the carrier frequency f of the electromagnetic
wave and deviates from the straight line between P S and PR. To simplify the notation and bring
vector notation into play we introduce the 3D position vector x = r ⋅ [cos φ cos λ, cos φ sin λ, sin φ]T

and rewrite Eq. (2.2) as

STEC(xS , xR, t) = ∫
PR

P S
Ne(x, t)ds . (2.3)

Multiplying the right-hand side of Eq. (2.3) with the factor ±40.3/f2 we obtain the ionospheric
delay dion =

±40.3
f2 ⋅ STEC. This relation is an approximation, valid for standard conditions of the

geomagnetic field and signal frequencies f larger than 1 GHz. It neglects the effects of higher order
which may reach up to 0.2 cm in zenith direction for GPS signals, depending on the sign it is
valid for pseudorange measurements (′+′) or carrier phase observations (′−′). The conversion of
STEC into VTEC is achieved by introducing an isotropic mapping function M(z) depending on
the zenith angle z. It performs the projection V TEC(xIP P , t) = M(z) ⋅ STEC(xS , xR, t) under
the assumption that all electrons are concentrated in one thin spherical layer with constant height.
This procedure is denoted as the single layer model (SLM) approach; the spatial reference for the
VTEC observation is given by the ionospheric piercing point PIP P with position vector xIP P of the
straight-line connection between the transmitting satellite and receiver station e.g. with the sphere
of the SLM; see e.g., Schaer (1999).

2.3 Ionospheric stratification and Chapman key parameters
Although ionosphere layers and its vertical profile will be described in Chapter 5, a short introduction
to the most important terminologies is made in this section in order to assist the reader. Ionosphere
is stratified into the D−, the E−, the F1−, the F2−layer and the plasmasphere14. Each layer has
its physical significance, due to the dominating atmospheric processes such as the ionization, the
recombination and the overall energy balance of the ionosphere (see e.g. Chapman (1931)) and thus
giving way to ”physics-motivated“ profile functions such as the Chapman and the Epstein functions;
see Feltens (2007), Rawer (1988). A graphical and mathematical representation of profile function
will be shown in Chapter 5; Fig. 5.1 and Eq. 5.2 respectively.
The D-, E- and F1-layers are important for understanding of the geophysical phenomena such as
electromagnetic radiation scatter and scintillation, especially the ionospheric sporadic E−layer (Es);
see Smirnova et al. (1988), Arras et al. (2009), Zolesi and Cander (2014) and Tsai and Su (2018). It
shall be noted that both the D− and the Es−layers are thin compared to the F2−, the F1−layers
(see Berkner and Wells (1934), Bremer (1998)), as well as the magnitude of the D− and the E−layer
peak electron densities are at least 2 order of magnitude lower compared to that of the F2−layer
under nominal ionosphere conditions; see Liang (2017).
For modelling the 4D electron density (2.1), we will introduce three Chapman key parameters,
namely the peak density, the peak height and the scale height, with which the Chapman profile
function for each layer is defined. The peak density corresponds to the maximum value and the peak
height refers to the altitude corresponding to the peak density in an electron density profile. The
scale height refers to the width of the profile around the peak height. All the three key parameters
vary on spatio-temporal scales.
14As will be shown later in Chapter 5; Fig. 5.1
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2.4 Previous relevant work

2.4 Previous relevant work

2.4.1 Relevance of B-splines to ionosphere modelling

Ionospheric parameters are often represented either as multi-dimensional series expansion in appro-
priate basis functions such as spherical harmonics (SH) (see e.g. Schaer (1999)), B-splines (BS); see
e.g. Schmidt et al. (2015), or by discretization technique such as voxels (see e.g. Hernández-Pajares
et al. (1999)). The specific choice among those three techniques is a trade-off among factors such
as data distribution and representation of the underlying signal with a desired spectral resolution;
see Schmidt (2011), Goss et al. (2019). SHs are one of the commonly used technique for the
representation of 2D parameters, such as VTEC, on a sphere with the spatial resolution controlled
by its degree and order, see Schaer (1999). It provides global support, i.e a localization in the spatial
domain does not occur. Howe et al. (1998), Gao and Liu (2002) showed a 4D representation of
ionosphere using SHs and empirical orthogonal functions (EOF). An overview of the SHs is given
by Limberger (2015). Voxels are an alternate modelling approach, introduced in Hernández-Pajares
et al. (1998a) with predefined cell width and height. The electron density within each voxel is held
constant and has observation associated to it if either a measurement is directly available at that
location or if a ray path from e.g. GNSS satellite crosses the voxel along the line of sight to a receiver.
This approach was used for modelling VTEC in Hernández-Pajares et al. (1998b), Hernández-Pajares
et al. (1999) and the F2−layer peak electron density NF2

m modelling by Gerzen et al. (2013). The
path length within a given voxel, its spatial dimension (spatial resolution) and availability of the
measurement in the proximity of its geometrical center are important considerations in the voxel
approach. For further details we refer to Garcia Fernández (2004) in addition to the above mentioned
references.

2.4.2 Legacy of B-splines and their advantages

At DGFI-TUM, and also in this thesis, the B-spline basis functions are used for ionosphere modelling,
see Schmidt (2007), Schmidt et al. (2015), Limberger (2015), Liang et al. (2016), Erdogan et al.
(2017), Goss et al. (2019), for two main reasons (1) they are characterized by their localizing feature
(2) they can be used to generate a multi-scale representation (MSR); see Goss et al. (2019). An
introduction to BS is given in Schumaker and Traas (1991), Lyche and Schumaker (2000) and they
are characterized by their degree and level. For global modelling we use polynomial BS along the
latitude and trigonometric BS along the longitude, as also used by Schmidt et al. (2015), Erdogan
et al. (2017), Goss et al. (2019), Erdogan et al. (2020), Goss et al. (2020). BS and their application
to our EDM will be discussed in Section 5.2. Compared to SHs, the most important advantage
of BSs is that they provide localizing features but we need to define additional constraints on the
geographic north and south poles.
More recently, a 3D BS representation of the ionosphere for precise positioning for the Australian
region is described by Olivares-Pulido et al. (2019), where the product of three polynomial BS
is set up using STEC observations. A similar approach with 3D (spatial) BS representation for
electron density was also used before by Zeilhofer (2008). This particular approach of using BS for
3D increases the number of coefficients to be estimated, but is free from any assumption about the
empirical distribution of electron density along the vertical. However with GNSS STEC observations,
due to the short baseline distance between receivers in a regional network, Olivares-Pulido et al.
(2019) mentioned that the tomographic method cannot provide a high vertical resolution.

2.5 Challenges in EDM

Earlier studies by Limberger (2015), Liang (2017) highlighted the two main challenges in EDM, which
are (1) an inhomogenous and insufficient observation coverage and (2) significant correlations among

9



2 Introduction to ionosphere

the Chapman key parameters. The former refers to data gaps in e.g. STEC observations due to the
non-homogeneously distributed GNSS receiver stations and thus, leading to a non-uniform data
distribution from the equator to the poles; see Erdogan et al. (2017), Goss et al. (2019). Furthermore,
the northern and the southern hemisphere have a marked difference in the observation coverage as
well. These problems are also relevant for the ionosonde observations which are only available over
the landmasses. Ionospheric radio occultation (IRO) is another technique to obtain electron density
measurements but those are limited by the availability of active occultation satellites, the altitudinal
coverage, the need for observation pre-processing, and quality checks. In-situ observations from
GNSS receiver on-board GRACE satellites or instruments such as the Langmuir probe on-board
CHAMP provide only point measurements. These may be used as additional observations but not
as standalone source for the global electron density modelling. Therefore, a background empirical
ionospheric model is often used along with real observations to fill the above mentioned data gaps.
The latter case of Chapman key parameters being mutually correlated is due to the electron-ion
recombination and different coupling processes in the thermosphere-ionosphere system; see e.g.,
Stankov et al. (2003), Stankov. and Jakowski (2006), Belehaki et al. (2006). Statistical correlations
between key parameters arise due to their observability and sensitivity to electron density15. This
was shown by Limberger et al. (2013) and Limberger et al. (2014) with regard to regional ionosphere
modelling considering only the F2−layer in the South American region using a combination of real
and simulated observations.
Limberger (2015), Liang (2017) also highlighted the need for stochastic modelling as well as inequality
constraints on the Chapman key parameters. This thesis considers both these issues and especially
the latter in detail16. Moreover, Liang (2017) mentioned that in global EDM, the unknown Chapman
key parameters parameters are correlated, the estimation accuracy can be improved by imposing
inequality constraints17.
In addition to the aforementioned challenges, even if an observation model is setup, a robust method
is still required to estimate the unknown parameters. Traditionally, the method of least squares has
been used successfully in most circumstances. However, one of the disadvantages of unconstrained
least squares is its inability to bound the magnitude of unknown parameters to within certain upper
and lower limits.

Need for inequality constraints: an example case

Without going into detailed mathematical formalism adopted for denoting the essential variables,
in the following paragraph, a hypothetical example problem arising in EDM is shown, which will
demonstrate the need for applying inequality constraints.
Consider the problem of global modelling of the two Chapman key parameters18, namely, (1) F2
layer peak density NF2

m and (2) F2 layer peak height hF2
m . Furthermore, for the illustration of this

example, let us also assume that the F1 layer peak height hF1
m is given and known a priori (e.g.

from an empirical model). Let d̂
N

F2
m

and d̂
h

F2
m

denote the respective least squares estimates of the
B-spline coefficients of the two above-mentioned Chapman key parameters. Without going into the
details of transformation of the coefficients to key parameters (which will be described in Chapter
5; Eq. (5.5)), let N̂

F2
m and ĥ

F2
m denote the two sets of estimated Chapman key parameter vectors

respectively. Now one of the following cases may arise:

15or to one of its functional e.g. STEC
16Stochastic modelling is already well described in the PhD theses Limberger (2015) and Liang (2017) but the

inequality constraints were not.
17As the inequality constraints partially decorrelate the unknown parameters by localizing them to within specific

magnitude bounds.
18This example scenario was also widely used in both Limberger (2015) and Liang (2017).
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2.6 Proposed approach and novelties

• Case 1: A subset of the estimated coefficients are negative. Clearly, this is a physically
unrealistic scenario because both the F2 layer peak density as well as peak height are non-
negative parameters.

• Case 2: All the estimated coefficients are positive, i.e d̂
N

F2
m
> 0 and d̂

h
F2
m
> 0 are satisfied19,

but a subset of the estimated coefficient vector d̂
h

F2
m

is physically unrealistic. It means that
at m ⋅ n discrete latitude, longitude pairs {φi, λj} ∀ i = {1,⋯, m}, ∀j = {1,⋯, n}, we have
ĥF2

m (φi, λj) < hF1
m (φi, λj). In other words, at locations φi, λj , the F2 layer peak height is below

that of the F1 layer, which is physically unrealistic.
These two cases are just examples to illustrate the possible challenges when unconstrained least
squares are used in EDM. Such problems could be overcome if the unknown Chapman key parameters
are subject to physically realistic inequality constraint bounds:

• NF2
m (φ, λ) > 0 ∀ φ ∈ φ, λ ∈ λ

• hF2
m (φ, λ) > hF1

m (φ, λ) ∀ φ ∈ φ, λ ∈ λ ,
where φ, λ denote the latitude and longitude vectors respectively where the constraints are to be
applied. This way the physical realism of the ionosphere layers are included in the EDM.

2.6 Proposed approach and novelties
The Chapman key parameters, namely, the peak electron density, the corresponding peak height
and the scale height, of each layer are modeled by series expansions in terms of polynomial B-splines
for latitude and trigonometric B-splines for longitude. The Chapman profile function is chosen
to define the electron density along the altitude. This way, the EDM is set up as a problem of
estimating the unknown coefficients of the Chapman key parameters. We estimate the unknown
coefficients using the ICOA within which an optimization solver, such as the gradient descent or the
Newton’s method; see the Eqs. (4.36) and (4.48), is implemented. For demonstrating the proposed
ICOA, a subset of the total key parameters from Eq. (5.4) would be chosen to demonstrate the
application of the ICOA to our EDM. Simiar approaches were followed by Limberger et al. (2014),
Liang et al. (2015b) and Tsai et al. (2016). While in the former two papers BS, in the latter case
SHs are used for modelling the F2-layer peak height and the peak density.
The main novelty introduced in this thesis is the development of ICOA and its appication to global
4D EDM. To the knowledge of the author, this approach has not yet been developed and applied to
ionosphere modelling.
There are only a few relevant references where inequality constrained optimization is applied in
geodesy, e.g. ”geodetic levelling and datum definition” by Koch (1985), Koch (1988), non-negative
variance component estimation (VCE) as well as zenith troposphere delay (ZTD) estimation in
Roese-Koerner (2015). In the former two papers, the Lagrange multiplier (LM) and the slack
variable (SV) concepts are already used (introduced and described in detail in Chapter 4) and the
latter used the so called ”Active-set methods”; see Boyd and Vandenberghe (2004), Nocedal and
Wright (2006). Therefore, in this work the ICOA will be described in detail.
It shall be noted that generally an ICOP contains both the equality as well as inequality constraints.
As a special case, if there are no inequality constraints, we have an equality constrained optimization
problem. Although equality constraints alone can also be set up in our modelling problem, they are
not sufficient to address the aforementioned challenges of 4D global EDM. Also it shall be noted
that the solution of ICOP with only equality constraints do not necessarily require an ICOA with
gradient descent or Newton’s method. Infact, equality constraints can already be included alongside
least squares; see Chapter 3 in Koch (1999).
190 denotes the vector of zeros with the same number of elements as that on the left hand side of the inequality

considered in Case 2. Once again the author wishes to stress that the mathematical formalism and conventions for
inequalities are introduced in Section 4.4.1
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Inequality constraints, on the other hand, are relatively difficult to handle (see Nocedal and Wright
(2006); Chapter 16) and optimization methods are used instead of least squares. Although there are
software packages available based on the work of Lötstedt (1984), Gill et al. (1984), Coleman and Li
(1996) and Mead and Renaut (2010) but their algorithmic details, assumptions and implementation
along with the standard deviations are either not available or not explicitly transparent to the
user. In many cases the algorithms are also not easily adaptable for large-dimensional problems
(e.g. global 4D EDM). This is the main motivation to develop our own ICOA for the EDM. The
following novelties within the ICOA development are noteworthy:

• defenition of the inequality constraints qualification concept; e.g. constraints being active or
inactive; see definition 4.4.2 in Section 4.4

• description of the convexity of the ICO objective function as well as the feasible region; see
definition 4.2.2 in Section 4.4.2

• transformation of the ICOP in a so-called standard-convex form (4.57) to a partial ICOP
(p-ICOP); see Eqs. (4.65) and (4.66). As it will be shown in Chapter 4, the phrase partial in
p-ICOP signifies that the inequality constraints have been partially transformed to equalities;
see Eq. (4.65).

• describe the procedure for combining the unconstrained Gauss-Markov Model (GMM) (4.8)
with inequality constraints; see Section 4.4; especially Eqs. (4.49), (4.50e) and (4.56).

• description of the necessary and sufficient optimality conditions (4.71) to (4.72e) when an
ICOP has a feasible solution; see Section 4.5 for further details.

Keeping in view the aforementioned aspects, in this work we have (1) developed the EDM considering
multiple ionosphere layers, (2) used 2D BS basis functions for the representation of the Chapman
key parameters along latitude and longitude, (3) used the Chapman profile function for altitude
dependency of electron density and (4) combining of Formosat-3/COSMIC and GRACE radio
occultation as well as VTEC observations, as described in Section 3.2.
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3 Space and ground based observation techniques

In Chapter 1, the motivation and rationale for electron density modelling was introduced. In
Chapter 2 the ionospheric physics were described along with the spatio-temporal variability of the
important parameters such as VTEC and the electron density.

The goal of this chapter is to describe the most important space and ground based geodetic
observation techniques for electron density modelling.

At the same time, their relative processing complexity and their utility for an independent validation
will be discussed. A timeline of observation techniques along with the prevailing F10.7 space weather
index is shown in Fig. 3.1. It gives an indication of the number of observation techniques available
for electron density modelling at any given time frame.

Figure 3.1: Timeline of observations from selected satellite missions as well as the F10.7 time series from
1990 to present.

This chapter is organized as follows:
• First, the GNSS observation equations and STEC computation will be developed and described.
• Subsequently, the radio occultation technique will be introduced and Formosat-3/COSMIC1

(F3C), GRACE derived electron density profiles, as well as their spatial coverage, spatio-
temporal resolution, data availability, pre-processing and quality control will be discussed.

• In-situ observations from Langmuir probe on-board the Swarm satellites, CHAMP and ground
based ionosonde will be described. Especially, the ionosonde and in-situ observations will be
used for an independent validation in Chapter 7.

1COSMIC, the Constellation Observing Systems for Meteorology, Ionosphere, and Climate
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3 Space and ground based observation techniques

3.1 GNSS observations for electron density modelling

3.1.1 GNSS receiver and observation types

The use of GNSS for ionosphere modelling is an active area of research with continuous improvements
in quality as well as availability of data products, e.g. VTEC; see Limberger et al. (2013), Liang
et al. (2015a), Liang et al. (2015b), Erdogan et al. (2017), Goss et al. (2019), Erdogan et al.
(2020), Goss et al. (2020). The growing number of receivers in ground networks (e.g. IGS) provide
globally distributed measurements and, especially with the evolution of receivers capable of tracking
multi-GNSS signals, the combination of multi-frequency GNSS observations is possible for global
electron density modelling.
GNSS receivers are categorized based on the signal tracking technology (correlator design), constella-
tion supported (single or multi-constellation2), low-cost or geodetic receivers or the number of tracked
frequencies; see Eissfeller and Won (2017), Meurer and Antreich (2017) for a detailed categorization.
Accordingly, the observation quality differs, which is one of the important considerations for electron
density modelling.
Goss et al. (2019) show that spatial distribution of ground based GNSS observations is non-
homogeneous and results in data gaps, which are in general undesirable for global modelling of any
ionospheric parameter such as VTEC or the electron density. This problem is mitigated using a
background ionospheric model, e.g IRI (Bilitza (2000)) or NeQuick (Di Giovanni and Radicella
(1990)). In-situ GNSS measurements from LEO satellites can contribute as additional observations
as well, with the only drawback that there would be a lack of observations except at the LEO
altitude. Furthermore, GNSS also enables techniques such as radio occultation (RO); see Rocken
et al. (2000), Hajj et al. (2002), which allow the study of vertical ionosphere structures3. In this work,
terrestrial STEC measured by GNSS receivers is combined with radio occultation observations, to
have an improved observation coverage of both the top as well as bottom-side ionosphere globally4.

3.1.2 Relevance of multi-GNSS for ionosphere modelling

Two basic types of information are broadcasted by GNSS satellites, namely, the observation and the
navigation data. The former contains pseudorange, carrier phase, doppler and signal-to-noise ratio
measured on different frequencies. The latter contains satellite ephemeris, clock offset, ionospheric
as well as health related information5. The rest of this section will describe one of the methods for
ionospheric STEC computation using dual frequency GNSS pseudorange and phase observations.
Agencies such as the international GNSS service (IGS) operate a network of receivers distributed
worldwide and facilitate ionosphere modelling by providing station-specific RINEX files containing
the so called the ”GNSS observables” (see Dow et al. (2009), Beutler et al. (2009), Montenbruck
et al. (2014b)).
Multi-GNSS enables two important and relevant aspects to this work, namely,

• Filling the data-gaps caused by the IPPs clustered from a single GNSS constellation
• The newer IRO missions e.g. Formosat-7/COSMIC-2 (F7C2), carry an improved occultation

receiver capable of tracking multi-constellation and multi-freuency (MCMF) GNSS signals.
This in-turn leads to a higher number of observations compared to that from F3C mission
(see e.g. Fig. 3.4).

2When a receiver tracks more than one frequency and one constellation, it is capable of providing the so called
”multi-frequency” (MF) and ”multi-constellation” (MC) GNSS observations.

3Electron density variations with altitude.
4Generally top- and bottom-sides refer to above and below the F2 layer peak height respectively.
5The broacast navigation file also contains the transmission group delay, which is also relevant for ionospheric

modelling. However, the purpose of using the navigation file in this work is only to obtain satellite positions such
that the ionospheric pierce point can be computed.
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Therefore, this section describes the GNSS observables and their parameterization to compute
STEC. At the same time, the increased processing complexity, relative to that from just one single
constellation, will be highlighted.
For the sake of keeping the introductory chapters relatively short compared to the following chapters,
the specific details of GNSS data processing can be found in Appendices D.

3.2 Radio occultation
The goal of this section is to introduce the ionosphere radio occultation (IRO) observation tech-
nique and summarize the most important electron density retrieval techniques from the literature.
Subsequently, it is shown how the F3C profiles are obtained, pre-processed and used within the
electron density modelling. As mentioned later in this section, the electron density profiles are
directly obtained as profiles from the F3C data product and therefore the focus will be mainly on
its pre-processing and quality control, as required for electron density modelling.
From satellite to terrestrial receivers, the GNSS signal travel paths are mostly along the radial
direction helping in particular to determine the horizontal ionospheric variations6. An excellent
geometrical scenario to resolve for the vertical stratification is when a signal is passing through
the atmosphere rather horizontally while the receiver is located behind the Earth’s limb; see e.g.
Aragon-Angel et al. (2016). In this case, the signal source, i.e. the GNSS satellite, can reach an
elevation angle below zero from the LEO receiver perspective. Depending on the LEO orbit height,
the signal then passes the whole or partial ionosphere or even atmosphere.
GNSS phase observations are related, among others, to ionospheric electron density, see Eqs. (A.32),
(A.35a) and (A.35b). A signal passing through the atmosphere7 is refracted according to Snell’s
law8 due to the vertical gradient of the refractive index (Jensen et al. (2004)).

Occultation

GNSS signals passing through the ionosphere will be refracted, resulting in the ray path
bending from a straight line path. This is called an ”occultation event” because the GNSS
satellite is geometrically behind the Earth’s limb from the field of view of the receiving LEO
satellite.

The tracking of GNSS dual-frequency phase observations (A.24a) and (A.24b) in the occultation
geometry during the so-called ”occultation event” could result in the elevation angle of the observed
satellite in the LEO receiver to be less than 0°9.

Retrieval of electron density

The retrieval of the electron density along the occultation tangent points (closest points
on the occultation plane to Earth, shown in Fig. 3.2 and red dots in Fig. 3.3) require the
processing of the respective signal bending angles, based on the physical principle that the
refractivity N of the propagation medium is approximately proportional to Ne/f

2, where Ne

and f denote the electron density and signal frequency respectively (Hernández-Pajares et al.
(1998)).

6Measurements from low elevations may contribute to observe vertical structures, but increase measurement noise,
induced by multipath.

7GNSS signals pass through the plasmasphere, the ionosphere and the bottom atmospheric layers. However, the
focus on this work is mainly to quantify the occultation in the ionosphere.

8In the geometrical optics approximation, Snell’s law states that the ratio of the sines of the angles of incidence and
refraction is equivalent to the reciprocal of the ratio of the respective refractive indices.

9Occultation plane is defined by the intersection of radial vectors to GNSS and LEO satellite, their mutual orbit
planes as well as their line of sight vectors; see Limberger (2015).
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3 Space and ground based observation techniques

Furthermore, the dispersive and non-dispersive nature of the ionospheric and troposheric medium
allows, their respective effects on the bending angle to be separated using the L1 and L2 phase
combination, as shown in Eqs. (A.24a) and (A.24b) as also described by Tsai et al. (2011). This
procedure is called the ”IRO data inversion” and is part of a so called electron density profile
retrieval process (see Jakowski et al. (2002) and Tsai et al. (2016)). The derived profiles contain
discrete electron density observations that describe their distribution along the occultation tangent
points and the relevant physical quantities, such as the maximum electron density NF2

m or the
corresponding peak height hF2

m , can be estimated. The physical concepts related to ionospheric radio
occultation and electron density retrieval techniques are described in detail in Hernández-Pajares
et al. (2009) and Limberger (2015). The geometrical situation of RO is schematically depicted in
Fig. 3.3 for F3C as the LEO mission tracking GNSS signals.

Figure 3.2: Electron density profile retrieval from F3C satellites providing the 4D electron density by STEC
measured from GNSS satellites in view. Also shown are the GRACE and CHAMP satellites from
which electron density profiles are retrieved and used in this work. Figure courtesy: Michael
Schmidt, DGFI-TUM annual report 2019.

Figure 3.3: Example for an occultation event between a GNSS and F3C satellite. Shown in red are the
occultation tangent points, as the relative geometry changes with time. Especially, the elevation
angle of occulting GPS satellite from behind Earth’s limb, resulting in a negative elevation
angle is also shown. The direction of motion of LEO satellites resulting in rising or setting
occultation is also shown. Figure courtesy: DGFI-TUM annual report 2019.
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3.2 Radio occultation

Figure 3.4: Location of the occultation points (in green) from Formosat-7/COSMIC-2 as on 27 Nov. 2019
and the locations of ionosonde stations (in red) operated by the national geophysical data centre
(NGDC). Figure courtesy: Formosat-7/COSMIC 2 data portal.

3.2.1 Electron density profiles from Formosat-3/COSMIC

F3C is a bilateral collaborative mission of Taiwan and the United States (Rocken et al. 2000), a
constellation of six LEO satellites launched in 2005. Its payload consists of GPS receivers, high-gain
occultation and precise orbit determination (POD) antennas10.
Electron density profiles are contained in the data product “ionPrf”, which are computed by
COSMIC Data Analysis and Archive Center (CDAAC)11. A detailed user manual (Schreiner et al.
(2003)) is available with the list of parameters provided in the electron density profiles. A few
examples of complete profiles, missing data, outliers and unusable profiles are shown along with the
number of observations in each F3C profile in Fig. 3.5. Although the electron density measurements
look like they are vertical profile but in fact they are located along the curved path of the occultation
tangent points (TP). Electron density profiles from the occultation sensor on-board the GRACE
satellites will also be used for EDM. The average number of observations per hour from GRACE,
COSMIC and VTEC are shown in Fig. 3.6.

3.2.2 Pre-processing electron density profiles from CDAAC data

Before the “ionPrf” data is used for electron density modelling, a pre-processing step is performed
for which, the following criteria have been used:

• Minimum altitude to be used in a profile is chosen at 80 km, which means only electron
density values above 80 km are used. The specific threshold was chosen to match with the
bottom altitude of the D-layer. It is known that the IRO measurements especially at lower
altitudes (below 200 km) have poor quality due to the low GNSS signal to noise ratio as well
as quality from electron density profile retrieval techniques (Tsai et al. (2011), Limberger
(2015)). If higher altitudes are chosen as thresholds, then the important observations from the
D− and the E− layer become unavailable. Since a multi-layer approach is used for electron
density modelling, measurements from the bottom layers are important for this work as well.

10Detailed information for constellation system, mission objective and technique development can also be found in a
special issue publication for the F3C mission in the Journal for Terrestrial, atmosphere and Ocean, Vol.11, No.1,
March 2000.

11Access to the data is free but there is almost a full dependency on CDAAC for checking the data quality and
availability.
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3 Space and ground based observation techniques

Figure 3.5: Electron density profiles retrieved from improved Abel transform. Data source: ionPrf data
product from CDDAC, 12-March 2015.

• Minimum number of observations (the number of data points along a profile) shall be
150. This criteria was selected by analysing the average number of observations per profile
over 12-14 March 2015 and one half of that average value (rounded to nearest 50) was chosen.

• Minimum altitude dynamic range, defined as the difference between the maximum and
minimum altitude, shall be 200 km. This criteria was selected based on one-half of the average
value of the altitude range, over F3C profiles during 12-14 March 2015.

• Maximum allowed data gap shall be 100 continuous data points. However, if these
data-gaps occur in the F2 region (220 km ≤ altitude ≤ 440 km), then the complete profile is
ignored. The threshold number 100 is chosen as 66% of the threshold minimum number of
observations (which was 150).

The threshold values mentioned above are chosen as a fair balance between the observation quality
and its availability. Strict thresholds lead to a relatively small number of IRO observations.
Furthermore, an outlier detection is performed based on the following:

• The rate of change in electron density with altitude is computed for each profile. Upto 5
observations around any sample exceeding a threshold ∣∆Ne

∆h ∣ > 0.1 EDU/km are removed from
the profile12. It shall be noted that for an electron density sample i in any profile,

∣
∆Ne

∆h
∣ =

Ne(φi+1, λi+1, hi+1) −Ne(φi, λi, hi)

∥hi+1 − hi∥
(3.1)

• A change in altitude exceeding 50 km between any two consecutive observations in any given
profile are also removed. The value of 50 km was chosen based on Limberger (2015).

12Although F3C profiles are not vertical, yet the parameter ∣∆Ne
∆h
∣ is inversely proportional to the Chapman scale

height.
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3.3 Other geodetic observation techniques

Figure 3.6: Average number of observations per hour from the three observation techniques between 12-14
March 2015.

• Measurements shall be available for within ±50 km around 350 km in a profile. This is ensured
to allow a proper description of the profile shape in the F2 peak region. This threshold is also
following Limberger (2015).

• The altitude corresponding to the F2 peak density in the profile is verified to be located within
a physically reasonable range of 220 km - 440 km. This aspect is important considering the
inequality constraints to be applied for the peak height, as described in numerical evaluations
in Chapter 613.

3.3 Other geodetic observation techniques

Ionosonde

The working principle of an ionosonde is to transmit a radio pulse near to the vertical and to measure
the travel time taken to receive its echo due to the reflection from the different ionosphere layers
(see e.g. Hunsucker (1991), Belehaki et al. (2006) and McNamara et al. (2008)). As an ionosonde
transmits signals of selected wavelengths14, the critical frequencies15 of the different ionosphere
layers can be deduced from the characteristic ”traces” of reflected signals, called an ionogram16.
The traces contain the strength of the reflected signal, the frequency and phase offsets as well as
the signal travel time.
13Additional diagnostics and exception checks were performed, as required, within the processing software developed

for this work to ensure good measurement quality for electron density modelling.
14Corresponding to the so called ”sweep frequencies” generally in the range of 0.1 – 30 MHz (Hunsucker (1991))
15The critical frequency of an atmospheric layer is the threshold at which the signal just passes through. Any lower,

the signal would be reflected and a higher frequency than the critical frequency of a certain layer will not be
reflected from that layer and it will pass to a relatively denser layer. (see e.g. Schunk (1988), Jakowski (2017)).

16Ionograms are 2-dimensional plot of the virtual height of the ionosphere along the vertical and frequency along the
horizontal axis.
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3 Space and ground based observation techniques

Especially, with the analysis of the phase of the received (reflected) signal, using an antenna array17,
it is possible to determine the temporal variations in the ionospheric electron density (Jakowski
(2017)). Ionograms provide the critical frequency fF2

o , of the F2 layer, from which NF2
m can be

derived (Hunsucker (1991)). In a similar manner, the Chapman key parameters of the D, E and F1
layer can be obtained as well.
For this work, both the NF2

m and hF2
m are obtained from 17 ionosonde stations (see Table 3.1)

belonging to the network of the National Geophysical Data Center (NGDC)18.

Table 3.1: Ionosonde station used for validation

Station ID Latitude, Longitude (deg.) Location
GR13L 33.31 S, 26.52 E Grahamstown, South Africa
EA036 37.09 N, 06.72 E El Arenosillo, Spain
JR055 54.60 N, 13.40 E Juliusruh, Germany
AS00Q 7.95 S,165.60 E Ascension Island
AH223 23.00 N, 72.50 E Ahmedabad, India
AT138 38.00 N, 23.50 E Athens, Greece
EB040 40.80 N, 0.50 E Roquetes, Spain
EG931 30.46 N, 86.55 W Eglin, USA
FF051 51.70 N, 1.78 W Fairford, UK
GU513 13.44 N,144.79 E Guam, USA
HE13N 34.40 S, 19.25 E Hermanus, South Africa
IC437 37.45 N,126.70 E Incheon, South Korea
IF843 43.49 N,112.04 W Idaho Falls, USA
IS141 41.00 N, 28.97 E Istanbul, Turkey
JI91J 12.04 S, 77.04 W Jicamarca, Peru
JJ433 33.48 N,126.49 E Jeju Island, South Korea
LG178 78.22 N, 15.62 E Longyearbyen, Norway

In-situ observations

Langmuir Probes (LP) are instruments used onboard satellites to measure the in-situ electron density
and temperature of the plasma enountered along the orbit. It shall be noted that while CHAMP is
a single satellite, Swarm is a constellation of three satellites as shown in Fig. 3.8. CHAMP and
Swarm LP measurements (see Figures 3.7 and 3.9) will be used to validate the estimated electron
density model values in Chapter 7. An example of the electron density from Swarm LP is shown
in Fig. 3.11. For further details on ionospheric plasma density measurements by Swarm LP, their
performance and limitations, see Knudsen et al. (2017), Diego et al. (2019), Catapano et al. (2020),
and the corresponding one for CHAMP LP, see Cooke et al. (2003), Heise et al. (2005). The in-situ
observations are directly used to validate the estimated key parameters, as will be shown in Fig.
7.19 with the result O1. Swarm is also equipped with spaceborne GPS receiver and therefore an
STEC data product (as example shown in Fig. 3.10) is made available from Swarm project office at
17Antennas alignment in a specific proximity to each other corresponding to the phase and wavelength of the received

signal (Jakowski (2017)), also called a phase-array.
18Ionosonde data are obtained from the NGDC open source repository ftp.ngdc.noaa.gov/ionosonde/
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3.4 Summary of observation techniques

Figure 3.7: CHAMP electron density in-situ observations from Langmuir probe on 1 Aug. 2007. Courtesy
GFZ Potsdam

ESA19. This in-turn can be used to validate the modelled key parameters, as will be shown in Fig.
7.19 with the result O2.
Missions such as the Van Allen probes; see Lanzerotti (2013), Reeves et al. (2013), Mauk et al.
(2013), Moldwin et al. (1995), whose science objective is the study and monitoring of the Earth’s
radiation belts, also provide electron densities at an altitude of 2 to 6 Earth radii. However, an
initial assessment in this work reveals that the assumptions made for ionosphere and plasmasphere
in the altitude range of 100 - 1000 km, and also the Chapman profile function in general, may not
be appropriate to model the electron density at those altitudes and therefore Van Allen probe data
was not used for this work. This aspect is substantiated further in Chapter 5.

Satellite altimetry, DORIS

Satellite altimetry (see Fu and Cheney (1995)) and Doppler Orbitography and Radio-positioning
Integrated by Satellite or DORIS (see Auriol and Tourain (2010)) are already used for VTEC
modelling at DGFI-TUM (see Dettmering et al. (2011b), Dettmering et al. (2011a),Dettmering et al.
(2014), Erdogan et al. (2017), Erdogan et al. (2020)). As this VTEC data is used as observation
within the separability approach, the DORIS and altimetry techniques are indirectly included in
this work.

3.4 Summary of observation techniques

In this chapter we have introduced the STEC and the IRO observation techniques to be used for
the global 4D EDM. Additionally, the ionosonde and in-situ observtaion techniques will be used
for validation. Considering the relevance of GNSS in the computation of STEC as well as in the
retrieval of electron density profiles from the F3C mission and the GRACE satellites, a detailed
description of the observation equations, error sources including the phase ambiguity resolution has
been provided (see Appendix D).

19https://www.esa.int/Applications/Observing_the_Earth/Swarm
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3 Space and ground based observation techniques

Figure 3.8: Swarm satellite orbit. Courtesy ESA

There are broadly two general categories of signal delay sources in the GNSS observation equations,
namely,

• the dispersive or frequency dependent
ionosphere delay, code multipath, the code, phase biases, phase ambiguities

• non-dispersive or frequency independent
straight line true range, clock offsets and troposphere delay.

While the non-dispersive delays are eliminated in the GFLC, the remaining dispersive components
e.g. DCBs are estimated along with remaining unknown parameters. Furthermore, the multipath
effect is absorbed in the measurement error and the phase biases are absorbed by the integer
ambiguity resolution. For the scope of this thesis, it is be assumed that the phase ambiguities are
estimated as float and the focus will be on the applicability of STEC observations in the EDM.
The IRO has also been discussed and its advantages compared to the other techniques have been
highlighted. Limb sounding is a complimentary technique compared to ground based, nadir pointing
satellite payloads or along track pointed Langmuir probes, at least partially filling data gaps over
the oceans and other regions such as deserts20.
In summary, both STEC and IRO electron density retrieval require the GNSS observation equations;
see Appendix (A.21a) to (A.21f). While the STEC is computed from ground GNSS receivers, the
electron density profiles were obtained directly from CDDAC.

20As will be later specified, in order to mitigate the problem caused by sparse global distribution of IRO data,
additional VTEC data from DGFI-TUM global ionospheric maps (Erdogan et al. (2017)) was also used for
obtaining electron density observations using the separability approach.
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Figure 3.9: Swarm-B in-situ electron density on 12 March 2015 from on-board Langmuir probe. Data
Courtesy: Swarm project office, ESA.

Figure 3.10: Swarm-A STEC measured on 12 March 2015 from on-board GNSS receiver. Data Courtesy:
Swarm project office, ESA.
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Figure 3.11: Electron density from in-situ Langmuir probe onboard Swarm satellite. Data source: ESA
Earth observation data portal and Swarm project office.
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4 Optimization techniques

Optimization methods are applied in situations when a certain function is to be minimized (e.g.,
mean square error) or maximized (e.g., likelihood function in probability, profit in business) with
respect to the underlying parameters. If additional prior information about some or all of these
parameters is available, then those can be expressed as upper or lower bounds or both (e.g., a
non-negativity of physical parameters such as number of atoms, density) and then it is called an
optimization problem with inequality constraints. Although such methods are commonly used in
financial and engineering disciplines, their application to geodesy is relatively rare. Within this
chapter, a detailed description of inequality constraints will be provided. As and when possible,
analogies to physics are also presented, so that the mathematical equations behind constraint
processing can be visualized in a practical sense. We will demonstrate example problems involving
inequality constraints using graphical illustration and visualization before applying them to multi-
dimensional parameters. Although inequality constraints are the primary focus in this chapter,
we will show a more general formulation that includes equality constraints as well. Furthermore,
few challenges are identified which currently limit the use of constraint optimization to real time
geodetic applications (e.g. ionosphere modelling, orbit determination). These challenges are related
to the search techniques used within the optimization algorithms and will be substantiated in this
chapter. We also propose solutions for the identified challenges which will be eventually applied to
ionospheric electron density modelling in the subsequent chapter.
This chapter is organized as follows: Section 4.1 introduces the Gauss-Markov model (GMM)
for observation modelling and variance component estimation (VCE). Section 4.2 describes the
fundamentals of optimization problems and begins with the definition of objective function and
model parameter. It is followed by Section 4.3 that discusses the so-called ”descent methods”
along with the two fundamental algorithms, namely, gradient descent and the Newton’s method.
Section 4.4 introduces the inequality constraint formulation and inclusion in optimization problems.
Section 4.5 describes the optimality conditions and their application to the Lagrangian function
as well as the solution of the system of equation that follows. Section 4.6 discusses the impact of
changing constraint functions on the model parameter in the form of sensitivity analysis. Section 4.7
discusses alternate methods to solve the same equations which were derived and solved in section
4.5. Wherever possible, a geometrical (or graphical) interpretation will be provided in order to
compliment the algebraic results. In selected sections, important equations will be derived from
fundamental concepts. These derivations are helpful in two particular ways: (1) they provide
insights on the assumptions (if any) behind those equations and (2) they allow a clear and elegant
interpretation of the estimated parameters. In the summary of the chapter, some best practices
used during the implementation are highlighted. The focus of this thesis will be on the optimization
of a quadratic objective function with linear equality and inequality constraints.

4.1 Observation modelling

Non-linear observation modelling is a thoroughly researched subject and Koch (1999), Rao and
Toutenburg (1999), Seber (2015), discuss it in detail. Measurements are generally non-linear
functions of the unknown parameters and the task of observation modelling is to establish this
approximate functional relation. Let y = [y1⋯yn]

T be n × 1 observation vector with e = [e1⋯en]
T

the associated n × 1 measurement error vector and β = [β1⋯βu]
T the u × 1 vector of unknown
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4 Optimization techniques

parameters, then the non-linear relation fi between each yi, ei and β can be written as

f1(β1,⋯, βu) = y1 + e1

f2(β1,⋯, βu) = y2 + e2

⋮

fn(β1,⋯, βu) = yn + en

, (4.1)

where fi(β1,⋯, βu) for i = {1,⋯, n} are differentiable non-linear real valued functions of the unknown
parameters. The system of equations (4.1) can be linearized to a first order1 using the Taylor series
expansion about the initial value vector β0 = [β1,0⋯βu,0]

T to give

fi(β) = fi(β0 +∆β)

≈ fi(β0) +
∂fi(β)

∂β1
∣
β0

∆β1 +⋯ +
∂fi(β)

∂βu
∣
β0

∆βu

≈ fi(β0) +

⎡
⎢
⎢
⎢
⎢
⎣

∂fi(β)

∂β1
∣
β0

⋯
∂fi(β)

∂βu
∣
β0

⎤
⎥
⎥
⎥
⎥
⎦

⋅∆β

≈ fi(β0) + (∇βfi(β0))
T
⋅∆β

, (4.2)

(see Koch (1999)) where ∆β = β − β0, the operator ∇β denotes the gradient with respect to the
elements of β and

∇βfi(β0) =

⎡
⎢
⎢
⎢
⎢
⎣

∂fi(β)

∂β1
∣
β0

⋯
∂fi(β)

∂βu
∣
β0

⎤
⎥
⎥
⎥
⎥
⎦

T

(4.3)

denotes the partial derivatives of the non-linear function fi with respect to elements of β. The
truncation error involved in Eq. (4.2) is denoted implicitly. Eq. (4.2) can be rearranged as

(∇βfi(β0))
T
⋅∆β = fi(β) − fi(β0) (4.4)

and collectively in matrix notation
⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆f1(β)
⋮

∆fn(β)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=A∆β (4.5)

with

∆fi(β) = fi(β) − fi(β0) and A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂f1(β)
∂β1
∣
β0
⋯

∂f1(β)
∂βu
∣
β0

∂f2(β)
∂β1
∣
β0
⋯

∂f2(β)
∂βu
∣
β0

⋮ ⋱ ⋮
∂fn(β)

∂β1
∣
β0
⋯

∂fn(β)
∂βu

∣
β0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.6)

being the matrix of first derivatives, called the system design matrix (or the design matrix), evaluated
at β0. The unknown parameter vector is iteratively computed by the so-called ”update rule”

βit+1 = βit +∆β̂it, (4.7)

where ∆β̂it is an estimate of ∆β from solving Eq. (4.5), at an iteration it. When ∣βit+1 − βit∣

becomes smaller than or equal to a predefined threshold2, a convergence is said to be reached.
1The truncation error is omitted for better readability and accordingly the = symbol is replaced by ≈ in Eq. (4.2)
2In this work, it is chosen as 10−8.
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4.1 Observation modelling

4.1.1 Gauss-Markov model

Following Koch (1999), without loss of generality3, Eq. (4.5) will be redefined as the Gauss-Markov
model (GMM)

y + e =Aβ with D(y) = σ2P −1 (4.8)

consisting of two parts, namely, the deterministic and the stochastic part, where A is the n × u
design matrix, β is the u × 1 vector of unknown parameters, y is the n × 1 vector of observations, e
is the n × 1 vector of observation errors, D is the dispersion operator, P is a given positive definite
observation weight matrix and σ2 is the unknown variance factor. The linear relation in GMM (4.8)
follows generally after a linearization process, as shown in Eq. (4.2).

Method of least squares

Since the main focus of this chapter is the optimization technique, the method of least squares is
only briefly summarized. The subject of least squares has references dating back to the treatise
written (in Latin) by Gauss4 in 1820s (English translation is available in Stewart (1995)). For a
detailed treatment of the linear, non-linear least squares, weighted and total least squares, the
reader is referred to Osborne (1965), Gentleman (1976), White (1990), Schuh (1996), Koch (1999),
Rao and Toutenburg (1999), Schuh (2003), Alkhatib and Schuh (2007), Moritz (2015).
From the GMM (4.8), the quadratic function

J(β) =
1
σ2 (y −Aβ)T P (y −Aβ) (4.9)

is minimized by setting its derivative with respect to β to zero,

1
σ2 (−2AT P y + 2AT P Aβ) = 0, (4.10)

leading to the normal equations
AT P Aβ =AT P y (4.11)

from which an estimate β̂ = (AT P A)
−1

AT y of β along with its covariance

D(β̂) = σ2 (AT P A)
−1 (4.12)

can be obtained, where σ2 is the unknown variance factor, assuming the matrix A is of full column
rank (Koch (1999)). An estimate

σ̂2
=

êT P ê

n − u
(4.13)

of σ2 is obtained from the maximum likelihood method when n > u, where n and u are the number
of observations and unknown parameters respectively and ê = y −Aβ̂ is the vector of residuals.

4.1.2 Observation combination and variance component estimation

When ntyp different observation types are combined, a GMM

yo + eo =Aoβ with D(yo) = σ2
oP −1

o (4.14)
3To avoid confusion, it is clarified that this change in convention from the previous section is for the ease of readability.

The remaining parts of this chapter have additional ∆ and ∇ operators applied to the parameter β. So the idea is
to start with a convention where β is already linearly related to y.

4Johann Carl Friedrich Gauss was a German mathematician and physicist who made significant contributions to
many fields in mathematics and science.
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is established individually using the variance components σ2
o for each type denoted by the subscript

o ∈ {1,⋯, ntyp}. The prior information µ = E{β} is introduced as additional observations

β = µ + eµ with D(µ) = σ2
µP −1

µ (4.15)

with the error vector eµ, the unknown variance factor σ2
µ and a given positive definite weight matrix

Pµ. If the different observations yo and the prior information µ are assumed to be independent,
then following Koch and Kusche (2002), the combination of ntyp + 1 observation types yields the
extended linear model

⎡
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⎢
⎢
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=
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β (4.16)
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The normal equations from each observation type are combined to give

(

ntyp

∑
o=1

1
σ2

o

AT
o P oAo +

1
σ2

µ

P µ)β =
ntyp

∑
o=1

1
σ2

o

AT
o P oyo +

1
σ2

µ

P µµ. (4.19)

When the different observation types are dependent, D(y) is no longer a diagonal block matrix
and unknown covariance matrices between different types of observations have to be taken into
account and estimated as well (Koch (1999)). Since the weight matrices P o are positive definite,
the matrices AT

o P oAo are at least positive semi-definite. Furthermore, the weight matrix P µ of the
prior information is positive definite and therefore, the matrix of normal equations

N c =
1
σ2

1
AT

1 P 1A1 +⋯ +
1

σ2
ntyp

AT
ntyp

P ntypAntyp +
1

σ2
µ

P µ (4.20)

is invertible, when appropriate variance components σ2
o , for o = {1,⋯, ntyp}, and σ2

µ are chosen.
The variance components can be chosen manually or estimated within the variance component
estimation (VCE) procedure. Among a number of methods to estimate variance components (see
Brockmann and Schuh (2010), Xu et al. (2006), and references therein), the method of Koch and
Kusche (2002) is summarized below, which has also been used by Limberger (2015), Liang (2017),
Erdogan et al. (2017), Goss et al. (2019), Goss et al. (2020), Erdogan et al. (2020), Liu et al. (2020).
An estimate σ̂2

o of σ2
o and σ̂2

µ of σ2
µ is obtained through an iterative procedure as follows:

σ̂2
o =

êT
o P o êo

ro
, with o ∈ {1,⋯, ntyp}, and êo =Aoβ̂ − yo (4.21)

5In this case, 0 denotes a matrix with dimensions corresponding to P 1, P ntyp and P µ respectively. For improved
readability, their dimension are not shown in subscript. Later in this chapter, such a convention will be followed.
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and

σ̂2
µ =

êT
µ P µ êµ

rµ
, with êµ = β̂ −µ, (4.22)

where ê0 and êµ denote the residual vector corresponding to the observation type index o ∈
{1, 2,⋯, ntyp} and the prior information respectively. The partial redundancies (Koch (1999), Xu
et al. (2006))

ro = no − Tr(
1
σ2

o

AT
o P oAoN−1

c ) (4.23a)

rµ = nµ − Tr(
1

σ2
µ

P µN−1
c ) (4.23b)

are the contributions of yo and µ to the total redundancy

rt =

ntyp

∑
o=1

ro + rµ + rc (4.24)

of the GMM, where the symbol Tr denotes the trace of a matrix, no and nµ refer to the total
number of observations of the type ”o” and the prior information, respectively. If there are no
constraints in the GMM, then the number of constraints rc can be omitted from Eq. (4.24). As can
be seen from the Eqs. (4.21) to (4.23b), the estimated variance components are depending on the
observation residuals computed from β̂, which in turn depends on the variance components. Thus,
the estimation of the variance components is performed iteratively. A stochastic trace estimator
(Hutchinson (1990), Koch and Kusche (2002)) is used as alternate to avoid memory expensive
inversion of normal equations in large dimensional problems.
The least squares method is one of the most commonly used technique for parameter estimation but
when there are constraints on the unknown parameters, an optimization approach is more suitable,
especially if those are inequalities. Equality constraints can be included alongside the least squares
solution as described in Chapter 3 of Koch (1999). Inequality constraints, on the other hand, are
relatively difficult to handle and advanced techniques are required (see Chapter 16 in Nocedal and
Wright (2006)). Especially when the unknown parameters are highly correlated, the estimation
accuracy can be improved by including prior information in the form of exact values of some of
the parameters or approximate lower and upper bounds for others. Although there are software
packages available based on the work of Lötstedt (1984), Gill et al. (1984), Coleman and Li (1996)
and Mead and Renaut (2010) but their algorithmic details, assumptions and implementation along
with the standard deviations are either not available or not explicitly transparent to the user. In
many cases the algorithm are also not easily adaptable for large dimensional problems (e.g. global
4D electron density modelling). This is the main motivation to develop a constraint optimization
approach for parameter estimation.

4.2 Introduction to optimization technique
Optimization is an important mathematical method used in modelling and analysis of physical
systems (Nocedal and Wright (2006) pg. 2). According to Goldstine (1980), ”the mathematical
formalism in optimization arrived with the development of variational calculus6”. In modern era,
optimization is applied in science, engineering, finance, transportation, healthcare etc. and also
many references are available such as Philip E. Gill and Wright (1981), Luenberger (1999), Nesterov
et al. (2000), Boyd and Vandenberghe (2004), Nocedal and Wright (2006) and Bertsekas (2009).
It is too detailed a subject to be completely described in this thesis and therefore, after a brief
introduction, the focus will be on the specific aspect of inequality constrained optimization problems
and their solution.

6Leonhard Euler is credited with the development of variational calculus. An excellent history on this topic is
available in Koetsier (2007).
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Figure 4.1: Main building blocks in optimization

The process of solving an inequality constrained optimization problem is divided into two sub-
problems:

• Sub-problem 1: Feasibility, i.e., determining a solution that fulfills all constraints.
• Sub-problem 2: Optimality, i.e., determining the solution that minimizes the objective function.

These two sub-problems will be described in detail for a given set of objective and constraint
functions. As shown in Fig. 4.1, there are four important building blocks in the optimization
namely (1) the objective function along with the model parameter(s), (2) the constraints associated
with the model parameters, (3) the optimality conditions and (4) optimization algorithm. The
primary goal of this chapter, is to describe these items in detail. The objective function and
model parameters are discussed in Section 4.3, constraints in Section 4.4, optimality conditions in
Section 4.5. Optimization algorithms are discussed in two separate parts. The part covering the
fundamentals common to most algorithms is discussed in Section 4.3 and more specific aspects in
Section 4.5.2.

Optimization problem

An optimization problem P

min
β

J(β)

subject to constraints : ci(β) = 0 i ∈ E

ci(β) ≤ 0 i ∈ I

(4.25)

is defined with respect to the unknown model parameter vector β , the objective function J(β)
and ith constraint function ci(β) belonging to the sets E ,I for the equality and inequality
constraints, respectively (see Fig. 4.2).

4.2.1 Objective function and model parameters

The first step towards the solution of an optimization problem is the definition of an objective
function. It is an empirical function of the unknown model parameter that gives a quantitative
measure of the optimization performance. Goal of an optimization problem is to estimate the
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unknown model parameters, such that the objective function is optimized7. Specifically, it means
the objective function is either minimized or maximized.

Figure 4.2: Optimization problem definition

Definition 4.2.1. Objective function and model parameters
For the minimization problem (4.25), the quadratic objective function (4.9) is used in this work,
where y, A, β and P are defined in the Gauss-Markov model (4.8).
The objective function8 J(β) expresses how well the model parameter β fits the observations vector
y in the Gauss-Markov model since it is the square of the errors. For a minimization problem, a
smaller9 value of the objective function indicates that the model parameters used in the GMM fits
the observations well

Feasible region

Definition 4.2.2. The feasible region FR for an optimization problem is the set of all possible
and permissible solutions for the model parameters over which the objective function is to be
optimized.

Optimal solution

Definition 4.2.3. The optimal solution to a problem is given by the model parameter
corresponding to a minimuma value of the objective function over the feasible region. βopt is
an optimal solution to the problem P if

βopt ∈ FR and J(βopt) ≤ J(β) ∀β ∈ FR. (4.26)
aIn this work the goal is to minimize the objective function but in general, objective functions can also be

maximized.

In other words, for a minimization problem, the optimal solution corresponds to the model parameter
β which results in the minimum value of the objective function over the entire feasible region. A
feasible solution is any value of the model parameter satisfying β ∈ FR. Examples of constraint
and feasible region in one- and two- dimensions are shown in Figures 4.14 and 4.15 respectively. If a
feasible region is empty, i.e. FR = Ø, where Ø denotes an empty set, then P is called an infeasible
problem. An important subset of optimization algorithms are exclusively dedicated for convex
objective functions. Before going into further details, the terms convex set and functions are defined.

7For the scope of this thesis, the objective function is minimized unless otherwise specified.
8In some literature the objective is also called the loss or cost function.
9Here, it is only qualitatively defined.
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Convex set

A set C ⊆ IRu is convex if and only if

a1β1 + (1 − a1)β2 ⊆ C (4.27)

holds for any a1 ∈ [0, 1] such that β1, β2 ∈ C and β1 ≠ β2 (see Boyd and Vandenberghe (2004)
p. 23). Geometrically, Eq. (4.27) means that the line segment, connecting β1 and β2, is
entirely contained within the set C, as shown in Fig. 4.3a. Conversely, a non-convex set is
shown in see Fig. 4.3b.

(a) Convex set (b) Non-convex set

Figure 4.3: Example of convex and non-convex sets. Notice that the line segment on the left side is entirely
contained within the green area whereas on the right it is not.

Convex function

A function that maps a non-empty convex set C from IRu to IR is convex if and only if

f (a1β1 + (1 − a1)β2) ≤ a1f (β1) + (1 − a1)f (β2)

0 ≤ a1 ≤ 1, ∀ β1, β2 ∈ C
(4.28)

holds (see Boyd and Vandenberghe (2004) p. 67). Geometrically, Eq. (4.28) means that the
line segment joining β1 and β2 is entirely contained ”within” the graph of the function.

Although the phrase ”within” is somewhat subjective, but specifically for the one-dimensional case,
the concept is shown in Fig. 4.4a. By extension of Eq. (4.28), any linear function (e.g., a line or a
plane) is also a convex function (Nocedal and Wright (2006) pg. 7).
Generally, optimization algorithms are used on a multi-dimensional space of the model parameters
and they work on the principle of ”search and selection”. It means the model parameters are
estimated iteratively by ”search” and moving along a certain path of intermediate solutions. This
point will be substantiated further in section 4.3.1.
When an objective function cannot be minimized any more without a violation of the constraints, a
final solution is reached. It follows that when an objective function is optimized, the corresponding
unknown parameters are referred to as the optimal solution.
This was a short introduction and the remaining part of this chapter will describe each of these
specific aspects of the optimization problem and solution in detail.

32



4.2 Introduction to optimization technique

(a) Convex function (b) Non-convex function

Figure 4.4: Example of convex and non-convex functions

4.2.2 Taxonomy of optimization

In the previous section, it has been mentioned that the specification of a constraint optimization
problem involves defining the objective function, the model parameters and the constraints. For the
scope of this thesis, GMM (4.8) is reformulated as an objective function (4.9). The optimization
parameters are then the GMM model parameters and additional unknowns corresponding to the
constraints. This aspect will be described in Section 4.4.2. Based on these three aspects, a brief
taxonomy of optimization is presented.
Taxonomy refers to the different categorizations under which a given optimization problem may be
classified (see Table 4.1). On the one hand it is important to identify the specific category to which
a given problem belongs, so that an appropriate algorithm can be used for its solution. On the
other hand, generating a complete taxonomy of all the known optimization problems is a difficult
task because of two main reasons:

• A given problem may belong to two or more categories. For example a non-linear problem
(NLP) can have either a single or multi-objective function. So there will be many inter-
connections between the different categories of the optimization problems. This makes the
overall categorization complicated.

• Secondly, the subject of optimization is changing dynamically with newer developments, e.g.
Salcedo-Sanz (2017), Rao and Waghmare (2017), where improvements are proposed to either
existing optimization algorithms or their implicit assumptions. In both of these cases, the
existing categorization changes.

Continuous and discrete optimization : In continuous optimization, the model parameters are
allowed to take on any value within a range, in contrast to discrete optimization, where some or all
of the variables may take only discrete values. Examples of discrete optimization are when model
parameters are binary, integers, prime number etc.
Unconstrained and constrained optimizations : Constraints are empirical functions of the
unknown optimization parameters. In an unconstrained optimiztaion, as the name suggests, there
are no constraints on the model parameter. As detailed in this chapter, the solution approach with
constraints is to augment them as additional penalty terms to the objective function.
Single- and multi-objective optimization : Most optimization problems have a single objective
function but in some cases there is more than one objective function. The optimization parameters
could be shared between the different objective functions, see e.g. Marler and Arora (2004). In
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practice, a weighted combination of multiple objective functions is used to form a single objective
function.

Table 4.1: Optimization Taxonomy

Classification based on the problem degree LP, QP
Classification based on the number of objectives single and multi-objective

Classification based on the constraints unconstrained, constrained
Classification based on the optimization parameters continuous, discrete

For a more detailed taxonomy along with a catalogue of the different algorithms, see Gropp and
Moré (1997), Czyzyk et al. (1998), and Dolan (2001).

4.3 Structure of optimization algorithms

4.3.1 Fundamentals of descent method

Before describing an optimization algorithm in detail, the so-called ”descent method” is introduced.
It helps in understanding the common basic structure of the different optimization algorithms and
also their specific weaknesses, which then lead to the need for the advanced optimization algorithms.
As the name indicates, there is a tendency of the objective function to reduce10, from an initial
value, towards its minimum. The model parameter corresponding to the minimum value of the
objective function are then the optimal solution (Boyd and Vandenberghe (2004) pg. 463).
Let J(β0) and J(βit) denote the objective function at an initial value β0 and that at any iteration
it, denoted as βit respectively. The progressive reduction (or descent) in the objective function for
iterations it = {1, 2,⋯, p,⋯it,⋯}, generates a sequence

J(β0)⋯J(βp)⋯J(βit)⋯

such that, it represents a decreasing trend. It shall be noted that, although desirable, it is not
certain that the objective function will always decrease from one iteration to the next. In practice,
there may be situations when the objective function remains nearly constant or even increases. The
model parameters are updated as

βit = βit−1 + tit−1∆βit−1, (4.29)

where tit and ∆βit denote the step size and the descent direction respectively, at an iteration it.
The terms in the update rule (4.29) are illustrated in Fig. 4.5. It shall be noted that although
the step size is shown as a scalar in the update rule (4.29), in a more general case the individual
components of the model parameter are updated using different step sizes. In such a case, the step
size will be denoted by a diagonal matrix instead. This aspect will be revisited in Section 4.5.3.
The descent direction

∆βit−1 = ν∆βit−1 u∆βit−1 (4.30)

can be decomposed into its magnitude

ν∆βit−1 = ∥∆βit−1∥ (4.31)

and the unit vector
u∆βit−1 =∆βit−1/∥∆βit−1∥, (4.32)

10and therefore the name ”descend”
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Figure 4.5: Update rule in descent method. The updated model parameter at an iteration it is computed
using three terms namely, the model parameter, the step size and the descent direction at the
previous iteration. More generally, different step sizes can be chosen for updating the model
parameter, in which case, tit−1 will be replaced by a diagonal matrix. It will be shown later in
section 4.5.3.

where ∥ ⋅∥ denotes the L2 norm (∥β∥ =
√

β2
1 +⋯ + β2

u). From a geometrical interpretation, Eq. (4.29)
is the equation of the line segment βit reached by traversing from its initial value βit−1 along the
direction u∆βit−1 by a magnitude of tit−1ν∆βit−1 . The step size is an important parameter, with
0 ≤ tit ≤ 1 (see Boyd and Vandenberghe (2004), Nocedal and Wright (2006)), that controls by how
much (in magnitude) the model parameter β shall be updated along the descent direction. For
tit ≈ 0, the model parameter βit is updated by an negligible magnitude and analogously, for tit = 1,
the model parameter βit is updated by the ”full” magnitude of the descent direction, in which case,
it is also called ”taking a full-step” along the descent direction. Convergence is reached and the
optimization algorithm is said to have found βopt = βit, the optimal estimate of the model parameter
β at an iteration it, when the condition

∥βit −βit−1∥ ≤ ηpre (4.33)

is satisfied, where ηpre is a positive precision threshold11.

Direction of decreasing gradient
Starting from an initial value β0 to the optimal solution βopt, the process of computing the successive
intermediate solutions using the update rule (4.29) is called ”traversal”. Within the descent method,
the direction of decreasing gradient of the objective function is determined at each iteration for
traversing towards the optimal solution as shown in Fig. 4.6 and more specifically illustrated in the
Fig. 4.7 using a two dimensional example with the axes labelled β1 and β2 as well as the contours
of equal objective function values (iso-objective contours) depicted on the right side. The contours
with larger radii have larger objective function values.
The example 2D objective function J(β) = βT β shown in the Fig. 4.7 with convergence from an
initial value β0 = [10 10]T to the final (optimal) value of β = [0 0]T . It can be seen in Fig. 4.8
that the objective function descent is steeper12 for a larger step size or the number of iterations
required is lower to achieve a desired precision. For e.g, the objective function reaches 10−11 after
30 iterations for a step size of 0.2, whereas for relatively smaller step sizes of 0.1 and 0.05, it takes
65 and 110 iterations respectively to reach the same level of precision. The objective function
chosen in this example is convex and being a simple 2D function, the choice of the initial value was
11Typically chosen several orders of magnitude (10−8) or smaller than the estimated parameter.
12Steep descent refers to the magnitude of change in objective function per iteration.
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Figure 4.6: Descent method: Traversal from initial value β0 to the optimal solution βopt. The slope or
tangent to the objective function at the initial solution provides a direction to traverse to the
updated solution, e.g. from β0 to β1. At the objective function minimum, the slope is zero.

inconsequential. More generally, an optimal solution is sensitive to both the choice of initial value
as well as the step size.
As shown in Fig. 4.9, at any intermediate solution βit ∈ FR, a tangent to the objective function
(shown as dotted line) divides the entire feasible region into two sub-regions. On one side the
objective function increases (sub-region I) and on the other, it decreases (sub-region D). The
objective function gradient ∇J(βit), at a given intermediate solution, is perpendicular to the local
tangent and points in the direction of increasing objective function (black arrow in Fig. 4.9).

The objective function J(β) is a scalar function of the model parameter vector β. Its gradient
∇J(βit) is a vector. Furthermore, the second derivative of the objective function with respect
to the model parameter will be a matrix. It will be used in Newton’s method.

Moving any direction towards the sub-region I, increases the objective function. Therefore, in order
to reach the minimum of the objective function, the descent direction ∆β must, progressively (at
each iteration), point towards the sub-region D. At a given intermediate solution βit, the computed
descent direction ∆βit and the objective function gradient ∇J(βit) must satisfy

∇J(βit)
T
⋅∆βit < 0, (4.34)

which means the objective function gradient13 and the descent direction must form an obtuse14

angle. As shown in Fig. 4.9, the descent direction along the blue arrow satisfies Eq. (4.34) but does
not necessarily point towards the minimum. There is an ideal direction (green arrow) which is the
negative of the objective function gradient, along which the it reduces in the steepest manner. On
the right side in Fig. 4.9, on contrary, the direction indicated by the red arrow is not a valid descent
direction, as it does not satisfy Eq. (4.34). This is an important and a fundamental result which
will be utilized throughout the chapter.
The reason for an iterative procedure in the descent methods is because the initially estimated
direction ∆βit (corresponding to the first iteration) may not directly lead to the global minimum.
Therefore, given an intermediate solution βit (or equivalently initial solution βit = β0) of the
unknown model parameter, a two step approach is followed:
13∇J(βit)

T and ∆βit are generally not unit vectors.
14An obtuse angle is larger than 90 degrees but smaller than 180 degrees.
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Figure 4.7: Descent method illustration. Starting from an initial value [10 10]T , the descent method
traverses towards the minima of the objective function and eventually reaches J(β) = 0 at
β = [0 0]T . The number of iterations required to reach the minima depends on the initial value
and the step size. In this example, the objective function is convex and therefore the initial
value is inconsequential for the optimal solution.

• Step 1: A descent direction ∆βit is determined that satisfies Eq. (4.34)
• Step 2: A step size t (omitting the iteration subscript) is determined and the unknown model

parameters are updated as per Eq. (4.29).
The rest of this chapter will describe the methods for these two important steps in further detail.
In practice, the above mentioned two steps are used with minor modifications by different optimiza-
tion algorithms due to the need for performance improvements. In the next section, two fundamental
algorithms, namely, the gradient descent (GD) and Newton’s method (NM), are presented for the
estimation of the descent direction. Both of these are building blocks in advanced optimization
techniques used in this work. It will also be shown that several improvements to the basic gradient
descent have been proposed in the last years.

Figure 4.8: The number of iterations and the path taken by the intermediate solutions in BGD for three
different step sizes.
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Figure 4.9: The objective function gradient and descent direction: Objective function iso-contours are
plotted along the β1 and β2 axes. The objective function values increase with increase in ∣β1∣
and ∣β2∣. Although there are no constraints, but at a point β∗, there are two possible directions
(1) towards increasing objective function (indicated by the black arrow) into the ”I” region
painted in gray and (2) towards decreasing objective function to the region ”D”. On the left
side, an appropriate descent direction ∆β∗ is illustrated at β∗ that is pointed toward the ”D”
region whereas on the right side, it is inappropriately pointed in the ”I” region.

4.3.2 Gradient descent method

The GD method was first suggested by Cauchy15 in 1847 (Robbins (2007)) and its use for optimization
problems was first studied by Curry (1944). Gradient descent works on the principle that a maximum
decrease of the objective function occurs when moving along the negative gradient direction of the
objective function (Boyd and Vandenberghe (2004) pg. 466, Nocedal and Wright (2006) pg. 101),
just as shown in Eq. (4.34). Therefore, the search for an optimal solution begins with a first natural
choice for the descent direction

∆βit = −∇J(βit), (4.35)

the negative gradient of the objective function itself and substituting it in the update rule (4.29),
leads to (c.f. Eq. (4.29))

βit+1 = βit − tit ∇J(βit). (4.36)

This algorithm is called the batch gradient descent (BGD) and its main advantage is the simpler
update rule. However, its performance can be improved by considering the enhancements as
described further.

Mini batch gradient descent

In BGD the objective function gradient is computed using the full observation vector y and especially
for a quadratic program (QP) with a large number of observations16 (e.g. nobs > 100, 000), there is
a considerable complexity in every iteration. To mitigate this particular issue, a variant of BGD,
called the mini batch gradient descent (MBGD) (see e.g. Khirirat et al. (2017)), uses only a subset
of the total number of observations with which the objective function

J(βit,MBGD)i∶i+n = (yi∶i+n −Ai∶i+n βit,MBGD)
T

P i∶i+n (yi∶i+n −Ai∶i+n βit,MBGD)

for i = {1, 2,⋯, nobs − n}
(4.37)

15Baron Augustin-Louis Cauchy was a French mathematician, engineer, and physicist who made pioneering contribu-
tions to several branches of mathematics, including mathematical analysis and continuum mechanics.

16It shall be noted that a change in variable convention is introduced here. nobs and n refer to the total number of
observations and the mini batch size.
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and its gradient are computed. Elements subscript i ∶ i + n in Eq. (4.37) denotes the mini batch
subset with only n + 1 from altogether nobs observations. Specifically, yi∶i+n denotes the mini batch
subset of observations from y. Similarly, Ai∶i+n denotes the sub-matrix corresponding to the ith to
(i + n)th row of the design matrix A and P i∶i+n

17 denotes the sub-matrix corresponding to ith to
(i + n)th row and column of the weight matrix P . The update rule in MBGD is

βit,MBGD = βit−1,MBGD − tit−1 ∇J(βit−1,MBGD)i∶i+n

for i = {1, 2,⋯, nobs − n}
, (4.38)

where the model parameter βit,MBGD is updated along descent direction ∇J(βit−1,MBGD)i∶i+n, as
illustrated in Fig. 4.10. The advantage of BGD (4.36) compared to MBGD (4.38) is that the
intermediate solutions path is smooth but the disadvantage in BGD is that for each iteration the
entire observation vector is used for computing the derivative of the objective function.

Figure 4.10: MBGD update rule: The model parameter is updated using same three terms as in the
basic descent method. The only difference is the mini batch subset size used for the gradient
computation.

Stochastic gradient descent

For a mini batch subset corresponding to n = 1, the method is called stochastic gradient descent
(SGD), which was originally proposed by Robbins and Monro (1951) and is used extensively in solving
optimization problems (see e.g. Bottou (2012), Bao (2020)). However, due to the development of
CPUs/GPUs18 capable of performing fast matrix operations, it is more common to use MBGD
instead of SGD19. Both MBGD and SGD are particularly suitable for real time applications, where
the model parameters have to be estimated from only a few observations.

Stochastic Gradient Descent with momentum

As described above, both MBGD and SGD compute an approximate gradient of the objective
function using a mini batch. In other words, at each iteration of SGD, the traversal is not always
along the optimal direction, due to the noise on the computed gradient of the objective function.
”SGD with momentum” or SGDM (Polyak (1964), Qian (1999), Sutskever et al. (2013)) is an
improved alternative to compute the objective function gradient. Compared to MBGD or SGD,
the noise around the intermediate solution path is reduced by introducing a momentum parameter

17P i∶i+n must be positive definite
18CPU is the acronym for Central Processing Unit and GPU for Graphics Processing Unit.
19Due to the fact the performance is nearly the same when using a subset of n ∼ 1000 compared to n = 1, sometimes

MBGD is simply called SGD
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γmom with 0 < γmom ≤ 1 such that the update rule in SGDM reads

βit,SGDM = βit−1,SGDM + tit−1 zit,SGDM (4.39a)
zit,SGDM = γmomzit−1,SGDM − (1 − γmom)∇J(βit−1,SGDM)i∶i+n. (4.39b)

When the objective function gradient points almost in the same direction, progressively with itera-
tions, the momentum factor γmom is set to a large value (≈ 0.9), thus increasing term γmomzit−1,SGDM .
In contrast, γmom is set to relatively smaller value (≈ 0.5) to reduce the update when there is a
considerable change in the gradient direction with iterations. This, in turn, results in two advantages,
namely (1) convergence in fewer iterations compared to SGD due to the momentum gain of the
updated model parameters and (2) reduced noise compared to MBGD or SGD. In practice, the
value of γmom is initialized to 0.5 and progressively increased to 0.99 as convergence is reached
(Driggs et al. (2020)). It can be seen that for γmom = 0, Eqs. (4.39a) and (4.39b) reduce to (4.38)
or, in other words, SGDM reduces to MBGD. ”Momentum” in SGDM comes from the analogy to
physics, where a ball rolling down a slope gains momentum until an obstruction is encountered.
Although γmom is called the momentum factor, actually it is analog to the coefficient of friction20.
The two steps of SGDM are summarized below.

• Step 1: The momentum term zit,SGDM is computed at an iteration it using zit−1,SGDM and the
objective function gradient, both from the previous iteration it − 1, as well as the momentum
factor γmom ; see Eq. (4.39b).

• Step 2: The unknown model parameter vector βit,SGDM is updated using Eq. (4.39a).

Stochastic Gradient Descent - Nestrov

Another useful characteristic of the descent method is the ability to ”predict” a direction, in which
the objective function will start to increase (also called the ”ascent” in contrast to the descent
direction), so that the model parameter update is controlled. This method is abbreviated SGDN
in the honour of Yurii Nestrov who first proposed it21 (see Nesterov (1983)). In this method, an
approximation at an iteration it of the intermediate solution

βit,pred = βit−1,SGDN − tit−1 ∇J(βit−1,SGDN)i∶i+n (4.40)

is predicted using the model parameters and the objective function gradient both from the previous
iteration. Accordingly the update rule becomes

zit,SGDN = γmomzit−1,SGDN −∇J(βit,pred)i∶i+n (4.41a)
βit,SGDN = βit−1,SGDN + tit−1 zit,SGDN . (4.41b)

The three steps involved in SGDN are summarized below:
• Step 1: A predicted value βit,pred of the model parameter vector is computed at iteration it ;

see Eq. (4.40).
• Step 2: The momentum term zit,SGDN is computed using that from previous iteration

zit−1,SGDN and the objective function gradient computed from the predicted value βit,pred

from Step 1 above using the momentum factor γmom ; see Eq. (4.41a).
• Step 3: Model parameter βit,SGDN is updated; see Eq. (4.41b).

20A smoother surface has a smaller coefficient of friction compared to a rough surface. A ball rolling down a slope with
small coefficient of friction will gain momentum and kinetic energy to reach the foot of the slope faster compared
to that on a rough slope of same length

21SGDN is also called NAG, an acronym for Nestrov accelerated gradient
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4.3 Structure of optimization algorithms
Table 4.2: Variants of the gradient descent algorithm

Gradient descent Primary characteristics
algorithm

BGD Batch gradient descent: A basic version which uses the
entire observation for objective function gradient computation

MBGD Mini batch gradient descent: Objective function
gradient is computed with a subset of observations.

SGD Stochastic gradient descent: Objective function gradient
computed with every single observation.

SGDM SGD with Momentum: Improved convergence compared to SGD and
reduces the noise in the path followed by the intermediate solution.

SGDN SGD with Nestrov: Controls the model parameter update by its
prediction, so that the traversal is within the feasible region.

Summary of gradient descent algorithms
Including the basic version (BGD), five variants of gradient descent algorithm discussed above are
summarized in the Table 4.2. The step size parameter is used in all five algorithms mentioned above
(BGD, SGD, SGDM and SGDN). However, it is a challenge setting it appropriately because for
step size t ≈ 0), the model parameters convergence will be slow and it may take a considerable time
to achieve an acceptable objective function minimum. On the other hand, if t ≈ 1, then the model
parameters may diverge. This is only a qualitative assessment and a more specific technique for step
size estimation will be presented in section 4.7.3. One way to mitigate this problem is to choose a
different step size for each dimension, but that would not be practical when there are thousands
or more dimensions. There are advanced algorithms ”AdaGrad” (Duchi et al. (2011)), ”Adam”
(Kingma and Ba (2014)), ”RMSProp” (Hinton (2012)) and ”Adadelta” (Zeiler (2012)) based on
gradient descent, which address such challenges.

4.3.3 Newton’s method
Newton’s method (NM) was first published in 1685 in ”A Treatise of Algebra both Historical and
Practical” (Wallis (1685)) and is an extremely powerful technique with quadratic convergence (see
e.g. Knight and Adams (1975), Hestenes (1980) and Bartholomew-Biggs (2005)). It means the
difference between a true solution and its approximation is squared (i.e. the number of accurate
digits roughly doubles) at each iteration step. A second order Taylor series approximation of the
objective function J(β) about initial value β0, such that ∆β = β −β0, is

J(β0 +∆β) = J(β0) +∇βJ(β)T ∆β +
1
2

∆βT
∇

2
βJ(β)∆β, (4.42)

which is quadratic in ∆β and ∇2
βJ(β) denotes the Hessian matrix22 of the objective function.

Taking the first derivative of Eq. (4.42) with respect to ∆β and equating it to zero gives

∇βJ(β) +∇2
βJ(β)∆β = 0u×1 (4.43)

which in turn shows that J(β0 +∆β) is minimized when

∆β = −∇2
βJ(β)

−1
∇βJ(β). (4.44)

22Matrix of second derivative of the objective function with respect to the model parameter.
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Substituting this result in Eq. (4.42), the first order approximation can be written as

J(β0 +∆β) = J(β0) −∇βJ(β)T (∇2
βJ(β))

−1
∇βJ(β) (4.45)

or
J(β0 +∆β) − J(β0) = −∇βJ(β)T (∇2

βJ(β))
−1
∇βJ(β). (4.46)

Furthermore, when ∇2
βJ(β) is positive definite, the left hand side of Eq. (4.46) is negative or in

Figure 4.11: Comparison of the descent direction computed within the gradient descent and Newton’s
method. In GD, the descent direction is the negative gradient of objective function, whereas in
NM, there is an additional Hessian matrix inverse term multiplied with the negative gradient
of the obective function.

other words
J(β0 +∆β) − J(β0) < 0 (4.47)

and therefore by moving a step ∣∆β∣ along the descent direction, the objective function decreases.
In the Newton’s method, the update rule is defined, similar to as it was defined in the descent
method (see Eq. (4.29)), as

βit+1 = βit + tit∆βit, (4.48)

where the value of tit is set by default to 1. The main challenge in Newton’s method is the Hessian
matrix ∇2

βJ(β) from a computational perspective (see Boyd and Vandenberghe (2004) pg. 484,
Nocedal and Wright (2006) pg. 274).
It has been shown that in both GD and NM the traversal is along the direction of the reducing
gradient of the objective function. In fact, in any optimization algorithm, the estimation of the
traversal direction is one of the important and possibly the most computationally expensive step.
This is also referred to as the ”line search” because the updated model parameter vector βit+1 will
lie along the line segment βit + tit∆βit depending on the value of tit, although in general, the line
could be multi-dimensional. When tit = 1, the update is said to be taking a ”full Newton step”.
In the case of an unconstrained optimization (assuming convex objective function), a full Newton
step is often used (Nocedal and Wright (2006) pg. 164), as shown in Fig. 4.12, but when there are
inequality constraints, only relatively smaller steps (tit ≪ 1) along the descent direction23 can be
taken (Nocedal and Wright (2006) pg. 56).
Both GD and NM scale well for higher dimensional problems subject to the convexity of the objective
function (Nocedal and Wright (2006) pg. 16). One of the challenges in the design of optimization
algorithms is the estimation of the step size. Objective function values during the iterations are
tested for identifying the need for adapting the step size. A comparison of the descent direction
in the GD and NM methods is shown in Fig. 4.11. In the next section, the theory behind the
inequality constrained optimization along with the definitions of some other important terms will
be introduced.
23Descent direction computed using NM is also called Newton direction.
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Figure 4.12: Illustration of step size tit during parameter update from βit to βit+1 along the descent direction
∆βit in descent methods. The white region is where c(β) ≤ 0 and in the gray region c(β) > 0.
Two scenarios are depicted: On the left side, there is a constraint violation because the updated
model parameter is outside the feasible region. On the right side, smaller step size keeps the
parameter within the feasible region.

4.4 Inequality constraints

4.4.1 Introduction to inequalities

Mathematical inequalities are functional expressions with the following relations: (1) larger than
′′ >′′, (2) smaller than ′′ <′′, (3) larger than or equal to ”≥”, (4) smaller than or equal to ”≤” or (5)
”not equal to” ≠ (see e.g. Stephenson (1971), Cloud et al. (2014)). This section begins with an
introduction to the scalar, vector and matrix inequality conventions used in this work. For scalars β1
and β2 such that β1 > β2 Ô⇒ β1 is larger than β2 and similarly, β1 < β2 Ô⇒ β1 is smaller than
β2. Using a similar analogy, β1 ≥ β2 denotes β1 is larger than or equal to β2 and β1 ≤ β2 denotes β1
is smaller than or equal to β2. While scalar inequalities are commonly used and easily understood,
a more formal convention is needed for vectors and matrices.
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For vectors β1, β2 and the zero vector24 denoted as 0, all three with the same dimensions,

β1 > β2 Ô⇒ each element of β1 is larger than that in β2 (4.49a)
β1 < β2 Ô⇒ each element of β1 is smaller than that in β2 (4.49b)
β1 ≥ β2 Ô⇒ each element of β1 is larger than or equal to that in β2 (4.49c)
β1 ≤ β2 Ô⇒ each element of β1 is smaller than or equal to that in β2 (4.49d)
β1 ≠ 0 Ô⇒ at least one element of β1 is non-zero. (4.49e)
β1 ≠ β2 Ô⇒ at least one element of β1 is unequal to that in β2. (4.49f)
β1 ≪ β2 Ô⇒ at least one element of β1 is much smaller than the corresponding one in β2

(4.49g)
β1 ≫ β2 Ô⇒ at least one element of β1 is much larger than the corresponding one in β2

(4.49h)
β1 ≈ β2 Ô⇒ each element of β1 is approximately equal to that in β2 (4.49i)

For a u × u square matrix A, 0u
25 and vector 026

A > 0u Ô⇒ A is positive definite βT Aβ > 0 ;∀ β ≠ 0 (4.50a)
A ≥ 0u Ô⇒ A is positive semi-definite βT Aβ ≥ 0 ;∀ β (4.50b)
A < 0u Ô⇒ A is negative definite βT Aβ < 0 ;∀ β ≠ 0 (4.50c)
A ≤ 0u Ô⇒ A is negative semi-definite βT Aβ ≤ 0 ;∀ β (4.50d)
A ≰ 0u as well as A ≱ 0u Ô⇒ A is indefinite. (4.50e)

Additionally for any m × n matrices A1, A2,

A1 ≠A2 Ô⇒ at least one element of A1 is unequal to that in A2. (4.51)

Eq. (4.50e) is important because, unlike in scalars, the law of Trichotomy for real numbers (Rubin
and Rubin (1985)) does not hold for matrices. Specifically, for a given pair of scalars β1, β2, only
one of the three conditions

β1 < β2 or β1 = β2 or β1 > β2 (4.52)

holds, whereas for matrices
A ≰ 0u does not Ô⇒ A > 0u. (4.53)

Testing for positive definiteness

A method of testing for positive definiteness of matrices, as given in Bernstein (2009), is summarized
below. A square matrix

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 ⋯ a1u

a21 a22 ⋯ a2u

⋮ ⋮ ⋱ ⋮

au1 au2 ⋯ auu

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

24In this case 0 denotes a vector of all zeros having the same dimension as β1
250u denotes u × u square matrix of all zeros.
260 denotes a vector of zeros with the same dimension as β.
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is positive definite if the determinant of each of the principal minors

µ1 = [a11] (4.54a)

µ2 = [
a11 a12
a21 a22

] (4.54b)

µ3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.54c)

µu =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 ⋯ a1u

a21 a22 ⋯ a2u

⋮ ⋮ ⋱ ⋮

au1 au2 ⋯ auu

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.54d)

are positive, i.e
det µi > 0 ∀ i ∈ [1, ⋯, u] Ô⇒ A > 0u. (4.55)

Properties of matrix inequality

For u × u square matrices A1, A2,

A1 >A2 Ô⇒ A1 −A2 > 0u (4.56a)
A1 ≥A2 > 0u Ô⇒ A2

−1
≥A1

−1
> 0u (4.56b)

A1 > 0u and r > 0; r ∈ R Ô⇒ rA1 > 0u (4.56c)
A1 ≥ 0u and A2 ≥ 0u Ô⇒ A1 +A2 ≥ 0u (4.56d)
A1 > 0u and A2 > 0u Ô⇒ A1A2A1 > 0u and A2A1A2 > 0u (4.56e)
A1 > 0u and A2 > 0u Ô⇒ αA1 + (1 − α)A2 > 0u ∀ α ∈ [0, 1] (4.56f)

Definitions of some important terms frequently used in optimization theory are introduced below.
Definition 4.4.1. Constraint function
Constraints are specific conditions, bounds or empirical relations between model parameters which
restrict or limit their range of values. These can be both equality or inequality relations and
accordingly are called equality or inequality constraints.
In this work, an inequality constraint function is represented as c(β) ≤ 0. When there are multiple
inequality constraints, the system of constraint functions cj(β) ≤ 0 are represented using the
subscript j that refers to the set I of all inequality constraints. The feasible region FR is determined
by the constraints functions.
Definition 4.4.2. Candidate solution
A candidate solution is a member of the feasible region of a given problem (Boyd and Vandenberghe
(2004) pg. 2, pg. 11, Nocedal and Wright (2006) pg. 20). It is not necessary that a candidate
solution shall be the optimal or even an approximate solution to the optimization problem. The
reason it is called as a ”candidate solution” is because it is one of the many in the feasible region
that satisfies the constraints.

Inequality constraint categorization

Following Arora (2017), an inequality constraint can either be active, γ-active, violated, or inactive.
On the other hand, an equality constraint is either active or violated at a given value of the model
parameter.
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• Active constraint: An inequality constraint cj(β) ≤ 0, for j ∈ I, is said to be active at β
∗
, if

the equality relation cj(β∗) = 0 holds.
• Inactive constraint: An inequality constraint cj(β) ≤ 0, for j ∈ I, is said to be inactive at β

∗
,

if the inequality cj(β∗) < 0 holds.
• Violated constraint: An inequality constraint cj(β) ≤ 0, for j ∈ I, is said to be violated at β

−
,

if cj(β−) ≰ 0 holds. An equality constraint ci(β) = 0, for i ∈ E , is violated at β
−
, if ci(β−) ≠ 0

holds. An equality constraint is always either active or violated. For violated constraints,
β
−
/∈ FR holds.

• γ-active inequality constraint: An inequality constraint cj(β) ≤ 0, for j ∈ I, is said to be
γ-active at β

∗
, if cj(β∗) < 0 but cj(β∗) + γ = 0 holds, such that γ > 0 and γ ≈ 0. It indicates

that a given model parameter is close to the constraint boundary on the feasible side with
a margin γ. That is, the constraint cj(β) is strictly inactive (see definition 4.4.3) but it is
also close to become active. The concept of γ-active constraints apply only to inequality
constraints.

Definition 4.4.3. Strict inequality
The exclusive inequality part cj(β) < 0 of the relation cj(β) ≤ 0, for j ∈ I, is called the strict
inequality.
Definition 4.4.4. Linear matrix inequality
A linear matrix inequality (LMI) is a mathematical relation used for the representation of a system
of linear inequations (see e.g. Boyd and Vandenberghe (2004) pg. 38, Forst and Hoffmann (2010)).
In this work, a LMI

Bβ ≤ b

is used for the representation of a system of linear inequality constraints, where B and b denote the
constraint coefficient matrix and the constraint bound, respectively.
Definition 4.4.5. Linear program
A linear program (LP) is an optimization problem having a linear objective function and a feasible
region determined by a linear equality and/or inequality constraints.
Definition 4.4.6. Quadratic program
A quadratic program (QP) is an optimization problem having a quadratic objective function and a
feasible region determined by a linear or a quadratic equality and/or inequality constraints.

Standard form

Definition 4.4.7. A QP is said to be in standard form when the objective function is
represented as a sum of a quadratic and a linear term. Additionally, following definition 4.4.4,
the system of inequality constraints are represented in matrix form as a ”smaller than or
equal to” relation. The optimization problem P (4.25) in standard form reads

min
β

βT Qβ +βT q

subject to : Bβ ≤ b
, (4.57)

where the objective J(β) from Eq. (4.25) is replaced by a specific quadratic function of β
along with a given positive semi-definite matrix Q as well as a vector q that will be defined
later in Eq. (4.85).

Definition 4.4.8. Local and global minima
A local minimum of an objective function J(β) is defined as its value at a candidate solution β∗
such that J(β∗) < J(β∗ ± δβ1) for δβ1 ≈ 0, but possibly J(β∗) > J(β∗ ± δβ2) for δβ2 ≫ 0. In
other words, at a local minima, an objective function might have values smaller than that in its
neighbourhood but possibly larger than those that are far away.
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The global minimum of an objective function J(β) is defined as its value at a candidate solution β∗
such that J(β∗) < J(β∗ ± δβ1) for all δβ1 ∈ FR. In other words, at the global minima an objective
function has the smallest value compared to that anywhere else in the feasible region.

Constraint bound and constraint direction

Even though an inequality constraint is a scalar function of the model parameter vector, a direction
is often associated to it. ”Constraint direction” is not a standardized term but is nevertheless used
in reference textbooks such as Boyd and Vandenberghe (2004), Forst and Hoffmann (2010), Nocedal
and Wright (2006). The constraint direction is normal to the constraint bound hyperplane and
points towards the interior of the feasible region. It will be shown using a graphical representation
of constraints that their bounds, the direction as well as the the direction of the objective function
gradient, all have an impact on the optimal solution.

Figure 4.13: Analogy of a ball rolling down a curved path from an initial height. If there are no constraints
the ball will eventually reach the final distance d0 along the horizontal. Three examples
illustrate the effect of a constraint or a barrier on the motion of the ball from its initial to its
final height. (A): The ball hits a constraint at a distance d = d1 (B) The ball starts rolling just
where the constraint is active. The ball reaches d = d0 (C) The presence of the constraint does
not affect the ball at all and the ball once again reaches d = d0.

In Fig. 4.13, three distinct examples are shown with a physics analogy, where the initial position
of the ball can be compared with the initial value of the model parameter to be estimated. The
barrier shown in red acts as an inequality constraint. The height and the horizontal distance are
analogous to the objective function and the model parameter. The magnitude of the distance
covered in unit time and the direction of motion of the ball correspond to the step length and the
descend direction in an optimization algorithm. The final distance along the horizontal corresponds
to the optimal solution and the curved path meant the convexity of the objective function. In case
(A), the inequality constraint becomes binding at d = d1, in case (B) the constraint is active at the
initial value and thereafter remains inactive and in (C) the constraint remain inactive throughout. It
can also be seen that both the direction of constraint and the initial value relative to the constraint
play an important role in the optimum solution. When the constraint is pointing towards the
negative gradient of the objective function, both the unconstrained and constrained optimum will
be the same (depending on the initial value). On contrary, when the constraint points along the
positive gradient of the objective function, then at some point, the constraint will become binding.
In the next section, a mathematical formulation of equality and inequality constraints will be
presented along with a complete description of their representation and processing within an
optimization algorithm.
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4.4.2 Constraint representation and optimization
Generally, there are two types of constraints, namely, the equality and the inequality ones

ci(β) = 0 i ∈ E

cj(β) ≤ 0 j ∈ I
(4.58)

that are denoted by their sets of indices E and I respectively, as in Eq. (4.25). This is a standard
form representation where the constraint functions ci(β) or cj(β) are rearranged to get zero on
the right hand side, as shown in Eq. (4.58); see Nocedal and Wright (2006). A constraint function
divides the entire space of the model parameter into two sub-regions. Specifically, these are the:

• Feasible region,
FR = {β ∣ ci(β) = 0, i ∈ E ; cj(β) ≤ 0, j ∈ I} , (4.59)

i.e. the union of all possible model parameter values satisfying the constraints and the
• Infeasible region,

FR = {β ∣ ci(β) ≠ 0, i ∈ E ; cj(β) > 0, j ∈ I} , (4.60)

where the constraints are not satisfied.

Figure 4.14: Constraint and feasible region in 1D: The dotted black line is the inequality constraint bound
for β ≤ −0.2. The green region {β ∣ cj(β) ≤ 0} is the feasible region and accordingly the green
arrow points leftwards inside the feasible region FR, normal to the inequality constraint bound.
In contrast, the white region is the infeasible region FR ∶ {β ∣ cj(β) > 0} pointed by the red
arrow. It shall be noted that the entire parameter space is the union of FR and FR. For
the objective function J(β), the constrained minimum is at β = −0.2 and the unconstrained
minimum is at β = 0. In this case for the 1D objective function, the constraint function
subscripts i = j = 1.

A boundary between the two sub-regions is where the condition cj(β) = 0 for j ∈ I prevails and
the inequality constraints are said to be active. The set of active constraints

A = E ∪ j ∈ {I ∣ cj(β) = 0} (4.61)

is the union of the equality and inequality constraints {E ,I} for which cj(β) = 0. In the feasible
region, the inequality constraints (4.58) are strictly satisfied and therefore the corresponding
constraints are said to be inactive. It then follows from Eq. (4.61) that, at any infeasible solution,
an inequality constraint is said to be violated, if cj(β) > 0, for j ∈ I holds. The feasible region
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Figure 4.15: Constraint and feasible region in 2D: The dotted black plane is the inequality constraint bound
for the function ci(β) ≤ 0, specifically β1 ≤ −0.2. Left of the plane, β1 ≤ −0.2 is the feasible
region FR and accordingly the green arrow points leftward inside the feasible region, normal to
the inequality constraint bound plane. In contrast, the infeasible region is c1(β1) > 0 pointed
by the red arrow. For the objective function J(β), the constrained minimum at β = [−0.2 0]T
and the unconstrained minimum is at β = [0 0]T .

can have open or closed boundaries and multiple linear constraints further restrict the feasible
region in an optimization problem. Examples of multiple constraints and feasible region in one- and
two-dimensions are shown in Figures 4.16 and 4.17 respectively. Only linear constraints are used in
the scope of this work and geometrically, the constraints in 1D are straight lines, in 2D are planes
and in multi-dimensions these are hyperplanes (see e.g. Nocedal and Wright (2006) pg. 327).
Some examples are used in this section to illustrate and describe the impact of constraints on the
optimal solution. These examples are organized in the following manner:

• Four separate minimization problems are defined with linear objective functions (see Fig.
4.19).

• Two of those objective functions
J(β) = i + β

J(β) = i − β

with different gradient directions are considered. Furthermore, objective function contours
will be shown for different values of i.

• In both above cases, an unbounded and a bounded constraint function are considered. The
unbounded constraint corresponds to a single inequality c1(β) ≤ 0 and thus the feasible region
is open ended. When an additional constraint c2(β) ≤ 0 is added to the optimization problem,
the feasible region becomes bounded. In other words, individually, the two constraint functions

c1(β) ∶ β − 8 ≤ 0 with feasible region FR,c1(β) ∶ −∞ ≤ β ≤ 8
c2(β) ∶ 2 − β ≤ 0 with feasible region FR,c2(β) ∶ 2 ≤ β ≤∞

are both unbounded but when combined

c1(β) and c2(β)

⎧⎪⎪
⎨
⎪⎪⎩

β − 8 ≤ 0
2 − β ≤ 0

,
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Figure 4.16: Multiple constraints and feasible region in 1D: The dotted green and red line are the inequality
constraint bounds for the functions c1(β) ≥ 0 and c2(β) ≤ 0, specifically β = −0.2 and β = 0.2.
For the inequality constraint, c1(β) ≥ 0, the green arrow points rightward inside its feasible
region, normal to the constraint bound. Similarly, {β ∣ c2(β) ≤ 0} denotes the feasible region
for the other constraint function. Within −0.2 ≤ β ≤ 0.2 both constraints are feasible. The two
constraints point in opposite directions and therefore comprise a pair of bounded constraints.
For the objective function J(β), both the constrained and unconstrained minimum is at β = 0.

they become bounded with
FR,c1(β),c2(β) ∶ 2 ≤ β ≤ 8

as their feasible region. It can be seen that the lower bound of c1(β) and the upper bound of
c2(β) individually extend to −∞ and ∞ respectively. Therefore, the two constraints are said
to be pointing in opposite directions.

Subsequently, in a similar manner, four separate examples with quadratic objective functions are
considered (see Figures 4.20 and 4.21).

• Two quadratic objective functions
J(β) = 3β2

− i

J(β) = −3β2
+ i

with different gradient directions are considered.
• An unbounded and a bounded constraint function is considered for each of the two above

cases. The unbounded constraint corresponds to a single inequality c1(β) ≤ 0. When an
additional constraint c2(β) ≤ 0 is added to the optimization problem, the feasible region
becomes bounded. Individually, the two constraint functions

c1(β) ∶ β − 0.8 ≤ 0 with feasible region FR,c1(β) ∶ −∞ ≤ β ≤ 0.8
c2(β) ∶ 0.2 − β ≤ 0 with feasible region FR,c2(β) ∶ 0.2 ≤ β ≤∞

are both unbounded but when combined

c1(β) and c2(β)

⎧⎪⎪
⎨
⎪⎪⎩

β − 0.8 ≤ 0
0.2 − β ≤ 0

,

they become bounded with FR,c1(β),c2(β) ∶ 0.2 ≤ β ≤ 0.8 as their feasible region.
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4.4 Inequality constraints

Figure 4.17: Multiple constraints and feasible region in 2D: The two planes β1 = −0.2 and β1 = 0.2 are the
inequality constraint bounds for the functions c1(β1) ≥ 0 and c2(β1) ≤ 0. Within −0.2 ≤ β1 ≤ 0.2
lies the feasible region. The two constraints point in opposite directions and therefore comprise
a pair of bounded constraints along the β1 axis but remain unbounded along β2. For the
objective function J(β), both the constrained and unconstrained minimum is at β = [0 0]T .

Figure 4.18: Hierarchy of the example minimization problem with linear and quadratic objective functions
along with linear constraints

The hierarchy for the above mentioned examples is shown in Fig. 4.18. The examples are now
described in detailed and the optimal solution will be worked out. The purpose of this example is
to demonstrate that the optimal solution is sensitive to the nature of extrema (maxima or minima),
the objective function and its gradient, constraint function direction, total number of constraints
and their respective bounds. For the sake of completeness, both the unconstrained and constrained
optimum will be indicated along side. This will additionally show that the constrained optimum can
be same as an unconstrained one in selected cases. In other words, it will show if a given constraint
is active or inactive.

Linear objective function with linear constraints

Fig. 4.19 shows an example of a linear objective function in β, subject to linear constraints, where
the two left sub-figures have the objective function J(β) = i + β and that on right represent the
objective function J(β) = i − β. Each distinct objective function contour line, in blue, corresponds
to a different value of i. In all the four sub-figures, the vertical and horizontal axes indicate the
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Figure 4.19: Example with two linear objective functions in β subject to linear constraints in 1D, where
the two left sub-figures have the objective function J(β) = i + β and that on right represent
the objective function J(β) = i − β. Each distinct objective function contour line, in blue,
corresponds to a different value of i. top-left: objective function J(β) = i + β with one
inequality constraint c1(β) ≤ 0, more specifically β − 8 ≤ 0. The red dashed line refers to the
objective function with i = 5. bottom-left: Objective function J(β) = i+β with two constraints
c1(β) ≤ 0 and c2(β) ≤ 0, more specifically β − 8 ≤ 0 and 2 − β ≤ 0. The red dashed line refers
to the objective function with i = 5. bottom-right: Objective function J(β) = i − β with two
constraints c1(β) ≤ 0 and c2(β) ≤ 0, more specifically β − 8 ≤ 0 and 2 − β ≤ 0. The red dashed
line refers to the objective function with i = 5. top-right: Objective function J(β) = i − β with
one constraint c1(β) ≤ 0, more specifically β − 8 ≤ 0. The red dashed line refers to the objective
function with i = 5.

objective function and the model parameter β respectively. As always, the objective function
gradient points along the direction of increasing objective function.
In addition, there is also a difference between the two top and bottom sub-figures corresponding to
the different number of inequality constraints, whose bounds are shown as the solid black line. In
each of the four cases, the optimal value of β (optimal solution) is obtained through a graphical
inspection. The four different sub-figures and their rationale is explained below.
In the top-left sub-figure of Fig. 4.19, with only one constraint, the optimization problem is
unbounded in the direction of decreasing β and clearly, for any value of i, the objective function has
a minimum at β = −∞.
In the bottom-left sub-figure of Fig. 4.19, with the two constraints pointing in opposite directions,
the optimization problem is bounded and for any value of i, the objective function has a minimum
at β = 2. For any other value of β in the feasible region, the objective function has a relatively larger
value.
In the top-right sub-figure of Fig. 4.19, with only one constraint, the optimization problem is
unbounded but the difference with respect to the top-left is the opposite direction of the objective
function gradient. While in top-left, the objective function increases, in top-right it decreases with
increasing β. Therefore, for any value of i, the objective function has a minimum at β = 8. For any
other value of β in the feasible region, the objective function has a relatively larger value.
It shall be noted that the inequality constraint c2(β) ≤ 0 is written as 2 − β ≤ 0 or equivalently27

β − 2 ≥ 0. For any value of i, the objective function has a minimum at β = 8. For any other value of

27Note that multiplying both sides by -1 results in a change of the inequality relation symbol.
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β in the feasible region, objective function has a relatively larger value. Table 4.3 summarizes the
optimal solution in each of the above four cases.

Table 4.3: Optimal solution for the four different examples of minimization problem with linear objective
function and linear constraints shown in Fig. 4.19

Sub-figure in Fig. 4.19 Constrained optimum unconstrained optimum
(minimum) (minimum)

top-left −∞ −∞

top-right 8 ∞

bottom-left 2 −∞

bottom-right 8 ∞

Quadratic objective function with linear constraints

The minimization problem is now extended to the quadratic objective function J(β) = 3β2 − i for
different values of i subject to linear constraints, as shown in Figures 4.20 and 4.21. Again four
cases corresponding to different directions of the objective function and inequality constraints. In
each of the four cases, both the constrained and unconstrained optimum (minimum) will be worked
out by inspection.

Figure 4.20: Example with quadratic objective function J(β) and linear constraints in 1D. The top sub-
figure shows the objective function J(β) = 3β2 − i with one inequality constraint c1(β) ≤ 0,
more specifically β − 0.8 ≤ 0. The red curve refers to the objective function with i = −0.5. The
bottom sub-figure shows the objective function J(β) = 3β2 − i with two inequality constraints,
c1(β) ≤ 0 and c2(β) ≤ 0, more specifically β − 0.8 ≤ 0 and 0.2 − β ≤ 0. The red curve refers to
the objective function with i = −0.5.
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With only one inequality constraint, the optimization problem is unbounded in the direction of
decreasing β and clearly, for any value of i, the objective function has a minimum at β = 0.

Figure 4.21: Example with quadratic objective function J(β) and linear constraints in 1D. The top sub-figure
shows the objective function J(β) = −3β2 + i with one constraint c1(β) ≤ 0, more specifically
β − 0.8 ≤ 0. The red curve corresponds to the objective function with i = −1. Bottom sub-figure
shows the objective function J(β) = −3β2 + i with two constraints c1(β) ≤ 0 and c2(β) ≤ 0,
more specifically β − 0.8 ≤ 0 and 0.2 − β ≤ 0 respectively. The red curve corresponds to the
objective function with i = −1. 4.20

With the two constraints pointing in opposite directions, the optimization problem is bounded and
for any value of i, the objective function has a minimum at β = 0.2 as summarized in Table 4.4. For
any other value of β in the feasible region, the objective function has a relatively larger value.
In order to show the impact of a change in the objective function gradient on the optimal solution,
a modified objective function J(β) = −3β2 + i is now considered (see Fig. 4.21). Once again, the
same linear inequality constraints β − 0.8 ≤ 0 and 0.2 − β ≤ 0 are considered to analyse the optimal
solution.

Table 4.4: Optimal solution for the two different examples of minimization problem with quadratic objective
function.

Sub-figure of Fig. 4.20 constrained optimum unconstrained optimum
Top 0 0

Bottom 0.2 0

With only one constraint, the optimization problem is unbounded but the difference with respect to
the top sub-figure of Fig. 4.20 is the opposite direction of the objective function gradient. While in
the former, the objective function increases, in the latter it decreases with increasing ∣β∣. Therefore,
in this case, for any value of i the objective function has a minimum at β = −∞. For any other value
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of β in the feasible region, objective function has a relatively larger value. The objective function
considered here is non-convex and it shall be noted that in absence of constraints, there will be an
inherent ambiguity in determining the objective function minimum. The objective function achieves
minima at both ±∞.
With the two constraints pointing in opposite directions, the optimization problem is bounded and
for any value of i, the objective function has a minimum at β = 0.8. For any other value of β in the
feasible region, objective function has a relatively larger value as summarized in Table 4.5.

Table 4.5: Optimal solution for the four different examples of minimization problem with quadratic objective
function shown in Fig. 4.21

Sub-figure of Fig. 4.21 constrained optimum unconstrained optimum
Top sub-figure −∞ ±∞ (ambiguous)

Bottom sub-figure 0.8 ±∞ (ambiguous)

There is a definite relationship between a minimization and the corresponding maximization problem
for a given objective function and constraints. It is interesting to analyse how the optimum solution
discussed above will change, if we would consider a maximization instead of minimization problem
to start with. Without repeating the procedure for inspection, the optimum (maximum) values are
summarized in Tables 4.6, 4.7 and 4.8 for constrained and unconstrained solution.

Table 4.6: Optimal solution for the four different examples of maximization problem with linear objective
function shown in Fig. 4.19

Sub-figure in Fig. 4.19 constrained optimum unconstrained optimum
(maximum) (maximum)

top-left 8 ∞

top-right −∞ −∞

bottom-left 8 ∞

bottom-right 2 −∞

Table 4.7: Optimal solution for the two different examples of maximization problem with quadratic objective
function shown in Fig. 4.20

Sub-figure in Fig. 4.20 constrained optimum unconstrained optimum
(maximum) (maximum)

top −∞ ±∞ (ambiguous)
bottom 0.8 ±∞ (ambiguous)

Summary
To summarize, a linear and a quadratic objective function have been considered with two different
objective function gradients each. Furthermore, an unbounded and a bounded constraint was
considered for each of the objective functions. This resulted in a total of four sub-categories for
linear and another four for quadratic objective function. With the help of these 8 optimization
problem examples, it has been shown that the optimal solution is sensitive to the following aspects:

• Nature of extremum (minimum or maximum)
• Objective function gradient
• Number of constraints, its bounds and directions

The above examples were solved by a graphical inspection. In the following section, a rigorous
mathematical technique will be presented for solving optimization problems with multi-dimensional
model parameter and multiple constraints.
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Table 4.8: Optimal solution for the two different examples of maximization problem with quadratic objective

function shown in Fig. 4.21

Sub-figure in Fig. 4.21 constrained optimum unconstrained optimum
(maximum) (maximum)

top 0 0
bottom 0.2 0

Inequality constrained optimization

Generally, constrained optimization problems are solved by reducing them to unconstrained ones
by adding penalty terms to the objective function, that include a penalty factor (more commonly
called Lagrange multiplier) and the constraint function (Nocedal and Wright (2006) pg. 341). The
sum of the ”penalty term” and the objective function is called a Lagrangian28 function. The phrase
penalty signifies that adding any positive term will increase the Lagrangian function instead of
minimizing it. If there are both equality and inequality constraints, they are considered as additional
independent penalty terms and accordingly there are also separate Lagrange multipliers29 The work
of Roese-Koerner et al. (2012), Roese-Koerner and Schuh (2014), Roese-Koerner et al. (2014) and
Roese-Koerner and Schuh (2016) provide a strong motivation to apply inequality constraints in
optimization problems.

Figure 4.22: Gradient of the objective function and the constraint function. For the ease of readability the
objective function contours are not shown in this figure. The tangent to the constraint drawn
at the four points are also to be considered as tangent to the objective function.

28Joseph-Louis Lagrange, also reported as Giuseppe Luigi Lagrange or Lagrangia, was an Italian mathematician and
astronomer, later naturalized French. He made significant contributions to the fields of analysis, number theory,
and both classical and celestial mechanics.

29The Lagrange multiplier rule for problems with equality constraints appeared in 1797 in Lagrange’s Theorie des
fonctions analytiques (Fraser (2005)).
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Figure 4.23: Slack variable representation: The white and gray area refer to the feasible and the infeasible
region respectively.

Combining objective and constraint functions

The Lagrangian function

L(β, λ) = J(β) +∑
i

λici(β) +∑
j

λjcj(β) i ∈ E ; j ∈ I, (4.62)

combines the objective function J(β) with multiple equality and inequality constraints along with
their corresponding unknown Lagrange multipliers λi and λj .

An inequality constraint function cj(β) ≤ 0 is transformed to an equality

cj(β) + s̃ineq,j = 0 ∀ j ∈ I, (4.63)

where s̃ineq,j is a slack variable associated with the jth inequality constraint with the condition

s̃ineq,j ≥ 0 ∀ j ∈ I. (4.64)

Two important aspects of this transformation are (1) the inequality constraint is no longer on the
model parameter vector β but on the additional set of unknown parameters introduced i.e. the
slack variable and (2) there is still a non-negativity constraint on the slack variable.

Optimization parameters

With s̃ineq = [s̃ineq,1,⋯, s̃ineq,nineq
]
T , the updated Lagrangian

L(β, λ, s̃ineq) = J(β) +∑
i∈E

λici(β) +∑
j∈I

λj (cj(β) + s̃ineq,j)

subject to s̃ineq,j ≥ 0 ; j ∈ I
(4.65)

becomes a function of the model parameters, Lagrange multipliers and slack variables, which
are all-together called the optimization parameters.
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Along with the slack variables, the Lagrange multipliers contain information about the sensitivity of
the optimal value of the objective function with respect to changes in the constraints (Boyd and
Vandenberghe (2004) pg. 249). Qualitatively, if a Lagrange multiplier corresponding to a constraint
ci(β) is large, then it adds a corresponding large penalty on the value of the Lagrangian function.
A more detailed sensitivity analysis of the Lagrange multiplier will be presented in Section 4.6.

Figure 4.24: Lagrangian formulation with objective function, constraint functions and Lagrange multipliers

A slack variable s̃ineq,j , corresponding to the inequality constraint function cj(β), is a ”margin” to
allow any given candidate solution to be moved in the feasible region until it becomes 0, at which
the solution is at the boundary of the jth constraint. This is illustrated in Fig. 4.23, where the
intermediate solutions A0 and A1 are inside, B is outside and C is on the boundary of the feasible
region. The slack can also be interpreted equivalently to the ”Mahalabonis30 distance” between an
intermediate solution and the constraint function boundary. While the slack variable for the points
A0 and A1 is positive, that for B is negative and for C is zero.
Furthermore, the partial inequality (4.65) on the slack variable is also removed using its square in
the Lagrangian formulation and thereby removing the need to impose any further positive constraint
on it. Accordingly, the Lagrangian function

L(β, λ, s̃) = J(β) +∑
i∈E

λici(β) +∑
j∈I

λj (cj(β) + s̃2
ineq,j) (4.66)

is free from any inequality constraints. The terms in the Lagrangian function are highlighted in Fig.
4.24 for better readability.
In this section, it has been shown that the objective function and the constraints can be combined
using Lagrange multipliers. Especially for including inequality constraints, the concept of slack
variable has been introduced. The Lagrangian function has been introduced which forms the basis
for deriving the equations for estimating the model parameter. Specifically, the Lagrangian function
will be minimized by applying the optimality conditions, as described in the next section.

4.5 Optimality conditions
A summary of the important results from extreme value theory is presented as an introductory
part to understanding the origins of the optimality conditions. According to extreme value theorem
(Protter and MorreyJr. (1970)), a continuous function f(β), defined on a closed finite interval
[βa, βb], attains its extreme (minimum or maximum) value corresponding to an optimal solution
βopt with

βa ≤ βopt ≤ βb, (4.67)

which means, βopt could be either at the boundaries βa, βb or at any ”interior point” in between.
Furthermore, when f(β) is differentiable, then according to Fermat’s theorem (Stavroudis (2006)),
30Prasanta Chandra Mahalanobis (29 June 1893 – 28 June 1972) was an Indian scientist and statistician
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the stationarity condition,
∂f(β)

∂β
∣
β=βopt

= 0u×1 (4.68)

is satisfied at the extremum. However, it is only a necessary condition for the solution βopt to be
the optimal because f(β) could have either a maximum or a minimum value. To decide upon the
exact nature of the extremum, the second derivative needs to be checked, which if satisfies

∂2f(β)

∂β2 ∣
β=βopt

> 0u, (4.69)

then f(βopt) is a minimum value and if

∂2f(β)

∂β2 ∣
β=βopt

< 0u, (4.70)

then f(βopt) is a maximum value. Another closely related and important result, shown by Meyer
(1979), is that if condition (4.69) is satisfied for β ∈ [βa, βb], then f(β) is said to be a convex
function.

By extension of extreme value theory, following Protter and MorreyJr. (1970), Lang (1986)
and Forst and Hoffmann (2010), every convex function has exactly one minimum value.

However, it is possible that in the neighbourhood of a minimum value, the objective function has
almost constant values.
Out of the three aspects of the optimization (see Fig. 4.1), the objective function and the constraints
have been described in the previous sections. It has been shown that boundaries of the feasible
region are defined by the constraint bounds. However, in case of open-ended constraints31, the
feasible region is unbounded and could lead to a slow convergence or even divergence (Boyd and
Vandenberghe (2004) pg. 466). The algorithm needs to traverse in the feasible region only until a set
of necessary and sufficient conditions (also called the optimality conditions) are satisfied. These are
the so-called Karush-Kuhn-Tucker (KKT) conditions (see Karush (1939), Kuhn and Tucker (1951)),
also called first-order conditions32 (Nocedal and Wright (2006) pg. 320). In the next sub-section,
the KKT conditions will be introduced and described in detail.

4.5.1 Karush-Kuhn Tucker (KKT) conditions
Let β∗, λ∗, s̃∗ be optimal solution to the optimization problem P, then the following optimality
conditions

∇βL(β∗, λ∗, s̃∗) = 0u×1

∇λL(β∗, λ∗, s̃∗) = 0(nineq+neq)×1

∇s̃L(β∗, λ∗, s̃∗) = 0(nineq+neq)×1

(4.71)

ci(β∗) = 0 i ∈ E (4.72a)
cj(β∗) ≤ 0 j ∈ I (4.72b)

λ∗,i ≥ 0 i ∈ E ; λ∗,j ≥ 0 j ∈ I (4.72c)
λ∗,i ci(β∗) = 0 i ∈ E (4.72d)
λ∗,j cj(β∗) = 0 j ∈ I (4.72e)

31Only with an upper or lower bound or no bound
32as they contain the first derivative of the Lagrangian function.
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are satisfied. The first set of equations (4.71), is called the stationarity condition because at
minimum value of the Lagrangian function, its gradient with respect to the model parameter β
is zero and this relation allows computation of the corresponding optimal values of β (also called
the stationary points). Analogously, the gradient of the Lagrangian function with respect to the
Lagrange multiplier and the slack variable are also set to zero.
The second and the third condition (4.72a, 4.72b) state that the constraints must be satisfied at
the optimal solution and therefore these are called the feasibility conditions. The fourth condition
(4.72c) comes from the non-negativity of the Lagrange multipliers (see e.g. Nocedal and Wright
(2006) pg. 330). Equations (4.72d) and (4.72e) are called the complimentary slack condition because
both are so-called ”linear complimentary equations”, which will be described in this section; see e.g.
Murty (1972), Fritsch (1985) and Cottle (2009) for more background on this topic. It shall be noted
that the condition (4.72e) can also be equivalently represented as

λ∗,j s̃∗,j = 0 j ∈ I (4.73)

due to the implicit relation

cj(β∗) + s̃∗,j = 0; ; s̃∗,j ≥ 0 ∀ j ∈ I.

Now the goal is to obtain the KKT equations from applying the conditions (4.71) through (4.72e).
Beginning with the feasibility conditions (4.72a) and (4.72b), the system of constraint functions
(4.58) is partitioned into the inequality

Bineqβ − bineq ≤ 0nineq×1 (4.74)

and the equality
Beqβ − beq = 0neq×1 (4.75)

constraint functions in matrix form, where Bineq and Beq are the inequality and equality constraint
coefficient matrices respectively. The vectors

bineq = [bineq,1 ⋯ bineq,nineq]
T (4.76a)

beq = [beq,1 ⋯ beq,neq]
T (4.76b)

denote the inequality and equality constraint bounds respectively. Furthermore, by introducing the
slack variable

s̃ineq = [s̃ineq,1 ⋯ s̃ineq,nineq]
T

, (4.77)
Eqs. (4.63) and (4.74) can be combined as

Bineqβ − bineq + s̃ineq = 0nineq×1 subject to s̃ineq ≥ 0nineq×1. (4.78)

In a more general way, the inequality and equality constraints (4.75) and (4.78) are combined and
written as

Bβ − b + s̃ = 0nineq+neq×1 subject to s̃ ≥ 0nineq+neq×1, (4.79)
where

B = [
Bineq

Beq
] is the constraint coefficient matrix of dimension (nineq + neq) × u (4.80a)

b = [
bineq

beq
] is the constraint bound vector of dimension(nineq + neq) × 1 (4.80b)

s̃ = [
s̃ineq

s̃eq
] is the cascaded slack vector of dimension(nineq + neq) × 1 (4.80c)

s̃eq = [0 ⋯ 0]T is a column vector of zeros of dimension neq × 1. (4.80d)
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The partial inequality on the slack variable, in Eq. (4.79), is removed by considering the vector
transformation (see Nocedal and Wright (2006))

s = s̃⊙ s̃, (4.81)

where ⊙ denotes the element-wise vector multiplication operator. Using s instead of s̃, in Eq. (4.79),
eliminates the need for any explicit positivity constraint on the slack variable. Substituting J(β)
from Eq. (4.9) into Eq. (4.66) along with the transformed slack variable (4.81) leads to

L(β, λ, s) =
1
σ2 (y −Aβ)T P (y −Aβ) +λT

(Bβ − b + s) , (4.82)

where the inequality and the equality constraint Lagrange multipliers

λ = [λT
ineq λT

eq]
T (4.83)

are brought together with the objective function33. It can be shown that using s instead of s̃ in Eq.
(4.82) does not affect the optimal solution. This is because any value of β which will minimize the
Lagrangian function (4.82) will also minimize the corresponding function (4.65). The product on
the right hand side of Eq. (4.82) yields,

L(β, λ, s) =
1
σ2 [y

T P y −βT AT P y − yT P Aβ +βT AT P Aβ +

λT
(Bβ − b + s)]

(4.84)

and substituting
Q = 2AT P A and q = 2AT P y (4.85)

for better readability, Eq. (4.84) becomes

L(β, λ, s) =
1
σ2 [y

T P y −
1
2

βT q −
1
2

qT β +
1
2

βT Qβ +λT
(Bβ − b + s)]

=
1
σ2 [

1
2

βT Qβ − (qT
−λT B)β −λT

(b − s) + yT P y]
. (4.86)

Following Eq. (4.71), the necessary conditions for the optimality are that the partial derivatives of
Lagrangian satisfy

∂L

∂β
= 0u×1 (4.87a)

∂L

∂λ
= 0(nineq+neq)×1 (4.87b)

∂L

∂s̃
= 0(nineq+neq)×1 (4.87c)

and the corresponding sufficient conditions are that the three Hessian matrices satisfy

∂2L

∂β2 ≥ 0u (4.88a)

∂2L

∂λ2 ≥ 0nineq+neq (4.88b)

∂2L

∂s̃2 ≥ 0nineq+neq (4.88c)

33For the sake of completeness we mention that in the special case of slack variable s = 0 and with Lagrange multiplier
λ = 0, the problem becomes an optimization with equality constraints.

61



4 Optimization techniques

or, in other words, the Hessian matrices must be positive semi-definite34. Applying the condition
from both the first and second derivative of the Lagrangian function with respect to the model
parameter β from Eqs.(4.87a) and (4.88a) together yields

∂L

∂β
=

1
σ2 (Qβ − q +BT λ) (4.89a)

∂2L

∂β2 =
1
σ2 Q. (4.89b)

From Eq. (4.85), it follows that the Hessian matrix with respect to β is at least positive semi-
definite. In a similar manner, applying the conditions from both the first and second derivative of
the Lagrangian function with respect to the Lagrange multiplier from Eq. (4.87b) and Eq. (4.88b)
respectively yields35

∂L

∂λ
=

1
σ2 (β

T BT
− bT

+ sT ) (4.90a)

∂2L

∂λ2 = 0nineq+neq . (4.90b)

The Hessian matrix with respect to the Lagrange multipliers is zero and therefore also satisfies the
sufficient condition (4.88b). The first derivative of the Lagrangian function with respect to the slack
variable yields

∂L

∂s̃
=

∂L

∂s

∂s

∂s̃

=
1
σ2 (2λ⊙ s̃)

=
2
σ2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λineq,1 s̃ineq,1
λineq,2 s̃ineq,2

⋮

λineq,nineq s̃ineq,nineq

0neq×1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(4.91)

where 0neq×1 denotes a column vector of zeroes from the product of equality constraint Lagrange
multipliers λeq (see Eq. (4.93b)) and the corresponding slack variable seq. Equation (4.91) leads to
the complimentary slack condition, as will be explained in the following section. For the sake of
describing the following equations, we define ”diag” as an operator which takes a n × 1 vector as
input and returns a n × n matrix with the elements of vector λ along its main diagnol. The second
derivative of the Lagrangian function with respect to slack variable

∂2L

∂s̃2 =
2
σ2 diag(λ)

=
2
σ2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λineq,1 0 ⋯ 0
0 λineq,2 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ λineq,nineq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0nineq×neq

0neq×nineq

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λeq,1 0 ⋯ 0
0 λeq,2 ⋯ 0
0 0 ⋱ 0
0 0 ⋯ λeq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(4.92)

34The notation of 0nineq is used to denote a square matrix of dimension nineq × nineq with all zeros
35It shall be noted that right hand side of Eq. (4.90a) is same as 1

σ2 (Bβ − b + s)
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being a diagonal matrix with non-negative Lagrange multipliers along the main diagonal, is also
positive semi-definite, where

λineq = [λineq,1 ⋯ λineq,nineq]
T (4.93a)

λeq = [λeq,1 ⋯ λeq,neq]
T (4.93b)

and ”diag(λ)” refers to a diagonal matrix with the elements λ along its main diagonal.
In this section, extreme value theory has been used to describe the optimality conditions for the
Lagrangian function. In the next section, the KKT equations will be derived and solved. Two
specific approaches, namely, the Lemke’s method and the interior point method will be presented
along with their relative advantages and disadvantages. The specific challenges introduced due to
the complimentary slack condition (4.72e) will be discussed as well.

4.5.2 KKT equations and solution
Now the focus will be on the estimation of the unknown optimization parameters by solving the
system of equations (4.87a), (4.87b) and (4.87c). The first system of equation is obtained by setting
the first derivative of the Lagrangian with respect to β to zero i.e. ∂L

∂β = 0u×1, and using Eq. (4.89a)
gives,

Q β − q +BT λ = 0u×1. (4.94)

The second system of equations is obtained by setting the gradient of the Lagrangian with respect
to the Lagrange multiplier to zero i.e. ∂L

∂λ = 0(nineq+neq)×1 and using Eq. (4.90a) gives,

Bβ − b + s = 0(nineq+neq)×1. (4.95)

The third system of equations is obtained by setting the gradient of the Lagrangian with respect to
the slack variable to zero, i.e. ∂L

∂s̃ = 0(nineq+neq)×1, and using Eq. (4.91) gives,

2λ⊙ s̃ = 0(nineq+neq)×1. (4.96)

Furthermore, Eq. (4.96) leads to

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λineq,1
⋮

λineq,nineq

λeq,1
⋮

λeq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊙

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃ineq,1
⋮

s̃ineq,nineq

s̃eq,1
⋮

s̃eq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0(nineq+neq)×1 Ô⇒

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λineq,1s̃ineq,1
⋮

λineq,nineq s̃ineq,nineq

λeq,1s̃eq,1
⋮

λeq,neq s̃eq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0(nineq+neq)×1. (4.97)

Adding the elements of the vector on both sides of Eq. (4.97) gives

λT s̃ = 0 (4.98)

which is another representation of KKT condition (4.72e).

Eq. (4.97) is an important necessary condition that relates a Lagrange multiplier with its
corresponding slack variable. It means that an element λineq,j of the Lagrange multiplier
vector λineq is zero unless the corresponding slack variable s̃ineq,j is zero, also meaning that
the corresponding constraint is active (see the definition of active constraint 4.4.1).

More generally, solving for λ and s̃ in problems of the type where

λT s̃ = 0 subject to λ ≥ 0(nineq+neq)×1 ; s̃ ≥ 0(nineq+neq)×1
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are called linear complimentary problem (LCP) (see e.g., Murty (1972), Fritsch (1985), Cottle
(2009)). It has been already explained that in the minimization problem, the Lagrange multiplier
shall be positive. Therefore, the consequence of Eq. (4.97) is that

λj s̃j = 0 subject to s̃j ≥ 0 ∀ j ∈ I, (4.99)

which means the product of each pair of Lagrange multiplier and the associated slack variable must
be zero. Particularly, the product of each pair of the inequality constraint Lagrange multipliers
λineq and the associated slack variable s̃ineq must be zero. The slack variable for equality constraint
problems are anyway zero ; see Eq. (4.80d).

Solution of KKT equations

There are different techniques to solve the KKT equations (see e.g. Borwein and Lewis (2000), Gass
and Harris (2001), Roese-Koerner (2015)). In this section, the approach from Nocedal and Wright
(2006) pg. 481, is described in detail. The basic idea of this approach is that the solution pair {λ, s̃}
is estimated iteratively using the method of centering and scaling, where λ and s̃ are initialized
as non-zero vector. The complimentary slack condition is satisfied as the optimization parameters
converge. A tolerance to the pairwise product of slack variable and Lagrange multiplier

λj s̃j = σcen µcom for j ∈ I, (4.100)

allows for an efficient traversal in the feasible region using two additional given parameters, namely,
the ”complimentarity measure” µcom and the ”centering parameter” σcen. This approach has been
used and recommended by Mehrotra (1992), Tütüncü et al. (2003), and Nocedal and Wright (2006).
The factors µcom and σcen are mainly responsible for the intermediate solution path taken by the
optimization parameters (Nocedal and Wright (2006) pg. 483). Eq. (4.100) is written in matrix
form

SΛe − µcom σcene = 0(nineq+neq)×1, (4.101)

where

S = [
Sineq 0nineq×neq

0neq×nineq Seq
] ; Λ = [

Λineq 0nineq×neq

0neq×nineq Λeq
]

Sineq = diag(s̃ineq) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃ineq,1 0 ⋯ 0
0 s̃ineq,2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ s̃ineq,nineq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Λineq = diag(λineq) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λineq,1 0 ⋯ 0
0 λineq,2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ λineq,nineq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Seq = diag(seq) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s̃eq,1 0 ⋯ 0
0 s̃eq,2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ s̃eq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Λeq = diag(λeq) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λeq,1 0 ⋯ 0
0 λeq,2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ λeq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

e = 1(nineq+neq)×1.
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4.5 Optimality conditions

The optimization parameters are estimated using either GD (already been discussed in detail in
Section 4.3.2) or NM. In this section, the application of NM is shown to solve the KKT equations

Q β − q +BT λ = 0u×1 ← Stationarity condition
B β − b + s = 0(nineq+neq)×1 ← Feasibility condition
SΛe − σcenµcome = 0(nineq+neq)×1 ← Complimentary slack condition .

(4.102)

For better readability and consistency, we introduce β̃

β̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

β
λ
s̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.103)

with the initial values

β̃0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

β0
λ0
s̃0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4.104)

so that the descend direction (correction to the optimization parameters)

∆β̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆β
∆λ
∆s̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

β −β0
λ −λ0
s̃ − s̃0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.105)

can be estimated by solving

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Q BT 0u

B 0nineq+neq I
0u S0 Λ0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆β
∆λ
∆s̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−Qβ0 + q −BT λ0
−Bβ0 + b − s0

−S0Λ0e + σcenµcome

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4.106)

where Q, B, q and b are known, S0 and Λ0 are evaluated at the current iterates s̃0 and λ0.
The above mentioned approach to solve the KKT equations is the essence of the so-called interior
point method (IPM). It is an extension of the basic descent method (see Section 4.3.1) with advanced
descent direction and step size estimation methods to ensure that the KKT conditions are satisfied
(Nocedal and Wright (2006) pg. 480, Boyd and Vandenberghe (2004) pg. 561). Specifically, the
most important modification compared to the basic descent method is the use of variable step size
as well as the implicit solution of the linear complimentarity problem (LCP).
In summary, the system of KKT equations (4.102) are linearized about the initial values and
solved using the NM. Positivity conditions on the Lagrange multiplier and slack variable lead to
the development of linear complimentarity problem. It shall be noted that the performance of
many IPM implementations differ considerably depending on the computational complexity of a
given optimization problem, the nature of objective function (its convexity, dimensionality, etc.).
Therefore, to make any general claim on the performance of IPM is not realistic. The reader is
referred to Mehrotra (1992), Anderson et al. (1996), Billups and Ferris (1996), Potra and Wright
(2000), Boyd and Vandenberghe (2004), Nocedal and Wright (2006), Mitchell et al. (2006), Forst
and Hoffmann (2010) for different implementations and applications of IPM.
The next sub-section will focus on the two important sub-problems in solution of KKT equations,
namely the estimation of the descent direction and the corresponding step size.

4.5.3 Descent direction and step size estimation
As introduced in the previous section, the step size is one of the parameters used to compute the
updated values of the optimization parameters. In an unconstrained optimization problem, a ”full
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step” can be taken (equivalently T it = I) along the descent direction. However, the choice of the
step size in presence of inequality constraints is not trivial, due to the risk of overshooting the
feasible region or specifically violation of the complimentary slack condition (4.72c).
Optimization parameter is updated from iteration it to it + 1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

β
λ
s̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦it+1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

β
λ
s̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦it

+ T it

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆β
∆λ
∆s̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦it

(4.107)

until convergence, where

T it =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T β 0 0 0 0
0 T λineq

0 0 0
0 0 T λeq 0 0
0 0 0 T s̃ineq 0
0 0 0 0 T s̃eq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T β =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

tβ1 0 ⋯ 0
0 tβ2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ tβu

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T λineq
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

tλineq,1 0 ⋯ 0
0 tλineq,2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ tλineq,nineq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T s̃ineq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ts̃ineq,1 0 ⋯ 0
0 ts̃ineq,2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ ts̃ineq,nineq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T λeq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

tλeq,1 0 ⋯ 0
0 tλeq,2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ tλeq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T s̃eq =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ts̃eq,1 0 ⋯ 0
0 ts̃eq,2 ⋯ 0
⋮ ⋮ ⋱ 0
0 0 ⋯ ts̃eq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; T λ = [
T λineq

0
0 T λeq

] ; T s = [
T s̃ineq 0

0 T s̃eq

]

(4.108)

such that the diagonal elements36 of T it are the respective step sizes used along β, λ and s̃ and
satisfy

[tβ1 ,⋯, tβu] ∈ (0, 1]

[tλineq,1 ,⋯, tλineq,nineq
,⋯, tλeq,neq

] ∈ (0, 1]

[ts̃ineq,1 ,⋯, ts̃ineq,nineq
,⋯, ts̃eq,neq

] ∈ (0, 1].
Although the slack variable corresponding to equality constraints are included in T it, they can be
omitted from Eq. (4.108). Since the non-negativity of the Lagrange multiplier and slack variable
have to be checked in each iteration, the chosen step size along the descent direction is an important
consideration. This is one of the main modifications compared to the classical Newton’s method
(see Section 4.3.3).
The descent direction [∆βT ∆λT ∆s̃T ]T is estimated by solving (4.106) with the initial value
T it = I as a starting point for the simultaneous estimation of both the descent direction and step
size. The step size estimation sub-problem is defined as follows. Estimate the largest diagonal
elements of T it

tβj
j ∈ {1,⋯, u}

tλk
, tsk

k ∈ {1,⋯, nineq + neq},

which when used in Eq. (4.107), results in Lagrange multiplier and slack variable satisfying the
KKT conditions (4.72c) and (4.72d) or mathematically

T it =maximize{tβj
, tλk

, ts̃k
∣ (s̃ + T s∆s̃ ≥ 037); (λ + T λ∆λ ≥ 0)} , (4.109)

36for readability, the subscripts of 0 matrices are not indicated.
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such that 0 < {tβj
, tλk

, ts̃k
} ≤ 1 ; j = {1,⋯, u}, k = {1,⋯, nineq + neq}, where ∆s̃ and ∆λ are the

descent directions along the slack variable and the Lagrange multiplier. There are three sets of
optimization parameters and in the most general case, different step size matrices corresponding to
each of the three sets have to be chosen. However, during this work, it was found that using two step
size matrices, i.e. one for the unknown model parameter β and the other for the Lagrange multiplier
and slack variable {λ, s̃} pair, was already sufficient. In other words T λ and T s are assumed to be
equal and the reason for this assumption is that {λ, s̃} together define the complimentary slack
condition. These choices are made as part of the design aspects38 of the algorithm. In general,
the step sizes are not only different for the optimization parameters but also estimated in each
iteration39. This aspect is one of the main challenges in adding more constraints or other unknown
parameters to the modelling problem (see Nesterov and Nemirovskii (1994), Todd et al. (1998), Potra
and Wright (2000), Halldórsson and Tütüncü (2003), Mitchell et al. (2006)). From the experience
of this work, it was found that an approximate step size is sufficient for the algorithm. Having
estimated the step size matrix, following Tütüncü et al. (2003), the complementarity measure

µcom = (λ + T λ∆λ)T (s̃ + T s∆s̃)/nineq (4.110)

is computed, where nineq is the total number of inequality constraints. The iterative algorithm for
combined step size and descent direction estimation is summarized below and the dataflow is shown
in Fig. 4.25.

Step 1 : Set the initial values β0, s̃0, λ0 of the optimization parameters, the descent
directions ∆s̃ and ∆λ with s̃0 > 0, λ0 > 0.
Step 2 : Initialize the centering parameter σcen and use identity matrix as the initial step
size; i.e. T it = I. Compute µcom using Eq. (4.110), this value of complimentarity measure is
called µcom,full because it corresponds to a ”full step”a.
Repeat (Step 3 to Step 7) until convergence:
Step 3 : Estimate ∆β, ∆λ and ∆s̃ from (4.106) with initial values β0, λ0, s̃0, T it and the
tuning parameters µcom, σcen.
Step 4 : Estimate the step size T it from Eq. (4.109).
Step 5 : Compute the complimentarity measure µcom using Eq. (4.110) with the updated of
T it from step 4.
Step 6 : Set centering parameter σcen = (µcom,full/µcom)

3 (Tütüncü et al. (2003)).
Step 7 : Compute the updated optimization parameters with Eq. (4.107) using T it computed
in the step 4.

aT it = I

The complexity in step size estimation depends on the dimensionality of the problem (number of
optimization parameters) including the number of constraints.

4.6 Sensitivity of Lagrange multiplier

The goal of this section is to establish a relation between the gradients of the objective function and
the constraint. This relationship is the basis for the Lagrangian formulation and allows interpretation
38For problems with smaller (e.g. 10 or even less) unknown parameters, a constant step size for all three set of

parameters can be used.
39During implementation, it was found that at each iteration, it may not be practical and also not necessary to

estimate the step size matrix. This depends on the progression of descent direction and the convergence in
optimization algorithm.
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Figure 4.25: Dataflow in interior point method for simultaneous estimation of the step size and descent
direction

of the Lagrange multiplier. For the ease of readability, we reproduce Eq. (4.25), where a general
formulation for a constrained optimization problem P, for minimization of the objective function

min
β

J(β)

subject to : ci(β) ≤ 0 i ∈ E

cj(β) ≤ 0 j ∈ I

was introduced. Using the linear approximation property of the total derivative (see e.g Knight and
Adams (1975), Goldstine (1980), Koch (1999), Stavroudis (2006)), if

∆β = [∆β1 ∆β2 ⋯ ∆βu]
T
≈ 0u×1 (4.111)

then

(
dJ(β)

dβ
)

T

∆β ≈ J(β +∆β) − J(β). (4.112)

We begin with the total derivative of the objective function

dJ(β)

dβ
= [∂J(β)

∂β1

∂J(β)
∂β2

⋯
∂J(β)
∂βu

T
,] (4.113)

which after rearranging to the differential form gives

dJ(β) =
∂J(β)

∂β1
dβ1 +

∂J(β)

∂β2
dβ2 +⋯ +

∂J(β)

∂βu
dβu

=
∂J(β)

∂β1
dβ1 +

u

∑
q=2

∂J(β)

∂βq
dβq.

(4.114)
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Similarly,
dck(β) =

∂ck(β)

∂β1
dβ1 +

∂ck(β)

∂β2
dβ2 +⋯ +

∂ck(β)

∂βu
dβu (4.115)

is the differential of kth constraint function ∀ k ∈ {E ∪ I}. Two general cases for the constraints
are possible. Firstly, for strict equality constraint ck(β) = 0, its derivative is also zero. Secondly,
for the strict inequality constraint ck(β) < 0, the model parameter vector is in the feasible region,
and therefore does not effect the constraints, which means the differential of the constraint in both
cases is zero (see e.g. Borwein and Lewis (2000), Cloud et al. (2014)). Substituting dck(β) = 0 in
Eq. (4.115) gives

∂ck(β)

∂β1
dβ1 +

∂ck(β)

∂β2
dβ2 +⋯ +

∂ck(β)

∂βu
dβu = 0 (4.116)

and further rearrangement leads to

dβ1 =
−1

∂ck(β)
∂β1

[
∂ck(β)

∂β2
dβ2 +⋯ +

∂ck(β)

∂βu
dβu]

=
−1

∂ck(β)
∂β1

u

∑
q=2

∂ck(β)

∂βq
dβq.

(4.117)

Substituting dβ1 from Eq. (4.117) into (4.114) gives,

dJ(β) =
∂J(β)

∂β1

⎛
⎜
⎝

−1
∂ck(β)

∂β1

⎞
⎟
⎠

⎛

⎝

u

∑
q=2

∂ck(β)

∂βq
dβq
⎞

⎠
+

u

∑
q=2

∂J(β)

∂βq
dβq (4.118)

and substituting

λk = −

∂J(β)
∂β1

∂ck(β)
∂β1

(4.119)

in Eq. (4.118) leads to

dJ(β) = λk

u

∑
q=2

∂ck(β)

∂βq
dβq +

u

∑
q=2

∂J(β)

∂βq
dβq. (4.120)

Applying first order optimality condition (4.71),

dJ(β)∣
βopt

= 0 (4.121)

at β = βopt on Eq. (4.120), gives

−λk

u

∑
q=2

∂ck(β)

∂βq

RRRRRRRRRRRβopt

dβq =
u

∑
q=2

∂J(β)

∂βq

RRRRRRRRRRRβopt

dβq (4.122)

and further rearranging gives
u

∑
q=2

∂J(β)

∂βq

RRRRRRRRRRRβopt

dβq + λk

u

∑
q=2

∂ck(β)

∂βq

RRRRRRRRRRRβopt

dβq = 0 (4.123)

or
∇βJ(β)∣

βopt

+ λk∇βck(β)∣
βopt

= 0u×1, (4.124)

which is the same as the derivative of the Lagrangian function with respect to the model parameter
vector β, using the Eqs. (4.66), (4.71) and (4.87a). It shows that the rate of change of the
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kth constraint function is related to that of the objective function through the corresponding kth

Lagrange multiplier. This analogy of Lagrange multiplier applies to both the equality and inequality
constraints and has been already geometrically illustrated in Fig. 4.22. Another important aspect is
the sensitivity of the objective function to changes in constraint. This can be described from Eq.
(4.124) that can have three general possibilities, depending on the sign of Lagrange multiplier, as
mentioned below:
Case 1: λk = 0 : Any change in the constraint bound will not result in a corresponding change on
the objective function.
Case 2: λk > 0 : An increase in the constraint bound will result in a corresponding decrease in the
objective function. For minimization problems, as considered in this thesis, this property is highly
desirable and this is also the reason for applying the non-negative constraints on the Lagrange
multiplier ; see Eq. (4.72c).
Case 3: λk < 0 : An increase in the constraint bound will result in a corresponding increase of the
objective function. In contrast to the case 2 above, this property would be highly desirable for
maximization problems.

4.7 Alternative techniques in constraint optimization
In Section 4.5, the KKT equations have been derived and their solution based on the interior point
method was presented. The goal of this section is two-fold:

• Two alternative approaches to the solution of KKT equations. The first one is based on a
transformation of the KKT equations into a so-called linear complimentarity problem. Second
alternative is based on the concept of duality theory, where the Lagrangian function (4.82) is
transformed to its dual form and then the same optimality conditions, as shown in Section
4.5, will be applied.

• An alternative approach to step size estimation based on predicted optimization parameters
using the concept of non-linear ARMA.

4.7.1 Linear complimentarity problem (LCP)

This section describes an alternate approach (based on Koch (1985)) to solving the KKT equations.
At the end of this section, a comparison between this approach and the method of centering and
scaling (Nocedal and Wright (2006) pg. 484) will be provided.
We begin this approach from the KKT equations,

Q β − q +BT
eqλeq +BT

ineqλineq = 0u×1 (4.125a)
Beqβ − beq + seq = 0neq×1 (4.125b)

Bineqβ − bineq + sineq = 0nineq×1, (4.125c)

with both equality and inequality constraints that will be formulated as LCP and subsequently,
a solution method will be described as well. Following Koch (1985), the first two equations, i.e
(4.125a) and (4.125b), are written in matrix form

[
Q BT

eq

Beq 0neq

] [
β

λeq
] = [

q −BT
ineqλineq

beq − seq
] (4.126)

from which the resulting estimate of β will be substituted in (4.125c) or equivalently, elimination of
β from the system of equations (4.125a) - (4.125c). Dimension of the matrices and vector used in
this section are briefly summarized for ease of readability.

• β is the u × 1 vector of unknown model parameters
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• Q is the u × u matrix defined in Eq. (4.85)
• q is the u × 1 vector defined in Eq. (4.85)
• Beq is the neq × u equality constraint coefficient matrix introduced in Eq. (4.75)
• λeq is the neq × 1 vector of equality constraint Lagrange multipliers defined in Eq. (4.93b)
• beq is the neq × 1 vector of equality constraint bound vector defined in Eq. (4.76b)
• Bineq is the nineq × u inequality constraint coefficient matrix introduced in Eq. (4.74)
• λineq is the nineq × 1 vector of inequality constraint Lagrange multiplier defined in Eq. (4.93a)
• bineq is the nineq × 1 vector of inequality constraint bound vector defined in Eq. (4.76a)
• sineq is the nineq × 1 inequality constraint slack variable vector defined in Eq. (4.77)
• seq is the neq × 1 equality constraint slack variable vector defined in Eq. (4.80d).

An estimate

[
β̂

λ̂eq
] = [

Q BT
eq

Beq 0neq

]

−1
[
q −BT

ineqλineq

beq − seq
] , (4.127)

of [βT λT
eq]

T is obtained from Eq. (4.126), where seq will be omitted in further steps from the
right hand side vector since the slack variable for equality constraints are defined as zero ; see Eq.

(4.80d). In Eq. (4.127), it is assumed that an inverse of the matrix [ Q BT
eq

Beq 0neq

] exists and if not,

then a generalized inverse is applied (Koch (1985), Koch (1988)). Using the identity

[
A B
C D

]

−1
=

⎡
⎢
⎢
⎢
⎢
⎣

A−1 +A−1B (D −CA−1B)
−1

CA−1 −A−1B (D −CA−1B)
−1

− (D −CA−1B)
−1

CA−1 (D −CA−1B)
−1

⎤
⎥
⎥
⎥
⎥
⎦

(4.128)

for the inversion of block matrices (see e.g. Koch (1988)), Eq. (4.127) becomes

[
β̂

λ̂eq
] =

⎡
⎢
⎢
⎢
⎢
⎣

Q−1 −Q−1BT
eq (BeqQ−1BT

eq)
−1

BeqQ−1 Q−1BT
eq (BeqQ−1BT

eq)
−1

(BeqQ−1BT
eq)
−1

BeqQ−1 − (BeqQ−1BT
eq)
−1

⎤
⎥
⎥
⎥
⎥
⎦

[
q −BT

ineqλineq

beq
] .

(4.129)

In the following part of this section, few additional variables are introduced to simplify the matrix
expressions and also aimed for a better readability. Substituting the first additional variable

W =BeqQ−1BT
eq (4.130)

Eq. (4.129) yields

[
β̂

λ̂eq
] =

[
Q−1 −Q−1BT

eqW −1BeqQ−1 Q−1BT
eqW −1

W −1BeqQ−1 −W −1 ] [
q −BT

ineqλineq

beq
]

(4.131)

from which, both

β̂ = (Q−1
−Q−1BT

eqW −1BeqQ−1) (q −BT
ineqλineq) +Q−1BT

eqW −1beq (4.132a)
and λ̂eq = (W

−1BeqQ−1) (q −BT
ineqλineq) −W −1beq (4.132b)
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are obtained. To recollect, the goal was to solve the system of equations (4.125a), (4.125b) and
(4.125c). So far β̂, as an estimate of β, has been obtained from (4.125a), (4.125b) which will now
be used to eliminate β from (4.125c). Substituting β̂ from Eq. (4.132a) into (4.125c) yields

Bineq [(Q
−1
−Q−1BT

eqW −1BeqQ−1) (q −BT
ineqλineq) +Q−1BT

eqW −1beq]

− bineq + sineq = 0nineq×1,
(4.133)

which when expanded, gives

Bineq [(Q
−1
−Q−1BT

eqW −1BeqQ−1)q]−

Bineq [(Q
−1
−Q−1BT

eqW −1BeqQ−1)BT
ineqλineq]+

Bineq [Q
−1BT

eqW −1beq] − bineq + sineq = 0nineq×1.

(4.134)

Bringing the slack variable sineq to the left hand side and rearranging (4.134) yields

sineq =Bineq [(Q
−1
−Q−1BT

eqW −1BeqQ−1)BT
ineqλineq] + bineq

−Bineq [(Q
−1
−Q−1BT

eqW −1BeqQ−1)q] −Bineq [Q
−1BT

eqW −1beq] .
(4.135)

As mentioned already, additional variables Ψ, Ω and ω are introduced to simplify the expression.
The substitutions are shown step-by-step for the reader to follow. First substitution

Ψ =Q−1
−Q−1BT

eqW −1BeqQ−1 (4.136)

in Eq. (4.135) yields

sineq = (BineqΨBT
ineq)λineq + (bineq −BineqΨq −BineqQ−1BT

eqW −1beq) . (4.137)

Further substituting

Ω =BineqΨBT
ineq (4.138a)

and ω = bineq −BineqΨq −BineqQ−1BT
eqW −1beq (4.138b)

in Eq. (4.137) yields

sineq =Ωλineq +ω subject to λineq ≥ 0nineq×1 (4.139)

thus transforming the system of KKT equations into a linear complimentarity problem (LCP).

Solution of LCP

The solution of the linear complementary problem in based on the method proposed by Lemke
(1968) for quadratic programming. Following the solution approach presented in Koch (1985), the
algorithm described below either terminates in a solution of the complementary problem or no
solution exists, with the only necessary condition that Ω shall be positive semi-definite (Lemke
(1968)). Assuming that a feasible solution exists, the LCP (4.139) is written as

[Inineq −Ω] [sineq

λineq
] = ω, (4.140)
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where Inineq is an nineq × nineq identity matrix. As shown in Koch (1988), the 2nineq × 1 vector of
slack variable and Lagrange multiplier [sT

ineq λT
ineq]

T is divided into the basic [sT
ineq,b λT

ineq,b]
T

and the non-basic [sT
ineq,n λT

ineq,n]
T variables respectively. The partition

[
sineq

λineq
] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sineq,b

sineq,n

λineq,b

λineq,n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is done such that both the slack variable and the Lagrange multiplier

sineq = [s
T
ineq,b sT

ineq,n]
T

λineq = [λ
T
ineq,b λT

ineq,n]
T

(4.141)

remain nineq × 1 vectors, as well as the conditions

[
sineq,b

λineq,b
] ≥ 0nineq×1 (4.142a)

[
sineq,n

λineq,n
] ≥ 0nineq×1 (4.142b)

are satisfied. It shall be noted that the conditions (4.142a) and (4.142b) are due to the fact that
the transformed slack variable (4.81) shall be positive and the inequality constraint Lagrange
multiplier shall be non-negative for a minimization problem. Condition (4.142b) is itself satisfied
by the definition of the non-basic variables, which are ignored or assumed zero (Lemke (1968)).
Furthermore, Ω is partitioned as

Ω = [Ωb Ωn]

= [
Bineq,bΨBT

ineq,b Bineq,bΨBT
ineq,n

Bineq,nΨBT
ineq,b Bineq,nΨBT

ineq,n
]
, (4.143)

where

Bineq = [
Bineq,b

Bineq,n
] ; Beq = [

Beq,b

Beq,n
] ; beq = [

beq,b

beq,n
] ; bineq = [

bineq,b

bineq,n
] . (4.144)

The LCP (4.140) is written as

[Irect
nbasic

−Ωb Irect
nnon−basic

−Ωn]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sineq,b

λineq,b

sineq,n

λineq,n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ω, (4.145)

where Irect
nbasic

and Irect
nnon−basic

are rectangular matrices40. As already mentioned, the non-basic
variables are ignored by the pivot algorithm (see Lemke (1968), Koch (1985)) and the LCP (4.145)
simplifies to

[Irect
nbasic

−Ωb] [
sineq,b

λineq,b
] = ω (4.146)

40The name ”rectangular matrices” is chosen for lack for a better name. Specifically, these are identity matrices
padded with additional rows of zeroes to match the exact dimensions of the basic and non-basic variables. For

example Irect
nbasic

= [Inbasic

0nbasic

] and Irect
nnon−basic

= [Innon−basic

0nnon−basic

]
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and an estimate
[
ŝineq,b

λ̂ineq,b
] = [Irect

nbasic
−Ωb]

−1
ω (4.147)

of [sT
ineq,b λT

ineq,b]
T is obtained. Using identity (4.128) to compute the inverse, Eq. (4.147) becomes

[
ŝineq,b

λ̂ineq,b
] =

⎡
⎢
⎢
⎢
⎢
⎣

Inbasic
−Bineq,bΨBT

ineq,b (Bineq,nΨBT
ineq,b)

−1

0nnon−basic×nbasic
− (Bineq,nΨBT

ineq,b)
−1

⎤
⎥
⎥
⎥
⎥
⎦

ω. (4.148)

Based on the substitutions (4.138a) and (4.138b), ω is partitioned as

ω = [
bineq,b −Bineq,bΨq −Bineq,bQ

−1BT
eq,bW

−1beq,b

bineq,n −Bineq,nΨq −Bineq,nQ−1BT
eq,nW −1beq,n

] (4.149)

and substituting in Eq. (4.148) gives

[
ŝineq,b

λ̂ineq,b
] =

⎡
⎢
⎢
⎢
⎢
⎣

Inbasic
−Bineq,bΨBT

ineq,b (Bineq,nΨBT
ineq,b)

−1

0nnon−basic×nbasic
− (Bineq,nΨBT

ineq,b)
−1

⎤
⎥
⎥
⎥
⎥
⎦

[
bineq,b −Bineq,bΨq −Bineq,bQ

−1BT
eq,bW

−1beq,b

bineq,n −Bineq,nΨq −Bineq,nQ−1BT
eq,nW −1beq,n

] ,

(4.150)

from which an estimate of the inequality constraint Lagrange multiplier

λ̂ineq,b = − (Bineq,nΨBT
ineq,b)

−1

[bineq,n −Bineq,nΨq −Bineq,nQ−1BT
eq,nW −1beq,n]

(4.151)

is obtained. Furthermore, substituting λ̂ineq,b from Eq. (4.151) into (4.132a), an estimate of the
model parameter

β̂ = [(Q−1
−Q−1BT

eqW −1BeqQ−1)

(q + (BT
ineqX−1 (bineq,n −Bineq,nΨq −Bineq,nQ−1BT

eq,nW −1beq,n)))]+

Q−1BT
eqW −1beq

(4.152)

is obtained with inequality and equality constraints, where

X =Bineq,nΨBT
ineq,b.

Under the special case

[
beq,b

beq,n
] = 0neq×1 ; [

bineq,b

bineq,n
] = 0nineq×1 ; [

Beq,b

Beq,n
] = 0neq ; [

Bineq,b

Bineq,n
] = 0nineq ,

corresponding to no equality or inequality constraints, Eq. (4.152) reduces to unconstrained least
squares estimate

β̂ =Q−1q. (4.153)

As a summary of this approach for solving the LCP, two important points are noteworthy. We
began with the first and second KKT equations (stationarity and feasibility condition). The model
parameter vector β was eliminated from the system of equations and an estimate of Lagrange
multiplier in Eq. (4.151) was obtained. Then, the Lagrange multiplier and slack variable are
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partitioned into two types, namely, the basic and non-basic variables. The resulting Lagrange
multiplier vector from the solution of LCP is substituted to obtain an estimate of the model
parameter vector. It has also been shown that in absence of any equality or inequality constraints,
the solutions reduces to that of least squares. From this perspective, there is an elegance to this
approach and Koch (1985) is acknowledged for providing this LCP formulation as well as its solution.
Compared to the method of centering and scaling (Nocedal and Wright (2006)), other obvious
advantages of this approach are that no additional tuning parameters are required. The only two
considerations are that (1) the matrix Bineq,nΨBineq,b must be invertible and (2) prior information
about the basic and non-basic variables must be given41. However, when it is not possible to identify
in advance, which constraints are active or inactive, then the method of centering and scaling could
be used instead.

4.7.2 Primal and dual variables

In this section, the concept of Lagrangian primal and dual variables is introduced. Duality is a
principle according to which, an optimization problem is viewed from either of the two perspectives,
namely, the ”primal” or the ”dual” (Nocedal and Wright (2006) pg. 304, Boyd and Vandenberghe
(2004) pg. 255, Roese-Koerner (2015)). The transformation from Lagrangian primal to an equivalent
dual is summarized below. For a detailed background on this topic, the reader is referred to Nocedal
and Wright (2006) pg. 482. Once again, the starting point for the following discussion is the
Lagrangian function

Lprimal(β, λ, s) =
1
σ2 [

1
2

βT Qβ − (qT
−λT B)β −λT

(b − s) + yT P y]

in its primal form, reproduced from Eq. (4.84). The derivative of Lagrangian function with respect
to the model parameter vector was already obtained to derive the first system of KKT equations

Q β − q +BT λ = 0u×1,

which is the same as Eq. (4.94) reproduced here and rearranged to express

β =Q−1 (q −BT λ) (4.154)

as a function of the unknown Lagrange multiplier. The first step towards transformation into dual
form is to eliminate the model parameter β from the primal form. Therefore, β from Eq. (4.154) is

41In evaluation of this method, the author wishes to clarify that equal number of basic and non-basic variables have
been assumed.
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substituted in primal Lagrangian form to give the dual form

Ldual(λ, s) =
1
σ2 [

1
2
(Q−1 (q −BT λ))

T
Q (Q−1 (q −BT λ))−

(q −BT λ)
T

Q−1 (q −BT λ) −λT
(b − s) + yT P y]

(4.155a)

=
1
σ2 [

1
2
(q −BT λ)

T
Q−1QQ−1 (q −BT λ)−

(q −BT λ)Q−1 (q −BT λ) −λT
(b − s) + yT P y]

(4.155b)

=
1
σ2 [

1
2
(qT Q−1q −λT BQ−1q − qT Q−1BT λ +λT BQ−1BT λ)−

(qT Q−1q −λT BQ−1q − qT Q−1BT λ +λT BQ−1BT λ)−

λT
(b − s) + yT P y]

(4.155c)

=
1
σ2 [

1
2

qT Q−1q −λT BQ−1q −
1
2

λT BQ−1BT λ−

λT
(b − s) + yT P y]

(4.155d)

=
1
σ2 [
−1
2

λT BQ−1BT λ −λT (BQ−1q − b + s) +
1
2

qT Q−1q + yT P y] (4.155e)

of the Lagrangian function. The main difference between the primal and dual representation is
the number of unknowns (Boyd and Vandenberghe (2004) pg. 609, Nocedal and Wright (2006) pg.
482). The primal form is a function in β, λ and s with u + 2nineq + 2neq unknown parameters. The
dual form is a function in λ and s with 2nineq + 2neq unknown parameters. Therefore, optimizing
a dual Lagrangian function provides a lower bound with respect to the solution of the primal
minimization problem (Nocedal and Wright (2006) pg. 343, Boyd and Vandenberghe (2004) pg.
223-224). Furthermore, if the primal form of Lagrangian function is positive, then the corresponding
dual is negative (Roese-Koerner (2015)). Therefore, in order to estimate the model parameters
from the dual form, the corresponding Lagrangian function must be maximized with respect to
the Lagrange multiplier and slack variable. The difference in optimal values between the primal
and dual problems is called the duality gap (Boyd and Vandenberghe (2004) pg. 224, Nocedal and
Wright (2006) pg. 343, Roese-Koerner (2015)).
This concludes the discussion on the duality theory and the dual Lagrangian function is maximized
subject to the KKT conditions to estimate the model parameter, in a similar manner as shown in
section 4.5.1.

4.7.3 Alternate techniques for step size estimation

The importance of the step size in an optimization algorithm has been highlighted in the previous
sections. With the evolving role of descent methods in optimization42, there is a growing attention
to it. The step size does not affect the performance in smaller dimensional problems (e.g. smaller
than 10 unknown parameters) as much as it does in large dimensional problems (e.g. 1000 unknown
parameters or more).
As already described in the previous section, the descend direction

∆β̃ = [∆βT ∆λT ∆s̃T ]
T

42Evolving algorithms such as supervised learning and neural networks also use descent method in their so-called
”training phase”. In this context, the step size is also known as the ”learning rate” (see e.g. Jacobs (1988), Wilson
and Martinez (2001)).
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is estimated from the system of equations (4.102), i.e.

Q β − q +BT λ = 0u×1 ← Stationarity condition
B β − b + s = 0(nineq+neq)×1 ← Feasibility condition
SΛe − σcenµcome = 0(nineq+neq)×1 ← Complimentary slack condition

by linearizing at the initial values β̃0 = [β
T
0 λT

0 s̃T
0 ]

T thus yielding Eq. (4.106), reproduced here
for the sake of better readability,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Q BT 0u

B 0nineq+neq I
0u S0 Λ0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆β
∆λ
∆s̃

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−Qβ0 + q −BT λ0
−Bβ0 + b − s0

−S0Λ0e + µcomσcene

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4.156)

where Q and B are known matrices as well as, q and b are known vectors, S0 and Λ0 are evaluated
at the current iterates s̃0 and λ0. Optimization parameters are updated from iteration it to it + 1
using the update rule

β̃it+1 = β̃it + T it∆β̃it, (4.157)

where

T it =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T β 0 0 0 0
0 T λineq

0 0 0
0 0 T λeq 0 0
0 0 0 T s̃ineq 0
0 0 0 0 T s̃eq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.158)

such that the diagonal elements of T it lie in interval (0, 1].
Possibilities for the step size estimation
This section provides three options based on which the T it, as shown in Eq. (4.158), can be obtained
to solve the KKT equations (4.156).

• Random choice of step size: For smaller dimensional problems (with 10 or fewer unknown
parameters), a random step size could be chosen by trial and error until an acceptable
value is determined. However, for large dimensional problems (more than 1000s of unknown
parameters), a systematic procedure is required.

• Step size based on generalized cross validation (GCV) strategy: In this method, a pre-defined
fixed number of step size values are chosen and with each of those, Eq. (4.102) is solved. The
resulting accuracy (or error) of the estimated model parameters is then analysed against the
chosen step sizes. Ideally, such an analysis should reveal a trend (or structure e.g a parabolic
or exponential decay) with which an appropriate step size corresponding to minimum error is
chosen. This is a more robust approach compared to choosing step size randomly but there
are two challenges.

– In order to obtain an unbiased estimation error for model parameters, independent
observations (one that is not used for estimating the model parameter) must be used.
In other words, the entire set of observation needs to be divided into two parts, namely,
”estimation” and ”cross-validation”. In reality, the two cannot be completely independent
because of correlations. It can be partially overcome by allowing randomized re-sampling
of the observations to separately generate the estimation and validation observation sets.
Nevertheless, some correlation would still remain. A similar approach was used in Liang
(2017).

– If the error in the estimated model parameters, obtained from a cross-validation set, does
not show a deterministic trend (e.g. error is lower for smaller values along the diagnol
elements of the step size matrix), then the step size cannot be chosen reliably.
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• Choose step size based on predicted optimization parameters43: This approach is found to be
the most promising for this work because it provides a systematic, reliable estimate of the
step size with the least computational expense compared to the other two approaches. This
approach has also the advantages that most of the computations have already been performed
in the solution of the KKT equations and most importantly an estimate of the quality of the
determined step size becomes available at little or no additional computational expense.

The third option from above is found to be the most suitable in context of global 4D electron density
modelling, where the proposed optimization technique is to be applied (as described in the next
chapter). This approach is substantiated below and begins with the update rule (4.107) (reproduced
below for readability)

β̃it+1 = β̃it + T it∆β̃it,

which will be modified to
β̃it+1 ≈ β̃it + T a

it∆β̃it−1 (4.159)

to estimate T a
it, an approximate44 step size parameter. First, the modification in Eq. (4.159) will

be highlighted and then its justification will be given. Specifically, there are two changes:
• T it is replaced with T a

it, an approximate step size to be determined.
• the descent direction ∆β̃it−1 refers to the iteration it − 1 in Eq. (4.159) instead of it as in

Eq. (4.107). The justification for this modification is as follows: When an approximate step
size has been estimated, it will be substituted back in Eq. (4.107), which in the first place,
had been the basis for the step size estimation. This leads us to the parameter update being
biased with that of the predicted value. Therefore, a change in Eq. (4.159) compared to Eq.
(4.107) is necessary.

A predicted value of the optimization parameter β̃
P red
it+1 is substituted for β̃it+1 in Eq. (4.107) to give

β̃
P red
it+1 − β̃it ≈ T a

it∆β̃it−1, (4.160)

so that the difference between the predicted optimization parameters and that at the current
iteration becomes a linear function of the descent direction. Substituting ∆β̃

P red
it+1 = β̃

P red
it+1 − β̃it in

Eq. (4.160) gives
∆β̃

P red
it+1 ≈ T a

it∆β̃it−1 (4.161)

from which, an estimate
T̂

a
it =W U−1, (4.162)

of T a
it is obtained45, where the diagonal matrices

W =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W β 0 0 0 0
0 W λineq

0 0 0
0 0 W λeq 0 0
0 0 0 W s̃ineq 0
0 0 0 0 W s̃eq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.163)

and

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Uβ 0 0 0 0
0 Uλineq

0 0 0
0 0 Uλeq 0 0
0 0 0 U s̃ineq 0
0 0 0 0 U s̃eq

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.164)

43To the best knowledge of the author, this method has not been used until now by anybody
44Superscript ”a” is to indicate that the step size is approximate
45The approximation symbol in (4.161) will assumed to be = for estimation of the step size.
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Figure 4.26: Geometrical interpretation of predicting the model parameter vector in step size estimation.

contain terms corresponding to the model parameter, Lagrange multiplier and the slack variable ;
see Eqs. (4.165) to (4.170), where the U and W submatrices are as shown below:

Uβ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆β1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∆βu

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.165)

Uλineq
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆λineq,1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∆λineq,nineq

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; Uλeq =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆λeq,1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∆λeq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.166)

U s̃ineq =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆s̃ineq,1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∆s̃ineq,nineq

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; U s̃eq =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆s̃eq,1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∆s̃eq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.167)

W β =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆βP red
1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∆βP red
u

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.168)

W λineq
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆λP red
ineq,1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∆λP red
ineq,nineq

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; W λeq =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆λP red
eq,1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∆λP red
eq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.169)

W s̃ineq =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆s̃P red
ineq,1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∆s̃P red
ineq,nineq

⎤
⎥
⎥
⎥
⎥
⎥
⎦

; W s̃eq =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∆s̃P red
eq,1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∆s̃P red
eq,neq

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4.170)

A geometrical interpretation of predicting the model parameter in context of step size estimation is
illustrated in Fig. 4.26. Given the intermediate solutions {β1, β2,⋯, βit} corresponding to iterations
{1, 2,⋯, it}, the goal is to obtain βP red

it+1 (blue solid circle ) within an uncertainty cone illustrated in
green. The magnitude of the relative vector βP red

it+1 − βit (indicated in blue ) is the step size
used to compute the updated model parameter vector βit+1 (red solid circle ). The magnitude of
the relative vector βit+1 −βit is indicated in red . Although the descent directions βit+1 and
βP red

it+1 are different, their magnitude is the same.
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4.7.4 Prediction of optimization parameters

In the previous section, a technique was introduced for estimating the step-size based on the
predicted value of the optimization parameters

β̃
P red

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

βP red

λP red

sP red

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4.171)

which include the predicted model parameter, the Lagrange multiplier as well as slack variable for
inequality and equality constraints.
Assuming that a predicted value of the model parameter βP red is available (as it will be discussed in
this section), the Lagrange multiplier is obtained indirectly by rearranging Eq. (4.102) in the form

BT λP red
= q −Q βP red, (4.172)

from which an estimate

λ̂
P red

= (B ΣβP red BT
)
−1

B ΣβP red (q −QβP red) (4.173)

of λP red is obtained, where ΣβP red denotes the covariance matrix of βP red. When predicted model
parameter vector is in the feasible region, the corresponding slack variable

sP red
= b −BβP red (4.174)

becomes a direct measure of a ”margin” between the constraint bound and the predicted parameter
vector. Specifically, if sP red

k > 0, then the corresponding kth constraint was inactive. This allows
a reduction of parameterization in Eq. (4.173) because Lagrange multipliers need to be obtained
for only those constraints which are binding (i.e. those that have an impact on the solution) and
those corresponding to the other non-binding constraints can be set to zero. Thus two of the three
optimization parameters in Eq. (4.171) are predicted.
The next section describes a method for the prediction of the model parameter vector βP red, which
was assumed to be known in Eqs. (4.173) and (4.174). Specifically, we are interested in those
methods which are suitable for shorter prediction windows46, such as ARMA processes. An example
prediction problem is shown below:
Predict the model parameter vector at the iteration47 it + 1, given their intermediate values at
{0,⋯, it} along with the corresponding descent directions and objective function values. In other
words,

Predict βit+1

given : β0,⋯, βit ; J(β0),⋯, J(βit) ; ∆β0,⋯, ∆βit.
(4.175)

As described further, βP red is obtained using a non-linear ARMAX (N-ARMAX) method, with
which an estimate of the step size, as described in the Eqs. (4.160) to (4.162), is obtained. The
N-ARMAX method, described in the next section, is based on time series analysis of the model
parameter vector and additional exogenous variables. An introduction to time series based time
series data for geophysical applications is referred to Ulrych (1985), Noakes (1986) and Stoica and
Nehorai (1989).

46Prediction window refers to the interval between a prediction instant and that of the last available data. It can be
defined and measured in units of time or samples. Typically, the smallest prediction window is the sampling rate
of the data (see e.g. Davis (1977), Priestley (1978)).

47The given data does not have to be intermediate values from iteration only. It could be time series data as well.

80



4.7 Alternative techniques in constraint optimization

4.7.5 Non-linear ARMAX method
N-ARMAX is an acronym for Non-linear Auto-Regressive Moving Average with eXogenous
variables. It has its origins from the basic ARMA technique (see e.g. Box and Jenkins (1990),
Brockwell and Davis (1991)).
ARMA is a time series modelling technique to predict a certain stationary signal at a future time
moment using its past samples (Priestley (1978)). However, there are several weaknesses when an
ARMA process is used for modelling a non-linear function of time and possibly other parameters
(Rosenblatt (1971)). An example is the ionospheric electron density, which is not only a non-linear
function of time but also other physical parameters such as electron temperature, ion temperature,
the density of energetic particles as well as the incident energy on the atmosphere, electric and
magnetic field intensities etc. (see Schunk (1988), Hernández-Pajares et al. (1998), Menvielle et al.
(2011) ).
In this section, an introduction to ARMA is given and followed by the reasons for introducing the
non-linear component (N-ARMAX) as well as the exogenous variables. An auto-regressive (AR)
process of order p,

xt,AR =

p

∑
i=1

ϕixt−i,AR + ϵt,AR, (4.176)

relates a certain stationary signal at time instant t, denoted as xt,AR, to its past values xt−i,AR

through coefficients ϕi for i = {1,⋯, p} corresponding to p discrete time lags and the random error
ϵt,AR. A moving average (MA) process of order q,

xt,MA =

q

∑
j=1

θjϵt−j,MA + ϵt,MA, (4.177)

relates xt,MA to the prediction error48 through the MA coefficients θj for j = {1,⋯, q} corresponding
to q discrete time lags and random error ϵt,MA. The combination of AR(p) and MA(q) processes,
(4.176) and (4.177), yields an ARMA(p, q) process

xt,ARMA =

p

∑
i=1

ϕixt−i,AR +

q

∑
j=1

θjϵt−j,MA + ϵt,ARMA, (4.178)

where ϵt,ARMA is the random error. However, when the signal to be predicted depends not only on
its time history but also on other parameters, then an ARMAX(p, q, m) process,

xt,ARMAX =

p

∑
i=1

ϕixt−i,AR +

q

∑
j=1

θjϵt−j,MA +
m

∑
k=1

ωkut−k,X + ϵt,AX , (4.179)

with ω the exogenous coefficients, ut−k,X the exogenous parameters at time instants t − k are used.
The subscript X in ut−k,X signifies that it is an exogenous variable. Applying a non-linear mapping
gn(⋅) to the ARMAX(p, q, m) process (4.179) with coefficient γ leads to N-ARMAX(p, q, m, r)
process (see e.g. Chatfield and Pepper (1971), Davis (1977))

xt,N−ARMAX =

r

∑
n=1

γn gn
⎛

⎝

p

∑
i=1

ϕixt−i,AR +

q

∑
j=1

θjϵt−j,MA +
m

∑
k=1

ωkut−k,X

⎞

⎠
+ ϵt,N−ARMAX .

(4.180)

However, the exact non-linearity (gn(⋅)) between the inputs xt−i,AR, ϵt−j,MA, ut−k,X and the output
xt,N−ARMAX is generally unknown. The orders p, q, m as well as the number, type of mapping
48Prediction error is defined as the difference between a predicted value at time instant t and its true value. Since the

true value would not be available at the previous time instant, the recurrence relation (4.176) and (4.177) are used
in estimation of AR and MA coefficients; see Brockwell and Davis (1991) and Box and Jenkins (1990).
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functions are the essential specifications of a N-ARMAX process (Priestley (1978), Scargle (1981)).
It shall be noted that additional of exogenous variables can be added to the N-ARMAX model at
the cost of increased number of unknown coefficients. While trigonometric, exponential, logarithmic,
polynomial, Gaussian are commonly used non-linear mapping functions (see Maravall (1983),
McLeod and Li (1983)), specialized ones49 (Clevert et al. (2016)), such as

gGeLu(z) =
1
2

z (1 + erf( z
√

2
)) (4.181a)

gtanh(z) =
ez − e−z

ez + e−z
, (4.181b)

are also found in literature (see Hendrycks and Gimpel (2016b), Hendrycks and Gimpel (2016a)),
where

z =
p

∑
i=1

ϕixt−i,AR +

q

∑
j=1

θjϵt−j,MA +
m

∑
k=1

ωkut−k,X . (4.182)

The exact choice of a non-linear mapping function depends on the parameter to be predicted,
the order of the N-ARMAX process, the auto-correlation properties of the parameter and the
time window for prediction (Box and Jenkins (1990), Schuh et al. (2015)). In the next chapter,
specific information about mapping functions used for ionospheric electron density modelling will
be presented. Following are the main considerations of N-ARMAX modelling approach:

• Compared to ARMAX, the N-ARMAX approach requires at least r additional coefficients
corresponding to the non-linear mapping functions.

• N-ARMAX model output depends on the exogenous variables, number and type of non-linear
mapping functions.

• If a large order of non-linear coefficients γ (approximately 20% of the sum of the orders
p + q +m or larger) is considered, then there is a risk of ”over-fitting”;Ulrych (1985) Box and
Jenkins (1990).

• Approaches like random forest (Breiman (2001)) or recurrent memory techniques (Williams and
Zipser (1989)) are widely used prediction algorithms but are mostly developed for commercial
applications (e.g. Face recognition and recommendation systems) for ”classification” problem
and are not directly applicable to geodesy without further detailed studies.

• N-ARMAX approach allows a larger level of ”control and transparency” within the algorithm
instead of using machine learning techniques as ”black box”. Control refers to the ability to
configure the initial values, tuning parameters, step size in optimization algorithms. Transpar-
ency refers to the availability of reliable information regarding the mathematical equations
within the algorithms.

This concludes the discussion of N-ARMAX process, a prospective method for prediction of the
model parameter.

4.8 Summary of optimization techniques

We have reached the end of this chapter to summarize the most important points.

49GeLu: Gaussian error linear unit and tanh: Hyperbolic tangent function
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4.8 Summary of optimization techniques

As shown in Fig. 4.1, the four important aspects discussed in this chapter are (1) Objective
function and model parameter (2) constraint function (3) optimality conditions and (4)
optimization algorithm. It has been shown that there is a limiting value of the objective
function, beyond which it cannot be minimized without violating the constraints. Specifically,
the challenge is to identify and stay within the constraint boundaries or the feasible region
FR. It has also been shown that the constraint bounds have a definitive impact on the
performance of the optimization algorithm.

The following points are noteworthy in summary of the constraint optimization techniques:
• Most optimization algorithms are based on the descent method, where the descent direction is

to be estimated50.
• The convexity of the objective function and its sensitivity to initial values, convergence of

the descent direction and the constraint bounds are important properties of a constraint
optimization problem.

• The step size estimation for inequality constraint optimization problems is challenging, espe-
cially for a large dimensional (larger than 1000) model parameter vector and good51 initial
values (reasonably close to the optimal solution) are also needed to converge. The initial
values used in this work were from within the feasible region.

• Tuning parameters such as the complimentarity measure, centering parameter and step size52

are the available degrees of freedom. The performance of any algorithm cannot be assessed
without trying different values for them. Therefore, a closed loop validation using simulated
data is helpful in determining their approximate values.

• Providing initial values from the feasible region, is important for promoting constraint op-
timization techniques for near real time applications. They can be either obtained from an
empirical model but specifically for Lagrange multipliers and slack variables, an initial ”guess”
is required.

Qualitatively, with respect to the difference between their upper and lower bounds, inequality
constraints can be categorized in two types (1) relaxed and (2) critical. In the former, a smaller
step size is considered and in latter case, a relatively larger feasible region results and accordingly,
the time taken for convergence to the optimal solution can be considerable. In the next chapter, a
specific quantitative assessment will be given towards the feasible region size and its impact on the
optimal solution.
Optimality conditions allow checking a solution for stability and feasibility. Their reliability must
be tested with additional quality parameters, such as standard deviation. In the next chapter, a
Monte-Carlo approach will be described for assessing the quality of estimated model parameters. To
the best knowledge of the author, there is no universal optimization technique but many different
algorithms. Therefore, the formulation of an objective function as well as the choice of optimization
algorithm are important.
From the perspective of software prototyping for scientific investigations, a faster convergence of
the optimal solution is only one of the desired features. Other requirements such as the desired
accuracy, availability of initial values, ability to recover from local non-convexity, step size estimation
sub-problem, constraint qualification checks are a few other associated challenges in the optimization
technique. Diagnostic checks are found useful, so that a warning may be issued, when the initial
values are too far from being realistic. Trial evaluations are helpful to identify the critical parts
50More generally, both the descent direction as well as the step size are to be estimated. As a special case, a

pre-calibrated step size could be used.
51”Good” in this context refers to an initial value from within the feasible region.
52Within the machine learning community, the step size parameter is also called the learning rate parameter and in

general the tuning parameters are called hyperparameters. Some literature also use the name step-length. However,
their context remains the same.
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in an algorithm. When optimality conditions are not satisfied, some useful information about
possible improvements can still be obtained. Furthermore, additional external diagnostic checks
and sensitivity analysis can be complimented, for example with reduced model parameters, with
another algorithm, changing constraint bounds or with a different subset of observations.
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5 Global 4D electron density modelling

Fundamentals of the ionosphere, the observations techniques for electron density modelling (EDM)
and the optimization approach have been described in the Chapters 2, 3 and 4 respectively. Specific-
ally, this chapter will focus on the EDM using the BS basis functions, the EDM parametrization
using the multi-layer Chapman1 key parameters, defined in Eq. (5.4) and formulate the EDM as an
inequality constrained optimization problem (ICOP) of the form (4.25). A system of constraints2 will
be established and expressed as a linear matrix inequality (LMI), analogous to the KKT system of
equations (4.87a), (4.87b) and (4.87c). Furthermore, it will be shown that the inequality constraints
on the Chapman key parameters are transformed to those on the corresponding BS coefficients.
The unknown optimization parameters of the resulting ICOP are then estimated by solving the
KKT system of equations, as already presented in Section 4.5.2; see Eqs. (4.94), (4.95) and (4.96).
This chapter is organized as follows:

• An introduction to EDM and the term electron density profile (EDP) are presented in Section
5.1.

• The multi-layer approach to EDM is parameterized in Section 5.2.
• The GMM (5.19) and the equality as well as the inequality constraints in the form of linear

matrix inequality (LMI) are combined together to form the Lagrangian function as described
in Section 5.3.

• The inequality constraints imposed on the Chapman key parameters are equivalently trans-
formed to those on the unknown B-spline coefficients; see Eq. (5.26) in Section 5.4.

• The solution of the unknown parameters of GMM (5.19), subject to the inequality constraints
based on the ICOA described in Chapter 4. The solution of GMM (5.19) is described in
Section 5.6.

Furthermore, the following general conventions are applicable for this chapter:
• The term ”optimization algorithm” will refer to the complete set of KKT equations, that

use either the gradient descent or the Newton’s method to solve an inequality constraint
optimization problem (ICOP) of the form (4.25).

• The term ”nominal ionospheric condition” (or simply ”nominal conditions”) will refer to the
ionospheric behaviour under moderate space weather conditions3 as opposed to abnormalities
during e.g. geomagnetic storms. Under nominal conditions, the ionosphere follows a rather
predictable diurnal, monthly and seasonal climatology (see Hanslmeier (2002), Hapgood
(2017)).

• ”Top-” and ”bottom-side” will generally refer to the region of ionosphere above and below
the F2 peak altitude respectively.

5.1 Background to electron density modelling
As described already in Chapter 2, the electron density is a 4D function of latitude, longitude,
altitude and time. Of particular interest in this chapter is the variation of the electron density along

1Sydney Chapman was one of the pioneering geophysicists during the 20th century and also a pioneer in space physics
(Akasofu (2020)). Chapman devoted his study on the transport property of gases and wrote ”The Mathematical
Theory of Non-Uniform Gases”.

2Generally, containing both equality and inequality constraints
3e.g. charceterized by F10.7 index < 100.

85



5 Global 4D electron density modelling

the altitude at any given location and time. This is generally referred to as an electron density
profile (EDP). More specifically, an EDP represents the number density (or distribution) of electrons
along the vertical and is graphically visualized by plotting the electron density along vertical at a
given latitude, longitude and time, as sketched in Fig. 5.1. The following are some of the important
aspects related with an EDP:

• The study of the EDPs since the early 20th century (see Chapman (1931) revealed an
approximate ”bell-shape” at the different times of a day. Generally, the electron density
increases upto the F2 layer peak height and then decreases with altitude. The corresponding
rate of change of the electron density in the bottom− and the top−sides respectively, are due
to the ionization and the recombination processes (see e.g. Smirnova et al. (1988), Stankov.
and Jakowski (2006) ).

• Although theoretically an EDP can be defined from the surface of the Earth to any arbitrary
large4 altitude, it is practical in an electron density modelling problem (EDMP) to define
fixed altitudinal limits5. In this work, these are denoted as hmin and hmax (see Section 5.2).

• As later described in Section 5.2, each EDP will be modelled as a sum of electron densities of
the individual stratified D−, E−, F1−, F2− layers as well as the plasmasphere; see Eq. (5.1).

• As already mentioned, each EDP itself can be theoretically divided into two parts, namely the
”top-” and the ”bottom-side”. The solar irradiance to the ionosphere-thermosphere system is
absorbed in the top- and bottom-sides according to the exact concentration of the Nitrogen,
Oxygen, Hydrogen, Helium and other gases compounds comprising of those elements, e.g.
Nitrous Oxide (see Hargreaves (1992), Richmond et al. (1992), Picone et al. (2002), Luehr
et al. (2011)).

The exact shape of an EDP, at any given location, generally varies6 with the time as well as the
space weather conditions (see e.g. Hanslmeier (2002), Stolle et al. (2013)).
In this work, the EDP is parametrized using the Chapman function7, for which three so called ”key
parameters” namely, the peak density, the peak height and the scale height, for each individual
layers will be introduced; see Eq. (5.4). Peak density at a location {φ, λ}, and a given time,
corresponds to the maximum magnitude of the electron density and the corresponding altitude is
referred to as the ”peak height”. The third key parameter ”scale height”, of a layer Q, refers to the
width of the Q-layer EDP around its peak height. Generally, all the three key parameters vary on
spatio-temporal scales8 (see Limberger et al. (2013), Limberger et al. (2014), Tsai et al. (2016)).

4Generally upto infinity, but beyond 6 - 8 Earth radii altitude, there are not many sources of electron density
measurements to understand their spatial distributions. As mentioned in Chapter 3, Van Allen probes orbit
between 2 - 6 Earth radii provide in-situ observations.

5This helps in restricting the modelling to a reasonable altitude where there is an availablity of electron density
measurements. Furthermore, as ionosphere transitions into plasmasphere, more realistic modelling assumptions
will have to be made on the magnitude its scale height (see e.g. Stankov. and Jakowski (2006), Moldwin et al.
(1995), Carpenter and Park (1973)).

6But follows a certain consistent underlying physical phenomena, as mentioned already.
7In other words, each EDP is modelled empirically using the Chapman profile function which was already introduced

in Chapter 2.
8An interesting synergy exists between Chapman profile function (CPF) and normal distribution function (NDF),

where the peak density, peak height and scale height of a CPF are analogous to the magnitude, mean and standard
deviation of an NDF.

86



5.2 Parametrization for multi-layer approach

Figure 5.1: Electron density profile and key parameters of the ionosphere. Courtesy Limberger (2015). The
behavior of the total electron density with altitude and magnitude of peak densities and peak
height to expect in the different layers are shown. The electron density drops above the F2-layer
peak height as the ionosphere transitions into the plasmasphere.

5.2 Parametrization for multi-layer approach
Following Feltens (2007), a multi-layer model is defined as the sum of five EDPs, one for each layer.
Accordingly, the electron density modelling9 is posed as an additive model

ne(h) = nD
e (h) + nE

e (h) + nF 1
e (h) + nF 2

e (h) + nP
e (h)

=
4
∑
Q=1

NQ
m pQ

(h) +NP
0 pP
(h)

Q=1 to 4 correspond to the layers{D, E, F1, F2} ,

(5.1)

which amounts to representing the EDP of each layer as a product of the peak density NQ
m and a

profile function pQ(h) as well as pP (h). nP
e and NP

0 denote the total electron density and the basis
electron density of the plasmasphere respectively. Limberger (2015) and Liang (2017) have also used
the approach (5.1) in the scope of regional ionosphere modelling. The Chapman profile function,

nQ
e (h) = NQ

m exp(1
2
(1 − h − hQ

m

HQ
− exp(−h − hQ

m

HQ
))) (5.2)

is used to describe the EDP for the Q−layer. Furthermore, plasmaspheric electron density

nP
e (h) = NP

0 exp(− ∣h − hF2
m ∣

HP
) (5.3)

(Limberger (2015)) is characterized by the profile function pP (h) = exp(− ∣h−h
F2
m ∣

HP ) as a function of its
scale height HP . It shall be noted that the plasmaspheric profile function pP (h) is an exponential

9ne is used instead of the more common Ne to be consistent with the convention of using bold small letters for vector
and bold capital ones for matrices. Later on, electron density vector will be denoted as ne.
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decay instead of a double exponential function used in pQ(h) for the other layers10. In this work,
pQ(h) and pP (h) denote the empirical functions (5.2) and (5.3) respectively, defined within fixed
altitude limits {hmin,⋯, hmax}. An example of peak density NQ

m, peak height hQ
m and scale height

HQ are shown in Fig. 5.1. Having introduced the KPs and their relation to total electron density
through (5.2) and (5.3), electron modelling problem in its most general form will now be formulated,
which means in Eq. (5.1), the key parameters NQ

m, and pQ(h), NP
0 and HP are unknown as well as

varying on spatio-temporal scales, i.e. NQ
m(φ, λ, t), hQ

m(φ, λ, t) and HQ(φ, λ, t) completely define
their respective magnitudes at a given location and time. However, in this work, these parameters
are modelled at each measurement time epoch in ”batch-mode11” and therefore are considered
as two-dimensional spatial functions. Furthermore, the spatial indices will be ignored for better
readability, where it is implicitly understood12. Total electron density ne(φ, λ, h) and its functional
such as STEC (see Appendix D.2) are expressed as empirical functionals of KPs. Accordingly,
the multi-layer model (5.1) considering the Eqs. (5.2) and (5.3) contains the set of unknown key
parameters

K = {NF2
m , hF2

m , HF2 , NF1
m , hF1

m , HF1 , NE
m, hE

m, HE , ND
m , hD

m, HD, NP
0 , HP

} (5.4)

of the five layer, where
• h is the height above the Earth in km
• ND

m , hD
m, HD are the peak electron density, peak height and scale height of the D layer in

elec./m3, km, km respectively. It will be shown later that a more convenient unit of electron
density 1 EDU = 1012 elec./m3 will be applied.

• NE
m, hE

m, HE are the peak electron density, peak height and scale height of the E layer in
EDU, km, km respectively

• NF1
m , hF1

m , HF1 are the peak electron density, peak height and scale height of the F1 layer in
EDU, km, km respectively

• NF2
m , hF2

m , HF2 are the peak electron density, peak height and scale height of the F2 layer in
EDU, km, km respectively.

Therefore, a total of 14 key parameters would have to be estimated from the observations13 at each
time epoch. Since the key parameters in the set K describe the electron density of the ionosphere
and the plasmasphere according to the Chapman profile function (5.2) and the exponential decay
function (5.3), significant correlations exist between the estimated sets of B-spline coefficients
dJ1,J2

k1,k2∶κ1
and dJ1,J2

k1,k2∶κ2
of various pairs {κ1, κ2} of key parameters. Here the physical and statistical

correlation needs to be distinguished. Whereas the latter, for instance, exists between all the
parameters in the modelling problem, a physical correlation has to be considered between NF2

m

and hF2
m (see e.g. Limberger et al. (2014)). Such correlations exist during both nominal as well as

adverse space weather conditions (Private communication with Dr. Dieter Bilitza, 2020).
Each key parameter κ ∈ K1 in (5.4) is a spatial function of latitude, longitude {φ, λ} at a given time.
The set K of key parameters in (5.4) can be extended further, for example by choosing a different
scale height for the ”top-” and the ”bottom-sides”, i.e. HQ

top, HQ
bottom for each layer Q. As the

Chapman key parameters κ ∈ K are spatio-temporal functions, an appropriate set of basis functions
are sought for their global representation. Any two-dimensional (2D) spatial function, such as
NQ

m or hQ
m to be modelled on a sphere is traditionally represented by series expansion in spherical

harmonics (SH); see e.g. Schaer (1999). As already mentioned in Chapter 2, due to the challenges
10It shall be clarified that the Chapman key parameters peak density NQ

m and scale height HQ are traditionally
denoted in capitalized first letters, whereas the peak height hQ

m is denoted by small-caps letter. Although this is a
slight deviation from the convention of using bold capital for matrices and bold small-caps for vectors, adopted in
this work but it helps in maintaining the traditional convention seen in many of the cited literature.

11The term batch mode refers to the approach of estimating unknown parameters at each meausurement epoch.
12This helps in maintaining the readability of equations.
13electron density and STEC observations

88



5.2 Parametrization for multi-layer approach

in the representation of functions with a heterogenous data distribution (see Schmidt (2011)), in
this work, B-spline basis functions are chosen becuase they are more suitable for the representation
of multidimensional signals and for fitting surfaces to given measurements; see Schumaker and Traas
(1991), Stollnitz et al. (1995), Lyche and Schumaker (2000), Koch (1999). Besides, B-splines also
have a successful legacy of use in ionosphere modelling at DGFI-TUM14; see Zeilhofer (2008), Koch
and Schmidt (2010), Limberger et al. (2013), Limberger et al. (2014), Liang et al. (2015a), Schmidt
et al. (2015) Erdogan et al. (2017), Goss et al. (2019), Goss et al. (2020), Erdogan et al. (2020). As
shown in Fig. 5.2, for modelling any key parameter κ ∈ K1, the B-spline series expansion

κ(φ, λ) + eκ(φ, λ) =
KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

dJ1,J2
k1,k2∶κNdN

k1
(φ) T dT

k2
(λ) (5.5)

is applied including the KJ1 ⋅KJ2 unknown B-spline series coefficients15 dJ1,J2
k1,k2∶κ, with KJ1 = 2J1 + 2,

KJ2 = 3 ⋅ 2J2 (see Schmidt et al. (2015)), the endpoint interpolating polynomial B-splines (PB)
NdN

k1
(φ), the trigonometric B-splines (TB) T dT

k2
(λ) of degree dN ,dT respectively (both dN and dT ,

are set to 2 for this work), J1, J2 are the B-spline levels, k1 = {0,⋯, KJ1 − 1}, k2 = {0,⋯, KJ2 − 1}
are the shifts and the truncation error eκ; see Fig. 5.2. Detailed computation of PB and TB are
already provided in Schmidt et al. (2015); pages 945-950, Limberger (2015), Goss et al. (2019) and
therefore are not repeated here. The unknown B-spline coefficients dJ1,J2

k1,k2∶κ to be estimated from
the observed functionals of the electron density, such as STEC or ionospheric radio occultation
(IRO) measurements. The other advantages of BSs such as their localizing feature have been already
introduced in Chapter 2 and described in detail in Schmidt et al. (2015). Although different B-spline
levels J1 and J2 can be considered for the key parameters κ in set K1, for simplicity, same levels are
chosen here, resulting in the same number of coefficients for each key parameter. More generally,
the choice of B-spline levels J1 and J2 is following the sampling interval of the observations. For
details on the relations between spectral content, sampling intervals and B-spline levels see Goss
et al. (2019).
The key parameters in the set K, and hence the corresponding B-spline coefficients dκ, have the
following physical characteristics:

• The key parameters κ ∈ K are always positive and specifically NF2
m (φ, λ) ≠ 0 ∀ φ ∈ φ and λ ∈ λ,

where φ, λ refer to the set of latitudes and logitudes of the observation locations. In this
work, the D− and the E− layers as well as the plasmasphere are assumed to be existing during
day as well as the night (see Oshiorenoya (2004)) but not the F1 layer, i.e. NF1

m (φ, λ, tN) = 0
for time epochs tN ∈ {21 ∶ 00 − 03 ∶ 00} hours16; see Berkner and Wells (1934), Bremer (1998).
In other words, ND

m(φ, λ, t) ≠ 0, NE
m(φ, λ, t) ≠ 0, NF2

m (φ, λ, t) ≠ 0 and NP
0 (φ, λ, t) ≠ 0 ∀ t ∈ t,

where t denotes the vector of measurement time epochs.
• Furthermore, based on magnitude of peak electron densities (Liang (2017))

NF2
m (φ, λ, t) > NF1

m (φ, λ, t) > NE
m(φ, λ, t) > ND

m(φ, λ, t) (5.6)

applies at those time epochs when all the layers are existing, i.e t /∈ tN . Physical realism in
manifested by eq. (5.6) because the number density of electrons in ionosphere layers are so
arranged (see Liang (2017)). Once again, for the sake of readability, the time indices will be
ignored and the Chapman key parameters are considered only as spatial functions henceforth.

14DGFI-TUM: Deutsches Geodatisches Forschungsinstitut, der Technische Universitat Muenchen, The hosting agency
for the author

15Also sometimes referred to as B-spline coefficients
16At best, this was only a modelling assumption and a different night time definition could have been also chosen, if

so desired.
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5 Global 4D electron density modelling

Figure 5.2: B-spline representation and tensor product. Key parameter κ (peak density, peak height or
scale height) is represented in a B-spline series expansion and the corresponding unknown
coefficients are estimated. Polynomial B-splines (top left) and trigonometric B-spline (bottom
left) are shown for the chosen level J1 = 4 and J2 = 3 respectively. Accordingly, there are
KJ1 = 2J1 + 2 = 18 polynomial splines and KJ2 = 3 ⋅ 2J2 = 24 trigonometric splines, shown with
indices k1 = 0, 1, . . . , 17 along the latitude and k2 = 0, 1, . . . , 23 along the longitude respectively.
The product of polynomial and trigonometric B-splines is shown on right side.

• The key parameters exhibit a so called ”physical realism”17 with respect to the ionospheric
stratification and the localization of the individual layers; i.e.

hmin < hD
m(φ, λ, t) < hE

m(φ, λ, t) < hF1
m (φ, λ, t) < hF2

m (φ, λ, t) < hmax (5.7)

applies at those time epochs t, such that t ∈ t and t /∈ tN , i.e. when all the layers are existing.
• More importantly, the key parameters values lie within specific upper and lower bounds. This

property is the basis for the formulation of inequality constraints; see e.g. Eqs. (5.8a) - (5.8d)
Therefore, the overarching goal of this work is to enable the use of above mentioned physically-
realistic prior information in EDM by parametrizing those as inequality constraints on the Chapman
key parameters κ ∈ K1. There exist different techniques to include equality constraints within a
GMM (see e.g. Chapter 3 in Koch (1999)) but the novelty in this work is the development of a
generalized approach for inclusion of both equality as well inequality constraints in an optimization
problem for parameter estimation. Furthermore, these inequality constraints will be expressed as a
so-called ”linear matrix inequality” (LMI), as shown in (5.17).
The following example demonstrates the physical realism of (5.7) using examplary absolute upper
bounds (AUB) and absolute lower bounds (ALB) for peak height, at a {φ, λ}, of the different
ionosphere layers, yielding the inequalities

80 km ≤hD
m(φ, λ) ≤ 100 km (5.8a)

108 km ≤hE
m(φ, λ) ≤ 112 km (5.8b)

120 km ≤hF1
m (φ, λ) ≤ 200 km (5.8c)

220 km ≤hF2
m (φ, λ) ≤ 440 km. (5.8d)

17This implicitly refers to the general idea that the layers are stratified on the top of one another, with the respective
peak heights of the D−, E−, F1− and F2−layer lying above the preceding layers.
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5.3 Formulation of constrained optimization problem

Subtracting (5.8a) from (5.8b), (5.8b) from (5.8c), and (5.8c) from (5.8d), respectively lead to the
three relative constraints

8 km ≤hE
m(φ, λ) − hD

m(φ, λ) ≤ 42 km (5.9a)
8 km ≤hF1

m (φ, λ) − hE
m(φ, λ) ≤ 92 km (5.9b)

20 km ≤hF2
m (φ, λ) − hF1

m (φ, λ) ≤ 320 km, (5.9c)

with their relative upper bounds (RUB) and relative lower bounds (RLB) , which in-turn are linear
inequalities as well. For e.g., the physical interpretation of (5.9c) is that the modelled hF2

m shall
be at least 20 km, and atmost 320 km, in altitude above hF1

m . Importantly, in the Eqs. (5.9a) to
(5.9c), the left hand side RLBs are non-zero. It means, the peak heights of no two layers should ever
coincide18 and furthermore, these RLBs are positive as well, meaning that the physical realism of
(5.7) is maintained19. It shall be noted that Eqs. (5.8a) to (5.9c) are only shown as example for the
transformation and mathematical representation of physically realistic conditions (5.7). As will be
mentioned in Section 5.2, only selected key parameters κ ∈ K1 are chosen. When a key parameter
of a certain layer is considered known (or given), then those are used to construct the so called
”equality constraints”. For example, if the D, E and F1 layer key parameters are not considered in
the set K1, but instead in K2, then the inequalities (5.8a)-(5.8c) become equality constraints. In
this way a combination of both the equality as well as inequality constraints are used in EDM. It
shall be noted that the lower and upper bounds κu, κl ∀ κ ∈ K1, are chosen after an investigation
using the IRI model.
Using the B-spline representation of the key parameters, EDMP (5.1) is transformed into an
equivalent one where the B-spline coefficients are to be estimated. Analogous to Eq. (5.5), ignoring
the truncation error, the key parameters NF2

m , hF2
m and HF2 at any {φ, λ} at a given time are

represented by their respective B-spline series

NF2
m (φ, λ) =

KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

dJ1,J2

k1,k2∶N
F2
m

NdN

k1
(φ) T dT

k2
(λ) (5.10)

hF2
m (φ, λ) =

KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

dJ1,J2

k1,k2∶h
F2
m

NdN

k1
(φ) T dT

k2
(λ) (5.11)

HF2(φ, λ) =
KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

dJ1,J2
k1,k2∶HF2

NdN

k1
(φ) T dT

k2
(λ). (5.12)

If desired, the key parameters of the other layers to be included in the modelling problem are also
evaluated in a similar manner. Consequently, the joint estimation of the B-spline coefficients of all
key parameters in the set K is very challenging. Alternately, a subset K1 ⊂ K is chosen for modelling
and the remaining subset K2 ⊂ K from the complimentary set of K1 ( K2 = K1 ∖K) are assumed
given (e.g. from model values).

5.3 Formulation of constrained optimization problem
The upper and lower bound on key parameters κ ∈ K1 are formulated as inequalities and transformed
equivalently into the corresponding B-spline coefficients so that estimated optimization parameters
are within physically realistic limits of electron density and altitude. Consequently, the inequality
18Only as long as the constraint sare satisfied. If the constraints are violated, then the relative lower bounds could

become zero or even negative.
19This is generally only true for nominal space weather conditions.
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5 Global 4D electron density modelling

constrained optimization technique, as described in Chapter 4, is used to estimate the B-spline
coefficients dJ1,J2

k1,k2∶κ of the selected key parameters κ ∈ K1 subject to the inequality constraints

κl(φ, λ) ≤ κ(φ, λ) ≤ κu(φ, λ), (5.13)

where the lower bound functions κl(φ, λ) and the upper bound functions κu(φ, λ) are given and
represent physically realistic limits, as shown in e.g. (5.7). By including an example peak density20

constraint, in addition to peak height, the pair of inequalities

220 km ≤ hF2
m (φ, λ) ≤ 440 km

0.02 EDU ≤ NF2
m (φ, λ) ≤ 2.2 EDU

(5.14)

shall be satisfied21 simultaneously. Besides the inequality (5.13), the equality constraints

κ(φ, λ) = κe(φ, λ) (5.15)

must hold for the remaining key parameters κ ∈ K2 with a given, physically realistic function
κe(φ, λ). Using the series expansion (5.5), the bound functions κl(φ, λ), κu(φ, λ) and κe(φ, λ) are
transformed into the lower and upper bounds on the corresponding B-spline coefficients dJ1,J2

k1,k2∶κl
,

dJ1,J2
k1,k2∶κu

and dJ1,J2
k1,k2∶κe

. The ”bounded parameter space” enclosed by the constraint bounds κl and
κu is the feasible region22 F for the key parameters κ ∈ K1 (see Section 4.2.1). In Chapter 6, it will
be shown that the lower and upper bounds for key parameters are varying with time.
To demonstrate the application of inequality constrained optimization to EDM, the subset

K1 = {κ1 = NF2
m , κ2 = hF2

m , κ3 =HF2 , κ4 = NP
0 , κ5 =HP

} (5.16)

of the 5 key parameters is introduced, out of which three belong to the F2-layer and the remaining
two to the plasmasphere.
Analogous to (4.8), to set up a GMM for EDM, Eq. (5.1) is linearized by considering the
partial derivative of Eqs. (5.2) and (5.3) with respect to the B-spline coefficients dJ1,J2

k1,k2∶κ of
a selected key parameter κ ∈ K1. Collecting the B-spline coefficients in the vector dκ =

[dJ1,J2
0,0;κ , dJ1,J2

0,1;κ , ⋯, dJ1,J2
KJ1−1,KJ2−1;κ]

T
, decomposing it into the vector dk;0 of the initial values and

the vector ∆dκ of the corrections, the inequality constraints (5.13) are expressed as a linear matrix
inequality (LMI) Bκdκ ≤ bκ for κ ∈ K1, which upon substituting dκ = dκ;0 +∆dκ, gives

Bκ (dκ;0 +∆dκ) ≤ bκ (5.17)

and upon further rearranging gives Bκ∆dκ ≤ bκ −Bκdκ;0 or compactly written as

Bκ∆dκ ≤∆bκ, (5.18)

where Bκ is a given constraint coefficient matrix and ∆bκ = bκ −Bκdκ;0 is the constraint bound
vector, which denotes the difference between a given bound and that computed from the initial or
updated B-spline coefficients. The given bound bκ means the constraint bound vector related to the
lower bound function κl and the upper bound function κu of the key parameter κ.
To set up the estimation model, we introduce the vector dκ = [d

T
κ1 , ⋯ , dT

κ5]
T of the B-spline

coefficients for all 5 key parameters κ1 to κ5, the corresponding vector dκ;0 = [d
T
κ1;0 ⋯ dT

κ5;0]
T

of the initial B-spline coefficient values, the vector ∆dκ = [∆dT
κ1 ⋯ ∆dT

κ5]
T of the B-spline

20For convenience, the electron density units (EDU) is defined as 1 EDU = 1012 elec/m3

21This is just one example of the constraint bounds.
22Feasible region was introduced in Chapter 4; definition 4.2.2
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5.4 Constraint transformation

coefficient corrections, the vector bκ = [b
T
κ1 ⋯ bT

κ5]
T of the constraint bounds as well as the

matrix Bκ = [Bκ1 ⋯ Bκ5] of the constraint coefficient matrices and the matrix Aκ = [Aκ1 ⋯ Aκ5]

of the partial derivatives of the electron density with respect to the B-spline coefficients of the
key parameters κ1 to κ5 (see Section 5.5). Furthermore, according to Eq. (5.15), the equality
constraints Eκdκ = eκ are defined, where Eκ is the equality constraint coefficient matrix and eκ is
the corresponding given value related to the function κe of the key parameter κ ∈ K2. In order to be
consistent with the convention of representing matrices in bold captial letters and vectors with bold
small caps letter, ne will be used to refer to the vector of electron density23. Finally, the vector
∆ne = ne −ne;0 of the differences between the observed electron density ne and the vector ne;0 of
the corresponding values computed from the vector d0 of the initial B-spline coefficient values and
the vector dκ for the key parameters are introduced. With the aforementioned matrices and vectors
the GMM

∆ne + ene =A∆dκ with D(∆ne) = σ2
0P −1 (5.19)

is introduced, subject to the LMI Bκ∆dκ ≤ ∆bκ for κ ∈ K1 and Eκdκ = eκ for κ ∈ K2
respectively. In the model part of (5.19), ene denotes the random vector of the unknown measurement
errors, P is a given positive definite observation weight matrix and σ2

0 is the unknown variance
factor. Thus, we have derived the GMM of EDMP in (5.19) analogous to (4.8). Depending on the
observation techniques used, the design matrix Aκ shall be cascaded with the corresponding partial
derivative sub-matrices. For example when STEC observations are considered in addition to IRO
electron density, then the sub-matrices ∂ST EC

∂dκ
, as shown in Appendix E.

5.4 Constraint transformation
It has been shown in the previous section that a 4D EDM problem (5.1) subject to physically
realistic prior information, e.g. (5.7) are systematically transformed to a GMM (5.19). Implicitly,
in this procedure, there is a transformation between the applied constraints on the Chapman key
parameters κ ∈ K1 to that on the corresponding B-spline coefficients dκ. This transformation is an
important design detail in EDM to ensure that the estimated B-spline coefficients also satisfy the
KKT system of equations (4.87a), (4.87b) and (4.87c).
In this section, the above mentioned transformation of the inequality constraints on key parameters
κ ∈ K1 to their corresponding B-spline coefficients will be described. Subsequently, the coefficient
matrix Bκ and constraint bound vector bκ will be derived.
The upper and lower bounds on the F2-layer peak density and the peak height as examples of
inequality constraints at a location is illustrated in Fig. 5.3, where the day and night side EDPs are
shown alongside, indicating that the bounds are time dependent. As described before, the inequality
constraints are applied on each key parameter κ in the set K1 and, in general, they are dependent
on location and time (and hence, by extension on the space weather phenomena). In order to derive
Bκ, referring to (5.13) and taking a specific example of the lower and upper bounds

κ(φ, λ) ≥ κl(φ, λ)

κ(φ, λ) ≤ κu(φ, λ)
(5.20)

at a certain location {φ, λ} and time for the key parameter κ ∈ K1, the following transformation of
constraints to B-spline coefficients will be shown (once again at a given time instant and therefore
the time indices are ignored in this section). Multiplying the lower bound inequality (5.20) by −1
on both sides yields

−κ(φ, λ) ≤ −κl(φ, λ), (5.21)
23Although this is a small change from the earlier classical convention of using ne to represent the electron density, it

will serve to maintain the mathematical consistency.
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5 Global 4D electron density modelling

Figure 5.3: F2-layer electron density profile with constraint bounds on the key parameters and feasible
region.

to the convex standard form24 and substituting in B-spline representation (5.5) gives

−

KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

dJ1,J2
k1,k2∶κ NdN

k1
(φ) T dT

k2
(λ) ≤ −κl(φ, λ). (5.22)

The upper bound inequality κ(φ, λ) ≤ κu(φ, λ) in (5.20) is already in convex standard form and
substituting (5.5) in (5.20) gives

KJ1−1

∑
k1=0

KJ2−1

∑
k2=0

dJ1,J2
k1,k2∶κ NdN

k1
(φ) T dT

k2
(λ) ≤ κu(φ, λ). (5.23)

The product of polynomial NdN

k1
(φ) and trigonometric B-splines T dT

k1
(λ) at observation locations

φ ∈ φ and λ ∈ λ is contained in Ψ
NT

matrix, also referred as the tensor product matrix; see
Schmidt (2015). Combining Eqs. (5.22) and (5.23), the linear matrix inequality (LMI)

− Ψ
NT

dκ ≤ −κl

Ψ
NT

dκ ≤ κu
(5.24)

is obtained, which represents the global upper and lower bound constraints together. Comparing
Eqs. (5.18), (5.17) and (5.24), the constraint coefficient matrix and constraint bound vector

Bκ = [
−Ψ

NT

Ψ
NT

] bκ = [
−κl

κu
] (5.25)

are obtained. Let dκ;l and dκ;l be the desired lower and upper bounds on the B-spline coefficient
dκ, then using (5.24) gives

− Ψ
NT

dκ;l = −κl

Ψ
NT

dκ;u = κu
(5.26)

24inequality expressed with a ”less than or equal to” relation.

94



5.5 Partial derivatives of electron density

from which an estimate25 d̂κ;l and d̂κ;u of the lower and upper bound constraint on the B-spline
coefficients respectively are estimated. Thus, the constraints bounds κl, κu have been transformed
to that on the respective B-spline coefficients dκ;l, dκ;u. The unknown B-spline coefficient correction
vector ∆dκ is estimated from the constraint optimization approach described in the Section 4.5.2.

5.5 Partial derivatives of electron density

To solve for the correction to the unknown B-spline coefficients ∆dκ in (5.19), the matrices Aκ

and Bκ are needed. Computation of the latter was shown in Eq. (5.25) and in this section, the
former, i.e. the partial derivative of electron density ne(φ, λ, h) at a certain location {φ, λ, h} with
respect to the B-spline coefficients dJ1,J2

k1,k2∶κ for κ ∈ K1, will be shown. For better readability, the
location indices will not be used in this section. More generally, we are seeking to compute the
matrices26 ∂ne

∂dκ
∀ κ ∈ K1. The computation of an element with the row index corresponding to the

observation {φ, λ} as well as the column index (k1 ⋅ k2) + 1, of the sub-matrices Aκ1 to Aκ5 , will be
shown in this section. Starting with the F2 layer, the following three partial derivatives: ∂ne

∂d
J1,J2
k1,k2 ∶N

F2
m

,

∂ne

∂d
J1,J2
k1,k2 ∶h

F2
m

and ∂ne

∂d
J1,J2
k1,k2 ∶H

F2

are computed as follows:

∂ne

∂dJ1,J2

k1,k2∶N
F2
m

=
∂ne

∂NF2
m

∂NF2
m

∂dJ1,J2

k1,k2∶N
F2
m

(5.27)

which, using Eqs. (5.2) and (5.10), is further written as

∂ne

∂dJ1,J2

k1,k2∶N
F2
m

= exp(1
2
(1 − h − hF2

m

HF2
− exp(−h − hF2

m

HF2
))) Ψ

NT ;k1,k2
. (5.28)

where Ψ
NT ;k1,k2

= NdN

k1
(φ) T dT

k2
(λ) denotes an element, corresponding to the column index (k1 ⋅k2)+1

and the row corresponding to the observation location {φ, λ}, of the Nobs × (KJ1 ⋅K2) dimensional
tensor product matrix Ψ

NT
, with Nobs being the number of observations at the given time epoch.

Substituting

z =
h − hF2

m

HF2
, (5.29)

and applying the chain rule of calculus, the partial derivative of electron density with respect to hF2
m

B-spline coefficients is computed as follows:

∂ne

∂dJ1,J2

k1,k2∶h
F2
m

=
∂ne

∂z

∂z

∂hF2
m

∂hF2
m

∂dJ1,J2

k1,k2∶h
F2
m

= NF2
m exp(1

2
(1 − z − e−z

))
(1 − e−z)

HF2
Ψ

NT ;k1,k2

+

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−NP
0

HP exp(−(h−h
F2
m )

HP ) Ψ
NT ;k1,k2

, if h ≥ hF2
m

NP
0

HP exp(−(h−h
F2
m )

HP ) Ψ
NT ;k1,k2

, otherwise.

. (5.30)

25In this case, a least squares estimate is used.
26The derivative of a vector valued electron density ne at a location (φ, λ) along the altitudes (hmin − hmax) with

respect to vector valued B-spline coefficients dκ yields the matrices Aκ1 -Aκ5 .
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5 Global 4D electron density modelling

Using Eqs. (5.12), (5.29) the partial derivative of electron density with respect to HF2 B-spline
coefficients is evaluted as follows:

∂ne

∂dJ1,J2
k1,k2∶HF2

=
∂ne

∂z

∂z

∂HF2

∂HF2

∂dJ1,J2
k1,k2∶HF2

= NF2
m exp(1

2
(1 − z − e−z

))
(1 − e−z)

(HF2)
2 Ψ

NT ;k1,k2

. (5.31)

Using Eq. (5.3), the corresponding partial derivatives for plasmaspheric extension,

∂ne

∂dJ1,J2
k1,k2∶NP

0

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

− exp(−(h−h
F2
m )

HP ) Ψ
NT ;k1,k2

, if h ≥ hF2
m

exp(−(h−h
F2
m )

HP ) Ψ
NT ;k1,k2

, otherwise
(5.32)
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0
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⎨
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HP )
h−h

F2
m

(HP )2 Ψ
NT ;k1,k2

, if h ≥ hF2
m

exp(−(h−h
F2
m )

HP )
h−h

F2
m

(HP )2 Ψ
NT ;k1,k2

, otherwise
(5.33)

are additionally evaluated.

5.6 Solution of GMM
In the previous sections, the global 4D EDM is posed as an inequality constrained optimization
problem (ICOP) with the B-spline coefficients as the unknown optimization parameters. The scope
of this section will be to show the exact analogy of 4D EDM to the solution of ICOP using KKT
equations (4.94), (4.95) and (4.96), described in Chapter 4. Section 4.4.2 already described the
augmentation of inequality constraints into a Lagrangian function, thereby transforming an ICOP
to a partial ICOP; see Eq. (4.65). Associated with each constraint on a key parameter κ are the
additional unknown pair of Lagrange multiplier and slack variable. Cumulatively for the complete
set of global constraints, these are denoted as the vectors λ and s respectively. As described in
Chapter 4, the inequality constraints on KPs are transferred to an equivalent positivity constraint on
the corresponding slack variables (see Eq. (4.79) in Section 4.4.2). Furthermore, it was also shown
that using the squared slack variable transformation (4.66), eliminates that positivity constraint
as well. The only remaining inequality constraint is on the Lagrange multiplier due to the KKT
condition (4.72c); see Section 4.5.1. The unknown parameters of optimization problem (or the
optimization parameters) are then estimated by solving the KKT equations, as described in Sections
4.5.2 and 4.5.3 in Eqs. (4.94)-(4.98), which are themselves not repeated again, but the necessary
matrices Aκ and Bκ to solve the KKT equations were derived in Sections 5.3 and 5.4 respectively.
The IRI model is used for the initialization of the B-spline coefficients dκ;0 for the chosen key
parameters κ ∈ K1. It shall be noted that IRI does not provide the B-spline coefficients directly,
instead these are estimated in 2 steps:

• Obtain the Chapman key parameters κ ∈ K1 from the IRI model and denoted as κIRI

• Initial B-spline coefficients dκ;0 are then estimated from Eq. (5.5) using κIRI .
This is an important step because, at the start of iteration in KKT solution (it = 0), the initial values
dκ;0 are required to linearize the observation model; see Eq. (5.19) to estimate the corrections ∆dκ.
More generally, following the convention of Eq. (4.8), the observations y used for the estimation
procedure are combined together with their respective given weight matrices P and the unknown
variance factor σ2

0. Thus far, the GMM (5.19) with both deterministic as well as stochastic models
are derived and the equality, inequality constraints are also imposed.
The next processing step was to solve for the unknown model parameters of GMM by first forming,
the objective and subsequently the Lagrangian function, analogous to Eq. (4.65), using the initial
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B-spline coefficients dκ;0, initial variance factor σ2
0 and the inequality constraints (5.17), (5.18).

Applying KKT conditions (4.71) - (4.72d), the optimality system of equations are obtained and are
then solved using Newton’s method (see Sections 4.3.3, 4.5.3). This requires initial values for the
Lagrange multiplier λ0, the slack variable s0 vectors and the step size matrix T it from Eq. (4.109)
at an iteration it to be used in Newton’s method; see Fig. 4.25.
One of the challenges is in the computational complexity with iterating until an estimate of the
step size is obtained. Specifically, this is quantified by the convergence of the iterative procedure,
achieved when a given pair of step size T it and descent direction ∆dκ; see Eq. (4.29), satisfy the
following two necessary conditions (hereafter referred to as NCopt) (see e.g. Boyd and Vandenberghe
(2004), Nocedal and Wright (2006)):

1. the updated B-spline coefficients
d̂κ = dκ;0 +∆dκ (5.34)

are within the feasible region FR defined by constraints (see definition 4.2.2 in Chapter 4)
2. the updated Lagrange multiplier and slack variable vectors

λ̂ = λ0 +∆λ and ŝ = s0 +∆s (5.35)

satisfy the KKT complimentary slack conditions; see Eqs. (4.72c), (4.72d).
Together these two conditions, i.e. NCopt are checked to see if the estimated key parameters are
within feasible region, in which case, the corresponding slack variables shall all be positive, i.e. ŝ ≥ 0
and thus there would no constraint violations (more on this topic will be described in Chapter 6;
Numerical evaluations). In some cases (as will be shown in Section 6.3, Appendix C.7 and Appendix
C.8 during numerical evaluations E1 - E12), it has been observed that only one of the above two
conditions NCopt are met. Upon detailed investigation, those were found to be the specific case
of only the need for improvement in the estimated Lagrange multipliers or the slack variables.
Therefore, it was sufficient when the last computed values {λ, s} are recursively passed on to the
step where optimality conditions (Section 4.5) are applied and KKT equations are obtained.
Hence, an iterative procedure is needed (and has been developed) until both the conditions in
NCopt are satisfied. The relative complexity between an itertaive procedure to compute a step size
matrix as well as the variance components depend on the number of constraints and the convexity
of the optimization problem. While the former is discussed in further detail in Chapter 6, the latter
is dependant on the quality of observations; see Eq. (4.28) and Fig. 4.4. If both the conditions
in NCopt are satisfied, then the most recently estimated variance components σ̂2

0 (based on VCE
procedure, as described in Section 4.1.2) are passed recursively to the Lagrangian minimization
procedure until convergence27. It has already been explained in Section 4.3.1 that due to the
presence of inequality constraints, the convergence criteria does not apply if the condition (4.34) is
violated28.
For the scope of this chapter, the discussion were limited to estimated B-spline coefficient correction
vector ∆dκ, although more generally the correction to unknown parameters (see e.g. ∆β in Eq.
(4.107)) also additionally contains the corrections to Lagrange multipliers, slack variables as well as
differential code biases (DCBs)29. To keep the discussion simpler and to the context of this chapter,
∆dκ shall be the desired descent direction vector.
The final estimated set of B-spline coefficients in Eq. (5.34), variance factor vector, the optimum
step size matrix are further used in a Monte-Carlo procedure to obtain the standard deviations (or
27The convergence criteria is an important design criteria and has a significant impact on the accuracy of the modelled

key parameters. For example a threshold of RMSE β̂it = 10−18 for simulated observation dataset, for use in Eq.
(4.7), was used for this work. For other datasets a value between 10−8 to 10−12 was used. These datasets are
described in detail in Chapter 6, Table 13 and in Fig. 16.

28In fact this aspect has been identified as one of the challenges to overcome in possibly future work when real-time
EDM shall be considered.

29DCBs are relevant only when GNSS STEC are considered in observations.
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5 Global 4D electron density modelling

the quality estimate) for the Chapman key parameters. Examples of standard deviation maps will
be shown in the discussion of numerical evaluations. The final estimated B-spline coefficients in Eq.
(5.34) are used to calculate the Chapman key parameters globally as well as at selected ionosonde
station locations for validation. An additional validation is performed by evaluating the electron
density using the estimated key parameters and compared with along track in-situ observations
of Swarm A, B, C satellites. These aspects will be discussed in detail in Chapter 7 during the
validation of EDM.

5.7 Summary of global electron density modelling
We have reached the end of this chapter where the concept of inequality constrained optimization
have been applied to EDM. Beginning with the stratification of the ionosphere into the D, E, F1, F2
layers and the plasmapshere, the electron density of each layer is parametrized by the Chapman key
parameters, namely, (1) the peak density, (2) the peak height and (3) the scale height. Plasmaspheric
electron density is parametrized using its basis density and the scale height. While the electron
density of the former four layers are modelled using the Chapman profile function (5.2), that of the
plasmasphere is modelled using an exponential decay function (5.3). More generally, the Chapman
key parameters of each layer are contained in the set K, from which a subset K1 was used for
a demonstration of EDM. Each of the key parameters κ ∈ K1 are modelled using 2D B-splines
spatially, thereby the corresponding B-spline coefficient correction about initial values become the
unknown parameters of the GMM (5.19). The upper and lower bounds κu, κl respectively, on the
the key parameters κ ∈ K1 lead to a system of linear inequalities which are accumulated in the
LMI (5.17), such that together with the GMM, the 4D EDM is posed as a constrained optimization
problem of the form (4.25). Specifically, the design matrix Aκ and the constraint coefficient matrix
Bκ used for the estimation of the unknown B-spline coefficients were derived in this chapter. A
detailed description of the transformation between constraints applied to Chapman key parameters
and those equivalently transformed to B-spline coefficients was also provided. Finally, an analogy
between the theoretical solution of constrained optimization problem (as described in Chapter 4)
and that of EDM problem were described in Section 5.6.
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6 Numerical evaluations

In the Chapters 4 and 5, the optimization algorithm and its applicability to the electron density
modelling have been described respectively. In this chapter, numerical evaluations will be performed
with this electron density model to analyse NF2

m , hF2
m and the corresponding slack variables.

The following general conventions apply to this chapter:
• The term ”F3C observations” refers to the electron density values derived from Formosat-

3/COSMIC (F3C) occultation measurements (see Section 3.2.1).
• The term ”GRACE observations” refers to the electron density values derived from the

occultation measurements of the GRACE A/B satellites (see Section 3.2).
• The term ”GNSS observations” refers to the STEC computed from GNSS pseudorange and

carrier phase measurements (see Section D.1).
• The term ”VTEC observations” refers to the electron density values computed using the

separability approach (see Section 7.1).
• The term ”model parameter” refers to the B-spline coefficient vector of the key parameters of

the set K1 (see Section 4.2).
• The term ”optimization parameter” refers to the composite vector of the unknown B-spline

coefficients, the Lagrange multiplier and the slack variables (see Section 4.4.2).
This chapter focuses on two important output parameters, namely the slack variable and the
deviations of a key parameter from the reference values. The slack variable provides information
about the ”qualification” of a given constraint (see Chapter 4, definition 4.4.1), whereas the deviation
of an estimated key parameter κ̂ is defined as ∆κ = κ̂−κref and that of the corresponding estimated
B-spline coefficient vector as ∆dκ = d̂κ − dκref

, where κ̂, d̂κ are the estimated, κref and dκref
are

the reference values of the key parameter and the estimated B-spline coefficient vector respectively.
Three observation datasets are used in this chapter, namely (1) DS1a, (2) DS2d and DS2a and (3)
DS3. For evaluations using dataset DS1a, the deviation is computed with a known reference (κref ).
The known reference itself is computed as described in Section 7.1. For the evaluations using the
dataset DS2, the Chapman key parameters from an independent reference, e.g. dataset DS3, will be
used for computing the deviation. The descriptions of the datasets are provided in Table 13 and in
Fig. 16.
For the scope of this chapter, the following nine inputs (or the so-called ”independent variables”)
are identified:

1. Number of ionosphere layers to be modelled
2. Inequality constraint bounds
3. Inequality constraint resolution1

4. B-spline levels of the key parameters
5. Total number of used observation techniques
6. Number of observations per technique
7. Initial conditions
8. Optimization algorithm specific parameters
9. Space weather conditions (year and month)

1In particular, spatial resolution is meant here. During the early investigations, constraint temporal resolution was
not found to be a dominant factor. A constraint temporal resolution of 6 hours is used in this work.
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6 Numerical evaluations

Figure 6.1: Independent variables in electron density modelling

These variables are shown in Fig. 6.1. In the next section we will describe and quantify each of the
above variables, which could be varied, while keeping the other parameters fixed to evaluate the
electron density model2. It shall be noted that the independent variables are closely linked to one
of the three pillars illustrated in Fig. 4.1.

6.1 Independent variables
In the following, the independent variables are described and their nominal values quantified for the
numerical evaluations.

Number of ionosphere layers

Figure 6.2: ionosphere layers and the Chapman key parameters

The outcome of an evaluation by varying the key parameters in K1 and K2, signifies of each of the
individual key parameters. It shall be noted that the overall accuracy of the modelled key parameter
depends on the quality of given values in the set K2 as well. Although among the 14 key parameters
in K, several permutations are possible, in the evaluations E1 to E8 the ionosphere layers D, E, F1
and F2 as well as the plasmasphere are considered. However, obtaining the given values for the
scale height of the individual layers is a challenge because it is not a direct output of any empirical
or physical ionosphere model. Indirect methods to model and charecterise the F2 layer scale height
can be found in Belehaki et al. (2006), Stankov. and Jakowski (2006), Altadill et al. (2013), Lei and
Chuo (2014). The effect of varying the F1− layer peak height and peak density at selected locations
has been analysed in Liang (2017) and in this work the focus will be on varying the inequality
constraint bounds imposed on the multi-Chapman key parameters.

2The number of permutations by varying each of the input variables is enormous and beyond the scope of this work.
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6.1 Independent variables

As explained in Chapter 5, the key parameters of the ionosphere layers (see Fig. 6.2) are either
estimated as unknown B-spline coefficients or treated as known values, e.g. given from a model. The
first independent variable is the number of ionosphere layers considered in our modelling problem
which is related to the total number of key parameters in the sets K1 and K2 together. Increasing
the number of key parameters in K1 directly increases the number of B-spline coefficients, and
consequently the total number of unknown parameters, to be estimated. Therefore, only a minimum
number of key parameters shall be considered in K1 and reliable sources3, e.g. the IRI model (Bilitza
(2000)) or thermosphere-ionosphere coupled models (Richmond et al. (1992)), shall be used for
values used in K2. In numerical evaluations, we select the 5 key parameters

K1 = {κ1 = NF2
m , κ2 = hF2

m , κ3 =HF2 , κ4 = NP
0 , κ5 =HP} (6.1)

to be modelled and the given values

K2 = {κ6 = NF1
m , κ7 = hF1

m , κ8 =HF1 , κ9 = NE
m, κ10 = hE

m, κ11 =HE ,

κ12 = ND
m , κ13 = hD

m, κ14 =HD
}

(6.2)

obtained from IRI. As exception, the scale heights of the F1−, E− and the D− layer are obtained

κ8 =HF1 =
HF2

10
; κ11 =HE

=
HF2

10
; κ14 =HD

=
HF2

10
(6.3)

(see Limberger (2015)) assuming that the HF2 are non-zero.

Figure 6.3: Illustration of the varying the upper bound constraint and the resulting dynamic range.

Constraint bounds
Constraint upper and lower bounds are the second set of independent variables. One of the
main novelties of this work is the estimation B-spline coefficients subject to inequality constraints.
Therefore,

of particular interest in the numerical evaluations is to analyse the impact of varying the
inequality constraint bounds on global 4D electron density modelling.

Specific aspects related to the analysis of the slack variables and constraint violations have received
less attention in the literature and require extensive numerical evaluations. In contrast to a
deterministic effect on the total electron density by varying the number of ionosphere layers, the
effect of constraint bounds is not known apriori. More specifically, it is not known as to which
of the constraints will be ”active”, ”inactive” or ”violated”. Therefore, of particular interest in

3For the peak density and peak height of the F1, E and D layers, approximate values are available from the ionosphere
models, e.g. IRI, NeQuick.
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Figure 6.4: Hypercuboid topology from 1d to 4d. Source Wikipedia. Examples of hypercuboid in 0, 1, 2
and 3 dimensions are point, line, rectangle and cuboid respectively.

Figure 6.5: Dynamic range of F2 layer peak density and peak height. As will be described in Appendix A
the difference between the upper and the lower bound of a given constraint at a given location
is shown in this figure. It means, for a given step size matrix in the ICOA, a larger value e.g.
0.8 EDU for NF2

m and 65 km for hF2
m denote that at the corresponding locations, the inequality

constraints are imposed with a larger feasible region and thus allowing more number of candidate
solutions to be considered for the Lagrangian minization.

this work is the analysis of the effect of the different inequality constraint bounds, which to the
best knowledge of the author has not been studied yet. However, the optimization approach for
inequality constrained problems in geodesy has been used for geodetic network adjustment (see
Koch (1985), Koch (1988)), variance component estimation (Koch (1999)) and zenith tropospheric
delay (Roese-Koerner (2015)).
Specifically, the constraint bounds for NF2

m and hF2
m will be varied in the sequel and this aspect will

be discussed in the Section 6.2. An example of upper and lower constraint bounds on hF2
m is shown

in Fig. 6.6.

Constraint resolution

Constraints are applied on the Chapman key parameters globally at a specific spatial resolution
and transformed to the corresponding B-spline coefficients, see Section 5.4; Eq. (5.26). Table 6.1
shows the number of Lagrange multipliers and slack variables to be estimated for the three different
spatial resolutions of the constraint. Ideally, the resolution is paired with the B-spline levels of
the individual key parameters (see Chapter 5, Eqs. (5.10), (5.11) and (5.12)). In this work, a 5○
resolution along both the latitude and the longitude is used for the upper and lower constraint
bounds.
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Figure 6.6: Global hF2
m distribution with data from IRI model over the year 2014 along with the example

constraint bounds. This is just an example to show the approximate bounds and the typical
values of hF2

m to be expected.

Table 6.1: Spatial resolution of constraints and the impact on the parameterization of the optimization
problem.

Spatial resolution of constraints Lagrange multiplier
latitude × longitude(ř) and slack variables (#)

2.5 × 2.5 21608
2.5 × 5 10804
5 × 5 5702

B-spline levels

As mentioned in Section 5.1, the levels J1 and J2 define the total number KJ1 = 2J1 + 2 and
KJ2 = 3 ⋅ 2J2 of polynomial and trigonometric B-spline functions as well as the shift parameters
k1 = 0, 1,⋯, KJ1 −1 and k2 = 0, 1,⋯, KJ2 −1, their position in the latitude-longitude space respectively
(see e.g. Schmidt (2011), Schmidt et al. (2015)). Appropriate values for the levels J1 and J2 are
chosen from the average sampling intervals of the observations with respect to latitude and longitude
(Schmidt et al. (2015), Goss et al. (2019)). The higher the numerical values for the levels, the more
spline functions are included in Eq. (5.5) and thus finer are the signal structures which can be
modelled (Zeilhofer (2008), Limberger (2015) and Liang (2017)). In the scope of this chapter, the
level values J1 = 4 and J2 = 3) are used for all key parameters in the set K1. This convention for
defining the B-spline levels was already described in Chapter 5.

Observation techniques

Space and ground based observation techniques (see Fig. 6.7), as introduced in Chapter 3, are used
in this work for electron density modelling as well as for validation (to be later described in Chapter
7).
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Figure 6.7: Observation techniques relevant for EDM. Those in blue font are the ones directly used within
this work and the remaining ones in black font are not used. DORIS and altimetery techniques
are indirectly used in this work due to the use of DGFI-TUM VTEC map which is generated
already considerignt hese two techniques.

As already mentioned in Chapter 3, DORIS and altimetry techniques are used to generate VTEC
global ionosphere maps (GIM)4 (see Erdogan et al. (2017), Erdogan et al. (2020)), which in-turn is
used to obtain the electron density observations in the separability approach (see Section 7.1).
For the numerical evaluations, three datasets are considered:

• Dataset-1 (DS1a): Simulated electron density for which the underlying Chapman key paramet-
ers are known. Procedure for the simulated data generation including realistic measurement
noise5 will be described in Chapter 7.

• Dataset-2 (DS2): A combination of GNSS STEC and electron density from F3C IRO, GRACE
IRO, seperability approach for the time period between 08 - 14 March 2015. 6

• Dataset-37 (DS3): Electron density, NF2
m and hF2

m from the ionosonde for the time period
between 08 - 14 March 2015.

Number of observations per technique

The datasets can be configured to contain a different number of observations from each of the three
techniques (GNSS STEC, IRO and VTEC separability approach). As described in Chapter 5, in
the case of VTEC observations (from the separability approach), an altitude resolution δh = 20 km
is used between 80 and 220 km, δh =5 km between 220 and 480 km and δh = 20 km between 480
and 1000 km, thus leading to a total of 89 discrete altitudes with a denser sampling in the F2 layer
compared to the others.

Initial condition or initial value

As mentioned in the Chapters 4 and 5, the choice of the initial values is an important consideration for
electron density modelling using the optimization approach. The following options are investigated
to obtain the approximate initial B-spline coefficients for the key parameters κ ∈ K1:

• Option 1 (Opt1): Use the Chapman key parameters from the IRI model to obtain the initial
values for the B-spline coefficients.

• Option 2 (Opt2): Use the estimated B-spline coefficients from the previous (most recent) time
epoch.

4GIM is one of the standard ionospheric VTEC data product from IGS analysis centers (see Feltens (2007) and
Schaer (1999)).

5Dataset DS1a used for the numerical evaluations E9 - E12 meant simulated observations without noise.
6Details on GNSS receivers, satellites, pre-processing and the separability approach for computing the electron

density from VTEC are described in Chapter 3.
7This dataset is only used from selected ionosonde stations for validation of the numerical evaluations. It will be

used more comprehensively for independent validation in Chapter 7.
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• Option 3 (Opt3): Use the B-spline coefficients (or key parameters) predicted8 to the current
time epoch.

There are two disadvantages of using Opt1: (1) The prior information from the most recently
estimated B-spline coefficients are ignored and (2) the empirical ionospheric models (e.g. IRI,
NeQuick) do not provide the scale height directly. Therefore, in this work a combination of Opt2
and Opt3 is preferred.

Optimization tuning parameters

There are three tuning parameters, namely, the ”complimentarity measure” (µcom); see Eq. (4.110),
the ”centering parameter” (σcen) and the ”step-size”, as introduced in the Section 4.5.3. Although
included in the list of independent variables, the tuning parameters are not externally driven in the
numerical evaluations for the two main reasons: (1) µcom and σcen are computed using intermediate
outputs (see Eq. (4.110) and Section 4.5.3) and hence are not completely independent and (2) as
explained in Section 4.5.3, these two parameters are only responsible for the intermediate solution
path (see Mehrotra (1992), Tütüncü et al. (2003), and Nocedal and Wright (2006)). The intermediate
solution path of our optimization algorithm or the tuning parameters are not the main focus of this
work9 and therefore this aspect will not be discussed further.
The third tuning parameter is the step-size tit; see Section 4.7.3 used within the gradient descent
or Newton’s method. Strictly speaking, the step-size is indeed an independent parameter in the
optimization algorithms (see e.g. Gill et al. (1984), Jacobs (1988), Wilson and Martinez (2001),
Boyd and Vandenberghe (2004), Nocedal and Wright (2006)) but10 in this work it is computed
based on the method described in the Section 4.7.3, Eq. (4.158). An example of the effect of a
constant step-size on the optimal solution, with the gradient descent algorithm, is shown in Fig. 4.8.

Space weather condition

The last among the nine independent variables is the phase of the solar cycle (or in the time epoch of
processing) chosen for electron density modelling11. Although a 11-year cycle is generally attributed
for the sun-spots and their effect on the ionosphere (Hernández-Pajares et al. (1998), Aragon-Angel
et al. (2016)), there are also short term variations in the order of days or even hours (see Jakowski
et al. (1999), Förster and Jakowski (2000), Borries et al. (2009)). Therefore, a combination of the
different periodic effects are included in the observations. Furthermore, the polar, mid and low
latitudes are affected differently by the space weather events (see e.g. Hargreaves (1992), Jakowski
(2017)).
These were the nine independent variables directly or indirectly required for electron density
modelling, based on which the evaluations listed in Table 6.2 are performed.
In the next section, the focus will be on the analysis of the impact of constraint bounds on the
estimated optimization parameters. Specifically, the following questions will be answered:

8Projected forward in time based on the last finite samples using an auto-regressive (AR) or an auto-regressive
moving average (ARMA) model; see Section 4.7.4.

9The initial assessment performed during the development of our software prototype, the tuning parameters were
identified and used throughout this work.

10Initial testing of the optimization algorithm involved less than 10 unknown parameters. However when extending to
larger dimensional electron density modelling problems (more than 1000 unknown parameters), a more systematic
way of step-size computation becomes a necessity.

11In order to avoid confusion, the time window of processing can be adapted to the exact obectives of any study, i.e
the impact of solar maximum, minimum, etc. In case of simulated observations, the indices, e.g. F10.7, Dst etc.
are used as proxy for quantifying the strength of a space weather event. However, when a particular events, e.g.
the St. Patrick’s day storm needs to be studied or analysed, the space weather conditions become fixed to the
exact conditions observed at that particular time. It is only an independent variable when the performance of the
optimization algorithm is to be tested on a variety of geomagnetic and space weather conditions.
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6 Numerical evaluations
Table 6.2: Outline of the numerical evaluations. The datasets are defined in Appendix C Table 13.

Evaluation independent parameter to be varied observation
identifier dataset

E1 NF2
m nominal lower and upper bounds DS2d

E2 NF2
m reduced upper bound compared to that in E1 DS2d

E3 NF2
m increased lower bound compared to that in E1 DS2d

E4 NF2
m nominal lower and upper bounds

with different observation dataset from E1 DS2a
E5 hF2

m nominal lower and upper bounds DS2d
E6 hF2

m reduced upper bound compared to that in E5 DS2d
E7 hF2

m reduced lower bound compared to that in E5 DS2d
E8 hF2

m nominal lower and upper bounds DS2a
with different observation dataset than in E5

E9 Fixed NF2
m lower bound to 0.02 EDU

(E9a - E9r) and upper bound varied 1.8 - 3.2 EDU DS1a
E10 Fixed NF2

m upper bound to 2.8 EDU DS1a
(E10a - E10n) and lower bound varied 0.001 - 0.51 EDU

E11 Fixed hF2
m upper bound to 480 km DS1a

(E11a - E11d) and lower bound varied from 220 - 280 km
E12 Fixed hF2

m lower bound to 220 km DS1a
(E11a - E11d) and upper bound varied from 420 - 480 km
(E1a - E1d) Role of the bottom ionosphere layers DS2d

• Are the optimization parameters sensitive to changes in the inequality constraints? If yes, how
could they be quantified?

• Are the constraints active, inactive or violated corresponding to the changes in the corres-
ponding inequality bounds?

6.2 Constraint quantification and violation

The system of inequality constraints

Bineqβ − bineq ≤ 0

as introduced in Eq. (4.74) with the upper and lower bounds of the key parameter will be used
to describe the constraint quantification. There are three parameters in this inequality, namely
(1) the inequality constraint bound vector bineq, (2) the unknown parameter vector β and (3) the
constraint coefficient matrix Bineq. In the context of this section, the numerical evaluations E1
to E12 (including 54 sub-evaluations) will be performed by varying the constraint bound vector12

bineq, while the other input parameters, described in Section 6.1 as well as inequality constraint
coefficient matrix Bineq will be kept constant. The only exception will be the evaluations E4 and
E8, where a different observation dataset, compared to E1 and E5 will be used.
If a specific example of the F2 layer peak density is considered, then for a given pair of lower and
upper bounds NF2

m,l, NF2
m,u at a point location P ({φ, λ}), the inequalities

NF2
m,l(φ, λ) ≤ NF2

m (φ, λ) ≤ NF2
m,u(φ, λ) (6.4)

12Only the inequality constraint bounds are used in the numerical evaluations. The equality constraints are not
changed.
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6.2 Constraint quantification and violation

hold. These are two separate inequalities

NF2
m,l(φ, λ) −NF2

m (φ, λ) ≤ 0 (6.5a)

NF2
m,u(φ, λ) −NF2

m (φ, λ) ≥ 0, (6.5b)

one each for the lower and the upper bound, and

− (NF2
m,u(φ, λ) −NF2

m (φ, λ)) ≤ 0 (6.6)

is obtained from (6.5), using the transformations introduced in Section 4.4.1, and expressed by Eq.
(4.58).

Constraint quantification refers to the process of defining numerical bounds, so that two or
more constraints can be compared and their relative impact on the optimization problem be
analysed.

In this work, a new13 method for the constraint quantification will be introduced for the global 4D
electron density modelling with the following two parameters, namely, (1) dynamic range (DR)14

and (2) hypervolume15. Given the upper (κu) and lower (κl) bounds at {φ, λ}, the dynamic range
is defined as

D
r
κ (φ, λ) = ∣κu(φ, λ) − κl(φ, λ)∣ . (6.7)

More generally, the quantification is extended to include global constraints at any {φm, λj}, ∀ m =
{1, ⋯, φmax}, j = {1, ⋯, λmax}, for a given set of key parameters κp ∈ K1 ∀ p = {1, ⋯, q},
where φmax , λmax denote the total numbers of latitude, longitude values respectively, resulting in
a hypervolume16

V(φm, λj) =

q

∏
p=1
D̆

r
κp
(φm, λj), (6.8)

of the hypercuboid17 formed by the edges corresponding to the normalized dynamic range

D̆
r
κp
(φm, λj) =

Dr
κp
(φm, λj)

Nκp

. (6.9)

The normalization factor corresponding to the global maximum dynamic range

Nκ =max (Dr
κ (φm, λj)) ∀ m = {1, ⋯, φmax}, j = {1, ⋯, λmax}, (6.10)

computed as a maximum of the differences between the upper (κu) and lower (κl) bounds for the
parameter κ, where L = φmax ⋅ λmax is the total number of latitude-longitude pairs, at which the
constraints are imposed. Furthermore, for each key parameter κp, an average dynamic range18

D̄
r
κp
=

1
L

φmax

∑
m=1

λmax

∑
j=1
D̆

r
κp
(φm, λj) (6.11)

13To the best knowledge of author, inequality constraint quantification methods have not yet been used for global 4D
electron density modelling.

14Use of the phrase ”dynamic range” is from electrical enginnering where for example the dynamic range of an amplifer
is specified as the difference between the largest and the lowest power levels in dB; see e.g. Smith (2007).

15The n-dimensional hypervolume was originally proposed by Hutschison (1957) as the space occupied by a set of
n-independent axes and resulting in a geometrical shape.

16Extension of volume to multiple dimensions.
17For q dimensions, a hypercuboid has 2q vertices, see Fig. 6.4.
18Averages can be computed similarly for the dynamic range (6.7) as well without normalization.
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6 Numerical evaluations

is the mean over the L global dynamic ranges of κp. Similarly,

V̄ =

q

∏
p=1
D̄

r
κp

(6.12)

gives the average hypervolume. Dynamic range has the same unit as the underlying key parameter
itself and that of the hypervolume is key parameter units raised to the power q in exponent.

Figure 6.8: NF2
m relative accuracy for four different constraint bounds. The dynamic range and slack are

mentioned in the order (a) top-left: NF2
m ≥ 0.01 EDU (b) top-right: NF2

m ≥ 0.11 EDU (c)
bottom-left: NF2

m ≥ 0.31 EDU (d) bottom-right: NF2
m ≥ 0.51 EDU. The dynamic range is reduced

from 2.19 to 1.99 EDU and the electron density modelling problem becomes more critically
constrained from (a) to (d).

The dynamic range (6.7) and the hypervolume (6.8) are both scalars, quantifying the size, and
by extension, the number of ”candidate solutions” (see Section 4.4.2) in the feasible region for a
given step-size19. Figure 6.5 show the dynamic ranges of NF2

m and hF2
m used in the evaluation E1

corresponding to 12 March 2015 at 0 UT. It is shown in Figures 6.9 and 6.8 that the estimated
optimization parameters are sensitive to changes in the dynamic range of the constraints.
To summarize, a constraint is quantified through the two parameters, namely the dynamic range
(DR) and the hypervolume. While the former is defined for each pair of upper and lower bound of
the key parameter κ ∈ K1, the latter is the product of the q individual normalized dynamic ranges
of the key parameters in κ ∈ K1.
Constraint violation
As mentioned in Section 4.4.2, when it is not possible to determine an optimal solution within the
19Qualitatively, the normalized dynamic range D̆r

κ(φm, λj) ≈ 1 indicates a larger feasible region relative to
D̆r

κ(φm, λj)≪ 1.
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6.2 Constraint quantification and violation

Figure 6.9: hF2
m relative accuracy for four different constraint bounds. The dynamic range and slack are

mentioned in the order (a) top-left: hF2
m ≥ 220 km (b) top-right: hF2

m ≥ 240 km (c) bottom-left:
hF2

m ≥ 260 km (d) bottom-right: hF2
m ≥ 280 km. The corresponding dynamic range is reduced

from 260 km in (a) to 200 km in (d) and the electron density modelling problem becomes more
critically constrained.

feasible region, then we have a so called ”infeasible” optimization problem (Boyd and Vandenberghe
(2004)).

A constraint violation is the response of an optimization algorithm to an infeasible problem.

It shall be noted that the constraints violation are not allowed by the design of our interior-point
method and hence are also not allowed in our constraint optimization problem. However, in certain
undesired situations arising mostly due to poor choice of the tuning parameters, constraint violations
occur when satisfying the KKT conditions is no longer possible for the given set of initial conditions,
step-size, objective function and constraint bounds20. Specifically, the constraint violations occur21

when the dynamic range of the constraints are reduced beyond a certain threshold. This is shown
for NF2

m in the evaluations E2, E3 (see Fig. 6.10).

20Qualitatively, other possible reasons for violation are initial value from infeasible region with large negative slack,
larger step-size and lower normalized dynamic range of the constraints.

21The optimizations algorithms are developed in such a way that constraint violations are minimized. See the
Lagrangian formulation in Section 4.4.2
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6 Numerical evaluations

Figure 6.10: Evaluation E2: impact of NF2
m upper bound constraint

A constraint c(β) ≤ 0 is violated at a candidate solution β∗, if

c(β∗) > 0

(see Chapter 4, definition 4.4.1) and, as a consequence, the slack variable becomes negative,
leading to

Bineqβ∗ − bineq > 0, in contrast to the Eqs. (4.74) and (4.75)

There are three strategies to minimize the constraint violations :
1. Increasing the constraint upper bound (UB) or reducing the lower bound (LB), either of which

increases its dynamic range (6.7).
2. Reducing the number of constraints in an optimization problem (This aspect is described in

Appendix B: Constraint rationalization).
3. Reducing the step-size in the optimization algorithm.

To the best knowledge of the author, there is no general ”rule-of-thumb” to select the precise
number of constraints, their bounds or step-size and therefore, in this work, the slack variables,
number of violated constraints etc., are analysed from the numerical evaluations. In this thesis, the
contraint violations were identified and eliminated by increasing the dynamic range of the violated
constraint. This requires a manual intervention to update the constraint bounds and re-execute the
procedure with updated Lagrangian function (which is undesirable from an operational application).
However the scope of this thesis was to understand the performance as well as the limitations of
the chosen interior point method. Therefore it was considered valuable to not only desccribe the
functional procedure, its advantages but also the potential problems arising from violations even
if they are undesirable. Within a few experimental campaigns, we found the appropriate set of
inidial consitions with which our electron density modelling problem (5.1) was set up without any
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6.3 Evaluations E1 - E2

constraint violations at all. Selected campaigns to identify and eliminate constraint violations are
included in this chapter and in Appendix C.
From the Sections 4.5 and 5.2, it follows that the minimization of the Lagrangian function is
unconstrained with regard to the B-spline coefficients of the key parameters. In other words,

the Lagrangian minimization is a least constraint violation problem (LCVP) (see Boyd and
Vandenberghe (2004)).

A detailed theory on the constraint violation can be found in Bonnans J.F. (2000) and Ray et al.
(2009). The next section will describe the numerical evaluations in detail. Particularly, the analysis
will be based on the three output parameters:

• NF2
m and hF2

m slack variable
• NF2

m and hF2
m relative deviation (or accuracy)

• Percentage of NF2
m and hF2

m constraint violations.
Evaluations E1 - E8 and E9 - E12 will analyse the slack variable the RMS relative deviation
respectively. In all evaluations, the percentage of violated constraints22 will be shown.
Even though we have shown that a given constraint qualification can lead to violation, it shall be
noted here that the main results of this thesis, i.e. the estimated key parameters which are used for
the validation in Chapter 7, no violations were found. Only for the sake of completeness, to test the
robust operation of our developed software as well as to understand the impact of the independent
variables on the overall performance of ICOA, the concept of violations was brought in.

6.3 Evaluations E1 - E2

The goal of this section is to describe the evaluation E1 to E8 with respect to the different input
dynamic ranges, hypervolume and to analyse the output slack variable. Especially, we are interested
in determining the minimum slack variable (see summary of the slack variables in the evaluations
E1 to E8 in Figures 3 and 8 presented later.). It signifies, the ”Mahalabonis-distance” between the
optimal solution and the constraint bound. Qualitatively, small positive values of the slack variable
indicate that the solution comes close to being active23. If the slack variable is small negative, then
it means the algorithm was not able to determine a solution within the feasible region. In this the
optimization algorithm must be configured to do one of the following two:

1. Stop the algorithm and report no solution is possible
2. Accept the solution in the infeasible region or, in other words, allow a constraint violation but

minimize it.
The second approach is comparatively practical and hence used more often (see e.g. Mehrotra
(1992), Tütüncü et al. (2003)). It shall be noted that constraint violations must be avoided. As
described before, we started with the minimization of the Lagrangian function or equivalently
minimization of the constraint violation. This approach, although not ideal24 but is more suited
for many applications, including the electron density modelling. Also, in this work this approach
22For better readability, the % of violations are rounded off to the nearest integer.
23Furthermore, it also signifies that for the given step-size in the algorithm, this is the closest solution possible within

the feasible region.
24The rationale for calling this approach ”non-ideal but practical” implicitly involves a trade-off between having an

acceptable solution with a tolerance and not having a solution at all. As it will be shown in our evaluations that
a constraint violation is often associated with a relatively degraded solution accuracy compared to that for an
inactive or active constraint. In our case of electron density modelling, constraint violations are not acceptable
and hence the constraint bounds had to be carefully chosen for a given numerical evaluation. Furthermore, in
those evaluations where a violation has been reported is only to demonstrate the consequence of a poor choice of
constraint bound.
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6 Numerical evaluations

is followed. Naturally then, we are not only interested in the optimal solution but also in the
associated slack variable to ensure that there had been no constraint violations. This aspect has
received less attention in past and therefore motivates inclusion in numerical evaluations. At this
point, it shall be noted

the constraint violation is an undesired phenomena that as much as possible, shall be avoided
at all the computation epochs.

Table 6.2 lists the goal of each evaluation. Furthermore, each evaluation will be summarized in a set
of six panels. The evaluation results of E1 to E4, shown in Figs. 6.11, 6.10, 2 and 1, are organized
as follows. The evaluations E1 and E2 will be shown in this chapter and the remaining evaluations
are shown in Appendix C. In each case, the panel (a) on top left represents the constraint bound
(either lower or upper) as defined in the optimization problem25. The remaining five panels (b) to
(f) show the evaluation results. Specifically, in each case, the panel (b) shows the estimated key
parameter from the estimated B-spline coefficients. Panels (c) and (d) show the slack variable, (e)
and (f) show the proportion and locations of constraint violations, respectively.

6.3.1 Evaluation E1: Reference scenario

The evaluation E1 is considered as a reference scenario to analyse or compare the results of E2
to E4 and is performed with nominal values for the input parameters (see Table 6.4). The three
input parameters (D̄r

N
F2
m

, D̄r

h
F2
m

and V̄) and their corresponding values in the Table 6.4) are used
to quantify the constraints. The input and output of evaluation E1 is summarized in Fig. 6.11,
where the top panel shows the upper bound of input NF2

m and the output N̂F2
m calculated from the

corresponding estimated B-spline coefficients in the panels (a) and (b) respectively. The top-right
panel (c) shows the NF2

m slack, or equivalently, the difference between the top-left and the top-middle
panels (a) and (b) respectively, computed using

ŝ = b −Bβ̂, (6.13)

where b, B and β̂ denote the constraint bound, constraint coefficient matrix and the estimated
B-spline coefficients respectively according to Eqs. (4.63), (4.74) and (4.78). The bottom left panel
(d) in Fig. 6.11 shows the same NF2

m slack variable (as the top-right (c)) with a modified scale and
the positive values indicate that the KKT condition (4.72b) is satisfied at β̂. The bottom panels
(e) and (f) show the proportion of NF2

m constraints and the corresponding regions, where those are
either inactive, active or violated respectively. In this case, all NF2

m constraints remained inactive
and there are no violations (see Chapter 4, definition 4.4.1).

6.3.2 Evaluation E2: Varying NF2
m upper bound

In E2, the goal is to analyse the impact of a reduced dynamic range of NF2
m , compared to that in

E1, on the corresponding slack variable. As already discussed, the dynamic range can be controlled
by the magnitudes of both upper as well as lower bound (see Fig. 6.3). Specifically in E2, the upper

25Although panel (a) shows only one of the two but both the upper or lower bound constraints are nevertheless
imposed on the key parameters κ ∈ K1. When panel (a) shows the lower bound, then the associated slack variable
(d) is also computed with respect to the lower bound. Similarly, if panel (a) shows the upper bound, then the
associated slack variable (d) is also computed with respect to the upper bound.
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6.3 Evaluations E1 - E2
Table 6.3: Common input variable or parameters for evaluations E1 to E8. The phrase ’norm. avg. DR’

refers to the normalized average dynamic range. In order to fit the tables to within page width,
the text is shortened.

Input variable or parameter value
Key parameters in K1 see Eq. (6.1)
Key parameters in K2 see Eq. (6.2)

Modelling epoch 12 March 2015
Temporal resolution for the key parameters 1 hour

B-spline levels {4,3} for key parameters in K1
Spatial resolution for the constraints 5 ○ along latitude and longitude

Temporal resolution for the constraints 6 hours
Norm. avg. DR D̄r

HF2 0.66
Norm. avg. DR D̄r

NP
0

0.5
Norm. avg. DR D̄r

HP 0.5

Table 6.4: Configuration for numerical evaluation E1.

variable or parameter value
Input norm. avg. DR D̄r

N
F2
m

0.5
norm. avg. DR D̄r

h
F2
m

0.8
average hypervolume V̄ 0.066

Output minimum NF2
m slack 0.005 EDU

% of NF2
m constraints violated 0

bound of NF2
m is reduced by 12%26 compared to E127, with the other inputs remaining the same

(see Table 6.5).
The reduced NF2

m upper bound and that modelled from the corresponding estimated B-spline
coefficients are shown in the top panel of Fig. 6.10 in the left and middle panels (a) and (b)
respectively. The modelled NF2

m exceeds (and thus violates) 28% of the NF2
m upper bound constraints

and a majority (> 85%) of these occur between the local-time 20:00 - 03:00 LT (night side)28 of the
northern hemisphere.
The physical interpretation of a constraint violation is described below. The atmospheric ionization
is lower during the night29 and accordingly the electron production, and hence NF2

m , is also reduced
compared to that of the day time in the ionosphere (Bauer (1973), Oshiorenoya (2004)). In this as
well as in all other evaluations, the upper or lower bounds are uniformly reduced or increased across
the globe. Specifically in E2, NF2

m upper bound is reduced by 12% relative to that in E1, where
the minimum slack was already only 0.005 EDU (see Table 6.4), which also happened to be at the
night side. Upon a closer examination of Fig. 6.10, it is concluded that in those regions, where the
NF2

m upper bound was γ−active (≈ 0.1 EDU and see Chapter 4, definition 4.4.1), a uniform 12%
reduction of the upper bound leads to the observed constraint violations. On the other hand, the

26The justification for decreasing the upper bound exactly by 12% is as follows: Different values of decreasing the
upper bound were tried in the range of 5 to 20% and the value of 12% was then chosen based on the need for
maintaining a consistency among the hypervolume in the evaluations E1 to E8; see Figs. 9 and 10. Other reasons
were to have a fair tradeoff between the computational performance, time required for the execution and the
memory requirements.

27In all numerical evaluations, the constraints are ”uniformly increased or decreased” across the globe. For example a
12% reduction in dynamic range specifically refers to a uniform 12% reduction in bound of all constraints.

28Electron density is generally lower on the night side compared to the day side.
29It shall be noted that the day and night side are only qualitatively defined and not with respect to a fixed time of

the day.
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NF2
m upper bound in E1 had a relatively larger associated slack at local times 06:00 - 18:00 (the

day side) and therefore, despite a 12% reduction of the upper bound, there is less than 15% NF2
m

violations in E2.
The reported percentage of violations in each evaluation is an important aspect to understand the
role of constraint bounds and the capability of the optimization algorithm as well as to the physical
realism, the ionospheric dynamics introduced by the constraints in the electron density modelling.
As already mentioned, a constraint violation is not acceptable and hence the constraint bounds will
have to be carefully considered.

Table 6.5: Configuration for numerical evaluation E2.

variable or parameter value
Input norm. avg. DR D̄r

N
F2
m

0.44 (12% lower UB than E1)
norm. avg. DR D̄r

h
F2
m

0.8 (same as that used in E1)
average hypervolume V̄ 0.058

Output minimum NF2
m slack -0.35 EDU

% of NF2
m constraints violated 28

Figure 6.11: Evaluation E1: Slack and modelled NF2
m

6.4 Summary of numerical evaluations
Together with the evaluations shown in Appendix C, this chapter presented a set of 12 numerical
evaluations (including 54 sub-evaluations). These have been performed based on the independent
variables listed in Section 6.1 and their results are analysed. The evaluations E1 to E8 analysed the
minimum value of the slack variable and the percentage of violations for the different nomalized
dynamic ranges using two real observation datasets DS2d and DS2a. The evaluations E9 to E12
analyse the NF2

m and hF2
m relative deviation to the different upper and lower constraint bounds, based
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6.4 Summary of numerical evaluations

on DS1d dataset. This allow for the determination of constraint bound values at which violations
started to occur.
Being both time and memory consuming, the evaluation was limited to the investigation of the
inequality constraints’ impact on the electron density modelling. The following are the most
important outcome of the numerical evaluations.
When multiple ionosphere layers are to be considered in electron density modelling problem, the
total number of Chapman key parameters and hence the B-spline coefficients to be estimated
increase30. However, the unavailability of realistic initial values of the scale height for those layers,
especially the bottom layers is a challenge to application of our model. Also the imposition of
inequality constraints on key parameters means that additional Lagrange multipliers and slack
variables have to estimated together with the unknown B-spline coefficients.
Furthermore, the dynamic range of ND

m , NE
m constraints are lower relative to that of NF2

m . Specifically,
it refers to the choice of constraint bounds. If the bounds on the key parameter κp are chosen
”conservatively” (normalized dynamic range D̆r

κp
≈ 1), then the advantage of using the inequality

constraints are lost, whereas if chosen too ”critically” (normalized dynamic range D̆r
κp
≪ 1), then

the estimated B-spline coefficients become inaccurate31, as demonstrated in the evaluations E9 to
E12.

A large positive slack at the optimal solution indicates that the constraints remained inactive.
In other words, the constraints were chosen rather ”conservatively”. On the other hand, a
small positive slack at the optimal solution indicates that the constraints became γ−active.

It is not known apriori as to which inequality constraints will remain inactive or equivalently, if
a given constraint c(β) will become active or not. This is demonstrated in the evaluations and
it helps in highlighting the two important phenomena (1) latitude and local time dependency of
constraint violations and (2) those constraints which remain inactive are all ”γ−active” with the
95th percentile of NF2

m and hF2
m slack being equal to or smaller in magnitude than 0.2 EDU and 20

km respectively. Minimum value of the slack for each evaluation was analysed and its relevance
described. This allows identification and rationalization of the inactive constraints for near real-time
electron density modelling as well as to choose the constraint bounds such that the violations are
minimized.
Although not shown, but in general, a reduction of the dynamic range of any one key parameter
κ1 ∈ K1 also affects the estimated B-spline coefficients of the other key parameters, κ ∈ K1; κ ≠ κ1,
as well as their slack variables due to mutual correlations.
Although the negative slack is not allowed by the KKT conditions, but the Lagrangian minimization
becomes an unconstrained optimization problem through a series of transformations (see Section
4.4.2).
Numerical evaluations E1 to E12 have focussed on the analysis of the slack variable and deviation
(accuracy) of NF2

m and hF2
m . The magnitude (and sign) of the resulting slack variable gives important

information to improve the step-size and/or the initial value used, particularly when the constraints
are γ−active or violated.
Analysis in this work reveals as to which constraints remain inactive in electron density modelling.
In fact the KKT conditions are so designed that the constraint violations are penalized by positive
Lagrange multiplier, thereby increasing the Lagrangian function. However, qualitatively, the descent
direction tends to ”pull-in” the solution to inside of the feasible region.

30compared to when only one layer (e.g. the F2) is to be considered
31There would be no solution inside the feasible region when normalized dynamic range D̆r

κp
≪ 1
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7 Validation of electron density modelling

The Chapters 4 and 5 have described the inequality constrained optimization algorithm (ICOA) and
its application to the development of a global 4D EDM using B-spline basis functions respectively.
The results from the numerical evaluation of the developed EDM has been presented in Chapter 6.

There are four main outputs of the developed electron density model, namely, the B-spline
coefficients, the slack variables, the Lagrange multipliers and the differential code biases
(DCBs).

The most important of these are the estimated B-spline coefficients corresponding to the Chapman
key parameters in the set K1 (see Eq. (5.16)). The slack variables and the Lagrange multipliers
are already qualitatively analysed in the numerical evaluations. The DCBs are related to the
GNSS satellite and receiver signal tracking techniques (see Montenbruck and Hauschild (2013),
Montenbruck et al. (2014a)) and are not validated in this work1.
In this chapter, the following four methods are presented for the validation of the modelled Chapman
key parameters2:

• Closed loop validation (see Section 7.1)
• Ionosonde based validation (see Section 7.2)
• GNSS STEC based validation (see Section 7.3)
• In-situ observations based validation (see Section 7.4), specifically, using Langmuir probe

on-board CHAMP and Swarm satellites, as well as using Swarm STEC observations.
The following conventions shall be applied, in addition to those defined in the beginning of Chapter
6:

• The terms ”ionosonde data” or ”ionosonde observations” refer to the F2 peak density and
peak height obtained from the ionosonde stations, denoted as NF2

m;Ionosonde and hF2
m;Ionosonde.

• ”ICOA estimated B-spline coefficients” refer to the estimated values of the unknown B-spline
coefficients corresponding to the key parameters in the set K1.

• ”ICOA modelled key parameters” refer to the Chapman key parameters computed from the
”ICOA estimated B-spline coefficients”, denoted as NF2

m;ICOA and hF2
m;ICOA.

• GNSS STEC observations refer to the STEC computed between a GNSS satellite and ground
receiver (see Section D.2).

• ”Swarm STEC” refers to the STEC measured between a GNSS satellite and the spaceborne
GNSS receiver on-board the Swarm A, B and C satellites, denoted as STECSwarm.

• ”In-situ observations” refer to the electron density measurements of the Langmuir probe on
board Swarm A, B, C as well CHAMP. These are denoted as Ne;CLP , Ne;SLP .

• For the sake of readability, the multi-layer Chapman key parameters will be simply referred
to as ”Chapman key parameters” or equivalently as the ”key parameters in the set K1”.

1The DCBs are not direct geophysical parameters but become relevant due to their correlations to the GNSS
observables described in Section D.1. More specifically, for this work, DCBs are not the primary parameters of
interest and are assumed to be estimated reliably and not subject to validation.

2Validation of the modelled Chapman key parameters is also a direct validation of the overall global 4D electron
density model.
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7.1 Closed loop validation

It shall be noted that GNSS STEC computation was performed from the raw RINEX data within
the scope of this work, as shown in Section D.2. STEC observations from GNSS are directly used
in the dataset DS1d for the electron density modelling (see Table 13 and Fig. 16). On the other
hand, Swarm STEC only captures the contribution of the ionosphere above the Swarm satellite
altitude. Furthermore, those were directly obtained from ESA (see Stolle et al. (2013)) and not
computed within the scope of this work. The only purpose of obtaining Swarm STEC in this work
is for the validation of the modelled Chapman key parameters. This aspect will be described in
detail in Sections 7.3 and 7.4.
In the first part of this chapter, the closed loop validation (CLV) technique and its dataflow will
be presented. Subsequently, in the Sections 7.2 and 7.3, the validation with ionosonde and STEC
observations will be described respectively. For the sake of completeness, Langmuir probe (see
Section 7.4.1) and Swarm STEC (see Section 7.4.2) data will also be discussed. However, the latter
two only are shown to be not sufficient for the validation of a global 4D EDM. Furthermore, they
also require outlier detection and calibration3. Therefore, the CLV, the ionosonde, as well the GNSS
STEC based validation are described in more detail relative to the STECSwarm and Langmuir
probe in-situ observations based ones.

7.1 Closed loop validation

Closed loop validation

In the context of this chapter, the closed loop validation (CLV) refers to the process, where a
”known set” of multi-layer Chapman key parameters is available, with which the simulated
electron density observations are generated. These are in-turn used as observations in a
GMM to estimate the B-spline coefficients corresponding to the Chapman key parameters.

The known set or the ”true” Chapman key parameters is obtained from a reliable source, e.g.
the IRI model. Once the B-spline coefficients are estimated from the ICOA, the equivalent key
parameters are validated against the ”truth”. Therefore, this approach is called the ”closed loop
validation”. This approach allows a thorough analysis of the ICOA, its computational performance,
the sensitivity to both the initial values of the optimization parameters, as well as to the different
measurement noise levels. This type of validation has also been used in Limberger et al. (2013),
Limberger et al. (2014) and Liang (2017). For this work, the IRI model4 (Bilitza (2000)) is used
with upto 5% random measurement noise, according to the F3C electron density quality reported in
A.Anthes et al. (2000), Hsu et al. (2018).

Need for CLV
The development of a 4D EDM requires a global electron density observation coverage. However,
despite using F3C, GRACE and GNSS STEC, there are still data gaps at any given time of
a day (see Fig. 7.1). Therefore, one of the datasets (DS1a) used in the numerical evaluation,
was generated from simulated electron density observations. Accordingly, the CLV approach has
sufficient5 observations for the estimation of the B-spline coefficients among the other optimization
parameters β in the GMM (4.8) with additional inequality constraints. Furthermore, the CLV also
has the advantage that it allows the determination of:

• the approximate initial values for the B-spline coefficients to be used in the optimization
algorithm (see Section 4.3.1)

3The Swarm mission STEC measurements are used, as is from the ESA data portal (Stolle et al. (2013)), and no
further quality check was made.

4IRI version 2012
5A full column rank of the design matrix A, as defined in GMM (Eq. 4.8)
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7 Validation of electron density modelling

Figure 7.1: F3C and GRACE observation coverage in four different time windows.

• the step-size tit to be used in the gradient descent method; see Eq. (4.29)
• the upper and lower constraint bounds κl, κu of the Chapman key parameter κ ∈ K1

• the two optimization algorithm tuning parameters, namely, the centering parameter σcen and
the complimentarity measure µcom; see Eq. (4.100).

In this section, the CLV procedure will be described. The numerical evaluations E9 - E12 (see
Section C.9 - C.12) already provide the results with the dataset DS1d. There are two steps involved
in the CLV and within each, there are three sub-steps. Therefore, Step 1 (with sub-steps 1a, 1b and
1c) and Step 2 (with sub-steps 2a, 2b and 2c) together describe the CLV procedure.

Step 1 of CLV

The objective of Step 1 is the generation of a ”reference truth” of the multi-layer Chapman
key parameters in the set K1

and achieved in the three sub-steps as follows:
• Step 1a : F2-layer peak density κ1 = NF2

m (φ, λ), peak height κ2 = hF2
m (φ, λ), ∀ φ ∈ φ, λ ∈ λ,

are obtained from the IRI model and introduced into their corresponding B-spline series
expansion (5.5). The scale height κ3 = HF2 (φ, λ) is computed using the approximate slab
thickness relation (Davies and Liu (1991)),

HF2 (φ, λ) =
V TEC (φ, λ)

4.13 NF2
m (φ, λ)

, (7.1)

see Limberger (2015).
• Step 1b: For the key parameters in K1, the equivalent B-spline coefficients d̂J1,J2

k1,k2∶κ, to be
used as the ”reference truth”, are estimated from Eq. (5.5), using the known tensor product
matrix as described in Section 5.2.
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7.1 Closed loop validation

• Step 1c : The estimated B-spline coefficients d̂J1,J2
k1,k2∶κ from Step 1b are substituted again in

Eq. (5.5) to obtain the ”true” key parameters κ̂(φ, λ).

Step 1c ”reference truth”

Thus, Step 1c provides the ”true” values κ̂(φ, λ) of the key parameters and Step 1b their
corresponding B-spline coefficients d̂J1,J2

k1,k2∶κ.

In Step 2, κ̂(φ, λ) will be further used to calculate the electron density Ne(φ, λ, h) over a desired
altitude range h ∈ [hmin hmax] using the Chapman profile function (5.2). The B-spline coefficients
and the Chapman key parameters in Step 2 are denoted using the ”tilde” (e.g. d̃) to distinguish
them from those in Step 1, denoted by the ”hat” symbol (e.g. d̂). The three sub-steps in Step 2 are
as follows:

• Step 2a : The estimated key parameters κ̂(φ, λ) from Step 1c are used to generate electron
density

Ne(φ, λ, h) ∀ φ ∈ φ,λ ∈ λ and h ∈ [hmin hmax]

φ = [φmin ⋯ φmax] λ = [λmin ⋯ λmax]

using the Chapman profile function (5.2), as shown in Fig. 7.2. This results in a uniform global
distribution of electron density observations with an altitude dependent vertical resolution6 as
already mentioned in Section 6.1 under the sub-title ”Number of observations per technique”.
Clearly, the number of observations Nobs generated in the CLV approach depends on the
resolution along the latitude, the longitude and the altitude, as well as the geographical
coverage limits, i.e. whether a global or regional modelling is sought. Furthermore, Nobs

also depends on the altitudinal limits7 hrange = ∣hmax − hmin∣, for a given altitudinal sampling
resolution hstep.

• Step 2b : The electron density, Ne(φ, λ, h), computed in the Step 2a, is used as observations
in the GMM, (Eq. (4.8)).

• Step 2c : Finally, in this step, the KKT equations (4.94) - (4.96) are solved and the B-spline
coefficients d̃J1,J2

k1,k2∶κ estimated, as well as the corresponding Chapman key parameters κ̃(φ, λ)
are computed using Eq. (5.5).

Fig. 7.2 shows the overall data flow of the closed loop validation.
Number of optimization parameters Nβ

The total number of optimization parameters Nβ to be estimated depend on the number of
key parameters in K1, their B-spline levels J1, J2 (see Section 5.2) and number of constraints.

More specifically, Nβ also depands on rmax, smax, the number of GNSS receivers and satellites
respectively, used in the STEC computation, as each receiver as well as GNSS satellite shall have
one unknown differential code biases (DCB) per observable per frequency. For the sake of simplicity,
the DCBs are not considered in the scope of this chapter and are assumed to have been estimated
reliably. For CLV, 5 key parameters, as shown in Eq. (5.16), are considered in the set K1, with the
same B-spline level (4, 3)8.

6It shall be noted that instead of using the electron density from the IRI model directly as observations, the
reference truth Chapman key parameters, κ̂(φ, λ), are used to generate the electron density. This leads to a overall
consistency in the CLV procedure.

7The absolute value operator in computing the hrange is not necessary, if hmax > hmin is ensured within the electron
density modelling problem definition. In the software prototype, it was used to catch any exceptions and therefore
is shown in this way.

8This is just one example. More generally, larger B-spline levels allow a finer spatial scale representation of the
ionospheric features (see Schmidt (2011), Erdogan et al. (2020)) but also increase the number of B-spline coefficients
to be estimated.
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7 Validation of electron density modelling

Step 2b provides the estimated B-spline coefficients d̃J1,J2
k1,k2∶κ and Step 2c transforms them into the

respective key parameters κ̃(φ, λ). To characterize the accuracy of the estimated Chapman key
parameters, the deviation ∆κ, of the key parameter κ, is defined as

∆κ(φ, λ) = κ̂(φ, λ) − κ̃(φ, λ). (7.2)

It denotes the difference between the estimated key parameters from Step 2c and Step 1c. In a
similar manner, the B-spline coefficient deviation ∆dκ is also defined

∆dκ = d̂J1,J2
k1,k2∶κ − d̃J1,J2

k1,k2∶κ. (7.3)

The relative deviation ∆relκ =
∆κ(φ,λ)
κ̂(φ,λ) is also used to characterize the validation results relative to

the reference truth κ̂(φ, λ).
For the CLV, the elements of the subset K2 are obtained from the IRI model9. Furthermore, a
consistent uniform 5 deg horizontal spatial resolution with altitudes between hmin = 100 km and
hmax = 1000 km, is assumed. The altitude resolution hstep = 5 km in the F2-layer (250 km ≤ h ≤ 450
km) compared to hstep = 20 km in the remaining bottom (hmin ≤ h ≤ 250 km) and topside (450
km ≤ h ≤ hmax ) ionosphere, thus resulting in approximately 240000 electron density observations
globally at a given time epoch.
In addition to the relative deviation ∆relN

F2
m , presented in Sections C.9, C.10, C.11 and C.12, Fig.

7.3 shows the relative deviation ∆relN
F2
m obtained from the CLV with 0%, 1%, 3% and 5% noise

added to the simulated electron density observations obtained in Step 2a. The measurement noise
is added as a function of altitude, such that the lower altitudes (h < 350 km) have a relatively
larger noise10. RMS relative deviation of the three F2 layer Chapman key parameters from the
CLV is shown in Table 7.1. The random variations in the relative deviation in the order of 10−12%
for no noise and 10−3% for the remaining three cases, in Table 7.1, Fig. 7.3, indicates that the
optimization algorithm has converged effectively. Similar performance of the relative deviations
∆relN

F2
m , ∆relh

F2
m were already reported in the numerical evaluations with the simulated dataset in

Tables 8, 9 and 10. This is the most direct validation of the ICOA11.

Table 7.1: Impact of noise on RMS relative deviation of the three F2-layer key parameters

Noise level ∆relN
F2
m ∆relh

F2
m ∆relH

F2

(%) (%) (%)
No noise 7.01×10−13 7.25×10−13 2.12×10−13

1% 6.18×10−4 7.10×10−4 2.60×10−4

3% 1.86×10−4 1.10×10−4 3.40×10−5

5% 3.08×10−3 3.30×10−4 9.30×10−5

The four rows in Table 7.1 correspond to four independent datasets with 0%, 1%, 3% and 5%
measurement noise respectively12. As expected, the impact of increasing measurement noise is a
corresponding increase in RMS relative deviation13 as shown in Fig. 7.3. The optimization algorithm

9Specifically, the D−, E− and F1− peak density and peak height are modelled from IRI directly, whereas the
corresponding scale heights are assumed to be one-half of that of F2− layer.

10as generally observed in F3C, GRACE IRO profiles; see Tsai et al. (2016)
11Obtaining confidence in the design and development of ICOA from CLV is considered a big step forward in the

potential future usage of inequality constraints in a more general class of parameter estimation problems in
Geodesy.

12The measurement noise referred here is quantified as the percentage of the maximum electron density.
13As an exception, for the case of scale height, the increase in noise appears to decrease the RMS relative deviation

but only marginally from 2.60×10−4 to 3.40×10−5.
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7.2 Validation with ionosonde

Figure 7.2: Generation of reference values for B-spline coefficients and multi-layer Chapman key parameters

Figure 7.3: Impact of observation noise on relative deviation of peak density

(Gradient descent and Newton’s method: see Sections 4.3.2, 4.3.3) was used in the same manner for
the noisy observations as with the noise-free case14.

7.2 Validation with ionosonde

In this section, the validation of the modelled key parameters in K1, using ionosonde data, will
be presented. In contrast to the previous section, where simulated electron density observations
were used, in this section the validation will performed on the B-spline coefficients estimated from
IRO profiles derived from F3C, GRACE and GNSS STEC observations (dataset 1d)15. It shall be
noted that the simulated and the real observations were used exactly in the same manner by the
algorithm16.
The period between 12 to 14 March 2015 is chosen for validation during which, the B-spline
coefficients of the key parameters in K1, are estimated from dataset DS1d, at a 1 hour temporal
resolution. During this time span, space weather activity was nominal with an average F10.7 index

14This is to signify that only the VCE procedure, as described in Section 4.1.2, was used and no additional parameters
or techniques were introduced to smooth the effect of measurement noise in the optimization algorithm.

15This is just to clarify that the CLV used a synthetic dataset and ionosonde based validation will be based on real
data. However, it is still to be noted that the real dataset used in this section still contain the electron density
from VTEC with separability approach.

16It means the algorithm is not tailored for use by any specific type of dataset.
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7 Validation of electron density modelling

of 68.8 SFU17. Fig. 7.4 shows a comparison of the estimated NF2
m by ICOA and that from IRI as

well that from the GR13L ionosonde station.
Since ionosonde stations generally use different software and techniques, such as POLAN, ARTIST
(see Titheridge (1985), McNamara et al. (1987), Galkin et al. (2008), Galkin and Reinisch (2008),
Galkin et al. (2013)), to scale ionograms18, systematic offsets arise (see Gilbert and Smith (1988))
and are not discussed further in this work.

Figure 7.4: Estimated key parameters comparison with ionosonde station GR13L and IRI model

Figure 7.5: Estimated key parameters deviation from ionosonde station GR13L

Using the ICOA estimated B-spline coefficients, the estimated key parameters NF2
m;ICOA and hF2

m;ICOA
are computed using the Eqs. (5.10) and (5.11) at the exact locations of the globally distributed
17SFU refers to Solar Flux Units
18Assumptions on optical properties of the ionosphere layers are made (see e.g. Wilkes (1997)) for the computation of

NF2
m from fF2

0 .
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7.2 Validation with ionosonde
Table 7.2: Deviations ∆NF2

m and ∆hF2
m and the corresponding relative deviations at selected ionosonde

station locations along with their 3-day mean and standard deviations.

Station ID ∆NF2
m ∆hF2

m ∆relN
F2
m ∆relh

F2
m

(EDU) (km) (%) (%)
GR13L 0.07 ± 0.16 -19.0 ± 9.28 10.45 6.40
EA036 0.02 ± 0.13 -0.98 ± 8.9 6.81 2.14
JR055 0.03 ± 0.18 -6.28 ± 9.44 9.54 3.80
AS00Q 0.04 ± 0.05 -18.0 ± 8.45 4.09 6.18
AH223 -0.15 ± 0.06 -3.23 ± 6.58 4.09 13.3
AT138 0.05 ± 0.12 10.34 ± 7.23 7.72 4.21
EB040 0.01 ± 0.11 21.35 ± 6.46 5.45 6.66
EG931 -0.11 ± 0.05 -10.87 ± 6.67 7.27 4.12
FF051 0.01 ± 0.11 -4.32 ± 12.61 5.45 4.04
GU513 -0.02 ± 0.10 3.76 ± 10.11 5.45 3.30
HE13N 0.04 ± 0.07 12.45 ± 4.67 4.54 4.09
IC437 0.04 ± 0.13 16.23 ± 7.87 7.70 5.73
IF843 -0.05 ± 0.11 -7.88 ± 9.67 7.27 4.11
IS141 -0.01 ± 0.15 -2.87 ± 4.70 7.27 1.69
JI91J 0.02 ± 0.08 14.11 ± 12.11 4.54 6.24
JJ433 0.06 ± 0.13 11.31 ± 3.25 8.63 3.46
LG178 0.12 ± 0.11 -8.56 ± 6.57 10.45 3.60

ionosonde stations; see Table 3.1. For the same time period, NF2
m;Ionosonde and NF2

m;Ionosonde are
directly measured in those stations for the validation. The respective scale heights were not available
from the ionosonde stations and therefore could not be validated. At the latitude and longitude
φi, λi of the ionosonde stations, indexed by the subscript i ∈ 1,⋯, Nionosonde, the deviations

∆NF2
m;Ionosonde(φi, λi) = NF2

m;Ionosonde(φi, λi) −NF2
m;ICOA(φi, λi)

∆hF2
m;Ionosonde(φi, λi) = hF2

m;Ionosonde(φi, λi) − hF2
m;ICOA(φi, λi)

(7.4)

as well as the corresponding relative deviations

∆relN
F2
m;Ionosonde(φi, λi) =

∆NF2
m;Ionosonde(φi, λi)

NF2
m;ICOA(φi, λi)

∆relh
F2
m;Ionosonde(φi, λi) =

∆hF2
m;Ionosonde(φi, λi)

hF2
m;ICOA(φi, λi)

(7.5)

are computed using the two sources of the key parameters. While the latter are directly obtained
from the ionosonde stations, along with their standard deviations without any further calibration,
the former ones are computed from the estimated B-spline coefficients using Eq. (5.10) and (5.11)
and their corresponding standard deviations from a Monte-Carlo (MC) approach, in which the
input electron density observations are varied by 1% in 100 MC simulation runs to obtain their
ensemble mean and standard deviation. As shown in the Tables 7.2 and 7.3, ∆NF2

m;Ionosonde and
∆hF2

m;Ionosonde deviations are near-randomly distributed between ± 0.2 EDU, ± 30 km globally and
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7 Validation of electron density modelling

Figure 7.6: Estimated key parameters deviation from ionosonde station EA036.

without any systematic offsets at any one particular station or time of a day. McNamara et al.
(2008), Lei and Chuo (2014) (and the references therein), Limberger et al. (2014) and Liang et al.
(2015b) also report similar deviations. The statistics of peak density as well as peak height deviation
and relative deviation are summarized in Tables 7.4, 7.5, 7.6, 7.7.

Station-wise analysis of the deviation

In this section, a station-specific analysis for the ionosonde stations EA0356 and GR13L are discussed.
Generally, as it is seen in Fig. 7.4, the ionosonde captures the local NF2

m variations, whereas the
ICOA estimated NF2

m follows a relatively smoother transition with time. This effect is due to the
dominance of the IRI model though the seperability approach. Furthermore, the ionosonde data
have a higher temporal resolution of 10 minutes compared to the 1 hour resolution of the estimated
Chapman key parameters. Therefore, within the validation period, the key parameters from both
are synchronized in time, by averaging of the ionosonde values and assigning to the one hour time
epochs corresponding to the estimated key parameters. Due to the non-uniform sampling of the
ionosonde data, the number of samples in each one hour averaging window is different.
For the GR13L station, the maximum value of ∆NF2

m is 0.49 ± 0.23 EDU, which is approximately
22% of the peak value, and that for ∆hF2

m reads -42.91 ± 7.97 km which is approximately 9% of the
peak value, at this location. The mean deviation values for the two key parameters are 0.17 EDU
and 14.3 km respectively over the validation period. For the EA036 station, the maximum ∆NF2

m is
0.20 ± 0.11 EDU, which is approximately 13% of the peak value, and that for ∆hF2

m is -21.33 ± 3.70
km, which is approximately 5% of the peak value at this location. The mean values of deviation
for the two key parameters at EA036 are 0.07 EDU and 10.1 km respectively over the validation
period. The deviation magnitudes are in similar in the other stations. The average deviations of
the peak density and the peak height, during the validation period at various ionosonde stations,
are shown in the Figures 7.8 and 7.9 respectively. A comparison of the estimated and ionosonde
derived key parameters for stations GR13L, EA036 and AH223 are shown in Figures 7.5, 7.6 and
7.7 respectively. Furthermore, a noticable difference is also seen between the day and the night
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7.2 Validation with ionosonde

Figure 7.7: Estimated key parameters deviation from ionosonde station AH223

times, in ∆NF2
m;Ionosonde and ∆hF2

m;Ionosonde. In this particular validation campaign, this diurnal
trend can be attributed to a possible limiting accuracy of the given values in K2, especially at the
night times. Similar diurnal patterns in deviations between IRI model and GPS derived TEC values
were reported in Endeshaw (2020). Also, Bjoland et al. (2016) mention that the accuracy of the
estimated electron density from IRI is higher at the altitudes around the peak height. This justifies
the hstep = 5 km sampling for altitudes in the range 250 km ≤ h ≤ 450 km to obtain the profile
function for VTEC with separability approach.

Figure 7.8: Average deviation ∆NF2
m during the validation period at different ionosonde stations

The exact magnitude of the Chapman key parameter deviations depends on several factors such as,
the time of the day, season of the year, geographical location of ionosonde, the phase of the solar

125



7 Validation of electron density modelling
Table 7.3: Average deviations ∆NF2

m and ∆hF2
m and the corresponding relative deviations at GR13L station

during 12 to 14 March 2015

hour of day ∆NF2
m (EDU) ∆hF2

m (km) ∆relN
F2
m (%) ∆relh

F2
m (%)

1 0.10 ± 0.21 -52.73 ± 5.40 13.0 13.3
2 0.05 ± 0.17 -42.70 ± 4.72 8.18 10.95
3 0.05 ± 0.11 -9.16 ± 5.68 6.82 3.30
4 0.00 ± 0.08 -10.96 ± 5.75 3.64 3.57
5 0.02 ± 0.06 -20.62 ± 7.04 3.64 6.43
6 0.18 ± 0.04 -9.14 ± 8.64 10.0 4.05
7 0.28 ± 0.04 -4.47 ± 10.03 14.5 3.33
8 0.32 ± 0.03 -6.11 ± 10.55 15.9 3.8
9 -0.07 ± 0.05 -6.67 ± 11.57 5.45 4.04
10 0.10 ± 0.02 -9.86 ± 11.88 5.41 4.52
11 0.09 ± 0.04 -26.58 ± 11.83 5.90 9.04
12 -0.01 ± 0.05 -15.58 ± 12.02 2.70 6.66
13 0.01 ± 0.02 -8.76 ± 12.18 1.36 4.76
14 0.01 ± 0.05 0.36 ± 11.04 2.72 2.85
15 0.13 ± 0.07 8.18 ± 11.65 10.07 4.68
17 0.40 ± 0.12 -21.12 ± 11.47 23.63 7.85
18 0.06 ± 0.21 -46.22 ± 9.60 12.27 13.09
19 -0.25 ± 0.26 -24.38 ± 7.68 22.72 7.61
20 -0.36 ± 0.28 -21.78 ± 6.32 29.09 6.42
21 0.13 ± 0.36 -30.64 ± 6.18 22.72 8.57
22 0.11 ± 0.27 -38.70 ± 6.29 18.18 10.71
23 0.08 ± 0.25 -19.85 ± 6.20 14.54 6.11
24 0.11 ± 0.22 -26.84 ± 6.13 15.44 7.85

cycle, sunspot number and other modelling assumptions19 in the ICOA. Furthermore, Hunsucker
(1991), McNamara et al. (2008) also mention the effect of diverse ionosonde instrument types,
technologies, e.g. digisonde, dynasonde, incoherent scatter radar, to be considered while accounting
for the deviations. There are other possible causes for deviation between the estimated and the
ionosonde observed Chapman key parameters, namely:

• the B-spline levels used to model the Chapman key parameters
• the differences in temporal resolution of NF2

m , hF2
m from ionosonde and the ICOA modelled key

parameters
• the profile function20 obtained from a climatological IRI model
• the differences arising from the station-specific ionogram scaling techniques
• the overall data quality of the ionosondes

19Such as the tuning parameters that include, step size (see Eq. (4.158)), complimentarity measure (Eq. (4.110)),
centering parameter (see Step 6 of the solution of KKT system of equations in Section 4.5.3), the dimensions of
the search hypervolume (6.8) etc.

20in VTEC with separability approach
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7.3 Validation with GNSS STEC
Table 7.4: Mean F2 peak density relative deviation at Grahamstown ionosonde station GR13L (33.3106°S,

26.5256°E) between 12 March and 14 March 2015

relative deviation ∆relN
F2
m;Ionosonde

Time window 12 March 13 March 14 March
(UT) (%) (%) (%)
0 - 6 6.0 8.0 8.8
6 - 12 10.4 15.2 8.8
12 - 18 11.6 8.0 9.6
18 - 24 9.2 10.0 7.6

Table 7.5: Mean NF2
m deviation at Grahamstown ionosonde station GR13L (33.3106°S, 26.5256°E) between

12 March and 14 March 2015

Deviation ∆NF2
m;Ionosonde

Time window 12 March 13 March 14 March
(UT) (EDU) (EDU) (EDU)
0 - 6 0.09 ± 0.06 0.13 ± 0.07 0.16 ± 0.06
6 - 12 0.06 ± 0.20 0.07 ± 0.31 0.04 ± 0.18
12 - 18 0.20 ± 0.09 0.07 ± 0.13 0.08 ± 0.16
18 - 24 -0.01 ± 0.22 -0.01 ± 0.24 -0.01 ± 0.18

• the truncation error of the B-splines representation
• the quality of GNSS STEC and IRO observations21.

Therefore, it is concluded that the deviations (and hence by definition, also the relative deviation)
reported in this section, as well as those summarized in Table 7.2, are within acceptable limits.

7.3 Validation with GNSS STEC

In this section, the STEC measured at two GNSS receiver stations KIRU (67.8558° N, 20.2253°
E) and WTZR (49.1452° N, 12.8857° E), of the IGS network, are used for validation of the ICOA

21”IRO observations” refer to the electron density profiles obtained from F3C and GRACE.

Table 7.6: Mean hF2
m deviation at ionosonde station Grahamstown GR13L (33.3106°S, 26.5256°E) between

12 March and 14 March 2015

Deviation ∆hF2
m;Ionosonde

Time window 12 March 13 March 14 March
(UT) (km) (km) (km)
0 - 6 -29.87 ± 7.66 -19.57 ± 6.87 -21.51 ± 9.56
6 - 12 -10.07 ± 6.13 -8.27 ± 7.33 -9.65 ± 10.40
12 - 18 -7.18 ± 6.98 -6.43 ± 7.10 -3.43 ± 8.50
18 - 24 -27.33 ± 7.31 -24.65 ± 8.19 -22.56 ± 7.08
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7 Validation of electron density modelling
Table 7.7: Mean hF2

m relative deviation at ionosonde station Grahamstown GR13L (33.3106°S, 26.5256°E)
between 12 March and 14 March 2015

relative deviation ∆relh
F2
m;Ionosonde

Time window 12 March 13 March 14 March
(UT) (%) (%) (%)
0 - 6 8.5 6.0 7.06
6 - 12 3.68 3.54 4.54
12 - 18 3.21 3.07 2.71
18 - 24 7.87 7.46 6.73

Figure 7.9: Average deviation ∆hF2
m during the validation period at differents ionosonde stations

modelled key parameters22. The main motivation to use these two stations is due to their higher
quality of observations and superior receiver and antenna23.
We begin with two datasets, namely, (1) the estimated B-spline coefficients and (2) the Swarm
STEC. The validation approach will be to systematically transform the former to STEC, so that a
comparison with the latter can be made, as shown in Fig. 7.14.

GNSS STEC as observations for validation
The first part of this validation procedure involves fetching the RINEX observation and navigation
files (see Gurtner and Estey (2007)) and computing the STEC for each satellite-receiver line-of-sight
(LoS) using the dual frequency linear combination of the GPS L1/L2 or L1/L5 and GALILEO
E1/E5a or E1/E5b signal pairs. Although STEC can also be computed from single frequency, the
use of dual frequency combinations are preferred due to a desired accuracy requirement of STEC in
the order of 1-3 TECU. The single frequency approach is called the code-carrier divergence (CCD)
method (e.g. Hofmann-Wellenhof et al. (2007)). One of the dual frequency combinations is called
the ”geometry-free” linear combination (GFLC), see Eq. (A.24a). An additional benefit of GFLC
is that the probability of ambiguity fixing increases compared to the CCD method (see Verhagen
and Teunissen (2006), Henkel (2010), Teunissen (2017)). This is very relevant for the quality of
STEC as well as IRO observations. If only dual frequency phase observations are used for STEC
22These are the same Chapman key parameters as those in the set K1.
23KIRU station is managed by ESA-ESOC and in February 2013, a new Spetentrio Polarx4 receiver and Spetentrio

chokering antenna were installed to extend the signal teracking capabilities to all four GNSS, namely GPS, Galileo,
GLONASS and Beidou. Furthermore, at this latitude the ionospohere behavior is considered to be nominal; see
Jakowski (2017). The WTZR station comprises of the JAVAD TRE3 DELTA receiver and LEICA AR antenna.
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7.3 Validation with GNSS STEC

computation, then the measurement noise is in order of 10-20 cm (Henkel (2010)). However, in this
work, both the phase and the pseudorange are used24.
The second part of the data flow in Fig. 7.19 starts with the estimated B-spline coefficients d̂J1,J2

k1,k2;κ,
with which ICOA modelled key parameters, κ̂ICOA ∀ κ ∈ K1, are computed using Eq. (5.5).
Substituting κ̂ICOA, ∀ κ ∈ K1 as well as κ ∈ K2, into Eqs. (5.1) - (5.2) give the estimated electron
density N̂e;ICOA(φ, λ, h), where h ∈ {hmin ⋯ hGNSS}, which upon integrating along the vertical,
provides the estimated VTEC,

V̂ TECICOA(φW , λW ) = ∫

hGNSS

hmin

N̂e;ICOA (φW , λW , h)dh (7.6a)

V̂ TECICOA(φK , λK) = ∫

hmax

hmin

N̂e;ICOA (φK , λK , h)dh, (7.6b)

at WTZR and KIRU station (φW , λW ), (φK , λK), with position vectors xW , xK , respectively.
Using an isotropic mapping function M(z), corresponding to the zenith angles zs

W and zs
K , the

modelled STEC, for the set of visible satellites, s ∈ {1, ⋯, smax},

ŜTECICOA(xW , xs
) =

1
M(zs

W )
V̂ TECICOA(φW , λW ) (7.7a)

ŜTECICOA(xK , xs
) =

1
M(zs

K)
V̂ TECICOA(φK , λK) (7.7b)

from the two stations are obtained, where xs denotes the sth GNSS satellite position vector.
Substituting L1, L5 phase observations at KIRU, as well as WTZR, in Eqs. (A.33a) and (A.33b),
as well as removing the sth satellite and KIRU/WTZR receiver bias, gives S̃TEC(xW , xs) and
S̃TEC(xK , xs), from which the STEC deviation

∆STECW (xW , xs
) = S̃TEC(xW , xs

) − ŜTECICOA(xW , xs
) (7.8a)

∆STECK(xK , xs
) = S̃TEC(xK , xs

) − ŜTECICOA(xK , xs
) (7.8b)

are computed. These are shown in the Figures 7.12 and 7.13 for selected GPS and Galileo satellites
as observed from KIRU, and the same for WTZR in the Figures 7.10 and 7.11, respectively.
The RMS STEC deviation of GPS L1C-L2W dual frequency phase combination, denoted by
∆STECRMS,L1C−L2W , is in the order of 1 - 3 TECU, for all visible GPS satellites for the validation
period. For the sake of completeness, the corresponding STEC deviations from GPS C1C and
L1C single frequency, denoted by ∆STECRMS,C1C−L1C , are also shown along side in Fig. 7.12.
The relatively larger values of ∆STECRMS,C1C−L1C compared to ∆STECRMS,L1C−L2W , show the
superiority of the dual frequency combination in the validation, as already described in Section D.2.
Similarly, ∆STECRMS,L1C−L5Q and ∆STECRMS,L1C−L7Q denote the corresponding performance
with Galileo dual frequency, which is also in the order of 1 - 3 TECU, across the four satellites25, as
shown in Fig. 7.13.
The decision for number of GNSS receivers in EDM and validation are driven by computational
complexity in the overall processing. Specifically, the main computational challenge with GNSS
STEC observations, is the Gauss-Legendre quadrature integrations (see Limberger (2015)) performed
for each satellite-receiver line of sight. Other considerations include the need for the estimation of
additional unknown parameters26, e.g. DCBs and the processing overhead from ambiguity resolution
(see Section D.2). Although DCBs are not the primary parameters in electron density modelling,
24Pseudoranges are needed for carrier phase ambiguity resolution; see e.g. Hofmann-Wellenhof et al. (2012)
25In March 2015 time frame, there were only four operational Galileo satellites GSAT101, GSAT102, GSAT103 and

GSAT104 with PRN 11, 12 19 and 20 respectively.
26If there are a total of s satellites and r receivers, then we have s + r + s ⋅ r additional unknown parameters.
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7 Validation of electron density modelling
Table 7.8: Summary of daily RMS STEC deviation with GPS L1-L2

Station ∆STECRMS,L1C−L2W ∆STECRMS,C1C−C2W

(TECU) (TECU)
12-03 13-03 14-03 12-03 13-03 14-03

WTZR 1.82 2.01 1.73 2.22 2.61 2.31
KIRU 2.83 2.64 2.89 3.77 3.50 3.58

Table 7.9: Summary of daily RMS STEC deviation with Galileo E1-E5a, E1-E5b

Station ∆STECRMS,L1C−L5X ∆STECRMS,L1C−L7Q

(TECU) (TECU)
12-03 13-03 14-03 12-03 13-03 14-03

WTZR 1.41 1.35 1.47 1.02 0.97 1.14
KIRU 1.23 1.08 1.26 1.09 1.00 1.19

but they still need to be estimated for the sake of consistency. Additionally, the phase biases are also
relevant, especially when phase observations are used for STEC computation. The phase biases are
also assumed to be reliably estimated and any unmodelled phase error is assumed to be absorbed
by the float-ambiguities of the carrier phase. The GNSS data processing follows the methodology
presented in Erdogan et al. (2017). The statistics from the GNSS STEC validation are summarized
for GPS and Galileo in the Tables 7.8 and 7.9 respectively. The smaller absolute magnitudes of
the deviation and relative deviation for STEC computed from Galileo is at least in part due to the
lower measurement noise and thereby improved integer ambiguity resolution.
As shown in Section D.2, STEC computation requires understanding of GNSS observables on each
signal type (e.g. C or P codes) per frequency f ∈ {L1, L2 or L5}. A detailed description of the
GNSS observable types (e.g. C1C, C2W) can be found in the RINEX 3.0 standard (Gurtner and
Estey (2007)). There is one another important relation between DCB and VTEC modelling. Each
global VTEC map (GIM) in the IONEX format contains a header with the receiver DCBs. The
schematic dataflow in the STEC based validation is summarized in Fig. 7.19.

Figure 7.10: GPS ∆STEC RMS at WTZR over the validation period between 12-14 March 2015.
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Figure 7.11: Galileo ∆STEC RMS at WTZR over the validation period 12 to 14 March 2015.

Figure 7.12: GPS ∆STEC RMS at KIRU over the validation period between 12-14 March 2015.

7.4 In-situ observations based validation

An introduction of in-situ observations was already provided in Section 3.3. In this section,
observations from Langmuir probe onboard CHAMP and Swarm will be used to validate the
modelled electron density.

7.4.1 Validation with CHAMP, Swarm Langmuir probe

The Langmuir27 probe (LP) is a scientific instrument used to determine plasma temperature, and
density in the upper regions of the Earth’s atmosphere (e.g. ionosphere). CHAMP and Swarm
satellites are equipped with LP and their observations Ne;CLP are obtained directly from CHAMP
mission portal (see Reigber et al. (2002), Cooke et al. (2003)) between the time period 01 - 03
August 2007, during which the number of observations used for EDM are shown in Fig. 7.15. The
computed CHAMP electron density deviation

∆Ne;CLP (φC , λC , hC) = Ne;CLP (φC , λC , hC) − N̂e;ICOA (φC , λC , hC) (7.9)

are shown in Fig. 7.16. A clear trend along the lower latitudes can be seen. This aspect can be
attributed to both LP instrumental biases as well as the B-spline levels used for modelling the key
parameters κ ∈ K1.
Procedure for computing N̂e;ICOA

27Irving Langmuir won the Nobel prize in Chemistry and made contributions in different fields of Physics during the
20th century (Boyd (1965), Hopwood et al. (1993))
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7 Validation of electron density modelling

Figure 7.13: GALILEO ∆STEC RMS at KIRU over the validation period between 12-14 March 2015.

The estimated B-spline coefficients d̂J1,J2
k1,k2;κ are first denoted as vector d̂κ and substituted in Eq.

(5.5) to yield the modelled key parameters vector

κ̂ICOA = d̂κΨ
NT

, (7.10)

where Ψ
NT

denotes the matrix of tensor products as described in Section 5.4 and the vector of
modelled key parameter,

κ̂ICOA =
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Ĥ
F2
ICOA

N̂
P
0;ICOA

Ĥ
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(7.11)

contains the individual Chapman key parameter vectors corresponding to κ ∈ K1. We apply Eq.
(5.1) to compute the modelled electron density

N̂e;ICOA(φC , λC , hC) = N̂F2
e (φC , λC , hC) + N̂F1

e (φC , λC , hC) + N̂E
e (φC , λC , hC)

+ N̂D
e (φC , λC , hC) + N̂P

e (φC , λC , hC),
(7.12)

where the electron density of the individual F2−, F1−, E−, D− layer as well as plasmasphere are
computed as shown in Equations (7.12) - (7.13).

N̂F2
e (φC , λC , hC) = N̂F2

m;ICOA(φC , λC , hC)

exp
⎛

⎝

1
2
⎛

⎝
1 −

hC − ĥF2
m;ICOA(φC , λC , hC)

ĤF2
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− exp
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−

hC − ĥF2
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⎞
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⎞
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⎞
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(7.13)

N̂P
e (φC , λC , hC) = N̂P

0;ICOA(φC , λC , hC) exp
⎛

⎝
−

RRRRRRRRRRRR

hC − ĥF2
m;ICOA(φC , λC , hC)

ĤP
ICOA(φC , λC , hC)

RRRRRRRRRRRR

⎞

⎠
(7.14)

N̂F1
e (φC , λC , hC) = NF1

m (φC , λC , hC)

exp(1
2
(1 − hC − ĥF1

m (φC , λC , hC)

ĤF1(φC , λC , hC)
− exp(−hC − ĥF1

m (φC , λC , hC)

ĤF1(φC , λC , hC)
)))

(7.15)
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7.4 In-situ observations based validation

Figure 7.14: Dataflow of validation with GNSS STEC measured at KIRU and WTZR IGS receivers

N̂E
e (φC , λC , hC) = N̂E

m(φC , λC , hC)

exp(1
2
(1 − hC − ĥE

m(φC , λC , hC)

ĤE(φC , λC , hC)
− exp(−hC − ĥE

m(φC , λC , hC)

ĤE(φC , λC , hC)
)))

(7.16)

N̂D
e (φC , λC , hC) = N̂D

m(φC , λC , hC)

exp(1
2
(1 − hC − ĥD

m(φC , λC , hC)

ĤD(φC , λC , hC)
− exp(−hC − ĥD

m(φC , λC , hC)

ĤD(φC , λC , hC)
)))

(7.17)

Furthermore, Swarm Langmuir probe observations Ne;SLP are obtained directly from Swarm mission
data portal for the time period of 12 - 14 March 2015. Similar to the modelled electron density
at CHAMP coordinates as described above, that at Swarm coordinates N̂e;ICOA (φS , λS , hS) is
determined from Equations (7.12) - (7.13). Accordingly, Swarm electron density deviation

∆Ne;SLP (φS , λS , hS) = Ne;SLP (φS , λS , hS) − N̂e;ICOA (φS , λS , hS) (7.18)

with respect to Swarm LP observations as shown in Figures 7.17 and 7.18.
Both ∆Ne;CLP and ∆Ne;SLP depend on the quality of the respective LP observations as well as
the modelled electron density. In-particular, the latter is dominated by the quality of the modelled
F2 peak density. The F2 peak height and scale height are related to electron density through the
double exponential functional relation (5.2), and therefore have a relatively lesser impact on the
quality of N̂e;ICOA.

7.4.2 Validation with Swarm STEC
In this section, STEC measured by GNSS receiver onboard the Swarm satellite are used for the
validation of modelled key parameters. As the procedure for STEC computation has been already
described before (see Sections D.2 and 7.3), those will not be repeated.
Once again, we begin with the estimated B-spline coefficients d̂J1,J2

k1,k2;κ and substituting those in
Eq. (5.5), corresponding to the Swarm satellite coordinates (consistent with its position vector xr),
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7 Validation of electron density modelling

Figure 7.15: Average observations from different techniques between 01-03 August 2007. The time period of
August 2007 is selected because F3C mission had more active satellites during this period as
well as CHAMP was active. Therefore, it is interesting to see the relative number of electron
density observations compared to the period of March 2015, for which the data distribution
was shown in Chapter 3.

to obtain the modelled Chapman key parameters vector κ̂ICOA. The modelled electron density
N̂e;ICOA (φS , λS , hS) thus computed, are integrated as shown in Equations (7.6a)-(7.7b) to obtain
V TECICOA an STECICOA. With the above information, we are able to compute the Swarm STEC
deviation

∆STECSwarm(xr, xs
) = S̃TECSwarm(xr, xs

) − STECICOA(xr, xs
), (7.19)

computed at the Swarm position vector xr. The summary of validation is shown in Figures 7.10
and 7.11 for GPS and Galileo respectively.

Table 7.10: Summary of RMS deviation and RMS relative deviation between Swarm A,B,C and modelled
electron density N̂ as well as STECICOA between 12-14 March 2015.

Satellite RMS deviation RMS deviation RMS rel. deviation RMS rel. deviation
Ne (EDU) STEC (TECU) Ne (%) STEC (%)

Swarm-A 0.58 0.88 26.26 5.86
Swarm-B 0.31 0.67 14.04 4.46
Swarm-C 0.27 0.41 12.27 2.73

7.5 Summary of validation
We have reached the end of this chapter to summarize the most important points including on
the validation of the modelled electron density. It has also been demonstrated that the estimated
B-spline coefficients are systematically transformed to modelled Chapman key parameters and
eventually to modelled electron density and/or modelled STEC.
In CLV, the electron densities of the D−, E− and F1−layers are computed using approximate values
of the corresponding peak densities, peak height and scale heights. More specifically the NF1

m , hF1
m ,

NE
m, hE

m, ND
m , hD

m were taken from IRI and the scale height HF1 , HE , HD are assumed to be given.
These values are only approximate and may not reflect the real conditions observed at the ionosonde
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7.5 Summary of validation

Figure 7.16: Comparison of CHAMP in-situ electron density observations from Langmuir probe on 1-Aug.
2007 with that from estimated B-spline coefficients of ionospheric key parameters. Data
courtesy of LP GFZ Potsdam

station location. Furthermore, a constant scale height from 100 to 1000 km globally in the Chapman
profile function (5.2) is assumed. In other words, HF2 , HF1 , HE , HD and HP are assumed to
be constant with altitude. This assumption may also need to be investigated in future work by
considering altitude dependent scale height28. However, it is not trivial to fix the scale height prior
values exactly in a modelling problem due to the dynamical temporal variations of electron density
with altitude.
Ionosonde observations were used to validate the modelled electron density and an agreement in
the order of ≈ 10% has been determined for both the F2 peak density as well as peak height. The
absence of other ionosphere layers, such as the sporadic E−layer, see Arras et al. (2009) and Tsai
and Su (2018), the modelling assumptions for a night-time ionosphere not containing the F1 layer
and a modelling limitation on the 1000 km upper altitude also lead to systematic deviations in the
ionosonde based validation. Furthermore, an temporal interpolation on the modelled key parameters
was necessary for the comparison with ionosonde. No other calibration was performed in this work
on the ionosonde observations.
A detailed description of GNSS STEC based validation is provided using two IGS receivers KIRU and
WTZR. The deviation and relative deviation computed with this technique has been summarized
in Tables 7.8 and 7.9. the dataflow of GNSS STEC validation is shown in Figures 7.10 and 7.11.
The main drawback of this approach is the need to determine the additional satellite-receiver biases
which are directly correlated with STEC and therefore cannot be ignored. Furthermore the isotropic
mapping function is at best an assumption of homogenous spatially distributed electron density.
Despite these factor, an agreement to 1 - 3 TECU was found between GNSS and the modelled
STEC.
Furthermore STEC measured by the Swarm GNSS receiver was used to validate the electron density.
As already discussed, the main drawback of this approach was that only ionosphere above Swarm

28In this work, the Chapman scale height has been used which is constant with altitude at a given latitude and
longitude.
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7 Validation of electron density modelling

Figure 7.17: Deviation between in-situ and modelled electron density along track Swarm-A on 08 March
2015. Top left 00:00 - 04:00 UT, Top right 04:00 - 08:00 UT, Bottom left 08:00 - 12:00 UT,
Bottom left 12:00 - 16:00 UT

altitude would be used and accordingly leads to a systematic offset (approximately 1 TECU), which
was removed in the RMS computation as reported in Table 7.11.
A summary of statistics from the validation performed in this section is provided in Table 7.11.
Validation has provided confidence that the ICOA has been successfully implemented and used for
EDM.
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Figure 7.18: Deviation between in-situ and modelled electron density along track Swarm-C on 08 March
2015. Top left 00:00 - 04:00 UT, Top right 04:00 - 08:00 UT, Bottom left 08:00 - 12:00 UT,
Bottom left 12:00 - 16:00 UT

Figure 7.19: Dataflow of validation with Swarm STEC
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7 Validation of electron density modelling

Table 7.11: Overview of validation

Validation with Num Data resolution Summary
Ionosonde 17 30 min RMS ∆NF2

m = 0.2 EDU
stations RMS ∆hF2

m = 22 km
RMS rel. ∆NF2

m = 9.8 %
RMS rel. ∆hF2

m = 5 %

GNSS STEC 2 10 min RMS ∆STEC = 0.83 TECU
stations RMS rel. ∆STEC = 5.53 %

Swarm STEC A,B,C 10 min RMS ∆STEC = 0.83 TECU
RMS rel. ∆STEC = 5.53 %

Bias = 4.8, = 2.3 and = 1.1 TECU

Swarm LP A,B,C 10 min RMS ∆Ne = 0.33 EDU
RMS rel. ∆Ne = 15 %

Bias = 1.6 EDU
CHAMP LP 10 min RMS ∆Ne = 0.27 EDU

RMS rel. ∆Ne = 12.27 %
Bias = 0.31 EDU

Simulated data − 1 hour RMS ∆Ne < 10−3 EDU
RMS rel. ∆Ne < 10−3 %
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8 Summary conclusion and outlook

We have reached the end of this thesis and in this chapter we will summarize the most important
outcomes as well as the outlook for the future of EDM using ICOA.

8.1 Summary
Electron density is the most important geodetic parameter in modelling the upper atmosphere, since
it has a significant impact on many applications such as PPP and satellite navigation. Therefore, its
precise modelling is essential for commercial as well as scientific applications including space weather
studies. However, a limited number of observation techniques with a global coverage, especially
along the altitude and the mutual correlation among the Chapman key parameters are the two
main limitations. Hence there is a clear need to develop robust estimation techniques for the 4D
global EDM. As a result, the ICOA has been developed in this thesis. The multi-layer Chapman
approach has been used, where the electron density profiles of the different layers are defined by
a set of altogether 14 key parameters. Depending on the chosen layers, their key parameters are
then modelled using series expansions in terms of 2D tensor products of B-spline functions; the
corresponding coefficients are then estimated using ICOA. This approach allows for modelling and
estimating multiple Chapman key parameters simultaneously, thereby considering their mutual
correlations. Furthermore, inequality constraints are applied to physically localize the selected
key parameters to within physically realistic bounds. An independent validation with both the
simulated and the ionosonde data was performed to assess the overall accuracy of ICOA.

Summary of findings
Some important findings from our investigations are summarized as follows:

• The developed ICOA described in the Chapter 4 has been successfully applied to our 4D
global EDM.

• The relative deviation of the estimated F2-layer peak height and peak density are approximately
in the order of 5% and 10% respectively with respect to ionosonde observations. A summary
of the validation results from other sources of data was shown in Table 7.11.

• Even though we have applied the ICOA to 4D global EDM, it can be adapted to regional
EDM as well as to related applications e.g. global VTEC modelling.

• The main findings from the 54 numerical evaluations is that the estimated optimization
parameters are generally sensitive to the choice of initial values β0 from being within or
outside the feasible region FR, the total number as well as the spatial distribution and quality
of the observations, the chosen lower and upper bound functions κl and κu as well as on the
selected B-spline levels J1, J2 for the Chapman key parameter κ ∈ K1.

• Particularly, within the ICOA, the initial values β0 and the step size matrix T have a significant
impact on the estimated optimization parameters. Therefore, a systematic procedure is required
to obtain both β0 and T . Whereas the initial values β0 are determined using an ARMA or
N-ARMAX process, the step size matrix T was computed using the predicted value of the
optimization parameter.

• The choice of the lower and the upper bound functions κl and κu are of particular importance
when the key parameters from two or more ionosphere layers have to be considered in the set
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8 Summary conclusion and outlook

K1. The bound functions are generally time varying and numerically in different orders of
magnitude. As an example, while the peak density of the F1-layer drops to zero at night, that
of the F2-layer and the plasmasphere still have a significant value; see e.g. Bremer (1998) and
Berkner and Wells (1934). Therefore, if the F1-layer key parameters are considered in the
set K1, their corresponding constraint bounds need to be adapted with time. Accordingly, a
balance between extremely restrictive or more relaxed constraints for both the upper and the
lower bound functions is needed. Qualitatively, restrictive constraints are those characterized
by a relatively smaller dynamic range and relaxed constraints have larger dynamic range.
These aspects have been described using examples in Appendix A especially see Eq. (A.4).

• While the inequality constraint bounds on the key parameters can be held constant, we have
shown that the bounds can also be defined as spatio-temporal functions; see Chapter 6; Figs.
14 and 15.

• We have also provided the uncertainty of the estimated key parameters using a Monte-Carlo
approach.

8.2 Conclusion
By applying the ICOA to the 4D global EDM we have demonstrated that the estimated parameters
lie within physically realistic limits, for example, non-negative values for the peak electron density
and within an interval of 220 to 420 km the F2 layer peak height.
The following conclusions are based on a total of 54 numerical evaluations. Furthermore, these
conclusions can be directly applied as ”best practices” in the subsequent studies so that the benefits
of ICOA can be applied to real-time and near real-time ionosphere modelling activities.

1. A numerical value for the minimal set of the unknown Chapman key parameters κ ∈ K1
shall be estimated and the remaining key parameters κ ∈ K2 are assumed to be given with
appropriate accuracy.

2. Limiting the total number of constraints: For each inequality constraint, an additional pair
of unknown Lagrange multiplier and a slack variable has to be estimated. In this thesis,
the upper and lower bound functions κu and κl are considered to be time-varying at 6 hour
temporal resolution and are defined at a 5○ ×5○ spatial resolution along latitude and longitude.

3. The choice of the feasible region: The dynamic range and the hypervolume in an ICOP is
directly a function of the constraint bounds, which in-turn is related to the overall size of the
feasible region FR. This problem is further related to two important aspects of the ICOP: (1)
the choice of the constraint bound functions κl and κu and (2) the convexity of the objective
function.

a) To the best knowledge of the author, there is no specified procedure for the choice of
the inequality constraint bound functions. Therefore in this work, the upper and the
lower bound functions κu and κl were chosen based on the analysis of the maximum and
minimum values of the Chapman key parameters from the IRI model values1.

b) A convexity check of the objective function is also recommended and has been used in
this thesis; see Eq. (4.28)

4. Initial values: When the ICOA starts with initial values from within the feasible region, then
the computation times are relatively lower compared to a completely random initialization.

5. In a sequential processing, the use of an effective forecast technique to determine the initial
value of the unknown parameters based on Eqs. (4.171), (4.173) and (4.174) also helps in
reducing the computation time.

6. Tuning parameters of the optimization algorithm: The step size matrix T in the search
algorithm shall be chosen related to the number of ionosphere layers, the total number of

1A global IRI model simulation was analysed over a 10 year period (2005 - 2015) at 12 UT each day.
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unknown parameters, and also the total number of constraints. We recommend the use of Eq.
(4.109) or one of the methods described in Section 4.7.3.

7. Use of different B-spline levels for the different Chapman key parameters: Some of the
Chapman key parameters are not spatially varying as much as some others. For example if
the F2− and the E-layers are simultaneously considered in K1, then the key parameters of the
latter can be modelled with smaller B-spline levels J1, J2 compared to that of the F2-layer.
This is owing to the fact that the E-layer spatial decorrelation of the key parameters is smaller
compared to that of the F2-layer. This was checked in the IRI model during this thesis.

8.3 Outlook
While it is necessary to use VTEC data for EDM, its relatively higher number of observations
compared to that of F3C and GRACE is due to a larger number of discrete altitudes used for
defining the profile function. This situation is expected to change with more observations from
the F7C2 mission2 (see Fig. 3.4) and the availability of additional IRO observations, e.g. from the
GRACE-FO mission as well as the satellites owned and operated by other private companies, e.g.
SPIRE; see Bowler (2020). The F7C2, a constellation of 6 satellites to meet the RO data continuity
(Yue et al. (2014)), is a follow-on mission to the F3C mission. An improved payload TriG GNSS-RO
receiver with Galileo and GLONASS tracking capability, will produce a significantly higher spatial
and temporal density of electron density profiles. The F7C2 constellation comprises 6 satellites at a
24º inclination to enhance observations in the equatorial region (Hsu et al. (2018), Yue et al. (2014)).
In future, the multi-constellation GNSS tracked by occultation sensors on-board LEO satellites will
increase the number of observations, global coverage and will be a significant benefit for the 4D
global EDM. The last of the F3C mission satellite was officially decommissioned on 1 May 20203.
In future, further investigations could be carried out to charecterize the performance of the ICOA
for EDM with modelling different sets of key parameters κ ∈ K1, especially including the bottom
layers. Furthermore, evaluation of our EDM with different B-spline levels J1, J2 for the individual
key parameters κ ∈ K1 can also be performed. Since the scope of this thesis is the development of
the ICOA and its application to EDM, the exact nature of mutual correlations between the key
parameters κ ∈ K1 has not been discussed, which depends on the source and duration of data,
space weather conditions and also the choice of the profile function p(h). These aspects could
be investigated further in future as well. In this thesis the key parameters of the D−, the E−
and the F1−layer are obtained from the IRI 2012 model. It shall be noted that IRI also makes
assumptions, such as the existence of the F1 layer only within mid- and low-latitudes; see Bilitza
(2000), Coiosson et al. (2005). Although these assumptions may be reasonable from a long term
climatology perspective but we need improved models for these layers in our global 4D EDM.
If the ICOA is to be used within an operational product generation, then improvements to the
computing platform shall also be considered. One such implementation could be the use of a
distributed computing infrastructure (DCI). Although this work was performed on a desktop
computer, but a DCI could be more efficient for an operational center targeting a low latency
product e.g. real-time VTEC maps. Each of the dedicated tasks such as raw data download in
near real time, pre-processing, constraint processing, ICOA based estimation of the Chapman key
parameters, quality control and verification could be independently handled by a specific (and
dedicated) computing infrastructure. High performance cluster computing facilities such as the
one hosted by Leibniz-Rechnerzentrum in Garching near Munich and other cloud based hosting
infrastructures are very relevant.

2COSMIC-2 data is already available since October 2019 but the analysis period chosen for this work is March 2015.
3www.nesdis.noaa.gov/content/after − 14 − years − cosmicformosat − 3 − ends − service
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calibration for precise positioning of LEO satellites. GPS solutions, 13(1):23.

Montenbruck O. and Gill E. (2001). Book Review: Satellite orbits: models, methods and applications/Springer,
2000. The Observatory, 121:182.

Montenbruck O. and Hauschild A. (2013). Code Biases in Multi-GNSS Point Positioning. Proceedings of the
ION NTM.

Montenbruck O., Hauschild A., and Steigenberger P. (2014a). Differential code bias estimation using multi-
GNSS observations and global ionosphere maps. Navigation: Journal of the Institute of Navigation,
61(3):191–201.

Montenbruck O., Steigenberger P., Khachikyan R., Weber G., Langley R., Mervart L., and Hugentobler
U. (2014b). IGS-MGEX: Preparing the Ground for Multi-Constellation GNSS Science. Inside GNSS,
9(1):42–49.

Moritz H. (2015). Classical Physical Geodesy, pages 253–289. Springer Berlin Heidelberg, Berlin, Heidelberg,
ISBN: 978-3-642-54551-1, DOI: 10.1007/978-3-642-54551-1 6, https://doi.org/10.1007/978-3-6
42-54551-1_6.

Murty K. G. (1972). On the number of solutions to the complementarity problem and spanning properties
of complementary cones. Linear Algebra and its Applications, 5(1):65 – 108, ISSN: 0024-3795, DOI:
https://doi.org/10.1016/0024-3795(72)90019-5, http://www.sciencedirect.com/science/arti
cle/pii/0024379572900195.

Nesterov Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence
o(1/k2).

Nesterov Y. and Nemirovskii A. (1994). Interior-point polynomial algorithms in convex programming. SIAM.

Nesterov Y., Wolkowicz H., and Ye Y. (2000). Semidefinite Programming Relaxations of Nonconvex
Quadratic Optimization, pages 361–419. Springer US, Boston, MA, ISBN: 978-1-4615-4381-7, DOI:
10.1007/978-1-4615-4381-7 13.

Noakes D. J. (1986). APPLIED TIME SERIES MODELLING AND FORECASTING.

Nocedal J. and Wright S. J. (2006). Numerical Optimization. Springer, second edition edition, ISBN:
978-0-387-30303-1.

Obrou O., Bilitza D., Adeniyi J., and Radicella S. (2003). Equatorial F2-layer peak height and correlation
with vertical ion drift and M (3000) F2. Advances in Space Research, 31(3):513–520.

Odijk D. and Teunissen P. J. (2013a). Characterization of between-receiver GPS-Galileo inter-system biases
and their effect on mixed ambiguity resolution. GPS solutions, 17(4):521–533.

Odijk D. and Teunissen P. J. (2013b). Estimation of differential inter-system biases between the overlapping
frequencies of GPS, Galileo, BeiDou and QZSS. In 4th International colloquium scientific and fundamental
aspects of the Galileo programme, pages 4–6.

Olivares-Pulido G., Terkildsen M., and Arsov, K. e. a. (2019). A 4D tomographic ionospheric model to support
PPP-RTK. J Geod, 93:1673–1683.

Osborne E. E. (1965). Smallest Least Squares Solutions of Linear Equations. Journal of the Society for
Industrial and Applied Mathematics Series B Numerical Analysis, 2(2):300–307, DOI: 10.1137/0702024,
https://doi.org/10.1137/0702024.

Oshiorenoya A. E. (2004). Plasma in the ionosphere: Ionization and recombination. Space Physics P, 5.

Panzetta F., Bloßfeld M., Erdogan E., Rudenko S., Schmidt M., and Müller H. (2019). Towards thermospheric
density estimation from SLR observations of LEO satellites: a case study with ANDE-Pollux satellite.
Journal of Geodesy, 93(3):353–368.

Parkinson M., Dyson P., Monselesan D., and Morris R. (1998). On the role of electric field direction in
the formation of sporadic E-layers in the southern polar cap ionosphere. Journal of atmospheric and
solar-terrestrial physics, 60(4):471–491.

153

https://openlibrary.org/search?isbn=978-3-642-54551-1
https://dx.doi.org/10.1007/978-3-642-54551-1_6
https://doi.org/10.1007/978-3-642-54551-1_6
https://doi.org/10.1007/978-3-642-54551-1_6
https://dx.doi.org/https://doi.org/10.1016/0024-3795(72)90019-5
http://www.sciencedirect.com/science/article/pii/0024379572900195
http://www.sciencedirect.com/science/article/pii/0024379572900195
https://openlibrary.org/search?isbn=978-1-4615-4381-7
https://dx.doi.org/10.1007/978-1-4615-4381-7_13
https://openlibrary.org/search?isbn=978-0-387-30303-1
https://dx.doi.org/10.1137/0702024
https://doi.org/10.1137/0702024


BIBLIOGRAPHY

Philip E. Gill W. M. and Wright M. H. (1981). Practical optimization, , 1981. No. of pages. ISBN:
978-1-611975-59-8.

Picone J. M., Hedin A. E., Drob D. P., and Aikin A. C. (2002). NRLMSISE-00 empirical model of the
atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research: Space Physics,
107(A12):SIA 15–1–SIA 15–16, ISSN: 2156-2202, DOI: 10.1029/2002JA009430, http://dx.doi.org/10.
1029/2002JA009430. 1468.

Polyak B. T. (1964). Some methods of speeding up the convergence of iteration methods. Computational
Mathematics and Mathematical Physics, 5(4):1–17.

Potra F. A. and Wright S. J. (2000). Interior-point methods. Journal of Computational and Applied
Mathematics, 124(1):281 – 302, ISSN: 0377-0427. Numerical Analysis 2000. Vol. IV: Optimization and
Nonlinear Equations.

Prange L., Orliac E., Dach R., Arnold D., Beutler G., Schaer S., and Jäggi A. (2017). CODE’s five-system
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A Dynamic range and hypervolume

A Dynamic range and hypervolume

Dynamic range computation : example

Given a set of constraints at {φ, λ}

0.02 ≤ NF2
m (φ, λ) ≤ 2.5 EDU

220 ≤ hF2
m (φ, λ) ≤ 480 km

5 ≤HF2(φ, λ) ≤ 180 km,

(A.1)

the three corresponding dynamic ranges are computed as

D
r

N
F2
m
(φ, λ) = ∣2.5 − 0.02∣ = 2.48 EDU

D
r

h
F2
m
(φ, λ) = ∣480 − 220∣ = 260 km

D
r
HF2 (φ, λ) = ∣180 − 5∣ = 175 km.

(A.2)

with the corresponding normalized dynamic ranges

D̆
r

N
F2
m
(φ, λ) = 0.992 and N

N
F2
m
= 2.5 EDU

D̆
r

h
F2
m
(φ, λ) = 0.928 and N

h
F2
m
= 280 km

D̆
r
HF2 (φ, λ) = 0.921 and NHF2 = 190 km

(A.3)

resulting in a hypervolume V(φ, λ) = 0.02389.

It follows that:
• for a given pair of upper and lower bound constraint on any one key parameter κ ∈ K1 at
{φ, λ}, there is one corresponding dynamic range Dr

κ (φ, λ).
• for a given pair of upper and lower bound constraint on any one key parameter κ ∈ K1 at each

of the L = φmax ⋅ λmax latitude-longitude pairs, there are L corresponding dynamic ranges
Dr

κ (φm, λj) ∀ m = {1, ⋯, φmax}; j = {1, ⋯, λmax}.
• for a given pair of upper and lower bound constraint on q key parameters κp at each of

the L latitude-longitude pairs, theer are L ⋅ q corresponding dynamic ranges Dr
κp
(φm, λj)

∀ p = {1, ⋯, q}; m = {1, ⋯, φmax}; j = {1, ⋯, λmax} and L hypervolumes V (φm, λj).

B Constraints rationalization

Qualitatively, it has been shown in the numerical evaluations (see section 6.3) that the constraints
with a large dynamic range, result in a corresponding large positive slack. In other words, this
means, overly-conservative contraint bounds were imposed on those key parameters. For near
real-time electron density modelling, the number of constraints and unknown parameters need to be
chosen to satisfy the operational requirements on the spatial and temporal resolution, accuracy,
computational performance, continuity during space weather events etc. For example, consider the
constraint

220 ≤ hF2
m (φ, λ) ≤ 480 km for φ = 10○E, λ = 0○ at 14 ∶ 00 (A.4)

is conservative because at the day-time equatorial latitude, the hF2
m will be larger than 220 km. Fig.

6.6 shows a distribution of IRI model derived hF2
m at φ = 10○E, λ = 0○, under nominal ionospheric
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conditions over a period of 1 year4 and, in retrospect, the dynamic range of constraints, such as
(A.4), could be reduced in the electron density modelling problem. However, if the associated hF2

m

slack variable was only marginally positive (for e.g. between 0 - 20 km), despite being inactive, the
constraint (A.4) is then regarded as γ−active (see chapter 4, definition 4.4.1).

Rationalization is the process of identifying and reducing inactive constraints in the optimiz-
ation problem.

Upper or lower bound to be rationalized ?
Consider the key parameter NF2

m , for which a larger than nominal value (NF2
m ≥ 2.5 EDU) is possible,

e.g. during severe space weather events, but a negative value (i.e. NF2
m < 0) is not. Therefore, an

inequality constraint on the lower bound of NF2
m is necessary for the for physical realism. Similarly,

if both F1 and F2 layer peak heights are to be modelled, then the set K1 would include both the
hF2

m and hF1
m . However, from a physical perspective, the F2 layer should be localized at altitudes

above that of the F1 or in other words, the inequality

hF2
m > hF1

m (A.5)

holds. Therefore, the lower bound of hF2
m and the upper bound of hF1

m layers become important
considerations for rationalization, without which the physical realism (A.5) could be violated.
The following possibilities to reduce the computational time may be considered in the subsequent
studies and in near real time applications.

1. A minimal set of unknown Chapman key parameters to be modelled and the other remaining
key parameters must be given with a high accuracy.

2. Limiting the total number of constraints: For each constraint, a pair of Lagrange multiplier
and slack variable need to be added to the unknown parameters.

3. Choice of feasible region: A large feasible region would mean evaluation of a large number of
potential candidate solutions. This problem is further related to two important aspects of the
problem: choice of constraint bounds and the convexity of the objective function.

• A dedicated sub-routine is recommended for determining the constraint bounds.
• A convexity check of the objective function is also recommended.

4. Initial values: When the optimization algorithms starts with initial values from within the
feasible region, then the computation times are relatively lower compared to a completely
random initialization.

5. In an epoch-by-epoch sequential processing, the use of effective prediction technique (described
in section 4.7.4) to determine the initial value for the unknown parameters also reduce the
computation time.

6. Use of different B-spline levels for the key parameters: Some of the parameters are not changing
spatially as much as others. For e.g. if F2 and E layers are simultaneously considered, then
the key parameters of latter can be modelled with relatively smaller B-spline levels compared
to that of the former. This is owing to the smaller E layer spatial decorrelation of the key
parameters compared to that of the F2 layer (see Bilitza et al. (2011)).

4Measurements at 14:00 local time at the given latitude and longitude for the year 2014.
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C Numerical evaluations E3 - E12

C Numerical evaluations E3 - E12

C.1 Evaluation E3: : Varying NF2
m lower bound

In order to allow better readability, the evaluations E3 - E12 were removed from the main body
of this thesis and put to this Appendix. As a general remark, the figure captions presented in
this chapter will not provide the interpretation details. Instead the detailed interpretation of the
presented results will be included directly in the respective sections of this chapter where the
numerical evaluation is introduced, defined and subsequently the results are tabulated as well
as discussed. This is mainly to avoid long sentences as well as repetitions in the figure captions.
Furthermore, when multiple results are presented together in one figure, the phrase ”panel” refers
to one specific sub-figure within the figure.
In E3, the goal is to continue from Chapter 6 and analyse the impact of a reduced NF2

m dynamic
range on the corresponding slack variable, with the lower bound of NF2

m increased by 5.5%5 compared
to E16 (see Table 1).
The increased NF2

m lower bound and that estimated from the corresponding B-spline coefficients are
shown in the top-left and mid panels (a) and (b) of Fig. 1 respectively. The estimated NF2

m is lower
than (and thus violates) the corresponding lower bound for 12% of the NF2

m constraints and >70%
of these occur in the night side.

Table 1: Configuration for numerical evaluation E3.

variable or parameter value
Input norm. avg. DR D̄r

N
F2
m

0.47 (5.5% higher LB than E1)
norm. avg. DR D̄r

h
F2
m

0.8 (same as that used in E1)
average hypervolume V̄ 0.0620

Output minimum NF2
m slack -0.23 EDU

% of NF2
m constraints violated 12

C.2 Evaluation E4: Using DS2a observation dataset

In E4, the goal is to analyse the impact of using a different observation dataset on the NF2
m slack

variable. The total number of unknown parameters is the same but the observation dataset DS2d is
used in E1 to E3, whereas DS2a is used in E4 respectively (see Fig. 16 and Table 13). The other
inputs including the normalized average dynamic range and the hypervolume are the same as in E1
(see Table 2).
The left top panel of Fig. 2 shows the NF2

m lower bound and that calculated from the corresponding
estimated B-spline coefficients in the mid panels respectively. The resulting NF2

m slack is shown
on the panels (c) and (d). The difference between the lower bound NF2

m and that estimated is the
”negative of slack variable” (see Eq. (5.22), where the constraint was multiplied by -1 to transform
it to the convex form). Therefore, all NF2

m slack variables are still positive and the bottom mid (e)
and right (f) panels show that all NF2

m constraints remain inactive and hence no violations occur.
At the same time, the global minimum of the NF2

m slack variable was similar (0.005 and 0.01 EDU
respectively) between E1 and E4 despite using different observation datasets7.

5The justification for increasing the lower bound exactly by 5.5% is as follows: Different values of increasing the
lower bound were tried in the range of 1 to 10% and the value of 5.5% was then chosen based on the need for
maintaining a consistency among the hypervolume in the evaluations E1 to E8; see Figs. 9 and 10

6Keeping the other inputs same as in E1
7In order to make a representative assessment, E1 results in Fig. 6.11(a) showed the upper bound and in panel (a)

of Fig. 6.10 the corresponding lower bound. It would be duplicate to include both the upper as well as the lower
bound constraint maps in all the evaluations.
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Table 2: Configuration for numerical evaluation E4.

variable or parameter value
Input observation dataset DS2a

norm. avg. DR D̄r

N
F2
m

0.5 (same as that in E1)
norm. avg. DR D̄r

h
F2
m

0.80 (same as that in E1)
average hypervolume V̄ 0.066

Output minimum NF2
m slack 0.02 EDU

% of NF2
m constraints violated 0

Figure 1: Evaluation E3 : impact of NF2
m lower bound constraint
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C Numerical evaluations E3 - E12

Figure 2: Evaluation E4: Slack and modelled NF2
m with observation dataset DS2a

Summary of evaluations E1 - E4

There are two possibilities for reducing the dynamic range (1) by reducing the upper bound
and (2) by increasing the lower bound.

The former is shown in E2, where the upper bound was reduced by 12% and the latter in E3, where
the lower bound was increased by 5.5%. In both cases, a reduction in the average NF2

m dynamic
range, compared to that in E1, results in the corresponding constraint violations (see Fig 9). The
NF2

m slack values for E1 to E4 are are shown in Fig. 3.
In the evaluations E6 and E7, in the following section, hF2

m constraint bounds will be varied with
respect to a reference scenario E5.

C.3 Evaluation E5: Reference scenario

The inputs for E5 is exactly the same as those for E1 as repeated in 3 for easier readability. In order
to distinguish between the NF2

m and the hF2
m analysis, the evaluation E5 is separately included here.

Specifically, now the results of hF2
m slack will be shown. The top panel of Fig. 4 shows the hF2

m upper
bound and that calculated from the corresponding estimated B-spline coefficients in the left and
mid panels (a) and (b) respectively. The top-right sub-figure (c) shows the hF2

m slack, or equivalently
the difference between the top left and top mid panels (a) and (b) respectively, computed using
Eq. (6.13). The bottom panel left (d) shows the same slack variable (as the top-right panel (c))
but in a modified scale. It is seen that all hF2

m slack variables are positive, indicating that the KKT
condition (4.72b) is satisfied. The bottom mid (e) and right (f) panels show that all hF2

m constraints
are inactive and there are no violations.
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Figure 3: NF2
m slack for numerical evaluations E1 to E4. Note that in E1, the minimum slack was 0.005

EDU, as shown in Table 6.4, which is rounded off to 0 EDU in the legend.

Table 3: Configuration for numerical evaluation E5.

variable or parameter value
Input norm. avg. DR D̄r

N
F2
m

0.5 (same as that in E1)
norm. avg. DR D̄r

h
F2
m

0.8 (same as that in E1)
average hypervolume V̄ 0.066

Output minimum hF2
m slack 0.02 km

% of hF2
m constraints violated 0

C.4 Evaluation E6: Varying hF2
m upper bound

In E6, the goal is to analyse the impact of a reduced dynamic range of hF2
m on the corresponding

slack variable. Specifically, the upper bound of hF2
m is reduced by 15%8 compared to E5 with the

other inputs remaining same as in evaluation E5 (see Table 4).
The reduced hF2

m upper bound and that calculated from the corresponding estimated B-spline
coefficients are shown in Fig. 5 in the left and mid panels (a) and (b). The calculated hF2

m exceeds
(and thus violates) 18% of the corresponding hF2

m upper bound constraints.

C.5 Evaluation E7: Varying hF2
m lower bound

In the evaluation E7, the goal is, once again, to analyse the impact of the reduced dynamic range of
hF2

m on the corresponding slack variable. Specifically, the lower bound of hF2
m is increased by 15%

compared to E5, with the other inputs remaining the same as in E5 (see Table 5).
The hF2

m lower bound and that calculated from the corresponding estimated B-spline coefficients
are shown in Fig. 6 in the left and mid panels (a) and (b). The estimated hF2

m is lower than (and
thus violates) 5% of the corresponding lower bound constraints by a maximum of 22 km and >75%

8The justification for choosing the reduction of 15% in hF2
m UB is similar to that presented in the evaluation E2.
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Figure 4: Evaluation E5: Slack and modelled hF2
m

Table 4: Configuration for numerical evaluation E6.

variable or parameter value
Input norm. avg. DR D̄r

N
F2
m

0.5 (same as that in E5)
norm. avg. DR D̄r

h
F2
m

0.72 (15% lower UB than that in E5)
average hypervolume V̄ 0.056

Output minimum hF2
m slack -19.9 km

% of hF2
m constraints violated 18
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Figure 5: Evaluation E6: Impact on slack and modelled hF2
m due to varying upper bound.

of these occur in the equatorial region between 0 - 30○ South during the 05:00 - 07:00 and 17:00 -
19:00 (around the local sunrise and sunset times).
The physical interpretation of the violations in E7 is described below. Physical and chemical
processes, such as ionoization, recombination, field aligned currents, thermospheric winds are
involved in the steady-state9 settlement of the electrons at a given altitude (see e.g. Gulyaeva
(1985)). More generally, the typical daily behaviour of hF2

m includes a reducing trend from the
midnight to sunrise (approximately between midnight and 06:00 local time) and from the afternoon
around 14:00 to sunset (approximately 18:00) (see e.g. Rishbeth (1998), Altadill et al. (2013)).
When the hF2

m lower bound in E7 is increased globally by 15%, with respect to the corresponding
values in E5, then the modelled hF2

m around sunrise and sunset are violated. Similar to E3, where
the NF2

m lower bound was increased by 5%, in E7 the corresponding 15% increase is also seen to be
”excessive”, with respect to the nominal conditions of E5. On the other hand, generally from sunrise
to noon, due to the increase in ionization (see e.g. Gulyaeva (1987), Obrou et al. (2003)), hF2

m

increases10. Therefore, a 15% increase in the hF2
m lower bound with respect to E5 causes qualitatively

less violations during those times compared to the night.

Table 5: Configuration for numerical evaluation E7.

variable or parameter value
Input norm. avg. DR D̄r

N
F2
m

0.5 (same as that in E5)
norm. avg. DR D̄r

h
F2
m

0.72 (15% larger LB than that in E5)
average hypervolume V̄ 0.056

Output minimum hF2
m slack -25.91 km

% of hF2
m constraints violated 5

9Steady-state is defined as a quasi-equilibrium between gravitational, electrodynamic and hydrostatic forces acting
on the charged particles, such as electrons. (see e.g. Rishbeth (1998))

10at different rates though at the different latitudes.
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Figure 6: Evaluation E7: Impact on slack and modelled hF2
m due to varying upper bound.

C.6 Evaluation E8: Using DS2a observation dataset

In the evaluation E8, the goal is to analyse the impact of using the DS2a observation dataset on the
hF2

m slack variable. The other inputs are the same as in E5 (see Table 6).
The top panel of Fig. 7 shows the hF2

m lower bound and that calculated from the corresponding
estimated B-spline coefficients in the left and mid panels (a) and (b) respectively. It is seen that
the KKT condition (4.72b) is satisfied for this solution, shown by the positive hF2

m slack variable
in the panels (c) and (d). The difference between the hF2

m lower bound and that estimated is the
”negative of slack variable” (as explained already in evaluation E3 and also explained in Eq. (5.22)).
Therefore, all hF2

m slack variables are positive and the bottom middle (e) and right (f) panels show
that all hF2

m constraints remained inactive.

Table 6: Configuration for numerical evaluation E8.

variable or parameter value
Input Observation dataset DS2a

norm. avg. DR D̄r

N
F2
m

0.5 (same as that in E5)
norm. avg. DR D̄r

h
F2
m

0.8 (same as that in E5)
average hypervolume V̄ 0.066

Output minimum hF2
m slack 0.02 km

% of hF2
m constraints violated 0

Summary of evaluations E5-E8
The hF2

m slack variable is shown to be sensitive to the corresponding lower and upper bounds in the
evaluations E6 and E7. Similar to the case of NF2

m , the impact of a different observation dataset
was not found to be significant. In both E5 and E8, the minimum hF2

m slack was 0.02 km. The hF2
m

slack values in E5 to E8 are shown in Fig. 8.
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Figure 7: Evaluation E8: Slack and modelled hF2
m with observation dataset DS2a.

C.7 Sub-evaluations E1a-E1d: Accuracy assessment and the impact of ionospheric
layers

There are two goals of the evaluations E1a to E1d:
1. To analyse the accuracy of the estimatedNF2

m in evaluation E1.
2. To analyse the impact of the ionospheric bottom (D−, E−, F1−) layers in the electron density

modelling.
The evaluations E1 to E3 and E5 to E7 have used the DS2d observation dataset, for which there
is no reference (or ”truth”) to compute the deviation11 of the estimated key parameter, unlike
with the simulated dataset DS1a. Therefore, an independent observation dataset from ionosonde
stations (DS3) is used to determine the accuracy of the estimatedNF2

m with that obtained from four
selected ionosonde stations. The estimated NF2

m B-spline coefficients in the evaluation E1 are used
to compute the estimated NF2

m at four ionosonde station locations at 15:00 local time using Eq.
(5.5). The difference (or deviation) of the estimatedNF2

m with respect to that obtained from the
ionosonde stations, between 14:00 - 16:00, is computed and its mean over three consecutive days (10
- 12 March 2015) is shown in Fig. 11.
The sub-evaluations, E1a to E1d, corresponding to the inclusion of the ionospheric bottom layers
(F1−, E− and D−) are described below. As already described in Eq. (5.16) the Chapman key
parameters are partitioned into the two sets K1 and K2. The former contains the key parameters
corresponding to the F2 layer and plasmasphere to be modelled and the latter contains the given
values of the remaining parameters. It has also been mentioned that the NQ

m and hQ
m, corresponding

to the layer Q, in K2 are obtained from reliable sources (e.g. IRI model) and the respective scale
heights of each layer from Eq. (6.3). In the evaluations E1a to E1c, the impact of given values for
the F1−, the E− and the D− layer given values in the subset K2 will be demonstrated.
As in all other evaluations, 5 key parameters in (6.1) are to be estimated and the known given
values of the remaining key parameters in (6.2) are used.

11a measure of accuracy, defined in Eq. (A.9)
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C Numerical evaluations E3 - E12

Figure 8: hF2
m slack for the numerical evaluations E5 to E8

Figure 9: Average NF2
m and hF2

m dynamic ranges used in evaluations E1 - E8.

Evaluation E1a: F2 layer and plasmasphere
In E1a, only the F2 layer and plasmasphere are considered by ignoring the remaining layers and
accordingly, it follows:

NF1
m (φm, λj) = 0 NE

m (φm, λj) = 0 ND
m (φm, λj) = 0 (A.6)

are set in K2, ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. By setting the peak density of the F1−, E−
and D− layers to zero, they do not contribute to the total electron density of (5.1) 12.
Evaluation E1b: F2−, F1− layer and plasmasphere
In E1b, the F1 layer is considered in addition to that in E1a, but ignoring the key parameters of
the two remaining two (E− and D−) layers and accordingly, we set

NE
m (φm, λj) = 0 ND

m (φm, λj) = 0, (A.7)

in K2, ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. It shall be noted that the NF1
m and hF1

m are directly
obtained from the IRI model for this work, whereas the corresponding HF1 is assumed to be 10% of
HF2 13.
12In other words, the ionosphere is assumed to be comprised of only F2 layer and plasmasphere.
13This is only an approximation, for lack of a more precise information. Similar assumptions were also made by Liang

et al. (2016)
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Figure 10: Hypervolume computed from the average dynamic ranges in evaluations E1 - E8.

Evaluation E1c: F2−, F1−, E− layer and plasmasphere
In E1c, the F1− and the E− layer are considered in addition to that in E1a, but still ignoring the D
layer key parameters and accordingly, in K2 we set

ND
m (φm, λj) = 0 (A.8)

∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. It shall be noted that the NF1
m , hF1

m , NE
m and hE

m are
directly obtained from the IRI model, whereas the corresponding HF1 and HE are both assumed to
be 10% of HF2 14.
Evaluation E1d: F2−, F1−, E−, D− layer and plasmasphere15

In E1d, the F1−, E−, D− layers are considered in the given values of parameters in K2 (see Eq.
(6.2)) and are obtained from the IRI model. It shall be noted that the HF1 , HE and HD are
assumed to be 10% of HF2 16.
Summary of E1a - E1d
Setting the given values of ND

m , NE
m and NF1

m in K2 to zero, is equivalent to ignoring the corresponding
D−, E−, F1− layers in electron density modelling, the impact of which is approximately 0.012 EDU
(≈ 0.5%) between E1a and E1d, consistently among the four ionosonde stations (see Fig. 11). It
indicates that the deviation between the estimated and the ionosonde derived NF2

m is not only due
to ignoring the ionospheric bottom layers but also (possibly) due to other effects, such as:

• the thermosphere-ionosphere coupling, especially in the bottom layers (see Mendillo et al.
(2002), Luehr et al. (2011))

• field aligned current (FAC), sporadic-E (Es) layer, equitorial electrojets etc. (see Rawer and
Argence (1954), Rishbeth and Barron (1960), Rishbeth (1968), Parkinson et al. (1998))

• differences in the maximum vertical penetration of the signals from ionosonde stations (see
e.g. Hunsucker (1991), Lei and Chuo (2014), McNamara et al. (2008)).

14This is only an approximation, for lack of a more realistic information, especially for the E-layer. Similar assumptions
were also made by Liang et al. (2016)

15This is considered to be the most realistic case of modelling the ionospheric and plasmaspheric layers.
16This is only an approximation, for lack of a more realistic information, especially for the D and E-layers. Similar

assumptions were also made by Liang et al. (2016). In future, when there would be accurate models of the bottom
layers, these assumptions should be relaxed.
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Figure 11: Effect of considering the given values of F1, E and D layers on NF2
m deviation with respect to

four ionosonde stations and mean over 10-12 March 2015 at 15:00 hours.

In the further evaluations E9 - E12, the dynamic range will be progressively varied and a threshold
NF2

m and hF2
m bounds is determined, beyond which any constraint violations occur.

C.8 Varying constraint bounds with simulated data

In the evaluations E1 to E8, the constraints and dynamic ranges of the key parameters, κ ∈ K1, have
been defined at a 5○ × 5○ spatial resolution globally (see Figs. 6.5, 14, 15). In contrast, a constant
global upper and lower bound will be applied in the evaluations E9 to E12.
Firstly, in E9, a constant lower bound for NF2

m of 0.02 EDU is applied, while progressively reducing
the corresponding upper bound from 3.2 to 1.8 EDU. Subsequently in E10, a constant upper bound
for NF2

m of 2.8 EDU is applied, while progressively increasing the corresponding lower bound from
0.001 to 0.51 EDU. Accordingly, for each pair of upper and lower bounds, there exist sub-evaluations
E9a to E9r and E10a to E10n, as shown in the Figs. 13, 10.
Similarly, in the evaluations E11 and E12, the hF2

m constraint bounds will be varied. In the sub-
evaluations E11a to E11d, a constant lower bound of 220 km for hF2

m is applied, while progressively
reducing the corresponding upper bound from 480 to 420 km. Subsequently, in E12, a constant
upper bound of 480 km for hF2

m is applied, while progressively increasing its lower bound from 220
to 280 km.
In all the four evaluations E9 to E12, the observation dataset DS1a is used and the number of key
parameters from K1 are estimated. The advantage of the simulated observation DS1a is that a
reference (κref ) is available, with which the deviation

∆κ(φm, λj) = κ̂(φm, λj) − κref(φm, λj) (A.9)

and the relative deviation
∆κrel(φm, λj) =

∆κ(φm, λj)

κref(φm, λj)
(A.10)

are computed, where κ̂ denotes the estimated key parameter from the estimated B-spline coefficients
∀ m = {1, ⋯, φmax}; j = {1, ⋯, λmax}. The relative deviation (A.10) is a dimensionless parameter
and its global RMS is a measure of accuracy of the estimated key parameter κ ∈ K1, for e.g. as
shown for NF2

m in Tables 8 and 9.
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Qualitatively, the feasible region in E9a, E10a have a larger hypervolume compared to E9b, E10b
respectively and it progressively reduces from E9a to E9r and E10a to E10n (see Fig. 13). As
expected, both the RMS relative deviation and constraint violations increase, as summarized in
Tables 8, 9.

C.9 Evaluation E9: Varying NF2
m upper bound

The evaluations E9a - E9r, corresponding to the different NF2
m upper bounds, are listed in Table 8

along with the resulting RMS relative deviation and the percentage of constraint violations. As
examples, the upper and lower bound constraints of the three selected evaluations (E9e, E9h and
E9k) are shown below. It shall be noted that the constraint bounds on other key parameters,
κ ∈ K1 ; κ ≠ NF2

m , are not modified in E9 and their values are the same as used in the evaluation E1.
Evaluation E9e
In E9e, the constraints

0.02 ≤ NF2
m (φm, λj) ≤ 2.8 EDU

220 ≤ hF2
m (φm, λj) ≤ 480 km

(A.11)

are applied, ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. Compared to nominal space weather
conditions, where NF2

m reaches a global maximum of approximately 2.5 EDU (Bilitza et al. (2011)), a
constraint bound of 2.8 EDU yields a relatively large dynamic range17 and thus the NF2

m constraints
(A.11) remain inactive.
Evaluation E9h
In E9h, the constraints

0.02 ≤ NF2
m (φm, λj) ≤ 2.5 EDU

220 ≤ hF2
m (φm, λj) ≤ 480 km

(A.12)

are applied ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. Compared to E9a - E9g, the dynamic range
of NF2

m constraints are reduced and, as explained in E9e, 2.5 EDU is approximately the global
maximum NF2

m under nominal ionospheric conditions18 and thus becomes a critical threshold, at
which 12% of constraints (A.12) are violated.
Evaluation E9k
In E9k, the constraints

0.02 ≤ NF2
m (φm, λj) ≤ 2.2 EDU

220 ≤ hF2
m (φm, λj) ≤ 480 km

(A.13)

are applied ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. Compared to E9a - E9j, the dynamic range of
NF2

m constraints are reduced and as explained already in E9h, the bound of 2.2 EDU is lower than
the threshold at which 15% of constraints are violated.
An unconstrained optimization solution is additionally computed (included in the column titled
”Unc.”) along with the selected sub-evaluations E9e, E9g and E9k in Table 8. As the upper bound
is reduced from 3.2 EDU, a significant reduction19 in the relative deviation, occurs at the critical
threshold of 2.5 EDU. The lowerst RMS relative deviation corresponds to the NF2

m upper bound of
2.6 EDU in E9g. From E9a to E9g, although the NF2

m dynamic range is progressively reduced, the
optima is still inside the feasible region, which is no longer the case for the evaluations E9h - E9r,
where the RMS relative deviation as well as the number of constraint violations increase.
17Larger dynamic range also means that the constraints are relatively ”conservative”.
18Charecterized by nominal space weather indices such as Kp and F10.7. Typical daily values are 1 < Kp < 4 and 50
< F10.7 < 100 solar flux units (SFU).

19by 13 orders of magnitude
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Table 7: Summary of the three specific evaluations for varying NF2
m upper bound

Unc E9e E9g E9k
NF2

m upper bound (EDU) - 2.8 2.5 2.2
NF2

m lower bound (EDU) - 0.01 0.01 0.01
NF2

m dynamic range (EDU) - 2.79 2.49 2.19
hF2

m upper bound (km) - 480 480 480
hF2

m lower bound (km) - 220 220 220
hF2

m dynamic range (km) - 260 260 260
HF2 upper bound (km) - 180 180 180
HF2 lower bound (km) - 5 5 5

HF2 dynamic range (km) - 175 175 175
# iterations 15 15 15 15

# NF2
m constraints - 5402 5402 5402

# hF2
m constraints - 5402 5402 5402

# HF2 constraints - 5402 5402 5402
Observations source DS1a DS1a DS1a DS1a

# observations 240389 240389 240389 240389
# unknowns 2160 56180 56180 56180

RMS relative deviation (%) 7.2×10−11 1.12×10−14 6.17×10−17 3.63×10−4

Table 8: Global RMS and mean relative deviation as well as constraint violations for evaluations in E9.

Evaluation upper bound RMS relative mean relative constraint
(EDU) deviation (%) deviation (%) violations (%)

E9a 3.2 1.17×10−13 -3.76×10−13 0
E9b 3.1 6.57×10−13 -2.96×10−13 0
E9c 3.0 2.61×10−13 -1.24×10−13 0
E9d 2.9 6.60×10−13 7.43×10−14 0
E9e 2.8 1.12×10−14 -3.96×10−14 0
E9f 2.7 1.35×10−14 -5.24×10−15 0
E9g 2.6 6.17×10−17 -1.11×10−17 0
E9h 2.5 2.25×10−4 -2.50×10−6 12
E9i 2.4 1.52×10−3 -3.63×10−5 12
E9j 2.3 3.73×10−3 -1.13×10−4 15
E9k 2.2 3.63×10−4 -2.05×10−4 15
E9l 2.1 9.08×10−3 -2.97×10−4 16
E9m 2.0 1.18×10−2 -3.90×10−4 18
E9n 1.98 1.23×10−2 4.18×10−4 21
E9o 1.94 1.35×10−2 -4.85×10−4 21
E9p 1.90 1.47×10−2 -5.71×10−4 21
E9q 1.86 1.60×10−2 -6.75×10−4 22
E9r 1.82 1.75×10−2 -8.00×10−4 22
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C.10 Evaluation E10: Varying NF2
m lower bound

Table 9 lists the evaluations E10a - E10n, corresponding to the different NF2
m lower bounds, along

with the resulting RMS relative deviation and the percentage of NF2
m constraint violations. As

examples, the upper and lower bound constraints of three selected sub-evaluations (E10b, E10d
and E10j) are shown below. Once again, as with E9, the constraint bounds on the key parameters,
κ ∈ K1 ; κ ≠ NF2

m , are not modified and their values are the same as those used in the evaluation E1.
Evaluation E10l
In E10l, the constraints

0.11 ≤ NF2
m (φm, λj) ≤ 2.8 EDU

220 ≤ hF2
m (φm, λj) ≤ 480 km

(A.14)

are applied, ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. As the NF2
m global minimum value20 is

approximately 0.05 EDU, under nominal space weather conditions (Bilitza et al. (2011)), for a
lower bound of 0.11 EDU, the dynamic range in E10l is lower compared to that in E10a - E10k.
Accordingly, 7% of the NF2

m constraints in (A.14) are violated.

Evaluation E10m
In E10m, the constraints

0.31 ≤ NF2
m (φm, λj) ≤ 2.8 EDU

220 ≤ hF2
m (φm, λj) ≤ 480 km

(A.15)

are applied, ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. Compared to E10a - E10l, the NF2
m dynamic

range is reduced in E10m (for a lower bound of 0.31 EDU), at which 21% of the corresponding NF2
m

constraints in (A.15) are violated.

Evaluation E10n
In E10n, constraints

0.51 ≤ NF2
m (φm, λj) ≤ 2.8 EDU

220 ≤ hF2
m (φm, λj) ≤ 480 km

(A.16)

are applied, ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. Compared to E10a - E10m, NF2
m dynamic

range is reduced in E10n (due to the ”large21” lower bound of 0.51 EDU), at which 39% of NF2
m

constraints in (A.16) are violated (see Fig. 6.8).

As the NF2
m lower bound is increased from 0.001 EDU, a significant change22 in RMS relative

deviation, is only seen for a lower bound of 0.08 EDU or larger. The lowest RMS relative deviation
results in E10g, at a lower bound of 0.06 EDU.

C.11 Evaluation E11: Varying hF2
m lower bound

Evaluation E11b
In E11b, the constraints

0.02 ≤ NF2
m (φm, λj) ≤ 2.8 EDU

240 ≤ hF2
m (φm, λj) ≤ 480 km

(A.17)

20Minimum value occurs at night time and varies during a solar cycle and also exhibits an annual climatology in IRI
model.

21Compared to a nominal lower bound of 0.02 EDU in E10a, 0.51 EDU is considered as extremely large.
22by 10 orders of magnitude
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Table 9: Summary of the three specific evaluations for varying NF2
m lower bound

Unc. E10l E10m E10n
NF2

m upper bound (EDU) - 3 3 3
NF2

m lower bound (EDU) - 0.11 0.31 0.51
NF2

m dynamic range (EDU) - 2.89 2.69 2.49
hF2

m upper bound (km) - 480 480 480
hF2

m lower bound (km) - 220 220 220
hF2

m dynamic range (km) - 260 260 260
HF2 upper bound (km) - 180 180 180
HF2 lower bound (km) - 5 5 5

HF2 dynamic range (km) - 175 175 175
# iterations 15 15 15 15

# NF2
m constraints - 5402 5402 5402

# hF2
m constraints - 5402 5402 5402

# HF2 constraints - 5402 5402 5402
Observation dataset DS1a DS1a DS1a DS1a

# observations 240389 240389 240389 240389
# unknowns 2160 56180 56180 56180

NF2
m RMS relative deviation (%) 4.12×10−11 1.83×10−2 7.68 44.3

Table 10: RMS and mean relative deviation as well as constraint violations for various lower bound of NF2
m .

Evaluation lower bound RMS relative mean relative constraint
(EDU) deviation (%) deviation (%) violations (%)

E10a 0.001 2.61×10−12 -1.24×10−13 0
E10b 0.01 1.07×10−12 -5.26×10−13 0
E10c 0.02 2.98×10−12 -1.36×10−12 0
E10d 0.03 1.22×10−13 -5.11×10−14 0
E10e 0.04 5.42×10−13 -2.17×10−14 0
E10f 0.05 6.87×10−16 -2.40×10−16 0
E10g 0.06 3.43×10−16 -1.46×10−16 0
E10h 0.07 1.03×10−15 -1.24×10−16 0
E10i 0.08 3.39×10−4 8.25×10−6 3
E10j 0.09 3.08×10−3 1.50×10−4 3
E10k 0.1 9.56×10−3 6.99×10−4 7
E10l 0.11 1.83×10−2 1.89×10−3 7
E10m 0.31 7.68 8.14 21
E10n 0.51 44.3 46.2 39
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Figure 12: RMS relative deviation for different upper bounds of NF2
m

Table 11: RMS and mean relative deviation as well as constraint violations for various lower bound of hF2
m .

Evaluation lower bound RMS relative mean relative constraint
(km) deviation (%) deviation (%) violations (%)

E11a 220 6.11×10−16 -3.47×10−15 0
E11b 240 7.44×10−7 -1.60×10−6 1
E11c 260 3.31×10−6 -5.66×10−6 4
E11d 280 2.23×10−5 -1.01×10−3 10

are applied, ∀m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. As the hF2
m reaches a minimum of approximately

240 km23 under nominal space weather conditions (Bilitza et al. (2011)), a bound of 240 km yields
a lower dynamic range (relative to E11a) at which 1% of hF2

m constraints in (A.17) are violated.
Evaluation E11c
In E11c, the constraints

0.02 ≤ NF2
m (φm, λj) ≤ 2.8 EDU

260 ≤ hF2
m (φm, λj) ≤ 480 km

(A.18)

are applied, ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. Following the analogy described in E11b,
a bound of 260 km yields a lower dynamic range (relative to E11a, E11b), at which 4% of hF2

m

constraints in (A.18) are violated (see Fig. 6.9). The relative deviation statistics as well as the
percentage of total number of hF2

m constraints that were violated as a result of the varying the
hF2

m lower bounds in evaluations E11a - E11d are summarized in Table 11. Similarly, the relative
deviation statistics as well as the percentage of total number of hF2

m constraints that were violated
as a result of the varying the hF2

m upper bounds in evaluations E11a - E11d are summarized in Table
12.
23A minimum value of approximately 240 km is reached in night-time in IRI model. In addition to the time of day,

the minimum hF2
m also depands on the input solar flux (F10.7) and follows an annual climatology.
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Figure 13: Top panel: Left vertical axis shows the global average NF2
m dynamic range used as input for

the constraints in sub-evaluations E9a - E9r. Bottom panel: NF2
m upper and lower constraint

bounds used in sub-evaluations E10a - E10l. The left vertical axis is in logarithmic scale to
especially show the variation in lower bounds. In both the top and bottom panels the resulting
% of constraint violation are shown on the right side vertical axis.

Table 12: RMS and mean relative deviation as well as constraint violations for various upper bound of hF2
m .

Evaluation upper bound RMS relative mean relative constraint
(km) deviation (%) deviation (%) violations (%)

E12a 480 3.87×10−14 -2.11×10−15 0
E12b 460 4.61×10−16 -2.10×10−17 0
E12c 440 6.10×10−6 -1.16×10−5 3
E12d 420 5.43×10−5 -5.88×10−5 8

C.12 Evaluation E12: Varying hF2
m upper bound

Evaluation E12a
In E12a, the constraints

0.02 ≤ NF2
m (φm, λj) ≤ 2.8 EDU

220 ≤ hF2
m (φm, λj) ≤ 480 km

(A.19)

are applied, ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. As hF2
m reaches a maximum of approximately

450 km24 under nominal space weather conditions (Bilitza et al. (2011)), a bound of 480 km yields
a relatively larger dynamic range and thus the hF2

m constraints in (A.19) remain inactive.

Evaluation E12c
In E12c, constraints

0.02 ≤ NF2
m (φm, λj) ≤ 2.8 EDU

220 ≤ hF2
m (φm, λj) ≤ 440 km

(A.20)

24A maximum value of approximately 450 km is reached in day-time around 12:00 - 14:00 local time betweem 30○ N
and 30○ S latitudes in IRI model. Specifically, maximum hF2

m depands on the input solar flux as well as follows an
annual climatology.
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Figure 14: Global lower bound constraints on NF2
m , hF2

m and HF2 at three different times of day (06:00,
12:00 and 18:00 UT).

are applied, ∀ m = {1, ⋯, φmax} ; j = {1, ⋯, λmax}. Following the analogy of the maximum hF2
m

described in E12a, a bound of 440 km is lower than the critical threshold as well as yields a relatively
lower dynamic range, at which 3% of hF2

m constraints in (A.19) are violated.

Table 13: Dataset with different number of observations in each techniques.

Dataset VTEC sepr. GNSS Formosat-3/COSMIC GRACE
DS2a 240389 7500 3153 822
DS2b 60000 7500 3153 822
DS2c 120000 7500 3153 822
DS2d 240389 150000 3153 822
DS2e 60000 150000 3153 822
DS2f 120000 150000 3153 822
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C Numerical evaluations E3 - E12

Figure 15: Global upper bound constraints on NF2
m , hF2

m and HF2 at three different times of day (06:00,
12:00 and 18:00 UT).

Figure 16: Varying the relative number of observations from different techniques.
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D GNSS data processing
GNSS error sources
The main goal of this section is to describe GNSS data processing procedure, particularly relevant
for elecctron density modelling. Inherently, it involves the study of the various GNSS error sources25,
especially those which are relevant and have an impact on both the STEC as well as radio occultation
observations quality. The remaining error sources are mentioned only for the sake of completeness.
The characteristics of the GNSS error sources allow the selection of appropriate variance factors to
be used in the stochastic modelling (see Sections 4.1.1 and 4.1.2).

Signal-in-space error
The total contribution of error due to the satellite orbit and the clock are together referred to as the
signal-in-space error (SISE), which is an approximate figure of merit (FoM) of the space segment
for any given GNSS constellation. A constellation-wide SISE of 80 cm and 50 cm, for GPS and
Galileo respectively, is reported by Montenbruck et al. (2014b). The superior passive hydrogen
maser (PHM) clock in Galileo, compared to the Rubidium clocks of GPS, is an important enabler
for precise STEC measurements (Steigenberger et al. (2015), Prange et al. (2017)).

Propagation medium errors
The ionosphere and the troposphere are the two main propagation media related effects in GNSS
observations. While the modulating signal26 is delayed in time, thereby resulting in a slower group
velocity27 compared to that in free-space, the corresponding phase velocity28 is advanced. These
are denoted by the positive sign on the first order ionosphere delay term in pseudorange and a
corresponding negative one in the phase observation equations ; see Eqs. A.21a)-(A.21f). As the
central topic of this chapter, STEC will be derived from GNSS observations to be further used for
electron density modelling. This is described in detail in Appendix D.2.

Other error sources
There is a multipath effect on the pseudorange observations (A.21a), (A.21c) and (A.21e) due to
specular and diffuse reflections29 of the received GNSS signals due to obstructions in the proximity
of the receiver antenna (Braasch (1997)). The multipath on carrier phase is comparatively negligible
(see Misra and Enge (2006), Hoffmann and Thiele (2007)) and is not considered in the scope of this
work. There are two additional effects on phase observations, which are the antenna phase center
offset (Schmid et al. (2005), Steigenberger et al. (2016)) and the phase wind up effect (Kim et al.
(2006)). The former is caused by the difference between a satellite’s geometrical center of mass and
a frequency specific signal transmission point (Montenbruck et al. (2009)). The latter is caused by a
relative rotation of the satellite antenna to keep pointing towards the Earth and the solar panels
towards the Sun. This causes a change from a nominal right hand circular polarization (RHCP) of
the transmitted signals at the receiving antenna30. Further details about these error sources can be
found in, e.g. Hoffmann and Thiele (2007).
25Also called GNSS error budget.
26Pseudorandom code is modulated on GNSS carrier signal.
27Velocity with which the overall envelope of a modulated signal’s amplitude propagates (see e.g. Brillouin (2013)).
28Velocity at which the phase of any single frequency component of the wave travels (see e.g. Brillouin (2013)).
29In this context, specular reflection is when a GNSS signal is reflected from a smooth surface at a definite angle, and

diffuse reflection, that results from a rough surfaces that tends to scatter the reflected signal in all directions; see
e.g. Kerker (1969)

30When an electromagnetic wave is reflected, its plane of polarization undergoes a rotation. If the antenna and signal
are not aligned in polairzation, the received signal would have a relatively smaller signal-to-noise ratio. This aspect
is an important consideration for the quality of STEC and IRO observations.
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D GNSS data processing

It is important to highlight the role of pseudorange multipath towards both STEC as well as the IRO
observation quality31. IGS receivers are equipped with high-gain antenna as well as robust receiver
signal tracking algorithms targeted towards multipath mitigation (see e.g. Braasch (1997), McGraw
and Braasch (1999), Ray (2000)). On the other hand, spaceborne occultation receivers onboard
LEO satellites have only minimal specular reflections from any obstruction to the direct line of sight
to GNSS satellites but have relatively less robust signal tracking capabilities compared to ground
stations (Silvestrin et al. (2000)). Accordingly, the quality of derived STEC and IRO measurements
depend on the nature of receiver. Although the multipath term in pseudorange (A.21a), (A.21c)
is not negligible32 but, without specific details on receiver signal processing, such as the use of
multipath limiting antenna (MLA) or special receiver tracking techniques (Braasch (1997), McGraw
and Braasch (1999)), they are assumed to be absorbed by the pseudorange measurement noise. In
this work, the multipath effects on STEC are partially mitigated by applying a 10○ elevation angle
cut-off.

D.1 GNSS observation equation
The goal of this section is to introduce the GNSS observation equations and the STEC derivation for
EDM. Due to the differences in signal types33, time reference34, carrier frequencies, satellite orbit
and biases, the observation equations (A.21a) - (A.21f) are specific for different GNSS constellations
as well as carrier frequencies. For the sake of consistency, the observations are converted metric
units35. Pseudorange (P ) and phase (L) observations, on three frequencies, L1, L2 and L5, denoted
by the subscript 1, 2 and 5, read36 (see e.g. Hofmann-Wellenhof et al. (2007), Hauschild (2017)),

P s
i,1 + es

Pi,1 = ρs
i + c (δts

− δti) + T s
i + Is

i,1 +M s
i,1 + bP

i,1 + bP,s
1 (A.21a)

Ls
i,1 + es

Li,1 = ρs
i + c (δts

− δti) + T s
i − Is

i,1 + λ1N s
i,1 + bL

i,1 + bL,s
1 (A.21b)

P s
i,2 + es

Pi,2 = ρs
i + c (δts

− δti) + T s
i + Is

i,2 +M s
i,2 + bP

i,2 + bP,s
2 (A.21c)

Ls
i,2 + es

Li,2 = ρs
i + c (δts

− δti) + T s
i − Is

i,2 + λ2N s
i,2 + bL

i,2 + bL,s
2 (A.21d)

P s
i,5 + es

Pi,5 = ρs
i + c (δts

− δti) + T s
i + Is

i,5 +M s
i,5 + bP

i,5 + bs
5 (A.21e)

Ls
i,5 + es

Li,5 = ρs
i + c (δts

− δti) + T s
i − Is

i,5 + λ5N s
i,5 + bL

i,5 + bL,s
5 , (A.21f)

where
• the subscript i and superscript s denote the receiver and satellite indices, the frequency

dependent terms are denoted using the subscript {1, 2, 5} corresponding to GPS {L1, L2, L5}
frequencies respectively.

• c is the speed of light in vaccum

• λj ∀ j ∈ {1, 2, 5} is the wavelength corresponding to the frequency fj =
c

λj
. Specifically,

λ1 ≈ 19 cm, λ2 ≈ 24 cm and λ5 ≈ 80 cm

• P s
i,j is the pseudorange observation of satellite s to receiver i on frequency j (m)

31Even though phase observations are used for STEC modelling, the pseudorange multipath has an impact on the
success and accuracy of ambiguity fixing.

32It could be larger tha 2 m in the range domain, especially for elevation angles below 40 deg.
33e.g. P, C or M codes∶ ”P” denotes precision codes used on GPS L2, ”C” denotes the legacy coarse-acquision codes

used in almost all GNSS systems. ”M” is reserved for mititary code and were not used in this work.
34Each GNSS has its own ”time reference” and it is necessary to refer the GPS and Galileo observables to their

respective system times or equivalently consider an inter-system offset; see e.g. Jekeli and Montenbruck (2017).
35Units of distance
36For description in this section, GPS triple frequency is chosen but other systems and frequencies can be chosen in a

similar manner.
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• es
i,j is the measurement error on the pseudorange measurement of satellite s to receiver i on

frequency j (m)

• ρs
i is the true range or geometrical distance between satellite s to receiver i (m)

• δts is the clock offset satellite s with respect to a common system time, e.g. the GPS time
(GPST)37 (m)

• δti is the clock offset of receiver i with respect to the system time (m)

• Is
i,j is the ionosphere delay along the ray-path from satellite s to receiver i on frequency j (m)

• M s
i,j is the multipath effect of receiver i on satellite s and frequency j (m)

• T s
i is the troposphere delay along the ray-path from satellite s to receiver i (m)

• N s
i,j is the phase ambiguity of receiver i to satellite s on frequency j

• bP
i,j is the code bias of receiver i on frequency j. Superscript ”P” denotes the bias is on

pseudorange (or code) (m)

• bP,s
j is the code bias of satellite s on frequency j (m)

• bL
i,j is the phase bias of receiver i on frequency j. Superscript ”L” denotes the bias is on phase

(m)

• bL,s
j is the phase bias of satellite s on frequency j (m).

Generally, each error source in the observation equations is unknown38 as well as time-varying. In
this work, the time index in the observation equation is ignored because the STEC derivation will
be described for a given time instant, unless specified otherwise. The ionospheric delay on L2 and
L5 frequencies, compared to that in L1, is scaled

Is
i,2 = γL1,L2 Is

i,1 and Is
i,5 = γL1,L5 Is

i,1, (A.22)

by the frequency squared ratios

γL1,L2 =
f2

1
f2

2
and γL1,L5 =

f2
1

f2
5

(A.23)

respectively.

D.2 STEC derivation for EDM
The goal of this section is to describe the STEC derivation procedure from the GNSS observation
equations (A.21a) to (A.21f). This section is divided into two parts: Firstly, three possibilities for
combining GNSS observations will be described, including the dual frequency geometry-free linear
combination (GFLC) along with their relative advantages and disadvantages. In the second part,
37Each system has a definition of its own system time.
38More specifically, the signal time delay from each error source is unknown. But these are converted to units of

distance, as mentioned above. Therefore, the GNSS error sources modelled for STEC computation are also referred
to in units of distances (in meters).
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D GNSS data processing

a procedure for carrier phase ambiguity resolution will be described and its impact on STEC as
well as IRO observation quality will be highlighted. In STEC computation, the GNSS observations
(A.21a)-(A.21f) are combined such that the ionospheric delay term is retained39.

Geometry free linear combination

In this work, a dual frequency geometry-free linear combination (GFLC)

Ls
i,1 −Ls

i,2 + es
i,L12 = −Is

i,1(1 − γL1,L2) + λ1N s
i,1 − λ2N s

i,2 + bL
i,12 + bL,s

12 (A.24a)
Ls

i,1 −Ls
i,5 + es

i,L15 = −Is
i,1(1 − γL1,L5) + λ1N s

i,1 − λ5N s
i,5 + bL

i,15 + bL,s
15 (A.24b)

P s
i,1 − P s

i,2 + es
i,P12 = Is

i,1(1 − γL1,L2) +∆M s
i,12 + bP

i,12 + bP,s
12 (A.24c)

P s
i,1 − P s

i,5 + es
i,P15 = Is

i,1(1 − γL1,L5) +∆M s
i,15 + bP

i,15 + bP,s
15 (A.24d)

has been used, following Limberger (2015), Erdogan et al. (2017) and Erdogan et al. (2020).
Although from Eqs. (A.21a) to (A.21f), three separate GFLC are possible, the L1-L2 and L1-L5
are the commonly used ones40 (see Henkel (2010), Montenbruck et al. (2014a)). This is due to the
simultaneous tracking capabilities and multi-band antenna availability for GNSS receivers. GFLC
removes the non-dispersive terms completely41, where

Ls
i,12 = Ls

i,1 −Ls
i,2

P s
i,12 = P s

i,1 − P s
i,2

Ls
i,15 = Ls

i,1 −Ls
i,5

P s
i,15 = P s

i,1 − P s
i,5

es
i,P12 = es

i,P1 − es
i,P2

es
i,P15 = es

i,P1 − es
i,P5

es
i,L12 = es

i,L1 − es
i,L2

es
i,L15 = es

i,L1 − es
i,L5

(A.25)

will be used for simplification. The L1, L2 receiver and satellite differential code biases are denoted
as

bP
i,12 = bP

i,1 − bP
i,2

bP,s
12 = bP,s

1 − bP,s
2

(A.26)

and the corresponding differential phase biases as

bL
i,12 = bL

i,1 − bL
i,2

bL,s
12 = bL,s

1 − bL,s
2 .

(A.27)

Analogously, the L1-L5 differential code or phase biases The L1, L2 receiver and satellite differential
code biases are denoted as

bP
i,15 = bP

i,1 − bP
i,5

bP,s
15 = bP,s

1 − bP,s
5

(A.28)

39Implicitly, it means that the other error sources are eliminated to the extent possible. However, as shown in this
section, not all error sources would be entirely eliminated.

40As a convention to indicate the signal frequency L1 L2 and L5 is used here but the same applies to Galileo where it
is customary to denote the frequencies by E1, E5a and E5b (see e.g. Langley et al. (2017)), Meurer and Antreich
(2017)).

41Therefore, the system time-scale offsets (Jekeli and Montenbruck (2017)) causing an inter-system bias (ISB) (see
Odijk and Teunissen (2013a)) are not considered in this work42.
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and the corresponding differential phase biases as

bL
i,15 = bL

i,1 − bL
i,5

bL,s
15 = bL,s

1 − bL,s
5 .

(A.29)

are also defined in a similar manner. The terms ∆M s
i,12 and ∆M s

i,15 are the differential multipath
delays on L1-L2 and L1-L5 respectively.
If the differential multipath ∆M s

i,12 is absorbed by the measurement error es
i,P12

and the phase
ambiguities N s

i,1, N s
i,2 and N s

i,5 are fixed to the correct integers, thereby absorbing the six phase
biases bL

i,1, bL
i,2, bL

i,5, bL,s
1 , bL,s

2 and bL,s
5 , then the only remaining unknown parameters on the right-side

of Eqs. (A.24a) to (A.24d) are the ionosphere delay Is
i,1 and the four differential code biases (DCB)

bP,s
12 , bP,s

15 , bP
i,12, bP

i,15. These five parameters are estimated together from GFLC observations P s
i,12,

Ls
i,12, P s

i,15 and Ls
i,15.

There exists the integral relation (A.32) between STEC and electron density in (A.32). Following
Kleusberg and Teunissen (1996), a relation between STEC and ionospheric delay on L1 or L5

Is
i,1 = α1 STEC(xi, xs

)

Is
i,5 = α5 STEC(xi, xs

),
(A.30)

along the xs xi line-of-sight is established, where α1 and α5 are the frequency dependent factors for
L1-L2 and L1-L5 combination respectively, computed as

α1 =
40.3 (1 − γL1,L2)

f2
1

⋅ 1016 m/TECU

α5 =
40.3 (1 − γL1,L5)

f2
1

⋅ 1016 m/TECU,

(A.31)

(Kleusberg and Teunissen (1996)). Furthermore, given the GFLC observations, a direct relation
between STEC and satellite as well as receiver biases has also been shown in (A.24a) to (A.24d).
Therefore, combining Eqs. (2.2), (A.24a)-(A.24d) and (A.30), an empirical relation between the
biases, STEC and electron density is established as shown in (A.32).

At a given time instant of STEC computation, corresponding to receiver and satellite indices
i ∈ {1, ..., rmax} and s ∈ {1, ..., smax} respectively, the STEC observation equation reads,

STEC(xi, xs
) + eST EC(xi, xs

) = ∫

xi

xs
Ne(φ, λ, h) ds, (A.32)

where STEC(xi, xs) is the observed slant total electron content from a satellite s to a receiver i,
with position vectors xs, xi and observation error eST EC(xi, xs) respectively. Substituting (A.30)
in (A.24a) - (A.24d) along with Eqs. (A.25) to (A.31), the observation equation

Ls
i,12 = α1 STEC(xi, xs

) +CPBs
i,12 + es

i,L12 (A.33a)
Ls

i,15 = α1 STEC(xi, xs
) +CPBs

i,15 + es
i,L15 (A.33b)

are obtained. The carrier phase bias

CPBi,12 = bL
i,12 + bL,s

12 + λ1N s
i,1 − λ2N s

i,2

CPBi,15 = bL
i,15 + bL,s

15 + λ1N s
i,1 − λ5N s

i,5
(A.34)

is the combined term containing the receiver differential code bias, the satellite differential code
bias and the difference of ambiguities on the two frequency pairs,i.e. L1, L2 or L1, L5. Similarly,
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the linear combination43 of the pseudorange observations give

P s
i,12 = α1 STEC(xi, xs

) +DCBs
i,12 + es

i,P12 (A.35a)
P s

i,15 = α2 STEC(xi, xs
) +DCBs

i,15 + es
i,P15 . (A.35b)

Since the ambiguity term is assumed to be constant, the CPB can be determined by averaging the
k = 1⋯, L differences of P s

i,12 and Ls
i,12. The terms DCBs

i,12 = bP,s
12 and DCBs

i,12 = bP,s
12 are introduced

for the sake of consistency to the previous works by Limberger (2015), Liang (2017), Erdogan et al.
(2017) and Goss et al. (2020). This procedure is called phase levelling:

1
L

L

∑
k=1
(Ls

i,12 − P s
i,12)k =

1
L
⟨Ls

i,12 − P s
i,12⟩arc. (A.36)

The averaged difference for GPS L1, L2 can be written as

⟨Ls
i,12 − P s

i,12⟩arc = CPBi,12 −DCBs
i,12 + es

i,L12 − es
i,L12 (A.37)

where DCBs
i,12 is contant along the continuous satellite arc and the error quantity (es

i,L12
− es

i,L12
)

has an expectation value zero. The final phase levelled GPS L1, L2 linear combination of phase
observations reads

Ls
i,12 − ⟨L

s
i,12 − P s

i,12⟩arc = α1 STEC(xi, xs
) +DCBs

i,12 + es
i,L12 (A.38)

Even though the observable conventions used are slightly different, the Eqs. (A.33a) to (A.38) are
the same as used by Limberger (2015), Liang (2017), Erdogan et al. (2017) and Goss et al. (2020).
The accuracy of STEC from (A.38) in-turn depends on the accuracy of fixing ambiguities N s

i,1, N s
i,2

to the respective correct integer values (Henkel (2010)).

Ambiguity resolution
The ambiguity term is one of the most relevant terms in the Eqs. (A.21b), (A.21d) and (A.21f) with
regard to quality of the observations. Ambiguity arises due to an offset between the transmitted
and received signal phase by an unknown integer number of carrier cycles. While the fractional
part of phase is continuously being tracked by the receiver, an additional unknown parameter for
the phase ambiguity has to be considered in the phase observation equations (A.21b), (A.21d) and
(A.21f) for each satellite - receiver pair. There is a direct impact of cycle slips, due to high dynamics
receivers (e.g. LEO occultation receivers), on ambiguity resolution. Yue et al. (2016) reports a
contamination of ≈ 23% of IRO observations due to cycle slips, thus degrading the IRO observation
quality as well as the quantity.
In summary of STEC computation, the following points are noteworthy:

• STEC has been computed from L1-L2 and/or L1-L5 GFLC and contains the unknown biases
as shown in (A.33a) and (A.33b).

• Differential code biases are unknown parameters to be estimated together with other unknown
parameters within the EDM

• Phase biases are absorbed by integer ambiguities and any additional unmodelled biases are
estimated together with other unknown parameters within the EDM.

Ambiguity resolution is one of the most important steps in processing GNSS phase observations
and is a detailed subject by itself; see Dach et al. (2009), Prange et al. (2017). In this work, carrier
levelling is used for the ambiguity resolution and has been found to be satisfactory for ionosphere
43An obvious question that arises is ”Why is there differential code bias in STEC computed from GFLC phase

observations”? The answer is that the code biases are entering (A.32) through phase levelling and thus the STEC
computed from phase observations, contains code biases.
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modelling by Limberger (2015), Liang (2017), Erdogan et al. (2017), Erdogan et al. (2020). For
a detailed analysis on other ambiguity resolution and validation methods, the reader is referred
to e.g., Blewitt (1989), Teunissen (1995), Ge et al. (2005), Teunissen and Odijk (2003), Verhagen
(2005), Verhagen and Teunissen (2006), Teunissen (2017).
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E GNSS STEC for modelling the B-spline coefficients
In Section D.2, the observation equations for computing S̃TEC(xW , xs) has been described. In this
section, the procedure for including S̃TEC(xW , xs) in EDM will be described. Specifically, this
section will provide a GMM for the estimation of the unknown B-spline coefficients as well as the
bias parameters.
For the sake of simplicity, the discussion will refer to L1-L2 biases but the same apply also any other
dual frequency, e.g. to GPS L1-L5 or Galileo E1-E5a or E1-E5b combinations. Ri, Sj denote the
receiver and satellite indices with respective position vectors xi and xj . Previously, STEC(xr, xs)

was used to denote STEC between receiver r and satellite s. For the sake of consistency in
the representation of STEC and DCBs, the following convention for STEC will be applied and
STEC(xr, xs) will be replaced with STEC(Ri, Sj).
The first step will be the grouping of the bias related terms into satellite and receiver specific ones,
so that they could be consistently represented in the resulting GMM. GPS L1-L2 receiver DCB is
denoted as

DCBRi = bP
i,12, (A.39)

and that of the satellite as
DCBSj = bP,j

12 , (A.40)

without the explicit frequency subscript. Analogously,

DPBRi = bL
i,12 (A.41)

and
DPBSj = bL,j

12 (A.42)

denote the differential phase biases for receiver i and satellite j respectively. More generally, the
differential code bias (DCB) vector44

DCB = [
DCBRi

DCBSj

] (A.43)

denotes the accumulated biases in the STEC computation, where,

DCBRi = [DCBRi DPBRi]
T
∀ i ∈ {1,⋯, rmax}

DCBSj = [DCBSj DPBSj
]
T
∀ j ∈ {1,⋯, smax}

(A.44)

Substituting the Eqs. (A.39) to (A.43) into Eq. (A.32) gives the observation equation

STEC(Ri, Sj) + eST EC(Ri, Sj) = ∫
Ri

Sj

Ne(φ, λ, h)ds +DCBRi
1 +DCBSj

1, (A.45)

where 1 = [1 1] . As described already in Chapter 4 and 5, the unknown B-spline coefficients are
the main unknown parameters. In this section, the unknown parameters are extended to include
the biases, and hence along with their corresponding initial values, are denoted by

βST EC = [d
T
κ DCBT ]

T (A.46a)

βST EC;0 = [d
T
κ;0 DCBT

0 ]
T

. (A.46b)

44A change in convention to denote STEC and biases of receivers and satellite using the subscript Ri and Sj is
necessary in this section for better readability.
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Using the STEC computed from the initial values (A.46b),

STEC0(Ri, Sj) = ∫
Ri

Sj

Ne(φ, λ, h)ds
RRRRRRRRRRRβST EC,0

, (A.47)

the corrections
∆dκ = dκ − dκ;0

∆DCBRi =DCBRi −DCBRi;0

∆DCBSj =DCBSj −DCBSj ;0

(A.48)

respectively, the linearized STEC observation equation for a single receiver-satellite (Ri, Sj) line of
sight reads

STEC(Ri, Sj) = STEC0(Ri, Sj) +DCBRi;0 1 +DCBSj ;0 1

+
∂STEC(Ri, Sj)

∂dκ
∣
βST EC;0

∆dκ

+
∂STEC(Ri, Sj)

∂DCBRi

∣
βST EC;0

∆DCBRi

+
∂STEC(Ri, Sj)

∂DCBSj

∣

βST EC;0

∆DCBSj .

(A.49)

Similarly, a system of equations for multiple receiver-satellite (Ri, Sj ∀ i ∈ {1,⋯, rmax} and
j ∈ {1,⋯, smax}) line of sights are formed. Since the B-spline coefficients are collected together
for multiple key parameters, corresponding to the set K1, the term corresponding to the partial
derivative of STEC with respect to the B-spline coefficients is written as (omitting the indices
(Ri, Sj) for better readability)

∂STEC

∂dκ
∣
βST EC;0

= [(∂ST EC
∂dκ1

)
T
(∂ST EC

∂dκ2
)

T
⋯ (∂ST EC

∂dκp
)

T
]∣

βST EC;0

(A.50)

and using the chain rule of calculus,

∂STEC

∂dκ
∣
βST EC;0

=

[(∂ST EC
∂κ1

∂κ1
∂dκ1
)

T
(∂ST EC

∂κ2
∂κ2

∂dκ2
)

T
⋯ (∂ST EC

∂κp

∂κp

∂dκp
)

T
]∣

βST EC;0

.

(A.51)

The terms ∂κq

∂dκq
∀ q = {1, ⋯, p} are the tensor products of the polynomial and trigonometric

B-splines denoted as N(φ)T (λ). Accordingly, Eq. (A.49) is written as

STEC(Ri, Sj) = ∫
Ri

Sj

Ne(φ, λ, h)

RRRRRRRRRRRRdκ,0

ds

+∫
Ri

Sj

⎛
⎜
⎝

p

∑
q=1

∂Ne(φ, λ, h)

∂dκq

∣

dκq,0

∆dκq

⎞
⎟
⎠

N(φ)T (λ)ds

+
⎡⎢⎢⎢⎢⎣
DCBRi;0 1 + ∂STEC(Ri, Sj)

∂DCBRi

∣
βST EC;0

∆DCBRi

⎤⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎣
DCBSj ;0 1 + ∂STEC(Ri, Sj)

∂DCBSj

∣
βST EC;0

∆DCBSj

⎤⎥⎥⎥⎥⎦
.

(A.52)
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Substituting Eq. (A.47) into (A.52) gives,

STEC(Ri, Sj) = STEC0(Ri, Sj)

+∫
Ri

Sj

⎛
⎜
⎝

p

∑
q=1

∂Ne(φ, λ, h)

∂dκq

∣

dκq,0

∆dκq

⎞
⎟
⎠

N(φ)T (λ)ds

+
⎡⎢⎢⎢⎢⎣
DCBRi;0 1 + ∂STEC(Ri, Sj)

∂DCBRi

∣
βST EC;0

∆DCBRi

⎤⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎣
DCBSj ;0 1 + ∂STEC(Ri, Sj)

∂DCBSj

∣
βST EC;0

∆DCBSj

⎤⎥⎥⎥⎥⎦
,

(A.53)

and further rearranging leads to

STEC(Ri, Sj) − (STEC0(Ri, Sj) +DCBRi;0 1 +DCBSj ;0 1)

=∫
Ri

Sj

⎛
⎜
⎝

p

∑
q=1

∂Ne(φ, λ, h)

∂dκq

∣

dκq,0

∆dκq

⎞
⎟
⎠

N(φ)T (λ)ds

+

⎡
⎢
⎢
⎢
⎢
⎣

∂STEC(Ri, Sj)

∂DCBRi

∣
βST EC;0

∆DCBRi

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

∂STEC(Ri, Sj)

∂DCBSj

∣

βST EC;0

∆DCBSj

⎤
⎥
⎥
⎥
⎥
⎦

. (A.54)

Substituting

∆STEC(Ri, Sj) = STEC(Ri, Sj) − (STEC0(Ri, Sj) +DCBRi;0 1 +DCBSj ;0 1) , (A.55)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

yST EC1

⋮

yST ECNLOS,max

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

STEC(R1, S1)
⋮

STEC(Rrmax, Ssmax)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.56)

and
⎡
⎢
⎢
⎢
⎢
⎢
⎣

eST EC1

⋮

eST ECNLOS,max

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

eST EC(R1, S1)
⋮

eST ECRrmax, Ssmax

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.57)

for better readability, where NLOS,max = rmax⋅smax is the actual number of LoS ray paths. Following
the convention of using the vector variable y and e to denote observations and measurement errors
respectively, the corrected STEC observations vector reads

∆yST EC = [∆yST EC1 ⋯ ∆yST ECNLOS,max
]

T
(A.58a)

= [(yST EC1 − yST EC1 ∣βST EC;0) ⋯ (yST ECNLOS,max
− yST ECNLOS,max

∣βST EC;0)]
T

(A.58b)

and the corresponding measurement error vector

eST EC = [eST EC1 ⋯ eST ECNLOS,max
]

T
. (A.59)

The corrections
∆βST EC = [∆dT

κ ∆DCBT ]
T

, (A.60)
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where

∆DCB = [∆DCBR1 ⋯ ∆DCBRrmax ∆DCBS1 ⋯ ∆DCBSsmax]
T

, (A.61)

to the unknown parameters βST EC = [d
T
κ DCBT ]

T , are computed about initial values βST EC

such that

DCB0 = [DCBR1;0 ⋯ DCBRrmax;0 DCBS1;0 ⋯ DCBSsmax;0]
T

. (A.62)

With above mentioned matrices and vectors, we get the Gauss-Markov model

AST EC ∆βST EC =∆yST EC + eST EC with D(∆yST EC) = σ2
ST ECP −1

ST EC , (A.63)

where
AST EC = [AST EC,dκ AST EC,DCB,Rx AST EC,DCB,Sat] (A.64)

such that

AST EC,dκ =

⎛
⎜
⎜
⎜
⎝

∂ST EC(R1,S1)
∂dκ1

⋯
∂ST EC(R1,S1)

∂dκp

⋮ ⋱ ⋮
∂ST EC(Rrmax,Ssmax)

∂dκ1
⋯

∂ST EC(Rrmax,Ssmax)
∂dκp

⎞
⎟
⎟
⎟
⎠

(A.65)

AST EC,DCB,Rx =

⎛
⎜
⎜
⎜
⎝

∂ST EC(R1,S1)
∂DCBR1

⋯
∂ST EC(R1,S1)
∂DCBRrmax

⋮ ⋱ ⋮
∂ST EC(Rrmax,Ssmax)

∂DCBR1
⋯

∂ST EC(Rrmax,Ssmax)
∂DCBRrmax

⎞
⎟
⎟
⎟
⎠

(A.66)

AST EC,DCB,Sat =

⎛
⎜
⎜
⎜
⎝

∂ST EC(R1,S1)
∂DCBS1

⋯
∂ST EC(R1,S1)
∂DCBSsmax

⋮ ⋱ ⋮
∂ST EC(Rrmax,Ssmax)

∂DCBS1
⋯

∂ST EC(Rrmax,Ssmax)
∂DCBSsmax

⎞
⎟
⎟
⎟
⎠

. (A.67)

Both the receiver and satellite DCBs are assumed to be constant for 6 hours and estimated along
with the B-spline coefficients of the key parameters. The stochastic model of the STEC observations
is defined by the covariance matrix D(∆yST EC), which includes the given positive definite weight
matrix P ST EC and the unknown variance factor σ2

ST EC .
In order to avoid rank deficiency and separate the receiver and satellite DCBs from each other, an
additional zero-mean constraint,

bP,s1
12 +⋯ + bP,stotal

12 = 0
bL,s1

12 +⋯ + bL,stotal
12 = 0

(A.68)

is applied over the total number of operational satellites stotal for a given constellation45 (see Schaer
(1999)).

45For the satellites not in view from a given receiver station, the corresponding DCB values from IGS are used instead.
It shall be further noted that at all times smax ≤ stotal is satisfied.
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