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Abstract

Finding the optimal land allocation for providing ecosystem services, conserving biodiversity and maintaining rural liveli-
hoods is a key challenge of agricultural management and land-use planning. Agroforestry has been widely discussed as a sus-
tainable land-use solution and as one strategy to improve the provision of multiple ecological and economic functions in
agricultural landscapes. In this study, we use the backdrop of agroforestry research to evaluate a method from the multi-criteria
decision analysis toolbox: robust multi-objective optimization. The key feature of this modelling approach is its capacity to
integrate uncertain ecological and socio-economic data. We illustrate the optimization model with a case study from eastern
Panama, showing how the model can bring together scientific and practical knowledge to provide potentially desirable land-
scape compositions from the perspective of farmers, a public perspective, and a compromise solution. Example results of our
case study show how to assess whether agroforestry is a desirable component in a landscape composition to satisfy multiple
objectives of different interest groups. Furthermore, we use the model to demonstrate how different objectives influence the
optimal area share and type of agroforestry. Due to its parsimonious nature, the model could be used as a starting point of an
interactive co-learning process with decision-makers, researchers and other stakeholders. The model, however, is not yet suit-
able for an exact prediction of future land-use dynamics, for questions of spatially explicit land-use configuration, studies going
beyond the regional scale or for socio-economic interactions of agents. Therefore, we outline future research needs and recom-
mendations for other types of models or hybrid approaches.
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Introduction

Agroforestry - the integration of crops and/or livestock
with trees on the same plot - has gained popularity in science
llschaft für Ökologie. This is an open access article under the CC BY license

http://crossmark.crossref.org/dialog/?doi=10.1016/j.baae.2022.08.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:carola.paul@uni-goettingen.de
https://doi.org/10.1016/j.baae.2022.08.002
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.baae.2022.08.002
https://doi.org/10.1016/j.baae.2022.08.002
http://www.elsevier.com/locate/baae


104 E. Reith et al. / Basic and Applied Ecology 64 (2022) 103�119
and policy (Liu et al., 2019). Due to its hypothesized poten-
tial to reconcile ecological objectives (e.g., biodiversity con-
servation) with socio-economic objectives (e.g., long-term
profit), agroforestry has become an integral part of national
strategies to supplement landscape mosaics and bring back
trees into agricultural landscapes (García et al., 2016;
MiAmbiente, 2010; van Noordwijk et al., 2021). The press-
ing question of whether embedding agroforestry into agri-
cultural landscapes can enhance the provision of multiple
ecological and socio-economic functions and services is an
interdisciplinary research endeavor. In the last five decades,
agroforestry research has matured to become more interdis-
ciplinary to address complex trade-offs between social, eco-
nomic and ecological objectives related to tree-based
farming systems. The focus has shifted from investigating
agroforestry as a stand-alone system to considering it as a
part of a mix of land-use options in an agro-ecological land-
scape (Grass et al., 2019; Paul & Knoke, 2015).

However, research that assesses multiple ecological and
economic ecosystem functions and services (which we refer
to as “multifunctionality”) across multiple land uses is still
scarce, which limits successful planning of agro-ecological
landscapes (Grass et al., 2020). Land-use allocation models
have emerged as useful tools to investigate the composition
of a desirable land-use matrix at a farm or landscape scale
and to analyze trade-offs between potentially competing
objectives. One example of such a land-use allocation model
is the robust multi-objective optimization model developed
by Knoke et al. (2015, 2016). The model is especially rele-
vant for interdisciplinary teams, as ecological, economic and
social indicator data from different sources can be integrated
(Knoke et al., 2016). Furthermore, the approach is a rare
example of a multi-criteria decision analysis model that
actively integrates uncertainty of land-use preferences and
performance into modelling and accounts for attitudes
towards risk in decision-making. Recent research further
developed the robust optimization model to evaluate the
potential of agroforestry for land-use allocations in eastern
Panama from a local farmer’s perspective (Gosling et al.,
2021, 2020) and from a public perspective (Reith et al.,
2020).

In this article, we critically discuss the potential and limi-
tations of this robust multi-objective optimization model to
support fellow agroforestry researchers in their selection of
suitable land-use allocation models in agroforestry and land-
scape research. We show the approach using a consolidated
dataset from previous research in Panama (Gosling et al.,
2020; Reith et al., 2020), which brings together scientific
and local knowledge about the ecological and socio-eco-
nomic potential of land uses. The example outlines the gen-
eral model philosophy of contrasting socio-economic (i.e.
farmer’s perspective), socio-ecological oriented (which we
here refer to as public perspective) and compromise-oriented
decision-making for the purpose of understanding the poten-
tial of agroforestry in sustainable land-use compositions to
meet differing objectives. To put our modelling approach
into context, we start with a brief review of existing model-
ling approaches in agroforestry research (summarized in
Table 1).
Summary of agroforestry model development

Starting with the establishment of the International Coun-
cil for Research in Agroforestry (ICRAF) in 1977 in
response to tropical deforestation, ecological degradation
and food insecurity, agroforestry has gained increasing sci-
entific attention and has developed into its own research dis-
cipline (Liu et al., 2019; Mercer & Miller, 1998). Early
studies mostly focused on identifying and classifying exist-
ing agroforestry systems (Nair, 1998). Empirical research
gained momentum in the 1980s (Nair, 1998), with statistical
or correlative modelling at the plot and farm scale being
applied to better understand biophysical effects such as plant
growth (Stromgaard, 1985) or predict impacts of land uses
such as soil carbon, nutrients and erosion (Young et al.,
1998). Later, statistical models were also used to analyze the
drivers for farmers to adopt agroforestry (Jara-Rojas et al.,
2020).

In the 1990s, agroforestry research shifted towards pro-
cess-based (or mechanistic) tree and crop simulation models,
which could quantitatively explain how agroforestry sys-
tems work and study the biophysical consequences of adopt-
ing agroforestry. Two popular plot-level process-based
models are the Water, Nutrient and Light Capture in Agro-
forestry Systems (WaNuLCAS) model (van Noordwijk &
Lusiana, 1999) and FracRoot (Ozier-Lafontaine et al.,
1999).

Agroforestry research in the 1990s also saw the rise of
management decision models at the farm and landscape
scales. These models helped to assess if agroforestry is eco-
nomically desirable compared to conventional land uses
(e.g., Adesina & Coulibaly, 1998), and to investigate the
drivers and biophysical or economic consequences of adopt-
ing agroforestry (e.g., Current et al., 1995; Kwesiga et al.,
1999). Driven by the UN Conference of Environment and
Development and the Brundtland report, a paradigm shift
occurred from emphasizing protected areas and reserves
towards a holistic approach to environmental management
accounting for social demands (Reed et al., 2017). Similarly,
the idea of using agroforestry for increased landscape multi-
functionality emerged, putting landscapes and livelihoods
into the foreground (Plieninger et al., 2020). These develop-
ments supported the integration of non-market ecosystem
goods and services (such as carbon sequestration) in eco-
nomic models for agroforestry valuation (Price, 1995; Smith
et al., 1998).

Another development in agroforestry research during the
1990s was the shift from cause-and-effect thinking to sys-
tems thinking by using feedback loops (Reed et al., 2017;
van Noordwijk & Lusiana, 1999). Coupling economic simu-
lations with biophysical growth models led to decision



Table 1. Brief history of the development of major agroforestry models, associated research questions, and key events.

Timeline 1970 1980 1990 2000 2010 2020

Important events 1977 International
Council for Research
in Agroforestry
(ICRAF) established

1982 inception of the
journal “Agroforestry
systems”

1992 UN Conference
on Environment and
Development

2000 UN’s Millen-
nium Development
Goals (MDGs)

2010s rise of inte-
grated landscape
approaches (e.g.,
Forest Landscape
Restoration)

2020 agroforestry
increasingly included
in national climate
change adaptation
strategies

1970s/80s advance-
ment in computer proc-
essing allow for
computer-based
modelling

1987 Brundtland Com-
mission report coined
the term “sustainable
development”

1990s agroforestry rec-
ognized for increasing
landscape
multifunctionality

2004 first World
Agroforestry Con-
gress in Orlando,
Florida

2016 UN’s Sustain-
able Development
Goals (SDGs)

2021 15th Conference
of the Convention on
Biological Diversity to
confirm a global biodi-
versity conservation
framework for 2020-
2050

Major research
questions

what types of agrofor-
estry exist?

how and where does
agroforestry work?

what are the biophysi-
cal/economic conse-
quences of adopting
agroforestry?
what are the economic
drivers of adopting it?
is agroforestry desir-
able from the farmer’s
perspective (compared
to traditional land
uses)?
is agroforestry desir-
able by stakeholders to
increase landscape
multifunctionality?

what are the social
and economic driv-
ers/barriers of
adopting agrofor-
estry?
what are the eco-
logical and eco-
nomic trade-offs at
the landscape scale?
how much agrofor-
estry is desirable?

where to put what?
how do national
and global external
factors such as mar-
ket developments,
policies, and cli-
matic variability
affect local land-use
decisions?
how can agrofor-
estry mitigate
global issues such
as greenhouse gas
emissions and bio-
diversity loss?

what are the ecological
and economic trade-
offs of land-use adop-
tion?
what does a desirable
mix of land uses look
like?
how can effective and
efficient incentives for
agricultural sustainabil-
ity be designed?

Modelling
developments

Development of data-
bases and concepts

Development of empir-
ical statistical models
with biophysical focus
for cause-effect
analysis

Formulation of com-
puter-based models to
describe biophysical
aspects; management
decision and bio-eco-
nomic models

Rise of normative
optimization mod-
els and agent-based
models

Rise of spatially
explicit models for
land-use allocation
problems and trend-
ing participatory
research

Potential focus on syn-
thesis and a rise of
interdisciplinary
research and hybrid
models, with continued
interest in multi-objec-
tive models
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models that allowed for economic analysis to be linked to
biophysical growth models and vice versa. For example,
Thomas (1991) developed a process-based bio-economic
simulation model to assess profitability of agroforestry sys-
tems under changing technical and economic conditions.

The 2000s were marked by a rise of optimization models
in agroforestry research. Portfolio-based optimization meth-
ods can suggest compositions for efficient agroforestry sys-
tems (plot-level) or they can suggest land-use portfolios
(landscape-level) that maximize return for any given level of
risk (e.g., Blandon, 2004; Paut et al., 2019). Portfolio
approaches actively account for the effects of risk aversion
and economic diversification in economic decision-making.
The more recent development of multi-criteria optimization
models permitted the evaluation of multiple, potentially con-
flicting, environmental and socio-economic objectives
simultaneously, and accounted for trade-offs between them.
Discrete multi-attribute decision-making models can evalu-
ate a finite number of land-use alternatives (Kaim et al.,
2018), assessing the environmental and economic perfor-
mance of land uses based on predefined scenarios (Palma et
al., 2007). Alternatively, scalarization-based (methods com-
bining multiple objective functions into one final objective
function, as presented in this study) and Pareto-based multi-
objective optimization models can also evaluate multiple cri-
teria simultaneously, without needing to rely on a very lim-
ited set of scenarios (García-de Ceca & Gebremedhin, 1991;
Grass et al., 2020). Depending on the computational power
needed, these types of continuous optimization models can
investigate a theoretically unlimited number of alternatives
without the risk that the optimal land-use allocation solution
lies in between two or outside considered scenarios (Kaim et
al., 2018). Dynamic optimization models can consider
changes of decision-relevant information over time to esti-
mate, for example, the optimal timber rotation age (Alavala-
pati & Mercer, 2004). Combined with portfolio analysis,
such multi-criteria optimization models can account for
land-use diversification effects, i.e. maintaining different
land-use options to reduce financial and ecological risks
(Blandon, 2004; Knoke et al., 2015).

Another set of models for analyzing trade-offs are agent-
based models (Lusiana et al., 2012; Paul et al., 2019).
Agents are autonomous entities that have certain simple
operational properties and/or are able to make decisions and
learn. Simulations of their behavior will consist of a
sequence of decisions. Agents interact with other agents and
their environments, while their behavior follows a set of
rules (Lenfers et al., 2018). Agent-based models came into
the focus of agroforestry research in the 2000s because they
are capable of incorporating social interactions between
farmers that shape land-use decisions (van Noordwijk et al.,
2019). For example, Lusiana et al. (2012) investigated land-
sharing and land-sparing in Indonesia using the agent-based
model FALLOW.

From around 2010 onwards, agroforestry models began to
increasingly account for site heterogeneity (van Noordwijk
et al., 2019). Research sought to generate promising land-
use and landscape designs to solve global land-management
problems embodied by the UN’s Millennium Development
and Sustainable Development Goals (Nair & Garrity, 2012;
van Noordwijk et al., 2019). Coupling biophysical, financial
and economic models with geographic information systems
(GIS) allows for spatially explicit empirical statistical mod-
els that describe management decisions at a landscape scale,
answering questions of “where to put what” (e.g., Palma et
al., 2007).

In the last decade, the idea of "integrated landscape man-
agement" (Estrada-Carmona et al., 2014; Plieninger et al.,
2020) has also gained interest among researchers, policy-
makers and other stakeholders in the tropics. This includes
frameworks such as the “Ecosystem approach” (e.g., “Forest
Landscape Restoration”, Reed et al., 2016) and “climate-
smart landscapes” (Scherr et al., 2012) to investigate and
implement land management decisions that meet the pub-
lic’s various demands on the landscape while reducing
trade-offs between ecological and socio-economic objec-
tives. To better reconcile conservation and development
objectives, the integrated landscape approach explicitly aims
to involve stakeholders from multiple sectors, for example
through participatory research (Reed et al., 2017; van
Noordwijk et al., 2021). This may involve working with
farmers and other stakeholders, before, during or after the
modelling process (Andreotti et al., 2020; Kaim et al., 2018;
Voinov et al., 2018).

In light of increasing calls for transdisciplinary and cross-
sectoral approaches (Carter et al., 2018; Neely et al., 2017),
hybrid land-use allocation models that reduce the drawbacks
of individual models and can analyze multiple conflicting
objectives might become increasingly important in land-
scape and agroforestry research (Paul et al., 2019). Further-
more, modern agro-ecological research calls for early and
continuous involvement of multiple stakeholders to identify
opportunities and mitigate obstacles of biodiversity-friendly
farming (van Noordwijk et al., 2020; Wanger et al., 2020).

In the following section, we present a robust multi-objec-
tive optimization model that may support a participatory
analysis of land-allocation problems.
A robust multi-objective land-use allocation
model

The modelling approach presented here is inspired by the
concept of portfolio optimization (Markowitz, 1952). This
concept stems from finance and describes the selection of
the best allocation of money investments to single assets
according to a single (e.g., profit maximization) or multiple
objectives (e.g., conservation-oriented and economic objec-
tives). This concept can be transferred to land allocation
problems (Macmillan, 1992), where different land-use sys-
tems represent single assets of a land-use portfolio and the
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optimization process allocates land to land-use types, seek-
ing the composition that best meets given objective/s
(Matthies et al., 2019; Paut et al., 2019). The novelty of the
approach described in this study lies in the robust non-sto-
chastic optimization technique that selects the land-use port-
folio which best balances multiple ecological and socio-
economic objectives concurrently across numerous discrete
uncertainty scenarios (Knoke et al., 2015). For solving this
allocation problem, the solution algorithm builds on the
basic logic of the MINMAX (Chebyshev) version of goal-
programming (see, e.g., Tamiz et al., 1998; Uhde et al.,
2017).
Model concept

The model input comprises two parameters per land-use
and objective: an expected performance score (to quantify
the ability of a given land-use to achieve the objective) and
a measure of uncertainty associated with this estimate (e.g.,
standard deviation of performance score; Fig. 1). The model
is flexible regarding sources of input data. As such, the
expected score can be derived through expert interviews
(e.g., via the analytic hierarchy process by Saaty, 1987), cal-
culated and/or simulated data (e.g., net present value), or
measurements (e.g., soil pH) (Knoke et al., 2016). Because
normalization of data is inherent in the model, different units
and score ranges of the indicators can be used. Indicators
may represent marketable and non-marketable ecosystem
functions and services (e.g., yield and soil fertility) and dis-
services (e.g., soil erosion), biodiversity related indicators
Fig. 1. Model concept of the robust multi-objective land-use allocation m
mization solution algorithms presented by Ben-Tal et al. (2009).
(e.g., habitat quality), financial factors (e.g., payback period)
and difficult-to-quantify social factors (e.g., cultural prefer-
ences). These indicators represent the objectives in the
multi-objective optimization model (e.g., net present value
of a given land-use to represent long-term profit). They can
be given equal or different weights to prioritize individual
indicators or indicator groups.

The novel aspect in our modelling is the quantification of
land-use benefits in the form of guaranteed performance lev-
els, which are sensitive to the degree of uncertainty in the
land uses’ provision (see below). Guaranteed performance
means that under variable indicator input information we
will always achieve at least the guaranteed performance (or
even a higher performance) of a land-use composition, as
long as the input information is included in the uncertainty
spaces used for the optimization.

The optimization model allocates land-use shares (the
decision variables) in a way that maximises the normalised
worst-case performance of the portfolio of land uses across
all considered objectives under a set of uncertainty scenar-
ios. The result is a compromise land-use allocation that
reduces trade-offs between potentially conflicting objectives
by balancing the achievement of all objectives and does not
allow for compensation between them (Knoke et al., 2020).
For example, poor performance in carbon sequestration can-
not be compensated for by high performance in economic
return.

A series of model constraints ensure the following: the
objective function minimizes the normalised greatest dis-
tance of the achieved indicator level to the most desirable
indicator value, i.e. the reference point of 100% (greatest
odel. Model developed by Knoke et al. (2015, 2016) based on opti-
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distance constraints). Achieving the minimal greatest dis-
tance implies guaranteeing a minimum performance level
across all indicators and uncertainty scenarios. Land-use
shares are greater than or equal to 0 (non-negativity con-
straint), and the sum of all land-use shares is equal to 1 (area
budget constraint). Study-specific constraints can also be
added, for example, that agroforestry should not exceed a
certain area share of the land-use portfolio (Reith et al.,
2020). An example of a potential model construct as used in
this study for optimizing land-use allocation at the forest
frontier in eastern Panama is given in Appendix A: Table 1.

The model can be operated with readily accessible, open-
source software (e.g., Libre Office or OpenSolver) (see
spreadsheet in supplementary of Gosling et al., 2020) and
has also been transferred to the R environment (Husmann et
al., 2021). The linear programming problem is solved by the
Simplex algorithm, which guarantees an exact solution.
Disclosure of uncertainty

The model is robust in that it considers uncertainty around
the ability of each land use to achieve a given objective.
Hence, uncertainty refers to the variability of land-use per-
formances across all indicators. However, we limit the defi-
nition of possible performance scores to the expected value
(as the optimistic scenario) and the worst-case value (as the
pessimistic scenario), thus focusing on undesirable devia-
tion, also termed “downside risk aversion” (Bonilla & Ver-
gara, 2021). We follow the approach of “deep uncertainty”
for the performance of studied land uses where we cannot
assign individual probabilities to our indicator data (Walker
et al., 2013). We address this lack of knowledge with our
model by systematically forming a set of discrete uncertainty
scenarios based on a combination of expected mean and
worst-case scores of given land uses in terms of given indi-
cators. For example, in a given uncertainty scenario one
land use may meet its expected score for a given indicator,
while all other land-use options may meet worst-case scores.
In another uncertainty scenario two land-use options may
meet their expected score for the same given indicator, while
all others meet worst-case scores, and so on. All possible
combinations of expected and worst-case scores form what
we refer to as uncertainty sets for each indicator (2number of

land uses). In this way the optimization simultaneously consid-
ers a range of input scores (including worst-case scores) for
each land use and indicator when determining the optimal
land allocation of one model run (Knoke et al., 2020).

Furthermore, the risk attitude of the decision-maker is
incorporated into our robust optimization approach by defin-
ing the size of the uncertainty space by the multiple of the
considered standard deviation (or standard error) (Ben-Tal
et al., 2009; Knoke et al., 2015; Palma & Nelson, 2009).
Depending on their risk attitudes, decision-makers can
decide how pessimistic or optimistic the included worst
cases for the indicators shall be, where a more risk-averse
decision-maker would include more pessimistic worst cases.
In the following example we assumed a moderately risk-
averse decision-maker (moderate level of uncertainty). This
means that the worst-case scenario is set as the expected
value minus two times the standard deviation of the
expected scores. The model then allocates land shares in a
way that the land-use performance across all objectives and
uncertainty scenarios is enhanced in worst cases.
Identifying trade-offs

In the framework of our approach, trade-offs between dif-
ferent objectives are analyzed in multiple ways: First, trade-
offs can be simply visualised, e.g. by rose diagrams, where
model input data of objectives is synthesized. Second, the
optimization approach reduces trade-offs by avoiding a very
low performance of individual indicators under uncertainty.
This is achieved by minimizing the greatest distance
between achieved performance levels and reference points
across all indicators and uncertainty scenarios. Third, trade-
offs can be explored more deeply by analyzing the conse-
quences of considering different (bundles of) indicators or
different indicator weights (see example below). This
includes the effects on the resulting land-use composition,
on the value of the guaranteed performance level across all
indicators (Reith et al., 2020), and/or individual indicators
(Friedrich et al., 2021).
Application example of the robust optimization
model

The model described above can synthesize empirical and
modelled data from field trials. The collected functions would
then represent the different indicators in the model (see appli-
cations by Knoke et al., 2016, 2020). While field trials are
essential for the establishment of innovative land-use systems,
they are costly and extend over long time periods. As a com-
paratively quick and low-cost ex-ante study of potential agro-
forestry systems, the robust multi-objective optimization
model can also help to identify promising agroforestry sys-
tems for subsequent field trials, and allows for rapid assess-
ment of trade-offs between ecological and socio-economic
functions and services in a given socio-ecological system.
This approach would then need to rely on available expert
knowledge, which can provide quite reliable results (Uhde et
al., 2017). Thus, the model can be used to integrate decision-
makers and stakeholders prior to modelling to obtain input
data for the presented optimization model. However, we out-
line below how the approach could be extended towards a
collaborative modelling exercise. In this study, land-owners,
-managers, scientists and stakeholders (of governmental and
non-governmental organizations and private companies)
working and/or located in Panama have been asked to
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evaluate various land uses in terms of their potential to meet
predefined indicators (see Appendix: Table 2). Land uses
include natural forest, exotic forest plantations (teak, Tectona
grandis), silvopasture (>200 trees per ha pasture), alley crop-
ping (annual crop planted in between rows of teak), conven-
tional pasture and cropland (Appendix: Table 3). The dataset
represents the perceived performance of different land uses in
terms of our studied indicators (Appendix: Table 4). Data was
collected in 6 weeks (additional online surveys were accessi-
ble for another 17 weeks) in 2018. Our example landscape
represents aggregated surveyed farms covering an area of
around 9100 ha, near the agricultural forest frontier in eastern
Panama (Gosling et al., 2020).
How to assess whether agroforestry is desirable to
satisfy multiple needs of stakeholders?

To illustrate the model’s potential, we ran separate optimi-
zations that balance multiple indicators for objectives from
three perspectives: the farmers’ perspective, the public’s per-
spective and a desirable compromise solution between the
two. For this example, we assume that the perspective of
farmers is represented by 7 socio-economic indicators: long-
term income, labor demand, meeting household needs,
financial stability, liquidity, investment costs and manage-
ment complexity. Even though the interviewed farmers
actively stated that climate and water regulation was impor-
tant to them, Gosling et al. (2020) found that there was a
mismatch of this statement with the short-term socio-eco-
nomic objectives which best explained current land use. The
public’s perspective is assumed to be represented by 6 indi-
cators: global climate regulation, water regulation, biodiver-
sity, long-term soil fertility, micro climate regulation and
food security (Appendix A: Table 2). The land-use composi-
tion that represents a compromise solution for farmers and
the public was obtained by optimizing the land-use alloca-
tion across all 13 indicators simultanously.

As a reference for our results we use the current land-use
allocation (left column Fig. 2A, Gosling et al., 2020), which
shows that farmers currently do not practice agroforestry,
but have allocated 60% land-use share to pasture. In con-
trast, optimising the land allocation given only the potential
socio-economic objectives of farmers results in a theoreti-
cally optimal land-use allocation including agroforestry
through a large silvopasture share (23%) and a small alley
cropping share (7%, second column Fig. 2A). This would
mean a large reduction of pasture land, compared to the cur-
rent land-use allocation in favor of forest and agroforestry.

From the public’s perspective the model suggests allocat-
ing a smaller share to silvopasture (5% share) and a larger
share to alley cropping (56% share, furthest right column in
Fig. 2A).

The desirable compromise solution for farmers and the
public which balances all ecological and socio-economic
indicators comprises a large share of both agroforestry sys-
tems, forest plantation and natural forest, while almost a
third of the land area would be under conventional agricul-
tural production (third column from left in Fig. 2A).

The different agroforestry shares of each perspective
reflect their given rankings. Farmers ranked silvopasture
higher than alley cropping for five out of seven indicators,
while experts (a proxy for the public in our study) scored
alley cropping higher than silvopasture for all six evaluated
ecological and social indicators. Surprisingly, the farmer’s
optimized land-use portfolio was more similar to the com-
promise solution than the land allocation optimized accord-
ing to the public’s rating. This may reflect that a very
heterogenous landscape may not automatically provide high
levels of ecological services such as biodiversity protection
(Knoke et al., 2020), but may be particularly interesting to
meet socio-economic demands in the face of uncertainty for
risk-averse farmers.

In this example, we have applied equal weight to all
objectives resulting in optimized land-use compositions of
all farms in a landscape that best balances given indicators
equally. Giving equal weight to each indicator is recom-
mended when the researcher is uncertain about the current
and future preferences and needs of stakeholders (Walker et
al., 2013). However, giving more importance to some indi-
cators over others can simulate different preferences or per-
spectives of stakeholder groups (Palma et al., 2007). This
may influence the agroforestry share, providing valuable
insights in the role of agroforestry (see the following chapter
and Fig. 2B).
How to explore the conditions favoring an inclusion
of agroforestry in land-use portfolios?

In this example, we want to show how the model can help
to improve our understanding of which conditions agrofor-
estry may be suited to use for reducing land-use conflicts
between farmers and the public given different priorities. To
illustrate this type of sensitivity analysis, we reran the opti-
mization for all 13 indicators combined but assigned twice
the weight to the implicit drivers of farmers’ current land-
use decision in eastern Panama (“household needs” and
“liquidity” as identified by Gosling et al., 2020) or to one of
the widely discussed benefits of agroforestry (i.e., support-
ing biodiversity, increasing carbon sequestration potential,
improving farmers’ long-term income, and food security,
respectively, Fig. 2B).

Compared to the baseline compromise solution between
farmers and the public (third column Fig. 2A), the total share
of agroforestry systems was drastically reduced for a land-
use composition that weights household needs and liquidity
higher than other indicators (to 6% alley cropping and 1%
silvopasture, first column Fig. 2B).
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Rerunning the optimization to give more importance to
biodiversity or carbon regulation resulted in decreased agro-
forestry shares and significantly increased natural forest
shares compared to the baseline compromise solution (27 to
29 percentage points more, second and third column
Fig. 2B). This result indicates trade-offs between both eco-
logical and socio-economic indicators. Focusing on biodi-
versity or carbon sequestration, the optimized land-use
allocations suggest a land-sparing approach with agro-eco-
logical and conventional land uses as productive systems.
This result underscores another interesting feature of our
optimization-based approach: we can infer optimal land-use
strategies by representing specific preferences of decision-
makers, rather than predefining certain land-use strategies
and assessing them post-hoc.

Our model may also highlight an unintended effect.
Emphasizing long-term profitability resulted in agroforestry
dominating the land-use composition. The silvopasture share
increased to 46% and alley cropping was reduced to 8%
compared to the baseline compromise solution (Fig. 2B
fourth column). This composition excluded natural forest,
demonstrating the rebound effect, meaning that highly prof-
itable land-use systems meant to spare land may foster accel-
erated deforestation (Angelsen & Kaimowitz, 2004; DeFries
& Rosenzweig, 2010; Perfecto & Vandermeer, 2010).

Furthermore, the presented model approach can convinc-
ingly highlight the virtues of agroforestry. When food secu-
rity was prioritized over other indicators, alley cropping
dominated the composition (61%) and silvopasture com-
prised 7% (fifth column Fig. 2B). This result also highlights
the multifunctional benefits of agroforestry, in particular, its
potential to produce high yields (Tscharntke et al., 2012).

To adequately account for hard economic constraints
(such as available labor and capital) on farmers’ land-use
decisions or changes in land-use performance under differ-
ent market and environmental conditions, modelled or mea-
sured coefficients are needed as input data for our model.
For example, Gosling et al. (2021) used data derived from
an extended cost-benefit analysis in the same modelling
framework and same study region to investigate how a range
of biophysical and economic constraints for farmers may
influence the attractiveness of agroforestry. Their results
revealed that the silvopasture share could be increased on
farms with less productive soils and supported by tax incen-
tives, but labor constraints posed a serious barrier to adopt-
ing agroforestry (Gosling et al., 2021).
Critical appraisal of the modelling approach
and recommendations for model selection

In this section we discuss six main model characteristics
which may determine the suitability of our and other models
to answer agroforestry research questions: (i) aspects of
landscape diversity considered (composition vs. configura-
tion), (ii) programming solution, (iii) trade-off analyses, (iv)
required input data, (v) aspects of spatial scale and (vi)
opportunities for stakeholder participation (Table 2).
Aspects of landscape diversity

An important requirement for model selection is to clearly
define which aspects of landscape diversity or patterns shall
be investigated. The design of agroforestry, such as the lay-
out of trees and crops, is implicitly a question of configura-
tion at plot scale, while the amount and type of pre-defined
agroforestry systems within a farm or landscape is mainly a
question of compositional diversity. Using the robust opti-
mization approach presented here, land-use allocation prob-
lems can be answered while land-use configuration effects
are disregarded. Aspects of agroforestry design or arrange-
ment are only accounted for by pre-defining specific agro-
forestry systems. However, site heterogeneity could be
accounted for in the optimization model by integrating indi-
cator scores for different site conditions. Interdisciplinary
research teams of ecologists and economists may apply
hybrid process-based bio-economic simulations and optimi-
zation approaches to better account for aspects of spatial
arrangement (Kaim et al., 2018; Paul et al., 2019). Standard
methods would include evolutionary methods, such as the
genetic algorithm (Roberts et al., 2011). Alternatively,
empirical approaches and agent-based models can deal with
configurational land-use allocation problems (e.g., land shar-
ing/sparing analysis, Gonzalez-Redin et al., 2019; Palma et
al., 2007) and compositional allocation questions (Santana
et al., 2016). Such models are particularly suitable to
account for diffusion of innovations in a given network and
to analyze trade-offs between ecological and economic indi-
cators (Berger, 2001; Dislich et al., 2018). Agent-based
models are particularly suited if the interactions between
decision makers is the key research question. However, their
demand for data and computational power is relatively high,
they rely on predefined scenarios (O’Sullivan et al., 2016) or
often use very simple decision rules, and it can be challeng-
ing to reproduce obtained results (Lusiana et al., 2012).
Another benefit of the presented optimization approach is
that it actively integrates uncertainty and can provide valu-
able information on the risk-reducing effect of land-use
diversification (Paul et al., 2017).

With our model, further crucial factors that influence the
type and share of agroforestry systems selected in a desirable
land-use composition may be investigated. This includes the
effect of varying landscape contexts (Reith et al., 2020) and
income strategies on agroforestry adoption (Gosling et al.,
2020). Future studies could investigate political (dis)incen-
tives on land-use decisions such as payments for ecosystem
services (Calle, 2020) and penalties for disservices (Kay et
al., 2019), and land degradation effects (Kuiper, 1997).



Table 2. Strengths and weaknesses of the robust optimization approach, research questions that can currently be answered with the model, research needs and recommendations for alterna-
tive land-use allocation approaches.
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Type of programming solution

Our model approach uses a scalarization method by refor-
mulating the multiple-objective problem as a problem with
only one variable, which has to be maximized over all indi-
cators and uncertainty scenarios. This variable is the guaran-
teed performance level associated with a given landscape
composition. This means that we obtain a single optimal
land-use composition among continuous land-use portfolios
with our model that reduces trade-offs between given indica-
tors. In contrast, Pareto optimization is a very popular alter-
native in multi-objective optimization of ecosystem services
(Andreotti et al., 2018; Bugalho et al., 2016; Seppelt et al.,
2013) which allows for a set of efficient solutions (each con-
sidered equally desirable). Efficient solutions imply that
decision-makers cannot improve one specific objective with-
out worsening one or more other objectives. Such efficient
solutions are commonly represented by “efficient” or “Par-
eto” frontiers. However, for many applications we need to
have one and not an unlimited set of possible solutions (for
example for comparing land-use scenarios), so using a scala-
rization method is often helpful. Our model is consistent
with Pareto optimization in that both provide land-use allo-
cation solutions which cannot be improved for one objective
without compromising one or more others (Appendix A:
Fig. 1). However, our model assumes that decision makers
want to maximize the guaranteed performance (under uncer-
tainty) obtained from a landscape, which is the case only for
one globally optimal landscape composition of the Pareto
frontier.

Besides the use of a single objective function, one key
advantage of the robust approach suggested here lies in the
low computational power needed, which is achieved by for-
mulating the problem mathematically in a way that can be
solved with a computationally efficient linear programming
method. However, this advantage comes at the cost of two
main assumptions of linear programming, which may be
challenging for some research questions: proportionality and
additivity. The assumption of proportionality entails that the
marginal contribution of a given indicator remains constant
with increasing/decreasing area of a given land-use. The
assumption of additivity implies that the total landscape per-
formance is the sum of the individual land-use performance
products. This implies a linear relationship between the pro-
vision of each indicator (objective) with area proportions.
For some indicators, the assumptions of proportionality may
be met, as for instance for profit or carbon storage potential,
and can be represented by compositional diversity (Duarte
et al., 2018). For other indicators, such as pollination or spe-
cies diversity, non-linear relationships and importance of
spatial configuration can be assumed (Herrero-J�auregui et
al., 2018). For example, species area relationships may be
assumed to show positive-concave relationships between
the number of species and increasing patch size (Nowack et
al., 2019) or increasing quality of an agro-ecological land-
use matrix of small patches (Perfecto & Vandermeer, 2010).
The modelling approach discussed here is currently not
designed to answer such questions but could be extended to
do so by incorporating additional constraints. For example,
Knoke et al. (2020) applied a recursive iteration process to
integrate the dependence of tree survival on species mixture
or the dependence of tree growth on stand density into the
optimization process. Alternatively, the allocation problem
could be solved as a non-linear optimization problem. For
example, Grass et al. (2020) used a spatially explicit Pareto-
based optimization model using an evolutionary solution
algorithm to obtain optimal landscape compositions for
maximizing biodiversity for given profitability. Such non-
linear approaches are highly valuable for representing e.g.
effects of landscape composition on different taxonomic
groups and detailed ecosystem functions. However, they are
computationally very demanding and theoretically cannot
guarantee the “global optimum”. To better integrate biodi-
versity-related and other indicators with non-linear relation-
ships with area proportions into our robust modelling
approach, we call for support in the ecological research com-
munity. This could include ideas to simplify and transform
non-linear relationships into a linear form, incorporate rea-
sonable constraints or identify (biodiversity-)related indica-
tors, which might be more robust towards changes in the
land-use area share (e.g. structural diversity measures as a
proxy).
Exploring trade-offs

While the results of the optimized land-use composition
are straightforward to interpret for the user, the trade-offs
between indicators remain more implicit (e.g. in the guaran-
teed performance level) of the resulting land-use composi-
tion when adjusting the selection of indicators or indicator
weights. Trade-offs can be made more explicit, for example,
by calculating an economic multifunctional premium.
Accordingly, Friedrich et al. (2021) used a variant of goal
programming to compare and calculate the difference
between the achieved performance of the indicator economic
return and an optimization of multiple indicators (here eco-
system services).

In Pareto optimization, trade-offs are often visualized and
interpreted more explicitly (Strauch et al., 2019). Land-use
allocations with the best (guaranteed) performance of each
objective can be presented to explore trade-offs between
each single objective (Seppelt et al., 2013). This way the
entire potential of the landscape and trade-offs can be
explored without limiting the search space to certain goals.
However, this method can be computationally expensive
and the selection of preferred solutions a posteriori can be
difficult to understand for stakeholders.

Our approach can be used in a similar manner to Pareto
Optimization to visualize trade-offs between guaranteed per-
formance levels of different indicators when assigned differ-
ent weights. This explores the potential Pareto Optimal



Fig. 2. Optimized land-use allocations derived for a moderate level of uncertainty. (A) Current land-use allocation of aggregated farms in the
study region in eastern Panama and optimized land-use allocations from different perspectives (indicators weighed equally): farmers’ perspec-
tive represented by socio-economic indicators and evaluated by local farmers (based on perception data from Gosling et al., 2020), a compro-
mise solution between farmers and the public balancing all ecological and socio-economic indicators (based on perception data from Gosling
et al., 2020, and adjusted dataset from Reith et al., 2020), and the perspective of the public represented by ecological and a social indicator
and evaluated by experts (adjusted dataset from Reith et al., 2020). (B) Land-use allocations from the combined perspective of farmers and
the public (compare center column in Fig. 2A), but the indicators named at the x-axis are weighted higher (twice as important) than the
others.
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frontier under variable preferences. The consistency between
the Pareto Optimization efficiency frontier and goal pro-
gramming in our approach is achieved by using a reference
point method, which avoids the possibility of achievement
levels exceeding the reference points (see Appendix A:
Fig. 1 for further explanation).
Requirements of input data

Another important aspect for selecting an appropriate
modelling approach is the input data requirements. One key
advantage of our optimization approach is that the data
demand is low compared to other approaches, particularly
agent-based models, and requires only two input parameters
for a given indicator provided by a given land use (expected
score, standard deviation/error). Data scarcity is a very
common situation in agroforestry and landscape research, par-
ticularly for novel agroforestry systems. We demonstrate the
land-use allocation model using input data obtained from sur-
veys with farmers and other stakeholder groups (Gosling et
al., 2020; Reith et al., 2020). Both approaches result in an
assessed relative performance level for each land use and indi-
cator. Despite the fact that the min-max normalization (e.g.
recommended by Diaz-Balteiro et al., 2018) allows for com-
bining any type of data and source, care needs to be taken
during data preparation and interpretation of results, for exam-
ple when comparing metric data to interval-scaled data.

Using expert interviews in land-use science always comes
with challenges of potential bias and the fact that results can
only be interpreted as current perceptions, not as “hard
facts”. This becomes apparent in our example application,
where all interviewed groups assessed the economic and
ecological potential of agroforestry very optimistically.
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Nevertheless, expert opinion and perceptions may be helpful
to inform a participatory pre-test of potential land-use con-
flicts for a specific and so far understudied region. At a later
stage the model can then be fed with more advanced mea-
sured or simulated data. For example, Knoke et al. (2016)
synthesized data for carbon, water and soil related indica-
tors, as well as socio-economic indicators, which were
derived through field measurements, farmer interviews, or
through extended cost-benefit analyses. Another advantage
of the robust multi-objective optimization method is com-
pared to the classical portfolio approach (i.e., solving the
farmers’ decision problem via mean variance of profits), that
it does not require data on correlations and covariances
between land uses (Paul et al., 2019). Furthermore, the con-
cept is inherently non-stochastic so the data does not need to
follow a normal distribution, which can usually not be
assumed for ecological and socio-economic values of eco-
system services (Campagne et al., 2018; Knoke et al., 2021).
Spatial scale

The presented approach is flexible towards the spatial
scale to be investigated. It has been applied to the farm level
(Gosling et al., 2020; Knoke et al., 2015) and landscape
level (Knoke et al., 2016; Reith et al., 2020) and could theo-
retically also be applied to the regional level. However, the
linearity requirement and available input data can limit the
spatial scale. Firstly, when considering the national scale or
beyond, some socio-economic indicators will become
endogenous. For example, income from cropland may not
increase proportionally with extending the area share, but
may decline per hectare, because large crop quantities may
only be sold at decreased prices or only less suitable sites
could be used for cultivation (Knoke et al., 2011). For
national or higher scale level applications one would need
price elasticities and non-linear solution algorithms to solve
the land-use allocation problems. Secondly, the spatial scale
of modelling needs to align with the collected input data.
For example, if indicator input data by a given land use was
collected at the farm level (e.g. in Gosling et al., 2020), then
the optimization should also only refer to the land-use allo-
cation at the farm level, not exceeding the sampled farm
sizes. Upscaling can be problematic if indicator performance
is non-proportional with area shares, which may not only be
the case for ecological data, but also for economic data of
very different farm sizes, due to economies of scale. How-
ever, these differences can also be captured by the deviations
of the indicator if different-sized farms have been integrated
in data collection. Another option is to differentiate between
farm sizes or farm types as demonstrated by Gosling et al.
(2020) who carried out separate optimization runs for farm
types pre-defined by hierarchical clustering with different
sets of indicator means and deviations. If data allows, opti-
mized farms may be aggregated to represent an optimized
land allocation at the landscape scale. For political decision-
makers who need to think in landscape to regional spatial
scales, the approach could generate an answer to the ques-
tion of whether fostering a specific land-use option is desir-
able under high farm heterogeneity. Technically this means
to investigate whether agroforestry is integrated in the opti-
mized farm portfolio under high indicator uncertainty or in
all portfolios of the different farm types.
Inclusion of stakeholders

Stakeholder participation is becoming an increasingly
important part of agroforestry modelling (van Noordwijk et al.,
2021). An advantage of our modelling approach is the low
computational requirements, which potentially enable interac-
tive research discussions and participatory research approaches
as suggested by Kaim et al. (2018). When interpreting and
communicating the results, it is important to keep in mind that
the aim of our approach is to investigate trade-offs and syner-
gies of land uses and indicators. Even though the optimization
takes a normative perspective, it should not be used to prescribe
exact land-use allocations that decision-makers should adhere
to, because of the models’ simplifications (i.e. site homogene-
ity, the missing impact of land-use history or effect of adjacent
land uses on decisions). The intention is to explore the condi-
tions under which different farm or landscape patterns offer a
desirable option. This means that, in line with Pareto-based
approaches, not only one single best solution can be presented,
but rather the generic effect of changes in the objectives on the
theoretical optimal land-use composition. For this purpose the
model can be used to generate multiple optimal solutions, for
example, to reflect different objectives, knowledge and percep-
tion or risk attitudes of stakeholder groups, by solving the opti-
mization problem multiple times with different input
coefficients as part of a sensitivity analysis or in-/excluding
objectives (Kaim et al., 2018; Matthies et al., 2019). Alterna-
tively, generating the whole efficiency frontier of Pareto opti-
mal land-use compositions via Pareto-based multi-objective
optimization (see e.g approach by Strauch et al., 2019) can be
an advantage when discussing results with experts as demon-
strated by Kaim et al. (2020). However, this way of displaying
and interpreting multi-dimensional trade-offs may be challeng-
ing for stakeholders (Kaim et al., 2020). Displaying simple pie
charts of land-use compositions may be more intuitive when
discussing the effect of in- or excluding objective(s) or chang-
ing the accepted uncertainty level with farmers, researchers and
other stakeholders. Due to the low computational power
needed, re-running the model with different objectives or
weights can be done interactively (i.e. in an R Shiny App)
within seconds. Such an approach would follow the philosophy
of collaborative modelling (Basco-Carrera et al., 2017), with
the aim of allowing for a co-learning process, involving the
knowledge of all stakeholder groups and aiming at achieving a
common system understanding (Voinov et al., 2018).

Until now, studies featuring the presented robust optimi-
zation model have integrated stakeholders only a priori,
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either through input generation by the AHP process (Reith et
al., 2020; Uhde et al., 2017) and ranking and scoring tech-
nique (Gosling et al., 2020) or by including land-use prefer-
ences as a separate indicator derived from rankings provided
by household interviews (Knoke et al., 2016, 2020). Future
research should also include stakeholder participation during
or after modelling. For example, using the interactive
approach outlined above could enable a discussion on feasi-
bility, preferences and potential farm constraints. But, the
approach can also be used in a positive way in order to
reveal which objectives seem to drive current land use (Gos-
ling et al., 2020). This can also be done by estimating which
set of objectives generates the optimized land-use composi-
tion most similar to the current land use. From our experi-
ence with pre-tests of these approaches, we recommend one-
to-one interviews rather than workshops for such modelling
exercises, which is in line with findings from Pareto-based
approaches (Kaim et al., 2020). The support of experts from
the social sciences and psychology will be needed to scien-
tifically assess reactions and learning processes among all
participants, including the scientists involved.

Model results can also be used in a participatory forecast-
ing gaming approach. In such gaming sessions, our model
results may represent potential future landscape compositions
that can be discussed among stakeholders (Andreotti et al.,
2020). This may facilitate understanding of land-use deci-
sions, and obstacles and opportunities for developing a multi-
functional landscape. In a subsequent backcasting workshop,
stakeholders could identify required steps to change land-use
allocation from the current land-use situation into the envi-
sioned future scenario (Andreotti et al., 2020).
Conclusions

The robust multi-objective optimization model presented
here is one of a range of advanced mechanistic modelling
approaches (e.g. Grass et al., 2020; Lusiana et al., 2012;
Palma et al., 2007) to investigate the role of agroforestry in
future landscape matrices. Here we focus on aspects of agro-
forestry, while the model may be applied to a range of land-
use allocation questions and contexts, such as forest restora-
tion (Knoke et al., 2016), forest management (Knoke et al.,
2020) or purely agricultural landscapes (Knoke et al., 2015).
Using an example application from eastern Panama, we
showed that the model can be used to envision desirable land-
use allocations and rapidly investigate trade-offs between eco-
logical and socio-economic objectives from different perspec-
tives, which could be discussed with the respective interest
groups. Our example application found that agroforestry is
integrated in theoretically optimal land-use compositions
meeting multiple needs under uncertainty. However, the type
and share of agroforestry included in the optimized land-
scapes was heavily influenced by stakeholders’ perceptions.
We highlight that we focused on a normative application of
the model in this study to assist decision making and not to
prescribe land-use allocation. However, the model can also be
used as a positive approach to model land-use decision-mak-
ing, for example, to reproduce past deforestation trends and
obtaining hypotheses about future deforestation (Knoke et al.,
2020). The model, however, is not suitable for an exact pre-
diction of future land-use dynamics, and (at least in its current
form) for representing detailed aspects of landscape configu-
ration, as well as ecological and socio-economic interactions
between land owners. From our experience, the model’s
greatest strengths are that it can synthesize empirical and
modelled data from different sources, that uncertainty is inte-
grated into the objective function directly influencing land-
use allocation results, and that it is parsimonious in its data
and computational requirements. We believe that the model
has potential for future development of hybrid models. To
reduce drawbacks of individual models and better account for
complexities in indicators related to ecosystem functioning
and biodiversity, the model could for example be coupled
with process-based and agent-based models in the effort to
support sustainable and multifunctional land-use planning in
an uncertain world.
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