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Abstract—Driving through dense urban environments is
difficult for autonomous vehicles because they must reason
about the unknown intentions of a large number of
road users while also dealing with a variety of uncertain
information, such as sensor noise and inaccurate predictions.
The partially observable Markov decision process (POMDP) is
a systematic method for planning optimal policies in stochastic
environments. However, using POMDP in scenarios with a large
number of road users necessitates significant computational
effort. In this paper, we propose a scalable online POMDP
behavior planner for autonomous driving in dense urban
environments. We enable intention-aware POMDP planning
while considering uncertainties by using Multi-step Occupancy
Grid Maps (MOGM) to represent the current and predicted
states of surrounding road users, as well as their uncertain
intentions. Furthermore, MOGM is applied to create a more
computationally efficient POMDP model by condensing the
state space and reducing the number of calculations used for
collision checks. We show by numerical experiments that our
approach is computationally more efficient. We demonstrate
that our approach is able to navigate a dense urban scenario
involving a large number of road users.

I. INTRODUCTION

In recent years, progress has been made in the fields
of navigation, perception, decision-making, and motion
planning towards human-level intelligence in autonomous
vehicles. In comparison to an autonomous vehicle, a human
can drive well in complex environments by better reasoning
about other road users’ hidden intentions and predicting
stochastic future interactions with them. This human ability
enables anticipative driving behavior, which is hard for a
computer to achieve despite its shorter reaction time. One
key challenge for behavior planning is to reason about other
traffic participants’ intentions. The complexity of reasoning
grows when considering noisy measurements and long-term
prediction errors. As shown in Fig. 1, the ego vehicle
must plan driving policies that take into account interactions
influenced by the various future intentions of other vehicles.

Planning under uncertainty is a promising way to address
the above-mentioned challenges. The partially observable
Markov decision process (POMDP) is a systematic method
for planning optimal policies in a stochastic environment [1].
However, due to the curses of dimensionality and history
[2], POMDP is difficult to apply in densely populated
urban environments. Online POMDP planning algorithms
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Fig. 1. Example of an MOGM with uncertain measurements, predictions,
and intentions. Each green layer is one grid map of the MOGM at each
time step. The color of the grid cell indicates the risk of this grid cell
being occupied by a road user at this time step. In this example, another
vehicle (green car) intends to drive into the junction. This vehicle has two
possible intentions: turning left or turning right. Both intentions and their
corresponding predicted states are represented in the MOGM by setting the
grid cells as occupied (red grids) or possibly occupied (orange and yellow
grids).

construct a belief tree from a start state only to reachable
states to approximate the optimal policy and thus reduce
computational complexity [3]-[5]. Extensive works show
the progress made in applying POMDP to autonomous
vehicles to handle various driving scenarios in urban
environments which require the reasoning of intentions and
the consideration of different uncertainties [6]-[24]. Most
approaches so far have been demonstrated in environments
with a few road users. To apply the POMDP planner in highly
dynamic and dense urban environments with large numbers
of road users, its scalability needs to be investigated.

In this study, we focus on improving the scalability of
a POMDP behavior planner by introducing an efficient
MOGM-based POMDP model. The online POMDP solver
relies on Monte Carlo sampling to construct the belief tree
from the current state to the reachable state. A POMDP
model is required as a black box simulator to generate a new
episode, which includes transitioning from one state to the
next and checking whether a state is a terminal state [5]. Such



a model needs to be called thousands to millions of times in
a single planning cycle. Therefore, a more computationally
efficient POMDP model can enhance the scalability of the
POMDP planner.

Previous approaches typically build the POMDP state
space and model using a feature-based representation of
the environment, where the features of each road user, e.g.,
position, orientation and velocity, are set up directly in the
state space. For each state transition of the ego vehicle and
road users, a collision check is performed by simulating the
interaction between each ego vehicle and road user pair,
using the features defined in the state space. When the
number of road users increases, the computational efforts
of the collision checks also increase. Hence, feature-based
approaches become increasingly inefficient for large numbers
of road users. Increasing the efficiency of the collision check
can reduce the computational effort for solving the POMDP
model.

As mentioned in [16] and [22], a large number of future
states of road users can be calculated in advance and saved
in a lookup table to improve the efficiency of the planner.
We extend this concept by using MOGM to represent all
future states and probabilistic intentions of other road users.
MOGM contains multiple occupancy grid maps (OGMs)
to represent the free and potential collision areas at each
planning time step, up to the planning horizon. An OGM
discretizes the road surface into grid cells indicating the
state of a particular area, i.e., occupied or not occupied. We
reduce the computational demands of the collision check by
applying MOGM to check whether the ego vehicle is located
in areas that are occupied by other road users.

To enable the planning of driving policies in the uncertain
environment, we consider the uncertain measurements and
predictions of road users with extended occupancy area
by using a two-dimensional Gaussian approximation. Their
multiple intentions and the estimated probabilities are
incorporated by extending the occupied grid cells to save
the uncertain intention information. Finally, in the POMDP
solver, the MOGM-based POMDP model is used as the black
box simulator to build the belief tree and obtain optimized
driving policies.

The main contributions of this study are:

e an extension of the MOGM that includes estimation
of road wusers’ uncertain intentions to enable
intention-aware planning based on grid maps,

« the introduction of an efficient MOGM-based POMDP
model for reducing computational effort, which
improves the scalability and the efficiency of the
POMDP planner,

« the evaluation and analysis of computation time for our
MOGM-based POMDP planner in scenarios with large
numbers of road users.

The remainder of this paper is organized as follows: Works
related to environment representation and uncertainty-aware
POMDP planning are presented in Sec. II. In Sec. III,
the generation of the MOGM and its combination with a
POMDP model to plan driving strategies are introduced.

Sec. IV explains how the POMDP problem is solved.
Evaluations are shown in Sec. V. Finally, the conclusions
and future work are summarized in Sec. VL.

II. RELATED WORK

In this section, we compare feature-based and grid-based
approaches to representing the environment and predictions.
Following that, the progress of POMDP-based planners that
consider various sources of uncertainty is summarized and
discussed.

A. Environment Representation

The perception and prediction module of an autonomous
driving function provides the current and predicted
environment information to the planning module [25]. The
environment can be represented in different forms.

1) Feature-based method: The {feature-based method
applies a set of features to represent the environment. The
features can be discrete, continuous, or a mixture of both.
The discrete feature is used to classify detected objects into
different categories such as vehicles, pedestrians or cyclists
[26]. A list of bounding boxes over different time steps
is frequently used to describe the current and future states
of detected objects with continuous variables like position,
orientation, and velocity [27]. The prediction for one object
can also contain multiple intentions. In such cases, the feature
list includes both discrete features such as intentions and
estimated probabilities to indicate whether a vehicle intends
to turn right or left, as well as continuous variables to
represent the trajectories associated with each intention [28].

2) Grid-based method: Another common representation
is OGM [29]. An OGM discretizes the road surface into
grid cells, where each grid cell shows whether an obstacle
is present. An OGM grid cell can be expanded to include
more information, such as object classification, to allow for
more sophisticated decision-making [30]. However, a single
OGM is insufficient to represent moving objects in a dynamic
environment. [31] extends the OGM to temporal occupancy
grids with several layers, where each layer shows which cells
were occupied during a specific time interval. MOGM is used
to represent predictions, with each OGM representing a time
step of the prediction [32].

B. Decision-making Under Uncertainty

POMDP is a general probabilistic method for
decision-making under various uncertainties [1], which
is widely applied in autonomous driving for handling
complex driving scenarios in urban environments.

1) Uncertain measurements and predictions: Uncertain
measurements caused by sensor noise are the most
commonly considered source of uncertainty when modeling
the POMDP as a behavior planner. The state uncertainty is
typically represented by a Gaussian distribution [6], [8]. The
prediction uncertainty increases over time. Several studies
explicitly include prediction uncertainty in the POMDP
planning process [9], [15].



2) Uncertain intention and interaction: Recent research
focuses on optimizing driving strategies involving uncertain
intentions and interactions with other road users, as well
as providing driving strategies that account for possible
future observations of scenarios. The ability of the POMDP
formulation has been demonstrated for scenarios where the
ego vehicle needs to negotiate and interact with other road
users, such as on-ramp merging [6], lane changes [7], [10],
unsignalized intersections [12]-[14], roundabouts [15], [16],
crosswalks and bus stops [17], [18].

3) Uncertain appearance: Urban environments involve
static and dynamic objects that limit the field of view
(FoV) of the ego vehicle. Previous works expand the
POMDP model to account for the uncertain probability
of potentially occluded vehicles and pedestrians appearing
in such environments [19]-[23]. The idea is to introduce
phantom road users to represent the potentially existing
pedestrians and vehicles which have certain probabilities of
appearing from occluded areas. The phantom road users are
incorporated into a POMDP formulation’s state space and
probabilistic transition model.

4) Scalability of the POMDP planner: POMDP problems
face both the curse of dimensionality and the curse of
history [2], making it very hard to scale up with a large
POMDP model. However, recently developed open-source
POMDP solvers based on Monte Carlo tree searches
have been released to address this issue [3]-[5]. Parallel
computing with CPU and GPU improves the POMDP solver
efficiency even further [33]. The authors of [34] incorporate
a learning-based heuristic to guide the tree construction
process of the POMDP solver, enabling more efficient
planning without searching too deep. Besides targeting
solver, another direction for enhancing the scalability
of POMDP planners is the model design. The authors
of [24] reduce the computational cost of POMDP-based
decision-making algorithms by utilizing domain knowledge
in a policy tree. However, because the POMDP model and
solver are coupled in one algorithm, their approach cannot
benefit from further POMDP solver developments.

III. APPROACH

In this section, we first explain the structure and the
generation of the MOGM. Secondly, the POMDP model
based on the MOGM is introduced.

A. Multi-step Occupancy Grid Maps

We follow the assumption that the estimated intentions and
their corresponding future states of each road user are fixed
in one planning cycle [22]. This information is delivered
from the prediction module of the autonomous vehicle, where
the future states of other traffic participants are represented
as bounding boxes. The corners of the bounding boxes are
represented by the Frenet coordinates s and d, where s
indicates the arc-length along the ego lane center, and d is
the orthogonal distance to the ego lane center, as shown in
Fig. 2.
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Fig. 2. Construction of the MOGM. The ego vehicle and the predicted
states of other vehicles are represented by bounding boxes. Aljoyng and
Al indicate the extended risk area.

Using the intentions and bounding boxes, we construct an
MOGM to represent all possible intentions and future states
of road users. In order to account for uncertain measurements
and predictions, we extend the bounding boxes of road users
with risk areas approximated by a two-dimensional Gaussian
function. The probabilities of the grid cells being occupied
by the bounding boxes are stored in the MOGM.

1) Uncertainty approximation using Gaussian function:
The occupancy probability p. of an MOGM grid cell is
set to one when it is occupied by bounding boxes. We
consider the uncertainty of the measurements and predictions
by extending the bounding box with risk areas (see Fig.
2). The occupancy probability p. is approximated by a
two-dimensional Gaussian function:

_ (Aliong)”® | (Aliar)”

De exp< ( 1oy + o1 )), (1)
where Aljong, Alies € R are the longitudinal and lateral
distances to the bounding box boundary, and the variances
Olong> Olat € R determine the risk distribution around the
road users’ bounding boxes in the longitudinal and lateral
directions, respectively. In this work, we choose 0jong = 1,
and o074 = 0.5.

In order to improve the representation of the risk
distribution around the bounding boxes, we extend the
bounding box of a road user with N, longitudinal and
lateral extensions ALjong, ALy, where N, € NT,
A,Clong, AL € RN,

2) Multiple intentions: Every road wuser 4 €
{1,...,N},N € N7, has been assigned a set of intentions
T' = {if,...,i;}, where J € N is the number of intentions
of road user ¢ (see Fig. 1). Each intention is associated
with a set of predicted states over time. We store L§ eI,
j € {1,...,J} in the grid cells of the MOGM, if they
geometrically overlap (i.e., are occupied) with the bounding
boxes of predicted states from the intention L;

3) MOGM generation: We discretize the planning time
horizon H € R™ into K € N steps. As shown in Fig. 2, the




Algorithm 1: OGM generation for time step k

Input : N road users, longitudinal extensions
ALjong, lateral extensions ALjq¢
Output: OGM M,
1 My < initializeOGM(k)
2 foreach road user i € {1,...,N} do
T¢ + getIntentions(i)
foreach . < 7% do

3

4

5 by « getPredictedState(t, k)

6 B < extendBoxes(bg, ALiong, ALiar)
7 foreach ¢, € M, do

8 Ick,PCk — Ck

9 if isOccupied(cg,by) then

10 Dy 1

1 addToList(Z,,,¢)

12 addToList(Pe,, Pey.i)

13 else if isOccupied(c,B),) then

14 Pe,. < maxRisk(ALiong, ALat)
15 addToList(Z,,¢)

16 addToList(Pe,,Pex.t)

17 end if

18 end foreach

19 end foreach
20 end foreach
21 return M,

OGM M, at time step k € {0, ..., K'} is constructed on the
ego lane center. In the longitudinal direction, M, starts at
Smin and ends at s,,q, along the ego lane center, while in
the lateral direction, M} covers d,,.. to the left and d,,;,,
to the right of the ego lane center.

A cell in My, can be occupied, partly occupied, or
unoccupied. We consider a partly occupied cell as occupied.
Formally, M}, can be represented as a matrix of tuples:

Ck(l,l) Ck(l,Y)
My, = : : : )
Ck(X,l) Ck(X, Y)

where X,Y € N7 indicate the number of rows and columns
of M. Each grid cell ¢, € My, stores a tuple (Z, , P, ),
I, C UfV:O T¢ is a set of intentions, from which the
predicted states occupy the grid cell cx, and P., is a set
of occupancy probabilities calculated by the predicted states
from Z., .

The generation of M is described in Alg. 1. Initially,
we construct an empty OGM such that intentions Z., and
occupancy probability P, of each grid cell are empty sets
(line 1). We obtain the predicted states at time step & from all
intentions of each road user (see lines 2 to 4). Each predicted
state is represented by a bounding box by, (line 5). We extend
by, to a set of bounding boxes Bj, with N}, longitudinal and
lateral extensions ALjong, ALiq: (line 6). For each grid
cell ¢ that is occupied by by, the intention and occupancy
probability p., , = 1 are inserted into the intention set Z,

and occupancy probability set P, , respectively (see lines 7
to 12). If ¢ is not occupied by bg, we check whether any
bounding boxes in By, occupy the grid cell ¢, and insert the
maximum occupancy probability p., , calculated by (1) to
P, and the intention to Z., (see lines 13 to 16).

B. POMDP Behavior Planning

1) Preliminaries: A POMDP is a probabilistic method
that models the sequential decision process of a system
(often denoted as agent) under uncertain conditions. A
POMDP is defined by the tuple (X, A, O, T, Z, R,~y) where
X, A, O represent the state, action, and observation
spaces, respectively. The transition model 7" is a conditional
probability function T' (x, a, x’) = P(X’ | x, @) modeling the
probability of a system transition from the state x € X to the
state x’ € X’ when action a € A is executed. Similarly, the
observation model Z is a conditional probability function
Z (0,a,x") = P(o | X/, a) describing the probability of
receiving observation o € O after taking action a € A and
transitioning to state x’ € X. The reward R (x, a) is the
immediate reward generated by performing the action a € A
from the state x € X. Finally, a factor v € [0, 1) discounts
future rewards [35].

In a partially observable environment, the agent has only
incomplete knowledge of the system state. Hence, a belief
state () is maintained to reflect its internal knowledge of
the system and estimate the true state. The policy 7 : 8 —
a is a mapping from a belief S to an action a. Therefore,
the solution to a POMDP problem is an optimal policy 7*
that maximizes the expectation of accumulated rewards over
time:

n* = argmax E | Y %R (xe,, 7 (Bu)) | o, | 3)
k=0

2) State and observation space: The state space is
a representation of the driving scenario in the POMDP
model. It contains the state of the ego vehicle x4, and
the state of other road users ;. The state y € X
is a vector y = [Xego;Xl;XQ;"'7XN]T7 where Xego =
[Tegos Yegos Degos Vegos Tego) ™ 18 the ego state which includes
the position (Tego, Yego), Orientation f.q,, speed vey, and
intended driving path r.g,. The states x; with ¢ €
{1,2,...,N}, N € NT represent road users in the scenario.
Optionally, phantom objects can be added to the state
space to allow the model to plan driving behavior while
taking into account the uncertain probability that potentially
occluded traffic participants will appear [21]. We introduce
an MOGM-based state model to represent other road users.
The state of a road user i is defined as y; = (%, L; e Tt
je{l,..,J}, J € NT, where Lj is one of the intentions of
the road user i, e.g., turn left or right at an intersection.

3) Action: We follow the path-velocity decomposition
method [36] for planning the longitudinal driving policies
along the intended ego path rcg,. Possible driving
behaviors of the ego vehicle are represented by longitudinal
accelerations: A = {+1.5 m/s?,0 m/s?,—1.5 m/s?}.



Algorithm 2: Calculate collision probability at time
step k

Input : OGM My, State X = [Xegos X1s - XN~
Output: Collision probability pcoiision

1 bego ¢ buildBoundingBox(Xego)
2 Cpego ¢ £indOccupiedCells(bego, My)
3 Pcollision — (Z)
4 foreach occupied cell ¢y c40 € Ceg0 dO
Ick y Pck < Ck,ego
foreach road useri € {1,...,N} do

L Xi

if . € Z. then

pck,b — Pck

10 addToLiSt(Pcollision,pckyb)
11 end if
12 end foreach
13 end foreach
14 Dcollision < maX(Pcollision)
15 return Pcollision

e e 9 A »n

4) State transition with MOGM: The state transition from
the current state y to the next state x’ is determined by the
transition models of the ego vehicle and other road users.
The intended ego path remains unchanged such that 7 go =
Tego- We apply a point mass model in (4) to predict the ego
movement along the intended ego path r.g,. The position
of the ego vehicle s.4, is the arc-length along r4,. The
new ego position s/, g0 and velocity végo are predicted by the

chosen action a and the step size At:

][ )] ]e o
Vego 0 1 Vego At

The (40, Yego and O,
are obtained by getting the Cartesian position from r
according to the path geometry based on the position s, gor
With our assumption that a road user’s intention does not
change within a planning cycle, the states of road users y;
remain the same in all planning steps.

5) Terminal condition check with MOGM: When a state
transitions to the next state y’, a terminal condition check for
X’ is needed. We consider a state to be terminated when the
planning horizon is reached during the construction of the
belief tree, or a collision occurs between the ego vehicle
and a road user. Alg. 2 performs the calculation of the
collision probability. Firstly, the ego state is matched to the
occupied cells Ci ¢4o in the OGM M, at time step k (see
lines 1 and 2). Then, the collision probability is checked
for every cell cp g0 that is occupied by the ego vehicle
(line 4). For each road user i, we get the intention ¢ from
X; (see lines 6 and 7). If ¢y ¢4, contains the intention ¢ of
road user ¢, the collision probability p., , is saved in the
list Peotrision (see lines 8 to 10). Finally, the maximum
collision probability peoiiision from the list Peoyision 18
returned (see lines 14 and 15). If peoiision = 1, the state
is denoted as the terminal state.

in the updated ego state X,
/
€go

6) Reward: The reward function of this study includes the
objectives of safety, speed, and comfort:

R= Rsafety + Rspeed + Rcomfort~ (5)

To emphasize safety, we assign rewards depending on the
collision probability peorrision:

—100000, if Peotiision = 1
Rsafety = . (6)
—10000 - Pcollisions otherwise.

The ego vehicle is also encouraged to maintain the desired
velocity Vgesireq following the ego path 7¢4,:

if Vgesired = Vego

R L= —200 (Vdesired — Uego) )
opee otherwise.

—2000 |Udesired - Uego| )

(N

To obtain comfortable driving policies, acceleration is
penalized with Rcomfort = —300 - a?.

IV. SOLVING POMDP MODEL

We apply the Toolkit for approximating and Adapting
POMDP solutions In Real time (TAPIR) to solve our
MOGM-based POMDP model [5]. TAPIR is based on Monte
Carlo sampling to construct a belief tree to approximate
the optimal policy online. In this section, we briefly
summarize the core idea of the TAPIR algorithm and how
the approximated optimal policy is obtained using our
MOGM-based POMDP model.

A. Belief State Tracking

We apply unweighted particles to maintain the internal
belief of the POMDP planner about the current belief state
[14]. In the beginning of the belief tree construction, the
initial belief by is initialized by sampling particles y € X to
reflect the system’s expectation of the possible states of the
ego vehicle and road users. To determine which intention of
aroad user is contained in a particle, a sample is drawn based
on the probability distribution of the different intentions of
each road user. The position and the dimension of road
users can be accessed from the MOGM; only the intention
needs to be sampled to generate the initial belief 5y in the
MOGM-based state space.

B. Belief Tree Construction

The belief tree is constructed based on the Monte Carlo
tree search process [5]. A particle is randomly chosen
from the initial belief [y as the start of an episode. An
episode contains a state, action, reward, and observation. By
invoking the POMDP model, the chosen particle transitions
continuously from its current state to other possible states,
resulting in new episodes. Our MOGM-based POMDP model
serves as the black box simulator for generating new episodes
to construct the belief tree. Finally, the approximated optimal
policy 7 is obtained from the belief tree at the end of each
planning cycle.



TABLE I
APPLIED PARAMETERS IN THE SIMULATION.

Parameter  Value Description

dmin —5m Min. lat. coordinate on the MOGM
dmaz 5m Max. lat. coordinate on the MOGM
Smin —20m Min. long. coordinate on the MOGM
Smazx 80 m Max. long. coordinate on the MOGM
X 200 Number of the MOGM rows

Y 20 Number of the MOGM columns
ALjong {1.5,3.0}  Long. extensions of bounding box
ALjat {0.5,1.0}  Lat. extensions of bounding box

F 2 Hz Planning frequency

¥ 0.95 Discount factor

D 10 Maximal tree depth

H 10 s Planning horizon

K 11 Number of planning time steps

V. EVALUATION

We evaluate our approach on a system with an Intel
Core i17-6820HQ CPU running at 2.70 GHz. The evaluations
are carried out in a proprietary simulation platform that
allows configuration of static buildings, dynamic vehicles,
and pedestrians. To eliminate the influence of other
road users’ intelligent behavior in the evaluation, we
control them via predefined behaviors that do not consider
collision avoidance. We use our previous feature-based
POMDP model (TAPIR-POMDP) [21] as a baseline
planner. Our approach — a POMDP behavior planner
with the MOGM-based POMDP model — is denoted as
MOGM-POMDP. To demonstrate the planner’s ability to
plan driving policies in a dense urban environment with
occlusions, we create the MOGMOA-POMDP by extending
the MOGM-based POMDP model with occlusion awareness,
as proposed in [21]. We provide a supplementary video! of
the evaluated scenarios.

The parameters applied in the simulation are listed in
Tab. 1. Firstly, we evaluate the average generation time of
MOGM with different numbers of objects. Then, we set up
a dense traffic scenario to carry out a qualitative evaluation
for comparing driving strategies using the aforementioned
planners. To compare the computational efficiency of the
MOGM-POMDP with that of the TAPIR-POMDP, we
measure the computation time for generating a new episode
when constructing the belief tree with different numbers
of road users. The speedup is defined as the average
computation time of the MOGM-POMDP compared to that
of the TAPIR-POMDP. Furthermore, we illustrate the overall
performance by comparing the number of active belief nodes
in the belief tree within a planning cycle. The speedup is
used to compare the average number of active nodes of the
MOGM-POMDP to that of the TAPIR-POMDP.

A. MOGM Generation Time

To evaluate the computation time of the MOGM, we set up
10 to 70 objects located on the ego lane. In this evaluation,

Video: https://github.com/GitChizZhang/MOGM-POMDP
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Fig. 3. The ego vehicle intends to drive through the dense urban
environment with buildings along the street and many pedestrians moving
around. The total number of static and dynamic objects in the scenario is
80.
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urban environment.

we configure the simulation such that all objects are detected
and provided to generate the MOGM. Tab. II shows the
average generation time of MOGM in one planning cycle.
It can be seen that the MOGM generation time ranges from
6.4 ms to 43.2 ms, increasing linearly with the number of
objects involved in the scenario.

B. Performance in a Dense Urban Environment

Fig. 3 illustrates a dense urban scenario with buildings
alongside the street and lots of pedestrians walking around.
The total number of static and dynamic objects in the
scenario is 80. In this scenario, there are several pedestrians
crossing a crosswalk. One pedestrian, not on the crosswalk,
will abruptly cross the street from the middle of the road.
The walking speed of all pedestrians ranges from 0.1 m/s
to 1.5 m/s to reflect the diversity of the traffic situations.

TABLE II
MOGM GENERATION TIMES.

Num. object 10 20 30 40 50 60 70
Aver. time (ms) 64 114 182 250 297 364 432
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Fig. 5. Comparison of the computation time of the MOGM-POMDP
model and the TAPIR-POMDP model for generating a new episode. The
speedup is calculated by comparing the average computation time of the
MOGM-POMDRP to that of the TAPIR-POMDP.

Apart from the pedestrians, there is a parked vehicle near
the crosswalk that obscures the ego vehicle’s FoV.

We perform a qualitative evaluation of the planners in
the aforementioned scenario. Due to a large number of
road users in the scenario, the TAPIR-POMDP is unable
to sample enough belief nodes to provide safe policies
for the given planning frequency of 2 Hz. In contrast
to the TAPIR-POMDP, both the MOGM-POMDP and
MOGMOA-POMDP can provide safe driving policies to
navigate through the scenario. Fig. 4 shows the acceleration
and velocity profile of the planned driving strategies. At
time ¢t = 4.10 s, the MOGM-POMDP stops accelerating and
reacts to the abruptly crossing pedestrian by further reducing
the speed. The MOGM-POMDP then waits for pedestrians
crossing the road before driving through the crosswalk. The
MOGMOA-POMDP demonstrates various driving strategies
with occlusion awareness for dealing with the same scenario.
At time ¢t = 17.50 s, the MOGMOA-POMDP continues to
drive cautiously to reduce the risk of pedestrians suddenly
appearing from the blind spot of the ego vehicle. Once the
ego vehicle has a sufficient FoV, it accelerates and drives
through the crosswalk.

C. Effect on Episode Generation

In this evaluation, we measure the computation time for
generating a new episode in the tree construction. As shown
in Fig. 5, the MOGM-POMDP significantly reduces the
average computation time for generating a new episode.
The MOGM-POMDP’s mean computation time varies from
2.5 ps to 3.5 ps depending on the number of objects in
the state space, whereas the TAPIR-POMDP has a mean
computation time of 50 us to 600 us. It can also be seen
that increasing the number of objects in the state space has
a larger impact on the TAPIR-POMDP. Consequently, the
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Fig. 6. Comparison between the active nodes of the MOGM-POMDP and
TAPIR-POMDRP in the belief tree construction. The speedup is calculated
by comparing the average number of active nodes of the MOGM-POMDP
to that of the TAPIR-POMDP.

MOGM-POMDP achieves a speedup of 50 to 200 times
over the TAPIR-POMDP in calculating a new episode.
There are two reasons for the improvement. First, the state
space and observation space of the MOGM-POMDP are
smaller than those of the TAPIR-POMDP, which reduces
the matching time of a particle to the belief tree. Second,
unlike the TAPIR-POMDP, which performs collision checks
by simulating the interaction between each ego vehicle and
object pair, the MOGM-POMDP only checks the new ego
vehicle state within the corresponding occupancy map.

D. Effect on Belief Tree Construction

The evaluation result in Fig. 6 shows that for both
the MOGM-POMDP and TAPIR-POMDP, the number of
active belief nodes decreases as the number of road users
involved in the state space increases. The performance of
TAPIR-POMDP drops dramatically when more than ten
objects are considered. The MOGM-POMDP outperforms
the TAPIR-POMDP by a factor of 10 to 35. Major
performance gains are seen when the number of objects is
between 20 and 60 with a speedup of between 20 and 35.

VI. CONCLUSION AND FUTURE WORK

In this study, we present a scalable POMDP planner
that can plan safe driving behaviors in a dense urban
environment. We incorporate the surrounding road users’
uncertain measurements, predictions, and intentions into the
MOGM to enable intention-aware planning with uncertain
risk consideration. Furthermore, an efficient POMDP model
based on the MOGM is introduced as a black box simulator
for the POMDP online solver. According to the evaluation
results, the MOGM-based POMDP model is approximately
50 times faster than the baseline POMDP model. The overall
performance of our approach improves on the performance



of the baseline POMDP planner by a factor of at least 10.
Simulations show that the MOGM-POMDP planner can plan
safe driving policies in an urban environment involving a
large number of road users.

In this work, the MOGM is discretized into grids of fixed
size. We plan to improve the efficiency of generating the
MOGM by introducing a variable resolution of the grid.
When the grid cells have a larger distance to the ego vehicle
or are not occupied by any other road users, their size can
be increased, whereas smaller grid cells can be used to more
accurately represent occupancy by objects. Furthermore, we
plan to validate our approach using real vehicle data.
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