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Abstract

In this work, the field of inertial sensor selection, testing, and calibration is revisited.
The question of inertial sensor selection is answered by an analysis of the strapdown inertial

navigation’s response to initialization and inertial sensor errors. The work presents analytical
solutions for the navigation state errors from bias-like and noise-like sensor errors. Graphs
allow the simple read-off of acceptable accelerometer and gyroscope errors for the desired
navigation performance. The validity of the analytical prediction and its limits are demonstrated
using two Monte-Carlo simulation examples. The second part discusses how the sensors can
be tested and calibrated in the laboratory to the desired accuracy. Based on comprehensive
modeling of laboratory error sources, error budgets for classic inertial sensor test procedures are
derived. The error budgets indicate dominant error sources and the achievable sensor accuracy
depending on the test procedure. As an alternative to the classic procedures, a Schmidt-Kalman-
filter-based test procedure that incorporates models of laboratory errors and sensor noise is
discussed.

Kurzfassung

Diese Arbeit stellt eine erneute Betrachtung der Auswahl sowie des Testens und Kalibrierens
von Inertialsensoren dar.
Die Frage der Sensorauswahl wird mithilfe einer Analyse der Antworten der Strapdown

Trägheitsnavigation auf Initialisierungs- und Sensor-Fehler beantwortet. Die Arbeit zeigt
analytische Lösungen für die Navigationszustandsfehler aus bias-like und noise-like Sensor-
fehlern. Grafiken erlauben das Ablesen der akzeptablen Accelerometer- und Kreisel-Fehler
für die gewünschte Navigationsleistung. Die Gültigkeit der analytischen Vorhersagen und ihre
Grenzen werden anhand zweier Monte-Carlo Simulationen aufgezeigt.
Im zweiten Teil der Arbeit wird diskutiert, wie die Sensoren im Labor auf die geforderte

Genauigkeit hin getestet und kalibriert werden. Anhand einer umfangreichen Modellierung
der Fehlereinflüsse im Labor werden Fehlerbudgets für klassische Testprozeduren hergeleitet.
Die Fehlerbudgets zeigen die erreichbareTestgenauigkeit und die dominierendenFehlerquellen
in Abhängigkeit von der Testprozedur. Als Alternative zu klassischen Methoden wird eine Test-
methode basierend auf einemSchmidt-Kalman-filter diskutiert, derModelle für die Laborfehler
und das Sensorrauschen beinhaltet.
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Chapter 1.

Introduction

1.1. Motivation

This thesis discusses the effects of sensor errors in strapdown inertial navigation and the
laboratory test and calibration of these errors. Inertial navigation and the corresponding
sensors are a mature technology that has been widely used since the 1950s, with its roots in the
early 20th century. Likewise, the research on the propagation of sensor errors and the test of
inertial sensors have a long history and could be considered as completed. Still, two trends in
navigation technology and applications justify, in the author’s opinion, a revisit of the effects
and testing of inertial sensor errors.

The Development of Extremely Accurate Inertial Sensors

By providing a global source for timing and positioning, the  Global Navigation Satellite Systems 

became the prime navigation source in civil and military applications. Still, some applications
and environments do not allow the use of  GNSS as its signals cannot be received indoors
or underwater. Additionally, the vulnerability of  GNSS to intentional disturbances has been
observed in conflict situations [  1 ]. The need for  GNSS -independent precision positioning and
timing sources is widely acknowledged and led to several development programs on inertial
sensors and mobile atomic clocks based on quantum technology:

• The U.S. Department of Defense started multiple programs to develop future inertial
sensors as part of their  PNT strategy, including the Adaptable Navigation Systems (ANS)
and the Quantum-Assisted Sensing and Readout (QUaSAR) programs [ 2 ].

• TheUKQuantumTechnologyHub in Sensors andMetrology shall boost the development of
quantum inertial sensors as part of the UK National Quantum Technologies Programme.
UK plans to provide funding of GBP 270 million on quantum technologies [ 3 ].

• The European Union QuantumManifest lists the development of a hand-held quantum
navigator providing less than 1mm/day drift within the next ten years as a research goal.
EU planned to spend EUR 1 billion on quantum technologies within the Horizon 2020
framework [ 4 ].
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Chapter 1. Introduction

• The People’s Republic of China lists quantum navigation as a high-priority research
target within its thirteenth Five-Year Science and Technology Innovation Plan [ 5 ].

The prospective inertial sensors are expected to provide new levels of accuracy, e.g., a cold
atom gyroscope with a drift of 10−5 °h−1 [ 6 ]. Such sensor accuracies might allow free-inertial
navigation for durations never seen before. This justifies a review of the inertial navigation
error propagation for very long times. Furthermore, the calibration and validation of such
sensors pose strict requirements on the test laboratory and environment.

Novel Applications and the Urge for Low-cost Sensors

The second trend appears on the opposite side of the inertial sensor accuracy scale, namely
in low-cost systems. The growing global market for  Unmanned Aerial Vehicles is expected to
reachUSD 37 billion in 2025, includingUSD 11 billion inmilitary, USD 16 billion in commercial
and USD 4 billion in consumer applications [  7 ]. As illustrated in  Figure 1.1  , the segment of
mini-UAVs shows the highest growth rates in the military sector. The same accounts for the
civil market, where the size and costs of the  UAVs are often very limited. The rapidly increasing
number of small  UAVs leads to increasing demand for small, lightweight, and low-cost inertial
sensors and systems for both control and navigation.
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Figure 1.1.: Estimated worldwide production volume for military UAVs from 2013 to 2022 [ 8 ].

This growing market comes with a large number of systems to be designed. The need for
low-cost components drives a shift from the classical aerospace inertial sensors toward themass
market, e.g., automotive products. Furthermore, modern applications do not necessarily fit well
into the established concept of sensor grades based on the sensors’ military heritage. Instead,
understanding how the required sensor accuracy depends on the navigation requirements is
needed to select suitable sensors for a given application. The same accounts for the testing
and calibration of inertial sensors. Traditional aerospace sensors are thoroughly tested using
high-accuracy equipment, but whether such an effort is justified for every sensor’s accuracy
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must be questioned. Test procedures and equipment adapted to the desired sensor accuracy
may provide cost savings appreciated by these new applications and markets.
Thus, this thesis aims to promote a better understanding between the sensor and systemman-

ufacturers. As depicted in  Figure 1.2 , the topics covered in this work affect both parties linked
through the sensor selection process, procurement, (customized) calibration, and acceptance
testing on both sides.
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Figure 1.2.: This work in the field of tension between sensor manufacturer and system manufacturer.

In an early stage of system development, the sensor requirements must be specified from
the system’s navigation requirements. These requirements are used to select typically market-
available sensors that may undergo customization, e.g., adaption of the packaging or specific
calibration.  Chapter 3  presents an analytical navigation error prediction that supports the
process of a sensor requirement specification.
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The sensor manufacturer, on the other side, requires multiple forms of laboratory sensor
testing and calibration at nearly every stage of the sensor’s life cycle, but especially during
the calibration and acceptance testing of produced sensors. This sensor calibration usually
requires highly accurate laboratories. The requirements for the laboratory’s accuracy for a
desired sensor calibration accuracy are discussed in  Chapter 4  . Complementary to the sensor
manufacturer’s tests, the systemmanufacturer performs sensor tests, typically at the subsystem
level. However, these tests are performed at less depth and accuracy than the manufacturer’s
sensor calibration.
This work shall also help to improve mutual understanding between the sensor manufactur-

ers and system designers.

1.2. Scope of this Thesis

This thesis aims to review the topic of inertial sensor performance, testing, and calibration. In
doing so, the work focuses on answering the following two fundamental questions:

1. How can the required inertial sensor accuracy be derived from the navigation
requirements?
Selecting suitable inertial sensors is crucial in designing inertial and integrated navigation
systems and applications. This requires knowledge about how different sensor errors
are propagated within the inertial navigation algorithms. Based on these propagation
equations, the acceptable sensor errors can be determined for the desired navigation
requirement, e.g., position error after a given time. This thesis aims to develop long-term
analytical solutions to the error dynamics and provide easy-to-use methods for assessing
the required sensor accuracy. These methods are not meant to replace the final validation
of operational performance using high-detail models and Monte Carlo simulations but
to support the definition of sensor requirements in an early development phase.

2. How can the required sensor accuracy be tested in the laboratory?
The determination of inertial sensor errors under specified conditions is the basis for the
verification of sensor accuracy. Since calibration compensates for deterministic errors
found during testing at varying conditions, it is just an application of the tests’ results.
This thesis focuses on deriving error budgets for inertial sensor testing in the laboratory.
They allow the requirements on laboratory instruments and environmental conditions
to be determined from the desired sensor accuracy.

 Figure 1.3  illustrates the placement of this work’s main chapters within the design, produc-
tion, and operation of an inertial and integrated navigation system. The graphic shows the
limits of the analytical navigation error propagation from  Chapter 3 compared to a covariance
propagation or even a Monte-Carlo simulation. The stationary analytical error prediction is
widely independent of the trajectory and requires only a rough knowledge of the latitude and
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assumptions on typical maneuvers for the dynamic-dependent errors. In contrast, the simu-
lation requires complete trajectories representative of the desired application. Monte-Carlo
simulation is used in this work to validate the analytically predicted results.

Furthermore, the graphic illustrates the limits of sensor error compensation at the laboratory
and the compensation of navigation errors in-flight. The accuracy of classical laboratory testing
and calibration procedures is discussed in  Chapter 4  . The chapter concludes with the design of
a Kalman Filter-based sensor error estimation, which can also be used to validate the classical
test procedures due to its generality.

Due to the trajectory-dependency and usually limited aiding accuracy, the in-flight calibra-
tion represents a possibility but is not a guarantee for navigation error compensation. This
emphasizes the importance of good sensor design (e.g., error repeatability) and laboratory
calibration.
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1.3. State of the Art

1.3.1. Inertial Navigation Error Propagation

The analysis of the inertial navigation algorithms is as old as the algorithms themselves. It
is well known that the inherent integration of the measured accelerations and angular rates
causes inertial navigation systems’ navigation states (e.g., position) to drift with time. Due to
the interaction of the different states, the errors of the navigation states are subject to complex
dynamics that shape the propagation of initialization and sensor errors. A typical inertial
navigation performance requirement is the maximum position error after a given time of
unaided inertial navigation. For many applications, the free inertial position error propagation
also defines the maximum acceptable  GNSS outage time.
The general concepts of  Inertial Navigation System (INS)  error propagation are well covered

by standard text books like [ 13 , Ch. 5.5 and 5.6], [ 14 , Ch. 12], [  15 , Ch. 5], [  16 , Ch. 5] [  17 , Ch.
7.3]. Due to their dominant role, these works and this thesis only cover strapdown inertial
navigation systems  

1
 . A comprehensive treatment of analytical solutions to the navigation

error dynamics can be found in [  20 , Ch. 13]. Still, above mentioned works only provide short-
and medium-term approximations for the error dynamics by neglecting the Earth’s angular
rate and coupling between the horizontal channels. Although the proposed solutions are called
”long term” solutions within the works, their validity is stated as either ”up to about 4 hours”
[ 13 , p. 155] [  14 , p. 374], ”much less than 24 hours […] a couple of hours” [  15 , p. 161] or only
two hours [ 20 , p. 13-1].
The existence of other error dynamics, namely a 24-hour oscillation and the Foucault

oscillation, is acknowledged but left to numerical analysis [ 14 , p. 346] or neglected [  15 , p. 163].
An approximate solution to bias-like sensor errors and initialization errors that incorporates
the Earth’s angular rate is given in [  17 , Chapter 7.4]. An approximation-free solution to the
strapdown equations of motion is given in [  21 , pp. 43–53], but lacks a solution for the strapdown
error equations and is given in the hard-to-understand e-frame representation.
For the prospect quantum inertial navigators, the available solutions to the error dynamics

that are valid for several hours are insufficient. Furthermore, the publications on the error
dynamics focus on the position error, neglecting the orientation and velocity states. Within
this work, a long-term analytical solution to the strapdown error dynamics is derived that
incorporates the effects of the Foucault and 24 hours oscillations for all navigation states.
The analytical treatment of the strapdown error dynamics allows a deep insight into the

propagation of sensor errors and results in simple-to-use results. Thus it is very suitable to
derive basic statements and to support the sensor selection at an early system design phase.
However, the analytical approach is based on approximations and neglects the trajectory-
dependent errors. Additionaly, many characteristics of the real system, like computational
errors, are hard to model analytically. The validation of a system’s navigation performances

1An error analysis for platform inertial systems can be found in [  18 , Ch. 5.4] and [  19 , Ch. 8].
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thus requires numerical simulations [ 14 , pp. 360–362] and ultimately real-world tests.

1.3.2. Laboratory Testing of Inertial Sensors

1.3.2.1. Tests

In their life, inertial sensors are subjected to several tests. In general, these examinations serve
two different purposes:

• Characterization tests are used to determine the sensor’s behavior in various situations.
This means, in particular, investigating various errors, i.e., the deviation from the ideal
sensor behavior. These tests are used to verify the sensor’s performance against the
requirements. Additionally, behavioral and failure models of the sensor can be created
for simulations of the entire system. The characterization includes deterministic and
non-deterministic (stochastic) sensor errors, from which the deterministic ones can be
compensated while the stochastic ones can only be characterized.

• Calibration uses the results of the characterization tests to identify deterministic and
reproducible errors in the sensor output. These errors can then be compensated by
inverting the deterministic sensor error behavior in the sensors electronics respectively
digital controller.

Both objectives, characterization, and calibration are performed within different types of tests
that include:

• Qualification tests ensure the feasibility of a sensor design and that the sensor’s perfor-
mance meets a customer’s requirements [ 22 , p. 242]. These tests are the most rigorous
to determine the sensor’s behavior in various conditions fully [  14 , p. 220]. Here, the
statistics of sensor errors are also examined in detail to select the most critical parameters
for acceptance testing and calibration.

• Acceptance tests is performed during manufacturing to ensure that the sensor meets
the customer’s requirements. The tests check a set of selected parameters known to
scatter throughout the production. These tests also include the calibration of sensor
errors known to vary throughout the production. Acceptance tests may be performed on
a single-sensor level or for production batches [  14 , p. 220]. They are also performed after
the maintenance of (high-class) sensors [ 22 , p. 242].

• Reliability tests are used to determine the long-term behavior of the sensor. They are
performed for random production samples to determine the, e.g., mean time between
failures in nominal operation [  22 , p. 243]. Reliability tests can also include examinations
of aging processes, which is the change of sensor characteristics with time. Changes in
the sensor characteristics due to aging may be compensated by a regular re-calibration at
the manufacturer.
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The actual test layout is very diverse and depends on the planned application, the sensor
technology, and the manufacturer’s philosophy.

1.3.2.2. Standards and Procedures

Since 1969 the Gyro and Accelerometer Panel of the  IEEE Aerospace and Electronic Systems
Society has published multiple standards to guide its members on the specification and testing
of inertial sensors (see  Table 1.1  ). With Std. 522 [  23 ] the  Institute of Electrical and Electronics
Engineers (IEEE) provides a comprehensive terminology of inertial sensor technologies, in-
cluding precise terms and definitions of technologies, specification parameters, and effects.
This thesis follows the  IEEE terminology where applicable.

Table 1.1.: List of IEEE standards on Inertial Sensor specification and testing.

IEEE Std. Init. pub. year Scope

292, 293 1969 Spring-restrained Rate Gyroscopes
517 1974 Rate-Integrating Gyroscopes
529 1980 Strapdown application of Rate-Integrating Gyroscopes
528 1984 Inertial Sensor Terminology
671 1985 Non-gyroscopic Inertial Angular Sensors
813 1988 Dynamically Tuned Gyroscopes
952 1997 Interferometric Fiber-Optic Gyroscopes

1293 1998 Non-Gyroscopic Accelerometers
1431 2004 Coriolis Vibratory Gyroscopes
1554 2005 Recommended Practices for Inertial Sensor Testing

647 2006 Laser Gyroscopes
836 2009 Centrifuge Testing of Accelerometers

2007 2014 General Sensor Performance Parameter Definitions

The major part of the applicable standards consists of Standard Specification Format Guides
and Test Procedures for the different inertial sensor technologies [  9 ,  11 ,  12 ,  10 ,  24 ,  25 ]. These
standards define error models for each technology that contain the most critical parameters.
The standards include the laboratory test procedures to determine these parameters and a
format template for publishing the sensor’s specification. A general summary of best practices
for inertial sensor testing is given in  IEEE Std. 1554 [  26 ]. In addition to hints on test planning
and documentation, this standard briefly describes typical inertial sensor testing instruments
and their general use. This includes a discussion of rate tables, centrifuges, vibration and
shock equipment, and the required data acquisition setup. The standard concludes with a
brief discussion of environmental (e.g., geophysical) effects and the required surveying and
calibration of an inertial test facility.
Independent of the available standards, there are many publications on inertial sensor cali-

bration and testing. Trends in this field of research are test procedures for low-cost equipment,
and the application of novel approaches for sensor error determination, e.g., using machine
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learning. A review of 22 current sensor calibration methods is given in [  27 ].

1.3.2.3. Inertial Sensor Test Facilities and Instruments

The development of accurate inertial sensors for navigation starting from the 1950s created the
need for high-accuracy testing and calibration facilities. Most publications within cited within
this section date back to the 1960s and 1970s. The latest publications provide limited insight
into the current state of the art, which is expected given the military significance of inertial
navigation.
Test instruments like rate tables and dividing heads are well within the scope of mechanical

and precision engineering. The few publications explicitely covering the design of inertial
sensor testing equipment consequently focus on the construction aspects to provide the desired
positioning accuracy and rate stability, e.g., [  28 ]. However, they do not discuss how these
requirements relate to the desired test accuracy.
In the development of increasingly accurate inertial sensors, the design and verification

of a sufficiently stable (vibration-less) laboratory environment posed a new problem to the
sensor developers. To decouple the inertial test instruments from environmental disturbances
like seismic vibrations, the instruments (e.g., rate tables) are mounted to an isolated test pad.
During the late 1960s, the design of a test pad that provides high tilt stability and isolates
from seismic motions became an important goal for the manufacturers and users which led
to various publications in the field of test pad stability which was later also called geokinetics.
Actions were coordinated within the Test Pad Stability Subcommittee of the  AIAA Technical
Committee on Guidance and Control.
Publications include the design of specific testing facilities, for example at the  USAF Academy

[ 29 ], at the Martin Company 

2
 [ 30 ] and at the  Central Inertial and GPS Test Facility (CIGTF)  

[ 31 ]. These designs aim at reducing environmental vibratory accelerations to below the 10−5 g
range by using passive isolation [  31 ,  30 ,  29 ]. The targeted orientation and tilt stability of these
examples are in the range of 0.5 to 5 asec [ 31 ,  30 ] and partly achieved by active hydraulic
stabilization [  29 ]. A special design example for extreme low vibrational noise is a laboratory
in a former salt mine, 350m below the ground, where the natural noise floor is in the already
range of only 10−6 g [ 32 ]. The possibly detrimental effects of dynamical test instruments
(e.g., shakers) on nearby calibration facilities was demonstrated in [  33 ]. Further publications
reevaluate and review the achieved stability, e.g. for the  CIGTF [ 34 ]. Later generations of
inertial sensor test facilities target for a vibration level below 10−9 g [ 35 ].
In addition to the specific designs, general design considerations and guidelines for passively

isolated stable test pads are subject to multiple publications. The effect of surface vibrations
and tilts on the test pier design is discussed in [  36 ,  37 ,  38 ]. Based on a long-term survey of
eight inertial testing facilities, Berg identifies multiple criteria for a stable test site concerning
the type of land and the thermal and mechanical isolation [  38 ]. The known seismic vibration

2today Lockheed-Martin Corporation
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Chapter 1. Introduction

sources are generally characterized in [ 39 ]. Still, the frequency spectrum of test pad motions
was only analyzed after the advent of digital Fourier analysis systems in the 1970s [ 34 ].
While best practices and design rules for inertial sensor test facilities are well documented in

general, there are few publications to investigate the effects of the test pad motion on the final
test or calibration results. The limitations on inertial sensor testing that arise from platform
vibrations have been investigated byWeinstock in 1966 [ 40 ]. Based on measurements of the
seismic disturbances at the  NASA Inertial Test Facility, Cambridge, MA, Weinstock derives
the resulting errors in gyroscope drift rate test results. Still, the study is limited to mechanical
gyroscopes, and the conclusions are based on the predicted gyroscope’s accuracy in the late
1960s.
To the author’s knowledge, no study goes beyond single aspects and provides a comprehen-

sive error budget for sensor testing. This shall be given within this work.

1.4. Contributions

As pointed out above, this field of research has been covered throughout the history of inertial
and integrated navigation. Still, in the author’s opinion, this thesis contributes to the field in
the following aspects:

1. Strap-down Inertial Navigation Error Propagation
This thesis adds further details to the propagation of initialization and inertial sensor
errors into navigation errors. In literature, discussions of the error dynamics are limited
to medium-term solutions up to 4 h and position errors. This thesis derives the long-term
error dynamics for the entire set of navigation states consistently. This also includes
the propagation of colored inertial sensor noise processes, in contrast to the white noise
assumption that is usually taken. Furthermore, the correlation of the resulting navigation
errors is considered.

Based on these results, methods for predicting navigation errors from inertial sensor
errors and vice versa are presented. Charts allow the simple reading of the maximum
inertial sensor error for a specified navigation error.

2. Inertial Sensor Laboratory Testing
This thesis systematically analyses the error propagation within the inertial sensor testing.
The analysis includes a comprehensive list of error sources and correspondingmathemat-
ical models. Based on the models, error budgets for the fundamental inertial sensor test
procedures are derived. These can be used to determine the achievable sensor accuracy
for an existing laboratory setup and to identify the critical performance factors when
designing a new facility.

An observability analysis for a comprehensive set of inertial sensor error terms supports
the design of rate-table trajectories and procedures for identifying complex sensor error
models.

10



1.5. Outline

Finally, a Kalman filter-based sensor testing algorithm is developed. By incorporating
models for the sensor’s noise and the laboratory errors, the algorithmprovides a consistent
estimation of the accuracy of the sensor error estimation. Combined with a suitable rate
table trajectory, this can provide a one-click sensor test solution, that estimates complex
sensor error models without requiring operator intervention.

A detailed listing of the contributions can be found in  Section 5.2 .

1.5. Outline

The structure of this thesis is illustrated in  Figure 1.4  . After a brief introduction, the basics of
inertial sensors, navigation, and signal analysis are presented in  Chapter 2 .
The central part begins with an analytical derivation of the propagation of inertial sensor

errors into the orientation errors during stationary alignment (  Section 3.2  ). Based on the strap-
down equations, the linearized navigation error dynamics are derived, and analytical equations
for the system’s response to initialization and sensor errors are presented in  Section 3.3 . These
equations are finally simplified in  Section 3.6 to yield short- and medium-term approximations
of the error propagation. The results of the error propagation analysis are then used to create
tables and graphics that allow the prediction of the inertial navigation performance from sensor
errors ( Section 3.4 ). Vice-versa, the charts will determine the acceptable sensor errors for a
specified navigation performance. Finally, the prediction equations and schemes are validated
by two examples of Monte Carlo simulations in  Section 3.5 .
Following the inertial sensor requirements specification, the sensor errors must be demon-

strated in a manufacturer’s or system integrator’s laboratory. The testing of inertial sensors
in the laboratory is discussed in  Chapter 4  . A mathematical model of the inertial laboratory
and its error sources is derived in  Section 4.2  . These models are then used to create error
budgets for the typical sensor test procedures in  Section 4.4  . This is adjoined by an analytical
treatment of averaging over sensor noise processes (  Section 4.3  ). Finally,  Section 4.5  describes
how a Kalman-filter-based sensor test procedure is designed and validated with numerical
simulations.
This thesis concludes with a summary of the findings and the significant contributions in

 Chapter 5  . The work is adjoint by a comprehensive appendix that includes additional material,
like the complete analytical equations for the navigation error response and simulations for
their validation. All appendices are linked at the appropriate place in the main text.
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Chapter 2.

Preliminaries

2.1. Inertial Sensor Errors

2.1.1. Sensor Error Types

This work addresses the effects of sensor errors on inertial navigation performance and the
calibration of these same errors. In the context of this work, sensor errors are a deviation of the
measured output from the actual input. Sensor failures are considered errors in this context
only if they lead to a change in the input-output behavior.
Deterministic sensor errors have to be distinguished from stochastic ones. The deterministic

errors are predictable and repeatable, meaning they are a sensor’s constant property. This
is not limited to constant errors in the input-output relationship but includes sensitivities to
motion along the non-input axes and environmental conditions. The typical deterministic
sensor errors include:

• Bias-like Errors are additive errors on the sensor output that are independent of the
input signal, as illustrated in  Figure 2.1a . In the IEEE standards [ 23 ] bias-like errors are
summarized as systematic drift. In addition to a constant component (g-independent bias),
sensor biases can also display sensitivities to environmental conditions (e.g. temperature)
and motion (e.g. accelerations, vibrations, etc.) [  12 ,  41 ,  11 ]. Even if the bias is constant
during operation, it may change from run to run [  13 , p. 152] and must also be considered
as a stochastic error, depending on the context.

• Scale-Factor Errors describe deviations from the sensor’s ideal static input-output
mapping. In the most simple form, this is just a constant error in the linear scale factor
( Figure 2.1b ) but can also include asymmetries (  Figure 2.1c ), hysteresis effects or any
other non-linear relationship ( Figure 2.1d  ) between input and output of the sensor [  22 ,
pp. 26–28]. Just as the bias, also the scale factor can be sensitive to both environmental
conditions and motion [  12 ,  41 ,  11 ]. In the wide sense, also a dead band ( Figure 2.1e ) or
input range limits ( Figure 2.1f ) could be considered as a non-linear scale factor error.

• Misalignment is a deviation of the sensor’s input (or sensitive) axis orientation from its
reference or nominal orientation, as illustrated in  Figure 2.2  . A misaligned sensor axis
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Figure 2.1.: Deterministic sensor error types. The dashed line indicates an ideal sensor input-
output mapping, while the solid line represents the erroneous mapping.

will pick up fractions of another axis’ signal, therefore it is also called cross-coupling [ 14 ,
p. 154] or more precisely cross-axis sensitivity.

The distinction between bias-like errors and scale factor respectively misalignment errors is
not always clear-cut: For stationary conditions, e.g., straight and level flight or coordinated
turn, the dynamic-dependent errors from scale factor errors and misalignment are constant
and can be considered bias-like.
Labeling a sensor error as deterministic implies that it can be, once identified, easily com-

pensated. Deterministic errors are widely compensated during factory calibration, but the
identification and thus compensation of sensor errors is only possible within certain limits.
The derivation of these limits is precisely the focus of  Chapter 4 .

IRA
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𝑦RA

𝑧RA

𝛩𝑧

𝛩𝑦

𝛩𝑧

𝛩𝑦

Figure 2.2.: Sensor axis misalignment. The orientation of the sensor’s true input axis (IA) deviates
from its nominal reference input axis (IRA).
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In addition to the deterministic errors, a sensor’s output is also subject to stochastic errors.
Due to their random nature, stochastic errors cannot be identified and calibrated but are only
described by their statistics. The most essential stochastic errors are:

• Sensor Noise or random drift is an additive random error on the sensors output and
like the bias it is independent of the input [  22 , p. 31]. Sensor noise is a combination of
different stochastic processes that can include both high-frequency noise (  Figure 2.3b )
and low-frequency fluctuations ( Figure 2.3c  ) like in-run variations of the bias. The typical
stochastic processes used to model sensor noise are presented in  Subsection 2.3.3 .

• Day-to-Day variation is a variation of the sensor’s characteristics from run to run. The
most famous example of day-to-day variation is the turn-on bias whose variation is much
higher than the bias-variation during operation [ 22 , p. 33].

1 2 3 4 5
−1

−0.5

0

0.5

1

Turn-on

Se
ns

or
bi

as

(a) Turn-on bias variation.

1 2 3 4 5
−1

−0.5

0

0.5

1

Time

O
ut

pu
t

(b) High-frequency fluctuations.

1 2 3 4 5
−1

−0.5

0

0.5

1

Time

O
ut

pu
t

(c) Low-frequency fluctuations.

Figure 2.3.: Stochastic sensor errors.

In addition to categorizing the sensor errors as deterministic and stochastic, they can also be
grouped by their dependency on the platform dynamics, respectively, the trajectory. While scale
factor and misalignment are always dynamic-dependent, the sensor noise is typically dynamic-
independent. Bias-like errors include dynamic-dependent(e.g., acceleration sensitivities) and
independent (e.g., static bias) errors.
Above discussed errors represent only the basic sensor error types. Each of these errors

is composed of various error sources, depending on the measuring principle and technology
of the sensor. The following sections will discuss the typical sensor technologies’ errors and
respective error models.

2.1.2. Inertial Sensor Grades

It is a common practice to assign inertial sensors to a sensor grade based on their accuracy.
Although there is no universal definition of the different sensor grades, the classical grades are
based on the typical application of the associated sensors.
Especially for inertial sensors with low accuracy, there is no uniform definition of sensor

grades. On the other hand, the definitions are more precise for the higher grades. Here, the
military origins of inertial sensor technology can be seen in the traditional sensor grades and
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their names. While there is no agreement on the various grades’ names, it is also unclear where
the boundaries of the individual grades lie. Most authors agree to define the sensor grades
based on the critical performance parameters  scale factor (SF) error, and sensor bias [  13 ,  42 ],
sometimes also supported by the sensor’s noise [  43 ]. Specifically, the critical performance
parameters are the residual errors or the in-run variation of  SF and bias, often denoted as  SF 

stability and bias stability. The definition of sensor grades used within this work is illustrated
in  Figure 2.4  and  Figure 2.5  . Based on the famous bubble charts of G. Schmidt [ 44 ], the charts
are extended with today’s sensor technologies and their respective region key performance
parameters.
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It should be emphasized that the concept of sensor grades and the attribution of sensors and
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sensor technologies to applications is only indicative. However, it provides valuable guidance
in the first step of selecting inertial sensors for a given application.

2.1.3. Sensor Error Models

Sensor error models or measurement models provide a mathematical description of how the
sensor’s output relates to the sensor’s input. The  IEEE standards on inertial sensor specification
and testing (see  Table 1.1  ) providemodel equations for today’s relevant sensor technologies. For
 Fibre-optic Gyroscope (FOG) ,  Coriolis Vibratory Gyroscope (CVG) and  Ring Laser Gyroscope
(RLG) the  IEEE model equations have the form [ 25 ,  9 ,  12 ]:

�̃�𝑖𝑏 = 𝑆0𝑈 = 𝐼 + 𝐸 + 𝐷
1 + 10−6𝜖𝑘

(2.1)

The indicated rate �̃�𝑖𝑏 is expressed as the product of the nominal scale factor 𝑆0 and the
sensor’s readout 𝑈, which can be, e.g., a voltage or a digital value. In this model, 𝜖𝑘 denotes the
composite scale factor errors. The input is split into three different terms 𝐼, 𝐸, and 𝐷.

The inertial input term 𝐼 represents the ideal sensor input, as well as the cross-coupling to
other input axes caused by the misalignment of the sensor axis [ 25 ]:

𝐼 = 𝜔𝑖𝑏,𝑥 + 𝜔𝑖𝑏,𝑦 sin𝛩𝑧 − 𝜔𝑖𝑏,𝑧 sin𝛩𝑦 (2.2)

The bias-like errors from environmental influences are summarized in the term 𝐸, called
environmentally sensitive terms:

𝐸 = 𝐷𝑇𝛥𝑇 +… (2.3)

The drift terms 𝐷 summarizes the (in-run) fixed bias 𝐷𝐹 and the drift from sensor noise 𝐷𝑅 [ 12 ,
 9 ]:

𝐷 = 𝐷𝐹 + 𝐷𝑅 +… (2.4)

In the standard on  CVGs , environmental sensitivities 𝐷 are merged into the drift terms 𝐷,
which seems reasonable as both represent drift. The standards name the most relevant error
terms and sensitivities but do not claim completeness. A summary of the listed terms and
sensitivities is given in  Table 2.1 .

Note that these model equations are a phenomenological error model only; they do not
require knowledge of the physical effects that cause these errors. In addition to that, they are
kind of static models and do not consider the sensor’s dynamics. In contrast to that, the models
for the  Dynamically Tuned Gyroscope (DTG) [ 45 ] and mechanical  Single Degree of Freedom
Gyroscope (SDFG) [ 24 ] are dynamic models that trace back errors to mechanical properties,
e.g., rotor unbalance. However, these technologies are no longer considered here due to their
sporadic use today.

An error model of similar structure is provided in IEEE Std. 836 [  41 ] for (mainly pendulous)
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Table 2.1.: Error terms in the IEEE model equations for gyroscopes.

IEEE Std. 647 [  9 ] 952 [ 12 ] 1431 [ 11 ]
RLG FOG CVG

Misalignment 𝛩𝑦, 𝛩𝑧 ✓ ✓ ✓
Scale factor error

Nonlinearity 𝑓(𝜔) ✓ ✓
Scale factor error 𝜖𝐾0 ✓
Temperature sensitivity 𝜖𝑇 ⋅ 𝛥𝑇 ✓ ✓ ✓
Tempperature gradient sensitivity 𝜖∇𝑇 ⋅ ∇𝑇 ✓
Acceleration sensitivity 𝑆𝑎 ⋅ 𝑎 ✓

Drift
Temperature sensitivity 𝐷𝑇 ⋅ 𝛥𝑇 ✓ ✓ ✓
Temperature gradient sensitivity 𝐷∇𝑇 ⋅ ∇𝑇 ✓ ✓
Temperature rate sensitivity 𝐷 ̇𝑇 ⋅ ̇𝑇 ✓ ✓
Temperature gradient rate sensitivity 𝐷∇ ̇𝑇 ⋅

𝑑∇𝑇

𝑑𝑡
✓

Vibration coning sensitivity 𝐷𝑐 ⋅ 𝑎𝑉,𝑅 ✓
Vibration difference freq. sensitivity 𝐷𝛥𝐹 ⋅ 𝑎𝑉,𝛥𝐹 ✓
Vibration drive freq. sensitivity 𝐷𝐷 ⋅ 𝑎𝑉,𝐷 ✓
Vibration pickoff freq. sensitivity 𝐷𝑃 ⋅ 𝑎𝑉,𝑃 ✓
Structure resonance sensitivity 𝐷𝑆𝑅 ⋅ 𝑎𝑉,𝑆𝑅 ✓
Acceleration sensitivity 𝐷𝑎 ⋅ 𝑎 ✓
Cross-axis vibration sensitivity 𝐷𝑅𝐼 ⋅ 𝑎𝑉𝑂𝐹(𝜔𝑦 + 𝜔𝑧) ✓
Broadband noise sensitivity 𝐷𝑅𝐵𝐵 ⋅ 𝑎𝑉,𝐵𝐵 ✓
Fixed bias 𝐷𝐹 ✓ ✓ ✓
Angle random walk 𝐷𝑅,𝑁 ✓ ✓ ✓
Bias instability 𝐷𝑅,𝐵 ✓ ✓ ✓
Rate random walk 𝐷𝑅,𝐾 ✓ ✓ ✓
Rate ramp 𝐷𝑅,𝑅 ✓ ✓ ✓
Quantization noise 𝐷𝑄 ✓ ✓ ✓
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accelerometers:

𝑎𝑠 =
𝐸
𝐾1

= 𝐾0 + 𝑎𝑖 + 𝐾2𝑎2𝑖 + 𝐾3𝑎3𝑖 + 𝐾𝑖𝑝𝑎𝑖𝑎𝑝 + 𝐾𝑖𝑜𝑎𝑖𝑎𝑜 + 𝐾𝑜𝑝𝑎𝑜𝑎𝑝 + 𝛿𝑜𝑎𝑝 − 𝛿𝑝𝑎𝑜 (2.5)

where 𝑎𝑖 denotes the acceleration along the nominal input axis, 𝑎𝑝 along the pendulous axis
and 𝑎𝑜 along the remaining right-handed coordinate axis. In this model, the scale factor
nonlinearity is explicitly modeled as a third order polynomial and there is also a sensitivity to
mixed acceleration terms. In contrast to the gyro models, the misalignment is described by
the sensitivities 𝛿𝑜, 𝛿𝑝 directly, not the misalignment angles. Furthermore, the standard [  41 ]
suggests extending the model equation by high order terms of cross-coupling and asymmetries.
While the  IEEE standards provide a reference model and naming conventions, a more

straightforward formulation is typically used. In the formulation suggested in [  14 , p. 254], the
scale factor error explicitly effects only the nominal input:

�̃�𝑖𝑏,𝑥 = (1 + 𝑆𝐺,𝑥)𝜔𝑖𝑏,𝑥 +𝑀𝐺,𝑦𝜔𝑖𝑏,𝑦 +𝑀𝐺,𝑧𝜔𝑖𝑏,𝑧 + 𝐵𝐺,𝑓 + 𝐵𝐺,𝑥𝑎𝑥 + 𝐵𝐺,𝑧𝑎𝑧+

𝐵𝐺,𝑥𝑧𝑎𝑦𝑎𝑧 + 𝜈𝐺,𝑥
(2.6)

̃𝑓𝑏 = (1 + 𝑆𝐴,𝑥)𝑓𝑏,𝑥 +𝑀𝐴,𝑦𝑓𝑏,𝑦 +𝑀𝐴,𝑧𝑓𝑏,𝑧 + 𝐵𝐴,𝑓 + 𝐵𝐴,𝑣𝑓𝑏,𝑥𝑓𝑏,𝑦 + 𝜈𝐴,𝑥 (2.7)

In this formulation the bias-like and cross-sensitivity errors implicitly contain the linear scale
factor error around zero. In [  14 , p. 254], it is suggested to express 𝑆𝑥 as a polynomial in 𝜔,
respectively 𝑓𝑏, to model a non-linear scale factor. However, this would still ignore the effect
of a non-linear scale factor on the bias-like errors. The different sensor noise processes are
summarized into the noise terms 𝜈. Again, above equations can of course be extended and
adapted to a sensor’s specific sensitivities, as summarized in  Table 2.1 .

2.2. Inertial and Integrated Navigation

2.2.1. Reference Frames

Mathematical models of inertial navigation and the laboratory calibration of inertial sensors
require defining a set of reference frames. The utilized coordinate systems follow the definitions
of ISO-1151 [ 46 ] and ANSI/AIAA R-004 [ 47 ], which are the well-accepted standard in the
navigation community [ 13 ,  14 ,  21 ,  15 ].

2.2.1.1. Earth Centered Inertial (ECI) Frame i

The inertial frame is a Cartesian coordinate system located at the Earth’s center of mass, thus
called Earth Centered Inertial (ECI) frame. Its z-axis is aligned to the Earth’s nominal rotation
axis, pointing to true north. Different definitions are available for the x-axis. The typical choice
is to align the x-axis to the direction from the Earth to the sun at the (Northern Hemisphere)
vernal equinox [  13 ]. The y-axis is chosen to complete a right-handed coordinate frame. As
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(Earth-based) inertial navigation is typically not performed relative to the inertial frame, the
actual direction of the x-axis has no effect in practice. The definition of this ECI-frame is
summarized in  Table 2.2 .

Table 2.2.: Definition of the ECI Frame.

𝑥𝑖
𝑦𝑖

𝑧𝑖 Origin Center of mass of Earth and atmosphere
Rotation Non rotating
Axes 𝑥𝑖 Direction from the Earth to the sun at vernal

equinox
𝑦𝑖 Completes a right-handed Cartesian frame
𝑧𝑖 Along the Earth’s rotation axis, pointing north

Comparison to the International Celestial Reference Frame (ICRF) The International
Celestial Reference Frame is a quasi-inertial frame defined by the International Astronomical
Union (IAU). Its orientation is ideally fixed to a set of extragalactic radio sources. Due to the
considerable distance of these objects, primarily quasars, their motion may be neglected [  48 ].
This results in a very stable reference frame with a noise floor of 40 asec and axis stability of
10 asec for the latest version called ICRF2 [ 49 ].
While the ECI-frame is based on the assumption that the Earth’s rotation axis is fixed relative

to space, the axis performs a precessing and nutating motion relative to the ICRF. Additionally,
the Earth’s angular rate about this axis changes slightly with time. The quality of the inertial
reference frame assumption is discussed in  Subsection 4.2.4 .

2.2.1.2. Earth Centered Earth Fixed (ECEF) Frame e

As the name implies, the ECEF is again located at the Earth’s center of mass (incl. the atmo-
sphere). Furthermore, it is fixed to the Earth’s surface. This causes the frame to rotate about
the Earth’s spin axis, which coincides with the frame’s 𝑧𝑒 axis. The 𝑥𝑒 points from the frame’s
origin to the intersection of the prime meridian with the equatorial plane. This definition is
summarized in  Table 2.3 .
In navigation, a position relative to the Earth’s surface is usually expressed in the geodetic

latitude 𝜙, longitude 𝜆, and altitude ℎ. As illustrated in  Figure 2.6 , the geodetic latitude
is defined as the intersection angle of the local normal of the reference ellipsoid with the
equatorial plane. The geodetic longitude is defined as the angle to the primemeridian. Altitude
is defined as the normal distance to the reference ellipsoid.
This thesis uses the  World Geodetic System 1984 (WGS84) model to describe the Earth’s

ideal ellipsoidal shape, gravity, and rotation. The defining parameters of the WGS84 reference
ellipsoid are summarized in  Table 2.4 .
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2.2. Inertial and Integrated Navigation

Table 2.3.: Definition of the ECEF Frame.

𝑥𝑖
𝑦𝑖

𝑧𝑖, 𝑧𝑒

𝑥𝑒

𝑦𝑒𝜔𝑖𝑒𝑡

Origin Center of mass of Earth and atmosphere
Rotation Constant rotation at 𝜔𝑖𝑒 about 𝑧𝑒
Axes 𝑥𝑒 From the origin to the intersection of the prime

meridian and equator.
𝑦𝑒 Completes a right-handed Cartesian frame
𝑧𝑒 Along the Earth’s rotation axis, pointing north

𝑧𝑒

𝑦𝑒

𝑥𝑒

𝜆

𝜙

ℎ

Figure 2.6.: Geodetic latitude and longitude in the ECEF frame.

2.2.1.3. Local North-East-Down (NED) or Navigation Frame n

The local north-east-down frame (also local navigation frame) is aligned to the Earth’s local
curvature. The 𝑥𝑛 is a tangent to the local reference ellipsoid pointing to the true north. The 𝑧𝑛
axis is aligned to the local normal of the reference ellipsoid, and the 𝑦𝑒 forms a right-handed
Cartesian frame and points to the East. The NED-frame moves with the vehicle and is typically
used to describe a vehicle’s velocity and orientation relative to the local ground.

An alternative local frame is the East-North-Up (ENU) frame (here with index 𝑙), which just
switches the order of the 𝑥 and 𝑦 axis to form a right-handed system with the 𝑥𝑙 axes pointing
up.

Table 2.4.: Defining parameters of the WGS84 model [ 50 ].

symbol parameter value

𝑎 semi-major axis 6 378 137.0m
1/𝑓 flattening 298.257223563
𝐺𝑀 gravitational constant 3986004.418 ± 0.008 ⋅ 108 m3/s2

𝜔𝑖𝑒 angular velocity 7292115 ⋅ 10−11rad/s
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Table 2.5.: Definition of the NED Frame.
𝑧𝑒

𝑧𝑛
𝑦𝑛

𝑦𝑒

𝑥𝑒

𝑥𝑛

𝜙

𝜆

Origin Arbitrary reference point, often identical to the
𝑏-frame’s origin

Rotation Transport rate to keep the frame aligned
Axes 𝑥𝑛 Tangent to the reference ellipsoid, pointing to true

north
𝑦𝑛 Completes a right-handed Cartesian frame, point-

ing to the east
𝑧𝑛 Normal to the reference ellipsoid, pointing down

2.2.1.4. Body Fixed Frame b

The body-fixed frame represents the navigating vehicle itself. Its orientation and origin are
fixed to the vehicle, with the 𝑥𝑏 axis typically pointing to the nose, the 𝑦𝑏 to the right wing, and
the 𝑧𝑏 axis pointing to the belly of an aircraft. As inertial sensors and navigation systems are
mounted to the aircraft, their measurements are taken in a body-fixed frame. Note that the
sensor’s body-fixed frame does not necessarily match the aircraft’s body-fixed frame. As this
thesis focuses on inertial sensors and navigation systems and not on the surrounding vehicle,
the 𝑏-frame refers to

Table 2.6.: Definition of the Body Fixed Frame.

𝑥𝑏

𝑦𝑏𝑧𝑏

Origin Arbitrary reference point of the vehicle or sensor
Rotation Vehicle’s rotation
Axes 𝑥𝑏 Pointing to the front of the vehicle

𝑦𝑏 Completes a right-handed Cartesian frame
𝑧𝑏 Pointing to the bottom of the vehicle

2.2.2. Strapdown Inertial Navigation Principles

The basic idea of inertial navigation is the integration of angular rate and acceleration measure-
ments to attitude angles, velocities, and ultimately, a position estimate. While early navigation
systems used a mechanical, gimbaled platform (stabilized platform) to align the accelerometers
with the desired reference frame, the progress of microcomputers allowed the shift from the
mechanical rotation of the sensors to a rotation of the accelerometer measurements in software
where all sensors are fixed to the vehicle’s body (strapped down) [ 14 , p. 13].
The general structure of a strapdown inertial navigation algorithm or mechanization is

depicted in  Figure 2.7  . Based on the initial attitude estimate (see alignment,  Section 3.2 ), the
gyroscope’s angular rate measurements are used to determine the current attitude relative
to the selected reference frame. This information is used to transform the accelerometer
measurements from the body fixed into just that reference frame. A position-dependent gravity
model is used to compensate for the local gravity in themeasured accelerations. After correcting
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2.2. Inertial and Integrated Navigation

for accelerations that arise from a rotating reference frame, the acceleration is integrated into a
velocity and position. Again, this requires knowledge of the initial velocity and position.

Body-fixed IMU

Accelerometer
triad

Gyroscope
triad

Attitude
computer

Transformation
of specific

forces
Navigation
computer

𝝎𝑏𝑖𝑏

𝒇𝑏
𝑖𝑏

𝐑𝑥𝑏

𝚺 𝚺
𝒇𝑥
𝑖𝑏

Gravity
computer

Coriolis
correction𝒈𝑥

position

Initial attitude
estimate

Initial position and
velocity estimates

reference frame rotation

position,
velocity
and
attitude
estimate

Strapdown Inertial
Navigation Algorithm

Figure 2.7.: General strapdown inertial navigation mechanization scheme. Adapted from [ 14 ,
p. 26].

The following section will present basic strapdown inertial navigation mechanizations and
their corresponding  Ordinary Differential Equation (ODE) . Here, the focus is not on practical
implementation but on providing an accessible basis for the subsequent navigation error
analysis and integrated navigation. For implementation and practical questions, like time-
integration and discretization, quaternion attitude representation, and all Earth navigation,
the reader may refer to [  15 ], [  14 ] or [  13 ]. For accessibility, only non-integrating sensor output
(accelerations and rates) is considered for the strapdown error analysis. Strapdown algorithms
for direct use of integrated sensor outputs are described in, e.g., [ 13 ] and [ 51 ].

2.2.2.1. Strapdown Equations in the Earth-fixed frame

If the Earth-fixed reference frame (e-frame) is selected, the position is given as the integral of
the velocity relative to the Earth-fixed frame. As illustrated in  Figure 2.7  , the measurement of
the specific forces is transformed into the e-frame and compensated for the local gravitation as
well as Coriolis and centrifugal forces that arise from the rotation of the e-frame relative to
the inertial frame. This yields the following strapdown  ODEs for position 𝒙𝑒, velocity 𝒗𝑒 and
orientation 𝐑𝑒𝑏 [ 15 , p. 126]:

�̇�𝑒 = 𝒗𝑒 (2.8)

̇𝒗𝑒 = 𝐑𝑒𝑏𝒇𝑏 − 2𝛀𝑖𝑒𝒗𝑒 + 𝒈𝑒(𝒙𝑒) − 𝛀𝑖𝑒𝛀𝑖𝑒𝒙𝑒 (2.9)

�̇�𝑒𝑏 = 𝐑𝑒𝑏𝛀𝑖𝑏 −𝛀𝑖𝑒𝐑𝑒𝑏 (2.10)
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with the rotation matrix from the b- to e-frame 𝐑𝑒𝑏, the specific forces 𝒇𝑏 and the skew sym-
metric matrices𝛀 of the respective angular rate vectors 𝝎

The gravitation term 𝒈𝑒(𝒙𝑒) and centrifugal forces term𝛀𝑖𝑒𝛀𝑖𝑒𝒙𝑒 can be combined into the
local gravity term [ 14 , p. 27]:

𝜸𝑒(𝒙𝑒) = 𝒈𝑒(𝒙𝑒) − 𝛀𝑖𝑒𝛀𝑖𝑒𝒙𝑒 (2.11)

Here, the Earth’s angular rate is assumed constant and the  WGS84 reference value of 𝜔𝑖𝑒 =
7.292 115 ⋅ 10−5 rad/s is used.

2.2.2.2. Strapdown Equations in the local navigation frame

As velocity and position information in the e-frame is rather hard to interpret, a more accessible
representation is desired. When choosing a local leveled North-East-Down frame, the position
change can be easily expressed in the geodetic coordinates latitude, longitude and altitude [  15 ,
p. 129]:

̇𝝀 =
⎡
⎢
⎢
⎢
⎢
⎣

̇𝜙

̇𝜆

̇ℎ

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑣𝑛
𝑅𝑀(𝜙)+ℎ

𝑣𝑒
(𝑅𝑁(𝜙)+ℎ)𝑐𝑜𝑠(𝜙)

−𝑣𝑑

⎤
⎥
⎥
⎥
⎥
⎦

= 𝐃(𝜙, ℎ)−1𝒗𝑛 (2.12)

The choice of a moving local leveled reference frame yields the additional transport rate 𝜔𝑒𝑛
term in the velocity and orientation  ODE [ 15 , pp. 129–130]:

̇𝒗𝑛 = 𝐑𝑛𝑏𝒇𝑏 − (2𝐑𝑛𝑒𝛀𝑖𝑒𝐑𝑒𝑛 +𝛀𝑒𝑛) 𝒗𝑛 + 𝜸𝑛(𝜙, 𝜆, ℎ) (2.13)

�̇�𝑛𝑏 = 𝐑𝑛𝑏𝛀𝑖𝑏 −𝛀𝑖𝑛𝐑𝑛𝑏 (2.14)

with the local gravity

𝜸𝑛(𝜙, 𝜆, ℎ) = 𝒈𝑛(𝜙, 𝜆, ℎ) − 𝐑𝑛𝑒𝛀𝑖𝑒𝛀𝑖𝑒𝒙𝑒(𝜙, 𝜆, ℎ) (2.15)

The rotation matrix from the Earth-fixed frame to the local leveled frame is given by

𝐑𝑛𝑒 =
⎡
⎢
⎢
⎢
⎢
⎣

− sin𝜙 cos 𝜆 − sin𝜙 sin𝜙 cos𝜙

sin 𝜆 cos 𝜆 0

− cos𝜙 cos 𝜆 − cos𝜙 sin 𝜆 − sin𝜙

⎤
⎥
⎥
⎥
⎥
⎦

(2.16)

and the corresponding transport rate in the navigation frame is given by:

𝝎𝑒𝑛 = [ ̇𝜆 cos𝜙 − ̇𝜙 − ̇𝜆 sin𝜙] (2.17)
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2.2. Inertial and Integrated Navigation

From ( 2.12 ), it is evident that this mechanization reaches a singularity near the poles. One
possible solution to this problem is the introduction of an additional moving reference frame,
the so-calledWander-Azimuthmechanization. A description of this concept can be found in [  15 ,
pp. 131–134], [  13 , pp. 180–182] and [ 52 ]. Still, for accessibility, only the n-frame mechanization
is analyzed within this thesis.

2.2.3. Integrated Navigation and Data Fusion

2.2.3.1. Kalman Filtering

”Kalman filtering is an optimal state estimation process applied to a dynamic system that
involves random perturbations” [  53 , p. xi]. In fact, the  Kalman filter (KF) is a minimum
variance estimator for a time-discrete linear state-space system

𝒙𝑘+1 = 𝚽𝑘𝒙𝑘 + 𝐆𝑘𝒖𝑘 + 𝚪𝑘𝝂𝑘 (2.18)

𝒚𝑘 = 𝐇𝑘𝒙𝑘 +𝐃𝑘𝒖𝑘 + 𝜼𝑘 (2.19)

with a deterministic input 𝒖𝑘, process noise 𝝂𝑘 and measurement noise 𝜼𝑘. Both noise com-
ponents are independent zero-mean  WGN sequences, defined by their respective covariance
matrices 𝐐𝑘 and 𝐑𝑘 [ 53 , pp. 26–27]. The  KF thus combines knowledge from the dynamic
system and the measurements ̃𝒚 to determine a stochastically optimal estimate of the system
states �̂�, and thus a Data Fusion.
In general, the  KF and its variants consist of a prediction step, which propagates the states

and covariance estimates in time, and the correction step, which uses the measurements to
update the state estimates in a stochastically optimal way. The conventional  KF equations for
above linear state space system are given in  Algorithm 1 .

Algorithm 1: Conventional Kalman filter

The conventional Kalman Filter equations, initially published in [ 54 ], are given in the modern
formulation taken from [ 53 , p. 25].

System 𝒙𝑘+1 = 𝚽𝑘𝒙𝑘 + 𝐆𝑘𝒖𝑘 + 𝚪𝑘𝝂𝑘 𝝂𝑘 = WGN(0, 𝐐𝑘)
𝒚𝑘 = 𝐇𝑘𝒙𝑘 +𝐃𝑘𝒖𝑘 + 𝜼𝑘 𝜼𝑘 = WGN(0, 𝐑𝑘)

𝔼[𝝂𝑘𝜼𝑙⊺] = 𝟎 ∀𝑘, 𝑙

State prediction �̂�𝑘+1 = 𝚽𝑘�̂�𝑘 + 𝐆𝑘𝒖𝑘
Cov. prediction 𝐏𝑘+1 = 𝚽𝑘𝐏𝑘𝚽𝑘

⊺ + 𝚪𝑘𝐐𝑘𝚪𝑘⊺

Kalman Gain 𝐊𝑘 = 𝐏𝑘𝐇𝑘
⊺ [𝐇𝑘𝐏−𝑘𝐇𝑘

⊺ + 𝐑𝑘]
−1

State correction �̂�+𝑘 = �̂�−𝑘 +𝐊𝑘 ( ̃𝒚𝑘 −𝐇𝑘�̂�𝑘)
Cov. correction 𝐏+𝑘 = [𝐈 − 𝐊𝑘𝐇𝑘] 𝐏−𝑘
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Many dynamic systems, and also strapdown inertial navigation, cannot be modeled as linear
state-space system, but have non-linear propagation and measurement equations:

𝒙𝑘+1 = 𝒇𝑘(𝒙𝑘, 𝒖𝑘, 𝝂𝑘) (2.20)

𝒚𝑘 = 𝒉𝑘(𝒙𝑘, 𝒖𝑘, 𝛈𝑘) (2.21)

The Extended Kalman Filter is a variant of the conventional Kalman Filter suited for slightly
non-linear systems. It is based on using the linearization of the non-linear propagation and
measurement equations for the covariance calculations and the direct non-linear equations for
the state estimates. The Extended Kalman Filter equations are summarized in  Algorithm 2 .

The state-space system in ( 2.18 ) can be easily augmented with additional states to model
noise processes. These noise processes are driven by  WGN and allow the modeling of time-
correlated noise, e.g., sensor noise, for both measurement and process noise in the Kalman
Filter. Typically, the noise processes are mutually independent, which means there is no
correlation between the corresponding noise process states. Furthermore, noise states often
shall not be estimated, but only the effect of the noise shall be incorporated into the estimation.
Under these assumptions, the particular structure of the system allows a separation of the
system into an estimation system that contains the states to be estimated and multiple noise
systems that can be propagated independently of the estimation system. For these systems,
only its covariance matrix and the cross-correlation to the estimation states are propagated and
eventually updated during the correction step. The equations for the Schmidt-Kalman filter
are summarized in  Algorithm 3 .

Algorithm 2: Extended Kalman filter

The idea of the Extended Kalman Filter can be traced back to [ 55 ]. The below formulation of
the equations is taken from [ 53 , pp. 115–116].

System 𝒙𝑘+1 = 𝒇𝑘(𝒙𝑘, 𝒖𝑘, 𝝂𝑘) 𝝂𝑘 = WGN(0, 𝐐𝑘)
𝒚𝑘 = 𝒉𝑘(𝒙𝑘, 𝒖𝑘, 𝛈𝑘) 𝜼𝑘 = WGN(0, 𝐐𝑘)

𝔼[𝝂𝑘𝜼𝑙⊺] = 𝟎 ∀𝑘, 𝑙

State prediction �̂�𝑘+1 = 𝒇𝑘(𝒙𝑘, 𝒖𝑘, 𝝂𝑘)

Cov. prediction 𝐏𝑘+1 = (𝜕𝒇𝑘

𝜕𝒙𝑘
) 𝐏𝑘 (

𝜕𝒇𝑘

𝜕𝒙𝑘
)
⊺
+ (𝜕𝒇𝑘

𝜕𝒖𝑘
)𝐐𝑘 (

𝜕𝒇𝑘

𝜕𝒖𝑘
)
⊺

Kalman Gain 𝐊𝑘 = 𝐏−𝑘 (
𝜕𝒉𝑘
𝜕𝒙𝑘

)
⊺
[(𝜕𝒉𝑘

𝜕𝒙𝑘
) 𝐏−𝑘 (

𝜕𝒉𝑘
𝜕𝒙𝑘

)
⊺
+ 𝐑𝑘]

−1

State correction �̂�+𝑘 = �̂�−𝑘 +𝐊𝑘 ( ̃𝒚𝑘 − 𝒉(�̂�−𝑘 , 𝒖𝑘))

Cov. correction 𝐏+𝑘 = [𝐈 − 𝐊𝑘 (
𝜕𝒉𝑘
𝜕𝒙𝑘

)] 𝐏−𝑘
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Algorithm 3: Schmidt-Kalman Filter

In the Schmidt-Kalman filter, measurement and sensor noise are modeled as separate and
mutually independent noise processes. For each process, the cross-covariance to the esti-
mated states is propagated and updated together with the estimation state correction. There
are no states for the noise processes, and their noise covariances are not updated.
The Schmidt-Kalman filter equations, originally published in [ 56 , pp. 333–334], are here given
in the formulation from [ 57 , pp. 208–209]:

Process noise 𝑖 = 1…𝑛
System 𝒙𝜈𝑖,𝑘+1 = 𝚽𝜈𝑖,𝑘𝒙𝜈𝑖,𝑘 + 𝚪𝜈𝑖,𝑘𝒒𝜈𝑖,𝑘 𝒒𝜈𝑖,𝑘 = WGN(0, 𝐐𝜈𝑖)

𝝂𝑖,𝑘 = 𝐇𝜈𝑖,𝑘𝒙𝜈𝑖,𝑘 +𝐃𝜈𝑖,𝑘𝒒𝜈𝑖,𝑘 𝔼[𝒒𝜈𝑖,𝑘𝒒𝜈𝑗,𝑘
⊺] = 𝟎 ∀𝑖 ≠ 𝑗, 𝑘

Cov. prediction 𝐏𝜈𝑖𝜈𝑖,𝑘+1 = 𝚽𝜈𝑖,𝑘𝐏𝜈𝑖𝜈𝑖,𝑘𝚽𝜈𝑖,𝑘
⊺ + 𝚪𝜈𝑖,𝑘𝐐𝜈𝑖𝜈𝑖,𝑘𝚪𝜈𝑖,𝑘

⊺

Cross-cov. prediction 𝐏𝑥𝜈𝑖,𝑘+1 = 𝚽𝑥,𝑘𝐏𝑥𝜈𝑖,𝑘𝚽𝜈𝑖,𝑘
⊺

Cross-cov. correction 𝐏+𝑥𝜈𝑖,𝑘 = (𝐈 − 𝐊𝑘𝐇𝑘) 𝐏−𝑥𝜈𝑖,𝑘
Measurement noise 𝑗 = 1…𝑚
System 𝒙𝜂𝑗,𝑘+1 = 𝚽𝜂𝑗,𝑘𝒙𝜂𝑗,𝑘 + 𝚪𝜂𝑗,𝑘𝒒𝜂𝑗,𝑘 𝒒𝜂𝑗,𝑘 = WGN(0, 𝐐𝜂𝑗)

𝜼𝑖,𝑘 = 𝐇𝜂𝑗,𝑘𝒙𝜂𝑗,𝑘 +𝐃𝜂𝑗,𝑘𝒒𝜂𝑗,𝑘 𝔼[𝒒𝜂𝑗,𝑘𝒒𝜂𝑖,𝑘
⊺] = 𝟎 ∀𝑗 ≠ 𝑖, 𝑘

𝔼[𝒒𝜈𝑖,𝑘𝒒𝜂𝑗,𝑙
⊺] = 𝟎 ∀𝑗, 𝑖, 𝑘, 𝑙

Cov. prediction 𝐏𝜂𝑗𝜂𝑗,𝑘+1 = 𝚽𝜂𝑗,𝑘𝐏𝜂𝑗𝜂𝑗,𝑘𝚽𝜂𝑗,𝑘
⊺ + 𝚪𝜂𝑗,𝑘𝐐𝜂𝑗𝜂𝑗,𝑘𝚪𝜂𝑗,𝑘

⊺

Cross-cov. prediction 𝐏𝑥𝜂𝑗,𝑘+1 = 𝚽𝑥,𝑘𝐏𝑥𝜂𝑗,𝑘𝚽𝜂𝑗,𝑘
⊺

Cross-cov. correction 𝐏+𝑥𝜂𝑗,𝑘 = (𝐈 − 𝐊𝑘𝐇𝑘) 𝐏−𝑥𝜂𝑗,𝑘 −𝐊𝑘𝐇𝜂𝑗,𝑘𝐏𝜂𝑗𝜂𝑗,𝑘 (for the used meas.)
(𝐈 − 𝐊𝑘𝐇𝑘) 𝐏−𝑥𝜂𝑗,𝑘 (for the others)

Estimation system
System 𝒙𝑘+1 = 𝚽𝑘𝒙𝑘 +∑𝑚

𝑖 𝚪𝑖,𝑘𝝂𝑖,𝑘
𝒚𝑘 = 𝐇𝑘𝒙𝑘 +∑𝑛

𝑗 𝜼𝑗,𝑘

State prediction �̂�𝑘+1 = 𝚽𝑥,𝑘�̂�𝑘
Cov. prediction 𝐐𝑘 = ∑𝑛

𝑖=1 𝚪𝑖,𝑘 (𝐇𝜈𝑖,𝑘𝐏𝜈𝑖𝜈𝑖,𝑘𝐇𝜈𝑖,𝑘
⊺ +𝐃𝜈𝑖𝐐𝜈𝑖𝐃𝜈𝑖

⊺) 𝚪𝑖,𝑘⊺

𝐏𝑥𝑥,𝑘+1 = 𝚽𝑥,𝑘𝐏𝑥𝑥,𝑘𝚽𝑥,𝑘
⊺ + 𝐐𝑘

+∑𝑛
𝑖=1 (𝚪𝑖,𝑘𝐇𝜈𝑖𝐏𝜂𝑖𝑥,𝑘)𝚽𝑘

⊺ +𝚽𝑘∑
𝑛
𝑖=1 (𝐏𝑥𝜂𝑖,𝑘𝐇𝜈𝑖

⊺𝚪𝑖,𝑘⊺)

Kalman Gain 𝐑𝑘 = ∑𝑗=1𝑚(𝐇𝜂𝑗,𝑘𝐏𝜂𝑗𝜂𝑗,𝑘𝐇𝜂𝑗,𝑘
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𝑗=1𝐇𝜂𝑗𝐏𝜂𝑗𝑥,𝑘
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2.2.3.2. Integrated Navigation

The pure strapdown inertial navigation, as presented in  Subsection 2.2.2 suffers from growing
errors due to the integration of sensor errors. The basic idea of integrated navigation is to
combine and correct the inertial navigation solution with external aidings in a stochastically
consistentway. Ideally, the sources have complementary error characteristics, the high-dynamic
but drifting inertial navigation should be combined with a non-drifting but possibly lower
update-rate aiding. The most prominent example is the INS/GNSS integration, where  GNSS 

position and velocity measurements are used to correct the inertial navigation solutions’ drift
[ 14 , pp. 409–410]. The classical integrated navigation concepts use Kalman Filter-based data
fusion and its variants to optimally combine inertial navigation with external aidings.

Inertial Navigation System

Inertial navigation
computation

IMU

GNSS

External Aidings
Error State Kalman Filter

Prediction

Correction
𝐊𝑘 = 𝐏−𝑘𝐇𝑘(𝐇𝑘𝐏−𝑘𝐇𝑘 + 𝐑𝑘)−1

𝐏+𝑘 = (𝐈 − 𝐊𝑘𝐇𝑘)𝐏−𝑘

𝐏𝑘+1 = 𝚽𝑘𝐏𝑘𝚽𝑘
⊺ + 𝚪𝑘𝐐𝑘𝚪𝑘⊺

𝛿�̂�+𝑘 = 𝐊𝑘(𝛿𝒚𝑘 −𝐇𝑘𝛿�̂�)

�̂�𝑘

𝛿�̂�𝑘

𝐏+𝑘

𝛿�̂�𝑘

𝐏−𝑘

̃𝒚𝑘

𝛿𝒚𝑘
−

Baro

𝒉(�̂�𝑘)

INS error correction

navigation states �̂�𝑘

Figure 2.8.: General concept of an integrated navigation architecture based on the error state
Kalman Filter.

As illustrated in  Figure 2.8  , the Kalman Filter is typically not used to directly estimate the
navigation states but the errors of the navigation states. Compared to the total navigation
states, the strapdown navigation errors have lower dynamics and can be easily linearized. The
strapdown-error dynamics is derived and widely discussed in  Subsection 3.3.1  . The estimated
navigation errors are fed back to correct the total navigation states.

2.3. Signal Analysis and Sensor Noise

2.3.1. Power Spectral Density

The power spectral density describes the distribution of power over frequency within the signal.
For a (wide-sense) stationary random process, the  Power Spectral Density (PSD) 𝑆𝑥(𝑓) is the
Fourier transform of the signal’s auto-correlation 𝑅𝑥𝑥(𝜏) [ 58 , p. 721]:

𝑆𝑥(𝑓) = ℱ{𝑅𝑥𝑥(𝜏)} (2.22)
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where the auto-correlation of is typically defined as [ 59 , p. 411]:

𝑅𝑥𝑥(𝜏) = ∫
∞

−∞
𝑥(𝑡 + 𝜏)𝑥(𝜏)𝑑𝑡 (2.23)

The  PSD is a useful tool to analyze the composition of noise that can be described by a
(wide-sense) stationary random process. In practice, all sensor and instrument signals are
time-discrete (sampled) and the  PSD must be estimated from a finite set of recorded samples.
The most basic method to estimate a signal’s 𝑥[𝑛]  PSD is the so called periodogram. Using the
Fast Fourier Transformation, it can be directly computed for the discrete frequencies 𝑓𝑘 of a
signal of length 𝑁 as [ 58 , p. 722]:

𝑆PER(𝑓𝑘) =
1
𝑁
||||

𝑁−1

∑
𝑛=0

𝑥[𝑛]𝑒−𝑗2𝜋𝑘
𝑛
𝑁
||||

2

with 𝑓𝑘 =
𝑘
𝑁, 𝑘 = 0, 1,… ,𝑁 − 1 (2.24)

For this simple estimator, the variance of the PSD estimate approximately scales with the
squared  PSD :

Var[𝑆PER(𝑓)] ≈ 𝑆2(𝑓) (2.25)

This variance can be effectively reduced by splitting the signal into equal-length segments and
averaging the  PSD determined for each segment (Bartlett’s method). Further reduction can
be achieved if the signal is split into overlapping segments, as suggested by Welch [  60 ]. In
contrast to Bartlett’s method, Welch’s method applies windowing to each segment, and the
allowed overlap increases the number of segments and thus reduces the estimate’s variance
[ 58 , pp. 726–727]. The basic procedure of Welch’s method is described in  Algorithm 4 .

In practice, signal noise is not necessarily a stationary process but may change with time, e.g.,
due to environmental changes. A simple tool to analyze non-stationary noise is the spectrogram,
based on the short-time Fourier transformation. Using a sliding window, the signal is split
into multiple (overlapping) segments for which the  PSD is determined. The window length
is a compromise between time resolution (narrow window), and frequency resolution (wide
window) [ 58 , pp. 747-748]. The spectrogram is usually plotted as a 2D heatmap with frequency
and time on the axes.

2.3.2. Allan Variance

Initially developed for the analysis of the frequency stability of atomic clocks [  61 ], the  Allan
Variance (AVAR) has become a standard procedure for the study of inertial sensor noise
[ 26 ]. The  AVAR is defined as the (sample) variance of the difference of average values of two
consecutive signal clusters [ 62 , p. 14]:

𝜎2AV(𝜏) =
1

2(𝑀 − 1)

𝑀

∑
𝑖=1
[𝜔𝑖+1 − 𝜔𝑖]2 (2.26)
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Algorithm 4: Welch’s power spectral density estimator.

In principle Welch’s power spectral density estimator consists of the following steps [ 58 ,
pp. 726–727]:

Signal segmentation Choose the number of overlapping samples 𝐷 and split signal into
𝐾 overlapping segments of length 𝐿, so that 𝑁 = 𝐿 + 𝐷(𝐾 − 1):
𝑥𝑖[𝑛] = 𝑥[𝑛 + 𝑖𝐷]

Window function Choose a window function 𝑤[𝑛] and determine the window nor-
malization 𝐶, e.g. Bartlett window:
𝑤[𝑛] = 2

𝐿
(𝐿
2
− ||𝑛 −

𝐿−1

2
||) , 𝐶 = 1

𝐿
∑𝐿−1

𝑛=0𝑤
2[𝑛]

Periodograms Calculate periodogram for each windowed segment 𝑖:

𝑆𝑖(𝑓𝑘) =
1

𝐿
|
|∑

𝐿−1
𝑛=0𝑤[𝑛]𝑥𝑖[𝑛]𝑒

−𝑗2𝜋𝑘 𝑛
𝐿 ||
2

Averaging Average over the periodograms:
𝑆Welch(𝑓𝑘) =

1

𝐶𝐾
∑𝐾

𝑖=0 𝑆𝑖(𝑓𝑘)

where 𝜔𝑖 is the average over the 𝑖th signal cluster of length 𝜏. In the context of the  AVAR , 𝜏 is
typically denoted averaging time [ 62 , p. 2].
Thus, the  AVAR depends on the length 𝜏 of the clusters. The typically used overlapping

Allan variance utilizes all possible overlapping samples from the available data to increase the
confidence intervals of the  AVAR estimate. The overlapping  AVAR 𝜎2(𝜏) for averaging time 𝜏
can be estimated from a sensor’s integrated, e.g., angle output 𝛩 as follows [ 12 ]:

𝜎2AV(𝜏) =
1

2𝜏2(𝑁 − 2𝑚)

𝑁−2𝑚

∑
𝑘=1

(𝛩[𝑘 + 2𝑚] − 2𝛩[𝑘 + 𝑚] + 𝛩[𝑘])2 (2.27)

with the cluster size𝑚 that relates the averaging time to the sample time 𝜏0:

𝜏 = 𝑚𝜏0 (2.28)

Within this work, the  AVAR is marked with the subscript AV to distinguish it from the classical
variance. For non-integrating sensor output 𝜔[𝑘], the required 𝛩[𝑘] may be determined by
numerical integration using, e.g., Euler forward or the trapezoidal integration scheme. The
basic method to determine the Allan variance from a given signal is described in  Algorithm 5  .
Generally, the confidence interval of  AVAR estimates depends on the underlying noise

processes. However, a simple approximation is given by 𝜎(𝜏)/√𝑁 for the 1𝜎 (68%) interval [ 62 ,
p. 37]. If the noise type is known, the above approximation can be improved by applying the
appropriate correction factors for the respective noise type. More accurate confidence intervals
can be determined from 𝜒2 statistics. This requires knowledge of the equivalent degrees of
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freedom of the 𝜒2 distribution for each noise type [ 62 , pp. 39–40].

Algorithm 5: Overlapping Allan variance estimator.

Preparation For frequency-like signals (e.g., angular rates), create phase-like
signal by forward-Euler numerical integration:
𝛩[𝑘] = ∑𝑘

𝑖=0 𝜔[𝑖]𝜏0

Averaging times Select averaging times 𝜏 = 𝑚𝜏0 of interest in the range of 𝑚 ∈
[1, (𝑁 − 1)/2], for a signal of length 𝑁. Typically 𝑚 is limited to
𝑚 < 𝑁/4.
A (logarithmically) downsampled subset of the possible lengths 𝑚
may be used to reduce the number of calculations.

Calculation Calculate the Allan Variance for each cluster length 𝑚 of interest as
[ 62 ]:
𝜎2AV(𝜏) =

1

2𝜏2(𝑁−2𝑚)
∑𝑁−2𝑚

𝑘=1 (𝛩[𝑘 + 2𝑚] − 2𝛩[𝑘 + 𝑚] + 𝛩[𝑘])2

The determination of the fully overlapping Allan variance as described in  Algorithm 5  has
high computational effort of 𝛩(𝑁3) for 𝑁 sample points. Therefore, many efficient and fast
computation algorithms have been suggested, e.g., [ 63 ,  64 ].
The AVAR can be determined from integrating over the  PSD and applying a transfer function

that represents the clustering and averaging operations [ 12 , p. 63]:

𝜎2AV(𝜏) = 4∫
∞

0
𝑆𝛺(𝑓)

sin4(𝜋𝑓𝜏)
𝜋𝑓𝜏 𝑑𝑓 (2.29)

Analog to the spectrogram, there is also an extension of the Allan variance to non-stationary
noise, called the  Dynamic Allan Variance (DAVAR) [ 65 ]. Furthermore, several other variances,
such as theModifiedAllanVariance or theHadamard variance, have been proposed to overcome
drawbacks of the classical Allan variance [ 62 , p. 11].

2.3.3. Sensor Noise Processes

Inertial sensor noise is a complex combination of several different noise processes that are
usually identified using the  PSD and  AVAR analysis. Based on these two methods, the IEEE
standards on specification and testing of various inertial sensor technologies [  9 ,  41 ,  26 ] define
a set of typical noise processes that can be found in inertial sensor output:

• Quantization Noise (QN) is caused by a quantization of the measurements, which is
close to angular respectively velocity white noise. In the context of frequency stablity, this
corresponds to phasewhite noise. Quantization noisemay be caused by themeasurement
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principle in optical sensors but is also caused by analog to digital conversion [  26 ]. The
scaling coefficient is 𝑄.

• Angular RandomWalk (ARW) /Velocity RandomWalk (VRW) is a white noise
signal on the measured angular rates, respectively acceleration. In the context of fre-
quency stability, it is equivalent to frequency white noise. For optical sensors, this can be
attributed to spontaneous photon emissions [ 41 ]. It is specified by the scaling coefficient
𝑁.

• Bias Instability (BI) is a slow variation of the sensor’s bias. It is a frequency flicker
noise with a sharp cutoff at 𝑓𝑐. It is mainly attributed to random flickering within the
electronics. Bias instability is parameterized by the scaling 𝐵 and the cutoff frequency 𝑓𝑐.

• Rate RandomWalk (RRW) / Acceleration RandomWalk is a random walk process
on the angular rate respectively acceleration. This is equivalent to white noise on the
angular accelerations respectively the acceleration rate of change (jerk). Its scaling
coefficient is 𝐾.

• Rate Ramp Noise / Acceleration Ramp Noise is a linearly increasing drift on the
rate output. Rate ramp noise should not be confused with a flicker random-walk in the
frequency, although they have the same slope in the Allan variance plot. Its origin is
attributed to slow changes in the sensor’s characteristics, e.g., a change of the  FOG ’s
source intensity [ 41 ]. The defining coefficient is 𝑅.

Above and further noise processes, like Markov noise or sinusoidal noise, may or may not be
observable in the sensor output. This existence and magnitude of the different noise processes
is mainly defined by the sensor’s measurement principle and its implementation. A summary
of the defining  PSD and  AVAR slopes is given in  Table 2.7  . Under the assumption that the
different noise processes are independent, the combined Allan variance of the sensor’s noise is
given by the summation over all noise processes:

𝜎2AV(𝜏) ≈
3𝑄2

𝜏2 + 𝑁2

𝜏 + (0.664𝐵)2 + 𝐾2𝜏
3 + 𝑅2𝜏2

2 +… (2.30)

From an Allan variance plot, as depicted in  Figure 2.9  , the defining parameters of the different
noise processes can be easily read off. Alternatively, the parameters may be determined from
the  AVAR by performing a least-squares fit of the reference model equations from  Table 2.7  .
As the variances for higher averaging times are determined from a smaller set of clusters,
the estimation error grows with the averaging time. To consider this effect in the parameter
identification, a weighted least-squares scheme is suggested in [  66 ]. Further more, equation
( 2.30 ) should be adopted to actual  AVAR results to prevent adjustment to an inappropriate
noise model. Alternatively, a non-negative least-squares algorithm should be used to prevent
fitting errors due to negative model coefficients.
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Table 2.7.: Typical sensor noise processes from the IEEE standards [ 41 ].
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Figure 2.9.: Sensor noise processes in the Allan variance analysis.

2.3.4. Confidence Intervals

As the identification of sensor noise processes is widely based on the  AVAR estimate, its
estimation accuracy is a critical factor for the sensor noise characterization. It is reasonable
that the confidence interval scales somehow with the number of points used to determine the

 AVAR . Due to the underlying averaging of multiple estimates, the estimation accuracy of the
 AVAR depends on the time-correlation of the signal. The estimation of the confidence interval
thus requires knowledge or at least a guess of the true noise processes.

A very simple approximation of the 68% confidence interval of the Allan variance estimate
is given by [ 62 , p. 37]:

𝐶68% = 𝐾𝑛
𝜎AV(𝜏)
√𝑁

(2.31)

with the Allan variance 𝜎AV(𝜏), the number of data points 𝑁 and 𝐾𝑛 a correction factor to
take into account the correlation caused by the noise processes. The correction factors for the
typical noise processes are summarized in  Table 2.8 . Despite the introduction of correction

Table 2.8.: Correction factors for Allan variance confidence intervals [ 62 , p. 37].

Noise process 𝐾𝑛

Quantization noise 0.99
Angular random walk 0.87
Bias instability 0.77
Rate random walk 0.75

factors, above equation provides only a rough approximation. A more accurate estimate of the
confidence intervals can be obtained from the 𝜒2 statistics. Here, the variance at confidence 𝑝
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is related to the sample Allan variance 𝜎AV(𝜏) as [ 62 ]:

𝜎2𝑝 = 𝜎2AV(𝜏)
𝑑

𝜒2(𝑝, 𝑑)
(2.32)

where 𝑑 is the  equivalent degrees of freedom (e.d.f)  of the 𝜒2 distribution, characteristic for
the Allan variance calculation and the noise types. A method to determine the exact  e.d.f for
different noise types is given in [  67 ]. However, since the power-law noise is just an idealization
of the true noise, the exact  e.d.f provide a slight advantage compared to approximation formulas.
A set of empirical formulas for the  e.d.f for various noise types from [  68 ] is given in  Table 2.9 .

Table 2.9.: Approximations of the overlapping Allan variance equivalent degrees of freedom [ 68 ]
from the number of data points 𝑁 and the averaging factor 𝑚 = 𝜏/𝜏0.

Noise process Equivalent degree of freedom 𝑑

Quantization noise (𝑁 + 1)(𝑁 − 2𝑚)
2(𝑁 − 𝑚))

Angular random walk [3(𝑁 − 1)
2𝑚 − 2(𝑁 − 2)

𝑁 ] 4𝑚2

4𝑚2 + 5
Bias instability 2(𝑁 − 2)2

2.3𝑁 − 4.9 for 𝑚 = 1
5𝑁2

4𝑚(𝑁 + 3𝑚)
for 𝑚 > 1

Rate random walk [𝑁 − 2
𝑚 ] [(𝑁 − 1)2 − 3𝑚(𝑁 − 1) + 4𝑚2

(𝑁 − 3)2 ]

The resulting upper boundaries of the confidence intervals can now be determined from
( 2.32 ) and  Table 2.9 . The variation of the confidence interval with the number of samples
is exemplarily depicted in  Figure 2.10a  . The total number of samples has little effect on the
integrating noise types angular random walk, bias instability, and rate random walk. Although
the effect on the confidence intervals for quantization noise is relatively high, the confidence
intervals for this type of noise are relatively low for a wide range of averaging times. Clearly,
the confidence intervals of the integrating noise types converge towards𝑚 = 𝑁/2, where the
 e.d.f is 1.
The upper boundary variation with the confidence level is depicted in  Figure 2.10b  . It can

be seen that already for𝑚/𝑁 < 0.25, at least the magnitude of an Allan Variance estimate is
almost certainly correct, i.e., the boundary of the 99% interval is at a maximum ten times the
estimated Allan variance. Therefore, Allan variance plots are often cut-off at 1/4 of the total
number of recorded samples, especially if no confidence intervals are stated.
The above definitions of the  e.d.f are only for single power-lawnoise processes. Inertial sensor

noise, however, consists of multiple noise processes. For such a case, it can be demonstrated
that the  e.d.f 𝑑 of the variance estimator is at least the minimum  e.d.f 𝑑𝑘 of the underlying
processes [ 67 ]:

𝑑 ≥ min
𝑘
{𝑑𝑘} (2.33)

If the noise types have been identified, e.g., from the slope of the Allan variance plots, the
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above equation allows the determination of a worst-case estimate of 𝑑. Therefore, the degrees
of freedom 𝑑𝑘 are calculated for each expected noise type, and the smallest value is used at each
𝜏. The confidence intervals depicted in  Example 4  have been determined using this procedure.
Alternatively, the power-law noise type at each value of 𝜏 can be determined by comparing the
Barnes’ 𝐵1 function at 𝜏 to the appropriate reference values for the respective power-law noise,
see [  62 , p. 44]. Having determined the most representative noise type at each 𝜏, the appropriate

 e.d.f and the confidence intervals can be determined separately for each 𝜏.
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(a) Upper boundary of the 95% confidence interval with respect to 𝜍(𝜏) with variation of the total number of
samples 𝑁.
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Figure 2.10.: Confidence intervals of the overlapping Allan variance estimation for various sensor
noise types.

The IEEE standards on inertial sensors suggest an alternate equation to determinate ”the
percentage error” 𝑒 of the  AVAR estimates [ 10 , p. 71]:

𝑒 = 1

√2 (𝑁
𝐾
− 1)

(2.34)

Here, 𝑁 is the total number of recorded data points, and 𝐾 is the number of independent
clusters used to determine the  AVAR at 𝜏. For equal distribution of the clusters it is 𝐾 = 𝑁

𝑚
.

Equation ( 2.34 ) does neither include stochastic considerations nor does it incorporate any
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information on the noise types. It may therefore be considered as a rough approximation
similar to ( 2.31 ), only. However, the order magnitude of the total test duration is close to the
values read off from the graphs in  Figure 2.10 and is, therefore, a handy tool for test design.
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Chapter 3.

Strapdown Inertial Navigation Error
Propagation

3.1. Introduction

Having defined the navigation requirements, these need to be transferred into the inertial
sensor accuracy. The relationship between inertial sensor errors and the resulting navigation
performance will be discussed in this chapter. The structure and outline of this chapter is
illustrated in  Figure 3.1 .

Initial Position

Initial Velocity

Stat. Alignment

Initialization Errors

IMU

Strapdown Inertial Error Propagation

Navigation Performance Prediction

Section  3.3 

Section  3.4 

Section  3.2 

Navigation Error Dynamics
Section  3.3.1 

Response to Constant Errors
Section  3.3.2 

Response to Noise-Like Errors
Section  3.3.3 

Inertial Sensor
Biases

Inertial Sensor
Noise

Validation
Section  Section 3.5 

Approximations
Section  Section 3.6 

Figure 3.1.: Outline of the Inertial Navigation Error Analysis Chapter.

Following the operation of inertial navigation systems, the chapter starts with analyzing
the propagation of sensor errors into the stationary alignment. Subsequently, the propagation
of initialization errors and sensor errors is discussed. The resulting navigation errors from
initialization and sensor errors are derived and visualized. These results are then used to
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create methods for predicting the navigation performance from sensor errors. Ultimately, these
methods are validated using two numerical examples.

3.2. Stationary Alignment Errors

Inertial navigation requires an initialization of the navigations states, prior to their propagation.
Determining the initial position and velocity requires external aiding, either by additional
sensors (e.g.,  GNSS ) or other knowledge about the situation. Such a situation can be, e.g., an
aircraft at a known parking position. In contrast, the initial orientation can be determined
entirely from the inertial sensors’ measurements.

Typically, alignment procedures are distinguished between the autonomous self-aligning
techniques and the transfer alignment from a reference to another system [  14 , pp. 277]. Self-
alignment relies only on the  IMU measurements and no further aiding or maneuver. The
impact of inertial sensor errors on self-alignment accuracy will be analyzed in the following
section.

3.2.1. General

Mathematically, the task of self-alignment is to identify the rotation matrix 𝐑𝑛𝑏 that describes
the vehicle’s orientation towards the  North-East-Down (NED)  -frame from the strapdown
equations:

̇𝒗𝑛 = 𝐑𝑛𝑏𝒇𝑏 − (2𝐑𝑛𝑒𝝎𝑖𝑒 + 𝝎𝑒𝑛) × 𝒗𝑛 + 𝜸𝑛 (3.1)

�̇�𝑛𝑏 = 𝐑𝑛𝑏𝛀𝑖𝑏 −𝛀𝑖𝑛𝐑𝑛𝑏 (3.2)

To find a fixed initial orientation, above  ODE need to be evaluated at a steady state. Ideally,
this is realized by a stationary (non-moving) vehicle. In practice, however, many vehicles are
subject to perturbations even during alignment. For example, these can be a ship’s motion or
vibrations induced from an aircraft’s running engines. If perturbations cannot be reduced by
isolation or procedures, a Kalman Filter can be used to estimate the attitude in the presence of
perturbations [ 14 , p. 286].

It is important to note that even if the perturbation motion is zero in average

1
𝑡 ∫

𝑡

0
̇𝒗𝑛(𝜏)𝑑𝜏 = 0 (3.3)

1
𝑡 ∫

𝑡

0
𝒗𝑛(𝜏)𝑑𝜏 = 0 (3.4)

the non-linearity of the centrifugal forces in ( 3.1 ) will not average to zero in general. They will
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lead to a bias-like error in the specific force measurement, instead:

𝝎𝑒𝑛 × 𝒗𝑛 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑣𝑒
𝑟𝑁

− 𝑣𝑛
𝑟𝑀

𝑣𝑒
𝑟𝑁
tan𝜙

⎤
⎥
⎥
⎥
⎥
⎦

×
⎡
⎢
⎢
⎢
⎢
⎣

𝑣𝑛

𝑣𝑒

𝑣𝑑

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

−𝑣𝑛𝑣𝑑
𝑟𝑀

− 𝑣2𝑒
𝑟𝑁
tan𝜙

𝑣𝑒𝑣𝑛
𝑟𝑁

tan𝜙 − 𝑣𝑒𝑣𝑑
𝑟𝑁

𝑣2𝑒
𝑟𝑁
+ 𝑣2𝑛

𝑟𝑀)

⎤
⎥
⎥
⎥
⎥
⎦

(3.5)

However, in practice the resulting additional specific forces are rather small due to the scaling
with the Earth’s radius: perturbations in the range of 1m s−1 lead to an error in the range of
10−8 g.

Assuming a steady state, equations ( 3.1 ) and ( 3.2 ) can be solved for the inertialmeasurements
as a function of the orientation matrix and the reference signals gravity and Earth’s angular
rate:

𝒇𝑏 = 𝐑𝑏𝑛𝜸𝑛 (3.6)

𝝎𝑖𝑏 = 𝐑𝑏𝑛𝐑𝑛𝑒𝝎𝑖𝑒 (3.7)

From these equations the orientation angles can be determined as trigonometric functions of
the stationary IMU outputs:

𝛷 = atan (
−𝑓𝑏,𝑥
−𝑓𝑏,𝑦

) (3.8)

𝛩 = asin (
𝑓𝑏,𝑥
‖𝒇𝑏‖

) (3.9)

𝛹 = atan (
−𝜔𝑖𝑏,𝑦 cos𝛷 + 𝜔𝑖𝑏,𝑧 sin𝛷

𝜔𝑖𝑏,𝑥 cos𝛷 + 𝜔𝑖𝑏,𝑦 sin𝛷𝑠𝑖𝑛𝛩 + 𝜔𝑖𝑏,𝑧 cos𝛷 sin𝛩
) (3.10)

The inertial measurements in these equations are typically averages of the  IMU ’s output. This
shall attenuate the sensor’s noise and perturbations.

3.2.2. Derivation of the Alignment Errors

To determine the relationship between sensor and model errors and the alignment errors, each
parameter is split into its measured value and the error:

̃𝒇𝑏 + 𝛿𝒇𝑏 = 𝐑𝑏�̃�𝐑�̃�𝑛 ( ̃𝜸𝑛 + 𝛿𝜸) (3.11)

Note that the inertial sensor errors 𝛿𝒇𝑏 and 𝛿𝝎𝑖𝑏 are the residual errors after averaging and
conditioning (e.g. filtering) the measured  IMU outputs.

The errors should be small by definition, which justifies linearization for the error terms.
The error rotation matrix 𝐑�̃�𝑛 can thus be approximated by the skew-symmetric matrix of the
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error rotation angles (see  Appendix A ):

𝐑�̃�𝑛 ≈ (𝐈 + 𝜳𝑛�̃�×) (3.12)

Applying ( 3.6 ) and neglecting 2nd order terms as

̃𝒇𝑏 + 𝛿𝒇𝑏 ≈ 𝐑𝑏�̃� (𝐈 + 𝜳𝑛�̃�×) ( ̃𝜸𝑛 + 𝛿𝜸) (3.13)
̃𝒇𝑏 + 𝛿𝒇𝑏 ≈ 𝐑𝑏�̃� ̃𝜸𝑛 + 𝐑𝑏�̃� (𝜳𝑛�̃�×) 𝛿𝜸𝑛⏟⎵⎵⏟⎵⎵⏟

2nd order

+𝐑𝑏�̃� (𝜳𝑛�̃�×) ̃𝜸𝑛 + 𝐑𝑏�̃�𝛿𝜸𝑛 (3.14)

𝐑𝑏�̃�
⊺𝛿𝒇𝑏 ≈ (𝜳𝑛�̃�×) ̃𝜸𝑛 + 𝛿𝜸𝑛 (3.15)

𝐑𝑏�̃�
⊺𝛿𝒇𝑏 − 𝛿𝜸𝑛 ≈ (𝜳𝑛�̃�×) ̃𝜸𝑛 (3.16)

leads to the following relationship between the orientation errors and the inertial measurement
errors and gravity model errors:

𝐑𝑏�̃�
⊺

⎡
⎢
⎢
⎢
⎢
⎣

𝛿𝑓𝑏,𝑥

𝛿𝑓𝑏,𝑦

𝛿𝑓𝑏,𝑧

⎤
⎥
⎥
⎥
⎥
⎦

−
⎡
⎢
⎢
⎢
⎢
⎣

𝑔

𝑔

𝛥𝑔

⎤
⎥
⎥
⎥
⎥
⎦

≈
⎡
⎢
⎢
⎢
⎢
⎣

𝛿𝛩

−𝛿𝛷

0

⎤
⎥
⎥
⎥
⎥
⎦

𝑔 (3.17)

Here, the local gravity errors are represented by the local gravity anomaly𝛥𝑔 and the deflections
from the plumb line , . Expressed in Euler-angles, the rotation matrix is given as:

𝐑𝑏�̃�
⊺ =

⎡
⎢
⎢
⎢
⎢
⎣

cos �̃� cos �̃� sin �̃� sin �̃� cos �̃� − cos �̃� sin �̃� cos �̃� sin �̃� cos �̃� + sin �̃� sin �̃�

cos �̃� sin �̃� sin �̃� sin �̃� sin �̃� + cos �̃� sin �̃� cos �̃� sin �̃� cos �̃� − sin �̃� cos �̃�

− sin �̃� sin �̃� cos �̃� cos �̃� cos �̃�

⎤
⎥
⎥
⎥
⎥
⎦
(3.18)

Applying the same procedure to the angular measurements ( 3.7 )

�̃�𝑖𝑏 + 𝛿𝝎𝑖𝑏 = 𝐑𝑏�̃�𝐑�̃�𝑛𝐑𝑛𝑒(𝜙, 𝜆) (�̃�𝑖𝑒 + 𝛿𝝎𝑖𝑒) (3.19)

�̃�𝑖𝑏 + 𝛿𝝎𝑖𝑏 ≈ 𝐑𝑏�̃� (𝐈 + 𝚿�̃�𝑛×)𝐑𝑛𝑒(𝜙, 𝜆) (�̃�𝑖𝑒 + 𝛿𝝎𝑖𝑒) (3.20)

�̃�𝑖𝑏 + 𝛿𝝎𝑖𝑏 ≈ 𝐑𝑏�̃�𝐑𝑛𝑒(𝜙, 𝜆)�̃�𝑖𝑒 + 𝐑𝑏�̃�𝐑𝑛𝑒(𝜙, 𝜆)𝛿𝝎𝑖𝑒+ (3.21)

𝐑𝑏�̃� (𝚿�̃�𝑛×)𝐑𝑛𝑒(𝜙, 𝜆)�̃�𝑖𝑒 + 𝐑𝑏�̃� (𝚿�̃�𝑛×)𝐑𝑛𝑒(𝜙, 𝜆)𝛿�̃�𝑖𝑒⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
2nd order

𝐑𝑏�̃�
⊺𝛿𝝎𝑖𝑏 ≈ (𝚿�̃�𝑛×)𝐑𝑛𝑒(𝜙, 𝜆)�̃�𝑖𝑒 + 𝐑𝑛𝑒(𝜙, 𝜆)𝛿𝝎𝑖𝑒 (3.22)

𝐑𝑏�̃�
⊺𝛿𝝎𝑖𝑏 − 𝐑𝑛𝑒(𝜙, 𝜆)𝛿𝝎𝑖𝑒 ≈ (𝚿�̃�𝑛×)𝐑𝑛𝑒(𝜙, 𝜆)�̃�𝑖𝑒 (3.23)
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ultimately yields:

𝐑𝑏�̃�
⊺

⎡
⎢
⎢
⎢
⎢
⎣

𝛿𝜔𝑖𝑏,𝑥

𝛿𝜔𝑖𝑏,𝑦

𝛿𝜔𝑖𝑏,𝑧

⎤
⎥
⎥
⎥
⎥
⎦

− 𝐑𝑛𝑒(𝜙, 𝜆)
⎡
⎢
⎢
⎢
⎢
⎣

𝛿𝜔𝑖𝑒,𝑥

𝛿𝜔𝑖𝑒,𝑦

𝛿𝜔𝑖𝑒,𝑧

⎤
⎥
⎥
⎥
⎥
⎦

≈
⎡
⎢
⎢
⎢
⎢
⎣

−𝛿𝛩 sin𝜙

𝛿𝛹 cos𝜙 + 𝛿𝛷 sin𝜙

−𝛿𝛩 cos𝜙

⎤
⎥
⎥
⎥
⎥
⎦

𝜔𝑖𝑒 (3.24)

with the rotation matrix between the  Earth-Centered-Earth-Fixed (ECEF) and  NED frames:

𝐑𝑛𝑒(𝜙, 𝜆) =
⎡
⎢
⎢
⎢
⎢
⎣

− sin𝜙 cos 𝜆 − sin𝜙 sin 𝜆 cos𝜙

− sin 𝜆 cos 𝜆 0

− cos𝜙 cos 𝜆 − cos𝜙 sin 𝜆 − sin 𝜆

⎤
⎥
⎥
⎥
⎥
⎦

(3.25)

Equations ( 3.17 ) and ( 3.24 ) are solved for the orientation errors to determine the following
linear relation to the sensors’ and gravity’s errors:

⎡
⎢
⎢
⎢
⎢
⎣

𝛿𝛷

𝛿𝛩

𝛿𝛹

⎤
⎥
⎥
⎥
⎥
⎦⏟

𝛿𝜳

= 𝐇𝑆𝐴 ⋅ [𝛿𝑓𝑏,𝑥 𝛿𝑓𝑏,𝑦 𝛿𝑓𝑏,𝑧 𝛿𝜔𝑖𝑏,𝑥 𝛿𝜔𝑖𝑏,𝑦 𝛿𝜔𝑖𝑏,𝑧 𝛥𝑔 𝛿𝜔𝑖𝑒,𝑥 𝛿𝜔𝑖𝑒,𝑦 𝛿𝜔𝑖𝑒,𝑧]
⊺

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝛿𝒖⊺

(3.26)

with

𝐇𝑆𝐴
⊺ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− cos �̃� sin �̃�

�̃�

cos �̃� cos �̃�

�̃�

cos �̃� sin �̃� tan𝜙

�̃�

− sin �̃� sin �̃� sin �̃�+cos �̃� cos �̃�

�̃�

sin �̃� sin �̃� cos �̃�−cos �̃� sin �̃�

�̃�

(sin �̃� sin �̃� sin �̃�+cos �̃� cos �̃�) tan𝜙

�̃�

− cos �̃� sin �̃� cos �̃�−sin �̃� cos �̃�

�̃�

cos �̃� sin �̃� cos �̃�+sin �̃� sin �̃�

�̃�

(cos �̃� sin �̃� cos �̃�−sin �̃� cos �̃�)

�̃�

0 0 cos �̃� sin �̃�

�̃�𝑖𝑒 cos𝜙

0 0 sin �̃� sin �̃� sin �̃�+sin �̃� cos �̃�

�̃�𝑖𝑒 cos𝜙

0 0 cos �̃� sin �̃� cos �̃�−sin �̃� cos �̃�

�̃�𝑖𝑒 cos𝜙

0 −1 0

1 0 tan𝜙

0 0 0

0 0 sin 𝜆

0 0 − cos 𝜆

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.27)

3.2.3. Alignment Uncertainty

The linear relationship ( 3.26 ) allows the leap from a deterministic to the probabilistic view of
the input and output errors. The uncertainty of the alignment angles can be described by its
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covariance matrix 𝐏𝛿𝜳:

𝐏𝛿𝜳 = 𝐸 [𝛿𝜳𝛿𝜳⊺] = 𝐸 [𝐇𝑆𝐴𝛿𝒖𝛿𝒖⊺𝐇𝑆𝐴
⊺] = 𝐇𝑆𝐴𝐸 [𝛿𝒖𝛿𝒖⊺]𝐇𝑆𝐴

⊺ = 𝐇𝑆𝐴𝐏𝒖𝐇𝑆𝐴
⊺ (3.28)

In many applications, the vehicles are close to leveled during the self-alignment. For example,
runways and taxiways but also ships are fairly leveled, which justifies the following assumption:

Assumption 3.2.1. The vehicle is sufficiently close to being leveled so that the small-angle
approximation applies, and quadratic and higher terms of the pitch and roll angles can be
neglected. For attitude angles of less than 5 deg, this approximation results in an error of less than
0.4%.

Under assumption  3.2.1 , matrix𝐇𝑆𝐴 simplifies to:

𝐇𝑆𝐴,lvd =

⎡
⎢
⎢
⎢
⎢
⎣

− s �̃�

�̃�
− c �̃�

�̃�

(�̃�−�̃�) c �̃�

�̃�
0 0 0 0 1 0 0 0 0

c �̃�

�̃�
− s �̃�

�̃�

�̃� s �̃�+�̃� c �̃�

�̃�
0 0 0 −1 0 0 0 0 0

− s �̃� t𝜙

�̃�

c �̃� t𝜙

�̃�

(�̃�−�̃�) c �̃�

�̃�

s �̃�

�̃�𝑖𝑒 c𝜙

�̃� c �̃�

�̃�𝑖𝑒 c𝜙

(�̃�−�̃�) c �̃�

�̃�𝑖𝑒 c𝜙
0 t𝜙 0 s 𝜆 − c 𝜆 0

⎤
⎥
⎥
⎥
⎥
⎦

(3.29)

For readability, the trigonometric functions have been abbreviated as 𝑠 (sine), 𝑐 (cosine) and 𝑡
(tangent). In general, there is no correlation between the different model errors, and the sensor
axes are independent. Consequently, the cross-correlation between the different input errors
can be neglected:

Assumption 3.2.2. The inertial sensor and modeling errors during self-alignment are uncorre-
lated. Thus, the covariance matrix of the input errors 𝐏ᵆ is purely diagonal.

Under assumptions  3.2.1 and  3.2.2 the input error covariance matrix is diagonal with the
residual variance of the error terms as entries:

𝐏𝛿𝒖 = diag (𝜎2𝛿𝑓𝑏,𝑥, 𝜎
2
𝛿𝑓𝑏,𝑦

, 𝜎2𝛿𝑓𝑏,𝑧, 𝜎
2
𝛿𝜔𝑖𝑏,𝑥

, 𝜎2𝛿𝜔𝑖𝑏,𝑦
, 𝜎2𝛿𝜔𝑖𝑏,𝑧

, 𝜎2, 𝜎2𝜂 , 𝜎2𝛥𝑔, 𝜎2𝛿𝜔𝑖𝑒,𝑥
, 𝜎2𝛿𝜔𝑖𝑒,𝑦

, 𝜎2𝛿𝜔𝑖𝑒,𝑧
)
(3.30)

Using ( 3.28 ) and the above input covariance yields the following alignment error covariance
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matrix:

𝐏𝛿𝜳,lvd =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎2 +
𝜍2𝛿𝑓𝑏,𝑥

s2 �̃�+𝜍2𝛿𝑓𝑏,𝑦
c2 �̃�

�̃�2

(𝜍2𝛿𝑓𝑏,𝑦
−𝜍2𝛿𝑓𝑏,𝑥

) s 2�̃�

2�̃�2
(𝜎2 −

𝜍2𝛿𝑓𝑏,𝑥
s2 �̃�+𝜍2𝛿𝑓𝑏,𝑦

c2 �̃�

�̃�2
) t𝜙

(𝜍2𝛿𝑓𝑏,𝑦
−𝜍2𝛿𝑓𝑏,𝑥

) s 2�̃�

2�̃�2
𝜎2𝜂 +

𝜍2𝛿𝑓𝑏,𝑥
c2 �̃�+𝜍2𝛿𝑓𝑏,𝑦

s2 �̃�

�̃�2

(𝜍2𝛿𝑓𝑏,𝑥
−𝜍2𝛿𝑓𝑏,𝑦

) s ̃2�̃� t𝜙

2�̃�2

(𝜎2 −
𝜍2𝛿𝑓𝑏,𝑥

s2 �̃�+𝜍2𝛿𝑓𝑏,𝑦
c2 �̃�

�̃�2
) t𝜙

(𝜍2𝛿𝑓𝑏,𝑥
−𝜍2𝛿𝑓𝑏,𝑦

) s ̃2𝛹 t𝜙

2�̃�2

𝜎2 t2 𝜙 + 𝜎2𝛿𝜔𝑖𝑒,𝑥
s2 𝜆 + 𝜎2𝛿𝜔𝑖𝑒,𝑦

c2 𝜆

+
𝜎2𝛿𝜔𝑖𝑏,𝑥

s2 �̃� + 𝜎2𝛿𝜔𝑖𝑏,𝑦
c2 �̃�

�̃�2𝑖𝑒 c2 𝜙

+
(𝜎2𝛿𝑓𝑏,𝑦 c

2 �̃� + 𝜎2𝛿𝑓𝑏,𝑥 s
2 �̃�) t2 𝜙

̃𝑔2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.31)

Usually, an inertial sensor triad consists of equal sensors for each axis. Consequently, all
sensor axes share the same error statistics and are thus described by the same variance.

Assumption 3.2.3. The inertial sensor and model errors are isotropic, which is all axes are
described by the same variance:

• 𝜎2𝑓𝑏,𝑥 = 𝜎2𝑓𝑏,𝑦 = 𝜎2𝑓𝑏,𝑧 = 𝜎2𝑓𝑏
• 𝜎2𝛿𝜔𝑖𝑏,𝑥

= 𝜎2𝛿𝜔𝑖𝑏,𝑦
= 𝜎2𝛿𝜔𝑖𝑏,𝑧

= 𝜎2𝛿𝜔𝑖𝑏

• 𝜎2𝛿𝜔𝑒𝑏,𝑥
= 𝜎2𝛿𝜔𝑖𝑒,𝑦

= 𝜎2𝛿𝜔𝑖𝑒

Taking assumption  3.2.3 into account, the alignment covariance becomes independent of
the actual azimuth and geodetic longitude and provides a simple to use estimation of the
self-alignment accuracy from different error inputs:

𝐏𝛿𝜳,lvd,iso =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎2 +
𝜍2𝛿𝑓𝑏
�̃�2

0 (𝜎2 −
𝜍2𝛿𝑓𝑏
�̃�2

) tan𝜙

0 𝜎2𝜂 +
𝜍2𝛿𝑓𝑏
�̃�2

0

(𝜎2 −
𝜍2𝛿𝑓𝑏
�̃�2

) tan𝜙 0 𝜎2 tan2 𝜙 + 𝜎2𝛿𝜔𝑖𝑒
+

𝜎2𝛿𝜔𝑖𝑏

�̃�2𝑖𝑒 cos2 𝜙
+
𝜎2𝛿𝑓𝑏 tan

2 𝜙
̃𝑔2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.32)
The resulting matrix ( 3.32 ) is a stochastic extension of the widely known approximations

that can be found in textbooks like [ 14 , p. 284]. Additionally, model errors like the gravity
deflection and uncertainties of the Earth’s nominal angular rate have been introduced.
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Chapter 3. Strapdown Inertial Navigation Error Propagation

The covariance matrix provides insight into the correlations between orientation angles and
the contributions of different model errors. The initial pitch and roll errors are uncorrelated in
the case of isotropic sensor errors. They depend on the accelerometermeasurements and gravity
deflections only. As leveling aligns to the local gravity, but the orientation is defined relative to
the reference ellipsoid, the gravity deflections from the vertical are directly transferred into
the pitch, respectively, roll angles errors. The azimuth error is uncorrelated with the pitch
angle, but there is a correlation with the roll angle, which increases with the vehicle’s geodetic
latitude. The azimuth variance itself also increases with latitude.
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3.3. Strapdown Navigation Error Propagation

3.3.1. Navigation Error Dynamics

Within this section, the linearized error dynamics of strapdown inertial navigation are derived.
Here, the strapdown navigation algorithm in the 𝑛-frame is chosen for its vivid interpretation
of the states.
In order to derive the error propagation, each navigation state or measurement is split into

the measured or modeled state �̃� and the error 𝛿𝒙:

𝒙 = �̃� + 𝛿𝒙 (3.33)

Orientation states are split into two consecutive rotations, first to the erroneous orientation
and from there to the true orientation or vice versa:

𝐑𝑎𝑏 = 𝐑𝑎 ̃𝑏𝐑 ̃𝑏𝑏 (3.34)

𝐑𝑎𝑏 = 𝐑𝑎�̃�𝐑�̃�𝑏 (3.35)

The position of the error rotation is arbitrary but affects the error dynamics. In this analysis,
the second option is used because it eliminates the vehicle’s rotational dynamics from the
rotational error dynamics.

3.3.1.1. Nonlinear Error Dynamics

Using definition ( 3.33 ), the strapdown position  ODE ( 2.12 ) can be solved for the time-derivative
of the position error:

̇̃𝝀 + 𝛿 ̇𝝀 = 𝐃( ̃𝜙 + 𝛿𝜙, ̃ℎ + 𝛿ℎ)−1 ⋅ ( ̃𝒗𝑛 + 𝛿𝒗𝑛) (3.36)

𝛿 ̇𝝀 = 𝐃( ̃𝜙 + 𝛿𝜙, ̃ℎ + 𝛿ℎ)−1 ⋅ ( ̃𝒗𝑛 + 𝛿𝒗𝑛) − 𝐃( ̃𝜙, ̃ℎ)−1 ⋅ ̃𝒗𝑛 (3.37)

Applying the same procedure to the velocity  ODE ( 2.13 ) yields:

̇̃𝒗𝑛 + 𝛿 ̇𝒗𝑛 = 𝐑𝑛�̃�𝐑�̃�𝑏 ( ̃𝒇𝑏 + 𝛿𝒇𝑏) + ̃𝜸𝑛 ( ̃𝝀 + 𝛿𝝀) + 𝛿𝜸𝑛
− (2𝐑𝑒𝑛

⊺( ̃𝝀 + 𝛿𝝀) ⋅ (�̃�𝑖𝑒 + 𝛿𝝎𝑖𝑒) + 𝝎𝑒𝑛 ( ̃𝝀 + 𝛿𝝀, ̃𝒗𝑛 + 𝛿𝒗𝑛)) × ( ̃𝒗𝑛 + 𝛿𝒗𝑛)
(3.38)

𝛿 ̇𝒗𝑛 = (𝐑𝑛�̃� − 𝐈3×3) ⋅ 𝐑�̃�𝑏 ̃𝒇𝑏 + 𝐑𝑛�̃�𝐑�̃�𝑏𝛿𝒇𝑏 + ̃𝜸𝑛( ̃𝝀 + 𝛿𝝀) − ̃𝜸𝑛( ̃𝝀) + 𝛿𝜸𝑛
− (2𝐑𝑛𝑒( ̃𝝀 + 𝛿𝝀) ⋅ (�̃�𝑖𝑒 + 𝛿𝝎𝑖𝑒) + 𝝎𝑒𝑛 ( ̃𝝀 + 𝛿𝝀, ̃𝒗𝑛 + 𝛿𝒗𝑛)) × ( ̃𝒗𝑛 + 𝛿𝒗𝑛)

+ (2𝐑𝑛𝑒( ̃𝝀) ⋅ (�̃�𝑖𝑒 + 𝛿𝝎𝑖𝑒) + 𝝎𝑒𝑛 ( ̃𝝀, ̃𝒗𝑛)) × 𝒗𝑛

(3.39)

Analogously, the orientation error dynamics is derived from ( 2.14 ):

𝑑
𝑑𝑡 (𝐑𝑛�̃�𝐑�̃�𝑏) = �̇�𝑛�̃�𝐑�̃�𝑏 + 𝐑𝑛�̃��̇��̃�𝑏 (3.40)

�̇�𝑛�̃� = (𝐑𝑛𝑏𝛀𝑖𝑏 −𝛀𝑖𝑛𝐑𝑛𝑏) 𝐑�̃�𝑏
⊺ − 𝐑𝑛�̃��̇��̃�𝑏𝐑�̃�𝑏

⊺ (3.41)
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Chapter 3. Strapdown Inertial Navigation Error Propagation

�̇�𝑛�̃� = (𝐑𝑛𝑏𝛀𝑖𝑏 −𝛀𝑖𝑛𝐑𝑛𝑏) 𝐑�̃�𝑏
⊺ − 𝐑𝑛�̃� (𝐑�̃�𝑏�̃�𝑖𝑏 −𝛀𝑖𝑛𝐑�̃�𝑏) 𝐑�̃�𝑏

⊺ (3.42)

�̇�𝑛�̃� = 𝐑𝑛�̃� (𝐑�̃�𝑏𝛿𝛀𝑖𝑏𝐑�̃�𝑏
⊺ + �̃�𝑖𝑛) − (�̃�𝑖𝑛 + 𝛿𝛀𝑖𝑛) 𝐑𝑛�̃� + 𝐻.𝑂.𝑇. (3.43)

3.3.1.2. Linearized Error Dynamics

System theory provides a wide range of tools for analyzing linear systems, which shall be
exploited for investigating the strapdown error dynamics. Parts of the derived error dynamics
are already linear regarding the navigation state errors. Other parts can be linearized if the error
terms are sufficiently small, which is assumed for the following analysis. Linearization of ( 3.37 )
to ( 3.43 ) for the error terms at the estimated states ̃𝝀 = [ ̃𝜙 ̃𝜆 ̃ℎ]

⊺
, ̃𝒗𝑛 and 𝐑�̃�𝑏 and measured

respectively modeled inputs ̃𝒇𝑏, �̃�𝑖𝑏, ̃𝜸𝑛, �̃�𝑖𝑒 (all error terms are zero at the linearization point)
yields the following error  ODEs :

𝛿 ̇𝝀 ≈ 𝛿 ̇𝝀(𝝀, 𝒗𝑛)|| ̃𝝀, ̃𝒗𝒏
+
𝜕 ̇𝝀(𝝀, 𝒗𝑛)
𝜕𝛿𝝀

|
|
| ̃𝝀, ̃𝒗𝒏

𝛿𝝀 +
𝜕 ̇𝝀(𝝀, 𝒗𝑛)
𝜕𝛿𝒗𝑛⊺

|
|
| ̃𝝀, ̃𝒗𝒏

𝛿𝒗𝑛

≈ 𝐃( ̃𝝀)−1 ̃𝒗𝑛 −𝐃( ̃𝝀)−1 ̃𝒗𝑛 + 𝟎 𝛿𝝀 + 𝐃( ̃𝝀)−1𝛿𝒗𝑛
≈ 𝐃( ̃𝝀)−1𝛿𝒗𝑛

(3.44)

Using the linear approximation of the error rotation matrix by the skew symmetric of the
corresponding angles

𝐑𝑛�̃� ≈ ((𝝍𝑛�̃�×) + 𝐈3×3) (3.45)

the linearized  ODEs for velocity and orientation errors are determiend analogously:

𝛿 ̇𝒗𝑛 ≈ 𝛿 ̇𝒗𝑛(𝝀, 𝒗𝑛, 𝐑𝑛𝑏, 𝒇𝑏, 𝜸𝑛)| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏, ̃𝒇𝑏, ̃𝜸𝑛
+
𝜕𝛿 ̇𝒗𝑛(𝝀,… )

𝜕𝛿𝝀
||| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏, ̃𝒇𝑏, ̃𝜸𝑛

𝛿𝝀

+
𝜕𝛿 ̇𝒗𝑛(𝝀,… )

𝜕𝛿𝒗𝑛
||| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏, ̃𝒇𝑏, ̃𝜸𝑛

𝛿𝒗𝑛 +
𝜕𝛿 ̇𝒗𝑛(𝝀,… )

𝜕𝝍𝑛�̃�
||| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏, ̃𝒇𝑏, ̃𝜸𝑛

𝝍𝑛�̃�

+
𝜕𝛿 ̇𝒗𝑛(𝝀,… )

𝜕𝛿𝒇𝑏

||| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏, ̃𝒇𝑏, ̃𝜸𝑛

𝛿𝒇𝑏 +
𝜕𝛿 ̇𝒗𝑛(𝝀,… )

𝜕𝛿𝜸𝑛
||| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏, ̃𝒇𝑏, ̃𝜸𝑛

𝛿𝜸𝑛

≈ (𝜕𝜸(
̃𝝀)

𝜕𝛿𝝀⊺ +
𝜕 (2𝐑𝑛𝑒( ̃𝝀)𝝎𝑖𝑒 + 𝝎𝑒𝑛( ̃𝝀, ̃𝒗𝑛)) × ̃𝒗𝑛

𝜕𝛿𝝀⊺ ) 𝛿𝝀

+
𝜕 (2𝐑𝑛𝑒( ̃𝝀)𝝎𝑖𝑒 + +𝝎𝑒𝑛( ̃𝝀, ̃𝒗𝑛)) × ̃𝒗𝑛

𝜕𝛿𝒗𝑛⊺
𝛿𝒗𝑛 − (𝐑�̃�𝑏 ̃𝒇𝑏×) 𝛿𝝍𝑛�̃�

+ 𝐑�̃�𝑏𝛿𝒇𝑏 + 𝛿𝜸𝑛

(3.46)

Application of the above approximation ( 3.45 ), neglection of the quadratic error terms yields
the following orientation  ODE :

�̇�𝑛�̃� ≈ 𝐑�̃�𝑏𝛿𝛀𝑖𝑏𝐑�̃�𝑏
⊺ +𝛀𝑖𝑛 +𝚿𝑛�̃�𝐑�̃�𝑏𝛿𝛀𝑖𝑏𝐑�̃�𝑏

⊺ +𝚿𝑛�̃��̃�𝑖𝑛 − �̃�𝑖𝑏 − 𝛿𝛀𝑖𝑛

− �̃�𝑖𝑛𝚿𝑛�̃� − 𝛿𝛀𝑖𝑛𝚿𝑛�̃�

�̇�𝑛�̃� ≈ 𝐑�̃�𝑏𝛿𝛀𝑖𝑏𝐑�̃�𝑏
⊺ +𝚿𝑛�̃��̃�𝑖𝑛 − �̃�𝑖𝑛𝚿𝑛�̃� − 𝛿𝛀𝑖𝑛

(3.47)
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Using the Jacobi identity of the cross-product

𝚿𝑛�̃�𝛀𝑖𝑛 −𝛀𝑖𝑛𝚿𝑛�̃� = (𝚿𝑛�̃�𝝎𝑖𝑛) × = − (𝜴𝑖𝑛𝝍𝑛�̃�) × (3.48)

and vectorization of the skew-symmetric matrices yields:

̇𝝍𝑛�̃�(𝝀,… ) ≈ 𝐑�̃�𝑏𝛿𝝎𝑖𝑏 − �̃�𝑖𝑛( ̃𝝀, ̃𝒗𝑛)𝝍𝑛�̃� − 𝛿𝛚𝑖𝑛(𝝀, 𝒗𝑛) (3.49)

which can then be linearized for the errors:

̇𝝍𝑛�̃� ≈ ̇𝝍𝑛�̃�(𝝀,… )|| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏,�̃�𝑖𝑏
+
𝜕 ̇𝝍𝑛�̃�(𝝀,… )
𝜕𝝍𝑛�̃�

⊺
|
|
| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏,�̃�𝑖𝑏

𝝍𝑛�̃� +
𝜕 ̇𝝍𝑛�̃�(𝝀,… )
𝜕𝛿𝝎𝑖𝑏⊺

|
|
| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏,�̃�𝑖𝑏

𝛿𝝎𝑖𝑏

+
𝜕 ̇𝝍𝑛�̃�(𝝀,… )

𝜕𝛿𝝀⊺
|
|
| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏,�̃�𝑖𝑏

𝛿𝝀 +
𝜕 ̇𝝍𝑛�̃�(𝝀,… )
𝜕𝛿𝒗𝑛⊺

|
|
| ̃𝝀, ̃𝒗𝑛,𝐑�̃�𝑏,�̃�𝑖𝑏

𝛿𝒗𝑛

≈ −𝛀𝑖𝑛( ̃𝝀, ̃𝒗𝑛)𝝍𝑛�̃� + 𝐑�̃�𝑏𝛿𝝎𝑖𝑏 −
𝜕𝝎𝑖𝑛( ̃𝝀, ̃𝒗𝑛)

𝜕𝝀⊺ 𝛿𝝀 −
𝜕𝝎𝑖𝑛( ̃𝝀, ̃𝒗𝑛)

𝜕𝒗𝑛⊺
𝛿𝒗𝑛 (3.50)

Based on equations ( 3.44 ) to ( 3.50 ), the following linear state space system can be formed:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿 ̇𝜆

𝛿 ̇𝜙

𝛿 ̇ℎ

𝛿 ̇𝑣𝑛

𝛿 ̇𝑣𝑒

𝛿 ̇𝑣𝑑

𝛿�̇�

𝛿�̇�

𝛿�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝛿 ̇𝒛

=
⎡
⎢
⎢
⎢
⎢
⎣

𝐀11 𝐀12 𝐀13

𝐀21 𝐀22 𝐀23

𝐀31 𝐀32 𝐀33

⎤
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟

𝐀

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿𝜆

𝛿𝜙

𝛿ℎ

𝛿𝑣𝑛

𝛿𝑣𝑒

𝛿𝑣𝑑

𝛿𝛷

𝛿𝛩

𝛿𝛹

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝛿𝒛

+
⎡
⎢
⎢
⎢
⎢
⎣

𝟎3×3 𝟎3×3 𝟎3×3

𝐑�̃�𝑏 𝟎3×3 𝐈3×3

𝟎3×3 𝐑�̃�𝑏 𝟎3×3

⎤
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

𝐁

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿𝑓𝑏,𝑥

𝛿𝑓𝑏,𝑦

𝛿𝑓𝑏,𝑧

𝛿𝜔𝑖𝑏,𝑥

𝛿𝜔𝑖𝑏,𝑦

𝛿𝜔𝑖𝑏,𝑧

𝛿𝛾𝑛,𝑥

𝛿𝛾𝑛,𝑦

𝛿𝛾𝑛,𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⏟⎵⎵⏟

𝛿𝒖

(3.51)
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Table 3.1.: System matrix of the linearized strapdown error dynamics.

Position error rate caused by the...

position
error 𝐀11 =

⎡
⎢
⎢
⎢
⎣

0 0 − ̃𝑣𝑛
(𝑅𝑚( ̃𝜙)+ ̃ℎ)

2

̃𝑣𝑒 tan ̃𝜙

(𝑅𝑛( ̃𝜙)+ ̃ℎ) cos ̃𝜙
0 − ̃𝑣𝑒 tan ̃𝜙

(𝑅𝑛( ̃𝜙)+ ̃ℎ)
2
cos ̃𝜙

0 0 0

⎤
⎥
⎥
⎥
⎦

velocity error 𝐀12 =
⎡
⎢
⎢
⎢
⎣

1

𝑅𝑚( ̃𝜙)+ ̃ℎ
0 0

0 1

(𝑅𝑛( ̃𝜙)+ ̃ℎ) cos ̃𝜙
0

0 0 0

⎤
⎥
⎥
⎥
⎦

orientation
error 𝐀13 = 𝟎3×3

Velocity error rate caused by the...

position
error 𝐀21 =

⎡
⎢
⎢
⎢
⎢
⎣

−2𝜔𝑖𝑒 ̃𝑣𝑒 cos ̃𝜙 − ̃𝑣2𝑒
(𝑅𝑛( ̃𝜙)+ ̃ℎ) cos2 ̃𝜙

0 ̃𝑣2𝑒 tan ̃𝜙− ̃𝑣𝑛 ̃𝑣𝑑
(𝑅𝑛( ̃𝜙)+ ̃ℎ)

2

−2𝜔𝑖𝑒 ( ̃𝑣𝑛 cos ̃𝜙 − ̃𝑣𝑑 sin ̃𝜙) − ̃𝑣𝑛 ̃𝑣𝑒
(𝑅𝑛( ̃𝜙)+ ̃ℎ) cos2 ̃𝜙

0 − ̃𝑣𝑒 ̃𝑣𝑛 tan ̃𝜙− ̃𝑣𝑒 ̃𝑣𝑑
(𝑅𝑛( ̃𝜙)+ ̃ℎ)

2

2𝜔𝑖𝑒 ̃𝑣𝑒 sin ̃𝜙 + 𝜕𝛾( ̃𝜙, ̃ℎ)

𝜕𝜙
0 ̃𝑣2𝑒+ ̃𝑣2𝑑

(𝑅𝑛( ̃𝜙)+ ̃ℎ)2
+ 𝜕𝛾( ̃𝜙, ̃ℎ)

𝜕ℎ

⎤
⎥
⎥
⎥
⎥
⎦

velocity error 𝐀22 =
⎡
⎢
⎢
⎢
⎢
⎣

̃𝑣𝑑
𝑅𝑚( ̃𝜙)+ ̃ℎ

2𝜔𝑖𝑒 sin ̃𝜙 − 2 ̃𝑣𝑒 tan ̃𝜙

𝑅𝑛( ̃𝜙)+ ̃ℎ

̃𝑣𝑛
𝑅𝑚( ̃𝜙)+ ̃ℎ

2𝜔𝑖𝑒 sin ̃𝜙 + ̃𝑣𝑒 tan ̃𝜙

𝑅𝑛( ̃𝜙)+ ̃ℎ

̃𝑣𝑛 tan ̃𝜙+ ̃𝑣𝑑
𝑅𝑛( ̃𝜙)+ ̃ℎ

2𝜔𝑖𝑒 cos ̃𝜙 + ̃𝑣𝑒
𝑅𝑛( ̃𝜙)+ ̃ℎ

−2 ̃𝑣𝑛
𝑅𝑚( ̃𝜙)+ ̃ℎ

−2𝜔𝑖𝑒 cos ̃𝜙 − − ̃𝑣𝑒
𝑅𝑛( ̃𝜙)+ ̃ℎ

0

⎤
⎥
⎥
⎥
⎥
⎦

orientation
error 𝐀23 =

⎡
⎢
⎢
⎣

0 ̃𝑓𝑛,𝑧 − ̃𝑓𝑛,𝑦
− ̃𝑓𝑛,𝑧 0 ̃𝑓𝑛,𝑥
̃𝑓𝑛,𝑦 − ̃𝑓𝑛,𝑥 0

⎤
⎥
⎥
⎦

Orientation error rate caused by the...

position
error 𝐀31 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜔𝑖𝑒 sin ̃𝜙 0 ̃𝑣𝑒
(𝑅𝑛( ̃𝜙)+ ̃ℎ)2

0 0 − ̃𝑣𝑛
(𝑅𝑛( ̃𝜙)+ ̃ℎ)

2

𝜔𝑖𝑒 cos ̃𝜙 + ̃𝑣𝑒
(𝑅𝑛( ̃𝜙)+ ̃ℎ) cos2 ̃𝜙

0 − ̃𝑣𝑒 tan ̃𝜙

(𝑅𝑛( ̃𝜙)+ ̃ℎ)
2

⎤
⎥
⎥
⎥
⎥
⎦

velocity error 𝐀32 =
⎡
⎢
⎢
⎢
⎣

0 −1

𝑅𝑛( ̃𝜙)+ ̃ℎ
0

1

𝑅𝑛( ̃𝜙)+ ̃ℎ
0 0

0 tan ̃𝜙

𝑅𝑛( ̃𝜙)+ ̃ℎ
0

⎤
⎥
⎥
⎥
⎦

orientation
error 𝐀33 =

⎡
⎢
⎢
⎢
⎢
⎣

0 −𝜔𝑖𝑒 sin ̃𝜙 − ̃𝑣𝑒 tan ̃𝜙

𝑅𝑛( ̃𝜙)+ ̃ℎ

̃𝑣𝑛 tan ̃𝜙

𝑅𝑚( ̃𝜙)+ ̃ℎ

𝜔𝑖𝑒 sin ̃𝜙 + ̃𝑣𝑒 tan ̃𝜙

𝑅𝑛( ̃𝜙)+ ̃ℎ
0 𝜔𝑖𝑒 cos ̃𝜙 − ̃𝑣𝑒

𝑅𝑛( ̃𝜙)+ ̃ℎ
− ̃𝑣𝑛

𝑅𝑚( ̃𝜙)+ ̃ℎ
−𝜔𝑖𝑒 cos ̃𝜙 − ̃𝑣𝑒

𝑅𝑛( ̃𝜙)+ ̃ℎ
0

⎤
⎥
⎥
⎥
⎥
⎦
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3.3. Strapdown Navigation Error Propagation

The components of the system matrix 𝐀 are given in  Table 3.1 . Similar representations,
in different state order or slightly different parametrization, can be obtained from standard
literature, e.g. [  14 , pp. 344–345] and [ 15 , pp. 153–157].

The position error has already been constrained to a few kilometers to justify the linearization
of the error dynamics. In this case, the Earth’s curvature radii are approximately constant
within the envelope of the analysis. The systemmatrix𝐀 can be further simplified by replacing
the local curvature with an average radius. The Gaussian mean radius represents the average
radius of all directions 𝜒 at latitude 𝜙 [ 15 , p. 154]:

𝑅(𝜙) = 1
2𝜋 ∫

2𝜋

0

𝑅𝑚(𝜙)𝑅𝑛(𝜙)
𝑅𝑛(𝜙) cos2 𝜒 + 𝑅𝑚(𝜙) sin2 𝜒

𝑑𝜒 = √𝑅𝑚(𝜙)𝑅𝑛(𝜙) (3.52)

As illustrated in  Figure 3.2  , the maximum error between this approximation and the true local
radii is less than 0.4%. The system matrix 𝐀 then simplifies to:

𝐀𝑅 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 − ̃𝑣𝑛
(𝑅+ℎ)2

1

(𝑅+ℎ)
0 0 0 0 0

̃𝑣𝑒 tan ̃𝜙

(𝑅+ℎ) cos ̃𝜙
0 − ̃𝑣𝑒

(𝑅+ℎ)2 cos ̃𝜙
0 1

(𝑅+ℎ) cos ̃𝜙
0 0 0 0

0 0 0 0 0 −1 0 0 0
−2𝜔𝑖𝑒 ̃𝑣𝑒 cos ̃𝜙

− �̃�2𝑒
(𝑅+ℎ) cos2 ̃𝜙

0 ̃𝑣2𝑒 tan ̃𝜙− ̃𝑣𝑛 ̃𝑣𝑑
𝑅2

̃𝑣𝑑
(𝑅+ℎ)

−2𝜔𝑖𝑒 sin ̃𝜙

− 2�̃�𝑒 tan ̃𝜙
(𝑅+ℎ)

̃𝑣𝑛
(𝑅+ℎ)

0 ̃𝑓𝑛,𝑧 − ̃𝑓𝑛,𝑦
2𝜔𝑖𝑒( ̃𝑣𝑛 cos ̃𝜙− ̃𝑣𝑑 sin ̃𝜙)

+ �̃�𝑛�̃�𝑒
(𝑅+ℎ) cos2 ̃𝜙

0 − ̃𝑣𝑒 ̃𝑣𝑛 tan ̃𝜙− ̃𝑣𝑒 ̃𝑣𝑑
(𝑅+ℎ)2

2𝜔𝑖𝑒 sin ̃𝜙

+ �̃�𝑒 tan ̃𝜙
(𝑅+ℎ)

̃𝑣𝑛 tan ̃𝜙+ ̃𝑣𝑑
(𝑅+ℎ)

2𝜔𝑖𝑒 cos ̃𝜙+ �̃�𝑒
(𝑅+ℎ) − ̃𝑓𝑛,𝑧 0 ̃𝑓𝑛,𝑥

2𝜔𝑖𝑒 ̃𝑣𝑒 sin ̃𝜙

+ 𝜕𝛾
𝜕𝜙

0
̃𝑣2𝑒+ ̃𝑣2𝑑

(𝑅+ℎ)2
+ 𝜕𝛾

𝜕ℎ

−2 ̃𝑣𝑛
(𝑅+ℎ)

−2𝜔𝑖𝑒 cos ̃𝜙− 2�̃�𝑒
(𝑅+ℎ) 0 ̃𝑓𝑛,𝑦 − ̃𝑓𝑛,𝑥 0

𝜔𝑖𝑒 sin ̃𝜙 0 ̃𝑣𝑒
(𝑅+ℎ)2

0 −1

(𝑅+ℎ)
0 0

−𝜔𝑖𝑒 sin ̃𝜙

− �̃�𝑒 tan ̃𝜙
(𝑅+ℎ)

̃𝑣𝑛
(𝑅+ℎ)

0 0 ̃𝑣𝑛
(𝑅+ℎ)2

1

(𝑅+ℎ)
0 0

𝜔𝑖𝑒 sin ̃𝜙

+ �̃�𝑒 tan ̃𝜙
(𝑅+ℎ)

0
𝜔𝑖𝑒 cos ̃𝜙
+ �̃�𝑒
(𝑅+ℎ)

𝜔𝑖𝑒 cos ̃𝜙
+ �̃�𝑒
(𝑅+ℎ) cos2 ̃𝜙

0 − ̃𝑣𝑒 tan ̃𝜙

(𝑅+ℎ)2
0 tan ̃𝜙

(𝑅+ℎ)
0 − ̃𝑣𝑛

(𝑅+ℎ)

−𝜔𝑖𝑒 cos ̃𝜙
+ �̃�𝑒
(𝑅+ℎ)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
(3.53)

3.3.1.3. Vertical Channel Fixed Strapdown Error Propagation

Equation ( 3.51 ) fully describes the error dynamics of strapdown inertial navigation for small
errors. However, due to the instability of the vertical chanel, inertial navigation is used together
with an additional vertical aiding source most of the time. This is classically a barometric
altimeter for aircraft or, if available  GNSS measurements. Such a fix of the vertical channel
should be considered in the error propagation to obtain a meaningful representation of the iner-
tial navigation error propagation in practice. Otherwise, the altitude error would exponentially
grow, dominating the total position error and rendering the analysis useless.

Independent of the actual method, a vertical aiding should ideally reset the vertical position
errors and thus eliminate the instability of the altitude. In this work, the vertical aiding is
considered by eliminating the vertical states 𝛿ℎ and 𝛿𝑣𝑑. Although the system’s vertical error
dynamics have been eliminated, there may still be an erroneous altitude 𝛿ℎ and height rate
𝛿𝑣𝑑 that affects the other error states. These errors are now introduced as input to the system.
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Figure 3.2.: Earth curvature radii compared to the local spherical approximation.

The linear error dynamics for a vertically fixed (index vf ) strapdown system is then given as:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿 ̇𝜆

𝛿 ̇𝜙

𝛿 ̇𝑣𝑛

𝛿 ̇𝑣𝑒

𝛿�̇�

𝛿�̇�

𝛿�̇�

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝛿 ̇𝒛𝑣𝑓

= 𝐀𝑣𝑓

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿𝜆

𝛿𝜙

𝛿𝑣𝑛

𝛿𝑣𝑒

𝛿𝛷

𝛿𝛩

𝛿𝛹

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝛿𝒛𝑣𝑓

+𝐁𝑣𝑓

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛿𝑓𝑏,𝑥

𝛿𝑓𝑏,𝑦

𝛿𝑓𝑏,𝑧

𝛿𝜔𝑖𝑏,𝑥

𝛿𝜔𝑖𝑏,𝑦

𝛿𝜔𝑖𝑏,𝑧

𝛿𝛾𝑛

𝛿𝛾𝑒

𝛿𝛾𝑑

𝛿ℎ

𝛿𝑣𝑑

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⏟⎵⎵⏟

𝛿𝒖𝑣𝑓

(3.54)
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The system matrix for this reduced system is then given as:

𝐀𝑣𝑓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1

𝑅
0 0 0 0

̃𝑣𝑒 tan ̃𝜙

(𝑅+ℎ) cos ̃𝜙
0 0 1

(𝑅+ℎ) cos ̃𝜙
0 0 0

−2𝜔𝑖𝑒 ̃𝑣𝑒 cos ̃𝜙

− �̃�2𝑒
(𝑅+ℎ) cos2 ̃𝜙

0 ̃𝑣𝑑
(𝑅+ℎ)

−2𝜔𝑖𝑒 sin ̃𝜙

− 2�̃�𝑒 tan ̃𝜙
(𝑅+ℎ)

0 ̃𝑓𝑛,𝑧 − ̃𝑓𝑛,𝑦
2𝜔𝑖𝑒( ̃𝑣𝑛 cos ̃𝜙− ̃𝑣𝑑 sin ̃𝜙)

+ �̃�𝑛�̃�𝑒
(𝑅+ℎ) cos2 ̃𝜙

0
2𝜔𝑖𝑒 sin ̃𝜙

+ �̃�𝑒 tan ̃𝜙
(𝑅+ℎ)

̃𝑣𝑛 tan ̃𝜙+ ̃𝑣𝑑
(𝑅+ℎ)

− ̃𝑓𝑛,𝑧 0 ̃𝑓𝑛,𝑥

𝜔𝑖𝑒 sin ̃𝜙 0 0 −1

(𝑅+ℎ)
0

−𝜔𝑖𝑒 sin ̃𝜙

− �̃�𝑒 tan ̃𝜙
(𝑅+ℎ)

̃𝑣𝑛
(𝑅+ℎ)

0 0 1

(𝑅+ℎ)
0

𝜔𝑖𝑒 sin ̃𝜙

+ �̃�𝑒 tan ̃𝜙
(𝑅+ℎ)

0
𝜔𝑖𝑒 cos ̃𝜙
+ �̃�𝑒
(𝑅+ℎ)

𝜔𝑖𝑒 cos ̃𝜙
+ �̃�𝑒
(𝑅+ℎ) cos2 ̃𝜙

0 0 tan ̃𝜙

(𝑅+ℎ)

− ̃𝑣𝑛
(𝑅+ℎ)

−𝜔𝑖𝑒 cos ̃𝜙
+ �̃�𝑒
(𝑅+ℎ)

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.55)

The new input matrix is reduced for the vertical states and extended to incorporate the altitude
and height rate errors as inputs. The input matrix for vertically fixed strapdown navigation is
thus given as:

𝐁𝑣𝑓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 − ̃𝑣𝑛
(𝑅+ℎ)2

0

0 0 0 0 0 0 0 0 0 − ̃𝑣𝑒
(𝑅+ℎ)2 cos ̃𝜙

0

�̄��̃�𝑏
0 0 0 1 0 0 ̃𝑣2𝑒 tan ̃𝜙− ̃𝑣𝑛 ̃𝑣𝑑

(𝑅+ℎ)2
̃𝑣𝑛
𝑅

0 0 0 0 1 0 − ̃𝑣𝑒 ̃𝑣𝑛 tan ̃𝜙− ̃𝑣𝑒 ̃𝑣𝑑
(𝑅+ℎ)2

2𝜔𝑖𝑒 cos ̃𝜙 + ̃𝑣𝑒
(𝑅+ℎ)

0 0 0

𝐑�̃�𝑏

0 0 0 ̃𝑣𝑒
(𝑅+ℎ)2

0

0 0 0 0 0 0 ̃𝑣𝑛
(𝑅+ℎ)2

0

0 0 0 0 0 0 − ̃𝑣𝑒 tan ̃𝜙

(𝑅+ℎ)2
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.56)

where a reduced rotation matrix 𝐑�̃�𝑏 is used:

�̄��̃�𝑏 = [
cos �̃� cos �̃� sin �̃� sin �̃� cos �̃� − cos �̃� sin �̃� cos �̃� sin �̃� cos �̃� + sin �̃� sin �̃�

cos �̃� sin �̃� sin �̃� sin �̃� sin �̃� + cos �̃� cos �̃� cos �̃� sin �̃� sin �̃� − sin �̃� cos �̃�
]

(3.57)

3.3.1.4. Neglection of the Vehicle Motion

The system and input matrix of the linear strapdown error dynamics ( 3.54 ) still depend on the
vehicle’s current state. This includes a dependency on the vehicle  NED -velocity, as well as its
orientation 𝐑𝑛𝑏 and the corresponding specific forces. This dependency allows an analysis
of the strapdown error dynamics for every flight state, velocity, and even direction of flight.
However, this is not feasible for a general navigation error analysis. For that, the analysis is
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restricted to the most general and representative state.
The linearized system is analyzed at steady zero-velocity and the vehicle is assumed to be

aligned to the local  NED -frame:

𝑣𝑛 = 𝑣𝑒 = 𝑣𝑑 = 0 (3.58)

𝑓𝑛,𝑥 = 𝑓𝑛,𝑦 = 0 (3.59)

𝑓𝑛,𝑧 = −𝑔 (3.60)

𝐑�̃�𝑏 = 𝐈3×3 (3.61)

Under these assumptions, the state space representation of the linear strapdown error dynamics
reduces to:

𝐀𝑣𝑓,𝑠 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1

(𝑅+ℎ)
0 0 0 0

0 0 0 1

(𝑅+ℎ) cos ̃𝜙
0 0 0

0 0 0 −2𝜔𝑖𝑒 sin ̃𝜙 0 −𝑔 0

0 0 2𝜔𝑖𝑒 sin ̃𝜙 0 𝑔 0 0

𝜔𝑖𝑒 sin ̃𝜙 0 0 −1

(𝑅+ℎ)
0 −𝜔𝑖𝑒 sin ̃𝜙 0

0 0 1

(𝑅+ℎ)
0 𝜔𝑖𝑒 sin ̃𝜙 0 𝜔𝑖𝑒 cos ̃𝜙

𝜔𝑖𝑒 cos ̃𝜙 0 0 tan ̃𝜙

(𝑅+ℎ)
0 −𝜔𝑖𝑒 cos ̃𝜙 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.62)

𝐁𝑣𝑓,𝑠 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 1 0 0 2𝜔𝑖𝑒 cos ̃𝜙

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.63)

with the input vector

𝛿𝒖𝑣𝑓 = [𝛿𝑓𝑏,𝑛, 𝛿𝑓𝑏,𝑒, 𝛿𝑓𝑏,𝑑, 𝛿𝜔𝑖𝑏,𝑛, 𝛿𝜔𝑖𝑏,𝑒, 𝛿𝜔𝑖𝑏,𝑑, 𝛿𝛾𝑛, 𝛿𝛾𝑒, 𝛿𝛾𝑑, 𝛿ℎ, 𝛿𝑣𝑑]
⊺ (3.64)

These assumptions look rather limiting, but they provide a reasonable approximation, espe-
cially for the analysis of the error dynamics:

• The velocity-dependent terms of ( 3.55 ) are small compared to the other terms. Jekeli
argues that velocities of less than 200m/s may be neglected compared to the Earth
angular rate [ 15 , p. 157]. Still, the value of the velocity terms compared to the other

54



3.3. Strapdown Navigation Error Propagation

terms is not a sufficient argument. The velocity terms introduce additional couplings
between the different error states. These couplings even change the system dynamics
of the latitude error from a marginal stable oscillation to an unstable oscillation, as
demonstrated in  Figure 3.3  . A comparison of the system dynamics indicates that this
instability is extremely weak, with the result that the influence of the velocity becomes
apparent only after about 8 to 10 days of free inertial navigation.

• The choice of the specific forces represents both a stationary aligned vehicle and an
aircraft in straight and level flight. Although aircraft experience many different flight
states, like take-off, landing, and turns, the specific forces measurements are dominated
by the Earth’s gravity for typical trajectories (cf.  Figure 3.4  ). Here, the deviation of the
specific forces from the assumed straight and level state is less than 0.1 g for most of the
time. This assumption does not hold for aerobatic flight and specific military applications,
like air-to-air missiles.

• The orientation matrix 𝐑�̃�𝑏 within the input matrix can be easily neglected by directly
choosing the  IMU measurements in the 𝑛-frame as inputs. Furthermore, equal sensors
are typically used within the  IMU ’s sensor triads. The measurement uncertainty is the
same in any direction and assumed to be uncorrelated, so the corresponding covariance
matrix is rotation-invariant. In this case, the actual orientation 𝐑�̃�𝑏 does not affect the
position uncertainty.

In conclusion, the neglection of the vehicle motion in the strapdown error dynamics yields
sufficiently accurate results for many applications. On the contrary, this approximation is
insufficient for vehicles with high accelerations (e.g., missiles) and, in the long term, for higher
velocities. However, there is hardly any applications that requires days of free inertial navigation
at aircraft velocities.

3.3.1.5. Range of Validity for the Linearization

While the approximations of the linearized system have been justified in the above section, the
range of validity for the linearization itself has not been discussed yet. For the derivation of
the error dynamics, the strapdown differential equations were separated into estimated and
error states and subsequently linearized for the error states. With increasing error states, the
linearization at the estimated states becomes less representative of the non-linear system. Due
to their different nature, the different states must be considered separately:

• In the strapdown equations, the position affects the propagation of the transport rates,
the local gravity, the local Earth angular rate, and the propagation of velocities into the
position. In the above section, it was argued that the vehicle’s velocity and thus the
transport rate could be neglected for moderate velocities. Furthermore, gravity errors
from an erroneous position affect the vertical channel, which is fixed for this analysis.
This leaves the effect of position errors on the local Earth’s radii that are used to transfer
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Figure 3.3.: Velocity influence on the strapdown error dynamics: Latitude error from 𝑓𝑏,𝑥 error for
vertical channel fixed, linearized strapdown error dynamics at 𝜙 = 45°, 𝑣𝑒 = 0,𝛷 =
0,𝛩 = 0,𝛹 = 0.
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Figure 3.4.: Example specific forces measurements of typical aircraft trajectories.
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the local velocity (errors) into geodetic position (errors). However, the local Earth radii
vary less than 0.5% over the globe. The linearization of the sine and cosine terms of
the latitude dependency of the local components of the Earth’s angular rate results in
relative errors of less than 1% for latitude errors below 1°, which corresponds to about
110 km at medium latitudes.

• For the given approximation, the effects of the vehicle’s velocity on the system matrix
have been neglected for velocities below 200m/s. Velocity errors are significantly below
this threshold and can thus be neglected compared to the already neglected effects of the
vehicle’s velocity.

• Linearization of the orientation error matrix neglects the orientation sequence of the
Euler-angles. The linearization relies on the small-angle approximation of the sine and
cosine but also on the neglection of products of sines. For angles below 8° the relative
error of the small angle approximation of both sine and cosine is less than 1%. The
neglection of the quadratic sine terms compared to linear sine terms results yields a
relative error of less than 1.75% for angles below 1°.

A comparison of the analytically derived system responses to the results of a non-linear strap-
down navigation simulation indicates a good approximation for the above-given thresholds of
100 km position error, 10m/s velocity errors, and 1° orientation errors. In this case, the relative
errors of the navigation state errors are about 1%, for long simulation times of up to 48 h. For
higher errors, such as 1000 km position error, 100m/s velocity errors, and 10°, resulting system
responses are still very similar to the simulation results, but the relative errors reach the 10%
magnitude.
Given the wide validity range of the linearization, the violation of the assumptions of low

vehicle velocity and stationary conditions, respectively, straight and level flight seems more
significant in practice. However, these assumptions are required for the trajectory-independent
performance prediction, performed in an early design phase.

3.3.2. Response to Constant Errors

3.3.2.1. General

Having derived a linear state space representation for the (vertically aided) strapdown error
dynamics, the system’s response to different error inputs will be investigated in this section.
From a system theoretical view, the following two types of errors are a step input to the error
dynamics system:

• Initialization errorsAn erroneous initialization for the navigation states, e.g., a residual
attitude uncertainty after alignment.

• Bias-like sensor errors A bias-like error on the inertial sensor measurements. The
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long-term drift of the bias (bias instability) is considered a noise process and thus not
considered in this analysis.

For a general linear state space system

̇𝒛 = 𝐀𝒛 + 𝐁𝒖 (3.65)

𝒚 = 𝐂𝒛 + 𝐃𝒖 (3.66)

the transfer function that relates the input 𝒖 to output 𝒚 in the Laplace domain

𝒀(𝑠) = 𝐆(𝑠)𝑼(𝑠) (3.67)

is given by [ 71 , pp. 144–145]:

𝑮(𝑠) = 𝑪 (𝑠𝐈 − 𝐀)−1 𝑩 + 𝑫 (3.68)

Transformation of the transfer function 𝐆(𝑠) from the frequency to the time domain yields the
pulse response 𝒈(𝑠)

𝒈(𝑡) = ℒ−1{𝑮(𝑠)} (3.69)

and a multiplication in the Laplace domain transforms to a convolution of the pulse response
with the input signal

𝑦(𝑡) = 𝑔(𝑡) ∗ 𝑢(𝑡) = ∫
𝑡

0
𝑔(𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏 (3.70)

A system’s response to a step of constant height 𝑢 is the integral of the pulse response

𝑌(𝑠) = 𝐺(𝑠)1𝑠𝑈 = 𝐻(𝑠)𝑈 (3.71)

𝑦(𝑡) = ∫
𝑡

0
𝑔(𝜏)𝛩(𝑡 − 𝜏)𝑑𝜏𝑢 = ∫

𝑡

0
𝑔(𝜏)𝑑𝜏𝑢 = ℎ(𝑡)𝑢 (3.72)

with the Heaviside step function 𝛩(𝑡) [ 72 , p. 714]. The input errors are modeled as random
constant 𝑢 from a zero-mean distribution. The zero-mean assumption is justified because a
known non-zero-mean of the error would have been easily corrected. The input is only the
uncertainty of the actual measurements of initialization values, represented by its variance 𝜎2.
The uncertainty of the output is then given as:

𝜎2𝑦(𝑡) = ℎ2(𝑡)𝜎2ᵆ (3.73)
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This scalar expression for the variance can easily be expanded to the multivariate case:

𝐏𝑦𝑦(𝑡) =
⎡
⎢
⎢
⎢
⎢
⎣

ℎ1,1(𝑡) … ℎ1,𝑚(𝑡)

⋮ ⋮

ℎ𝑛,1(𝑡) … ℎ𝑛,𝑚(𝑡)

⎤
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

𝐇

⎡
⎢
⎢
⎢
⎢
⎣

𝜎21,1 … 𝜎21,𝑚

⋮ ⋮

𝜎2𝑚,1 … 𝜎2𝑚,𝑚

⎤
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟

𝐏𝑢𝑢

⎡
⎢
⎢
⎢
⎢
⎣

ℎ1,1(𝑡) … ℎ1,𝑏(𝑡)

⋮ ⋮

ℎ𝑚,1(𝑡) … ℎ𝑚,𝑏(𝑡)

⎤
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

𝐇⊺

(3.74)

Using equation ( 3.68 ) the step responses of the vertically fixed strapdown error dynamics
( 3.54 ) can be determined. The utilized Laplace transformations are given in  Appendix C . The
strapdown error dynamics’ step responses for all combinations of in- and outputs are given in
 Appendix D .
The step responses in the frequency domain show up to three different complex conjugate

poles, whose natural frequencies are the Earth angular rate 𝜔𝑖𝑒 and the two frequencies 𝜔𝑠−
and 𝜔𝑠+:

𝜔2𝑠− = 2𝜔2𝑖𝑒 sin
2 ̃𝜙 + 𝜔2𝑠 − 2𝜔𝑖𝑒 sin ̃𝜙√𝜔2𝑖𝑒 sin

2 ̃𝜙 + 𝜔2𝑠 (3.75)

𝜔2𝑠+ = 2𝜔2𝑖𝑒 sin
2 ̃𝜙 + 𝜔2𝑠 + 2𝜔𝑖𝑒 sin ̃𝜙√𝜔2𝑖𝑒 sin

2 ̃𝜙 + 𝜔2𝑠 (3.76)

The variation of these frequencies with the geodetic latitude is depicted in  Figure 3.5 .
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Figure 3.5.: Periods of the linearized strapdown error dynamics.

Note that the rates ( 3.75 ) and ( 3.76 ) are the full expression of the modified Schuler rates that
can be found in literature, e.g. [  15 , p. 163]:

𝜔𝑠− ≈ 𝑤𝑠 − 𝑤𝑖𝑒 sin ̃𝜙 (3.77)

𝜔𝑠+ ≈ 𝑤𝑠 + 𝑤𝑖𝑒 sin ̃𝜙 (3.78)

Using the trigonometric addition theorem [ 72 , p. 81] the superposition of two equal amplitude
oscillations of 𝜔𝑠− and 𝜔𝑠+ can be shown yield a Schuler oscillation that is modulated at the
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Foucault rate 𝜔𝑓:

sin(𝜔𝑠+𝑡) + sin(𝜔𝑠−𝑡) = 2 sin (
(𝜔𝑠+ + 𝜔𝑠−)

2 𝑡) cos (
(𝜔𝑠+ − 𝜔𝑠−)

2 𝑡) (3.79)

≈ 2 sin (𝜔𝑠𝑡) cos(𝜔𝑖𝑒 sin ̃𝜙⏟⎵⏟⎵⏟
𝜔𝑓

𝑡)

As observed from  Figure 3.5  , the modified Schuler rates are symmetric and converge to the
non-modified Schuler rate near the equator. For differing amplitudes, the superposition yields
more complicated patterns that cannot be rewritten analogously to ( 3.79 ). Still, their origin
from a Schuler and Foucault oscillation can be recognized in the graphs.

 Figure 3.6  depicts the utilized strapdown error dynamics as a block diagram. Like in [  14 ,
p. 346], the different oscillation rates can be attributed to different loops in the analyzed error
dynamics’ structure.
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Figure 3.6.: Block diagram of the vertical fixed, linearized strapdown error dynamics for neglected
vehicle motion.

These loops are well-known in navigation literature and can be explained by simplified
models:

• The Schuler oscillation, derived by Maximilian Schuler in 1923 [  73 ], results from an
orientation error towards the local gravity vector that yields a re-balancing force. This
setup corresponds to a pendulum that ranges from the vehicle to the Earth’s center of
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gravity, with the resulting angular rate:

𝜔𝑠 =√
𝑔
𝑅 (3.80)

Neglecting the vehicle’s altitude, this pendulumoscillates at the Schuler period of 84.4min
[ 14 , p.339].

• The 24-hour oscillation is the direct result of the Earth’s rotation. As the Earth’s angular
rate is part of the gyroscope measurements, an erroneous attitude results in an erroneous
angular rate component of the Earth’s rotation in the respective orthogonal gyro axis.
Roll and pitch errors oscillate at a period of about 24 h with a phase offset of 90°, which
equals a pitch and roll uncertainty that rotates around the yaw axis once per day.

• The Foucault oscillation is named after Léon Foucault and his famous Foucault pen-
dulum that was used to demonstrate the Earth’s rotation. Like the Foucault pendulum,
the interaction of the Earth’s rotation with the vehicle’s/pendulums velocity results in
Coriolis forces [ 15 , p. 163] that drive the Foucault oscillation at:

𝜔𝑓 = 𝜔𝑖𝑒 sin ̃𝜙 (3.81)

From an Earth-fixed view, this results in the observed error dynamics at the Foucault
rate.

The derived system responses to different error inputs are presented in the following sections.
For easy use, the plotted system responses are normalized for a unit-sized input. This can result
in very high values of the graphs. Note that these results need to be scaled with the errors to
reach realistic magnitudes. Furthermore, it must be ensured that the resulting magnitudes do
not exceed the range of validity for the linearization (see  Subsection 3.3.1.5 ).

3.3.2.2. Position Error from Initial Position and Velocity Errors

The transfer functions and step responses are derived for SI-unit in- and outputs. Still, for
vividness, the following graphs have been transformed to north and south position errors using
the local radius 𝑅 approximation:

𝛿𝑥𝑛 ≈ 𝑅 𝛿𝜙 (3.82)

𝛿𝑥𝑒 ≈ 𝑅 cos𝜙 𝛿𝜆 (3.83)

Additionally, all angles have been converted to degrees in the following graphics.
The responses of the latitude and longitude error states to initialization errors of position

and velocity are presented in  Table D.1 and  Table D.2 . A graphical presentation of these step
responses is given in  Figure 3.7  . As expected for a rotational ellipsoid Earth shape, an initial
longitude error has no effect. An initial error in the latitude, however, excites both latitude
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and longitude oscillation with a period of 24 hours. This oscillation is superposed with a
Schuler oscillation modulated with the Foucault period. Longitude and latitude responses
are phase-shifted by 90°. Initial velocity errors result only in the above-mentioned Schuler
oscillation modulated with the Foucault period. Although the altitude is fixed in this model,
an initial down velocity error interacting with the Earth’s angular rate causes Coriolis forces
that ultimately lead to an oscillating position error.
The development of the position error covariance from initial north and east velocity errors

is depicted exemplary in  Figure 3.8  . The position errors are the integral of the initial velocity
errors in each direction and are nearly uncoupled. For isotropic initial velocity errors, this
results in a nearly circular covariance ellipse. Since both horizontal position errors oscillate in
phase, the covariance ellipse keeps its shape and only oscillates in size.
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Figure 3.7.: North and east position errors from unit-step initial position and velocity errors at
𝜙 = 45° and 𝜓 = 0°.
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Figure 3.8.: Development of the horizontal position covariance from 0.1m/s initial velocity errors
(1𝜎) at 𝜙 = 45° and 𝜓 = 0°.
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3.3.2.3. Position Error from Initial Alignment Errors

The equations for the propagation of initial alignment errors are given in  TableD.3 and  TableD.4 .
The system’s reponses are depicted in  Figure 3.9  . Both latitude and longitude errors are
characterized by a stable 24-hour oscillation, superposed with the Foucault modulated Schuler
oscillation. While the Schuler oscillations are a significant part of the system’s response to initial
leveling errors, the response to initial azimuth errors is dominated by the 24-hour oscillation.
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Figure 3.9.: Position error from unit-step initial alignment errors at 𝜙 = 45° and 𝜓 = 0°.

The variation of the position covariance from initial alignment errors over time is depicted
in  Figure 3.10 . Here, all alignment angle errors are assumed to be uncorrelated, and the
leveling angles, roll, and pitch are supposed to have equal variance. These assumptions are
valid for, e.g., gravity-based leveling using accelerometers and heading alignment from another
source than the gyroscopes. The position uncertainty is dominated by the initial roll and pitch
alignment error. The complex interaction of the responses to initial alignment errors results in
a covariance ellipse that rotates with time and switches between elliptical and nearly circular.
Still, the maximum size of this ellipse is bound and defined by initial orientation errors.
From equation ( 3.32 ), it can be seen that the initial heading alignment is correlated with

the roll angle if the azimuth alignment is performed using the gyroscopes. Neglecting the
uncertainty of gravity deflections 𝜎2𝜖 , ( 3.32 ) gives the off-diagonal entry of the covariancematrix
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Figure 3.10.: Development of the horizontal position covariance from uncorrelated 0.01° initial pitch
and roll (1𝜎) and 0.01° (1𝜎) yaw alignment error at 𝜙 = 45° and 𝜓 = 0°.
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Figure 3.11.: Development of the horizontal position covariance from correlated 0.01° initial pitch
and roll (1𝜎) and 0.01° (1𝜎) yaw alignment error at 𝜙 = 45° and 𝜓 = 0°.
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as:

𝑃𝛿𝛷𝛿𝛹 = −
𝜎2𝛿𝑓𝑏
̃𝑔2 tan𝜙 = −𝜎2𝛿𝛷 tan𝜙 (3.84)

This can be used to incorporate the correlation arising from the initial roll accuracy 𝜎2𝛿𝛷 using
( 3.84 ). The resulting variation of the covariance over time is depicted in  Figure 3.11  . Clearly
this increases the ellipticity of the horizontal position covariance from roll and pitch errors but
has little effect on the  Distance Root Mean Square (DRMS) values.

3.3.2.4. Position Errors from Bias-like IMU Errors

The responses of position errors to bias-like  IMU errors are given in  Table D.5 and  Table D.6 ,
both in the frequency and time domain.
Accelerometer biases excite latitude and longitude errors to a Schuler oscillation modulated

with the Foucault oscillation. In the frequency domain representation, this manifests as two
poles symmetrically placed close to the Schuler period 𝜔𝑠. Note that a north accelerometer
bias excites a north error oscillation north of the initial location, while an east accelerometer
bias results in a north oscillation with the initial location in the mean. For the longitude errors,
the same takes effect. For the vertically fixed strapdown error dynamics, a vertical acceleration
error does not effect the position errors.
However, the position errors from gyroscope biases show a more nuanced behavior. A stable

24-hour oscillation dominates the latitude error. This oscillation is superposed by the Foucault
modulated Schuler oscillation that has already been observed for the accelerometer biases. For
the vertical angular rate biases, this superposed oscillation is hardly observable.
For the longitude error, completely different behavior can be observed. A bias of pitch rate

measurement results in a stable oscillation dominated by the Foucault period and some super-
posed Schuler oscillations. Roll and yaw rate biases lead to a linear error growth superposed
with 24-hour oscillation and small Schuler oscillations.
As illustrated in  Figure 3.13  , the position uncertainty from specific forces bias-like errors is

nearly circular, with an oscillating size. As gyroscope biases lead to a linear growth (superposed
with oscillations) of the east position error but to a limited oscillation of the north error, the
resulting position uncertainty is getting increasingly elliptical with time. The north and east
position uncertainty from bias-like  IMU -errors are nearly uncorrelated. Due to its unbound
growth, the east-position error quickly dominates the total position error.
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(a) North position error from accelerometer bias-like errors.
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(b) North position error from gyroscope bias-like errors.
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(c) East position error from accelerometer bias-like errors.
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(d) East position error from gyroscope bias-like errors.

Figure 3.12.: Position error responses to unit-step IMU bias-like errors at 𝜙 = 45° and 𝜓 = 0°.
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Figure 3.13.: Development of the horizontal position covariance from isotropic 1mg accelerometer
(1𝜎) and 0.01 °h−1 (1𝜎) gyroscope bias-like errors at 𝜙 = 45° and 𝜓 = 0°.
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3.3.2.5. Velocity Error from Initial Position and Velocity Errors

The velocity errors from initial position and velocity errors are compiled in  Table D.7 and
 Table D.8 . The corresponding graphs are depicted in  Figure 3.14  and  Figure 3.15  for the north
respectively east velocity error.
As the velocity errors are the time-derivative of the position errors, the higher frequency

oscillations (here, Schuler oscillations) are amplified compared to the slow 24 h oscillations.
Analogously to the position errors, an initial east position error has no effect.
The response to initial velocity errors is a Schuler oscillation, modulated at a 34 h Foucault

period. The initial velocity sets the maximum amplitude of the system’s response. Orthogonal
horizontal velocity errors excite an equal-shaped oscillation where the modulation’s phase is
offset at 90°. A down velocity error (e.g., from baro measurements) has a minor effect on the
other velocity errors, even for a vertically aided strapdown algorithm.
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(b) North velocity error from initial velocity errors.

Figure 3.14.: North velocity error from unit-step initial position and velocity errors at 𝜙 = 45° and
𝜓 = 0°.
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(a) East velocity error from initial position errors.
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(b) East velocity error from initial velocity errors.

Figure 3.15.: East velocity error from unit-step initial position and velocity errors at 𝜙 = 45° and
𝜓 = 0°.
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3.3.2.6. Velocity Error from Initial Alignment Errors

The velocity error response to initial orientation errors is presented in  Table D.9 and  Table D.10 .
As depicted in  Figure 3.16  , an initial roll and pitch error excites both north and east velocity
errors to a modulated Schuler oscillation. An initial tilt leads to a fast error growth in that
direction (e.g., pitch leads to north error) and a 90° phase-shifted reaction in the perpendicular
direction. Similar to the position errors, an initial yaw angle error leads only to a relatively
small velocity error dominated by the Foucault oscillation.
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(a) North velocity error from initial alignment errors.
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(b) East velocity error from initial alignment errors.

Figure 3.16.: Velocity errors from unit-step initial alignment errors at 𝜙 = 45° and 𝜓 = 0°.

3.3.2.7. Velocity Error from from Bias-like IMU Errors

 Table D.11 and  Table D.12 list the north and east velocity errors from bias-like  IMU measure-
ment errors. A graphical depiction of these step responses is given in  Figure 3.17 .
Again, the velocity errors from acceleration biases are described by a Schuler oscillation

modulated at the Foucault period of 34 h (for 𝜙 = 45°). The responses show the already
described phase shift for error inputs on perpendicular axes. Like the position errors, the
velocity errors from gyroscope biases are composed of Schuler and Foucault oscillations. While
the north velocity describes a symmetrical oscillation around zero, the means of the east
velocity errors from 𝜔𝑖𝑏,𝑛 and 𝜔𝑖𝑏,𝑑 are offset.
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(b) North velocity error from gyroscope bias-like errors.
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(c) East velocity error from accelerometer bias-like errors.
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(d) East velocity error from gyroscope bias-like errors.

Figure 3.17.: Velocity error responses to unit-step IMU bias-like errors at 𝜙 = 45° and 𝜓 = 0°.
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3.3.2.8. Orientation Error from Initial Position and Velocity Errors

The step responses of the orientation errors, roll, pitch and yaw, to initialization errors are
listed in Tables  D.13 ,  D.14 and  D.15 . The corresponding plots are presented in  Figure 3.18  and
 Figure 3.19 .
Again, an initial longitude error on the reference ellipsoid has no effect. A latitude error,

however, excites errors in all three orientation angles: Roll and pitch angles are dominated
by the Schuler oscillation modulated with a 24-hour oscillation. In contrast, the yaw angle
oscillation is dominated by the 24-hour oscillation. The orientation errors from velocity errors
are also dominated by the Schuler oscillation, modulated with the 24 hours oscillation.
Except for the yaw angle error from an initial latitude error, the orientation errors from

initialization errors are minimal: An initial latitude error of 1° leads to a maximum roll angle
error of 0.04°, an initial horizontal velocity error of 100m/s leads to a roll angle error of less
than 0.001°. Although the yaw angle error is susceptible to initial latitude errors, the error
growth is relatively slow, reaching the maximum error after 6 hours.
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Figure 3.18.: Yaw angle error from unit-step initialization errors at 𝜙 = 45° and 𝜓 = 0°.
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(a) Roll angle error from initial position errors.
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(b) Roll angle error from initial velocity errors.
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(c) Pitch angle error from initial position errors.
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(d) Pitch angle error from initial velocity errors.

Figure 3.19.: Attitude angle errors from unit-step initialization errors at 𝜙 = 45° and 𝜓 = 0°.
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3.3.2.9. Orientation Error from Initial Alignment Errors

The step responses of the orientation errors to initial orientation errors (alignment errors)
are summarized in Tables  D.16 ,  D.17 and  D.18 . The corresponding plots are presented in

 Figure 3.20 .
An initial displacement of the attitude angles, roll, and pitch lead to a stable Schuler oscil-

lation modulated with the Foucault period. The initial displacement gives the maximum of
these oscillations, which ultimately is the residual leveling error after the vehicle’s alignment.
An initial azimuth error causes only a very small oscillation of the attitude errors.
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(a) Roll angle error from initial alignment errors.
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(b) Pitch angle error from initial alignment errors.
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(c) Yaw angle error from initial alignment errors.

Figure 3.20.: Orientation angle error from unit-step initialization errors at 𝜙 = 45° and 𝜓 = 0°.
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The azimuth angle error’s response to an initial azimuth deflection is a stable 24-hour
oscillation with a small superpose Schuler oscillation. Again, the maximum is given by the
initial azimuth error. An initial roll or pitch angle error also excites the azimuth error to
a 24-hour oscillation, but with a superposed dominant Schuler oscillation. The maximum
azimuth error here is about two times the initial leveling errors.
The development of the orientation error covariance from an isotropic initial uncertainty

is depicted in  Figure 3.21  . From an initially isotropic uncertainty, the uncertainty in each
direction starts oscillating, where the initial covariance limits the maximum amplitude of
the roll and pitch covariance. The azimuth uncertainty, however, reaches a multiple of the
initial amplitude and displays a changing correlation with the roll uncertainty. This correlation
has already been observed for the stationary alignment (  3.2 ), but here it is superposed by the
dynamics of the different attitude angles.
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Figure 3.21.: Development of the attitude covariance over time from 1° (1𝜎) initial alignment error.
All axes are equally scaled.
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3.3.2.10. Orientation Error from Bias-like IMU Errors

The step responses of the orientation errors to bias-like IMU errors are given in the tables of
 Subsection D.1.9 . A graphical representation of these step responses is given in  Figure 3.22  

and  Figure 3.23 .
Again, the roll and pitch angle errors are excited to a Schuler oscillation modulated at the

Foucault rate. The vertical accelerometer bias 𝑓𝑏,𝑧 has no effect in the case of the vertically
fixed, initially aligned vehicle. Compared to the horizontal angular rate biases, the vertical
angular rate bias has little effect. While the azimuth error from bias-like acceleration errors
is a Schuler oscillation modulated by a 24 hours period, the reaction to angular rate bias-like
errors is dominated by the 24-hour oscillation with a small superposed Schuler oscillation.

0 1 2 3 4

0

5

10

Time 𝑡 in (h)

Ya
w

an
gl

e
er

ro
r𝛿
𝛹

in
(°
/ [

m s2
])

6 12 18 24 30 36 42 48

−5

0

5

10

Time 𝑡 in (h)

𝛿𝑓𝑏,𝑛 𝛿𝑓𝑏,𝑒 𝛿𝑓𝑏,𝑑

(a) Yaw angle error from accelerometer bias-like errors.
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(b) Yaw angle error from gyroscope bias-like errors.

Figure 3.22.: Yaw angle error from unit-step IMU bias-like errors at 𝜙 = 45° and 𝜓 = 0°.

Anexample of the resulting covariance fromdifferent sensor biases is presented in  Figure 3.24  .
The accelerometer biases result mainly in an uncertainty in the pitch and roll angles. An
azimuth uncertainty arises only through the correlation between azimuth and roll angle. In the
plots, this is represented by the slightly tilted red disk with varying dimensions. The gyroscope
biases excite mainly the azimuth uncertainty, represented by the slim blue ellipsoid. In addition
to the oscillation in all dimensions, the attitude covariance from gyro biases also rotates around
the azimuth axis, resulting from the phase shift between the step responses of the roll and
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pitch angle errors.
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(a) Roll angle error from accelerometer bias-like errors.
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(b) Roll angle error from gyroscope bias-like errors.
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(c) Pitch angle error from accelerometer bias-like errors.
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(d) Pitch angle error from gyroscope bias-like errors.

Figure 3.23.: Attitude angle error from unit-step IMU bias-like errors at 𝜙 = 45° and 𝜓 = 0°.
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Figure 3.24.: Development of the attitude covariance over time from 1 °/h (1𝜎) gyro bias and 5mg
(1𝜎) accelerometer bias. Roll and pitch angle axes are equally scaled, while the
azimuth axis is depicted at a scale of 0.1 to increase perceptiveness.
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3.3.2.11. Latitude dependency

The vehicle’s latitude has direct effect on the modulation of the Schuler rate which is rep-
resented by ( 3.75 ) and ( 3.76 ). This is caused by Foucault rate’s ( 3.81 ) dependency on the
latitude. Consequently, the Schuler oscillations display no modulyation at the equator, while
the modulation frequency grows towards the Earth’s angular rate at the poles.
In addition to the Foucault rate, also some of the step responses directly depend on the

latitude. The dependencies summarized in  Table 3.2 modify the amplitudes of the three
underlying oscillations and thus alter both shape and amplitude of the total response. The
maximum number of error responses exists at medium latitudes since many responses vanish
at the equator or the poles.

Table 3.2.: Latitude dependency of the strapdown error step responses.

Output state
input 𝛿𝜙 𝛿𝜆 𝛿𝑣𝑛 𝛿𝑣𝑒 𝛿𝛷 𝛿𝛩 𝛿𝛹

𝛿𝜙0 sin2 𝜙 tan𝜙 sin2 𝜙 tan𝜙 sin𝜙 - cos𝜙
𝛿𝜆0 - - - - - - -
𝛿𝑣𝑛,0 - tan𝜙 - tan𝜙 sin𝜙 - tan𝜙 sin𝜙
𝛿𝑣𝑒,0 sin𝜙 sec𝜙 sin𝜙 sec𝜙 - sin𝜙 tan𝜙
𝛿𝑣𝑑,0 sin 2𝜙 - sin 2𝜙 - cos𝜙 sin 2𝜙 sin𝜙
𝛿𝛷0 sin𝜙 sec𝜙 sin𝜙 sec𝜙 - sin𝜙 tan𝜙
𝛿𝛩0 - tan𝜙 - tan𝜙 sin𝜙 - cos𝜙
𝛿𝛹0 cos𝜙 sin𝜙 cos𝜙 sin𝜙 sin 2𝜙 cos𝜙 cos2 𝜙
𝛿𝑓𝑏,𝑥 - tan𝜙 - tan𝜙 sin𝜙 - sin𝜙 tan𝜙
𝛿𝑓𝑏,𝑦 sin𝜙 sec𝜙 sin𝜙 sec𝜙 - sin𝜙 tan𝜙
𝛿𝑓𝑏,𝑧 - - - - - - -
𝛿𝜔𝑖𝑏,𝑥 sin𝜙 sec𝜙 sin𝜙 sec𝜙 - sin𝜙 tan𝜙
𝛿𝜔𝑖𝑏,𝑦 - tan𝜙 - tan𝜙 sin𝜙 - cos𝜙
𝛿𝜔𝑖𝑏,𝑧 cos𝜙 sin𝜙 cos𝜙 sin𝜙 sin 2𝜙 cos𝜙 -
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3.3.3. Response to White Noise Sensor Errors

3.3.3.1. System Response to White Gaussian Noise

A noise-like error on the inertial sensor measurements continuously excites the error dynamics.
In general, noise can bemodeled as a stochastic process. Themost simple case is white Gaussian
noise, fully described by its mean 𝜇 and (co)variance 𝜎.

Again, the system’s output is determined from the convolution of the system’s impulse
response and the white Gaussian noise input (see  Equation 3.70 ):

𝑢(𝑡) ∼ 𝒩(𝜇ᵆ, 𝜎 ) (3.85)

White Gaussian noise is a stationary process. Consequently, the variance is constant over time.
The expected value of the system’s output is simply the step response scaled by the input’s
expected value:

𝜇𝑦(𝑡) = 𝐸 [𝑦(𝑡)] = 𝐸 [∫
𝑡

0
𝑔(𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏] = 𝜇ᵆ,𝜈∫

𝑡

0
𝑔(𝜏)𝑑𝜏 = 𝜇ᵆ,𝜈ℎ(𝑡) (3.86)

For the following analysis only zero-mean  WGN is considered as noise input, since any non-
zero means are already treated as bias-like input. The zero-mean white Gaussian noise input
(𝜇ᵆ = 0) results in a zero-mean output 𝜇𝑦(𝑡) = 0. By definition, the autocovariance of white
noise is zero for any two different evaluation times 𝜏 ≠ 𝜌 and the variance 𝜎2ᵆ if 𝜏 = 𝜌. In the
scalar case, the variance of the output signal at time 𝑡 due to  WGN input of variance expressed
as the  Angular RandomWalk (ARW) / Velocity RandomWalk (VRW) coefficient 𝜎2ᵆ = 𝑁2

ᵆ (see
 Table 2.7 ) is given as:

𝜎2𝑦(𝑡) = 𝐸 [𝑦(𝑡)2] − 𝜇2𝑦⏟
=0

= 𝐸[∫
𝑡

0
𝑔(𝑡 − 𝜌)𝑢(𝜌)𝑑𝜌∫

𝑡

0
𝑔(𝑡 − 𝜏)𝑢(𝜏)𝑑𝜏]

= 𝐸 [∫
𝑡

0
∫

𝑡

0
𝑔(𝑡 − 𝜌)𝑢(𝜌)𝑢(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜌𝑑𝜏]

= ∫
𝑡

0
∫

𝑡

0
𝑔(𝑡 − 𝜌) 𝐸[𝑢(𝜌)𝑢(𝜏)]⏟⎵⎵⏟⎵⎵⏟

𝑁2
𝑢𝛿(𝜌−𝜏)

𝑔(𝑡 − 𝜏)𝑑𝜌𝑑𝜏

= 𝑁2
ᵆ ∫

𝑡

0
∫

𝑡

0
𝑔(𝑡 − 𝜌)𝛿(𝜌 − 𝜏)𝑔(𝑡 − 𝜏)𝑑𝜌𝑑𝜏

= 𝑁2
ᵆ ∫

𝑡

0
𝑔2(𝑡 − 𝜏)𝑑𝜏

⏟⎵⎵⎵⏟⎵⎵⎵⏟
𝑘(𝑡)

(3.87)
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Again, this expression can be expanded to the multivariate case

𝐏𝑦𝑦(𝑡) = ∫
𝑡

0

⎡
⎢
⎢
⎢
⎢
⎣

𝑔1,1(𝑡 − 𝜏) … 𝑔1,𝑚(𝑡 − 𝜏)

⋮ ⋮

𝑔𝑛,1(𝑡 − 𝜏) … 𝑔𝑛,𝑚(𝑡 − 𝜏)

⎤
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝐆

𝐍ᵆᵆ

⎡
⎢
⎢
⎢
⎢
⎣

𝑔1,1(𝑡 − 𝜏) … 𝑔1,𝑛(𝑡 − 𝜏)

⋮ ⋮

𝑔𝑚,1(𝑡 − 𝜏) … 𝑔𝑚,𝑛(𝑡 − 𝜏)

⎤
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝐆⊺

𝑑𝜏 (3.88)

whith the input noise covariance matrix𝐍ᵆᵆ.
The impulse response functions in frequency and time domain for the linearized strapdown

error dynamics ( 3.55 ) are listed inAnnex  D.2 . Analog to step responses that have been discussed
in the previous section, the impulse responses of the linearized strapdown error dynamics are
a superposition of harmonic oscillations at the modified Schuler rates 𝜔𝑠+ ( 3.76 ), 𝜔𝑠− ( 3.76 )
and the Earth angular rate 𝜔𝑖𝑒.
The most general form of these impulse responses in the time domain is one of the functions

𝑔𝑎,sin(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2 sin(𝜔𝑠−𝑡) + 𝑎3 sin(𝜔𝑠+𝑡) + 𝑎4 sin(𝜔𝑖𝑒𝑡) (3.89)

𝑔𝑎,cos(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2 cos(𝜔𝑠−𝑡) + 𝑎3 cos(𝜔𝑠+𝑡) + 𝑎4 cos(𝜔𝑖𝑒𝑡) (3.90)

where the coefficients 𝑎0 and 𝑎4 are zero for many functions. For these forms, a general analytic
solution of the required integral can be given for any combination of sine and cosine based
step responses 𝑔𝑎(𝑡) and 𝑔𝑏(𝑡) in equation ( 3.87 ).
For two sine-based impulse responses this solution is:

𝑘(𝑡) = ∫
𝑡

0
𝑔𝑎,𝑠𝑖𝑛(𝑡 − 𝜏)𝑔𝑏,𝑠𝑖𝑛(𝑡 − 𝜏)𝑑𝜏

= (𝑎0𝑏0 +
𝑎2𝑏2 + 𝑎3𝑏3 + 𝑎4𝑏4

2 ) 𝑡 + (𝑎0𝑏1 + 𝑎1𝑏0) 𝑡2 + 𝑎1𝑏1𝑡3

−
𝑎2𝑏3 + 𝑏2𝑎3
2(𝜔𝑠− + 𝜔𝑠+)

sin ((𝜔𝑠− + 𝜔𝑠+)𝑡) −
𝑎2𝑏4 + 𝑏2𝑎4
2(𝜔𝑠− + 𝜔𝑖𝑒)

sin ((𝜔𝑠− + 𝜔𝑖𝑒)𝑡)

−
𝑎3𝑏4 + 𝑏3𝑎4
2(𝜔𝑠+ + 𝜔𝑖𝑒)

sin ((𝜔𝑠+ + 𝜔𝑖𝑒)𝑡) +
𝑎2𝑏3 + 𝑏2𝑎3
2(𝜔𝑠− − 𝜔𝑠+)

sin ((𝜔𝑠− − 𝜔𝑠+)𝑡)

+ 𝑎2𝑏4 + 𝑏2𝑎4
2(𝜔𝑠− − 𝜔𝑖𝑒)

sin ((𝜔𝑠− − 𝜔𝑖𝑒)𝑡) +
𝑎3𝑏4 + 𝑏3𝑎4
2(𝜔𝑠+ − 𝜔𝑖𝑒)

sin ((𝜔𝑠+ − 𝜔𝑖𝑒)𝑡)

− 𝑎2𝑏2
4𝜔𝑠−

sin(2𝜔𝑠−𝑡) −
𝑎3𝑏3
4𝜔𝑠+

sin(2𝜔𝑠+𝑡) −
𝑎4𝑏4
4𝜔𝑖𝑒

sin(2𝜔𝑖𝑒𝑡)

+ 2
𝑎0𝑏2 + 𝑏0𝑎2 + (𝑎1𝑏2 + 𝑏1𝑎2) 𝑡

𝜔𝑠−
sin (

𝜔𝑠−
2 𝑡)

+ 2
𝑎0𝑏3 + 𝑏3𝑎0 + (𝑎1𝑏3 + 𝑏1𝑎3) 𝑡

𝜔𝑠+
sin (

𝜔𝑠+
2 𝑡)

+ 2
𝑎0𝑏4 + 𝑏4𝑎0 + (𝑎1𝑏4 + 𝑏1𝑎4) 𝑡

𝜔𝑖𝑒
sin (

𝜔𝑖𝑒
2 𝑡)

(3.91)
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For the integral over mixed sine and cosine-based impulse responses, the analytical solution
is given as:

𝑘(𝑡) = ∫
𝑡

0
𝑔𝑎,𝑠𝑖𝑛(𝑡 − 𝜏)𝑔𝑏,𝑐𝑜𝑠(𝑡 − 𝜏)𝑑𝜏

= 𝑏0 (
𝑎2
𝜔𝑠−

+
𝑎3
𝜔𝑠+

+ 𝑎4
𝜔𝑖𝑒

) −
𝜔𝑠+𝑏2𝑎3 − 𝜔𝑠−𝑎2𝑏3

𝜔2𝑠− − 𝜔2𝑠+
−
𝜔𝑖𝑒𝑏2𝑎4 − 𝜔𝑠−𝑎2𝑏4

𝜔2𝑠− − 𝜔2𝑖𝑒
−
𝜔𝑖𝑒𝑏3𝑎4 − 𝜔𝑠+𝑎3𝑏4

𝜔2𝑠+ − 𝜔2𝑖𝑒

+ (𝑎0𝑏0 +
𝑎2𝑏1
𝜔𝑠−

+
𝑎3𝑏1
𝜔𝑠+

+ 𝑎4𝑏1
𝜔𝑖𝑒

) 𝑡 + (𝑎0𝑏1 + 𝑎1𝑏0) 𝑡2 + 𝑎1𝑏1𝑡3

+
(𝜔𝑠+𝑏2𝑎3 − 𝜔𝑠−𝑎2𝑏3) cos(𝜔𝑠−𝑡) cos(𝜔𝑠+𝑡) + (𝜔𝑠−𝑏2𝑎3 − 𝜔𝑠+𝑎2𝑏3) sin(𝜔𝑠−𝑡) sin(𝜔𝑠+𝑡)

𝜔2𝑠− − 𝜔2𝑠+

+
(𝜔𝑖𝑒𝑏2𝑎4 − 𝜔𝑠−𝑎2𝑏4) cos(𝜔𝑠−𝑡) cos(𝜔𝑖𝑒𝑡) + (𝜔𝑠−𝑏2𝑎4 − 𝜔𝑖𝑒𝑎2𝑏4) sin(𝜔𝑠−𝑡) sin(𝜔𝑖𝑒𝑡)

𝜔2𝑠− − 𝜔2𝑖𝑒

+
(𝜔𝑖𝑒𝑏3𝑎4 − 𝜔𝑠+𝑎3𝑏4) cos(𝜔𝑠+𝑡) cos(𝜔𝑖𝑒𝑡) + (𝜔𝑠+𝑏3𝑎4 − 𝜔𝑖𝑒𝑎3𝑏4) sin(𝜔𝑠+𝑡) sin(𝜔𝑖𝑒𝑡)

𝜔2𝑠+ − 𝜔2𝑖𝑒

+
𝑎0𝑏2 + 𝑎1𝑏2𝑡

𝜔𝑠−
sin(𝜔𝑠−𝑡) +

𝑎0𝑏3 + 𝑎1𝑏3𝑡
𝜔𝑠+

sin(𝜔𝑠+𝑡) +
𝑎0𝑏4 + 𝑎1𝑏4𝑡

𝜔𝑖𝑒
sin(𝜔𝑖𝑒𝑡)

−
𝑎2𝑏0 + 𝑎2𝑏1𝑡

𝜔𝑠−
cos(𝜔𝑠−𝑡) −

𝑎3𝑏0 + 𝑎3𝑏1𝑡
𝜔𝑠+

cos(𝜔𝑠+𝑡) −
𝑎4𝑏0 + 𝑎4𝑏1𝑡

𝜔𝑖𝑒
cos(𝜔𝑖𝑒𝑡)

+ 𝑎2𝑏2
2𝜔𝑠−

sin(𝜔𝑠−𝑡)
2 +

𝑎3𝑏3
2𝜔𝑠+

sin(𝜔𝑠+𝑡)
2 + 𝑎4𝑏4

2𝜔𝑖𝑒
sin(𝜔𝑖𝑒𝑡)2

(3.92)

The integral over two cosine-based impulse responses is:

𝑘(𝑡) = ∫
𝑡

0
𝑔𝑎,𝑐𝑜𝑠(𝑡 − 𝜏)𝑔𝑏,𝑐𝑜𝑠(𝑡 − 𝜏)𝑑𝜏

= (𝑎0𝑏0 +
𝑎2𝑏2 + 𝑎3𝑏3 + 𝑎4𝑏4

2 ) 𝑡 + (𝑎0𝑏1 + 𝑎1𝑏0) 𝑡2 + 𝑎1𝑏1𝑡3

+
𝑎2𝑏3 + 𝑏2𝑎3
2(𝜔𝑠− + 𝜔𝑠+)

sin ((𝜔𝑠− + 𝜔𝑠+)𝑡) +
𝑎2𝑏4 + 𝑏2𝑎4
2(𝜔𝑠− + 𝜔𝑖𝑒)

sin ((𝜔𝑠− + 𝜔𝑖𝑒)𝑡)

+
𝑎3𝑏4 + 𝑏3𝑎4
2(𝜔𝑠+ + 𝜔𝑖𝑒)

sin ((𝜔𝑠+ + 𝜔𝑖𝑒)𝑡) +
𝑎2𝑏3 + 𝑏2𝑎3
2(𝜔𝑠− − 𝜔𝑠+)

sin ((𝜔𝑠− − 𝜔𝑠+)𝑡)

+ 𝑎2𝑏4 + 𝑏2𝑎4
2(𝜔𝑠− − 𝜔𝑖𝑒)

sin ((𝜔𝑠− − 𝜔𝑖𝑒)𝑡) +
𝑎3𝑏4 + 𝑏3𝑎4
2(𝜔𝑠+ − 𝜔𝑖𝑒)

sin ((𝜔𝑠+ − 𝜔𝑖𝑒)𝑡)

+ 𝑎2𝑏2
4𝜔𝑠−

sin(2𝜔𝑠−𝑡) +
𝑎3𝑏3
4𝜔𝑠+

sin(2𝜔𝑠+𝑡) +
𝑎4𝑏4
4𝜔𝑖𝑒

sin(2𝜔𝑖𝑒𝑡)

+
𝑎0𝑏2 + 𝑏0𝑎2 + (𝑎1𝑏2 + 𝑏1𝑎2) 𝑡

𝜔𝑠−
sin (𝜔𝑠−𝑡)

+
𝑎0𝑏3 + 𝑏3𝑎0 + (𝑎1𝑏3 + 𝑏1𝑎3) 𝑡

𝜔𝑠+
sin (𝜔𝑠+𝑡)

+
𝑎0𝑏4 + 𝑏4𝑎0 + (𝑎1𝑏4 + 𝑏1𝑎4) 𝑡

𝜔𝑖𝑒
sin (𝜔𝑖𝑒𝑡)

(3.93)
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The error variance from white Gaussian noise on the inertial sensor measurements has been
determined using the above expressions. Analog to the previous section, the following graphs
have been transformed to north and south position errors, and all angles have been converted
to degrees.

3.3.3.2. Position Variance from White Gaussian Sensor Noise

Using the impulse responses from  Table D.25 and  Table D.27 with equations ( 3.91 ) to ( 3.93 ),
the growth of the position variances is calculated. The resulting error growth is depicted in

 Figure 3.25 .
The variances show a linear growth with superposed oscillations at the Schuler and the

24-hour period. In constrast to the deterministic errors, the position error from sensor noise is
not bound. A noise input on the north acceleration measurement leads to initial solid growth
of the north position uncertainty compared to the east error and vice versa for east acceleration
measurements. As observed before, a down-oriented acceleration measurement does not affect
the vertically fixed strapdown propagation. Similar behavior can be observed for position
uncertainty from gyroscope white noise. It is worth noting that noise on the vertical angular
rate measurement leads to an error growth of the same magnitude as the horizontal gyroscope
measurements.
The development of the horizontal position covariance from white Gaussian sensor noise

is depicted in  Figure 3.26 . For isotropic sensor errors, the specific forces noise results in a
continuously growing position uncertainty without correlation between the north and east
position error (red circle). The gyroscope noise, however, results in a varying correlation
between north and east position errors.

3.3.3.3. Velocity Variance from White Gaussian Sensor Noise

Analogously to the positoin errors, the velocity variance from sensor noise is determined from
the impulse responses tabulated in  Table D.29 and  Table D.31 . The growth of the velocity errors’
variances over time is depicted in  Figure 3.27  . Similar to the position errors, the velocity errors’
variances display linear growth, with superposed Schuler and 24-hour oscillations. Although
hardly visible, the velocity error variances from 𝛿𝜔𝑖𝑏,𝑑 display similar behavior as the other
graphs, but at a two magnitudes smaller scale.
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(a) North position error variance from accelerometer velocity random walk input.
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(b) North position error variance from gyroscope angle random walk input.
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(c) East position error variance from accelerometer velocity random walk input.
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(d) East position error variance from gyroscope angle random walk input.

Figure 3.25.: Position error variance from unit noise-density white Gaussian noise IMU errors at
𝜙 = 45° and 𝜓 = 0°.
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Figure 3.26.: Development of the horizontal position covariance from isotropic 1mg/√Hz ac-
celerometer and 0.0017 °/√h gyroscope random walk at 𝜙 = 45° and 𝜓 = 0°.
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(a) North velocity error variance from accelerometer velocity random walk input.
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(b) North velocity error variance from gyroscope angle random walk input.
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(c) East velocity error variance from accelerometer velocity random walk input.
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(d) East velocity error variance from gyroscope angle random walk input.

Figure 3.27.: Velocity error variance from unit noise-density white Gaussian noise IMU errors at
𝜙 = 45° and 𝜓 = 0°.
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3.3.3.4. Orientation Variance from White Gaussian Sensor Noise

Analog to the previous section , the orientation angle error variances have been determined
from the impulse responses that are given in  Table D.33 ,  Table D.35 and  Table D.37 . The
respective plots of the position uncertainty are given in  Figure 3.28 and  Figure 3.29 .
All orientation angles react to accelerometer and gyroscope noise in a very similar way.

White noise input on the vertical gyroscope measurement creates low uncertainty on the roll
and pitch angle errors compared to the other axes. The yaw angle variance, however, grows
similarly fast from vertical gyro noise as from the other sensor axes and, in general, almost
twice as fast as the roll and pitch error variance.
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(a) Yaw angle error variance from accelerometer velocity random walk input.
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(b) Yaw angle error variance from gyroscope angle random walk input.

Figure 3.28.: Yaw error variance from unit noise-density white Gaussian noise IMU errors at 𝜙 = 45°
and 𝜓 = 0°.

The covariance arising from the above-determined responses to White Gaussian noise is
depicted in  Figure 3.30  for an exemplary set of random walk coefficients. The covariance
ellipsoids fromaccelerometer and gyroscope noise display a primarily linear growth, as expected
from  Figure 3.29 . Roll and pitch errors are nearly uncorrelated, while roll and yaw angles
display a constant correlation.
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(a) Roll angle error variance from accelerometer velocity random walk input.
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(b) Roll angle error variance from gyroscope angle random walk input.
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(c) Pitch angle error variance from accelerometer velocity random walk input.

0 1 2 3 4
0

2,000

4,000

6,000

Time 𝑡 in (h)

Pi
tc

h
an

gl
e

va
ria

nc
e
𝜎2 𝛿𝛩

in
(°

2 /
[

°

s√
H
z]

2 )

6 12 18 24 30 36 42 48
0

2

4

⋅104

Time 𝑡 in (h)

𝛿𝜔𝑖𝑏,𝑛 𝛿𝜔𝑖𝑏,𝑒 𝛿𝜔𝑖𝑏,𝑑

(d) Pitch angle error variance from gyroscope angle random walk input.

Figure 3.29.: Attitude error variance from unit noise-density white Gaussian noise IMU errors at
𝜙 = 45° and 𝜓 = 0°.
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Figure 3.30.: Development of the attitude covariance from isotropic 25mg/√Hz accelerometer
and 0.125 °/√h gyroscope random walk at 𝜙 = 45° and 𝜓 = 0°. All axes are equally
scaled.
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3.3.4. Response to Colored Noise Sensor Errors

The response to white noise has been demonstrated in the last section. As alread pointed out in
 Subsection 2.3.3  , real sensor noise is colored (time-correlated) instead of white. The author has
published the following analysis of the colored noise in strapdown inertial navigation in [  74 ].
For consistency with the previous chapter, the published results from [  74 ] are extended

by the velocity and orientation errors’ responses to colored noise. This analysis sticks to the
alread presented IEEE conventions (  Table 2.7 ) to describe the inertial sensor noise processes. A
comparison of these conventions with other publications can be found in, e.g., [  10 , p. 72]. The
processes defined for angular rate measurements here can be used analogously for acceleration
measurements.
Angular random walk is actually white Gaussian noise in the rates, which has alread been

discussed in the previous section  3.3.3.1 . Using a transfer function 𝐺(𝑓) that transforms
unit- PSD white noise into the respective colored noise, the other sensor noise processes can be
modeled. For a (wide-sense) stationary stochastic process, theWiener-Khinchin theorem states
that the  PSD of an output signal is the squared magnitude of the system’s transfer function
times the input’s  PSD [ 75 , p. 129]:

𝑆𝑦(𝑓) = |𝐺(𝑓)|2𝑆𝑥(𝑓) (3.94)

The desired noise processes from  Table 2.7  can thus be created from white Gaussian noise if a
suitable shaping filter with transfer function 𝐺(𝑠) exists. The design of the shaping filter for
each noise process and the resulting navigation errors will be discussed in the following.

3.3.4.1. Quantization Noise

Quantization noise is the time-derivative of white noise, which results in a quadratically
increasing  PSD (violet noise) as defined in  Table 2.7 . Using the Fourier transform rules [  72 ,
p. 1083], the auto-covariance of such noise is given by the second time derivative of the Dirac
delta function:

𝐸 [𝑢(𝜌)𝑢(𝜏)] = ̈𝛿(𝜌 − 𝜏) (3.95)

Inserting definition ( 3.95 ) into ( 3.87 ), the variance of the navigation errors from quantization
noise is given by the squared impulse response function 𝑔(𝑡) (see  Section D.2 ):

𝜎2𝑄(𝑡) = 𝑄2𝜏0𝑔2(𝑡) (3.96)

As defined in  Table 2.7 , the quantization noise is not only scaled by the coefficient𝑄 but also by
the sample rate. The resulting variances of the navigation errors are presented in  Figure 3.31 

to  Figure 3.34  . Due to the time-derivative character of the input noise, the resulting variances
differ from the results of the other noise processes.
An interesting and counter-intuitive effect can be observed in the velocity and orientation
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errors: Some navigation error responses have an initial value of 1 instead of the expected
zero initial value. This can be explained by the characteristics of quantization noise, which
describes a quantized measurement of the integrated sizes (angle increments and velocity).
Consequently, the input noise is already defined in the same level of integration as the output
error, e.g., velocity or orientation errors. Of course, the initial value is defined as zero in a
time-discrete scenario, and the variance will jump when progressing to the second time step.
Note that the effect of quantization noise strongly depends on the actual implementation of

the strapdown algorithm and the chosen integration scheme. A high-order integration scheme,
for example, may require intermediate time steps, and integrating over these intermediate
time steps can counter-act the derivative nature of quantization noise and result in a response
similar to the response to white noise. This effect has been observed when using a 4𝑡ℎ order
Runge-Kutta integration scheme that outputs navigation states at half the input rates.
Furthermore, this analysis relies on the assumption of purely stochastic nature of quantiza-

tion noise which is not necessarily met in practice. A discussion of this problem and a detailed
analysis of quantization noise in strapdown inertial navigation is given by Savage in [  76 ]. That
work also considers the effect of multi-frequency algorithms and methods to compensate for
quantization noise.
Due to the taken assumptions and the above-discussed dependence on the strapdown im-

plementation, the presented results cannot be considered as general as the results for the
other noise types. Especially the boundedness of the presented variance curves is a result of
the chosen analysis approach. It must not be taken for granted for any other combination
sample-rate and integration scheme, especially in real-world quantization noise.
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(a) North position error variance from accelerometer quantization noise input.
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(b) North position error variance from gyroscope quantization noise input.
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(c) East position error variance from accelerometer quantization noise input.
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(d) East position error variance from gyroscope quantization noise input.

Figure 3.31.: Position error variance from quantization noise IMU errors normalized to the quanti-
zation noise coefficient 𝑄 and 𝜏0 = 1 s at 𝜙 = 45° and 𝜓 = 0°.
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(a) North velocity error variance from accelerometer quantization noise input.
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(b) North velocity error variance from gyroscope quantization noise input.
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(c) East velocity error variance from accelerometer quantization noise input.
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(d) East velocity error variance from gyroscope quantization noise input.

Figure 3.32.: Velocity error variance from quantization noise IMU errors normalized to the quanti-
zation noise coefficient 𝑄 and 𝜏0 = 1 s at 𝜙 = 45° and 𝜓 = 0°.
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(a) Roll angle error variance from accelerometer quantization noise input.
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(b) Roll angle error variance from gyroscope quantization noise input.
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(c) Pitch angle error variance from accelerometer quantization noise input.
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(d) Pitch angle error variance from gyroscope quantization noise input.

Figure 3.33.: Attitude error variance from quantization noise IMU errors normalized to the quanti-
zation noise coefficient 𝑄 and 𝜏0 = 1 s at 𝜙 = 45° and 𝜓 = 0°.

99



Chapter 3. Strapdown Inertial Navigation Error Propagation

0 1 2 3 4
0

2

4

⋅10−5

Time 𝑡 in (h)

Ya
w

an
gl

e
va

ria
nc

e
𝜎2 𝛿𝛹

in
(°

2 /
[m
s
]2 )

6 12 18 24 30 36 42 48
0

2

4

⋅10−5

Time 𝑡 in (h)

𝛿𝑓𝑏,𝑛 𝛿𝑓𝑏,𝑒 𝛿𝑓𝑏,𝑑

(a) Yaw angle error variance from accelerometer quantization noise input.
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(b) Yaw angle error variance from gyroscope quantization noise input.

Figure 3.34.: Heading error variance from quantization noise IMU errors normalized to the quanti-
zation noise coefficient 𝑄 and 𝜏0 = 1 s at 𝜙 = 45° and 𝜓 = 0°.

3.3.4.2. Bias Instability

As described in  Table 2.7 , bias instability is a flicker noise process with a theoretical sharp
cut-off at the frequency 𝑓𝑐𝑜. Looking at the defining  PSD of flicker noise, the transfer function
that generates flicker noise from a white noise input can be identified to

𝐺𝐹𝑁(𝑠) =
1
√𝑠

(3.97)

This irrational transfer function poses several problems, that have been widely discussed in the
context of power law noise generation [  77 ,  78 ,  79 ]. Although the transfer function and impulse
response for power law noise  PSD 𝑆(𝑓) = 𝑓−𝛼 can be given analytically as

𝐺(𝑠) = 1
𝑠𝛼/2

(3.98)

𝑔(𝑡) = 𝑡𝛼/2−1

𝛤(𝛼/2)
(3.99)
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these impulse responses cannot be used to predict the system’s output variance for odd and
non-integer values of 𝛼, which results in an irrational transfer function [  78 ]. Irrational transfer
functions do not correspond to a finite state linear filter [  78 ], consequently they are not fully
described by their impulse response (in contrast to  LTI systems) and equation ( 3.70 ) does not
hold anymore. Furthermore, the impulse response for flicker noise (𝛼 = 1) is undefined at
𝑡 = 0.

Traditionally, flicker noise is approximated by  Linear Time-Invariant (LTI) systems, e.g.,
by a set of multiple linear filters [ 80 ]. Still, this  ARMA model approach is only a rough
approximation. The longer the observation time, the more poles are required to keep the
desired level of approximation. The high number of terms required also prevents a practical
analytical treatment. Therefore, a different approach will be used within this thesis.

As mentioned before, the continuous-time impulse response does not fully describe the
irrational transfer function. However, Kasdin [  78 ] presents a method that creates a discrete-
time impulse response accurately representing power-law noise over the entire time range of
interest. The impulse response can be determined from the following recursive relation [  78 ]:

𝑔𝐹𝑁[0] = 1

𝑔𝐹𝑁[𝑘] = (𝑘 − 1 − 𝛼
2 )

𝑔[𝑘 − 1]
𝑘

(3.100)

Originally, this impulse response was used to create power law noise in a batch process, by
convoluting it with a time-discrete white Gaussian noise input:

𝑥[𝑘] =
𝑘−1

∑
𝑙=0

𝑔[𝑘 − 𝑙]𝑤[𝑙] (3.101)

Within this thesis, the impulse response is used to determine the variance of the system’s
response to flicker noise, respectively bias instability input. First, the flicker noise 𝑔𝐹𝑁[𝑘] is
convoluted with a simple 1st order low-pass filter impulse response 𝑔𝑐[𝑘] to approximate the
bias instability’s cutoff:

𝑔𝐵,in[𝑘] =
𝑘−1

∑
𝑙=0

𝑔𝑐[𝑘 − 𝑙] 𝑔𝐹𝑁[𝑙] (3.102)

with the bias instability coefficient 𝐵 and the low-pass filter’s impulse response, given by

𝑔𝑐[𝑘] = 𝜏0
𝑒−

𝑘𝜏0
𝑇𝑐

𝑇𝑐
(3.103)

with the time constant 𝑇𝑐 and sample time 𝜏0. As illustrated in  Figure 3.35  , there is only a little
difference in the Allan variances for the first-order low-pass and the ideal sharp cutoff. The
low-pass approximation shifts the Allan variance plot slightly to higher cluster times.

The resulting bias instability impulse response 𝑔𝐵[𝑘] is then convoluted with the strapdown

101



Chapter 3. Strapdown Inertial Navigation Error Propagation

10−4 10−3 10−2 10−1 100 101
10−4

100

104

cutoff

Frequency 𝑓 in (Hz)

PS
D
𝑆 𝜔

𝑖𝑏
in
(°
2 /
s2
/H
z )

ideal cutoff low-pass

(a) Power spectral density.

10−2 10−1 100 101 102 103
10−6

10−3

100

cutoff

Cluster time 𝜏 in (s)

Al
la

n
de

vi
at

io
n
𝜎 A

V
in
(°
/s
) ideal cutoff low-pass

(b) Allan deviation.

Figure 3.35.: Comparison of ideal cutoff and low-pass filter approximation of bias instability noise
for a cut-off frequency 𝑓𝑐 = 0.1Hz.

error dynamic’s impulse responses 𝑔[𝑘]:

𝑔𝐵[𝑘] =
𝑘−1

∑
𝑙=0

𝑔[𝑘 − 𝑙] 𝑔𝐵,in[𝑙] (3.104)

where 𝑔[𝑘] can be obtained from the continuous step response 𝑔(𝑡) as:

𝑔[𝑘] = 𝜏0𝑔(𝑡) (3.105)

Finally, the output’s variance is determined as [ 78 ]:

𝜎2𝐾[𝑘] = 𝐵2
𝑘−1

∑
𝑙=0

𝑔𝐵[𝑙]2
⏟⎵⎵⏟⎵⎵⏟

𝐾[𝑘]

(3.106)

This allows the creation of plots analogous to the other noise processes. The strapdown system’s
output variance normalized for the bias instability coefficient 𝐵 and a cut-off frequency of
𝑓𝑐 = 1 ⋅ 10−3Hz is depicted in  Figure 3.36  to  Figure 3.39  . The cut-off frequency 𝑓𝑐 has been
selected to represent the range of available systems from about 1 ⋅ 10−2Hz to 1 ⋅ 10−4Hz [ 81 ,

 82 ,  83 ,  84 ]. The small effect of the cut-off frequency on the resulting navigation errors is
demonstrated in [ 74 ].
As expected, the dominance of long-wavelength components in the bias instability transfers

into the navigation errors. For most cases, the responses to the respective horizontal sensor
inputs are phase-shifted by 90°. An exception is the position errors from gyroscope noise,
where the angular rates about the north-pointing and the down-pointing axes yield similar
error growth.
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(a) North position error variance from accelerometer bias instability input.
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(b) North position error variance from gyroscope bias instability input.
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(c) East position error variance from accelerometer bias instability input.
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(d) East position error variance from gyroscope bias instability input.

Figure 3.36.: Position error variance from bias instability IMU errors normalized to the bias instability
coefficient 𝐵 and a cutoff time of 𝑇𝑐 = 1000𝑠 at 𝜙 = 45° and 𝜓 = 0°.
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(a) North velocity error variance from accelerometer bias instability input.
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(b) North velocity error variance from gyroscope bias instability input.
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(c) East velocity error variance from accelerometer bias instability input.
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(d) East velocity error variance from gyroscope bias instability input.

Figure 3.37.: Velocity error variance from bias instability IMU errors normalized to the bias instability
coefficient 𝐵 and a cut-off time of 𝑇𝑐 = 1000𝑠 at 𝜙 = 45° and 𝜓 = 0°.
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(a) Roll angle error variance from accelerometer bias instability input.
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(b) Roll angle error variance from gyroscope bias instability input.
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(c) Pitch angle error variance from accelerometer bias instability input.
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(d) Pitch angle error variance from gyroscope bias instability input.

Figure 3.38.: Attitude error variance from bias instability IMU errors normalized to the bias instability
coefficient 𝐵 and a cut-off time of 𝑇𝑐 = 1000𝑠 at 𝜙 = 45° and 𝜓 = 0°.
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(a) Yaw angle error variance from accelerometer bias instability inputbias instability input.
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(b) Yaw angle error variance from gyroscope bias instability input.

Figure 3.39.: Heading error variance from bias instability IMU errors normalized to the bias instability
coefficient 𝐵 and a cut-off time of 𝑇𝑐 = 1000𝑠 at 𝜙 = 45° and 𝜓 = 0°.
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3.3.4.3. Rate and Acceleration Random Walk

For rate randomwalk, the corresponding transfer function can be easily determined, as the rate
random walk signal is integrated white noise. The modified impulse response that represents
the system’s response to rate random walk yields:

𝐺𝐾(𝑠) =
1
𝑠𝐺(𝑠) (3.107)

𝑔𝐾(𝑡) = ∫
𝑡

0
𝑔(𝜏)𝑑𝜏 (3.108)

This can be easily calculated analytically from the tabulated impulse responses in Annex  D.2 .
Using ( 3.91 ) to ( 3.93 ), the variance can be determined analytically:

𝜎2𝐾(𝑡) = 𝐾2∫
𝑡

0
𝑔2𝐾(𝑡 − 𝜏)𝑑𝜏 (3.109)

The resulting position error variance from rate and acceleration random walk is depicted in
 Figure 3.40 . From its  PSD , it is evident that the lower frequency components dominate rate
random walk. The effect of this can be easily observed in the navigation error variances. The
resulting curves display a rather long wavelength behavior compared to the white noise case.
Interestingly, the introduction of rate random walk noise creates, respectively, increases the
divergence of the response to different input axis.
Similar behavior can be observed for the velocity errors, depicted in  Figure 3.41  . Here, the

divergence of responses to excitation of different axes is observed only for the gyro errors.
The orientation error responses to the rate and acceleration random walk are presented in

 Figure 3.42 and  Figure 3.43 . Again, a divergence of the response to different input axis was
introduced for accelerometer noise. The introduction of rate randomwalk errors mainly affects
the yaw angle errors, where the higher-frequency dynamics are attenuated, and the error
variances are dominated by the 24 h oscillation superposed on linear growth.
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(a) North position error variance from accelerometer acceleration random walk input.
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(b) North position error variance from gyroscope rate random walk input.
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(c) East position error variance from accelerometer acceleration random walk input.
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(d) East position error variance from gyroscope rate random walk input.

Figure 3.40.: Position error variance from rate random walk IMU errors normalized for the rate
random walk coefficient 𝐾 at 𝜙 = 45° and 𝜓 = 0°.
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(a) North velocity error variance from accelerometer acceleration random walk input.
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(b) North velocity error variance from gyroscope rate random walk input.
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(c) East velocity error variance from accelerometer acceleration random walk input.

0 1 2 3 4
0

1

2

⋅1014

Time 𝑡 in (h)

Ea
st

ve
l.

va
ria

nc
e
𝜎2 𝛿𝑣

𝑒

in
(m

2 /
s2
/ [

°

s2
√
H
z]

2 )

6 12 18 24 30 36 42 48
0

1

2

⋅1015

Time 𝑡 in (h)

𝛿𝜔𝑖𝑏,𝑛 𝛿𝜔𝑖𝑏,𝑒 𝛿𝜔𝑖𝑏,𝑑

(d) East velocity error variance from gyroscope rate random walk input.

Figure 3.41.: Velocity error variance from rate random walk IMU errors normalized for the rate
random walk coefficient 𝐾 at 𝜙 = 45° and 𝜓 = 0°.
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(a) Yaw angle error variance from accelerometer acceleration random walk input.
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(b) Yaw angle error variance from gyroscope rate random walk input.

Figure 3.42.: Heading error variance from rate random walk IMU errors normalized for the rate
random walk coefficient 𝐾 at 𝜙 = 45° and 𝜓 = 0°.
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(a) Roll angle error variance from accelerometer acceleration random walk input.
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(b) Roll angle error variance from gyroscope rate random walk input.
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(c) Pitch angle error variance from accelerometer acceleration random walk input.
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(d) Pitch angle error variance from gyroscope rate random walk input.

Figure 3.43.: Attitude error variance from rate random walk IMU errors normalized for the rate
random walk coefficient 𝐾 at 𝜙 = 45° and 𝜓 = 0°.
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3.3.4.4. Rate Ramp Noise

Following the IEEE standards [ 10 ], rate ramp noise is described as a linear growing drift in the
rate output for finite but considerably long time:

𝛿𝜔(𝑡) = 𝑅𝑡 (3.110)

Thus, for a finite time, rate ramp noise is rather deterministic than stochastic and must not be
confused with integrated flicker noise that has the same  PSD and Allan variance characteristics.
Still, it is included within this section to keep consistent with the IEEE standards, where it is
also discussed as a component of the sensor’s noise. Analogous to ( 3.71 ), the system’s response
to a linearly growing input is determined from the system’s transfer function 𝐺(𝑠) as

𝑌(𝑠) = 𝐺(𝑠) 1𝑠2𝑅 = 𝐻(𝑠)1𝑠 𝑅 (3.111)

𝑦(𝑡) = 𝑅∫
𝑡

0
ℎ(𝜏)𝑑𝜏 (3.112)

which means that the response to linearly growing input is the integral of the system’s response
to constant errors ( Subsection 3.3.2  ). The resulting navigation errors from ramp-like sensor
errors is depicted in  Figure 3.44 to  Figure 3.47 .
Despite the constantly growing input, many navigation state errors display oscillations within

a fixed bound. This accounts for the roll angle errors, independent of the sensor and the north
velocity errors, at least for the accelerometer errors. In contrast to that, most position errors
grow without bounds. An exception is the position error from a perpendicular specific forces
ramp, which results in a bound oscillation, e.g., a north position error from an east-pointing
acceleration ramp error.
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(a) North position error from acceleration ramp errors.
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(b) North position error from gyroscope rate ramp errors.
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(c) East position error from acceleration ramp errors.
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(d) East position error from gyroscope rate ramp errors.

Figure 3.44.: Position error variance from rate and acceleration ramp IMU errors normalized to the
ramp slope 𝑅 at 𝜙 = 45° and 𝜓 = 0°.
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(a) North velocity error from acceleration ramp errors.
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(b) North velocity error from gyroscope rate ramp errors.
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(c) East velocity error from acceleration ramp errors.
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(d) East velocity error from gyroscope rate ramp errors.

Figure 3.45.: Velocity error variance from rate and acceleration ramp IMU errors normalized to the
ramp slope 𝑅 at 𝜙 = 45° and 𝜓 = 0°.
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(a) Roll angle error from acceleration ramp errors.
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(b) Roll angle error from gyroscope rate ramp errors.
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(c) Pitch angle error from acceleration ramp errors.
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(d) Pitch angle error from gyroscope rate ramp errors.

Figure 3.46.: Attitude error from rate and acceleration ramp IMU errors normalized to the ramp
slope 𝑅 at 𝜙 = 45° and 𝜓 = 0°.
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(a) Yaw angle error from acceleration ramp errors.
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(b) Yaw angle error from gyroscope rate ramp errors.

Figure 3.47.: Heading error from rate and acceleration ramp IMU errors normalized to the ramp
slope 𝑅 at 𝜙 = 45° and 𝜓 = 0°.

3.3.4.5. Markov Noise

Exponentially correlated noise is created by a first-order Gauss-Markov process driven by
white noise. From its defining  PSD in [  10 , p. 69] the corresponding transfer function is easily
identified as:

𝐺𝑐(𝑠) =
𝑞𝑐𝑇𝑐
1 + 𝑇𝑐𝑠

(3.113)

Using this transfer function, the navigation state error variance can be analyzed analytically.
Still, this yields more cumbersome expressions than the responses to white noise input.
The Markov noise input can also be interpreted as low-pass filtering of the system’s response

to white Gaussian noise input. As the lowest strapdown navigation error dynamics is the
Schuler oscillation at about 84min, the effect of Markov noise can only be distinguished from
white Gaussian noise for relatively long correlation times. The result of low-pass filtering the
impulse response is exemplarily illustrated in  Figure 3.48  . From this consideration, the system’s
response to Markov noise can be anticipated by low-pass filtering the system’s response to
white noise from  Subsection 3.3.3.1 .

116



3.3. Strapdown Navigation Error Propagation

0 2 4 6 8 10 12 14 16 18 20 22 24

−1

0

1

⋅107

Time 𝑡 in (h)N
or

th
po

s.
er

ro
r𝛿
𝑥 𝑛

in
(m

/ [
° s2
])

𝑇𝑐 = 0 s 𝑇𝑐 = 1000 s 𝑇𝑐 = 10 000 s

Figure 3.48.: Impulse response of the latitude error from angular rate error input 𝛿𝜔𝑖𝑏,𝑒.

3.3.4.6. The Significance of Colored Sensor Noise

From the previous sections, it is apparent that colored sensor noise results in a widely different
system response compared to the typically considered white noise input. As the navigation
errors grow at different times, the respective contribution of different noise types to the total
navigation error varies with time. For short times, the results are typically dominated by the
white noise components, while the effect of in-run bias instability becomes prevalent over time.
The author has illustrated this behavior for real-world sensor examples in [ 74 ].
As pointed out in [  74 ], colored sensor noise can contribute significantly to the navigation

errors for real-world sensor specifications.  Table 3.3  is reprinted from [ 74 ] and exemplarily
illustrates the maximum time for which the position error is dominated by the white compo-
nents of the gyroscopes’ noise. The analysis is limited to an angular random walk and in-run
bias instability, as these were the two identifiable and dominating noise components.

Table 3.3.: Maximum mission time allows for neglecting the gyro bias instability for different sensor
grades. Below the threshold time, the bias instability’s contribution to the total position
error is less than 1% of the angular random walk’s contribution [ 74 ].

Noise Parameters 1% Threshold

Grade Example Tech. 𝑁 𝐵 𝑇𝐵 DRMS (1 h) Time DRMS
(

∘

√h
) (

∘

h
) (s) (km) (s) (m)

Industrial DMU10 [ 82 ] CVG 0.4 15 500 2800 * 11 0.14
STIM300 [ 81 ] CVG 0.15 0.5 1000 80 96 12

Tactical DSP3100 [ 85 ] FOG 0.048 0.072 2000 7 55 0.1
Navigation GG1320 [ 86 ] RLG 0.0015 0.0024 2000 0.4 245 1.3

* This position error clearly exceeds validity range of the linearized model.

Also, from above examples it can be seen that there is no typical ratio between a sensor’s
in-run bias instability and the angular/velocity random walk. In fact, this depends on the
sensor technology and actual design. However, the trend goes towards better bias-instability
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values for higher sensor grades. The optical sensors used for higher sensor grades typically
provide a very good in-run stability.
In conclusion, the effect of colored sensor noise cannot be generalized but depends strongly

on the planned application (time) and sensor specification. However, the graphs presented
in this chapter allow an approximation of the effects of different noise processes from, e.g.,
a data sheet’s noise specification. The results can then be used to assess the significance of
the colored noise for the given application. Independent of the above error predictions, a
detailed sensor noise model should be used for high-detail simulation. This applies particularly
to the performance assurance and demonstration of a navigation system using Monte-Carlo
simulations.

Result 1: Inertial Navigation Error Propagation

The derived system responses represent the error growth from initialization errors and sensor
errors at static conditions.
The equations and graphs can be used to predict the navigation state errors from the dynamic-
independent sensor errors, like sensor bias and noise, but also gravity model errors.
The bias-like dynamic-dependent sensor errors, like scale factors, misalignments, or g-
sensitivities, can be considered piecewise for steady conditions (e.g., coordinated turns).
However, this requires knowledge of a representative trajectory, typically not available at the
early stage of the system design targeted in this chapter.
Comparing the derived system’s responses, the following observations were made:

• Noise-like errors result in similar system responses as bias-like and initialization er-
rors. Therefore, sensor noise needs to be considered in the navigation performance
prediction.

• The system’s responses to colored sensor noise differ from those to white noise. In
general, colored sensor noise can not be approximated by an increased white noise
input.

• In the long-term, the long-wave noise processes, like bias-instability, rate random walk,
and rate ramp, tend to dominate the navigation errors.

• However, it’s not possible to name a generally dominant noise process since it depends
on the combination of the sensor’s actual noise parameters and the application time.

Given the above-described complexity of the propagation of different errors, it is advisable
to consider all bias-like and noise-like errors in an early navigation performance prediction,
respectively sensor selection.
Furthermore, the derived equations and graphs should be used to assess the significance of
colored sensor noise components for a given sensor specification. This is also emphasized
by the fact that noise-like errors, in contrast to bias-like errors, can only be considered but not
compensated by integrated navigation.
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3.4. Navigation Performance Prediction

3.4.1. Alignment Uncertainty Charts

Based on the analysis in  Section 3.2 , the stationary alignment accuracy from sensor errors shall
be visualized. According to the derived alignment covariance matrix ( 3.28 ), the attitude uncer-
tainty depends only on the specific forces errors measurement. During stationary alignment,
the  IMU measurements are usually averaged over time to reduce the effects of sensor noise and
environmental disturbances, e.g., vibrations. The alignment accuracy depends on the residual
sensor errors after this averaging process, mainly sensor bias and residual errors from averaged
noise. The simple relationship between specific forces and attitude (pitch and roll) accuracy is
depicted in  Figure 3.49  for isotropic accelerometer error statistics. The chart allows the direct
read-off of the allowed accelerometer error from the desired attitude accuracy and vice versa.
The typical sensor grades are added to indicate the achievable stationary alignment accuracy.
To justify the linearization assumption, the plot is limited to 10° attitude error.
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Figure 3.49.: Attitude alignment accuracy from inertial sensor residual errors during alignment.

As discussed in  Section 3.2 , the azimuth determination requires prior determination of the
attitude angles 𝛷 and 𝛩. Consequently, the azimuth uncertainty depends on both the error of
the angular rate measurements and the accelerometer errors. Based on the azimuth variance
of ( 3.32 ),  Figure 3.50  has been created to visualize how accelerometer and gyroscope errors
transfer into azimuth accuracy. The parallel bent lines give the different iso-levels of azimuth
accuracy. The blue diagonal stripes indicate the share of gyroscope respectively accelerometer
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errors of the total azimuth error. A significant deviation from the diagonal center line means
that the total error is dominated by either gyroscope or accelerometer errors, and the other
sensor is excessively accurate. Note that these optimal ratios only consider the alignment and
may be different for other processes of inertial navigation.

The given chart is created for a latitude of 45°, but the latitude dependency is indicated by
the dash-dotted line with the angle markers. For changing latitudes, the total graph moves
along the line from the 45° marker to the desired latitude, as depicted in  Figure 3.51  . At the
equator, the graph would be shifted indefinitely to the right, indicating that the accelerometer
error has no effect anymore. Moving towards the poles, the graph is shifted to the lower left.
In this case, the dependency on both accelerometer and gyroscope error increases. For given
sensor errors, the resulting azimuth error increases.
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Figure 3.50.: Azimuth alignment accuracy from inertial sensor residual errors during alignment at
a geodetic latitude of 𝜙 = 45°.
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(a) At a geodetic latitude of 𝜙 = 5°.
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(b) At a geodetic latitude of 𝜙 = 85°.

Figure 3.51.: Azimuth alignment accuracy from inertial sensor residual errors during alignment at
a geodetic latitude of 𝜙 = 5° and 𝜙 = 85°.
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3.4.2. A Primer on Positioning Accuracy Measures

3.4.2.1. Typical Position Accuracy Measures

In section  3.3 the covariance matrix of the navigation error states has been derived for various
input errors. While the covariancematrix is an exact representation of amultivariate zero-mean
Gaussian distribution of the errors, its interpretation is non-trivial. Instead, people tend to
expect a simple single number to answer the question How accurate is this navigation system?.
For obvious reasons it is not possible to reduce, e.g., a 2d covariance matrix of the position

error

𝐏 = [
𝑃𝑥𝑥 𝑃𝑥𝑦

𝑃𝑥𝑦 𝑃𝑦𝑦
] = [

𝜎2𝑥 𝑃𝑥𝑦

𝑃𝑥𝑦 𝜎2𝑦
] (3.114)

to a single number without loss of information. Geometrically, this is equivalent to trying to
represent a (rotated) ellipse by a simple circle. Still, several scalar measures are used to describe
position accuracy in navigation and the satellite navigation industry. A summary of the most
typically used measures is given in  Table 3.4 .

Table 3.4.: Typical horizontal position accuracy measures [ 87 , pp. 42–44], [ 88 ], [ 89 ].

Abbrev. Measure Definition

CEP Circular Error Probable Radius of a circle, centered at the true
value, that covers 50% cumulative prob-
ability.

R95 Horizontal 95% accuracy Radius of a circle, centered at the true
value, that covers 95% cumulative prob-
ability.

67% Horizontal 67% accuracy Radius of a circle, centered at the true
value, that covers 67% cumulative prob-
ability.

DRMS / rms2 Distance Root Mean Square Root mean square of horizontal errors.
2DRMS Twice DRMS Twice Root mean square of horizontal

errors.

The typical accuracy measures from  Table 3.4  can be categorized into two groups that will
be discussed in the following.
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3.4.2.2. Circular Error Probables

 Circular Error Probable (CEP) measures give the radius 𝑟 of a circle around the true value
that contains a specified cumulative probability, e.g. 𝑝 = 50% for the classical  CEP . For a
zero-mean 2d Gaussian distribution with covariance matrix 𝐏 for a cumulative probability of
𝑝 is defined by [ 87 , p. 37]

∬
𝑥2+𝑦2<𝑟2

1
2𝜋𝜎𝑥𝜎𝑦√1 − 𝜌2

exp ( −1
2(1 − 𝜌2) [

𝑥2

𝜎2𝑥
−
2𝜌𝑥𝑦
𝜎𝑥𝜎𝑦

+
𝑦2

𝜎2𝑦
])𝑑𝑥𝑑𝑦 = 𝑝 (3.115)

with the correlation coefficient
𝜌 =

𝑃𝑥𝑦
𝜎𝑥𝜎𝑦

(3.116)

For the special case of a pure diagonal covariance matrix with equal entries 𝜎 and respective
𝜌 = 0, the circular radius 𝑟 can be determined analytically as [ 87 , p. 43]:

𝑟 = 𝜎√−2 ln(1 − 𝑝) (3.117)

Any other case requires numerical integration and root search of the above integral [  87 , p. 49].
For circular or nearly circular error distributions, the  CEP provides a vivid and straightforward
measure of accuracy. The classical CEP50, for example, states that 50% of all position mea-
surements lie within a circle of the given radius. Although the statement of a circular error
probable can be calculated and will be statistically correct even for an elliptical distribution,
the CEP value misleads to the wrong assumption of a circular distribution as illustrated in
 Figure 3.52 .
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(a) Highly elliptical 𝜍2
𝑥 = 3, 𝜍2

𝑦 = 12, 𝜌 = 0.75.
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(b) Nearly circular 𝜍2
𝑥 = 3, 𝜍2

𝑦 = 4, 𝜌 = 0.0289.

Figure 3.52.: Position accuracy measures for circular and ellipsoidal covariance matrices.
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3.4.2.3. Root Mean Square Measures

The  Root Mean Square (RMS)  measures (e.g.  DRMS ) represent the mean of the total position
errors, e.g. horizontal distances. For a 2D Gaussian distribution, the  DRMS value can be
determined from the covariance matrix as:

DRMS = √𝜎2𝑥 + 𝜎2𝑦 (3.118)

The classical  DRMS uses only the diagonal elements of the covariance matrix and thus neglects
correlations. Compared to the  CEP measures, the  DRMS has the advantage of a straightforward
calculation. Additionally, the  DRMS allows the simple addition of multiple error sources as
the sum of their resulting position variances, e.g:

DRMS = √𝜎2𝑥,𝑓𝑏 + 𝜎2𝑥,𝜔𝑖𝑏 + 𝜎2𝑦,𝑓𝑏 + 𝜎2𝑦,𝜔𝑖𝑏 (3.119)

The major drawback of the  DRMS measures is the lack of stochastic interpretation. In contrast
to the  CEP measures, the  DRMS value does not give direct information on the confidence
region. The corresponding cumulative probability within a  DRMS radius circle depends on
the shape of the distribution. For a zero-mean 2D Gussian distribution, this is represented by
the (root) diagonal elements 𝜎𝑦/𝜎𝑥 and the correlation coefficient 𝜌. Equation ( 3.115 ) has been
numerically evaluated for varying covariance matrices. The resulting probability within DRMS
and 2DRMS is depicted in  Figure 3.53  . Depending on the covariance matrix, the radius of

 DRMS represents a probability between 63.2% and 68.3%. The 2DRMS value corresponds to a
probability between 95.5% and 98.2%. Due to the relatively small variations of the cumulative
probability, the DRMS measure provides a reasonable scalar accuracy measure. Still, the
above-mentioned problems of representing the 2D distribution by a single scalar value exist.
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(a) Cumulative probability within a 1 DRMS radius circle for varying variance ratios and correlation coefficients.
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(b) Cumulative probability within a 2 DRMS radius circle for varying variance ratios and correlation coefficients.

Figure 3.53.: Statistical interpretation of the DRMS and 2DRMS value.
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3.4.3. Position Uncertainty Charts

Similar to the stationary alignment accuracy charts, also the position accuracy from sensor and
initialization errors shall be visualized. The equations derived in  Section 3.3  allow determining
the position uncertainty at time 𝑡 for given sensor and initialization errors. During system
design, often, the inverse problem is to be solved:

Which sensor grade is required to guarantee a given maximum position error within
a given period?

Or, for a given set of sensors, the problem could be formulated as:

How long can the maximum position error be guaranteed for a given sensor perfor-
mance?

To answer this question, the following charts have been created. Each chart indicates the time
until, e.g., the horizontal position error reaches a given threshold, e.g., 1NM. As illustrated
in section  3.3 , the position and orientation errors from constant error inputs oscillate. Still,
for the simplified performance prediction, the maximum ever reached error (see  Figure 3.54 )
provides a more meaningful measure of navigation performance. For the creation of the plots,
the cumulative maximum of the response is used for each input. Otherwise, the different
contributions could cancel out, and the maximum allowed error for one input could grow
locally with time. The neglection of these effects leads to conservative (overestimate) of the
error growth but ensures a monotonic increasing function.

0 1 2 3 4 5 6 7 8 9 10 11 12
Time 𝑡 in (h)

Error Cumulative maximum error

Figure 3.54.: Example cumulative maximum error vs. error.

One basic idea of the created charts is to illustrate the contributions of different error
sources. Here, a position uncertainty measure that allows the simple addition of different
errors is beneficial. As it represents a confidence radius of at least 95.5%,  2DRMS is used (see

 Subsection 3.4.2  ). The position uncertainty charts are created for three different, representative,
 Twice Distance Root Mean Square (2DRMS) thresholds:
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• 10NM is the maximum  Total System Error (TSE)   

1
 for RNP10 operations, which is the

typical requirement for oceanic flights. More strict  Required Navigation Performance
(RNP) operations are usually dominated by  GNSS -based navigation.

• 1NM is the industry-standard threshold to describe an inertial navigation system’s per-
formance.

• 10m is a vivid magnitude that represents typical  Navstar Global Positioning System
(GPS)  Standard Positioning Service (SPS) accuracy [ 91 , p. 22].

To account for the contribution of the different error inputs, iso-lines for constant contribution
ratios of the inputs are given in the following charts. These lines indicate a suitable combination
of the different error inputs, e.g., a set of gyroscopes and corresponding accelerometers, so that
the total error is not dominated by one of these.
In the following sections the initialization error responses ℎ𝑖,𝑗 are taken from  Appendix D  ,

where the index 𝑖 corresponds to the output state and 𝑗 to the input.

3.4.3.1. Position Uncertainty from Initial Position Errors

The horizontal position uncertainty, represented by the  DRMS value, is obtained from the step
responses of the position error to initial position errors:

DRMS(𝑡) = √[ℎ21,1(𝑡) + ℎ22,1(𝑡)]𝜎𝛿𝜙 (3.120)

As discussed in  Section 3.3  , the strapdown error dynamics is completely insensitive to longitude
errors. Initial latitude errors excite an oscillation whose maximum is given by just that initial
error. In conclusion, the initial position errors already define the maximum position errors
that arise from these, and there is no need for performance prediction charts.

3.4.3.2. Position Uncertainty from Initial Velocity Errors

The horizontal position error, expressed as  DRMS , is determined from the step responses as:

DRMS(𝑡) = √DRMS2𝛿𝑣𝑛(𝑡) + DRMS2𝛿𝑣𝑒(𝑡) (3.121)

DRMS2𝛿𝑣𝑛(𝑡) = [ℎ1,3(𝑡)2 + ℎ2,3(𝑡)2] 𝜎2𝛿𝑣𝑛 (3.122)

DRMS2𝛿𝑣𝑒(𝑡) = [ℎ1,4(𝑡)2 + ℎ2,4(𝑡)2] 𝜎2𝛿𝑣𝑒 (3.123)

Based on above equations, the time to different position error thresholds from initial velocity
errors is depicted in  Figure 3.55 to  Figure 3.57  . The diagonal lines indicate fixed ratios of
contribution from the two error sources. The maximum position error increases nearly linearly
during the first few minutes but is only very slow between 1 h and 24 h. Afterward, the error
1While  Performance Based Navigation (PBN)  actually sets the requirement for the  TSE , for RNP10 the  FTE and

 PDE can be neglected, leaving a 10NM requirement to the  Navigation System Error (NSE)  [ 90 ].
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Figure 3.55.: Time to 10NM 2DRMS position uncertainty from initial velocity errors at 𝜙 = 45°.

increases moderately until the maximum position has been reached at around 110 h. This
behavior manifests as a distinct thin area in the time iso-lines.
For a threshold of 10NM, as depicted in  Figure 3.55  , even large velocity errors of several

meters per second lead to position errors within that threshold. As the error dynamics are
dominated by the linear growth phase, changing the threshold only shifts the plot’s shape
towards the lower input errors but does not substantially change its shape. For 10m  2DRMS 

threshold, the maximum initial velocity error to stay within that threshold is reduced to several
millimeters per second. While the requiredmeters per the second accuracy for 10NM threshold
should not pose any problem in most applications, this millimeters per the second requirement
does, especially when initializing on a moving platform, e.g., ships.
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Figure 3.56.: Time to 1NM 2DRMS position uncertainty from initial velocity errors at 𝜙 = 45°.
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Figure 3.57.: Time to 10m 2DRMS position uncertainty from initial velocity errors at 𝜙 = 45°.
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3.4.3.3. Position Uncertainty from Initial Alignment Errors

Using the position error’s step responses from  Subsection D.1.2 , the horizontal position error
as  DRMS is calculated as:

DRMS(𝑡) = √DRMS2𝛿𝛷,𝛿𝛩(𝑡) + DRMS2𝛿𝛹(𝑡) (3.124)

DRMS2𝛿𝛷,𝛿𝛩(𝑡) = [ℎ1,5(𝑡)2 + ℎ2,5(𝑡)2] 𝜎2𝛿𝛷 + [ℎ1,6(𝑡)2 + ℎ2,6(𝑡)2] 𝜎2𝛿𝛩 (3.125)

DRMS2𝛿𝛹(𝑡) = [ℎ1,7(𝑡)2 + ℎ2,7(𝑡)2] 𝜎2𝛿𝛹 (3.126)

Determining the initial pitch and roll angles using gravity alignment relative to the reference
frame (WGS84 ellipsoid) is limited by the local gravity’s  Deflection of the Vertical (DoV) .
According to the  Earth Gravity Model 2008 (EGM2008) , the  DoV in north-south 𝜉 and east-west
range from −122.3 asec to 104.4 asec with a global  RMS of 5.4 asec and and global RMS error

of around 1 asec [ 92 ]. Markers for these limitations have been added to the following plots’
pitch and roll alignment axis.

The created charts share a familiar shape that moves within the parameter plane with
increasing position error threshold. In each graph, the iso-contribution lines start as a straight
line from the upper right (low alignment accuracy) and bend towards the pitch-roll error axis at
around half a Schuler period 2500 s. From here, the pitch and roll alignment errors have little
influence, and the heading alignment error dominates the position error. From about 27 h,
the cumulative maximum position error has been reached, and the position error threshold
will not be reached for even lower alignment errors. To ensure the validity of the linearized
strapdown error equations, the plot’s axes are limited to a maximum alignment error of 10°
(1𝜎).

Intuition would tell that an azimuth error combined with a velocity would lead to linear
growth of the position error. While this is true for the motion of a vehicle, it is not true for
inertial navigation: The azimuth angle as a component of the rotationmatrix𝐑𝑛𝑏 is only used to
transform accelerations from the body to the 𝑛-frame, not velocities (see ( 3.43 )). Consequently,
the following charts are valid, independent of the vehicle’s velocity. Overall, the position error
is more sensitive to initial pitch and roll errors than azimuth errors.

For a high position error threshold of 10NM, the time to error from alignment errors is
depicted in  Figure 3.58 . For a leveling uncertainty better than 0.03° (108 asec) and azimuth
error better than 0.08° (288 asec), the position threshold is never reached. For an extreme
leveling uncertainty of 10° (1𝜎), the 10NM  2DRMS are already reached after 90 s and the
azimuth uncertainty has virtually no effect at all.

The equivalent graphics for a  2DRMS threshold of 1NM is given in  Figure 3.59  . Here the
maximum alignment errors that lead to 1NM  2DRMS are reduced by 1/10 to around 0.003°
(11 asec) for the leveling and 0.008° (29 asec) for the azimuth. For the upper limit pitch and
roll errors, however, the position error threshold is already reached at around 28 s

Finally, the graphics is given for a threshold of 10m in  Figure 3.60  . To keep the maximum
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Figure 3.58.: Time to 10NM 2DRMS position uncertainty from initial alignment errors at 𝜙 = 45°.

position error below this very low theshold, extreme alignment accuracy is required: leveling
errors better than 1.5 ⋅ 10−5° (0.05 asec) and azimuth errors below 5 ⋅ 10−5° (0.18 asec). Such
an extreme leveling alignment requires the consideration of the gravity’s  DoV . Still, as marked
in the chart, the uncertainty of typical global gravity models like the  EGM2008 is magnitudes
higher than the required alignment accuracy. This poses, for example, a problem to the proposed
ultra accurate quantum inertial navigation systems that shall have a position drift of only a few
meters per day. Alignment to that accuracy level requires additional aiding, e.g., alignment to
fixed-stars.
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Figure 3.59.: Time to 1NM 2DRMS position uncertainty from initial alignment errors at 𝜙 = 45°.
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Figure 3.60.: Time to 10m 2DRMS position uncertainty from initial alignment errors at 𝜙 = 45°.

134



3.4. Navigation Performance Prediction

3.4.3.4. Position Uncertainty from IMU bias-like errors

The time to a 2DRMS horizontal position error of the different thresholds is illustrated in the
 Figure 3.61  to  Figure 3.63  . The horizontal position error as  DRMS from  IMU biases has been
calculated using the step responses from  Subsection D.1.3 :

DRMS = √DRMS2acc + DRMS2gyro (3.127)

DRMS2acc = [ℎ21,8 + ℎ22,8 + ℎ21,9 + ℎ22,9 + ℎ21,10 + ℎ22,10] 𝜎2acc (3.128)

DRMS2gyro = [ℎ21,11 + ℎ22,11 + ℎ21,12 + ℎ22,12 + ℎ21,13 + ℎ22,13] 𝜎2gyro (3.129)

Note that the sensor bias uncertainty in this context represents a lumped-sum of all residual
bias-like errors left after potential compensation, respectively, in-field calibration.

All three charts share a common shape: For short times (upper right), the iso-contribution
lines are a straight diagonal that indicates a similar sensitivity of the position error to accelerom-
eter and gyroscope errors. At around half a Schuler period (≈ 2500 s), they bend towards the
accelerometer error axis. From this point on, the accelerometer errors have no effect anymore,
and the gyroscope errors dominate the position error. The actual location of this bend is
different for each graph, so it depends on the targeted error threshold.

Several important indicative model values and limitations have been added to the axes to
support the assessment of the sensor error magnitudes. Note that this is slightly inconsistent,
as the axes represent sensor bias uncertainties (1𝜎). The nominal WGS84 Earth angular rate
of 7.292 115 ⋅ 10−5 rad/s [ 50 ] and the magnitude of its variation around 1 ⋅ 10−4 °/h [ 93 ] have
been added to the gyroscope error axis. Additional model thresholds have been added to the
accelerometer bias axis. The error between the normal gravity formula (Sogmiliana) and the
measured gravity is called gravity anomaly [  94 , p. 151]. According to the  EGM2008 , the gravity
anomaly ranges from −361.8mGal to 868.4mGal with a global RMS of 34.5mGal [ 92 ]. An
indicative gravity anomaly value of 100mGal has been added to the axes. Additionally, the
 EGM2008 ’s typical accuracy of 2.5mGal has been added to indicate its limitations. For even
better accelerometers, even the moon’s and sun’s tidal forces of about 0.33mGal [ 95 , p. 127]
becomes relevant.

For a large error threshold, here 10NM as illustrated in  Figure 3.61  , the threshold is only
reached after relatively long times. As stated before, the gyroscope errors dominate in the long
term. In this case, this can also be seen in the position of the bend at relatively poor  IMU grades.
Assuming a sufficiently accurate gyroscope, the graph indicates that even an intermediate
grade accelerometer would allow inertial navigation within 10NM position error at extremely
long times like one year.

For a position error threshold of 1NM (see  Figure 3.62  ), the characteristic bend moves
further towards better gyro and accelerometer grades. As 1NM is the industry reference for
comparing inertial navigation systems, additional sensor grade labels have been added to
the corresponding time iso-lines. For the gyroscope errors, these labels match the typical
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Figure 3.61.: Time to 10NM 2DRMS position uncertainty from IMU bias-like errors at 𝜙 = 45°.

grade definitions quite well, e.g., a 1NM per hour system fits perfectly within the navigation
grade range. However, the typical grade definitions do not match the accelerometer errors.
At least for the position error from bias-like errors, the industry definitions seem to overrate
the contribution of the accelerometer error. Considering that a stationary vehicle or at least
a very low dynamics was assumed within this chapter, the more conservative definition of
accelerometer grades may be justified.
The corresponding graph for a position error threshold of 10m is given in  Figure 3.63 . For

such a small threshold, the characteristic bend at 2500 s is only reached by highly accurate
sensors. Consequently , the position error is similarly sensitive to accelerometer and gyroscope
errors for a wide range.
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Figure 3.62.: Time to 1NM 2DRMS position uncertainty from IMU bias-like errors at 𝜙 = 45°.
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Figure 3.63.: Time to 10m 2DRMS position uncertainty from IMU bias-like errors at 𝜙 = 45°.
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3.4.3.5. Position Uncertainty from IMU white Gaussian noise

Analogeously to the position uncertainty charts for constant errors, the position uncertainty
charts are created for  WGN input. The analysis focuses on velocity and angular random walk
noise, since these are the most prominent noise terms, typically given in data sheets. Using
the impulse responses from  Section E.2 and the analytical integrals ( 3.91 ) to ( 3.93 ), the  DRMS 

position uncertainty is determined from:

DRMS = √DRMS2acc + DRMS2gyro (3.130)

DRMS2acc = [𝑘1,8 + 𝑘2,8 + 𝑘1,9 + 𝑘2,9 + 𝑘1,10 + 𝑘2,10] 𝜎2acc (3.131)

DRMS2gyro = [𝑘1,11 + 𝑘2,11 + 𝑘1,12 + 𝑘2,12 + 𝑘1,13 + 𝑘2,13] 𝜎2gyro (3.132)

The time to a given position uncertainty threshold has been visualized for a threshold of 10NM
( Figure 3.64 ), 1NM ( Figure 3.65 ) and 10m ( Figure 3.66 ).
The charts are characterized by a distinct shape of the error contribution iso-lines. For short

to medium times of several Schuler periods, the time to the position threshold is dominated by
the Schuler oscillations. From about 4 hours, the results are dominated by linear error growth.
This behavior is reflected in the change of the slope of the error contribution lines after about
one hour.
Looking at the 1NM plot  Figure 3.65  , one can see that the grade labels of typical commercially

available gyroscopes match the proposed sensor grade definitions of this thesis quite well.
However, the market-available accelerometers provide much better noise characteristics than
necessary compared to the corresponding gyro performance.
For example, to achieve typical navigation grade performance at 1NM per hour of drift, a

maximum angular random walk of about 0.004 °/√h is required, which is met by off-the-shelf
navigation grade gyros. For the acceleration sensors, however, only a velocity random walk of
3mg/√Hz is required, which is already achieved by good consumer-grade or poor tactical grade
accelerometers. Optical gyroscopes are subject to the shot noise fundamental limit, which
sets a theoretical limit to their angular random walk [  22 , p. 173]. Still, in [ 96 ] a  FOG with an
angular random walk of 38 ⋅ 10−6 °/√h has been demonstrated. From  Figure 3.66  , it can be
seen that such a low noise would allow a drift of only 10m in 10 days. In theory, a deployable
 FOG could achieve 1 ⋅ 10−6 °/√h, while an extremely large  RLG of 4m diameter could achieve
even 0.1 ⋅ 10−6 °/√h [ 96 ]. In practice, optical gyroscopes will not get below this threshold, and
another sensor technology will be required to improve navigation performance even further.
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Figure 3.64.: Time to 10NM 2DRMS position uncertainty from IMU white Gaussian noise at 𝜙 = 45°.
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Figure 3.65.: Time to 1NM 2DRMS position uncertainty from IMU white Gaussian noise at 𝜙 = 45°.
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Figure 3.66.: Time to 10m 2DRMS position uncertainty from IMU white Gaussian noise at 𝜙 = 45°.
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3.4.4. Quantitative Performance Prediction Schemes

As an alternative to the performance prediction charts above, an error budget for inertial
navigation can also be directly built from the tabulated step and impulse responses from Annex
 D A calculation scheme to determine the north and east position uncertainty as well as the
 DRMS value at time 𝑡 is given in  Table 3.5 .
The error response to the inputs can either be calculated using the tables in Annex  D or

directly read off from  Figure 3.7  ,  Figure 3.9  and  Figure 3.12  , as well as  Figure 3.25  . Note that
these plots are already scaled north and east position error so that calculations (F) and (G) need
to be omitted in that case. It is up to the user whether the actual error at time 𝑡 is determined
or the maximum error reached up to time 𝑡.
The orientation uncertainty can be predicted by using  Table 3.7  . Analog to the position

and velocity errors, the sensitivity to the different input errors can be read from  Figure 3.18  ,
 Figure 3.19  ,  Figure 3.20  ,  Figure 3.22  ,  Figure 3.23  and for noise like errors from  Figure 3.28  and
 Figure 3.29  . Due to the underlying linearized error dynamics, this propagation scheme loses
its validity for orientation angle standard deviations higher than about 10°.
In contrast to the direct numerical simulation of the scenario, the analytical approach pro-

vides insight into each error source’s dynamics and contribution. From this, key performance
parameters can be easily identified.
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Table 3.5.: Position Uncertainty Prediction Scheme.
Error source Latitude uncertainty Longitude uncertainty DRMS

Description Symbol 1𝜎 Unit from ℎ(𝑡) ℎ(𝑡)2𝜎2 from ℎ(𝑡) ℎ(𝑡)2𝜎2 North var. East var. DRMS
(A) Annex  D (B) (C) = (A)2(B)2 Annex  D (D) (E) = (A)2(D)2 (F) = (C)𝑟2𝑀 (G) = (E)𝑟2𝑁 cos2 𝜙 (H) = √(F) + (G)

Init. Latitude 𝛿𝜙0 rad ℎ1,1(𝑡) ℎ2,1(𝑡)
Init. Longitude 𝛿𝜆0 rad ℎ1,2(𝑡) 0 0 ℎ2,2(𝑡) 1
Init. North Vel. 𝛿𝑣𝑛,0 m/s ℎ1,3(𝑡) ℎ2,3(𝑡)
Init. East Vel. 𝛿𝑣𝑒,0 m/s ℎ1,4(𝑡) ℎ2,4(𝑡)
Roll Alignment 𝛿𝛷0 rad ℎ1,5(𝑡) ℎ2,5(𝑡)
Pitch Alignment 𝛿𝛩0 rad ℎ1,6(𝑡) ℎ2,6(𝑡)
Yaw Alignment 𝛿𝛹0 rad ℎ1,7(𝑡) ℎ2,7(𝑡)
Accelerometer Bias 𝛿𝑓𝑏,𝑛,0 m/s2 ℎ1,8(𝑡) ℎ2,8(𝑡)

𝛿𝑓𝑏,𝑒,0 m/s2 ℎ1,9(𝑡) ℎ2,9(𝑡)
Gyroscope Bias 𝛿𝜔𝑖𝑏,𝑛,0 rad/s ℎ1,11(𝑡) ℎ2,11(𝑡)

𝛿𝜔𝑖𝑏,𝑒,0 rad/s ℎ1,12(𝑡) ℎ2,12(𝑡)
𝛿𝜔𝑖𝑏,𝑑,0 rad/s ℎ1,13(𝑡) ℎ2,13(𝑡)

Description Symbol 𝑁 ∫𝑡
0 𝑔

2(𝑡 − 𝜏)𝑑𝜏 ∫𝑡
0 𝑔

2(𝑡 − 𝜏)𝑑𝜏 North var. East var. DRMS
(A) (B) (C) = (A)2(B) (D) (E) = (A)2(D) (F) = (C)𝑟2𝑀 (G) = (E)𝑟2𝑁 cos2 𝜙 (H) = √(F) + (G)

Velocity Random Walk 𝑁𝑓𝑏,𝑛 m/(s2√Hz) 𝑔1,8 𝑔2,8
𝑁𝑓𝑏,𝑒 m/(s2√Hz) 𝑔1,9 𝑔2,9

Angular Random Walk 𝑁𝜔𝑖𝑏,𝑛
rad/(s√Hz) 𝑔1,11 𝑔2,11

𝑁𝜔𝑖𝑏,𝑒
rad/(s√Hz) 𝑔1,12 𝑔2,12

𝑁𝜔𝑖𝑏,𝑑
rad/(s√Hz) 𝑔1,13 𝑔2,13

Acceleration Random Walk 𝐾𝑓𝑏,𝑛 m/s2√Hz 𝑔𝐾,1,8 𝑔𝐾,2,8
𝐾𝑓𝑏,𝑒 m/s2√Hz 𝑔𝐾,1,9 𝑔𝐾,2,9

Rate Random Walk 𝐾𝜔𝑖𝑏,𝑛
rad/s√Hz 𝑔𝐾,1,11 𝑔𝐾,2,11

𝐾𝜔𝑖𝑏,𝑒
rad/s√Hz 𝑔𝐾,1,12 𝑔𝐾,2,12

𝐾𝜔𝑖𝑏,𝑑
rad/s√Hz 𝑔𝐾,1,13 𝑔𝐾,2,13

Accelerometer Bias Instability 𝐵𝑓𝑏 m/s2 no analytical solution
Gyro Bias Instability 𝐵𝜔𝑖𝑏

rad/s no analytical solution
Acceleration Ramp Noise 𝑅𝑓𝑏,𝑛 m/s3 no analytical solution
Rate Ramp Noise 𝑅𝜔𝑖𝑏,𝑛

rad/s2 no analytical solution
Velocity Quantization Noise 𝑄𝑓𝑏,𝑛 m/s 𝑔𝑄,1,8 𝑔𝑄,2,8

𝑄𝑓𝑏,𝑒 m/s 𝑔𝑄,1,9 𝑔𝑄,2,9
Angular Quantization Noise 𝑄𝜔𝑖𝑏,𝑛

rad 𝑔𝑄,1,11 𝑔2,11
𝑄𝜔𝑖𝑏,𝑒

rad 𝑔𝑄,1,12 𝑔𝑄,2,12
𝑄𝜔𝑖𝑏,𝑑

rad 𝑔𝑄,1,13 𝑔𝑄,2,13
𝛴 −
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Table 3.6.: Velocity Uncertainty Prediction Scheme.
Error source North velocity uncertainty East velocity uncertainty RMS

Description Symbol 1𝜎 Unit from ℎ(𝑡) ℎ(𝑡)2𝜎2 from ℎ(𝑡) ℎ(𝑡)2𝜎2

(A) Annex  D (B) (C) = (A)2(B)2 Annex  D (D) (E) = (A)2(D)2 (F) = √(C) + (E)
Init. Latitude 𝛿𝜙0 rad ℎ3,1(𝑡) ℎ4,1(𝑡)
Init. Longitude 𝛿𝜆0 rad ℎ3,2(𝑡) 0 ℎ4,2(𝑡)
Init. North Vel. 𝛿𝑣𝑛,0 m/s ℎ3,3(𝑡) = ℎ4,3(𝑡) =
Init. East Vel. 𝛿𝑣𝑒,0 m/s ℎ3,4(𝑡) ℎ4,4(𝑡)
Roll Alignment 𝛿𝛷0 rad ℎ3,5(𝑡) ℎ4,5(𝑡)
Pitch Alignment 𝛿𝛩0 rad ℎ3,6(𝑡) ℎ4,6(𝑡)
Yaw Alignment 𝛿𝛹0 rad ℎ3,7(𝑡) ℎ4,7(𝑡)
Accelerometer Bias 𝛿𝑓𝑏,𝑛,0 m/s2 ℎ3,8(𝑡) ℎ4,8(𝑡)

𝛿𝑓𝑏,𝑒,0 m/s2 ℎ3,9(𝑡) ℎ4,9(𝑡)
Gyroscope Bias 𝛿𝜔𝑖𝑏,𝑛,0 rad/s ℎ3,11(𝑡) ℎ4,11(𝑡)

𝛿𝜔𝑖𝑏,𝑒,0 rad/s ℎ3,12(𝑡) ℎ4,12(𝑡)
𝛿𝜔𝑖𝑏,𝑑,0 rad/s ℎ3,13(𝑡) ℎ4,13(𝑡)

Description Symbol 𝑁 ∫𝑡
0 𝑔

2(𝑡 − 𝜏)𝑑𝜏 ∫𝑡
0 𝑔

2(𝑡 − 𝜏)𝑑𝜏
(A) (B) (C) = (A)2(B) (D) (E) = (A)2(D) (F) = √(C) + (E)

Velocity Random Walk 𝑁𝑓𝑏,𝑛 m/(s2√Hz) 𝑔3,8 𝑔4,8
𝑁𝑓𝑏,𝑒 m/(s2√Hz) 𝑔3,9 𝑔4,9

Angular Random Walk 𝑁𝜔𝑖𝑏,𝑛
rad/(s√Hz) 𝑔3,11 𝑔4,11

𝑁𝜔𝑖𝑏,𝑒
rad/(s√Hz) 𝑔3,12 𝑔4,12

𝑁𝜔𝑖𝑏,𝑑
rad/(s√Hz) 𝑔3,13 𝑔4,13

Acceleration Random Walk 𝐾𝑓𝑏,𝑛 m/(s2√Hz) 𝑔3,8 𝑔4,8
𝐾𝑓𝑏,𝑒 m/s2√Hz 𝑔𝐾,3,9 𝑔𝐾,4,9 <y

Rate Random Walk 𝐾𝜔𝑖𝑏,𝑛
rad/s√Hz 𝑔𝐾,3,11 𝑔𝐾,4,11

𝐾𝜔𝑖𝑏,𝑒
rad/s√Hz 𝑔𝐾,3,12 𝑔𝐾,4,12

𝐾𝜔𝑖𝑏,𝑑
rad/s√Hz 𝑔𝐾,3,13 𝑔𝐾,4,13

Accelerometer Bias Instability 𝐵𝑓𝑏 m(s2 no analytical solution
Gyro Bias Instability 𝐵𝜔𝑖𝑏

rad/s no analytical solution
Acceleration Ramp Noise 𝑅𝑓𝑏 m/s3 no analytical solution
Rate Ramp Noise 𝑅𝜔𝑖𝑏

rad/s2 no analytical solution
Velocity Quantization Noise 𝑄𝑓𝑏,𝑛 m/s 𝑔𝑄,3,8 𝑔𝑄,4,8

𝑄𝑓𝑏,𝑒 m/s 𝑔𝑄,3,9 𝑔𝑄,4,9 <y
Angular Quantization Noise 𝑄𝜔𝑖𝑏,𝑛

rad 𝑔𝑄,3,11 𝑔𝑄,4,11
𝑄𝜔𝑖𝑏,𝑒

rad 𝑔𝑄,3,12 𝑔𝐾,4,12
𝑄𝜔𝑖𝑏,𝑑

rad 𝑔𝑄,3,13 𝑔𝐾,4,13
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Table 3.7.: Orientation Uncertainty Prediction Scheme.
Error source Roll angle uncertainty Pitch angle uncertainty Yaw angle uncertainty

Description Symbol 1𝜎 Unit from ℎ(𝑡) ℎ(𝑡)2𝜎2 from ℎ(𝑡) ℎ(𝑡)2𝜎2 from ℎ(𝑡) ℎ(𝑡)2𝜎2

(A) Annex  D (B) (C) = (A)2(B)2 Annex  D (D) (E) = (A)2(D)2 Annex  D (F) (G) = (A)2(F)2

Init. Latitude 𝛿𝜙0 rad ℎ5,1(𝑡) ℎ6,1(𝑡) ℎ7,1(𝑡)
Init. Longitude 𝛿𝜆0 rad ℎ5,2(𝑡) 0 ℎ6,2(𝑡) ℎ7,2(𝑡)
Init. North Vel. 𝛿𝑣𝑛,0 m/s ℎ5,3(𝑡) ℎ6,3(𝑡) ℎ7,3(𝑡)
Init. East Vel. 𝛿𝑣𝑒,0 m/s ℎ5,4(𝑡) ℎ6,4(𝑡) ℎ7,4(𝑡)
Roll Alignment 𝛿𝛷0 rad ℎ5,5(𝑡) ℎ6,5(𝑡) ℎ7,5(𝑡)
Pitch Alignment 𝛿𝛩0 rad ℎ5,6(𝑡) ℎ6,6(𝑡) ℎ7,6(𝑡)
Yaw Alignment 𝛿𝛹0 rad ℎ5,7(𝑡) ℎ6,7(𝑡) ℎ7,7(𝑡)
Accelerometer Bias 𝛿𝑓𝑏,𝑛,0 m/s2 ℎ5,8(𝑡) ℎ6,8(𝑡) ℎ7,8(𝑡)

𝛿𝑓𝑏,𝑒,0 m/s2 ℎ5,9(𝑡) ℎ6,9(𝑡) ℎ7,9(𝑡)
Gyroscope Bias 𝛿𝜔𝑖𝑏,𝑛,0 rad/s ℎ5,11(𝑡) ℎ6,11(𝑡) ℎ7,11(𝑡)

𝛿𝜔𝑖𝑏,𝑒,0 rad/s ℎ5,12(𝑡) ℎ6,12(𝑡) ℎ7,12(𝑡)
𝛿𝜔𝑖𝑏,𝑑,0 rad/s ℎ5,13(𝑡) ℎ6,13(𝑡) ℎ7,13(𝑡)

Description Symbol 𝑁 ∫𝑡
0 𝑔

2(𝑡 − 𝜏)𝑑𝜏 ∫𝑡
0 𝑔

2(𝑡 − 𝜏)𝑑𝜏 ∫𝑡
0 𝑔

2(𝑡 − 𝜏)𝑑𝜏
(A) (B) (C) = (A)2(B) (D) (E) = (A)2(D) (F) (G) = (A)2(F)

Velocity Random Walk 𝑁𝑓𝑏,𝑛 m/(s2√Hz) 𝑔5,8 𝑔6,8 𝑔7,8
𝑁𝑓𝑏,𝑒 m/(s2√Hz) 𝑔5,9 𝑔6,9 𝑔7,9

Angular Random Walk 𝑁𝜔𝑖𝑏,𝑛
rad/(s√Hz) 𝑔5,11 𝑔6,11 𝑔7,11

𝑁𝜔𝑖𝑏,𝑒
rad/(s√Hz) 𝑔5,12 𝑔6,12 𝑔7,12

𝑁𝜔𝑖𝑏,𝑑
rad/(s√Hz) 𝑔5,13 𝑔6,13 𝑔7,13

Acceleration Random Walk 𝐾𝑓𝑏,𝑛 m/(s2√Hz) 𝑔𝐾,5,8 𝑔𝐾,6,8 𝑔𝐾,7,8
𝐾𝑓𝑏,𝑒 m/(s2√Hz) 𝑔𝐾,5,9 𝑔𝐾,6,9 𝑔𝐾,7,9

Rate Random Walk 𝐾𝜔𝑖𝑏,𝑛
rad/(s√Hz) 𝑔𝐾,5,11 𝑔𝐾,6,11 𝑔𝐾,7,11

𝐾𝜔𝑖𝑏,𝑒
rad/(s√Hz) 𝑔𝐾,5,12 𝑔𝐾,6,12 𝑔𝐾,7,12

𝐾𝜔𝑖𝑏,𝑑
rad/(s√Hz) 𝑔𝐾,5,13 𝑔𝐾,6,13 𝑔𝐾,7,13

Accelerometer Bias Instability 𝐵𝑓𝑏,𝑛 m/s2 no analytical solution
Gyro Bias Instability 𝐵𝜔𝑖𝑏,𝑛

rad/s no analytical solution
Acceleration Ramp Noise 𝑅𝑓𝑏,𝑛 m/s3 no analytical solution
Rate Ramp Noise 𝑅𝜔𝑖𝑏,𝑛

rad/s2 no analytical solution
Velocity Quantization Noise 𝑄𝑓𝑏,𝑛 m/s 𝑔𝑄,5,8 𝑔𝑄,6,8 𝑔𝑄,7,8

𝑄𝑓𝑏,𝑒 m/s 𝑔𝑄,5,9 𝑔𝑄,6,9 𝑔𝑄,7,9
Angular Quantization Noise 𝑄𝜔𝑖𝑏,𝑛

rad 𝑔𝑄,5,11 𝑔𝑄,6,11 𝑔𝑄,7,11
𝑄𝜔𝑖𝑏,𝑒

rad 𝑔𝑄,5,12 𝑔𝑄,6,12 𝑔𝑄,7,12
𝑄𝜔𝑖𝑏,𝑑

rad 𝑔𝑄,5,13 𝑔𝑄,6,13 𝑔𝑄,7,13
𝛴 - - -
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3.5. Validation of the Predicted Navigation Performance

3.5.1. General

This section analyzes the validity of the previously derived navigation performance prediction
schemes and charts. The accuracy of the separate analytical responses to constant and noise-
like errors is demonstrated by comparison to numerical simulation results in Annex  E.1 and  E.2 .
Still, these results are based on several assumptions, especially neglecting vehicle motion. The
feasibility of these assumptions and the derived performance prediction charts and schemes
are analyzed by comparison to  Monte Carlo (MC) simulation results for real-world scenarios.
For the simulation, the constant initialization errors and sensor biases are randomized

and applied to the reference trajectory. Additionally, noise is added to the error-free IMU
measurements. The resulting sensor signals are fed to a vertically fixed strapdown algorithm.
Here the propagated attitude is corrected every time step using the reference values. The
strapdown equations are integrated numerically using a 4th order Runge-Kutta scheme.
As illustrated in  Figure 3.67  , the resulting state vector errors for each simulation run are

calculated and incorporated into themean and covariance estimate. Due tomemory restrictions,
the results of each  MC run are not stored, but the stochastic properties are calculated iteratively.
Finally, the mean and variance over all  MC runs are stored and compared to the analytical
prediction for each test case. Of course, analyzing a small set of scenarios and trajectories
cannot provide a formal and general proof of feasibility. The validity of the approximations for
similar scenarios and applications can be concluded by showing the feasibility of very typical
and representative scenarios.

3.5.2. Case 1: General Aviation Aircraft

The first test case is based on a 90-minute long flight of a twin-prop general aviation aircraft.
The underlying trajectory and associated ideal inertial sensor measurements have been created
using the aerodynamic reference trajectory generation tool-chain developed by Lorenz Görcke
[ 69 ]. The generated trajectory starts directly in the air and performs several loops over the
Bavarian Alps. The flight path is depicted in  Figure 3.68  . The scenario has a total duration of
5400 s and is sampled at 2000Hz. The trajectory represents a typical general aviation flight at
low to medium dynamics, which is summarized in  Table 3.8 .

Table 3.8.: Parameters of the general aviation aircraft scenario.

Parameter Value

Flight duration 01:30:00h
Maximum distance from start 68.92 km
Maximum velocity 92.13m/s
Maximum acceleration 0.45 g
Maximum angular rates 11.18 °/s
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Figure 3.67.: Workflow of the Monte Carlo simulation to validate the navigation performance pre-
diction schemes.

Figure 3.68.: Visualization of the simulated general aviation flightpath. The red circle demarks the
start of the trajectory, the blue cross the end.
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AMonte Carlo simulation with 1000 runs has been performed for this trajectory. Since the
analytical prediction schemes do not consider the trajectory-dependent errors from sensor scale
factor errors and misalignments, the  MC simulation has been performed with and without
these errors. The used error parameters are specified in  Table 3.9  . The analytically predicted
navigation state uncertainty is determined from the step and noise responses analogously to
 3.4.4 . The resulting standard deviations of the navigation state errors are depicted in  Figure 3.69  

and  Figure 3.70 .
If  SF and  misalignment (MA)  errors are neglected, the analytical predictions match the

simulation results surprisingly well. The analytical solutions match the simulation results
in magnitude but also correctly reproduce the error dynamics. Minor deviations can be at-
tributed to the trajectory dependencies that are entirely neglected in the analytical prediction.
Consequently, also the prediction cannot represent the effects of  SF and  MA errors. Although
the magnitude of the simulation results with these errors cannot be predicted correctly, the
underlying error dynamics can still be observed in the results. For the given test scenario,
the scale factor error amplifies the position and velocity errors by a factor of about two. The
trajectory dependency can also be observed in the orientation error results, which follow the
aircraft’s maneuvers.

Table 3.9.: Specification of the input errors for the general aviation aircraft scenario simulation.

Parameter Symbol Value

Initialization errors (1𝜎) Position 𝛿𝑥𝑛,0, 𝛿𝑥𝑒,0 10m
Velocity 𝛿𝑣𝑛,0, 𝛿𝑣𝑒,0 0.1m/s
Orientation 𝛿𝛷0, 𝛿𝛩0, 𝛿𝛹0 0.1°

Sensor bias (1𝜎) Accelerometer 𝛿𝑓𝑏,𝑥,0, 𝛿𝑓𝑏,𝑦,0, 𝛿𝑓𝑏,𝑧,0 1mg
Gyroscopes 𝛿𝜔𝑖𝑏,𝑥,0, 𝛿𝜔𝑖𝑏,𝑦,0, 𝛿𝜔𝑖𝑏,𝑧,0 0.1 °/h

Sensor  SF Error (1𝜎) Accelerometer 𝑆𝐴,𝑥, 𝑆𝐴,𝑦, 𝑆𝐴,𝑧 1500 ppm
Gyroscopes 𝑆𝐺,𝑥, 𝑆𝐺,𝑦, 𝑆𝐺,𝑧 1500 ppm

Sensor  MA (1𝜎) Accelerometer 𝑀𝐴,𝑥𝑦,𝑀𝐴,𝑥𝑧,𝑀𝐴,𝑦𝑥,𝑀𝐴,𝑦𝑧,… 0.5mrad
Gyroscopes 𝑀𝐺,𝑥𝑦,𝑀𝐺,𝑥𝑧,𝑀𝐺,𝑦𝑥,𝑀𝐺,𝑦𝑧,… 0.5mrad

Sensor noise Accelerometer 𝑁𝑎𝑐𝑐,𝑥, 𝑁𝑎𝑐𝑐,𝑦, 𝑁𝑎𝑐𝑐,𝑧 1mg/√Hz
Gyroscope 𝑁𝑔𝑦𝑟,𝑥, 𝑁𝑔𝑦𝑟,𝑦, 𝑁𝑔𝑦𝑟,𝑧 0.1 °/√h

While the analytical prediction scheme yields accurate results, a less complex and faster
prediction of the expectable order of magnitude of the errors is often favorable. Such an
approach is given the charts of section  3.4.3 . Of course, these charts only state the time to a
given position error threshold for separate input errors. Due to that representation, the results
cannot be easily summed up to incorporate multiple input errors. For this test-case a  2DRMS 

position error of 1NM is reached after 4:20 minutes. For the specified sensor noise, a time of
approximately 8min can be read off from  Figure 3.65  . For the alignment errors  Figure 3.59  

indicates a time of about 5:00 minutes, for the sensor biases a value of about 6:30 minutes
can be read off from  Figure 3.62  . The worst-case value determined from the charts provides a
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Figure 3.69.: Comparison of simulation results and predicted errors of the position and velocity for
the simulated general aviation scenario.
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Figure 3.70.: Comparison of simulation results and predicted errors of the orientation angles for
the simulated general aviation scenario.
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reasonable prediction of the magnitude of the error growth, at least for an early design phase.

3.5.3. Case 2: Transatlantic Flight

This test case represents a 9 h flight from Los Angeles to Glasgow. The trajectory and the ideal
IMU measurements have been generated by smoothing, interpolating, and re-sampling Quick
Access Recorder data of a Boeing 747 flight. The resulting inertial reference data are sampled
at 1000Hz demonstrate a consistency that yields a maximum position error of less than 1mm
for free-inertial integration. The properties of this trajectory are summarized in  Table 3.10 .

Table 3.10.: Dynamics of the commercial transatlantic flight scenario.

Parameter Value

Flight duration 09:14:43h
Maximum distance from start 8245.64 km
Maximum velocity 336.59m/s
Maximum acceleration 1.04 g
Maximum angular rates 3.25 °/s

The error parameters for this simulation (see  Table 3.11 ) are selected to represent a navigation
grade  INS . The initialization errors represent GNSS-like position accuracy and initial alignment
accuracy according to section  3.2 .

Table 3.11.: Specification of the input errors for the transatlantic flight scenario simulation.

Parameter Symbol Value

Initialization errors (1𝜎) Position 𝛿𝑥𝑛,0, 𝛿𝑥𝑒,0 10m
Velocity 𝛿𝑣𝑛,0, 𝛿𝑣𝑒,0 0.01m/s
Orientation 𝛿𝛷0, 𝛿𝛩0 0.001°

𝛿𝛹0 0.005°
Sensor bias (1𝜎) Accelerometer 𝛿𝑓𝑏,𝑥,0, 𝛿𝑓𝑏,𝑦,0, 𝛿𝑓𝑏,𝑧,0 0.01mg

Gyroscopes 𝛿𝜔𝑖𝑏,𝑥,0, 𝛿𝜔𝑖𝑏,𝑦,0, 𝛿𝜔𝑖𝑏,𝑧,0 0.002 °/h
Sensor  SF Error (1𝜎) Accelerometer 𝑆𝐴,𝑥, 𝑆𝐴,𝑦, 𝑆𝐴,𝑧 10 ppm

Gyroscopes 𝑆𝐺,𝑥, 𝑆𝐺,𝑦, 𝑆𝐺,𝑧 10 ppm
Sensor  MA (1𝜎) Accelerometer 𝑀𝐴,𝑥𝑦,𝑀𝐴,𝑥𝑧,𝑀𝐴,𝑦𝑥,𝑀𝐴,𝑦𝑧,… 10 µrad

Gyroscopes 𝑀𝐺,𝑥𝑦,𝑀𝐺,𝑥𝑧,𝑀𝐺,𝑦𝑥,𝑀𝐺,𝑦𝑧,… 10 µrad
Sensor noise Accelerometer 𝑁𝑎𝑐𝑐,𝑥, 𝑁𝑎𝑐𝑐,𝑦, 𝑁𝑎𝑐𝑐,𝑧 0.01mg/√Hz

Gyroscope 𝑁𝑔𝑦𝑟,𝑥, 𝑁𝑔𝑦𝑟,𝑦, 𝑁𝑔𝑦𝑟,𝑧 0.0025 °/√h

Again separate  MC simulations with 1000 runs have been performed with and without  SF 

and  MA errors. The simulation results and the analytically predicted standard deviations are
depicted in  Figure 3.72 and  Figure 3.73 . Clearly, this scenario violates the assumptions taken in
section  3.3.1.4 : The aircraft’s velocity is more than 300m/s contributes significantly compared
to the Earth’s angular rate. However, the assumption of straight and leveled flight is well
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fulfilled most of the time.
Similar to the previous test case, the analytical prediction matches the  MC simulation results

surprisingly well. If the  SF and  MA errors are neglected, the analytical methods predict the
correct magnitude and dynamics for most of the position, velocity, and orientation errors. The
east position and the yaw angle error are an exception from this. Starting from about 3 h of
flight, these errors deviate from the analytical prediction but begin to converge until the end of
the simulation. This may be attributed to the trajectory dependence and the violation of the
assumptions taken for linearization.
In contrast to the high-dynamic general aviation case, considering  SF and  MA in the sim-

ulation has only a minor effect on the position and velocity errors. This is caused by two
factors: First, the example inertial sensors have very low  SF and  MA errors of only 10 ppm.
For static conditions, the equivalent resulting errors are in the same magnitude as the sensors’
biases. Second, the transatlantic flight trajectory is low dyanmic. From the visualization of the
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Figure 3.71.: Departure trajectory and heading of the transatlantic example flight.

aircraft’s trajectory in  Figure 3.71 , the most dynamic part of the trajectory can be found in just
these first 15min: The aircraft starts towards the west, performs a 230° left-turn, and departs
straight to the northeast. Afterward, there are only very few low-dynamic maneuvers. The
effects of the relatively high dynamic start can be observed in a step increase of the orientation
errors at about 10min. However, the dynamic-dependent errors introduce far fewer errors than
the violation of a static vehicle’s assumptions observed in the heading and longitude errors.
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Figure 3.72.: Comparison of simulation results and predicted errors of the position and velocity for
the simulated transatlantic flight scenario.
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(c) Yaw angle.

Figure 3.73.: Comparison of simulation results and predicted errors of the orientation angles for
the simulated transatlantic flight scenario.
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Result 2: Navigation Performance Prediction

The prediction charts presented in  Subsection 3.4.3 provide an easy-to-use visualization of
fundamental relations between sensor performance and navigation errors. The charts allow a
simple read-off and thus estimation of the magnitude of the allowed sensor and initialization
errors for a given position error requirement.
In contrast, the quantitative calculation schemes provide a tool to predict the growth of any
navigation state error from initialization errors, dynamic-independent bias-like sensor errors,
and sensor noise. The schemes are best transferred into a computer program to allow the
simple variation of the error parameters when creating an error budget.
The validation of the analytically predicted results by comparison with Monte-Carlo strapdown
navigation simulation results demonstrated the validity but also the limits of the presented
methods:

• The navigation error growth from initialization errors, sensor noise, and dynamic-
independent bias-like sensor errors can be predicted by the presented methods at high
accuracy.

• Despite the underlying static assumptions and linearizations, the errors are surprisingly
well predicted even for trajectories that lead far away from the linearization point.

• Depending on the trajectory’s dynamics, the dynamic-dependent sensor errors can
contribute significantly to the navigation state errors.

• These dynamic-dependent errors can be considered either by piecewise steady approx-
imation of the trajectory or by a numerical covariance propagation along the trajectory.

• A high-accuracy prediction of the navigation errors, including non-linearities of the
strapdown equations and dynamic-dependent sensor errors, requires elaborate Monte-
Carlo simulation.

Since the consideration of dynamic-dependent sensor errors and non-linearities of the
strapdown-propagation requires the availability of a representative trajectory, the presented
methods represent the best prediction of navigation errors available at a very early design
phase where no or little trajectory information is at hand.
They set a minimum level of navigation errors to which the effects from the dynamic-dependent
sensor errors are added.
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3.6. Short- and Medium-Term Approximations

The previous analyses were based on the long-term analytical system responses. In literature
and in practice, approximations of the error dynamics are widely used to predict the navigation
performance. In the following section, the typical short- and medium-term approximations
for all navigation states are derived from the long-term solutions. The results are compared to
assess the validity of these approximations.

3.6.1. Spherical and Non-Rotating Earth

Neglection of the Earth’s rotation rate in the state space system ( 3.62 ) leads to the strapdown
error dynamics for a spherical and non-rotating Earth. The simplified state space system is
given written:

𝛿 ̇𝒛 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1

𝑅+ℎ
0 0 0 0

0 0 0 1

(𝑅+ℎ) cos ̃𝜙
0 0 0

0 0 0 0 0 −𝑔 0

0 0 0 0 𝑔 0 0

0 0 0 −1

𝑅+ℎ
0 0 0

0 0 1

𝑅+ℎ
0 0 0 0

0 0 0 tan ̃𝜙

𝑅+ℎ
0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝛿𝒛 +
⎡
⎢
⎢
⎢
⎢
⎣

𝟎2×3 𝟎2×3 𝟎2×3 𝟎2×2

𝐈2×3 𝟎2×3 𝐈2×3 𝟎2×2

𝟎3×3 𝐈3×3 𝟎3×3 𝟎3×2

⎤
⎥
⎥
⎥
⎥
⎦

𝛿𝒖𝑣𝑓

(3.133)
with the state and input vectors

𝛿𝒛 = [𝛿𝑥𝑛, 𝛿𝑥𝑒, 𝛿𝑣𝑛, 𝛿𝑣𝑒, 𝛿𝛷, 𝛿𝛩, 𝛿𝛹]
⊺ (3.134)

𝛿𝒖𝑣𝑓 = [𝛿𝑓𝑏,𝑛, 𝛿𝑓𝑏,𝑒, 𝛿𝑓𝑏,𝑑, 𝛿𝜔𝑖𝑏,𝑛, 𝛿𝜔𝑖𝑏,𝑒, 𝛿𝜔𝑖𝑏,𝑑, 𝛿𝛾𝑛, 𝛿𝛾𝑒, 𝛿𝛾𝑑, 𝛿ℎ, 𝛿𝑣𝑑]
⊺ (3.135)

The responses to initialization and sensor errors are determined for the above state-space system
using the previously described methods. The analytical solution to aboves error dynamics are
given  Table 3.12 and  Table 3.13 .
In contrast to the full error dynamics, this simplified form displays only linear growth

and Schuler oscillations but no 24 h and Foucault oscillations. Similar approximations are
extensively discussed in [ 20 , Ch. 13]. A brief but more accessible discussion of this mid-term
dynamics for bias-like and initialization errors can be found in [  14 , Ch. 12.4]. In contrast, the
tables here provide solutions for all navigation states and analytical responses to colored sensor
noise.
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Table 3.12.: Medium term analytical solutions to the strapdown error dynamics for position and velocity errors.
Position error Velocity error

Input North 𝛿𝑥𝑛 East 𝛿𝑥𝑒 North 𝛿𝑣𝑛 East 𝛿𝑣𝑒

Initialization 𝛿𝑥𝑛,0 ℎ1,1(𝑡) = 1 ℎ2,1(𝑡) = 0 ℎ3,1(𝑡) = 0 ℎ4,1(𝑡) = 0
𝛿𝑥𝑒,0 ℎ1,2(𝑡) = 0 ℎ2,2(𝑡) = 1 ℎ3,2(𝑡) = 0 ℎ4,2(𝑡) = 0
𝛿𝑣𝑛,0 ℎ1,3(𝑡) =

sin(𝜔𝑠𝑡)

𝜔𝑠
ℎ2,3(𝑡) = 0 ℎ3,3(𝑡) = cos(𝜔𝑠𝑡) ℎ4,3(𝑡) = 0

𝛿𝑣𝑒,0 ℎ1,4(𝑡) = 0 ℎ2,4(𝑡) =
sin(𝜔𝑠𝑡)

𝜔𝑠
ℎ3,4(𝑡) = 0 ℎ4,4(𝑡) = cos(𝜔𝑠𝑡)

𝛿𝛷0 ℎ1,5(𝑡) = 0 ℎ2,5(𝑡) = 𝑅 (1 − cos(𝜔𝑠𝑡)) ℎ3,5(𝑡) = 0 ℎ4,5(𝑡) = 𝑅𝜔𝑠 sin(𝜔𝑠𝑡)
𝛿𝛩0 ℎ1,6(𝑡) = 𝑅 (cos(𝜔𝑠𝑡) − 1) ℎ2,6(𝑡) = 0 ℎ3,6(𝑡) = −𝑅𝜔𝑠 sin(𝜔𝑠𝑡) ℎ4,6(𝑡) = 0
𝛿𝛹0 ℎ1,7(𝑡) = 0 ℎ2,7(𝑡) = 0 ℎ3,7(𝑡) = 0 ℎ4,7(𝑡) = 0

Sensor Biases 𝛿𝑓𝑏,𝑛,0 ℎ1,8(𝑡) =
1

𝜔2
𝑠
(1 − cos(𝜔𝑠𝑡)) ℎ2,8(𝑡) = 0 ℎ3,8(𝑡) =

1

𝜔2
𝑠
sin(𝜔𝑠𝑡) ℎ4,8(𝑡) = 0

𝛿𝑓𝑏,𝑒,0 ℎ1,9(𝑡) = 0 ℎ2,9(𝑡) =
1

𝜔2
𝑠
− cos(𝜔𝑠𝑡)

𝜔2
𝑠

ℎ3,9(𝑡) = 0 ℎ4,9(𝑡) =
1

𝜔𝑠
sin(𝜔𝑠𝑡)

𝛿𝜔𝑖𝑏,𝑛,0 ℎ1,11(𝑡) = 0 ℎ2,11(𝑡) = 𝑅 (𝑡 − sin(𝜔𝑠𝑡)

𝜔𝑠
) ℎ3,11(𝑡) = 0 ℎ4,11(𝑡) = 𝑅 (1 − cos(𝜔𝑠𝑡))

𝛿𝜔𝑖𝑏,𝑒,0 ℎ1,12(𝑡) = −𝑅 (𝑡 − sin(𝜔𝑠𝑡)

𝜔𝑠
) ℎ2,12(𝑡) = 0 ℎ3,12(𝑡) = 𝑅 (cos(𝜔𝑠𝑡) − 1) ℎ4,12(𝑡) = 0

𝛿𝜔𝑖𝑏,𝑑,0 ℎ1,13(𝑡) = 0 ℎ1,13(𝑡) = 0 ℎ3,13(𝑡) = 0 ℎ4,13(𝑡) = 0

Velocity Random Walk 𝑁2
𝑓𝑏,𝑛 𝑘1,8(𝑡) =

1

2𝜔2
𝑠
(𝑡 − sin(2𝜔𝑠𝑡)

2𝜔𝑠
) 𝑘2,8(𝑡) = 0 𝑘3,8(𝑡) =

𝑡

2
+ sin(2𝜔𝑠𝑡)

4𝜔𝑠
𝑘4,8(𝑡) = 0

𝑁2
𝑓𝑏,𝑒 𝑘1,9(𝑡) = 0 𝑘2,9(𝑡) =

1

2𝜔2
𝑠
(𝑡 − sin(2𝜔𝑠𝑡)

2𝜔𝑠
) 𝑘3,9(𝑡) = 0 𝑘4,9(𝑡) =

𝑡

2
+ sin(2𝜔𝑠𝑡)

4𝜔𝑠

Angular Random Walk 𝑁2
𝜔𝑖𝑏,𝑛

𝑘1,11(𝑡) = 0 𝑘2,11(𝑡) =
3𝑅2

2
𝑡 − 2𝑅2 sin(𝜔𝑠𝑡)

𝜔𝑠
+ 𝑅2 sin(2𝜔𝑠𝑡)

4𝜔𝑠
𝑘3,11(𝑡) = 0 𝑘4,11(𝑡) = 𝑅2 (𝜔

2
𝑠𝑡

2
− 𝜔𝑠 sin(2𝜔𝑠𝑡)

4
)

𝑁2
𝜔𝑖𝑏,𝑒

𝑘1,12(𝑡) =
3𝑅2

2
𝑡 − 2𝑅2 sin(𝜔𝑠𝑡)

𝜔𝑠
+ 𝑅2 sin(2𝜔𝑠𝑡)

4𝜔𝑠
𝑘2,12(𝑡) = 0 𝑘3,12(𝑡) = 𝑅2 (𝜔

2
𝑠𝑡

2
− 𝜔𝑠 sin(2𝜔𝑠𝑡)

4
) 𝑘4,12(𝑡) = 0

𝑁2
𝜔𝑖𝑏,𝑑

𝑘1,13(𝑡) = 0 𝑘2,13(𝑡) = 0 𝑘3,13(𝑡) = 0 𝑘4,13(𝑡) = 0

Acceleration Random Walk 𝐾2
𝑓𝑏,𝑛 𝑘𝐾,1,8(𝑡) =

1

2𝜔4
𝑠
(𝑡 + sin(2𝜔𝑠𝑡)

2𝜔𝑠
) 𝑘𝐾,2,8(𝑡) = 0 𝑘𝐾,3,8(𝑡) =

1

2𝜔2
𝑠
(−𝑡 + sin(2𝜔𝑠𝑡)

2𝜔𝑠
) 𝑘𝐾,4,8(𝑡) = 0

𝐾2
𝑓𝑏,𝑒 𝑘𝐾,1,9(𝑡) = 0 𝑘𝐾,2,9(𝑡) =

1

2𝜔4
𝑠 cos2 𝜙

(𝑡 + sin(2𝜔𝑠𝑡)

2𝜔𝑠
) 𝑘𝐾,3,9(𝑡) = 0 𝑘𝐾,4,9(𝑡) =

1

2𝜔2
𝑠
(−𝑡 + sin(2𝜔𝑠𝑡)

2𝜔𝑠
)

Rate Random Walk 𝐾2
𝜔𝑖𝑏,𝑛

𝑘𝐾,1,11(𝑡) = 0 𝑘𝐾,2,11(𝑡) =
𝑅2

cos2 𝜙
( 1
3
𝑡3 − 1

4𝜔4
𝑠
sin(2𝜔𝑠𝑡) 𝑘𝐾,3,11(𝑡) = 0 𝑘𝐾,4,11(𝑡) = 𝑅2 ( 𝑡

2
+ sin(2𝜔𝑠𝑡)

4𝜔𝑠
)

− 2

𝜔3
𝑠
sin(𝜔𝑠𝑡) +

1

2𝜔2
𝑠
𝑡 + 2

𝜔2
𝑠
𝑡 cos(𝜔𝑠𝑡))

𝐾2
𝜔𝑖𝑏,𝑒

𝑘𝐾,1,12(𝑡) = 𝑅2 ( 1
3
𝑡3 − 1

2𝜔2
𝑠
sin(𝜔𝑠𝑡) cos(𝜔𝑠𝑡) 𝑘𝐾,2,12(𝑡) = 0 𝑘𝐾,3,12(𝑡) = 𝑅2 ( 𝑡

2
+ sin(2𝜔𝑠𝑡)

4𝜔𝑠
) 𝑘𝐾,4,12(𝑡) = 0

− 2

𝜔3
𝑠
sin(𝜔𝑠𝑡) +

1

2𝜔2
𝑠
𝑡 − 2

𝜔2
𝑠
𝑡 cos(𝜔𝑠𝑡))

𝐾2
𝜔𝑖𝑏,𝑑

𝑘𝐾,1,13(𝑡) = 0 𝑘𝐾,2,13(𝑡) = 0 𝑘𝐾,3,13(𝑡) = 0 𝑘𝐾,4,13(𝑡) = 0
Velocity Quantization Noise 𝑄2

𝑓𝑏,𝑛 𝑘𝑄,1,8(𝑡) =
1

2
𝑡 + 1

4𝜔𝑠
sin(2𝜔𝑠𝑡) 𝑘𝑄,2,8(𝑡) = 0 𝑘𝑄,3,8(𝑡) =

𝜔𝑠

2
𝑡 − 𝜔𝑠

4𝜔𝑠
sin(2𝜔𝑠𝑡) 𝑘𝑄,4,8(𝑡) = 0

𝑄2
𝑓𝑏,𝑒 𝑘𝑄,1,9(𝑡) = 0 𝑘𝑄,2,9(𝑡) = ( 1

2
𝑡 + 1

4𝜔𝑠
sin(2𝜔𝑠𝑡))

1

cos2 𝜙
𝑘𝑄,3,9(𝑡) = 0 𝑘𝑄,4,9(𝑡) =

𝜔𝑠

2
𝑡 − 𝜔𝑠

4𝜔𝑠
sin(2𝜔𝑠𝑡)

Angular Quantization Noise 𝑄2
𝜔𝑖𝑏,𝑛

𝑘𝑄,1,11(𝑡) = 0 𝑘𝑄,2,11(𝑡) =
𝑅2

cos2 𝜙
(𝜔𝑠

2
𝑡 − 𝜔𝑠

4
sin(2𝜔𝑠𝑡)) 𝑘𝑄,3,11(𝑡) = 0 𝑘𝑄,4,11(𝑡) = 𝑅2 (𝜔

4
𝑠

2
𝑡 + 𝜔3

𝑠

4
sin(2𝜔𝑠𝑡))

𝑄2
𝜔𝑖𝑏,𝑒

𝑘𝑄,1,12(𝑡) = 𝑅2 (𝜔𝑠

2
𝑡 − 𝜔𝑠

4
sin(2𝜔𝑠𝑡)) 𝑘𝑄,2,12(𝑡) = 0 𝑘𝑄,3,12(𝑡) = 𝑅2 (𝜔

4
𝑠

2
𝑡 + 𝜔3

𝑠

4
sin(2𝜔𝑠𝑡)) 𝑘𝑄,4,12(𝑡) = 0

𝑄2
𝜔𝑖𝑏,𝑑

𝑘𝑄,1,13(𝑡) = 0 𝑘𝑄,2,13(𝑡) = 0 𝑘𝑄,3,13(𝑡) = 0 𝑘𝑄,4,13(𝑡) = 0

There is no analytical expression for the navigation errors from bias-instability and rate ramp noise. See section  3.3.4.2 for a numerical solution.

158



3.6.
Short-and

M
edium

-Term
A
pproxim

ations

Table 3.13.: Medium term analytical solutions to the strapdown error dynamics for orientation errors.

Orientation error

Input Roll 𝛿𝛷 Pitch 𝛿𝛩 Yaw 𝛿𝛹

Initialization 𝛿𝑥𝑛,0 ℎ5,1(𝑡) = 0 ℎ6,1(𝑡) = 0 ℎ7,1(𝑡) = 0
𝛿𝑥𝑒,0 ℎ5,2(𝑡) = 0 ℎ6,2(𝑡) = 0 ℎ7,2(𝑡) = 0
𝛿𝑣𝑛,0 ℎ5,3(𝑡) = 0 ℎ6,3(𝑡) =

sin(𝜔𝑠𝑡)

𝑅𝜔𝑠
ℎ7,3(𝑡) = 0

𝛿𝑣𝑒,0 ℎ5,4(𝑡) = − sin(𝜔𝑠𝑡)

𝑅𝜔𝑠
ℎ6,4(𝑡) = 0 ℎ7,4(𝑡) =

tan𝜙 sin(𝜔𝑠𝑡)

𝑅𝜔𝑠

𝛿𝛷0 ℎ5,5(𝑡) = cos(𝜔𝑠𝑡) ℎ6,5(𝑡) = 0 ℎ7,5(𝑡) = tan𝜙 (1 − cos(𝜔𝑠𝑡))
𝛿𝛩0 ℎ5,6(𝑡) = 0 ℎ6,6(𝑡) = cos(𝜔𝑠𝑡) ℎ7,6(𝑡) = 0
𝛿𝛹0 ℎ5,7(𝑡) = 0 ℎ6,7(𝑡) = 0 ℎ7,7(𝑡) = 1

Sensor Biases 𝛿𝑓𝑏,𝑛,0 ℎ5,8(𝑡) = 0 ℎ6,8(𝑡) =
1

𝑔
− cos(𝜔𝑠𝑡)

𝑔
ℎ7,8(𝑡) = 0

𝛿𝑓𝑏,𝑒,0 ℎ5,9(𝑡) =
cos(𝜔𝑠𝑡)

𝑔
− 1

𝑔
ℎ6,9(𝑡) = 0 ℎ7,9(𝑡) =

tan𝜙

𝑔
− tan𝜙 cos(𝜔𝑠𝑡)

𝑔

𝛿𝜔𝑖𝑏,𝑛,0 ℎ5,11(𝑡) =
sin(𝜔𝑠𝑡)

𝜔𝑠
ℎ6,11(𝑡) = 0 ℎ7,11(𝑡) = tan𝜙 (𝑡 − sin(𝜔𝑠𝑡)

𝜔𝑠
)

𝛿𝜔𝑖𝑏,𝑒,0 ℎ5,12(𝑡) = 0 ℎ6,12(𝑡) =
sin(𝜔𝑠𝑡)

𝜔𝑠
ℎ7,12(𝑡) = 0

𝛿𝜔𝑖𝑏,𝑑,0 ℎ5,13(𝑡) = 0 ℎ6,13(𝑡) = 0 ℎ7,13(𝑡) = 𝑡
Velocity Random Walk 𝑁2

𝑓𝑏,𝑛 𝑘5,8(𝑡) = 0 𝑘6,8(𝑡) =
𝑡

2𝑅𝑔
− sin(2𝜔𝑠𝑡)

4𝑅𝑔𝜔𝑠
𝑘7,8(𝑡) = 0

𝑁2
𝑓𝑏,𝑒 𝑘5,9(𝑡) =

1

2𝑅𝑔
(𝑡 − sin(2𝜔𝑠𝑡)

2𝜔𝑠
) 𝑘6,9(𝑡) = 0 𝑘7,9(𝑡) = ( 𝑡

2𝑅𝑔
− sin(2𝜔𝑠𝑡)

4𝑅𝑔𝜔𝑠
) tan2 𝜙

Angular Random Walk 𝑁2
𝜔𝑖𝑏,𝑛

𝑘5,11(𝑡) =
𝑡

2
+ sin(2𝜔𝑠𝑡)

4𝜔𝑠
𝑘6,11(𝑡) = 0 𝑘7,11(𝑡) = ( 3

2
𝑡 − 2 sin(𝜔𝑠𝑡)

𝜔𝑠
+ sin(2𝜔𝑠𝑡)

4𝜔𝑠
) tan𝜙

𝑁2
𝜔𝑖𝑏,𝑒

𝑘5,12(𝑡) = 0 𝑘6,12(𝑡) =
𝑡

2
+ sin(2𝜔𝑠𝑡)

4𝜔𝑠
𝑘7,12(𝑡) = 0

𝑁2
𝜔𝑖𝑏,𝑑

𝑘5,13(𝑡) = 0 𝑘6,13(𝑡) = 0 𝑘7,13(𝑡) = 𝑡
Acceleration Random Walk 𝐾2

𝑓𝑏,𝑛 𝑘𝐾,5,8(𝑡) = 0 𝑘𝐾,6,8(𝑡) =
𝑡

2
+ sin(2𝜔𝑠𝑡)

4𝜔𝑠
𝑘𝐾,7,8(𝑡) = 0

𝐾2
𝑓𝑏,𝑒 𝑘𝐾,5,9(𝑡) =

𝑡

2
+ sin(2𝜔𝑠𝑡)

4𝜔𝑠
𝑘𝐾,6,9(𝑡) = 0 𝑘𝐾,7,9(𝑡) = ( 𝑡

2
+ sin(2𝜔𝑠𝑡)

4𝜔𝑠
) tan2 𝜙

Rate Random Walk 𝐾2
𝜔𝑖𝑏,𝑛

𝑘𝐾,5,11(𝑡) = − 𝑡

2𝜔2
𝑠
+ sin(2𝜔𝑠𝑡)

4𝜔3
𝑠

𝑘𝐾,6,11(𝑡) = 0 𝑘𝐾,7,11(𝑡) = tan2 𝜙 ( 1
3
𝑡3 − 2

𝜔3
𝑠
sin(𝜔𝑠𝑡) +

1

2𝜔2
𝑠
𝑡 − 1

2𝜔3
𝑠
cos(𝜔𝑠𝑡) sin(𝜔𝑠𝑡) +

2

𝜔2
𝑠
𝑡 cos(𝜔𝑠𝑡))

𝐾2
𝜔𝑖𝑏,𝑒

𝑘𝐾,5,12(𝑡) = 0 𝑘𝐾,6,12(𝑡) = − 𝑡

2𝜔2
𝑠
− sin(2𝜔𝑠𝑡)

4𝜔3
𝑠

𝑘𝐾,7,12(𝑡) = 0

𝐾2
𝜔𝑖𝑏,𝑑

𝑘𝐾,5,13(𝑡) = 0 𝑘𝐾,6,13(𝑡) = 0 𝑘𝐾,7,13(𝑡) =
1

3
𝑡3

Velocity Quantization Noise 𝑄2
𝑓𝑏,𝑛 𝑘𝑄,5,8(𝑡) = 0 𝑘𝑄,6,8(𝑡) =

𝜔4
𝑠

2
𝑡 + 𝜔3

𝑠

4
sin(2𝜔𝑠𝑡) 𝑘𝑄,7,8(𝑡) = 0

𝑄2
𝑓𝑏,𝑒 𝑘𝑄,5,9(𝑡) =

𝜔4
𝑠

2
𝑡 + 𝜔3

𝑠

4
sin(2𝜔𝑠𝑡) 𝑘𝑄,6,9(𝑡) = 0 𝑘𝑄,7,9(𝑡) = (𝜔

4
𝑠

2
𝑡 + 𝜔3

𝑠

4
sin(2𝜔𝑠𝑡)) tan2 𝜙

Angular Quantization Noise 𝑄2
𝜔𝑖𝑏,𝑛

𝑘𝑄,5,11(𝑡) = −𝜔2
𝑠

2
𝑡 + 𝜔𝑠

4
sin(2𝜔𝑠𝑡) 𝑘𝑄,6,11(𝑡) = 0 𝑘𝑄,7,11(𝑡) = (𝜔

2
𝑠

2
𝑡 − 𝜔𝑠

4
sin(2𝜔𝑠𝑡)) tan2 𝜙

𝑄2
𝜔𝑖𝑏,𝑒

𝑘𝑄,5,12(𝑡) = 0 𝑘𝑄,6,12(𝑡) = −𝜔2
𝑠

2
𝑡 + 𝜔𝑠

4
sin(2𝜔𝑠𝑡) 𝑘𝑄,7,12(𝑡) = 0

𝑄2
𝜔𝑖𝑏,𝑑

𝑘𝑄,5,13(𝑡) = 0 𝑘𝑄,6,13(𝑡) = 0 𝑘𝑄,7,13(𝑡) = 0

There is no analytical expresion for the navigation errors from bias-instability and rate ramp noise. See section  3.3.4.2 for a numerical solution.

159



Chapter 3. Strapdown Inertial Navigation Error Propagation

3.6.2. Flat and Non-Rotating Earth

The state space system ( 3.133 ) can be further simplified for a flat and non-rotating Earth. For a
flat Earth, latitude and longitude errors are replaced by north- and east position errors which
leads to the following state vector:

𝛿𝒛flat = [𝛿𝑥𝑛, 𝛿𝑥𝑒, 𝛿𝑣𝑛, 𝛿𝑣𝑒, 𝛿𝛷, 𝛿𝛩, 𝛿𝛹]
⊺ (3.136)

The new system matrix is obtained from ( 3.133 ) by replacing latitude and longitude with the
north- and east position errors and assuming an infinite Earth radius 𝑅 → ∞. This yields the
following simple state-space system:

𝛿 ̇𝒛flat =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 −𝑔 0

0 0 0 0 𝑔 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

̇𝒛flat +
⎡
⎢
⎢
⎢
⎢
⎣

𝟎2×3 𝟎2×3 𝟎2×3 𝟎2×2

𝐈2×3 𝟎2×3 𝐈2×3 𝟎2×2

𝟎3×3 𝐈3×3 𝟎3×3 𝟎3×2

⎤
⎥
⎥
⎥
⎥
⎦

𝛿𝒖𝑣𝑓 (3.137)

These elementary error dynamics are equivalent to free integration of the inputs without
cross-couplings. The resulting analytical solutions are summarized in  Table 3.14 . Similar
short-term approximations are well covered in literature, e.g., [  14 , p. 355]. Again,  Table 3.14 

completes the equations found in literature to all navigation states and input errors. Due to the
complete neglection of the error dynamics, this approximation only represents the navigation
error’s initial response accurately. Since not even the Schuler-oscillation is represented in the
equations, their validity must be limited to a fraction of 84min. The range of validity of these
approximations will be discussed in the next section.
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Table 3.14.: Short term analytical solutions to the strapdown error dynamics.

Position error Velocity error Orientation error

Input North 𝛿𝑥𝑛 East 𝛿𝑥𝑒 North 𝛿𝑣𝑛 East 𝛿𝑣𝑒 Roll 𝛿𝛷 Pitch 𝛿𝛩 Yaw 𝛿𝛹

Initialization 𝛿𝑥𝑛,0 ℎ1,1(𝑡) = 1 ℎ2,1(𝑡) = 0 ℎ3,1(𝑡) = 0 ℎ4,1(𝑡) = 0 ℎ5,1(𝑡) = 0 ℎ6,1(𝑡) = 0 ℎ7,1(𝑡) = 0
𝛿𝑥𝑒,0 ℎ1,2(𝑡) = 0 ℎ2,2(𝑡) = 1 ℎ3,2(𝑡) = 0 ℎ4,2(𝑡) = 0 ℎ5,2(𝑡) = 0 ℎ6,2(𝑡) = 0 ℎ7,2(𝑡) = 0
𝛿𝑣𝑛,0 ℎ1,3(𝑡) = 𝑡 ℎ2,3(𝑡) = 0 ℎ3,3(𝑡) = 1 ℎ4,3(𝑡) = 0 ℎ5,3(𝑡) = 0 ℎ6,3(𝑡) = 0 ℎ7,3(𝑡) = 0
𝛿𝑣𝑒,0 ℎ1,4(𝑡) = 0 ℎ2,4(𝑡) = 𝑡 ℎ3,4(𝑡) = 0 ℎ4,4(𝑡) = 1 ℎ5,4(𝑡) = 0 ℎ6,4(𝑡) = 0 ℎ7,4(𝑡) = 0
𝛿𝛷0 ℎ1,5(𝑡) = 0 ℎ2,5(𝑡) = − 1

2
𝑔𝑡2 ℎ3,5(𝑡) = 0 ℎ4,5(𝑡) = −𝑔𝑡 ℎ5,5(𝑡) = 1 ℎ6,5(𝑡) = 0 ℎ7,5(𝑡) = 0

𝛿𝛩0 ℎ1,6(𝑡) = − 1

2
𝑔𝑡2 ℎ2,6(𝑡) = 0 ℎ3,6(𝑡) = −𝑔𝑡 ℎ4,6(𝑡) = 0 ℎ5,6(𝑡) = 0 ℎ6,6(𝑡) = 1 ℎ7,6(𝑡) = 0

𝛿𝛹0 ℎ1,7(𝑡) = 0 ℎ2,7(𝑡) = 0 ℎ3,7(𝑡) = 0 ℎ4,7(𝑡) = 0 ℎ5,7(𝑡) = 0 ℎ6,7(𝑡) = 0 ℎ7,7(𝑡) = 1
Sensor Biases 𝛿𝑓𝑏,𝑛,0 ℎ1,8(𝑡) =

1

2
𝑡2 ℎ2,8(𝑡) = 0 ℎ3,8(𝑡) = 𝑡 ℎ4,8(𝑡) = 0 ℎ5,8(𝑡) = 0 ℎ6,8(𝑡) = 0 ℎ7,8(𝑡) = 0

𝛿𝑓𝑏,𝑒,0 ℎ1,9(𝑡) = 0 ℎ2,9(𝑡) =
1

2
𝑡2 ℎ3,9(𝑡) = 0 ℎ4,9(𝑡) = 𝑡 ℎ5,9(𝑡) = 0 ℎ6,9(𝑡) = 0 ℎ7,9(𝑡) = 0

𝛿𝜔𝑖𝑏,𝑛,0 ℎ1,11(𝑡) = 0 ℎ2,11(𝑡) = − 1

6
𝑔𝑡3 ℎ3,11(𝑡) = 0 ℎ4,11(𝑡) = 0 ℎ5,11(𝑡) = 𝑡 ℎ6,11(𝑡) = 0 ℎ7,11(𝑡) = 0

𝛿𝜔𝑖𝑏,𝑒,0 ℎ1,12(𝑡) = − 1

6
𝑔𝑡3 ℎ2,12(𝑡) = 0 ℎ3,12(𝑡) = 0 ℎ4,12(𝑡) = 0 ℎ5,12(𝑡) = 0 ℎ6,12(𝑡) = 𝑡 ℎ7,12(𝑡) = 0

𝛿𝜔𝑖𝑏,𝑑,0 ℎ1,13(𝑡) = 0 ℎ1,13(𝑡) = 0 ℎ3,13(𝑡) = 0 ℎ4,13(𝑡) = 0 ℎ5,13(𝑡) = 0 ℎ6,13(𝑡) = 0 ℎ7,13(𝑡) = 𝑡
Velocity Random Walk 𝑁2

𝑓𝑏,𝑛 𝑘1,8(𝑡) =
1

3
𝑡3 𝑘2,8(𝑡) = 0 𝑘3,8(𝑡) = 𝑡 𝑘4,8(𝑡) = 0 𝑘5,8(𝑡) = 0 𝑘6,8(𝑡) = 0 𝑘7,8(𝑡) = 0

𝑁2
𝑓𝑏,𝑒 𝑘1,9(𝑡) = 0 𝑘2,9(𝑡) =

1

3
𝑡3 𝑘3,9(𝑡) = 0 𝑘4,9(𝑡) = 𝑡 𝑘5,9(𝑡) = 0 𝑘6,9(𝑡) = 0 𝑘7,9(𝑡) = 0

Angular Random Walk 𝑁2
𝜔𝑖𝑏,𝑛

𝑘1,11(𝑡) = 0 𝑘2,11(𝑡) =
1

20
𝑔2𝑡5 𝑘3,11(𝑡) = 0 𝑘4,11(𝑡) =

1

3
𝑡3 𝑘5,11(𝑡) = 𝑡 𝑘6,11(𝑡) = 0 𝑘7,11(𝑡) = 0

𝑁2
𝜔𝑖𝑏,𝑒

𝑘1,12(𝑡) =
1

20
𝑔2𝑡5 𝑘2,12(𝑡) = 0 𝑘3,12(𝑡) =

1

3
𝑡3 𝑘4,12(𝑡) = 0 𝑘5,12(𝑡) = 0 𝑘6,12(𝑡) = 𝑡 𝑘7,12(𝑡) = 0

𝑁2
𝜔𝑖𝑏,𝑑

𝑘1,13(𝑡) = 0 𝑘2,13(𝑡) = 0 𝑘3,13(𝑡) = 0 𝑘4,13(𝑡) = 0 𝑘5,13(𝑡) = 0 𝑘6,13(𝑡) = 0 𝑘7,13(𝑡) = 𝑡
Acceleration Random Walk 𝐾2

𝑓𝑏,𝑛 𝑘𝐾,1,8(𝑡) =
1

20
𝑡5 𝑘𝐾,2,8(𝑡) = 0 𝑘𝐾,3,8(𝑡) =

1

3
𝑡3 𝑘𝐾,4,8(𝑡) = 0 𝑘𝐾,5,8(𝑡) = 0 𝑘𝐾,6,8(𝑡) = 0 𝑘𝐾,7,8(𝑡) = 0

𝐾2
𝑓𝑏,𝑒 𝑘𝐾,1,9(𝑡) = 0 𝑘𝐾,2,9(𝑡) =

1

20
𝑡5 𝑘𝐾,3,9(𝑡) = 0 𝑘𝐾,4,9(𝑡) =

1

3
𝑡3 𝑘𝐾,5,9(𝑡) = 0 𝑘𝐾,6,9(𝑡) = 0 𝑘𝐾,7,9(𝑡) = 0

Rate Random Walk 𝐾2
𝜔𝑖𝑏,𝑛

𝑘𝐾,1,11(𝑡) = 0 𝑘𝐾,2,11(𝑡) =
1

252
𝑔2𝑡7 𝑘𝐾,3,11(𝑡) = 0 𝑘𝐾,4,11(𝑡) =

1

20
𝑡5 𝑘𝐾,5,11(𝑡) =

1

3
𝑡3 𝑘𝐾,6,11(𝑡) = 0 𝑘𝐾,7,11(𝑡) = 0

𝐾2
𝜔𝑖𝑏,𝑒

𝑘𝐾,1,12(𝑡) =
1

252
𝑔2𝑡7 𝑘𝐾,2,12(𝑡) = 0 𝑘𝐾,3,12(𝑡) =

1

20
𝑡5 𝑘𝐾,4,12(𝑡) = 0 𝑘𝐾,5,12(𝑡) = 0 𝑘𝐾,6,12(𝑡) =

1

3
𝑡3 𝑘𝐾,7,12(𝑡) = 0

𝐾2
𝜔𝑖𝑏,𝑑

𝑘𝐾,1,13(𝑡) = 0 𝑘𝐾,2,13(𝑡) = 0 𝑘𝐾,3,13(𝑡) = 0 𝑘𝐾,4,13(𝑡) = 0 𝑘𝐾,5,13(𝑡) = 0 𝑘𝐾,6,13(𝑡) = 0 𝑘𝐾,7,13(𝑡) =
1

3
𝑡3

Vel. Quantization Noise 𝑄2
𝑓𝑏,𝑛 𝑘𝑄,1,8(𝑡) =

1

3
𝑡3 𝑘𝑄,2,8(𝑡) = 0 𝑘𝑄,3,8(𝑡) = 1 𝑘𝑄,4,8(𝑡) = 0 𝑘𝑄,5,8(𝑡) = 0 𝑘𝑄,6,8(𝑡) = 0 𝑘𝑄,7,8(𝑡) = 0

𝑄2
𝑓𝑏,𝑒 𝑘𝑄,1,9(𝑡) = 0 𝑘𝑄,2,9(𝑡) = 𝑡 𝑘𝑄,3,9(𝑡) = 0 𝑘𝑄,4,9(𝑡) = 1 𝑘𝑄,5,9(𝑡) = 0 𝑘𝑄,6,9(𝑡) = 0 𝑘𝑄,7,9(𝑡) = 0

Angular Quantization Noise 𝑄2
𝜔𝑖𝑏,𝑛

𝑘𝑄,1,11(𝑡) = 0 𝑘𝑄,2,11(𝑡) =
1

3
𝑔2𝑡3 𝑘𝑄,3,11(𝑡) = 0 𝑘𝑄,4,11(𝑡) = 𝑡 𝑘𝑄,5,11(𝑡) = 1 𝑘𝑄,6,11(𝑡) = 0 𝑘𝑄,7,11(𝑡) = 0

𝑄2
𝜔𝑖𝑏,𝑒

𝑘𝑄,1,12(𝑡) =
1

3
𝑔2𝑡3 𝑘𝑄,2,12(𝑡) = 0 𝑘𝑄,3,12(𝑡) = 𝑡 𝑘𝑄,4,12(𝑡) = 0 𝑘𝑄,5,12(𝑡) = 0 𝑘𝑄,6,12(𝑡) = 1 𝑘𝑄,7,12(𝑡) = 0

𝑄2
𝜔𝑖𝑏,𝑑

𝑘𝑄,1,13(𝑡) = 0 𝑘𝑄,2,13(𝑡) = 0 𝑘𝑄,3,13(𝑡) = 0 𝑘𝑄,4,13(𝑡) = 0 𝑘𝑄,5,13(𝑡) = 0 𝑘𝑄,6,13(𝑡) = 0 𝑘𝑄,7,13(𝑡) = 1161



Chapter 3. Strapdown Inertial Navigation Error Propagation

3.6.3. Comparison and Summary

The three discussed approximations represent different levels of system complexity. Comparing
the different levels of approximation, several differences can be observed:

• The neglection of error dynamics in the short- and medium-term approximation. Ini-
tial position errors stay constant while orientation and velocity errors are freely integrated
in the short term approximations, whereas the medium- and long-term solutions display
bound oscillations or linear growth superposedwith oscillations. While themedium-term
approximations display only the Schuler oscillation, the long-term solutions additionally
include the 24 h and Foucault oscillations.

• A lack of cross-coupling responses in the short andmedium-term approximations. For
the short-term approximation, position and orientation errors arise only when directly
excited in the direction of the output. For example, a north acceleration error leads
only to a north position error. The same is true for the medium-term approximation,
except for the yaw angle error that is also sensitive to inputs in the east direction. Further
cross-axis responses occur in the long-term solution, e.g., even an acceleration error in
the east direction excites a north position error.

• Different periods of validity of the approximations. Even where all the approximations
display a similar initial response to the input, these responses diverge over time. While
the short-term solution shows linear to quadratic error growth, themedium-term solution
is a harmonic oscillation (superpose to linear growth in some cases). In the long-term
solution, this oscillation is additionally modulated at a 24-hour or Foucault period.

To the illustrate the differences in validity between the short-, medium- and long-term
solution, some example error responses for the north position and roll angle errors are depicted
in  Figure 3.74 ,  Figure 3.75 and  Figure 3.76 . The short-term solution captures the initial response
to error inputs quite well. The short-term polynomial solution matches the true harmonic
oscillations of the medium and long-term solutions up to around 10min. After that, the
short-term solution displays a substantial divergence from the other approximations. The
medium-term solution displays the Schuler oscillations that dominate the long-term solution
but lack their amplitude modulation. The change in amplitude becomes relevant after 2 to 4 h.
The observed validity periods approve the literature values stated in [ 14 , p. 350], [  15 , p. 163]
and [  20 , p. 13-1]. The validity of the long-term solution is mainly limited by the neglection
of the vehicle motion as discussed in section  3.3.1.4 . The resulting properties of the different
approximations are summarized in  Table 3.15 .
Looking at the depicted error growth, it is tempting to say that the short- and medium-term

solutions are alwaysmore conservative than the long-term solution and, especially themedium-
term solution, could be used as a worst-case estimate. However, there are arguments against
this assumption:
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3.6. Short- and Medium-Term Approximations

Table 3.15.: Comparison of approximations of the strapdown error dynamics.

Short-term Medium-term Long-term

Earth shape flat spherical spherical
Earth rotation - - 𝜔𝑖𝑒
Error growth polynomially oscillating mod. oscillating
Periodicity - 𝑇𝑠 ≈ 84.4min 𝑇𝑠 ≈ 84.4min,

𝑇𝑓 ≈ 34 h at 𝜙 = 45°,
𝑇𝑖𝑒 ≈ 24 h

Cross-axis sensitivity - azimuth only extensive
Validity period < 10min < 4 h < 10 d

1. The short-term solution displays unlimited polynomial growth. This leads to a practically
worthless estimation of the true errors that are often limited to medium and long terms.

2. The medium-term solution captures the Schuler oscillation and the maximum of the
error quite well. Still, a modulation caused by the Earth’s angular rate may change the
direction of the error oscillation (see  Figure 3.74  c). In that case, the assumed maximum
amplitude is correct, but the direction of the error may be diametrically wrong.

3. For some states, the short- andmedium-term approximations do not display any response
where the long-term solution indeed does. This contradicts the assumed feasibility as a
worst-case estimate.

Taking the extremely reduced complexity of the short-term approximations into account, the
existence and use of all three approximations are justified. Still, care must be taken to select
the suitable approximation and consider its respective limitations.
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(a) North position error from initial north position error.
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(b) North position error from initial north velocity error.
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(c) North position error from initial pitch angle error.

Figure 3.74.: Comparison of different approximations for the north position error from initialization
errors.
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(b) North position error from 𝜔𝑖𝑏,𝑒 bias.
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(c) North position error from 𝑓𝑏,𝑛 white Gaussian noise.
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(d) North position error from 𝜔𝑖𝑏,𝑒 white Gaussian noise.

Figure 3.75.: Comparison of different approximations for the north position error from inertial
measurement errors.
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(a) Roll angle error from initial roll angle error.

0 5 10 15
0

500

(min)

R
ol

la
ng

le
er

ro
r𝛿
𝛷

in
(°
/°
s−

1 )

6 12 18 24 30 36 42 48

−500

0

500

Time 𝑡 in (h)

Long Medium Short

(b) Roll angle error from 𝜔𝑖𝑏,𝑒,0 bias.
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(c) Roll angle error from 𝜔𝑖𝑏,𝑒 white Gaussian noise.

Figure 3.76.: Comparison of different approximations for the roll angle error.
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Result 3: Short- and Medium-Term Approximations of the Strapdown Error Dynamics

In this section, the classical short- and medium-term approximations of the strapdown naviga-
tion error propagation have been derived from the long-term solutions.
Compared to the long-term solutions, the validity of the approximated solutions was assessed:

• The classical short-term approximation with polynomially error growth provides a good
approximation of the navigation error dynamics for up to 10min.

• The classical medium-term approximation with sinusoidal error growth provides a good
approximation of the navigation error dynamics for a few Schuler periods, which is
approximately 4 h.

• Although the short and medium-term approximations indicate a higher error growth
than the long-term solution, they cannot be used as a worst-case approximation: Both
approximations lack system responses that arise from a coupling of the different states
and fail to represent sign changes observed in the long-term solutions.

In summary, long-term solutions should be preferred over approximations whenever possible
during system design.
However, the short- and medium-term approximations may be feasible to assess the short-time
error growth locally in specific situations.
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Chapter 4.

Inertial Sensor Laboratory Testing

4.1. Introduction

This chapter focuses on determining the sensor errors as a basis for both sensor testing and
calibration. The chapter starts with deriving a kinematic model for the entire inertial laboratory,
including a three-axis rate table. Subsequently, various error sources along the kinematicmodel
are identified, and mathematical models are created. These models are then used to determine
the test accuracy in two different approaches: First, error budgets for the typical analytical
sensor test procedures are created in  Section 4.4  . Second, a Kalman-filter-based approach with
inherent test accuracy estimation is developed in  Section 4.5 .

4.2. Inertial Laboratory Modeling

4.2.1. General Inertial Laboratory Kinematic Model

Laboratory calibration and testing of inertial sensors require precise knowledge of the applied
reference angular rates and accelerations. This chapter first discusses the mathematical model-
ing of an ideal inertial laboratory to determine ideal (error-free) sensor measurements for the
analysis and numerical simulation of the calibration and testing process. Subsequently, this
ideal model is expanded by introducing error terms connected to real-world effects and error
sources.
To derive a universal model of an inertial laboratory, a representative laboratory setup is

selected:

• The inertial laboratory is placed at a fixed location on Earth. The instruments are placed
on a test pad. This can be either passively isolated or actively stabilized.

• For this model, a three-axis rate table is used as a reference. While this is not necessarily
a typical test setup, it provides a reasonably general model that can be easily reduced
to two-axis and single-axis rate tables or dividing heads by simply fixing the exceeding
degrees of freedom.

• The sensor always represents the top of the kinematic chain. Orientation and position of
the sensor with respect to the rate table is fixed but can be changed between tests.
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Chapter 4. Inertial Sensor Laboratory Testing

Based on this setup, the kinematic chain is developed from an inertial reference frame to the
sensors reference frame. An overview of this chain and the used reference frames is illustrated
in  Figure 4.1  . Additionally, the definitions of the reference frames are illustrated in  Figure 4.2  .

4.2.1.1. Angular Rates

Following the kinematic chain, the total angular rate with respect to the inertial frame, given
in the sensor’s body fixed frame is given as:

𝝎𝑖𝑛 = 𝐑𝑛𝑒𝝎𝑖𝑒 (4.1)

𝝎𝑖𝑝 = 𝐑𝑝𝑛𝝎𝑖𝑛 + 𝝎𝑛𝑝 (4.2)

𝝎𝑖𝑤 = 𝐑𝑤𝑝𝝎𝑖𝑝 + 𝝎𝑝𝑤 (4.3)

𝝎𝑖𝑣 = 𝐑𝑣𝑤𝝎𝑖𝑤 + 𝝎𝑤𝑣 (4.4)

𝝎𝑖ᵆ = 𝐑ᵆ𝑣𝝎𝑖𝑣 + 𝝎𝑣ᵆ (4.5)

𝝎𝑖𝑏 = 𝐑𝑏ᵆ𝝎𝑖ᵆ + 𝝎ᵆ𝑏 (4.6)

with
𝝎ᵆ𝑏 Angular rate of the sensor body with respect to the inner gimbal.

𝝎𝑣ᵆ Angular rate of the inner gimbal with respect to the middle gimbal.

𝝎𝑤𝑣 Angular rate of the middle gimbal with respect to the outer gimbal.

𝝎𝑝𝑤 Angular rate of the outer gimbal with respect to the test pad.

𝝎𝑛𝑝 Angular rate of the test pad with respect to the local NED frame.

𝝎𝑖𝑒 Angular rate of the ECEF frame with respect to the inertial reference frame.

𝐑𝑏ᵆ Rotation matrix from the inner gimbal’s to the sensor’s body fixed frame.

𝐑ᵆ𝑣 Rotation matrix from the middle gimbal’s to the inner gimbal’s frame.

𝐑𝑣𝑤 Rotation matrix from the outer gimbal’s to the middle gimbal’s frame.

𝐑𝑤𝑝 Rotation matrix from the test pad to the outer gimbal’s frame.

𝐑𝑝𝑛 Rotation matrix from the local NED frame to the test pad’s frame.

𝐑𝑛𝑒 Rotation matrix from the ECEF frame to the local NED frame.

The total angular rate comprises the summed-up angular rates of each rate table gimbal, the
test pad motion, and the Earth’s angular rate. In general, there may be an angular rate between
the inner gimbal and the sensor due to oscillations of the mechanical fixture. However, there
is no angular rate between the laboratory’s reference location (the NED frame) and the ECEF
frame. The laboratory’s location is just a reference point, and any laboratory motion will be
attributed to the pad’s deviation from this reference point.
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Unit under test sensor body-fixed reference frame

𝐑𝑏ᵆ𝒓ᵆ(𝑃𝑏)

Inner gimbal reference frame

𝐑ᵆ𝑣𝒓𝑣(𝑃 )

Middle gimbal reference frame

𝐑𝑣𝑤𝒓𝑤(𝑃𝑣)

Outer gimbal reference frame

𝐑𝑤𝑝𝒓𝑝(𝑃𝑤)

Test pier reference frame

𝐑𝑝𝑛𝒓𝑛(𝑃𝑝)

Local leveled NED-frame

𝐑𝑛𝑒𝒓𝑒(𝑃𝑛)

Earth Centered Earth Fixed Frame

𝐑𝑒𝑖

International Celestial Reference Frame

b

u

v

w

p

n

e

i

Sensor under test

Three-axis rate table

Laboratory test pier

Earth fixed frames

Quasi-inertial frame

Figure 4.1.: Kinematic chain of the inertial laboratory. The figure illustrates the different translations
and rotations from the inertial reference frame to the sensor’s body-fixed frame in the
laboratory. The three-axis rate table (dashed-box) is selected as a general example
and can be easily replaced by the actual setup, like two- or single-axis tables or
shakers.
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4.2.1.2. Angular Acceleration

Using the classical kinematic relations, the angular acceleration with respect to the inertial
frame can be given as:

�̇�𝑖𝑛 = 𝐑𝑛𝑒�̇�𝑖𝑒 (4.7)

�̇�𝑖𝑝 = 𝐑𝑝𝑛 [�̇�𝑖𝑛 + 𝝎𝑖𝑛 × 𝝎𝑛𝑝] + �̇�𝑛𝑝 (4.8)

�̇�𝑖𝑤 = 𝐑𝑤𝑝 [�̇�𝑖𝑝 + 𝝎𝑖𝑝 × 𝝎𝑝𝑤] + �̇�𝑝𝑤 (4.9)

�̇�𝑖𝑣 = 𝐑𝑣𝑤 [�̇�𝑖𝑤 + 𝝎𝑖𝑤 × 𝝎𝑤𝑣] + �̇�𝑤𝑣 (4.10)

�̇�𝑖ᵆ = 𝐑ᵆ𝑣 [�̇�𝑖𝑣 + 𝝎𝑖𝑣 × 𝝎𝑣ᵆ] + �̇�𝑣ᵆ (4.11)

�̇�𝑖𝑏 = 𝐑𝑏ᵆ [�̇�𝑖ᵆ + 𝝎𝑖ᵆ × 𝝎ᵆ𝑏] + �̇�ᵆ𝑏 (4.12)

Again, a general model is derived, allowing a non-constant angular rate of the Earth and
angular accelerations between all frames of the rate table.

4.2.1.3. Translational Kinematics

The position of the sensor’s reference point with respect to the laboratory’s reference location
is given as:

𝒓𝑣(𝑃𝑏) = 𝒓𝑣(𝑃 ) + 𝐑𝑣ᵆ𝒓ᵆ(𝑃𝑏) (4.13)

𝒓𝑤(𝑃𝑏) = 𝒓𝑤(𝑃𝑣) + 𝐑𝑤𝑣𝒓𝑣(𝑃𝑏) (4.14)

𝒓𝑝(𝑃𝑏) = 𝒓𝑝(𝑃𝑤) + 𝐑𝑝𝑤𝒓𝑤(𝑃𝑏) (4.15)

𝒓𝑛(𝑃𝑏) = 𝒓𝑛(𝑃𝑝) + 𝐑𝑛𝑝𝒓𝑝(𝑃𝑏) (4.16)

where
𝒓ᵆ(𝑃𝑏) Position of the sensor’s reference point with respect to the inner gimbal’s frame.

𝒓𝑣(𝑃 ) Position of the inner gimbal’s origin with respect to the middle gimbal’s frame.

𝒓𝑤(𝑃𝑣) Position of the middle gimbal’s origin with respect to the outer gimbal’s frame.

𝒓𝑝(𝑃𝑤) Position of the outer gimbal’s origin with respect to the test pad’s frame.

𝒓𝑛(𝑃𝑝) Position of the test pad’s origin with respect to the local NED frame.

4.2.1.4. Specific Forces

More critical for inertial sensor testing are the specific forces during testing. Using the Earth’s
gravity at the sensor’s position 𝜸(𝑃𝑏) that already includes the forces caused by the Earth’s
rotation 𝝎𝑖𝑒, the acceleration along the kinematic chain and the sensor’s specific forces are
given as:

𝒂𝑛 = 0 (4.17)
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𝒂𝑝 = 𝐑𝑝𝑛 [𝛀𝑒𝑛𝛀𝑒𝑛𝒓𝑛(𝑃𝑝) + �̇�𝑒𝑛𝒓𝑛(𝑃𝑝) + 2𝛀𝑒𝑛 ̇𝒓𝑛(𝑃𝑝) + ̈𝒓𝑛(𝑃𝑝) + 𝒂𝑛] (4.18)

𝒂𝑤 = 𝐑𝑤𝑝 [𝛀𝑒𝑝𝛀𝑒𝑝𝒓𝑝(𝑃𝑤) + �̇�𝑒𝑝𝒓𝑝(𝑃𝑤) + 2𝛀𝑒𝑝 ̇𝒓𝑝(𝑃𝑤) + ̈𝒓𝑝(𝑃𝑤) + 𝒂𝑝] (4.19)

𝒂𝑣 = 𝐑𝑣𝑤 [𝛀𝑒𝑤𝛀𝑒𝑤𝒓𝑤(𝑃𝑣) + �̇�𝑒𝑤𝒓𝑤(𝑃𝑣) + 2𝛀𝑒𝑤 ̇𝒓𝑤(𝑃𝑣) + ̈𝒓𝑤(𝑃𝑣) + 𝒂𝑤] (4.20)

𝒂ᵆ = 𝐑ᵆ𝑣 [𝛀𝑒𝑣𝛀𝑒𝑣𝒓𝑣(𝑃 ) + �̇�𝑒𝑣𝒓𝑣(𝑃 ) + 2𝛀𝑒𝑣 ̇𝒓𝑣(𝑃 ) + ̈𝒓𝑣(𝑃 ) + 𝒂𝑣] (4.21)

𝒂𝑏 = 𝐑𝑏ᵆ [𝛀𝑒ᵆ𝛀𝑒ᵆ𝒓ᵆ(𝑃𝑏) + �̇�𝑒ᵆ𝒓ᵆ(𝑃𝑏) + 2𝛀𝑒𝑏 ̇𝒓ᵆ(𝑃𝑏) + ̈𝒓ᵆ(𝑃𝑏) + 𝒂ᵆ] (4.22)

𝒇𝑏 = 𝒂𝑏 + 𝐑𝑏𝑛𝜸𝑛(𝑃𝑏) (4.23)

As the local NED-frame is fixed to the ECEF-frame (𝝎𝑒𝑛 = 0), the angular rate respectively
angular acceleration of the n-Frame is given by:

𝛀𝑖𝑛 = 𝝎𝑖𝑛× = (𝐑𝑛𝑒𝝎𝑖𝑒) × (4.24)

�̇�𝑖𝑛 = �̇�𝑖𝑛× = (𝐑𝑛𝑒�̇�𝑖𝑒) × (4.25)

4.2.2. Ideal Inertial Laboratory Model

In calibration, the sensor’s output is always related to the reference sensor input. An ideal
model of the inertial laboratory and its equipment is required to determine the reference input
from the test instrument’s commanded motion (or vice-versa). For an ideal laboratory, several
assumptions are taken on the testing equipment as well as the laboratory environment:

• The rate table gimbals and the mechanical fixture of the sensor are perfectly rigid bodies.
This eliminates �̂�ᵆ𝑏, ̇�̂�ᵆ𝑏 and ̇𝒓ᵆ(𝑃𝑏) as well as the rate table translational errors ̇̂𝒓𝑣(𝑃 ),
̇̂𝒓𝑤(𝑃𝑣) and ̇𝒓𝑝(𝑃𝑤).

• The position of the rate table on the test pad is fixed and known. All rotation axes intersect
in one single point. The position ̂𝒓ᵆ(𝑃𝑏) and orientation𝐑𝑏ᵆ of the inertial sensor relative
to the inner gimbal’s reference frame is known and constant. The translation vectors
simplify to:

̂𝒓𝑝(𝑃𝑤) =
⎡
⎢
⎢
⎢
⎢
⎣

𝑥𝑤

𝑦𝑤

𝑧𝑤

⎤
⎥
⎥
⎥
⎥
⎦

, ̂𝒓𝑤(𝑃𝑣) =
⎡
⎢
⎢
⎢
⎢
⎣

0

0

𝑧𝑣

⎤
⎥
⎥
⎥
⎥
⎦

, ̂𝒓𝑣(𝑃 ) =
⎡
⎢
⎢
⎢
⎢
⎣

0

0

0

⎤
⎥
⎥
⎥
⎥
⎦

, ̂𝒓ᵆ(𝑃𝑏) =
⎡
⎢
⎢
⎢
⎢
⎣

𝑥𝑏

𝑦𝑏

𝑧𝑏

⎤
⎥
⎥
⎥
⎥
⎦

,

• The test pad provides a perfectly stable reference that is locally leveled to the reference
ellipsoid and has a fixed azimuth. This eliminates �̂�𝑛𝑝, ̇�̂�𝑛𝑝 and ̇̂𝒓𝑛(𝑃𝑝). Further more
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𝑧𝑖, 𝑧𝑒

𝑦𝑖

𝑦𝑒

𝑥𝑒
𝑥𝑖 𝜔𝑖𝑒𝑡

(a) Earth-Centered Inertial (𝑖) and Earth-Centered
Earth-Fixed reference frames (𝑒).

𝑧𝑒

𝑧𝑛
𝑦𝑛

𝑦𝑒
𝑥𝑒

𝑥𝑛

𝜙

𝜆

(b) Earth-Centered Earth-Fixed (𝑒) and local
North-East-Down (𝑛) reference frames.

𝑧𝑛

𝑦𝑛

𝑥𝑛

𝑧𝑝

𝑥𝑝

𝑦𝑝

(c) Local NED (𝑛) and test pad (𝑝) reference
frames.

𝑥𝑤

𝑦𝑤

𝑧𝑤

�̇�𝑝𝑤

(d) Outer gimbal (𝑤) reference frames.

𝑥𝑣

𝑦𝑣

𝑧𝑣

�̇�𝑤𝑣

(e) Middle gimbal (𝑣) reference frames.

𝑥ᵆ

𝑦ᵆ

𝑧ᵆ

�̇�𝑣ᵆ

(f) Inner gimbal (ᵆ) reference frames.

Figure 4.2.: Definition of reference frames used in the inertial laboratory kinematic model. The
colored arrows indicate the reference axes and motion of an ideal laboratory.

174



4.2. Inertial Laboratory Modeling

the rotation between the NED frame and the pad is fixed to

𝐑𝑝𝑛 =
⎡
⎢
⎢
⎢
⎢
⎣

0 1 0

1 0 0

0 0 −1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

cos ̂𝜓𝑝𝑛 − sin ̂𝜓𝑝𝑛 0

sin ̂𝜓𝑝𝑛 cos ̂𝜓𝑝𝑛 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

.

• The rate table is error-free and the rotation follows exactly the ideal rotation axes. The
motion of the inner gimbal around its 𝑧 axis is described by:

𝐑ᵆ𝑣 =
⎡
⎢
⎢
⎢
⎢
⎣

cos �̂�ᵆ𝑣 − sin �̂�ᵆ𝑣 0

sin �̂�ᵆ𝑣 cos �̂�ᵆ𝑣 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

, �̂�𝑣ᵆ =
⎡
⎢
⎢
⎢
⎢
⎣

0

0
̇�̂�𝑣ᵆ

⎤
⎥
⎥
⎥
⎥
⎦

The middle gimbal ideally rotations around its 𝑥-axis. The corresponding rotation matrix
and angular rate are:

𝐑𝑣𝑤 =
⎡
⎢
⎢
⎢
⎢
⎣

1 0 0

0 cos �̂�𝑣𝑤 sin �̂�𝑣𝑤

0 − sin �̂�𝑣𝑤 cos �̂�𝑣𝑤

⎤
⎥
⎥
⎥
⎥
⎦

, �̂�𝑤𝑣 =
⎡
⎢
⎢
⎢
⎢
⎣

̇�̂�𝑤𝑣

0

0

⎤
⎥
⎥
⎥
⎥
⎦

Analogue to the inner gimbal, the outer gimbal performes a rotation around its 𝑧 axis:

𝐑𝑤𝑝 =
⎡
⎢
⎢
⎢
⎢
⎣

cos �̂�𝑤𝑝 − sin �̂�𝑤𝑝 0

sin �̂�𝑤𝑝 cos �̂�𝑤𝑝 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

, �̂�𝑝𝑤 =
⎡
⎢
⎢
⎢
⎢
⎣

0

0
̇�̂�𝑝𝑤

⎤
⎥
⎥
⎥
⎥
⎦

• The Earth’s angular rate is assumed to be constant, eliminating ̇�̂�𝑖𝑒. The nominal  WGS84 

Earth’s angular rate is assumed, yielding the angular rate vector:

�̂�𝑖𝑒 =
⎡
⎢
⎢
⎢
⎢
⎣

0

0

𝜔𝑖𝑒

⎤
⎥
⎥
⎥
⎥
⎦

, 𝜔𝑖𝑒 = 7 292 115 ⋅ 10−11 rad/s

The above assumptions are, of course, very optimistic. However, this ideal model is often
the best estimate for the true motion, as the error’s actual manifestation is usually unknown.
Under above assumptions the expression for the angular rates ( 4.6 ) is reduced to:

�̂�𝑖𝑏 = 𝐑𝑏ᵆ [�̂�𝑣ᵆ + 𝐑𝑣ᵆ [�̂�𝑤𝑣 + 𝐑𝑣𝑤 [�̂�𝑝𝑤 + 𝐑𝑤𝑝𝐑𝑝𝑛𝐑𝑛𝑒�̂�𝑖𝑒]]] (4.26)
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The angular accelerations for an ideal laboratory are determined analogously from (  4.12 ):

̇�̂�𝑖𝑏 = 𝐑𝑏ᵆ [ ̇�̂�𝑣ᵆ + (𝐑ᵆ𝑣�̂�𝑖𝑣) × �̂�𝑣ᵆ] +

𝐑𝑏ᵆ𝐑ᵆ𝑣 [ ̇�̂�𝑤𝑣 + (𝐑𝑣𝑤�̂�𝑖𝑤) × �̂�𝑤𝑣] +

𝐑𝑏ᵆ𝐑ᵆ𝑣𝐑𝑣𝑤 [ ̇�̂�𝑝𝑤 + (𝐑𝑤𝑝�̂�𝑖𝑝) × �̂�𝑝𝑤]

(4.27)

Application of the idealizations on ( 4.23 ) yields:

̂𝒇𝑏 = 𝐑𝑏ᵆ [( ̇�̂�𝑖ᵆ + �̂�𝑖ᵆ�̂�𝑖ᵆ) ̂𝒓ᵆ(𝑃𝑏)] +

𝐑𝑏ᵆ𝐑ᵆ𝑣𝐑𝑣𝑤 [( ̇�̂�𝑖𝑤 + �̂�𝑖𝑤�̂�𝑖𝑤) ̂𝒓𝑤(𝑃𝑣)] +

𝐑𝑏ᵆ𝐑ᵆ𝑣𝐑𝑣𝑤𝐑𝑤𝑝 [(�̂�𝑖𝑝�̂�𝑖𝑝) ̂𝒓𝑝(𝑃𝑤)] +

𝐑𝑏ᵆ𝐑ᵆ𝑣𝐑𝑣𝑤𝐑𝑤𝑝𝐑𝑝𝑛 ̂𝒈𝑛(𝑃𝑛)

(4.28)

In reality, these idealizations do not hold. The following sections will discuss the different error
sources and how they corrupt the reference motion.

4.2.3. IMU Reference Signal Linearized Error Sensitivity

The error budget of the inertial laboratory will be based on the linearized sensitivity of the
 IMU ’s reference motion 𝝎𝑖𝑏, 𝒇𝑏 to different error sources. Therefore, all transformations and
motion vectors in equations ( 4.6 ), ( 4.12 ) and ( 4.23 ) are split into an ideal (modeled) part
and an error part. Errors are grouped into error states along the kinematic chain and input
error parameters . Orientation errors are thereby expressed by a following (multiplying from
the left) rotation matrix representing the necessary rotation from the ideal reference frame
orientation to its true orientation. Applying above procedure to the angular rate equations
( 4.6 ) yields:

�̂�𝑖𝑛 + 𝛿𝝎𝑖𝑛 = 𝐑𝑛�̂� 𝐑�̂�𝑒 ( �̂�𝑖𝑒 + 𝛿𝝎𝑖𝑒 ) (4.29)

�̂�𝑖𝑝 + 𝛿𝝎𝑖𝑝 = 𝐑𝑝 ̂𝑝 𝐑 ̂𝑝𝑛 ( �̂�𝑖𝑛 + 𝛿𝝎𝑖𝑛 ) + ( �̂�𝑛𝑝 + 𝛿𝝎𝑛𝑝 ) (4.30)

�̂�𝑖𝑤 + 𝛿𝝎𝑖𝑤 = 𝐑𝑤�̂� 𝐑�̂�𝑝 ( �̂�𝑖𝑝 + 𝛿𝝎𝑖𝑝 ) + ( �̂�𝑝𝑤 + 𝛿𝝎𝑝𝑤 ) (4.31)

�̂�𝑖𝑣 + 𝛿𝝎𝑖𝑣 = 𝐑𝑣 ̂𝑣 𝐑 ̂𝑣𝑤 ( �̂�𝑖𝑤 + 𝛿𝝎𝑖𝑤 ) + ( �̂�𝑤𝑣 + 𝛿𝝎𝑤𝑣 ) (4.32)

�̂�𝑖ᵆ + 𝛿𝝎𝑖ᵆ = 𝐑ᵆ ̂ᴂ 𝐑 ̂𝑣𝑣 ( �̂�𝑖𝑣 + 𝛿𝝎𝑖𝑣 ) + ( �̂�𝑣ᵆ + 𝛿𝝎𝑣ᵆ ) (4.33)

�̂�𝑖𝑏 + 𝛿𝝎𝑖𝑏 = 𝐑𝑏 ̂𝑏 𝐑 ̂𝑏ᵆ ( �̂�𝑖ᵆ + 𝛿𝝎𝑖ᵆ ) + ( �̂�ᵆ𝑏 + 𝛿𝝎ᵆ𝑏 ) (4.34)

The angular accelerations ( 4.12 ) are separated analogously:

̇�̂�𝑖𝑛 + 𝛿�̇�𝑖𝑛 = 𝐑𝑛�̂� 𝐑�̂�𝑒 ( ̇�̂�𝑖𝑒 + 𝛿�̇�𝑖𝑒 ) (4.35)
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̇�̂�𝑖𝑝 + 𝛿�̇�𝑖𝑝 = 𝐑𝑝 ̂𝑝 𝐑 ̂𝑝𝑛 [( ̇�̂�𝑖𝑛 + 𝛿�̇�𝑖𝑛 ) + ( �̂�𝑖𝑛 + 𝛿𝝎𝑖𝑛 ) × ( �̂�𝑛𝑝 + 𝛿𝝎𝑛𝑝 )]

+ ( ̇�̂�𝑛𝑝 + 𝛿�̇�𝑛𝑝 )
(4.36)

̇�̂�𝑖𝑤 + 𝛿�̇�𝑖𝑤 = 𝐑𝑤�̂� 𝐑�̂�𝑝 [( ̇�̂�𝑖𝑝 + 𝛿�̇�𝑖𝑝 ) + ( �̂�𝑖𝑝 + 𝛿𝝎𝑖𝑝 ) × ( �̂�𝑝𝑤 + 𝛿𝝎𝑝𝑤 )]

+ ( ̇�̂�𝑝𝑤 + 𝛿�̇�𝑝𝑤 )

(4.37)

̇�̂�𝑖𝑣 + 𝛿�̇�𝑖𝑣 = 𝐑𝑣 ̂𝑣 𝐑 ̂𝑣𝑤 [( ̇�̂�𝑖𝑤 + 𝛿�̇�𝑖𝑤 ) + ( �̂�𝑖𝑤 + 𝛿𝝎𝑖𝑤 ) × ( �̂�𝑤𝑣 + 𝛿𝝎𝑤𝑣 )]

+ ( ̇�̂�𝑤𝑣 + 𝛿�̇�𝑤𝑣 )

(4.38)

̇�̂�𝑖ᵆ + 𝛿�̇�𝑖ᵆ = 𝐑ᵆ ̂ᴂ 𝐑 ̂ᴂ𝑣 [( ̇�̂�𝑖𝑣 + 𝛿�̇�𝑖𝑣 ) + ( �̂�𝑖𝑣 + 𝛿𝝎𝑖𝑣 ) × ( �̂�𝑣ᵆ + 𝛿𝝎𝑣ᵆ )]

+ ( ̇�̂�𝑣ᵆ + 𝛿�̇�𝑣ᵆ )
(4.39)

̇�̂�𝑖𝑏 + 𝛿�̇�𝑖𝑏 = 𝐑𝑏 ̂𝑏 𝐑 ̂𝑏ᵆ [( ̇�̂�𝑖ᵆ + 𝛿�̇�𝑖ᵆ ) + ( �̂�𝑖ᵆ + 𝛿𝝎𝑖ᵆ ) × ( �̂�ᵆ𝑏 + 𝛿𝝎ᵆ𝑏 )]

+ ( ̇�̂�ᵆ𝑏 + 𝛿�̇�ᵆ𝑏 )
(4.40)

The accelerations and specific forces equations ( 4.23 ) are separated in the same way.

�̂�𝑝 + 𝛿𝒂𝑝 = 𝐑𝑝 ̂𝑝 𝐑 ̂𝑝𝑛 [( �̂�𝑒𝑛 + 𝛿𝛀𝑒𝑛 )
2
( ̂𝒓𝑛(𝑃𝑝) + 𝛿𝒓𝑛(𝑃𝑝) )

+ ( ̇�̂�𝑒𝑛 + 𝛿�̇�𝑒𝑛 ) ( ̂𝒓𝑛(𝑃𝑝) + 𝛿𝒓𝑛(𝑃𝑝) )

+ 2 ( �̂�𝑒𝑛 + 𝛿𝛀𝑒𝑛 ) ( ̇̂𝒓𝑛(𝑃𝑝) + 𝛿 ̇𝒓𝑛(𝑃𝑝) )

+ ( ̈̂𝒓𝑛(𝑃𝑝) + 𝛿 ̈𝒓𝑛(𝑃𝑝) )]

(4.41)

�̂�𝑤 + 𝛿𝒂𝑤 = 𝐑𝑤�̂� 𝐑�̂�𝑝 [( �̂�𝑒𝑝 + 𝛿𝛀𝑒𝑝 )
2
( ̂𝒓𝑝(𝑃𝑤) + 𝛿𝒓𝑝(𝑃𝑤) )

+ ( ̇�̂�𝑒𝑝 + 𝛿�̇�𝑒𝑝 ) ( ̂𝒓𝑝(𝑃𝑤) + 𝛿𝒓𝑝(𝑃𝑤) )

+ 2 ( �̂�𝑒𝑝 + 𝛿𝛀𝑒𝑝 ) ( ̇̂𝒓𝑝(𝑃𝑤) + 𝛿 ̇𝒓𝑝(𝑃𝑤) )

+ ( ̈̂𝒓𝑝(𝑃𝑤) + 𝛿 ̈𝒓𝑝(𝑃𝑤) ) + ( �̂�𝑝 + 𝛿𝒂𝑝 )]

(4.42)

�̂�𝑣 + 𝛿𝒂𝑣 = 𝐑𝑣 ̂𝑣 𝐑 ̂𝑣𝑤 [( �̂�𝑒𝑤 + 𝛿𝛀𝑒𝑤 )
2
( ̂𝒓𝑤(𝑃𝑣) + 𝛿𝒓𝑤(𝑃𝑣) )

+ ( ̇�̂�𝑒𝑤 + 𝛿�̇�𝑒𝑤 ) ( ̂𝒓𝑤(𝑃𝑣) + 𝛿𝒓𝑤(𝑃𝑣) )

+ 2 ( �̂�𝑒𝑤 + 𝛿𝛀𝑒𝑤 ) ( ̇̂𝒓𝑤(𝑃𝑣) + 𝛿 ̇𝒓𝑤(𝑃𝑣) )

+ ( ̈̂𝒓𝑤(𝑃𝑣) + 𝛿 ̈𝒓𝑤(𝑃𝑣) ) + ( �̂�𝑤 + 𝛿𝒂𝑤 )]

(4.43)
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�̂�ᵆ + 𝛿𝒂ᵆ = 𝐑ᵆ ̂ᴂ 𝐑 ̂ᴂ𝑣 [( �̂�𝑒𝑣 + 𝛿𝛀𝑒𝑣 )
2
( ̂𝒓𝑣(𝑃 ) + 𝛿𝒓𝑣(𝑃 ) )

+ ( ̇�̂�𝑒𝑣 + 𝛿�̇�𝑒𝑣 ) ( ̂𝒓𝑣(𝑃 ) + 𝛿𝒓𝑣(𝑃 ) )

+ 2 ( �̂�𝑒𝑣 + 𝛿𝛀𝑒𝑣 ) ( ̇̂𝒓𝑣(𝑃 ) + 𝛿 ̇𝒓𝑣(𝑃 ) )

+ ( ̈̂𝒓𝑣(𝑃 ) + 𝛿 ̈𝒓𝑣(𝑃 ) ) + ( �̂�𝑣 + 𝛿𝒂𝑣 )]

(4.44)

�̂�𝑏 + 𝛿𝒂𝑏 = 𝐑𝑏 ̂𝑏 𝐑 ̂𝑏ᵆ [( �̂�𝑒ᵆ + 𝛿𝛀𝑒ᵆ )
2
( ̂𝒓ᵆ(𝑃𝑏) + 𝛿𝒓ᵆ(𝑃𝑏) )

+ ( ̇�̂�𝑒ᵆ + 𝛿�̇�𝑒ᵆ ) ( ̂𝒓ᵆ(𝑃𝑏) + 𝛿𝒓ᵆ(𝑃𝑏) )

+ 2 ( �̂�𝑒ᵆ + 𝛿𝛀𝑒ᵆ ) ( ̇̂𝒓ᵆ(𝑃𝑏) + 𝛿 ̇𝒓ᵆ(𝑃𝑏) )

+ ( ̈̂𝒓ᵆ(𝑃𝑏) + 𝛿 ̈𝒓ᵆ(𝑃𝑏) ) + ( �̂�ᵆ + 𝛿𝒂ᵆ )]

(4.45)

̂𝒇𝑏 + 𝛿𝒇𝑏 = ( �̂�𝑏 + 𝛿𝒂𝑏 )

+ 𝐑𝑏 ̂𝑏 𝐑 ̂𝑏ᵆ … 𝐑𝑝 ̂𝑝 𝐑 ̂𝑝𝑛 [ ̂𝜸𝑛 ( ̂𝒓𝑒(𝑃𝑏) + 𝛿𝒓𝑒(𝑃𝑏) ) + 𝛿𝜸𝑛 ( ̂𝒓𝑒(𝑃𝑏)) ]
(4.46)

Above equations can be easily solved for the errors of the  IMU motion 𝛿𝝎𝑖𝑏, 𝛿�̇�𝑖𝑏, 𝛿𝒇𝑏, which
are the difference between the ideal reference signal and the true motion. Linearizing ( 4.34 )
for the error terms and subtracting the ideal angular rates, yields the linear sensitivities of the
angular rate errors along the kinematic chain:

𝛿𝝎𝑖𝑛 ≈ 𝐑�̂�𝑒 𝛿𝝎𝑖𝑒 − ( 𝐑�̂�𝑒 �̂�𝑖𝑒 ) × 𝝍𝑛�̂� (4.47)

𝛿𝝎𝑖𝑝 ≈ 𝐑 ̂𝑝𝑛 𝛿𝝎𝑖𝑛 − ( 𝐑 ̂𝑝𝑛 �̂�𝑖𝑛 ) × 𝝍𝑝 ̂𝑝 + 𝛿𝝎𝑛𝑝 (4.48)

𝛿𝝎𝑖𝑤 ≈ 𝐑�̂�𝑝 𝛿𝝎𝑖𝑝 − ( 𝐑�̂�𝑝 �̂�𝑖𝑝 ) × 𝝍𝑤�̂� + 𝛿𝝎𝑝𝑤 (4.49)

𝛿𝝎𝑖𝑣 ≈ 𝐑 ̂𝑣𝑤 𝛿𝝎𝑖𝑤 − ( 𝐑 ̂𝑣𝑤 �̂�𝑖𝑤 ) × 𝝍𝑣 ̂𝑣 + 𝛿𝝎𝑤𝑣 (4.50)

𝛿𝝎𝑖ᵆ ≈ 𝐑 ̂ᴂ𝑣 𝛿𝝎𝑖𝑣 − ( 𝐑 ̂ᴂ𝑣 �̂�𝑖𝑣 ) × 𝝍ᵆ ̂ᴂ + 𝛿𝝎𝑣ᵆ (4.51)

𝛿𝝎𝑖𝑏 ≈ 𝐑 ̂𝑏ᵆ 𝛿𝝎𝑖ᵆ − ( 𝐑 ̂𝑏ᵆ �̂�𝑖ᵆ ) × 𝝍𝑏 ̂𝑏 + 𝛿𝝎ᵆ𝑏 (4.52)

The same procedure is applied to the angular accelerations:

𝛿�̇�𝑖𝑛 ≈ 𝐑�̂�𝑒 𝛿�̇�𝑖𝑒 − ( 𝐑�̂�𝑒 ̇�̂�𝑖𝑒 ) × 𝝍𝑛�̂� (4.53)

𝛿�̇�𝑖𝑝 ≈ 𝐑 ̂𝑝𝑛 𝛿�̇�𝑖𝑛 + 𝐑 ̂𝑝𝑛 �̂�𝑖𝑛 × 𝛿𝝎𝑛𝑝 − 𝐑 ̂𝑝𝑛 �̂�𝑛𝑝 × 𝛿𝝎𝑖𝑛

− ( 𝐑 ̂𝑝𝑛 ( ̇�̂�𝑖𝑛 + �̂�𝑖𝑛 × �̂�𝑛𝑝 )) × 𝝍𝑝 ̂𝑝 + 𝛿�̇�𝑛𝑝
(4.54)

𝛿�̇�𝑖𝑤 ≈ 𝐑�̂�𝑝 𝛿�̇�𝑖𝑝 + 𝐑�̂�𝑝 �̂�𝑖𝑝 × 𝛿𝝎𝑝𝑤 − 𝐑�̂�𝑝 �̂�𝑝𝑤 × 𝛿𝝎𝑖𝑝

− ( 𝐑�̂�𝑝 ( ̇�̂�𝑖𝑝 + �̂�𝑖𝑝 × �̂�𝑝𝑤 )) × 𝝍𝑤�̂� + 𝛿�̇�𝑝𝑤
(4.55)
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𝛿�̇�𝑖𝑣 ≈ 𝐑 ̂𝑣𝑤 𝛿�̇�𝑖𝑤 + 𝐑 ̂𝑣𝑤 �̂�𝑖𝑤 × 𝛿𝝎𝑤𝑣 − 𝐑 ̂𝑣𝑤 �̂�𝑤𝑣 × 𝛿𝝎𝑖𝑤

− ( 𝐑 ̂𝑣𝑤 ( ̇�̂�𝑖𝑤 + �̂�𝑖𝑤 × �̂�𝑤𝑣 )) × 𝝍𝑣 ̂𝑣 + 𝛿�̇�𝑤𝑣
(4.56)

𝛿�̇�𝑖ᵆ ≈ 𝐑 ̂ᴂ𝑣 𝛿�̇�𝑖𝑣 + 𝐑 ̂ᴂ𝑣 �̂�𝑖𝑣 × 𝛿𝝎𝑣ᵆ − 𝐑 ̂ᴂ𝑣 �̂�𝑣ᵆ × 𝛿𝝎𝑖𝑣

− ( 𝐑 ̂ᴂ𝑣 ( ̇�̂�𝑖𝑣 + �̂�𝑖𝑣 × �̂�𝑣ᵆ )) × 𝝍ᵆ ̂ᴂ + 𝛿�̇�𝑣ᵆ
(4.57)

𝛿�̇�𝑖𝑏 ≈ 𝐑 ̂𝑏ᵆ 𝛿�̇�𝑖ᵆ + 𝐑 ̂𝑏ᵆ �̂�𝑖ᵆ × 𝛿𝝎ᵆ𝑏 − 𝐑 ̂𝑏ᵆ �̂�ᵆ𝑏 × 𝛿𝝎𝑖ᵆ

− ( 𝐑 ̂𝑏ᵆ ( ̇�̂�𝑖ᵆ + �̂�𝑖ᵆ × �̂�ᵆ𝑏 )) × 𝝍𝑏 ̂𝑏 + 𝛿�̇�ᵆ𝑏
(4.58)

Similarly, the sensitivity of the specific forces errors are determined to:

𝛿𝒂𝑝 ≈ 𝐑 ̂𝑝𝑛 [( �̂�2
𝑒𝑛 + ̇�̂�𝑒𝑛 ) 𝛿𝒓𝑛(𝑃𝑝) + 2 �̂�𝑒𝑛 𝛿 ̇𝒓𝑛(𝑃𝑝) + 𝛿 ̈𝒓𝑛(𝑃𝑝)

−2 ̇̂𝒓𝑛(𝑃𝑝) × 𝛿𝝎𝑒𝑛 − 2 �̂�𝑒𝑛 ̂𝒓𝑛(𝑃𝑝) × 𝛿𝝎𝑒𝑛 − ̂𝒓𝑛(𝑃𝑝) × 𝛿�̇�𝑒𝑛 ]
(4.59)

𝛿𝒂𝑤 ≈ 𝐑�̂�𝑝 [( �̂�2
𝑒𝑝 + ̇�̂�𝑒𝑝 ) 𝛿𝒓𝑝(𝑃𝑤) + 2 �̂�𝑒𝑝 𝛿 ̇𝒓𝑝(𝑃𝑤) + 𝛿 ̈𝒓𝑝(𝑃𝑤)

−2 ̇̂𝒓𝑝(𝑃𝑤) × 𝛿𝝎𝑒𝑝 − 2 �̂�𝑒𝑝 ̂𝒓𝑝(𝑃𝑤) × 𝛿𝝎𝑒𝑝 − ̂𝒓𝑝(𝑃𝑤) × 𝛿�̇�𝑒𝑝 + 𝛿𝒂𝑝 ]

− �̂�𝑝 × 𝝍𝑤�̂�

(4.60)

𝛿𝒂𝑣 ≈ 𝐑 ̂𝑣𝑤 [( �̂�2
𝑒𝑤 + ̇�̂�𝑒𝑤 ) 𝛿𝒓𝑤(𝑃𝑣) + 2 �̂�𝑒𝑤 𝛿 ̇𝒓𝑤(𝑃𝑣) + 𝛿 ̈𝒓𝑤(𝑃𝑣)

−2 ̇̂𝒓𝑤(𝑃𝑣) × 𝛿𝝎𝑒𝑤 − 2 �̂�𝑒𝑤 ̂𝒓𝑤(𝑃𝑣) × 𝛿𝝎𝑒𝑤 − ̂𝒓𝑤(𝑃𝑣) × 𝛿�̇�𝑒𝑤 + 𝛿𝒂𝑤 ]

− �̂�𝑤 × 𝝍𝑣 ̂𝑣

(4.61)

𝛿𝒂ᵆ ≈ 𝐑 ̂ᴂ𝑣 [( �̂�2
𝑒𝑣 + ̇�̂�𝑒𝑣 ) 𝛿𝒓𝑣(𝑃 ) + 2 �̂�𝑒𝑣 𝛿 ̇𝒓𝑣(𝑃 ) + 𝛿 ̈𝒓𝑣(𝑃 )

−2 ̇̂𝒓𝑣(𝑃 ) × 𝛿𝝎𝑒𝑣 − 2 �̂�𝑒𝑣 ̂𝒓𝑣(𝑃 ) × 𝛿𝝎𝑒𝑣 − ̂𝒓𝑣(𝑃 ) × 𝛿�̇�𝑒𝑣 + 𝛿𝒂𝑣 ]

− �̂�𝑣 × 𝝍ᵆ ̂ᴂ

(4.62)

𝛿𝒂𝑏 ≈ 𝐑 ̂𝑏ᵆ [( �̂�2
𝑒ᵆ + ̇�̂�𝑒ᵆ ) 𝛿𝒓ᵆ(𝑃𝑏) + 2 �̂�𝑒ᵆ 𝛿 ̇𝒓ᵆ(𝑃𝑏) + 𝛿 ̈𝒓ᵆ(𝑃𝑏)

−2 ̇̂𝒓ᵆ(𝑃𝑏) × 𝛿𝝎𝑒ᵆ − 2 �̂�𝑒ᵆ ̂𝒓ᵆ(𝑃𝑏) × 𝛿𝝎𝑒ᵆ − ̂𝒓ᵆ(𝑃𝑏) × 𝛿�̇�𝑒ᵆ + 𝛿𝒂ᵆ ]

− �̂�ᵆ × 𝝍𝑏 ̂𝑏

(4.63)
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𝛿𝒇𝑏 ≈ 𝛿𝒂𝑏 + 𝐑 ̂𝑏ᵆ 𝐑 ̂ᴂ𝑣 𝐑 ̂𝑣𝑤 𝐑�̂�𝑝 𝐑 ̂𝑝𝑛 ( 𝛿𝜸𝑛 ( ̂𝒓𝑒(𝑃𝑏)) +
𝜕 ̂𝜸𝑛(𝒓𝑒)
𝜕𝒓𝑒

|||
𝑃𝑏

𝛿𝒓𝑒(𝑃𝑏) )

− ( 𝐑 ̂𝑏ᵆ 𝐑 ̂ᴂ𝑣 𝐑 ̂𝑣𝑤 𝐑�̂�𝑝 𝐑 ̂𝑝𝑛 ̂𝜸𝑛 ( ̂𝒓𝑒(𝑃𝑏)) ) × 𝝍𝑏 ̂𝑏

− 𝐑 ̂𝑏ᵆ ( 𝐑 ̂ᴂ𝑣 𝐑 ̂𝑣𝑤 𝐑�̂�𝑝 𝐑 ̂𝑝𝑛 ̂𝜸𝑛 ( ̂𝒓𝑒(𝑃𝑏)) ) × 𝝍ᵆ ̂ᴂ

− 𝐑 ̂𝑏ᵆ 𝐑 ̂ᴂ𝑣 ( 𝐑 ̂𝑣𝑤 𝐑�̂�𝑝 𝐑 ̂𝑝𝑛 ̂𝜸𝑛 ( ̂𝒓𝑒(𝑃𝑏)) ) × 𝝍𝑣 ̂𝑣

− 𝐑 ̂𝑏ᵆ 𝐑 ̂ᴂ𝑣 𝐑 ̂𝑣𝑤 ( 𝐑�̂�𝑝 𝐑 ̂𝑝𝑛 ̂𝜸𝑛 ( ̂𝒓𝑒(𝑃𝑏)) ) × 𝝍𝑤�̂�

− 𝐑 ̂𝑏ᵆ 𝐑 ̂ᴂ𝑣 𝐑 ̂𝑣𝑤 𝐑�̂�𝑝 ( 𝐑 ̂𝑝𝑛 ̂𝜸𝑛 ( ̂𝒓𝑒(𝑃𝑏)) ) × 𝝍𝑝 ̂𝑝

− 𝐑 ̂𝑏ᵆ 𝐑 ̂ᴂ𝑣 𝐑 ̂𝑣𝑤 𝐑�̂�𝑝 𝐑 ̂𝑝𝑛 ( ̂𝜸𝑛 ( ̂𝒓𝑒(𝑃𝑏)) ) × 𝝍𝑛�̂�

(4.64)

The position error 𝛿𝒓𝑒(𝑃𝑏) used in the determination of the local gravity has the following
sensitivities to the defined error parameters:

𝛿𝒓𝑒(𝑃𝑏) ≈ 𝐑�̂�𝑝 𝐑 ̂𝑝𝑤 𝐑�̂�𝑣 𝐑 ̂𝑣ᵆ 𝛿𝒓ᵆ(𝑃𝑏) + 𝐑�̂�𝑝 𝐑 ̂𝑝𝑤 𝐑�̂�𝑣 𝛿𝒓𝑣(𝑃 )

+ 𝐑�̂�𝑝 𝐑 ̂𝑝𝑤 𝛿𝒓𝑤(𝑃𝑣) + 𝐑�̂�𝑝 𝛿𝒓𝑝(𝑃𝑤) + 𝛿𝒓𝑛(𝑃𝑝)

+ 𝐑�̂�𝑝 𝐑 ̂𝑝𝑤 𝐑�̂�𝑣 𝐑 ̂𝑣ᵆ ( ̂𝒓ᵆ(𝑃𝑏)) × 𝝍ᵆ ̂ᴂ

+ 𝐑�̂�𝑝 𝐑 ̂𝑝𝑤 𝐑�̂�𝑣 [ ̂𝒓𝑣(𝑃 ) + 𝐑 ̂𝑣ᵆ ̂𝒓ᵆ(𝑃𝑏) ] × 𝝍𝑣 ̂𝑣

+ 𝐑�̂�𝑝 𝐑 ̂𝑝𝑤 [ ̂𝒓𝑤(𝑃𝑣) + 𝐑�̂�𝑣 [ ̂𝒓𝑣(𝑃 ) + 𝐑 ̂𝑣ᵆ ̂𝒓ᵆ(𝑃𝑏) ]] × 𝝍𝑤�̂�

+ 𝐑�̂�𝑝 [ ̂𝒓𝑝(𝑃𝑤) + 𝐑 ̂𝑝𝑤 [ ̂𝒓𝑤(𝑃𝑣)

+ 𝐑�̂�𝑣 [ ̂𝒓𝑣(𝑃 ) + 𝐑 ̂𝑣ᵆ ̂𝒓ᵆ(𝑃𝑏) ]]] × 𝝍𝑝 ̂𝑝

+ [ ̂𝒓𝑛(𝑃𝑝) + 𝐑�̂�𝑝 [ ̂𝒓𝑝(𝑃𝑤)

+ 𝐑 ̂𝑝𝑤 [ ̂𝒓𝑤(𝑃𝑣) + 𝐑�̂�𝑣 [ ̂𝒓𝑣(𝑃 ) + 𝐑 ̂𝑣ᵆ ̂𝒓ᵆ(𝑃𝑏) ]]]] × 𝝍𝑛�̂�

(4.65)

The sensitivities of the kinematic properties 𝝎𝑖𝑏, �̇�𝑖𝑏 and 𝒇𝑏 towards the various error pa-
rameters are listed in Appendix  F . Using the error sensitivities, the contributions of various
error sources to the reference motion can be determined. These deviations from the idealized
laboratory model will be discussed in the following.

4.2.4. Earth Centered Inertial Frame Approximations

Inertial sensors measure motion relative to the inertial, which is non-accelerated, space. In
inertial navigation, the Earth-Centered Inertial reference frame is used as inertial reference.
As illustrated in  Figure 4.2a  , for this idealization, the inertial frame’s 𝑧-axis coincides with the
Earth’s rotation axis and is also the Earth Centered Earth Fixed frame’s 𝑧-axis. Although these
definitions are widely and successfully used in inertial navigation, this model is only a rough
approximation of the Earth’s actual motion.
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The Earth’s motion is usually determined from the observation of celestial bodies. Using
 Very-Long Baseline Interferometery (VLBI)  on far-distant radio sources (quasars) allows the
determination of the Earth’s orientation relative to these. From these measurements, the
 International Earth Rotation and Reference Systems Service (IERS)  derives mathematical
models to describe the Earth’s rotation, and the change of its orientation [  97 ]. In 2011, the
motion of the Earth’s rotation axis was measured directly for the first time using a 4m diameter
ring-laser gyroscope [  98 ]. In contrast to  VLBI Earth orientation measurements, ring-lasers
provide continuous measurements of the Earth’s rotation rate.
The  IERS models describes the Earth’s orientation as the transformation between the  Geocen-

tric Celestial Reference System (GCRS)  and the (Earth fixed)  International Terrestrial Reference
System (ITRS) . The  WGS84 reference system shares its origin and axis definition with the  ITRS ,
and its realizations are regularly updated to match the  ITRS . Today, the coordinates of  WGS84 

and  ITRS match about 10 cm. For this analysis, the  ITRS will be used as  ECEF frame. Although
the  GCRS moves with the Earth, its orientation relative to the space can be considered fixed.
Here, the  GCRS is used as an inertial reference frame, being the best reference known today.
The acceleration disturbances arising from the Earth’s interaction with the other solar system
bodies will be discussed in the  Subsection 4.2.5 .
This model only considers the orientation of the theoretical Earth fixed reference frame

relative to the inertial frame. This section does not cover local disturbances and seismic
activities since they are attributed to the test pier motion in  Subsection 4.2.8 .
According to the IAU 2000 and IAU 2006 resolutions [  97 ], the Earth’s orientation relative to

the celestial reference frame is described by three sequential rotations

𝐑𝑖𝑒 = 𝐑𝑖𝑟(𝑡)𝐑𝑟𝑚(𝑡)𝐑𝑚𝑒(𝑡) (4.66)

where

• 𝐑𝑚𝑒(𝑡) describes the so-called Polar Motion, which is the motion of the Earth’s rotation
axis within the Earth’s body. This wobble motion consists of a one-year oscillation
(annual wobble) and a 14-months oscillation, called Chandler wobble. The annual wobble
is mainly caused by the redistribution of the atmosphere’s masses with the seasons [  99 ].
The Chandler wobble is a nutation that arises because the Earth’s rotation axis does not
match its principal axis of inertia and is excited by atmospheric and oceanic processes
[ 100 ].

• 𝐑𝑟𝑚(𝑡) describes the Earth Rotation Angle around the intermediate polar axis. This
angle is a direct function of the Universal Time UT1 determined from  VLBI observation
of quasars. In contrast to  International Atomic Time (TAI) , the UT1 does not evolve
continuously but follows the variations of the Earth’s angular rate, caused e.g. by gravita-
tional interaction with the moon [  101 , pp. 293–294]. As UT1 does not include subdaily
variations, the effects of ocean tides 𝛥𝑈𝑇1𝑜𝑐𝑒𝑎𝑛𝑠 and libration 𝛥𝑈𝑇1𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 have to be
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added [  97 ]. These result in a variation of the Earth’s rotation rate at periods of 1 year,
0.5 year, 28 days as well as 14 days [ 102 ].

• 𝐑𝑖𝑟(𝑡) describes the so called Motion of the Celestial Pole, which is the motion of
the rotation axis with respect to the celestial (inertial) reference. This motion consists
of a precession and nutation. As illustrated in  Figure 4.3a , the precession describes
a rotation of the 23.5° tilted rotation axis with a period of about 26 000 years. This
motion is superposed with a 18.6 years period nutation. These motions are caused by
the gravitational interaction with the sun, moon and the planets [ 103 ].

Note that the separation between terrestrial (polar) motion and celestial motion (precession
and nutation) is, by convention, based on the periods of the different processes. The required
measurements andmodels to determine above rotationmatrices for a given time 𝑡 are published
by the  IERS [ 97 ].
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nom. rotation
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(a) Precession and nutation of the Earth’s rotation
axis.
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Figure 4.3.: Celestial and terrestrial motion of the Earth’s rotation axis.

Using the  IERS Earth orientation data, the orientation and angular rate of the Earth’s surface
relative to the inertial space can be determined. Long-term and daily orientation data can be
obtained from the  IERS website [  104 ]. The error between the basic  WGS84 rotation model
(constant rotation around 𝑧𝑖) and the angular rate derived from  IERS observations over a
one-year time scale is given in  Figure 4.4  . The above-listed processes cause this error. Note
that the  IERS publishes only daily observations of the orientation. The angular rates have been
derived by fourth-order Lagrange interpolation between observations and incorporation of the
diurnal and sub-diurnal variations from the Fourier series as modeled in [  97 ]. The accuracy of
the utilized EOP observations is stated as about 70 µasec for the polar motion and 200 µasec
for the precession and nutation, as well as 5 µs for the length of day corrections [ 104 ].
Theoretically, these models would allow highly accurate modeling of the Earth’s angular rate

in inertial sensor calibration. However, as there is no continuous rate reference but only daily
Earth orientation observation data, the calibration of a sensor bias down to the levels of Earth’s
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Figure 4.4.: Difference between the Earth’s angular rate vector in the e-Frame as defined by the
WGS84 and the ones derived from the IERS EOP observations and models.

rotation rate variations would require an integration of the sensor’s output at least between
two consecutive Earth orientations observations. This may change once direct continuous
Earth’s angular rate measurements, e.g., from Grossring (G) [ 105 ], will be accurate enough to
combine them with the  VLBI observations into a continuous reference.
Still, even if a theoretical, mobile gyroscope did reach this level of accuracy, a real-time

reference or model of the Earth’s angular would be required to consider it in the navigation
equations and ultimately benefit from such an accuracy. However, this level of accuracy would
be required to yield a free-inertial position error of 1NM in three to four days (see  Figure 3.62 ).
It should be noted that a further increase in accuracy demands would also require the

incorporation of relativistic effects. The direct observation of relativistic effects like theGeodetic
precession and the Lense-Thierring precession using large ring-lasers on the ground is still
the subject of research. These relativistic effects are expected at around 1 ⋅ 10−9 of the Earth’s
angular rate [ 93 ] or around 1.5 ⋅ 10−8 °/h.
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Model 1: Earth rotation error modeling.

Description Parameters
Variation of the Earth’s angular rate, caused by a motion of the Earth’s
crust and precessing and nutating motion of the Earth’s rotation axis.

𝛿𝝎𝑖𝑒, 𝛿�̇�𝑖𝑒
Sensitivities

 Table F.1 

Low accuracy level: WGS84
When using the constant Earth angular rate as defined in the  WGS84 , the angular rate error
can be determined by comparing the  WGS84 constant to the IERS observations, as depicted
in  Figure 4.4 .
If the  IERS model shall be evaluated, at least the below listed dominating components can be
used to describe the auto-correlation and auto-covariance of the errors. Here, the components
with periods of multiple years have been summarized into a constant value, representing the
mean of the years 2015 to 2020:

Component Amplitude, °/h Period, days

𝜔𝑖𝑒,𝑥 8.34 ⋅ 10−6 ∞
5.68 ⋅ 10−6 378.65
3.01 ⋅ 10−7 1.08
4.09 ⋅ 10−7 0.99

𝜔𝑖𝑒,𝑦 −2.60 ⋅ 10−5 ∞
5.23 ⋅ 10−6 378.65
2.96 ⋅ 10−7 1.08
3.98 ⋅ 10−7 0.99

𝜔𝑖𝑒,𝑧 6.70 ⋅ 10−6 ∞
2.78 ⋅ 10−5 182.05
5.18 ⋅ 10−5 13.65
9.65 ⋅ 10−6 9.14

Due to the very long periods of many days, however, it is unlikely that the variations of the
Earth’s angular rate will be averaged out during a sensor test. For many tests, the uncertainty
of the assumed constant rotation speed may also be described as a random constant of
magnitude around 1 ⋅ 10−5 °/h, composed of the above described amplitudes.

High accuracy level: IERS
When using the IERS models for the Earth’s angular rate, the remaining errors are defined by
the accuracy of the IERS models. The accuracy of the daily IERS earth observation parameters
is within 0.5masec [ 106 ]. The derived angular rate error can only be roughly approximated as
the parameters are daily, discrete measurements. Assuming linear interpolation between two
observations, the angular rate error is within the magnitude of 1.15 ⋅ 10−8 °/h, which is already
in the range of relativistic effects.
Note that inertial navigation could only benefit from a gyroscope of that accuracy if the real
Earth angular rate were known during the in-field application.
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4.2.5. Local Gravity

As indicated in ( 4.28 ), the local gravity 𝒈𝑛 is the most important specific forces reference in an
inertial laboratory (except for centrifuge-testing). The following section will briefly describe the
deviations of the Earth’s gravity field from the theoretical models. The accuracy limitations of
different models will be discussed to motivate a gravimeter survey of the laboratory’s location
for higher accuracy requirements.

4.2.5.1. Normal Gravity Formula

The most simple gravity model would be a constant 𝑔0 = 9.806 65m/s2 pointing downwards
on the local reference ellipsoid. Still, even for a theoretical homogeneous ellipsoid, the normal
gravity depends on the geodetic latitude 𝜙. The theoretical normal gravity on the reference
ellipsoid can be analytically determined from Sogmiliana’s formula [ 50 ]:

𝛾(𝜙) = 𝛾𝑒
1 + (𝑏𝛾𝑝

𝑎𝛾𝑒
− 1) sin2 𝜙

1 − 𝑒2 sin2 𝜙
(4.67)

with the value for the  WGS84 reference ellipsoid:
𝑎 6 378 137.0m Semi-major axis of the Earth

𝑏 6 356 752.3141m Semi-minor axis of the Earth

𝑒2 6.694 379 990 14 ⋅ 10−3 First eccentricity squared

𝛾𝑒 9.780 326 771 5m/s2 Normal gravity at the equator

𝛾𝑝 9.832 186 368 5m/s2 Normal gravity at the poles

The normal gravity reduces

with the height above the reference ellipsoid. This reduction is typically described the following
approximative formula [ 50 ]:

𝛾(ℎ, 𝜙) = 𝛾(𝜙) (1 − 2
𝑎 (1 + 𝑓 + 𝜔2𝑎2𝑏

𝐺𝑀 − 2𝑓 sin2 𝜙) ℎ + 3
𝑎2ℎ

2) (4.68)

with
1/𝑓 298.257 223 563 Reciprocal of flattening

𝜔 7 292 115.0 ⋅ 10−11 rad/s Earth angular rate

𝐺𝑀 3 986 004.418 ⋅ 108m3/s2 Earth’s gravitational constant

The error of above formula is less than 1.45 ⋅ 10−6m/s2 up to an altitude of 20 km and signifi-
cantly better for low altitudes [  15 , pp. 188–189]. With rising altitude, the gravity vector will
be reduced and increasingly tilted towards the equator. The arising north component of the
gravity vector can be approximated as [ 15 , p. 189]:

𝛾𝑁(ℎ, 𝜙) ≈ −8.08 ⋅ 10−6 m
s2km ℎ𝑘𝑚 sin 2𝜙 (4.69)
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The resulting difference between the, latitude dependent, normal gravity 𝛾(𝜙) and the con-
stant standard gravity 𝑔0 is depicted in  Figure 4.5 . As the standard gravity has been arbitrarily
defined as the gravity around middle latitudes, the maximum deviations occur at the poles and
the equator. The maximum deviation is around 2.5Gal or equivalently 0.26% of 𝑔0. Conse-
quently, for very crude requirements (e.g., consumer-grade sensors with scale factor errors in
the per-cent region), even the standard gravity 𝑔0 may be a sufficiently accurate reference.
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Figure 4.5.: Deviations from the WGS84 normal gravity from the standard gravity value 𝛾(𝜙) − 𝑔0.

Although significantly more accurate than the standard gravity, the normal gravity model
does not accurately represent the local gravity. The actual differences will be discussed in the
next section.

4.2.5.2. Gravity Anomalies

A gravity anomaly is defined as the difference between the observed and the theoretically
predicted gravity at a given point caused by irregularities in the Earth’s mass distribution. The
theoretical (modeled) gravity on the reference ellipsoid is therefore corrected for planetary,
terrain and geological effects, depending on which type of gravity anomaly is investigated [  95 ,
pp. 143–144].
While the so-called free-air gravity anomaly is unsuitable for most geological problems, it is

well suited to illustrate the accuracy of the normal gravity formula. It is defined as the difference
between measured 𝑔𝑜𝑏𝑠 and theoretical normal gravity 𝛾(𝜙, ℎ) at a given point, taking into
account the change of gravity with height [ 95 , p. 146]:

𝑔𝐹𝐴𝐴 = 𝑔𝑜𝑏𝑠 − 𝛾(𝜙, ℎ) (4.70)

The free-air anomalies as modeled in the  EGM2008 are globally illustrated in  Figure 4.6  . The
significant gravity anomalies are concentrated but not limited to the mountainous regions and
vary from just a fewmGal to several hundredmGal. For accuracy requirements of better than
about 0.01%𝑔0 (for moderate terrain), the gravity anomalies need to be taken into account,
either from models (like  EGM2008 [ 92 ] or EIGEN-6C [  107 ]) or ideally from local gravimeter
surveying. The global RMS of the  EGM2008 gravity anomaly uncertainty, for example, is about
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6.6mGal (6.7 ⋅ 10−6 g0) (1𝜎). The propagated uncertainty is part of the  EGM2008 and can be
evaluated for any point on Earth [ 92 ].
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Figure 4.6.: Global free air gravity anomalies as modeled in the EGM2008 [ 92 ]. Note that the color
scale is cutoff at 100mGal but the maximum value of the EGM2008 is actually around
966mGal.

Further increase in the reference accuracy can only be achieved by local gravimeter measure-
ments. These reach accuracy levels of around 0.01mGal (1 ⋅ 10−8 g0) for relative gravimeters
and around 1 µGal (1 ⋅ 10−9 g0) for absolute gravimeters [ 95 , pp. 97–98].

4.2.5.3. Deflection from the Vertical

The irregularities in the Earth’s mass distribution cause variations in the magnitude of the
local gravity vector but also influence its direction. This is described by the tilt of the local
gravity vector relative to the local vertical on the reference ellipsoid. Thus deflection from
the vertical, see  Figure 4.7  . This deflection is parameterized by the meridional deflection 𝜉
(north-south) and the deflection from the prime vertical (east-west). The gravity vector in the
local NED-frame can thus be approximated as [ 15 , p. 190]:

𝒈𝑛 = [−𝜉𝑔 − 𝑔 𝑔]
⊺

(4.71)

The global deflections from the vertical as determined from the  EGM2008 are depicted in
 Figure 4.8 . As with the gravity anomaly, they range from mostly a few arc seconds to multiple
tens of arc seconds in rough terrain. The local deflection from the vertical can be determined
at very high accuracy using a zenith camera. A digital camera is aligned with the local plumb
line pointing to the sky. From the observed direction to a known star, the local deflection from
the vertical can be determined to an accuracy better than 0.1 asec [ 108 ].
The importance of vertical deflection for inertial sensor calibration lies in the alignment of

the laboratory. Typically, the inertial test-slab and instruments are aligned to local gravity, as it
is a very strong signal and easy to use. Consequently, the laboratory will not be to the reference
ellipsoid, and the Earth’s angular rate will be observed under tilt. For high accuracy demands,
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Figure 4.7.: Earth’s surface, geoid and reference ellipsoid with the normal gravity 𝛾 and true gravity
𝑔.

the local deflection from the vertical needs to be surveyed and considered for Earth’s angular
rate reference.

4.2.5.4. Temporal Variations

In addition to the local variations of the Earth’s gravity field, there are also temporal variations
caused by variations of the Earth’s rotation axis and tides as well as natural and artificial
redistribution of masses [ 95 , p. 123].
Pressure variations cause a variation of the mass distribution in the atmosphere and thus

effect the local gravity. Typical pressure fluctuations range from less than 1mbar for athmo-
spheric tides, over around 10mbar for seasonal variations, up to 60mbar for cyclonic events
[ 95 , p. 126]. These lead to pressure variations at about 20 µGal (20 ⋅ 10−8m/s2), where relation
between local zone pressure variation and gravity variation is approximately given as [  109 ]:

𝛥𝑔𝑎𝑡𝑚 = −0.356
µGal
mbar𝛥𝑝 (4.72)

A more accurate gravity reduction method incorporating three-dimensional atmospheric pres-
sure data is, e.g., given by [ 110 ].
Further temporal variations of the local gravity are caused by subsurface mass variations,

mainly due to groundwater changes. The typical seasonal changes in water levels cause less
than 10 µGal in gravity change. Still, they may also reach a multiple of that in tropical regions
with high seasonal rainfall [  95 , p. 128]. Another measurable mass shift and corresponding
change of gravity is the global de-glaciation. The loss of ice masses on Greenland, for example,
causes a yearly decrease of local gravity of about 0.5 µGal (2012), accelerating at 0.02 µGal/year2

[ 111 ].
The most crucial temporal change of local gravity is caused by the tidal accelerations of the

Moon and Sun. While the gravitational acceleration of, e.g., the Moon and the centrifugal
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(a) Prime vertical component 𝜂.
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(b) Meridional component 𝜉.
Figure 4.8.: Deflection from the vertical as modeled in the EGM2008 [ 92 ]. Note that the color scale

is cutoff at 25 asec but the maximum value of the EGM2008 is actually around 100 asec.

acceleration due to Earth’s orbital motion cancel out in the Earth’s center of mass, there is
a residual acceleration on the Earth’s surface, called tidal acceleration [  112 ]. This location-
dependent tidal acceleration causes a (phase-shifted) elastic deformation of the Earth that
causes an amplification of the tidal accelerations of about 16% compared to the solid-Earth
tides. For accuracy requirements better than 10 µGals and less than 500 km from the coast-line,
the mass shift due to ocean tides and the surface deflection due to the shifted water loads need
to be considered [ 95 , pp. 127–128].

For general purposes, the tidal acceleration can be effectively determined using Longman’s
program [  113 ]. An example plot of the tidal acceleration at the Institute of Flight System
Dynamics, Garching, determined from an implementation of Longman’s equations [  114 ] is
given in  Figure 4.9 . The theoretical maximum tidal accelerations by the relevant solar system’s
celestial bodies are given in  Table 4.1 . The Moon’s and Sun’s accelerations are at least 8.5 ⋅ 103

times higher than for the next planet, justifying the limitation to just these two influences.

Theoretically determined tidal accelerations typically show a phase shift towards measured
tides. This is caused by the local elasticity that is not properly incorporated in the tide models
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Figure 4.9.: Tidal acceleration at the Institute of Flight System dynamics (48°15’59.03”N
11°40’5.79”E 536m) according to the tidal scheme of Longman.

Table 4.1.: Maximum tidal accelerations on the Earth’s surface due to celestial bodies [ 112 ].

Body Max. tidal acceleration

Moon 1.37 ⋅ 10−6m/s2

Sun 0.50 ⋅ 10−6m/s2

Mercury 3.64 ⋅ 10−13m/s2

Venus 5.88 ⋅ 10−11m/s2

Mars 1.18 ⋅ 10−12m/s2

Jupiter 6.54 ⋅ 10−12m/s2

Saturn 2.36 ⋅ 10−13m/s2

Uranus 3.67 ⋅ 10−15m/s2

Neptun 1.06 ⋅ 10−15m/s2

Pluto 7.61 ⋅ 10−20m/s2
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[ 95 , pp. 127–128]. If a gravity reference in the accuracy level of tidal accelerations is required,
a continuously measuring tide meter may be beneficial.

Model 2: Gravity error modeling.

Description Parameters
Errors of the local gravity models or measurements, deflection from the
vertical and temporal variation of the local gravity.

𝛿𝜸𝑛
Sensitivities

 Table F.2 

Low accuracy level: gravity model
If the local gravity is determined from a gravity model, the model error can be modeled as a
random constant defined by the model’s accuracy.
For the  EGM2008 , there is an error propagation model that allows the determination of the
model accuracy for every location on Earth. For most of the Earth’s surface, except for high
mountains and the south pole, the error of the gravity anomaly is below 1 ⋅ 10−4m/s2 (1𝜎) and
the error of the deflection from the vertical in the order of 1 asec (1𝜎) [ 92 ].
As depicted in  Figure 4.9  , their base period is about 12 hours and 24 minutes with amplitudes
of typically less than 1 ⋅ 10−6m/s2. The temporal variations of gravity thus become only relevant
if the gravity error shall be compensated to a level below 1 ⋅ 10−6m/s2.

High accuracy level: gravimeter measurement and tidal correction
If the local gravity is measured during the setup of the inertial laboratory, the residual constant
gravity error can be reduced to the level of 1 ⋅ 10−7m/s2 [ 95 , p. 97] where the tidal accelerations
become visible. Gravimeter measurements in combination with modern Earth and ocean
tide models allow the prediction of tidal accelerations to an accuracy better than 1 µGal
(1 ⋅ 10−8m/s2) [ 115 ]. The local deflection from the vertical may be determined to about 0.1 asec
[ 108 ].
For example, the calculation of the tidal acceleration can be performed at high accuracy with
the aid of the ETERNA-X program of the  Bundesamt für Kartographie und Geodäsie (BKG) 

[ 116 ].
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4.2.6. Laboratory Location

In addition to the gravity’s location dependency, the laboratory’s location has a direct effect on
the rotation from the  ECEF to the local  NED frame 𝐑𝑛𝑒(𝜙, 𝜆), see ( 4.6 ) and  Figure 4.1 .

The rotation matrix 𝐑𝑛𝑒, as defined in ( 2.16 ), is a rotation around the geodetic latitude 𝜙
and longitude 𝜆 angles. The position accuracy will, therefore, directly effect the accuracy of
the rotation. Static location determination using satellite navigation is a trivial task today,
yielding impressive accuracy even with low-end hardware. Smartphones, for example, provide
an average accuracy of 4.9m [ 117 ], which is close to the GPS  SPS nominal performance [  118 ].
Using below first order approximation

𝛥𝜙 = 𝛥𝑥
𝑅𝑚 + ℎ (4.73)

𝛥𝜆 = 𝛥𝑥
(𝑅𝑛 + ℎ) cos𝜙

(4.74)

this corresponds to an accuracy of about 0.1 asec in latitude and 0.2 asec in longitude at middle
latitudes. Using  Precise Point Positioning (PPP)  the position accuracy can be driven down to
less than 20 cm [ 119 ], corresponding to about 10masec in angle.

Model 3: Local leveled reference frame errors.

Description Parameters
Orientation error of the local leveled reference frame, caused by a position
uncertainty of the laboratory. The residual orientation errors are modeled
as indipendent zero-mean random constant Gaussians.

𝛿𝜳𝑛�̂�

Sensitivities
 Table F.3 

Low accuracy level: GPS Standard Performance
For standard GPS position accuracy of about 5m (1𝜎) the orientation errors of the local  NED 

frame can be described by a standard deviation of:

𝜎𝛥𝜙 ≈ 0.16 asec 𝜎𝛥𝜆 ≈ 0.16 asec ⋅ sec(𝜙)

High accuracy level: GPS Precise Point Positioning
For a precisely surveyed laboratory location from  PPP , the standard deviation of the random
constant orientation errors are reduced to about

𝜎𝛥𝜙 ≈ 0.0065 asec 𝜎𝛥𝜆 ≈ 0.0065 asec ⋅ sec(𝜙)

which can be neglected in virtually any case.
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4.2.7. Test Pad and Laboratory Alignment

Testing inertial sensors requires an accurate and stable reference orientation relative to the two
natural reference signals, gravity, and the Earth’s rotation. Ideally, this reference is identical
with the local leveled  NED frame. This requires both leveling (pitch and roll angle) and a
north-alignment (azimuth) of the laboratory’s local reference frame.
Note that the orientation of the laboratory’s reference frame does not necessarily match the

orientation of the concrete test slab. A passive concrete test pad is roughly aligned to the local
gravity vector during the casting of the concrete. The precise leveling is then performed for the
test instruments, e.g., at the mounting of a rate table or a test plate. Similarly, the test pad’s
orientation towards the north and its geometry are not of interest for the laboratory alignment,
but the test instruments have to provide some reference to the north, either by simple markings
or, e.g., the orientation of a horizontal rate table axis.
In the most simple case, the laboratory’s reference frame leveling is performed using the

local gravity. A simple water level or, more precisely, an inclinometer may be used to align
the reference, e.g., the base of the rate table, to the local gravity vector. But as discussed in
 Subsection 4.2.5  , the local gravity vector has a deviation from the ideal vertical on the reference
ellipsoid that would form the 𝑧 axis of the  NED frame. In this case, the leveling accuracy is
affected by the inclinometer’s measurement accuracy and the local gravity’s deflection from
the vertical. While precise inclinometers reach an accuracy of about 0.2 asec (e.g., [ 120 ]), the
typical deflection from the vertical in moderate terrain is in the range of few asec, see  Figure 4.8 .
Using astro-geodetic methods, the laboratory’s reference can be aligned to the  WGS84 reference
ellipsoid, independent of the local gravity. In this case, leveling accuracies better than 0.1 asec
[ 108 ] can be reached.
Similarly, the north alignment can be done practically with two methods. First, the true

north direction can be determined using a gyrocompass, and second, geodetic survey tech-
niques. Astro-geodetic survey techniques provide accuracies in the region of 2 asec [ 121 ],
while gyrocompasses typically reach accuracies in the range of about typically 0.5° sec(𝜙) [ 122 ],
which is around 0.7° for medium latitudes. The use of a magnetic compass is only possible if
the orientation of the Earth’s local magnetic field is precisely known. As global models like the
 World Magnetic Model (WMM)  do not include local declination anomalies that may exceed
10° [ 123 ], a local reference measurement with respect to true north is required.
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Model 4: Laboratory alignment errors.

Description Parameters
Leveling and north-alignment errors of the laboratory’s respectively
test-pad’s reference frame. The residual orientation errors of the
laboratory’s reference frame are modeled as independent zero-mean
random constant Gaussians.

𝛿𝜳𝑝 ̂𝑝

Sensitivities
 Table F.4 

Low accuracy level: Leveling to local gravity
For a low-accuracy approach, using simple gravity leveling and gyro-compassing with typical
devices, the standard deviation of the orientation angle errors can be expected in the range
of:

𝜎𝛿𝛷𝑝�̂�
≈ 2.5 asec 𝜎𝛿𝛩𝑝�̂�

≈ 2.5 asec 𝜎𝛿𝛹𝑝�̂�
≈ 0.5° sec(𝜙)

The above values only indicate typical instrument errors and moderate terrain.

High accuracy level: Astro-geodetic alignment
Using high-precision astro-geodetic measurements, the residual alignment errors of the
laboratory’s reference frame can be reduced to about:

𝜎𝛿𝛷𝑝�̂�
≈ 0.2 asec 𝜎𝛿𝛩𝑝�̂�

≈ 0.2 asec 𝜎𝛿𝛹𝑝�̂�
≈ 2 asec

4.2.8. Test Pad Motion

Inertial sensor testing equipment, like rate tables, are typically mounted on isolating test pads
(also test pier or test slab). The main task of the test pier is to provide a stable, ideally motion-
free, platform by isolating the laboratory from external vibrations. The different external
disturbances and two types of test pad realizations will be discussed in the following.

4.2.8.1. External Disturbances

The test pad’s stability can be disturbed by direct or indirect excitation. Direct excitations
are the forces and moments directly acting on the test pad, e.g., reaction forces and moments
caused by the rate table’s motion or an operator walking on the test pad. Direct excitation can
be easily handled as it is mainly under the operator’s control, e.g., by using a false floor on
top of the test pad. The reaction moments of the rate tables are well known and can thus be
considered.
The indirect excitation, on the other hand, is much harder to handle, as its sources can

typically not be affected. Indirect excitation is caused by seismic waves, especially surface waves,
that excite the test pad’s motion. Surface waves are either pure horizontal translational waves
perpendicular to the wave direction (Low waves) or a combination of vertical and horizontal
translation in the wave direction (Rayleigh waves), as illustrated in  Figure 4.10 [ 124 ].
The actual level of seismic disturbances depends on the location of the laboratory and

its environment. However, there have been multiple attempts to determine a representative
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(a) Lowe waves. (b) Rayleigh waves.

Figure 4.10.: Seismic surface waves. The red arrow indicates the wave direction, while the blue
arrows indicate the motion of the particles.

spectrumof disturbances. An early systematic description of the Earth’s seismic noisewas given
by Brune and Oliver in 1959 [  125 ]. Seismic background noise can be considered a stationary
process [  126 ] and thus be described by its  PSD . The first model explicitly developed for inertial
sensor testing was derived byWeinstock in 1966 [ 40 ]. The model is mainly based on the seismic
background noise observations obtained during the VELA Uniform program that targeted the
detection and localization of covert nuclear weapon tests. Today’s standard model for seismic
noise backgrounds was developed by Peterson for the  United States Geological Survey (USGS)  

in 1993 [  127 ]. It defines two representative  PSD curves, called  NewHigh Noise Model (NHNM)  

and  New Low Noise Model (NLNM)  , for high respectively low noise environments. These
models are compiled from global observations and are widely accepted in seismology [  126 ].
Another reference spectrum has been determined for developing the LIGO Gravitational-Wave
Observatory seismic isolation system [  128 ]. The seismic background noise spectra for various
observation stations and networks can also be obtained from the IRIS Web Service [ 129 ].

The different  PSD curves are summarized in  Figure 4.11a  . For the dominant Rayleigh waves,
the horizontal and vertical amplitudes are similar [ 126 ]. Consequently, the presented spectra
are representative of both horizontal and vertical acceleration. These reference models do
not include direct tidal accelerations. Furthermore, the USGS and the LIGO model do not
include artificial noise, as they are determined for locations sufficiently isolated from human
activities. In contrast to that, Weinstock’s model includes artificial sources. Several measured
vibration spectra from urban [ 130 ] and industrial [  131 ] environments are added as a reference
for artificial noise. These measurements have been transformed from velocity and acceleration
amplitudes to acceleration  PSD using methods from [ 126 ].

Seismic waves do excite not only translatory displacement but also a tilt of the local Earth’s
surface. Analog to the acceleration, a summary of different tilt  PSD curves is presented in
 Figure 4.11b  . Based on different assumptions, Weinstock derived the tilt noise  PSD from his
reference acceleration spectrum [  40 ]. Also, for the LIGO development, two representative tilt
spectra have been derived for calm as well as windy days [  128 ]. The seismic tilt background
noise  PSD for various observation stations in China has been published by Zhao [  132 ]. The
curves for the Xiaomiao and Chengde stations are added as a reference. These spectra have not
yet been corrected for the Earth’s solid tides. Depending on the actual design, the tidal tilt may
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cause a motion of the test pad (e.g., if the pad is actively aligned to local gravity) that needs to
be considered. Again, the LIGO model and Zhao’s measurements do not account for artificial
noise, while Weinstock’s model does.

As a reference for artificial excitation, the local surface tilt has been derived from the vertical
displacement measurements, assuming an elastic surface wave, see ( 4.77 ). The approximated
tilts, derived from the measurements of Kamperman [  130 ], and Albert [  131 ] for a wave velocity
of 𝑐𝑠 = 250𝑚/𝑠, are added to the graph.

Weinstock’s curve seems conservative for low frequencies compared to the other references.
However, the curve matches the measured spectra quite well for the high artificial frequencies.
As Weinstock’s curve is partly based on the same assumptions and measurements as the here-
derived tilts, there may be a systematic error caused by the elastic wave model. Furthermore,
for high frequencies, the wavelength decreases below the dimensions of the test pad. As
illustrated in  Figure 4.13  , the test pad can no longer follow the surface wave’s tangent for small
wavelengths.

In general, the reference curves seem to cover both natural and artificial noise quite well.
In cases when the actual seismic background is not (yet) known for the test slab’s location, a
combination of the above-discussed reference models may be used for a first analysis. The
natural background noise seems similar worldwide, while the man-made source depends on
the actual location. It should be considered that artificial noise can be effectively reduced by
choosing a suitable quiet laboratory location. Cultural noise can also be reduced by going deep
below the surface, e.g., [  32 ]. Furthermore, high-frequency noise disturbances can be reduced
by sub-surface trenches of sheet pile barriers with depths of at least one-third of the surface
wavelength [ 31 ].

4.2.8.2. Passively Isolated Test Pad

Typically, a passively isolated test pad is just a block of reinforced concrete, more or less
freely floating on compacted soil, see  Figure 4.12a  . The general idea is to have high inertia to
reduce its reaction to excitation to an acceptable level. Therefore they are also called inertia
pads. However, unique forms and designs, including hollowed test slabs and even a 9 to pad
suspended from a 7.5m tower, have been proposed and realized [  31 ]. The research of designing
a stable test platform for inertial sensor testing dates back to the early 1960s when increasing
sensor accuracy raised concerns about the required laboratory references. These efforts were
concentrated in the Test Pad Stability Subcommittee (from 1970Geokinetics Subcommitee) of the

 American Institute of Aeronautics and Astronautics (AIAA)  Technical Commitee on Guidance
and Control [ 37 ].

The typical model for a passively isolated test pad is a mass-spring-damper system for each
of the six degrees of freedom of the pad [  31 ,  36 ]. For this simple model, the test pad is modeled
as rigid body. This assumption is justified if the slab’s bending stiffness is higher than the
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(a) Acceleration power spectral density of seismic noise. Modeled reference spectra: USGS New Noise
Models [ 127 ], Weinstock [  40 ] and LIGO [  128 ]. Measured spectra in urban and industrial environment:
Kamperman [ 130 ] and Albert [ 131 ].

traffic, industry
wind

surf
Earth motion from atmospheric pressure

solid tides

10−5 10−4 10−3 10−2 10−1 100 101 102 103
10−13

10−10

10−7

10−4

10−1

102

105

108

Frequency 𝑓 in (Hz)

Ti
lt

PS
D
𝑆(
𝑓)

in
(a
se
c2
/H
z )

Weinstock LIGO Zhao Kamperman* Albert*
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Figure 4.11.: Overview of translatory and rotatory seismic background noise power spectral densi-
ties.

197



Chapter 4. Inertial Sensor Laboratory Testing

ground’s stiffness [ 133 , p. 192]:
1
12

𝐸𝑓
𝑀𝐸,𝑠

(
ℎ𝑓
𝑏𝑓
)
3

≥ 0.1 (4.75)

where
𝐸𝑓 Elastic modulus of the pad

𝑀𝐸,𝑠 Constrained modulus of the soil

ℎ𝑓 Height of the pad

𝑏𝑓 Length of the pad’s longest edge

Furthermore, the test pad is assumed to be not embedded in the ground. Embedding the pad
generally leads to a slight increase in spring stiffness and a considerable increase in damping
[ 134 ], but is not covered by the spring-damper model.

The spring constants 𝐾𝑖 and damping coefficients 𝐶𝑖 can be determined analytically from the
test pad’s geometry (equivalent radius from length and width) and the soil characteristics, see,
[ 134 ]. The relevant soil parameters dynamic shear module𝐺𝑑, the Poisson’s ratio 𝜈, and density
𝜌 need to be determined experimentally for the local environment. On the one hand, the pad
can be excited directly by external forces and moments 𝒑, e.g., caused by reaction moments of
the rate table accelerations or an operator walking on the test pad. On the other hand, the test
pad can also be indirectly excited by a translatory or rotatory displacement of the reference
point 𝒖0 caused by a surface wave. In matrix-vector form, the equation of motion of the rigid
test pad yields [ 134 ]:

𝐌�̈�(𝑡) + 𝐂 (�̇�(𝑡) − �̇�0(𝑡)) + 𝐊 (𝒖(𝑡) − 𝒖0(𝑡)) = 𝒑(𝑡) (4.76)

where
𝐌 Blockdiagonal matrix of mass and moments of inertia

𝐂 Diagonal matrix of damping coefficients

𝐊 Diagonal matrix of spring constants

𝒖 Column vector of translatory and rotatory displacement

𝒖0 Column vector of translatory and rotatory displacement of the reference point

𝒑 Column vector of external forces and moments

While the Lowe waves only a horizontal motion of the test pad, the Rayleigh wave’s vertical
excitation will also lead to a rotatory movement of the test pad. If the surface wave’s wavelength
reaches the dimensions of the test pad, it will follow the wave’s tangent, as illustrated in

 Figure 4.13 .

Given that the wave’s source is sufficiently far away, the source can be approximated as
line-shaped. Using the small-angle approximation the pad’s tilt is given by the local spatial
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derivative of the surface wave [ 135 ]:

(𝑡) = arctan 𝑑𝑢(𝑠, 𝑡)𝑑𝑠 ≈ 𝑈0
2𝜋
𝜆𝑤

sin(𝜔𝑤𝑡 −
2𝜋
𝜆𝑤

𝑠) (4.77)

This analytical model allows a simple determination of the transfer functions from both and
indirect excitation𝐇𝑖(𝑠) and direct excitation𝐇𝑑(𝑠) to the pad’s displacement:

𝒖𝑖(𝑠) = (𝐌𝑠2 + 𝐂𝑠 + 𝐊)−1 (𝐂𝑠 + 𝐊)⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
𝐆i(𝑠)

𝒖0(𝑠) (4.78)

𝒖𝑑(𝑠) = (𝐌𝑠2 + 𝐂𝑠 + 𝐊)−1⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝐆d(𝑠)

𝒑(𝑠) (4.79)

For symmetrical pads, all matrices are diagonal matrices. Consequently, the six degrees of
freedom are decoupled and can be treated separately. Example frequency responses to indirect
excitation are depicted in  Figure 4.14 . The general second-order low-pass behavior fits quite
well with published measurements for passive test slabs, see [ 130 ].
For a known, or at least estimated, disturbance spectrum, the resulting test-pad motion

spectrum can be easily determined using the Wiener-Khinchin-theorem ( 3.94 ).
Despite the practical usage of the above model, it can only represent the fundamental

behavior of the test slab dynamics. In reality, the damping and spring coefficients of the soil
are frequency-dependent. This dependency should be taken into account when determining
the transfer function. Correction factors for the frequency dependency can be found in [  134 ]
for some configurations. However, this and other model inaccuracies should also be covered
by a variation study of the model coefficients as suggested in [ 31 ].

4.2.8.3. Actively Stabilized Test Pad

In contrast to the passively isolated test pad, an actively stabilized pad provides active control of
its leveling and excitation damping. As illustrated in  Figure 4.12b  , the test pad’s orientation is
measured and closed loop controlled using actuators. For example, the so-called iso-pad at the
Frank J. Seiler Research Laboratory at the USAF Academy, Colorado, consists of a 200 to pad
of reinforced concrete that is mounted on hydraulic actuators. These actuators are closed-loop
controlled from tilt-meter measurements down to 1masec. Pad motions above 0.1Hz are
observed by additional seismometers and actively damped by electro-magnetic shakers. The
design goal of this test pad was an acceleration stability of 1 ⋅ 10−9 g0 up to 20Hz [ 35 ]. The
actual transfer function from external and internal excitations highly depends on the actual
pad and controller design and cannot be generalized.
It should be noted that such an actively stabilized pad will always be aligned to the local

gravity, with the consequences already discussed in  Subsection 4.2.5.3  . Additional observation
of the deflection from the vertical, respectively determination of the astronomic latitude may
be required.
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(a) Passively isolated test pad.
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false floorinclinometer

(b) Actively stabilized test pad.

Figure 4.12.: Schematic illustration of a passively isolated and an actively stabilized test pad.

𝑠

Figure 4.13.: Rotatory motion of the test pad due to surface wave excitation.
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10−2
10−1
100

M
ag

ni
tu

de
(−
)

𝜃𝑥 𝜃𝑦 𝜃𝑧

10−1 100 101 102 103

0

−45

−90

−135

Frequency (Hz)

Ph
as

e
(°
)

(b) Transfer of rotatory oscillations.

Figure 4.14.: Example frequency response of the test pad to indirect excitation from surface waves.
Test pad dimensions are 6m × 3.2m × 2m, with a density of 𝜌𝐹 = 2200 kg/m3. The
soil parameters are 𝜈 = 0.3, 𝐺𝑑 = 30MPa and 𝜌𝑠 = 1900 kg/m3.
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Model 5: Test pad motion.

Description Parameters
Motion of the test pad with respect to the local reference frame. The
orientation errors, angular rates and accelerations are modeled as
stochastic processes, characterized by their  PSD .

𝛿𝝎𝑛𝑝, 𝛿�̇�𝑛𝑝, 𝛿𝜳𝑝 ̂𝑝,
𝛿 ̇𝒓𝑛(𝑃𝑝), 𝛿 ̈𝒓𝑛(𝑃𝑝)
Sensitivities

 Table F.4 ,  Table F.5 

Reference motion spectrum Based on the presented models in  Figure 4.11  , a new conser-
vative reference  PSD curve over a wider frequency range can be composed. Although the
actual local background noise is not isotropic, the reference  PSD represents a reasonable
approximation for all directions.
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(5.b) Angular rates power spectral density.

As described in  Subsection 4.2.8.1  , a passively isolated test pad can be approximated as a
mass-spring-damper system whose response is characterized by the damping coefficient at
the natural frequency. Variations of the seismic background for different test pads are included
in the above graphs. The dashed lines represent different damping ratios, ranging from 0.1 to
1.0 (solid line).
Note that the presented reference  PSD curves are only indicative. Their representativeness
should be questioned for each testing location, especially for laboratories close to natural
(e.g., the shore) and artificial sources.
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4.2.9. Rate Table Errors

In  Subsection 4.2.1 , a three-axis rate table has been chosen as the most general inertial testing
instrument. This the model can be easily reduced to two- or single-axis tables and even
centrifuges. Thus, the typical errors of a three-axis rate table will be discussed exemplary in
this section. After introducing a general error model in the rate table’s section of the kinematic
chain, the different error sources are discussed and characterized.

4.2.9.1. Rate Table Errors in the Kinematic Chain

Any rate table imperfections add errors to the kinematic chain representing the rate table. As
illustrated in  Figure 4.15 , rate table imperfections introduce orientation errors and displacement
errors of the reference frames representing the table’s gimbals. Orientation errors are described

𝑥𝑝
𝑦𝑝

𝑧𝑝

𝛿𝛩�̂�𝑤

𝛿𝛹�̂�𝑤

𝛿𝛩 ̂𝑣𝑣𝛿𝛷 ̂𝑣𝑣

𝛿𝛷 ̂𝑝𝑝

𝛿𝛩 ̂𝑝𝑝

(a) Axis orientation errors.

𝑥𝑝
𝑦𝑝

𝑧𝑝

𝑃𝑤

𝑃𝑣

𝑃

𝑃𝑝
(b) Axis displacement.

Figure 4.15.: Rate table axes orientation and displacement errors.

by an additional rotation that occurs before the nominal rotation following the kinematic chain
towards the inner gimbal. The orientation errors consist of a tilt of the nominal rotation axis
described by 𝛿𝛷, 𝛿𝛩 or 𝛿𝛹 and a consecutive error rotation about the nominal axis:

𝐑𝑤𝑝 = 𝐑𝑧(�̂�𝑤𝑝)⏟⎵⏟⎵⏟
nominal rotation𝐑𝑤�̂�

𝐑𝑧(𝛿𝛹 ̂𝑝𝑝)𝐑𝑦(𝛿𝛩 ̂𝑝)𝐑𝑥(𝛿𝛷 ̂𝑝𝑝)⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
axis orientation error𝐑�̂�𝑝

(4.80)

𝐑𝑣𝑤 = 𝐑𝑥(�̂�𝑣𝑤)⏟⎵⏟⎵⏟
nominal rotation𝐑𝑣�̂�

𝐑𝑥(𝛿𝛷𝑣𝑤)𝐑𝑧(𝛿𝛹�̂�𝑤)𝐑𝑦(𝛿𝛩�̂�𝑤)⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
axis orientation error𝐑�̂�𝑤

(4.81)

𝐑ᵆ𝑣 = 𝐑𝑧(�̂�ᵆ𝑣)⏟⎵⏟⎵⏟
nominal rotation𝐑𝑢�̂�

𝐑𝑧(𝛿𝛹 ̂𝑣𝑣)𝐑𝑦(𝛿𝛩 ̂𝑣𝑣)𝐑𝑥(𝛿𝛷 ̂𝑣𝑣)⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
axis orientation error𝐑�̂�𝑣

(4.82)

Additionally, there may be orientation errors in the sensor’s mounting to the inner gimbal.
As there is no nominal rotation but only an arbitrary nominal orientation of the sensor 𝐑𝑏 ̂ᴂ,
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introducing the orientation errors yield:

𝐑𝑏ᵆ = 𝐑𝑏 ̂ᴂ 𝐑𝑥(𝛿𝛷 ̂ᴂᵆ)𝐑𝑦(𝛿𝛩 ̂ᴂᵆ)𝐑𝑧(𝛿𝛹 ̂ᴂᵆ)⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
axis orientation error𝐑�̂�𝑢

(4.83)

For a precision instrument like a rate table, the axis orientation errors are in the arc-second
range. Consequently, the orientation error matrices can be linearized for the error angles and
the order of rotations becomes insignificant:

𝐑𝑤𝑝 ≈
⎡
⎢
⎢
⎢
⎢
⎣

cos �̂�𝑤𝑝 − sin �̂�𝑤𝑝 0

sin �̂�𝑤𝑝 cos �̂�𝑤𝑝 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐈3×3 +
⎡
⎢
⎢
⎢
⎢
⎣

𝛿𝛷 ̂𝑝𝑝

𝛿𝛩 ̂𝑝𝑝

𝛿𝛹 ̂𝑝𝑝

⎤
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝛿𝜳�̂�𝑝

×

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(4.84)

𝐑𝑣𝑤 ≈
⎡
⎢
⎢
⎢
⎢
⎣

1 0 0

0 cos �̂�𝑣𝑤 − sin �̂�𝑣𝑤

0 sin �̂�𝑣𝑤 cos �̂�𝑣𝑤

⎤
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐈3×3 +
⎡
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⎢
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⎣

𝛿𝛷�̂�𝑤

𝛿𝛩�̂�𝑤

𝛿𝛹�̂�𝑤

⎤
⎥
⎥
⎥
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⎦⏟⎵⏟⎵⏟

𝛿𝜳�̂�𝑤

×

⎞
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⎟
⎟
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⎠

(4.85)

𝐑ᵆ𝑣 ≈
⎡
⎢
⎢
⎢
⎢
⎣

cos �̂�ᵆ𝑣 − sin �̂�ᵆ𝑣 0

sin �̂�ᵆ𝑣 cos �̂�ᵆ𝑣 0

0 0 1

⎤
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⎝

𝐈3×3 +
⎡
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⎢
⎢
⎣

𝛿𝛷 ̂𝑣𝑣

𝛿𝛩 ̂𝑣𝑣

𝛿𝛹 ̂𝑣𝑣

⎤
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝛿𝜳�̂�𝑣

×

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(4.86)

𝐑𝑏ᵆ ≈ 𝐑𝑏 ̂ᴂ

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐈3×3 +
⎡
⎢
⎢
⎢
⎢
⎣

𝛿𝛷 ̂ᴂᵆ

𝛿𝛩 ̂ᴂᵆ

𝛿𝛹 ̂ᴂᵆ

⎤
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝛿𝜳�̂�𝑢

×

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(4.87)

In general, total tilt errors 𝛿𝛷, 𝛿𝛩, 𝛿𝛹 are composed of static errors, errors from axis wobble as
well as deformations under load and due to thermal expansion:

𝛿𝛷(𝑡) = 𝛿𝛷static + 𝛿𝛷wobble(𝑡) + 𝛿𝛷load(𝑡) + 𝛿𝛷thermal(𝑡) (4.88)

The same accounts for the other tilt errors. In contrast, the errors along the nominal rotation
axes result from the measurement and control errors of the axis’ servo loop. The orientation
errors between the inner gimbal and the sensor’s reference frame are only affected by static
errors and deformations due to load.

Following above approximations, the angular rates between each two gimbals can be written
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as:

𝝎𝑝𝑤 ≈
⎡
⎢
⎢
⎢
⎢
⎣

0
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̇�̂�𝑤𝑝
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⎥
⎥
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+
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(4.89)
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⎥
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The translatory errors are simply added to the nominal displacements of the reference frames

𝒓𝑝(𝑃𝑤) = ̂𝒓𝑝(𝑃𝑤) + 𝛿𝒓𝑝(𝑃𝑤) (4.93)

𝒓𝑤(𝑃𝑣) = ̂𝒓𝑤(𝑃𝑣) + 𝛿𝒓𝑤(𝑃𝑣) (4.94)

𝒓𝑣(𝑃 ) = ̂𝒓𝑣(𝑃 ) + 𝛿𝒓𝑣(𝑃 ) (4.95)

𝒓ᵆ(𝑃𝑏) = ̂𝒓ᵆ(𝑃𝑏) + 𝛿𝒓ᵆ(𝑃𝑏) (4.96)

where the errors, again, are composed of several effects:

𝛿𝒓(𝑡) = 𝛿𝒓static + 𝛿𝒓wobble(𝑡) + 𝛿𝒓load(𝑡) + 𝛿𝒓thermal(𝑡) (4.97)

The different error sources are modeled and analyzed in the following.

4.2.9.2. Static Axis Errors

For an ideal rate table, all axes are perfectly orthogonal and intersect in a single point. Due
to manufacturing imperfections, there is a static orientation error in the table’s rotation axes.
Analog to that, there is also a constant translatory displacement of the axes. These errors are
measured and defined at the static position of the unloaded rate table. Due to their static
nature, these errors are modeled as random constant Gaussian variables. In contrast to many
other errors, the static errors are not necessarily zero-mean, as imperfections can be measured
after the installation but only partially compensated after the manufacturing. In this case, the
error’s standard deviation is defined by the measurement accuracy of the instruments. If no
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measurement is available, the errors are assumed to be zero-mean but with a higher standard
deviation representing the typical variations of geometrical errors from manufacturing.

Axis Orientation Errors

The axis orientation errors are usually specified as non-orthogonality. Non-orthogonality
describes the static angular deviation from orthogonality within the plane defined by two
(ideally) crossing rotation axes. These errors are affected by the manufacturing and setup
accuracy of the mechanical structure. Within the kinematic chain of a three-axis rate table,
the pitch angles of the middle axis 𝛿𝛩𝑤�̂�,stat and the inner axis 𝛿𝛩𝑣 ̂𝑣,stat are described by the
non-orthogonality specification. Typical non-orthogonality specifications are in the range of
few arc-seconds [ 136 ,  137 ].
There is also a residual static orientation error along the nominal rotation axes 𝛿𝛹𝑤�̂�,stat,

𝛿𝛹𝑣 ̂𝑣,stat and 𝛿𝛹ᵆ ̂ᴂ,stat. Such an error is typically lower, as it can be compensated comparably
easily, e.g., by shifting the rotation angle’s offset in software. These errors would be included in
the positioning accuracy specification of a rate table.
The outer gimbal’s vertical rotation axis can be tilted along two angles 𝛿𝛷𝑝 ̂𝑝,stat and 𝛿𝛩𝑝 ̂𝑝,stat

from its ideal alignment to the laboratory’s vertical reference. As this orientation is aligned
during the installation of the rate table, it can be assumed that it is performed as well as possible
with the used measurement instruments, which justifies a zero-mean assumption and leaves
only a standard deviation defined by the measurement accuracy. The same applies to the
orientation error of the sensor package with respect to the inner gimbal 𝛿𝜳𝑏 ̂𝑏,stat.

Axis Displacement Errors

The axis displacement is typically not part of the rate table specification. However, it may be
assumed to be within the range of mechanical engineering accuracies, which is about 0.5mm
for parts with dimensions in the range of 1m [ 138 , Table 1]. The static displacement vectors of
the rate table’s axis and thus reference frames 𝛿𝒓𝑝,stat(𝑃𝑤), 𝛿𝒓𝑤,stat(𝑃𝑣), 𝛿𝒓𝑣,stat(𝑃𝑣) and 𝛿𝒓ᵆ,stat(𝑃𝑏)
may be modeled as a random constant vector of independent Gaussians with zero-mean.
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Model 6: Static rate table errors.

Description Parameters
Static orientation errors and displacement of rate table
axes caused by manufacturing imperfections. Errors are
modeled as independent random constant Gaussians.

𝛿𝜳𝑤�̂�, 𝛿𝜳𝑣 ̂𝑣, 𝛿𝜳ᵆ ̂ᴂ, 𝛿𝜳𝑏 ̂𝑏,
𝛿𝒓𝑝(𝑃𝑤), 𝛿𝒓, 𝑤(𝑃𝑣), 𝛿𝒓𝑣(𝑃 ), 𝛿𝒓ᵆ(𝑃𝑏)
Sensitivities

 Table F.6 ff,  Table F.7 ff

Static axis orientation errors
If no measurements of the static rate table errors are available for the used device, the axis
orientation and displacement errors may be modeled as independent zero-mean random
constant Gaussians with the following standard deviations:

Parameter Typical Error (1𝜎)

Non-orthogonality 𝛿𝛩𝑤�̂�,stat, 𝛿𝛩𝑣 ̂𝑣,stat 5 asec
Positioning Error 𝛿𝛹𝑤�̂�,stat, 𝛿𝛹𝑣 ̂𝑣,stat, 𝛿𝛹ᵆ ̂ᴂ,stat 1.5 asec
Axis discplacement 𝛿𝒓𝑝(𝑃𝑤), 𝛿𝒓, 𝑤(𝑃𝑣), 𝛿𝒓𝑣(𝑃 ), 𝛿𝒓ᵆ(𝑃𝑏) 0.5mm

4.2.9.3. Axis Wobble

Axis wobble is a variable tilt of the rotation axis that changes with the rotation angle. This tilt
is caused by several effects, both static and dynamic, including:

• The change of the gravity vector during rotation may change the preload and stress
conditions in the gimbal and thus in the supporting bearings which effects the stiffness
of the bearings.

• Manufacturing imperfections (unroundness, surface waviness, local defects) of the bear-
ing result in variations of the bearing’s stiffness with the rotation angle.

• An imbalance of the rotating gimbal causes a harmonic excitation of the bearing’s
dynamics. The motion of the axis is defined by the bearing’s stiffness and damping as
well as its geometry.

• When rotating, the passing of manufacturing imperfections also excite the bearing’s
dynamics.

As illustrated in  Figure 4.16 , the axis tilt and displacement is caused by a displacement of the
axis center within the two supporting bearings:

𝛿𝛷wobble = atan (
𝑢2,𝑦 − 𝑢1,𝑦

𝑙 ) ≈
𝑢2,𝑦 − 𝑢1,𝑦

𝑙 (4.98)

𝛿𝑟𝑦,wobble =
𝑢2,𝑦 + 𝑢1,𝑦

2 (4.99)
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Obviously, the axis wobble is defined by the characteristics of the bearings, which will be briefly
described next. The analysis focuses on the two most common bearing types for rate tables,
the classical rolling-element bearings and aero-static (gas) bearings.

𝑢2,𝑦

𝑢1,𝑦

𝛿𝑟𝑦,wobble

𝛿𝛼wobble

𝑙
𝑧

𝑦

Figure 4.16.: Axis rocking 𝛿𝛼 and displacement 𝛿𝑟 from bearing deflections.

Bearing Errors

The phenomenon of axis wobble is closely related to the problems of vibration or run-out  

1
 of

bearing-supported rotors which is widely investigated inmechanical engineering and especially
precision manufacturing. Since bearings have a finite stiffness, the rotor-bearing system can be
modeled as an oscillatable mass-spring-damper system. Unfortunately, the spring stiffness is a
non-linear function of the deflection [ 139 , pp. 968–969].

In addition to rotor imbalance, which will be discussed in  Subsection 4.2.9.4  , the geometrical
errors of the bearings are the dominant source of vibrations or run-out [  139 , pp. 970–971]. These
geometrical errors are mainly surface waviness or unroundness of the bearing’s inner ring,
outer ring, and, if applicable, rolling elements as illustrated in  Figure 4.17  . The categorization of
geometrical errors into unroundness, waviness, and surface roughness are based on the ratio of
amplitude and wavelength of the errors [  140 , p. 14] but will not be considered further here. For
rolling element bearings, the geometrical errors change the local compression of the elements
and thus lead to a variable stiffness of the bearings as the element revolves along the bearing
[ 141 , pp. 101–112]. Similarly, the surface waviness leads to variations of the clearance and thus
the supporting gas film thickness in aero-static bearings. This also results in a variation of the
local stiffness [ 142 ].

In static conditions, this variation of the local stiffness along the circumference leads to a
deflection of the rotor’s axis from the bearing’s center. During rotation, the stiffness variations
lead to time-varying forces that excite the rotor-bearing dynamic system to oscillations. The
radial deviation from the ideal circular shape of the bearing elements can be expressed by
a sum of sine waves along the element’s circumference. For rolling element bearings, the

1the deviation of the rotor axis from its ideal position
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𝑦
𝑥

𝜌𝑜𝑡

𝜌𝑖𝑛 𝜌𝑟

(a) Ball bearing waviness.

𝑦
𝑥

𝜌𝑜𝑡

𝜌𝑖𝑛
𝛩

(b) Aero/hydro-static bearing waviness.

Figure 4.17.: Surface waviness of different bearing technologies.

deviation from the reference circle at the rolling element 𝑖 is given as [ 141 , p. 103]:

𝜌𝑖(𝑡) = ∑
𝑘
𝐴𝑘 cos [𝑘 (𝜔𝑐𝑡 + 2𝜋 𝑖

𝑁𝑟
) + 𝑘]

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
outer race waviness

− ∑
𝑘
𝐵𝑘 cos [𝑘 (𝜔𝑖𝑡 + 2𝜋 𝑖

𝑁𝑟
) + 𝜓𝑘]

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
inner race waviness

+ ∑
𝑘
2𝐶𝑖

2𝑘 cos (2𝑘𝜔𝑟𝑡 +
𝑖
2𝑘)

⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
rolling element waviness

(4.100)

The resulting excitation forces are then determined from application of the Hertzian contact
theory to each rolling element’s compression and subsequent summation over all elements 𝑖 =
1…𝑁𝑟. It can be demonstrated that only waviness orders of 𝑘 = 𝑞𝑁𝑟 remain after summation
for the outer and inner race, while all others vanish [  141 , p. 104]. The underlying rotation rates
of the cage and rolling elements are defined by the bearing’s geometry, only. The respective
formulas are summarized in  Table 4.2 .

For aero-static bearings, only the rotor’s surface waviness induces a motion of the axis center
with the rotation. A perfectly round rotor would stay in a center point defined by the outer
journal’s waviness but would not display anymotion [  143 ]. The variation of the radial clearance
can thus be expressed as

𝜌(𝑡, ) = ∑
𝑘
𝐴𝑘 cos [𝑘 ( − 𝜔𝑖𝑡) + 𝑘] (4.101)

where ∈ [0, 2𝜋[ is the angular coordinate of the rotor surface.

The waviness adds little load for sufficient pre-load, so the Hertzian contact formulas can be
linearized [  141 , p. 107]. Due to the small amplitudes of waviness, the stiffness of aero-static
bearings may be linearized [  142 ]. The rotor-bearing system then is represented by a linear
mass-spring-damper systemwith the well-known transfer function [  139 , ch. 26]: in general, the
amplification of the excitation grows from 1 at low frequencies up to a maximum at the critical
frequency and finally decreases again for high frequencies. The amplitude and frequency
of this maximum depend on rotor mass and the bearing’s stiffness and damping. However,
typical critical frequencies are in the range of several hundred Hz (see  Figure 4.18 ), while
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Table 4.2.: Fundamental frequencies of rolling element bearings [ 139 , p. 994].

Effect Frequency

Rotation of shaft / inner ring 𝑓𝑖
Rotation of cage 𝑓𝑐 =

1

2
𝑓𝑖 (1 −

𝑑𝑟
𝑑𝑚

cos𝜙)

Rotation of the rolling elements 𝑓𝑟 = 2𝑑𝑚
𝑑𝑟
𝑓𝑐 (1 −

𝑓𝑐
𝑓𝑖
)

Roller passing inner ring defects 𝑓𝑟𝑝𝑖 = 𝑁𝑟 (𝑓𝑖 − 𝑓𝑐)
Roller passing outer ring defects 𝑓𝑟𝑝𝑜 = 𝑁𝑟𝑓𝑐
𝑁𝑟: number of rolling elements, 𝑑𝑟: rolling element diameter,

𝑑𝑚: bearing pitch diameter, 𝜙: contact angle

the maximum rotation rate of most rate tables is usually around 1 to 2Hz. For such a low
excitation rate, the bearing dynamics can be neglected for aero-static bearings, too [ 143 ].
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(b) Phase of the frequency response.

Figure 4.18.: Frequency response of the linearized bearing dynamics. Transfer function has been
determined for a simpified linear model in accordance to [ 139 , pp. 1013–1024].
Bearing stiffness 𝑘 = 3 ⋅ 109N/m and damping coefficient 𝑐 = 1 ⋅ 104Ns/m have been
estimated following [ 144 ]. Gimbal/rotor mass is 𝑚 = 1000 kg.

For a ball bearing, the different harmonics of the outer and inner races’ waviness add
to excitation forces with the possible frequencies defined in  Table 4.3  . A derivation of the
excitation forces can be found in [  141 , p. 109]. As these vibrations cause the axis to wobble, it
should, in general, show the same harmonics, and the wobble angle should be of the form:

𝛿𝛷wobble = ∑
𝑞
∑
𝑝
[𝐴𝑞 cos(𝑞𝑁𝑟𝜔𝑐𝑡 + 𝑞) + 𝐵𝑞,𝑝 cos ((𝑞𝑁𝑟𝜔𝑐 + 𝑝𝜔𝑖)𝑡 + 𝜓𝑞,𝑝)] (4.102)

where 𝑞 ∈ 𝒩+
0 and 𝑝 ∈ 𝒩0. The occuring orders 𝑞 and 𝑝 depend on the actual geometrical

errors of the bearings and cannot be predicted. Here, the effects of rolling elements waviness
is neglected, as they are usually manufactured to a significantly higher accuracy than the
rings [  141 , p. 106]. Although the waviness amplitudes of bearings can be determined at high
accuracy in the laboratory [  139 , p. 981], this does not allow direct conclusions on the rate table’s
gimbal wobble amplitudes. The amplitudes of the bearing vibrations depend strongly on the
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actual assembly conditions, e.g., the actual load. Additionally, the surface waviness’s relative
phases depend on the installation orientation. Thus, the amplitudes and the order of existing
harmonics of the axis wobble have to be determined at the assembled rate table.

Table 4.3.: Bearing vibration frequencies from waviness [ 139 , p.982]

Component Order Frequencies

Inner ring 𝑘 = 𝑞𝑁𝑟 ± 𝑝 𝑞𝑁𝑟(𝑓𝑖 − 𝑓𝑐) ± 𝑝𝑓𝑖
Outer ring 𝑘 = 𝑞𝑁𝑟 ± 𝑝 𝑞𝑁𝑟𝑓𝑐
Roller 𝑘 (even) 𝑘𝑓𝑏 ± 𝑝𝑓𝑐

In practice, however, the amplitudes and phases of the different harmonics cannot be
determined sufficiently accurately to create a deterministic model. Instead, the wobble motion
shall be modeled by a stochastic process, defined by its  PSD . The tilt is the sum of several
harmonic oscillations at frequencies that depend on the axis’ angular rate and some constants,
like diameters and waviness orders. For such a purely sine-based signal, the  PSD and thus the
processes’ auto-covariance is defined by Dirac impulses at these characteristic frequencies.

Typically, the axis wobble is specified as the maximum tilt variation over one revolution.
Specifications are in the range of 2.5 to 5 asec [ 136 ] and 0.5 asec for aero-static bearings [  28 ]
and usually refer to the  RMS of the tilt errors along multiple revolutions. Modeling the wobble
amplitudes from just one value requires some relationship between the waviness amplitudes.
An exponential decline with the waviness order 𝑘 is suggested in [ 145 ]:

𝐴𝑘 = 𝐴𝑒−0.05𝑘 (4.103)

For a given set of waviness orders, the respective amplitudes can be determined from an  RMS 

value as follows:

𝐴𝑞,𝑝 = 𝐴RMS
𝑒−0.05(𝑞𝑁𝑟+𝑝)

√∑𝑝∑𝑞 𝑒
−2⋅0.05(𝑞𝑁𝑟+𝑝)

(4.104)

In practice, the existing harmonics 𝑞 and 𝑝, are typically unknown. As the amplitudes decline
with the order, a rough approximation may simply stick to the first few harmonics, e.g. 𝑞 =
[0, 1, 2, 3], 𝑝 = [±1,±2, ±3] as depicted in  Figure 4.19 .

Using ( 4.98 ) and ( 4.99 ), the linear displacement of the gimbal’s center can be approximated
from the wobble’s tilt as:

𝛿𝑟𝑤𝑏𝑙(𝑡) = ( 𝑙2) 𝛿𝛷𝑤𝑏𝑙(𝑡) (4.105)

The accelerations can analogously be determined from double time-derivation of the above
equation. The validity of the above models will be discussed in the next section.
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Figure 4.19.: Amplitude spectrum of the bearing wobble model for different rotation rates. The
model amplitudes follow ( 4.103 ) for 𝐴RMS = 5 asec and includes the waviness orders
𝑞 = [0, 1, 2, 3], 𝑝 = [±1,±2, ±3].

Validation

The above-derived stochastic models suggest the existence of clearly defined frequencies in
an inertial sensor’s measurements about the axes orthogonal to the nominal rotation. A
measurement’s  PSD should consequently contain distinctive peaks at frequencies of  Table 4.3 .
As the wobble angular rates depend linearly on the axis’ nominal angular rate, the  PSD is
expected to scale quadratically when increasing the axis’ rate.
This exact phenomenon is observed in measurements obtained during a scale factor test.

A  FOG IMU IFOS-500 from Fiber Optical Solutions was rotated about its 𝑧-axis using the
institute’s three-axis rate table. The table’s inner axis was aligned to local gravity and rotated at
different rates. The measurements of all three gyroscope and accelerometer axes was recorded
for each rate for 90min. The  PSD of the measurements at 2 °/s, 50 °/s, 100 °/s and 400 °/s is
depicted in  Example 1 for the gyroscopes and  Example 2 for the accelerometers. The sensor’s
inherent noise floor from a 24 h stationary test is added for reference.
In all depicted test cases, the  PSD of the 𝑧 axis gyroscope displays the characteristic slope of

constant input. Only for the very slow rate of 2 °/s can some deviation caused by the rate table’s
controls be observed. The higher the commanded rate, the higher the curve shifts towards
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higher powers. For the very low rate of 2 °/s, the output of the two orthogonal gyro axes cannot
be distinguished from the stationary reference. Starting from 50 °/s peaks at characteristic
frequencies raise from the background noise. Mainly, there are multiples of the axis rotation
rate 𝑓𝑖, but also multiples of 𝑓𝑏𝑝𝑖 and some side-lobes. Further increase of the angular rate raises
the amplitude of higher-order harmonics above the background noise level. The amplitudes
grow quadratically with the applied angular rate, which fits the predicted behavior. Only the
amplitude at the nominal rotation rate 1𝑓𝑖 does not grow significantly, as it is dominated by the
Earth’s angular rate that is picked up by the gyroscope axes that move within the local leveled
plane. Additionally, the unbalance of the axis may contribute to this amplitude. Also, with a
growing angular rate, the characteristic slope of the constant input rises in the 𝑥 and 𝑦 axis
measurements. This is caused by a misalignment of the sensor’s axes, where the sensors pick
up fractions of the rate table’s nominal rotation.
For the accelerometer measurements, depicted in  Example 2  , the situation is similar. The

same characteristic frequencies observed for the gyroscope measurements become visible
with growing angular rates. The amplitudes at 1𝑓𝑖 are dominated by the pickup of the local
gravity caused by a constant misalignment of the rate table’s rotation axis. The noise levels
representing a constant input grow with 𝑓4𝑖 , which is caused by centrifugal forces due to an
offset of about 1mm from the rotation axis.
Equation ( 4.105 ) suggests a constant relationship between angular and linear accelerations.

The experimental data, however, show a higher ratio than expected from ( 4.105 ) that addi-
tionally declines with growing frequencies. This is probably caused by a frequency-dependent
response of the rate table’s structure to this excitation. Equation ( 4.105 ) provides only a rough
estimate for the acceleration levels, but the exact amplitudes should be determined experimen-
tally.
It must be emphasized that the occurring waviness orders and amplitudes are characteristic

of this single rate table axis and cannot be generalized. The simple model is only roughly repre-
sentative of the actual bearing wobble. While the experimental data confirm the dominance of
the low order harmonics, here 𝑞 = [0, 3], 𝑝 = [±1,±2, ±3], not every order exists in the sample
data. The suggested decline of the amplitudes with the frequency can only be observed as a
general trend. The model cannot predict the existing orders or the corresponding amplitudes
exactly. However, it may be used as a worst-case model if there is no further knowledge than,
e.g., a wobble  RMS specification. In this case, at least the possible frequencies and thus the
time-correlation of the wobble signals are considered, which becomes essential when averaging
the sensor’s signal. The same accounts for the dependency on the axis’ nominal angular rate.
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4.2. Inertial Laboratory Modeling

Example 1: Rate table axis wobble in the PSD of a three-axis gyro measurement.

Vertical rotation of a IFOS-500 IMU about the 𝑧 axis at different rates for each 90min. PSD is
determined using Welch’s method, window length 100000 samples, 50% overlap, sample rate
200Hz. Inner and outer ring vibrations are marked by its components (𝑞, 𝑝) respectively (𝑞),
as given in  Table 4.3  . For reference, the 𝑥-axis gyro noise PSD from a stationary 24 h test is
depicted.

10−1 100 101 102

10−7

10−5

10−3

Frequency 𝑓 in (Hz)

PS
D
𝑆(
𝑓)

in
(°
2 /
s2
/H
z ) 𝜔𝑖𝑏,𝑥 𝜔𝑖𝑏,𝑦 𝜔𝑖𝑏,𝑧 𝑟𝑒𝑓

(1.a) Rate table inner axis at 2 °/s
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(1.b) Rate table inner axis at 50 °/s

10−1 100 101 102
10−8

10−4

100 (3,−1)(0, 1)
(3, 1)

(0, 2) (3, 2)(0, 3)
(0, 4)

(0, 5)

Frequency (Hz)

PS
D
(°
2 /
s2
/H
z)

𝜔𝑖𝑏,𝑥 𝜔𝑖𝑏,𝑦 𝜔𝑖𝑏,𝑧 𝑟𝑒𝑓

(1.c) Rate table inner axis at 100 °/s

10−1 100 101 102
10−8

10−3

102

(3)
(3, ..)(0, 1) (0, 2) (1, 2)(0, 3)

(0, 4)

(0, 5)

Frequency (Hz)

PS
D
(°
2 /
s2
/H
z)

𝜔𝑖𝑏,𝑥 𝜔𝑖𝑏,𝑦 𝜔𝑖𝑏,𝑧 𝑟𝑒𝑓

(1.d) Rate table inner axis at 400 °/s
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Example 2: Rate table axis wobble in the PSD of a three-axis accelerometer measurement.

Vertical rotation of a IFOS-500 IMU about the 𝑧 axis at different rates for each 90min. PSD is
determined using Welch’s method, window length 100000 samples, 50% overlap, sample rate
200Hz. Inner and outer ring vibrations are marked by its components (𝑞, 𝑝) respectively (𝑞),
as given in  Table 4.3  . For reference, the 𝑥-axis gyro noise PSD from a stationary 24 h test is
depicted.
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4.2. Inertial Laboratory Modeling

Model 7: Rate table axis wobble modeling.

Description Parameters
Axis tilt errors, corresponding displacements and
resulting rates and accelerations from bearing
imperfections. Wobble effects only the two tilt angles
of the axis, not the rotation along the axis itself.

𝛿𝛷𝑝 ̂𝑝, 𝛿𝛩𝑝 ̂𝑝, 𝛿𝛩𝑤�̂�𝛿𝛹𝑤�̂�, 𝛿𝛩𝑣 ̂𝑣𝛿𝛹𝑣 ̂𝑣

𝛿𝑟𝑝,𝑥(𝑃𝑤), 𝛿𝑟𝑝,𝑦(𝑃𝑤), 𝛿𝑟𝑤,𝑦(𝑃𝑣), 𝛿𝑟𝑤,𝑧(𝑃𝑣)
𝛿𝑟𝑣,𝑥(𝑃 ), 𝛿𝑟𝑣,𝑧(𝑃 )
Sensitivities

 Table F.6 ff,  Table F.7 ff

Axis wobble model
Rate table axis wobble can be modeled as the sum of harmonic oscillations at frequencies
that depend on the axis’ rotation rate and the geometry of the bearing:

𝛿𝛷wobble = ∑
𝑞,𝑝

𝐴𝑞,𝑝 cos((𝑞𝑁𝑟(𝑓𝑖 − 𝑓𝑐) + 𝑝𝑓𝑖)𝑡)

The relevant frequencies 𝑓𝑐 and 𝑓𝑖 can be determined from the axis’ rotation rate as summarized
in  Table 4.2  and  Table 4.3  . The corresponding axis displacement can be approximated from
the bearing distance using ( 4.105 ).
Amplitudes and occurring waviness orders 𝑞, 𝑝 can be determined from a  PSD analysis of
inertial sensor measurements of the respective rate table axis’ motion. If experimental data
is not available, the existence of the first few waviness orders may be assumed, and the
amplitudes may be approximated from ( 4.104 ). A typical wobble  RMS values are around
2.5 asec.
In both cases, the phase information of the different sine terms is unknown. However, phase
information is irrelevant for the statistics, e.g., auto-covariance, required to model the rate
uncertainty arising from axis wobble.
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4.2.9.4. Deformation under Load

The rate table’s structure has only a limited stiffness. External forces and moments thus
yield an elastic deformation of the structure and thus orientation and position errors of the
different gimbals. Each part of a rate table is usually designed symmetrically to its rotation axis.
Therefore, the loads arising from its own mass should only result in a symmetric deformation
that does not shift or tilt its center. The structure’s deformation is thus dominated by the loads
generated by the mechanical parts up the kinematic chain.

The stiffness of the rate table depends on the actual construction, the used materials and
geometries. An experimental determination of above’s derivatives is rather complex. Alterna-
tively, the derivatives can be determined numerically from the  Computer-Aided Design (CAD)  

model of the rate table using industry standard structural analysis tools.

Typical Stiffness

As stated before, the actual stiffness of a rate table depends on its construction and cannot be
generalized. The mechanical structure could be designed arbitrarily stiffly, which is limited by
cost and weight in practice.

Using the Euler-Bernoulli beam theory, the deflection of a beam with constant cross-section
under load can be approximated. For a beam clamped at the one end and loaded with a force 𝐹
at the other end, the end’s deflection yields [ 146 , p. 144]

𝛥𝑧 = 𝐹𝑧
𝑙3
3𝐸𝐼 =

𝐹𝑧
𝑘𝑧

(4.106)

with the beam length 𝑙, Young’s modulus 𝐸, and the second moment of area 𝐼. This allows, for
example, the approximation of stiffness of the rate table’s outer gimbal yoke against vertical
forces acting on the middle axis bearings. Assuming a rectangular steel tube of 200mm ×
200mm, with a wall thickness of 5mm and a length of 0.8m yields:

𝜕𝛿𝑟𝑤,𝑧(𝑃𝑣)
𝜕𝐹𝑤,𝑧

= 5.27 ⋅ 10−9 mN (4.107)

This approximation may indicate the general level of stiffness, but of course, the actual values
depend on the rate table’s structure.

The bearings, however, are  Commercial off-the-shelf (COTS) components with a known stiff-
ness range. According to [  147 , p. 36], the radial stiffness of ball bearings can be approximated
as 𝑘𝑥 = 𝑑 ⋅ 5 ⋅ 106N/m, where 𝑑 is the inner diameter inmm. Thus, the radial stiffness is in the
range of 108 to 109N/m for realistic axis diameters. As the bearing’s and the structure’s stiffness
are connected in series, the total system cannot be more stiff than the least stiff element:

1
𝑘total

= 1
𝑘brg

+ 1
𝑘structure

(4.108)
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Considering this, and the approximation ( 4.107 ), a total stiffness in the range of 108N/m can
be assumed.
For equal bearing stiffness on both sides of the axis the equivalent rotational stiffness against

moments can be determined from the bearing distance 𝑙:

𝑘𝛩 = 𝑘𝑧𝑙2

4 (4.109)

For an assumed bearing distance of 𝑙 = 0.5m, the resulting axis tilt from a moment load is
given determined to (𝑘𝑧 = 1 ⋅ 108N/m):

𝜕𝛿𝛩�̂�𝑤
𝜕𝑀𝑤,𝑦

= 0.033 asecNm (4.110)

Even for an unbalanced load of 10 kg,10 cm lever-arm and standard gravity, this would yield a
tilt of just 0.33 asec. For comparison, a tilt stiffness of 2.4 ⋅ 10−4 asec

Nm
against the weight force

of an unbalanced test package is given for a proposed rate table design in [  28 ]. This value
accounts for the structure only and not for the bearings.

Structural Eigenmodes

Varying excitation forces and moments may excite the Eigenmodes of the rate table’s struc-
ture. Excitation at the Eigenfrequencies (or multiples of that) leads to resonance and thus
amplification of the resulting deformations. Again, the Eigenmodes and frequencies, of course,
depend on the geometry and materials of the structure and cannot be generalized. Instead, the
Eigenmodes have to be determined experimentally or using numerical methods on a virtual
model of the system.
An experimental investigation of the two-axis rate table’s Eigenfrequencies is given in [  35 ].

Shakers excited an actively stabilized test pad, and the rate table’s vibration was measured
using multiple mobile seismometers across its structure. Depending on the excitation direction,
frequencies of 22Hz respectively 25Hzwere found for the yoke structure and 31Hz / 34Hz for
the second gimbal’s structure with counter-weights. The experimental results for this 680 kg
rate table may be representative of similar devices in structure and mass.
In static operation, the rotation rates are usually too low to excite the Eigenmodes of the

rate table. However, an excitation is well possible in dynamic conditions. Notch-filters prevent
resonance in the rate table’s servo control loops that attenuate the excitation around the
structure’s Eigenfrequencies. However, excitation of the structure may still arise, e.g., from
bearing vibrations and seismic noise.
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Model 8: Rate table deformation und load model.

Description Parameters
Tilt and displacement of rate table axes respectively
reference frames caused by static and dynamic loads.

𝛿𝜳𝑝 ̂𝑝, 𝛿𝜳𝑤�̂�, 𝛿𝜳𝑣 ̂𝑣, 𝛿𝜳ᵆ ̂ᴂ, 𝛿𝜳𝑏 ̂𝑏

𝛿𝒓𝑝(𝑃𝑤), 𝛿𝒓𝑤(𝑃𝑣), 𝛿𝒓𝑣(𝑃 ), 𝛿𝒓ᵆ(𝑃𝑏)
Sensitivities
 Table F.6 ff,  Table F.7 ff

Deformation model
Static and, in particular, dynamic loads depend strongly on the commanded rate table motion.
Also, the tilt and displacement sensitivity to loads cannot be generalized but depends on
the actual construction of the rate table. In general, rate tables are well-balanced precision
instruments so that no load except gravity should exist during the typical static test motions.
The bearings dominate the construction’s flexibility, so typical values may be used to assess
the order of magnitude of a rate table’s flexibility. The approximations in this section suggest
that the tilt errors from loads are significantly below 0.5 asec for realistic loads. If the loads
arise from balancing inaccuracies, the resulting errors may be modeled as zero-mean random
constant Gaussians with the standard deviation derived from the imbalance uncertainty.
Considering the challenges of modeling these errors and in comparison to the static and
wobble errors of a rate table, it is reasonable to neglect the errors from loads in many cases.
Note that this is not justified in high-dynamic operations or extremely unbalanced loads.

4.2.9.5. Thermal Expansion

Analog to the deformations under loads, a detailed analysis of the deformations due to the
temperature distributions requires knowledge of the actual rate table design. A design symmet-
rical to the axes of rotation ensures that a uniform temperature change does not result in an
axis tilt. An asymmetrical temperature distribution, however, can be caused by either external
or internal heat sources:

• External heat sources, like solar radiation, can be considered space-fixed relative
to the rate table. A non-rotating rate table will thus be heated from one side. The
resulting temperature distribution will cause a deformation of the rate table. For a
rotating rate table, the external heat source can be assumed to act on all sides of the rate
table, yielding a rotation symmetric temperature distribution about the rotation axis and
consequently no tilt. External heat sources can generally be well controlled within a
laboratory environment.

• Internal heat sources, like the motors and bearings, are body-fixed to the structure.
Ultimately, the different heat sources and sinks (convection to the environmental air)
will reach an equilibrium and a steady-state temperature distribution, which declines
with distance from the heat sources. So, after a warm-up time, there will be constant tilt
and displacement caused by the asymmetrical temperature distribution.
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Again, without knowledge of a specific rate table design, only a rough approximation of the
orientation errors from temperature differences can be given. For a symmetrical and closed
structure, like the middle and inner gimbal depicted in  Figure 4.15 , unbalanced heating from
the bearings or motors will not cause a tilt of the axis. For such a design, only the thermal
expansion of the outer gimbals yoke is critical.
For example, the tilt of the middle gimbal can be approximated from the difference in

the average temperatures of the two vertical arms of the outer gimbal’s yoke 𝛥 ̄𝑇. Assuming
a coefficient of thermal expansion 𝛼 = 1.2 ⋅ 10−5K−1 (steel, [ 148 , p. C8]), a yoke width of
𝑙 = 1.6m and height of ℎ = 0.8m yields:

𝛿𝛩𝑤�̂�,thermal = atan 𝛼ℎ𝛥𝑇𝑙 ≈ 𝛼ℎ𝑙 𝛥𝑇 ≈ 0.56 asecK 𝛥𝑇 (4.111)

The outer gimbal’s temperature expansionmay serve as aworst case scenario as it has the largest
dimensions and thus potentially the highest temperature differences. A constant temperature
difference of relevant magnitudes between two sides of the rate table’s structure requires a
relatively high asymmetric heat input. For example, DeMoore [  28 ] states a tilt of 0.01 asec/W
from an unbalanced heat input at the outer axis bearings for his proposed design.
According to [ 148 , p. G.94], the bearing friction torque may be approximated as:

𝑀𝑅 = 10−7𝑓0 ⋅ 160 ⋅ 𝑑3𝑚 + 𝑓1𝐹1𝑑𝑚 (4.112)

where 𝑓0 = 2 and 𝑓1 = 0.0025 for angular contact ball bearings and low angular rates. Assuming
a mean diameter of 𝑑𝑚 = 80mm for the middle axis’ bearings, a load of 𝐹1 = 10 kN and a
maximum rotation rate of 𝜔 = 360 deg/s yields a friction power loss of:

𝑃𝑅 = 𝑀𝑅𝜔 ≈ 15W (4.113)

Assuming further a worst-case dispersion of the friction of about 10% between the different
bearings, yields a maximum heat unbalance of 1.5W, which results in tilts of about 0.015 asec.
During warm-up, heat sources such as friction and electrical power loss, heat transport,

and heat dissipation to the environment contribute to the temperature distribution within
the structure. After some time, the temperature distribution converges towards a stationary
condition and thus a constant tilt, respectively displacement. Precision testing should be thus
performed only after the structure has reached a stationary temperature distribution. The often
monitored motor temperatures can be used as an indicator, if a stationary distribution has been
reached.
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Model 9: Rate table thermal expansion model.

Description Parameters
Tilt and displacement of rate table axes respectively
reference frames caused by thermal expansion of the
structure.

𝛿𝜳𝑝 ̂𝑝, 𝛿𝜳𝑤�̂�, 𝛿𝜳𝑣 ̂𝑣, 𝛿𝜳ᵆ ̂ᴂ, 𝛿𝜳𝑏 ̂𝑏

𝛿𝒓𝑝(𝑃𝑤), 𝛿𝒓𝑤(𝑃𝑣), 𝛿𝒓𝑣(𝑃 ), 𝛿𝒓ᵆ(𝑃𝑏)
Sensitivities
 Table F.6 ff,  Table F.7 ff

Thermal expansion model
After a warm-up of the rate table’s structure, the axes displacement and tilt can be modeled
as a zero-mean random constant Gaussian. From the approximations within this section,
it can be suggested that the resulting tilts and displacements are well below 0.1 asec and
0.1mm. Under nominal operation conditions, the errors from thermal expansion cannot be
distinguished from the general static errors of the rate table.
Rate table temperature measurements, such as motor temperatures, should be monitored to
ensure no excessive thermal imbalance.

4.2.9.6. Positioning and Rate Errors

The rate table uses a servo loop to control the axes’ angular position 𝛹𝑝𝑤, 𝛷𝑤𝑣, 𝛹𝑣ᵆ and rates
�̇�𝑝𝑤, �̇�𝑤𝑣, �̇�𝑣ᵆ. Positioning and rate control are based on measurements of the actual angular
position of each rate table axes. This is typically achieved using inductive, magnetic, or optical
angle encoders. Based on these measurements, the angular rate and acceleration are also
estimated and used in the closed-loop position and rate control. A representative single-axis
control scheme is depicted in  Figure 4.20  . The error between the desired and actual axis
position is affected by the following sources:

• The encoder measurement errors corrupts the angular position measurement used in
the control loop. This limits the total positioning accuracy of the axis’ servo control.

• Actuator imperfections, like cogging torques and electronics noise caused by the servo
amplifiers, introduce additional disturbances to the control loop.

• The controller characteristics defines the transfer function from commanded angle
and rate to the actual angle. The architecture and tuning of the control loop affect
the system’s dynamic behavior and steady-state accuracy. The implementation of the
controller introduces additional errors, like numerical precision and electronics noise at
the commanded torque.

• Due to the flexibility of the mechanical structure, the gimbal’s actual orientation
may differ from the angular position of the encoder’s and motors’ point of attack. This
error is independent of the control loop and is modeled as described in  Subsection 4.2.9.4 .

The different error sources contributing to the closed-loop control errors will be discussed in
the following.
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Figure 4.20.: Exemplary rate table servo loop scheme. The close-loop controller tracks the com-
manded position 𝛷𝑐 and rate �̇�𝑐. Rate and position are estimated from measured
positions using a simple two-state observer. Rate table servo control scheme from
[ 28 ].

Angle Encoder Measurement Errors

The system accuracy of  COTS rotary encoders is around 1 asec, for both inductive (e.g. induc-
tosyn [ 149 ]) and magnetic or optical (e.g . [  150 ,  151 ]) encoders.

In detail, the measurement errors display a periodic behavior. Due to their widespread
use, the error behavior of inductosyn encoders was intensively analyzed and discussed. The
measurement error𝛥𝛷 at themechanical rotation angle𝛷 is dominated by a once-per revolution
harmonics and cyclic errors, defined the number of poles 𝑁 [ 152 ]:

𝛥�̃� = 𝑎0 sin (𝛷 + 𝜓0) + 𝑎1 sin (𝑁𝛷 + 𝜓1) + 𝑎2 sin (
𝑁
2 𝛷 + 𝜓1) + 𝑎4 sin (2𝑁𝛷 + 𝜓4) + 𝜈𝛷(𝑡)

(4.114)
The different phases 𝜙𝑖 are unknown but constant. Additional noise 𝜈𝛷 is added to account for
noise in the driving and pick-off electronics. The once-per-revolution 𝑎0 and the fundamental
error 𝑎1 are caused mainly by eccentricity and tilt between the inductosyn’s stator and rotor.
The other terms are driven by gain drifts in the electronics and non-linearities in the circuits
[ 152 ].

A simulated example of inductosyn measurement noise is depicted in  Figure 4.21 . For such
an error model, the angle error when moving a significant angle increment can be smaller
than for a small increment. Due to that behavior, the measurement error is often described by
a coarse position error (large increments) and a fine position error (small increments). Such a
description is, for example, used in [ 28 ].

The above-given model is also experimentally confirmed in [ 153 ]. Due to the primarily
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deterministic behavior and the simple error model, the inductosyn errors can be calibrated
and compensated very effectively. A potential reduction of the errors down to 0.001 asec by
calibration is claimed in [  28 ]. Other authors obtained a residual error of less than 0.1 asec
during calibration experiments [ 154 ]. Calibration, using error model ( 4.114 ) reduces the
amplitudes of the different harmonics but does not change the general structure.
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Figure 4.21.: Example of simulated inductosyn measurement errors. The parameters 𝑎0 = 6.5 asec,
𝑎1 = 2.8 asec, 𝑎2 = 6.5 asec, 𝑎4 = 0.5 asec are chosen similar to the amplitudes
presented in the FFT analysis in [ 153 ]. All phases are assumed zero, and zero-mean
white Gaussian noise with 𝜎𝜈 = 0.1 asec has been added.

Typical rotary inductosyn encoders have𝑁 = 720 poles. If no further information is available,
the total measurement error of, e.g., 0.1 asec RMS may be distributed equally to the four
amplitudes’ variances for a basic approximation.

Actuator Modeling

Due to their simplicity, direct electric drives are today’s dominant actuator technology for
positioning and rate tables (c.f. [ 155 ,  156 ,  157 ,  158 ]). The electric drives may be accompanied or
replaced by hydraulic motors for large systems and high dynamics requirements. For electric
servo drives, the  Permanent Magnet Synchronous Motor (PMSM)  has become the dominant
technology due to its high power density and excellent control dynamics [ 159 , p. 413].
Typical electric motor dynamics have a time constant well below 1ms and can consequently

be neglected compared to the closed-loop servo dynamics. Still, the generated motor torque is
subject to disturbances called torque ripple. These are caused by voltage, a respectively current
ripple of drive electronics, and so-called cogging. Cogging is caused by the interaction of the
rotor’s magnets and the stator’s slots and leads to a harmonic variation of the torque over the
mechanical rotation angle 𝛷 [ 160 ]:

𝑇cogging =
∞

∑
𝑛=1,2,3,…

𝑇𝑛 sin(𝑁𝑐𝑛𝛷) (4.115)

A summary of different analytical and numerical approaches to determine the cogging torque
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for certain motor designs can be found in [  161 ]. For typical  COTS servo motors, the cogging
torque is less than 5%. As the cogging torque is mainly deterministic, it can be effectively
compensated using look-up tables or dedicated control schemes. The total torque ripple may
be modeled by a combination of deterministic torque cogging and white Gaussian noise 𝜈:

𝑇ripple(𝑡) = 𝑇cogging(𝛷(𝑡)) + 𝜈(𝑡) (4.116)

Closed Loop Position and Rate Error

Using the above-derived models for the sensors and actuators with the basic control structure
from  Figure 4.20  , the transfer function from measurement and actuator errors to the position
can be determined:

• For the depicted control scheme, the transfer function from the real angle position to the
estimated angular position is given as:

𝜙est(𝑠) =
𝐾1𝑠 + ( 1

𝐽est
𝐾1𝐺𝑟 + 𝐾2)

𝑠2 + (𝐾1 +
1

𝐽est𝐺𝑟
) 𝑠 + ( 1

𝐽est
(𝐾1𝐺𝑟 + 𝐺𝑟𝐺𝑝) + 𝐾2)

(𝜙(𝑠) + 𝛿𝜙(𝑠)) (4.117)

• Closing the control loop, even at zero commanded rate, leads to an amplification of the
measurement noise and thus to position errors. The transfer functions from actuator
and measurement errors to the angular position are determined to:

𝜙(𝑠) = 1
𝐽

𝑠2 + ( 1

𝐽est
𝐺𝑟 + 𝐾1) 𝑠 + (𝐾2 +

1

𝐽est
(𝐾1𝐺𝑟 + 𝐺𝑝𝐺𝑟))

𝑠4 + (𝐺𝑟 + 𝐾1) 𝑠3 + (𝐾2 +
𝐺𝑟(𝐾1+𝐺𝑝)

𝐽est
) 𝑠2 + 𝐺𝑟(𝐾2+𝐾1𝐺𝑝)

𝐽
𝑠 + 𝐾2𝐺𝑝𝐺𝑟

𝐽

𝛿𝑀(𝑠)

(4.118)

𝜙(𝑠) = −1
𝐽

(𝐾2𝐺𝑟 + 𝐾1𝐺𝑝𝐺𝑟) 𝑠 + 𝐾2𝐺𝑝𝐺𝑟

𝑠4 + (𝐺𝑟 + 𝐾1) 𝑠3 + (𝐾2 +
𝐺𝑟(𝐾1+𝐺𝑝)

𝐽est
) 𝑠2 + 𝐺𝑟(𝐾2+𝐾1𝐺𝑝)

𝐽
𝑠 + 𝐾2𝐺𝑝𝐺𝑟

𝐽

𝛿𝜙(𝑠)

(4.119)

The noise of the rate table’s position and rate could be determined from the analytical models
above. For a given measurement noise, the servo control’s transfer functions can be used to
approximate the table’s position and rate errors. The actual torque errors, however, cannot
be predicted but need to be determined for a given motor experimentally. As the measuring
accuracy is better than the actually achieved position, the position and rate errors can be
determined from recorded rate table data.
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Example 3: Power spectral density of rate table position and rate measurements.

Power spectral density of position and rate noise measurements and estimates at a constant
rate. PSD has been determined using Welch’s method on 300 s recordings at 2000Hz sample
rate with a window length of 10 000 samples. Position noise has been determined as the error
between the measured/estimated position and a least-squares fit.
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(3.a) Power spectral density of position measurement noise.
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(3.b) Power spectral density of position estimate noise.
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Validation

The  PSD of recorded data for the position and rate errors of a single rate table axis are depicted
in  Example 3  . The depicted  PSD spectra consist of a noise floor and many specific peaks. The
shape of the noise floor can be attributed to the servo loop’s transfer function. The transfer
function of the position and rate observer can be easily recognized by comparing the estimated
and the measured position noise  PSD .
The position noise can be easily determined by comparing the close-loop (active servo

loop) to the open-loop case (just measuring position, no actuators). The resulting position
noise is approximately one decade higher than the measurement noise. Consequently, the
measurements can be used to estimate the rate table’s position noise in closed servo-loop
operation.
In constant position, the measurement noise is nearly white (constant  PSD ). As expected

from the transfer function, the observer loop attenuates the higher frequency components, in
this example, starting from approximately 30Hz. For a stationary position, the angle-dependent
measurement and actuator errors are constant and cannot be observed in the measurement.
A rotation of the axis increases the position noise floor compared to the stationary operation.
The angle-dependent measuring and actuator errors add oscillations at specific frequencies.
These frequencies clearly are integer multiples of the axis’ rotation rate and thus comply to the
models ( 4.114 ) and ( 4.115 ). In accordance with the model, the harmonic frequencies increase
with the rotation rate, and the respective amplitudes are subject to the servo loop’s transfer
function. As  Example 3.a is based on position measurements, the curves also include the
measurement noise that manifests as a minimum noise level of about 10 ⋅ 10−13 °2/Hz which
can be observed at frequencies above 100Hz. Although the general behavior matches the
model, not all observed details can be explained by the simple model. Possible explanations for
these deviations are structural resonances, non-linear effects like bearing friction, and jitter
and digitalization errors within the control system. It must be emphasized that the position
 PSD does not represent the entire position uncertainty in the case of zero-rate. In this case, the
measurement errors and motor cogging that can be observed as peaks in the  PSD otherwise
degrade to a quasi-random-constant error.
In conclusion, the measured  PSD spectra confirm above-discussed models. However, the am-

plitudes and occurring orders caused by measurement and actuator errors cannot be predicted
but can only be identified from such a measurement. Using the experimentally determined
 PSD curve, a model based on a background noise floor and the observed harmonics can be
composed for a specific axis and angular rate.
For physically integrating sensors, the average rate stability over multiple revolutions is more

relevant than the instantaneous rate errors. The average rate is defined as:

�̄� = 𝛥𝛷
𝛥𝑡 (4.120)

Consequently, the average rate error is driven by the position error 𝛿𝛷 at the start and end of
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the test. As the position uncertainty is constant over time, the average rate stability improves
with increased test time. Non-integrating sensors, however, are sensitive to the instantaneous
rate errors and thus to the angular rate noise as depicted in  Example 3.c  . At high angular
rates, the depicted spectrum contains high peaks at frequencies in the kHz range. This might
introduce aliasing effects for non-integrating sensors with low (internal) sampling rates.

Model 10: Rate table positioning and rate error models.

Description Parameters
Positioning and rate error along the rate table’s nominal
rotation axes.

𝛿𝛹𝑝 ̂𝑝, 𝛿𝛷𝑤�̂�, 𝛿𝛹𝑣 ̂𝑣

𝛿𝜔𝑝𝑤, 𝛿𝜔𝑤𝑣, 𝛿𝜔𝑣ᵆ
Sensitivities
 Table F.6 ff,  Table F.7 ff

Positioning error model
Detailed modeling of the positioning and rate error of a rate table axis requires in-depth
knowledge of the underlying control design and measurement and actuator errors. All of these
errors are highly device-specific and can not be generalized. However, the derived models
and  Example 3 represent a typical configuration of electric motors and inductive encoders.
If no measurements are available, a very rough worst-case approximation may consist of
second-order system response, some oscillations at multiples of the applied angular rates, and
the motor’s and measurement system’s number of poles. Amplitudes may be approximated
from  RMS specifications of the position or angular rate errors.

226



4.2. Inertial Laboratory Modeling

4.2.10. Summary

Based on the partial derivatives of the kinematic chain, the following linear equation describes
the contributions of the different error sources to the errors of the reference angular rates and
specific forces:

[
𝛿𝝎𝑖𝑏(𝑡)
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The linear sensitivities𝐇 depend on the actual rate table state, which is ideally described by its
axes’ position, rate and angular acceleration:

𝒛(𝑡) = [𝛹𝑝𝑤(𝑡) �̇�𝑝𝑤(𝑡) �̈�𝑝𝑤(𝑡) 𝛷𝑤𝑣(𝑡) �̇�𝑤𝑣(𝑡) �̈�𝑤𝑣(𝑡) 𝛹𝑣ᵆ(𝑡) �̇�𝑣ᵆ(𝑡) �̈�𝑣ᵆ(𝑡)]

A summary of the different error terms, grouped by error sources, is given in  Table 4.4  .
The table also lists the respective section in the appendix, where the partial derivatives are
analytically given depending on the rate table’s state.

Table 4.4.: Summary of error parameters in the laboratory model.

Group Error parameters Sensitivities Error sources

Earth rotation 𝛿𝝎𝑖𝑒  Table F.1 Earth precession, nutation
and polar motion

Earth gravity 𝛿𝜸𝑛  Table F.2 Gravity anomalies, tempo-
ral variations

Lab. Alignment 𝜳𝑛�̂�  Table F.3 Lab. location, alignment,
 DoV 

Test pad motion 𝛿𝝎𝑛𝑝, 𝛿�̇�𝑛𝑝  Table F.4 Seismic activities, reaction
forces𝛿𝒓𝑛(𝑃𝑝), 𝛿 ̇𝒓𝑛(𝑃𝑝), 𝛿 ̈𝒓𝑛(𝑃𝑝)  Table F.5 

Outer gimbal 𝛿𝝎𝑝𝑤, 𝛿�̇�𝑝𝑤, 𝜳𝑝 ̂𝑝  Table F.6 Mechanical errors,
bearings, controls𝛿𝒓𝑝(𝑃𝑤), 𝛿 ̇𝒓𝑝(𝑃𝑤), 𝛿 ̈𝒓𝑝(𝑃𝑤)  Table F.7 

Middle gimbal 𝛿𝝎𝑤𝑣, 𝛿�̇�𝑤𝑣, 𝜳𝑤�̂�  Table F.8 Mechanical errors,
bearings, controls𝛿𝒓𝑤(𝑃𝑣), 𝛿 ̇𝒓𝑤(𝑃𝑤), 𝛿 ̈𝒓𝑤(𝑃𝑣)  Table F.9 

Inner gimbal 𝛿𝝎𝑣ᵆ, 𝛿�̇�𝑣ᵆ, 𝜳𝑣 ̂𝑣  Table F.10 Mechanical errors,
bearings, controls𝛿𝒓𝑣(𝑃 ), 𝛿 ̇𝒓𝑣(𝑃 ), 𝛿 ̈𝒓𝑣(𝑃 )  Table F.11 

UUT 𝛿𝝎ᵆ𝑏, 𝛿�̇�ᵆ𝑏, 𝜳ᵆ ̂ᴂ  Table F.12 

Mechanical errors
𝛿𝒓ᵆ(𝑃𝑏), 𝛿 ̇𝒓ᵆ(𝑃𝑏), 𝛿 ̈𝒓ᵆ(𝑃𝑏)  Table F.13 

In the following sections, the presented errors models will be applied to the above overall
equation to determine the errors respectively uncertainty of the reference angular rates and
specific forces for different sensor test scenarios. Here, the test procedures specify the applied
rates and position states 𝒛(𝑡) used as a working point in the derived linear error sensitivities.
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4.3. Averaging over Noise Processes

Sensor test procedures rely on averaging over the sensor’s output while holding a constant input
to reduce the effects of external disturbances and sensor noise. Within this work, the various
noise-like errors are modeled as a zero-mean wide-sense stationary stochastic process. They
are characterized by their auto-correlation, respectively their  PSD . This section discusses the
effect of averaging on the signal’s stochastic moments. As illustrated in  Figure 4.22  , the sensor’s
output is split into clusters of equal length 𝜏, and the average of each cluster is calculated.
There may be a dead-time between the clusters, so the sampling time 𝑇 is different from 𝜏.
Equations for the mean, different variances, and the correlation between these clusters will be
derived.

𝜏
𝑇

Time
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Cluster length 𝜏
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e
𝜎2
(𝑇
,𝜏
)

Figure 4.22.: Variance of signal cluster means. The signal is split into clusters of equal length 𝜏
and sample time 𝑇. In general, the variance depends on both the cluster time 𝜏 and
sample time 𝑇.

4.3.0.1. Variances from Power Spectral Density

The statistical analysis of sensor signal averages is closely related to the study of the frequency
stability of atomic clocks, which was significantly advanced by Barnes [  162 ] and Allan [  61 ]
in the 1960s. The work on frequency stability can be adapted to inertial sensor noise by
acknowledging that the clock’s frequency corresponds to the non-integrating sensor’s output,
e.g., angular rate, and the phase corresponds to the integrated sensor’s output, e.g., angle. The
derivation of the variances from the wide-sense stationary signal’s (two-sided)  PSD is based on
the Fourier transform pair of  PSD 𝑆𝑦(𝑓) and auto-correlation 𝑅𝑦𝑦(𝜏) [ 58 , p. 721]:

𝑆𝑦(𝑓) = ℱ{𝑅𝑦𝑦(𝜏)} (4.122)

As the auto-correlation is an even function, it may be determined from the  PSD using the
cosine transform as [ 163 ]:

𝑅𝑦𝑦(𝜏) = ∫
∞

0
𝑆𝑦(𝑓) cos (2𝜋𝑓𝜏)𝑑𝑓 (4.123)
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The average 𝑦 over a signal 𝑦(𝑡) from 𝑇 to 𝑇 + 𝜏 can be determined from its integrated signal
𝑥(𝑡):

𝑦 = 1
𝜏 ∫

𝑇+𝜏

𝑇
𝑦(𝑡)𝑑𝑡 = 𝑥(𝑇 + 𝜏) − 𝑥(𝑇)

𝜏 (4.124)

where the  PSD of the integrated and none non-integrated signal are related as:

𝑆𝑥(𝑓) =
1

(2𝜋𝑓)2
𝑆𝑦(𝑓) (4.125)

Variance

For a zero-mean signal 𝑦, the cluster averages and integrated signals are also zero-mean. The
variance of the cluster averages can thus be related to the auto-correlation as follows:

𝜎2(𝜏) = 𝔼[𝑦2] = 𝔼 [(𝑥(𝑇 + 𝜏) − 𝑥(𝑇)
𝜏 )

2

]

= 1
𝜏2 (𝔼[𝑥(𝑇 + 𝜏)2] − 2𝔼[𝑥(𝑇 + 𝜏)𝑥(𝜏)] + 𝔼[𝑥(𝜏)2])

= 1
𝜏2 [2𝑅𝑥𝑥(0) − 2𝑅𝑥𝑥(𝜏)]

(4.126)

Using equations ( 4.123 ) and ( 4.125 ), the variance can be determined from the non-integrated
signal’s  PSD as (cf. [  163 ]):

𝜎2(𝜏) = 𝔼[𝑦2] = ∫
∞

0
𝑆𝑦(𝑓) (

sin(𝜋𝑓𝜏)
𝜋𝑓𝜏 )

2

𝑑𝑓 (4.127)

For a stationary process, the variance does not depend on the time and thus is invariant to
the sampling time 𝑇. For many noise processes, the above integral does not converge. The
following section will demonstrate this problem and its consequences for power-law noise
processes.

𝑀-sample Variance

The𝑀-sample variance describes the variance of the cluster means from a set of 𝑀 clusters
of length 𝜏. The clusters are generally not adjacent but may be taken at a sampling period 𝑇.
Using the integrated signal 𝑥(𝑡), the𝑀-sample variance is then given by:

𝜎2(𝑀, 𝑇, 𝜏) = 1
𝑀 − 1 [

𝑀−1

∑
𝑛=0

(𝑥(𝑛𝑇 + 𝜏) − 𝑥(𝑛𝑇)
𝜏 )

2
− 1
𝑀 (

𝑀−1

∑
𝑛=0

𝑥(𝑛𝑇 + 𝜏) − 𝑥(𝑛𝑇)
𝜏 )

2

] (4.128)

For the typical case that there is no dead time between the clusters (𝑇 = 𝜏), above equation
can be transformed to [ 61 ]:

𝜎2(𝑀, 𝜏, 𝜏) = 2
(𝑀 − 1)𝜏2 [

𝑀 (𝑅𝑥𝑥(0) − 𝑅𝑥𝑥(𝜏)) −
1
𝑀 (𝑅𝑥𝑥(0) − 𝑅𝑥𝑥(𝑀𝜏))] (4.129)
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Again, equations ( 4.123 ) and ( 4.125 ) are used to replace the auto-correlation with the  PSD ,
which yields [ 164 ]:

𝜎2(𝑀, 𝜏, 𝜏) = 𝑀
𝑀 − 1 [∫

∞

0
𝑆𝑦(𝑓) (

sin(𝜋𝜏𝑓)
𝜋𝜏𝑓 )

2

(1 − (
sin(𝑀𝜋𝜏𝑓)
𝑀 sin(𝜋𝜏𝑓))

2

) 𝑑𝑓] (4.130)

Allan Variance

Being the variance of two adjacent clusters’ averages, the Allen variance is a special case of
the𝑀-sample variance for𝑀 = 2. The Allan variance can thus be determined from ( 4.130 ) for
𝑀 = 2, and yields (cf. [  12 ]):

𝜎2AV(𝜏) = 𝜎2(2, 𝜏, 𝜏) = 2∫
∞

0
𝑆𝑦(𝑓)

(sin𝜋𝜏𝑓)4

(𝜋𝜏𝑓)2
𝑑𝑓 (4.131)

Considering a dead-time between the sampling, the Allan variance can be derived as:

𝜎2AV(𝑇, 𝜏) = = 𝔼 [(𝑥(𝑇 + 𝜏) − 𝑥(𝑇) − 𝑥(𝜏) + 𝑥(0)
𝜏 )

2

]

= 1
𝜏2 [4𝑅𝑥𝑥(0) − 4𝑅𝑥𝑥(𝑇) − 4𝑅𝑥𝑥(𝜏) + 2𝑅𝑥𝑥(𝑇 + 𝜏) + 2𝑅𝑥𝑥(𝑇 − 𝜏)]

(4.132)

Application of ( 4.123 ) and ( 4.125 ) yields:

𝜎2AV(𝑇, 𝜏) = ∫
∞

0
𝑆𝑦(𝑓)

2 sin(𝜋𝑇𝑓)2 + 2 sin(𝜋𝜏𝑓)2 − sin(𝜋(𝑇 − 𝜏)𝑓)2 − sin(𝜋(𝑇 + 𝜏)𝑓)2

(𝜋𝜏𝑓)2
𝑑𝑓

(4.133)
Using trigonometric identities it can be demonstrated that ( 4.133 ) and ( 4.131 ) are, as expected,
equal for 𝑇 = 𝜏.

Auto-Covariance

Many inertial sensor test procedures use the averaged sensor output from subsequent positions
to determine sensor parameters (e.g., scale factor tests). Therefore, the cross-correlation
between the cluster averages is essential in determining the sensor parameters. The covariance
between two cluster averages that are sampled with time distance 𝑇 is determined as:

𝔼[𝑦𝑇𝑦0] = 𝔼 [𝑥(𝑇 + 𝜏) − 𝑥(𝑇)
𝜏

𝑥(𝜏) − 𝑥(0)
𝜏 ]

= 1
𝜏2 (𝔼 [𝑥(𝑇 + 𝜏)𝑥(𝜏)] − 𝔼 [𝑥(𝑇 + 𝜏)𝑥(0)] − 𝔼 [𝑥(𝑇)𝑥(𝜏)] + 𝔼 [𝑥(𝑇)𝑥(0)])

= 1
𝜏2 (2𝑅𝑥𝑥(𝑇) − 𝑅𝑥𝑥(𝑇 + 𝜏) − 𝑅𝑥𝑥(𝑇 − 𝜏))

(4.134)
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Again equations ( 4.123 ) and ( 4.125 ) are used to replace the auto-correlation by the  PSD , which
yields:

𝔼 [𝑦𝑇𝑦0] = ∫
∞

0
𝑆𝑦(𝑓)

2 cos (2𝜋𝑓𝑇) − cos (2𝜋𝑓(𝑇 + 𝜏)) − cos (2𝜋𝑓(𝑇 − 𝜏))
(2𝜋𝑓𝜏)2

𝑑𝑓 (4.135)

For a stationary stochastic process 𝑦, the stochastic moments do not depend on the time.
Thus ( 4.135 ) only depends on the distance between two clusters, like the Allan variance. The
integrals do not necessarily converge; e.g., for wide-sense stationary processes, the variance of
the averaged signal is indeterminate. The following section will demonstrate the problem for
certain types of power-law noise processes.

These equations have to be evaluated numerically for an arbitrary noise  PSD . Analytical
solutions will be given for power-law noise processes in the next section.

4.3.0.2. Variances of Averaged Power-Law Noise Clusters

Analytical equations for the𝑀-sample variance can be given for the typically power-law noise
processes observed in inertial sensor noise. Based on Barnes’ 𝐵1 function, which is the ratio of
the expected values of the𝑀-sample variance to the Allan variance, the𝑀-sample variance for
power-law noise processes can be determined as [ 165 ]:

𝐵1(𝑀, 𝑇, 𝜏) =
𝔼[𝜎2𝑦(𝑀, 𝑇, 𝜏)]
𝔼[𝜎2𝑦(2, 𝑇, 𝜏)]

=
M-sample variance
Allan variance (4.136)

𝐵1(𝑀, 𝜏, 𝜏) = 𝑀(1 −𝑀𝜇)
2(𝑀 − 1)(1 − 2𝜇)

(4.137)

where 𝜇 is the slope of the power law noise in the 𝑀-sample 𝜏-𝜎 plot. The variance of the
power-law noise process can be determined by taking the limit of the𝑀-sample variance:

𝜎2(𝜏) = lim
𝑀→∞

𝜎2(𝑀, 𝜏, 𝜏) (4.138)

Additionally, there is a 𝐵2 function that relates the Allan variance with dead-time between the
samples to the classical Allan variance without dead-time [  165 ]:

𝐵2(𝑇, 𝜏) =
𝔼[𝜎2𝑦(2, 𝑇, 𝜏)]
𝔼[𝜎2𝑦(2, 𝜏, 𝜏)]

=
Allan variance (𝑇 between samples)
Allan variance (adjacent samples) (4.139)

For power-law noise, an analytical solution of the 𝐵2 function can be given as [ 165 ]:

𝐵2(𝑟, 𝜏) = {

1 for 𝑟 = 1 (4.140a)
1 + 1

2
[2 (𝑟)𝜇+2 − (𝑟 + 1)𝜇+2 − (𝑟 − 1)𝜇+2]

2(1 − 2𝜇)
for 𝑟 > 1 (4.140b)
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where 𝑟 is the ratio of the sample time 𝑇 and the cluster time 𝜏:

𝑟 = 𝑇
𝜏 (4.141)

The above equations determine the𝑀-sample variance, the Allan variance and the classical
variance of the  IEEE sensor noise processes. The resulting analytical solutions are given in

 Table 4.5 . The table displays some interesting results that are worth noting:

• Introducing a dead-time (𝑟 > 1), the Allan variance of quantization noise is reduced, but
remains independent of 𝑟 for 𝑟 > 1. This is also noted in [  165 ].

• For the angular random walk, which is rate white noise, all samples and clusters are
uncorrelated. All types of variances are thus equal, independent of the sample time or
the number of clusters.

• Starting from the bias instability (represented by flicker noise), the samples are correlated.
This causes a dependency on the sample time 𝑇 and the number of clusters 𝑀. The
𝑀-sample variance does not converge but grows with the number of samples, and the
classical variance is indeterminate.

Table 4.5.: Variances of power-law sensor noise processes.

Noise process 𝑆(𝑓) 𝜎2AV(𝜏) 𝜎2AV(𝑟, 𝜏), 𝑟 > 1 𝜎2(𝑀, 𝜏, 𝜏) 𝜎2(𝜏)

Quantization noise, 𝑄 𝜏𝑠(2𝜋𝑓)2𝑄2 3

𝜏2
𝑄2 2

𝜏2
𝑄2 2

𝑀− 1
𝑀

𝑀−1

1

𝜏2
𝑄2 1

𝜏2
𝑄2

Angular random walk,𝑁 𝑁2 1

𝜏
𝑁2 1

𝜏
𝑁2 1

𝜏
𝑁2 1

𝜏
𝑁2

Flicker Noise  

a
 , 𝐵 ≈ 1

2𝜋𝑓
𝐵2 ≈ 2 ln 2

𝜋
𝐵2 see footnote  

b
 ≈ 𝑀 ln𝑀

𝑀−1

1

𝜋
𝐵2 -

Rate random walk, 𝐾 1

(2𝜋𝑓)2
𝐾2 1

3
𝜏𝐾2 1

6
(3𝑟 − 1)𝜏𝐾2 𝑀

6
𝜏𝐾2 -

Rate ramp noise, 𝑅 1

(2𝜋𝑓)3
𝑅2 1

2
𝜏2𝑅2 1

2
𝑟2𝜏2𝑅2 𝑀(𝑀+1)

12
𝜏2𝑅2 -

aapproximating bias instability by neglecting the band-limit
b≈ −2𝑟2 ln (𝑟)+(𝑟−1)2 ln (𝑟−1)+(𝑟+1)2 ln (𝑟+1)

ln16

2 ln2

𝜋
𝐵2

In  Table 4.5 , the bias instability is approximated by pure flicker noise to fit into the power-law
noise framework. By definition, the bias-instability is band-limited flicker noise, which can be
considered by adopting the upper integration limit of ( 4.133 ) to the cutoff frequency 𝑓0. This
yields the expressions for the classical Allan variance given in the  IEEE standards [ 12 ]

𝜎2AV,𝐵(𝜏) =
2
𝜋𝐵

2 [ln 2 − sin3(𝑥)
2𝑥2 (sin(𝑥) + 4𝑥 cos(𝑥)) + Ci(2𝑥) − Ci(4𝑥)] , 𝑥 = 𝜋𝑓0𝜏 (4.142)

and can be extended to this lengthy expression for the bias instability’s Allan variance with
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dead-time (𝑟 ≥ 2):

𝜎2AV,𝐵(𝑟, 𝜏) =
1
2𝜋 [−2 ln(𝜏) − 2𝑟2 ln(𝑟𝜏) + (𝑟 + 1)2 ln ((𝑟 + 1)𝜏) + (𝑟 − 1)2 ln ((𝑟 − 1)𝜏)]

+ 1
4𝜋𝑥[ − 2 sin(2𝑥) − 2𝑟 sin(2𝑘𝑥) + (𝑟 + 1) sin (2(𝑟 + 1)𝑥))

+ (𝑟 − 1) sin (2(𝑟 − 1)𝑥)) ]

+ 1
8𝜋𝑥2 [2 cos(2𝑥) + 2 cos(2𝑟𝑥) − cos (2(𝑟 + 1)𝑥) − cos (2(𝑟 − 1)𝑥) − 1]

+ 1
2𝜋[2Ci(2𝑥) + 2𝑟2 Ci(2𝑟𝑥) − (𝑟 + 1)2 Ci (2(𝑟 + 1)𝑥)

− (𝑟 − 1)2 Ci (2(𝑟 − 1)𝑥) ]

(4.143)

where, 𝑥 = 𝜋𝑓0𝜏. Above equations make use of the cosine integral function Ci(𝑥) [ 72 , p. 460]

Ci(𝑥) = −∫
∞

𝑥

cos(𝑡)
𝑡 𝑑𝑡 (4.144)

which has no closed form solution and needs to be evaluated numerically. The resulting Allan
variance with dead-time for varying 𝑟 and cut-off frequencies is depicted in  Figure 4.23  . The
cut-off frequency shifts the Allan variance curve along the cluster time axis, while the Allan
variance increases with the dead-time ratio 𝑟.
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Figure 4.23.: Allan variance with dead-time of bias instability noise for varying cut-off frequencies.
The cluster sampling time ratio 𝑟 increases from 1 (no dead-time) to 10 from the
bottom-right to top-left.

The fact that the variance cannot be given for power-law noise with 𝛼 ≤ 0 is explained by the
fact that these processes are not stationary in the strict sense: The variance of these processes
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grows with time. Vividly, one does not know the actual time of a noise’s underlying process,
so the variance cannot be given. Although one cannot give the process’s absolute variance,
the drift within the process is well-defined. Therefore, the Allan variance exists even for these
processes. The definition of the Allan variance as variance of the average of two (consecutive)
signal clusters:

𝜎2AV(𝑇, 𝜏) =
1
2𝔼 [(𝑦𝑟 − 𝑦0)

2] (4.145)

The Allan variance can thus be used to describe the uncertainty of the difference between two
cluster averages. As a result, at least the uncertainty of all signal clusters can be related to an
arbitrary (e.g., the first in the test sequence) average value. The Allan variance with dead time
also describes the variance between non-contiguous clusters. The implications of this will be
further discussed in the test procedure analysis.

For a detailed stochastic description, the cross-correlation between two cluster averages is
also of interest. This Allan-like covariance of the difference between a cluster average at time 𝑟
and an arbitrary common cluster average and another the same for a cluster at time 𝑗 can be
derived as:

𝑃AV(𝑟, 𝑗, 𝜏) =
1
2𝔼 [(𝑦𝑟 − 𝑦0)(𝑦𝑗 − 𝑦0)]

= 1
2𝔼 [

𝑥((𝑟 + 1)𝜏) − 𝑥(𝑟𝜏) − 𝑥(𝜏) + 𝑥(0)
𝜏

𝑥((𝑗 + 1)𝜏) − 𝑥(𝑗𝜏) − 𝑥(𝜏) + 𝑥(0)
𝜏 ]

= 1
2𝜏2 {2𝑈(𝜏) + 2𝑈(𝑟𝜏) + 2𝑈(𝑗𝜏) + 𝑈((𝑟 − 𝑗 + 1)𝜏) + 𝑈((𝑟 − 𝑗 − 1)𝜏)

− 2𝑈((𝑟 − 𝑗)𝜏) − 𝑈((𝑟 + 1)𝜏) − 𝑈((𝑟 − 1)𝜏) − 𝑈((𝑗 + 1)𝜏) − 𝑈((𝑗 − 1)𝜏)}

(4.146)

with
𝑈(𝜏) = 2 [𝑅𝑥𝑥(0) − 𝑅𝑥𝑥(𝜏)] (4.147)

Quantization Noise

Equation ( 4.146 ) can be evaluated for the sensor noise types by applying the appropriate
functions of 𝑈. Using (9) from [  61 ] and the definition from  Table 2.7  yields for the quantization
noise:

𝑈𝑄(𝜏) = |𝜏𝑠|𝑄2 (4.148)
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𝑃AV,Q(𝑟, 𝑗, 𝜏) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

3

𝜏2
𝑄2 for 𝑟 = 𝑗 = 1

2

𝜏2
𝑄2 for 𝑟 = 𝑗 > 1

1

2𝜏2
𝑄2 for |𝑟 − 𝑗| = 1 ∧ (𝑗 = 1 ∨ 𝑟 = 1)

3

2𝜏2
𝑄2 for |𝑟 − 𝑗| > 1 ∧ (𝑗 = 1 ∨ 𝑟 = 1)

1

2𝜏2
𝑄2 for |𝑟 − 𝑗| = 1 ∧ (𝑗 > 1 ∧ 𝑟 > 1)

1

𝜏2
𝑄2 else

(4.149)

Above definitions of theAllan-covariances for quantization noise yield amatrix of the following
structure:

𝐏AV,𝑄 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 2 3 3 … 3 3

2 4 1 2 2 2

3 1 4 1 2 2

⋮ ⋱ ⋮

3 2 2 2 4 1

3 2 2 2 … 1 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑄2

2𝜏2 (4.150)

Note that the above matrix represents the cross-correlation of the difference between two
clusters’ means with the first cluster’s mean, thus a generalization of the Allan variance. It
is not the classical covariance of the cluster averages, which is given as the following band-
diagonal matrix:

𝐏𝑄 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 … 0 0

−1 2 0 0

⋮ ⋱ ⋮

0 0 2 −1

0 0 … −1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑄2

𝜏2 (4.151)

Angular/Velocity Random Walk

Analog to that, the cross-covariance for the angular random walk can be determined to:

𝑈𝑁(𝜏) =
1
2|𝜏|𝑁

2 (4.152)

𝑃AV,N(𝑟, 𝑗, 𝜏) = {
1

𝜏
𝑁2 for 𝑟 = 𝑗
1

2𝜏
𝑁2 else

(4.153)
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This definition leads to the following Allan-covariance matrix:

𝐏AV,𝑁 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 1 1 1 … 1 1

1 2 1 1 1 1

1 1 2 1 1 1

⋮ ⋱ ⋮

1 1 1 1 2 1

1 1 1 1 … 1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑁2

2𝜏 (4.154)

As stated above, for the angular/velocity random walk, the classical covariance of the averaged
clusters exists. Since  ARW is ideally uncorrelated white noise, the resulting covariance matrix
is purely diagonal:

𝐏𝑁 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 … 0 0

0 1 0 0

⋮ ⋱ ⋮

0 0 1 0

0 0 … 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑁2

𝜏 (4.155)

Bias Instability

The bias instability is again a special case. For pure flicker noise, [ 61 ] gives the following
equation for 𝑈(𝜏):

𝑈𝐵(𝜏) ≈ lim
𝜇→0−

|𝜏|𝜇+2

4 − 2𝜇+2
2
𝜋𝐵

2 ln(2) (4.156)

which takes into account that the flicker noise’s covariance diverges in the phase domain.
Equation ( 4.146 ) has to be evaluated for fixed 𝑟 and 𝑗 and ( 4.156 ) using l’Hôpital’s rule [ 72 ,
p. 54]. For pure flicker noise, the resulting (cross) Allan variance has no dependency on the
cluster length 𝜏.

Using ( 4.125 ) with 𝑆𝑥𝑥(𝑓) = (2𝜋𝑓)−3 and the cut-off frequency 𝑓0 as upper integration limit
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in ( 4.146 ), yields the following lengthy expression for the Allan-covariance:

𝑃AV,B(𝑟, 𝑗, 𝜏) = { 14𝜋[ − 2 ln(𝜏) − 2𝑗2 ln(𝑗𝜏) − 2𝑟2 ln(𝑟𝜏) + (𝑗 − 1)2 ln ((𝑗 − 1)𝜏)+

+ (𝑗 + 1)2 ln ((𝑗 + 1)𝜏) + (𝑟 − 1)2 ln ((𝑟 − 1)𝜏)

+ (𝑟 + 1)2 ln ((𝑟 + 1)𝜏) + 2(𝑗 − 𝑟)2 ln ((𝑗 − 𝑟)𝜏)

− (𝑗 − 𝑟 + 1)2 ln ((𝑗 − 𝑟 + 1)𝜏))

− (𝑗 − 𝑟 − 1)2 ln ((𝑗 − 𝑟 − 1)𝜏)) ]

+ 1
8𝜋𝑥[ − 2 sin(2𝑥) − 2𝑗 sin(2𝑗𝑥)

− 2𝑟 sin(2𝑟𝑥) + (𝑗 + 1) sin (2(𝑗 + 1)𝑥) + (𝑗 − 1) sin (2(𝑗 − 1)𝑥)

+ (𝑟 + 1) sin (2(𝑟 + 1)𝑥) + (𝑟 − 1) sin (2(𝑟 − 1)𝑥)

+ 2(𝑗 − 𝑟) sin ((𝑗 − 𝑟)𝑥) − (𝑗 − 𝑟 + 1) sin ((𝑗 − 𝑟 + 1)𝑥)

− (𝑗 − 𝑟 − 1) sin ((𝑗 − 𝑟 − 1)𝑥) ]

+ 1
16𝜋𝑥2 [2 cos(2𝑥) + 2 cos(2𝑗𝑥) + 2 cos(2𝑟𝑥) − cos (2(𝑗 + 1)𝑥)

− cos (2(𝑗 − 1)𝑥) − cos (2(𝑟 + 1)𝑥) − cos (2(𝑟 − 1)𝑥)

− 2 cos (2(𝑗 − 𝑟)𝑥) + cos (2(𝑗 − 𝑟 + 1)𝑥) + cos (2(𝑗 − 𝑟 − 1)𝑥) − 1]

+ 1
4𝜋[2Ci(2𝑥) + 𝑗2 Ci(2𝑗𝑥) + 𝑟2 Ci(2𝑟𝑥) − (𝑟 + 1)2 Ci (2(𝑟 + 1)𝑥)

− (𝑟 − 1)2 Ci (2(𝑟 − 1)𝑥) − (𝑗 + 1)2 Ci (2(𝑗 + 1)𝑥)

− (𝑗 − 1)2 Ci (2(𝑗 − 1)𝑥) − 2(𝑗 − 𝑟)2 Ci (2(𝑗 − 𝑟)𝑥)

+ (𝑗 − 𝑟 + 1)2 Ci (2(𝑗 − 𝑟 + 1)𝑥)

+ (𝑗 − 𝑟 − 1)2 Ci (2(𝑗 − 𝑟 − 1)𝑥) ]}𝐵2, 𝑥 = 𝜋𝑓0𝜏

(4.157)

Above equation is actually indeterminate for various combinations of 𝑟 and 𝑗, e.g., 𝑟 = 𝑗.
However, if 𝑟 and 𝑗 are set before solving the integral, closed solutions can be obtained. The
presented equations have been determined usingMathematica 11.2 [ 166 ], and verified against
numerical simulation. The resulting covariancematrix for the first five clusters is depicted in

 Figure 4.24 . Just like above equations, the graphs display a non-trivial behavior, but can be
summarized to these important observations:

• Both diagonal and off-diagonal elements display a similar dependency on the cluster
time 𝜏, respectively 𝑓0𝜏: The variance grows at approximately +2 in the log-log plot and
bends towards a plateau value around the cut-off frequency.

• The Allan-covariance grows with the cluster’s distance to the first cluster.

• The Allan-covariance decreases with a growing distance |𝑟 − 𝑗| between two clusters.
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Figure 4.24.: Allan-covariance of the first five clusters of bias instability noise.
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Rate/Acceleration Random Walk

Similarly, the cross-covariance of the averaged rate random walk is determined from (23) of
[ 61 ] for 𝜇 = 1:

𝑈𝐾(𝜏) = −
|𝜏|3

4
1
3𝐾

2 (4.158)

𝑃AV,K(𝑟, 𝑗, 𝜏) = (|𝑟 − 1|3 + |𝑟 + 1|3 + |𝑗 − 1|3 + |𝑗 + 1|3 − 2|𝑟|3 − 2|𝑗|3 + 2|𝑗 − 𝑟|3

− |𝑗 − 𝑟 + 1|3 − |𝑟 − 𝑗 + 1|3 − 2) 𝜏24𝐾
2

(4.159)

An example Allan-covariance matrix for the first 5 clusters is given below:

𝐏AV,𝐾 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

3

5

12

5

12

5

12

5

12

5

12

5

6

11

12

11

12

11

12

5

12

11

12

4

3

17

12

17

12

5

12

11

12

17

12

11

6

23

12

5

12

11

12

17

12

23

12

7

3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝜏𝐾2 (4.160)

Rate/Acceleration Ramp Noise

Finally, the Allan-covariance of rate ramp noise (𝜇 = 2) is determined as follows:

𝑈𝑅(𝜏) = −
|𝜏|4

12
1
2𝑅

2 (4.161)

𝑃AV,R(𝑟, 𝑗, 𝜏) = ((𝑟 − 1)4 + (𝑟 + 1)4 + (𝑗 − 1)4 + (𝑗 + 1)4 − 2𝑟4 − 2𝑗4

+ 2(𝑗 − 𝑟)4 − (𝑗 − 𝑟 + 1)4 − (𝑟 − 𝑗 + 1)4 − 2) 𝜏
2

48𝑅
2

(4.162)

Again, the Allan-covariance matrix for the first 5 clusters is exemplarily given as:

𝐏AV,𝑅 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

2
1 3

2
2 5

2

1 2 3 4 5

3

2
3 9

2
6 15

2

2 4 6 8 10

5

2
5 15

2
10 25

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝜏2𝑅2 (4.163)

As stated before, the covariance of the cluster means itself cannot be given for the last three
noise processes. However, the derived Allan-covariance describes the variation of the cluster
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means with respect to the first cluster mean. Using this concept, the growing uncertainty of
the averaged signal of consecutive signal clusters can be described during sensor testing.

Sinusoidal Noise

In addition to the power-law noise, sinusoidal noise shall be included in this discussion.
Sinusoidal noise is characterized by a single frequency sinusoidal signal with random initial
phase. Such a noise may be part of the sensor noise [ 12 ], but is also often caused by the test
instruments (e.g., bearings and actuators of a rate table), see  Subsection 4.2.9 .
The sinusoidal signal’s (single-sided)  PSD is determined from the Fourier transformation of

a sine signal 𝑦(𝑡) = 𝛺 sin(2𝜋𝑓0𝑡 + 𝜙) and yields:

𝑆𝛺(𝑓) =
1
4𝛺

2 [𝛿(𝑓 − 𝑓0) + 𝛿(𝑓 + 𝑓0)] (4.164)

Using ( 4.146 ), the Allan-covariance can be determined to:

𝑃AV,𝛺(𝑟, 𝑗, 𝜏) = 𝛺2 cos (𝜋𝑓0(𝑟 − 𝑗)𝜏) sin2 (𝜋𝑓0𝜏) sin (𝜋𝑓0𝑗𝜏) sin (𝜋𝑓0𝑟𝜏)
2(𝜋𝑓0𝜏)2

(4.165)

and the classical covariance between two averaged signal clusters can be determined from
( 4.135 ):

𝑃𝛺(𝑟, 𝑗, 𝜏) = 𝛺2 cos (2𝜋𝑓0(𝑟 − 𝑗)𝜏) sin2(𝜋𝑓0𝜏)
2(𝜋𝑓0𝜏)2

(4.166)

From the above equations, it is obvious that the effects of pure sinusoidal noise can be effectively
reduced by increasing the averaging time 𝜏. Furthermore, the variance vanishes if the averaging
time is a multiple of the signals period.
The above equations are valid for clusters of the same known frequency but a random phase.

During sensor testing, however, the applied angular rates are changed for each position and
thus signal cluster. For example, bearing wobble (see  Subsection 4.2.9.3  ) is modeled as the sum
of sines/cosines with random initial phase but known frequencies that depend on the applied
angular rate. Although the frequency is changed between the clusters, each cluster inherits
the final phase of its previous cluster, respectively, the resulting phase of all clusters between
the two considered clusters. The covariance of two such clusters with frequencies 𝑓𝑟 and 𝑓𝑗 is
thus given as:

𝑃𝛺(𝑟, 𝑗, 𝜏) = 𝔼[ (1𝜏 ∫
𝜏

0
cos(2𝜋𝑓𝑟𝑡 + 𝜙𝑟)𝑑𝑡) (

1
𝜏 ∫

𝜏

0
cos(2𝜋𝑓𝑗𝑡 + 𝜙𝑗)𝑑𝑡) ] (4.167)

The phases 𝜙𝑟 and 𝜙𝑗 represent the phase at the start of each signal cluster and are thus the
cumulative phase resulting from all previous clusters:

𝜙𝑟 =
𝑟

∑
𝑖
2𝜋𝑓𝑖𝜏 + 𝜙0 (4.168)

241



Chapter 4. Inertial Sensor Laboratory Testing

𝜙𝑗 =
𝑗

∑
𝑖
2𝜋𝑓𝑖𝜏 + 𝜙0 (4.169)

Above integrals can be easily solved, and the expected value can be determined for a random
initial phase 𝜙0 that is uniformly distributed between 0 and 2𝜋. The analytical solution yields:

𝑃𝛺(𝑟, 𝑗, 𝜏) = 𝛺2 sin(𝜋𝑓𝑟𝜏) sin(𝜋𝑓𝑗𝜏)
2𝜋2𝑓𝑟𝑓𝑗𝜏2

cos (𝜋𝑓𝑗𝜏 − 𝜋𝑓𝑟𝜏 + 𝜙𝑗 − 𝜙𝑟) (4.170)

4.3.0.3. The Effect of Kinematics

Finally, the effect of rotation shall be briefly discussed. Depending on the test profile, the
various laboratory errors and noise processes do not enter the sensor’s output equation directly
but are observed from a rotating frame. Mathematically, this means a multiplication of the
error with a sine respectively cosine function.

Random Constant Errors

If random constant errors are seen from a rotating view, the time-dependency is only introduced
by the rotation. As the random constant error 𝑒 does not depend on time, the signal’s expected
value and variance are scaled by averaging over the trigonometric functions:

𝑦(𝑡) = 𝑎 cos(𝜔𝑟𝑡 + 𝜙) 𝑒 (4.171)

̄𝑦(𝜏) = 1
𝜏 ∫

𝜏

0
𝑎 cos(𝜔𝑟𝑡 + 𝜙) 𝑒 𝑑𝑡 (4.172)

𝔼[ ̄𝑦(𝜏)] = 𝑎
sin(𝜔𝑟𝜏 + 𝜙) − sin(𝜙)

𝜔𝑟𝜏
𝔼[𝑒] (4.173)

Var[ ̄𝑦(𝜏)] = (𝑎
sin(𝜔𝑟𝜏 + 𝜙) − sin(𝜙)

𝜔𝑟𝜏
)
2

Var[𝑒] − 𝔼[ ̄𝑦(𝜏)]2 (4.174)

For the typical case of a zero-mean random constant error 𝑒, the general (cross-) covariance
between averaged signal clusters in a test-series can be given as:

𝑃𝑒(𝑟, 𝑗, 𝜏) = 𝑎2
sin(𝜋𝑓𝑟𝜏) sin(𝜋𝑓𝑗𝜏)

2𝜋2𝑓1𝑓𝑟𝜏2
cos(𝜋𝑓𝑟𝜏 + 𝜙𝑟) cos(𝜋𝑓𝑗𝜏 + 𝜙𝑗)Var[𝑒] (4.175)

where 𝜙𝑗, 𝜙𝑟 are the phases at the start of the respective cluster.

Noise-like Errors

If the (wide-sense) stationary stochastic process (𝑡) is multiplied with a sine or cosine factor,
the averaged signal’s expected value reduces with the averaging time 𝜏:

𝑦(𝑡) = 𝑎 cos(𝜔𝑟𝑡 + 𝜙) (𝑡) (4.176)
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̄𝑦(𝜏) = 1
𝜏 ∫

𝜏

0
𝑎 cos(𝜔𝑟𝑡 + 𝜙) (𝑡) 𝑑𝑡 (4.177)

𝔼[ ̄𝑦(𝜏)] =
𝑎 sin(𝜔𝑟𝜏 + 𝜙) − sin(𝜙)

𝜔𝑟𝜏
𝔼[ ] (4.178)

The covariance of averaged clusters can be obtained from the  PSD of the noise ( 4.135 ) by
applying the modulation theorem. The multiplication with a cosine or sine factor in the time
domain is equivalent to a frequency shift in the frequency domain [ 72 , p. 771]. Using the
modulation theorem, the  PSD of the signal seen under rotation can be determined from:

𝑆𝜂,rotating =
1
4 [𝑆𝜂 (𝑓 +

𝜔𝑟
2𝜋) + 𝑆𝜂 (𝑓 −

𝜔𝑟
2𝜋) + 2√𝑆𝜂 (𝑓 −

𝜔𝑟
2𝜋) 𝑆𝜂 (𝑓 +

𝜔𝑟
2𝜋)] (4.179)

This modified  PSD is then used to determine the covariance of the cluster averages.
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4.4. Laboratory Testing Error Budget

4.4.1. Introduction

This section discusses the effects of the above-derived error sources on the calibration of inertial
sensors. A survey of the available IEEE standards on inertial sensor testing (see  Table G.1 and

 Table G.1 ) reveals the existence of a set of basic test procedures that is applied to virtually all
sensor types. The same accounts for non-IEEE tests, as summarized, e.g., in [  167 ,  168 ]. While
different sensor technologies require attention to their specific problems and error models, the
underlying test procedures are very similar and differ only in detail. Although many inertial
sensor testing methods exist, they can be boiled down to the three basic tests summarized in

 Table 4.6 .

Table 4.6.: Overview of basic test procedures. The table lists typical instruments and methods that
are used in the most basic tests.

Static Tests Rate Transfer Tests Multi-Pose Tests

Description sensor in known static
orientation

variation of reference
input

sensor in different
orientations and
varying inputs

Scope • bias
• noise

• scale factor(s)
• transfer function

• bias
• misalignment
• scale factor

Instruments • stable test table • rate table
• centrifuge

• rate table
• dividing head

Methods • averaging
•  PSD ,  AVAR 

• averaging → least
squares

• averaging → least
squares

• Kalman Filtering

These represent the basic test procedures used to test for the sensor performance respectively
accuracy. The procedures have to be embedded in an overall testing strategy (see [  26 ]) to
determine dependencies from environmental conditions, e.g., temperature or magnetic fields,
as well as repeatability and reliability [  22 , pp. 240–241]. Usually, this means that the essential
tests are repeated under varying conditions, and the variation of resulting calibration parameters
is analyzed.
Based on the derived linear sensitivities and the error models defined in  Section 4.2  , the

variance of the test target parameters can be determined for varying positions and averaging
times 𝜏. For the derivation of the error budgets, the input errors are grouped based on their
origin:

• Earth rotation variations represent all effects that lead to a temporal variation of the
Earth’s angular rate vector and thus a deviation from the  WGS84 reference rate. Here,
no knowledge of the phase of the periodic variations of the angular rate is assumed.
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• Gravity variations represent the uncertainty caused by temporal variations of the local
gravity.

• Test-pad motion summarizes all natural and anthropogenic sources of motion of the
laboratory’s test pad. Here they are modeled by a reference motion model defined in

 Model 5 .

• Laboratory alignment represents the alignment errors of the test-pad relative to the
 WGS84 reference ellipsoid. This includes both leveling of the test pad as well as north-
alignment and position errors.

• Axis non-orthogonality and misalignment groups all errors that result in (quasi-)
constant orientation errors of the rate table axes, like manufacturing and setup errors
and stationary temperature expansion errors. This also includes alignment errors of the
nominal sensor axis to the rate table’s axes.

• Axis wobble represents the orientation errors of the rate table axes that depend on the
axis’ angular position, typically caused by bearing imperfections.

• Control errors summarize both position and angular rate errors caused by the measure-
ment errors, servo-loop control, and actuators of the rate table.

This grouping enables the identification of the dominant error sources and thus also the
possible starting points for increasing accuracy.
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4.4.2. Single Position Static Tests

4.4.2.1. Test Description

Static tests (also tombstone tests [  22 , p. 249]) are mainly used to examine the noise characteris-
tics of the sensor’s output. The sensor is placed on a seismically isolated or stabilized test table
for these tests. As the rate table controls introduce additional noise, even in a static condition,
the static tests should be performed directly on, e.g., an aligned granite measurement plate as
depicted in  Figure 4.25  . The sensor’s output for this static input is recorded and subsequently
analyzed, e.g., the sensor noise is characterized using  PSD and  AVAR . The test duration is
varied between less than an hour andmultiple days, depending on the sensor grade and planned
application [ 22 , p. 249].

𝑁
𝐸

𝐷

Figure 4.25.: Static testing of an IFOS-500 IMU on a measurement plate in the basement of the
Institute of Flight System Dynamics. The measurement plate is aligned to the local
gravity vector and provides a reference to true north.

The sensor’s input axis may be aligned to the local west-east direction to eliminate the Earth’s
angular rate or just aligned to the local vertical, see  Figure 4.26  . If the input axis is horizontally
leveled and aligned to the west-east direction (case I), there is ideally zero input signal along
the tested gyroscope axis. The ideal accelerometer input is zero in this case. If the input
axis is aligned to the local vertical (case II) and measures local gravity and a component of
the Earth’s angular rate. Whether the test is performed at zero-input (axis aligned east) or
at some component of the Earth’s angular rate depends on the testing philosophy, e.g., if an
effect of the input on the noise characteristics is expected. The zero-input case allows a simple
determination of the sensor’s bias. However, this requires precise alignment with respect to
the local gravity and, more difficult, to the Earth’s rotation vector.

4.4.2.2. Static Test Error Model

In the context of the kinematic chain introduced in  Subsection 4.2.1  , the use of an aligned
measurement plate can be represented by mounting the tested sensor directly to the laboratory
test pad frame 𝑝 and neglecting the rate table’s components. Under these assumptions, the
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𝑁
𝐸

𝐷
𝑦𝑏𝑧𝑏
𝑥𝑏 input axis

(a) Zero-input orientation (I).

𝑁
𝐸

𝐷𝑦𝑏𝑧𝑏

𝑥𝑏
input axis

(b) Vertical orientation (II).

Figure 4.26.: Inertial sensor orientation at static testing. In these scenarios, the sensor’s 𝑥𝑏 axis is
the tested input axis.

ideal sensor input is only the Earth’s rotation along the local north and down axis. The ideal
angular rates input and its linearized errors are given as:

�̂�𝑖𝑏 = 𝐑 ̂𝑏𝑝𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒 (4.180)

𝛿𝝎𝑖𝑏 = 𝐑 ̂𝑏ᵆ𝐈 ̂ᴂ𝑝 (𝐈 ̂𝑝𝑛𝐑�̂�𝑒𝛿𝝎𝑖𝑒 + 𝛿𝝎𝑛𝑝) − (𝐑 ̂𝑏ᵆ𝐈 ̂ᴂ𝑝𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) × 𝝍𝑏 ̂𝑏

− 𝐑 ̂𝑏ᵆ𝐈 ̂ᴂ𝑝(𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) × 𝝍𝑝 ̂𝑝 − 𝐑 ̂𝑏ᵆ𝐈 ̂ᴂ𝑝𝐈 ̂𝑝𝑛(𝐑�̂�𝑒�̂�𝑖𝑒) × 𝝍𝑛�̂�
(4.181)

Along the tested gyroscope sensor axis, above equations reduce to the following equations for
the zero input case I:

�̂�I𝑖𝑏 = 0 (4.182)

𝛿𝜔I𝑖𝑏 = − sin(𝜆) 𝛿𝜔𝑖𝑒,𝑥 + cos(𝜆) 𝛿𝜔𝑖𝑒,𝑦
+ 𝛿𝜔𝑛𝑝,𝑥 + �̂�𝑖𝑒 cos(𝜙) (𝛿𝛹 ̂𝑏𝑏 + 𝛿𝛹 ̂𝑝𝑝 − 𝛿𝛹�̂�𝑛)

− �̂�𝑖𝑒 sin(𝜙) (𝛿𝛩 ̂𝑏𝑏 + 𝛿𝛩 ̂𝑝𝑝 − 𝛿𝛩�̂�𝑛)

(4.183)

For the vertically aligned case II, the ideal input and errors along the tested axis are:

�̂�II𝑖𝑏 = �̂�𝑖𝑒 sin(𝜙) (4.184)

𝛿𝜔II𝑖𝑏 = cos(𝜙) cos(𝜆) 𝛿𝜔𝑖𝑒,𝑥 + cos(𝜙) sin(𝜆) 𝛿𝜔𝑖𝑒,𝑦 + sin(𝜙) 𝜔𝑖𝑒,𝑧
+ 𝛿𝜔𝑛𝑝,𝑧 − �̂�𝑖𝑒 cos(𝜙) (𝛿𝛷 ̂𝑏𝑏 + 𝛿𝛷 ̂𝑝𝑝 + 𝛿𝛩�̂�𝑛)

(4.185)

The ideal specific forces input and its linearized errors are determined in the same way:

̂𝒇𝑏 = 𝐑 ̂𝑏𝑝𝐑 ̂𝑝𝑛 ̂𝜸𝑛(𝑃𝑏) (4.186)

𝛿𝒇𝑏 = 𝐑 ̂𝑏ᵆ𝐈 ̂ᴂ𝑛𝛿𝜸𝑛 + 𝐑 ̂𝑏ᵆ [�̂�
2
𝑖ᵆ + 𝐈 ̂ᴂ𝑛

𝜕 ̂𝜸𝑛(𝑃𝑏)
𝜕𝒓𝑒

𝐈�̂�ᵆ] 𝛿𝒓ᵆ(𝑃𝑏) + 𝐑 ̂𝑏ᵆ𝐈 ̂ᴂ𝑝𝜼𝑓𝑝

− (𝐑 ̂𝑏ᵆ𝐈ᵆ�̂� ̂𝜸𝑛(𝑃𝑏)) × 𝝍 ̂𝑏𝑏 − 𝐑 ̂𝑏ᵆ [𝐈 ̂ᴂ𝑝 (𝐈𝑝�̂� ̂𝜸𝑛(𝑃𝑏)) ×]𝝍 ̂𝑝𝑝

− 𝐑 ̂𝑏ᵆ [𝐈 ̂ᴂ𝑛 ̂𝜸𝑛(𝑃𝑏)×] 𝝍�̂�𝑛

(4.187)
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For the zero input case (I), these equations, again, are reduced to:

̂𝑓I𝑏 = 0 (4.188)

𝛿𝑓I𝑏 = 𝛿𝛾𝑛,𝑦 − ̂𝛾0 (𝛿𝛩 ̂𝑏𝑏 + 𝛿𝛩 ̂𝑝𝑝 + 𝛿𝛷�̂�𝑛) − �̂�2𝑖𝑒 𝛿𝑟𝑛,𝑦(𝑃𝑝)

− �̂�𝑖𝑒 sin(𝜙) 𝛿 ̇𝑟𝑛,𝑥(𝑃𝑝) − �̂�𝑖𝑒 cos(𝜙) 𝛿 ̇𝑟𝑛,𝑧(𝑃𝑝) + 𝛿 ̈𝑟𝑛,𝑦(𝑃𝑝)
(4.189)

and for the vertically aligned case (II) to:

̂𝑓II𝑏 = ̂𝛾0 (4.190)

𝛿𝑓II𝑏 = −𝛿𝛾𝑛,𝑧 + �̂�2𝑖𝑒 sin(𝜙) cos(𝜙) 𝛿𝑟𝑛,𝑥(𝑃𝑝) + �̂�2𝑖𝑒 cos2(𝜙) 𝛿𝑟𝑛,𝑧(𝑃𝑝)

− �̂�𝑖𝑒 cos(𝜙) 𝛿 ̇𝑟𝑛,𝑦(𝑃𝑝) − 𝛿 ̈𝑟𝑛,𝑧(𝑃𝑝)
(4.191)

Clearly, both static gyroscope tests are affecty by variations of the Earth’s angular rate, test-
pad motion and orientation errors of the laboratory and test-pad. Similar accounts to the
accelerometer testing, wich is of course sensitive to variations of the local gravity instead of
the Earth’s angular rate.
For the following analyses, a simple but general sensor error is assumed:

�̃�𝑖𝑏 = 𝑆 (�̂�𝑖𝑏,𝑥 + 𝛿𝜔𝑖𝑏,𝑥) + 𝑀𝐺,𝑦 �̂�𝑖𝑏,𝑦 +𝑀𝐺,𝑧 �̂�𝑖𝑏,𝑧 + 𝑏𝐺 + 𝜈𝐺 (4.192)
̃𝑓𝑏 = 𝑆 ( ̂𝑓𝑏,𝑥 + 𝛿𝑓𝑏,𝑥) + 𝑀𝐵,𝑦 ̂𝑓𝑏,𝑦 +𝑀𝐵,𝑧 ̂𝑓𝑏,𝑧 + 𝑏𝐴 + 𝜈𝐴 (4.193)

where 𝑆() represents the sensor’s scale factor and transfer function. A sensor’s transfer function
typically shows some form of low-pass behavior, with cut-off frequencies typically higher than
the typical environmental disturbances. If there are no resonance effects in the sensor’s,
neglecting its low-pass behavior and assuming a constant scale factor function provides a
worst-case approximation. For the static tests, there is no variation of the inputs. Consequently,
a the transfer function can be approximated by a single scale factor 𝑆0, valid for just this input
range.

4.4.2.3. Sensor Noise Characterization Errors

Sensor noise is usually analyzed using the  PSD and mainly  AVAR methods, as discussed in
 Section 2.3 . This section discusses the effect of environmental disturbances on the noise
characterization and the uncertainty of the Allan variance estimation.
In preparation for the noise analysis, all constant parts of the sensor’s signal are usually

removed by subtracting the signal’s mean value. This eliminates all constant errors, and leaves
only the temporal variation of the Earth’s angular rate and gravity, the test-pad motion and the
sensor’s noise:

�̃�𝑖𝑏 − �̃�𝑖𝑏 = 𝑆0 ⋅ (𝛿𝜔𝑖𝑏,𝑥 − 𝛿𝜔𝑖𝑏,𝑥) + 𝜈𝐺 − 𝜈𝐺 (4.194)

̃𝑓𝑏 − ̃𝑓𝑏 = 𝑆0 ⋅ (𝛿𝑓𝑏,𝑥 − 𝛿𝑓𝑏,𝑥) + 𝜈𝐴 − 𝜈𝐴 (4.195)
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The time-varying errors from the input signal and the sensor’s noise add up and cannot be
separated in the sensor’s output. The input errors, respectively, input noise, thus define a
minimum noise level in the vicinity of which the intrinsic sensor noise can no longer be
distinguished from the disturbances.

Using equation ( 2.29 ), the reference  PSD curves from  Model 5  and the approximations
of gravity variation and angular rate variation are transformed to the Allan variances. The
resulting Allan deviation curves are depicted in  Figure 4.27  . For reference, the typical  Allan
deviation (root Allan variance) (ADEV) curve of sensor noise processes is added to the plot.

The values given in  Table 4.7  provide a fundamental order of magnitude of the errors in the
noise parameter estimation caused by variations of the sensor’s reference input. The seismic
background noise mainly affects the  AVAR analysis in the frequency spectrum above 1Hz.
Luckily, the shape and magnitude of the background noise  AVAR can be effectively modified
using an isolated or stabilized test pad. As illustrated in  Figure 4.27 , a test pad with a natural
frequency of about 1Hz reduces the peak  ADEV by about two orders of magnitude. The two
test cases, I and II, differ in the sensor orientation and thus the components of the variations
of local gravity and the Earth’s rotation that are picked up by the sensor. As these variations
have periods of multiple hours, they do not interfere with the dominant seismic background
in the higher frequencies but cause an increase of the  AVAR at long cluster times. The high
increase and oscillations of the acceleration  ADEV for test case I at averaging times above
100 s is caused by test pad tilt oscillations and the resulting capturing of the local gravity by the
ideally horizontally aligned sensor axis.

Noise Estimation

The scaling coefficients of the standard sensor noise processes are typically determined from
a least-squares fit of the reference noise processes 𝜎2AV,𝑁(𝜏), 𝜎2AV,𝐾(𝜏), 𝜎AV,𝐵2(𝜏) and 𝜎2AV,𝑄(𝜏)
(see  Table 2.7 ) to the measured  AVAR . Splitting the measured  AVAR �̃�2AV(𝜏) into the sensor’s
intrinsic noise  AVAR ̂𝜎AV2(𝜏) and the parts caused by the disturbances 𝛿𝜎2AV(𝜏), yields the
following system of equations:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂�2AV(𝜏1) + 𝛿𝜎2AV(𝜏1)

�̂�2AV(𝜏2) + 𝛿𝜎2AV(𝜏2)

⋮

�̂�2AV(𝜏𝑛) + 𝛿𝜎2AV(𝜏𝑛)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

̃𝒚

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3

𝜏21

1

𝜏1
(0.664)2 𝜏1

3
3

𝜏22

1

𝜏2
(0.664)2 𝜏2

3

⋮ ⋮ ⋮ ⋮
3

𝜏2𝑛

1

𝜏𝑛
(0.664)2 𝜏𝑛

3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

𝐇

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂�2 + 𝛿𝑄2

�̂�2 + 𝛿𝑁2

̂𝐵2 + 𝛿𝐵2

̂𝐾2 + 𝛿𝐾2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⏟⎵⎵⎵⏟

�̃�

(4.196)

A least-squares estimate of the noise parameters 𝜣 is determined as [ 72 , p. 781]:

�̃� = (𝐇⊺𝐇)−1𝐇⊺ ̃𝒚 (4.197)
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Figure 4.27.: Allan deviation of the reference environmental background noise and typical sensor
noise processes. The additional curves illustrate the effect of a passively isolated test
pad for a range of natural frequencies. The dashed lines represent different damping
ratios, ranging from 0.1 to 1.0 (solid line). The two test-cases I and II differ only for
high averaging times, which are not affected by the test pad isolation.
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or
�̃� = (𝐇⊺𝐖𝐇)−1𝐇⊺𝐖 ̃𝒚 (4.198)

for a weighting𝐖 of data points, as suggested in [  66 ]. Here the  AVAR data points are weighted
with the number of clusters used to determine the variance to account for the estimation
accuracy of each data point. Note that rate or acceleration ramp noise 𝑅 is a linear drift in the
non-integrated sensor output that is typically removed before the Allan variance analysis [  10 ,
p. 47], and therefore is not estimated here.
If the sensor’s scale factor error and its transfer function are neglected, the sensor’s non-

constant output is just the sum of the input and the sensor’s noise. By estimating the noise
parameters from the  AVAR of the input errors, 𝛿𝒚 thus gives the errors 𝛿𝜣 that add to the
desired sensor noise parameter estimates 𝜣:

𝛿𝜣 = (𝐇⊺𝐖𝐇)−1𝐇⊺𝐖𝛿𝒚 (4.199)

Application of the weighted least-squares estimation to the background noise  AVAR yields
the estimation errors summarized in  Table 4.7  . Note that, while the noise parameters cannot
be negative by definition, the parameter estimation errors can indeed. Although the values
are only indicative, they demonstrate that the effect of background noise on the sensor noise
parameter estimation is hard to predict. Estimating the noise parameters strongly depends on
the choice of the noise model, which should be adapted to the observed  AVAR curve. In general,
a lower natural frequency of the test pier yields a better reduction of seismic background noise
and thus results in lower errors in the parameter estimation. However, resonance amplification
for test pad natural frequencies around 10Hzmay lead to increased estimation errors. This
can, e.g., be observed at the bias instability 𝛿𝐵2 for both accelerations and angular rates.

Table 4.7.: Errors of sensor noise process parameters from reference background noise from a
least-squares fit (see [ 66 ]) of the static test input errors. Values are given for different
test-pad natural frequencies and a damping ratio of 0.25 is assumed for the test pad.

Test-pad natural frequency

Error Unit No test-pad 50Hz 10Hz 1Hz

𝛿𝑄2 (°)2 −1.72⋅10−4 −2.90⋅10−4 −8.63⋅10−5 7.34⋅10−7

𝛿𝑁2 (°/h/√Hz)2 4.01⋅10−1 6.64⋅10−1 1.46⋅10−1 −2.54⋅10−3

𝛿𝐵2 (°/h)2 5.71⋅101 7.03⋅101 9.11⋅101 1.31
𝛿𝐾2 (°/h√Hz)2 −1.48⋅10−3 −1.83⋅10−3 −2.37⋅10−3 −3.14⋅10−5

𝛿𝑄2 (g s)2 −1.09⋅10−13 −2.27⋅10−13 −3.16⋅10−14 1.84⋅10−16

𝛿𝑁2 (g/√Hz)2 2.73⋅10−10 5.33⋅10−10 5.77⋅10−11 −6.41⋅10−13

𝛿𝐵2 g2 2.38⋅10−8 3.44⋅10−8 2.65⋅10−8 3.39⋅10−10

𝛿𝐾2 (g√Hz)2 −6.18⋅10−13 −8.95⋅10−13 −6.89⋅10−13 −8.79⋅10−15

An Allan variance analysis of measurement data is presented in  Example 4  . In this example,
the effect of environmental disturbances can be observed for low cluster times that correspond
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to the high frequency artificial seismic noise. These disturbances can also be observed in the
corresponding spectrograms in  Example 6  . Parts of the external disturbances can be easily
identified as they change from day to night-time, indicating natural or artificial activities.
The existence and the effect of these time-varying disturbances can be observed in a  DAVAR 

plot. Such a graph illustrates the variation of the Allan variance with time, similar to a spectro-
gram. For time-varying disturbances like in  Example 5  , one can distinguish the difference of
the  AVAR for times with and without the disturbances. While this works well for many seismic
noise sources related to human culture’s day-night cycle, it doesn’t help with natural seismic
background noise.

Identification of Disturbances

The previous section demonstrated that the sensor noise could not be separated from the
external disturbances for a one-position single-axis static test without further assumptions.
While gravity variations from Lunar and Solar tides and variations of the Earth’s angular rate
can be determined from deterministic models and thus compensated, the test pad motion is
widely random. This includes both the disturbance frequencies, amplitudes, and transients
and directions of, e.g., the surface waves, see  Subsection 4.2.8.1 .
However, the sensor noise can be seen as a body-fixed error, while the external disturbances

may be considered space fixed. Based on this insight, it should be possible to distinguish
between sensor noise and external disturbances by simultaneously using multiple orientations
or multiple sensor axes.
In principle, seismic waves can be identified and located by the run-time difference between

multiple sensors. This, however, requires sensors with a drift lower than the expected dis-
turbance and sufficient spatial distance between the sensors that allows a resolution of the
different run-times. This is not possible with a sensor triad inside an  IMU . As described in

 Subsection 4.2.8.1 , surface waves consist of horizontal and vertical components. This suggests
a strong correlation exists between the background noise recorded by each sensor axis. The
two horizontally aligned axes should sense components of horizontal oscillation. In contrast,
the vertical component should sense the vertical component of the surface wave at a constant
phase offset to the two horizontal components. Additionally, disturbances should be observable
at equal frequencies in the gyroscope and the accelerometer output.
However, a correlation of the sensor’s output can also be caused by electronics in the  IMU ,

like a shared power supply. If available, the correlation between the supply voltage and the
sensor outputs should be analyzed to exclude this possibility. Although the environmental
disturbances are space-fixed, a change of the sensor orientation does not provide sufficient
information to separate sensor noise from seismic disturbances. However, identifying space-
fixed disturbances is possible if a single source of disturbances is assumed. The mathematical
approach to reducing disturbances may be helpful in some instances, but generally, it is more
advisable to reduce environmental disturbances in the laboratory.
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Example 4: Allan variance analysis of IFOS-500 IMU.

The Allan deviation was determined from 48 h static testing of an IFOS-500 IMU [ 169 ] on a
measurement plate in the basement of the Institute of Flight System Dynamics. In this test,
the sensor’s 𝑥-axis was pointing down, 𝑦 to true north, and 𝑧 to the east. The dashed lines
indicate the 95% confidence interval of the Allan variance estimate.
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(4.b) Gyroscope noise.

For high frequencies, or small cluster times, the determined Allan variance ranges into the
background noise spectrum, especially for accelerometer measurements. Here, the velocity
random walk’s slope is corrupted by correlated or sinusoidal noise. This indicates that the Allan
variance estimate for low cluster times is affected by environmental disturbances. However,
without further knowledge about the true seismic disturbances, it is impossible to tell if the
intrinsic sensor noise is lower than determined in the Allan variance analysis. The isolated
test pad typically reduces seismic background noise for the very short cluster times below
0.1 s.
Neglecting the question of validity and the slight variations between the axes, the approximated
noise parameters from these measurements are summarized below:

Parameter Accelerometer Gyroscope

Quantization noise 𝑄 - -
Velocity/Angle random walk 𝑁 5 ⋅ 10−6 g/√Hz 5 ⋅ 10−3 °/√h
Bias instability 𝐵 1 ⋅ 10−6 g 2 ⋅ 10−3 °/h
Acceleratom/Rate random walk 𝐾 5 ⋅ 10−8 g/√s -

These results basically agree with those in the manufacturer’s data sheet [ 169 ].
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Example 5: Dynamic Allan variance of IFOS-500 IMU noise.

The following graphs depict the Dynamic Allan variance determined from the same data
as  Example 4 . The Allan variance for low cluster times indicates the presence of external
disturbances, as already observed in the spectrograms in  Example 6 .
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Example 6: Spectrogram of IFOS-500 IMU noise.

The following spectrograms have been determined from the same data as  Example 4  . The
sensor’s 𝑥-axis was pointing down, 𝑦 to true north, and 𝑧 to the east.
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(6.a) Accelerometer 𝑥 axis.
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(6.b) Gyroscope 𝑥 axis.
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(6.c) Accelerometer 𝑦 axis.
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(6.d) Gyroscope 𝑦 axis.
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(6.e) Accelerometer 𝑧 axis.
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(6.f) Gyroscope 𝑧 axis.
The environmental disturbances can be observed in these spectrograms at distinct frequencies.
The alternating spectrums at night and day times indicate an artificial disturbance, in this
case probably building utilities placed in the basement of the institute’s building. While the
disturbances at around 91Hz can be observed on all axes, the oscillations around 19Hz
and 22Hz differ in amplitude between the north and east-oriented axes. This indicates the
existence of at least two primary and spatially distributed disturbance sources.
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Result 4: Sensor Noise Identification.

The characterization of inertial sensor noise using the Allan variance analysis is performed
at constant or even zero input. However, environmental disturbances and model errors add
temporal variations to the sensor’s input that, in general, cannot be distinguished from the
sensor’s noise:

• Seismic background noise and temporal variations of gravity and the Earth’s rotation
limit the accuracy of the parameter identification of sensor noise processes. This is
especially true for the frequency range above 1Hz, which is dominated by man-made
vibrations.

• Isolated test pads can reduce the disturbances above about 10Hz by orders of magni-
tude. However, the resonance effects of the coupling between test-pad and soil can
also slightly worsen the accuracy parameter estimation.

• Sensor noise correlated across multiple axes cannot be separated from environmental
disturbances without additional information. Changing the sensor’s orientation helps
separate (ideally) space-fixed disturbances from  IMU fixed noise.

• Man-made disturbances tend to vary with time and can be detected in spectrograms
or the dynamic Allan variance. Harmonic disturbances may be removed by signal
processing, or actions are taken to reduce the disturbances.

For sensor noise characterization, the environmental disturbances at the test location should
be surveilled, and actions should be taken to isolate them from man-made disturbances.
Furthermore, the tested sensors’ noise signals should be examined for potential environmental
disturbances that can be correlated with human activities or natural effects, e.g., weather.
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4.4.2.4. Static Bias Testing Error Budget

A sensor’s bias is defined as its output at zero input. During static testing, this can be achieved
by aligning an accelerometer’s input axis perpendicular to the local plumb line or a gyro’s input
axis to the local east-west direction, as described in scenario I. Averaging over the sensor’s
signal yields:

�̃�𝑖𝑏 = 𝑆0 ⋅ 𝛿𝜔𝑖𝑏,𝑥 +𝑀𝐺,𝑦 �̂�𝑖𝑒 sin(𝜙) + 𝑏𝐺 + 𝜈𝐺 (4.200)

̃𝑓𝑏 = 𝑆0 ⋅ 𝛿𝑓𝑏,𝑥 +𝑀𝐵,𝑧 ̂𝛾0 + 𝑏𝐴 + 𝜈𝐴 (4.201)

Ideally, averaging over the sensor’s signal at zero-input simply leaves the sensor’s bias 𝑏𝐺
respectively 𝑏𝐴. In reality input errors and sensor noise do not entirely average out but leave a
residual error. Additionally, the sensor’s internal misalignment adds a constant error, which
cannot be distinguished from the sensor’s bias in the sensor’s output from a single static test.
Note that the sensor’s internalmisalignment𝑀𝐺,𝑦,𝑀𝐵,𝑧 can be estimated inmulti-position tests,
eliminating their contribution to the bias estimate. This can be as simple reversal measurement,
where the the sensor is rotated about 180° along the tested input axis, see  Subsection 4.4.3 .

In addition to the input errors, the sensor’s intrinsic noise also corrupts the sensor’s bias
estimation. Having performed the noise characterization from the static tests, the existing
noise processes and their sensor output parameters are known. As discussed in  Section 4.3  , the
variance for the bias instability and rate randomwalk processes is indeterminate. This prevents
stating the uncertainty of the bias estimate in the likely presence of these noise processes. The
bias determined from an arbitrary cluster thus contains the deterministic parts of the sensor
bias and an unknown contribution caused by the low-frequency noise. However, this is more
of a theoretical problem as it is not necessary to determine a theoretical bias that is valid at
all times. Instead, the mean value just determined from the test data is set as the bias for the
moment, as it indeed represents the best-fit bias at least for the considered time frame. The
principle is illustrated in  Figure 4.28  . The uncertainty of this bias is then only affected by the
other noise processes that have a well-defined variance. The bias estimate is the best possible
fit to eliminate the deterministic sensor bias from the sensor’s current output for the moment.
Still, it will become more and more uncertain with time due to the bias instability and rate
randomwalk processes. Due to in-run drifts and turn-on bias variations, the determined bias is
only valid for a single run of the sensor or even just fractions of it, which motivates the online
calibration of the sensor’s biases.

The contributions of the different error sources to the bias estimate during static sensor
testing are illustrated in  Table 4.8 for the gyroscopes and  Table 4.9 for the accelerometers.

For the gyroscope, the plots indicate that the heading error of the tested sensor axis dominates
the error budget. The uncertainty caused by variations of the Earth’s rotation rate and direction
results in a bias standard deviation of less than 1 ⋅ 10−5 °/h and is hardly affected by averaging.
In contrast, the errors from the test-pad motion can be reduced by one order of magnitude by
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Figure 4.28.: Bias determination in the presence of rate random walk noise. Averaging over a
cluster leads to a momentary bias estimate. Vividly, a random walk’s variance grows
with time, and the position of the taken samples in the random walk process is
unknown. Therefore, the mean of a sample cluster is arbitrarily defined as bias.

Table 4.8.: Gyro static testing bias error budget for varying averaging time. The laboratory is located
at 𝜙 = 45°
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averaging for multiple hours. However, the resulting bias standard deviation is already for short
averaging times in the range of 1 ⋅ 10−4 °/h. While the leveling errors result in errors below
1 ⋅ 10−4 °/h (1𝜎), a north alignment error of just 0.01° limits the bias accuracy to worse than
1 ⋅ 10−3 °/h and thus to navigation grade sensors. However, with a better heading alignment, a
strategic grade sensor bias uncertainty in the range of 1 ⋅ 10−4 °/h can be achieved and is then
limited by the test-pad motion.
In contrast, the error budget for accelerometer static bias tests indicates that a strategic grade

level of accuracy can be easily achieved, even for short averaging times. For the analyzed
test case, the temporal variations of the local gravity contribute less than 1 ⋅ 10−7 g to the bias
standard deviation, which can be further reduced by averaging over multiple hours. Similar
applies to the test-pad motion. The resulting bias standard deviation is about 1 ⋅ 10−5 g and
can be further reduced for long averaging times. As expected, heading and consequently north
alignment error does not affect the accelerometer bias, but leveling errors are crucial. However,
as a leveling accuracy in the range of few asec is not a problem, a bias standard deviation of
less than 10 µg seems possible for a typical setup.

Result 5: Bias Determination from Single-Position Static Tests.

The determination of an inertial sensor’s bias from a single-position static test provides the
most simple test procedure, but suffers from multiple drawbacks:

• A single static test does not allow the determination of the sensor bias independently of
the sensor’s internal misalignment.

• Test-pad motion and temporal variations of the Earth’s angular rate and gravity represent
a lower bound for the estimation accuracy of the sensor bias.

• Accelerometer tests are susceptible to leveling errors, while the north-alignment errors
dominate the gyroscope tets.

In total, the single-position test allows the determination of the gyro bias at strategic grade
accuracy, while alignment errors and test-pad motions limit the testing of the accelerometer
bias to navigation grade accuracy.
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Table 4.9.: Accelerometer static testing bias error budget for varying averaging time. The laboratory
is located at 𝜙 = 45°
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4.4.3. Reversal Position Static Tests

As discussed in  Subsection 4.4.2.4 , a sensor’s bias cannot be determined independently from
the sensor’s misalignment in a single position static test. This section demonstrates how a
sensor’s linear  SF , misalignment angles, and bias can be determined independently from each
other by using reversal measurements of the local Earth’s angular rate and gravity as input.
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Figure 4.29.: Positions for static revereal measurements.

As depicted in  Figure 4.29  , two reversal measurements are used to determine the sensor
parameters. For the depicted tests, the vertical component of the Earth’s local gravity is used as
input and flipped so that the other inputs cancel out. This orienation is suitable for laboratories
at latitudes |𝜙| ≥ 45°. For lower latitudes, the local horizontal component of the Earth’s angular
rate should be used as a reference input, and the depicted orientations need to be modified
accordingly.

4.4.3.1. Test Description and Parameter Estimation

Analogeously to  Subsection 4.4.2.4  , a simple sensor error model with linear scale factor 𝑆,
misalignments𝑀 and additive bias 𝑏 is used. The analysis will be exemplarily conducted for
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the sensors’s 𝑥-axis:

�̃�𝑖𝑏,𝑥 = 𝑆𝐺𝜔𝑖𝑏,𝑥 +𝑀𝐺,𝑥𝑦𝜔𝑖𝑏,𝑦 +𝑀𝐺,𝑥𝑧𝜔𝑖𝑏,𝑧 + 𝑏𝐺 + 𝜈𝐺 (4.202)
̃𝑓𝑏,𝑥 = 𝑆𝐴𝑓𝑏,𝑥 +𝑀𝐴,𝑥𝑦𝑓𝑏,𝑦 +𝑀𝐴,𝑥𝑧𝑓𝑏,𝑧 + 𝑏𝐴 + 𝜈𝐴 (4.203)

The sensor errors of the above error model can be determined by taking the difference respec-
tively the arithmetic mean of two averaged measurements. For the gyroscope, the  SF and
misalignment angles are determined as the difference between the two reversal measurements,
e.g., (1) and (2), divided by the ideal double input:

𝑆𝐺 =
�̃�(1)𝑖𝑏,𝑥 − �̃�(2)𝑖𝑏,𝑥

2 sin(𝜙)�̂�𝑖𝑒
𝑀𝐺,𝑥𝑦 =

�̃�(3)𝑖𝑏,𝑥 − �̃�(4)𝑖𝑏,𝑥

2 sin(𝜙)�̂�𝑖𝑒
𝑀𝐺,𝑥𝑧 =

�̃�(5)𝑖𝑏,𝑥 − �̃�(6)𝑖𝑏,𝑥

2 sin(𝜙)�̂�𝑖𝑒
(4.204)

For the bias estimate, the test orientations are designed to cancel out all nominal inputs when
adding the two averaged measurements (7) and (8):

𝑏𝐺 =
�̃�(7)𝑖𝑏,𝑥 + �̃�(8)𝑖𝑏,𝑥

2 (4.205)

Analogously the  SF and misalignment of the accelerometer are determined by subtracting two
reversal measurements, e.g., (1) and (2):

𝑆𝐴 =
̃𝑓(1)𝑏,𝑥 − ̃𝑓(2)𝑏,𝑥

2𝛾 𝑀𝐴,𝑥𝑦 =
̃𝑓(3)𝑏,𝑥 − ̃𝑓(4)𝑏,𝑥

2𝛾 𝑀𝐴,𝑥𝑧 =
̃𝑓(5)𝑏,𝑥 − ̃𝑓(6)𝑏,𝑥

2𝛾 (4.206)

Finally, the accelerometers bias is, again, the arithmetic mean of the signal averages of the two
symmetrical positions (7) and (8):

𝑏𝐴 =
̃𝑓(7)𝑏,𝑥 + ̃𝑓(8)𝑏,𝑥

2 (4.207)

Above idealized equations assume that the sensor’s noise 𝜈 ideally averages to zero during each
pose. In reality, the sensor noise does not average to zero but leaves a residual error in the
measurements. The effects of input errors and the sensor noise are discussed in the following
sections.

4.4.3.2. Effects of Sensor Noise

The two-position tests rely on the subtraction, respectively summation of the sensor output
averaged over each position. Hence, the correlation between these two averages becomes
essential for the resulting variance of the parameter estimate.
Using themethods described in  Subsection 4.3.0.2 , the 2×2 covariancematrix of the sensor’s

noise averaged over each position can be determined for the identified sensor noise processes.
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From this covariance matrix, here exemplarily given for position (1) and (2),

𝐐𝜈 = [
𝑄(1) 𝑄(1,2)

𝑄(1,2) 𝑄(2)
] (4.208)

the resulting scale factor estimation variance for the gyroscope errors caused by the sensor
noise can be easily determined to

𝜎2𝜔,𝑆 =
𝑄(1) − 2𝑄(1,2) + 𝑄(2)

(2 sin(𝜙)�̂�𝑖𝑒)
2 (4.209)

and for the accelerometers it can be determined from:

𝜎2𝑓𝑏,𝑆 =
𝑄(1) − 2𝑄(1,2) + 𝑄(2)

(2𝛾)2
(4.210)

The variance of the misalignment estimates is determined analogously using positions (3) and
(4), respectively, (5) and (6). The variance of the bias estimate is detrmined to:

𝜎2𝑆 =
𝑄(7) + 2𝑄(7,8) + 𝑄(8,8)

4 (4.211)

The resulting standard deviation of the parameter estimates with varying averaging time are
depicted in  Figure 4.30  and  Figure 4.31  for the typical sensor noise processes. The resulting
plots are normalized for the noise coefficients 𝑄, 𝑁, 𝐵 and 𝐾, specified in °/s respectivelymg.
The standard deviation of the cluster averages scales linearly with the noise coefficients and
can thus easily be scaled to the noise level of interest. In general, the effects of sensor noise
can be split into three different groups:

• The errors from quantization noise and angular/velocity random walk are drastically
decreased with increasing averaging time. These noise processes can be easily handled
and do not pose a practical limit to the sensor error estimation.

• The resulting variance from the bias instability is not affected by averaging for averaging
times higher than the bias instabilities time constant. Thus, it limits the estimation
accuracy that cannot be overcome.

• Rate/acceleration random walk causes an error that increases with the averaging time.
The same applies to a potential rate/acceleration ramp in the sensor’s output.

To minimize the effects of sensor noise on the parameter estimation, the averaging time should
be selected to minimize the sum of the effects of all noise processes. This is just the cluster
time 𝜏 at the minimum of the sensor’s Allan variance plot, as determined in  Subsection 4.4.2.3  .
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(a) Gyroscope scale factor and misalignment standard deviation.
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(b) Gyroscope bias standard deviation.

Figure 4.30.: Two-position static test gyroscope error variance from sensor noise for varying
averaging time 𝜏 per pose. The plots are scaled for a geodetic latitude of 𝜙 = 45°.

4.4.3.3. Gyroscope Test Error Model

The ideal gyroscope input is simply the ideally constant Earth’s angular rate �̂�𝑖𝑒, observed from
different orientations:

�̂�(𝑃)𝑖𝑏 = 𝐑(𝑃)
̂𝑏𝑝 𝐈𝑝𝑛𝐑𝑛𝑒�̂�𝑖𝑒 (4.212)

Introduction of error terms and linearization of the nominal input equations for the errors,
yields:

𝛿𝝎𝑖𝑏(𝑃) = 𝐑 ̂𝑏𝑝
(𝑃) (𝐈 ̂𝑝𝑛𝐑�̂�𝑒𝛿𝝎𝑖𝑒 + 𝛿𝝎𝑛𝑝) − [𝐑 ̂𝑏𝑝

(𝑃)𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍 ̂𝑏𝑏

− 𝐑 ̂𝑏𝑝
(𝑃) [𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍 ̂𝑝𝑝 − 𝐑 ̂𝑏𝑝

(𝑃)𝐑 ̂𝑝𝑛 [𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍�̂�𝑛
(4.213)

In this scenario, the sensor’s input is affected by variations of the Earth’s angular rate, test-pad
motion and static orientation errors of the test-pad and the sensor.

4.4.3.4. Gyroscope Test Error Budget

Based on the derived error sensitivities and error models from  Section 4.2  , the error budgets
for linear scale factor, misalignment, and bias are deterined.

264



4.4. Laboratory Testing Error Budget

100 101 102 103 104 105
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102

M
A
(1
𝜎)

in
(m
ra
d)

100 101 102 103 104 105
10−3
10−2
10−1
100
101
102
103
104
105

1 s
10 s

100 s

1000 s

𝜏𝑐
𝑄 = 1mg ⋅ s

𝑁 = 1mg/√Hz

𝐵 = 1mg

𝐾 = 1mg√Hz

1min 5min 1 h 12 h

Averaging time 𝜏 in (s)

SF
(1
𝜎)

in
(p
pm

)
consumer tactical intermediate navigation strategic

(a) Accelerometer scale factor and misalignment standard deviation.
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(b) Accelerometer bias standard deviation.

Figure 4.31.: Two-position static test accelerometer error variance from sensor noise for varying
averaging time 𝜏 per pose.

The error budget for the  SF estimate is depicted in  Table 4.10  . Due to the change in orien-
tation, the sensor’s alignment to the test plate has no first-order effect. However, this does
not hold for the laboratory alignment errors. For the considered averaging times, the Earth’s
angular rate variations can be neglected and thus result in a constant uncertainty in the  SF 

estimate. In contrast, the errors from test-pad motion can be reduced by two magnitudes when
averaging over multiple hours.

Due to the construction of the misalignment test orientations, the error budgets for the two
misalignment angles  Table 4.11  and  Table 4.12  are equal. Sensor alignment errors are directly
transferred into errors of themisalignment estimation, which is reasonable considering that the
misalignment represents orientation errors of the axes within the sensor’s package. Laboratory
alignment errors, however, are canceled out by the reversal of the sensor’s orientation. The
uncertainty of the misalignment estimate from both the variations of the Earth’s angular
rate and the test-pad motion increase with the averaging time. However, the test-pad motion
decreases when averaging about 10 h. In summary, the misalignment estimates from reversal
tests are dominated by sensor alignment errors. The errors introduced by the environment are
in the range of 1 µrad, which would allow testing up to strategic grade sensors.

The gyroscope’s bias estimate displays a similar dependency on the variations of the Earth’s
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Table 4.10.: Reversal measurement gyro test scale factor estimation error budget for varying
averaging time. The laboratory is located at 𝜙 = 45°
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1min 5min 1 h 12 h
10−1

100

101

SF
1𝜎

,(
pp
m
)

Laboratory
alignment
see  Subsection 4.2.7 ,
 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
100

100.5

101

SF
1𝜎

,(
pp
m
)

Sensor alignment
• Orientation error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
−1

−0.5

0

0.5

1

Cluster averaging time 𝜏 in (s)

SF
1𝜎

,(
pp
m
)
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Table 4.11.: Reversal measurement gyro test axis misalignment 𝑀𝑥𝑦 estimation error budget for
varying averaging time. The laboratory is located at 𝜙 = 45°

.

Earth rotation
variations
see  Subsection 4.2.4 

• using WGS84 as
reference

• unknown/random
time 1min 5min 1 h 12 h

10−9
10−8
10−7
10−6
10−5
10−4
10−3

M
A

y
1𝜎

,(
m
ra
d)

consumer tactical intermediate navigation strategic

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−4

10−3

10−2

M
A

y
1𝜎

,(
m
ra
d)

Laboratory
alignment
see  Subsection 4.2.7 ,
 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
−1

−0.5

0

0.5

1

M
A

y
1𝜎

,(
m
ra
d)

Sensor alignment
• Orientation error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−1

100

Cluster averaging time 𝜏 in (s)

M
A

y
1𝜎

,(
m
ra
d)
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Table 4.12.: Reversal measurement gyro test axis misalignment 𝑀𝑥𝑧 estimation error budget for
varying averaging time. The laboratory is located at 𝜙 = 45°

.

Earth rotation
variations
see  Subsection 4.2.4 

• using WGS84 as
reference

• unknown/random
time 1min 5min 1 h 12 h

10−9
10−8
10−7
10−6
10−5
10−4
10−3

M
A

z
1𝜎

,(
m
ra
d)

consumer tactical intermediate navigation strategic

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−4

10−3

10−2

M
A

z
1𝜎

,(
m
ra
d)

Laboratory
alignment
see  Subsection 4.2.7 ,

 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
−1

−0.5

0

0.5

1

M
A

z
1𝜎

,(
m
ra
d)

Sensor alignment
• Orientation error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−1

100

Cluster averaging time 𝜏 in (s)

M
A

z
1𝜎

,(
m
ra
d)
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angular rates and the test-pad motion. As both local components of the Earth’s angular rate are
flipped, sensor alignment and laboratory alignment errors are altogether canceled out. This
bias estimate is not only independent of alignment errors but also from the sensor’s internal
misalignment. It thus provides a more accurate estimate than the single position test from
 Subsection 4.4.2.4  . However, incorporating two positions increases the effects of the Earth’s
angular rate and the test-pad motion.

Table 4.13.: Reversal measurement gyro test bias estimation error budget for varying averaging
time. The laboratory is located at 𝜙 = 45°

.

Earth rotation
variations
see  Subsection 4.2.4 

• using WGS84 as
reference

• unknown/random
time 1min 5min 1 h 12 h

10−10
10−9
10−8
10−7
10−6
10−5

Bi
as

1𝜎
,(
°/
h)

consumer tactical intermediate navigation strategic

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−6

10−5

10−4

Bi
as

1𝜎
,(
°/
h)

Laboratory
alignment
see  Subsection 4.2.7 ,

 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
−1

−0.5

0

0.5

1

Bi
as

1𝜎
,(
°/
h)

Sensor alignment
• Orientation error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
−1

−0.5

0

0.5

1

Cluster averaging time 𝜏 in (s)

Bi
as

1𝜎
,(
°/
h)

4.4.3.5. Accelerometer Test Error Model

Analogeously to the gyroscopes, the accelerometer’s ideal input is simply the local gravity,
observed under varying orientations:

̂𝒇𝑏 = 𝐑 ̂𝑏𝑝
(𝑃)𝐈 ̂𝑝𝑛𝜸𝑛(𝑃𝑏) (4.214)
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Linearization of the above ideal input equation for the error terms yields:

𝛿𝒇𝑏 = 𝐑 ̂𝑏𝑝
(𝑃)𝐈 ̂𝑝𝑛𝛿𝜸𝑛 − 𝐑 ̂𝑏𝑝

(𝑃)𝐈 ̂𝑝𝑛 ( ̂𝜸𝑛(𝑃𝑏)×) 𝛿𝜳𝑛�̂�

− 𝐑 ̂𝑏𝑝
(𝑃) (𝐈 ̂𝑝𝑛 ̂𝜸𝑛(𝑃𝑏)) × 𝛿𝜳𝑝 ̂𝑝 − (𝐑 ̂𝑏𝑝𝐈 ̂𝑝𝑛 ̂𝜸𝑛(𝑃𝑏)) × 𝛿𝜳𝑏 ̂𝑏

+ 𝐑 ̂𝑏𝑝
(𝑃)𝐈 ̂𝑝𝑛�̂�2

𝑖𝑛𝛿𝒓𝑛(𝑃𝑝) + 𝐑 ̂𝑏𝑝
(𝑃)𝐈 ̂𝑝𝑛�̂�𝑖𝑛𝛿 ̇𝒓𝑛(𝑃𝑝) + 𝐑 ̂𝑏𝑛

(𝑃)𝛿 ̈𝒓𝑛(𝑃𝑝)

(4.215)

Again, the reference input to the accelerometers is corrupted by variations of the local gravity,
test-pad motion and the orientation errors. The last line in the above equation is, in total,
represented by the test-pad motion reference models derived in  Subsection 4.2.8 .

4.4.3.6. Accelerometer Test Error Budget

As the accelerometer tests are performed using the same orientations as the gyroscope tests,
the resulting error budgets display a similar overall structure.
The error budget for the accelerometer’s linear scale factor is given in  Table 4.14  . The effects

of test-padmotion and variations of the local gravity can be reduced by increasing the averaging
time. Already for short averaging times, the achieved  SF accuracy is better than 1 ppm. The
effects of laboratory and sensor alignment errors are entirely canceled out.
As with the gyroscope tests, the error budgets for the two misalignment angles are equal.

The misalignment inaccuracy from test-pad motion can be decreased by averaging. However,
the effects of the local gravity variations, mainly due to tides, increase up to about 3 h and
display a periodic decrease for higher averaging times. Due to the symmetric poses, the effects
of laboratory alignment errors cancel out. Again, the sensor misalignment errors are directly
transferred into errors of the misalignment estimates. As with the gyroscope tests, the resulting
overall misalignment error from the environmental disturbances is below 1 µrad.
The error budget for the acceleromter’s bias estimate is depicted in  Table 4.17  . The effects of

test-pad motion on the bias estimate are reduced by two orders of magnitude when averaging
more than a fewminutes. As for the misalignment estimates, the effects from gravity variations
increase with averaging times up to 3 h and decrease periodically for longer averaging times. In
summary, the errors of the bias estimate from environmental errors are easily below 1 µg and
thus allow the testing of strategic grade sensors. Again, the errors from both laboratory and
sensor alignment cancel out, and the bias estimate is also independent of the sensors’ internal
misalignment errors.
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Table 4.14.: Reversal measurement accelerometer test scale factor estimation error budget for
varying averaging time. The laboratory is located at 𝜙 = 45°

.

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−2

10−1

100

101

SF
1𝜎

,(
pp
m
)

consumer tactical intermediate navigation strategic

Gravity variations
see  Subsection 4.2.5 

• tides from Sun and
Moon

• other planets
neglected

1min 5min 1 h 12 h
10−2

10−1

SF
1𝜎

,(
pp
m
)

Laboratory
alignment
see  Subsection 4.2.7 ,
 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
−1

−0.5

0

0.5

1

SF
1𝜎

,(
pp
m
)

Sensor alignment
• Orientation error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
−1

−0.5

0

0.5

1

Cluster averaging time 𝜏 in (s)

SF
1𝜎

,(
pp
m
)
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Table 4.15.: Reversal measurement accelerometer test axis misalignment 𝑀𝑥𝑦 estimation error
budget for varying averaging time. The laboratory is located at 𝜙 = 45°

.

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−4

10−3

10−2

10−1

M
A

y
1𝜎

,(
m
ra
d)

consumer tactical intermediate navigation strategic

Gravity variations
see  Subsection 4.2.5 

• tides from Sun and
Moon

• other planets
neglected

1min 5min 1 h 12 h
10−8
10−7
10−6
10−5
10−4

M
A

y
1𝜎

,(
m
ra
d)

Laboratory
alignment
see  Subsection 4.2.7 ,

 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
−1

−0.5

0

0.5

1

M
A

y
1𝜎

,(
m
ra
d)

Sensor alignment
• Orientation error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−1

100

Cluster averaging time 𝜏 in (s)

M
A

y
1𝜎

,(
m
ra
d)
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Table 4.16.: Reversal measurement accelerometer test axis misalignment 𝑀𝑥𝑧 estimation error
budget for varying averaging time. The laboratory is located at 𝜙 = 45°

.

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−4

10−3

10−2

10−1

M
A

z
1𝜎

,(
m
ra
d)

consumer tactical intermediate navigation strategic

Gravity variations
see  Subsection 4.2.5 

• tides from Sun and
Moon

• other planets
neglected

1min 5min 1 h 12 h
10−8
10−7
10−6
10−5
10−4

M
A

z
1𝜎

,(
m
ra
d)

Laboratory
alignment
see  Subsection 4.2.7 ,

 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
−1

−0.5

0

0.5

1

M
A

z
1𝜎

,(
m
ra
d)

Sensor alignment
• Orientation error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−1

100

Cluster averaging time 𝜏 in (s)

M
A

z
1𝜎

,(
m
ra
d)
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Table 4.17.: Reversal measurement accelerometer test bias estimation error budget for varying
averaging time. The laboratory is located at 𝜙 = 45°

.

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−8
10−7
10−6
10−5
10−4

Bi
as

1𝜎
,(
g)

consumer tactical intermediate navigation strategic

Gravity variations
see  Subsection 4.2.5 

• tides from Sun and
Moon

• other planets
neglected

1min 5min 1 h 12 h
10−11
10−10
10−9
10−8
10−7

Bi
as

1𝜎
,(
g)

Laboratory
alignment
see  Subsection 4.2.7 ,

 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
−1

−0.5

0

0.5

1

Bi
as

1𝜎
,(
g)

Sensor alignment
• Orientation error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
−1

−0.5

0

0.5

1

Cluster averaging time 𝜏 in (s)

Bi
as

1𝜎
,(
g)

Result 6: Reversal Position Static Tests

Reversal position tests allow the independent determination of a sensor’s linear scale factor,
misalignment, and bias. Here, the following observations were made:

• The determination of gyroscope scale factor and misalignment angles from static tests
is limited to high accuracy sensors that can use the weak signal of the Earth’s angular
rate as reference input. The static tests of the accelerometers do not require a specific
sensor grade, as the local gravity is typically a sufficiently strong signal.

• Sensor alignment angles during testing are directly transferred into errors of the sensor’s
misalignment estimate.

• To minimize the effects of sensor noise and drift, the averaging time of each position
should be set to the global minimum of the sensor’s Allan variance plot.

• The combination of two subsequent measurements yields an increased bias uncertainty
from variations of the local gravity and the variations of the Earth’s angular rate.

For the gyroscope,  SF and  MA can be tested to strategic grade accuracy, while the bias
accuracy reaches navigation grade. Similar results can be achieved for the accelerometers,
where the  SF reaches close to strategic-grade accuracy.
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4.4.4. Scale Factor Test-Series

Scale-factor tests, also called rate transfer tests, investigate the relation of the sensor’s output
to its input over the whole input range. During scale factor tests, the sensors are subjected to a
series of different inputs (e.g., angular rates), and the resulting output is recorded. Gyroscope
scale factor tests require at least a single-axis rate table. Accelerometer scale factor tests typically
require a centrifuge to generate loads of more than 1 g. The input is typically a finite number
of points (poses) distributed over the sensor’s nominal input range. This test determines the
relationship between the static input and the sensor’s output, as illustrated in  Figure 4.32  . In
general, there is a non-linear relation between input and output. In the case of hysteresis
effects, the scale factor can also depend on the previous inputs [  14 , p. 226]. Furthermore, the
input-output relation is actually frequency-dependent, which is however not considered at the
classical scale factor tests. These determine the scale factors at stationary conditions only.

-max 0 +max
-max

0

+max

forward run

backward run

ideal mapping

bias
SF

Sensor input

Se
ns

or
ou

tp
ut

Figure 4.32.: Non-linear input-output relation and hysteresis.

To reduce external disturbances and the effects of sensor noise, each data point in the scale
factor test series is determined by holding the constant input for a given time and averaging
the sensor’s output. Based on the data sets obtained from the scale factor test series, a nominal
input-output mapping function is determined by fitting, e.g., a polynomial to the data points.
In the most simple form, a simple linear model is used. In this case, the line’s slope is the
constant scale factor. Asymmetries in the test data may be handled by using different models
or at least parameters for positive and negative inputs [ 22 , p. 252].

The residuals of the fitted model are usually used to describe the scale factor errors, in the
case of a linear model also called scale factor linearity error. This may be specified either as
 Root Mean Square Error (RMSE) or as the maximum error. The different errors for positive
and negative inputs may also be used to describe the sensor’s residual asymmetry errors. The
scale factor tests should be repeated at different environmental conditions, to determine the
scale factor’s stability and environmental dependency [ 10 ,  25 ,  12 ].
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4.4.4.1. Test Description and Parameter Estimation

The scale factor tests aim at determining an unknown scaling function 𝑠() thatmaps the sensor’s
input to its output. A simple single-axis measurement model that incorporates the sensor bias
𝑏𝐺, noise 𝜈𝐺, linear misalignment and non-linear scaling function 𝑠(𝜔), is given as:

�̃�𝑖𝑏 = 𝑠 (�̂�𝑖𝑏,𝑥 + 𝛿𝜔𝑖𝑏,𝑥) + 𝑀𝐺,𝑦�̂�𝑖𝑏,𝑦 +𝑀𝐺,𝑧�̂�𝑖𝑏,𝑧 + 𝑏𝐺 + 𝜈𝐺 (4.216)
̃𝑓𝑏 = 𝑠 ( ̂𝑓𝑏,𝑥 + 𝛿𝑓𝑏,𝑥) + 𝑀𝐺,𝑦 ̂𝑓𝑏,𝑦 +𝑀𝐺,𝑧 ̂𝑓𝑏,𝑧 + 𝑏𝐴 + 𝜈𝐴 (4.217)

Above used misalignment terms,𝑀 are a linearization of the (non-linear) scale factor function
for the off-axis components of the input

𝑀𝐺,𝑦 =
𝜕𝑠 (�̂�)
𝜕�̂�𝑖𝑏,𝑦

𝑀𝐺,𝑧 =
𝜕𝑠 (�̂�)
𝜕�̂�𝑖𝑏,𝑧

(4.218)

as the misalignment of the axis causes a physical pick-off of the signals orthogonal to the
nominal input axis. Therefore, these components are also affected by the (non-linear) scale
factor function 𝑠():

�̃�𝑖𝑏 = 𝑠 (�̂�𝑖𝑏,𝑥 + 𝛿𝜔𝑖𝑏,𝑥 − sin(𝛷 ̂𝑏𝑏) �̂�𝑖𝑏,𝑦 + sin(𝛩 ̂𝑏𝑏) �̂�𝑖𝑏,𝑧) + 𝑏𝐺 + 𝜈𝐺 (4.219)
̃𝑓𝑏 = 𝑠 ( ̂𝑓𝑏,𝑥 + 𝛿𝑓𝑏,𝑥 − sin(𝛷 ̂𝑏𝑏) ̂𝑓𝑏,𝑦 + sin(𝛩 ̂𝑏𝑏) ̂𝑓𝑏,𝑧) + 𝑏𝐴 + 𝜈𝐴 (4.220)

In the following analysis, the misalignment errors will be considered in the form of the angles
𝛷 ̂𝑏𝑏, 𝛩 ̂𝑏𝑏. Typically, the static input-output mapping function is approximated as a polynomial:

𝑠(𝜔) = 𝑐𝑝𝜔𝑝 +⋯+ 𝑐1𝜔 + 𝑐0 (4.221)

For clarity, the following equations refer only to the gyroscope measurements. However,
they are equally valid for accelerometer measurements. Note that the sensor bias in ( 4.219 )
and ( 4.220 ) can either be expressed by 𝑐0 or 𝑏𝐺. The classical approach is to determine the
polynomial coefficients from a least-squares-estimate [  26 ]. The scale factor test series returns a
set of 𝑛 equations that link the averaged sensor output �̃�𝑖 with the (ideal) static inputs �̂�𝑖 by
the polynomial coefficients 𝑐𝑝 to 𝑐0:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̃�1

�̃�2

⋮

�̃�𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟
̄𝒚

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂�𝑝1 �̂�𝑝−11 … �̂�1 1

�̂�𝑝2 �̂�𝑝−12 … �̂�2 1

⋮ ⋮ ⋮ ⋮

�̂�𝑝𝑛 �̂�𝑝−1𝑛 … �̂�𝑛 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

𝐇

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑐𝑝

𝑐𝑝−1

⋮

𝑐1

𝑐0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝒄

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜈1

𝜈2

⋮

𝜈𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟

𝝂

(4.222)
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The standard approach to solving the above over-determined system of equations is the classical
least-squares fit, here expressed using the pseudo-inverse of 𝐇 [ 72 , p. 781]:

̂𝑐 = (𝐇⊺𝐇)−1𝐇⊺ ̃𝒚 (4.223)

𝐏 ̂𝑐 ̂𝑐 = (𝐇⊺𝐇)−1𝐇⊺𝐐𝜈𝐇(𝐇⊺𝐇)−⊺ (4.224)

Such a least-squares estimation of a non-linear static process, however, is only consistent if
certain assumptions are met [ 170 , p. 212]:

• The input signal must be exactly measurable, which means𝐇 is error free.

• det (𝐇⊺𝐇) ≠ 0.

• The measurement error of 𝑦 is stationary and zero-mean.

• The input signals, and consequently𝐇, are independent of the measurement errors.

The first assumption neglects the sensor’s input errors, which are environmental disturbances
and rate table errors. This assumption can be justified if the sensor’s noise is much higher than
the input errors. However, this assumption is not necessarily met for high-accuracy sensors. In
this case, an errors-in-variables approach, like total-leas-squares [  171 ], can be used to consider
the input uncertainty and thus improve the estimation consistency. Additionally, the input
errors are correlated due to the slow noise processes in the environmental disturbances. As the
rate table errors may also depend on the commanded angular rate, the magnitude of the input
errors may differ for each data point. Furthermore, also the output errors are non-stationary.
As discussed before, the variances of, e.g., bias instability noise grows with time, so the cluster
averages’ uncertainty increases with each position of the scale factor test series.
Although the requirements for a consistent estimation are violated, the classical least-squares

estimate is still the standard approach for scale factor (function) estimation [  26 ]. Suppose
the scale factor polynomial coefficients are estimated using the classical (and non-weighted)
least-squares. In that case, the estimates are not only sub-optimal, but also the covariance
estimate ( 4.224 ) is too low. Using the linearization of the estimated scale factor function 𝑠(𝜔),
the contribution of the input errors can be included to get an approximation of the parameter
estimate’s total covariance 𝐏 ̂𝑐 ̂𝑐:

𝐏 ̂𝑐 ̂𝑐 = (𝐇⊺𝐇)−1𝐇⊺ [𝐐𝜈 + (
𝜕 ̃𝒚
𝜕𝝎𝒊𝒃

)|||
̂𝑐
𝐐𝛿𝜔𝑖𝑏

(
𝜕 ̃𝒚
𝜕𝝎𝒊𝒃

)|||

⊺

̂𝑐
]𝐇 (𝐇⊺𝐇)−⊺ (4.225)

where 𝐏𝜈 is the covariance matrix of the averaged sensor noise and 𝐏𝛿𝜔𝑖𝑏𝛿𝜔𝑖𝑏
the covariance of

the averaged input disturbances for each signal cluster of the scale factor test series.
Before discussing the errors that form above covariance matrices, some relations and depen-

dencies of the least-squares fitting should be noted:

1. Number of poses. In the classical least-square estimation with uncorrelated measure-
ment errors for each position, the estimation variance decreases with the number of
positions. For realistic sensor noise, however, the cluster averages are correlated.
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2. Correlation of cluster means. The correlation between the position averages affects
how the measurement uncertainty is distributed on the scale factor and bias estimates.
The higher the correlation, the more the noise resembles a constant error which corrupts
the bias estimate, while the scale factor estimate is less affected by the noise. Conse-
quently, a high correlation between the clusters is desired for a scale factor test series.
An optimal position length (cluster time) can thus be determined from the minimum
of the Allan variance plots, which corresponds to a maximum correlation between the
cluster means.

3. Maximum input rates. The sensor’s measurement noise is assumed to be widely
independent of the input. Increasing the input rates of the test positions thus yields an
immediate increase in the signal-to-noise ratio and thus the accuracy of the scale factor
estimate.

4.4.4.2. Effects of Sensor Noise

For the scale factor test, the estimation depends on the chosen scale factor polynomial to be
estimated and the number and magnitudes of the applied angular rates. A universal error
budget for the sensor noise can thus not be given. However, the general effects of sensor noise
processes on the estimation accuracy are similar and differ in the scaling only. An example
of the effects of sensor noise on a quadratic and linear  SF and the bias estimation from a  SF 

test series is depicted in  Figure 4.33  . The general effect of the different sensor noise processes
on the estimation results is very similar to the behavior already discussed for the reversal
measurement tests in  Subsection 4.4.3  . The graphs for the bias estimate are equal to the ones of
the static reversal tests. For all parameters, a variation of the effects of the bias instability can be
observed for averaging times smaller than the bias instability’s time constant. Independent of
this ripple, the bias instability poses again the already known limit for the estimation accuracy
that cannot be reduced by averaging.
Since the sensor’s noise is widely independent of the applied angular rate, the signal-to-noise

ratio for the scale factor estimation can be easily improved by increasing the applied angular
rates.
As discussed before, the effect of long-term drift like bias-instability and rate random walk

grows with the test duration. This introduces additional bias-like errors to the pose averages
that increasingly deviate from the sensor’s initial bias and thus disturb the scale factor esti-
mation. This effect can be considered by using the weighted least-squares estimation, where
the weighting matrix is the inverse of the cluster’s noise covariance matrix. The effect is
demonstrated in  Example 7 .
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(a) Gyroscope quadratic scale factor standard deviation.
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(b) Gyroscope linear scale factor standard deviation.
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Figure 4.33.: Scale-factor test series gyroscope error variance from sensor noise for varying
averaging time 𝜏 per pose. The graphs depict an example  SF test series with 6
positions at rates of [1, 5, 10, 20, 100, 200]°/s.
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Example 7: The effect of gyroscope drift on the scale factor estimation

This example illustrates the effect of long-term gyroscope drift on the scale factor test. To
demonstrate the effect of long-term drift, the test scenario with an overemphasized long-term
drift is created:

Angular rates [2, 10, 50, 100, 150, 200]°/s
Cluster time 900 s
Angular  RW 1 ⋅ 10−3 °/(√h)
Bias instability 1 °/h, 𝑇𝑐 = 100 s
Rate  RW 100 °/h3/2

Rate ramp 1000 °/h2

True  SF 1.1
True bias 0.2 °/s

⇒ 𝐐𝜈 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.1 2.2 3.3 4.4 5.4 6.5
2.2 4.4 6.6 8.7 10.8 12.9
3.3 6.6 9.9 13.1 16.2 19.4
4.3 8.7 13.1 17.4 21.6 25.9
5.4 10.8 16.2 21.6 27.0 32.3
6.5 12.9 19.4 25.9 32.3 38.8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(°/h)2

The resulting input rates and sensor outputs are depicted below. A Monte-Carlo simulation
with 1000 runs has been performed to determine the error statistics of the scale factor and
bias estimation error. Note that the errors in the scatter plot have been magnified by a factor
of 500 to make the variation of the pose averages visible.

0 20 40 60 80
0

100

200

Time in (s)

R
at

es
𝜔 𝑖

𝑏
in
(°
/s
)

Input Measurement

(7.a) Input and sample measurement realization.

0 50 100 150 200
0

100

200

Input 𝜔𝑖𝑏 in (°/s)

M
ea

su
re

m
en

t𝜔
𝑖𝑏

in
(°
/s
)

(7.b) Scale factor estimation.

Using the inverse noise covariance matrix as the weighting matrix, the higher uncertainty of
the later positions can be considered in the least-squares estimation. This puts less weight
on the last positions and considers the correlation between the position means. The resulting
error statistics are given below:

 SF error Bias error (°/s)

Mean Variance Mean Variance

Ordinary least-squares 1.61 ⋅ 10−3 2.20 ⋅ 10−8 6.40 ⋅ 10−2 1.72 ⋅ 10−4

Weighted least-squares 1.51 ⋅ 10−4 8.14 ⋅ 10−8 −3.55 ⋅ 10−2 1.31 ⋅ 10−4

Considering the long-term drift increases the estimation consistency of the scale factor by one
order of magnitude in this example. This effect increases with the overall test duration and is
thus especially relevant if sensors with high long-term drift (e.g.,  Micro-Electro-Mechanical
System (MEMS)  ) shall be tested for long times. The test duration should be chosen at the
minimum of the sensor’s  AVAR curve to minimize the variation of the cluster means.
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4.4.4.3. Gyroscope Test Error Model

Gyroscope scale factor tests require creating a series of constant angular rates and thus at least
a single rate-table axis (scenario I). In the case of a two or three-axis rate table, the additional
axes can be used to control the orientation of either the sensor or the rotation axis. Like this,
the rotation axis could be oriented so that the sensor’s axis is not affected by the Earth’s angular
rate. Suppose the scale factor tests are performed on a multi-axis rate table. In that case,
there are multiple possibilities to create the reference motion: One option is to use the table’s
inner axis to perform the scale factor rotation series and the other axes to align the input axis
perpendicular to the Earth’s angular rate and the local gravity (scenario II). In this case, the
sensor is subject to a sinusoidal acceleration input that may alter the sensor output in case of
an acceleration sensitivity. Therefore, other orientations should be preferred if an acceleration
sensitivity is expected.

inner axis

middle axis

outer axis

𝑁

𝐸
𝐷

Figure 4.34.: IFOS-500 IMU mounted to a three-axis rate table. The unit’s center of measurement
(actually of its accelerometer triad) is placed in the intersection point of all three-
rotation axes. The rate table’s inner and outer axes coincide in the depicted position.

For a three-axis table, the scale factor series may be performed with the table’s outer axis. In
this case, the sensor’s orientation relative to the reference rotation can be easily changed using
the two inner axes, eliminating the need for remounting the sensor triad (scenario III). These
three options are illustrated in  Figure 4.35 . The three test setups result in different kinematic
chains, errors, and sensitivities.
For the single vertical axis rate table, the kinematics yield the following ideal sensor inputs

�̂�I𝑖𝑏 and linearized input errors 𝛿𝝎
I
𝑖𝑏:

�̂�I𝑖𝑏 = 𝐑 ̂𝑏ᵆ (𝐑 ̂ᴂ𝑣(𝑡)𝐈 ̂𝑣𝑛𝐑�̂�𝑒�̂�𝑖𝑒) + �̂�𝑣ᵆ) (4.226)

𝛿𝝎I𝑖𝑏 = 𝐑 ̂𝑏ᵆ𝛿𝝎𝑣ᵆ + 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣(𝑡)𝐈 ̂𝑣𝑝 (𝐈 ̂𝑝𝑛𝐑�̂�𝑒𝛿𝝎𝑖𝑒 + 𝛿𝝎𝑛𝑝)

− [𝐑 ̂𝑏ᵆ (𝐑 ̂ᴂ𝑣(𝑡)𝐈 ̂𝑣𝑛𝐑�̂�𝑒�̂�𝑖𝑒) + �̂�𝑣ᵆ)] × 𝝍 ̂𝑏𝑏

− 𝐑 ̂𝑏ᵆ [𝐑 ̂ᴂ𝑣(𝑡)𝐈 ̂𝑣𝑛𝐑�̂�𝑒�̂�𝑖𝑒) + �̂�𝑣ᵆ] × 𝝍 ̂ᴂᵆ

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣(𝑡) [𝐈 ̂𝑣𝑛𝐑�̂�𝑒�̂�𝑖𝑒)] × 𝝍 ̂𝑣𝑣

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣(𝑡)𝐈 ̂𝑣𝑝 [𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)] × 𝝍 ̂𝑝𝑝

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣(𝑡)𝐈 ̂𝑣𝑛 [𝐑�̂�𝑒�̂�𝑖𝑒)] × 𝝍�̂�𝑛

(4.227)
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𝑁

𝐸
𝐷

input axis

(a) Single axis rate table, verti-
cally aligned (I).

𝑁

𝐸
𝐷

input
axis

(b) Rotation of the inner axis,
axis orientation set (II).

𝑁

𝐸
𝐷

input axis

(c) Rotation of the outer axis, sen-
sor orientation set (III).

Figure 4.35.: Possible instrument configurations for gyroscope scale factor testing.

For the single axis rate table, the tested sensor axis is aligned with the table’s vertical (𝑧𝑏) axis.
The angular rate error input to the sensor axis is thus given as:

�̂�I𝑖𝑏 = �̂�𝑣ᵆ + �̂�𝑖𝑒 sin𝜙 (4.228)

𝛿𝜔I𝑖𝑏 = 𝛿𝜔𝑣ᵆ − 𝑐𝑜𝑠(𝜙) cos(𝜆)𝛿𝜔𝑖𝑒,𝑥 − cos(𝜙) sin(𝜆)𝛿𝜔𝑖𝑒,𝑦 − sin(𝜙)𝛿𝜔𝑖𝑒,𝑧 + 𝛿𝜔𝑛𝑝,𝑧
+ cos𝛹ᵆ𝑣(𝑡)�̂�𝑖𝑒 cos𝜙 (𝛩 ̂𝑏𝑏 + 𝛩 ̂ᴂᵆ) + sin𝛹ᵆ𝑣(𝑡)�̂�𝑖𝑒 cos𝜙 (𝛷 ̂𝑏𝑏 + 𝛷 ̂ᴂᵆ)

+ �̂�𝑖𝑒 cos𝜙 (𝛩 ̂𝑣𝑣 + 𝛩 ̂𝑝𝑝 + 𝛩�̂�𝑛)

(4.229)

In case of a three-axis rate table, whose inner axis is aligned to the local west-east direction,
the ideal and error angular rates are given as:

�̂�II𝑖𝑏 = 𝐑 ̂𝑏ᵆ(𝐑 ̂ᴂ𝑣(𝑡) 𝐑 ̂𝑣𝑤⏟
𝐑𝑥(−90°)

𝐑�̂�𝑝⏟
𝐑𝑧(−90°)

𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) + �̂�𝑣ᵆ) (4.230)

𝛿𝝎II𝑖𝑏 = 𝐑 ̂𝑏ᵆ𝛿𝝎𝑣ᵆ + 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣𝛿𝝎𝑤𝑣 + 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣𝐑 ̂𝑣𝑤𝛿𝝎𝑝𝑤
+ 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣(𝑡)𝐑 ̂𝑣𝑤𝐑�̂�𝑝 (𝐈 ̂𝑝𝑛𝐑�̂�𝑒𝛿𝝎𝑖𝑒 + 𝛿𝝎𝑛𝑝)

− [𝐑 ̂𝑏ᵆ (𝐑 ̂ᴂ𝑣(𝑡)𝐑 ̂𝑣𝑤𝐑�̂�𝑝𝐑�̂�𝑒�̂�𝑖𝑒) + �̂�𝑣ᵆ)] × 𝝍 ̂𝑏𝑏

− 𝐑 ̂𝑏ᵆ [𝐑 ̂ᴂ𝑣(𝑡)𝐑 ̂𝑣𝑤𝐑�̂�𝑝𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒 + �̂�𝑣ᵆ] × 𝝍 ̂ᴂᵆ

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣(𝑡) [𝐑 ̂𝑣𝑤𝐑�̂�𝑝𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍 ̂𝑣𝑣

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣(𝑡)𝐑 ̂𝑣𝑤 [𝐑�̂�𝑝𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍�̂�𝑤
− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣(𝑡)𝐑 ̂𝑣𝑤𝐑�̂�𝑝 [𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍 ̂𝑝𝑝

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣(𝑡)𝐑 ̂𝑣𝑤𝐑�̂�𝑝𝐈 ̂𝑝𝑛 [𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍�̂�𝑛

(4.231)
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The ideal angular rate and the angular rate error along the tested axis is then determined to:

�̂�II𝑖𝑏 = �̂�𝑣ᵆ
𝛿𝜔II𝑖𝑏 = 𝛿𝜔𝑣ᵆ,𝑧 − sin(𝜆)𝛿𝜔𝑖𝑒,𝑥 + cos(𝜆)𝛿𝜔𝑖𝑒,𝑦 + 𝛿𝜔𝑛𝑝,𝑦

− �̂�𝑖𝑒 (− cos𝛹ᵆ𝑣(𝑡) cos𝜙 − sin𝛹ᵆ𝑣(𝑡) sin𝜙) (𝛷 ̂𝑏𝑏 + 𝛷 ̂ᴂᵆ)

− �̂�𝑖𝑒 (sin𝛹ᵆ𝑣(𝑡) cos𝜙 − cos𝛹ᵆ𝑣(𝑡) sin𝜙) (𝛩 ̂𝑏𝑏 + 𝛩 ̂ᴂᵆ)

− �̂�𝑖𝑒 sin𝜙 (𝛷 ̂𝑣𝑣 + 𝛷�̂�𝑤 − 𝛩 ̂𝑝𝑝 − 𝛷�̂�𝑛)

− �̂�𝑖𝑒 cos𝜙 (𝛩 ̂𝑣𝑣 + 𝛹�̂�𝑤 + 𝛹 ̂𝑝𝑝 − 𝛹�̂�𝑛)

(4.232)

For the third case, a three-axis rate table with the reference rotation created by the outer axis,
the ideal and error angular rates yield:

�̂�III𝑖𝑏 = 𝐑 ̂𝑏ᵆ𝐈 ̂ᴂ𝑤 (𝐑�̂�𝑝(𝑡)𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) + �̂�𝑝𝑤) (4.233)

𝛿𝝎III𝑖𝑏 = 𝐑 ̂𝑏ᵆ𝛿𝝎𝑣ᵆ + 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣𝛿𝝎𝑤𝑣 + 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣𝐑 ̂𝑣𝑤𝛿𝝎𝑝𝑤
+ 𝐑 ̂𝑏ᵆ𝐑 ̂𝑣𝑤𝐑�̂�𝑝(𝑡) (𝐈 ̂𝑝𝑛𝐑�̂�𝑒𝛿𝝎𝑖𝑒 + 𝛿𝝎𝑛𝑝)

− [𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣𝐑 ̂𝑣𝑤 (𝐑�̂�𝑝(𝑡)𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒 + �̂�𝑝𝑤)] × 𝝍 ̂𝑏𝑏

− 𝐑 ̂𝑏ᵆ [𝐑 ̂ᴂ𝑣𝐑 ̂𝑣𝑤 (𝐑�̂�𝑝(𝑡)𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒 + �̂�𝑝𝑤)] × 𝝍 ̂ᴂᵆ

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣 [𝐑 ̂𝑣𝑤 (𝐑�̂�𝑝(𝑡)𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒 + �̂�𝑝𝑤)] × 𝝍 ̂𝑣𝑣

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣𝐑 ̂𝑣𝑤 [𝐑�̂�𝑝(𝑡)𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒 + �̂�𝑝𝑤] × 𝝍�̂�𝑤
− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣𝐑 ̂𝑣𝑤𝐑�̂�𝑝(𝑡) [𝐈 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍 ̂𝑝𝑝

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣𝐑 ̂𝑣𝑤𝐑�̂�𝑝(𝑡)𝐈 ̂𝑝𝑛 [𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍�̂�𝑛

(4.234)

In this setup, the two inner gimbals are used to align different sensor axis with the rate table’s
outer rotation axis. Along the tested sensor axis, these nominal and linearized error angular
rates are given as:

�̂�III𝑖𝑏 = �̂�𝑝𝑤 + �̂�𝑖𝑒 sin𝜙 (4.235)

𝛿𝜔III𝑖𝑏 = 𝛿𝜔𝑝𝑤,𝑧 + 𝛿𝜔𝑣ᵆ,𝑧 + 𝛿𝜔𝑛𝑝,𝑧
− cos(𝜙) cos(𝜆)𝛿𝜔𝑖𝑒,𝑥 − cos(𝜙) sin(𝜆)𝛿𝜔𝑖𝑒,𝑦 − sin(𝜙)𝛿𝜔𝑖𝑒,𝑧
+ sin𝛹𝑤𝑝(𝑡)�̂�𝑖𝑒 cos𝜙 (𝛩 ̂𝑏𝑏 + 𝛩 ̂ᴂᵆ + 𝛩 ̂𝑣𝑣 + 𝛩�̂�𝑤)

+ cos𝛹𝑤𝑝(𝑡)�̂�𝑖𝑒 cos𝜙 (𝛷 ̂𝑏𝑏 + 𝛷 ̂ᴂᵆ + 𝛷 ̂𝑣𝑣 + 𝛷�̂�𝑤)

+ �̂�𝑖𝑒 cos𝜙 (𝛷 ̂𝑝𝑝 + 𝛩�̂�𝑛)

(4.236)

Note that the positioning noise of the inner axis 𝛿𝜔𝑣ᵆ,𝑧 contributes to the sensor’s input axis
only for the test positions for which the inner gimbal’s rotation axis coincides with the outer
axis.

A summary of the errors and the linearized error sensitivities for these three setups are given
in  Table 4.18  . Compared to the single-axis device, each additional rate table axis introduces
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additional orientation and rate errors. The combination of the error sensitivities and the
respective error model leads to three different cases of how the errors affect the averaged
angular rate reference used for the scale factor tests:

• Random constant errors observed from a static view. Thus a constant sensitivity is not
affected by averaging. These errors directly corrupt the reference angular rate used in
the scale factor tests.

• Random constant errors observed from a rotating view are reduced drastically during
averaging, see  Subsection 4.3.0.3  . Averaging over complete revolutions eliminates the
effect of these errors.

• Noise-like errors are affected by averaging. In most cases, averaging reduces the signal’s
variance. However, this is not necessarily the case, as discussed for the wide-sense
stationary processes, see  Section 4.3 . Observation of these errors from a rotating view
leads to a faster decrease in the cluster average’s variance. In contrast to constant errors,
averaging over complete revolutions does not entirely eliminate noise-like errors.

Using the linearized sensitivities and the appropriate error models from  Section 4.2 the
covariance matrices for each error term can be constructed for the given test scenario, that is,
the number of positions, the rates applied, and the duration of each position. As the different
errors are uncorrelated, the total covariance matrix of the test’s input rates is the sum of the
contributing error covariance matrices:

𝐏𝛿𝜔𝑖𝑏
= 𝐏𝛿𝜔𝑖𝑒

+ 𝐏𝛩�̂�𝑛
+ 𝐏𝛷�̂�𝑛 + 𝐏𝛹�̂�𝑛 +… (4.237)

where each error 𝑥 contributes the covariance matrix of its position averages, including the
linearized sensitivities:

𝐏𝑥 =
⎡
⎢
⎢
⎢
⎢
⎣

𝑃𝑥,0,0 … 𝑃𝑥,0,𝑛

⋮ ⋱ ⋮

𝑃𝑥,𝑛,0 … 𝑃𝑥,𝑛,𝑛

⎤
⎥
⎥
⎥
⎥
⎦

(4.238)

with

𝑃𝑥,𝑖,𝑗 = 𝔼[( 1𝑇 ∫
(𝑖+1)𝑇

𝑖𝑇

𝜕𝛿𝜔𝑖𝑏(𝑡)
𝜕𝛿𝑥 𝛿𝑥(𝑡)𝑑𝑡) ( 1𝑇 ∫

(𝑗+1)𝑇

𝑗𝑇

𝜕𝛿𝜔𝑖𝑏(𝑡)
𝜕𝛿𝑥 𝛿𝑥(𝑡)𝑑𝑡)] (4.239)

Validity of Linearization

Looking at the sensitivities in table  Table 4.18  , it is noticeable that the linearization hides
the effect of orientation errors on the nominal rotation rate. The nominal rotation rate is
reduced with the cosine of the orientation error, while the effect of external signals such as
the earth rotation rate increases with the sine of the orientation error. From the Taylor series
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Table 4.18.: Error sensitivities in scale factor test scenarios.

Linearized sensitivity

Error Case I Case II Case III

Earth rotation 𝛿𝜔𝑖𝑒,𝑥 − cos(𝜙) cos(𝜆) − sin(𝜆) − cos(𝜙) cos(𝜆)
𝛿𝜔𝑖𝑒,𝑦 − cos(𝜙) sin(𝜆) cos(𝜆) − cos(𝜙) sin(𝜆)
𝛿𝜔𝑖𝑒,𝑧 − sin(𝜙) − sin(𝜙)

NED frame 𝛷�̂�𝑛 �̂�𝑖𝑒 sin(𝜙)
𝛩�̂�𝑛 �̂�𝑖𝑒 cos(𝜙) �̂�𝑖𝑒 cos(𝜙)
𝛹�̂�𝑛 �̂�𝑖𝑒 cos(𝜙)

Test pad 𝛿𝜔𝑛𝑝,𝑦 1
𝛿𝜔𝑛𝑝,𝑧 1 1
𝛷 ̂𝑝𝑝 �̂�𝑖𝑒 cos(𝜙)
𝛩 ̂𝑝𝑝 �̂�𝑖𝑒 cos(𝜙) �̂�𝑖𝑒 sin(𝜙)
𝛹 ̂𝑝𝑝 −�̂�𝑖𝑒 cos(𝜙)

Outer axis 𝛿𝜔𝑝𝑤,𝑧 1
𝛷�̂�𝑤 −�̂�𝑖𝑒 sin(𝜙) cos(𝛹𝑤𝑝(𝑡))�̂�𝑖𝑒 cos(𝜙)
𝛩�̂�𝑤 sin(𝛹𝑤𝑝(𝑡))�̂�𝑖𝑒 cos(𝜙)
𝛹�̂�𝑤 −�̂�𝑖𝑒 cos(𝜙)

Middle axis 𝛷 ̂𝑣𝑣 −�̂�𝑖𝑒 sin(𝜙) cos(𝛹𝑤𝑝(𝑡))�̂�𝑖𝑒 cos(𝜙)
𝛩 ̂𝑣𝑣 �̂�𝑖𝑒 cos(𝜙) −�̂�𝑖𝑒 cos(𝜙) sin(𝛹𝑤𝑝(𝑡))�̂�𝑖𝑒 cos(𝜙)

Inner axis 𝛿𝜔𝑣ᵆ,𝑧 1 1 1
𝛷 ̂ᴂᵆ sin(𝛹ᵆ𝑣(𝑡))�̂�𝑖𝑒 cos(𝜙) �̂�𝑖𝑒 [− cos(𝛹ᵆ𝑣(𝑡)) cos(𝜙) cos(𝛹𝑤𝑝(𝑡))�̂�𝑖𝑒 cos(𝜙)

− sin(𝛹ᵆ𝑣(𝑡)) sin(𝜙)]
𝛩 ̂ᴂᵆ cos(𝛹ᵆ𝑣(𝑡))�̂�𝑖𝑒 cos(𝜙) �̂�𝑖𝑒 [sin(𝛹ᵆ𝑣(𝑡)) cos(𝜙) sin(𝛹𝑤𝑝(𝑡))�̂�𝑖𝑒 cos(𝜙)

− cos(𝛹ᵆ𝑣(𝑡)) sin(𝜙)]

Sensor 𝛷 ̂𝑏𝑏 sin(𝛹ᵆ𝑣(𝑡))�̂�𝑖𝑒 cos(𝜙) �̂�𝑖𝑒 [− cos(𝛹ᵆ𝑣(𝑡)) cos(𝜙) cos(𝛹𝑤𝑝(𝑡))�̂�𝑖𝑒 cos(𝜙)
− sin(𝛹ᵆ𝑣(𝑡)) sin(𝜙)]

𝛩 ̂𝑏𝑏 cos(𝛹ᵆ𝑣(𝑡))�̂�𝑖𝑒 cos(𝜙) �̂�𝑖𝑒 [sin(𝛹ᵆ𝑣(𝑡)) cos(𝜙) sin(𝛹𝑤𝑝(𝑡))�̂�𝑖𝑒 cos(𝜙)
− cos(𝛹ᵆ𝑣(𝑡)) sin(𝜙)]
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development of the trigonometric functions around zero, it is evident that the cosine vanishes
due to the linearization.
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Figure 4.36.: Angular rate error from axis tilt. Comparison of the contributions of Earth angular
rate and nominal rotation rates with the tilt angle 𝛩.

Although the cosine decreases one order slower (quadratic) than the sine increases (linear),
the nominal rotation rate is typically many times larger than, for example, the Earth rotation
rate. Therefore, it can be questioned fromwhich angles the different growths of sine and cosine
around zero outweigh the orders of magnitude between the nominal rotation and the Earth’s
rotation.
The different resulting angular rate errors from a tilt 𝛿𝛩 with respect to the nominal input

axis are depicted in  Figure 4.36  . As discussed before, typical orientation errors are in the order
of few asec. For axis, angular rates of up to 1000 °/s and especially for more realistic rates
around 100 °/s the decrease of the cosine outweighs the difference in magnitudes between the
axis rate and the Earth’s angular rate by far. Consequently, the linearization and thus neglecting
the effect on the nominal rotation term is well justified for realistic orientation errors.

4.4.4.4. Gyroscope Test Error Budget

Based on the above models of the scale factor test scenarios and the scale factor estimation, the
uncertainty of the scale factor estimate can be determined. For the analysis of the scale factor
identification, several assumptions are taken:

• The sensor is neither remounted nor turned off between the tests. Not only does this
prevent additional handling efforts, but it also prevents the introduction of other errors,
like a varying turn-on bias.

• The time to change the input angular rate can be neglected, compared to the averaging
times at constant input. Even low angular accelerations of 100 °/s2 allow reaching a
typical input limit of 400 °/s in less than 4 s, while each rate is held for at least several
minutes. Of course, only the sensor’s output between the acceleration phases should be
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averaged and used for the scale factor determination. However, the dead time between
adjacent tests can be neglected.

• All positions of constant angular rate are held for the same time. The rationale is that
both environmental disturbances and sensor noise are independent of the applied rate.
Note that instrument errors of the rate table slightly depend on the angular rate.

The composition of the various error sources and models into an error budget is discussed
for test case III. The error budget for the  SF estimate is given in  Table 4.20 , for the bias estimate
in  Table 4.21  . The scale factor test series is analyzed for four typical rate series summarized in
 Table 4.19 . The respective error budgets for test cases I and II can be found in  Appendix I .
From the error budget in  Table 4.20 , the  SF estimation seems rather insensitive to laboratory

errors, as even short averaging times yield a  SF standard deviation below 1 ppm. The long-
term variation of the Earth’s angular rate increases the  SF variance with the averaging time.
However, the total resulting error is below 1 ⋅ 10−4 ppm for averaging times up to 12 h per
applied rate. As constant errors do not contribute to the scale factor, the laboratory alignment
has no effect. Averaging reduces the effects of axis non-orthogonality and the control errors
by multiple orders of magnitude. The contributions of the axis non-orthogonality can be
eliminated by averaging over complete rotations. The same applies to the sensor alignment
errors. In summary, the  SF error is dominated the rate table’s ability to generate a stable angular
rate. However, the effects of these control errors can also be effectively reduced by averaging.
Comparing the different rate series a to d, it can be seen that higher rates clearly improve the

signal-to-noise ratio of the sensor input and thus reduce the scale factor estimation uncertainty.
In practice, the applied angular rate series should be designed to sample the expected scale
factor function of the sensor over the entire input range.
In contrast to the  SF estimation, the bias estimation is hardly affected by choice of the

applied rate series. While the errors caused by the variation of the Earth’s angular rate are
hardly affected by averaging, the effects of test-pad motion can be reduced by multiple orders
of magnitude. Leveling errors result in constant contributions to the bias estimate, while the
vertical orientation of the sensor axis in test case III makes it insensitive to north alignment
errors. Axis non-orthogonality is also hardly affected by averaging and yields a constant lower
bound, caused by the static axis orientation errors. Again, the dominating factor is the rate
table’s control error that results in bias errors around 1 °/h (1𝜎) for short averaging times. This
error is effectively reduced by averaging down to a level of 1 ⋅ 10−3 °/h (1𝜎) for averaging more
than 1 h. From this point on, the accuracy is limited by the constant residual axis position errors
of the inner two gimbals that cause an orientation error of the tested sensor axis. Again, the
contributions from sensor alignment can be entirely canceled out by averaging over complete
revolutions. All in all, the achievable bias estimation accuracy in the scale factor test series is
in the range of navigation grade. As the rate table limits the accuracy, one should refer to static
tests if higher accuracy is desired.
Three different variants to create the reference motion have been presented in this section
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Table 4.19.: Scale-factor test rate series considered in the error budgets.

Series Applied rates in °/s Comment

a 1 5 10 20 30 40 50
b 2 10 20 40 60 80 100 double rates of a)
c 1 5 10 20 100 200
d 1 5 10 20 100 200 300 400 add higher rates to c)

and  Appendix I  . The differences in mechanization between the scenarios yield different error
contributions. Example error budgets of the three scenarios are presented in  Example 8  . As
expected, the additional rate table axes introduce further errors from axis non-orthogonality,
wobble, and position control errors. Due east-west alignment of the input axis in case II, the
effect of the variation of the Earth’s angular rate is reduced. While the scale factor estimate is
insensitive to the constant alignment errors for all cases, a heading error of the horizontally
aligned test case II causes an error in the bias estimate. Similar can be observed for axis non-
orthogonality errors in test case II. These result in constant error contributions because they
only affect the tilt of the Earth’s angular rate but not the rate table’s rotation.
Although the differences between the total errors of the test cases can be easily spotted, all

errors are in the same order of magnitude. Compared to the vertical single-axis rate table, the
additional axes of the three-axes table introduce errors that amount to a 12% higher standard
deviation. The horizontal testing (case II) increases the scale factor standard deviation by
57%. In practice, the test method should be selected according to practical aspects, such as
the available hardware and the efforts required to handle it. For example, a vertical rotation
axis (scenario I and II) generally does not require azimuth alignment compared to Scenario II,
and additional axes (scenario III) do not require manual re-arrangement of a multi-axis sensor
unit.
An example of the scale factor test series for an  FOG  IMU is presented in  Example 9 .
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Table 4.20.: Gyro scale factor test series scale factor error for scenario III. The laboratory is located
at 𝜙 = 45°. The applied rate series a to d are summarized in  Table 4.19 .

Earth rotation
variations
see  Subsection 4.2.4 

• using WGS84 as
reference

• unknown/random
time 1min 5min 1 h 12 h

10−10
10−8
10−6
10−4

a
b
c
d

SF
1𝜎

,(
pp
m
)

consumer tactical intermediate navigation strategic

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−6
10−5
10−4
10−3
10−2
10−1

a
bc
dSF

1𝜎
,(
pp
m
)

Laboratory
alignment
see  Subsection 4.2.7 ,

 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
−1

−0.5

0

0.5

1

a
b
c
d

SF
1𝜎

,(
pp
m
)

Non-orthogonality
& misalignment
see  Subsection 4.2.9.2 

• equal var. on all axes
• normalized to 1 "(1𝜍)

1min 5min 1 h 12 h
10−10
10−8
10−6
10−4
10−2

a
b
c
dSF

1𝜎
,(
pp
m
)

Axis wobble
see  Subsection 4.2.9.3 

• ball bearing, 𝑁 =
13, 𝑞 = [−3…3]

• normalized to 1 " RMS
wobble 1min 5min 1 h 12 h

10−11
10−9
10−7
10−5
10−3

a
b
c
d

SF
1𝜎

,(
pp
m
)

Control error
see  Subsection 4.2.9.6 

• 𝑓𝑐 = 20Hz,𝐷 =
0.75,

• 𝑁in = 720, 𝑁p = 6,
𝑁c = 20

• noise 1 ⋅ 10−10 °2/Hz
1min 5min 1 h 12 h

10−7
10−5
10−3
10−1
101

a
b
c
dSF

1𝜎
,(
pp
m
)

Sensor alignment
• alignment error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−9
10−7
10−5
10−3
10−1

a
b
c
d

Cluster averaging time 𝜏 in (s)

SF
1𝜎

,(
pp
m
)
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Table 4.21.: Gyro scale factor test series bias error for scenario III. The laboratory is located at
𝜙 = 45°. The applied rate series a to d are summarized in  Table 4.19 .

Earth rotation
variations
see  Subsection 4.2.4 

• using WGS84 as
reference

• unknown/random
time 1min 5min 1 h 12 h

10−5

10−4
a
b
c
d

Bi
as

1𝜎
,(
°/
h)

consumer tactical intermediate navigation strategic

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−6
10−5
10−4
10−3
10−2

a
b
c
dBi

as
1𝜎

,(
°/
h)

Laboratory
alignment
see  Subsection 4.2.7 ,

 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
10−5

10−4 a
b
c
d

Bi
as

1𝜎
,(
°/
h)

Non-orthogonality
& misalignment
see  Subsection 4.2.9.2 

• equal var. on all axes
• normalized to 1 "(1𝜍)

1min 5min 1 h 12 h
10−5

10−4

10−3

a
b
c
dBi

as
1𝜎

,(
°/
h)

Axis wobble
see  Subsection 4.2.9.3 

• ball bearing, 𝑁 =
13, 𝑞 = [−3…3]

• normalized to 1 " RMS
wobble

1min 5min 1 h 12 h
10−11
10−9
10−7
10−5
10−3

a
b
c
dBi

as
1𝜎

,(
°/
h)

Control error
see  Subsection 4.2.9.6 

• 𝑓𝑐 = 20Hz,𝐷 =
0.75,

• 𝑁in = 720, 𝑁p = 6,
𝑁c = 20

• noise 1 ⋅ 10−10 °2/Hz,
peaks 1 ⋅ 10−8 °2/Hz

1min 5min 1 h 12 h
10−3
10−2
10−1
100
101

a
b
c
dBi

as
1𝜎

,(
°/
h)

Sensor alignment
• alignment error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−9
10−7
10−5
10−3

a
b
c
d

Cluster averaging time 𝜏 in (s)

Bi
as

1𝜎
,(
°/
h)
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Example 8: Comparision of Scale-factor test scenarios

The effect of the different mechanization of the presented test-scenarios is investigated for the
same reference configuration as in  Table 4.20 . The angular rates are 1, 5, 10, 20, 100, 200, 300°/s
with an averaging time of 600 s per applied rate. The analytical determination of the input
covariance matrices and ordinary least-squares estimation yields the following variance
contributions from different error sources:
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(8.a) Scale-factor variance.
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(8.b) Bias variance.

A comparsion of the total resulting uncertainty of the estimated parameters are given below.
For case II and III, also the relative error to the reference case I is given:

Sensor parameter estimation uncertainty Case I Case II Case III

Scale-factor 1𝜎 in ppm 8.2 ⋅ 10−5 1.3 ⋅ 10−4 (+57%) 9.2 ⋅ 10−5 (+12%)
Bias 1𝜎 in °/h 1.2 ⋅ 10−3 2.1 ⋅ 10−3 (+68%) 1.4 ⋅ 10−3 (+12%)
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Example 9: IMU 500 Scale Factor Estimation

The scale factor tests of the  FOG  IMU were performate at the inertial laboratory of the Institute
of Flight System Dynamcis. The laboratory is located at latitude 𝜙 = 48.2667°. The sensor test
is performed using a three-axis rate table, with vertical orientation of the tested sensor axis, as
described in test scenario III. The laboratory is modeled in accordance with the error budgets,
however alignment and axis errors are scaled to represent the real setup at the institute:

Laboratory parameters

Laboratory alignment 2.5 asec
Non-orthogonality 5.0 asec
Wobble RMS 2.5 asec

Sensor noise

Angular random walk 𝑁 5 ⋅ 10−3 °/√h
Bias instability 𝐵 2 ⋅ 10−3 °/h
determined from  Example 4 

As depicted below, the test series consists of the angular rates ±[2, 50, 100, 400]°/s, which are
applied for 5400 s, each. The negative rates series was applied subsequently to the positive
rates.
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(9.b) Scale-factor error.
From the laboratory model and the sensor noise parameters, the resulting uncertainty of the

 SF and bias estimate can be determined. Below, these uncertainties are compared to the
parameters that were estimated during the test series:

Estimate Sensor noise (1𝜎) Laboratory (1𝜎)

Linear SF Error (ppm) 7.003 2.065 ⋅ 10−3 3.539 ⋅ 10−5

Linearity Error RSS 4.313 ⋅ 10−3

Bias (°/h) −1.047 2.081 ⋅ 10−3 1.384 ⋅ 10−3

As expected, the errors introduced by the laboratory and the environment are magnitudes
lower than the estimated error. For the tested sensor, also the errors from sensor noise are
much lower than the observed scale factor error of the sensor. This allows the determination
and thus compensation of the sensor’s errors at very high accuracy at the time of testing.
Still, the variation of these parameters with time and environmental conditions requires the
repetition of these tests are different conditions.
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Result 7: Gyroscope Scale-Factor Tests

The determination of gyroscope scale factors on a rate table leaves the user with many
degrees of freedom. However, the following results are independent of the selected test
mechanization, the number of poses, and applied rates:

• Rates and durations should be chosen so that each position consists of complete
revolutions. This drastically reduces errors from both misalignments, mounting errors,
and axis-bearing errors.

• The choice of a single or multi-axis rate table and vertical or horizontal rotation axis has
only a moderate effect on the resulting testing accuracy. The test setup should instead
be chosen based on practical aspects, like the available hardware and handling efforts.

• For a typical rate table, the scale factor accuracy is dominated by the axis rate errors.
Its effect is about two orders of magnitude higher than the effect of seismic background
noise, respectively, the test pad stability. Still, a typical setup reaches a scale factor
variance of less than 1 ppm for a few minutes of averaging per position.

• Compared to the sensor noise, the laboratory’s errors become relevant for the scale
factor estimation, only for navigation grade and better gyroscopes. In these cases,
considering input errors in the estimation, e.g., using an error-in-variables approach,
improves the estimation consistency.

The gyroscope scale factor can be determined to strategic-grade accuracy for the analyzed
laboratory setup. However, the simultaneously determined bias estimate is strongly corrupted
by the rate table’s dynamic errors and limited to intermediate or close navigation grade
accuracy.

4.4.4.5. Accelerometer Testing

For scale factor tests, the accelerometers must be subjected to constant accelerations covering
the sensor’s entire input range (and possibly beyond). Typical rate tables do not provide the
necessary combination of angular rates and lever arms to create accelerations of multiple 𝑔.
Instead, the accelerometer scale factor tests are performed on precision centrifuges. A detailed
analysis of error sources and test accuracy for centrifuge testing is given in IEEE Std. 836-2009
[ 172 ]. This standard covers both mechanical and instrumentation errors during testing at high
detail. Therefore, the scale factor centrifugal testing of accelerometers is not covered in this
theses.
The standard [  172 ] does not cover the effects of sensor drift. However, this work’s analysis

for the gyroscope noise can be applied to accelerometers without loss of validity.
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4.4.5. Rate Table Six-Position Tests

In  Subsection 4.4.2.4  , it was demonstrated that the sensor bias cannot be determined separately
from the internal axis misalignment with a single-position static test. This problem can be
solved by using two reversal positions for the determination of each error to be determined. In
contrast to the reversal position tests, the multi-position tests use the averaged output from
multiple, typically six or more, positions to estimate multiple sensor errors simultaneously.
The most basic multi-position test aims at determining the linear (low-rate) scale factor, the
axis misalignment, and bias.
For this purpose, the sensor is subjected to a series of constant inputs along different axes.

Multi-position tests can be performed with different instruments, ranging from simple cube-
shapedmountings over rotating heads tomulti-axis positioning and rate tables. The general idea
of multi-position tests is to use multiple positions to provide sufficient (or more) independent
observations to solve the sensor’s model equation for the sensor errors. Often, there are more
positions (observations) than error terms, so these are typically estimated using least-squares
or similar adjustment methods.

𝑁
𝐸

𝐷

𝑥𝑏
𝑦𝑏𝑧𝑏

(a) Position 1 (−𝑧𝑏).

𝑁
𝐸

𝐷

𝑥𝑏𝑦𝑏

𝑧𝑏

(b) Position 2 (+𝑧𝑏).

𝑁
𝐸

𝐷

𝑥𝑏𝑦𝑏
𝑧𝑏

(c) Position 3 (+𝑦𝑏).

𝑁
𝐸

𝐷

𝑥𝑏𝑦𝑏
𝑧𝑏

(d) Position 4 (−𝑦𝑏).

𝑁
𝐸

𝐷

𝑥𝑏
𝑦𝑏
𝑧𝑏

(e) Position 5 (−𝑥𝑏).

𝑁
𝐸

𝐷

𝑥𝑏
𝑦𝑏 𝑧𝑏

(f) Position 6 (+𝑥𝑏).

Figure 4.37.: Six-position testing of an inertial sensor using a three-axis positioning and rate table.

Specific multi-position test scenarios for different sensor technologies allow an analytical
determination of the sensor errors that include the sensor bias, axis misalignment, and ac-
celeration sensitivities. Examples for such test procedures are the six-pose test for  SDFGs 
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gyroscopes [  22 , pp. 249–250] or the eight-pose test for  DTGs [ 22 , p. 253] and eight-pose stability
test described in [  14 , pp. 223–231]. In the following, the analyses and error budgets will be
demonstrated for a simple six-position test, illustrated in  Figure 4.37 .

4.4.5.1. Test Description and Parameter Estimation

For the example six-position test, the sensor’s orientation relative to the outer axis and the
local gravity is changed so that each sensor axis is subjected to both positive and negative input.
Accelerometers and gyroscopes share the same positions in this test scheme and can be tested
simultaneously. Changing the outer axis rotation direction instead of flipping the sensor’s
orientation is not an equivalent approach. First, it does not produce symmetric inputs because
of the vertical component of the Earth’s angular rate. Second, such a procedure would not
create reversal measurements for the accelerometers.

Using a three-axis rate table, multiple positions can be easily created for all axis of a sensor
triad simultaneously, reducing the testing duration and the required handling efforts. A simple
error model that includes scale factors, misalignment and biases of a gyroscope-triad is given
as:

�̃�𝑖𝑏 =
⎡
⎢
⎢
⎢
⎢
⎣

𝑆𝑥 𝑀𝑥𝑦 𝑀𝑥𝑧

𝑀𝑦𝑥 𝑆𝑦 𝑀𝑦𝑧

𝑀𝑧𝑥 𝑀𝑧𝑦 𝑆𝑧

⎤
⎥
⎥
⎥
⎥
⎦

𝝎𝑖𝑏 + 𝒃𝐺,𝑓 + 𝝂𝐺 (4.240)

At least 4 positions that provide 3 observations each, are required to determine above 12 errors.
However, typically, a symmetrical set of 6 positions and a least-squares adjustment are used
to estimate the errors. In theory, the Earth’s angular rate vector can be used as an input for
the multi-position tests. This however requires a sensor with sufficient accuracy and stability
better than the Earth’s rotation, which is only true for navigation grade and better sensors.
Multi-position gyroscope tests are therefore performed at rates that are significantly higher
than the sensor’s in-run bias instability.

For the symmetric input angular rates scheme depicted in  Figure 4.37  six positions result in
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the following system of equations for the gyroscope test:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̃�
(1)
𝑖𝑏,𝑥

�̃�
(2)
𝑖𝑏,𝑥

�̃�
(3)
𝑖𝑏,𝑥

�̃�
(4)
𝑖𝑏,𝑥

�̃�
(5)
𝑖𝑏,𝑥

�̃�
(6)
𝑖𝑏,𝑥

�̃�
(1)
𝑖𝑏,𝑦

�̃�
(2)
𝑖𝑏,𝑦

�̃�
(3)
𝑖𝑏,𝑦

�̃�
(4)
𝑖𝑏,𝑦

�̃�
(5)
𝑖𝑏,𝑦

�̃�
(6)
𝑖𝑏,𝑦

�̃�
(1)
𝑖𝑏,𝑧

�̃�
(2)
𝑖𝑏,𝑧

�̃�
(3)
𝑖𝑏,𝑧

�̃�
(4)
𝑖𝑏,𝑧

�̃�
(5)
𝑖𝑏,𝑧

�̃�
(6)
𝑖𝑏,𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝒚

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 −�̂� 1 0 0 0 0 0 0 0 0

0 0 +�̂� 1 0 0 0 0 0 0 0 0

0 −�̂� 0 1 0 0 0 0 0 0 0 0

0 +�̂� 0 1 0 0 0 0 0 0 0 0

−�̂� 0 0 1 0 0 0 0 0 0 0 0

+�̂� 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −�̂� 1 0 0 0 0

0 0 0 0 0 0 +�̂� 1 0 0 0 0

0 0 0 0 0 −�̂� 0 1 0 0 0 0

0 0 0 0 0 +�̂� 0 1 0 0 0 0

0 0 0 0 −�̂� 0 0 1 0 0 0 0

0 0 0 0 +�̂� 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −�̂� 1

0 0 0 0 0 0 0 0 0 0 +�̂� 1

0 0 0 0 0 0 0 0 0 −�̂� 0 1

0 0 0 0 0 0 0 0 0 +�̂� 0 1

0 0 0 0 0 0 0 0 −�̂� 0 0 1

0 0 0 0 0 0 0 0 +�̂� 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
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⎥
⎥
⎥
⎥
⎥
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𝑀𝐺,𝑦𝑥

𝑆𝐺,𝑦

𝑀𝐺,𝑦𝑧

𝑏𝐺,𝑦

𝑀𝐺,𝑧𝑥

𝑀𝐺,𝑧𝑦

𝑆𝐺,𝑧

𝑏𝐺,𝑧

⎤
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⎥
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⎥
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⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝒄

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜈(1)𝐺,𝑥

𝜈(2)𝐺,𝑥

𝜈(3)𝐺,𝑥

𝜈(4)𝐺,𝑥

𝜈(5)𝐺,𝑥

𝜈(6)𝐺,𝑥

𝜈(1)𝐺,𝑦

𝜈(2)𝐺,𝑦

𝜈(3)𝐺,𝑦

𝜈(4)𝐺,𝑦

𝜈(5)𝐺,𝑦

𝜈(6)𝐺,𝑦

𝜈(1)𝐺,𝑧

𝜈(2)𝐺,𝑧

𝜈(3)𝐺,𝑧

𝜈(4)𝐺,𝑧

𝜈(5)𝐺,𝑧

𝜈(6)𝐺,𝑧

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝝂

(4.241)

In this case, the averaged input rate is the sum of the rate table’s outer axis rate �̂�𝑝𝑤 and the
local vertical component of the Earth’s angular rate:

�̂� = �̂�𝑝𝑤 + �̂�𝑖𝑒 sin(𝜙) (4.242)

Analogously to the scale factor estimation in  Subsection 4.4.4.1  , the least-squares estimation
uses the pseudo-inverse of 𝐇 and the estimation covariance is determined ( 4.224 ). For the
example six-position test, the pseudo-inverse is a block diagonal matrix

(𝐇⊺𝐇)−1𝐇⊺ =
⎡
⎢
⎢
⎢
⎢
⎣

𝐡−1 𝟎4×6 𝟎4×6

𝟎4×6 𝐡−1 𝟎4×6

𝟎4×6 𝟎4×6 𝐡−1

⎤
⎥
⎥
⎥
⎥
⎦

(4.243)
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with the three equal blocks 𝐡−1:

𝐡−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 − 1

2�̂�

1

2�̂�

0 0 − 1

2�̂�

1

2�̂�
0

− 1

2�̂�

1

2�̂�
0 0 0 0

1

6

1

6

1

6

1

6

1

6

1

6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.244)

The estimation matrices for the accelerometers are given by:

𝐡−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 − 1

2�̂�

1

2�̂�

0 0 − 1

2�̂�

1

2�̂�
0

− 1

2�̂�

1

2�̂�
0 0 0 0

1

6

1

6

1

6

1

6

1

6

1

6

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.245)

Note that this estimation of the scale factor and misalignment angles is equivalent to the
classical reversal measurement method specified in the  IEEE standards, e.g., [  10 , p. 40] and
discussed in  Subsection 4.4.3 . The bias, however, is estimated from all six positions.

4.4.5.2. Effects of Sensor Noise

The sensor noise covariance matrix for the multi-position test is composed of the covariance
matrices for the different noise processes, just like for the scale factor tests. In general, the
resulting noise covariance matrix 𝐐𝜈 is a block diagonal matrix composed of the noise covari-
ance matrices of each sensor axis, as determined in  Subsection 4.4.4.2  . However, there may
also be a correlated fraction of the noise 𝐐𝜈,corr which is caused by a common error source.
Such a correlated error on all axes could be caused by a common temperature change (which
should be prevented during testing) and voltage oscillations from a shared power supply. The
total noise covariance matrix is thus given by the uncorrelated sensor noise block matrices and
the correlated noise blocks shared by all axes:

𝐐𝜈 =
⎡
⎢
⎢
⎢
⎢
⎣

𝐐𝜈,𝑥 + 𝐐𝜈,corr 𝐐𝜈,corr 𝐐𝜈,corr

𝐐𝜈,corr 𝐐𝜈,𝑦 + 𝐐𝜈,corr 𝐐𝜈,corr

𝐐𝜈,corr 𝐐𝜈,corr 𝐐𝜈,𝑧 + 𝐐𝜈,corr

⎤
⎥
⎥
⎥
⎥
⎦

(4.246)

However, due to the block-diagonal structure of the pseudo-inverse ( 4.243 ), a possible cross-
correlation between the axes’ noise does not affect the estimation covariance, and each sensor
axis can be analyzed on its own. The variances of the estimated parameters can be analytically
determined from the elements of the covariance matrix 𝐐𝜈. For the gyroscope the resulting
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variance of the parameter estimates are:

𝜎2𝜔,𝑆𝑥 =
1

4�̂�
2 (𝑄

(5)
𝜈𝐺,𝑥

− 2𝑄(5,6)
𝜈𝐺,𝑥

+ 𝑄(6)
𝜈𝐺,𝑥

) (4.247)

𝜎2𝜔,𝑀𝑥𝑦
= 1

4�̂�
2 (𝑄

(3)
𝜈𝐺,𝑥

− 2𝑄(3,4)
𝜈𝐺,𝑥

+ 𝑄(4)
𝜈𝐺,𝑥

) (4.248)

𝜎2𝜔,𝑀𝑥𝑧
= 1

4�̂�
2 (𝑄

(1)
𝜈𝐺,𝑥

− 2𝑄(1,2)
𝜈𝐺,𝑥

+ 𝑄(1)
𝜈𝐺,𝑥

) (4.249)

𝜎2𝜔,𝑏𝑥 =
1
36

6

∑
𝑖=1

6

∑
𝑗=1

𝑄(𝑖,𝑗)
𝜈𝐺,𝑥

(4.250)

The equations for the accelerometer’s errors are determined analogeously:

𝜎2𝑓𝑏,𝑆𝑥 =
1

4 ̂𝛾
2 (𝑄

(5)
𝜈𝐴,𝑥

− 2𝑄(5,6)
𝜈𝐴,𝑥

+ 𝑄(6)
𝜈𝐴,𝑥

) (4.251)

𝜎2𝑓𝑏,𝑀𝑥𝑦
= 1

4 ̂𝛾
2 (𝑄

(3)
𝜈𝐴,𝑥

− 2𝑄(3,4)
𝜈𝐴,𝑥

+ 𝑄(4)
𝜈𝐴,𝑥

) (4.252)

𝜎2𝑓𝑏,𝑀𝑥𝑧
= 1

4 ̂𝛾
2 (𝑄

(1)
𝜈𝐴,𝑥

− 2𝑄(1,2)
𝜈𝐴,𝑥

+ 𝑄(1)
𝜈𝐴,𝑥

) (4.253)

𝜎2𝑓𝑏,𝑏𝑥 =
1
36

6

∑
𝑖=1

6

∑
𝑗=1

𝑄(𝑖,𝑗)
𝜈𝐴,𝑥

(4.254)

The above equations already display the differences between the multi-position tests. In
contrast to the scale factor tests where the variance of every pose affects the estimate, in multi-
position tests the linear scale factor 𝑆𝑥 ( 4.247 ) and misalignment𝑀𝑥𝑦 ( 4.248 ),𝑀𝑥𝑧 ( 4.249 ) are
affected by the respective two reversal input positions, only. The resulting  SF andmisalignment
variance depends on the variation of the output averages of the two positions and therefore
decreases with the increasing correlation between the two used reversal positions.
The bias estimate, however, is based on the average of all positions and consequently affected

by all position variances and their cross-correlations. The variance of the bias estimate decreases
with a decreasing correlation between the positions. Again, due to the bias-instability and rate
random walk, the variance of this bias estimate refers to the difference between the estimated
bias to a virtual bias valid before the first position (cf.  Subsection 4.4.2.4  and  Subsection 4.4.4.2  ).
The effects of the standard sensor noise processes on the variance of the  SF , misalignment

and bias estimates are depicted in  Figure 4.38  . Since the standard deviation scales linearly
with the noise-defining parameters, they can be scaled from the given normalized plots. Due
to the same parameter estimation, the resulting graphs for the  SF and misalingment errors

 Figure 4.38a  is very similar to the one for the reversal position tests  Figure 4.30a  . However, the
graphs are shifted due to the increased input rate (here 1 °/s) compared to the Earth’s angular
rate. The resulting parameter standard deviation scales with �̂�

−1
so that the graphs can be

shifted for other applied rates (neglecting the contribution of the Earth’s angular rate).
The resulting standard deviation of the gyroscope bias estimate is depicted in  Figure 4.38b  .
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In contrast to the gyro  SF estimate, the applied angular rate has no effect on the bias estimate.

For the accelerometer, the input and orientations match the static reversal position test
discussed in  Subsection 4.4.3  . Since the  SF and misalignment are determined in exactly the
sameway, the resulting plot in  Figure 4.38c is equal to  Figure 4.31a  . However, the determination
of the bias incorporates all six measurements and is independent of the sensor’s input.

In summary, the six-position test displays the same general sensitivity to sensor noise as the
two-position reversal test: The errors from quantization noise and angular/velocity random
walk can be easily reduced by averaging. At the same time, the bias instability poses an accuracy
limit that cannot be circumvented by averaging. However, rate/acceleration random walk or
even rate ramp noise will cause increasing errors with increased averaging time. Ideally, the
averaging time for each pose should be selected close to the minimum of the sensor’s Allan
variance plot.

4.4.5.3. Gyroscope Test Error Model

The ideal angular rates vector at the tested sensor triad is given by the Earth’s angular rate and
the rotation rate of the outer axis

�̂�(𝑃)𝑖𝑏 = 𝐈 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣
(𝑃)𝐑 ̂𝑣𝑤

(𝑃)

⎛
⎜
⎜
⎜
⎝

𝐑�̂�𝑝(𝑡)𝐈𝑝𝑛𝐑𝑛𝑒�̂�𝑖𝑒 +
⎡
⎢
⎢
⎢
⎢
⎣

0

0

�̂�𝑝𝑤

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

(4.255)

where the two rotations representing the inner and middle gimbals’ positions 𝐑 ̂ᴂ𝑣
(𝑃) and

𝐑 ̂𝑣𝑤
(𝑃) are constant for each position 𝑃. It is assumed that each position is averaged over an

integer number of revolutions of the outer axis. In this case, the horizontal components of the
Earth’s angular rate average out and only the local vertical component is added to the outer
axis’ rotation rate:

�̂� = �̂�𝑖𝑒 sin(𝜙) + �̂�𝑝𝑤 (4.256)

Linearization of the kinematic equations for the input errors yields:

𝛿𝝎𝑖𝑏(𝑃) = 𝐑 ̂𝑏ᵆ𝛿𝝎𝑣ᵆ + 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣
(𝑃)𝛿𝝎𝑤𝑣 + 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣

(𝑃)𝐑 ̂𝑣𝑤
(𝑃)𝛿𝝎𝑝𝑤

+ 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣
(𝑃)𝐑 ̂𝑣𝑤

(𝑃)𝐑�̂�𝑝(𝑡) (𝐑 ̂𝑝𝑛𝐑�̂�𝑒𝛿𝝎𝑖𝑒 + 𝛿𝝎𝑛𝑝)

− [𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣
(𝑃)𝐑 ̂𝑣𝑤

(𝑃) (𝐑�̂�𝑝(𝑡)𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒 + �̂�𝑝𝑤)] × 𝝍 ̂𝑏𝑏

− 𝐑 ̂𝑏ᵆ [𝐑 ̂ᴂ𝑣
(𝑃)𝐑 ̂𝑣𝑤

(𝑃) (𝐑�̂�𝑝(𝑡)𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒 + �̂�𝑝𝑤)] × 𝝍 ̂ᴂᵆ

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣
(𝑃) [𝐑 ̂𝑣𝑤

(𝑃) (𝐑�̂�𝑝(𝑡)𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒 + �̂�𝑝𝑤)] × 𝝍 ̂𝑣𝑣

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣
(𝑃)𝐑 ̂𝑣𝑤

(𝑃) [𝐑�̂�𝑝(𝑡)𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒 + �̂�𝑝𝑤] × 𝝍�̂�𝑤
− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣

(𝑃)𝐑 ̂𝑣𝑤
(𝑃)𝐑�̂�𝑝(𝑡) [𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍 ̂𝑝𝑝

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣
(𝑃)𝐑 ̂𝑣𝑤

(𝑃)𝐑�̂�𝑝(𝑡)𝐑 ̂𝑝𝑛 [𝐑�̂�𝑒�̂�𝑖𝑒] × 𝝍�̂�𝑛

(4.257)
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(a) Gyroscope scale factor and misalignment standard deviation for an applied angular rate of 1 °/s. The plots
are scaled for a geodetic latitude of 𝜙 = 45°.
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(b) Gyroscope bias standard deviation.
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(c) Accelerometer scale factor and misalignment standard deviation.
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(d) Accelerometer bias standard deviation.

Figure 4.38.: Six position test sensor error variance from sensor noise over varying averaging time
𝜏 per pose.
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4.4. Laboratory Testing Error Budget

The six different positions are defined by the constant rotation matrices𝐑𝑣𝑤 and𝐑ᵆ𝑣 represent-
ing the middle and inner gimbals’ orientation. The resulting linear sensitivities of each axis of
the tested sensor triad are summarized in  Table H.1 to  Table H.3  , given in the appendix. In
general, the error terms for each two reversal positions are equal, but for some terms the sign
is flipped between the positions. These terms modify the sign of the correlation between the
averaged input errors of the two poses, which are often strongly correlated or even constant:

• The error sensitivities flipping their signs change the typically positive correlation to
a negative correlation. Looking at ( 4.244 ), it can be seen that a negative correlation
between the input errors of the positions increases the variance of the scale factor and
misalignment estimates but decreases the variance of the bias estimate.

• Analogously, a positive correlation between the cluster averages decreases the scale factor
and misalignment variance but increases the variance of the bias estimate.

Comparing the error sensitivities of the three sensor axes, the general terms are very similar
for each axis. However, the sensitivities to error inputs are permuted between the axes. Fur-
thermore, the already described sign-flip between two reversal positions vanishes for some
positions (e.g., the test pad orientation errors). This results from the selected test positions.
Most of these sensitivities are based on the Earth’s angular rate and are consequently very
small.

4.4.5.4. Gyroscope Test Error Budget

In the following, the resulting variances of the estimated parameters are determined for typical
or normalized error parameters. Tables  Table 4.22 to  Table 4.24 illustrate how the effects of
the error sources on the  SF ,  MA and bias estimation depend on the averaging time of each
position.
The  SF error budget for the six-position test is depicted in  Table 4.22  . Increasing the test’s

angular rate increases the signal-to-noise ratio and thus reduces the variance of the  SF estimate,
which can be observed in all plots. The effect of averaging, however, depends on the actual
error source. No effect of averaging can be observed on the Earth’s angular rate and the
laboratory alignment errors. While the alignment errors are truly constant, the errors from
the Earth’s angular rate only appear quasi-constant for the considered averaging periods of
up to 1 ⋅ 105 s (≈ 28 h). While the variance from test-pad motion and the control errors reduce
at about two magnitudes per decade, the variance from axis non-orthogonality and wobble
arises from periodic errors, which result in a periodic reduction of the variance. As the non-
orthogonality errors are modeled as random constant, the resulting errors vanish for every
complete revolution of the rate table. The same applies to the sensor alignment errors, which
cancel out for whole revolutions. At zero rate, the symmetric poses also cancel out the sensor
alignment errors.
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Table 4.22.: Rate table six-position gyro test scale factor estimation error budget for varying rotation
rate and averaging time. The laboratory is located at 𝜙 = 45°

.
Earth rotation
variations
see  Subsection 4.2.4  
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Comparing the contributions of the error sources, the total resulting  SF variance is dominated
by the test-pad motion and the rate table’s control errors. However, the plots indicate that even
moderate averaging times of about 5min are sufficient to reduce the  SF standard deviation to
the level of few  parts per million (ppm) and thus towards the strategic grade.
The misalignment error budgets  Table 4.23  and  Table 4.24  display quite different sensitivities

to the errors. First, the Earth’s rotation is observed from a rotating view which introduces
a dependency on the averaging time. The resulting variance increases towards the constant
value of the  SF case for the first half revolution of the rate table and decreases afterward. In
the linearized error analysis, the laboratory alignment errors do not affect the misalignment
estimates, while the axis non-orthogonality results in a constant error contribution. The same
applies to the axis wobble, which reduces to a random constant axis orientation error and thus
constant contribution to the misalignment variance. These two constant orientation errors are
transferred directly into the axis misalignment. They cannot be reduced by averaging but only
by increasing the rate table accuracy.
Regarding the control errors, there is an apparent difference between the two misalignment

estimates that arises from the orientation of the sensor axes with respect to the actuated rate
table axes. Errors of the sensor alignment with respect to the ideal rate table reference frames
transfer directly into the misalignment estimates. The improved signal-to-noise ratio when
rotating reduces the effects of sensor alignment errors compared to the static case. However,
the differences between the non-zero rate cases are minimal.
Using the assumed laboratory setup and test procedure, the misalignment estimation can-

not be driven to the levels achieved for the  SF estimation. This is mainly due to the non-
orthogonality, wobble, and position accuracy errors that are a property of the rate table. So,
further improvement of the misalignment estimation requires even more accurate instrumen-
tation (e.g., rate table or dividing head).
While the  SF and  MA estimates show a similar behavior, the bias estimate (  Table 4.25  )

displays different dependency especially on the applyied angular rates. Specifically, the constant
axis non-orthogonality and wobble lead to a tilt of the sensor axes with respect to the rotating
axis that is not canceled out by the reversal measurements. This manifests in a bias error that
scales with the applied angular rate. The resulting variances and related sensor grades show
that the bias estimation from six-position testing is worse than the  SF and  MA estimates. This
is a result of the relatively high reference input rate, which amplifies the effect of rate table
axis errors in the case of bias estimation and does not increase the signal-to-noise ratio in
contrast to the  SF and  MA estimation. The same applies to the sensor alignment errors that
scale linearly with the applied rate. An interesting observation is the variance increase from
the test-pad motion with the applied angular rate at longer averaging times. This results from
a resonance between the seismic reference noise and the applied angular rates.
The total bias variance is also dominated by the rate table errors, which results in bias

variances that correspond to tactical or intermediate grade gyroscopes. The analyzed six-
position gyro test procedure on a three-axis rate table is thus unable to calibrate the bias of
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Table 4.23.: Rate table six-position gyro test axis misalignment 𝑀𝑥𝑦 estimation error budget for
varying rotation rate and averaging time. The laboratory is located at 𝜙 = 45°

.
Earth rotation
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see  Subsection 4.2.4  
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Table 4.24.: Rate table six-position gyro test axis misalignment 𝑀𝑥𝑧 estimation error budget for
varying rotation rate and averaging time. The laboratory is located at 𝜙 = 45°

.
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see  Subsection 4.2.4 
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gyroscopes better than tactical grade. Instead, the bias should preferably be determined from
static (reversal) tests. These results are confirmed by  Example 10 .

Example 10: IMU 500 Six-Position Test

The six-position tests of the  FOG  IMU were performed at the inertial laboratory of the Institute
of Flight System Dynamcis. Eeach position is held for 1080 s at an input rate of 100 °/s. The
laboratory is located at latitude 𝜙 = 48.2667° and modeled in accordance with the error budgets.
Alignment and axis errors are scaled to represent the real setup at the institute:

Laboratory parameters

Laboratory alignment 2.5 asec
Non-orthogonality 5.0 asec
Wobble RMS 2.5 asec

Sensor noise

Angular random walk 𝑁 5 ⋅ 10−3 °/√h
Bias instability 𝐵 2 ⋅ 10−3 °/h
determined from  Example 4 

The estimated SF, misalignment and bias parameters and their uncertainty from both sensor
noise and laboratory errors are summarized below:

x y z Sens. noise (1𝜎) Laboratory* (1𝜎)

SF error (ppm) −27.960 −16.950 −15.803 1.811 ⋅ 10−2 3.636 ⋅ 101

MA 1 (mrad) 0.181 0.831 −0.821 1.811 ⋅ 10−5 6.894 ⋅ 10−2

MA 2 (mrad) 0.436 −1.027 1.209 1.811 ⋅ 10−5 6.894 ⋅ 10−2

Bias (°/h) 2.670 4.253 −6.529 4.003 ⋅ 10−3 6.084
* laboratory errors are determined for the sensor’s 𝑧-axis. As depicted in the error budgets, the

uncertainty of one of the misalignment angles can be much better, depending on axis orientation within
the rate table.

For the analyzed test, the determined sensor scale factor errors and biases are in the same
range as the errors caused by the environmental and laboratory errors. The sensor’s noise
would allow a more accurate estimation in this case. As expected from the error budgets,
this laboratory setup does not provide sufficient accuracy to determine the scale factors and
biases of this navigation grade  FOG using a six-position test. For this level of accuracy, other
test procedures should be preferred.
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Table 4.25.: Rate table six-position gyro test bias estimation error budget for varying rotation rate
and averaging time. The laboratory is located at 𝜙 = 45°
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4.4.5.5. Accelerometer Test Error Model

During six-position testing, the ideal specific forces contain only the local gravity that is observed
by the accelerometers under different orientations:

̂𝒇(𝑃)
𝑏 = 𝐈 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣

(𝑃)𝐑 ̂𝑣𝑤
(𝑃)𝐑�̂�𝑝(𝑡)𝐈 ̂𝑝𝑛𝜸𝑛(𝑃𝑏) (4.258)

As the outer axis of an ideal rate table is aligned to the local gravity vector, its rotation has no
effect on the reference signal. The reference input to the accelerometer axis is thus either zero
or the local gravity at the tested sensor’s position:

̂𝑓𝑏 = ±𝛾𝑛,𝑧(𝑃𝑏) (4.259)

The ideal rate table has no nominal lever arms, except the height of the intersection point of
the three rotation axes above the test-pad:

̂𝒓𝑝(𝑃𝑤) = [0 0 ℎ]
⊺

(4.260)

All nominal angular rates are constant. Linearization of specific forces equation for the input
errors about this ideal situation yields:

𝛿𝒇𝑏
(𝑃) = 𝐑 ̂𝑏𝑛

(𝑃)𝛿𝜸𝑛

+ (𝐑 ̂𝑏𝑛
(𝑃)𝛿𝜕 ̂𝜸𝑛(𝒓𝑒)

𝜕𝒓𝑒
([𝐑�̂�𝑝 ̂𝒓𝑝(𝑃𝑤)] ×) − 𝐑 ̂𝑏𝑛

(𝑃) ( ̂𝜸𝑛(𝑃𝑏)×) )𝛿𝜳𝑛�̂�

− 𝐑 ̂𝑏𝑝
(𝑃) ( ̂𝒓𝑝(𝑃𝑤)×)𝐑 ̂𝑝𝑛 (�̂�𝑖𝑛×) 𝛿𝝎𝑛𝑝

− 𝐑 ̂𝑏𝑝
(𝑃) ( ̂𝒓𝑝(𝑃𝑤)×) 𝛿�̇�𝑛𝑝

+ (𝐑 ̂𝑏𝑛
(𝑃)𝛿𝜕 ̂𝜸𝑛(𝒓𝑒)

𝜕𝒓𝑒
([ ̂𝒓𝑝(𝑃𝑤)] ×) − 𝐑 ̂𝑏𝑝

(𝑃) (𝐑 ̂𝑝𝑛 ̂𝜸𝑛(𝑃𝑏)×) )𝛿𝜳𝑝 ̂𝑝

− (𝐑 ̂𝑏𝑤
(𝑃) (𝐑�̂�𝑛

(𝑃) ̂𝜸𝑛(𝑃𝑏)×) )𝛿𝜳𝑤�̂�

− (𝐑 ̂𝑏𝑣
(𝑃) (𝐑 ̂𝑣𝑛

(𝑃) ̂𝜸𝑛(𝑃𝑏)×) )𝛿𝜳𝑣 ̂𝑣

− (𝐑 ̂𝑏ᵆ (𝐑 ̂ᴂ𝑛
(𝑃) ̂𝜸𝑛(𝑃𝑏)×) )𝛿𝜳ᵆ ̂ᴂ

+ 𝐑 ̂𝑏𝑛
(𝑃) (�̂�2

𝑖𝑛 +
̇�̂�𝑖𝑛) 𝛿𝒓𝑛(𝑃𝑝) + 𝐑 ̂𝑏𝑛

(𝑃)�̂�𝑖𝑛𝛿 ̇𝒓𝑛(𝑃𝑝) + 𝐑 ̂𝑏𝑛
(𝑃)𝛿 ̈𝒓𝑛(𝑃𝑝)

+ 𝐑 ̂𝑏𝑝
(𝑃) (�̂�2

𝑖𝑝 +
̇�̂�𝑖𝑝) 𝛿𝒓𝑝(𝑃𝑤) + 𝐑 ̂𝑏𝑝

(𝑃)�̂�𝑖𝑝𝛿 ̇𝒓𝑝(𝑃𝑤) + 𝐑 ̂𝑏𝑝
(𝑃)𝛿 ̈𝒓𝑝(𝑃𝑤)

+ 𝐑 ̂𝑏𝑤
(𝑃) (�̂�2

𝑖𝑤 + ̇�̂�𝑖𝑤) 𝛿𝒓𝑤(𝑃𝑣) + 𝐑 ̂𝑏𝑤
(𝑃)�̂�𝑖𝑤𝛿 ̇𝒓𝑤(𝑃𝑣) + 𝐑 ̂𝑏𝑤

(𝑃)𝛿 ̈𝒓𝑤(𝑃𝑣)

+ 𝐑 ̂𝑏𝑣
(𝑃) (�̂�2

𝑖𝑣 +
̇�̂�𝑖𝑣) 𝛿𝒓𝑣(𝑃 ) + 𝐑 ̂𝑏𝑣

(𝑃)�̂�𝑖𝑣𝛿 ̇𝒓𝑣(𝑃 ) + 𝐑 ̂𝑏𝑣
(𝑃)𝛿 ̈𝒓𝑣(𝑃 )

+ 𝐑 ̂𝑏ᵆ (�̂�
2
𝑖ᵆ +

̇�̂�𝑖ᵆ) 𝛿𝒓ᵆ(𝑃𝑏) + 𝐑 ̂𝑏ᵆ�̂�𝑖ᵆ𝛿 ̇𝒓ᵆ(𝑃𝑏) + 𝐑 ̂𝑏ᵆ𝛿 ̈𝒓ᵆ(𝑃𝑏)

(4.261)

The resulting linear sensitivities of the specific forces at the sensor are summarized in  Table H.4 .
Analogeous to the gyro test, positions 1 to 4 have similar sensitivities, where some terms of the

308



4.4. Laboratory Testing Error Budget

middle and inner axes are permuted and flip signs between the reversal measurements. Again,
only some (quasi-) constant errors are eliminated by the reversal measurements.

4.4.5.6. Accelerometer Test Error Budget

 Table 4.26  to  Table 4.29  illustrate the contributions of the different error sources to the esti-
mated sensor parameters for a typical inertial laboratory setup. In contrast to the previously
discussed gyro test, the reference-specific forces signal for the accelerometer test is affected by
translational offsets of the axes and the sensors and linear accelerations, e.g., of the test pad.
As the variances from geometrical rate table errors scale linearly, these are normalized to 1 asec
respectively 1mm. Note that the sensitivity to axis and sensor offsets depends on the rotation
of the rate table. If the accelerometer test is performed independent of the gyro test (and thus
without rotation), translational position errors only affect the local gravity. In addition, the
specific forces are affected by the temporal variation of the local gravity, which was not the
case for the gyroscope tests.
For the accelerometer tests, the applied angular rate does not affect the signal-to-noise ratio

of the reference signals since the local gravity is used as a reference. However, a faster rotation
rate yields a more immediate error reduction when observed under rotation. Of course, axis
and sensor offsets act as lever-arms, and the resulting accelerations scale with the applied
angular rates quadratically.
The accelerometer  SF estimate is dominated by the test-padmotion, followed by the temporal

variations of the local gravity. Significantly, the test-pad motion limits the  SF estimation
accuracy to the region of around 10 ppm. The effects of both test-pad motion and temporal
gravity variations can be further reduced by very long averaging times of multiple hours per
test position. While the  SF variance from the laboratory alignment errors is not affected by
averaging, the resulting levels of magnitude are already minimal for typical alignment errors.
The  SF variances from axis or sensor position offsets and the axis wobble can be reduced by
averaging, and both reduce periodically with every revolution of the rate table. In the test
discussed, at least in the linearized analysis, the control error does not affect the  SF estimation
of the sensor’s x-axis. The same applies to the sensor alignment errors that cancel out due to
the symmetric poses.
The error budgets for the misalignment are depicted in  Table 4.26  and  Table 4.24  . In general,

the twomisalignment parameters are affected equally by the various errors. The only exception
is the sensitivity to the rate table’s position and rate errors, which can only be observed for one
parameter. This is a result of the mechanization of this six-position test, and the orientation
of the sensor’s axes concerning the rate table’s actuated axes. Just like for the gyroscopes,
the rate table’s axes non-orthogonality and sensor alignment errors transfer directly into the
misalignment and cannot be reduced by averaging. For the misalignment estimation, gravity
variations, the alignment errors, and the axis and sensor offsets are effectively reduced by
increasing the averaging time and especially by averaging over complete revolutions of the rate

309



Chapter 4. Inertial Sensor Laboratory Testing

Table 4.26.: Rate table six-position accelerometer test scale factor estimation error budget for
varying rotation rate and averaging time. The laboratory is located at 𝜙 = 45°

.

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise 1min 5min 1 h 12 h

100

101

102

0 °/s
1 °/s
10 °/s
100 °/sSF

1𝜎
,(
pp
m
)

consumer tactical intermediate navigation strategic

Gravity variations
see  Subsection 4.2.5 

• tides from Sun and
Moon

• other planets
neglected 1min 5min 1 h 12 h

10−2

10−1

0 °/s
1 °/s
10 °/s
100 °/sSF

1𝜎
,(
pp
m
)

Laboratory
alignment
see  Subsection 4.2.7 ,

 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
10−9

10−8 0 °/s
1 °/s
10 °/s
100 °/s

SF
1𝜎

,(
pp
m
)

Non-orthogonality
& misalignment
see  Subsection 4.2.9.2 

• equal var. on all axes
• normalized to 1 "(1𝜍)

1min 5min 1 h 12 h
−1

−0.5
0

0.5
1

0 °/s
1 °/s
10 °/s
100 °/s

SF
1𝜎

,(
pp
m
)

Axis and sensor
offset
see  Subsection 4.2.9.2 

• equal var. on all axes
• normalized to
1mm(1𝜍) 1min 5min 1 h 12 h

10−7
10−6
10−5
10−4
10−3
10−2
10−1

0 °/s
1 °/s
10 °/s
100 °/sSF

1𝜎
,(
pp
m
)

Axis wobble
see  Subsection 4.2.9.3 

• ball bearing, 𝑁 =
13, 𝑞 = [−3…3]

• normalized to 1 " RMS
wobble 1min 5min 1 h 12 h

10−16
10−14
10−12
10−10
10−8 0 °/s

1 °/s
10 °/s
100 °/s

SF
1𝜎

,(
pp
m
)

Control error
see  Subsection 4.2.9.6 

• 𝑓𝑐 = 20Hz,𝐷 =
0.75,

• 𝑁in = 720, 𝑁p = 6,
𝑁c = 20

• noise 1 ⋅ 10−10 °2/Hz 1min 5min 1 h 12 h
−1

−0.5

0

0.5

1

0 °/s
1 °/s
10 °/s
100 °/s

SF
1𝜎

,(
pp
m
)

Sensor alignment
• alignment error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
−1

−0.5
0

0.5
1

0 °/s
1 °/s
10 °/s
100 °/s

Cluster averaging time 𝜏 in (s)

SF
1𝜎

,(
pp
m
)
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table. For the analyzed typical laboratory setup, the misalignment accuracy achieved during
the six-position test is limited to the region of few ppm, typically associated with navigation
grade sensors.
The error budget for the accelerometer bias estimation in the six-position test is presented

in  Table 4.29  . The bias estimation is dominated by the rate table’s positioning errors and the
test-pad motion. The effect of the test-pad motion can be reduced by averaging but reaches
navigation grade levels only for very long averaging times of more than 10 h. However, the
variance resulting from the table’s position accuracy cannot be improved by averaging.
The bias variance from laboratory alignment errors is effectively reduced by averaging.

It vanishes entirely for complete revolutions of the rate table. The errors from axis non-
orthogonality and axis wobble, however, result reach a constant level after a few minutes and
cannot be further reduced for the given configuration. The axis- and sensor offset together
with the rate table’s rotation create constant centrifugal forces that directly go into the sensor’s
bias estimate. Also, the sensor’s alignment errors contribute to the bias estimate and are not
affected by averaging.
All in all, the analyzed configuration allows the determination of the accelerometer bias

during the six-position test at the navigation grade level. Higher accuracies require a more
precise alignment and a calmer (e.g., actively stabilized) test pad.

4.4.5.7. Modification for Static Six Position Tests

The presented error budgets can be easily modified to represent a static version of the six-
position test that may be conducted, e.g., using a test cube. This can be easily represented by
neglecting all rate-table errors and choosing the depicted graphs for zero applied rate. Due to
the similar test structure, the results resemble the results of the static reversal measurements
from  Subsection 4.4.3  . However, the actual axes’ orientations differ. Furthermore, in this
six-position test, the bias estimate is based on all six measurements, adding additional errors,
in contrast to the simple reversal measurements case.
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Table 4.27.: Rate table six-position accelerometer test axis misalignment 𝑀𝑥𝑦 estimation error
budget for varying rotation rate and averaging time. The laboratory is located at
𝜙 = 45°

.

Test-pad motion
see  Subsection 4.2.4  

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−8
10−6
10−4
10−2
100

0 °/s

1 °/s10 °/s100 °/sM
A

y
1𝜎

,(
m
ra
d)

Gravity variations
see  Subsection 4.2.5  

• tides from Sun and
Moon

• other planets
neglected 1min 5min 1 h 12 h

10−11
10−9
10−7
10−5 0 °/s

1 °/s
10 °/s
100 °/s

M
A

y
1𝜎

,(
m
ra
d)

Laboratory
alignment
see  Subsection 4.2.7  ,
 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
10−10
10−8
10−6
10−4
10−2

(0 °/s)

1 °/s

10 °/s

100 °/s

M
A

y
1𝜎

,(
m
ra
d)

Non-orthogonality
& misalignment
see  Subsection 4.2.9.2  

• equal var. on all axes
• normalized to 1 "(1𝜍)

1min 5min 1 h 12 h
10−3

10−2
0 °/s
1 °/s
10 °/s
100 °/s

M
A

y
1𝜎

,(
m
ra
d)

Axis and sensor
offset
see  Subsection 4.2.9.2  

• equal var. on all axes
• normalized to
1mm(1𝜍)

1min 5min 1 h 12 h10−14
10−12
10−10
10−8
10−6
10−4

(0 °/s)

1 °/s
10 °/s
100 °/s

M
A

y
1𝜎

,(
m
ra
d)

Axis wobble
see  Subsection 4.2.9.3  

• ball bearing, 𝑁 =
13, 𝑞 = [−3…3]

• normalized to 1 " RMS
wobble 1min 5min 1 h 12 h

10−3

10−2
0 °/s
1 °/s
10 °/s
100 °/s

M
A

y
1𝜎

,(
m
ra
d)

Control error
see  Subsection 4.2.9.6  

• 𝑓𝑐 = 20Hz,𝐷 =
0.75,

• 𝑁in = 720, 𝑁p = 6,
𝑁c = 20

• noise 1 ⋅ 10−10 °2/Hz 1min 5min 1 h 12 h
10−2

10−1 0 °/s
1 °/s
10 °/s
100 °/s

M
A

y
1𝜎

,(
m
ra
d)

Sensor alignment
• alignment error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−1

100

0 °/s
1 °/s
10 °/s
100 °/s

Cluster averaging time 𝜏 in (s)

M
A

y
1𝜎

,(
m
ra
d)
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Table 4.28.: Rate table six-position accelerometer test axis misalignment 𝑀𝑥𝑧 estimation error
budget for varying rotation rate and averaging time. The laboratory is located at
𝜙 = 45°

.

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise

1min 5min 1 h 12 h
10−8
10−6
10−4
10−2
100

0 °/s

1 °/s10 °/s100 °/sM
A

z
1𝜎

,(
m
ra
d)

Gravity variations
see  Subsection 4.2.5 

• tides from Sun and
Moon

• other planets
neglected 1min 5min 1 h 12 h

10−11
10−9
10−7
10−5 0 °/s

1 °/s
10 °/s
100 °/s

M
A

z
1𝜎

,(
m
ra
d)

Laboratory
alignment
see  Subsection 4.2.7 ,
 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
10−10
10−8
10−6
10−4
10−2

(0 °/s)

1 °/s

10 °/s

100 °/s

M
A

z
1𝜎

,(
m
ra
d)

Non-orthogonality
& misalignment
see  Subsection 4.2.9.2 

• equal var. on all axes
• normalized to 1 "(1𝜍)

1min 5min 1 h 12 h
10−3

10−2
0 °/s
1 °/s
10 °/s
100 °/s

M
A

z
1𝜎

,(
m
ra
d)

Axis and sensor
offset
see  Subsection 4.2.9.2 

• equal var. on all axes
• normalized to
1mm(1𝜍)

1min 5min 1 h 12 h10−14
10−12
10−10
10−8
10−6
10−4

(0 °/s)

1 °/s
10 °/s
100 °/s

M
A

z
1𝜎

,(
m
ra
d)

Axis wobble
see  Subsection 4.2.9.3 

• ball bearing, 𝑁 =
13, 𝑞 = [−3…3]

• normalized to 1 " RMS
wobble 1min 5min 1 h 12 h

10−3

10−2
0 °/s
1 °/s
10 °/s
100 °/s

M
A

z
1𝜎

,(
m
ra
d)

Control error
see  Subsection 4.2.9.6 

• 𝑓𝑐 = 20Hz,𝐷 =
0.75,

• 𝑁in = 720, 𝑁p = 6,
𝑁c = 20

• noise 1 ⋅ 10−10 °2/Hz 1min 5min 1 h 12 h
−1

−0.5

0

0.5

1

0 °/s
1 °/s
10 °/s
100 °/s

M
A

z
1𝜎

,(
m
ra
d)

Sensor alignment
• alignment error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−1

100

0 °/s
1 °/s
10 °/s
100 °/s

Cluster averaging time 𝜏 in (s)

M
A

z
1𝜎

,(
m
ra
d)
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Table 4.29.: Rate table six-position accelerometer test bias estimation error budget for varying
rotation rate and averaging time. The laboratory is located at 𝜙 = 45°

.

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise 1min 5min 1 h 12 h

10−7
10−6
10−5
10−4

0 °/s
1 °/s
10 °/s
100 °/sBi

as
1𝜎

,(
g)

consumer tactical intermediate navigation strategic

Gravity variations
see  Subsection 4.2.5 

• tides from Sun and
Moon

• other planets
neglected 1min 5min 1 h 12 h

10−8

10−7

0 °/s1 °/s
10 °/s
100 °/sBi

as
1𝜎

,(
g)

Laboratory
alignment
see  Subsection 4.2.7 ,
 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
10−14
10−12
10−10
10−8
10−6
10−4

0 °/s

1 °/s
10 °/s
100 °/s

Bi
as

1𝜎
,(
g)

Non-orthogonality
& misalignment
see  Subsection 4.2.9.2 

• equal var. on all axes
• normalized to 1 "(1𝜍)

1min 5min 1 h 12 h
10−6

10−5
0 °/s
1 °/s
10 °/s
100 °/s

Bi
as

1𝜎
,(
g)

Axis and sensor
offset
see  Subsection 4.2.9.2 

• equal var. on all axes
• normalized to
1mm(1𝜍)

1min 5min 1 h 12 h
10−12
10−10
10−8
10−6
10−4

0 °/s

1 °/s
10 °/s
100 °/s

Bi
as

1𝜎
,(
g)

Axis wobble
see  Subsection 4.2.9.3 

• ball bearing, 𝑁 =
13, 𝑞 = [−3…3]

• normalized to 1 " RMS
wobble 1min 5min 1 h 12 h

10−6

10−5
0 °/s
1 °/s
10 °/s
100 °/s

Bi
as

1𝜎
,(
g)

Control error
see  Subsection 4.2.9.6 

• 𝑓𝑐 = 20Hz,𝐷 =
0.75,

• 𝑁in = 720, 𝑁p = 6,
𝑁c = 20

• noise 1 ⋅ 10−10 °2/Hz 1min 5min 1 h 12 h
10−5

10−4
0 °/s
1 °/s
10 °/s
100 °/s

Bi
as

1𝜎
,(
g)

Sensor alignment
• alignment error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−4

10−3

0 °/s
1 °/s
10 °/s
100 °/s

Cluster averaging time 𝜏 in (s)

Bi
as

1𝜎
,(
g)
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Result 8: Six-Position Testing

The simple six-position error estimation is equivalent to reversal measurements for the scale
factor and misalignment determination. However, here, the magnitude of the gyroscope input
can be easily controlled by the rate table’s applied rate. Independent of the test’s degrees of
freedom like the number of positions and applied rates, the following statements are valid:

• The linear scale factor estimate reaches the strategic grade quickly, as it can be improved
by increasing the averaging time and the applied angular rate.

• The misalignment estimation accuracy is directly limited by the rate table’s axis orien-
tation errors, non-orthogonality, and wobble. Typical rate table accuracies allow the
misalignment estimation at the navigation grade level.

• The bias estimation is dominated by rate table errors and limited to the level of tactical
grade sensors. In contrast to the other sensor errors, the estimation accuracy worsens
when the angular rate increases.

• Averaging over complete revolutions is always beneficial as it reduces periodical errors.
Similar statements can be made for the accelerometer testing:

• The (linear) scale factor estimate reaches only navigation grade and is limited by the
test-pad motion.

• The misalignment estimation accuracy is directly limited by the rate table’s axis ori-
entation errors, non-orthogonality, and wobble. Typical rate table accuracies allow
estimation of the misalignment at the level of navigation grade sensors.

• Also, the accelerometer’s bias estimate is dominated by the rate table’s control errors
and limited to intermediate grade.

As the resulting accuracy levels for gyroscopes and accelerometers are similar, the multi-
position test provides an effective tool for the simultaneous estimation of accelerometer and
gyro errors. This is especially true when using a three-axis rate table that allows automated
orientation changes of the  IMU without manual handling. However, this efficiency comes with
a reduced accuracy compared to the static, e.g., reversal position tests.
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4.5. Kalman Filter Based Sensor Testing

Within the previous sections, the classical stationary calibration procedures have been discussed.
These mainly relied on procedures designed to isolate and determine the sensor errors from
averaging the sensor outputs determined at constant input signals.
Within this section, a different approach, based on  KF will be presented. Here the sensor’s

model equations are transformed into state-space representation, and a  KF is used to estimate
the sensor errors from the sensor’s output. The basic architecture of this calibration approach
is illustrated in  Figure 4.39  . In contrast to the classical test procedures, the  KF based estimation
does not require specifically designed test procedures but runs independently of the applied
sensor motion. This, however, requires knowledge of the rate table’s angular positions and
rates synchronized in time with the sensor’s output. Using the kinematic models from  Subsec-
tion 4.2.1  , the ideal sensor input can be calculated from the measured rate table position and
rates.

Rate table

Rate table

Inertial

model

Trajectory
commands

Kalman Filter

Correction
𝐊𝑘 = 𝐏−𝑘𝐇𝑘

⊺(𝐇𝑘𝐏−𝑘𝐇𝑘 +𝐑𝑘)−1

𝐏+𝑘 = (𝐈 −𝐊𝑘𝐇𝑘)𝐏−𝑘

𝐏𝑘+1 = 𝚽𝑘𝐏𝑘𝚽𝑘
⊺ + 𝚪𝑘𝐐𝑘𝚪𝑘⊺

�̂�𝑘+1 = 𝚽𝑘�̂�𝑘

KF Based Sensor Testing

𝛹𝑝𝑤,𝑐, 𝛷𝑤𝑣,𝑐, 𝛹𝑣ᵆ,𝑐
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�̂�+𝑘 = �̂�−𝑘 +𝐊𝑘( ̃𝒚𝑘 −𝐇𝑘�̂�−𝑘 )

Prediction

Figure 4.39.: General concept of Kalman Filter based laboratory calibration.

The  KF approach inherently provides information on the accuracy of the estimation, repre-
sented by the covariance matrix. In case the input motion does not provide sufficient informa-
tion to estimate the sensor parameters, this can be observed in the covariance matrix.

4.5.1. KF Design and Modeling

4.5.1.1. Estimation States and System

Just like for the previous test procedures, the goal is to determined the error terms of a sensor’s
model equation. The  KF based laboratory testing will be demonstrate for the following model
equation

�̃�𝑖𝑏,𝑥 = 𝑆1,𝑥 𝜔𝑖𝑏,𝑥+⋯+𝑆𝑠,𝑥 𝜔𝑘𝑖𝑏,𝑥+𝑀𝑥𝑦 𝜔𝑖𝑏,𝑦+𝑀𝑥𝑧 𝜔𝑖𝑏,𝑧+𝑎𝑥 𝑓𝑏,𝑥+𝑎𝑦 𝑓𝑏,𝑦+𝑎𝑧 𝑓𝑏,𝑧+𝑏𝑥+𝜈𝑥
(4.262)
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which includes terms for a scale factor polynomial 𝑆1,𝑥 to 𝑆𝑠,𝑥, linear misalignments𝑀𝑥𝑦,𝑀𝑥𝑧,
acceleration sensititvies 𝑎𝑥, 𝑎𝑦, 𝑎𝑧, a bias 𝑏𝑥 and sensor noise 𝜈𝑥. Ideally, the error parameters
are constant, and the model equation is representative for a sufficiently long time to allow
calibration and compensation of errors over the sensor’s life. These errors are modeled as a
random constant in the framework of a  KF , which yields a straightforward state-space system
without dynamics. A little dynamics is added, if a rate ramp error shall be considered. In this
case, the sensor’s bias changes at a constant rate 𝑟𝑥:

̇𝑏𝑥 = 𝑟𝑥 (4.263)

Within this section, the analysis will focus on gyroscope testing respectively a gyroscope
model equation. Since the model equation and the following analyses consider (high order)
acceleration sensitivities, the results can be easily adopted to accelerometers with model
equations of the form

̃𝑓𝑏,𝑥 = 𝑎1,𝑥 𝑓𝑏,𝑥 + 𝑎2,𝑥 𝑓2𝑏,𝑥 +⋯+ 𝑎𝑦 𝑓𝑏,𝑦 + 𝑎𝑧 𝑓𝑏,𝑧 + 𝑏𝑥 + 𝜈𝑥 (4.264)

A model equation with high order and cross-axis sensitivity terms to angular rate and accelera-
tions could be used for sensor testing/calibration independent of the actual sensor type.

For the model equation ( 4.262 ), the corresponsing state space system can be written as

𝑑
𝑑𝑡

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑆1,𝑥

⋮

𝑆𝑠,𝑥

𝑀𝑥𝑦

𝑀𝑥𝑧

𝑎𝑥

𝑎𝑦

𝑎𝑧

𝑏𝑥

𝑟𝑥

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⏟⎵⎵⏟

�̇�

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 … 0 0 0 0 0 0 0 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 … 0 0 0 0 0 0 0 0

0 … 0 0 0 0 0 0 0 0

0 … 0 0 0 0 0 0 0 0

0 … 0 0 0 0 0 0 0 0

0 … 0 0 0 0 0 0 0 0

0 … 0 0 0 0 0 0 0 0

0 … 0 0 0 0 0 0 0 1

0 … 0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

𝐀

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑆1,𝑥

⋮

𝑆𝑠,𝑥

𝑀𝑥𝑦

𝑀𝑥𝑧

𝑎𝑥

𝑎𝑦

𝑎𝑧

𝑏𝑥

𝑟𝑥

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⏟⎵⏟

𝒙

(4.265)

For this model, there is no input to the system of the estimation states. The system matrix 𝐀
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can be easily time-discretized to the transition matrix 𝚽:

𝚽 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 … 0 0 0 0 0 0 0 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 … 1 0 0 0 0 0 0 0

0 … 0 1 0 0 0 0 0 0

0 … 0 0 1 0 0 0 0 0

0 … 0 0 0 1 0 0 0 0

0 … 0 0 0 0 1 0 0 0

0 … 0 0 0 0 0 1 0 0

0 … 0 0 0 0 0 0 1 𝛥𝑡

0 … 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.266)

Based on the above state space model, the model equation ( 4.262 ) is transformed into the
following measurement matrix

𝐇𝑘 = [�̂�𝑖𝑏,𝑥, … �̂�𝑠𝑖𝑏,𝑥 �̂�𝑖𝑏,𝑦 �̂�𝑖𝑏,𝑧 ̂𝑓𝑏,𝑥 ̂𝑓𝑏,𝑦 ̂𝑓𝑏,𝑧 1 0]
𝑘

(4.267)

with the ideal angular rates and specific forces as determined from the rate table’s kinematic
model at time 𝑘, see  Subsection 4.2.1 .
If the sensor noise 𝜈𝑥 were  WGN , above system and measurement matrix would suffice

to estimate the sensor parameters using the classical  KF  Algorithm 1  . However, as widely
discussed in this work, the sensor noise is correlated, which should be considered to achieve a
consistent estimation of the sensor errors. The noise itself shall not be estimated, and only its
stochastic shall be considered. Therefore a Schmidt-Kalman Filter, see  Algorithm 3  , is used.
As depicted in  Figure 4.40  , the Schmidt-Kalman filter augments the  KF based calibration from

 Figure 4.39 with measurement noise processes. These measurement noise processes can be
used to incorporate both sensor noise as well as laboratory errors.

4.5.1.2. Sensor Noise Models

In the Kalman Filter framework, sensor noise is modeled as a stochastic process represented by
a  LTI system with  WGN input. One option to determine such a system model is identifying an

 Auto-Regressive Moving-Average (ARMA)  model from recorded sensor noise, e.g., as discussed
in [ 57 ]. In thiswork, another approach is used: Each sensor noise process, as defined in  Table 2.7  

is modeled separately. The defining noise parameters for this approach are determined from
static tests, see  Subsection 4.4.2.3 . In contrast to the  ARMA approach, the separate noise
models allow a simple analysis and tweaking of the different noise processes. The models for
the sensor noise processes will be discussed in the following.
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Schmidt Kalman Filter

Estimation correction
𝐑𝑘 = ∑𝑚

𝑗=1
(𝐇𝜂𝑗,𝑘𝐏𝜂𝑗𝜂𝑗,𝑘𝐇𝜂𝑗,𝑘

⊺ +𝐃𝜂𝑗𝐐𝜂𝑗𝐃𝜂𝑗
⊺)

𝐒𝑘 = 𝐇𝑘𝐏−
𝑥𝑥,𝑘𝐇𝑘

⊺ +𝐑𝑘 +∑𝑚
𝑗=1

(𝐇𝜂𝑗𝐏
−
𝜂𝑗𝑥,𝑘

)𝐇𝑘
⊺ +𝐇𝑘∑

𝑚
𝑗=1

(𝐏−
𝑥𝜂𝑗,𝑘

𝐇𝜂𝑗
⊺)

𝐊𝑘 = (𝐏−
𝑥𝑥∑

𝑚
𝑗=1

𝐏−
𝑥𝜂𝑗,𝑘

𝐇𝜂𝑗,𝑘
⊺) 𝐒𝑘

−1

𝐏+
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⊺
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𝐏𝑥𝜂

Figure 4.40.: Laboratory sensor calibration using a Schmidt-Kalman filter.

Quantization Noise

In  Table 2.7  quantization noise is defined as the time derivative of white Gaussian noise, scaled
by the factor 𝑄. In the state space framework, this can be approximated by the difference
quotient of the current and the previous noise sample. In the approximation model  Model 11  ,
the system’s single state is used to store the previous noise sample.

Model 11: Quantization Noise

Transition matrix Input matrix Input covariance
𝛷𝑄 = 0 𝛤𝑄 = 1 𝑄𝑄 = 𝑄2

𝛥𝑡

Measurement matrix Feedthrough Initialization
𝐻𝑄 = − 1

𝛥𝑡
𝐷𝑄 = 1

𝛥𝑡
𝑃𝑄,0 = 𝑄𝑄

Angular/Velocity Random Walk

As an angular, respectively velocity, random walk is just white Gaussian noise on the rates/ac-
celeration (see  Table 2.7 ), the state space noise model is reduced to the feedthrough 𝐷 to the
white-noise input with variance 𝑄𝑁. There is no system dynamics and no states are required.
The scaling is defined by the  ARW coefficient 𝑁. The resulting state space representation is
summarized in  Model 12 .
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Model 12: Angular/Velocity Random Walk

Transition matrix Input matrix Input covariance
𝛷𝑁 = − 𝛤𝑁 = − 𝑄𝑁 = 𝑁2

𝛥𝑡

Measurement matrix Feedthrough Initialization
𝐻𝑁 = − 𝐷𝑁 = 1 𝑃𝑁,0 = 0

Bias Instability

Bias instability is defined as a band-limited flicker noise (see  Table 2.7  ). As discussed in
 Subsection 3.3.3 , there is no  LTI system that exactly reproduces bias instability from  WGN 

input. In general, the bias instability noise process can be approximated by  ARMA models as
presented in [  57 ]. This, however, required an identification of the  ARMA models from a given
signal.

Here, the bias instability noise process is modeled by a set of filters that approximate the
∼ 1/𝑓  PSD as proposed in [ 80 ]. A cascade of linear filters of the form

𝐺(𝑠) =
𝜏2𝛽𝑖𝑠 + 1

(𝜏2 + 𝜏1)𝛽𝑖𝑠 + 1
with 𝛽 = (

𝜏2
𝜏1 + 𝜏2

)
2

for 𝑖 = 1, 2,… (4.268)

is used to approximate the desired ∼ 1/𝑓  PSD over a specific frequency range. An example
 PSD of this approximation approach is given in  Figure 4.41  . In the filter design 𝜏2 and the
number of filters should be chosen to approximate over the entire frequency range, from the
Nyquist-frequency to the inverse of the relevant operation time.

10−4 10−3 10−2 10−1 100 101 102
10−2
10−1
100
101
102
103
104

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4

Frequency 𝜔 in ( rad
s
)

PS
D
𝑆

in
(

1
√
H
z)

filter cascade desired slope separate filters

Figure 4.41.: Flicker noise approximation using filter cascade, 𝛽 = 1/9, 𝜏2 = 1 s.

The design process and derivation of a linear state-space system for use in a Kalman Filter is
summarized in  Model 13 .
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Model 13: Bias Instability

Using the approach of [ 80 ], an approximation for the bias instability noise process can be
designed as follows:

1. Choose 𝛽, e.g., 𝛽 = 1

9
.

2. Determine required number of filters 𝑛. The approximated frequency range is ≈ 𝛽−𝑛.

3. Select time constant 𝜏2, ideally so that 𝜏𝑛2 is the inverse Nyquist-frequency 𝜏𝑛2 ≈ 2

𝑓𝑠
.

4. Determine 𝜏1 = (𝛽−1/2 − 1) 𝜏2.
5. Determine the transfer function:

𝐺(𝑠) =
𝑛

∏
𝑖=1

[
√

(𝜏1 + 𝜏2)2𝛽2𝑖 + 1
𝜏22𝛽2𝑖 + 1

1 + 𝑠 𝜏2𝛽𝑖
1 + 𝑠 (𝜏1 + 𝜏2)𝛽𝑖

]
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

flicker noise approx.

1
1 + 𝜏𝑐𝑠⏟⎵⏟⎵⏟

cut-off approx.

=
𝑏𝑛𝑠𝑛 +…𝑏1𝑠 + 𝑏0

𝑠𝑛+1 + 𝑎𝑛𝑠𝑛 +…𝑎1𝑠 + 𝑎0

6. The transfer function is transformed to the time-continuous state-space system

𝐀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 … 0
0 0 1 … 0
⋮
0 0 0 … 1

−𝑎0 −𝑎1 −𝑎2 … −𝑎𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐁 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
⋮
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐇𝐵 = [𝑏0 𝑏1 … 𝑏𝑛−1]

which can the be discretized in time for the use in the Kalman Filter.

Transition matrix Input matrix Input covariance
𝚽𝐵 = 𝐈 + 𝐀𝛥𝑡 + 1

2
𝐀2𝛥𝑡2 + 1

6
𝐀3𝛥𝑡3 𝚪𝐵 = (𝐈𝛥𝑡 + 1

2
𝐀𝛥𝑡2 + 1

6
𝐀2𝛥𝑡3) 𝐁 𝑄𝐵 =

𝐵2

𝛥𝑡

Measurement matrix Feedthrough Initialization
𝐇𝐵 = [𝑏0 𝑏1 … 𝑏𝑛−1] 𝐃𝐵 = 𝟎 𝐏𝐵,0 = 𝟎
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Rate/Acceleration Random Walk

As defined in  Table 2.7  , rate random walk is defined by its scaling factor 𝐾. The random walk
is time-integrated white noise, as modeled in  Model 14 .

Model 14: Rate/Acceleration Random Walk

Transition matrix Input matrix Input covariance
𝛷𝐾 = 1 𝛤𝐾 = 𝛥𝑡 + 1

2
𝛥𝑡2 + 1

6
𝛥𝑡3 𝑄𝐾 = 𝐾2

𝛥𝑡

Measurement matrix Feedthrough Initialization
𝐻𝐾 = 1 𝐷𝐾 = 0 𝑃𝐾,0 = 0

4.5.1.3. Laboratory Error Models

Like the sensor errors, the effects of laboratory and environmental errors can also be considered
using the Schmidt-Kalman Filter. Here, each error source of the laboratory model is modeled as
a noise process. The correspondingmeasurementmatrix for each of these processes𝐇𝜂𝑗 consists
of the linearized error sensitivity of the ideal angular rates/specific forces from  Subsection 4.2.3  ,
the sensor’s sensitivity to these inputs and the measurement matrix of the noise process itself.
As these sensitivities are just the sensor errors that shall be estimated, they are unknown.
Similar to the Extended Kalman Filter, the current estimates of these errors may be used as
sensitivity in the measurements matrix. For the error model ( 4.262 ), the measurement matrix
𝐻𝜂𝑗 for each laboratory error source is given by

𝐇𝜂𝑗 = ( ̂𝑆𝑥
𝜕𝜔𝑖𝑏,𝑥
𝜕 𝑗

+ �̂�𝑥𝑦
𝜕𝜔𝑖𝑏,𝑦
𝜕 𝑗

+ �̂�𝑥𝑧
𝜕𝜔𝑖𝑏,𝑧
𝜕 𝑗

+ ̂𝑎𝑥
𝜕𝑓𝑏,𝑥
𝜕 𝑗

+ ̂𝑎𝑦
𝜕𝑓𝑏,𝑦
𝜕 𝑗

+ ̂𝑎𝑧
𝜕𝑓𝑏,𝑧
𝜕 𝑗

)𝐋𝜂𝑗 (4.269)

where 𝐋𝜂𝑗 is the measurement matrix that forms the scalar noise output from the noise process’
states.

Variation of the Earth’s Angular Rate

Asdescribed in  Model 1 , the Earth’s angular rate variationmay bemodeled as a set of oscillations
of known amplitude and frequency but an unknown phase. Like this, the uncertainty resulting
from the neglection of the variations and the known time-correlation of these variations is
considered. The corresponding state space model for the use in the  Schmidt-Kalman filter
(SKF) is presented in  Model 15 . Long-time variations of the Earth’s angular rate may also be
modeled as a random constant contribution, such as  Model 16 .
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Model 15: Oscillating Errors

A oscillating error of known amplitude √2𝜎osc and frequency 𝜔osc with uniformely distributed
random phase is modeled as the sum of a sine and a cosine wave. The result is a constant
variance 𝜎2osc, but the time-correlation of the oscillation is properly considered in the (cross-)
covariance matrices and thus in the  KF estimation.
These oscillating processes are thus described by two uncoupled second-order systems:

𝐀osc =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 0
−𝜔2osc 0 0 0
0 0 0 1
0 0 −𝜔2osc 0

⎤
⎥
⎥
⎥
⎥
⎦

𝐁osc =

⎡
⎢
⎢
⎢
⎢
⎣

0
𝜔2osc

0
𝜔2osc

⎤
⎥
⎥
⎥
⎥
⎦

which are then discretized for the use in the Schmidt-Kalman Filter.

Transition matrix Input matrix Input covariance
𝚽osc = 𝐈 + 𝐀𝛥𝑡 + 1

2
𝐀2𝛥𝑡2 + 1

6
𝐀3𝛥𝑡3 𝚪osc =

(𝐈𝛥𝑡 + 1

2
𝐀𝛥𝑡2 + 1

6
𝐀2𝛥𝑡3) 𝐁

𝑄osc = 0

Measurement matrix Feedthrough Initialization

𝐋osc = [1 0 1 0], see ( 4.269 ) 𝐷osc = 𝟎 𝐏osc,0 = 𝜎2osc

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝜔2osc

⎤
⎥
⎥
⎥
⎥
⎦
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Uncertainty and Variation of the Local Gravity

Similar to the Earth’s angular rate variations, most local gravity variations (see  Model 2  ) can be
described by a set of oscillations. Measurement or model uncertainties of the local gravity are
modeled as a random constant. In the  SKF these are each modeled in as described in  Model 15  

and  Model 16 .

Testpad Alignment Errors

Test-pad alignment errors are modeled as random constant. In the context of the Schmidt-
Kalman Filter, this is a single state without any dynamics and input. Since the noise states
are not updated, the initial covariance of the random constant variable is kept throughout the
entire operation. This simple model is summarized in  Model 16 . This model is used for each
alignment error angle as modeled in  Model 4 . It is essential to create a separate instance of this
model for each error source because the different measurement matrices result in different
cross-covariances that must be tracked.

Model 16: Random Constant Errors

Transition matrix Input matrix Input covariance
𝛷RC = 1 𝛤RC = − 𝑄RC = −

Measurement matrix Feedthrough Initialization
𝐋𝜂𝑗 = 1, see ( 4.269 ) 𝐷RC = − 𝑃RC,0 = 𝜎2RC

Test Pad Motion

If measurements of the local test-pad motion spectrum are available, an  ARMA model for the
use in the  SKF can be identified for the specific laboratory location. If not, the reference spectra
from  Model 5  may be used. Assuming the errors on each degree of freedom are mutually
independent, a noise process instance is required for each degree of freedom. An approximation
of the reference test-pad motion is presented in  Model 17 .

Rate Table Non-Orthogonality and Static Errors

In accordance with  Model 6  , the axis non-orthogonality is also modeled a simple random
constant. Again, an instance of the random constant model  Model 16  is created for each
constant error angle and offset from  Model 6 .
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Model 17: Testpad Motion Model

The testpad motion according to the seismic reference models from  Model 5  is created from
 WGN input to a shaping filter. The state space systems that approximate the reference  PSD 

are given in:
•  Table J.2 for the tilt angles
•  Table J.1 for the angular
•  Table J.3 for the accelerations

Transition matrix Input matrix Input covariance
𝚽TP = 𝐈 + 𝐀𝛥𝑡 + 1

2
𝐀2𝛥𝑡2 + 1

6
𝐀3𝛥𝑡3 𝚪TP = (𝐈𝛥𝑡 + 1

2
𝐀𝛥𝑡2 + 1

6
𝐀2𝛥𝑡3) 𝐁 𝑄TP =

1

𝛥𝑡

Measurement matrix Feedthrough Initialization
𝐋𝜂𝑗, see ( 4.269 ),  Appendix J 𝐷TP = 0 𝑃TP,0 = 𝟎

Rate Table Axis Wobble

Following the wobble model from  Model 7 , the axis wobble is modeled by the sum of multiple
sines representing the waviness of the bearing’s rings and balls. The frequencies of these waves
are given by the waviness order and the rotation rate of the axes and the bearing’s cage. While
the frequencies are known, the amplitude of each wave is unknown and thus modeled as a
random constant. For each waviness order, a random constant model like  Model 16  has to be
added to the  SKF .

Model 18: Axis Wobble

Transition matrix Input matrix Input covariance
𝛷WOB = 1 𝛤WOB = − 𝑄WOB = −

Measurement matrix Feedthrough Initialization
𝐋𝜂𝑗 = cos(𝑞𝑁𝑟(𝑓𝑖−𝑓𝑐)+𝑝𝑓𝑖)𝑡),
see ( 4.269 ),  Model 7 

𝐷WOB = − 𝑃WOB,0 = 𝜎2WOB

Rate Table Control Errors

As pointed out in  Model 10 , the modeling of the rate table’s positioning and rate errors cannot
be generalized as it depends on the implemented control laws and architecture. However, a
typical servo-loopmay be approximated by a second-order system as described in  Model 19  . The
sinusoidal errors from motor cogging and the measurement errors can be modeled similarly
to the axis wobble. However, they have high frequencies at many multiples of the applied
angular rates. They are averaged out very quickly on a rotating axis and may thus be neglected
compared to other effects.
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Model 19: Rate Table Positioning and Rate Error

A rough approximation of a rate-table’s servo loop is given by a second order system defined
by its natural frequency 𝜔𝑐 and damping ratio 𝐷:

𝐀 = [
0 1

−𝜔2𝑐 −2𝐷𝜔𝑐
] 𝐁 = [

0
𝜔2𝑐
]

This system is discretized for the use in the  SKF . The  WGN input to this system is scaled with
𝑞 to match the rate table’s position measurement noise.

Transition matrix Input matrix Input covari-
ance

𝚽CTRL = 𝐈 + 𝐀𝛥𝑡 + 1

2
𝐀2𝛥𝑡2 + 1

6
𝐀3𝛥𝑡3 𝚪CTRL = (𝐈𝛥𝑡 + 1

2
𝐀𝛥𝑡2 + 1

6
𝐀2𝛥𝑡3) 𝐁 𝑄CTRL =

𝑞

𝛥𝑡

Measurement matrix Feedthrough Initialization
𝐋𝜂𝑗 = [1 0] (position), see ( 4.269 ) 𝐷CTRL = 0 𝑃CTRL,0 = 𝟎
𝐋𝜂𝑗 = [0 1] (rate)

4.5.2. Observability and Trajectory Design

4.5.2.1. General Remarks

The goal of inertial sensor calibration is the determination of all parameters of the sensor’s error
model. In the context of a Kalman Filter-based estimation, this requires complete observability
of the system and thus of the estimation states.

The parameter estimation for the classical test procedures was based on the least-squares
adjustment of averaged sensor outputs. These test procedures can also be performed using a

 KF for the parameter estimation. The rate table trajectories are the same, but the sensor signal
is directly fed to the  KF which inherently performs the averaging and estimation steps. The
observability of the investigated sensor errors is always given for the classical tests since the
test procedures have been explicitly designed to isolate and estimate them. However, this is
only true if further sensor errors are neglected. Also for the classical test procedures, the tested
parameters can often only be estimated in linear combination with other errors. The general
observability of sensor sensitivities to kinematic inputs will be analyzed in the next section.

4.5.2.2. Observability

The classical test for observability of a (time-varying) time-discrete state space system as used
in the Kalman Filter is based on the observability Gramian or observability matrix [ 173 , p. 146]:

𝐌𝑘0,𝑘𝑓 =
𝑘𝑓

∑
𝑘=𝑘0

(𝚽𝑘,𝑘0
⊺)𝐇𝑘

⊺𝐇𝑘𝚽𝑘,𝑘0 (4.270)
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with the cumulative transition matrix 𝚽𝑘,0 from the time 𝑘0 to the time 𝑘𝑓. The formal
definition of observability is:

”The system is completely observable on the time interval 𝑇 if for every 𝑘0 ∈ 𝑇 there exists a
𝑘𝑓 ∈ 𝑇 such that 𝑘𝑓 > 𝑘0 and𝐌𝑘0,𝑘𝑓 has full rank, or is positive definite.” [ 173 , p. 146]

While the observability Gramian provides a method to prove system observability for a given
trajectory and time interval, it is hard to analyze or design a rate table trajectory from the above
definition.

Here, an observability test for the time-continuous system is used to design a trajectory for
complete system observability. For a time-varying linear state space system, with analytically
given system matrix 𝐀(𝑡) and 𝐇(𝑡), the state observability can be tested using the another
observability matrix [ 174 , pp. 279–280]:

rank

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐇0(𝑡0)

𝐇1(𝑡0)

⋮

𝐇𝑘(𝑡0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⎵⎵⏟⎵⎵⏟

𝐌

= 𝑛 for some 𝑘 (4.271)

where

𝐇0(𝑡) = 𝐇(𝑡) (4.272)

𝐇𝑖+1(𝑡) = 𝐇𝑖(𝑡)𝐀(𝑡) +
𝑑
𝑑𝑡𝐇𝑖(𝑡) (4.273)

For the example sensor error model ( 4.262 ), this yields the following observability matrix:

𝐌 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂�𝑖𝑏,𝑥, … �̂�𝑠𝑖𝑏,𝑥 �̂�𝑖𝑏,𝑦 �̂�𝑖𝑏,𝑧 ̂𝑓𝑏,𝑥 ̂𝑓𝑏,𝑦 ̂𝑓𝑏,𝑧 1 0
𝑑

𝑑𝑡
�̂�𝑖𝑏,𝑥, … 𝑑

𝑑𝑡
�̂�𝑠𝑖𝑏,𝑥

𝑑

𝑑𝑡
�̂�𝑖𝑏,𝑦

𝑑

𝑑𝑡
�̂�𝑖𝑏,𝑧

𝑑

𝑑𝑡
̂𝑓𝑏,𝑥

𝑑

𝑑𝑡
̂𝑓𝑏,𝑦

𝑑

𝑑𝑡
̂𝑓𝑏,𝑧 0 1

𝑑2

𝑑𝑡2
�̂�𝑖𝑏,𝑥, … 𝑑2

𝑑𝑡2
�̂�𝑠𝑖𝑏,𝑥

𝑑2

𝑑𝑡2
�̂�𝑖𝑏,𝑦

𝑑2

𝑑𝑡2
�̂�𝑖𝑏,𝑧

𝑑2

𝑑𝑡2
̂𝑓𝑏,𝑥

𝑑2

𝑑𝑡2
̂𝑓𝑏,𝑦

𝑑2

𝑑𝑡2
̂𝑓𝑏,𝑧 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑑𝑘

𝑑𝑡𝑘
�̂�𝑖𝑏,𝑥, … 𝑑𝑘

𝑑𝑡𝑘
�̂�𝑠𝑖𝑏,𝑥

𝑑𝑘

𝑑𝑡𝑘
�̂�𝑖𝑏,𝑦

𝑑𝑘

𝑑𝑡𝑘
�̂�𝑖𝑏,𝑧

𝑑𝑘

𝑑𝑡𝑘
̂𝑓𝑏,𝑥

𝑑𝑘

𝑑𝑡𝑘
̂𝑓𝑏,𝑦

𝑑𝑘

𝑑𝑡𝑘
̂𝑓𝑏,𝑧 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
(4.274)

Based on above criteria, the observability of sensor errors during rate table testing can be
analyzed for any analytically described rate table motion. Linearly independent columns
correspond to sensor errors that can be estimated, while a linear dependency between columns
means that the corresponding errors can only be estimated in combination, which does not
allow the separation of these errors.

The ideal angular rates as a function of the rate table axes positions �̂�𝑤𝑝(𝑡), �̂�𝑣𝑤(𝑡), �̂�ᵆ𝑣(𝑡)
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are given as:

�̂�𝑖𝑏,𝑥 = cos(�̂�𝑣ᵆ(𝑡)) ( ̇�̂�𝑣𝑤(𝑡) + �̂�𝑖𝑒 cos(𝜙) sin(�̂�𝑤𝑝(𝑡))) +

sin(�̂�𝑣ᵆ(𝑡)) (sin(�̂�𝑣𝑤(𝑡)) ( ̇�̂�𝑤𝑝(𝑡) + �̂�𝑖𝑒 sin(𝜙)) + �̂�𝑖𝑒 cos(�̂�𝑤𝑝(𝑡)) cos(�̂�𝑣𝑤(𝑡)) cos(𝜙))
(4.275)

�̂�𝑖𝑏,𝑦 = − sin(�̂�𝑣ᵆ(𝑡)) ( ̇�̂�𝑣𝑤(𝑡) + �̂�𝑖𝑒 cos(𝜙) sin(�̂�𝑤𝑝(𝑡))) +

cos(�̂�𝑣ᵆ(𝑡)) (sin(�̂�𝑣𝑤(𝑡)) ( ̇�̂�𝑤𝑝(𝑡) + �̂�𝑖𝑒 sin(𝜙)) + �̂�𝑖𝑒 cos(�̂�𝑤𝑝(𝑡)) cos(�̂�𝑣𝑤(𝑡)) cos(𝜙))
(4.276)

�̂�𝑖𝑏,𝑧 = ̇�̂�ᵆ𝑣(𝑡) + cos(�̂�𝑣𝑤(𝑡)) ( ̇�̂�𝑤𝑝(𝑡) + �̂�𝑖𝑒 sin(𝜙)) − �̂�𝑖𝑒 cos(�̂�𝑤𝑝(𝑡)) cos(𝜙) sin(�̂�𝑣𝑤(𝑡)) (4.277)

For a sensor placement without lever arm, the ideal specific forces are the local gravity observed
from different orientations, written as:

̂𝑓𝑏,𝑥 = −𝑔 sin(�̂�ᵆ𝑣(𝑡)) sin(�̂�𝑣𝑤(𝑡)) (4.278)
̂𝑓𝑏,𝑦 = −𝑔 cos(�̂�ᵆ𝑣(𝑡)) sin(�̂�𝑣𝑤(𝑡)) (4.279)
̂𝑓𝑏,𝑧 = −𝑔 cos(�̂�𝑣𝑤(𝑡)) (4.280)

Evaluating the observability matrix for the above equations is lengthy and best performed
using a computer algebra system. The resulting observability of sensor errors during testing at
different rate table motion profiles is summarized in  Table 4.30  . The analysis augments the
above error model with linear, quadratic, and higher-order sensitivities to all angular rates and
specific forces components, as well as a sensor bias and rate/acceleration ramp.
Based on the observability matrix, some results of the presented table shall be explained

in the following. To make the first columns that correspond to the scale factor polynomials
independent from the bias, the input angular rate requires at least the first derivative to be
non-zero. Vividly, it is impossible to distinguish between sensor bias and scale factors under a
constant input rate. This can be observed for cases with single-axis rate tablemotion, as for the 𝑧
axis in case I and the 𝑥 axis in V. This can be easily changed by introducing a linearly increasing
angular rate (II and VI). However, the linear scale factor cannot be distinguished from a rate
ramp in these cases. Increasing the input rate at ∼ 𝑡2 allows independent observation of both
the linear scale factor and the rate ramp. The same applies to sinusoidal rate table motion (IV).
Sensitivities to specific forces about the horizontal axes cannot be observed for the rate table’s
vertical axis rotation. Due to the constant input, the sensitivity to the vertical specific forces
cannot be distinguished from a bias.
Rotation about the rate table’s outer axis (cases I to IV) results in oscillating input of the

Earth’s angular rate (outside the Earth’s poles) on the sensors 𝑥 and 𝑦 axes. This allows an
estimation of, e.g., the misalignment of these axes but requires sufficient sensor accuracy to
use these small signals. For this motion, the sum of the quadratics 𝜔2𝑖𝑏,𝑥 and 𝜔

2
𝑖𝑏,𝑦 is constant,

and the sum of the time-derivatives vanishes. Thus they cannot be distinguished from a bias.
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Table 4.30.: Observability of sensor errors for different rate table motions.

Input 𝜔𝑖𝑏,𝑥 𝜔2𝑖𝑏,𝑥 𝜔𝑛𝑖𝑏,𝑥 𝜔𝑖𝑏,𝑦 𝜔2𝑖𝑏,𝑦 𝜔𝑛𝑖𝑏,𝑦 𝜔𝑖𝑏,𝑧 𝜔2𝑖𝑏,𝑧 𝜔𝑛𝑖𝑏,𝑧 𝑓𝑏,𝑥 𝑓2𝑏,𝑥 𝑓𝑛𝑏,𝑥 𝑓𝑏,𝑦 𝑓2𝑏,𝑦 𝑓𝑛𝑏,𝑦 𝑓𝑏,𝑧 𝑓2𝑏,𝑧 𝑓𝑛𝑏,𝑧 1 0

Sensor errors 𝑥 axis 𝑆𝑥 𝑆2,𝑥 𝑆𝑛,𝑥 𝑀𝑥𝑦 𝑀2,𝑥𝑦 𝑀𝑛,𝑥𝑦 𝑀𝑥𝑧 𝑀2,𝑥𝑧 𝑀𝑛,𝑥𝑧 𝑎𝑥𝑥 𝑎2,𝑥𝑥 𝑎𝑛,𝑥𝑥 𝑎𝑥𝑦 𝑎2,𝑥𝑦 𝑎𝑛,𝑥𝑦 𝑎𝑥𝑧 𝑎2,𝑥𝑧 𝑎𝑛,𝑥𝑧 𝑏𝑥 𝑟𝑥
𝑦 axis 𝑀𝑦𝑥 𝑀2,𝑦𝑥 𝑀𝑛,𝑦𝑥 𝑆𝑦 𝑆2,𝑦 𝑆𝑛,𝑦 𝑀𝑦𝑧 𝑀2,𝑦𝑧 𝑀𝑛,𝑦𝑧 𝑎𝑦𝑥 𝑎2,𝑦𝑥 𝑎𝑛,𝑦𝑥 𝑎𝑦𝑦 𝑎2,𝑦𝑦 𝑎𝑛,𝑦𝑦 𝑎𝑦𝑧 𝑎2,𝑦𝑧 𝑎𝑛,𝑦𝑧 𝑏𝑦 𝑟𝑦
𝑧 axis 𝑀𝑧𝑥 𝑀2,𝑧𝑥 𝑀𝑛,𝑧𝑥 𝑀𝑧𝑦 𝑀2,𝑧𝑦 𝑀𝑛,𝑧𝑦 𝑆𝑧 𝑆2,𝑧 𝑆𝑛,𝑧 𝑎𝑧𝑥 𝑎2,𝑧𝑥 𝑎𝑛,𝑧𝑥 𝑎𝑧𝑦 𝑎2,𝑧𝑦 𝑎𝑛,𝑧𝑦 𝑎𝑧𝑧 𝑎2,𝑧𝑧 𝑎𝑛,𝑧𝑧 𝑏𝑧 𝑟𝑧

Case �̇�𝑤𝑝 �̇�𝑣𝑤 �̇�ᵆ𝑣 sensor mounted without lever arm

I const 0 0 • • • • • • • • •

II ∼ 𝑡 0 0 • • × • • • • ×

III ∼ 𝑡2 0 0 • • • • • •

IV ∼ sin(𝑎𝑡) 0 0 • • • • • •

V 0 const 0 • • • × • † × • † × • † × • † •

VI 0 ∼ 𝑡 0 × † • ‡ † • ‡ † • ‡ † • ‡ • ×

VII 0 ∼ 𝑡2 0 × • † × • • × • • × • • •

VIII 0 ∼ sin(𝑎𝑡) 0 × • † × • † × • † × • † •

IX const const 0 × × × • • •

X 0 const const × × × • • • •

XI 0 ∼ sin(𝑎𝑡) ∼ sin(𝑏𝑡) • • • •

XII const const const • • • •

sensor mounted with lever arm
XIII const const const

▬ observable ▬ observable, but weak signal ▬ linear combination observable ▬ not observable
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For a rotation about the horizontal middle axis of the rate table (cases V to VIII), there are no
specific forces in the 𝑥 direction, and the corresponding sensitivities can thus not be estimated.
An interesting effect is the lack of observability of the misalignments and 𝑔-sensitivities about
the 𝑦 and 𝑧 axis. For each axis, the angular rate sensitivities and specific forces sensitivities of
a given order can only be estimated in linear combination. This can be explained by the fact
that these axes pick up the Earth’s angular rate and the local gravity under varying angles at
the same phase. Again, the sum of quadratic inputs is constant and cannot be separated from
the sensor’s bias.

The observability of the sensitivities to angular rates can be improved by using multiple axes
of the rate table. Such a multi-axis rotation results in varying angular rate inputs on all sensor
axes. For a constant rotation of the rate table’s outer and middle axis of the rate table (IX),
there is no acceleration along the sensor’s 𝑥 axis, and the corresponding sensitivity cannot
be observed. This can be easily changed by rotating the middle and inner axes instead (X).
In both cases, the sensitivities to the squares of the specific forces cannot be distinguished
from the bias. Also, the sensitivities to the squared angular rates cannot be separated in these
scenarios. Furthermore, in each case, the angular rate along a sensor axis is mainly constant,
with variations only in the size of the Earth’s angular rate. The corresponding errors are thus
only weakly observable.

This can be corrected by applying an oscillating motion to the middle and inner rate table
axes (XI). In this case, the sensitivities to squared angular rates can also be observed. Still,
the squared sensitivities to accelerations cannot be distinguished from a bias. The same
observability can be achieved by applying constant rates to all three rate table axes (case XII).
It should be noted that an oscillating motion allows the use of more simple test equipment, as,
e.g., there are no expensive slip rings required.

However, if the sensor is mounted to the rate table without a lever arm, the sum of all squared
specific forces input is still constant and cannot be separated from the bias. This problem can
be compensated by mounting the sensor acentric to the rate table. The resulting centrifugal
forces introduce additional non-space-fixed accelerations that yield full observability of all
sensitivities to specific forces. On a typical rate table, both rates and possible lever arms limit
the creation of centrifugal forces to the order of magnitude of 1𝑔. They thus do not allow
testing for the effects of high accelerations.

Additionally, it should be noted that for multi-axis motion, the choice of the axes’ angular
rates impacts the observability. If the angular rates of the inner and middle gimbal match,
this reduces the observability. The linear scale factor, the specific forces, and bias become
intertwined and cannot be estimated independently. The outer gimbal’s rate can be selected
independently of the other rates. To achieve a similar calibration quality for each sensor
axis, the rates should be chosen in a way that provides similar magnitudes of angular rates at
each axes. An example of the resulting angular rates for multi-axis rotation is presented in

 Figure 4.42 .
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Figure 4.42.: Example of the sensor’s input angular rates for a constant-rate multi-axes rate table
motion. The axes rates are �̇�𝑝𝑤 = 100 °/s, �̇�𝑤𝑣 = 15 °/s, �̇�𝑣ᵆ = 10 °/s.

4.5.3. Examples

Within this section, the properties of the  KF based sensor calibration shall be demonstrated
with the help of several examples. Since both the true sensor input and the actual sensor errors
are unknown in reality, real-world experiments are not suitable to prove the feasibility of the
 KF -based testing approach. Here, the experiments are conducted using a numerical simulation
of the laboratory testing setup. This includes numerical models of the environment (Earth’s
angular rate, gravity, test-pad motion) as well as the rate-table imperfections (geometric errors,
bearings, controls) as modeled in  Section 4.2 . The entire simulation and filtering are performed
at a sample rate of 100Hz.

Table 4.31.: Sensor noise parameters for the KF-based sensor testing examples.

Sensor Noise

Quantization noise 𝑄 0
Angular random walk 𝑁 0.0035 °/√s
Bias instability 𝐵 0.01 °/h
Rate random walk 𝐾 1 ⋅ 10−6 °/(s√s)

To demonstrate the estimation’s stochastic consistency, 120 Monte-Carlo runs are performed
for each test case. All errors, except the sensor’s deterministic errors to be estimated, are varied
between each run. The true angular rates and specific forces are determined from the models
presented in  Section 4.2 . The selected model parameters are summarized in  Table 4.32 .

The sensor’s noise parameters are listed in  Table 4.31  . The true sensor errors, as well as the
filter’s initialization values are summarized in  Table 4.33 . The initial covariance matrix is a
diagonal matrix with the given standard deviations squared as entries.
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Table 4.32.: Laboratory model parameters for the Kalman Filter based sensor testing examples.

Error source Model

Earth angular rate IERS model ( Subsection 4.2.4 )
Local gravity Sogmiliana gravity, Longman tide model ( Subsec-

tion 4.2.5 )
Test pad motion Reference model ( Subsection 4.2.8 )
Test pad alignment leveling 2.5 asec (1𝜎), north alignment 0.01 degree

(1𝜎)
Axis non-orthogonality 2.5 asec (1𝜎) ( Subsection 4.2.9.2 )
Axis wobble 1.0 asec RMS, 𝑁𝑟 = 13, 𝑞 = [0…4], 𝑝 = [1…4],

( Subsection 4.2.9.3 )
Control errors 2nd order system 𝑓𝑐 = 25Hz, 𝛧 = 0.75, noise

𝑆 = 1 ⋅ 10−5 rad/√Hz, encoder 𝑁 = 720, 𝐴 =
1 ⋅ 10−6 rad ( Subsection 4.2.9.6 )

Table 4.33.: Initialisation for Kalman Filter based sensor testing examples.

Initialization

Parameter True State 𝜎 Unit

Linear scale factor 𝑆1,∗ 1.01 1.0 0.1 −
Quadratic scale factor 𝑆2,∗ 0.01 0.0 0.01 −
Misalignment 𝑀∗ 0.05 0.0 0.1 −
Bias 𝑏∗ 0.5 0.0 1.0 °/s
Rate ramp 𝑟∗ 0.01 0.0 0.1 °/s2

𝑔-Sensitivity 𝑎∗ 0.002 0.0 0.01 °/(s g)
𝑔2-Sensitivity 𝑎2,∗ 0.001 0.0 0.01 °/(s g2)
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4.5.3.1. Observability

The observability of sensor errors for different rate table motions has been analytically derived
in  Subsection 4.5.2  . Here, these results shall be compared to numerical simulations. Compared
to the purely mathematical analysis, this considers the different magnitudes of the input rates,
e.g., rate table rates and the Earth’s angular rate. Four different cases of constant rate table
axes rates have been simulated.
The simulation results for a constant rate at the outer rate table axis are presented in  Fig-

ure 4.43  . Just as analytically predicted in  Table 4.30  most states are not observable at all. While
the rate ramp’s slope states are fully observable and converge fast, the scale factor and misalign-
ment states linked to the 𝑥 and 𝑦 axes converge rather slowly. As predicted, this results from
the small input signal, which is a modulation of the Earth’s angular rate. Higher-order scale
factors and 𝑔-sensitivies cannot be estimated.
When switching to a constant rate about the rate table’s middle axis,  Table 4.30  predicts

that the only the rate ramp’s slope can be observed independently. The simulation results in
 Figure 4.44  , however, display a convergence of the covariance of some of the 𝑔-sensitivities.
However, this results from covariance initialization and the different magnitudes of the varying
parts of the angular rate and specific forces input (𝜔𝑖𝑒 vs. 𝑔).
The simulation results for constant rotation angular rate about the outer and the middle rate

table axes are presented in  Figure 4.45 . In this case, the linear and quadratic scale factors and
the misalignments linked to the sensor’s 𝑦 and 𝑧 axis are entirely observable. The respective
errors for the 𝑥 axis are only weakly observable. The variable part of the input along this axis is
again only in the magnitude of the Earth’s angular rate. Also, the biases converge slowly, while
the rate ramps slopes are quickly estimated.
As predicted analytically, the observability can be drastically improved by adding a simulta-

neous rotation about the rate table’s inner axis (see  Figure 4.45 ). In the simulation, all states
except certain 𝑔-sensitivies are estimated. There is a slight difference in the convergence of the
scale factor and misalignment estimated, where the states linked to the 𝑧-axis display a higher
variance than the other axes. The analytical prediction state that by mounting the sensor to the
rate table with a lever arm to the rotation axes, the resulting time-varying forces yield complete
observability of all states. The simulation results confirmed this prediction. However, for the
selected test case, the residual 𝑔-sensitivities could only be estimated for unrealistically high
lever arms of more than 10m. Thus, the full observability of all states is rather theoretical and
often not achievable with typical rate table setups.
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Figure 4.43.: Estimation results for the outer axis constant rate test case. An angular rate of 10 °/s
is applied to the outer rate table axis. The graphs display a single simulation’s state
estimate (red), the estimated state variance (±3𝜎, blue) and the variance obtained
from 120 Monte Carlo runs (±3𝜎, dashed).
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Figure 4.44.: Estimation results for the middle axis constant rate test case. An angular rate of 20 °/s
is applied to the rate table’s middle axis. The graphs display a single simulation’s state
estimate (red), the estimated state variance (±3𝜎, blue) and the variance obtained
from 120 Monte Carlo runs (±3𝜎, dashed).
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Figure 4.45.: Estimation results for the outer and middle axis constant rate test case. An angular
rate of 10 °/s is applied to the rate table’s outer axis, a rate of 20 °/s to the middle axis.
The graphs display a single simulation’s state estimate (red), the estimated state
variance (±3𝜎, blue) and the variance obtained from 120 Monte Carlo runs (±3𝜎,
dashed).
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Figure 4.46.: Estimation results for the all axes constant rate test case. The applied angular rates
are 10 °/s for the inner and outer rate table axis and 20 °/s for the middle axis. The
graphs display a single simulation’s state estimate (red), the estimated state variance
(±3𝜎, blue) and the variance obtained from 120 Monte Carlo runs (±3𝜎, dashed).
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4.5.3.2. Comparison with Classical Test Procedures and Error Budgets

The typically stationary test profiles of the classical test procedures from  Section 4.4  can also
be used for the  KF based sensor testing.
The estimation results for a test series with angular rates of the outer rate table axis ramping

from −100 °/s to +100 °/s are presented in  Figure 4.47  . This setup represents a scale factor
test series of the sensor’s 𝑧 axis. As expected, the linear and higher-order scale factors for
the 𝑧-axis are observable. However, due to the piece-wise constant rate, the estimates do not
converge continuously but change step-wise at each rate change. Each new angular rate adds
novel information to improve the estimation. Interestingly, the other axes’ scale factors and
misalignments are also observable. However, the input signal to these states is again only the
Earth’s angular rate which explains the slow convergence. Due to the single-axis motion, there
is no possibility to estimate the 𝑔-sensitivies.
Another example is the simulation of a six-position test with a constant angular rate of 10 °/s

applied to the rate table’s outer axis. The estimation results are presented in  Figure 4.48  . As
with the previous example, the piece-wise constant input results in a step-wise convergence of
the estimation covariance. Again, each position adds information that is used to improve the
estimation. The results also display the importance of the selected positions, as, e.g., the linear
scale factor for the 𝑥-axis is practically only estimated at the beginning of the 6th position. Due
to the static positions, the 𝑔-sensitivies cannot be estimated.
The classical test procedures are based on straightforward error models that neglect the

effects of unmodeled sensor errors. In contrast, the previously presented simulation results
consider the uncertainty introduced by the additional error terms, like 𝑔-sensitivities. A direct
comparison with the analytical error budgets thus requires a simplified error model without
sensor noise and the error terms not included in the classical test procedure. A comparison of
the  KF estimated variance and the analytically predicted values for such a test scenario are
given in  Table 4.34 . The results for the classical scale factor test series and the six position test
agree well with the inherently determined estimation variances of the  KF based approach.

Table 4.34.: Comparison of KF-based testing with classical test procedures.

Accuracy estimate 1𝜎

Sensor error  KF -based Classical

Scale-factor test Linear scale factor 1.8 ppm 1ppm
[1, 5, 10, 20, 100, 200]°/s, 60 s each Bias 1.0 °/h 0.1 °/h

Six-position test Linear scale factor 𝑥 11.7 ppm 10 ppm
positions as in  Figure 4.37 , 60 s each, 10 °/s Misalignment 𝑥𝑦 0.18mrad 0.1mrad

Misalignment 𝑥𝑧 0.18mrad 0.1mrad
Bias 𝑥 1.4 °/h 4 °/h

Nevertheless, it should be considered that the use of such a simplified sensor error model
does, after all, undermine the rationale for using the KF approach.
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Figure 4.47.: Estimation results for the scale factor test series at rates of
[−100, −50, −20, −5, 5, 20, 50, 100] °/s. The graphs display a single simulation’s state
estimate (red), the estimated state variance (±3𝜎, blue) and the variance obtained
from 120 Monte Carlo runs (±3𝜎, dashed).
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Figure 4.48.: Estimation results for the six-position test series. The graphs display a single simula-
tion’s state estimate (red), the estimated state variance (±3𝜎, blue) and the variance
obtained from 120 Monte Carlo runs (±3𝜎, dashed).
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4.5.3.3. Sensitivity to Dead-Times

In contrast to the classical test procedures, the  KF based sensor testing does not rely on constant
sensor input. However, sensor testing with time-variable inputs requires an accurate time-
synchronization of the rate table’s measured position and rates and the sensor output. A
time delay between these two data streams leads to an erroneous ideal motion and thus to an
erroneous measurement matrix. The actual effect of such an offset depends on the level of
dynamics of the rate table profile.

Simulations with a variable delay between the true and the ideal inputs have been conducted
for the example scenario of the three-axis rate table motion. The variation of the estimation
error with the delay is exemplarily presented for the  SF ,  MA and bias of the sensor’s 𝑥-axis in
 Figure 4.49 .
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Figure 4.49.: Estimation errors for varying time delay between rate table and sensor signals.
Simulation results for three axis constant rates of 10 °/s for the outer, 20 °/s the middle
and 10 °/s for the inner axis respectively the tenfold rates.

For the given test case, the simulation results indicate that a delay of less than 10ms has little
effect on the estimation error, while the errors grow rapidly for higher delays. To demonstrate
the effect of higher angular rates, the graphs also include the estimation errors for the tenfold
angular rates. In this case, already very short delays of less than 1ms increase the estimation
error. This sensitivity to dead times poses rather strict requirements on the laboratory setup,
like real-time systems and accurate time-synchronization, if a true online estimation shall be
performed.

In principle, the time synchronization and subsequent estimation can also be performed
offline by correlating the recorded sensor signals to the recorded rate table motion. However,
this requires sufficiently small sensor errors and disturbances. A synchronized recording and
time-stamping should be preferred, as this does not pose any requirements for sensor models
and errors.
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4.5.3.4. Numerical Stability

It is a well-known problem that the classical Kalman Filter and its variants suffer from numeri-
cal instability when the covariance matrix becomes small due to very accurate measurement
updates [  175 ]. As the covariance is a quadratic measure, small uncertainties are represented
by even smaller covariance matrix entries that easily reach the limits of the typical machine
precision of about 10−7 (single precision) respectively 10−16 (double precision) [ 176 ].
This problem can also be observed for the  KF based sensor testing. Estimation with the

combined laboratory error models is stable. However, this is caused by the dominating er-
ror sources, in this case, the test-pad motion and control errors. If these error sources are
omitted, the residual error sources are small enough to cause numerical instabilities and filter
divergences rapidly.
Since this problem has been known for a long time, modifications of the Kalman Filter have

been suggested. Most of these approaches are based on the idea to replace the covariance
matrix by a square-root representation 𝐏 = 𝐀𝐀⊺ [ 53 , p. 107]. Like this, the distance of the
matrix entries to the machine precision is increased, but also the positive-definiteness of the
covariance matrix is enforced. However, the square-root Kalman Filters’ formulations are
incompatible with the Schmidt-Kalman filter. The implementation used in this example section
alone has 162 independent systems used to model the sensor’s noise and laboratory errors,
resulting in a total of 247 states.
A test implementation of a square-root  KF algorithm with a reduced error model showed

better numerical stability. Still, it could not reach the levels of estimation covariance predicted
in the classical test’s error budgets. If this moderate improvement justifies the higher compu-
tational effort compared to the  SKF may be questioned. However, if a sensor with extremely
low sensor noise (better than navigation grade) shall be tested and calibrated, the presented
algorithm is likely to fail, and another test design and procedure should be preferred. Still, for
many sensor grades, the presented algorithm and models provide a simple to use test method
with inherent uncertainty information.
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Result 9: Kalman Filter-Based Testing

The here presented Kalman-filter-based sensor error estimation represents a proof of concept
for a one-click sensor testing solution that also provides inherent uncertainty information for
the estimates.
The following aspects of the Kalman-filter-based estimation shall be pointed out:

• Simultaneous rotation of all three rate-table axes provides observability of many potential
sensor errors. Since the method allows very general error models, it may be used to
check the validity of more specific error models that can be used for more accurate
tests.

• A dynamic motion of the rate table introduces errors that limit the testing accuracy
comparable with the multi-position tests.

• The number of states (247) needed to model the disturbances and the sensor noise
motivate the use of a Schmidt-Kalman filter.

• Independent of the rate table motion, the filter’s numerical instability for very small
measurement covariances poses a problem for testing sensors better than navigation
grade.

The presented simulation results demonstrate the feasibility of the proposed approach for,
e.g., fully automated testing. However, the presented method is in a proof-of-concept state
and requires further work (e.g., precise filter tuning and initialization) for productive use.
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Conclusion

5.1. Summary

This work aimed to investigate the effects of inertial sensor errors on navigation performance
and their testing and calibration in the laboratory.
Some prerequisites were presented in  Chapter 2  as a basis for the main chapters. The

most crucial sensor error types and definitions were introduced, and a summary of typical
sensor error models was given. Furthermore, an attempt was made to find the lowest common
denominator in the literature’s sensor grade definitions. After a recap of the aerospace reference
frames, the basic strapdown inertial navigation algorithms were presented as a base for the
error propagation analysis. This was supplemented by a brief recap of the Kalman filter and
the idea of integrated navigation. The preliminaries section was concluded with an overview
of the sensor noise processes and the signal analysis methods used to identify these processes.

Inertial Sensor Error Propagation

First, the stationary alignment of an inertial navigation system was analyzed. The resulting
attitude initialization errors from inertial sensor errors were determined based on the linearized
stationary alignment equations.
The differential equations for the strapdown navigation error dynamics were derived from

the classical strapdown navigation equations in the local navigation frame. These equations
were linearized around a straight and level flight condition, and further assumptions were
taken to simplify the system further. It was demonstrated that the resulting system is still
representative for many applications, including most aircraft.
The system’s response to constant inputs was determined based on the linear error dynamics.

The analytical equations representing the error growth for initialization errors of position,
velocity, orientation, and bias-like sensor errors were presented. Subsequently, the linearized
error system’s response to white Gaussian noise input was derived. Shaping filters were
introduced to form the typical sensor noise processes fromwhite Gaussian noise and determine
the navigation error growth from sensor noise represented by these processes. It was pointed out
that the system’s response to the sensor noise processes differs significantly from its response to
white noise, which is typically used to approximate sensor noise. Charts for the error response
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of each navigation state to normalized initialization and sensor errors were given to provide a
simple to use prediction of the navigation errors. Furthermore, the correlation between the
horizontal position, velocity, and orientation states was visualized over time. A summary of the
figures that visualize the error growths for all errors and navigation states is given in  Table 5.1 .

Table 5.1.: Overview of the resulting navigation errors from initialization and sensor errors. The
table lists the corresponding figures that illustrate the navigation state errors from a
given error source.

.
Position Error Velocity Error Orientation Error

Error Source Error Term 𝛿𝜙 𝛿𝜆 𝛿𝑣𝑛 𝛿𝑣𝑒 𝛿𝛷 𝛿𝛩 𝛿𝛹

Initialization Errors
Initial Position 𝛿𝜙0, 𝛿𝜆0, 𝛿ℎ0  3.7a  3.7c  3.14a  3.15a  3.19a  3.19c  3.18a 

Initial Velocity 𝛿𝑣𝑛,0, 𝛿𝑣𝑒,0, 𝛿𝑣𝑑,0  3.7b  3.7d  3.14b  3.15b  3.19b  3.19d  3.18b 

Initial Orientation 𝛿𝛷0, 𝛿𝛩0, 𝛿𝛹0  3.9a  3.9b  3.16a  3.16b  3.20a  3.20b  3.20c 

Accelerometer Errors
Bias-like Sensor Errors 𝑏𝐴,𝑥, 𝑏𝐴,𝑦, 𝑏𝐴,𝑧  3.12a  3.12c  3.17a  3.17c  3.23a  3.23c  3.22a 

Noise-like Sensor Errors
Quantization Noise 𝜈𝑄𝐴,𝑥, 𝜈𝑄𝐴,𝑦, 𝜈𝑄𝐴,𝑧  3.31a  3.31c  3.32a  3.32c  3.33a  3.33c  3.34a 

Velocity Random Walk 𝜈𝑁𝐴,𝑥, 𝜈𝑁𝐴,𝑦, 𝜈𝑁𝐴,𝑧  3.25a  3.25c  3.27a  3.27c  3.29a  3.29c  3.28a 

Bias Instability 𝜈𝐵𝐴,𝑥, 𝜈𝐵𝐴,𝑦, 𝜈𝐵𝐴,𝑧  3.36a  3.36c  3.37a  3.37c  3.38a  3.38c  3.39a 

Acceleration RW 𝜈𝐾𝐴,𝑥, 𝜈𝐾𝐴,𝑦, 𝜈𝐾𝐴,𝑧  3.40a  3.40c  3.41a  3.41c  3.43a  3.43c  3.42a 

Acceleration Ramp 𝜈𝑅𝐴,𝑥, 𝜈𝑅𝐴,𝑦, 𝜈𝑅𝐴,𝑧  3.44a  3.44c  3.45a  3.45c  3.46a  3.46c  3.47a 

Gyroscope Errors
Bias-like Sensor Errors 𝑏𝐺,𝑥, 𝑏𝐺,𝑦, 𝑏𝐺,𝑧  3.12b  3.12d  3.17b  3.17d  3.23b  3.23d  3.22b 

Noise-like Sensor Errors
Quantization Noise 𝜈𝑄𝐺,𝑥, 𝜈𝑄𝐺,𝑦, 𝜈𝑄𝐺,𝑧  3.31b  3.31d  3.32b  3.32d  3.33b  3.33d  3.34b 

Angular Random Walk 𝜈𝑁𝐺,𝑥, 𝜈𝑁𝐺,𝑦, 𝜈𝑁𝐺,𝑧  3.25b  3.25d  3.27b  3.27d  3.29b  3.29d  3.28b 

Bias Instability 𝜈𝐵𝐺,𝑥, 𝜈𝐵𝐺,𝑦, 𝜈𝐵𝐺,𝑧  3.36b  3.36d  3.37b  3.37d  3.38b  3.38d  3.39b 

Rate RW 𝜈𝐾𝐺,𝑥, 𝜈𝐾𝐺,𝑦, 𝜈𝐾𝐺,𝑧  3.40b  3.40d  3.41b  3.41d  3.43b  3.43d  3.42b 

Rate Ramp 𝜈𝑅𝐺,𝑥, 𝜈𝑅𝐺,𝑦, 𝜈𝑅𝐺,𝑧  3.44b  3.44d  3.45b  3.45d  3.46b  3.46d  3.47b 

The validity of the derived equations for the error growth is only limited by the error size
itself, which should not violate the limits of the linearization. There is no limitation in time as
the three known error dynamics, namely the Schuler-oscillation, the 24-hour oscillation, and
the Foucault oscillation, are included in the analytical solutions. Further assumptions were
applied to these lengthy equations to derive medium-term approximations for up to 4 hours
and short-term approximations valid for about 10 minutes. The differences between these
approximations were pointed out, and each approximation’s validity period was demonstrated.
A comprehensive summary of the short- and medium-term approximation equations for all
navigation state errors from initialization and sensor errors was given in  Table 3.14  respectively

 Table 3.12 and  Table 3.13 .
Within a brief review of the typical position error measures, like  2DRMS or  CEP , used within

the navigation community, the meaningfulness of the different definitions was discussed. It
was demonstrated how these measures fail to represent the actual error distribution for the
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correlated horizontal position errors observed in the error propagation visualization. Therefore,
the handy single-valued position accuracy indicators should always be taken with a grain of
salt.
A set of charts was created to support the selection of inertial sensors from navigation re-

quirements. These charts relate gyroscope and accelerometer errors to navigation performance,
e.g., the  2DRMS position error after a given time. The graphs are not limited to the read-off of
the allowed maximum sensor error for the desired navigation performance but also indicate
the range of an equal contribution of gyroscope and accelerometer to the navigation errors.
This supports the balanced selection of inertial sensors for a navigation system.
In addition to the charts, a template for a navigation performance error budget based on

the derived propagation equations was presented. The validity and feasibility of the analytical
performance prediction were assessed for two real-world examples, a commercial transatlantic
flight, and a small aircraft round trip. It was demonstrated that the analytical error prediction
gives additional insight into the respective contributions from each error source while providing
a surprisingly good approximation of the true navigation errors determined from Monte Carlo
simulations.
The presented methods thus allow a reasonably accurate prediction of the navigation errors

independent of the actual trajectory. This allows a basic specification of the inertial sensor
requirements and thus sensor selection already at an early stage of system design, as depicted
in  Figure 1.2  . The presented charts, e.g.,  Figure 3.62  can be used by a sensor manufacturer to
select a combination of gyroscope and accelerometer for an  IMU without over-specifying any
of the components.
After the acceptable sensor errors for the desired navigation performance were demonstrated

in the first chapter, the second chapter aimed to assess how to test and assert these sensor
errors in the laboratory.

Inertial Laboratory Sensor Testing and Calibration

As a first step, a kinematic model of an inertial laboratory with a three-axis rate table on
an isolated test pier was created. This mathematical model provided the basis for the error
propagation analysis. The model was linearized for the error sources and was later used for the
error budget calculation and the Kalman filter-based testing.
Following the derived kinematic chain, a comprehensive discussion of the various error

sources was presented. It was demonstrated how the variable Earth’s angular rate differs
from the idealized  WGS84 constant rate and also how the local gravity varies due to tides and
atmospheric changes. The importance of an isolated test pad was pointed out, and a reference
model for the test pad motion spectrum was derived from multiple seismic background noise
models. The laboratory error models were concluded by discussing the three-axis rate table
that can be easily adapted to similar test instruments. The axis wobble was discussed after
reviewing the geometrical errors from manufacturing imperfections, thermal expansion, and
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loads. It was demonstrated how axis wobble can be attributed to bearing imperfections and
how mathematical bearing models can be used to model axis wobble. A comparison with
real-world inertial sensor data showed the fundamental validity of the models. Models for a
rate table’s positioning and rate control errors were derived and validated similarly.
Since the traditional sensor test procedures rely on averaging over the sensor signal to

reduce noise effects, the actual effects of averaging were analyzed for the different sensor noise
processes. Analytical equations were derived to determine the variance of averages over signal
segments of the sensor noise processes. While the variance of quantization noise and angular
random walk is reduced by averaging over time, the opposite is true for bias instability, rate
ramp, and rate random walk noise. The variance is undefined for the later noise processes, and
it was pointed out how the Allan variance may be used as an alternative. It was concluded that
the Allan variance graphs should be used to determine the optimal averaging time with the
minimum variation of cluster averages due to sensor noise.
A review of the  IEEE inertial sensor test and specification standards revealed a basis of a

few test procedures that are used for virtually any sensor technology: single position and static
reversal tests, scale factor test series, and multi-position tests. An error budget was created
based on the previously derived models for each of these basic test procedures. The error
budgets indicate the contribution of each sensor noise process and laboratory error source to
the accuracy of the test results and how it is affected by the choice of the averaging time. It
was demonstrated that single-position static tests allow bias testing to extreme accuracies but
cannot distinguish between sensor bias and misalignments. In principle, the bias can only
be determined for the test duration as it is subject to drift, e.g., bias instability. Static reversal
position tests were shown to simultaneously allow the testing of linear scale factor, bias, and
misalignment, but at a higher sensitivity to laboratory errors. For the scale factor test series,
the rate table’s rate errors proved to be the dominating error source, followed by the test-pad
motion. A six-position test with a rotating vertical axis of the rate table was analyzed as an
example for multi-position testing. Compared to the other tests, the accuracy of the test proved
to be limited to intermediate or near navigation grade for the typical laboratory setup. The error
budgets highlighted the benefits of averaging over complete revolutions, which can reduce or
even eliminate the effects of several error sources.
An overview of how the test procedures analysed within this thesis correspond to the  IEEE 

standard test procedures and error models is given in  Figure 5.1  and  Figure 5.2  . The figures
also indicate how further sensor errors, like environmental dependencies, are also based on
the discussed basic tests. In general, the suggested procedures allow a determination of the
sensor errors at an accuracy better than navigation grade. However, the procedures depend on
the correctness of the assumed sensor error models for the tested sensor. Other procedures
like multi-position tests may be more effective, e.g., require less handling.
Even more flexibility regarding the sensor error models can be achieved using a Kalman-

filter-based test procedure. This Kalman-filter-based inertial sensor testing approach was
introduced in the last section. The approach promised a one-click solution, where the modeled
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Figure 5.1.: Summary of gyroscope error model terms and test procedures covered in this thesis.
The thick lines mark the test procedures that are suggested in the IEEE standards.
The colors indicate the achievable accuracy grade for the typical laboratory setup
analyzed in this thesis.

sensor errors are estimated with inherently included accuracy information while the rate table
performs an appropriate motion without user interference. The filter’s measurement model
included the sensor noise and laboratory errors to provide a consistent variance estimation of
the test results. This was implemented as a Schmidt-Kalman filter to handle the high number
of required model states.
An observability analysis demonstrated which rate table motion is required for each sensor

error to be estimated during the testing. A constant angular rate applied to all three rate table
axes proved sufficient to estimate nearly all deterministic sensor errors, including higher-order
scale factors and 𝑔-sensitivities. Example simulations supported the analytically predicted
observability of the sensor errors. Furthermore, the need for time-synchronization between
sensor and rate table signals was highlighted. The chapter discussed the Kalman filter’s
numerical instabilities that occur for inertial sensors better than navigation grade.
The dynamic motion of the rate table introduces additional errors so that the accuracy of the

simple static tests cannot be reached. However, the filter can be designed with a general sensor
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Figure 5.2.: Summary of accelerometer error model terms and test procedures covered in this
thesis. The thick lines mark the test procedures that are suggested in the IEEE
standards. The colors indicate the achievable accuracy grade for the typical laboratory
setup analyzed in this thesis.

error model that does not require technology-specific knowledge. The proposed method is
suitable for less accurate tests, especially if there is little information on the expected sensor
errors. In the context of system development, see  Figure 1.2  , the Kalman-filter-based approach
can thus be used as a time-effective test for quality assurance at both the sensor manufacturer
and the system manufacturer. Furthermore, it may be used to ensure the validity of a less
general sensor error model for subsequent high-accuracy tests.
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5.2. Achievements beyond State-of-the-Art

The goal of this thesis was to revisit the field of inertial sensor selection and testing that spans
between the sensor manufacturers and system manufacturers. The topic of sensor selection
boils down to how the sensor accuracy requirements can be derived from the navigation
requirements. Regarding sensor testing, the question is how to perform sensor tests at the
desired accuracy level.
Within this work, both questions have been answered by analysis of the strapdown inertial

navigation error propagation and the propagation of laboratory errors during sensor testing.
In the following, the aspects in which the analyses carried out go beyond state-of-the-art are
explained.

Inertial Navigation Error Propagation

The propagation of inertial sensor errors has been investigated since the early days of inertial
navigation and is widely covered in the literature. Still, to the author’s knowledge, this work
added aspects that have not been covered at the given level of detail so far:

1. Within this work, a comprehensive set of analytical solutions to the long-term strapdown
navigation error dynamics for all navigation states and sensor errors was given. Equations
in literature were limited to the Schuler oscillations or approximations of the long-term
solutions, valid for up to about 4 h. [  Section 3.3 ]

2. In literature, sensor noise propagation has been adressed (if at all) only for white Gaussian
noise. In contrast, the  IEEE sensor inertial sensor noise processes were considered in
this work, and the differences in the navigation errors for white and colored sensor noise
were pointed out. [  Subsection 3.3.3 ]

3. Within this work, also the correlation of the resulting navigation errors was considered
and visualized. In general, the navigation errors cannot be considered  independently and
identically distributed (i.i.d.)  , which reduces the meaningfulness of typical navigation
performance indicators like  2DRMS or  CEP . [  Subsection 3.4.2 ]

4. The presented navigation performance charts provide simple-to-use support for the in-
ertial sensor requirements definition from navigation requirements. They can be used
at an early phase of navigation system design to determine the magnitude of accept-
able inertial sensor errors without needing a detailed mission profile and simulations.
[ Subsection 3.4.3 ]

5. A systematic derivation of the medium- and short-term approximations for all navigation
states was given. The given summary completes the set of well-known approximations
by offering solutions for all navigation states and constant sensor errors and sensor noise.
[ Section 3.6 ]
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The results of this chapter answer the original question of inertial sensor error propagation
and, consequently, sensor requirement definition. Thus, they support the systemmanufacturer
in selecting inertial sensors at an early development phase. Incorporating the long-term
strapdown error dynamics also supports the design of navigation systems with the prospective
accuracy of future technologies, like quantum inertial sensors. The thesis also pointed out the
complexity of selecting the suitable sensor for a given application and the limits of analytical
prediction methods. In doing so, the results presented provide a low-threshold approach
to error propagation in inertial navigation, allowing, for example, a sensor manufacturer to
develop and market its products for specific applications.

Inertial Sensor Laboratory Testing

The question of inertial sensor testing and the achievable test accuracy was answered with a
systematic modeling approach and the derivation of error budgets for typical test procedures.
Within this approach, the state of the art or literature was surpassed in the following aspects:

1. A systematic modeling of the entire kinematic chain of an inertial laboratory was pre-
sented. A comprehensive discussion of error sources along this chain was given. In
addition, mathematical models of these error sources were derived for use in the error
budgets. [  Section 4.2 ]

2. The analytical determination of the variance of averaged sensor noise segments. Analyti-
cal methods were applied to the IEEE sensor noise processes to demonstrate the effect of
sensor noise on the testing accuracy. [  Section 4.3 ]

3. Systematic graphical error budgets for the most common test procedures were derived.
Based on the derived models, the error budgets predict the contribution of the different
error sources to the total error of the tested sensor error. Furthermore, the presented
graphs indicate the time dependency and thus show how the accuracy is affected by
increasing the averaging time. The test accuracy can be predicted from these, and the
dominating error sources can be identified for the different test procedures. [  Section 4.4  ]

4. An analysis of sensor error observability at inertial sensor testing on a three-axis rate
table was performed. The results can be used to design test procedures and rate table
trajectories for optimal estimation of sensor errors. [  Subsection 4.5.2 ]

5. A Kalman-filter-based testing method that includes laboratory error and sensor noise
models to inherently provide accuracy information for the sensor error estimates was
developed. Combined with a suitable rate table trajectory, as determined from the observ-
ability analysis, this method offers a one-click solution that can identify various inertial
sensor errors simultaneously with neither user interaction nor manual determination of
an error budget. [  Section 4.5 ]
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This chapter demonstrated the complexity of sensor testing due to the vast number of error
sources and degrees of freedom regarding the test procedures. Still, the presented error budgets
support a sensor manufacturer in designing and using an inertial laboratory for development,
production, and calibration. On the one side, this may be used to identify the limitations when
testing extremely accurate future sensors and, on the other side, to reduce costs when testing
low-cost sensors. From a system manufacturer’s side, the results may also be used to assess
the laboratory requirements for a typically less elaborate and accurate acceptance testing. The
presented Kalman Filter approach goes in a similar direction by providing a simple-to-use
but limited accuracy testing option.  Figure 5.3  depicts the contributions in the context of the
sensor and system development processes originally depicted in  Figure 1.2 .

Sensor
specification

Sensor
selection

Production &
customization

Sensor testing
and calibration

Subsystem
acceptance test

System
manufacturer

Sensor
manufacturer

Long-term, all-state inertial
navigation error propagation

Inertial laboratory design
Test selection and design

Performance prediction

Kalman-filter
based testing

Automated testing

Sensor test error budgets

Sensor
delivery

Figure 5.3.: This work’s contributions in the context of the development processes from  Figure 1.2 .

In summary, the contributions presented in this work can lower the entry barrier for new
market players by providing essential tools and knowledge required for both sensor and system
manufacturers.

353



Chapter 5. Conclusion

5.3. Outlook

The error propagation in inertial navigation has been analyzed for years, and this thesis was
able to add only details to the already broad knowledge. To promote this thesis’ results and
increase the accessibility and applicability of this knowledge, creating an easy-to-use sensor
error budget and navigation error prediction software seems helpful. In the author’s opinion,
options for follow-on works in this field arise if future sensor technologies display a different
behavior than today’s sensors, for example, quantum inertial sensors [ 6 ].
Although the chapter on laboratory calibration provides a comprehensive discussion of error

sources and models, there is clear potential for refinement. The models presented within this
work were created to represent a typical inertial laboratory. This provides valuable insight into
inertial sensor laboratory testing error propagation and allows a fundamental prediction of the
expectable test accuracy. However, refining and adapting the models to the actual test setup
and environment would be beneficial for a laboratory operator. This requires creating locally
representative test-pad motion spectra and refining and validating the instrument models, like
rate table bearings and the servo control errors. The presented approach to derive the error
budgets could also be applied to further, more specific test procedures. Many aspects require
further investigation, e.g., the effects of the sensor’s sampling or the test-pads reaction to rate
table forces and moments.
Finally, the presented Kalman-filter-based testing approach offers space for further improve-

ment. First, the approach shares the used models with the other error budgets and thus also
benefits from refined models for a specific test setup. Second, the numerical instabilities of
the Kalman filter for very low covariances need to be addressed. It should be investigated
how the numerous approaches to increase the Kalman-filter stability can be applied to the
Schmidt-Kalman filter used in this work. Furthermore, ways to automatically identify and
incorporate the sensor noise should be investigated to create a real one-click solution. This
could include adaptive Kalman filters or a priori automated noise identification.
In conclusion, future works should focus on bringing the theoretical results into practice by

adapting them to specific laboratory setups and improving their accessibility and handling for
both sensor and system manufacturers.
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Appendix A.

Mathematical and mechanical preliminaries

A.1. Cross-product building matrix

When calculating the time-derivatives of kinematic properties, the cross-product ”×” of two
three-dimensional vectors will occur at several occasions. By simple calculus it can be proven
that there is a matrix𝛀 that fulfills below equation for any vector 𝒓:

𝛀𝒓 = 𝝎 × 𝒓 where 𝝎, 𝒓 ∈ ℝ3 (A.1)

where𝛀 is the cross-product-building, skew-symmetric matrix as defined below:

𝛀 = [𝝎]× =
⎡
⎢
⎢
⎢
⎢
⎣

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0

⎤
⎥
⎥
⎥
⎥
⎦

∈ ℝ3×3 (A.2)

A.2. Time derivative of rotation matrices

Using the relationship between rotation and linear velocity in classical mechanics, the formula
for time-derivatives of rotation matrices can easily be determined. An arbitrary constant
position vector 𝒓𝑏, given in the rotating frame 𝑏, is expressed in the 𝑎-frame by the following
transformation:

𝒓𝑎(𝑃) = 𝐑𝑎𝑏𝒓𝑏(𝑃) (A.3)

Time-derivation of both sides yields:

̇𝒓𝑎(𝑃) = �̇�𝑎𝑏𝒓𝑏(𝑃) (A.4)

From classical mechanics, the velocity of 𝑃 in the rotating 𝑏-frame is known to be:

̇𝒓𝑏(𝑃) = 𝝎𝑎𝑏 × 𝒓𝑏(𝑃) = 𝛀𝑎𝑏𝒓𝑏(𝑃) (A.5)
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Transformation of equation ( A.5 ) to the 𝑎-frame allows the identification of following well-
known identity:

𝑑

𝑑𝑡
𝐑𝑎𝑏 = 𝐑𝑎𝑏𝛀𝑎𝑏 (A.6)

In addition to this intuitively accessible method, also a mathematical proof without reference
to classical mechanics can be found in literature, e.g. [  177 ].

358



Appendix B.

Conversion of Random Walk Measures

Noise parameters, especially the random walk, are specified in a variety of different units. The
units used in datasheets are up to the manufacturer’s philosophy. To support the comparison of
angular and velocity randomwalk measures, the conversion ratios are summarized in  Table B.1 

and  Table B.2 . The table gives the multipliers to get from one representation to the other.
Additionally, the conversation of random walk coefficients to the corresponding standard
deviation of a time-discrete white Gaussian noise time-series is given.

Table B.1.: Conversion of Angular Random Walk Measures.

conversion to
discrete
time  SD 

𝜎
 ARW 𝑁

from deg

𝑠

deg

√s

deg

s√Hz

deg
√h

deg

h√Hz

discrete
time  SD 𝜎

deg
𝑠 1

1
√𝑓𝑠

1
√𝑓𝑠

60
√𝑓𝑠

3600
√𝑓𝑠

 ARW 𝑁

deg

√s
√𝑓𝑠 1 1 60 3600

deg

s√Hz
√𝑓𝑠 1 1 60 3600

deg
√h

√𝑓𝑠
60

1
60

1
60 1 60

deg

h√Hz

√𝑓𝑠
3600

1
3600

1
3600

1
60 1
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Table B.2.: Conversion of Velocity Random Walk Measures.

conversion to
discrete
time  SD 

𝜎
 VRW 𝑁

from m

s2
m

s√s

m

s2√Hz

m

s√h

g
√Hz

discrete
time  SD 𝜎

m

s2
1

1
√𝑓𝑠

1
√𝑓𝑠

60
√𝑓𝑠

1
𝑔0√𝑓𝑠

 VRW 𝑁

m

s√s
√𝑓𝑠 1 1 60 1

𝑔0

m

s2√Hz
√𝑓𝑠 1 1 60 1

𝑔0

m

s√h

√𝑓𝑠
60

1
60

1
60 1 1

60𝑔0

g
√Hz

𝑔0√𝑓𝑠 𝑔0 𝑔0 60𝑔0 1
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Appendix C.

Selected Laplace transformations

A set of selected transformations from the Laplace 𝑠-domain to time-domain is presented in the
following table to support the determination of time-domain responses of the navigation error
dynamics. The Laplace correspondences have been calculated usingWolfram Alpha [ 178 ].

Table C.1.: Selected Laplace transforms

Laplace 𝑠-domain Time 𝑡-domain

1. 1
(𝑠2 + 𝜔21) (𝑠2 + 𝜔22)

− sin𝜔1𝑡
𝜔1 (𝜔21 − 𝜔22)

− sin𝜔2𝑡
𝜔2 (𝜔22 − 𝜔21)

2. 1
𝑠 (𝑠2 + 𝜔21) (𝑠2 + 𝜔22)

1
𝜔21𝜔22

+ cos𝜔1𝑡
𝜔21 (𝜔21 − 𝜔22)

+ cos𝜔2𝑡
𝜔22 (𝜔22 − 𝜔21)

3. 1
𝑠2 (𝑠2 + 𝜔21) (𝑠2 + 𝜔22)

𝑡
𝜔21𝜔22

+ sin𝜔1𝑡
𝜔31 (𝜔21 − 𝜔22)

+ sin𝜔2𝑡
𝜔32 (𝜔22 − 𝜔21)

4. 𝑠
(𝑠2 + 𝜔21) (𝑠2 + 𝜔22)

− cos𝜔1𝑡
(𝜔21 − 𝜔22)

− cos𝜔2𝑡
(𝜔22 − 𝜔21)

5. 𝑠2

(𝑠2 + 𝜔21) (𝑠2 + 𝜔22)
𝜔1 sin𝜔1𝑡
(𝜔21 − 𝜔22)

+ 𝜔2 sin𝜔2𝑡
(𝜔22 − 𝜔21)

6. 1
(𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)

sin𝜔1𝑡
𝜔1 (𝜔21 − 𝜔22) (𝜔21 − 𝜔23)

+

sin𝜔2𝑡
𝜔2 (𝜔22 − 𝜔21) (𝜔22 − 𝜔23)

+
sin𝜔3𝑡

𝜔3 (𝜔23 − 𝜔21) (𝜔23 − 𝜔22)

7. 1
𝑠 (𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)

1
𝜔21𝜔22𝜔23

− cos𝜔1𝑡
𝜔21 (𝜔21 − 𝜔22) (𝜔21 − 𝜔23)

−

cos𝜔2𝑡
𝜔22 (𝜔22 − 𝜔21) (𝜔22 − 𝜔23)

−
cos𝜔3𝑡

𝜔23 (𝜔23 − 𝜔21) (𝜔23 − 𝜔22)
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Laplace 𝑠-domain Time 𝑡-domain

8. 1
𝑠2 (𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)

1
𝜔21𝜔22𝜔23

− sin𝜔1𝑡
𝜔21 (𝜔21 − 𝜔22) (𝜔21 − 𝜔23)

−

sin𝜔2𝑡
𝜔22 (𝜔22 − 𝜔21) (𝜔22 − 𝜔23)

−
sin𝜔3𝑡

𝜔23 (𝜔23 − 𝜔21) (𝜔23 − 𝜔22)

9. 𝑠
(𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)

cos𝜔1𝑡
(𝜔21 − 𝜔22) (𝜔21 − 𝜔23)

+ cos𝜔2𝑡
(𝜔22 − 𝜔21) (𝜔22 − 𝜔23)

+

cos𝜔3𝑡
(𝜔23 − 𝜔21) (𝜔23 − 𝜔22)

10. 𝑠2

(𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)
− 𝜔1 sin𝜔1𝑡
(𝜔21 − 𝜔22) (𝜔21 − 𝜔23)

− 𝜔2 sin𝜔2𝑡
(𝜔22 − 𝜔21) (𝜔22 − 𝜔23)

−

𝜔3 sin𝜔3𝑡
(𝜔23 − 𝜔21) (𝜔23 − 𝜔22)

11. 𝑠3

(𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)
−

𝜔21 cos𝜔1𝑡
(𝜔21 − 𝜔22) (𝜔21 − 𝜔23)

−
𝜔22 cos𝜔2𝑡

(𝜔22 − 𝜔21) (𝜔22 − 𝜔23)
−

𝜔23 cos𝜔3𝑡
(𝜔23 − 𝜔21) (𝜔23 − 𝜔22)

12.
(𝑠2 + 𝜔24)

(𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)
−

(𝜔21 − 𝜔24) sin𝜔1𝑡
𝜔1 (𝜔21 − 𝜔22) (𝜔21 − 𝜔23)

−

(𝜔22 − 𝜔24) sin𝜔2𝑡
𝜔2 (𝜔22 − 𝜔21) (𝜔22 − 𝜔23)

−
(𝜔23 − 𝜔24) sin𝜔3𝑡

𝜔3 (𝜔23 − 𝜔21) (𝜔23 − 𝜔22)

13.
(𝑠2 + 𝜔24) (𝑠2 + 𝜔25)

(𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)
(𝜔41 − 𝜔21 (𝜔24 + 𝜔25) + 𝜔24𝜔25) sin𝜔1𝑡

𝜔1 (𝜔21 − 𝜔22) (𝜔21 − 𝜔23)
+

(𝜔42 − 𝜔22 (𝜔24 + 𝜔25) + 𝜔24𝜔25) sin𝜔2𝑡
𝜔2 (𝜔22 − 𝜔21) (𝜔22 − 𝜔23)

+

(𝜔43 − 𝜔23 (𝜔24 + 𝜔25) + 𝜔24𝜔25) sin𝜔3𝑡
𝜔3 (𝜔23 − 𝜔21) (𝜔23 − 𝜔22)

14.
(𝑠2 + 𝜔24)

𝑠 (𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)
𝜔24

𝜔21𝜔22𝜔23
+

(𝜔21 − 𝜔24) cos𝜔1𝑡
𝜔21 (𝜔21 − 𝜔22) (𝜔21 − 𝜔23)

+

(𝜔22 − 𝜔24) cos𝜔2𝑡
𝜔22 (𝜔22 − 𝜔21) (𝜔22 − 𝜔23)

+

(𝜔23 − 𝜔24) cos𝜔3𝑡
𝜔23 (𝜔23 − 𝜔21) (𝜔23 − 𝜔223)
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Laplace 𝑠-domain Time 𝑡-domain

15.
(𝑠2 + 𝜔24) (𝑠2 + 𝜔25)

𝑠 (𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)
𝜔24𝜔25
𝜔21𝜔22𝜔23

−
(𝜔41 − 𝜔21 (𝜔24 + 𝜔25) + 𝜔24𝜔25) cos𝜔1𝑡

𝜔21 (𝜔21 − 𝜔22) (𝜔21 − 𝜔23)
−

(𝜔42 − 𝜔22 (𝜔24 + 𝜔25) + 𝜔24𝜔25) cos𝜔2𝑡
𝜔22 (𝜔22 − 𝜔21) (𝜔22 − 𝜔23)

−

(𝜔43 − 𝜔23 (𝜔24 + 𝜔25) + 𝜔24𝜔25) cos𝜔3𝑡
𝜔23 (𝜔23 − 𝜔21) (𝜔23 − 𝜔22)

16.
(𝑠2 + 𝜔24) (𝑠2 + 𝜔25)

𝑠2 (𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23)
𝜔24𝜔25
𝜔21𝜔22𝜔23

𝑡−
(𝜔41 − 𝜔21 (𝜔24 + 𝜔25) + 𝜔24𝜔25) sin𝜔1𝑡

𝜔31 (𝜔21 − 𝜔22) (𝜔21 − 𝜔23)
−

(𝜔42 − 𝜔22 (𝜔24 + 𝜔25) + 𝜔24𝜔25) sin𝜔2𝑡
𝜔32 (𝜔22 − 𝜔21) (𝜔22 − 𝜔23)

−

(𝜔43 − 𝜔23 (𝜔24 + 𝜔25) + 𝜔24𝜔25) sin𝜔3𝑡
𝜔33 (𝜔23 − 𝜔21) (𝜔23 − 𝜔22)

17. 1
(𝑠2 + 𝜔21) (𝑠2 + 𝜔22) (𝑠2 + 𝜔23) (𝑠2 + 𝜔24)

− sin𝜔1𝑡
𝜔1 (𝜔21 − 𝜔22) (𝜔21 − 𝜔23) (𝜔21 − 𝜔24)

−

sin𝜔2𝑡
𝜔2 (𝜔22 − 𝜔21) (𝜔22 − 𝜔23) (𝜔22 − 𝜔24)

−

sin𝜔3𝑡
𝜔3 (𝜔23 − 𝜔21) (𝜔23 − 𝜔22) (𝜔23 − 𝜔24)

−

sin𝜔4𝑡
𝜔4 (𝜔24 − 𝜔21) (𝜔24 − 𝜔22) (𝜔24 − 𝜔23)
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Appendix D.

Solutions to the Linearized Error Dynamics

D.1. Step Responses

D.1.1. Position Errors from Initialization Errors

Table D.1.: Latitude error step responses to position and velocity initialization errors.

Input Step response

𝛿𝜙0 𝐻1,1(𝑠) = −
𝜔2𝑠𝜔2𝑖𝑒(2 sin

2 𝜙 + 1)𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

−
𝜔4𝑠𝜔2𝑖𝑒

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ1,1(𝑡) = (−
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑖𝑒
+

𝜔2𝑠 − 𝜔2𝑠−(2 sin
2 𝜙 + 1)

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔2𝑠 − 𝜔2𝑠+(2 sin

2 𝜙 + 1)
𝜔2𝑠+ (𝜔

2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

+
𝜔2𝑠 − 𝜔2𝑖𝑒(2 sin

2 𝜙 + 1)
𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔2𝑖𝑒 + 1

𝛿𝜆0 𝐻1,2(𝑠) = 0
ℎ1,2(𝑡) = 0

𝛿𝑣𝑛,0 𝐻1,3(𝑠) =
1

𝑅
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2
𝑠

𝑅

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ1,3(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
1
𝑅

𝛿𝑣𝑒,0
𝐻1,4(𝑠) = −

2

𝑅
𝜔𝑖𝑒 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ1,4(𝑡) = ( 1
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
cos(𝜔𝑠+𝑡))

2
𝑅𝜔𝑖𝑒 sin𝜙

𝛿𝑣𝑑,0 𝐻1,14(𝑠) = −
4

𝑅
𝜔2𝑖𝑒 cos𝜙 sin𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ1,14(𝑡) = ( 1
𝜔𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
1

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
4
𝑅𝜔

2
𝑖𝑒 cos𝜙 sin𝜙
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Table D.2.: Longitude error step responses to position and velocity initialization errors.

Input Step response

𝛿𝜙0 𝐻2,1(𝑠) =
𝜔2𝑠𝜔𝑖𝑒 tan𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
+

𝜔2𝑠𝜔𝑖𝑒 tan𝜙(𝜔2𝑠 − 2𝜔2𝑖𝑒)
𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ2,1(𝑡) = (
𝜔2𝑠 − 2𝜔2𝑖𝑒 − 𝑤2

1

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔2𝑠 − 2𝜔2𝑖𝑒 − 𝑤2

2

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔2𝑠 − 2𝜔2𝑖𝑒 − 𝑤2

𝑖𝑒

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒 tan𝜙

𝛿𝜆0 𝐻2,2(𝑠) = 0
ℎ2,2(𝑡) = 0

𝛿𝑣𝑛,0 𝐻2,3(𝑠) =
2

𝑅
𝜔𝑖𝑒 tan𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ2,3(𝑡) = −( 1
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
cos(𝜔𝑠+𝑡))

2
𝑅𝜔𝑖𝑒 tan𝜙

𝛿𝑣𝑒,0
𝐻2,4(𝑠) =

1

𝑅 cos𝜙
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2
𝑠

𝑅 cos𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ2,4(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
1

𝑅 cos𝜙

𝛿𝑣𝑑,0 𝐻2,14(𝑠) =
2

𝑅
𝜔𝑖𝑒𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

2

𝑅
𝜔2𝑠𝜔𝑖𝑒

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ2,14(𝑡) = (
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+
+

𝜔2𝑠 − 𝜔2𝑠−
𝜔2𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠 − 𝜔2𝑠+

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))
2
𝑅𝜔𝑖𝑒
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D.1. Step Responses

D.1.2. Position Errors from Initial Alignment Errors

Table D.3.: Latitude error step responses to initial alignment errors.

Input Step response

𝛿𝛷0 𝐻1,5(𝑠) = −
3𝜔2𝑠𝜔𝑖𝑒 sin𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

𝜔2𝑠𝜔𝑖𝑒 sin𝜙(2𝜔2𝑖𝑒 cos2 𝜙 + 𝜔2𝑠)
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ1,5(𝑡) = (
3𝜔2𝑠− − 2𝜔𝑖𝑒 cos2 𝜙 − 𝜔2𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
3𝜔2𝑠+ − 2𝜔𝑖𝑒 cos2 𝜙 − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
3𝜔2𝑖𝑒 − 2𝜔𝑖𝑒 cos2 𝜙 − 𝜔2𝑠

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒 sin𝜙

𝛿𝛩0 𝐻1,6(𝑠) = −
𝜔2𝑠𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

𝜔2𝑠(𝜔2𝑠 − 2𝜔2𝑖𝑒 sin
2 𝜙)𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ1,6(𝑡) = (
𝜔2𝑠− + 2𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔2𝑠+ + 2𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠
(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔2𝑖𝑒 + 2𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠
(𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠

𝛿𝛹0 𝐻1,7(𝑠) = −
𝜔2𝑠𝜔𝑖𝑒 cos𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

𝜔2𝑠𝜔𝑖𝑒 cos𝜙(𝜔2𝑠 − 2𝜔2𝑖𝑒 sin
2 𝜙)

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ1,7(𝑡) = (
𝜔2𝑠− + 2𝜔𝑖𝑒 sin2 𝜙 − 𝜔2𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔2𝑠+ + 2𝜔𝑖𝑒 sin2 𝜙 − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔2𝑖𝑒 + 2𝜔𝑖𝑒 sin2 𝜙 − 𝜔2𝑠

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒 cos𝜙
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.4.: Longitude error step responses to initial alignment errors.

Input Step response

𝛿𝛷0 𝐻2,5(𝑠) = −
𝜔2𝑠 (𝑠2 + 𝜔22,5+) (𝑠

2 + 𝜔22,5−)

𝑠 cos𝜙 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ2,5(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
2,5+ + 𝜔22,5−) + 𝜔22,5+𝜔

2
2,5−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
2,5+ + 𝜔22,5−) + 𝜔22,5+𝜔

2
2,5−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔22,5+ + 𝜔22,5−) + 𝜔22,5+𝜔

2
2,5−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡))
𝜔2𝑠
cos𝜙

𝜔22,5± =
𝜔2𝑠 + 3𝜔2𝑖𝑒 cos2 ̃𝜙

2 − 𝜔2𝑖𝑒 ±
1
2√(𝜔2𝑖𝑒 cos2 ̃𝜙 − 2𝜔2𝑖𝑒 + 𝜔2𝑠)

2 − 4𝜔2𝑠𝜔2𝑖𝑒 cos2 ̃𝜙

𝛿𝛩0 𝐻2,6(𝑠) = −
3𝜔2𝑠𝜔𝑖𝑒 tan𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

𝜔4𝑠𝜔𝑖𝑒 tan𝜙
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ2,6(𝑡) = (
3𝜔2𝑠− − 𝜔2𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
3𝜔2𝑠+ − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
3𝜔2𝑖𝑒 − 𝜔2𝑠

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒 tan𝜙

𝛿𝛹0 𝐻2,7(𝑠) = −
3𝜔2𝑠𝜔2𝑖𝑒 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

𝜔4𝑠𝜔2𝑖𝑒 sin𝜙
𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ2,7(𝑡) = (−
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑖𝑒
+

𝜔2𝑠 − 3𝜔2𝑠−
𝜔2𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔2𝑠 − 3𝜔2𝑠+

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔2𝑠 − 3𝜔2𝑖𝑒

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔2𝑖𝑒 sin𝜙
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D.1. Step Responses

D.1.3. Position Errors from Sensor Biases

Table D.5.: Latitude error step responses to  IMU biases.

Input Step response

𝛿𝑓𝑏,𝑛 𝐻1,8(𝑠) =
1

𝑅
𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2
𝑠

𝑅

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ1,8(𝑡) = (
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+
+

𝜔2𝑠 − 𝜔2𝑠−
𝜔2𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠 − 𝜔2𝑠+

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))
1
𝑅

𝛿𝑓𝑏,𝑒 𝐻1,9(𝑠) =
2

𝑅
𝜔𝑖𝑒 sin ̃𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ1,9(𝑡) = ( 1
𝜔𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
1

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
2
𝑅𝜔𝑖𝑒 sin

̃𝜙

𝛿𝑓𝑏,𝑑
𝐻1,10(𝑠) = 0
ℎ1,10(𝑡) = 0

𝛿𝜔𝑖𝑏,𝑛 𝐻1,11(𝑠) = −
3𝜔2𝑠𝜔𝑖𝑒 sin ̃𝜙𝑠

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔2𝑠𝜔𝑖𝑒 sin𝜙(2𝜔2𝑖𝑒 cos2 𝜙 + 𝜔2𝑠)
𝑠 (𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ1,11(𝑡) = (
2𝜔𝑖𝑒 cos2 𝜙 + 𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑠

−
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 3𝜔2𝑠−

𝜔2𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

−
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 3𝜔2𝑠+

𝜔2𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

−
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 3𝜔2𝑖𝑒

𝜔2𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒 sin ̃𝜙

𝛿𝜔𝑖𝑏,𝑒 𝐻1,12(𝑠) = −
𝜔𝑠𝑠2

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔2𝑠 (𝜔2𝑠 − 2𝜔2𝑖𝑒 sin
2 ̃𝜙)

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ1,12(𝑡) = (
𝜔2𝑠− + 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠

𝜔𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ + 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠

𝜔𝑃(𝜔2𝑠+ − 𝜔2𝑠−)(𝜔
2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
𝜔2𝑖𝑒 + 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠

𝜔𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠

𝛿𝜔𝑖𝑏,𝑑 𝐻1,13(𝑠) = −
𝜔2𝑠𝜔𝑖𝑒 cos ̃𝜙𝑠

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔2𝑠𝜔𝑖𝑒 cos ̃𝜙 (𝜔2𝑠 − 2𝜔2𝑖𝑒 sin
2 ̃𝜙)

𝑠 (𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ1,13(𝑡) = −(
2𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠
𝜔2𝑠−𝜔

2
𝑠+𝜔

2
𝑠

+
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 𝜔2𝑠−

𝜔2𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 𝜔2𝑠+

𝜔2𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

+
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 𝜔2𝑖𝑒

𝜔2𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒 cos ̃𝜙
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.6.: Longitude error step responses to  IMU biases.

Input Step response

𝛿𝑓𝑏,𝑛
𝐻2,8(𝑠) = −

2

𝑅
𝜔𝑖𝑒 tan ̃𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ2,8(𝑡) = ( 1
𝜔𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
1

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
2
𝑅𝜔𝑖𝑒 tan

̃𝜙

𝛿𝑓𝑏,𝑒
𝐻2,9(𝑠) =

1

𝑅 cos ̃𝜙
𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2
𝑠

𝑅 cos ̃𝜙

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ2,9(𝑡) = (
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+
+

𝜔2𝑠 − 𝜔2𝑠−
𝜔𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠 − 𝜔2𝑠+

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))
1

𝑅 cos ̃𝜙

𝛿𝑓𝑏,𝑑
𝐻2,10(𝑠) = 0
ℎ2,10(𝑡) = 0

𝛿𝜔𝑖𝑏,𝑛 𝐻2,11(𝑠) =
𝜔2𝑠(𝑠2 + 𝜔22,11+)(𝑠

2 + 𝜔22,11−)
𝑠2 (𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

1
cos ̃𝜙

ℎ2,11(𝑡) = (
𝜔22,11+𝜔

2
2,11−

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑖𝑒
𝑡 −

𝜔4𝑠− − 𝜔2𝑠−(𝜔
2
2,11+ + 𝜔22,11−) + 𝜔22,11+𝜔

2
2,11−

𝜔3𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

−
𝜔4𝑠+ − 𝜔2𝑠+(𝜔

2
2,11+ + 𝜔22,11−) + 𝜔22,11+𝜔

2
2,11−

𝜔3𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

−
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒(𝜔22,11+ + 𝜔22,11−) + 𝜔22,11+𝜔

2
2,11−

𝜔3𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠−)

sin(𝜔𝑖𝑒𝑡))
𝜔2𝑠
cos ̃𝜙

𝜔22,11± =
𝜔2𝑠 + 3𝜔2𝑖𝑒 cos2 ̃𝜙

2 − 𝜔2𝑖𝑒 ±
1
2√(𝜔2𝑖𝑒 cos2 ̃𝜙 − 3𝜔2𝑖𝑒 + 𝜔2𝑠)

2 − 4𝜔2𝑠𝜔2𝑖𝑒 cos2 ̃𝜙

𝛿𝜔𝑖𝑏,𝑒 𝐻2,12(𝑠) = −
3𝜔𝑠𝜔𝑖𝑒 tan ̃𝜙𝑠

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔4𝑠𝜔𝑖𝑒 tan ̃𝜙
𝑠 (𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ2,12(𝑡) = (−
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑖𝑒
+

𝜔2𝑠 − 3𝜔2𝑠−
𝜔2𝑠−(𝜔

2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔2𝑠 − 3𝜔2𝑠+

𝜔2𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡) +
𝜔2𝑠 − 3𝜔2𝑖𝑒

𝜔2𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒 tan ̃𝜙

𝛿𝜔𝑖𝑏,𝑑 𝐻2,13(𝑠) = −
3𝜔𝑠𝜔2𝑖𝑒 sin ̃𝜙

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔4𝑠𝜔2𝑖𝑒 sin ̃𝜙
𝑠2 (𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ2,13(𝑡) = (−
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑖𝑒
𝑡 +

𝜔2𝑠 − 3𝜔2𝑠−
𝜔3𝑠−(𝜔

2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔2𝑠 − 3𝜔2𝑠+

𝜔3𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡) +
𝜔2𝑠 − 3𝜔2𝑖𝑒

𝜔3𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔2𝑖𝑒 sin ̃𝜙
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D.1. Step Responses

D.1.4. Velocity Errors from Initialization Errors

Table D.7.: North velocity error step responses to position and velocity initialization errors.

Input Step response

𝛿𝜙0 𝐻3,1(𝑠) = −
𝜔2𝑠𝜔2𝑖𝑒(2 sin

2 𝜙 + 1)𝑠2𝑅
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

−
𝜔4𝑠𝜔2𝑖𝑒𝑅

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ3,1(𝑡) = −(
𝜔2𝑠 − 𝜔2𝑠−(2 sin

2 𝜙 + 1)
𝜔𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔2𝑠 − 𝜔2𝑠+(2 sin

2 𝜙 + 1)
𝜔𝑠+ (𝜔

2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
𝜔2𝑠 − 𝜔2𝑖𝑒(2 sin

2 𝜙 + 1)
𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔2𝑖𝑒𝑅

𝛿𝜆0 𝐻3,2(𝑠) = 0
ℎ3,2(𝑡) = 0

𝛿𝑣𝑛,0 𝐻3,3(𝑠) =
𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2𝑠𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ3,3(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠
(𝜔2𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))

𝛿𝑣𝑒,0 𝐻3,4(𝑠) = −
2𝜔𝑖𝑒 sin𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ3,4(𝑡) = −(
𝜔𝑠−

(𝜔2𝑠− − 𝜔2𝑠+)
sin(𝜔𝑠−𝑡) +

𝜔𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡)) 2𝜔𝑖𝑒 sin𝜙

𝛿𝑣𝑑,0 𝐻3,14(𝑠) = −
4𝜔2𝑖𝑒 cos𝜙 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ3,14(𝑡) = ( 1
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
cos(𝜔𝑠+𝑡)) 4𝜔

2
𝑖𝑒 cos𝜙 sin𝜙
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.8.: East velocity error step responses to position and velocity initialization errors.

Input Step response

𝛿𝜙0 𝐻4,1(𝑠) =
𝜔2𝑠𝜔𝑖𝑒 sin𝜙𝑅𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
+

𝜔2𝑠𝜔𝑖𝑒 sin𝜙(𝜔2𝑠 − 2𝜔2𝑖𝑒)𝑅
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ4,1(𝑡) = (
𝜔2𝑠 − 2𝜔2𝑖𝑒 − 𝜔2𝑠−

(𝜔2𝑠− − 𝜔2𝑠+) (𝜔
2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔2𝑠 − 2𝜔2𝑖𝑒 − 𝜔2𝑠+

(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔
2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔2𝑠 − 2𝜔2𝑖𝑒 − 𝑤2

𝑖𝑒

(𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒𝑅 sin𝜙

𝛿𝜆0 𝐻4,2(𝑠) = 0
ℎ4,2(𝑡) = 0

𝛿𝑣𝑛,0 𝐻4,3(𝑠) =
2𝜔𝑖𝑒 sin𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ4,3(𝑡) = (
𝜔𝑠−

(𝜔2𝑠− − 𝜔2𝑠+)
sin(𝜔𝑠−𝑡) +

𝜔𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡)) 2𝜔𝑖𝑒 sin𝜙

𝛿𝑣𝑒,0
𝐻4,4(𝑠) =

𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2
𝑠

cos𝜙
𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ4,4(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠
(𝜔2𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))

𝛿𝑣𝑑,0 𝐻4,14(𝑠) =
2𝜔𝑖𝑒 cos𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

2𝜔2𝑠𝜔𝑖𝑒 cos𝜙
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ4,14(𝑡) = (
𝜔2𝑠 − 𝜔2𝑠−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠 − 𝜔2𝑠+

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡)) 2𝜔𝑖𝑒 cos𝜙
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D.1. Step Responses

D.1.5. Velocity Errors from Initial Alignment Errors

Table D.9.: North velocity error step responses to initial alignment errors.

Input Step response

𝛿𝛷0 𝐻3,5(𝑠) = −
3𝜔2𝑠𝜔2𝑖𝑒 sin𝜙𝑅𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−
𝜔2𝑠𝜔2𝑖𝑒 sin𝜙(2𝜔2𝑖𝑒 cos2 𝜙 + 𝜔2𝑠)𝑅𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ3,5(𝑡) = −(
3𝜔2𝑠− − 2𝜔2𝑖𝑒 cos2 𝜙 − 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
3𝜔2𝑠+ − 2𝜔2𝑖𝑒 cos2 𝜙 − 𝜔2𝑠
(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
3𝜔2𝑖𝑒 − 2𝜔2𝑖𝑒 cos2 𝜙 − 𝜔2𝑠
(𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒𝑅 sin𝜙

𝛿𝛩0 𝐻3,6(𝑠) = −
𝜔2𝑠𝑅𝑠4

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

𝜔2𝑠(𝜔2𝑠 − 2𝜔2𝑖𝑒 sin
2 𝜙)𝑅𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ3,6(𝑡) = −(
𝜔𝑠− (𝜔

2
𝑠− + 2𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠)
(𝜔2𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔𝑠+ (𝜔

2
𝑠+ + 2𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠)
(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔𝑖𝑒 (𝜔2𝑖𝑒 + 2𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠)
(𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝑅

𝛿𝛹0 𝐻3,7(𝑠) = −
𝜔2𝑠𝜔2𝑖𝑒 cos𝜙𝑅𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−
𝜔2𝑠𝜔2𝑖𝑒 cos𝜙(𝜔2𝑠 − 2𝜔2𝑖𝑒 sin

2 𝜙)𝑅𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ3,7(𝑡) = (
𝜔2𝑠− + 2𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔2𝑠+ + 2𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠
(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔2𝑖𝑒 + 2𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠
(𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒𝑅 cos𝜙
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.10.: East velocity error step responses to initial alignment errors.

Input Step response

𝛿𝛷0
𝐻4,5(𝑠) = −

𝜔2𝑠 (𝑠2 + 𝜔22,5+) (𝑠
2 + 𝜔22,5−) 𝑅

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ4,5(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
2,5+ + 𝜔22,5−) + 𝜔22,5+𝜔

2
2,5−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
2,5+ + 𝜔22,5−) + 𝜔22,5+𝜔

2
2,5−

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔22,5+ + 𝜔22,5−) + 𝜔22,5+𝜔

2
2,5−

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))𝜔2𝑠𝑅

𝜔22,5± =
𝜔2𝑠 + 3𝜔2𝑖𝑒 cos2 ̃𝜙

2 − 𝜔2𝑖𝑒 ±
1
2√(𝜔2𝑖𝑒 cos2 ̃𝜙 − 2𝜔2𝑖𝑒 + 𝜔2𝑠)

2 − 4𝜔2𝑠𝜔2𝑖𝑒 cos2 ̃𝜙

𝛿𝛩0 𝐻4,6(𝑠) = −
3𝜔2𝑠𝜔𝑖𝑒 sin𝜙𝑅𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

𝜔4𝑠𝜔𝑖𝑒𝑅 sin𝜙𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ4,6(𝑡) = (
3𝜔2𝑠− − 𝜔2𝑠

(𝜔2𝑠− − 𝜔2𝑠+) (𝜔
2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
3𝜔2𝑠+ − 𝜔2𝑠

(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔
2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
3𝜔2𝑖𝑒 − 𝜔2𝑠

(𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒𝑅 sin𝜙

𝛿𝛹0 𝐻4,7(𝑠) = −
3𝜔2𝑠𝜔2𝑖𝑒 sin𝜙 cos𝜙𝑅𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

𝜔4𝑠𝜔2𝑖𝑒 sin𝜙 cos𝜙𝑅
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ4,7(𝑡) = (
3𝜔2𝑠− − 𝜔2𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
3𝜔2𝑠+ − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
3𝜔2𝑖𝑒 − 𝜔2𝑠

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔2𝑖𝑒𝑅 sin𝜙 cos𝜙
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D.1. Step Responses

D.1.6. Velocity Errors from Sensor Biases

Table D.11.: North velocity error step responses to IMU biases.

Input Step response

𝛿𝑓𝑏,𝑛 𝐻3,8(𝑠) =
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ3,8(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))

𝛿𝑓𝑏,𝑒 𝐻3,9(𝑠) =
2𝜔𝑖𝑒 sin ̃𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ3,9(𝑡) = ( 1
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
cos(𝜔𝑠+𝑡)) 2𝜔𝑖𝑒 sin ̃𝜙

𝛿𝑓𝑏,𝑑 𝐻3,10(𝑠) = 0
ℎ3,10(𝑡) = 0

𝛿𝜔𝑖𝑏,𝑛 𝐻3,11(𝑠) = −
3𝜔2𝑠𝜔𝑖𝑒 sin ̃𝜙𝑅𝑠2

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−
𝜔2𝑠𝜔𝑖𝑒 sin𝜙(2𝜔2𝑖𝑒 cos2 𝜙 + 𝜔2𝑠)𝑅
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ3,11(𝑡) = −(
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 3𝜔2𝑠−

𝜔𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 3𝜔2𝑠+

𝜔𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 3𝜔2𝑖𝑒

𝜔𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒𝑅 sin ̃𝜙

𝛿𝜔𝑖𝑏,𝑒 𝐻3,12(𝑠) = −
𝜔𝑠𝑅𝑠3

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔2𝑠 (𝜔2𝑠 − 2𝜔2𝑖𝑒 sin
2 ̃𝜙) 𝑅𝑠

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ3,12(𝑡) = (
𝜔2𝑠− + 2𝜔2𝑖𝑒 cos2 ̃𝜙 − 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠+ + 2𝜔2𝑖𝑒 cos2 ̃𝜙 − 𝜔2𝑠
(𝜔2𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

+
𝜔2𝑖𝑒 + 2𝜔2𝑖𝑒 cos2 ̃𝜙 − 𝜔2𝑠
(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝑅

𝛿𝜔𝑖𝑏,𝑑 𝐻3,13(𝑠) = −
𝜔2𝑠𝜔𝑖𝑒 cos ̃𝜙𝑅𝑠2

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−
𝜔2𝑠𝜔𝑖𝑒 cos ̃𝜙 (𝜔2𝑠 − 2𝜔2𝑖𝑒 sin

2 ̃𝜙) 𝑅
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ3,13(𝑡) = −(
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 𝜔2𝑠−

𝜔𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 𝜔2𝑠+

𝜔𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 𝜔2𝑖𝑒

𝜔𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒𝑅 cos ̃𝜙
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.12.: East velocity error step responses to IMU biases.

Input Step response

𝛿𝑓𝑏,𝑛 𝐻4,8(𝑠) = −
2𝜔𝑖𝑒 sin ̃𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ4,8(𝑡) = −( 1
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
cos(𝜔𝑠+𝑡)) 2𝜔𝑖𝑒 sin ̃𝜙

𝛿𝑓𝑏,𝑒 𝐻4,9(𝑠) =
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ4,9(𝑡) = −(
𝜔2𝑠 − 𝜔2𝑠−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠 − 𝜔2𝑠+

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))

𝛿𝑓𝑏,𝑑 𝐻4,10(𝑠) = 0
ℎ4,10(𝑡) = 0

𝛿𝜔𝑖𝑏,𝑛 𝐻4,11(𝑠) =
𝜔2𝑠(𝑠2 + 𝜔22,11+)(𝑠

2 + 𝜔22,11−)𝑅
𝑠 (𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ4,11(𝑡) = (
𝜔22,11+𝜔

2
2,11−

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑖𝑒

−
𝜔4𝑠− − 𝜔2𝑠−(𝜔

2
2,11+ + 𝜔22,11−) + 𝜔22,11+𝜔

2
2,11−

𝜔2𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

−
𝜔4𝑠+ − 𝜔2𝑠+(𝜔

2
2,11+ + 𝜔22,11−) + 𝜔22,11+𝜔

2
2,11−

𝜔2𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

−
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒(𝜔22,11+ + 𝜔22,11−) + 𝜔22,11+𝜔

2
2,11−

𝜔2𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠−)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝑅

𝜔22,11± =
𝜔2𝑠 + 3𝜔2𝑖𝑒 cos2 ̃𝜙

2 + 𝜔2𝑖𝑒 ±
1
2√(3𝜔2𝑖𝑒 cos2 ̃𝜙 − 2𝜔2𝑖𝑒 + 𝜔2𝑠)

2 − 4𝜔2𝑠𝜔2𝑖𝑒 cos2 ̃𝜙

𝛿𝜔𝑖𝑏,𝑒 𝐻4,12(𝑠) = −
3𝜔𝑠𝜔𝑖𝑒𝑅 sin ̃𝜙𝑠2

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔4𝑠𝜔𝑖𝑒𝑅 sin ̃𝜙
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ4,12(𝑡) = −(
𝜔2𝑠 − 3𝜔2𝑠−

𝜔𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠 − 3𝜔2𝑠+

𝜔𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
𝜔2𝑠 − 3𝜔2𝑖𝑒

𝜔𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒𝑅 sin ̃𝜙

𝛿𝜔𝑖𝑏,𝑑 𝐻4,13(𝑠) = −
3𝜔𝑠𝜔2𝑖𝑒𝑅 sin ̃𝜙 cos ̃𝜙𝑠

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔4𝑠𝜔2𝑖𝑒𝑅 sin ̃𝜙 sin ̃𝜙
𝑠 (𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ4,13(𝑡) = (−
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑖𝑒
+

𝜔2𝑠 − 3𝜔2𝑠−
𝜔2𝑠−(𝜔

2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔2𝑠 − 3𝜔2𝑠+

𝜔2𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡) +
𝜔2𝑠 − 3𝜔2𝑖𝑒

𝜔2𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡))

𝜔2𝑠𝜔2𝑖𝑒𝑅 sin ̃𝜙 cos ̃𝜙
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D.1. Step Responses

D.1.7. Orientation Errors from Initialization Errors

Table D.13.: Roll angle error step responses to position and velocity initialization errors.

Input Step response

𝛿𝜙0
𝐻5,1(𝑠) =

𝜔𝑖𝑒 sin𝜙 (𝑠2 + 𝜔25,1+) (𝑠
2 + 𝜔25,1−)

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ5,1(𝑡) = (
𝜔4𝑠+ + 𝜔2𝑠+ (𝜔

2
5,1+ + 𝜔25,1−) + 𝜔25,1+𝜔

2
5,1−

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
𝜔4𝑠− + 𝜔2𝑠− (𝜔

2
5,1+ + 𝜔25,1−) + 𝜔25,1+𝜔

2
5,1−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑖𝑒 + 𝜔2𝑖𝑒 (𝜔25,1+ + 𝜔25,1−) + 𝜔25,1+𝜔

2
5,1−

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))𝜔𝑖𝑒 sin𝜙

𝜔25,1± =
1
2 (4𝜔

2
𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠) ±
1
2√(4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠)
2
− 8𝜔2𝑖𝑒𝜔2𝑠

𝛿𝜆0 ℎ5,2(𝑡) = 0

𝛿𝑣𝑛,0
𝐻5,3(𝑠) = −

2

𝑅
𝜔𝑖𝑒 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ5,3(𝑡) = ( 1
(𝜔2𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡) +
1

(𝜔2𝑠− − 𝜔2𝑠+)
cos(𝜔𝑠−𝑡))

2
𝑅𝜔𝑖𝑒 sin𝜙

𝛿𝑣𝑒,0
𝐻5,4(𝑠) = −

1

𝑅
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

1

𝑅
𝜔2𝑠

𝜔𝑠− (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ5,4(𝑡) = −(
𝜔2𝑠− − 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
1
𝑅

𝛿𝑣𝑑,0
𝐻5,14(𝑠) = −

2

𝑅
𝜔𝑖𝑒 cos𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

2

𝑅
𝜔2𝑠𝜔𝑖𝑒 cos𝜙

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ5,14(𝑡) = (−
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+
+

𝜔2𝑠 − 𝜔2𝑠−
𝜔2𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡)

+
𝜔2𝑠 − 𝜔2𝑠+

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))
2
𝑅𝜔𝑖𝑒 cos𝜙
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.14.: Pitch angle error step responses to position and velocity initialization errors.

Input Step response

𝛿𝜙0 𝐻6,1(𝑠) =
𝜔2𝑖𝑒𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
+
(4𝜔2𝑖𝑒 sin

2 𝜙 − 2𝜔2𝑠 sin2 𝜙 + 𝜔2𝑠) 𝜔2𝑖𝑒𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ6,1(𝑡) = (
4𝜔2𝑖𝑒 sin

2 𝜙 − 2𝜔2𝑠 sin2 𝜙 + 𝜔2𝑠 − 𝜔2𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

+
4𝜔2𝑖𝑒 sin

2 𝜙 − 2𝜔2𝑠 sin2 𝜙 + 𝜔2𝑠 − 𝜔2𝑠−
(𝜔2𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
4𝜔2𝑖𝑒 sin

2 𝜙 − 2𝜔2𝑠 sin2 𝜙 + 𝜔2𝑠 − 𝜔2𝑖𝑒
(𝜔2𝑖𝑒 − 𝜔2𝑠+) (𝜔

2
𝑖𝑒 − 𝜔2𝑠−)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑖𝑒

𝛿𝜆0 𝐻6,2(𝑠) = 0
ℎ6,2(𝑡) = 0

𝛿𝑣𝑛,0
𝐻6,3(𝑠) =

1

𝑅
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2
𝑠

𝑅

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ6,3(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
1
𝑅

𝛿𝑣𝑒,0
𝐻6,4(𝑠) = −

2

𝑅
𝜔𝑖𝑒 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ6,4(𝑡) = ( 1
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
cos(𝜔𝑠+𝑡))

2
𝑅𝜔𝑖𝑒 sin𝜙

𝛿𝑣𝑑,0

𝐻6,14(𝑠) = −
4

𝑅
𝜔2𝑖𝑒 sin𝜙 cos𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ6,14(𝑡) = ( 1
𝜔𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
1

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
4
𝑅𝜔

2
𝑖𝑒 cos𝜙 sin𝜙
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D.1. Step Responses

Table D.15.: Yaw angle error step responses to position and velocity initialization errors.

Input Step response

𝛿𝜙0
𝐻7,1(𝑠) =

𝜔𝑖𝑒 cos𝜙 (𝑠2 + 𝜔27,1+) (𝑠
2 + 𝜔27,1−)

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ7,1(𝑡) = (
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
7,1+ + 𝜔27,1−) + 𝜔27,1+𝜔

2
7,1−

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
7,1+ + 𝜔27,1−) + 𝜔27,1+𝜔

2
7,1−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔27,1+ + 𝜔27,1−) + 𝜔27,1+𝜔

2
7,1−

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))𝜔𝑖𝑒 cos𝜙

𝜔27,1± =
1
2 (4𝜔

2
𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠(1 + sec2 𝜙))

± 1
2√

(4𝜔2𝑖𝑒 sin
2 𝜙 + 𝜔2𝑠(1 + sec2 𝜙))

2
− 4 (𝜔4𝑠

1
cos2 𝜙 − 2𝜔2𝑠𝜔2𝑖𝑒 tan2 𝜙)

𝛿𝜆0 𝐻7,2(𝑠) = 0
ℎ7,2(𝑡) = 0

𝛿𝑣𝑛,0
𝐻7,3(𝑠) =

2

𝑅
𝜔𝑖𝑒 tan𝜙 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ7,3(𝑡) = −( 1
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
cos(𝜔𝑠+𝑡))

2
𝑅𝜔𝑖𝑒 tan𝜙 sin𝜙

𝛿𝑣𝑒,0
𝐻7,4(𝑠) =

1

𝑅
tan𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

1

𝑅
tan𝜙𝜔2𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ7,4(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠
(𝜔2𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
1
𝑅 tan𝜙

𝛿𝑣𝑑,0

𝐻7,14(𝑠) =
2

𝑅
𝜔𝑖𝑒 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

2

𝑅
sin𝜙𝜔𝑖𝑒𝜔2𝑠

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ7,14(𝑡) = (
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+
−

𝜔−𝑠−𝜔
2
𝑠2

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) −
𝜔2𝑠+ − 𝜔2𝑠

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))
2
𝑅𝜔𝑖𝑒 sin𝜙
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Appendix D. Solutions to the Linearized Error Dynamics

D.1.8. Orientation Errors from Initial Alignment Errors

Table D.16.: Roll angle error step responses to initial alignment errors.

Input Step response

𝛿𝛷0
𝐻5,5(𝑠) = −

(𝑠2 + 𝜔25,5+) (𝑠
2 + 𝜔25,5−) (𝜔

2
𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠)
𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ5,5(𝑡) = −
𝜔25,5+𝜔

2
5,5−

𝜔2𝑠+𝜔
2
𝑠−𝜔𝑖𝑒

+ (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
5,5+ + 𝜔25,5−) + 𝜔25,5+𝜔

2
5,5−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
5,5+ + 𝜔25,5−) + 𝜔25,5+𝜔

2
5,5−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔25,5+ + 𝜔25,5−) + 𝜔25,5+𝜔

2
5,5−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) (𝜔2𝑖𝑒 sin
2 𝜙 + 𝜔2𝑠)

𝜔25,5± =
4𝜔4𝑖𝑒 sin

4 𝜙 + 𝜔2𝑠𝜔2𝑖𝑒 cos2 𝜙 + 𝜔4𝑠
2 (𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠)

±
√(4𝜔4𝑖𝑒 sin

4 𝜙 + 𝜔2𝑠𝜔2𝑖𝑒 cos2 𝜙 + 𝜔4𝑠 )
2
− 4 (𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠) 𝜔4𝑠𝜔2𝑖𝑒
2 (𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠)

𝛿𝛩0 𝐻5,6(𝑠) = −
𝜔𝑖𝑒 sin𝜙𝑠4

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

(4𝜔2𝑖𝑒 sin
2 𝜙 − 𝜔2𝑠) 𝜔𝑖𝑒 sin𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ5,6(𝑡) = (
(4𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠 − 𝜔2𝑠+) 𝜔𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
(4𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠 − 𝜔2𝑠−) 𝜔𝑠−
(𝜔2𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
(4𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠 − 𝜔2𝑖𝑒) 𝜔𝑖𝑒
(𝜔2𝑖𝑒 − 𝜔2𝑠+) (𝜔

2
𝑖𝑒 − 𝜔2𝑠−)

sin(𝜔𝑖𝑒𝑡)) 𝜔𝑖𝑒 sin𝜙

𝛿𝛹0 𝐻5,7(𝑠) = −
𝜔2𝑖𝑒 sin𝜙 cos𝜙𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−
(4𝜔2𝑖𝑒 sin

3 𝜙 cos𝜙 − 𝜔2𝑠 sin𝜙 cos𝜙)𝜔2𝑖𝑒𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ5,7(𝑡) = −(
4𝜔2𝑖𝑒 sin

2−𝜔2𝑠 − 𝜔2𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
4𝜔2𝑖𝑒 sin

2−𝜔2𝑠 − 𝜔2𝑠−
(𝜔2𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
4𝜔2𝑖𝑒 sin

2−𝜔2𝑠 − 𝜔2𝑖𝑒
(𝜔2𝑖𝑒 − 𝜔2𝑠+) (𝜔

2
𝑖𝑒 − 𝜔2𝑠−)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑖𝑒 sin𝜙 cos𝜙
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D.1. Step Responses

Table D.17.: Pitch angle error step responses to initial alignment errors.

Input Step response

𝛿𝛷0
𝐻6,5(𝑠) =

(𝑠2 + 𝜔26,5+) (𝑠
2 + 𝜔26,5−) 𝜔𝑖𝑒 sin𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ6,5(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
6,5+ + 𝜔26,5−) + 𝜔26,5+𝜔

2
6,5−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
6,5+ + 𝜔26,5−) + 𝜔26,5+𝜔

2
6,5−

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔26,5+ + 𝜔26,5−) + 𝜔26,5+𝜔

2
6,5−

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))𝜔𝑖𝑒 sin𝜙

𝜔26,5± = −12 (𝜔
2
𝑠 − 𝜔2𝑖𝑒 sin

2 𝜙) ± 1
2√(𝜔2𝑠 − 𝜔2𝑖𝑒 sin

2 𝜙)
2
+ 8𝜔2𝑠𝜔2𝑖𝑒 cos2 𝜙

𝛿𝛩0
𝐻6,6(𝑠) = −

(𝑠2 + 𝜔26,6+) (𝑠
2 + 𝜔26,6−) (𝜔

2
𝑖𝑒 + 𝜔2𝑠)

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ6,6(𝑡) = (−
𝜔26,6−𝜔

2
6,6+

𝜔2𝑠+𝜔
2
𝑠−𝜔

2
𝑖𝑒
+
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
6,6+ + 𝜔26,6−) + 𝜔26,6+𝜔

2
6,6−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
6,6+ + 𝜔26,6−) + 𝜔26,6+𝜔

2
6,6−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔26,6+ + 𝜔26,6−) + 𝜔26,6+𝜔

2
6,6−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) (𝜔2𝑖𝑒 + 𝜔2𝑠)

𝜔26,6± =
4𝜔4𝑖𝑒 sin

2 𝜙 + 2𝜔2𝑠𝜔2𝑖𝑒 cos2 𝜙 + 𝜔4𝑠
2 (𝜔2𝑖𝑒 + 𝜔2𝑠)

±
√(4𝜔4𝑖𝑒 sin

2 𝜙 + 2𝜔2𝑠𝜔2𝑖𝑒 cos2 𝜙 + 𝜔4𝑠 )
2
+ 4𝜔4𝑠𝜔2𝑖𝑒 (𝜔2𝑖𝑒 + 𝜔2𝑠)

2 (𝜔2𝑖𝑒 + 𝜔2𝑠)

𝛿𝛹0
𝐻6,7(𝑠) =

(𝑠2 + 𝜔26,7+) (𝑠
2 + 𝜔26,7−) 𝜔𝑖𝑒 cos𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ6,7(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
6,7+ + 𝜔26,7−) + 𝜔26,7+𝜔

2
6,7−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
6,7+ + 𝜔26,7−) + 𝜔26,7+𝜔

2
6,7−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔26,7+ + 𝜔26,7−) + 𝜔26,7+𝜔

2
6,7−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))𝜔𝑖𝑒 cos𝜙

𝜔26,7± =
1
2 (𝜔

2
𝑠 + 4𝜔2𝑖𝑒 sin

2 𝜙) ± 1
2√(𝜔2𝑠 + 4𝜔2𝑖𝑒 sin

2 𝜙)
2
− 8𝜔2𝑠𝜔2𝑖𝑒 sin

2 𝜙
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.18.: Yaw angle error step responses to initial alignment errors.

Input Step response

𝛿𝛷0 𝐻7,5(𝑠) =
tan𝜙 (𝜔2𝑠 − 𝜔2𝑖𝑒 cos2 𝜙) 𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

+
tan𝜙 (𝜔4𝑠 − 4𝜔4𝑖𝑒 sin

2 𝜙 cos2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒 sin
2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒) 𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ7,5(𝑡) = (
𝜔2𝑠+ (𝜔

2
𝑖𝑒 cos2 𝜙 − 𝜔2𝑠) − 𝜔4𝑠 − 4𝜔4𝑖𝑒 sin

2 𝜙 cos2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒 (sin
2 𝜙 + 1)

(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔
2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

+
𝜔2𝑠− (𝜔

2
𝑖𝑒 cos2 𝜙 − 𝜔2𝑠) − 𝜔4𝑠 − 4𝜔4𝑖𝑒 sin

2 𝜙 cos2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒 (sin
2 𝜙 + 1)

(𝜔2𝑠− − 𝜔2𝑠+) (𝜔
2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔2𝑖𝑒 (𝜔2𝑖𝑒 cos2 𝜙 − 𝜔2𝑠) − 𝜔4𝑠 − 4𝜔4𝑖𝑒 sin

2 𝜙 cos2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒 (sin
2 𝜙 + 1)

(𝜔2𝑖𝑒 − 𝜔2𝑠+) (𝜔
2
𝑖𝑒 − 𝜔2𝑠−)

cos(𝜔𝑖𝑒𝑡)) tan𝜙

𝛿𝛩0
𝐻7,6(𝑠) =

𝜔𝑖𝑒 cos𝜙 (𝑠2 + 𝜔27,6+) (𝑠
2 + 𝜔27,6−)

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ7,6(𝑡) = −(
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
7,6+ + 𝜔27,6−) + 𝜔27,6+𝜔

2
7,6−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
7,6+ + 𝜔27,6−) + 𝜔27,6+𝜔

2
7,6−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔27,6+ + 𝜔27,6−) + 𝜔27,6+𝜔

2
7,6−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))𝜔𝑖𝑒 cos𝜙

𝜔27,6± =
1
2 (4𝜔

2
𝑖𝑒 sin

2 𝜙 + 3𝜔2𝑠 sec2 𝜙 − 𝜔2𝑠) ±
1
2√(4𝜔2𝑖𝑒 sin

2 𝜙 + 3𝜔2𝑠 sec2 𝜙 − 𝜔2𝑠)
2
− 4𝜔4𝑠 sec2 𝜙

𝛿𝛹0 𝐻7,7(𝑠) =
(𝑠2 + 𝜔27,7+) (𝑠

2 + 𝜔27,7−) 𝜔
2
𝑖𝑒 cos2 𝜙

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ7,7(𝑡) = (
𝜔27,7−𝜔

2
6,6+

𝜔2𝑠+𝜔
2
𝑠−𝜔

2
𝑖𝑒
−
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
7,7+ + 𝜔27,7−) + 𝜔27,7+𝜔

2
7,7−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

−
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
7,7+ + 𝜔27,7−) + 𝜔27,7+𝜔

2
7,7−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

−
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔27,7+ + 𝜔27,7−) + 𝜔27,7+𝜔

2
7,7−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑖𝑒 cos2 𝜙

𝜔27,7± =
4𝜔2𝑖𝑒 sin

4 𝜙 − 4𝜔2𝑖𝑒 ∗ sin
2 𝜙 + 𝜔2𝑠𝜔𝑖𝑒2 sin2 𝜙 − 2𝜔2𝑠

2 cos2 𝜙

±
√(4𝜔2𝑖𝑒 sin

4 𝜙 − 4𝜔2𝑖𝑒 sin
2 𝜙 + 𝜔2𝑠𝜔𝑖𝑒2 sin2 𝜙 − 2𝜔2𝑠)

2
+ 4𝜔4𝑠 cos2

2 cos2 𝜙
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D.1. Step Responses

D.1.9. Orientation Errors from Sensor Biases

Table D.19.: Roll angle error step responses to accelerometer biases.

Input Step response

𝛿𝑓𝑏,𝑛
𝐻5,8(𝑠) = −

2

𝑅
𝜔𝑖𝑒 sin𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ5,8(𝑡) = ( 1
𝜔𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
1

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
2
𝑅𝜔𝑖𝑒 sin

̃𝜙

𝛿𝑓𝑏,𝑒
𝐻5,9(𝑠) = −

1

𝑅
𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

1

𝑅
𝜔2𝑠

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ5,9(𝑡) = (−
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+
+

𝜔2𝑠 − 𝜔2𝑠−
𝜔2𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠 − 𝜔2𝑠+

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))
1
𝑅

𝛿𝑓𝑏,𝑑 𝐻5,10(𝑠) = 0
ℎ5,10(𝑡) = 0
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.20.: Roll angle error step responses to gyroscope biases.

Input Step response

𝛿𝜔𝑖𝑏,𝑛
𝐻5,11(𝑠) =

(𝑠2 + 𝜔25,11+) (𝑠
2 + 𝜔25,11−)

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ5,11(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
5,11+ + 𝜔25,11−) + 𝜔25,11+𝜔

2
5,11−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
5,11+ + 𝜔25,11−) + 𝜔25,11+𝜔

2
5,11−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔25,11+ + 𝜔25,11−) + 𝜔25,11+𝜔

2
5,11−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))

𝜔25,11± =
1
2 (3𝜔

2
𝑖𝑒 sin

2 𝜙 + 𝜔2𝑖𝑒 + 𝜔2𝑠)

± 1
2√(3𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑖𝑒 + 𝜔2𝑠)
2
− 4𝜔2𝑖𝑒 (4𝜔2𝑖𝑒 sin

2 𝜙 − 4𝜔2𝑖𝑒 sin
4 𝜙 + 𝜔2𝑠 sin2 𝜙 + 𝜔2𝑠)

𝛿𝜔𝑖𝑏,𝑒 𝐻5,12(𝑠) = −
𝜔𝑖𝑒 sin𝜙𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

(𝜔2𝑖𝑒 sin
2 𝜙 − 𝜔2𝑠) 𝜔𝑖𝑒 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ5,12(𝑡) = (
𝜔2𝑠− − 𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠
(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔2𝑖𝑒 − 𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠
(𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔𝑖𝑒 sin𝜙

𝛿𝜔𝑖𝑏,𝑑 𝐻5,13(𝑠) =
𝜔2𝑖𝑒 sin𝜙 cos𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−
(4𝜔2𝑖𝑒 sin

3 𝜙 cos𝜙 − 𝜔2𝑠 sin𝜙 cos𝜙)𝜔2𝑖𝑒
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ5,13(𝑡) = (
𝜔2𝑠 − 4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠−𝜔
2
𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠 − 4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠+𝜔
2
𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔2𝑠 − 4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑖𝑒𝜔2𝑠
𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑖𝑒 sin𝜙 cos𝜙
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D.1. Step Responses

Table D.21.: Pitch angle error step responses to accelerometer biases.

Input Step response

𝛿𝑓𝑏,𝑛
𝐻6,8(𝑠) =

1

𝑅
𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

1

𝑅
𝜔2𝑠

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ6,8(𝑡) = (
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+
−

𝜔2𝑠− − 𝜔2𝑠
𝜔2𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) −
𝜔2𝑠+ − 𝜔2𝑠

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))
1
𝑅

𝛿𝑓𝑏,𝑒
𝐻6,9(𝑠) = −

2

𝑅
𝜔𝑖𝑒 sin𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ6,9(𝑡) = ( 1
𝜔𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
1

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
2
𝑅𝜔𝑖𝑒 sin𝜙

𝛿𝑓𝑏,𝑑 𝐻6,10(𝑠) = 0
ℎ6,10(𝑡) = 0
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.22.: Pitch angle error step responses to gyroscope biases.

Input Step response

𝛿𝜔𝑖𝑏,𝑛
𝐻6,11(𝑠) =

(𝑠2 + 𝜔26,11+) (𝑠
2 + 𝜔26,11−) 𝜔𝑖𝑒 sin𝜙

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ6,11(𝑡) = (
𝜔26,11+𝜔

2
6,11−

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑖𝑒

−
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
6,11+ + 𝜔26,11−) + 𝜔26,11+𝜔

2
6,11−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

−
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
6,11+ + 𝜔26,11−) + 𝜔26,11+𝜔

2
6,11−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

−
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔26,11+ + 𝜔26,11−) + 𝜔26,11+𝜔

2
6,11−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡))𝜔𝑖𝑒 sin𝜙

𝜔26,11± =
1
2 (4𝜔

2
𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠) ±
1
2√(4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠)
2
+ 8𝜔2𝑠𝜔2𝑖𝑒 cos2 𝜙

𝛿𝜔𝑖𝑏,𝑒
𝐻6,12(𝑠) =

(𝑠2 + 𝜔26,12+) (𝑠
2 + 𝜔26,12−)

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ6,12(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
6,12+ + 𝜔26,12−) + 𝜔26,12+𝜔

2
6,12−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
6,12+ + 𝜔26,12−) + 𝜔26,12+𝜔

2
6,12−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔26,12+ + 𝜔26,12−) + 𝜔26,12+𝜔

2
6,12−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))

𝜔26,12± =
1
2 (4𝜔

2
𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠) ±
1
2√(4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠)
2
− 8𝜔2𝑠𝜔2𝑖𝑒 sin

2 𝜙

𝛿𝜔𝑖𝑏,𝑑
𝐻6,13(𝑠) =

(𝑠2 + 𝜔26,13+) (𝑠
2 + 𝜔26,13−) 𝜔𝑖𝑒 cos𝜙

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ6,13(𝑡) = (
𝜔26,13−𝜔

2
6,13+

𝜔2𝑠+𝜔
2
𝑠−𝜔

2
𝑖𝑒

−
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
6,13+ + 𝜔26,13−) + 𝜔26,13+𝜔

2
6,13−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

−
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
6,13+ + 𝜔26,13−) + 𝜔26,13+𝜔

2
6,13−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

−
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔26,13+ + 𝜔26,13−) + 𝜔26,13+𝜔

2
6,13−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡))𝜔𝑖𝑒 cos𝜙

𝜔26,13± =
1
2 (4𝜔

2
𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠) ±
1
2√(4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠)
2
+ 8𝜔2𝑠𝜔2𝑖𝑒 sin

2 𝜙
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D.1. Step Responses

Table D.23.: Yaw angle error step responses to accelerometer biases.

Input Step response

𝛿𝑓𝑏,𝑛

𝐻7,8(𝑠) =
2

𝑅
𝜔𝑖𝑒 tan𝜙 sin𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ7,8(𝑡) = −( 1
𝜔𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
1

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
2
𝑅𝜔𝑖𝑒 sin𝜙 tan𝜙

𝛿𝑓𝑏,𝑒

𝐻7,9(𝑠) =
1

𝑅
tan𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

1

𝑅
𝜔2𝑠 tan𝜙

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

ℎ7,9(𝑡) = (
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+
−

𝜔2𝑠− − 𝜔2𝑠
𝜔2𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) −
𝜔2𝑠+ − 𝜔2𝑠

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))
1
𝑅 tan𝜙

𝛿𝑓𝑏,𝑑 𝐻7,10(𝑠) = 0
ℎ7,10(𝑡) = 0
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.24.: Yaw angle error step responses to gyroscope biases.

Input Step response

𝛿𝜔𝑖𝑏,𝑛

𝐻7,11(𝑠) =
(𝜔2𝑠 − 𝜔2𝑖𝑒 cos2 𝜙) tan𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

+
(4𝜔4𝑖𝑒 sin

2 𝜙 cos2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒 (sin
2 𝜙 + 1) + 𝜔4𝑠 ) tan𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ7,11(𝑡) = (
4𝜔4𝑖𝑒 sin

2 𝜙 cos2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒 (sin
2 𝜙 + 1) + 𝜔4𝑠 − (𝜔2𝑠 − 𝜔2𝑖𝑒 cos2 𝜙)𝜔2𝑠+

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
4𝜔4𝑖𝑒 sin

2 𝜙 cos2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒 (sin
2 𝜙 + 1) + 𝜔4𝑠 − (𝜔2𝑠 − 𝜔2𝑖𝑒 cos2 𝜙)𝜔2𝑠−

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
4𝜔4𝑖𝑒 sin

2 𝜙 cos2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒 (sin
2 𝜙 + 1) + 𝜔4𝑠 − (𝜔2𝑠 − 𝜔2𝑖𝑒 cos2 𝜙)𝜔2𝑖𝑒

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) tan𝜙

𝛿𝜔𝑖𝑏,𝑒

𝐻7,12(𝑠) = −
(𝑠2 + 𝜔27,12+) (𝑠

2 + 𝜔27,12−) 𝜔𝑖𝑒 cos𝜙

𝑠 (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ7,12(𝑡) = (−
𝜔27,12−𝜔

2
7,12+

𝜔2𝑠+𝜔
2
𝑠−𝜔

2
𝑖𝑒

+
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
7,12+ + 𝜔26,13−) + 𝜔27,12+𝜔

2
7,12−

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
7,12+ + 𝜔27,12−) + 𝜔27,12+𝜔

2
7,12−

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔27,12+ + 𝜔27,12−) + 𝜔27,12+𝜔

2
7,12−

𝜔2𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡))𝜔𝑖𝑒 cos𝜙

𝜔27,12± =
1
2 (4𝜔

2
𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠 +
3𝜔2𝑠
cos2 𝜙) ±

1
2

√√

√
(4𝜔2𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠 +
3𝜔2𝑠
cos2 𝜙)

2

− 4𝜔4𝑠

𝛿𝜔𝑖𝑏,𝑑

𝐻7,13(𝑠) =
(𝑠2 + 𝜔27,13+) (𝑠

2 + 𝜔27,13−)

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

ℎ7,13(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
7,13+ + 𝜔27,13−) + 𝜔27,13+𝜔

2
7,13−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
7,13+ + 𝜔27,13−) + 𝜔27,13+𝜔

2
7,13−

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔27,13+ + 𝜔27,13−) + 𝜔27,13+𝜔

2
7,13−

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))

𝜔27,13± =
1
2 (5𝜔

2
𝑖𝑒 sin

2 𝜙 + 2𝜔2𝑠)

± 1
2√(5𝜔2𝑖𝑒 sin

2 𝜙 + 2𝜔2𝑠)
2
− 4 (4𝜔4𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒 sin
2 𝜙 + 𝜔4𝑠 )
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D.2. Impulse Responses

D.2. Impulse Responses

D.2.1. Position Errors Impulse Responses to Sensor Errors

Table D.25.: Latitude error pulse responses to accelerometer errors.

Input Transfer function / impulse response

𝛿𝑓𝑏,𝑛
𝐺1,8(𝑠) =

1

𝑅
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2
𝑠

𝑅

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔1,8(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
1
𝑅

𝛿𝑓𝑏,𝑒
𝐺1,9(𝑠) =

2

𝑅
𝜔𝑖𝑒 sin ̃𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔1,9(𝑡) = ( 1
(𝜔2𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
sin(𝜔𝑠+𝑡))

2
𝑅𝜔𝑖𝑒 sin

̃𝜙

𝛿𝑓𝑏,𝑑 𝐺1,10(𝑠) = 0
𝑔1,10(𝑡) = 0
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.26.: Latitude error impulse responses to gyroscope errors.

Input Transfer function / impulse response

𝛿𝜔𝑖𝑏,𝑛 𝐺1,11(𝑠) = −
3𝜔2𝑠𝜔𝑖𝑒 sin ̃𝜙𝑠

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔2𝑠𝜔𝑖𝑒 sin ̃𝜙 (𝜔2𝑠 − 2𝜔𝑖𝑒 cos2 ̃𝜙)
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔1,11(𝑡) = (
3𝜔2𝑠− − 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠

𝜔𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡) +
3𝜔2𝑠+ − 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠

𝜔𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
3𝜔2𝑖𝑒 − 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠
𝜔𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔

2
𝑖𝑒 − 𝜔22)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒 sin ̃𝜙

𝛿𝜔𝑖𝑏,𝑒 𝐺1,12(𝑠) = −
𝜔𝑠𝑠3

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔2𝑠 (𝜔2𝑠 − 2𝜔2𝑖𝑒 sin
2 ̃𝜙) 𝑠

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔1,12(𝑡) = (
𝜔2𝑠− + 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠+ + 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠
(𝜔2𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

+
𝜔2𝑖𝑒 + 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠
(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔

2
𝑖𝑒 − 𝜔22)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠

𝛿𝜔𝑖𝑏,𝑑 𝐺1,13(𝑠) = −
𝜔2𝑠𝜔𝑖𝑒 cos ̃𝜙𝑠2

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔2𝑠𝜔𝑖𝑒 cos ̃𝜙 (𝜔2𝑠 − 2𝜔2𝑖𝑒 sin
2 ̃𝜙)

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔1,13(𝑡) = (
3𝜔2𝑠− − 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠

𝜔𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡) +
3𝜔2𝑠+ − 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠

𝜔𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
3𝜔2𝑖𝑒 − 2𝜔2𝑖𝑒 cos ̃𝜙 − 𝜔2𝑠
𝜔𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔

2
𝑖𝑒 − 𝜔22)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒 sin ̃𝜙

Table D.27.: Longitude error impulse responses to accelerometer errors.

Input Transfer function / impulse response

𝛿𝑓𝑏,𝑛
𝐺2,8(𝑠) =

2

𝑅
𝜔𝑖𝑒 tan ̃𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔2,8(𝑡) = ( 1
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
cos(𝜔𝑠+𝑡))

2
𝑅𝜔𝑖𝑒 tan

̃𝜙

𝛿𝑓𝑏,𝑒
𝐺2,9(𝑠) =

1

𝑅 cos ̃𝜙
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2
𝑠

𝑅 cos ̃𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔2,9(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
1

𝑅 cos ̃𝜙

𝛿𝑓𝑏,𝑑
𝐺2,10(𝑠) = 0
𝑔2,10(𝑡) = 0
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Table D.28.: Longitude error impulse responses to gyroscope errors.

Input Transfer function / impulse response

𝛿𝜔𝑖𝑏,𝑛 𝐺2,11(𝑠) =
𝜔2𝑠(𝑠2 + 𝜔23)(𝑠2 + 𝜔24)

𝑠 (𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
1

cos ̃𝜙

𝑔2,11(𝑡) = (
𝜔23𝜔24

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑖𝑒
−
𝜔4𝑠− − 𝜔2𝑠−(𝜔

2
3 + 𝜔24) + 𝜔23𝜔24

𝜔2𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

−
𝜔4𝑠+ − 𝜔2𝑠+(𝜔

2
3 + 𝜔24) + 𝜔23𝜔24

𝜔2𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

−
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒(𝜔23 + 𝜔24) + 𝜔23𝜔24
𝜔2𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔

2
𝑖𝑒 − 𝜔2𝑠−)

cos(𝜔𝑖𝑒𝑡))
𝜔2𝑠
cos ̃𝜙

𝛿𝜔𝑖𝑏,𝑒 𝐺2,12(𝑠) = −
3𝜔𝑠𝜔𝑖𝑒 tan ̃𝜙𝑠2

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔4𝑠𝜔𝑖𝑒 tan ̃𝜙
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔2,12(𝑡) = (
3𝜔2𝑠− − 𝜔2𝑠

𝜔𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡) +
3𝜔2𝑠+ − 𝜔2𝑠

𝜔𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
3𝜔2𝑖𝑒 − 𝜔2𝑠

𝜔𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒 tan ̃𝜙

𝛿𝜔𝑖𝑏,𝑑 𝐺2,13(𝑠) = −
3𝜔𝑠𝜔2𝑖𝑒 sin ̃𝜙𝑠

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔4𝑠𝜔2𝑖𝑒 sin ̃𝜙
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔2,13(𝑡) = (−
𝜔2𝑠

𝜔2𝑠−𝜔
2
𝑠+𝜔

2
𝑖𝑒
+

𝜔2𝑠 − 3𝜔2𝑠−
𝜔2𝑠−(𝜔

2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔2𝑠 − 3𝜔2𝑠+

𝜔2𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

+
𝜔2𝑠 − 3𝜔2𝑖𝑒

𝜔2𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔2𝑖𝑒 sin ̃𝜙
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Appendix D. Solutions to the Linearized Error Dynamics

D.2.2. Velocity Errors Impulse Responses to Sensor Errors

Table D.29.: North velocity error impulse responses to accelerometer errors.

Input Transfer function / impulse response

𝛿𝑓𝑏,𝑛 𝐺3,8(𝑠) =
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2𝑠𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔3,8(𝑡) = (
𝜔2𝑠 − 𝜔2𝑠−
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠 − 𝜔2𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))

𝛿𝑓𝑏,𝑒 𝐺3,9(𝑠) =
2𝜔𝑖𝑒 sin ̃𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔3,9(𝑡) = (
𝜔𝑠−

(𝜔2𝑠− − 𝜔2𝑠+)
sin(𝜔𝑠−𝑡) +

𝜔𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡)) 2𝜔𝑖𝑒 sin ̃𝜙

𝛿𝑓𝑏,𝑑 𝐺3,10(𝑠) = 0
𝑔3,10(𝑡) = 0
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D.2. Impulse Responses

Table D.30.: North velocity error impulse responses to gyroscope errors.

Input Transfer function / impulse response

𝛿𝜔𝑖𝑏,𝑛 𝐺3,11(𝑠) = −
3𝜔2𝑠𝜔𝑖𝑒 sin ̃𝜙𝑅𝑠3

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−
𝜔2𝑠𝜔𝑖𝑒 sin𝜙(2𝜔2𝑖𝑒 cos2 𝜙 + 𝜔2𝑠)𝑅𝑠
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔3,11(𝑡) = (
2𝜔2𝑖𝑒 cos2 ̃𝜙 + 𝜔2𝑠 − 3𝜔2𝑠−
(𝜔2𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
2𝜔2𝑖𝑒 cos2 ̃𝜙 + 𝜔2𝑠 − 3𝜔2𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

+
2𝜔2𝑖𝑒 cos2 ̃𝜙 + 𝜔2𝑠 − 3𝜔2𝑖𝑒
(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒𝑅 sin ̃𝜙

𝛿𝜔𝑖𝑏,𝑒 𝐺3,12(𝑠) = −
𝜔𝑠𝑅𝑠4

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔2𝑠 (𝜔2𝑠 − 2𝜔2𝑖𝑒 sin
2 ̃𝜙) 𝑅𝑠2

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔3,12(𝑡) = −(
𝜔2𝑠− − 2𝜔2𝑖𝑒 cos2 ̃𝜙 − 𝜔2𝑠
(𝜔2𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 2𝜔2𝑖𝑒 cos2 ̃𝜙 − 𝜔2𝑠
(𝜔2𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
𝜔2𝑖𝑒 − 2𝜔2𝑖𝑒 cos2 ̃𝜙 − 𝜔2𝑠
(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝑅

𝛿𝜔𝑖𝑏,𝑑 𝐺3,13(𝑠) = −
𝜔2𝑠𝜔𝑖𝑒 cos2 ̃𝜙𝑅𝑠3

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−
𝜔2𝑠𝜔𝑖𝑒 cos2 ̃𝜙 (𝜔2𝑠 − 2𝜔2𝑖𝑒 sin

2 ̃𝜙) 𝑅𝑠
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔3,13(𝑡) = (
2𝜔2𝑖𝑒 cos2 ̃𝜙 + 𝜔2𝑠 − 𝜔2𝑠−
(𝜔2𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
2𝜔2𝑖𝑒 cos2 ̃𝜙 + 𝜔2𝑠 − 𝜔2𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

+
2𝜔2𝑖𝑒 cos ̃𝜙 + 𝜔2𝑠 − 𝜔2𝑖𝑒
(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒𝑅 cos ̃𝜙

Table D.31.: East velocity error impulse responses to accelerometer errors.

Input Transfer function / impulse response

𝛿𝑓𝑏,𝑛 𝐺4,8(𝑠) = −
2𝜔𝑖𝑒 sin ̃𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔4,8(𝑡) = (
𝜔𝑠−

(𝜔2𝑠− − 𝜔2𝑠+)
sin(𝜔𝑠−𝑡) +

𝜔𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡)) 2𝜔𝑖𝑒 sin ̃𝜙

𝛿𝑓𝑏,𝑒 𝐺4,9(𝑠) =
𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

𝜔2𝑠𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔4,9(𝑡) = −(
𝜔2𝑠 − 𝜔2𝑠−
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠 − 𝜔2𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−)

cos(𝜔𝑠+𝑡))

𝛿𝑓𝑏,𝑑 𝐺4,10(𝑠) = 0
𝑔4,10(𝑡) = 0
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Table D.32.: East velocity error impulse responses to gyroscope errors.

Input Transfer function / impulse response

𝛿𝜔𝑖𝑏,𝑛 𝐺4,11(𝑠) =
𝜔2𝑠(𝑠2 + 𝜔22,11+)(𝑠

2 + 𝜔22,11−)𝑅
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔4,11(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠−(𝜔

2
2,11+ + 𝜔22,11−) + 𝜔22,11+𝜔

2
2,11−

𝜔𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+(𝜔

2
2,11+ + 𝜔22,11−) + 𝜔22,11+𝜔

2
2,11−

𝜔𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒(𝜔22,11+ + 𝜔22,11−) + 𝜔22,11+𝜔

2
2,11−

𝜔𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠−)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝑅

𝜔22,11± =
𝜔2𝑠 + 3𝜔2𝑖𝑒 cos2 ̃𝜙

2 + 𝜔2𝑖𝑒 ±
1
2√(3𝜔2𝑖𝑒 cos2 ̃𝜙 + 2𝜔2𝑖𝑒 + 𝜔2𝑠)

2 − 4𝜔2𝑠𝜔2𝑖𝑒 cos2 ̃𝜙

𝛿𝜔𝑖𝑏,𝑒 𝐺4,12(𝑠) = −
3𝜔𝑠𝜔𝑖𝑒𝑅 sin ̃𝜙𝑠3

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔4𝑠𝜔𝑖𝑒𝑅 sin ̃𝜙𝑠
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔4,12(𝑡) = −(
𝜔2𝑠 − 3𝜔2𝑠−

(𝜔2𝑠− − 𝜔2𝑠+)(𝜔
2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠 − 3𝜔2𝑠+

(𝜔2𝑠+ − 𝜔2𝑠−)(𝜔
2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)

+
𝜔2𝑠 − 3𝜔2𝑖𝑒

(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔𝑖𝑒𝑅 sin ̃𝜙

𝛿𝜔𝑖𝑏,𝑑 𝐺4,13(𝑠) = −
3𝜔𝑠𝜔2𝑖𝑒𝑅 sin ̃𝜙 cos ̃𝜙𝑠2

(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

𝜔4𝑠𝜔2𝑖𝑒𝑅 sin ̃𝜙 sin ̃𝜙
(𝑠2 + 𝜔2𝑖𝑒) (𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔4,13(𝑡) = −(
𝜔2𝑠 − 3𝜔2𝑠−

𝜔𝑠−(𝜔
2
𝑠− − 𝜔2𝑠+)(𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠 − 3𝜔2𝑠+

𝜔𝑠+(𝜔
2
𝑠+ − 𝜔2𝑠−)(𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)

+
𝜔2𝑠 − 3𝜔2𝑖𝑒

𝜔𝑖𝑒(𝜔2𝑖𝑒 − 𝜔2𝑠−)(𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔2𝑠𝜔2𝑖𝑒𝑅 sin ̃𝜙 cos ̃𝜙
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D.2. Impulse Responses

D.2.3. Orientation Errors Impulse Responses to Sensor Errors

Table D.33.: Roll angle error impulse responses to accelerometer errors.

Input Transfer function / impulse response

𝛿𝑓𝑏,𝑛
𝐺5,8(𝑠) = −

2

𝑅
𝜔𝑖𝑒 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔5,8(𝑡) = ( 1
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
cos(𝜔𝑠+𝑡))

2
𝑅𝜔𝑖𝑒 sin

̃𝜙

𝛿𝑓𝑏,𝑒
𝐺5,9(𝑠) = −

1

𝑅
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
−

1

𝑅
𝜔2𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔5,9(𝑡) = (−
𝜔2𝑠 − 𝜔2𝑠−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) −
𝜔2𝑠 − 𝜔2𝑠+

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
1
𝑅

𝛿𝑓𝑏,𝑑 𝐺5,10(𝑠) = 0
𝑔5,10(𝑡) = 0
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Appendix D. Solutions to the Linearized Error Dynamics

Table D.34.: Roll angle error impulse responses to gyroscope errors.

Input Transfer function / impulse response

𝛿𝜔𝑖𝑏,𝑛
𝐺5,11(𝑠) =

(𝑠2 + 𝜔25,11+) (𝑠
2 + 𝜔25,11−) 𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

𝑔5,11(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
5,11+ + 𝜔25,11−) + 𝜔25,11+𝜔

2
5,11−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
5,11+ + 𝜔25,11−) + 𝜔25,11+𝜔

2
5,11−

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔25,11+ + 𝜔25,11−) + 𝜔25,11+𝜔

2
5,11−

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡))

𝜔25,11± =
1
2 (3𝜔

2
𝑖𝑒 sin

2 𝜙 + 𝜔2𝑖𝑒 + 𝜔2𝑠)

± 1
2√(3𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑖𝑒 + 𝜔2𝑠)
2
− 4𝜔2𝑖𝑒 (4𝜔2𝑖𝑒 sin

2 𝜙 − 4𝜔2𝑖𝑒 sin
4 𝜙 + 𝜔2𝑠 sin2 𝜙 + 𝜔2𝑠)

𝛿𝜔𝑖𝑏,𝑒 𝐺5,12(𝑠) = −
𝜔𝑖𝑒 sin𝜙𝑠4

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−

(𝜔2𝑖𝑒 sin
2 𝜙 − 𝜔2𝑠) 𝜔𝑖𝑒 sin𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

𝑔5,12(𝑡) = −(
(𝜔2𝑠− − 𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠) 𝜔𝑠−
(𝜔2𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡) +
(𝜔2𝑠+ − 𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠) 𝜔𝑠+
(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
(𝜔2𝑖𝑒 − 𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠) 𝜔𝑖𝑒
(𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡)) 𝜔𝑖𝑒 sin𝜙

𝛿𝜔𝑖𝑏,𝑑

𝐺5,13(𝑠) =
𝜔2𝑖𝑒 sin𝜙 cos𝜙𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)
−
(4𝜔2𝑖𝑒 sin

3 𝜙 cos𝜙 − 𝜔2𝑠 sin𝜙 cos𝜙)𝜔2𝑖𝑒𝑠
(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

𝑔5,13(𝑡) = (
𝜔2𝑠 − 4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠−𝜔
2
𝑠

(𝜔2𝑠− − 𝜔2𝑠+) (𝜔
2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡) +
𝜔2𝑠 − 4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠+𝜔
2
𝑠

(𝜔2𝑠+ − 𝜔2𝑠−) (𝜔
2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔2𝑠 − 4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑖𝑒𝜔2𝑠
(𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔

2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡)) 𝜔2𝑖𝑒 sin𝜙 cos𝜙
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D.2. Impulse Responses

Table D.35.: Pitch angle error impulse responses to accelerometer errors.

Input Transfer function / impulse response

𝛿𝑓𝑏,𝑛
𝐺6,8(𝑠) =

1

𝑅
𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

1

𝑅
𝜔2𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔6,8(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
1
𝑅

𝛿𝑓𝑏,𝑒
𝐺6,9(𝑠) = −

2

𝑅
𝜔𝑖𝑒 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔6,9(𝑡) = ( 1
𝜔𝑠− (𝜔

2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
1

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
2
𝑅𝜔𝑖𝑒 sin𝜙

𝛿𝑓𝑏,𝑑 𝐺6,10(𝑠) = 0
𝑔6,10(𝑡) = 0
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Table D.36.: Pitch angle error impulse responses to gyroscope errors.

Input Transfer function / impulse response

𝛿𝜔𝑖𝑏,𝑛
𝐺6,11(𝑠) =

(𝑠2 + 𝜔26,11+) (𝑠
2 + 𝜔26,11−) 𝜔𝑖𝑒 sin𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

𝑔6,11(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
6,11+ + 𝜔26,11−) + 𝜔26,11+𝜔

2
6,11−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
6,11+ + 𝜔26,11−) + 𝜔26,11+𝜔

2
6,11−

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔26,11+ + 𝜔26,11−) + 𝜔26,11+𝜔

2
6,11−

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))𝜔𝑖𝑒 sin𝜙

𝜔26,11± =
1
2 (4𝜔

2
𝑖𝑒 sin

2 𝜙 − 𝜔2𝑠) ±
1
2√(4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠)
2
+ 8𝜔2𝑠𝜔2𝑖𝑒 cos2 𝜙

𝛿𝜔𝑖𝑏,𝑒
𝐺6,12(𝑠) =

(𝑠2 + 𝜔26,12+) (𝑠
2 + 𝜔26,12−)

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

𝑔6,12(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
6,12+ + 𝜔26,12−) + 𝜔26,12+𝜔

2
6,12−𝑠

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

cos(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
6,12+ + 𝜔26,12−) + 𝜔26,12+𝜔

2
6,12−

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

cos(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔26,12+ + 𝜔26,12−) + 𝜔26,12+𝜔

2
6,12−

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

cos(𝜔𝑖𝑒𝑡))

𝜔26,12± =
1
2 (4𝜔

2
𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠) ±
1
2√(4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠)
2
− 8𝜔2𝑠𝜔2𝑖𝑒 sin

2 𝜙

𝛿𝜔𝑖𝑏,𝑑
𝐺6,13(𝑠) =

(𝑠2 + 𝜔26,13+) (𝑠
2 + 𝜔26,13−) 𝜔𝑖𝑒 cos𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

𝑔6,13(𝑡) = (
𝜔4𝑠− − 𝜔2𝑠− (𝜔

2
6,13+ + 𝜔26,13−) + 𝜔26,13+𝜔

2
6,13−

𝜔𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+) (𝜔

2
𝑠− − 𝜔2𝑖𝑒)

sin(𝜔𝑠−𝑡)

+
𝜔4𝑠+ − 𝜔2𝑠+ (𝜔

2
6,13+ + 𝜔26,13−) + 𝜔26,13+𝜔

2
6,13−

𝜔𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−) (𝜔

2
𝑠+ − 𝜔2𝑖𝑒)

sin(𝜔𝑠+𝑡)+

+
𝜔4𝑖𝑒 − 𝜔2𝑖𝑒 (𝜔26,13+ + 𝜔26,13−) + 𝜔26,13+𝜔

2
6,13−

𝜔𝑖𝑒 (𝜔2𝑖𝑒 − 𝜔2𝑠−) (𝜔
2
𝑖𝑒 − 𝜔2𝑠+)

sin(𝜔𝑖𝑒𝑡))𝜔𝑖𝑒 cos𝜙

𝜔26,13± =
1
2 (4𝜔

2
𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠) ±
1
2√(4𝜔2𝑖𝑒 sin

2 𝜙 + 𝜔2𝑠)
2
+ 8𝜔2𝑠𝜔2𝑖𝑒 sin

2 𝜙
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Table D.37.: Yaw angle error pulse responses to accelerometer errors.

Input Transfer function / impulse response

𝛿𝑓𝑏,𝑛

𝐺7,8(𝑠) =
2

𝑅
𝜔𝑖𝑒 tan𝜙 sin𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔7,8(𝑡) = −( 1
(𝜔2𝑠− − 𝜔2𝑠+)

cos(𝜔𝑠−𝑡) +
1

(𝜔2𝑠+ − 𝜔2𝑠−)
cos(𝜔𝑠+𝑡))

2
𝑅𝜔𝑖𝑒 sin𝜙 tan𝜙

𝛿𝑓𝑏,𝑒
𝐺7,9(𝑠) =

1

𝑅
tan𝜙𝑠2

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)
+

1

𝑅
𝜔2𝑠 tan𝜙

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+)

𝑔7,9(𝑡) = (
𝜔2𝑠− − 𝜔2𝑠

𝜔2𝑠− (𝜔
2
𝑠− − 𝜔2𝑠+)

sin(𝜔𝑠−𝑡) +
𝜔2𝑠+ − 𝜔2𝑠

𝜔2𝑠+ (𝜔
2
𝑠+ − 𝜔2𝑠−)

sin(𝜔𝑠+𝑡))
1
𝑅 tan𝜙

𝛿𝑓𝑏,𝑑 𝐺7,10(𝑠) = 0
𝑔7,10(𝑡) = 0
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Table D.38.: Yaw angle error pulse responses to gyroscope errors.

Input Transfer function / impulse response

𝛿𝜔𝑖𝑏,𝑛
𝐺7,11(𝑠) =

(𝜔2𝑠 − 𝜔2𝑖𝑒 cos2 𝜙) tan𝜙𝑠3

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

+
(4𝜔4𝑖𝑒 sin

2 𝜙 cos2 𝜙 − 𝜔2𝑠𝜔2𝑖𝑒 (sin
2 𝜙 + 1) + 𝜔4𝑠 ) tan𝜙𝑠

(𝑠2 + 𝜔2𝑠−) (𝑠2 + 𝜔2𝑠+) (𝑠2 + 𝜔2𝑖𝑒)

𝑔7,11(𝑡) = (
4𝜔4𝑖𝑒 sin
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Appendix E.

Validation of the Linearized Error Dynamics

E.1. System Response to Initialization Errors

To evaluate the validity of the linearized error dynamics, the step responses of the latter
are compared to the nonlinear simulation results. Therefore, the strapdown calculations
are performed for a stationary vehicle at latitude of 𝜙 = 45°. The simulation is performed
for different initialization errors and inertial measurement biases. The resulting graphs are
presented in  Figure E.1  and  Figure E.2  . Each graph is accompanied by a graph of the error
between the two approaches. The absolute error is chosen here, as the relative error would
provide misleading information in the vicinity of the zero-crossings.
The linearized step responses clearly show the same shape as the nonlinear references for

all inputs. Still, a difference that grows with time can be observed. This growing difference
arises from a difference in the frequencies between the linearized and the nonlinear system. In
consequence, there is only little difference in the maximum amplitudes. Additionally, there
must be differences in the three frequencies of the underlying oscillations that cause a slightly
different shape of the modulations. This can be especially observed at the zero-crossings.
The good coverage of the nonlinear dynamics justifies the use of the linearized system for

further analysis of the error propagation and prediction.
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Figure E.1.: North position errors of linearized step response and numerical simulation.
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Figure E.2.: East position errors of linearized step response and numerical simulation.
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Figure E.3.: North velocity errors of linearized step response and numerical simulation.
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Figure E.4.: East velocity errors of linearized step response and numerical simulation.
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Figure E.5.: Roll angle errors of linearized step response and numerical simulation.
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Figure E.6.: Pitch angle errors of linearized step response and numerical simulation.
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Figure E.7.: Yaw angle errors of linearized step response and numerical simulation.
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E.2. Position Uncertainty from Sensor Noise

Analog to  Section E.1  , the validity of the analytic noise propagation through the linearized
error dynamics is evaluated by comparison to the nonlinear simulation. Again, the strapdown
algorithm is simulated for a stationary vehicle at 𝜙 = 45°. The variance of the resulting position
errors is calculated from 1000Monte Carlo runs of  WGN input, for each sensor axis.
In general, the curve’s shapes of the simulation and the analytical solution coincide but the

two curves diverge over time. Partly, this can be attributed to the differences between the linear
and nonlinear model, as has been observed in  E . The major differences arise from growing
variance of the Monte Carlo sample variance.
Considering the extreme long simulation times of 48 h, the analytical solution matches the

Monte Carlo results sufficiently good to justify its use for performance analysis and prediction.
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Figure E.8.: Analytical north position error variance for  WGN compared to Monte Carlo simulation.
Velocity random walk 𝑁𝑎𝑐𝑐 = 1 mg

√Hz
, angular random walk 𝑁𝑔𝑦𝑟 = 1 °
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Figure E.9.: Analytical east position error variance for  WGN compared to Monte Carlo simulation.
Velocity random walk 𝑁𝑎𝑐𝑐 = 1 mg

√Hz
, angular random walk 𝑁𝑔𝑦𝑟 = 1 °
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.
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(b) North vel. variance from WGN 𝑓𝑏,𝑦.
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(f) North vel. variance from WGN 𝜔𝑖𝑏,𝑧.

Figure E.10.: Analytical north velocity error variance for  WGN compared to Monte Carlo simulation.
Velocity random walk 𝑁𝑎𝑐𝑐 = 1 mg

√Hz
, angular random walk 𝑁𝑔𝑦𝑟 = 1 °
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(b) East vel. variance from WGN 𝑓𝑏,𝑦.
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(f) East vel. variance from WGN 𝜔𝑖𝑏,𝑧.

Figure E.11.: Analytical east velocity error variance for  WGN compared to Monte Carlo simulation.
Velocity random walk 𝑁𝑎𝑐𝑐 = 1 mg

√Hz
, angular random walk 𝑁𝑔𝑦𝑟 = 1 °
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.
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(f) Roll angle variance from WGN 𝜔𝑖𝑏,𝑧.

Figure E.12.: Roll angle error variance for  WGN compared to Monte Carlo simulation. Velocity
random walk 𝑁𝑎𝑐𝑐 = 1 mg

√Hz
, angular random walk 𝑁𝑔𝑦𝑟 = 1 °
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(a) Pitch angle variance from WGN 𝑓𝑏,𝑥.
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(f) Pitch angle variance from WGN 𝜔𝑖𝑏,𝑧.

Figure E.13.: Pitch angle error variance for  WGN compared to Monte Carlo simulation. Velocity
random walk 𝑁𝑎𝑐𝑐 = 1 mg

√Hz
, angular random walk 𝑁𝑔𝑦𝑟 = 1 °
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.
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(a) Yaw angle variance from WGN 𝑓𝑏,𝑥.
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(f) Yaw angle variance from WGN 𝜔𝑖𝑏,𝑧.

Figure E.14.: Yaw angle error variance for  WGN compared to Monte Carlo simulation. Velocity
random walk 𝑁𝑎𝑐𝑐 = 1 mg

√Hz
, angular random walk 𝑁𝑔𝑦𝑟 = 1 °

√h
.

423





Appendix F.

Inertial Laboratory Error Sensitivities

Table F.1.: Earth angular rate.

Error Sensitivity of IMU kinematic errors

𝛿𝝎𝑖𝑒 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝝎𝑖𝑒⊺

= 𝐑 ̂𝑏𝑒

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝝎𝑖𝑒⊺

= −𝐑 ̂𝑏𝑛 (�̂�𝑛𝑝×)𝐑�̂�𝑒 − 𝐑 ̂𝑏𝑝 (�̂�𝑝𝑤×)𝐑 ̂𝑝𝑒 − 𝐑 ̂𝑏𝑤 (�̂�𝑤𝑣×)𝐑�̂�𝑒

− 𝐑 ̂𝑏𝑣 (�̂�𝑣ᵆ×)𝐑 ̂𝑣𝑒 − 𝐑 ̂𝑏ᵆ (�̂�ᵆ𝑏×)𝐑 ̂ᴂ𝑒

𝜕𝛿𝒇𝑏
𝜕𝛿𝝎𝑖𝑒⊺

= 𝟎

Effect of Earth’s angular rate on the specific forces is covered by gravity and gravity
errors.

𝛿�̇�𝑖𝑒 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿�̇�⊺𝑖𝑒

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿�̇�⊺𝑖𝑒

= 𝐑 ̂𝑏𝑒

𝜕𝛿𝒇𝑏

𝜕𝛿�̇�⊺𝑖𝑒
= 𝟎

Effect of Earth’s angular rate on the specific forces is covered by gravity and gravity
errors.

Table F.2.: Local gravity.

Error Sensitivity of IMU kinematic errors

𝛿𝜸𝑛 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝜸𝑛⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝜸𝑛⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿𝜸𝑛⊺

= 𝐑 ̂𝑏𝑛
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Table F.3.: Rotation of the local NED reference frame with respect to the ECEF frame.

Error Sensitivity of IMU kinematic errors

𝜳𝑛�̂� 𝜕𝛿𝒇𝑏
𝜕𝜳𝑛�̂�

⊺ = −2𝐑 ̂𝑏𝑛 [( ̇̂𝒓𝑛(𝑃𝑝)×) + �̂�𝑒𝑛 ( ̂𝒓𝑛(𝑃𝑝)×)] ((𝐑�̂�𝑒�̂�𝑖𝑒) ×)

− 2𝐑 ̂𝑏𝑝 [( ̇̂𝒓𝑝(𝑃𝑤)×) + �̂�𝑒𝑝 ( ̂𝒓𝑝(𝑃𝑤)×)]𝐑 ̂𝑝𝑛 ((𝐑�̂�𝑒�̂�𝑖𝑒) ×)

− 2𝐑 ̂𝑏𝑤 [( ̇̂𝒓𝑤(𝑃𝑣)×) + �̂�𝑒𝑤 ( ̂𝒓𝑤(𝑃𝑣)×)]𝐑�̂�𝑛 ((𝐑�̂�𝑒�̂�𝑖𝑒) ×)
− 2𝐑 ̂𝑏𝑣 [( ̇̂𝒓𝑣(𝑃 )×) + �̂�𝑒𝑣 ( ̂𝒓𝑣(𝑃 )×)]𝐑 ̂𝑣𝑛 ((𝐑�̂�𝑒�̂�𝑖𝑒) ×)
− 2𝐑 ̂𝑏ᵆ [( ̇̂𝒓ᵆ(𝑃𝑏)×) + �̂�𝑒ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)]𝐑 ̂ᴂ𝑛 ((𝐑�̂�𝑒�̂�𝑖𝑒) ×)
+ 𝐑 ̂𝑏𝑛 ( ̂𝒓𝑛(𝑃𝑝)×) ((𝐑�̂�𝑒 ̇�̂�𝑖𝑒) ×)
+ 𝐑 ̂𝑏𝑝 ( ̂𝒓𝑝(𝑃𝑤)×)𝐑 ̂𝑝𝑛 ((𝐑�̂�𝑒 ̇�̂�𝑖𝑒) ×)

+ 𝐑 ̂𝑏𝑤 ( ̂𝒓𝑤(𝑃𝑣)×)𝐑�̂�𝑛 ((𝐑�̂�𝑒 ̇�̂�𝑖𝑒) ×)
+ 𝐑 ̂𝑏𝑣 ( ̂𝒓𝑣(𝑃 )×)𝐑 ̂𝑣𝑛 ((𝐑�̂�𝑒 ̇�̂�𝑖𝑒) ×)
+ 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)𝐑 ̂ᴂ𝑛 ((𝐑�̂�𝑒 ̇�̂�𝑖𝑒) ×)

+ 𝐑 ̂𝑏𝑛
𝜕 ̂𝜸𝑛(𝒓𝑒)
𝜕𝒓𝑒

([ ̂𝒓𝑛(𝑃𝑝) + 𝐑�̂�𝑝 [ ̂𝒓𝑝(𝑃𝑤) + 𝐑 ̂𝑝𝑤 [ ̂𝒓𝑤(𝑃𝑣) + 𝐑�̂�𝑣 [ ̂𝒓𝑣(𝑃 ) + 𝐑 ̂𝑣ᵆ ̂𝒓ᵆ(𝑃𝑏)]]]] ×)

− 𝐑 ̂𝑏𝑛 (( ̂𝜸𝑛(𝑃𝑏)) ×)
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Table F.4.: Rotation of the test pad with respect to the local reference frame.

Error Sensitivity of IMU kinematic errors

𝛿𝝎𝑛𝑝 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝝎𝑛𝑝⊺

= 𝐑 ̂𝑏𝑝

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝝎𝑛𝑝⊺

= −𝐑 ̂𝑏𝑝 (�̂�𝑝𝑤×) − 𝐑 ̂𝑏𝑤 (�̂�𝑤𝑣×)𝐑�̂�𝑝 − 𝐑 ̂𝑏𝑣 (�̂�𝑣ᵆ×)𝐑 ̂𝑣𝑝 − 𝐑 ̂𝑏ᵆ (�̂�ᵆ𝑏×)𝐑 ̂ᴂ𝑝

𝜕𝛿𝒇𝑏
𝜕𝛿𝝎𝑛𝑝⊺

= −2𝐑 ̂𝑏𝑝 [( ̇̂𝒓𝑝(𝑃𝑤)×) + �̂�𝑒𝑝 ( ̂𝒓𝑝(𝑃𝑤)×)]

− 2𝐑 ̂𝑏𝑤 [( ̇̂𝒓𝑤(𝑃𝑣)×) + �̂�𝑒𝑤 ( ̂𝒓𝑤(𝑃𝑣)×)]𝐑�̂�𝑝

− 2𝐑 ̂𝑏𝑣 [( ̇̂𝒓𝑣(𝑃 )×) + �̂�𝑒𝑣 ( ̂𝒓𝑣(𝑃 )×)]𝐑 ̂𝑣𝑝

− 2𝐑 ̂𝑏ᵆ [( ̇̂𝒓ᵆ(𝑃𝑏)×) + �̂�𝑒ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)]𝐑 ̂ᴂ𝑝

− 𝐑 ̂𝑏𝑝 ( ̂𝒓𝑝(𝑃𝑤)×)𝐑 ̂𝑝𝑛 (�̂�𝑖𝑛×)

− 𝐑 ̂𝑏𝑤 ( ̂𝒓𝑤(𝑃𝑣)×) (𝐑�̂�𝑝 (�̂�𝑝𝑤×) + 𝐑�̂�𝑛 (�̂�𝑖𝑛×))
− 𝐑 ̂𝑏𝑣 ( ̂𝒓𝑣(𝑃 )×) (𝐑 ̂𝑣𝑤 (�̂�𝑤𝑣×)𝐑�̂�𝑝 + 𝐑 ̂𝑣𝑝 (�̂�𝑝𝑤×) + 𝐑 ̂𝑣𝑛 (�̂�𝑖𝑛×))
− 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×) (𝐑 ̂ᴂ𝑣 (�̂�𝑣ᵆ×)𝐑 ̂𝑣𝑝 + 𝐑 ̂ᴂ𝑤 (�̂�𝑤𝑣×)𝐑�̂�𝑝 + 𝐑 ̂ᴂ𝑝 (�̂�𝑝𝑤×) + 𝐑 ̂ᴂ𝑛 (�̂�𝑖𝑛×))

𝛿�̇�𝑛𝑝 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿�̇�⊺𝑛𝑝

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿�̇�⊺𝑛𝑝

= 𝐑 ̂𝑏𝑝

𝜕𝛿𝒇𝑏

𝜕𝛿�̇�⊺𝑛𝑝
= −𝐑 ̂𝑏𝑝 ( ̂𝒓𝑝(𝑃𝑤)×) − 𝐑 ̂𝑏𝑤 ( ̂𝒓𝑤(𝑃𝑣)×)𝐑�̂�𝑝

− 𝐑 ̂𝑏𝑣 ( ̂𝒓𝑣(𝑃 )×)𝐑 ̂𝑣𝑝 − 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)𝐑 ̂ᴂ𝑝

𝜳𝑝 ̂𝑝 𝜕𝛿𝝎𝑖𝑏
𝜕𝜳𝑝 ̂𝑝

⊺ = −𝐑 ̂𝑏𝑝 ((�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) ×)

𝜕𝛿�̇�𝑖𝑏
𝜕𝜳𝑝 ̂𝑝

⊺ = −𝐑 ̂𝑏𝑝 (( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒) ×)

+ 𝐑 ̂𝑏𝑝 (�̂�𝑝𝑤×) ((�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) ×)

+ 𝐑 ̂𝑏𝑤 (�̂�𝑤𝑣×)𝐑�̂�𝑝 ((�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) ×)
+ 𝐑 ̂𝑏𝑣 (�̂�𝑤𝑣×)𝐑 ̂𝑣𝑝 ((�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) ×)
+ 𝐑 ̂𝑏ᵆ (�̂�𝑣ᵆ×)𝐑 ̂ᴂ𝑝 ((�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) ×)
+ (�̂�ᵆ𝑏×)𝐑 ̂𝑏𝑝 ((�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) ×)

𝜕𝛿𝒇𝑏
𝜕𝜳𝑝 ̂𝑝

⊺ = −2𝐑 ̂𝑏𝑝 [( ̇̂𝒓𝑝(𝑃𝑤)×) + �̂�𝑒𝑝 ( ̂𝒓𝑝(𝑃𝑤)×)] ((�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) ×)

− 2𝐑 ̂𝑏𝑤 [( ̇̂𝒓𝑤(𝑃𝑣)×) + �̂�𝑒𝑤 ( ̂𝒓𝑤(𝑃𝑣)×)]𝐑�̂�𝑝 ((�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) ×)
− 2𝐑 ̂𝑏𝑣 [( ̇̂𝒓𝑣(𝑃 )×) + �̂�𝑒𝑣 ( ̂𝒓𝑣(𝑃 )×)]𝐑 ̂𝑣𝑝 ((�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) ×)
− 2𝐑 ̂𝑏ᵆ [( ̇̂𝒓ᵆ(𝑃𝑏)×) + �̂�𝑒ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)]𝐑 ̂ᴂ𝑝 ((�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒) ×)
+ 𝐑 ̂𝑏𝑝 ( ̂𝒓𝑝(𝑃𝑤)×) (( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒) ×)

+ 𝐑 ̂𝑏𝑤 ( ̂𝒓𝑤(𝑃𝑣)×)𝐑�̂�𝑝 (( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒) ×)
+ 𝐑 ̂𝑏𝑣 ( ̂𝒓𝑣(𝑃 )×)𝐑 ̂𝑣𝑝 (( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒) ×)
+ 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)𝐑 ̂ᴂ𝑝 (( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒) ×)

+ 𝐑 ̂𝑏𝑛
𝜕 ̂𝜸𝑛(𝒓𝑒)
𝜕𝒓𝑒

([ ̂𝒓𝑝(𝑃𝑤) + 𝐑 ̂𝑝𝑤 [ ̂𝒓𝑤(𝑃𝑣) + 𝐑�̂�𝑣 [ ̂𝒓𝑣(𝑃 ) + 𝐑 ̂𝑣ᵆ ̂𝒓ᵆ(𝑃𝑏)]]] ×)

− 𝐑 ̂𝑏𝑝 ((𝐑 ̂𝑝𝑛 ̂𝜸𝑛(𝑃𝑏)) ×)
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Appendix F. Inertial Laboratory Error Sensitivities

Table F.5.: Position of the test pad with respect to the local reference frame.

Error Sensitivity of IMU kinematic errors

𝛿𝒓𝑛(𝑃𝑝) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝒓𝑛(𝑃𝑝)⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝒓𝑛(𝑃𝑝)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿𝒓𝑛(𝑃𝑝)⊺

= 𝐑 ̂𝑏𝑛 (�̂�
2
𝑖𝑛 +

̇�̂�𝑖𝑛)

𝛿 ̇𝒓𝑛(𝑃𝑝) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿 ̇𝒓𝑛(𝑃𝑝)⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿 ̇𝒓𝑛(𝑃𝑝)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿 ̇𝒓𝑛(𝑃𝑝)⊺

= 𝐑 ̂𝑏𝑛�̂�𝑖𝑛

𝛿 ̈𝒓𝑛(𝑃𝑝) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿 ̈𝒓𝑛(𝑃𝑝)⊺

= 𝟎

𝜕𝛿�̈�𝑖𝑏
𝜕𝛿 ̇𝒓𝑛(𝑃𝑝)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿 ̈𝒓𝑛(𝑃𝑝)⊺

= 𝐑 ̂𝑏𝑛
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Table F.6.: Rotation of the outer gimbal with respect to the test pad.

Error Sensitivity of IMU kinematic errors

𝛿𝝎𝑝𝑤 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝝎𝑝𝑤⊺ = 𝐑 ̂𝑏𝑤

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝝎𝑝𝑤⊺ = −𝐑 ̂𝑏𝑤 (�̂�𝑤𝑣×) − 𝐑 ̂𝑏𝑣 (�̂�𝑣ᵆ×)𝐑 ̂𝑣𝑤 − 𝐑 ̂𝑏ᵆ (�̂�ᵆ𝑏×)𝐑 ̂ᴂ𝑤

𝜕𝛿𝒇𝑏
𝜕𝛿𝝎𝑝𝑤⊺ = −2𝐑 ̂𝑏𝑤 [( ̇̂𝒓𝑤(𝑃𝑣)×) + �̂�𝑒𝑤 ( ̂𝒓𝑤(𝑃𝑣)×)]

− 2𝐑 ̂𝑏𝑣 [( ̇̂𝒓𝑣(𝑃 )×) + �̂�𝑒𝑣 ( ̂𝒓𝑣(𝑃 )×)]𝐑 ̂𝑣𝑤

− 2𝐑 ̂𝑏ᵆ [( ̇̂𝒓ᵆ(𝑃𝑏)×) + �̂�𝑒ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)]𝐑 ̂ᴂ𝑤

− 𝐑 ̂𝑏𝑤 ( ̂𝒓𝑤(𝑃𝑣)×) (𝐑�̂�𝑝 (�̂�𝑖𝑝×))
− 𝐑 ̂𝑏𝑣 ( ̂𝒓𝑣(𝑃 )×) (𝐑 ̂𝑣𝑤 (�̂�𝑤𝑣×) + 𝐑 ̂𝑣𝑝 (�̂�𝑖𝑝×))
− 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×) (𝐑 ̂ᴂ𝑣 (�̂�𝑣ᵆ×)𝐑 ̂𝑣𝑤 + 𝐑 ̂ᴂ𝑤 (�̂�𝑤𝑣×) + 𝐑 ̂ᴂ𝑝 (�̂�𝑖𝑝×))

𝛿�̇�𝑝𝑤 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿�̇�⊺𝑝𝑤

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿�̇�⊺𝑝𝑤

= 𝐑 ̂𝑏𝑤

𝜕𝛿𝒇𝑏

𝜕𝛿�̇�⊺𝑝𝑤
= −𝐑 ̂𝑏𝑤 ( ̂𝒓𝑤(𝑃𝑣)×)

− 𝐑 ̂𝑏𝑣 ( ̂𝒓𝑣(𝑃 )×)𝐑 ̂𝑣𝑤 − 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)𝐑 ̂ᴂ𝑤

𝜳𝑤�̂� 𝜕𝛿𝝎𝑖𝑏
𝜕𝜳𝑤�̂�

⊺ = −𝐑 ̂𝑏𝑤 ((�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)) ×)

𝜕𝛿�̇�𝑖𝑏
𝜕𝜳𝑤�̂�

⊺ = −𝐑 ̂𝑏𝑤 (( ̇�̂�𝑝𝑤 + 𝐑�̂�𝑝 ( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒)) ×)

+ 𝐑 ̂𝑏𝑤 (�̂�𝑤𝑣×) ((�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)) ×)
+ 𝐑 ̂𝑏𝑣 (�̂�𝑤𝑣×)𝐑 ̂𝑣𝑤 ((�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)) ×)
+ 𝐑 ̂𝑏ᵆ (�̂�𝑣ᵆ×)𝐑 ̂ᴂ𝑤 ((�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)) ×)
+ (�̂�ᵆ𝑏×)𝐑 ̂𝑏𝑤 ((�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)) ×)

𝜕𝛿𝒇𝑏
𝜕𝜳𝑤�̂�

⊺ = −2𝐑 ̂𝑏𝑤 [( ̇̂𝒓𝑤(𝑃𝑣)×) + �̂�𝑒𝑤 ( ̂𝒓𝑤(𝑃𝑣)×)] ((�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)) ×)

− 2𝐑 ̂𝑏𝑣 [( ̇̂𝒓𝑣(𝑃 )×) + �̂�𝑒𝑣 ( ̂𝒓𝑣(𝑃 )×)]𝐑 ̂𝑣𝑤 ((�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)) ×)
− 2𝐑 ̂𝑏ᵆ [( ̇̂𝒓ᵆ(𝑃𝑏)×) + �̂�𝑒ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)]𝐑 ̂ᴂ𝑤 ((�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)) ×)
+ 𝐑 ̂𝑏𝑤 ( ̂𝒓𝑤(𝑃𝑣)×) (( ̇�̂�𝑝𝑤 + 𝐑�̂�𝑝 ( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒)) ×)
+ 𝐑 ̂𝑏𝑣 ( ̂𝒓𝑣(𝑃 )×)𝐑 ̂𝑣𝑤 (( ̇�̂�𝑝𝑤 + 𝐑�̂�𝑝 ( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒)) ×)
+ 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)𝐑 ̂ᴂ𝑤 (( ̇�̂�𝑝𝑤 + 𝐑�̂�𝑝 ( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒)) ×)

+ 𝐑 ̂𝑏𝑛
𝜕 ̂𝜸𝑛(𝒓𝑒)
𝜕𝒓𝑒

([ ̂𝒓𝑤(𝑃𝑣) + 𝐑�̂�𝑣 [ ̂𝒓𝑣(𝑃 ) + 𝐑 ̂𝑣ᵆ ̂𝒓ᵆ(𝑃𝑏)]] ×) − 𝐑 ̂𝑏𝑤 ((𝐑�̂�𝑛 ̂𝜸𝑛(𝑃𝑏)) ×)

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣𝐑 ̂𝑣𝑤(�̂�𝑝×)
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Appendix F. Inertial Laboratory Error Sensitivities

Table F.7.: Position of the outer gimbal with respect to the test pad.

Error Sensitivity of IMU kinematic errors

𝛿𝒓𝑝(𝑃𝑤) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝒓𝑝(𝑃𝑤)⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝒓𝑝(𝑃𝑤)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿𝒓𝑝(𝑃𝑤)⊺

= 𝐑 ̂𝑏𝑝 (�̂�
2
𝑖𝑝 +

̇�̂�𝑖𝑝)

𝛿 ̇𝒓𝑝(𝑃𝑤) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿 ̇𝒓𝑝(𝑃𝑤)⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿 ̇𝒓𝑝(𝑃𝑤)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿 ̇𝒓𝑝(𝑃𝑤)⊺

= 𝐑 ̂𝑏𝑛�̂�𝑖𝑝

𝛿 ̈𝒓𝑝(𝑃𝑤) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿 ̈𝒓𝑝(𝑃𝑤)⊺

= 𝟎

𝜕𝛿�̈�𝑖𝑏
𝜕𝛿 ̇𝒓𝑝(𝑃𝑤)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿 ̈𝒓𝑝(𝑃𝑤)⊺

= 𝐑 ̂𝑏𝑝
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Table F.8.: Rotation of the middle gimbal with respect to the outer gimbal.

Error Sensitivity of IMU kinematic errors

𝛿𝝎𝑤𝑣 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝝎𝑤𝑣⊺

= 𝐑 ̂𝑏𝑣

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝝎𝑤𝑣⊺

= −𝐑 ̂𝑏𝑣 (�̂�𝑣ᵆ×) − 𝐑 ̂𝑏ᵆ (�̂�ᵆ𝑏×)𝐑 ̂ᴂ𝑣

𝜕𝛿𝒇𝑏
𝜕𝛿𝝎𝑤𝑣⊺

= −2𝐑 ̂𝑏𝑣 [( ̇̂𝒓𝑣(𝑃 )×) + �̂�𝑒𝑣 ( ̂𝒓𝑣(𝑃 )×)]

− 2𝐑 ̂𝑏ᵆ [( ̇̂𝒓ᵆ(𝑃𝑏)×) + �̂�𝑒ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)]𝐑 ̂ᴂ𝑣

− 𝐑 ̂𝑏𝑣 ( ̂𝒓𝑣(𝑃 )×) (𝐑 ̂𝑣𝑤 (�̂�𝑖𝑤×))
− 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×) (𝐑 ̂ᴂ𝑣 (�̂�𝑣ᵆ×) + 𝐑 ̂ᴂ𝑤 (�̂�𝑖𝑤×))

𝛿�̇�𝑤𝑣 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿�̇�⊺𝑤𝑣

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿�̇�⊺𝑤𝑣

= 𝐑 ̂𝑏𝑣

𝜕𝛿𝒇𝑏

𝜕𝛿�̇�⊺𝑤𝑣
= −𝐑 ̂𝑏𝑣 ( ̂𝒓𝑣(𝑃 )×) − 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)𝐑 ̂ᴂ𝑣

𝜳𝑣 ̂𝑣 𝜕𝛿𝝎𝑖𝑏
𝜕𝜳𝑣 ̂𝑣

⊺ = −𝐑 ̂𝑏𝑣 ((�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒))) ×)

𝜕𝛿�̇�𝑖𝑏
𝜕𝜳𝑣 ̂𝑣

⊺ = −𝐑 ̂𝑏𝑣 (( ̇�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 ( ̇�̂�𝑝𝑤 + 𝐑�̂�𝑝 ( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒))) ×)

+ 𝐑 ̂𝑏𝑣 (�̂�𝑤𝑣×) ((�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒))) ×)
+ 𝐑 ̂𝑏ᵆ (�̂�𝑣ᵆ×)𝐑 ̂ᴂ𝑣 ((�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒))) ×)
+ (�̂�ᵆ𝑏×)𝐑 ̂𝑏𝑣 ((�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒))) ×)

𝜕𝛿𝒇𝑏
𝜕𝜳𝑣 ̂𝑣

⊺ = −2𝐑 ̂𝑏𝑣 [( ̇̂𝒓𝑣(𝑃 )×) + �̂�𝑒𝑣 ( ̂𝒓𝑣(𝑃 )×)] ((�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒))) ×)

− 2𝐑 ̂𝑏ᵆ [( ̇̂𝒓ᵆ(𝑃𝑏)×) + �̂�𝑒ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)]𝐑 ̂ᴂ𝑣 ((�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒))) ×)
+ 𝐑 ̂𝑏𝑣 ( ̂𝒓𝑣(𝑃 )×) (( ̇�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 ( ̇�̂�𝑝𝑤 + 𝐑�̂�𝑝 ( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒))) ×)
+ 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)𝐑 ̂ᴂ𝑣 (( ̇�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 ( ̇�̂�𝑝𝑤 + 𝐑�̂�𝑝 ( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒))) ×)

+ 𝐑 ̂𝑏𝑛
𝜕 ̂𝜸𝑛(𝒓𝑒)
𝜕𝒓𝑒

([ ̂𝒓𝑣(𝑃 ) + 𝐑 ̂𝑣ᵆ ̂𝒓ᵆ(𝑃𝑏)] ×) − 𝐑 ̂𝑏𝑣 ((𝐑 ̂𝑣𝑛 ̂𝜸𝑛(𝑃𝑏)) ×)

− 𝐑 ̂𝑏ᵆ𝐑 ̂ᴂ𝑣(�̂�𝑤×)
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Table F.9.: Position of the middle gimbal with respect to the outer gimbal.

Error Sensitivity of IMU kinematic errors

𝛿𝒓𝑤(𝑃𝑣) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝒓𝑤(𝑃𝑣)⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝒓𝑤(𝑃𝑣)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿𝒓𝑤(𝑃𝑣)⊺

= 𝐑 ̂𝑏𝑤 (�̂�
2
𝑖𝑤 + ̇�̂�𝑖𝑤)

𝛿 ̇𝒓𝑤(𝑃𝑣) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿 ̇𝒓𝑤(𝑃𝑣)⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿 ̇𝒓𝑤(𝑃𝑣)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿 ̇𝒓𝑤(𝑃𝑣)⊺

= 𝐑 ̂𝑏𝑤�̂�𝑖𝑤

𝛿 ̈𝒓𝑤(𝑃𝑣) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿 ̈𝒓𝑤(𝑃𝑣)⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿 ̈𝒓𝑤(𝑃𝑣)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿 ̈𝒓𝑤(𝑃𝑣)⊺

= 𝐑 ̂𝑏𝑤
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Table F.10.: Rotation of the inner gimbal with respect to the middle gimbal.

Error Sensitivity of IMU kinematic errors

𝛿𝝎𝑣ᵆ 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝝎𝑣ᵆ⊺

= 𝐑 ̂𝑏ᵆ

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝝎𝑣ᵆ⊺

= −𝐑 ̂𝑏ᵆ (�̂�ᵆ𝑏×)

𝜕𝛿𝒇𝑏
𝜕𝛿𝝎𝑣ᵆ⊺

= −2𝐑 ̂𝑏ᵆ [( ̇̂𝒓ᵆ(𝑃𝑏)×) + �̂�𝑒ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)]

− 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×) (𝐑 ̂ᴂ𝑣 (�̂�𝑖𝑣×))

𝛿�̇�𝑣ᵆ 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿�̇�⊺𝑣ᵆ

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿�̇�⊺𝑣ᵆ

= 𝐑 ̂𝑏ᵆ

𝜕𝛿𝒇𝑏

𝜕𝛿�̇�⊺𝑣ᵆ
= −𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)

𝜳ᵆ ̂ᴂ 𝜕𝛿𝝎𝑖𝑏
𝜕𝜳ᵆ ̂ᴂ

⊺ = −𝐑 ̂𝑏ᵆ ((�̂�𝑣ᵆ + 𝐑 ̂ᴂ𝑣 (�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)))) ×)

𝜕𝛿�̇�𝑖𝑏
𝜕𝜳ᵆ ̂ᴂ

⊺ = −𝐑 ̂𝑏ᵆ (( ̇�̂�𝑣ᵆ + 𝐑 ̂ᴂ𝑣 ( ̇�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 ( ̇�̂�𝑝𝑤 + 𝐑�̂�𝑝 ( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒)))) ×)

+ 𝐑 ̂𝑏ᵆ (�̂�𝑣ᵆ×) ((�̂�𝑣ᵆ + 𝐑 ̂ᴂ𝑣 (�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)))) ×)
+ (�̂�ᵆ𝑏×)𝐑 ̂𝑏ᵆ ((�̂�𝑣ᵆ + 𝐑 ̂ᴂ𝑣 (�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)))) ×)

𝜕𝛿𝒇𝑏
𝜕𝜳ᵆ ̂ᴂ

⊺ = −2𝐑 ̂𝑏ᵆ [( ̇̂𝒓ᵆ(𝑃𝑏)×) + �̂�𝑒ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×)]

⋅ ((�̂�𝑣ᵆ + 𝐑 ̂ᴂ𝑣 (�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒)))) ×)
+ 𝐑 ̂𝑏ᵆ ( ̂𝒓ᵆ(𝑃𝑏)×) (( ̇�̂�𝑣ᵆ + 𝐑 ̂ᴂ𝑣 ( ̇�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 ( ̇�̂�𝑝𝑤 + 𝐑�̂�𝑝 ( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒)))) ×)

+ 𝐑 ̂𝑏𝑛
𝜕 ̂𝜸𝑛(𝒓𝑒)
𝜕𝒓𝑒

( ̂𝒓ᵆ(𝑃𝑏)×) − 𝐑 ̂𝑏ᵆ ((𝐑 ̂ᴂ𝑛 ̂𝜸𝑛(𝑃𝑏)) ×)

− 𝐑 ̂𝑏ᵆ(�̂�𝑣×)
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Table F.11.: Position of the inner gimbal with respect to the middle gimbal.

Error Sensitivity of IMU kinematic errors

𝛿𝒓𝑣(𝑃 ) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝒓𝑣(𝑃 )⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝒓𝑣(𝑃 )⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿𝒓𝑣(𝑃 )⊺

= 𝐑 ̂𝑏𝑣 (�̂�
2
𝑖𝑣 +

̇�̂�𝑖𝑣)

𝛿 ̇𝒓𝑣(𝑃 ) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿 ̇𝒓𝑣(𝑃 )⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿 ̇𝒓𝑣(𝑃 )⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿 ̇𝒓𝑣(𝑃 )⊺

= 𝐑 ̂𝑏𝑣�̂�𝑖𝑣

𝛿 ̈𝒓𝑣(𝑃 ) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿 ̈𝒓𝑣(𝑃 )⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿 ̈𝒓𝑣(𝑃 )⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿 ̈𝒓𝑣(𝑃 )⊺

= 𝐑 ̂𝑏𝑣
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Table F.12.: Rotation and orientation of the UUT.

Error Sensitivity of IMU kinematic errors

𝛿𝝎ᵆ𝑏 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝝎ᵆ𝑏⊺

= 𝐈

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝝎ᵆ𝑏⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿𝝎ᵆ𝑏⊺

= 𝟎

𝛿�̇�ᵆ𝑏 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿�̇�⊺ᵆ𝑏

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿�̇�⊺ᵆ𝑏

= 𝐈

𝜕𝛿𝒇𝑏

𝜕𝛿�̇�⊺ᵆ𝑏
= 𝟎

𝜳𝑏 ̂𝑏 𝜕𝛿𝝎𝑖𝑏
𝜕𝜳𝑏 ̂𝑏

⊺ = − ((�̂�ᵆ𝑏 + 𝐑 ̂𝑏ᵆ (�̂�𝑣ᵆ + 𝐑 ̂ᴂ𝑣 (�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒))))) ×)

𝜕𝛿�̇�𝑖𝑏
𝜕𝜳𝑏 ̂𝑏

⊺ = − (( ̇�̂�ᵆ𝑏 + 𝐑 ̂𝑏ᵆ ( ̇�̂�𝑣ᵆ + 𝐑 ̂ᴂ𝑣 ( ̇�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 ( ̇�̂�𝑝𝑤 + 𝐑�̂�𝑝 ( ̇�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒 ̇�̂�𝑖𝑒))))) ×)

+ (�̂�ᵆ𝑏×)𝐑 ̂𝑏ᵆ ((�̂�ᵆ𝑏 + 𝐑 ̂𝑏ᵆ (�̂�𝑣ᵆ + 𝐑 ̂ᴂ𝑣 (�̂�𝑤𝑣 + 𝐑 ̂𝑣𝑤 (�̂�𝑝𝑤 + 𝐑�̂�𝑝 (�̂�𝑛𝑝 + 𝐑 ̂𝑝𝑛𝐑�̂�𝑒�̂�𝑖𝑒))))) ×)
𝜕𝛿𝒇𝑏
𝜕𝜳𝑏 ̂𝑏

⊺ = − ((𝐑 ̂𝑏𝑛 ̂𝜸𝑛(𝑃𝑏)) ×) − (�̂�ᵆ×)
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Appendix F. Inertial Laboratory Error Sensitivities

Table F.13.: Position of the UUT with respect to the inner gimbal.

Error Sensitivity of IMU kinematic errors

𝛿𝒓ᵆ(𝑃𝑏) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿𝒓ᵆ(𝑃𝑏)⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿𝒓ᵆ(𝑃𝑏)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿𝒓ᵆ(𝑃𝑏)⊺

= 𝐑 ̂𝑏ᵆ (�̂�
2
𝑖ᵆ +

̇�̂�𝑖ᵆ)

𝛿 ̇𝒓ᵆ(𝑃𝑏) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿 ̇𝒓ᵆ(𝑃𝑏)⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿 ̇𝒓ᵆ(𝑃𝑏)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿 ̇𝒓ᵆ(𝑃𝑏)⊺

= 𝐑 ̂𝑏ᵆ�̂�𝑖ᵆ

𝛿 ̈𝒓ᵆ(𝑃𝑏) 𝜕𝛿𝝎𝑖𝑏
𝜕𝛿 ̈𝒓ᵆ(𝑃𝑏)⊺

= 𝟎

𝜕𝛿�̇�𝑖𝑏
𝜕𝛿 ̈𝒓ᵆ(𝑃𝑏)⊺

= 𝟎

𝜕𝛿𝒇𝑏
𝜕𝛿 ̈𝒓ᵆ(𝑃𝑏)⊺

= 𝐑 ̂𝑏ᵆ
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Appendix G.

Overview of IEEE Test Procedures

The IEEE provides specification standards and test procedures for all typical inertial sensor
technologies. These standards share a lot of general test procedures that can be applied
independent of the actual sensor.  Table G.1 and  Table G.2 list the relevant IEEE standards
and covered test procedures for gyroscopes respectively accelerometers. For each test case, the
corresponding section in the respective IEEE standard is given, where applicable. Additionally,
the test cases are color coded to the general test concept that represents each test case best.
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Appendix G. Overview of IEEE Test Procedures

Table G.1.: IEEE test procedures related to the gyroscope accuracy. The different tests are grouped
to the general test type that best represents the respective test procedure.

IEEE Std. 647 952 1431 813 517 293
RLG FOG CVG DTG SDFIG SDFRG

Rate Transfer Tests
Maximum input rate 12.10.4 12.10.4 12.10 10.7.3 10.7.3.1 4.14
Min. input rate, dead band, threshold 12.10.4 12.10.4 10.7.3 10.7.3.1 4.13.2
Scale factor 12.9.3 12.9.3 12.9.4 10.6.4.1 10.12.4 4.13.3
Scale factor acceleration sensitivity 12.9.4
Scale factor asymmetry 12.9.4 12.9.4.2 12.9.4 10.7.3
Scale factor hysteresis 12.9.4 4.13.3
Scale factor nonlinearity 12.9.4 12.9.4.2 12.9.4 10.7.3 4.13.3
Scale factor repeatability 12.9.4 12.9.4.2 12.9.4 10.7.3
Scale factor stability 12.9.4 12.9.4.2 12.9.4 10.7.3
Scale factor temperature gradient 12.9.3
Scale factor temperature sensitivity 12.9.3 12.9.3.2 12.9.4 10.7.3

Multi-Pose Tests
Axis misalignment 12.13.3 12.12.3 12.12.3 10.10 10.10 4.19
Bias hysteresis 10.14.3
Drift from acceleration 10.13.3 4.18

Static Tests
Angular Random Walk 12.12.4 12.11.4 12.11.4 10.14.4 10.13.3
Bias Instability 12.12.4 12.11.4 12.11.4
Bias, offset 12.12.4 12.11.4 12.11.4 10.6.3 4.13.3
Drift magnetic sensitivity 12.12.3 12.11.3
Drift temperature gradient 12.12.3 12.11.3 12.11.4
Drift temperature sensitivity 12.12.3 12.11.3 12.11.4 10.14.3
Electric null 10.6.3 10.6.4.2 4.7
Output noise peak to peak 4.8
Quantization Noise 12.11 12.11.4 12.11.4
Rate Ramp Noise 12.12.4 12.11.4 12.11.4
Rate Random Walk 12.12.4 12.11.4 12.11.4
Warm-up drift 12.12.4

Vibration Tests
Drift from acceleration squared 10.14.3 10.13.3
Drift from angular acceleration 10.16 4.21
Drift from anisoinertia 10.14.3
Drift from cross-coupling 10.14.3
Drift from synchronous vibration 10.14.4
Dynamic time constant 10.13 10.12.4
Transfer function 12.15 10.16 10.5.3 4.22

Other Tests
Drift from rotor speed variations 10.14.3
Drift from torquer current rectification 10.14.3
Elastic restraint drift rate 10.13.3
Gimbal retardation 10.13.3
Pickup phase shift 10.6.3 10.6.4 4.15
Spring rate drift rate 10.15
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Table G.2.: IEEE accelerometer test procedures related to the accelerometer sensor accuracy. The
different tests are grouped to the general test type that best represents the respective
test procedure.

IEEE Std. 1293
PA VBA MEMS

Transfer Tests
Centrifuge input range 12.3.14 12.3.14 12.3.14
Cubic scalefactor nonlinearity 12.3.5, 12.3.15 12.3.5, 12.3.15 12.3.5, 12.3.15
Odd quadratic scale factor nonlinearity 12.3.15 12.3.15 12.3.15
Quadratic scale factor nonlinearity 12.3.5, 12.3.15 12.3.5, 12.3.15 12.3.5, 12.3.15
Threshold 12.3.6 12.3.6 12.3.6

Multi-Pose Tests
Axis misalignment 12.3.4 12.3.4 12.3.4
Bias 12.3.4 12.3.4 12.3.4
Bias sensitivities 12.3.11 12.3.11 12.3.11
Bias long-term stability 12.3.9 12.3.9 12.3.9
Bias short-term stability 12.3.8 12.3.8 12.3.8
Inversion transient 12.3.3 12.3.3 12.3.3
Scale factor 12.3.4 12.3.4 12.3.4
Scale factor high g vibration calibration 12.3.18 12.3.18 12.3.18
Scale factor sensitivitiy 12.3.11 12.3.11 12.3.11
Slew calibration 12.3.21 12.3.21 12.3.21

Static Tests
Electrical null 12.4.1
Noise 12.3.2 12.3.2 12.3.2
Turn-on hysteresis 12.4.5

Vibration Tests
Bias high g vibration calibration 12.3.18 12.3.18 12.3.18
Frequency response 12.3.16 12.3.16 12.3.16
Open-loop frequency response 12.4.3
Performance though and across environment 12.3.19 12.3.19 12.3.19

Other Tests
Frequency lock 12.5.1
Pendulum elastic restraint 12.4.4 12.6.6
Pickoff phase shift 12.4.1
Pickoff scale factor 12.4.4 12.6.5
Repeatability 12.3.10 12.3.10 12.3.10
Temperature model calibration 12.3.12 12.3.12 12.3.12
Torquer scale factor 12.4.6
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Appendix H.

Error Sensitivities in Sensor Testing
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Appendix H. Error Sensitivities in Sensor Testing

Table H.1.: Error sensitivities of the gyroscope x-axis input during the six-position test.

Position 1 and 2 3 and 4 5 and 6

𝛿𝜔𝑖𝑒,𝑥 − cos �̂�𝑝𝑤 sin 𝜆 − sin �̂�𝑝𝑤 cos 𝜆 sin𝜙 − cos �̂�𝑝𝑤 sin 𝜆 − sin �̂�𝑝𝑤 cos 𝜆 sin𝜙 ∓ cos𝜙 cos 𝜆
𝛿𝜔𝑖𝑒,𝑦 cos �̂�𝑝𝑤 cos 𝜆 − sin �̂�𝑝𝑤 sin𝜙 sin 𝜆 cos �̂�𝑝𝑤 cos 𝜆 − sin �̂�𝑝𝑤 sin𝜙 sin 𝜆 ∓ cos𝜙 sin 𝜆
𝛿𝜔𝑖𝑒,𝑧 sin �̂�𝑝𝑤 cos𝜙 sin �̂�𝑝𝑤 cos𝜙 ∓ sin𝜙
𝛷�̂�𝑛 cos �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙 − cos �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙 0
𝛩�̂�𝑛 − sin �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙 sin �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙 ±�̂�𝑖𝑒 cos𝜙
𝛹�̂�𝑛 cos �̂�𝑝𝑤 �̂�𝑖𝑒 cos𝜙 − cos �̂�𝑝𝑤 �̂�𝑖𝑒 cos𝜙 0
𝛿𝜔𝑛𝑝,𝑥 cos �̂�𝑝𝑤 cos �̂�𝑝𝑤 0
𝛿𝜔𝑛𝑝,𝑦 sin �̂�𝑝𝑤 sin �̂�𝑝𝑤 0
𝛿𝜔𝑛𝑝,𝑧 0 0 ∓1
𝛷 ̂𝑝𝑝 sin �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙 sin �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙 ±�̂�𝑖𝑒 cos𝜙
𝛩 ̂𝑝𝑝 − cos �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙 − cos �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙 0
𝛹 ̂𝑝𝑝 cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 0
𝛿𝜔𝑝𝑤,𝑥 1 1 0
𝛿𝜔𝑝𝑤,𝑦 0 0 0
𝛿𝜔𝑝𝑤,𝑧 0 0 ∓1
𝛷�̂�𝑤 0 0 ± cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛩�̂�𝑤 −�̂�𝑖𝑒 sin𝜙 − �̂�𝑝𝑤 −�̂�𝑖𝑒 sin𝜙 − �̂�𝑝𝑤 ∓ sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛹�̂�𝑤 cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 0
𝛿𝜔𝑤𝑣,𝑥 1 1 0
𝛿𝜔𝑤𝑣,𝑦 0 0 1
𝛿𝜔𝑤𝑣,𝑧 0 0 0
𝛷 ̂𝑣𝑣 0 0 cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛩 ̂𝑣𝑣 ±(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) ± cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 0
𝛹 ̂𝑣𝑣 ∓ cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ±(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) − sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛿𝜔𝑣ᵆ,𝑥 1 1 1
𝛿𝜔𝑣ᵆ,𝑦 0 0 0
𝛿𝜔𝑣ᵆ,𝑧 0 0 0
𝛷 ̂ᴂᵆ 0 0 0
𝛩 ̂ᴂᵆ ±(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) ± cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 − cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛹 ̂ᴂᵆ ∓ cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ±(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) − sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛷 ̂𝑏𝑏 0 0 0
𝛩 ̂𝑏𝑏 ±(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) ± cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 − cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛹 ̂𝑏𝑏 ∓ cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ±(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) − sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
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Table H.2.: Error sensitivities of the gyroscope y-axis input during the six-position test.

Position 1 and 2 3 and 4 5 and 6

𝛿𝜔𝑖𝑒,𝑥 − sin �̂�𝑝𝑤 sin 𝜆 + cos �̂�𝑝𝑤 cos 𝜆 sin𝜙 ± cos𝜙 cos 𝜆 cos �̂�𝑝𝑤 sin 𝜆 + sin �̂�𝑝𝑤 cos 𝜆 sin𝜙
𝛿𝜔𝑖𝑒,𝑦 sin �̂�𝑝𝑤 cos 𝜆 + cos �̂�𝑝𝑤 sin𝜙 sin 𝜆 ± cos𝜙 sin 𝜆 − cos �̂�𝑝𝑤 cos 𝜆 sin �̂�𝑝𝑤 sin𝜙 sin 𝜆
𝛿𝜔𝑖𝑒,𝑧 − cos �̂�𝑝𝑤 cos𝜙 ± sin𝜙 − sin �̂�𝑝𝑤 cos𝜙
𝛷�̂�𝑛 ∓ sin �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙 0 ∓ cos �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙
𝛩�̂�𝑛 ∓ cos �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙 ∓�̂�𝑖𝑒 cos𝜙 ± sin �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙
𝛹�̂�𝑛 ∓ sin �̂�𝑝𝑤 �̂�𝑖𝑒 cos𝜙 0 ∓ cos �̂�𝑝𝑤 �̂�𝑖𝑒 cos𝜙
𝛿𝜔𝑛𝑝,𝑥 ± sin �̂�𝑝𝑤 0 − cos �̂�𝑝𝑤

𝛿𝜔𝑛𝑝,𝑦 ∓ cos �̂�𝑝𝑤 0 − sin �̂�𝑝𝑤

𝛿𝜔𝑛𝑝,𝑧 0 ±1 0
𝛷 ̂𝑝𝑝 ∓ cos �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙 ∓�̂�𝑖𝑒 cos𝜙 − sin �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙
𝛩 ̂𝑝𝑝 ∓ sin �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙 0 cos �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙
𝛹 ̂𝑝𝑝 ± sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 0 − cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛿𝜔𝑝𝑤,𝑥 0 0 −1
𝛿𝜔𝑝𝑤,𝑦 ∓1 0 0
𝛿𝜔𝑝𝑤,𝑧 0 ±1 0
𝛷�̂�𝑤 ∓(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) ∓ cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 0
𝛩�̂�𝑤 0 ± sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 (�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤)
𝛹�̂�𝑤 ± sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 0 − cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛿𝜔𝑤𝑣,𝑥 0 0 −1
𝛿𝜔𝑤𝑣,𝑦 1 1 0
𝛿𝜔𝑤𝑣,𝑧 0 0 0
𝛷 ̂𝑣𝑣 ∓(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) ∓ cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 0
𝛩 ̂𝑣𝑣 0 0 cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛹 ̂𝑣𝑣 ± sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 − sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ±(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤)
𝛿𝜔𝑣ᵆ,𝑥 0 0 0
𝛿𝜔𝑣ᵆ,𝑦 1 1 1
𝛿𝜔𝑣ᵆ,𝑧 0 0 0
𝛷 ̂ᴂᵆ ∓(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) ∓ cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛩 ̂ᴂᵆ 0 0 0
𝛹 ̂ᴂᵆ ± cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 − sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ±(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤)
𝛷 ̂𝑏𝑏 ∓(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) ∓ cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛩 ̂𝑏𝑏 0 0 0
𝛹 ̂𝑏𝑏 ± cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 − sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ±(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤)
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Appendix H. Error Sensitivities in Sensor Testing

Table H.3.: Error sensitivities of the gyroscope z-axis input during the six-position test.

Position 1 and 2 3 and 4 5 and 6

𝛿𝜔𝑖𝑒,𝑥 ∓ cos𝜙 cos 𝜆 ∓ sin �̂�𝑝𝑤 sin 𝜆 ± cos �̂�𝑝𝑤 cos 𝜆 sin𝜙 − cos �̂�𝑝𝑤 sin 𝜆 + sin �̂�𝑝𝑤 cos 𝜆 sin𝜙
𝛿𝜔𝑖𝑒,𝑦 ∓ cos𝜙 sin 𝜆 ± sin �̂�𝑝𝑤 cos 𝜆 ± cos �̂�𝑝𝑤 sin𝜙 sin 𝜆 − cos �̂�𝑝𝑤 cos 𝜆 − sin �̂�𝑝𝑤 sin𝜙 sin 𝜆
𝛿𝜔𝑖𝑒,𝑧 ∓ sin𝜙 ∓ cos �̂�𝑝𝑤 cos𝜙 cos �̂�𝑝𝑤 cos𝜙
𝛷�̂�𝑛 0 ∓ sin �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙 sin �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙
𝛩�̂�𝑛 ±�̂�𝑖𝑒 cos𝜙 ∓ cos �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙 cos �̂�𝑝𝑤 �̂�𝑖𝑒 sin𝜙
𝛹�̂�𝑛 0 ∓ sin �̂�𝑝𝑤 �̂�𝑖𝑒 cos𝜙 sin �̂�𝑝𝑤 �̂�𝑖𝑒 cos𝜙
𝛿𝜔𝑛𝑝,𝑥 0 ± sin �̂�𝑝𝑤 − sin �̂�𝑝𝑤

𝛿𝜔𝑛𝑝,𝑦 0 ∓ cos �̂�𝑝𝑤 cos �̂�𝑝𝑤

𝛿𝜔𝑛𝑝,𝑧 ∓1 0 0
𝛷 ̂𝑝𝑝 ±�̂�𝑖𝑒 cos𝜙 ∓ cos �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙 cos �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙
𝛩 ̂𝑝𝑝 0 ∓ sin �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙 sin �̂�𝑝𝑤�̂�𝑖𝑒 sin𝜙
𝛹 ̂𝑝𝑝 0 ± sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 − sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛿𝜔𝑝𝑤,𝑥 0 0 0
𝛿𝜔𝑝𝑤,𝑦 0 ∓1 1
𝛿𝜔𝑝𝑤,𝑧 ∓1 0 0
𝛷�̂�𝑤 ± cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ∓(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) 0
𝛩�̂�𝑤 ∓ sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 0 (�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤)
𝛹�̂�𝑤 0 ± sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 0
𝛿𝜔𝑤𝑣,𝑥 0 0 − sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛿𝜔𝑤𝑣,𝑦 0 0 0
𝛿𝜔𝑤𝑣,𝑧 1 1 1
𝛷 ̂𝑣𝑣 ± cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ∓(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) ±(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤)
𝛩 ̂𝑣𝑣 sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛹 ̂𝑣𝑣 0 0 0
𝛿𝜔𝑣ᵆ,𝑥 0 0 0
𝛿𝜔𝑣ᵆ,𝑦 0 0 0
𝛿𝜔𝑣ᵆ,𝑧 1 1 1
𝛷 ̂ᴂᵆ ± cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ∓(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛩 ̂ᴂᵆ sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ∓(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤)
𝛹 ̂ᴂᵆ 0 0 0
𝛷 ̂𝑏𝑏 ± cos �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ∓(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤) sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙
𝛩 ̂𝑏𝑏 sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 sin �̂�𝑝𝑤�̂�𝑖𝑒 cos𝜙 ∓(�̂�𝑖𝑒 sin𝜙 + �̂�𝑝𝑤)
𝛹 ̂𝑏𝑏 0 0 0
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Table H.4.: Error sensitivities of the accelerometer x-axis input during the six-position test.

Position 1 and 2 3 and 4 5 and 6

𝛿𝛾𝑛,𝑥 sin𝛹(𝑡) sin𝛹(𝑡) 0
𝛿𝛾𝑛,𝑦 cos𝛹(𝑡) cos𝛹(𝑡) 0
𝛿𝛾𝑛,𝑧 0 0 ±1
𝛿𝜔𝑖𝑒,𝑥 0 0 0
𝛿𝜔𝑖𝑒,𝑦 0 0 0
𝛿𝜔𝑖𝑒,𝑧 0 0 0
𝛷�̂�𝑛 −𝑔 cos𝛹(𝑡) − ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡) −𝑔 cos𝛹(𝑡) − ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡) ∓ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑒

+𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡)) +𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡))

𝛩�̂�𝑛 +𝑔 sin𝛹(𝑡) + ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)
𝜕𝑟𝑛,𝑛

cos𝛹(𝑡) +𝑔 sin𝛹(𝑡) + ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)
𝜕𝑟𝑛,𝑛

cos𝛹(𝑡) ±ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑛

+𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡)) +𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡))

𝛹�̂�𝑛 0 0 0
𝛿𝜔𝑛𝑝,𝑥 −𝜔𝑖𝑒(ℎ sin𝛹(𝑡) cos 𝜆 + ℎ cos𝛹(𝑡) sin𝜙 sin 𝜆) −𝜔𝑖𝑒(ℎ sin𝛹(𝑡) cos 𝜆 + ℎ cos𝛹(𝑡) sin𝜙 sin 𝜆) 0
𝛿𝜔𝑛𝑝,𝑦 −𝜔𝑖𝑒(ℎ sin𝛹(𝑡) sin 𝜆 − ℎ cos𝛹(𝑡) cos 𝜆 sin𝜙) −𝜔𝑖𝑒(ℎ sin𝛹(𝑡) sin 𝜆 − ℎ cos𝛹(𝑡) cos 𝜆 sin𝜙) 0
𝛿𝜔𝑛𝑝,𝑧 0 0 0
𝛿�̇�𝑛𝑝,𝑥 −ℎ sin𝛹(𝑡) −ℎ sin𝛹(𝑡) 0
𝛿�̇�𝑛𝑝,𝑦 ℎ cos𝛹(𝑡) ℎ cos𝛹(𝑡) 0
𝛿�̇�𝑛𝑝,𝑧 0 0 0
𝛿𝑟𝑛,𝑥(𝑃𝑝) −𝜔2𝑖𝑒 sin𝛹(𝑡) sin

2 𝜙 −𝜔2𝑖𝑒 sin𝛹(𝑡) sin
2 𝜙 ∓𝜔2𝑖𝑒 cos𝜙 sin𝜙

𝛿𝑟𝑛,𝑦(𝑃𝑝) −𝜔2𝑖𝑒 cos𝛹(𝑡) −𝜔2𝑖𝑒 cos𝛹(𝑡) 0
𝛿𝑟𝑛,𝑧(𝑃𝑝) −𝜔2𝑖𝑒 sin𝛹(𝑡) cos𝜙 sin𝜙 −𝜔2𝑖𝑒 sin𝛹(𝑡) cos𝜙 sin𝜙 ∓𝜔2𝑖𝑒 cos2 𝜙
𝛿 ̇𝑟𝑛,𝑥(𝑃𝑝) −𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙 −𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙 0
𝛿 ̇𝑟𝑛,𝑦(𝑃𝑝) 𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙 ±𝜔𝑖𝑒 cos𝜙
𝛿 ̇𝑟𝑛,𝑧(𝑃𝑝) −𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 −𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 0
𝛿 ̈𝑟𝑛,𝑥(𝑃𝑝) sin𝛹(𝑡) sin𝛹(𝑡) 0
𝛿 ̈𝑟𝑛,𝑦(𝑃𝑝) cos𝛹(𝑡) cos𝛹(𝑡) 0
𝛿 ̈𝑟𝑛,𝑧(𝑃𝑝) 0 0 ±1
𝛷 ̂𝑝𝑝 𝑔 sin𝛹(𝑡) + ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡) 𝑔 sin𝛹(𝑡) + ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡) ±ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑒

+𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡)) +𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡))

𝛩 ̂𝑝𝑝 −𝑔 sin𝛹(𝑡) − ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)
𝜕𝑟𝑛,𝑛

cos𝛹(𝑡) −𝑔 sin𝛹(𝑡) − ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)
𝜕𝑟𝑛,𝑛

cos𝛹(𝑡) ∓ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑛

+𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡)) +𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡))

𝛹 ̂𝑝𝑝 0 0 0
𝛿𝜔𝑝𝑤,𝑥 0 0 0
𝛿𝜔𝑝𝑤,𝑦 0 0 0
𝛿𝜔𝑝𝑤,𝑧 0 0 0
𝛿𝑟𝑝,𝑥(𝑃𝑤) −𝜔2𝑖𝑒 cos𝛹(𝑡) −𝜔2𝑖𝑒 cos𝛹(𝑡) 0
𝛿𝑟𝑝,𝑦(𝑃𝑤) −𝜔2𝑖𝑒 sin𝛹(𝑡) sin

2 𝜙 −𝜔2𝑖𝑒 sin𝛹(𝑡) sin
2 𝜙 ∓𝜔2𝑖𝑒 cos𝜙 sin𝜙

𝛿𝑟𝑝,𝑧(𝑃𝑤) 𝜔2𝑖𝑒 sin𝛹(𝑡) cos𝜙 sin𝜙 𝜔2𝑖𝑒 sin𝛹(𝑡) cos𝜙 sin𝜙 ±𝜔2𝑖𝑒 cos2 𝜙
𝛿 ̇𝑟𝑝,𝑥(𝑃𝑤) 𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙 ±𝜔𝑖𝑒 cos𝜙
𝛿 ̇𝑟𝑝,𝑦(𝑃𝑤) −𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙 −𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙 0
𝛿 ̇𝑟𝑝,𝑧(𝑃𝑤) 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 0
𝛿 ̈𝑟𝑝,𝑥(𝑃𝑤) cos𝛹(𝑡) cos𝛹(𝑡) 0
𝛿 ̈𝑟𝑝,𝑦(𝑃𝑤) sin𝛹(𝑡) sin𝛹(𝑡) 0
𝛿 ̈𝑟𝑝,𝑧(𝑃𝑤) 0 0 ∓1
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Appendix H. Error Sensitivities in Sensor Testing

Table H.4.: Error sensitivities of the accelerometer x-axis input during the six-position test, contin-
ued.

Position 1 and 2 3 and 4 5 and 6

𝛷�̂�𝑤 0 0 0
𝛩�̂�𝑤 −𝑔 −𝑔 0
𝛹�̂�𝑤 0 0 0
𝛿𝜔𝑤𝑣,𝑥 0 0 0
𝛿𝜔𝑤𝑣,𝑦 0 0 0
𝛿𝜔𝑤𝑣,𝑧 0 0 0
𝛿𝑟𝑤,𝑥(𝑃𝑣) −(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙 −(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙 ∓𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿𝑟𝑤,𝑦(𝑃𝑣) 𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿𝑟𝑤,𝑧(𝑃𝑣) 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ±𝜔2𝑖𝑒(1 − sin2 𝜙)
𝛿 ̇𝑟𝑤,𝑥(𝑃𝑣) 0 0 ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙
𝛿 ̇𝑟𝑤,𝑦(𝑃𝑣) −𝜔𝑝𝑤 − 𝜔𝑖𝑒 sin𝜙 −𝜔𝑝𝑤 − 𝜔𝑖𝑒 sin𝜙 ±𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙
𝛿 ̇𝑟𝑤,𝑧(𝑃𝑣) 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 0
𝛿 ̈𝑟𝑤,𝑥(𝑃𝑣) 1 1 0
𝛿 ̈𝑟𝑤,𝑦(𝑃𝑣) 0 0 0
𝛿 ̈𝑟𝑤,𝑧(𝑃𝑣) 0 0 1
𝛷 ̂𝑣𝑣 0 0 0
𝛩 ̂𝑣𝑣 ±𝑔 0 0
𝛹 ̂𝑣𝑣 0 ±𝑔 0
𝛿𝜔𝑣ᵆ,𝑥 0 0 0
𝛿𝜔𝑣ᵆ,𝑦 0 0 0
𝛿𝜔𝑣ᵆ,𝑧 0 0 0
𝛿𝑟𝑣,𝑥(𝑃 ) −(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙 −(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙 ∓𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿𝑟𝑣,𝑦(𝑃 ) −𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ±𝜔2𝑖𝑒(sin

2 𝜙 − 1)
𝛿𝑟𝑣,𝑧(𝑃 ) −𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿 ̇𝑟𝑣,𝑥(𝑃 ) 0 0 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙
𝛿 ̇𝑟𝑣,𝑦(𝑃 ) ±(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ±𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 0
𝛿 ̇𝑟𝑣,𝑧(𝑃 ) ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 ±(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙
𝛿 ̈𝑟𝑣,𝑥(𝑃 ) 1 1 0
𝛿 ̈𝑟𝑣,𝑦(𝑃 ) 0 0 1
𝛿 ̈𝑟𝑣,𝑧(𝑃 ) 0 0 0
𝛷 ̂ᴂᵆ 0 0 0
𝛩 ̂ᴂᵆ ±𝑔 0 0
𝛹 ̂ᴂᵆ 0 ±𝑔 0
𝛿𝑟 ,𝑥(𝑃𝑏) −(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙 −(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙 𝜔2𝑖𝑒(sin

2 𝜙 − 1)
𝛿𝑟 ,𝑦(𝑃𝑏) −𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ±𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿𝑟 ,𝑧(𝑃𝑏) −𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿 ̇𝑟 ,𝑥(𝑃𝑏) 0 0 0
𝛿 ̇𝑟 ,𝑦(𝑃𝑏) ±(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ±𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 −𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙
𝛿 ̇𝑟 ,𝑧(𝑃𝑏) ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 ±(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙
𝛿 ̈𝑟 ,𝑥(𝑃𝑏) 1 1 1
𝛿 ̈𝑟 ,𝑦(𝑃𝑏) 0 0 0
𝛿 ̈𝑟 ,𝑧(𝑃𝑏) 0 0 0
𝛷 ̂𝑏𝑏 0 0 0
𝛩 ̂𝑏𝑏 ±𝑔 0 0
𝛹 ̂𝑏𝑏 0 ±𝑔 0

446



Table H.5.: Error sensitivities of the accelerometer y-axis input during the six-position test.

Position 1 and 2 3 and 4 5 and 6

𝛿𝛾𝑛,𝑥 ∓ cos𝛹(𝑡) 0 − sin𝛹(𝑡)
𝛿𝛾𝑛,𝑦 ± sin𝛹(𝑡) 0 − cos𝛹(𝑡)
𝛿𝛾𝑛,𝑧 0 ∓1 0
𝛿𝜔𝑖𝑒,𝑥 0 0 0
𝛿𝜔𝑖𝑒,𝑦 0 0 0
𝛿𝜔𝑖𝑒,𝑧 0 0 0
𝛷�̂�𝑛 ∓𝑔 sin𝛹(𝑡) ± ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡) ±ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑒
𝑔 cos𝛹(𝑡) + ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡)

−𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡)) +𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡))

𝛩�̂�𝑛 ∓𝑔 cos𝛹(𝑡) ± ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)
𝜕𝑟𝑛,𝑛

cos𝛹(𝑡) ∓ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑛
−𝑔 cos𝛹(𝑡) − ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡)

−𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡)) +𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡))

𝛹�̂�𝑛 0 0 0
𝛿𝜔𝑛𝑝,𝑥 ±𝜔𝑖𝑒(ℎ cos𝛹(𝑡) cos 𝜆 − ℎ sin𝛹(𝑡) sin𝜙 sin 𝜆) 0 𝜔𝑖𝑒(ℎ sin𝛹(𝑡) cos 𝜆 + ℎ cos𝛹(𝑡) sin 𝜆 sin𝜙)
𝛿𝜔𝑛𝑝,𝑦 ±𝜔𝑖𝑒(ℎ cos𝛹(𝑡) sin 𝜆 + ℎ sin𝛹(𝑡) cos 𝜆 sin𝜙) 0 𝜔𝑖𝑒(ℎ sin𝛹(𝑡) sin 𝜆 − ℎ cos𝛹(𝑡) cos 𝜆 sin𝜙)
𝛿𝜔𝑛𝑝,𝑧 0 0 0
𝛿�̇�𝑛𝑝,𝑥 ±ℎ cos𝛹(𝑡) 0 ℎ sin𝛹(𝑡)
𝛿�̇�𝑛𝑝,𝑦 ±ℎ sin𝛹(𝑡) 0 −ℎ cos𝛹(𝑡)
𝛿�̇�𝑛𝑝,𝑧 0 0 0
𝛿𝑟𝑛,𝑥(𝑃𝑝) ±𝜔2𝑖𝑒 cos𝛹(𝑡) sin

2 𝜙 ±𝜔2𝑖𝑒 cos𝜙 sin𝜙 𝜔2𝑖𝑒 sin𝛹(𝑡) sin
2 𝜙

𝛿𝑟𝑛,𝑦(𝑃𝑝) ∓𝜔2𝑖𝑒 sin𝛹(𝑡) 0 𝜔2𝑖𝑒 cos𝛹(𝑡)
𝛿𝑟𝑛,𝑧(𝑃𝑝) ±𝜔2𝑖𝑒 cos𝛹(𝑡) cos𝜙 sin𝜙 ±𝜔2𝑖𝑒 cos2 𝜙 𝜔2𝑖𝑒 sin𝛹(𝑡) sin𝜙 cos𝜙
𝛿 ̇𝑟𝑛,𝑥(𝑃𝑝) ∓𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙 0 𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙
𝛿 ̇𝑟𝑛,𝑦(𝑃𝑝) ∓𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙 ∓𝜔𝑖𝑒 cos𝜙 −𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙
𝛿 ̇𝑟𝑛,𝑧(𝑃𝑝) ∓𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 0 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙
𝛿 ̈𝑟𝑛,𝑥(𝑃𝑝) ∓ cos𝛹(𝑡) 0 − sin𝛹(𝑡)
𝛿 ̈𝑟𝑛,𝑦(𝑃𝑝) ± sin𝛹(𝑡) 0 − cos𝛹(𝑡)
𝛿 ̈𝑟𝑛,𝑧(𝑃𝑝) 0 ∓1 0
𝛷 ̂𝑝𝑝 ∓𝑔 sin𝛹(𝑡) ± ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡) ±ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑒
−𝑔 sin𝛹(𝑡) − ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡)

−𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡)) +𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡))

𝛩 ̂𝑝𝑝 ∓𝑔 cos𝛹(𝑡) ± ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)
𝜕𝑟𝑛,𝑛

cos𝛹(𝑡) ∓ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑛
𝑔 cos𝛹(𝑡) + ℎ(𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑛
cos𝛹(𝑡)

−𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡)) +𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡))

𝛹 ̂𝑝𝑝 0 0 0
𝛿𝜔𝑝𝑤,𝑥 0 0 0
𝛿𝜔𝑝𝑤,𝑦 0 0 0
𝛿𝜔𝑝𝑤,𝑧 0 0 0
𝛿𝑟𝑝,𝑥(𝑃𝑤) ∓𝜔2𝑖𝑒 sin𝛹(𝑡) 0 𝜔2𝑖𝑒 cos𝛹(𝑡)
𝛿𝑟𝑝,𝑦(𝑃𝑤) ±𝜔2𝑖𝑒 cos𝛹(𝑡) sin

2 𝜙 ±𝜔2𝑖𝑒 cos𝜙 sin𝜙 𝜔2𝑖𝑒 sin𝛹(𝑡) sin
2 𝜙

𝛿𝑟𝑝,𝑧(𝑃𝑤) ∓𝜔2𝑖𝑒 cos𝛹(𝑡) cos𝜙 sin𝜙 ∓𝜔2𝑖𝑒 cos2 𝜙 −𝜔2𝑖𝑒 sin𝛹(𝑡) cos𝜙 sin𝜙
𝛿 ̇𝑟𝑝,𝑥(𝑃𝑤) ∓𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙 ∓𝜔𝑖𝑒 cos𝜙 −𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙
𝛿 ̇𝑟𝑝,𝑦(𝑃𝑤) ∓𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙 0 𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙
𝛿 ̇𝑟𝑝,𝑧(𝑃𝑤) ±𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 0 −𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙
𝛿 ̈𝑟𝑝,𝑥(𝑃𝑤) ± sin𝛹(𝑡) 0 − cos𝛹(𝑡)
𝛿 ̈𝑟𝑝,𝑦(𝑃𝑤) ∓ cos𝛹(𝑡) 0 − cos𝛹(𝑡)
𝛿 ̈𝑟𝑝,𝑧(𝑃𝑤) 0 ±1 0
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Appendix H. Error Sensitivities in Sensor Testing

Table H.5.: Error sensitivities of the accelerometer y-axis input during the six-position test, contin-
ued.

Position 1 and 2 3 and 4 5 and 6

𝛷�̂�𝑤 ∓𝑔 0 0
𝛩�̂�𝑤 0 0 𝑔
𝛹�̂�𝑤 0 0 0
𝛿𝜔𝑤𝑣,𝑥 0 0 0
𝛿𝜔𝑤𝑣,𝑦 0 0 0
𝛿𝜔𝑤𝑣,𝑧 0 0 0
𝛿𝑟𝑤,𝑥(𝑃𝑣) ∓𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 ±𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) (𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 + 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙
𝛿𝑟𝑤,𝑦(𝑃𝑣) ±(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 + 𝜔2𝑖𝑒 sin

2𝛹(𝑡) cos2 𝜙 ±𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙
𝛿𝑟𝑤,𝑧(𝑃𝑣) ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ±𝜔2𝑖𝑒(sin

2 𝜙 − 1) −𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿 ̇𝑟𝑤,𝑥(𝑃𝑣) ∓𝜔𝑝𝑤 − 𝜔𝑖𝑒 sin𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 0
𝛿 ̇𝑟𝑤,𝑦(𝑃𝑣) 0 −𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙
𝛿 ̇𝑟𝑤,𝑧(𝑃𝑣) ±𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 0 −𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙
𝛿 ̈𝑟𝑤,𝑥(𝑃𝑣) 0 0 −1
𝛿 ̈𝑟𝑤,𝑦(𝑃𝑣) ∓1 0 0
𝛿 ̈𝑟𝑤,𝑧(𝑃𝑣) 0 ±1 0
𝛷 ̂𝑣𝑣 ∓𝑔 0 0
𝛩 ̂𝑣𝑣 0 0 0
𝛹 ̂𝑣𝑣 0 0 ±𝑔
𝛿𝜔𝑣ᵆ,𝑥 0 0 0
𝛿𝜔𝑣ᵆ,𝑦 0 0 0
𝛿𝜔𝑣ᵆ,𝑧 0 0 0
𝛿𝑟𝑣,𝑥(𝑃 ) ∓𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 ±𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) (𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 ∓ 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙
𝛿𝑟𝑣,𝑦(𝑃 ) ∓(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 sin

2𝛹(𝑡) cos2 𝜙 𝜔2𝑖𝑒(sin
2 𝜙 − 1) ±𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)

𝛿𝑟𝑣,𝑧(𝑃 ) ±𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙
𝛿 ̇𝑟𝑣,𝑥(𝑃 ) ∓(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 0
𝛿 ̇𝑟𝑣,𝑦(𝑃 ) 0 0 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙
𝛿 ̇𝑟𝑣,𝑧(𝑃 ) ∓𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 −𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 (𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿 ̈𝑟𝑣,𝑥(𝑃 ) 0 0 −1
𝛿 ̈𝑟𝑣,𝑦(𝑃 ) 1 1 0
𝛿 ̈𝑟𝑣,𝑧(𝑃 ) 0 0 0
𝛷 ̂ᴂᵆ ∓𝑔 0 0
𝛩 ̂ᴂᵆ 0 0 0
𝛹 ̂ᴂᵆ 0 0 ±𝑔
𝛿𝑟 ,𝑥(𝑃𝑏) ∓𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ±𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿𝑟 ,𝑦(𝑃𝑏) ∓(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 sin

2𝛹(𝑡) cos2 𝜙 𝜔2𝑖𝑒(sin
2 𝜙 − 1) −(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙

𝛿𝑟 ,𝑧(𝑃𝑏) ±𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙
𝛿 ̇𝑟 ,𝑥(𝑃𝑏) ∓(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙
𝛿 ̇𝑟 ,𝑦(𝑃𝑏) 0 0 0
𝛿 ̇𝑟 ,𝑧(𝑃𝑏) ∓𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 −𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 ±(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿 ̈𝑟 ,𝑥(𝑃𝑏) 0 0 0
𝛿 ̈𝑟 ,𝑦(𝑃𝑏) 1 1 1
𝛿 ̈𝑟 ,𝑧(𝑃𝑏) 0 0 0
𝛷 ̂𝑏𝑏 ∓𝑔 0 0
𝛩 ̂𝑏𝑏 0 0 0
𝛹 ̂𝑏𝑏 0 0 ±𝑔
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Table H.6.: Error sensitivities of the accelerometer z-axis input during the six-position test.

Position 1 and 2 3 and 4 5 and 6

𝛿𝛾𝑛,𝑥 0 ∓ cos𝛹(𝑡) cos𝛹(𝑡)
𝛿𝛾𝑛,𝑦 0 ± sin𝛹(𝑡) − sin𝛹(𝑡)
𝛿𝛾𝑛,𝑧 ±1 0 0
𝛿𝜔𝑖𝑒,𝑥 0 0 0
𝛿𝜔𝑖𝑒,𝑦 0 0 0
𝛿𝜔𝑖𝑒,𝑧 0 0 0
𝛷�̂�𝑛 ∓ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑒
∓𝑔 sin𝛹(𝑡) ± ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡) 𝑔 sin𝛹(𝑡) − ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡)

−𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡)) −𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡))

𝛩�̂�𝑛 ±ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑛
∓𝑔 cos𝛹(𝑡) ∓ ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑛
cos𝛹(𝑡) 𝑔 cos𝛹(𝑡) + ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑛
cos𝛹(𝑡)

−𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡)) +𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡))

𝛹�̂�𝑛 0 0 0
𝛿𝜔𝑛𝑝,𝑥 0 ±𝜔𝑖𝑒(ℎ cos𝛹(𝑡) cos 𝜆 − ℎ sin𝛹(𝑡) sin𝜙 sin 𝜆) −𝜔𝑖𝑒(ℎ sin𝛹(𝑡) cos 𝜆 − ℎ cos𝛹(𝑡) sin 𝜆 sin𝜙)
𝛿𝜔𝑛𝑝,𝑦 0 ±𝜔𝑖𝑒(ℎ cos𝛹(𝑡) sin 𝜆 + ℎ sin𝛹(𝑡) cos 𝜆 sin𝜙) −𝜔𝑖𝑒(ℎ sin𝛹(𝑡) sin 𝜆 + ℎ cos𝛹(𝑡) cos 𝜆 sin𝜙)
𝛿𝜔𝑛𝑝,𝑧 0 0 0
𝛿�̇�𝑛𝑝,𝑥 0 ±ℎ cos𝛹(𝑡) −ℎ cos𝛹(𝑡)
𝛿�̇�𝑛𝑝,𝑦 0 ±ℎ sin𝛹(𝑡) −ℎ sin𝛹(𝑡)
𝛿�̇�𝑛𝑝,𝑧 0 0 0
𝛿𝑟𝑛,𝑥(𝑃𝑝) ∓𝜔2𝑖𝑒 cos𝜙 sin𝜙 ±𝜔2𝑖𝑒 cos𝛹(𝑡) sin

2 𝜙 −𝜔2𝑖𝑒 sin𝛹(𝑡) sin
2 𝜙

𝛿𝑟𝑛,𝑦(𝑃𝑝) 0 ∓𝜔2𝑖𝑒 sin𝛹(𝑡) 𝜔2𝑖𝑒 cos𝛹(𝑡)
𝛿𝑟𝑛,𝑧(𝑃𝑝) ±𝜔2𝑖𝑒 cos2 𝜙 ±𝜔2𝑖𝑒 cos𝛹(𝑡) cos𝜙 sin𝜙 −𝜔2𝑖𝑒 sin𝛹(𝑡) sin𝜙 cos𝜙
𝛿 ̇𝑟𝑛,𝑥(𝑃𝑝) 0 ∓𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙
𝛿 ̇𝑟𝑛,𝑦(𝑃𝑝) ±𝜔𝑖𝑒 cos𝜙 ∓𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙 𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙
𝛿 ̇𝑟𝑛,𝑧(𝑃𝑝) 0 ∓𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙
𝛿 ̈𝑟𝑛,𝑥(𝑃𝑝) 0 ∓ cos𝛹(𝑡) cos𝛹(𝑡)
𝛿 ̈𝑟𝑛,𝑦(𝑃𝑝) 0 ± sin𝛹(𝑡) − sin𝛹(𝑡)
𝛿 ̈𝑟𝑛,𝑧(𝑃𝑝) ±1 0 0
𝛷 ̂𝑝𝑝 ±ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑒
∓𝑔 sin𝛹(𝑡) ∓ ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡) 𝑔 cos𝛹(𝑡) + ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑒
cos𝛹(𝑡)

−𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡)) −𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑒
sin𝛹(𝑡))

𝛩 ̂𝑝𝑝 ∓ℎ𝜕𝛾𝑛,𝑑(𝑃𝑏)

𝜕𝑟𝑛,𝑛
∓𝑔 cos𝛹(𝑡) ± ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑛
cos𝛹(𝑡) 𝑔 sin𝛹(𝑡) − ℎ(𝜕𝛾𝑛,𝑛(𝑃𝑏)

𝜕𝑟𝑛,𝑛
cos𝛹(𝑡)

−𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡)) −𝜕𝛾𝑛,𝑒(𝑃𝑏)

𝜕𝑟𝑛,𝑛
sin𝛹(𝑡))

𝛹 ̂𝑝𝑝 0 0 0
𝛿𝜔𝑝𝑤,𝑥 0 0 0
𝛿𝜔𝑝𝑤,𝑦 0 0 0
𝛿𝜔𝑝𝑤,𝑧 0 0 0
𝛿𝑟𝑝,𝑥(𝑃𝑤) 0 ∓𝜔2𝑖𝑒 sin𝛹(𝑡) 𝜔2𝑖𝑒 sin𝛹(𝑡)
𝛿𝑟𝑝,𝑦(𝑃𝑤) ∓𝜔2𝑖𝑒 cos𝜙 sin𝜙 ±𝜔2𝑖𝑒 cos𝛹(𝑡) sin

2 𝜙 −𝜔2𝑖𝑒 cos𝛹(𝑡) sin
2 𝜙

𝛿𝑟𝑝,𝑧(𝑃𝑤) ±𝜔2𝑖𝑒 cos2 𝜙 ∓𝜔2𝑖𝑒 cos𝛹(𝑡) cos𝜙 sin𝜙 𝜔2𝑖𝑒 cos𝛹(𝑡) cos𝜙 sin𝜙
𝛿 ̇𝑟𝑝,𝑥(𝑃𝑤) ±𝜔𝑖𝑒 cos𝜙 ∓𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙 𝜔𝑖𝑒 cos𝛹(𝑡) sin𝜙
𝛿 ̇𝑟𝑝,𝑦(𝑃𝑤) 0 ∓𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) sin𝜙
𝛿 ̇𝑟𝑝,𝑧(𝑃𝑤) 0 ±𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 −𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙
𝛿 ̈𝑟𝑝,𝑥(𝑃𝑤) 0 ± sin𝛹(𝑡) − sin𝛹(𝑡)
𝛿 ̈𝑟𝑝,𝑦(𝑃𝑤) 0 ∓ cos𝛹(𝑡) cos𝛹(𝑡)
𝛿 ̈𝑟𝑝,𝑧(𝑃𝑤) ∓1 0 0
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Appendix H. Error Sensitivities in Sensor Testing

Table H.6.: Error sensitivities of the accelerometer z-axis input during the six-position test, contin-
ued.

Position 1 and 2 3 and 4 5 and 6

𝛷�̂�𝑤 0 ∓𝑔 𝑔
𝛩�̂�𝑤 0 0 0
𝛹�̂�𝑤 0 0 0
𝛿𝜔𝑤𝑣,𝑥 0 0 0
𝛿𝜔𝑤𝑣,𝑦 0 0 0
𝛿𝜔𝑤𝑣,𝑧 0 0 0
𝛿𝑟𝑤,𝑥(𝑃𝑣) ∓𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ∓𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙
𝛿𝑟𝑤,𝑦(𝑃𝑣) ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ±(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 + 𝜔2𝑖𝑒 sin

2𝛹(𝑡) cos2 𝜙 −(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙
𝛿𝑟𝑤,𝑧(𝑃𝑣) ∓𝜔2𝑖𝑒(sin

2 𝜙 − 1) ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿 ̇𝑟𝑤,𝑥(𝑃𝑣) ±𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 ∓𝜔𝑝𝑤 − 𝜔𝑖𝑒 sin𝜙 ±(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿 ̇𝑟𝑤,𝑦(𝑃𝑣) ∓𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 0 0
𝛿 ̇𝑟𝑤,𝑧(𝑃𝑣) 0 ±𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 −𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙
𝛿 ̈𝑟𝑤,𝑥(𝑃𝑣) 0 0 0
𝛿 ̈𝑟𝑤,𝑦(𝑃𝑣) 0 ∓1 1
𝛿 ̈𝑟𝑤,𝑧(𝑃𝑣) ∓1 0 0
𝛷 ̂𝑣𝑣 0 ∓𝑔 ±𝑔
𝛩 ̂𝑣𝑣 0 0 0
𝛹 ̂𝑣𝑣 0 0 0
𝛿𝜔𝑣ᵆ,𝑥 0 0 0
𝛿𝜔𝑣ᵆ,𝑦 0 0 0
𝛿𝜔𝑣ᵆ,𝑧 0 0 0
𝛿𝑟𝑣,𝑥(𝑃 ) ∓𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ∓𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙
𝛿𝑟𝑣,𝑦(𝑃 ) 𝜔2𝑖𝑒(sin

2 𝜙 − 1) (𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 sin
2𝛹(𝑡) cos2 𝜙 ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)

𝛿𝑟𝑣,𝑧(𝑃 ) 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 sin
2𝛹(𝑡) cos2 𝜙

𝛿 ̇𝑟𝑣,𝑥(𝑃 ) ±(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ∓(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙
𝛿 ̇𝑟𝑣,𝑦(𝑃 ) 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 ∓(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿 ̇𝑟𝑣,𝑧(𝑃 ) 0 0 0
𝛿 ̈𝑟𝑣,𝑥(𝑃 ) 0 0 0
𝛿 ̈𝑟𝑣,𝑦(𝑃 ) 1 0 0
𝛿 ̈𝑟𝑣,𝑧(𝑃 ) 0 1 1
𝛷 ̂ᴂᵆ 0 ∓𝑔 0
𝛩 ̂ᴂᵆ 0 0 ∓𝑔
𝛹 ̂ᴂᵆ 0 0 0
𝛿𝑟 ,𝑥(𝑃𝑏) ∓𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) ∓𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙 ∓𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿𝑟 ,𝑦(𝑃𝑏) 𝜔2𝑖𝑒(sin

2 𝜙 − 1) (𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 sin
2𝛹(𝑡) cos2 𝜙 −(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)2 − 𝜔2𝑖𝑒 cos2𝛹(𝑡) cos2 𝜙

𝛿𝑟 ,𝑧(𝑃𝑏) 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) 𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) −𝜔2𝑖𝑒 cos𝛹(𝑡) sin𝛹(𝑡) cos2 𝜙
𝛿 ̇𝑟 ,𝑥(𝑃𝑏) ±𝜔𝑖𝑒 cos𝛹(𝑡) cos𝜙 ∓(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙) 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙
𝛿 ̇𝑟 ,𝑦(𝑃𝑏) 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 𝜔𝑖𝑒 sin𝛹(𝑡) cos𝜙 ∓(𝜔𝑝𝑤 + 𝜔𝑖𝑒 sin𝜙)
𝛿 ̇𝑟 ,𝑧(𝑃𝑏) 0 0 0
𝛿 ̈𝑟 ,𝑥(𝑃𝑏) 0 0 0
𝛿 ̈𝑟 ,𝑦(𝑃𝑏) 0 0 0
𝛿 ̈𝑟 ,𝑧(𝑃𝑏) 1 1 1
𝛷 ̂𝑏𝑏 0 ∓𝑔 0
𝛩 ̂𝑏𝑏 0 0 ∓𝑔
𝛹 ̂𝑏𝑏 0 0 0
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Appendix I.

Scale Factor Test Series Error Budgets

This section provides the remaining error budgets for the scale factor test series estimation of
section  Subsection 4.4.4  . The three different test mechanizations are illustrated in  Figure 4.35 .

Scenario Test device Sensor orientation Error budget

I single-axis rate table vertical  Table I.1 ,  Table I.2 

II three-axis rate table horizonal  Table I.3 ,  Table I.4 

III three-axis rate table vertical  Table 4.20 ,  Table 4.21 

While test-case III is discussed an presented in  Subsection 4.4.4  , the error budgets for test cases
I and II will be presented in the following.
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Appendix I. Scale Factor Test Series Error Budgets

I.1. Test Scenario I

Table I.1.: Gyro scale factor test series scale factor error for scenario I. The laboratory is located
at 𝜙 = 45°. The applied rate series a to d are summarized in  Table 4.19 .

Earth rotation
variations
see  Subsection 4.2.4 

• using WGS84 as
reference

• unknown/random
time 1min 5min 1 h 12 h

10−10
10−8
10−6
10−4

a
b
c
d

SF
1𝜎

,(
pp
m
)

consumer tactical intermediate navigation strategic

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise 1min 5min 1 h 12 h

10−6

10−5

10−4

10−3

a
b
c
dSF

1𝜎
,(
pp
m
)

Laboratory
alignment
see  Subsection 4.2.7 ,
 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
−1

−0.5
0

0.5
1

a
b
c
d

SF
1𝜎

,(
pp
m
)

Non-orthogonality
& misalignment
see  Subsection 4.2.9.2 

• equal var. on all axes
• normalized to 1 "(1𝜍)

1min 5min 1 h 12 h
10−10
10−8
10−6
10−4

a
b
c
dSF

1𝜎
,(
pp
m
)

Axis wobble
see  Subsection 4.2.9.3 

• ball bearing, 𝑁 =
13, 𝑞 = [−3…3]

• normalized to 1 " RMS
wobble 1min 5min 1 h 12 h

10−11
10−9
10−7
10−5
10−3

a
b
c
dSF

1𝜎
,(
pp
m
)

Control error
see  Subsection 4.2.9.6 

• 𝑓𝑐 = 20Hz,𝐷 =
0.75,

• 𝑁in = 720, 𝑁p = 6,
𝑁c = 20

• noise 1 ⋅ 10−10 °2/Hz
1min 5min 1 h 12 h

10−7
10−5
10−3
10−1

a
b
c
dSF

1𝜎
,(
pp
m
)

Sensor alignment
• alignment error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−9
10−7
10−5
10−3
10−1

a
b
c
d

Cluster averaging time 𝜏 in (s)

SF
1𝜎

,(
pp
m
)
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I.1. Test Scenario I

Table I.2.: Gyro scale factor test series bias error for scenario I. The laboratory is located at 𝜙 = 45°.
The applied rate series a to d are summarized in  Table 4.19 .

Earth rotation
variations
see  Subsection 4.2.4  

• using WGS84 as
reference

• unknown/random
time 1min 5min 1 h 12 h

10−5

10−4
a
b
c
d

Bi
as

1𝜎
,(
°/
h)

consumer tactical intermediate navigation strategic

Test-pad motion
see  Subsection 4.2.4  

• test-pad isolation
neglected

• isotropic background
noise 1min 5min 1 h 12 h

10−6

10−5

10−4

a
b
c
dBi

as
1𝜎

,(
°/
h)

Laboratory
alignment
see  Subsection 4.2.7  ,
 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
10−5

10−4 a
b
c
d

Bi
as

1𝜎
,(
°/
h)

Non-orthogonality
& misalignment
see  Subsection 4.2.9.2  

• equal var. on all axes
• normalized to 1 "(1𝜍)

1min 5min 1 h 12 h
10−5

10−4

10−3

a
b
c
dBi

as
1𝜎

,(
°/
h)

Axis wobble
see  Subsection 4.2.9.3  

• ball bearing, 𝑁 =
13, 𝑞 = [−3…3]

• normalized to 1 " RMS
wobble 1min 5min 1 h 12 h

10−11
10−9
10−7
10−5

a
b
c
d

Bi
as

1𝜎
,(
°/
h)

Control error
see  Subsection 4.2.9.6  

• 𝑓𝑐 = 20Hz,𝐷 =
0.75,

• 𝑁in = 720, 𝑁p = 6,
𝑁c = 20

• noise 1 ⋅ 10−10 °2/Hz
1min 5min 1 h 12 h

10−3

10−2

10−1

a
b
c
dBi

as
1𝜎

,(
°/
h)

Sensor alignment
• alignment error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
10−9
10−7
10−5
10−3
10−1

a
b
c
d

Cluster averaging time 𝜏 in (s)

SF
1𝜎

,(
pp
m
)
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Appendix I. Scale Factor Test Series Error Budgets

I.2. Test Scenario II

Table I.3.: Gyro scale factor test series scale factor error for scenario II. The laboratory is located
at 𝜙 = 45°. The applied rate series a to d are summarized in  Table 4.19 .

Earth rotation
variations
see  Subsection 4.2.4 

• using WGS84 as
reference

• unknown/random
time 1min 5min 1 h 12 h

10−10
10−9
10−8
10−7
10−6
10−5 a

b
c
d

SF
1𝜎

,(
pp
m
)

consumer tactical intermediate navigation strategic

Test-pad motion
see  Subsection 4.2.4 

• test-pad isolation
neglected

• isotropic background
noise 1min 5min 1 h 12 h

10−6

10−5

10−4

10−3

a
b
c
d

SF
1𝜎

,(
pp
m
)

Laboratory
alignment
see  Subsection 4.2.7 ,

 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
−1

−0.5
0

0.5
1

a
b
c
d

SF
1𝜎

,(
pp
m
)

Non-orthogonality
& misalignment
see  Subsection 4.2.9.2 

• equal var. on all axes
• normalized to 1 "(1𝜍)

1min 5min 1 h 12 h
−1

−0.5
0

0.5
1

a
b
c
d

SF
1𝜎

,(
pp
m
)

Axis wobble
see  Subsection 4.2.9.3 

• ball bearing, 𝑁 =
13, 𝑞 = [−3…3]

• normalized to 1 " RMS
wobble 1min 5min 1 h 12 h

10−5

10−4

10−3
a
b
c
d

SF
1𝜎

,(
pp
m
)

Control error
see  Subsection 4.2.9.6 

• 𝑓𝑐 = 20Hz,𝐷 =
0.75,

• 𝑁in = 720, 𝑁p = 6,
𝑁c = 20

• noise 1 ⋅ 10−10 °2/Hz
1min 5min 1 h 12 h

10−7
10−5
10−3
10−1
101

a
b
c
dSF

1𝜎
,(
pp
m
)

Sensor alignment
• alignment error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
−1

−0.5
0

0.5
1

a
b
c
d

Cluster averaging time 𝜏 in (s)

SF
1𝜎

,(
pp
m
)
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I.2. Test Scenario II

Table I.4.: Gyro scale factor test series bias error for scenario II. The laboratory is located at
𝜙 = 45°. The applied rate series a to d are summarized in  Table 4.19 .

Earth rotation
variations
see  Subsection 4.2.4  

• using WGS84 as
reference

• unknown/random
time 1min 5min 1 h 12 h

10−5

10−4

a
b
c
dBi

as
1𝜎

,(
°/
h)

consumer tactical intermediate navigation strategic

Test-pad motion
see  Subsection 4.2.4  

• test-pad isolation
neglected

• isotropic background
noise 1min 5min 1 h 12 h

10−6

10−5

10−4

10−3

a
b
c
dBi

as
1𝜎

,(
°/
h)

Laboratory
alignment
see  Subsection 4.2.7  ,
 Subsection 4.2.6 

• — Leveling error /
 DoV of 1 " (1𝜍)

• - - North alignment
error of 0.01° (1𝜍)

1min 5min 1 h 12 h
10−5

10−4

10−3

10−2

a
b
c
dBi

as
1𝜎

,(
°/
h)

Non-orthogonality
& misalignment
see  Subsection 4.2.9.2  

• equal var. on all axes
• normalized to 1 "(1𝜍)

1min 5min 1 h 12 h
10−4

10−3

a
b
c
dBi

as
1𝜎

,(
°/
h)

Axis wobble
see  Subsection 4.2.9.3  

• ball bearing, 𝑁 =
13, 𝑞 = [−3…3]

• normalized to 1 " RMS
wobble 1min 5min 1 h 12 h

10−5

10−4
a
b
c
d

Bi
as

1𝜎
,(
°/
h)

Control error
see  Subsection 4.2.9.6  

• 𝑓𝑐 = 20Hz,𝐷 =
0.75,

• 𝑁in = 720, 𝑁p = 6,
𝑁c = 20

• noise 1 ⋅ 10−10 °2/Hz
1min 5min 1 h 12 h

10−3
10−2
10−1
100
101

a
b
c
dBi

as
1𝜎

,(
°/
h)

Sensor alignment
• alignment error of
0.01° (1𝜍)

1min 5min 1 h 12 h

100 101 102 103 104 105
−1

−0.5
0

0.5
1

a
b
c
d

Cluster averaging time 𝜏 in (s)

SF
1𝜎

,(
pp
m
)
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Table J.1.: Test pad angular rates reference model approximation. Output is scaled to °/s for normalized input.

𝐀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.27 ⋅ 102 −6.44 ⋅ 101 −1.09 ⋅ 101 −2.23 −4.82 ⋅ 10−1 −1.45 ⋅ 10−1 −2.46 ⋅ 10−2 −5.88 ⋅ 10−3 −1.59 ⋅ 10−3 −6.07 ⋅ 10−4 −2.60 ⋅ 10−4 −7.77 ⋅ 10−5 −2.44 ⋅ 10−5 −9.03 ⋅ 10−6

64 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 5.00 ⋅ 10−1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1.25 ⋅ 10−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 6.25 ⋅ 10−2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1.56 ⋅ 10−2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3.91 ⋅ 10−3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 9.77 ⋅ 10−4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2.44 ⋅ 10−4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1.22 ⋅ 10−4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3.05 ⋅ 10−5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 7.63 ⋅ 10−6 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐁⊺ = [ 8 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

𝐋 = [ 1.13 ⋅ 10−2 4.92 ⋅ 10−4 5.08 ⋅ 10−5 5.50 ⋅ 10−6 8.30 ⋅ 10−7 1.41 ⋅ 10−7 1.68 ⋅ 10−8 2.28 ⋅ 10−9 4.34 ⋅ 10−10 9.31 ⋅ 10−11 2.78 ⋅ 10−11 4.36 ⋅ 10−12 8.07 ⋅ 10−13 0 ]

𝐃 = 0

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103
10−6

10−5

10−4

10−3

10−2

Frequency 𝜔 in (rad/s)

Fr
eq

.r
es

po
ns

e
|𝐺
(𝑗
𝜔
)|
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Table J.2.: Test pad tilt angles reference model approximation. Output is scaled to ° for normalized input.

𝐀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.27 ⋅ 102 −6.44 ⋅ 101 −1.09 ⋅ 101 −2.23 −4.82 ⋅ 10−1 −1.45 ⋅ 10−1 −2.46 ⋅ 10−2 −5.88 ⋅ 10−3 −1.59 ⋅ 10−3 −6.07 ⋅ 10−4 −2.60 ⋅ 10−4 −7.77 ⋅ 10−5 −2.44 ⋅ 10−5 −9.03 ⋅ 10−6

64 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 5.00 ⋅ 10−1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1.25 ⋅ 10−1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 6.25 ⋅ 10−2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1.56 ⋅ 10−2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3.91 ⋅ 10−3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 9.77 ⋅ 10−4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2.44 ⋅ 10−4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1.22 ⋅ 10−4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 3.05 ⋅ 10−5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 7.63 ⋅ 10−6 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐁⊺ = [ 8 0 0 0 0 0 0 0 0 0 0 0 0 0 ]

𝐋 = [ 0 7.05 ⋅ 10−4 2.46 ⋅ 10−4 1.02 ⋅ 10−4 4.40 ⋅ 10−5 2.65 ⋅ 10−5 9.00 ⋅ 10−6 4.31 ⋅ 10−6 2.33 ⋅ 10−6 1.78 ⋅ 10−6 1.52 ⋅ 10−6 9.10 ⋅ 10−7 5.71 ⋅ 10−7 4.23 ⋅ 10−7 ]

𝐃 = 0

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103
10−6

10−5

10−4
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10−2

10−1

100

Frequency 𝜔 in (rad/s)
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Table J.3.: Test pad acceleration reference model approximation. Output is scaled to m/s2 for normalized input.

𝐀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−3.96 ⋅ 102 −1.67 ⋅ 102 −4.12 ⋅ 101 −2.57 0 0
256 0 0 0 0 0
0 64 0 0 0 0
0 0 2 0 0 0
0 0 0 3.13 ⋅ 10−2 0 0
0 0 0 0 3.13 ⋅ 10−2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐁⊺ = [ 0.25 0 0 0 0 0 ]

𝐋 = [ 5.06 ⋅ 10−1 8.09 ⋅ 10−1 −2.32 ⋅ 10−2 −1.50 ⋅ 10−3 6.08 ⋅ 10−6 9.16 ⋅ 10−7 ]

𝐃 = 0

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102 103
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