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Abstract

Assessing the risks for natural catastrophes in property (re) insurance continues to be notably challenging
for underwriters. This is due to the low frequency and high severity nature of catastrophic events. By
using statistical models with high precision and strong predictive capabilities - insurers can accurately
assess the varying risks found in insurance data. This allows them to measure their potential losses
with confidence. Currently, the practical use of available predictive models often does not reflect these
conditions and lacks the flexibility required. To address these issues, in this study, we use real-life
insurance pricing data and propose models to predict and assess the average rate of loss - in the
Caribbean. Specifically, our modelling approach starts by assessing the classical linear models and then
extending to the linear mixed and generalized linear models. Here we focus on log-normal and gamma
models to accurately capture the high severity of large losses. This study aims to propose the best
suitable model given the underlying data, which attains high predictive accuracy. Our results show that
the linear mixed model can predict the average loss ratio with high precision. These multilevel models
account for varying e�ects found in di�erent risk class levels (random e�ects), with fixed and interaction
e�ects of various risk factors. We confirmed these findings by evaluating the model’s performance with
new unseen (test) data sets.
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1 Introduction

The general idea behind reinsurance is often described as the ‘insurance of insurance companies’
(Hewitt, 2014). In other words, it is the practice of an insurance company contractually transferring
portions of underlying insured risks to another insurance company (the reinsurer). In return, the
primary insurer of the policy (who seeks to transfer portions of the financial burden) shares the amount
paid out by the policyholder (for the insured risk) - known as the policy premiums - with the reinsurer
(Cremer, 2020). This scenario includes three parties: a policyholder, a primary insurer, and a
reinsurer - such that there is no contractual agreement between the insured and the reinsurer (Scherer
et. al, 1998). From an insurer’s point of view, a claim is ’a loss event’, as the insurer is required to
economically compensate the policyholder based on the reported (insured) event. In other words, the
costs paid out by the insurer for the damages (covered by the insurance policy) are known as losses.

‘Non-life insurance’ policies often provide coverage for damages concerning automobiles, business
interruptions, or property damages caused by catastrophic events. The burden of large losses motivates
primary insurers to seek reinsurance solutions (Ng et al., 2019). Based on Pfeifer and Langen (2021),
the insurance company has limited capital to cover all losses caused by catastrophic events; therefore,
they need to transfer the risk to the reinsurance, that is, to purchase a catastrophic reinsurance
contract. The catastrophic reinsurance contract will protect the insurance company from the immense
risk of claims from a group of policyholders that collectively claim their loss caused by a particular
event. A reinsurance agreement (referred to as a ‘treaty’) involves only the primary insurer (known
as the ‘client’ in this study) and the reinsurer - who shares the losses. This implies that reinsurers
support their clients with key risk management tasks. Primarily, to withstand the financial burdens of
high-severity and low-frequency events. For this reason, reinsurance portfolios typically consist
of a higher number of risks compared to their clients (the primary insurers). This means that not
only is it crucial for reinsurers to estimate these varying risks accurately, but it is also significantly
challenging (Hewitt, 2019).

Estimating these risks (based on the client) with unpredictable fluctuations in the loss expenditures
(also referred to as the ‘claims expenditures’) - are known as the underwriting risk (Torre-Enciso
and Barros, 2013). Underwriting risk measures the di�erence between the actual total loss (i.e. ’actual
costs of claims) and the expected loss burden incurred in claims expenditures. Hence, given a set of
risk attributes (properties related to the risk)- an underwriter is responsible for estimating and
determining each underwriting risk - to ultimately decide on whether or not the risk should be insured
(by the insurer or reinsurer). This means that underwriters (who forecast the underwriting risk for
each client) are also responsible for pre-determining the appropriate premiums and premium

rates for each risk per client, treaty, market, or policy year. In other words, they must determine the
appropriate costs of insurance protection - which are unknown at the sale of the treaty (Pantelous
and Passalidou, 2013). However, given the volatile nature of these ‘property catastrophe treaties’ -
especially in the Caribbeans (due to the low loss frequencies and high loss severity loss events) - it
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Chapter 1. Introduction

is often extremely challenging for an underwriter to accurately estimate the di�erent risks (Pollner,
2001). Specifically, due to the nature of these loss events, it is challenging to forecast, calculate and
estimate the overall risks at each risk class level (i.e. per client, treaty, market, or policy year). To
ultimately ensure that these estimates of premiums (per client) are based on highly accurate statistics.
Although the overall premium per client is mainly based on the historical losses and risks, estimates of
predicted future insured losses, the generated revenue or capital income of future losses based on treaty
coverage (‘reserves’), and the cost of capital (expected profit). If the premiums are too low and the
risk is underestimated, both the client and reinsurer bear great economic losses. These calculations,
historically, in insurance pricing and underwriting risk analysis (especially in reinsurance) did not
utilize nor involve much statistical analysis and methods (Ohlsson and Johansson, 2010). Thus, there
is a need for statistical methods to estimate the expected losses - especially in varying risks.

Therefore, this study focuses on underwriting risks in reinsurance arising from the nature of loss events
- in the Caribbeans. We specifically look at property catastrophe and large loss treaties designed to
protect against large cumulative losses under multiple policies caused by a single natural disaster
or other large-scale loss events (Roth Sr and Kunreuther, 1998). The first objective is to provide
tools and statistical measures to compare the historic observed (‘realized’) losses given client and
treaty data (given the expected loss output provided by internal insurance pricing models). Then
secondly, to estimate the predicted loss in property underwriting risk at di�erent risk class
levels (per client, treaty, and country - in the Caribbeans). By proposing a model which describes how
the aggregated loss varies and depends on various significant rating factors (i.e. covariates based on
the properties of clients, policyholders, treaty, or loss events).

To achieve this, we utilize two important key risk measures in property insurance treaties - given a
certain risk class of losses - per client - (categorized by types of loss events) to answer the following key
questions:

1) How often does this event occur? (Frequency)

2) What is the aggregated amount of loss - given the type of loss event? (Severity)

By modelling the total loss by the frequency-severity method - defined as the Loss Ratio in this
study (often also known as the "pure premiums") - we can estimate the relationship between the
di�erent risk attributes (i.e. rating factors such as properties based on the clients, treaties, countries,
and duration of the treaty). To examine this relationship, we also utilize common statistical tools
(found in actuarial statistics) to model the given insurance data (provided from the reinsurance’s
point-of-view). This allows us to estimate the cost of a loss event (Borowicz and Norman, 2006).

There exists a lack of studies focused on assessing internal models implemented by insurance companies
(Valeckỳ et al., 2017). Many studies (see Zapart (2013) and Gómez Déniz and Calderín Ojeda (2013))
state that the internal insurance model should be primarily based on either: (1) the constructed
probability distribution based on the aggregated losses (derived using classical risk theory) or (2) by
Generalized Linear Models (GLMs) utilizing individual rating factors. The first types of models
are known as "collective risk models" (as the losses considered are aggregated with collective risk). Even
though, in non-life insurance, typically regression models are often used to describe the total claim
amount - or aggregated losses - considering the whole portfolio as a collective. The cost of insurance
(or annual premiums) may not reflect relevant rating factors (individual characteristics) nor account
for the increasingly annual premium di�erentiation resulting from recent events (Eling et al., 2007).
Given our study design of natural catastrophes or large losses in the Caribbean - here, we focus on
statistical models which allow us to estimate losses that vary between clients, treaties, countries, and
treaty years (in other words, considering the risk classes). More specifically, to best estimate the

2



Chapter 1. Introduction

frequency-severity (the loss ratio) for property insurance in underwriting, concerning individual
rating factors, we focus on GLMs.

Since the first application of GLMs by McCullagh and Nelder (1989) to model the claim frequency -
GLMs have been proven to be quite e�cient and the standard approach for many insurance companies
and actuaries around the world (Nelder and Verrall, 1997). To date, the applications of GLMs in
insurance can be found in loss or claims reserving, reinsurance, tari� analysis or mortality forecasting or
in the reinsurance context (for examples, see Xie et al. (2018)). Since in non-life insurance pricing, the
classical linear models (LMs) are not entirely suitable or may not allow for appropriate modelling.

This is due to the key assumptions concerning:

i) the probability distributions or normality (where the random errors are assumed to be normally
distributed) and,

ii) linearity (such that the model of the mean or that the expectation of the response variable is
assumed to be a linear function of the explanatory variables).

Thus, the popularity of GLMs methods mainly stems from solving these problems. Firstly, it extends
to distributions to the exponential family, allowing for regression analysis in non-normal data. It allows
for appropriate modelling in non-life insurance pricing data, containing heavily skewed count or binary
data (Antonio and Beirlant, 2007). Secondly, it allows for modelling the additive e�ect of the covariates
based on the transformation of the mean (where the linear and multiplicative models are special cases);
see Ohlsson and Johansson (2010) for examples.

Additionally, through the applications of GLMs, we can also account for heterogeneous risks (varying
risks between rating factors). A more in-depth discussion on the key assumptions is later provided in
this study. Nevertheless, GLM theory generally requires a sample of independent random variables.
Though this is a fundamental assumption, due to the nature of insurance data, this assumption is
generally not fulfilled in many actuarial and statistical problems (Lee et al., 2018). Mainly, for this
study, given the nature of dependency in natural catastrophic events, a large number of treaties, clients,
or countries are significantly a�ected by one natural disaster (such as, for example, a hurricane or a
flood). For this reason, we could potentially also look at the applications of Generalized Linear
Mixed Models (GLMMs), an extension of GLMs and appropriate for dealing with heterogeneity
risks and for data types such as longitudinal, spatial or generally clustered data (where the independence
assumption is often not fulfilled, see for instance Edwards et al. (2008)).

In non-life insurance, we often deal with longitudinal data as our data sets consist of loss observations
or risk characteristics that belong to the same policyholder (which may be related). More specifically,
in our case, our longitudinal data consists of repeated measurements on a group of risk classes

- which share risk characteristics (for a client, such as for a collection of treaties, countries, treaty
years, etc.) and losses observed for the same client over time. Hence, it is noteworthy that correlation
structures between a client’s loss observations and independent risks cannot be ignored and, thus,
should be accounted for or further investigated through various statistical modelling tools (such as
linear mixed models).

Linear Mixed Models (LMMs) have comprehensively been utilized for statistical tools and mod-
elling in longitudinal data. According to Antonio and Beirlant (2007), in an insurance context, LMMs
extends the classic linear regression model to incorporate client-specific individual e�ects (random

e�ects) alongside rating factors - treated as fixed e�ects - in the structure for the mean. For premium
rate-making, Frees et al. (1999) and Ohlsson and Johansson (2010) illustrate how LMMs and mixed
e�ect models provide great advantages in actuarial data, precisely for handling categorical variables
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Chapter 1. Introduction

with a large number of groups or levels. Therefore, in this study, given a set of reinsurance data

consisting of large catastrophic losses, we investigate how the estimates based on the underlying
data can be improved by using di�erent specifications and classes of models (i.e. comparing LMs,
LMMs, or GLMs). Specifically, we compare how well these models perform or how well our data-sets
can be estimated in di�erent given scenarios: such as when we account for random e�ects or not,
with respect to the frequency-severity (or loss ratio) rates. In other words, we need to investigate
and compare how the estimates of loss ratios are a�ected for each model class. We also analyze the
estimates using di�erent GLMs and LMMs model specifications - concerning the distribution of the

loss ratio using the loss severity and frequency.

1.1 Outline

First, in Chapter 2, we briefly define key concepts in an insurance context and the mathematical and
statistical concepts in risk theory related to this study. Specifically, in Section 2.1, we first define
the hierarchical structure of the risk class levels found in our data set (i.e. the clients, treaties, and
countries) and risk measures used in this study. Based on this, in Section 2.2, we then provide the
mathematical framework of each risk measure considered in this study. This includes outlining the
frequency-severity method to model the response - the loss ratio per exposure volume (in Section 2.2.6).
Chapter 3 provides the theoretical background of the models and performance measures used in this
study. We start by introducing the classical normal linear model (LM) framework in Section 3.1, which
includes the basic model assumptions and general formulation. This also includes the parameters
and specifications of the model building. We then repeat this for the model formulation of LMMs
(in Section 3.2.2) and GLMs (in Section 3.3.1). Whereas, in Section 3.4 we define the performance
evaluation measurements and diagnostics measures used in our study. This includes defining the
goodness of fit measures and the statistical tests used per model class.

Furthermore, the analysis of the insurance data and exploration were conducted and outlined in
Chapter 4 - not included nor provided in this publication due to confidentiality reasons. This included
a description of all variables contained in the data sets for this study. Additionally, we also utilize
additional Explanatory Data Analysis (EDA) tools to provide more insights into our data set
and further analyze the response at each risk class level (through univariate and multivariate analysis.
Following this, the discussion of the results of all the natural catastrophe models analyzed is provided
in Chapter 4. We start by comparing the results of the LMs (in Section 4.1) and then perform residual
analysis on the best performing LM (see Section 4.1.1). The same process of assessing then repeated for
LMMs, in Section 4.2, and for GLMs in Section 4.3. Then, in Chapter 5, we select the best performing
model out of all model classes considered in this study. This includes analyzing each selected model’s
performance on the testing data and then providing a final interpretation of the selected model (see
Section 5.1). Finally, our main findings and study conclusions are discussed in Chapter 6.
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2 Basic Concepts in Risk Modelling for
Insurance Pricing

In this chapter, we start by presenting basic concepts in non-life insurance, and define the key risk
components found in this study. Then, based on these definitions and concepts, we mathematically
define our random variables and our variable of interest, i.e. our risk measures.

2.1 Risk Components

The costs of insurance protection (the ‘premiums’) are unknown at the sale of the treaty (Frees, 2018).
This means both primary insurers and reinsurers must predetermine the appropriate price for each
insured risk. For this reason, "individual insurance characteristics" (policyholder or client level risk
attributes) are often analyzed and "pooled" together - to forecast the premium rates (the cost of
insurance). Risk attributes at each risk class level - are referred to as the ’risk rating factors (Ohlsson
and Johansson, 2010). This means we aggregate information of treaties (policies) with common
properties to group together attributes into classes - with varying risks, losses, or premiums. This
information on the risks include, for instance, data regarding the premium, claim counts, exposures,
losses, or regions (typically obtained by various databases (Dahen and Dionne, 2010)).

Payments caused by insured random events occurring within an active treaty period is called ‘insurance
claims’. From an insurer’s point of view, the total cost of paid and outstanding claims arising within
the treaty, the period is known as a loss. For this study, we look at two specific aggregate claim
databases (from the reinsurer’s point of view):

• Treaty (Policy) Database: contains data about the risk concerning the insured, and the
properties of the policyholder (i.e. line of business, location, insured objects) with the treaty
provisions (type of treaty)

• Claims Database: contains data and properties of the losses and claims - based on the policy
database. This also contains related geographic policy properties (such as countries, markets, or
geographic regions, or general properties related such as income per capita, economic statistics,
population density, etc.).

To estimate the loss ratio (or loss severity and frequency), we analyze risks given individual rating
factors grouped by risk class levels. This allows us to model the statistical relationship between the
expected loss ratio and the di�erent rating factors, given the groups of risk class levels.
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Chapter 2. Basic Concepts in Risk Modelling for Insurance Pricing

2.1.1 Risk Class Levels

Typically in multiplicative models in actuarial pricing or tari� analysis - it is assumed that the structure
of the rating classes reflects the quality of each risk class group appropriately. Therefore, we can
estimate the frequency and severity based on the groups of the risk class levels by aggregating or
computing the total losses based on their ’risk class levels’ which share similar risks. To illustrate
this, we outline an example of the simple non-parametric modelling approach provided by Wuthrich
(2020).

Assume R denotes the number of rating factors or explanatory variables. Each rating factor r œ R is
then divided into risk classes. For a rating factor i the number of risk classes is denoted by ri. For
simplicity, let us consider two covariates, R = 2. Then, suppose for the first covariate we choose I
risk levels (labels) such that i œ {1, . . . , I}, while for the second covariate we choose J risk levels
j œ {1, . . . , J }. Then, as shown in tab:riskclasses, we have R = I · J risk classes (categorical).

1 · · · j · · · J

1
.
.
.

i risk classes (i, j)
.
.
.

I

Table 2.1. Example of risk class groups and levels. I and J for R = 2 covariates.

In this example, the risk classes (i, j) represent the risk class belonging to the first and second covariate,
respectively. Hence, by "clustering" or grouping similar risk class levels, we can build risk cells
(which share similar policy-based characteristics). This allows for non-parametric modelling and, more
importantly, introduces a categorical approach for modelling heterogeneous risks.

Hence, in this study, we use the following risk class definitions and levels:

Clients. Consider K total clients, such that each index k, k = 1, , ..., K denotes a unique indepen-
dent client k.

Treaties. In this study, an insurance contract between client k (the primary insurer) and the reinsurer
is referred to as a ’treaty’. Such that, if there are P

k total number of treaties of client k

(insurance contracts), then a treaty of client k is indexed by i, i = 1, .., P
k.

Countries. Due to the nature of this study (with multi-island clients in the Caribbeans), we also
analyze the realized incurred losses per market (referred to as ’country’) per client k. Let Mki

be the set of all countries considered in this study (located in the Caribbeans), by client k.
Then the country insured by i-th treaty, for a client k - is given by j, j œ Mki.

Treaty Year. (Underwriting Year). The calendar year to which business is allocated to monitor
underwriting statistics - is known as the (underwriting) treaty year is fixed. We consider each
incurred loss at the time (given in years) known as the ’treaty year’ Let T kij be the set of all
treaty years for country j, within treaty i of client k. Then, each t, t œ T kij is the treaty
year in the i-th treaty of client k (in country j). For this study, each treaty year t is fixed to one
accounting (underwriting) year.

By aggregating the losses at each risk class, we can control some of these risks in a acceptable way
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Chapter 2. Basic Concepts in Risk Modelling for Insurance Pricing

if the number of treaties and risk classes are large. Hence, we first group together all risk attributes
(covariates) belonging to an individual client and aggregate them based on common shared properties
(i.e. their treaties, countries, and treaty years). This allows us to model the ’total loss amount’ with
di�ering risks (heterogeneous risks). However, to model the loss ratio in relation to the risk-related
variables individually - known as ’risk attributes’ (i.e. properties of risk class levels and attributes,
policyholder, etc.) - we must first define the ’risk measures’ - required to calculate the loss ratio -
at each risk class level.

2.2 Risk Measures

Following the definitions outlined by Ohlsson and Johansson (2010), we introduce the risk measures
utilized in this study (including the premium rating factors, commonly found in models for non-life
insurance pricing) as:

Loss Amount. The random loss, denoted by X{•}, is the loss amount reported for the coverage -
corresponding to the risk class level (given in monetary units). In this study, this is our variable
of interest (in addition to the exposure volume). The average total loss amount given the number
of losses per risk class level - is often known as the loss severity denoted by S{•}.

Loss Frequency. The random number of loss events per risk class level, denote as N{•}. In this study,
we consider the average number of losses per exposure volume unit known as the ’standardized
loss frequency’, N

v

{•}.

Exposure Volume. In this study, we consider a collection of di�erent heterogeneous risks. Thus, to
conduct comparable analysis based on the di�erent individual risks for a client k based on the risk
class levels (i.e. for all P

k treaties, Mki countries, and, T kij treaty years) - we standardized our
random variables with a volume measure - referred to as the ’risk exposure’, v{•}, (a deterministic
variable).

Loss Ratio (Key Loss Ratios - Response). As the random loss amount, X{•}, depends on the expo-
sure volume the response variable, given by v{•} - rather than considering only the response
variable - analysis is conducted on the ratios of the random variable X{•} with di�erent exposure
volume measures, i.e. X{•}

v{•}
(at di�erent risk class levels). In other words, if X is our random

variable of interest and v is our volume of exposure. Hence, here the general ratio, given by LR,
is defined as LR = X/v (also called the key loss ratio).

Note, all key loss ratios often used in similar studies are of the same type (Ohlsson and Johansson
2010). In other words, the loss frequency, severity, and loss ratios defined above are all types of ’key
loss ratios’. These ratios di�er based on the di�erent exposure measures v{•} (at di�erent risk class
levels) and the random variable of interest X (for example, see Table 2.2).

Due to the scope of this study, we focus on key loss ratios concerning only the random loss amount
X{•} - as our response variable - while utilizing various exposure volume units for di�erent loss
events. Specifically, we use the amount of insurance coverage as our exposure measure for natural
catastrophic loss events (in property insurance). This is often used in commercial business properties
as the amount of insurance increases as property values grow with inflation (i.e. estimates are less
sensitive to inflation). Whereas for large losses we choose the amount of premiums (cost of insurance
coverage paid by the policyholder) as our exposure volume measure.

We now mathematically define each risk measure considered in this study - in order to estimate the
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Variable of Interest X Exposure V
Key Loss Ratios:
LR = X/V

Counts of Random losses
Length of Treaty Coverage

(years)
Loss Frequency

Amount of Random Losses

(cost)
Counts of Random Losses Loss Severity

Amount of Random Losses

(cost)

Length of Treaty Coverage

(years)

Known as ’Pure Premium’

(referred to as ’Loss Cost’)

Amount of Random Losses

(cost)
Earned Premium (currency) Total Ratio of Claims / Losses

Count of Large Losses Counts of (all) Random Losses Proportion of Large Losses

Total Premium

(currency)

Total Amount of Sum Insured

(currency)
Rate

Table 2.2. Description of typical key loss ratios commonly found in actuarial studies.

loss ratio, LR{•}, at each risk class level.

2.2.1 Random Loss Amount

The classical individual risk model (in risk theory) often focuses on each random loss arising from
each risk class level, aggregated over di�erent risk attributes or rating factors, such as treaty i for a
client k. In this section, we first define the random loss amount (given in monetary values) based
on the k-th client (required to later calculate the ’severity’, i.e. the average loss per event, in Section
Section 2.2.5). Specifically, we define the individual amount of random individual losses (or simply
‘random losses’) - given in monetary values (i.e. a positive continuous random variable) - and aggregate
the individual losses at each risk class level (i.e. based on each k-th client per i-th treaty and j-th
country, in t treaty years).

Definition 2.1: Random Individual Loss Amount

Assume the random variable Xkijtl denotes an individual random loss amount for a loss
l, l œ Lkijt observed for a client k, k = 1, ..., K, in treaty i, i = 1, ..., P

k at country j œ Mki -
which occurred in treaty year t œ T kij . Then the sum of all l losses, given by,

Xkijt :=
X

tœT kij

Xkijtl , for k = 1, .., K, i = 1, .., P
k
, j œ Mki

, (2.1)

is the random loss amount which belongs to the risk class level group (k, i, j, t).

This means that the aggregated individual random losses, Xkij , over all T kij
treaty years can

be defined as

Xkij =
X

tœT kij

Xkijt , for k = 1, .., K, i = 1, .., P
k
, j œ Mki

, (2.2)

based on a client k, within treaty i and country j.

Whereas,
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Xki =
X

jœMki

Xkij =
X

jœMki

X

tœT kij

Xkijt , for k = 1, .., K, i = 1, .., P
k
, j œ Mki

. (2.3)

is the the aggregated of random loss events per treaty over all Mki
countries. Based on

this, we can now calculate total random loss for each client k based on all above risk classes.

Definition 2.2: Total Random Loss

The the total random loss of client k is denoted by Xk, calculated as

Xk =
P

kX

i=1

Xki =
P

kX

i=1

X

jœMki

Xkij =
P

kX

i=1

X

jœMki

X

tœT kij

Xkijt , for k = 1, .., K,

(2.4)

which is the sum of random losses of client k over all P
k treaties and Mki countries.

This means that (from a reinsurer’s point of view) the ’ultimate’ total amount of random loss
based on all K clients can now be defined as

X =
KX

k=1

Xk. (2.5)

For an example of the breakdown of each total random loss based on client k (such that k = 1) see
Figure 2.1. Based on a client (k = 1), it illustrates a flowchart for two treaties i with countries j œ Mki,
given the t œ T kij treaty years. The total random loss amount for a client k = 1 is given by each
node (risk class level). Here, the client k has two treaties i = 1, 2 that provides coverage provided in
countries j. Treaty i = 1 is active for two countries j - such that, in the first country is active for 2
treaty years t and the second country is active for one treaty year t. Whereas, treaty i = 2 is only
active in one country j but provides coverage for three treaty years t.

2.2.2 Random Loss Counts

By analyzing the random counts or the number of loss events (also known as the number of risks
or ‘claim counts’), enables us to account for the risk attributes that influence the occurrence of a loss
event. Also, by doing this, we can further investigate high or low occurring loss events - based on the
k-th client who has a treaty i in-country j, for the treaty year t.

Similar to the set-up for the random losses above, we can now also define the frequency N{•} per risk
class level.

Definition 2.3: Random Counts of Loss

Let the random count (discrete) variables Nkijt denote the number of random loss events
(random counts), for each random loss in t œ T kij treaty year - in country j of treaty i for
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each client k, k = 1, ..., K. Such that, we set l, l œ Lkijt as an index for a loss occurring in treaty
year t (in country j of treaty i for each client k, k = 1, ..., K). Then, the number of random loss
events for a random loss t are given by

Nkijt =
X

lœLkijt

Ikijtl , for k = 1, .., K, i = 1, .., P
k
, j œ Mki

, l œ Lkijt
, (2.6)

where Ikijtl are indicator (count) random variables defined as

Ikijtl :=
®

1, if the l-th loss occurred in year t, at country j for treaty i of client k
0, otherwise, (2.7)

based on a client k, k = 1, .., K, with treaty i, i = 1, .., P
k, valid in country j, j œ Mki - for a loss

occurring within the period of the treaty year t, t œ T kij .

Figure 2.1. Breakdown of Random Losses per Risk Class Level. Based on a client (k = 1), a flowchart is
illustrated for two treaties i with (overall) two countries j, given the respective treaty years t.

Thus, if the total number of random losses which occur within a treaty year t, t œ T kij (based on
country j active in treaty i for a client k, k = 1, ..., K) - is given by Nkijt. Then the corresponding
frequency of random loss events over all T kij treaty years, denoted by Nkij , is calculcated
as:

Nkij =
X

tœT kij

Nkijt , for k = 1, .., K, i = 1, .., P
k
, j œ Mki

. (2.8)

for the k-th client’s treaty i in country j.

Whereas, the frequency of random loss events over all Mki countries (in treaty i for client k)
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is given by Nki, where

Nki =
X

jœMki

Nkij =
X

jœMki

X

tœT kij

Nkijt , for k = 1, .., K, i = 1, .., P
k
. (2.9)

This allows us to now calculate the frequency of the total of random loss events of a client k.

Definition 2.4: Total Random Loss Counts

The total random loss counts for the k-th client is given by

Nk =
P

kX

i=1

Nki, for k = 1, .., K

=
P

kX

i=1

X

jœMki

Nkij

=
P

kX

i=1

X

jœMki

X

tœT kij

Nkijt ,

(2.10)

which are aggregated over all, based on the client k T kij treaty years in Mki countries and P
k

treaties.

This implies that the frequency of the "ultimate" random loss for the reinsurer, for all K

clients, is

N =
KX

k=1

Nk. (2.11)

Figure 2.2 provides an example of the flowchart of how each random loss count N{•} (frequency) is
aggregated and the respective breakdown of a client k (indexed as k = 1). In this example, the client
k = 1 has two treaties (i.e. P

k = 2)- indexed by (treaty ID’s) i = 1 and i = 2. Such that the first
treaty is active in two countries - labelled as j = {1, 2} (for simplicity) for a country j œ Mki. The
first country is valid for two treaty years t while the first treaty i = 1 provides one year of coverage for
the second country. Whereas for the second treaty, i = 2, is active for only one country in Mki but
provide coverage for three treaty years.

As each i-th treaty for the k-th client is not the same - we must consider a collection of di�erent
heterogeneous risks (within the individual risks). In other words, there exist variations of risks for the
client k, based on di�erent attributes (risk characteristics) within all P

k treaties, for Mki countries,
and, during T kij treaty years. Hence, we introduce ’risk exposure measures’ (deterministic) to make
these risks for all K clients more comparable - by standardizing or adjusting our losses by the exposure
(deterministic) units.

2.2.3 Exposure Volume

Estimating and utilizing the appropriate risk exposure for the upcoming treaty year, t, is a key task in
underwriting (Blakley et al., 2001). As it is crucial we take into account the client k’s historic losses,

11



Chapter 2. Basic Concepts in Risk Modelling for Insurance Pricing

Figure 2.2. Flow chart of Random Counts of Losses, N{•}. Here, each node represents aggregated random counts
for a client k , indexed as k = 1.

their strategy - while also adjusting for current economic factors and situations. Though there exist
di�erent exposure measures, for this study, we consider and compare two di�erent exposure measures
(premiums and the sum insured) - suitable for property insurance - referred to as the volume of

exposure

More specifically, we use the following measures for the exposure volumes:

(1) Premiums. Fixed amount paid (to the primary insurer) by the policyholder to cover the risk. In
other words, the cost of insurance coverage provided by a policy. Based on the various factors of the
policyholder, such as historic losses, type of business, estimated loss size, and frequency. Specifically,
in this study, we look at ‘written premiums’ - which is the cost of coverage of the i-th treaty (per j

country) issued (‘underwritten’) during the treaty year t in question (given monetary values).

(2) Sum Insured. Total amount of coverage payable for a single or multiple loss during a treaty
period t. Often referred to as ’Aggregates’, it is the volume or portion of the total loss to be covered
by the annual risk premium.

Note, for this study; we only consider the total or entire amount of insurance losses per k client - before
any treaty deductibles, policy limits, or any application of any retention or reinsurance (known as the
’Ground Up’ Loss).

Hence, here we introduce ’risk exposure measures’, v, (deterministic) to make these risks for all
K clients more comparable - by standardizing or adjusting our random loss counts by the exposure
(deterministic) units. Similar to the set-up of the total random loss counts and loss severity, we now
define the exposure volume for each client k, treaty i, j treaty and treaty years t.

Definition 2.5: Volume of Risk Exposure
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Let vkijt denote the individual volume of the exposure for client k, (k = 1, .., K) in treaty
i (i = 1, .., P

k) and country j œ Mki per treaty year t œ T kij . Then, for client k,

vkij =
X

tœT kij

vkijt , for k = 1, .., K, i = 1, .., P
k
, j œ Mki

, (2.12)

is the exposure volume over all T kij treaty years, in the i-th treaty coverage for a country
j.

This means that,

vki =
X

jœMki

vkij =
X

jœMki

X

tœT kij

vkijt , for k = 1, .., K, i = 1, .., P
k
, j œ Mki

. (2.13)

denotes the k-th client’s volume of exposure in all Mki countries and T kij treaty years,
based on client k with treaty i.

Similarly, the total volume of exposure can also be measured for each k-th client.

Definition 2.6: Total Volume of Exposure

For all P
k treaties belonging to the k-th client, with insurance coverage in Mki countries, and

for T kij treaty years - the total volume of exposure for a client k is given by

vk =
P

kX

i=1

vki, for k = 1, .., K

=
P

kX

i=1

X

jœMki

vkij

=
P

kX

i=1

X

jœMki

X

tœT kij

vkijt .

(2.14)

Then, the reinsurer can calculate the the cumulative volume of exposure over all clients, K

as

v =
KX

k=1

vki. (2.15)

It is important to note that, in this study, we require two di�erent exposure measures - since the
appropriate exposure volume is dependent on the loss event type of interest (based on the client k).
For instance, assume we only considered premiums as the exposure for catastrophic or large loss events
(entire loss or ground up). Then, not all loss or pricing developments attached to the risk coverage will
be reflected in the premiums for client k (which may produce inaccuracies in key measures, such as
loss severity). Since the coverage for previous treaty years t have di�erent development lengths - not
all premiums for all P

k treaties are written until the first evaluation date of treaty t (i.e. incomplete or
missing data for exposure volume).
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2.2.4 Loss Frequency (Standardized with Exposure Volume)

It is generally assumed that the number of losses is proportional to the exposure. This is especially
important in non-life insurance pricing, which means that we must standardize and scale our frequency
(random counts of losses N{•}) with the underlying volume of exposure. In this section, we now
define the standardized frequency of random loss counts to account for the exposure volume - given
in Equation (2.12) - often referred to as the claims frequency or loss frequency (Fowler, 1960). For
simplicity, because we are consistently using exposure to describe our random loss count variable N in
this study - we refer to the standardized loss frequency as the ’random loss frequency’, while the
random loss frequencies without adjusting for exposure volume is referred to as the ’random loss
counts’.

Definition 2.7: Random Loss Frequency - with Exposure

Let Nkijt be the number of random losses and vkijt be the volume of exposure units - in treaty
i, i = 1, ..., P

k, country j œ Mki, per treaty year t œ T kij (for client k). Then, the loss frequency
based on all T kij treaty years is denoted by N

v

kij
and calculated as

N
v

kij =

P

tœT kij
Nkijt

P

tœT kij
vkijt

, for k = 1, .., K, i = 1, .., P
k
, j œ Mki

. (2.16)

Then the loss frequency over all countries Mki and T kij , for a client k in treaty i is given by

N
v

ki =

P

jœMki
Nkij

P

jœMki
vkij

, for k = 1, .., K, i = 1, .., P
k
. (2.17)

Similarly, for the k-th client having Nk total counts of random losses, while the vk denotes the
corresponding volume of exposure for all P

k treaties. Then we can define the total loss frequency.

Definition 2.8: Total Random Loss Frequency - with Exposure

For the k-th client with P
k treaties and Mki countries, during the period of T kij treaty years,

the total loss frequency of random counts given by N
v

k
can be calculated as,

N
v

k =

P
kP

i=1

Nki

P kP
i=1

vki

, for k = 1, .., K, (2.18)

where Nki represents the random loss counts for the risk class (k, i), with corresponding exposure
volume vki.
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Finally, the ultimate loss based on all K clients with P
k treaties active in Mki countries

can be calculated as

N
v =

KP
k=1

Nk

KP
k=1

vk

, (2.19)

Based on this, if the (cumulative) exposure volume v > 0 represents the number of insured risks, then
the expected number of loss counts is given by

E(N) = ⁄v, (2.20)

where ⁄ > 0 represents the total expected loss frequency given by Equation (2.19). Note, at every risk
class level (k, i, j, t) we can express the expected loss counts or loss frequency similarly. Using this
we can later describe probability distributions for modelling loss counts N given the risk class levels
appropriately.

Additionally, given the above breakdown of the random losses and the random counts of losses (in
Definition 2.3), we can now also calculate the ‘Loss Severity’ - which is the average loss (amount) per
loss count or event for the k-th client.

2.2.5 Loss Severity

Often, the severity is also referred to as the ‘claim severity’, the ‘average cost per loss (’claim’) or the
’average size of claim or loss’. This means, for example - given the risk classes (k, i) - the loss severity
is the average loss Xki (of the i-th treaty for a client k) per loss count Nki. In this study, we denote
the severity as S{•}.

Definition 2.9: Individual Loss Severity

Assume the following,

• Xkijt is the random loss amount for a client k, with treaty i, i = 1, .., P
k active in country

j, j œ Mki - which is valid for the treaty year t, t œ T kij ,

• The total number of random loss events based on client k, treaty i, country j occurring in
treaty year t is given by Nkijt (frequency),

Then, if it holds that Nkijt > 0, then the (random) loss severity based on client k, treaty i, country
j - for treaty year t - is the amount of random losses, Xkijt divided by the number of random
losses Nkijt (for the respective client k, treaty i, country j, in treaty year t).

This is denoted as Skij and given as

Skij =

P

tœT kij
Xkijt

P

tœT kij
Nkijt

, for k = 1, .., K, i = 1, .., P
k
, j œ Mki

. (2.21)

This means that if the k-th client’s loss severity per t œ T kij treaty year, i-th treaty, and country j is
given by Skijt - then the loss severity for each all T kij treaty years is given by Skij .
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Hence, now can calculate the loss severity per treaty, Ski, for all Mki countries for a treaty i as

Ski = Xki

Nki

=

P

jœMki
Xkij

P

jœMki
Nkij

, for k = 1, .., K, i = 1, .., P
k
. (2.22)

Hence, we can now define the total severity of random losses, using Equation (2.3) and Equation
(2.9).

Definition 2.10: Total Severity of Random Losses

Over all treaties P
k, the total severity of random losses for the k-th client (for all i = 1, .., P

k

treaties, j œ Mki countries, and t œ T kij treaty years) is given by

Sk = Xk

Nk

=

P
kP

i=1

Xki

P kP
i=1

Nki

, for k = 1, .., K, i = 1, .., P
k
. (2.23)

Similarly, from the reinsurer’s point of view, we can now also calculate the cumulative amount of
random loss for all K clients by

S = X

N
=

P
kP

k=1

Xk

P kP
k=1

Nk

, (2.24)

aggregated over all P
k total treaties active in all Mki countries, based on all T kij treaty years (for K

clients).

Based on Definition 2.23, we can now express the mean of the random losses at each risk class (k, i, j, t)
in terms of the loss severity. For instance, consider the aggregated cumulative loss amount X. If we
make certain assumptions (based on the "standard" collective or aggregated risk model).

Assumptions 2.1: Collective Risk Model

1. The random loss counts N (at every risk class level) is a discrete random variable, with
values in N0,

2. The (positive) random losses are identically independently distributed (iid), i.e. for
the k-th client the losses, X1, X2, . . . Xk

iid≥ F (where F is the distribution function with
F (0) = 0), and

3. The loss counts and loss amount (at each risk class) are independent. If we further
assume the expected cumulative loss severity, considering all K clients, is given by µ.

Then given these assumptions are fulfilled - the expected cumulative loss (aggregated amount for the
reinsurer) can be expressed as

E[X] = E[N ]E[S] = ⁄µ, (2.25)
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for exposure volume v = 1, whereas the ⁄ is the expected cumulative loss counts as given by Equation
(2.20).

2.2.6 Loss Ratio

Finally, in this section, we can now define our response variable in terms of the risk measures defined
above by utilizing the frequency-severity approach to calculate the total ’Loss Ratio’ (commonly
referred to as ’pure premiums’ or lost cost in pricing principals). It is the loss per exposure volume
v. Our aim here is to estimate the average loss ratio and to cumulatively predict the risks based on
the risk classes (given by the expected loss frequency times the expected average loss severity). In
particular, we do this by (for instance) combining the client k’s random loss frequency, N

v

k
, with the

average severity of random loss, Sk, to determine the loss ratio, LRk.

This provides us with accurate measurements to estimate the overall loss of the risk or the size of
the loss ratio (based on the underwriting loss, see Viscusi et al. (1991) for more details). As both the
(scaled) frequency and average severity significant impacts the sum of all aggregated observed losses -
based on the combined risks - for all K clients with P

k total treaties in Mki countries, during T kij

treaty years (Zanjani et al., 2010).

Definition 2.11: Individual Loss Ratio

Based on Definition 2.7 and Definition 2.9, we can similarly decompose and calculate our response
variable: the loss ratio for client k for all treaty years t - per i-th treaty, j-th country. Thus, the
loss ratio LRkij over all treaty years for a country j œ Mki is given by

LRkij = N
v

kij| {z }
(scaled) loss frequency

◊ Skij|{z}
loss severity

, for k = 1, .., K, i = 1, .., P
k
, j œ Mki

=

P

tœT kij
Nkijt

P

tœT kij
vkijt

◊

P

tœT kij
Xkijt

P

tœT kij
Nkijt

∆

P

tœT kij
Xkijt

P

tœT kij
vkijt

= Xkij

vkij

(2.26)

for k = 1, .., K clients, i = 1, .., P
k treaties, and j œ Mki countries.

Consequentially, this means that for a client k’s loss ratio based on a treaty i - over all Mki

countries, LRki, is given by

LRki = Xki

vki

=

P

jœMki
Xkij

P

jœMki
vkij

, for k = 1, .., K, i = 1, .., P
k
. (2.27)

From this, we can now calculate the total loss ratio for the k-th client.

Definition 2.12: Total Loss Ratio

It holds that for all P
k treaties and Mki countries - the total loss ratio, denoted by LRk, is given
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by

LRk = Xk

vk

=

P
kP

i=1

Xki

P kP
i=1

vki

, for k = 1, .., K. (2.28)

Finally, this implies, the cumulative loss ratio, denoted by LR, for all K clients is aggregated as

LR = X

v
=

KP
k=1

Xk

KP
k=1

vk

. (2.29)

This implies, for instance, based on the expectation of the cumulative loss counts, ⁄, in Equation
(2.20), and the expected cumulative loss amount - from Equation (2.25) - we can express the expected

cumulative loss ratio for all K clients as

E[LR] = E
⇣

X

v

⌘
= E(X)

v
= ⁄µ

v
, (2.30)

for fixed v > 0 and assuming frequency-severity independence - given the number of total loss events
N and the total loss amount X for client k are independent.

Table 2.3. Summary of all defined risk measures and variables - with their respective notation and description
per risk class level, (k, i, j, t).

Variable Description Formula

k
Denotes the k-th client.
Client in this study refers to a primary insurer. k = 1, . . . , K

i

Index for i-th treaty belonging to the k-th client.
Treaty in this study refers to a policy between the client
and the reinsurer.

i = 1, ..., P
k

j

Country index for j within i-th treaty based on the k-th
client. This study only focuses on countries located
in the Caribbean.

j œ Mki

t
Index for treaty year t risk class. Treaty year is fixed to
one year and is based on the underwriting year. t œ T kij

Xkijt

Random loss amounts for l observed losses - belonging
to k-th client per i treaty, j country, and treaty year t. Xkijt = P

lœLkijt
Xkijtl

Xkij

The aggregated amount of random loss incurred for all
treaty years T kij within i-th treaty
and a country j for the k-th client.

Xkij = P

tœT kij
Xkijt

Xki

Aggregated Random Loss - for events that occurred in all
T kij ,treaty years, over countries
Mki in i-th treaty for k client.

Xki = P

jœMki
Xkij
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Table 2.3. Summary of all defined risk measures and variables - with their respective notation and description
per risk class level, (k, i, j, t).

Variable Description Formula

Xk

Total Random Loss - that occurred in all P
k treaties and

countries, during treaty years T kij ,
for a client k.

Xk =
P

kP
i=1

Xki

X
Cumulative Random Losses - aggregated over K clients.
From the reinsurer’s point of view. X =

KP
k=1

Xk

Nkijt

Random counts of loss events that occurred in all
t œ T kij for a client k, in j

country based on i-th treaty.
Nkijt = P

lœLkijt
Ikijtl

Nkij

Random counts of loss events that occurred in all T kij ,
Mki in treaty i for client k. Nkij = P

tœT kij
Nkijt

Nki

Random counts of loss events that occurred in all T kij

and Mki for a treaty i, based on client k. Nki = P

jœMki
Nkij

Nk

Total random loss counts for K clients,
P

k treaties and Mki countries. Nk =
P

kP
i=1

Nki

N
Cumulative Random Losses for aggregated over K clients,
for the reinsurer. N =

KP
k=1

Nk

Skijt

Loss Severity or the average loss amount for client k,
per i treaty, j country, and treaty year t. Skijt =

P
lœLkijtl

Xkijtl

P
lœLkijt

Ikijtl

Skij

Loss Severity incurred for all treaty years T kij

within treaty i and a j country. Skij = Xkij

Nkij

Ski

Loss Severity of the over all i = 1, . . . , Pk average random loss
for a client k. Ski = Xki

Nki

Sk

Total Loss Severity of the total random loss for a client k, over all
P

k treaties. Sk = Xk
Nk

S Cumulative Loss Severity for all clients K (reinsurance view) S = X

N

vkijt

Exposure volume (deterministic) for client k, per i treaty,
j country, and treaty year t. Exposure volume units can be
premiums or sum insured.

vkijt = P

lœLkij
vkijtl

vkij

Sum of exposure volume units for all treaty years
T kij within treaty i and a j country. vkij = P

tœT kij
vkijt

vki

Exposure Volume for all Mki countries and
T kij treaty years - given a client k, treaty i. vki = P

jœMki
vkij

vk

The Total Volume of Exposure for a client k. Aggregated over all
P

k treaties vk =
P

kP
i=1

vki,
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Table 2.3. Summary of all defined risk measures and variables - with their respective notation and description
per risk class level, (k, i, j, t).

Variable Description Formula

v
The Cumulative Volume of Exposure - aggregated
over all K clients. v = P

k=1

vk

N
v

kijt

Standardize Loss Frequency that occurred in all t œ T kij

for a client k, in country j of treaty i, given exposure volume vkijt

N
v

kijt
= P

lœLkijt

Ikijtl

vkijtl

N
v

kij

Standardized Random counts of loss events (Loss Frequency) that
occurred in all T kij

, Mki in treaty i

for client k, given exposure vkij .
N

v

kij
= Nkij

vkij

N
v

ki

Standardized Loss Frequency that occurred in all countries Mki

for a treaty i, based on client k, given exposure vki.
N

v

ki
= Nki

vki

N
v

k

Total Standardized Loss Frequency, aggregated over all P
k treaties,

given exposure vk. N
v

k
= Nk

vk

N
v

Cumulative Standardized Loss Frequency, aggregated over all K

clients, given total exposure v. N
v = N

v

LRkijt

Loss Ratio for client k, per i treaty, j country, and treaty year t.
The loss ratio is given by the loss amount divided by the
exposure unit vkijt per risk class.

LRkijt = Xkijt

vkijt

LRkij

Loss Ratio for based on loss in all treaty years within treaty i

for country j per client k. LRkij = Xkij

vkij

LRki

Loss Ratio based on all treaty years T kij , and countries Mki

in i-th treaty for client k
LRki = Xki

vki

LRk Total Loss Ratio per k-th client - over all P
k treaties. LRk = Xk

vk

LR Loss Ratio which occurred for all K clients LRk = X

v
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3 Statistical Models

This chapter outlines the theory behind the regression models selected for this study. We start at
simple regression methods by introducing the simplest and classical Linear Models (LMs). Then, we
first extend the LM framework to the Linear Mixed Models (LMMs), and later to Generalized
Linear Models (GLMs) framework. Thus, before we cover the framework of GLMs - we now provide
a brief overview of the LMs and LMMs frameworks.

3.1 Linear Models (LMs)

First, we briefly review some of the main principles of the classical linear models (prior to discussing
LMMs and GLMs as an extension of the LMs). This includes the outlying the general formulation of
LMs and defining the approaches used in this to estimate the model regression parameters.

3.1.1 General Formulation of LMs

Here, let i (i = 1, . . . , n) denote the i-th observation and p denote the number of parameters included
in the model. Then for the i-th observation, the LM is of the form

Yi = —0 + —1xi1 + · · · + —pxip + Ái, i = 1, . . . , n, (3.1)

where the LM describes the response Yi as a linear combination of the covariates xi1 . . . xip. The model
parameters include the intercept —0 with p parameters —1, . . . —p, and the random error term given
by Ái. This means, including the intercept, in total we have p + 1 regression parameters denoted
by m = p + 1. Recall that the standard assumptions of the classical LM include the following four
regression assumptions: linearity, independence, variance homogeneity and normality.

Assumptions 3.1: Linear Model

(A1) Linearity. The response variable Yi is expressed by a linear combination of the covariates
xi1 . . . xip, and includes the error random variable Ái with mean 0.

(A2) Independence. The errors Ái are independent random variables.

(A3) Variance Homogeneity. The error terms Ái are random variables with constant variance,

V ar(Yi) = V ar(Ái) = ‡
2
.
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Chapter 3. Statistical Models

(A3) Normality. The errors are normally distributed random variables.

For the error terms, from Assumptions (A2), (A3), and (A4), the random variables Á1, . . . , Án are
independent and identically normally distributed with E(Ái) = 0 and Var(Ái) = ‡

2, i.e.

Ái ≥ N(0, ‡
2).

Then based on the linearity assumption (A1) of Yi, we can now express the expectation of the

response variable Yi as a linear function of unknown regression parameter,

E(Yi) = —0 + —1xi1 + · · · + —pxip,

for n observations. Here we let xi œ Rm denote the (row) vector of covariates, xi = (1, xi1, . . . , xip)
for the i-th observation. Whereas, the (column) vector of the regression coe�cients is given by
— = (—0, . . . , —p)€ œ Rm. Then, based on the assumptions for the error terms Ái, we have that for
n observations the random variables Y1, . . . , Yn are also independent and normally distributed, i.e.
Y ≥ (xi—, ‡) - with the conditional expectation given the covariate vector xi,

E(Yi|xi) = E(xi— + Ái|xi) = xi— + E(Ái) = xi—, (3.2)

while the variance is given by

Var(Yi|xi) = V ar(xi— + Ái|xi) = Var(Ái) = ‡
2
. (3.3)

Now, we rewrite the LM from Equation (3.1) in matrix form - to later compare the linear mixed model
framework in the next section.

Definition 3.1: Linear Model in Matrix Form

For n observations, the classical LM in vector notation is given by

Y = X— + Á,

Á ≥ Nn(0, ‡
2
In),

(3.4)

where

• Y = (Y1, . . . , Yn)€ œ Rn is the response vector, given n observations,

• X œ Rn◊m is the n ◊ m model design matrix ,

• — = (—0, . . . , —p)€ œ Rm is the vector of regression coe�cients, and

• Á = (Á1, . . . , Án)€ œ Rn is the vector of random error terms, such that Á ≥ Nn(0, ‡
2
In).

Note, here Nn represents the the n-variable multivariate normal distribution with In, the n ◊ n identity
matrix, and the n ◊ 1 vector of 0s given by 0. Hence, using this notation, we can now outline the
parameter estimation for LMs.
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3.1.2 Parameter Estimation - LMs

The standard approaches for estimating the parameters in LMs include: the least squares estimation
(LSE) method, and the maximum likelihood estimation (MLE) method. Due to the scope of
this study, we briefly only discuss the ideas behind these methods for multiple models (to later compare
and better understand the techniques used to obtain these estimates - for other models discussed in
this study).

Definition 3.2: Least Squares Estimator of the Regression Parameters - in LMs

Suppose the observations of the response vector Y from n observations is denoted by the vector
y = (y1, . . . , yn)€. Then, it can be shown that the estimator

—̂ =
Ä
X

€
X

ä≠1

X
€

y, (3.5)

is both the least square estimator and the maximum likelihood estimator of the regres-
sion parameters —.

To find —̂ using the least squares framework, we do not require any distribution assumptions for the
response Y . The aim is to find an estimate of — - which minimizes the sum of the squared residuals,
expressed as

Q(—|y) := Îy ≠ X—Î2

= (y ≠ X—)€(y ≠ X—)
= y

€
y ≠ 2y

€
X— + —

€
X

€
X—,

(3.6)

for multiple models with m = p + 1 parameters (i.e. we solve for a system with m = p + 1 equations,
assuming X is a matrix of full rank m). By setting the first derivative of the objective function Q(—|y)
(with respect to —) to zero and, with rearranging, we find the normal equations given by

X
€

X—̂ = X
€

y,

which means that Q(—|y) is minimized by

—̂ =
Ä
X

€
X

ä≠1

X
€

y. (3.7)

We can now also define the vector of the fitted values as

ŷ = X

Ä
X

€
X

ä≠1

X
€

y = X—̂, (3.8)

where we can define the projection of y onto the column space of X, denoted by the matrix H =
X

Ä
X

€
X

ä≠1

X
€ (known as the "hat matrix"). Whereas, the residual vector, r, based on the LSE,

can now be defined as
r = y ≠ X—̂. (3.9)

Typically, for GLMs and GLMMs, the regression parameters are estimated using the maximum
likelihood. This means that obtaining an analytic form of the MLE typically requires iterative
numerical techniques (see Dunn and Smyth (2018) and Klein and Moosbrugger (2000) for detailed
descriptions and further discussion). Thus, here we briefly summarize the MLE method for LMs to
illustrate the general idea of the MLE method.
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Definition 3.3: Log-likelihood (for LMs)

If the normality assumptions of the LM model (in Assumptions 1.1) are satisfied, then the LSE
coincides with the MLE. This can be shown by the log-likelihood of

L(—, ‡ | y) = 1
(2fi‡2)n/2

exp
ß

≠ 1
2‡2

Îy ≠ X—Î2

™
, (3.10)

which is given by
¸(— | y) = ≠n

2 ln
Ä
2fi‡

2
ä

≠ 1
2‡2

Îy ≠ X—Î2
, (3.11)

and can also be defined by the objective function given by Equation (3.6).

In other words, if we take the log-likelihood of (—, ‡) for the normal distribution given observations y,
then by setting its first derivative to zero, we get

≠ 2 1
2‡2

X
€(y ≠ X—̂) = 0,

=∆ X
€

X—̂ = X
€

y,

=∆ —̂ =
Ä
X

€
X

ä≠1

X
€

y,

(3.12)

and
ŷ = X—̂.

Clearly, these are equivalent to the solutions derived by the normal equation (in Equation (3.6) and
Equation (3.8), respectively). This means maximizing the log-likelihood under normality assumption
is equivalent to minimizing the sum of the squared residuals.

Additionally, we can also show through MLE, the maximum likelihood of the variance, in terms
of the residual vector, is given by

‡̂
2 := 1

n
Îr

2Î, (3.13)

where, the sample variance, given by

s
2 := 1

n ≠ p

nX

i=1

Ä
Yi ≠ “Yi

ä2 = n

n ≠ p
b‡2 = 1

n ≠ p
ÎrÎ2

, (3.14)

is the unbiased estimator of ‡
2. Similarly, based on this framework - in addition to using transformation

rules (see Ga≥ecki and Burzykowski (2013)) - we can also compute the expectation and variance of the
respective parameter estimators for the LM.
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Remark 3.1: Expectation and Variance of Parameter Estimates (for LMs)

The expectation of the parameter estimators in the LM Model (3.1) can be derived as

E(b—) = —,

E(cY ) = X—

E(r) = 0,

E(b‡2) = n ≠ p

n
‡

2
,

(3.15)

while the variances of the corresponding estimators can be calculated by

Var(b—) = ‡
2
Ä
X

€
X

ä≠1

,

Var(cY ) = ‡
2
H,

Var(r) = ‡
2 (In ≠ H) .

(3.16)

From this, for the j-th regression coe�cient, we have the following equation.

Var
Äb—j

ä
= ‡

2
⇣Ä

X
€

X

ä≠1
⌘

jj

.

and, thus, the estimated standard error of —̂j is given by

cse

Äb—j

ä
:= s

…Ä
(X€X)≠1

ä
jj

(3.17)

For the distribution of the parameter estimators, under the normality assumptions (given by the LM
Assumptions 1.1) we have:

b— ≥ Np

⇣
—, ‡

2
Ä
X

€
X

ä≠1
⌘

,

cY ≥ Nn

Ä
X—, ‡

2
H

ä
,

r ≥ Nn

Ä
0, ‡

2 (In ≠ H)
ä

,

(3.18)

and
(n ≠ p)s2

‡2
=

P
n

i=1

Ä
Yi ≠ “Yi

ä2

‡2
≥ ‰

2

n≠p.
(3.19)

For more details and further derivations for the LM, see Searle (2006). Whereas, in Section 3.4, we
further discuss the goodness of fit and performance measures for model selection used to compare LMs
in the study.

It is essential to highlight that the LM is often not suitable in non-life insurance pricing, especially given
our case of natural catastrophic events. Mainly since, in linear regression, we assume that the random
errors are normally distributed. In our case, the number of losses or loss counts are non-negative
integers and assumed to follow a discrete probability distribution. Such that the random loss amounts
are non-negative and heavily rightly skewed. Secondly, the assumption of linearity for LMs, implies
that the expectation of Yi is a linear function (see Equation (3.2)). However, given the multiplicative
and the hierarchical (or multilevel) structures of the data and risk factors (in our case, grouped by
risk class groups) - multiplicative models and multilevel models may be more reasonable (Ohlsson and
Johansson, 2010).
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3.2 Linear Mixed Models (LMMs)

In this section, we now extend the classical LMs formulation to linear mixed models (LMMs). LMMs
allows for multilevel modelling with (1) varying intercepts and slopes (with the possibility of using
group level predictors). Multilevel models (also known as hierarchical models, random e�ects or mixed
models) can handle data structures with nested or non-nested clusters or levels (i.e. hierarchical
structure). As longitudinal data is an example of ’clustered data’, this is especially useful and applicable
in our case - due to the given hierarchy of the risk classes (or levels) - allowing for hierarchy in our
model specifications (Antonio and Zhang, 2013).

3.2.1 General formulation of LMMs

Here to illustrate the LMM framework, we consider a two-level hierarchy model, as introduced by
Fox and Weisberg (2018) and Antonio and Beirlant (2007). This model framework can also be later
extended to account for more hierarchy levels (i.e. for all risk classes included in this study).

Here we consider measurements of the a subject (risk class). Specifically, a subject is denoted by i for
total subjects N , with measurements (or ’observations’) j = 1, . . . , ni belonging to each i-th
subject.

Definition 3.1: 2-level Linear Mixed Model (LMM)

For a two-level hierarchy mixed model, suppose we have i = 1, . . . , N subjects (or groups) for ni

total measurements (or observations), the LMM can be expressed as,

Yij =—0 + —1x1ij + · · · + —pxpij + bi1z1ij + · · · + biqzqij + Áij ,

bir ≥N

Ä
0, Â

2

r

ä
, Cov (bir, birÕ) = ÂrrÕ , r

Õ
, r = 1, . . . , q

Áij ≥N

Ä
0, ‡

2
⁄ijj

ä
, Cov

�
Áij , ÁijÕ

�
= ‡

2
⁄ijjÕ ,

(3.20)

where

• yij is the response variable for the values in the i-th subject of N , based on the j-th
measurement of ni,

• x1ij , . . . , xpij are the known (fixed e�ects) covariates for j measurement for subject i,

• —0, —1, . . . , —p are the unknown (fixed e�ects) parameters for all subjects in N (with
intercept —0),

• bi1, . . . , biq are the unknown (random e�ects) parameters based on the i-th subject and
assumed to follow a multivariate normal distribution, with Â

2
r variance and mean 0. Here,

ÂrrÕ denotes the covariance between the random e�ects for each i-th subject,

• z1ij , . . . , zqij are the known (random e�ects) covariates for measurement j of subject i,
and

• Áij are the random error terms for the j-th measurement if subject i, assumed to follow
a multivariate distribution, where ‡

2
⁄ijjÕ is the covariance of subject i between the errors

Áij and ÁijÕ .
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Hence, a mixed model includes both "fixed" and "random" e�ects. In this study, fixed e�ects -
accounting for qualitative (or "factors") or quantitative variables - represent all levels of interest or
the whole population considered, respectively. Meanwhile, the "random e�ects" represent either the
qualitative variables with randomly sampled levels from a set of levels of interest or the quantitative
variables which measure an individual’s deviation from the population (of the fixed e�ect). For more
further discussion on mixed e�ects modelling for nested data see Zuur et al. (2009).

Next, similar to the LM model formulation in vector notation, we now define the matrix form of the
LMM model.

Definition 3.2: 2-level Hierarchical LMMs in Matrix Form (for Longitudinal Data)

Y i = Xi— + Zi–i + Ái,

–i ≥ Nq(0, D), i.i.d, ’i = 1, . . . , N

Ái ≥ Nni (0, �i) , i.i.d, ’i = 1, . . . , N, j = 1, . . . , ni,
(3.21)

such that,

• Y i œ Rni◊1 is the vector of response, for measurements (or ’observations’) j = 1, . . . , ni of
the subject i,

• Xi œ Rni◊m is the known (fixed e�ects) design matrix for measurements j of subject i,

• — œ Rm◊1 is the unknown (fixed e�ects) vector of coe�cients,

• Zi œ Rni◊q is the known (random e�ects) design matrix of coe�cients, with based on
the measurements in the i-th subject,

• –i œ Rq◊1 with –i ≥ Nq(0, D) is the unknown (random e�ects) vector per subject i. It
is assumed to be normally distributed with mean vector 0 and covariance matrix of the
random e�ects D œ Rq◊q,

• Ái œ Rni◊1, with Ái ≥ Nni (0, �i), is the vector of residuals based on the number of
measurements of i-th subject. Errors are assumed to be normally distributed with covariance
matrix �i œ Rni◊ni in the i-th subject.

Note, here we assume that the random e�ects are uncorrelated and independent between the i-th
subjects, while –i and Ái are also assumed to be independent. Such that, their covariance matrices D

and �i, respectively, are traditionally assumed to follow a multivariate normal distribution (where
di�erent structures of the covariance suitable for longitudinal data are also possible, see Galecki (1994)
for further details). In other words, we have

Ç
–i

Ái

å
≥ N

ñÇ
0
0

å
,

Ç
D 0
0 �i,

åô
. (3.22)

Thus, now we can further define the distributional assumptions based on this hierarchical LMM. Since,
firstly, this implies Y i has a combined marginal (unconditional) multivariate normal distribution with
mean Xi— and (known) covariance matrix V i = V ar(Y i), given by

V i = ZiDZ
€
i

+ �i, (3.23)
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for all subjects i = 1, . . . , N . Hence, it follows that the marginal distribution of Yi is

Y i ≥ Nni(Xi—, V i), (3.24)

given the random e�ects –i included in the model, for each subject i. This means we can also calculate
the conditional mean and variance of the response as

E(Yi|–i) = Xi— + Zi–i,

V ar(Yi|–i) = �i,
(3.25)

respectively, for a subject i. Together this means the two level hierarchical LMM (for longitudinal
data) can be rewritten as

Y i|—i ≥ Nni(Xi— + Zi–i, �i)
–i ≥ N q(0, D),

(3.26)

for all subjects i = 1, . . . N with corresponding measurements j = 1, . . . , ni.

This clearly implies that even though the random e�ects (i.e. the i-th subject-specific e�ects) describes
the covariance structure between the measurements (denoted by j = 1, . . . , ni belonging to the i-th
subject) - the expectation of the responses E(Yij) only includes the fixed e�ects (Fahrmeir et al., 2007).
Based on this setup, we can now briefly describe the two estimation methods of LMMs with unknown
covariance structures (following the specifications outlined in Antonio and Beirlant (2007)).

3.2.2 Parameter Estimation - LMMs

The two most standard approaches for estimating LMMs with unknown covariance structure include
the: maximum likelihood (ML) and the restricted maximum likelihood (REML). Using these methods,
our goal is to ultimately find the the maximum likelihood estimators (MLE) - also known as the
minimum variance unbiased estimators - of the fixed e�ects, —̂ (based on the marginal distribution
of Y i, given in (3.24)), and the random e�ects –i. This leads to defining the empirical best linear
unbiased predictors (EBLUPs). Here we refer to as the ’best’ in terms of the minimal mean squared
error (by maximizing the MLE or REML).

First, suppose the variance parameters in V i (based on Equation (3.30)) are known. Then it can be
shown that maximum likelihood estimator (MLE) of the fixed e�ects is

—̂ =
 

NX

i=1

X
€
i V

≠1

i
Xi

!≠1
NX

i=1

X
€
i V

≠1

i
Y i. (3.27)

for 2-level hierarchy LMM defined in (2.2). Note, under the normality assumptions shown in (3.22),
this coincides with the generalized LSE. Whereas, the estimator of the random e�ects, –i, is given
by

–̂i = DZ
€
i V

≠1

i

Ä
Y i ≠ Xi—̂

ä
, (3.28)

which is often estimated using iterative numerical techniques - such as the iterative generalized least
squares methods. For a more detailed description on these methods, we refer to Fahrmeir et al. (2007)
and Ng et al. (2019). Here, it can also be proven that the –̂i is the best linear unbiased predictor
(BLUP). For instance, if the normality assumptions for Model (3.26) hold then Y i is based on the
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i-th subject - such that, we have

Cov
�
Y i, –

Õ
i

�
= Cov

�
Xi— + Zi–i + Ái, –

Õ
i

�

= Cov
�
Xi—, –

Õ
i

�
+ Zi Var

�
–i, –

Õ
i

�
+ Cov

�
Ái, –

Õ
i

�

= ZiDi,

(3.29)

which leads to the BLUP given in Equation (3.28). It is clear here that the covariance depends on
both the unknown fixed e�ects — and on the variance components (accounted for in the covariance
structure of V i). However, in practice, it is often the case that the covariance structure is unknown,
where instead, it is estimated from the data. In other words, this means that we use the MLE and
REML methods to estimate the unknown components in V i (known as the the variance components)
from the data, and replace them with their estimates. For this reason, we refer to BLUPs as EBLUP
(the estimated or empirical BLUP, respectively). More detailed derivations and further discussion on
the parameter estimation for LMMs can be found in Eager and Roy (2017), Zhu and Zou (2014), or
Searle (2006).

To describe the unknown covariance structure more clearly, suppose for the covariance matrix V i the
unknown parameters are denoted by – (the variance components vector). Then we re-express the
individual covariance matrices given in (3.30) as: D(–) and �i(–), for subjects i = 1, . . . , N . This
means that, V i is now expressed as

V i(–) = ZiD(–)Z
€
i

+ �i(–), (3.30)

Under the normality assumptions in Model (3.21), the joint log-likelihood of (—, –) given the data yi

based on the subject i, is

¸(—, – | yi) : = ln f(yi | —, V i(–))

= ≠1
2

(

ln |
NX

i=1

V i(–)| +
NX

i=1

(yi ≠ Xi—)€
V i(–)≠1(yi ≠ Xi—)

)

+ c,

(3.31)

where c denotes the appropriate constants. Hence, if we maximize the above given joint log-likelihood -
with respect to — for fixed – - then it can be shown that the MLE is given by —̂ in Equation (3.27) is
now expressed as:

—̂(–) =
 

NX

i=1

X
€
i V i(–)≠1

Xi

!≠1
NX

i=1

X
€
i V (–)≠1

i
Y i. (3.32)

Such that, if we replace — by —̂ in (3.31) then we get the so called "profile log-likelihood" (Murphy and
Van der Vaart, 2000).

Definition 3.3: Profile Log-Likelihood (for LMMs)

The profile log-likelihood for the covariance components vector, denoted by V i(–) is given by

¸P (– | yi) := ¸(—̂(–), – | yi)

Ã ≠1
2

(
NX

i=1

ln |V i(–)| +
NX

i=1

(yi ≠ Xi—̂(–))€
V i(–)≠1(yi ≠ Xi—̂(–))

)

,

(3.33)

given the observed data yi for subject i, i = 1, . . . , N .
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In practice, LMMs often contain many fixed e�ects. In these cases, it is important to estimate the
(unknown) variance components - involved in estimating the fixed e�ects –i. Since in this case, an
unbiased estimator for the vector of variance components, –, cannot be obtained using the profile
log-likelihood , ¸P (see Verbeke and Molenberghs (2000) for example). Specifically, since we maximize
the profile log-likelihood with respect to the variance components – to find its MLE (say, –MLE).
Hence, for this reason, we use the the restricted maximum likelihood (REML) - which accounts for
the degrees of freedom when estimating the fixed e�ects –i. Under normality assumptions, the REML
is maximized to estimate the variance components vector – using the marginal log-likelihood for the
variance components (to find –REML). Thus, the log-likelihood REML is given by

¸REML(– | yi) = ¸P (– | yi) ≠ 1
2

NX

i=1

ln
���X€

V
≠1

i
Xi

��� , (3.34)

where ¸P (– | yi) is the profile log-likelihood, given by Equation (3.33). Additionally, based on this,
the vector of residuals ri can also be defined as

ri = Y i ≠ Xi

 
NX

i=1

X
Õ
iV iXi

!≠1  
NX

i=1

X
Õ
iV

≠1

i
Y i

!

.

The log-likelihood of the REML and the profile log-likelihood are typically maximized by utilizing
iterative numerical techniques such as the Newton-Raphson and Fisher scoring (Antonio and Beirlant,
2007). Additionally, here the unknown parameters – are then replaced by –ML and –REML in
Equation (3.33) and Equation (3.34), respectively. This leads to a closed-form expression of the MLE
such that the EBLUP for the random e�ects — is given by Equation (3.27). Here we predict the
random e�ects using the mean of the posterior distribution of the random e�ects given the data (i.e.
–i|yi). For more information regarding using the ML and REML methods to estimate the EBLUP
and the variance components - see Frees et al. (2014).

Essentially, in our study, these random e�ects will represent hidden (unseen) characteristics at each
risk class level. By incorporating random e�ects in the structure for the mean, LMMs allows us to
incorporate the hierarchical structure used for this study (discussed in Chapter 2). Specifically, since
mixed-e�ects models (or simply ’mixed models’) incorporates additional random e�ect terms associated
with the components of the variance and covariance. For this reason, LMMs can adequately represent
the groups of subjects with repeated measurements collected over time in longitudinal data. Specifically
helpful in our case since our data contains risk measurements (or simply measures) or factors collected
over time hierarchically for the same group of risk class levels, k, i, j, t (same subjects).

3.3 Generalized Linear Models (GLMs)

Now, we outline and provide a brief summary of the framework of the GLM, including its main
characteristics. This allows us to compare the GLM framework with the classical LM model, and then
later to understand how GLMM framework extends these model types and properties.

3.3.1 General Formulation of GLMs

As previously stated, Generalized Linear Models (GLMs) - introduced by McCullagh and Nelder (1989)
- extends the model framework of the LMs, shown in Model (1.1). Specifically, it extends the class of
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normal distributions to the class of other distributions belonging to the exponential family; such as the
Poisson, Binomial or the Gamma distribution. This allows us to model a variety of possible response
or outcome measures - such as counts, binary or skewed data (especially crucial in risk modelling). In
other words, GLMs assumes the distribution belongs to the exponential (dispersion) family.

Definition 3.1: Exponential Family

Let the responses Y1, . . . , Yn be independent random variables (the random component) with
a probability density function from the exponential family, and of the form

f(y | ◊, „) = exp
®

y◊ ≠ b(◊)
a(„) + c(y, „)

´
, (3.35)

where

• „ > 0 is the dispersion parameter,

• ◊ œ is the (unknown) parameter called the canonical parameter of the distribution,

• a(·) is a (known) function a which allows for incorporating weights in the distribution -
often known as the dispersion function a(„),

• b(·) and c(·) are (known) specific functions for the given distribution.

Typically, for a(„) we have a(„) = „ or a(„) = „/wi for a known or apriori weight wi. Proofs regarding
the derivations of the mean and variance expressions - based on the log-likelihood (with respect to an
exponential family distribution) can be found in Nelder and Verrall (1997).

Given these properties of the exponential family - we can also determine the moments of an exponential
family response (random variance) Yi, such as the estimated mean and variance of Yi.

Lemma 3.1: Moments of an Exponential Family Distribution

Let Y1, . . . , Yn be the independent random variables with an exponential family distribution (of
the form (3.1)). Then, it can be shown that the first moment, i.e. the expectation of response
Yi is given by

E(Yi) = µi = b
Õ(◊i),

and the variance of the response Yi is given by,

Var(Yi) = b
ÕÕ(◊i)a(„) = V (µi)a(„),

where V (·) is called the variance function for an exponential family distribution, such that
V (µi) := b

ÕÕ(◊i).

Based on this we can further define the three components of the GLM: the random, systematic and
link component.

Here we will briefly outline the assumptions corresponding to this three-part GLM specification,
introduced by McCullagh and Nelder (1983).
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Assumptions 3.1: Components of the GLM

1. The Random Component. The observation yi is assumed to be a realization of the
random variable Yi (where we let i index the observations) - with n components - which are
independently distributed (by an exponential family distribution) with mean µi.

2. The Systematic Component. The corresponding covariates xi = (1, xi1, . . . , xip)€ pro-
duce a linear predictor ÷i given by:

÷i(—) = xi— = —0 + —1xi1 + · · · + —pxip, (3.36)

where — = (—0, . . . , —p) is the vector of the m = p + 1 unknown regression parameters .

3. The Parametric Link Component.] The link between the random and systematic
components - is described by a monotonic di�erentiable link function g(·) such that

g(µi) = ÷i(—) = xi—. (3.37)

In other words, it defines the relationship between the mean µi of the random variable Yi

and the linear predictor ÷i.

Essentially, this implies that the link function g(·) transforms the expectation of the response variable
E(Yi) = µi to the linear predictor ÷i. Hence, based on the chosen monotonic link function g(·), this
allows for interpretation - i.e. the relationship between the response and covariates in the GLM can be
linearly described - dependent on the linear predictor ÷i. This is clear and can be shown - given that
the link function is invertible - we have

µi = g
≠1(÷i) = g

≠1(xi—), (3.38)

which is known as the inverse mean (link) function. Thus, the GLM can be thought as a classical LM,
given by Model (3.1), for a transformation of the expected response (or as a nonlinear regression model
for the response) (Fox, 2015). In fact, based on this formulation, the classical LM is a special case
of a GLM - where the random component (first component of the GLM) has a normal distribution
with a link function g(·) (third component) known as the identity link function, g(µi) = µi. Here
the inverse mean function returns the linear predictor (unaltered), such that ÷i = g(µi) = µi where
µi = g

≠1(÷i) = (÷i).

Additionally, in the case that g(µi) = ◊i = xi— - where ◊i is the canonical parameter in Equation (3.1)
- is known as the canonical link. Essentially, though the canonical link (or "natural" link) function
simplifies the GLM, it may not provide an appropriate fit for the given data. As it poses a restriction
on the link function, and, hence, on the range of the expected response. For this reason, we consider
other link functions - as an appropriate or suitable choice of link will remove these restrictions. Other
choices of common link functions with their inverse mean functions are given in Table 3.1 (see Fox
(2015) for further discussions).

Examples of the GLM components and characteristics of common univariate distributions - in the
exponential family - is outlined in Table 3.2. See McCullagh and Nelder (1983) for more details on
their full derivations.
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Link Name Link Function: ÷i = g (µi) Inverse mean function: µi = g
≠1 (÷i)

Identity µi ÷i

Log ln(µi) exp(÷i)
Inverse µ

≠1
i ÷

≠1
i

Inverse-square µ
≠2
i ÷

≠1/2
i

Square-root Ô
µi ÷

2
i

Logit ln(µi/(1 ≠ µi)) exp(÷i)/(1 + exp(÷i))
Probit �≠1 (µi) � (÷i)
Log-log ≠ ln (≠ ln (µi)) exp (≠ exp (≠÷i))
Complementary log-log ≠ ln (≠ ln (1 ≠ µi)) 1 ≠ exp (≠ exp (÷i))

Table 3.1. Examples of common link functions and their inverses - used in generalized linear models.

Normal Poisson Binomial Gamma Inverse Gaussian

Notation (Distribution) N
�
µ, ‡

2
�

P (µ) B(m, fi)/m G(µ, ‹) IG
�
µ, ‡

2
�

Range of y (≠Œ, Œ) 0, 1, . . . , Œ {0,1,...,m}
m

(0, Œ) (0, Œ)
Dispersion parameter: „ „ = ‡

2 1 1/m „ = ‹
≠1

„ = ‡
2

Cumulant function: b(◊) ◊
2
/2 exp(◊) ln

Ä
1 + e

◊
ä

≠ ln(≠◊) ≠(≠2◊)1/2

c(y, „) ≠1

2

⇣
y

2

„
+ ln(2fi„)

⌘
≠ ln(y)! ln

�
m

my

� ‹ ln(‹y) ≠ ln(y)
- ln �(‹)

≠1

2

¶
ln
�
2fi„y

3
�

+ 1

„y

©

µ(◊) = E(Y ; ◊) ◊ exp(◊) e
◊
/

Ä
1 + e

◊
ä

≠1/◊ (≠2◊)≠1/2

Canonical link: g(µ) = ◊ identity log logit reciprocal 1/µ
2

Variance function: V (µ) 1 µ µ(1 ≠ µ) µ
2

µ
3

Table 3.2. Example of GLM Characteristics of exponential family for common distribution.
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3.3.2 Parameter Estimation - GLMs

Similar to the LMMs and LMs, we estimate the unknown regression parameters — in GLMs through
the maximum likelihood (ML) method as well. By maximizing the log-likelihood ¸(—, „ | y) function to
find an estimate for — based on the observed data, with respect to the exponential family.

Definition 3.2: Log-Likelihood Functions (for GLMs)

Suppose the observed data of the response Y is denoted by y = (y1, . . . , yn)€ for i = 1, . . . , n

independent observations. Then the log-likelihood in a GLM directly results from Equation (3.1),
and defined as

¸(—) := ¸(—, „ | y) =
nX

i=1

ln (f (yi | ◊i, „))

= ln
®

exp
Ç

yi◊i ≠ b (◊i)
a(„) + c (yi, „)

å´

=
nX

i=1

yi◊i ≠ b (◊i)
a(„) +

nX

i=1

c (yi, „)

=
nX

i=1

¸i(µi, „ | yi) := ¸(µ, ‡|y).

(3.39)

For simplicity, we also denote the log likelihood function for an individual observation yi by: ¸i :=
¸i(µi, „ | yi). To find the maximum of the log-likelihood in Equation (3.39) with respect to — - we use
gradient descent methods to di�erentiate ¸(—) with respect to all —j and solve for

ˆ¸(—)
ˆ—j

= 0, for j = 0, . . . , p. (3.40)

Hence, the partial derivatives (by the chain rule for di�erentiation) is given by

ˆ¸(—)
ˆ—j

=
nX

i=1

ˆ¸i

ˆ—j

=
nX

i=1

ˆ¸i

ˆ◊i

ˆ◊i

ˆµi

ˆµi

ˆ÷i

ˆ÷i

ˆ—j

.

Then based on the properties of the exponential families (see Definition 3.1) and using it’s relations
given in Lemma 3.1, we can formulate each expression on the right side as,

ˆ¸i

ˆ◊i

= yi ≠ b
Õ (◊i)

a(„) = yi ≠ µi

a(„) , since b
Õ(◊i) = µi

ˆµi

ˆ◊i

= b
ÕÕ(◊i)a(„)

a(„) = b
ÕÕ (◊i) , thus ˆ◊i

ˆµi

= a(„)
bÕÕ(◊)a(„) = 1

bÕÕ(◊) ,

ˆ÷i

ˆ—j

= xij .

Thus, from this, it can be shown that we can now re-express Equation (3.40), it can be shown

ˆ¸(—)
ˆ—j

=
nX

i=1

yi ≠ µi

a(„)
1

bÕÕ(◊i)
ˆµi

ˆ÷i

xij =
nX

i=1

yi ≠ µi

a(„)bÕÕ(◊i)
ˆµi

ˆ÷i

xij ,

As previously stated, often the dispersion parameter is specified as a(„) = „ or a(„) = „/wi for known
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weight wi. In this study, we focus on the latter - specifically for grouped data we consider a(„) = „/wi

where wi is the exposure. Whereas, for loss counts we often use o�sets instead (discussed further in
the next section). Formally, the weights in GLMs can be defined by

wi := wi(—) :=
Å

dµi

d÷i

ã2

/b
ÕÕ (◊i) . (3.41)

Whereas, for this study, we can incorporate the weights in the log-likelihood of the GLM, and re-define
it as:

ˆ¸(—)
ˆ—j

=
nX

i=1

wi

yi ≠ µi

„V (µi)
ˆµi

ˆ÷i

xij , (3.42)

where, b
ÕÕ(◊i) = V (µi) (from Equation (3.1)) with (weighted) dispersion parameter a(„) = „/wi.

Since there is no general close form solution for the MLE of —, in Equation (3.42) - iterative numerical
techniques are used to find the estimate — (such as the Newtorn-Raphson method). Due to the scope
of this study, we briefly state the steps of the iteratively re-weighted least squares (IRLS) estimation
algorithm - see Algorithm 1. For more explanation and examples see McCullagh and Nelder (1983),
Nelder and Verrall (1997) or Ng et al. (2019).

Algorithm 1 Iterative weighted least squares algorithm for GLMs to estimate —

Input: data set xi for observations i = 1, . . . , n

Initialize: start values of —0 and Á > 0
while

���—
r ≠ —

r+1
��� > Á do

for i = 1, . . . , n, and r Ø 0
1. ÷

r

i
:= x

€
i

—
r

i = 1, . . . , n Û (current linear predictors)
2 : µ

r

i
:= g

≠1 (÷r

i
) Û (current fitted means)

3: ◊
r

i
:= h (µr

i
) Û (current canonical parameters)

4: Z
r

i
:= ÷

r

i
+ (yi ≠ µ

r

i
) ˆµ

r
i

ˆ÷
r
i

Û (adjusted dependent variables)

5: w
r

i
:=

⇣
dµ

r
i

d÷
r
i

⌘2

/b
ÕÕ (◊i) Û (current weights)

6. regress Z
r

i
on xi with weights 1/w

r

i

return: —
r+1

Output: maximum likelihood estimate of —, denoted —̂
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3.4 Model Selection and Comparison

In this section, we discuss the di�erent approaches and the combinations of the metrics we use to
compare the models and assess accuracy of the models. To compare or assess the three di�erent classes
of models: LMs, LMMs and GLMs, we use standard statistical approaches widely used in actuarial
and insurance-related studies, suitable for each model class.

Our goal here is to essentially address three major questions:

• How can we assess the goodness of fit of the models (per model class) and assess the

performance in terms of the overall model fit?

• How can we ensure we select models with high predictive power while avoiding overfitting

(i.e. to achieve optimal model complexity)?

• Given a subset of possible models, how can we compare these models (across all model classes)
to select the model that best represents the underlying data distribution - with high

prediction accuracy?

To answer these questions, we categorized our model assessment and comparison methods into the
three following categories: (1) measures of fit and variance, (2) model and variable selection and (3)
comparison by predictive accuracy.

3.4.1 Measures of Fit for LMs

In this section, we start by first briefly introduce fundamental analysis of variance formulas, based on
the empirical variance of the responses, required to formulate the goodness of fit measure (for LMs).
In this study, we use the multiple coe�cient of determination (R2) to assess the goodness of fit and
measure the overall fit of LMs.

Goodness-of-Fit Measures for LMs

The estimated R
2 of the fitted LM represents the proportion of variability in the response explained by

the linear regression model.

Sums of Squares. If the assumptions of the linear regression are fulfilled, we can define the di�erent
sum of squares - required to quantify the amount of the variation explained by the regression.

By first considering the following additive decomposition formula:
nX

i=1

Ä
Yi ≠ Ȳ

ä2 =
nX

i=1

Ä
Ŷi ≠ Ȳ

ä2 +
nX

i=1

Á̂
2

i , (3.43)

where
Ȳ = 1

n

nX

i=1

Yi.

Following this, we can now define the following three sum of squares measures relevant for this study.
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Remark 3.1: Analysis of Variance Formulas (for LMs)

The analysis of variance formulas, for LMs, in this study can be formulated as:

SST := P
n

i=1

Ä
Yi ≠ Ȳ

ä2, (total sum of squares)

SSR := P
n

i=1

Ä
Ŷi ≠ Ȳ

ä2 , (regression sum of squares)

SSE := P
n

i=1

Ä
Yi ≠ Ŷi

ä2 = P
n

i=1
Á̂

2
i
, (error sum of squares)

From these definitions and given the decomposition in Equation (3.43) follows from

nX

i=1

Ä
Ŷi ≠ Ȳ

ä Ä
Yi ≠ Ŷi

ä
= 0,

where we have:
SST = SSR + SSE. (3.44)

Coe�cient of Determination - LMs

As previously stated, the R
2 statistic is used to assess how well the LM predicts the response Y by

measuring how much the models account for variability in the response. This study looks at two types
of R

2 quantities as a goodness of fit measure for LMs. Since we aim to compare several multiple
linear regression models, and given that including more covariates to an LM always increases R

2 - we
also consider the adjusted coe�cient of determination R

2

adj.
(which takes into account the number of

regression parameters in the model).

Hence, both goodness of measure can be defined by in terms of the sum of squares and following
Equation (3.43).

Definition 3.1: Multiple Coe�cient of Determination

The multiple coe�cient of determination of a LM is defined as,

R2 := SSR
SST = 1 ≠ SSE

SST . (3.45)

The adjusted multiple coe�cient of determination R
2

adj.
is given by

R2

adj := 1 ≠ n ≠ 1
n ≠ p

Ä
1 ≠ R

2
ä

= 1 ≠ SSE/(n ≠ p)
SST/(n ≠ 1) , (3.46)

such that both measures lies within the range of zero to one.

Hence, based on the definitions, the closer the estimated multiple coe�cient of determination of a
model is to one - the better the overall fit and the model’s ability to account for variability in the
response.
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Hypothesis Testing and Inference for LMs

In this section we briefly outline the statistical inference we use to draw conclusions about our
parameters in our LM. To test any linear hypothesis about the (unknown) regression coe�cients —,
this can be defined generally by the following general linear hypothesis.

Definition 3.2: General Linear Hypothesis

The testing problem for general linear hypothesis testing is formulated as

H0 : C— = d versus H0 : C— ”= d,

such that

• C œ Rr◊m is a r ◊ m matrix of known elements, where r is the number of linear restrictions
to be tested (r Æ m), for m = p + 1 regression coe�cients,

• d œ Rr◊1 is a vector of known elements, such that rank(C) = r

Hence, for LMs, the test statistic, using the distributional assumptions of the estimated regression
coe�cients (in 3.19). Under the null hypothesis, H0 we have

“– = C b— ≠ d
H0≥ Nr

⇣
0, ‡

2
C

Ä
X

€
X

ä≠1

C
€
⌘

,

such that
1
‡2
“–€

⇣
C

Ä
X

€
X

ä≠1

C
€
⌘≠1

“– H0≥ ‰
2

r. ,

based on the definition of the ‰
2-distribution (see Gourieroux et al. (1982) for more details). Hence

from this, under the restrictions imposed under the null hypothesis, C— = d, we denote the LSE as
b—H0 , where the SSE under the H0 is given by

SSEH0 :=
���Y ≠ X b—H0

���
2

.

where SSE/‡
2 is ‰

2-distributed with n≠p degrees of freedom (based on our distributional assumptions
given in (3.19)). From this, now we can define the F -test, used in the study.

Definition 3.3: F -test for LMs

Under the null hypothesis H0, for a general linear hypothesis (based on Definition 4.2) we use the
following F -test statistic

F = SSEH0/r

SSE /(n ≠ p)
H0≥ Fr,n≠pú , (3.47)

for r numerator degrees of freedom (Num. Df ) and n ≠ p denominator degrees of freedom (Den.
Df ).

In this study, we use the statistical output to obtain our overall F -test - summarized in a tabular form
- known as the Analysis of Variance (ANOVA) Table. The One-Way ANOVA Table (often to
test how a independent variable a�ect the dependent variable) is shown in Table 3.3. Here the mean
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square is the mean of the corresponding analysis of variance formulas given in Remark 4.1 (for example
SSE/df , where df is the corresponding degrees of freedom) and the F -value is given by mean sqaures
(MSR) of regression divided by the mean squares of error (MSE). Additionally, we can use ANOVA
tables to compare between reduced and full models, shown in Table 3.4 (where the first model is the
null model M0).

Source Sum of Squares (SS) df Mean Square (MS) F -value

Regression SSR m ≠ 1 MSR = SSR/(m ≠ 1) MSR/MSE

Error SSE N ≠ m MSE = SSE/(N ≠ m)
Total SST N ≠ 1

Table 3.3. One-Way Analysis of Variance Table (ANOVA) for LMs, for F -tests, based on the analysis of variance
formulas.

Name Model SSE df SSE di�erence df di�erence

null M0 Y =—01n + Á SSE0 =
Pn

i=1 (Yi ≠ Y )2 1
reduced MR Y =X1—1 + Á SSE (X1) =

���Y ≠ X1c—1

���
2

p1 SSE0 ≠ SSE(X1) p1 ≠ 1
full MF Y =X —+Á SSE(X) = ÎY ≠ Xb—Î2

p SSE(X1) ≠ SSE(X) p ≠ p1

Table 3.4. ANOVA table (for comparing nested models), corresponding to the general hypothesis and based on
the SSE (sum of squares error) and degrees of freedom df .

This means, using this ANOVA table, we can test if the reduced model, MR contains a subset of
parameters, p1, in the full model MF with p parameters, improves the overall model fit of MF .

3.4.2 Measures of Fit for LMMs

Unlike the goodness of fit measures for LMs, determining the proportion of variance explained by an
LMM is not as straightforward and can be challenging. Since the R

2 given by Equation (3.46) can
only be estimated for linear models, it is unable to account for the variability in mixed-e�ects models
with complex random e�ects structures. For this reason, we now define other goodness-of-fit measures
extended and appropriate for LMMs.

Goodness-of-Fit Measures for LMMs

For the reasons discussed, we look at two extensions of the R
2 and other relevant statistics - known

as the intraclass correlation coe�cient (ICC) introduced by Edwards et al. (2008). All measures are
related as they are ratios of the variance components in the model.

Coe�cient of Determination - LMMs

To measure multivariate relationships between the repeated outcomes for individuals and the fixed
e�ects in LMMs - we compute by extending the R

2 statistic. Here we follow the example outlined by
Nakagawa et al. (2017).
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Consider the 2-level hierarchical model given in (3.48) - which satisfy the the assumptions of the LMM
- with a (2-level) grouping factor (say for the group e�ects of individuals i) and p = k + 1 fixed e�ects.
This model then can be formulated as

Yij = —0 +
kX

h=1

—hxhij + –i + ‘ij ,

–i ≥ N (0, ‡
2

–), i.i.d ’i = 1, . . . N,

Áij ≥ N (0, ‡
2

Á) i.i.d ’i = 1, . . . N, j = 1, . . . , ni,

(3.48)

such that Yij is the response based on the i-th group of individuals with observation j, where xhij

is the h-th of the fixed e�ects of k covariates in the model. Here —0 and —1 . . . —k are the regression
parameters of the fixed e�ects. While –i is the random individual (intercept) specific e�ect -
normally distributed with zero mean and variance ‡

2
–

, and independent of the normally distributed
random error terms Áij (or the observation specific residual) with zero mean and variance ‡

2
Á
.

Additionally, suppose the variance is explained by the fixed e�ects in the LMM is given by

‡—
2 = var

 
kX

h

—hxhij

!

. (3.49)

Then following this LMM framework, we can now define the two types and extensions of the R
2 statistic

for mixed models.

Definition 3.4: Marginal and Conditional R
2 (for LMMs)

The marginal estimated multiple coe�cient of determination for LMMs is given by

R
2
mar.

=
‡

2

—

‡
2

—
+ ‡2

– + ‡2
Á

, (3.50)

whereas, the conditional multiple coe�cient of determination is calculated as

R
2
con.

=
‡

2

—
+ ‡

2
–

‡
2

—
+ ‡2

– + ‡2
Á

, (3.51)

such that, with respect to the level 2 hierarchical model in Equation (3.48), we have

• ‡
2

—
is the variance explained by the k fixed e�ects regression parameters —0, . . . , —k,

• ‡
2
– is the variance explained by the random i-th individual group-specific e�ect –i,

• ‡Á is the variance of the random error terms (or residual variance), V ar(Áij) = ‡
2
Á for the

j-th observation of the i-th individual group.

The marginal R
2
mar. is estimates the proportion of the total variance explained by the fixed e�ects

only, given all other e�ects in the LMM. Whereas, the conditional R
2
con. estimates the total proportion

of variance explained by both the fixed and random e�ects in the model. Since for LMMs, in this
study, we are interested in assessing both the structure of fixed and random e�ects - we consider both
measures.
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The Intraclass Correlation Coe�cient (ICC)

Once again, consider the 2-level hierarchical LMM given by Equation (3.48). The intraclass correlation
coe�cient (ICC) essentially measures the proportion of the variance explained by the individual
i’s grouping or clustering structure in the data set. Often utilized to measure the "reliability" by
comparing the variability (or correlation) within each individual i of the same group or cluster. For this
reason the ICC can also account for all sources of uncertainty in the mixed model by calculating the
"adjusted ICC" (random and fixed e�ects) or the "conditional ICC" (fixed e�ects only). (Byrne,
2013). The two types of ICC can be calculated in terms of the same variance components defined in
Definition 4.5.

Definition 3.5: The Intraclass Correlation Coe�cient (ICC)

The adjusted intraclass correlation coe�cient (ICC) is given by

ICCadj. = ‡
2
–

‡2
– + ‡2

Á

, (3.52)

whereas is the conditional intraclass correlation coe�cient is calculated by

ICCcon. = ‡
2
–

‡
2

—
+ ‡2

– + ‡2
Á

, (3.53)

Note, if no fixed e�ects are fitted (other than the intercept) then adjusted and conditional ICC are
equivalent. Thus, based on the definition, the ICC is a measurement of the reliability based on the
variations of the random e�ects and lies between zero and one - with one being high reliability. Similar
to the R

2 for linear models - with only fixed e�ects - in the sense that the ICC provides information on
the explained variance. Often interpreted as “the proportion of the variance explained by the grouping
structure in the population” (Nakagawa et al., 2017). Thus, it is a valuable tool for assessing LMMs
as it measures the correlations - within a risk class of data rather than the correlations between two
di�erent classes of data.

Hypothesis Testing and Inference for LMMs

Since, we have both fixed and mixed random e�ects in the model, we require two di�erent statistical
hypothesis testing framework. Firstly, based on the LMM framework given in Section 3.2.2, we estimate
the standard errors for both the estimator for the fixed e�ects parameter — and for the random
components (the BLUP), – (following the framework outlined by Frees et al. (2014)). Since, assessing
how much estimated variability is accounted for by the variance components within the model, helps
us analyze the overall fit.

Remark 3.2: Estimation of Standard Errors (for LMMs)

Consider the marginal model Y ≥ N(X—, V (◊)) in (3.21), such that ◊ denotes the vector of
unknown parameters - used in V (◊) = ZD(◊)Z

Õ + D(◊) (i.e. the variance components).
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Then the covariance of estimator —̂ (of the fixed regression parameters) is given by

Cov(—̂) =
Ä
X

Õ
V

≠1(◊)X
ä≠1 (3.54)

such that, here we use Cov(Y ) = V (◊) is used. By replacing the vector of unknown parameters,
◊ with its estimate based on the ML or REML ◊̂, and using V̂ := V (◊̂), a natural estimate for
Cov(—̂) is given by

⇣
X

Õ
V̂

≠1

X

⌘≠1

.

Whereas, for the empirical BLUP, the covariance is derived by

Cov(–̂) = Cov
Ä
DZ

Õ
V

≠1(y ≠ X—̂)
ä

= DZ
Õ
V

≠1 ≠ V
≠1

X

Ä
X

Õ
V

≠1
X

ä≠1

X
Õ
V

≠1
Z D,

(3.55)

for the estimator of the random components, –̂.

This allows us to estimate the precision of the estimated predictors involving both —̂ and –̂. Moreover,
we use the maximum likelihood estimation (MLE) method, we use the likelihood ratio test (LRT)
to compare and test the fixed e�ects in nested (or hierarchical) LMMs.

Definition 3.6: Likelihood Ratio Test (LRT) - for Fixed E�ects (using MLE)

Reject the null hypothesis H0 (at significance level –Õ)

H0 : C— = d versus H1 : C— ”= d

where the corresponding LRT statistic is given by

≠2
î
¸(b—,“– | y) ≠ ¸

Äb—R,“–R | y

äó
> ‰

2

1≠–Õ,r

based on the log-likelihood for the fixed e�ects as given in Section 3.29, while

• the parameter estimates included in the restricted model (C— = d) are given by b—R and b–R,

• the parameter estimates included in the unrestricted model is given by b—, and “–, where

• ‰
2 is approximately r := rank(C) distributed (at 1 ≠ –Õ significance level).

Note, for clarification, we denote the significance level here as –Õ, whereas – denotes the random
components. Whereas, if we fit the LMM using the REML method, as discussed in Section 3.34, we
used the approximate hypothesis tests for the fixed e�ects (Wald’s test).

Definition 3.7: Approximate Hypothesis Tests for Fixed E�ects (using REML)

1. Wald Test

Reject H0 (at significance level –Õ):

H0 : C— = d versus H1 : C— ”= d, (3.56)
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where the Wald test statistic is,

W := (C b— ≠ d)€
⇣
C

€ Cov(c—))C
⌘≠1

(C b— ≠ d) > ‰
2

1≠–,rank(C)
, (3.57)

where here we assume Cov(b—) is fixed and does not depend on Y .

2. Approximate F -test

The degrees of freedom, df , of the approximate F -test is given by ‹F (which may be di�er from
rank(C)). The corresponding hypothesis testing is

Reject H0:
H0 : C— = d versus H1 : C— ”= d, (3.58)

at level –Õ, when the approximate F -test for the fixed e�ects is given by

F :=
(C b— ≠ d)€

Ä
C

€ Cov(b—C

ä≠1 (C b— ≠ d)
rank(C) > F1≠–,rank(C),‹F

. (3.59)

To statistically test if the random e�ects of di�erent subjects are significantly di�erent, we use the
LRT. For instance, to investigate if the intercepts of the di�erent risk class levels of the K clients are
significantly di�erent, and, thus, should be included in the model. For this reason, investigating the

necessity of random e�ects requires a hypothesis test involving the variance components. Hence,
we use the following LRT test for random components.

Definition 3.8: Likelihood Ratio Test (LRT) - for Random E�ects

Reject the null hypothesis, H0 (at significance level –Õ):

H0 : ‡
2

– = 0 versus H0 : ‡
2

– > 0,

using the log-likelihood ratio test (LRT). Here the LRT test for nested models is approximately
‰

2
– distributed, where ‡

2
– is the estimated variance for the random components –.

Consider a model includes only one variance component. Then hypothesis testing (using LRT) for
the fixed e�ects parameters involving r the reference distribution is ‰

2
r + 1

2
‰

2
r+1. This is because zero

is on the boundary of the parameter space allowed for ‡
2
2. For this reason, the LRT statistic is not

comparable with the distribution of ‰
2
1 and should be instead compared with the mixture distribution

of ‰
2
r + 1

2
‰

2
r+1 (Frees et al., 1999). However, with more variance components involved, the complexity

of the general testing problem and problem increases. See Frees (2018) and Ruppert et al. (2003) for
further explanations and examples.

3.4.3 Measures of Fit for GLMs

While we use the residual sums of squares to assess the fit of LMs and di�erent variance components
for LMMs, for GLMMs we use the deviance and the generalized Pearson statistic. In this section, we
briefly formulate both measures.
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Goodness-of-Fit Measures for GLMs

Recall from Equation 3.39 the log-likelihood of the GLM can be formulated as

¸(—, „ | y) =
nX

i=1

ñ
yi◊i ≠ b (◊i)

a(„) + c (yi, „)
ô

=
nX

i=1

ñ
yih (µi) ≠ b (h (µi))

a(„) + c (yi, „)
ô

=: ¸(µ, „ | y),

(3.60)

such that, ¸(µ, „ | y) is the mean parameterization of the GLM log-likelihood. Following this, we can
now define the scaled and unscaled deviance - which measures the discrepancy between the observations
yi and the fitted means µ̂i.

Definition 3.9: Deviance in GLMs

Following the log-likelihood functions given in (3.39), the scaled deviance is defined as

Ds(bµ, y, „) := ≠2[¸(bµ, „ | y) ≠ ¸(y, „ | y)] = 2
nX

i=1

yi

Ä
◊̃i ≠ b◊i

ä
≠ b

Ä
◊̃i

ä
+ b

Äb◊i

ä

a(„) , (3.61)

such that the estimators here are given by ◊̃i := h(µ̂i) and ◊̃i := h(yi). While the unscaled

deviance is formulated as
D(bµ, y) := „Ds(bµ, y, „), (3.62)

assuming the dispersion function satisfies a(„) = „/w.

Note, the unscaled deviance D(bµ, y) here eliminates the influence of the dispersion parameter „. We
can also see that for the linear model in Equation (3.1), the scaled deviance can be measured by

Ds(bµ, y, „) = ≠2[¸(bµ, „ | y) ≠ ¸(y, „ | y)] = 1
‡2

nX

i=1

(yi ≠ bµi)2
, (3.63)

meanwhile the unscaled deviance is derived by

D(bµ, y) =
nX

i=1

(yi ≠ bµi)2
. (3.64)

Recall, this is clearly similar to the residual sums of squares for the LM in (4.1). McCullagh and
Nelder (1989) provides more theoretical background and examples on how the deviance of GLMs are
derived.

Hypothesis Testing and Inference for GLMs

We construct statistical hypothesis tests for GLMs using the asymptotic distribution of the deviance.
The two following statistical tests we utilize are: the residual deviance test and the partial deviance
test. Specifically, to test the goodness of fit of the specifications of a GLM we use the residual deviance
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test. Meanwhile, to compare the fit of two nested generalised linear models we use the partial deviance
test.

Definition 3.10: Residual Deviance Test

Reject the null hypothesis H0 (at signifance level –):

• the assumptions of the specified generalized linear model (GLM) are satisfied.

versus the alternative hypothesis H1: not H0.

If and only if
D(µ̂, y)

„̂
> ‰

2

n≠q,1≠–, (3.65)

given:

• D(µ̂, y) is the observed deviance,

• „̂ is an estimate of the dispersion parameter „,

• ‰
2
n≠1,1≠–

is the 100(1 ≠ –)% is the quantile of the ‰
2 distribution with n ≠ q degrees of

freedom (df)

Here, we test if the model assumptions of the specified GLM are satisfied. This includes the correct
specification of the response distribution, the link function and the linear predictors, given the GLM.

Definition 3.11: Partial Deviance Test

Reject the null hypothesis H0 (at level –):

H0 : —2 = 0,

versus the alternative hypothesis H1 (not H0):

H1 : —2 ”= 0,

if and only if
DR ≠ DF

„̂F

> ‰
2

p2,1≠–,

where we define:
• —1 œ Rp1 and —2 œ Rp2 with p1 + p2 = p

• DF is the deviance of the full model (F)
• DR i the deviance of the reduced model (R)
• „̂F is an estimate for the dispersion parameter „ based on the full model (F).

3.4.4 Model and Variable Selection
To ensure we avoid overfitting and achieve optimal model complexity, we use information criterion
we look at three types of information criteria. As comparing and evaluating all models based on
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the goodness of fit measures is often not su�cient. This means that it is essential we select models
balancing model quality of fit against the complexity. This is especially crucial for this study where we
look at di�erent classes of models with di�erent numbers of combination of explanatory variables.

Information Criterion
In this section, we briefly provide the formulation of the information criterion used for model perfor-
mance and comparison analysis in this study. Recall, the information criterion are likelihood based
performance measures which includes a penalty for model complexity (specifically, based on the number
of parameters). Since di�erent information criterion vary by how much it penalizes the model (in
proportion to the number of parameters), in this study we choose to focus on three di�erent information
criteria: the Akaike information criterion (AIC), the Bayesian information criterion (BIC),
and, additionally, the conditional Akaike information criterion (AICc).
Our goal is to choose the best model - across all model classes - that attains the minimum value across
all considered di�erent information criterion (as a small value across all measures indicates the optimal
balance of goodness of fit and optimal complexity).

Definition 3.12: AIC, AICc and BIC

Let k denote the number of regression parameters included in the model (including the intercept).
Then for n total observations,

• The Akaike information criterion (AIC) is defined as

AIC : = ≠2loglikelihood ± 2 · k. (3.66)

• The Bayesian information criterion (BIC) is calculated as

BIC := ≠2loglikelihood ± log(n) · k. (3.67)

• The conditional Akaike information criterion (AICc) is defined as

AICc := ≠2loglikelihood ± 2 log(n) · k ◊ n

n ≠ k ≠ 1 , (3.68)

The AICc is especially appropriate for LMMs - focusing on clusters and small data sets. Since it is
essentially modified to obtain a bias-corrected version of the AIC for small sample sizes (with ’extra’
penalty). This is achieved by increasing the relative penalty for model complexity based on the sample
size and the number of fitted parameters.
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Remark 3.3: AIC and BIC for LMMs

Let k denote the number of fixed e�ects and covariance parameters of a LMM. Further, assume
the estimated parameters of the mixed models are given by b— (fixed e�ects) and “– (random
e�ects). Such that by considering the defined information criteria measures, we can incorporate
model selection uncertainty into the considered parameter estimates and evaluate precision of
LMMs (Thagard et al., 2011).

Hence, the AIC for LMMs is calculated as

AIC := ≠2¸(b—,“– | y) + 2k, (3.69)

and the BIC for LMMs is given by

BIC := ≠2¸(b—,“– | y) ± log(n)k.

As stated, in general, we aim to select models that attain the lowest values for most of the information
criterion defined (or across all measures if possible and applicable).

Prediction Accuracy

For this study, as well as in the reinsurance or insurance context, it is crucial that we also investigate
the model’s predictive power and its accuracy when predicting the rate of loss (per exposure volume
unit per k client) given a new set of data ("test data"). So far, we have only considered metrics that
allow us to assess the balance between the goodness of fit and model complexity - with respect only to
training data (or "in-sample" data). Since, even if we observe that a model can predict the loss ratios
with high accuracy on the training data set ("in-sample" data) - but performs exceptionally poorly on
"unseen" or new data, then it is not a valuable model nor the "best" suitable model.

For this reason, now we look at prediction errors as a measurement of predictive performance in models
- given a new set of data, the test data - and how we can use these metrics to compare across di�erent
model classes. Recall that the test data in our study contains 148 total loss observations (aggregated
per risk class level, based on 230 raw observations). In comparison, the training data set contained a
total of 290 (with 442 raw observations).

Regarding assessing prediction accuracy for model comparison and selection - with respect to estimating
the loss ratio LR - we consider various predictive accuracy measurements to compare and assess models
- mainly based on the prediction error. The prediction error is the di�erence between its actual
value and predicted value. As our test data contains observed ("actual") loss ratios per risk class level,
this helps us compare and highlight each model’s ability to predict the response ln.lr properly, given
a new set of data.

For this reason, we first look at how we can assess the prediction errors in terms of the "bias".
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Definition 3.13: Bias

Consider a parameter with true value ◊, estimated by ◊̂. Then, the mean prediction error - known
as the bias - which is the di�erence between the expected value of the estimator, ◊̂, and the the
true value ◊

bias(◊̂) := E

î
(◊̂
ó

≠ ◊ = E

î
(◊̂ ≠ ◊)

ó
. (3.70)

where the the expectation of the estimator ◊̂ is the average over all possible observations.

In other words, the bias is the expected average prediction error and is essentially used to measure
on average how close, for example in our case, the predicted (log) loss ratios are to the observed
values. When bias(◊̂) = 0 we say the estimator of ◊ is unbiased. Whereas, a negative bias indicates
underestimation of true or actual values while the a positive bias indicates overestimation. This means
that only considering the bias as an measurement to assess the variability (or the spread) of estimates
is not su�cient.

For this reason, we also consider the Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE). These measurements are not only applicable to compare both nested and non-nested models,
but it is an an absolute test which works for all model classes (considered in this study). The RMSE is
the absolute the root of the MSE, which measures the average of the squares of the errors. It allows
us to evaluate their quality of predictions by measuring the average magnitude of the model error.

Definition 3.14: Mean squared error (MSE) and Root Mean Squared Error (RMSE)

Consider any parameter with true value ◊ and estimator ◊̂, the mean squared error(MSE) of
the estimator is given by

MSE(◊̂) := E

î
(◊̂ ≠ ◊)2

ó
, (3.71)

which is the estimated average squared di�erence between the estimated values, ◊̂ and what is
being estimated, ◊.

Following this, the root mean square error (RMSE) is then calculated as

RMSE(◊̂) =
q

E

î
(◊̂ ≠ ◊)2

ó
. (3.72)

By calculating the MSE on an out-of-sample data set for each model, we can compare their degree of
performance accuracy based on "unseen" data. While then considering the RMSE allows us to compare
quickly and e�ciently calculate the predictive power - across all model classes, regardless of the model
specification, configuration, choice of regression parameters or variance structure. We aim to minimize
the RMSE and MSE values since lower values indicate a better fit. Additionally, in this study we
also measure the "spread" or variability in the model estimates based on the Mean Absolute Error

("MAE").
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Definition 3.15: Mean Absolute Error (MAE)

For i.i.d loss observations l in all risk classes levels (k, i, j, t), the Mean Absolute Error (MAE)

is calculated as
MAE(◊̂) := E

î
|◊̂ ≠ ◊|

ó
, (3.73)

for any parameter with true value ◊ and estimator ◊̂.

Note, for both RMSE and MAE - the smaller value, the better the model fit and performance. It
can be shown that the RMSE penalizes the variance for larger error (absolute) values (in comparison
to errors with smaller values), while the MAE gives the same weight to all errors. This means that,
by definition, the RMSE values will never be smaller than the MAE. However, this also implies that
RMSE is more sensitive to outliers than the MAE(as it measures the error di�erences prior to taking
the average). Therefore, we use a combination of these metrics to evaluate the performances of all
models considered adequately.
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4 Natural Catastrophe Modeling

The study aims to estimate the average loss ratio for non-life insurance for total losses incurring from
natural catastrophes. The loss ratio, also known as the pure premium or the loss of rate, accounts for
the monetary risk an insurer or reinsurer bears. It estimates the cumulative insurance rate required to
cover the considered risks. However, the premium rate is only the insurance rate paid by the original
policyholder. In contrast, the loss ratio (i.e. the gross rate) incorporates all additional costs of the
insurance coverage costs with the premium rates.

Given that it is the total insurance rate and is used to estimate the total cost for the insured loss - it
is crucial for the insurer that the actual incurred loss should not excessively di�er from its expected
value. For this reason, the loss ratio is often the standard measure to assess the cumulative (total) risk
transferred - from the policyholder to the insurer (shared by the reinsurer). Hence, in this chapter, we
directly model the loss ratios using the following model classes: Linear Models (LMs), Linear Mixed
Models (LMMs), and Generalized Linear Models (GLMs).

Specifically, we first look at the simplest class of models (as previously outlined in Chapter 2), the
normal linear model with main e�ects. Then we investigate - given the grouping of data - the significance
of the group risk class levels; of each risk class (k, i

G
, j

G
, t) for each client k = 1, . . . , K. We aim to

select the simplest and the best-performing model. For this reason, we also analyze the importance of
interaction e�ects in our models. This is repeated for the other two model classes, LMMs and GLMs,
where we compare the best-performing models from each class. We aim to find the best suitable model
between all model classes for our longitudinal natural catastrophic data.

Note, for all models - based on our EDA findings (not included in this publication for confidentiality
reasons) - we only consider the grouped risk class e�ects of treaty i

G œ Pk and countries j
G œ Mki,

for each client k (whereas we consider the ungrouped e�ects of the risk classes k, t). For simplicity, in
this chapter we denote the grouped risk classes (iG

, j
G) as (i, j). Afterwards, we briefly look at EDA

for each model class considered to check and specify the appropriate probability distribution visually.
To specify and fit di�erent models of the same model class (including main and interaction e�ects) - to
explore the covariate e�ects on the loss ratio. This enables us to compare them and find the best fit
among the subset of models. Lastly, using various model diagnostics tools, we assess the goodness of
fit of the selected model followed by residual analysis (also to detect any outliers).

Recall the ultimate aggregated loss ratio (from the reinsurer’s perspective) was previously defined as:

LR = L

v
=

KP
k=1

Lk

KP
k=1

vk

, for k = 1, . . . K, (4.1)
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where L denotes the cumulative loss amount given the fixed exposure volume v. Hence, this section
aims to estimate the loss ratio concerning natural catastrophic loss events in the Caribbeans - occurring
between the years 2001 to 2020 (with 290 observations aggregated by the corresponding risk classes in
(k, i, j, t)).

4.1 Linear Models for Natural Catastrophic Data

Since the log-normal distribution has the following property- for a random variable Y ≥ LN(µ, ‡
2) - it

follows that ln(Y ) ≥ N (µ, ‡
2) where the probability distribution function (pdf) is given by,

fY (y) = 1
y
Ô

2fi
exp

(

≠1
2

Ç
ln(y) ≠ µ

‡

å2
)

, y > 0. (4.2)

We consider the log-normal distribution in this study since if we look at the distribution of the
untransformed observed loss ratios LRkijt (shown in Figure 4.1) - clearly, the first histogram (Column
1) shows a highly right-skewed shape. For this reason, we logramatically transform our response
variable in Figure 4.1 (Column 2).

Figure 4.1. Histogram of aggregated observed loss ratios LRk,i,j,t. Based on the risk classes clients k = 1, . . . , 35,
treaty (grouped) i = {1, 2}, country (grouped) j = {H, L}, and years t = 2001, . . . , 2020. Column
1: Untransformed observed loss ratios (raw data). Column 2: Log-transformed Observed loss ratio
based on risk classes (k, i, j, t).

Though the average observed loss ratios on the log scale still appear to be skewed towards the left, it
appears to satisfy the assumptions of a linear model more. Since it appears it is not as heavily skewed
as the observed loss ratios with no transformations. For this reason, moving forward, we model the
loss ratios on the log scale for both LMs and LMMs considered in this study.

When investigating the observed loss ratios aggregated by client k with risks in treaty i for country
j during treaty t - it is evident that there is a higher portion of small losses per exposure volume
- in comparison to more considerable losses (with a maximum loss rate at 201%). Based on these
histograms, it is also evident we have very few extreme values (only 5 counts of losses out of the total
290 losses are observed with a loss ratio over 101%). In other words, there exists a very low frequency
of observed loss counts with a high loss amount per exposure volume). This aligns with our previous
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findings (for observed loss amounts, severity, and exposure volumes). Due to the nature of catastrophic
events, we observe a high frequency of low loss amounts and a low frequency of large loss amounts.
Hence, in these cases, we expect the estimated mean of our loss ratios to be higher than our estimated
median - which may require heavy tail distributions. However, truncating the data may be more
reasonable due to the small number of extreme values (while allowing for simpler or straightforward
interpretations). Our findings also indicate that a log-normal or Gamma model may also be a more
suitable choice, discussed in the next following sections.

Recall, the linear models considered in this study - for natural catastrophic data - are categorized
based on risk class level (k, i, j, t). This means we model the response, log loss ratio LRkijt, estimated
for each client k with insurance coverage in i-th treaty for country j active in year t. We assume LRkijt

follows a log-normal distribution, namely LRkijt ≥ LN(xt

kijt
—, ‡

2).

Model Specifications (LMs)

To investigate if the grouped risk classes are required - we first compare the base model (with no risk
group e�ects) with models which analyze the groups of risk class level e�ects separately.

In summary, the following LMs analyzed in this section, respectively:

Model lm.M (main e�ects of risk factors only): ’traditional’ linear regression model (or the base

model) which includes only the following main e�ects of risk factors as covariates: the type of
the i-th treaty (t.type), the class of business insured (cob), the peril of the natural disaster
(peril), the insurance rate (rate), the consumer pricing index of the j-th country in year t (cpi),
and the number of (historic) unique natural disasters (oci).This means the model ignores the
clustering of the data or the grouping e�ect of risk class levels in (k, i, j, t), and rather pools
together the losses observed for all risk groups (i.e. ’complete pooling’ of risks (Frees, 2018)).

Thus, this model can be formulated as

Model lm.M ("completely pooled risks" with main risk factors only)

ln.lrkijt = —0 +
4X

q=2

—
q

1
t.typeq

ki
+

3X

c=2

—
c

2cob
c

ki +
3X

d=2

—
d

3peril
d

kijt + —4ocikijt

+ —5rate
d

kijt + —6cpikijt + Ákijt,

(4.3)

where ln.lrkijt is based on loss observations "pooled" together (ignoring clustering e�ects (k, i, j)).
Hence, the intercept —0 denotes the overall intercept for all risks for clients k = 1, . . . , 35, with
(grouped) treaties Pk

G in all (grouped) countries Mki

G during all treaty years T kij . Which provides
the k-th client coverage for: commercial properties (’C’) with a combined reinsurance treaty
type (CB) - for losses incurring from Earthquakes (’E’) based on only one natural catastrophic
event (oci).

Model lm.G (fixed e�ects of risk class groups): analyzes all main e�ects given the clustering of the
data in the individual risk class levels - of each group of risk class levels in (k, i, j, t) separately
(i.e. "no pooling" of risks). This means, for every client k, k = 1, . . . , 35 each individual risk
class group in (k, i, j, t) is included in the model as covariate and analyzed separately.

Hence, we can formulate this model as
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Model lm.G (risk class group e�ects as main fixed e�ects - with risk factors)

ln.lrkijt = —0 +
35X

k=1

—
k

1clientk + —2I
g.treaty,i

k
+ —3I

g.country,j

ki
+

18X

t=2

—
t

4years
t

kij

+
4X

q=2

—
q

5
t.typeq

ki
+

3X

c=2

—
c

6cob
c

ki +
3X

d=2

—
d

7peril
d

kijt + —8ocikijt

+ —9rate
d

kijt + —10cpikijt + Ákijt,

(4.4)

where the indicator variables are defined as

I
g.treaty,i

k
=

8
>><

>>:

1, if loss observation nkijt belongs to a client k who has more than 1 treaty i for
countries j œ Mki

G during years t œ T kij ,
0, otherwise,

(4.5)
and

I
g.country,j

ki
=

8
>>>>><

>>>>>:

1, if loss observation nkijt belongs to country j-th group "Low" ("L") for a
client k with insurance coverage in the i-th treaty group active for the treaty
years t œ T kij

0, otherwise.

(4.6)

Model lm.I (interaction e�ects): based on the results of the previous models, we then investigate if
we should include the e�ects of interaction terms. Given the grouped risks and e�ects of risk
class levels (i, j, t) for client k, k = 1, . . . , 35. The potential interaction e�ects considered are
based on the findings of the EDA and stepwise regression analysis, where we then select the best
subset of suitable interaction e�ects.

Model lm.M: Main E�ects of Risk Factors Only

As stated, we start by fitting the "base model" given by model lm.M in (4.3). It includes only the
following 6 risk factors as covariates as the main (fixed) e�ects; without the grouping or client k specific
e�ect of any risk class levels in (k, i, j, t). With 3 qualitative risk factors: treaty.type, COB, and peril,
and three quantitative variables (which enter the model linearly, based on our EDA findings): CPI, OCI
and the premium rate.

Model Results: lm.M

Here we fit the model using the aggregated data, ("cat_data") with 290 observations (where the loss
data is aggregated according to each client k and corresponding risk classes i, j, t). We utilize the lm
function in R - followed by the model results and summary (given by the summary function).

1 lm.M <- lm(ln.lr ~ t.type + cob + peril + oci + rate + cpi, data = cat_data)
2 summary(lm.M)
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Call:
lm(formula = ln.lr ~ t.type + cob + peril + oci + rate + cpi,

data = cat_data)

Residuals:
Min 1Q Median 3Q Max

-21.64 -2.36 0.27 2.38 18.67

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.467 2.852 2.6 0.009 **
t.typeCXL -1.703 1.328 -1.3 0.201
t.typeQS -2.661 0.894 -3.0 0.003 **
t.typeSP -2.477 1.181 -2.1 0.037 *
cobM -0.399 1.328 -0.3 0.764
cobR -0.028 1.479 0.0 0.985
perilF 2.184 1.355 1.6 0.108
perilH 2.722 1.043 2.6 0.010 **
oci -5.774 0.268 -21.6 <2e-16 ***
rate -0.784 0.187 -4.2 4e-05 ***
cpi -0.033 0.017 -1.9 0.058 .
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.1 on 279 degrees of freedom
Multiple R-squared: 0.68, Adjusted R-squared: 0.67
F-statistic: 60 on 10 and 279 DF, p-value: <2e-16

The model considers a total of 290 observations with a total of 11 regression parameters and estimates
the ’overall’ intercept —̂0 = 7.47 ( with corresponding standard error, ’s.e.’ of 2.85). If we set the
significance level to 5%, it appears that all risk factors are significant except for cob and cpi.

Model Comparison: Full model (lm.M) and Reduced Model (lm.M.r)

To check if we can drop these terms from our model, we statistical test if the model can be further
reduced model (lm.M.r without cob and cpi); by performing a partial F -test in R by fitting both the
reduced and full model separately (lm.M). Such that, the LMs are compared using analysis of variance
(ANOVA) techniques (using the R function anova).

Based on the results, with p≠value = 0.3, at a 5% level of significance (with a F test statistic of 1.22
with 3 degrees of freedom, "df") we fail to reject the null hypothesis H0 : —

(c = M)

2
= . . . = —5 = 0 and

conclude that the reduced model does not improve the fit (without the risk factors cob and cpi).

Analysis of Variance Table

Model 1: ln.lr ~ t.type + peril + oci + rate. # Reduced model: lm.M.r (without cob and cpi)
Model 2: ln.lr ~ t.type + cob + peril + oci + rate + cpi # Full model: lm.M

Res.Df RSS Df Sum of Sq F Pr(>F)
1 282 7278
2 279 7184 3 94 1.22 0.3
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Hence, the preferred reduced model of the risk factors, labelled by lm.M.r, can be formulated
as:

Model lm.M.r (reduced model with fixed main e�ects of risk factors only)

ln.lrkijt = —0 +
4X

q=2

—
q

1
t.typeq

ki
+

3X

d=2

—
d

2peril
d

kijt + —3ocikijt + —4rate
d

kijt + Ákijt, (4.7)

which models the average log loss ratio for each client k, treaty i, country j and year t. The estimates
of regression parameters of the refitted and reduced model, lm.M.r, are shown in Table 4.1. Which
also shows certain goodness of fit measures, such as the multiple coe�cient of determination R

2 and
adjusted R

2
a (which, recall, measures the proportion of variability in the response, ln.lrkijt). According

to the R output, the estimated coe�cient of determination is R
2 = 68% (with Adjusted R-squared,

R
2
a = 67%), with regards to model lm.M.r. This indicates the regression model accounts for somewhat

an adequate portion of variability in the response when accounting for only 4 of risk factors (main
e�ects).

Estimate Std. Error t-value Pr(> |t|)
(Intercept) 3.35 1.57 2.13 0.03
t.typeCXL -1.72 1.3- -1.32 0.19
t.typeQS -2.73 0.85 -3.19 0.00
t.typeSP -2.56 1.14 -2.24 0.03
perilF 2.12 1.35 1.56 0.12
perilH 3.22 0.98 3.27 0.00

oci -5.73 0.26 -21.8 1.6e-6
rate -0.80 0.18 -4.34 1.9e-5

Observations 290
R

2 0.68
R

2
adj 0.67

Residual Std. Error 5.10 (df = 282)
F Statistic 85.0 (df = 7; 282)

Table 4.1. Summary of reduced model, lm.M.r. Table shows the estimated regression parameters ("Estimate"),
the corresponding standard error ("Std. Error"), t-values and p-values. The bottom row provides
additional model information: the number of observations ("Observations"), the multiple coe�cient
of determination, R

2 (with adjusted R
2
adj), the residual Std. Error and F test statistic with the

corresponding degrees of freedom ("df") - based on aggregated data ("cat_data")

However, it is important to note that: firstly, the "traditional" model does not account for the
heterogeneity of the risks between each client k for all (k, i, j, t) - where the model ignores the clustering
of data in the risk classes (fits an overall intercept —0 and an overall slope, say —1, for all main e�ects
and risk classes). Secondly, the model is not suitable for our natural catastrophic data in this case
(longitudinal data with repeated measures for the client k or risk class level). For this reason, we
investigate if our model fit improves by including the grouping e�ects of the risk classes (and, later,
with LMMs).
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Model lm.G: Main E�ects of Risk Factors with Risk Class Group E�ects

So far, we have only explored the main e�ects on the log loss ratio without individual grouping (or
clustering) e�ects of risk classes. By specifying the regression models at di�erent levels, the e�ects of
our covariates may vary (given the varying e�ects of each cluster data of the corresponding risk class
group). Thus, here we investigate the e�ect of "no pooling" (lm.G) based on all groups of the risk class
levels (k, i, j, t), given by model lm.G (4.4).

Recall, this model was formulated as:

Model lm.G : ln.lrkijt = —0 +
35X

k=1

—
k

1clientk + —2I
g.treaty,i

k
+ —3I

g.country,j

ki
+

18X

t=2

—
t

4years
t

kij

+
4X

q=2

—
q

5
t.typeq

ki
+

3X

c=2

—
c

6cobkijt + —
d

7perilkijt + —8ocikijt

+ —9ratekijt + —10cpikijt + Ákijt.

Model Results: lm.G

We investigate if the individual e�ects of every risk class group in (k, i, j, t) on the log loss ratio
ln.lrkijt are required. Each risk class group (k, i, j, t) here is included as factor variables - in addition
to all the main fixed e�ects given in Model (4.3) (as the significance of the factors in lm.M.r may vary
when the group e�ects are accounted for). This means that, for each given observation belonging to the
k-th client, for k, k = 1, . . . , 35, the model estimates a parameter for each group in (k, i, j, t). A total of
58 risk class groups is considered separately (35 client + 2 g.treaty + 2 g.country + 19 years).

Such that the intercept —0 denotes the individual intercept estimated for each k-th client; while also
(separately) capturing the e�ects at each (grouped) treaty i, for the j-th (grouped) country within each
treaty year t. We fit this model also using the aggregated data (cat_data) with 290 observations;
grouped by each k-th client for k = 1, ..., 35 with (grouped) treaty i œ {1k

, 2k} for (grouped) country
j œ {L

ki
, H

ki} per treaty year t œ {2001kij
, . . . , 2021kij}. The summary of the estimated coe�cients

and results of the model fit (in R) are shown in Table 4.2. This shows that —̂0 = 14.83 (with s.e. or
"Std.Error" 5.68).

We notice here that compared to lm.M.r, we see a increase in both R
2 (81%) and R

2

adj
(75%). This

means that a higher proportion of variance in ln.lr is explained when we introduce the (individual) risk
class group e�ects (k, i, j, t) into the model and, thus, indicates a better fit. Whereas, the coe�cient of
determination estimated at R

2 = 68% (with Adjusted R-squared, R
2

adj
of 67%) - measures a reasonable

proportion of variability in loss ratio (on the log scale) - accounted for by the model lm.G.1.

Interestingly, it also appears that at a 5% significance level - when accounting for the risk class e�ects
- cpi is now a significant influence (p-value = 0.02). While cob remains to be not be significant (at
– = 0.05). However, peril is no longer significant in this model either. We once again exclude both
covariates and refit the reduced model, lm.G.r, to statistically test (using the partial F -test) if by
excluding peril and cob improves the overall model fit.
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Estimate Std. Error t-value Pr(>|t|)
(Intercept) 14.83 5.68 2.61 0.01

client6 -1.04 2.30 -0.45 0.65

client7 0.37 2.38 0.15 0.88

client8 -8.49 2.62 -3.23 0.00

client9 -4.70 2.52 -1.86 0.06

. . . . . . . . . . . . . . .

g.treaty2 1.92 5.32 0.36 0.72

g.countryL 1.02 1.24 0.82 0.41

years2003 -0.10 3.87 -0.03 0.98

years2004 0.96 3.41 0.28 0.78

years2005 1.16 3.46 0.34 0.74

years2007 -1.58 3.50 -0.45 0.65

. . . . . . . . . . . . . . .

t.typeCXL -0.71 1.67 -0.42 0.67

t.typeQS -3.19 1.33 -2.39 0.02

t.typeSP -3.77 1.70 -2.22 0.03

cobM 0.68 1.81 0.38 0.71

cobR -0.95 1.59 -0.60 0.55

perilF 1.20 1.40 0.86 0.39

perilH 2.08 1.28 1.62 0.11

oci -5.48 0.32 -17.10 < 2e-16

rate -1.02 0.26 -3.95 1e-04

cpi -0.08 0.03 -2.28 0.02

Observations 290

R
2

0.81

R
2
adj 0.75

Residual Std.Error 4.4 (df = 226)

F Statistic 15.0 (df = 63; 226)

Table 4.2. Summary of estimated regression coe�cients of model lm.G. LM includes the individual risk class
level e�ects, based on each client k - using aggregated data.

Model Comparison

Once again, we utilize the ANOVA table, shown in Table 4.3, obtained by anova - to compare the full
model lm.G and the reduced model lm.G.r. Based on the results, we conclude that at – = 0.05 with
p-value = 036 the e�ects of cob and peril do not improve the model fit. Thus, the reduced model
lm.G.r is preferred model.

Model lm Formula (in R)
Res.

Df
RSS Df

Sum of

Sq.
t-value Pr(> |t|)

lm.G.r
lm(ln.lr ≥ client + g.treaty + g.country + years+

t.type + oci + rate + cpi, data = cat_data)
230 4453.20

lm.G
lm(ln.lr ≥ client + g.treaty + g.country + years+

t.type + cob + peril + oci + rate + cpi, data = cat_data)
226 4368.88 4 84.32 1.09 0.36

Table 4.3. Analysis of variances (ANOVA) table for LMs, to compare the models with risk class level e�ects:
reduced model (without cob and peril) and full model lm.G. Table shows the degrees of freedom
for the residuals ("Res. Df"), the residual sum of squares ("RSS"), df based on the removed from
the full model "DF", di�erence between the RSS of reduced and full model ("Sum of Sq") and the F

test-statistic with corresponding p-value.
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Table 4.4 compares the performances of the two (reduced) models; lm.M.r with no risk class level e�ects,
and lm.G.r with individual e�ect risk class levels. Clearly it is evident that lm.G.1 is a significantly
better fit versus lm.M based on the given respective performance measures. For instance, lm.G.1
accounts for a much higher variability in the log loss ratio with respect to the main fixed e�ects of the
risk factors (with R

2 = 80% and R
2 = 75%).

This is also evident in Figure 4.2 when we compare the fitted values versus the observed values of the
response ln.lr obtained by both LMs. Additionally, the model lm.G.r also attains the lowest AIC,
AICc and BIC value and the lowest prediction error (with RMSE = 3.92, and residual s.e. ‡̂ = 4.4), in
comparison to model lm.M.r.

Figure 4.2. Plot of fitted response versus observed values (with corresponding 95% confidence interval bands)
of the response: log loss ratio LRkijt. Observed values (in orange) are based on losses aggregated
at risk class level (k, i, j, t). Left plot:fitted values obtained with reduced LM model (4.3); linear
"base model" fit with main fixed e�ects of the risk factors only ("lm.M.r"). Right plot: obtained by
reduced model (4.4) fit, i.e. "no pooling of risks", includes group e�ects of risk class (k, i, j, t) for
each k-th client ("lm.G.r").

Model p logLik AIC AICc BIC R
2

R
2

adj.
RMSE ‡̂

lm.M.r 9 -878.78 1775.56 1776.20 1808.59 0.68 0.67 5.01 5.08
lm.G.r 61 -807.56 1737.12 1770.29 1960.98 0.80 0.75 3.92 4.40

Table 4.4. Comparison of linear model performance. Based on the measures: logLik, AIC, AICc, BIC, R
2, R

2
adj ,

and RMSE and estimated residual standard error ‡̂. The reduced LM with main fixed e�ects of the
risk factors only, lm.M.r("base model") - is compared with the reduced model which includes the
individual e�ects of the risk class levels (k, i, j, t). Highlighted cells (green) are the best-performing
models with respect to the corresponding performance measure. The number of regression parameters
included in each model is denoted by p.
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Based on these results, we conclude the model (lm.G.r) is our preferred model, given by

Model lm.G.r (reduced model with fixed e�ects and grouped risk classes)

ln.lrkijt = —0 +
35X

k=1

—
k

1clientk + —2I
g.treatyi
k

+ —3I
g.countryj
ki

+
18X

t=2

—
t

4years
t

kij

+
4X

q=2

—
q

5
t.typeq

ki
+ —6ocikijt + —7rate

d

kijt + —8cpikijt + Ákijt.

(4.8)

Though this selected model provides a reasonably good fit (in terms of the R
2 = 0.80), the reduced

model contains a large number of covariates. This is because each risk class group in model lm.G.r is
analyzed separately for the k-th client in k = 1, . . . , 35, where even very small clusters in our data "will
get a regression parameter." For this reason, this "no pooling" model structure may result in over-fitting
(Antonio and Zhang, 2013) while ignoring the nested or hierarchical structure present in the clustered
data for the risk classes.

Hence, these findings motivate us to explore linear mixed models, which allow for "partial pooling"
(allowing for appropriate cluster structuring between the risks). However, beforehand we must first
investigate if there exist any strong indications of interaction e�ects present in our data set, i.e. check if
we should allow for significant interaction e�ects to improve the selected model given by Model (4.8).

Model lm.I: Interaction E�ects (With Group E�ects of Risk Class)

Since we are fitting and specifying regression models at di�erent hierarchical risk class levels, interactions
between explanatory variables at di�erent levels ("cross-level" e�ects) may be present. For this reason,
here we analyze the model "lm.I" with pairwise interaction e�ects and test if we should include certain
interaction e�ects to essentially improve the model fit of lm.G.r (given by Model (4.8)).

We consider two-way interaction e�ects by first investigating all pairwise interactions (based on the
main e�ects in lm.G.r) - using explorative data analysis (EDA) (for example, as shown in Figure 4.3).
Given the estimated average log loss ratios (i.e. empirical loss average per exposure volume unit), the
plots give us initial ideas about the interaction e�ects we should further investigate. In the sense that
interactions between the covariates may be present - if the polylines of the levels of two covariates are
relatively not parallel. For this, in R, for two categorical variables we utilize the function cat_plot
(from the R package interactions) to test the conditional e�ect of the "focal predictor" (on the x-axis)
at the factor levels of the "moderating" (second) variable (e.g., high, medium, and low). Here the
estimated conditional e�ects (polylines) are often known as the "simple slopes" (see Bauer and Curran
(2005) for further examples).

Whereas, we use interact_plot (available in the same R package interactions) for interactions
between continuous focal risk predictors and categorical moderating predictors. Note, we only explore
the e�ects without the k-th client, the individual group e�ects - to investigate if the interaction e�ects
that may be present at the i-th group level and the multi-level data structure.
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Model Results: lm.I

Our analysis of the corresponding interaction plots (for example, as shown in Figure 4.3) with
initial (visual) inspections of all the two-way pairwise interaction e�ects are summarized in Ta-
ble 4.5. Here pairwise interaction terms are specified by the operator ":" for any two variables (i.e.
"variable1:variable2", using R’s operator syntax). From these results, for example, we observe that
there exists strong interaction e�ects between oci and the following variables: years, t.type, cpi and
rate. Thus, based on these findings we further investigate only the terms with strong or possible (mild)
interaction e�ects by including them into our model lm.G.r.

However, due to the high number of potential interaction e�ects, we first perform a stepwise regression
analysis to reduce the number of interaction e�ects - while also supporting our findings from the
interaction plots. Our strategy here is to consider a large subset of pairwise interaction - based on
the interaction plots using the aggregated cat_data). Then we remove and add interaction terms
(individually) until we find the best performing reduced interaction model lm.I (based on the AIC and
R

2

adj
).

For this reason, we perform this forward and backward stepwise selection using the function drop1 in R
(where we add or drop interaction e�ects using both p-values and the AIC criteria). Table 4.6 shows
a summary of our F -tests performed to compare the models - without and with regard to the final
selected subset of two-way pairwise interaction e�ects (based on our stepwise regression analysis). For
more details and examples on how step-wise regression methods are implemented in R, see Gareth et al.
(2013).

Df Sum Sq Mean Sq F -value Pr(>F)
g.country:years 11 124.11 11.28 0.98 0.46

g.treaty:oci 1 15.06 15.06 1.31 0.25
g.country:oci 1 59.64 59.64 5.20 0.02ú

years:oci 15 1497.75 99.85 8.70 1.7e-14úúú

rate:years 17 178.04 10.47 0.91 0.56
years:cpi 15 411.88 27.46 2.39 0.004úú

t.type:oci 3 164.06 54.69 4.76 0.003úú

t.type:cpi 3 66.53 22.18 1.93 0.13
oci:cpi 1 64.77 64.77 5.64 0.02ú

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.6. Summary table of F -tests to find the final subset of two-way pairwise interaction terms selected by
the step-wise regression (using the R function step) based on backward and forward selection. The
step-wise selection consists of iteratively adding and removing predictors (one at a time) from the
predicted model, lm.I.

Here we observe that at a 5% significance level the following pairwise e�ects may potentially improve
our (selected) LM fit: g.country:oci, years:oci, years:cpi, t.type:oci, t.type:cpi and oci:cpi.

60



Chapter 4. Natural Catastrophe Modeling

Figure 4.3. Example of ’Pairwise interaction E�ects’ plots - for LMs with individual clustering e�ects in (k, i, j, t),
based on aggregated data with 290 observations. Note, for confidentiality reasons not all interaction
plots for all variables are shown (within this publication).
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Explorative Data Analysis

(Analysis of Interaction Plots)

Interaction E�ects
(Two-Way)

Corresponding Plot
(Figure , Row , Column)

Strong Indications
of Interaction E�ects

Possible (Mild)
Indications of

Interaction e�ects

No Indications
of Interaction E�ects

g.treaty:g.country
Figure 4.3,

Row 1, Column 1

years:g.treaty
Figure 4.3,

Row 1, Column 2

years:g.country
Figure 4.3,

Row 2, Column 1

g.treaty:t.type
Figure 4.3,

Row 2, Column 2

oci:g.treaty
Figure 4.3,

Row 3, Column 1

rate:g.treaty
Figure 4.3,

Row 3, Column 2

cpi:g.treaty
Figure 4.3,

Row 4, Column 1

g.country:t.type
Figure 4.3,

Row 4, Column 2

oci:g.treaty
Figure Not Shown.

rate:g.country
Figure Not Shown.

oci:g.country
Figure 4.3

Row 5, Column 1

years:t.type
Figure Not Shown.

oci:years
Figure Not Shown.

rate:years
Figure Not Shown.

cpi:years
Figure Not Shown.

oci:t.type
Figure 4.3,

Row 4, Column 2

rate:t.type
Figure Not Shown.

cpi:t.type
Figure 4.3,

Row 5, Column 2

cpi:oci
Figure Not Shown.

rate:oci
Figure Not Shown.

Table 4.5. EDA analysis and inspection of interaction plots given in Figure 4.3: based on the fitted values of the
response, ’ln.lr, and covariates in model lm.G.r. Here "Figure Not Shown" states the interaction plots
not shown in this publication (for simplicity and data confidentiality purposes). Each corresponding
interaction term analyzed is given in Column 1, where ":" denotes the interaction operator in R. The
green check marks if there any strong, possible (mild) or no indications of interaction e�ects present
between the listed variables, based on their respective plots (Column 2).
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Accordingly, we now fit this (full interaction) model lm.I - based on our analysis - formulated as,

Model lm.I (full interaction model with fixed e�ects)

ln.lrkijt = —0 +
35X

k=1
—

k
1clientk + —2I

g.treatyi
k + —3I

g.countryj
ki +

18X

t=2
—

t
4years

t
kij +

4X

q=2
—

q
5t.type

q
ki

+ —6ocikijt + —7rate
d
kijt + —8cpikijt + —9I

g.countryj
ki ◊ ocikijt +

9X

t=2
—

t
10years

t
kij ◊ ocikijt

+
9X

t=2
—

t
11years

t
kij ◊ cpikijt +

4X

q=2
—

q
12t.type

q
ki ◊ ocikijt + —13ocikijt ◊ cpikijt + Ákijt,

(4.9)

for all client k = 1, . . . 35, (grouped) treaty i œ {1k
, 2k}, (grouped) country j œ {H

ki
, L

ki}, and per
treaty year t œ {2001kij

, . . . , 2021kij}. Note here the notation "◊" represents the interaction operator
(relating to ":" in R).

By running the following R command, we can confirm if we should include all interaction e�ects into
the model or if we can further reduce the number of interaction e�ects (based on expected loss ratio
for the k-th client given the risk class levels).

1 lm.I <- lm(formula = ln.lr ~ client + g.treaty + g.country + years + t.type + oci + rate + cpi + g.country:oci +
years:oci + years:cpi + t.type:oci + oci:cpi, data = cat_data, na.action = na.omit)

2 summary(lm.I.1)

The full R output is given in Appendix A.1. In this output, —̂0 = ≠32.33 with s.e 18.65. By allowing for
interaction e�ects we see an increase in both the R

2 and R
2

adj
to 89% and 84% respectively (from 80%,

based on the main e�ects model lm.G.r). The results show that the following interactions between the
terms are statistically at a 5% significance level: year and cpi, t.type and oci, and, between the oci
and cpi. Meanwhile the interaction e�ects between g.country and oci, years and oci may not be
significant at the 5% significant level.

Model Comparison: Full Interaction Model (lm.I) and Reduced Models (lm.I.r)

To statistically test if we can drop these interaction terms (single term deletions), once again we
conduct a partial F -test to compare the full and reduced models - referred to as "lm.I.r1" without the
term g.country:oci). Then we investigate if we can reduce the model even further by excluding the
e�ects of years:oci ("lm.I.r2"). The corresponding ANOVA table is given in Table 4.7 obtained by
anova in R.

From the results, at 5% significance level we conclude that the pairwise e�ects g.country:oci should
be dropped from the model (p-value = 0.29). While there is significant evidence that the interaction
e�ects between years and oci have a significant influence on the average log loss ratio (p-value <0.05),
so the model cannot be reduced any further, and we conclude that the model "lm.I.r1 is our preferred
model.

This "final" reduced model (now labelled lm.I.r for simplicity) is formulated as
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Model lmFormula (in R)
Res.

Df
RSS Df

Sum

of Sq.
t-value Pr(> |t|)

lm.I.r1
lm(ln.lr ≥ client + g.treaty + g.country + years+

t.type + oci + rate + cpi + years : oci + years : cpi+

t.type : oci + oci : cpi
196 2396

lm.I
lm(ln.lr ≥ client + g.treaty + g.country + years+

t.type + oci + rate + cpi + g.country : oci + years : oci+

years : cpi + t.type : oci + oci : cpi
195 2382 1 14 1.14 0.29

lm.I.r2
lm(ln.lr ≥ client + g.treaty + g.country + years+

t.type + oci + rate + cpi + years : cpi+

+ t.type : oci + oci : cpi
211 3785

lm.I.r1
lm(ln.lr ≥ client + g.treaty + g.country + years+

t.type + oci + rate + cpi + years : oci+

years : cpi + t.type : oci + oci : cpi
196 2396 15 1390 7.58 3.3e-13

Table 4.7. ANOVA table for model comparison based on LMs with interaction models, using t-tests. First, the
full model lm.I is compared with reduced model (by single term deletions, in red) lm.I.r1 (without
interaction g.country:oci). Then we compare the preferred model (lm.I.r1) with lm.I.r2 (without
years:oci).

Model lm.I.r (reduced interaction model with fixed e�ects)

ln.lrkijt = —0 +
35X

k=1
—

k
1clientk + —2I

g.treatyi
k + —3I

g.countryj
ki +

18X

t=2
—
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t
kij (4.10)
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—
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5
t.typeq

ki
+ —6ocikijt + —7rate
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kijt + —8cpikijt +
9X

t=2

—
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9years
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kij ◊ ocikijt

+
9X

t=2

—
t

10years
t

kij ◊ cpikijt

4X

q=2

—
q

9
t.typeq

ki
◊ ocikijt + —11ocikijt ◊ cpikijt + Ákijt,

given client k = 1, . . . 35, (grouped) treaty i œ {1k
, 2k}, (grouped) countries j œ {H

ki
, L

ki}, within
treaty years t œ {2001kij

, . . . , 2021kij}.

Overall Comparison of all Selected LMs

Finally, now we compare all (reduced or selected) LMs so far: lm.M.r, lm.G.r and lm.I.r1 (see
Table 4.8). From here the estimated coe�cient of determination of this reduced model accounts for
higher variability in the log rate of loss (with R

2 = 89% and R
2

adj
= 84% ) - compared to both lm.G.r

and lm.M.r. The interaction model performs better in general based on the lowest AIC and AICc
criteria - in addition to a lower RMSE and estimated residual standard error ‡̂ (in comparison to all
other LM models investigated in this section). Thus, we conclude that lm.I.2 overall performs the
best and, thus, is our preferred linear model (based on the respective performance measures; AIC,
AICc, R

2, R
2

adj
, RMSE and residual standard error). However, according to the BIC criteria, lm.I.r

does not attain the lowest BIC values. This may be due to the following main reasons:

1) the high number of interactions e�ects included in the model (p = 81),

2) the "no pooling" approach fits each group separately, such that there exists a regression coe�cient
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Model p logLik AIC AICc BIC R
2

R
2

adj.
RMSE ‡̂

lm.M.r 9 -878.78 1775.56 1776.20 1808.59 0.68 0.67 5.01 5.08
lm.G.r 61 -807.56 1737.12 1770.29 1960.98 0.80 0.75 3.92 4.40
lm.I.r 81 -729.76 1625.31 1685.38 1918.77 0.89 0.84 2.98 3.52

Table 4.8. Comparison of all reduced linear model performances: main risk e�ects model only lm.M.r, main
e�ects model with group e�ects lm.G.r, and the (selected reduced) interaction e�ects model lm.I.r.
The number of regression parameters is given by p. The following performance measurements are
compared: logLik, AIC, AICc, BIC, R

2, R
2
adj , RMSE (Root-mean-square error) and estimated residual

standard error ‡̂ (also referred to as "RSE"). Highlighted cells (green) are the best-performing models
with respect to the corresponding performance measure.

even for small clusters.

Often this may indicate over-fitting, especially due to the individual clustering e�ects and number of
interaction factor levels. However, as stated - apart from the BIC criteria - since in this study we take
into account all performance measures (in terms of goodness of fit and prediction accuracy); lm.I.r
we deem the interaction model fit as our preferred and selected "final" linear model. We now further
assess the preferred model via model diagnostics and residual analysis.
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4.1.1 Model Diagnostics and Residual Analysis

Next, we assess the goodness of fit by first checking the distribution assumptions of the selected normal
linear model (lm.Ir1). Recall the LM assumptions (summarized below).

(A1) Linearity. The response variable LRkij is expressed by a linear combination of the covariates
xi1 . . . xip, and includes the error random variable Ái with mean zero,

(A2) Independence. The errors Ái are independent random variables,

(A3) Variance Homogeneity. The error terms Ái are random variables with constant variance,

V ar(Yi) = V ar(Ái) = ‡
2
.

(A3) Normality. The errors are normally distributed random variables.

Based on these assumptions, we can assess the validity of the assumptions through residual plots and
the presence of outliers. From the model diagnostics plots given in Figure 4.4, we check if there are
any violations against our linear model assumptions.

Figure 4.4. Model Diagnostics of selected linear model, lm.I.r (Interaction E�ects), based on the response
ln.lr. The residual plots are obtained using package lme4. Red lines represent the model fit, while
blue lines represent the benchmarks of our LM regression assumptions. Note, lower panels shows
outlier detection plots.

Specifically, based on the results, we check if there are any strong violations against the assumptions
of the normal (log) linear model - with respect to the selected linear model, lm.I.r (with interaction
e�ects). Here, the red lines in these residuals plots are based on the model fit, while the blue lines
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represent the benchmarks of our normal regression assumptions (i.e. an appropriate fit given the above
assumptions).

Hence, the corresponding examination and analysis of the residuals are summarized as follows:

• To check linearity assumptions, we look at the residuals versus the predicted values (or fitted)
of lm.Ir1. The results show that there are no strong indications of a non-linear relationship.
Similarly, the predicted versus the residual plot shows no indications against our variance
homogeneity assumptions, as the predicated values are randomly scattered below and above zero.

• This is also evident when we look at the standardized residuals versus predicted values plot (Row
3, Column 2). Though, this is expected due to the study’s design. Specifically, since the study
focuses on non-life insurance longitudinal data, we have repeated measures for the given risk
classes (k, i, j, t). This may also suggest correlations between the observations of the same group
of risk classes and further motivates investing in the inclusion of random e�ects in the model.

• From the residuals versus predicted values, there are no strong indications against the assumptions
of variance homogeneity (residuals are distributed equally above and below the origin, and there
are no evident structural relationships).

• Additionally, the residuals’ distribution also shows significant large values of around the mean 0.
As previously discussed, this may arise due to the low frequency of losses per individual client,
and given that not all clients have incurred losses for the risk measure (i.e. given the interaction
e�ects) included in this model.

• However, we also observe that from the histogram (of the residuals), the distribution of the
residuals appears to mainly follow a normal distribution (i.e. no strong assumptions against our
log-normal distributional assumptions).

• The above is also evident when we look at the corresponding Q-Q plots. Since there are no
strong violations of the normality assumption, though there exist several deviations away from
the theoretical fit (in the lower tail). For this reason, we reassess the fit by removing the outliers
in the data.

• In addition, based on the outliers plots (Cook’s D plots and residual-leverage plots), a small
number of high leverage loss observations exist. Notably, in the raw data, a small number of
observations are over the threshold of 2p/n.

• We can identify high leverage points (exceeding the threshold) and refit the model without the
observations. Figure 4.5 and Figure 4.6 shows the distribution of the model residuals of the
response variable (fitted log loss ratios ln.lr), when the detected outliers were removed from the
data and model lm.I.1 was refitted.
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Figure 4.5. Histograms of residual plots based on model lm.I.r. Left plot shows the empirical histogram of the
model residuals without the outliers. Right plot shows the empirical histograms of the residuals
ratios after all 16 outliers were removed from the data set. The blue line represents the normal
distribution fit.

Figure 4.6. Q-Q plots, theoretical versus sample quantiles - comparison of LM Model residuals (with and without
outliers). Left Column shows the residuals of model lmm.I.1 fit without outliers removed. Right
Column residuals of model lmm.I.1 fit with outliers removed.

In total, 16 outliers were detected and removed from the data. From the histograms, we can see that a
normal distribution is more evident compared to the fit of the raw data with outliers. Similarly, based
on the Q-Q plots, there is no strong evidence against the normality assumptions (with no deviations
away from the theoretical fit in the lower tail) - when the outliers were removed. For this reason, we
consider either removing or imputing these outliers in our next section (with LMMs).

4.2 Linear Mixed Models for Natural Catastrophic Data

This section investigates and fits the (aggregated) natural catastrophic data using linear mixed models
(LMMs) - suitable for longitudinal data. This type of model is an alternative approach and a balance
between the "complete pooling" method (lm.M) -which did not take into account the clustering in
the risk class groups - and "no pooling" (lm.G) - which tend to overfits or results in unreasonable
parameter coe�cients (Frees et al., 2014). Since generally a LMM combines or "mixes" the "fixed" and
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"random" e�ects as covariates to model the response. LMMs are a more suitable approach given the
longitudinal or (hierarchical structured) data to include more features helpful in this context (than
the no or complete pooling LMs). Especially because, in our case, client-specific intercepts are a more
meaningful alternative to the no pooling model (lm.G) while still allowing for heterogeneity between all
the risk classes (k, i, j, t) in this study.

In this section, we follow the typical "top-down" approach for analyzing the LMMs - to ultimately find
the best LMM that estimates log loss ratio with high precision. This means we include our findings
from the LMs and follow the respective steps:

1. Mean Structure. Include the significant fixed e�ects on the average loss ratio (at 5% significance
level) - with all significant interactions e�ects included in our selected LM (i.e., in Model (5.1)).

2. Random e�ects. Using the likelihood ratio tests (LRT), we statistically test if the inclusion of
significant random e�ects improves the model fit. Based on this, we select the preferred model
with random e�ects.

3. Residual Covariance Structure. By testing the LMM models with di�erent residual covariance
structures (compound symmetry versus unstructured residual covariance structure) - we aim to
capture more variability unexplained in our model (by the fixed and random e�ects).

4. Model Reduction and Selection. Then, we try to reduce the model, i.e. reduce the number of
fixed e�ects included in the model (main and interaction terms).

Here we are interested in the including k-th client specific e�ects: observed for a client k, k = 1, . . . K,

(level 1), with (grouped) treaty i (level 2) insured in (grouped) country j (level 3) during the treaty
years t (level 4). Note (similar to LMs) we only also considered ungrouped treaty years t œ Tkijt in
order to investigate the e�ect on the loss ratio based on the underwriting or treaty year here. Thus,
similar to our analysis for LMs, in this section, we first fit the di�erent LMMs considered and then
analyze the fit with model diagnostics on the preferred selected model.

Therefore based on the aggregated data, we fit the following three types of log-normal linear mixed
models in this chapter, respectively:

Model lmm.RI.0 ("random client intercept only"): random intercepts model only; such that there
is no random slope or fixed e�ects, and only includes the random client intercepts for each client
k, k = 1, . . . , 35 (i.e. "null model" with one random intercept per k-th client). This means here
we investigate if random client e�ects are required in this study.

Generally, this basic model can be formulated as

Model lmm.RI.0 (random client intercept e�ects only, "null model")

ln.lrkijt = —0 + –k + Ákijt,

Ákijt ≥ N (0, ‡
2

Á) i.i.d., ’ k, i, j, t

–k ≥ N (0, ‡
2

–) i.i.d., ’ k = 1, . . . , 35,

(4.11)

where the random terms are given in blue and the fixed e�ects are given in red, for all
k = 1, . . . , 35 with risk class levels (i, j, t).

Each component here in the model is described by the following:
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• ln.lrkijt is the log loss ratio - which is given by the average loss per unit of exposure

volume (sum insured) - for each k-th client in k = 1, . . . 35. With a corresponding
(grouped) treaty i, i œ {1k

, 2k} providing coverage in (grouped) country j, j œ {H
ki

, L
ki},

for treaty years t œ T kij . Recall, this includes all losses observed in the years 2001kij to
2020kij for all (k, i, j) groups (with no losses observed in the t-th year 2002kij for all 35
clients).

• —0 denotes the (unknown) intercept regression parameter for the fixed e�ects.

• –k denotes the random client intercept (known random e�ects parameters), which is a
random variable with mean zero and variance ‡

2
–. Here ‡

2
– represents the variation between

the clients k = 1 . . . , K.

• Ákijt denotes the random error terms which are assumed to follow a normal distribution with
mean 0 and variance ‡

2
Á . Where ‡

2
Á represents the variability structure within a client k.

In addition, we also explore the inclusion of weights in the model . Based on these findings, we
investigate if the inclusion of weights improves our model (labelled as lmm.R.0.w.

Model lmm.RI.M ("random client intercepts with main fixed e�ects"): fixed e�ects with random in-
tercepts for random client k e�ects. Based on our findings from the random intercept model
lmm.RI.0, we first investigate if by including the random client intercepts improve the model
fit of the main fixed e�ects in model lm.G.r. Thus, this extended model here which combines
the main fixed e�ects and random client e�ects - referred to as "lmm.RI.M" can now be
formulated as,

Model lm.RI.M (random client intercept e�ects with fixed main e�ects)

ln.lrkijt = —0 + —1I
g.treatyi
k

+ —2I
g.countryj
ki

+
18X

t=2

—
t

3years
t

kij +
4X

q=2

—
q

4
t.typeq

ki

+ —5ocikijt + —6rate
d

kijt + —7cpikijt + –k + Ákijt,

(4.12)

such that
Ákijt ≥ N (0, ‡

2

Á) i.i.d., ’ k, i, j, t

–k ≥ N (0, ‡
2

–) i.i.d., ’ k = 1, . . . , 35,
(4.13)

for the random components in the model (in blue) given the fixed main e�ects (in red). Note
in this model the risk class e�ects g.treaty, g.country and years are still introduced as fixed
main e�ects. While –k still represents the random client k specific intercepts (with varying ‡

2
–).

Model lmm.RI.I ("random client intercepts with main and interaction fixed e�ects"): In the case
that we find that by accounting for random intercept client e�ects improves the overall model fit
of lm.G.r); we then allow for interaction e�ects. Specifically, we test if the LMM fit given in
lmm.RI.M improves with interaction e�ects (given the random client intercepts for k = 1 . . . , 35).

Note, we only allow for the interaction e�ects included in the reduced simple linear Model (4.22),
selected in Section 4.1, and labelled as lm.I.r (with only fixed e�ects, significant at a 5% level).
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Hence the regression equation is

Model lmm.RI.I (random intercept and slope e�ects with fixed main e�ects)

ln.lrkijt = —0 + —1I
g.treatyi
k

+ —2I
g.countryj
ki

+
18X

t=2

—
t

3years
t

kij +
4X
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—
q

4
t.typeq

ki

+ —5ocikijt + —6rate
d

kijt + —7cpikijt +
8X

t=2

—
t

9years
t

kij ◊ cpikijt

+
4X

q=2

—
q

10
t.typeq

ki
◊ ocikijt + —11ratekijt ◊ cpikijt +–k + Ákijt,

(4.14)

where,
Ákijt ≥ N (0, ‡

2

Á) i.i.d., ’ k, i, j, t

–k ≥ N (0, ‡
2

–) i.i.d., ’ k = 1, . . . , 35,
(4.15)

where similarly, the random client intercepts –k are independent across all clients k, k = 1, . . . , 35,
and independent of the error terms Ákijt, for all risk classes (k, i, j, t).

Model lmm.RS: here, we consider di�erent structures of the random e�ects: multiple random e�ects
per level, nested random e�ects and crossed random e�ects. This essentially means we allow
for both random intercepts and random slopes into the model - in addition to fixed main or
interaction e�ects. Specifically, we consider random intercepts and slope e�ects which may vary
by the appropriate risk class levels: k, i, j, t, based on the k-th client level.

For the fixed e�ects, once again, we only include significant main or interaction e�ects (at the
significance level of 5%) with respect to our findings in the previous step (or model lmm.RI.I).
For example, suppose we allow for the random risk class e�ects: (grouped) treaties i as random
slopes and random client k e�ects as random intercepts (i.e. multiple random e�ects per level).

If we consider only the fixed main and interaction e�ects included in the model lmm.RI.I, then
this model equation is given by

Model lmm.RI.S (random intercept and slope e�ects and interaction fixed e�ects)

ln.lrkijt = —0 + —1I
g.treatyi
k

+ —2I
g.countryj
ki

+
18X

t=2

—
t

3years
t

kij +
4X

q=2

—
q

4
t.typeq

ki
(4.16)

+—5ocikijt + —6rate
d

kijt + —7cpikijt +
8X

t=2

—
t

9years
t

kij ◊ cpikijt

+
4X

q=2

—
q

10
t.typeq

ki
◊ ocikijt + —11ratekijt ◊ cpikijt

+ –0k + –1kI
g.treatyi
k

+ Ákijt,

such that here, –0k and –1k are the random intercept and random client slope e�ects for the
the k-th client, while —0 and —1 . . . , —11 are the overall fixed intercept and regression parameters
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with random error Ákijt for each k-th client at risk class index (i, j, t). Note in this model our
distribution assumptions for the random e�ects di�er from the Model (4.14). Since in this model
our random intercept and slope vary on di�erent risk class levels - this means that the variance
are given on di�erent levels. Here we assume that for the same k-th client, the random client
intercept and random grouped treaty slope e�ects are correlated. While the random e�ects are
still independent across risk classes, for all clients k, k = 1 . . . , 35, and independent of the random
error terms Ákijt. Hence, together, for this model we have the following distribution assumptions
for the random e�ects

ñ
–0k

–1k

ô
≥ N2

Çñ
0
0

ô
,

ñ
‡

2
0 ‡01

‡01 ‡
2
1

ôå
i.i.d., ’ k = 1, . . . , 35, (4.17)

and for the random error terms we have

Ákijt ≥ N (0, ‡
2

Á) i.i.d., ’ k, i, j, t, (4.18)

such that for this model, we also assume an unstructured covariance matrix of the random e�ects
- given by D for simplicity,

D =
ï

‡
2
0 ‡01

‡01 ‡
2
1

ò
, (4.19)

where the vector of the random client e�ects, denoted by “k = (–0k, –1k)Õ, is now bivariate with
Var(–0k) = ‡

2
0, Var(–1k) = ‡

2
1, and Cov(–0k, –1k) = ‡01. Note, here for the grouped treaty i,

given by

I
g.treatyi
k

=

8
>><

>>:

1, if loss observation nkijt belongs to a client k-th who has more than 1
treaty i for countries j œ Mki

G during years t œ T kij
,

0, otherwise.
(4.20)

now enters our model as both a random and fixed e�ect for the k-th client.

Then, based on the results from the models above and after, we then find the best performing model
given both the random and fixed e�ects (with main and interaction e�ects) of the risk measures - over
all risk classes (k, i, j, t) - we investigate for di�erent residual covariance structures to improve the fit.

Model lmm.RI.0: Random Client Intercepts Model Only

In this section, we compare the unconditional null or "basic model" with only random intercepts (at
the k-th client subject level) and the response (loss ratios) without weights, given in model Equation 4.11.
These models consider only the first risk class level (i.e. at the k-th client level).

Model Results: Random Client Intercepts Only - With No Weights (lmm.RI.0)

Analyzing the basic model allows us to determine if a multilevel model is appropriate given our data
regarding the log-transformed ratio of losses. In addition to comparing the influence of the weights.

To fit this LMM, in R we use the package lme4. By default, the package uses the REML, such that,
alternatively, we can set REML = false to obtain the maximum likelihood (ML) results.
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1 lmm.RI.0 <- lmer(ln.lr ~ 1 + (1|client), data = cat_data, REML = FALSE)
2 summary(lmm.RI.0)

Linear mixed model fit by maximum likelihood . t-tests use [�lmerModLmerTest�]
Formula: ln.lr ~ 1 + (1 | client)

Data: cat_data

AIC BIC logLik deviance df.resid
2047 2058 -1020 2041 287

Scaled residuals:
Min 1Q Median 3Q Max

-5.005 -0.244 0.134 0.561 2.162

Random effects:
Groups Name Variance Std.Dev.
client (Intercept) 14.0 3.74
Residual 59.6 7.72
Number of obs: 290, groups: client, 35

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) -9.223 0.854 39.766 -10.8 2.2e-13 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

From the results of "basic model" (with no fixed e�ects and only random client intercepts) we can
estimate the following parameters: —̂0, ‡

2
Á , ‡

2
–. In this output —̂0 = ≠9.22 (fixed intercept, with s.e.

0.85), ‡̂
2
– = 14.0 (variance for the random client e�ects) and ‡̂

2
Á = 59.6. Note here for the fixed e�ects

for this LMM, in R; we utilize Satterthwaite’s method for approximating degrees of freedom for the t

and F tests (instead of the LRT, using the package lmerTest). For more details on this approximation
method, see Kuznetsova et al. (2017).

We can also obtain single components of the summary output for the random components such as the
estimated variance using the function VarCorr() in R:

1 VarCorr(lmm.RI.0)

# Estimated variances, standard deviations, and correlations between the random-effects.
Groups Name Std.Dev.
client (Intercept) 3.74
Residual 7.72

Here, the random e�ect standard deviation in the first model (‡̂– = 3.74) indicates that there exists
some variability around the predicted mean, even after accounting for the k-th client. This result
suggests that there may be additional (random) e�ects or grouping structure between the risk class
levels (k, i, j, t) - we should potentially introduce into the model.

We can further confirm these findings by calculating the "intraclass coe�cient" (known as the
”ICC”, see Definition 4.5). Recall that the ICC (similar to the R

2 in LMs) measures the proportion of
the variance explained by the client k-th grouping structure in the data-set. We can estimate all sources
of uncertainty in the mixed model lmm.RI.0 by the two types of ICC: (Nakagawa et al., 2017):

Adjusted ICC (proportion of the total variance explained by the random client e�ects –̂0):

ICCadj. = ‡̂
2
–

‡̂2
– + ‡̂2

Á

= 14
59.6 + 14 = 0.19.
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Conditional ICC (proportion of the total variance explained by both the random client e�ects –̂0 and
mixed-e�ects —̂0):

ICCcon. = ‡̂
2
–

‡̂2
– + ‡̂2

Á + ‡̂
2

—

= 14
59.6 + 14 + 0 = 0.19,

where ‡̂
2

—
denotes the estimated variance of the fixed e�ects —0. In this case because no fixed

e�ects were fitted (except for the fixed intercept) we set ‡̂
2

—
= 0 for the conditional ICC. This

implies for lm.R.0 we have ICCadj. = ICCcon..

Alternatively we can obtain both ICC from R using the performance::icc() function,

1 performance::icc(lmm.RI.0)

# Intraclass Correlation Coefficient
Adjusted ICC: 0.190
Conditional ICC: 0.190

Thus, based on the ICC of the null model (with intercept only), 19% of the variance in the estimated
mean log loss ratio is accounted for by the k-th client-specific e�ects (without any fixed e�ects).
Therefore, this suggests that the multilevel model may be appropriate.

Recall, to statistically test the significance of the random client e�ects –k, we use the likelihood ratio
test with respect to the variance components (see Definition 4.8). Here we investigate whether the
di�erent intercepts per client k are significantly di�erent or vary and should be included in the model
(at a 5% significance level), by testing:

H0 : ‡
2

– = 0 versus H0 : ‡
2

– > 0,

using the log-likelihood ratio test (LRT). Note, the LRT test for nested models is approximately ‰
2
–

distributed (as previously described in Chapter 2). Through the use of the function ranova in R, we
can perform the LRT to test if the structure of the random e�ects should be included or not (via using
the ML or REML if set to REML = TRUE).

1 ranova(lmm.RI.0)

ANOVA-like table for random-effects: Single term deletions

Model:
ln.lr ~ (1 | client)

npar logLik AIC LRT Df Pr(>Chisq)
<none> 3 -1020 2047
(1 | client) 2 -1044 2091 46.2 1 1.1e-11 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Based on the results, we reject the null hypothesis (p-value < 0.05) and conclude that our model’s
random client e�ects –k are necessary (random intercepts), given our data and to estimate the average
estimated log loss ratio for risk classes (k, i, j, t).

Random Client Intercepts Only - With weights (lmm.RI.0.w)

As previously discussed, the study models the average loss given per unit of exposure volume (per sum
of insured amount in thousands). The average loss here is constructed as the total loss - per client
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k, treaty i, country k, per t year - divided by the corresponding number of losses (adjusting for the
exposure). Therefore, the average loss is more precise for a client when more loss counts (per risk class
level) have been observed.

For this reason, here we introduce the use of weights as the number of insured (unique and historic)
natural disasters per client k. We first test if the inclusion of weights - since the historic number of
natural disasters events insured per k client - improves our model to estimate the average loss ratio.
The benefits of including weights in actuarial models have been previously discussed; see Frees et al.
(2014).

The basic or null LMM (lmm.RI.0.w) with weights can now be reformulated as,

Model lmm.RI.0 (random client intercept only model with weights)

ln.lrkijt = —0 + –k + Ákijt,

Ákijt ≥ N (0, ‡
2

Á) i.i.d., ’ k, i, j, t

–k ≥ N (0, ‡
2

–/wk) i.i.d., ’ k = 1, . . . , 35.

(4.21)

Here wk denotes the weights where wk is given by the number of natural loss events observed per k

(oci).

Model Results: lmm.RI.0.w

Using the function weights in R, we now investigate if the basic model fit is improved by including the
weights.

1 lmm.RI.0.w <- lme4::lmer(ln.lr ~ (1|client), weights = oci, data = cat_data, REML = FALSE)
2 summary(lmm.RI.0.w)

Linear mixed model fit by maximum likelihood [�lmerMod�]
Formula: ln.lr ~ 1 + (1 | client)

Data: cat_data
Weights: oci

AIC BIC logLik deviance df.resid
2221 2232 -1108 2215 287

Scaled residuals:
Min 1Q Median 3Q Max

-5.870 -0.071 0.198 0.602 2.382

Random effects:
Groups Name Variance Std.Dev.
client (Intercept) 38.7 6.22
Residual 143.7 11.99
Number of obs: 290, groups: client, 35

Fixed effects:
Estimate Std. Error t value

(Intercept) -11.21 1.34 -8.36

In this output ‡̂
2
– = 38.7 and ‡̂

2
Á = 143.7. Based on the output, we can also calculate the adjusted

ICCadj. (or alternatively (by the icc function from the performance package in R). Recall, this is
calculated by dividing the variance of the random e�ects, for the k-th client, ‡̂

2
– by the total variance
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estimated by lmm.RI.0.w,

ICCadj. = ‡̂
2
–

‡̂2
– + ‡̂2

Á

= 38.7
38.7 + 143.7 = 0.22.

Since, here, we still don’t allow for any fixed e�ects, we have ICCadj. = ICCcon. with ‡̂
2

—
= 0.

Now we compare this model with lmm.RI.0 (no weights) in Table 4.9. From here we can see that after
including for weights oci - the log-likelihood, the ICC, the AIC, AICc and BIC - significantly increases
(from AIC 2046.85 with log likelihood -1020, without weights, to AIC = 2221.15 and log likelihood
-1108). Table 4.9 also provides the conditional R

2 (denoted as R
2
con.

) which is proportion of variance
explained by the "complete" model (considering both fixed and random e�ects) and the corresponding
marginal R

2 which only indicates how much of the variability in the model is explained by the fixed
e�ects (denoted by R

2
mar.

).

From these results, we see that even though there is a slight increase in the variance explained by the
random and fixed e�ects when the weights are accounted for (R2

con.), in general - based on the AIC,
BIC, RMSE and residual standard error (SE) - lmm.RI.0 outperforms lmm.RI.0.w.

Model p logLik AIC AICc BIC R
2
con. R

2
mar. ICCadj. ICCcon. RMSE RSE

lmm.RI.0 3 -1020.42 2046.85 2046.93 2057.86 0.19 0.00 0.19 0.19 7.46 7.72

lmm.RI.0.w 3 -1107.57 2221.15 2221.23 2232.16 0.22 0.00 0.22 0.21 8.18 11.99

Table 4.9. Model performance comparison of random intercept models fit with random k client e�ects, k =
1, . . . , 35; comparing the results of the performance lmm.RI.0 (without weights) versus lmm.RI.0.w
(with weights). Based on the log-likelihood ("logLik") statistic,AIC, AICCc, BIC, the conditional
R

2 (based on both fixed and random e�ects), marginal R
2 (fixed e�ects only), the ICC (adjusted

and conditional), RMSE and the residual standard error("RSE"). Here p denotes the number of
parameters in each model.

Additionally, we can also compare the conditional modes of the random e�ects (the best linear unbiased
predictions, BLUPs, in the case of LMMs) estimated under both mixed models. From our results, we
note that the 95% prediction intervals are wider in general for lmm.RI.0.w (expression more model
uncertainty for each client k) in comparison to lmm.RI.0. For this reason, moving forward, we should
compare the fitted models without weights (see Table 4.9 for comparison) and with the varying e�ects
of clients (as random intercepts).

Model lmm.RI.M: Random Client Intercept with Fixed Main E�ects

In this section, we briefly investigate if introducing the risk class client e�ects as a random e�ect
improves the fit of Model (4.8). In other words, if the "classical" linear model’s fit, lm.M.r (which
includes the risk group e�ects as individual fixed e�ects and the main fixed e�ects) is significantly
improved. We start by building the LMM with only the main fixed e�ects included in the reduced
LM lm.M.r (significant on the estimated log loss ratios, at – = 0.05) for each k-th client. Then if the
LMM outperforms the LM, we continue further with our analysis with LMMs and investigate if we can
further reduce the LMM or if the interaction e�ects given in Model (5.1) improve our LMM fit.

Here we still consider each risk class group in: treaty i (grouped), country j (grouped), and treaty year
t as explanatory variables (fixed e�ects). Whereas the e�ect of each k-th client is now included as a
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random e�ect (random intercept, –k). Recall this LMM was formulated as:

Model lmm.RI.M: ln.lrkijt = —0 + —1I
g.treatyi
k

+ —2I
g.countryj
ki

+
18X

t=2

—
t

3years
t

kij +
4X

q=2

—
q

4
t.typeq

ki

+ —5ocikijt + —6rate
d

kijt + —7cpikijt + –k + Ákijt,

Ákijt ≥ N (0, ‡
2

Á) i.i.d., ’ k, i, j, t,

–k ≥ N (0, ‡
2

–) i.i.d., ’ k = 1, . . . , 35,

(4.22)
such that we assume the random client e�ects are independent for each client k with independent error
terms, for each k = 1, . . . , 35.

Model Results: lmm.RI.M

Once again, we fit this model lmm.RI.M in R using ML (instead of REML - by setting REML = FALSE).
To fit this LMM by using the package lme4 in R, we use the following command (where blue denotes
the random client e�ects)

1 lmm.RI.M <- lmer(ln.lr ~ g.treaty + g.country + years + t.type + oci + rate + cpi + (1|client), na.action=
na.omit,data = cat_data, REML = F)

Linear mixed model fit by maximum likelihood . t-tests use Satterthwaites method [�lmerModLmerTest�]
Formula: ln.lr ~ g.treaty + g.country + years + t.type + oci + rate + cpi + (1 | client)

Data: cat_data

AIC BIC logLik deviance df.resid
1741 1847 -841 1683 261

Scaled residuals:
Min 1Q Median 3Q Max
-4.0 -0.5 0.1 0.6 3.6

Random effects:
Groups Name Variance Std.Dev.
client (Intercept) 4 2
Residual 17 4
Number of obs: 290, groups: client, 35

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 14.84 4.21 288.90 3.5 5e-04 ***
g.treaty2 -0.46 0.98 40.05 -0.5 0.637
g.countryL 0.47 0.85 212.17 0.6 0.582
years2003 -0.52 3.57 278.59 -0.1 0.883
years2004 0.66 3.19 270.32 0.2 0.837
years2005 0.47 3.26 266.45 0.1 0.884
....
t.typeCXL -0.87 1.28 236.86 -0.7 0.499
t.typeQS -2.71 1.00 189.41 -2.7 0.008 **
t.typeSP -2.74 1.26 187.80 -2.2 0.032 *
oci -5.69 0.28 278.49 -20.7 <2e-16 ***
rate -0.84 0.19 256.74 -4.5 9e-06 ***
cpi -0.09 0.03 288.96 -3.3 0.001 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Here, —̂0 = 14.84 (s.e. 4.21), with ‡̂
2
– = 4.21, and ‡̂

2
Á = 0.70 (a significant decrease from the first "null"

LMM, lmm.RI.0, and selected LM model, lm.I.r).

First of all, if we set the significance level to 5%, the results show that fixed main e�ects of all the risk
factors, t.type, oci, rate and cpi remain significant. However, when introducing the random client
intercepts into the model, we observe the following risk class groups: g.treaty, g.country and years
are no longer significant at a 5% significance level. To simplify the fixed-e�ects structure, we construct
an ANOVA table for the model lmm.RI.M, calculate F statistics and corresponding p-values for each
fixed-e�ects dropped from the model (using the F test using the Satterthwaite approximation method,
which is compatible for our unbalanced data set where not all clients have the counts of loss). The
results are provided in Table 4.10. Alternatively, this can be obtained by the function in drop1 in R
package lmer.

Sum Sq Mean Sq Num. Df Den. Df F -value Pr(>F )
g.treaty 4 4 1 40 0.23 0.64
g.country 5.3 5.3 1 212 0.3 0.58
years 913 51 18 279 2.9 1e-04
t.type 140 47 3 215 2.7 0.048
oci 7449 7449 1 278 427 <2e-16
rate 358 358 1 257 21 9e-06
cpi 193 193 1 289 11 0.001

Table 4.10. ANOVA table (Type III) for fixed e�ects. Based on model lmm.RI.M, with F -tests for the main fixed-
e�ects (using the Kenward-Roger F -tests with Satterthwaite degrees of freedom) and corresponding
p-value and their order of elimination. The results are provided in here are obtained by the package
lmerTest based on the model fit with lme4. Here "Num. Df" is the numerator degrees of freedom
(number of groups minus one), and Den. DF is the denominator degrees of freedom (di�erence
between the number of groups and observations).

The results show after removing g.treaty and g.country sequentially that years is now at a 5%
significance level (p-value <0.05), when accounting for the random client k intercept e�ects. Hence, we
conclude that the fixed e�ects of the group risk class levels g.treaty and g.country can be dropped
from the model. From the results we also see that the following fixed main e�ects of the risk factors
remain significant on the average log loss ratios (at p-value < 0.05): t.type, oci, rate and oci - when
including the random client e�ects k into the model.

Model Comparison: Full Model (lmm.RI.M) and Reduced Model (lmm.RI.M.r)

Since both random clients k intercept mixed models were fitted using maximum likelihood estimation,
we can use the likelihood ratio test (LRT) in R to test the significance of the fixed e�ects. In other
words, by analyzing the ANOVA output, we can once again check if the model can be reduced by
excluding g.treaty and g.country - by the following R command to perform the LRT.

1 anova(lmm.RI.M,lmm.RI.M.r1, test = "LRT")

Data: cat_data
Models:
lmm.RI.M.r1: ln.lr ~ years + t.type + oci + rate + cpi + (1 | client)
lmm.RI.M: ln.lr ~ g.treaty + g.country + years + t.type + oci + rate + cpi + (1 | client)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
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lmm.RI.M.r1 27 1737 1836 -842 1683
lmm.RI.M 29 1741 1847 -841 1683 0.51 2 0.77

The results shows that the null hypothesis that both g.treaty and g.country are not significant,
H0 : —1 = —2 = 0, cannot be rejected with, p-value = 0.77. Hence, we conclude that the model can be
reduced by excluding both covariates.

The performance and accuracy of the reduced model (lmm.RI.M.r) is also compared with the full LMM
main fixed e�ects model lmm.RI.M in Table 4.11.

Model p logLik AIC AICc BIC R
2
con. R

2
mar. ICCadj. ICCcon. RMSE RSE

lmm.RI.M 29 -841.40 1740.80 1747.49 1847.22 0.77 0.72 0.18 0.05 4.04 4.18

lmm.RI.M.r 28 -841.51 1739.02 1745.24 1836.40 0.77 0.73 0.17 0.05 4.05 4.18

Table 4.11. Comparison of performance of full LMM lmm.RI.M and the reduced LMM lmm.RI.M.r. Both models
fit the random client intercept e�ects and fixed main fixed e�ects. Performance is compared by
the information criteria (AIC,AICc,BIC), the log-likehood (logLik), the proportion of variability
explained by each model (i.e. R

2 and ICC) and the residual standard errors (green cells denotes
the preferred model per corresponding measure).

When examining the information criteria for the reduced and full model, we see that the reduced model
lmm.RI.M.r attains the lowest AIC, AICc and BIC values. Though the reduced model results in a
slight decrease in terms of the logLik, marginal R

2
mar., ICCadj. and RMSE - we choose the simpler and

less complex reduced model based on the lowest AIC, AICc and BIC values.

Whereas, if we compare the BIC values attained by lmm.RI.M.r to the best performing reduced LM
lm.G.r (with fixed main e�ects, BIC = 1960.98) we also attain a better performing model fit with
lmm.RI.M.r by accounting for the varying random k-th client e�ect. For this reason, we proceed further
with our analysis with LMMs.

Thus, the reduced model (and selected model in this section) can be formulated as,

Model lmm.RI.M.r (reduced model with random intercept and fixed main e�ects)

ln.lrkijt = —0 +
18X

t=2

—
t

1years
t

kij +
4X

q=2

—
q

2
t.typeq

ki
+ —3ocikijt + —4rate

d

kijt

+ —5cpikijt + –k + Ákijt,

Ákijt ≥ N (0, ‡
2

Á) i.i.d., ’ k, i, j, t

–k ≥ N (0, ‡
2

–) i.i.d., ’ k = 1, . . . , 35,

(4.23)

Although, an adjusted ICCadj. value of 17% (with conditional ICCcon.) indicates a low reliable fit,
such that unwanted variations may be su�ciently large between the k-th clients. For this reason, we
now investigate if the model fit is improved by introducing interaction e�ects (before we start exploring
di�erent residual structures).
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Model lmm.RI.I: Random Client Intercepts with Fixed Main and Interac-
tion E�ects

We now investigate if we can improve the overall fit of the model lmm.RI.M.r by introducing certain
pairwise interactions. Recall that we only allow for the interaction e�ects included in the LM interaction
model lm.I.r (the reduced normal linear model with interaction e�ects).

Recall lmm.RI.I with fixed interactions - with respect to the random k-th component (–k) - was
formulated as

Model lm.RI.I: ln.lrkijt = —0 + —1I
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(4.24)
with

Ákijt ≥ N (0, ‡
2

Á) i.i.d., ’ k, i, j, t,

–k ≥ N (0, ‡
2

–) i.i.d., ’ k = 1, . . . , 35,

where the log loss ratio is given for the k = 1, . . . , 35. The random e�ects are independent across
the clients, k = 1, . . . , 35, as well as independent of the error terrors Ákijt for all risk class levels in
(k, i, j, t).

Model Results: lmm.RI.I

Similarly, we use the package lme4 with the function lmer to fit the above model. Where the R operator
":" denotes pairwise e�ects between the fixed covariates.

1 lmm.RI.I <- lmer(formula = ln.lr ~ years + t.type + oci + rate + cpi + years:oci + years:cpi + t.type:oci + oci:cpi +
(1|client), data = cat_data, na.action = na.omit, REML = F)

2 summary(lmm.RI.M.int)

Linear mixed model fit by maximum likelihood . t-tests use Satterthwaites method [�lmerModLmerTest�]
Formula: ln.lr ~ years + t.type + oci + rate + cpi + years:oci + years:cpi +

t.type:oci + oci:cpi + (1 | client)
Data: cat_data

AIC BIC logLik deviance df.resid
1637 1860 -757 1515 229

Scaled residuals:
Min 1Q Median 3Q Max

-4.701 -0.550 0.027 0.543 2.415

Random effects:
Groups Name Variance Std.Dev.
client (Intercept) 2.80 1.67
Residual 9.57 3.09
Number of obs: 290, groups: client, 35
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Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 24.64 15.98 274.96 1.5 0.124
years2003 65.47 76.28 283.06 0.9 0.392
years2004 -32.83 16.44 282.45 -2.0 0.047 *
years2005 -51.43 17.68 276.57 -2.9 0.004 **
years2007 -18.09 16.93 280.83 -1.1 0.286
.....
t.typeCXL 5.74 1.97 276.07 2.9 0.004 **
t.typeQS -1.36 1.27 181.66 -1.1 0.288
t.typeSP 3.11 2.04 267.17 1.5 0.129
oci 7.53 4.07 277.44 1.9 0.065 .
rate -0.54 0.15 269.84 -3.7 3e-04 ***
cpi -0.30 0.20 274.02 -1.5 0.144
years2003:oci -1.43 5.64 287.06 -0.3 0.800
years2004:oci -4.01 2.73 269.12 -1.5 0.142
years2005:oci -3.29 2.93 270.42 -1.1 0.263
years2007:oci -5.57 2.75 263.68 -2.0 0.044 *
....
years2003:cpi -0.77 0.98 281.74 -0.8 0.434
years2004:cpi 0.47 0.21 281.40 2.2 0.030 *
years2005:cpi 0.67 0.22 275.57 3.0 0.003 **
....
t.typeCXL:oci -4.43 1.23 282.70 -3.6 4e-04 ***
t.typeQS:oci -0.46 0.56 289.91 -0.8 0.405
t.typeSP:oci -4.12 1.39 280.63 -3.0 0.003 **
oci:cpi -0.11 0.03 284.33 -4.2 3e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Here, for the estimates of the fixed e�ects we have —̂0 = 24.64 (s.e. = 15.98), with estimated random
error ‡̂

2
Á = 9.6 and, for the random e�ects, ‡̂

2
– = 2.8. Alternatively, we can extract the estimated

variance explained by both the fixed e�ects, ‡̂
2

—
, and random e�ects or errors - using R function

get_variance (available in the package insights). This allows us to calculate both the adjusted
ICCadj. and conditional ICCcon. (see Table 4.12).

Model ‡̂
2
— ‡̂

2
– ‡̂

2
Á ICCadj. ICCcon. R

2
con. R

2
mar.

lmm.RI.I 66.58 2.80 9.57 0.23 0.04 0.88 0.84

Table 4.12. Estimated Variance of LMM lmm.RI.I, the estimated adjusted ICCcon. and conditional ICCcon.,
and the estimated coe�cients R

2
con. and R

2
mar.. ‡̂

2
— and ‡̂

2
– is the estimated variance for the fixed and

random e�ects (random client intercepts, and ‡̂
2
Á is the estimated variance of the model’s random

error.

Such that here ICCadj. is calculated by,

ICCadj. = ‡̂
2
–

‡̂2
– + ‡̂2

Á

= 2.8
9.57 + 2.8 = 0.23,

and,

ICCcon. = ‡̂
2
–

‡̂
2

—
+ ‡̂2

– + ‡̂2
Á

= 2.8
66.58 + 2.8 + 9.57 = 0.04.

Whereas the estimated proportion of the total variance is explained by both the fixed and random
e�ects, R

2
con. or by only the fixed e�ects, R

2
mar. - by the model lmm.RI.I - are calculated respectively
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by

R
2

con. =
‡̂

2

—
+ ‡̂

2
–

‡̂
2

—
+ ‡2

– + ‡̂2
Á

= 66.58 + 2.8
66.58 + 2.8 + 9.57 = 0.88,

R
2

mar. =
‡̂

2

—

‡̂
2

—
+ ‡̂2

– + ‡̂2
Á

= 66.58
66.58 + 2.8 + 9.57 = 0.84.

Based on this and on the 95% confident interval of both ICC estimates, since the values are less than
0.5 - this is still an indication of poor reliability (based on both the adjusted and conditional ICC).
This suggests the random e�ects structure in this model reflects very little of the remaining variance
in the aggregated data. Motivating us to explore other suitable random e�ects. While based on the
estimated proportion of variance explained by both the fixed and mixed e�ects (R2

con. = 88%) indicates
an overall adequate fit.

Additionally, the summary of the model output suggests that at the 5% significance level all interaction
e�ects included in the model are significant (p < 0.05): years:oci, years:cpi, t.type:oci and oci:cpi.
We can confirm these findings by calculating the Type III ANOVA table using Wald ‰

2 tests (available
in the package car) for LMMs, obtained by the following R command

1 Anova(lmm.RI.I, type = 3)

Analysis of Deviance Table (Type III Wald chisquare tests)

Response: ln.lr
Chisq Df Pr(>Chisq)

(Intercept) 2.4 1 0.12
years 31.4 18 0.03 *
t.type 21.5 3 8e-05 ***
oci 3.4 1 0.06 .
rate 13.7 1 2e-04 ***
cpi 2.2 1 0.14
years:oci 150.7 15 <2e-16 ***
years:cpi 29.1 15 0.02 *
t.type:oci 20.6 3 1e-04 ***
oci:cpi 17.8 1 2e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The results show confirms our findings, and we conclude all included interaction e�ects remain significant
and cannot be further excluded from the model. While their corresponding main e�ects (with significant
marginal e�ects, at p-value <0.05) are also necessary to be included in the model, and thus, we conclude
that our model cannot be further reduced.

Model Comparison: Main Fixed E�ects Model lmm.RI.M and Interaction Fixed E�ects
Model lmm.RI.I

Firstly, it is evident from the goodness of fit measurements in Table 4.13, there is an increase in all types
of R

2 and ICCadj. (with a very slight decrease in ICCadj.) - when accounting for interaction e�ects (in
comparison to both the full and reduced fixed main e�ects models, lmm.RI.M and lmm.RI.M.r). This
indicates that among the clients k there is more reliability when accounting for fixed interaction e�ects
in the model (though there is a very slight increase in the estimated conditional ICC, i.e. the fixed
e�ects variances). Clearly, the model also outperforms both fixed main e�ects only models in terms of
the performance measures: AIC, and AICc, with higher predictive power based on the RMSE.
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Model p logLik AIC AICc BIC R
2
con. R

2
mar. ICCadj. ICCcon. RMSE RSE

lmm.RI.M 29 -841.40 1740.80 1747.49 1847.22 0.77 0.72 0.18 0.05 4.04 4.18

lmm.RI.M.r 27 -841.65 1737.31 1743.08 1836.40 0.77 0.73 0.17 0.05 4.06 4.19

lmm.RI.I 61 -757.34 1636.68 1669.86 1860.55 0.88 0.84 0.23 0.04 2.98 3.09

Table 4.13. Comparison of performance of full fixed main e�ects LMM lmm.RI.M, the reduced LMM lmm.RI.M.r,
and the interaction fixed e�ects LMM lmm.RI.I - with random client intercept e�ects. Performance
measures include the log-likelihood, AIC, AICc, BIC, the goodness of fit statistics (all types of R

2

and ICC) with estimated the residual standard errors (RMSE and RSE).

However, we note an increase in BIC compared to the main e�ects models (as expected since with
the inclusion of interaction e�ects - the complexity of the model increases). This implies that the
high number of parameters included in this model - significant on the e�ect on the estimated log loss
ratio - may lead to over-fitting. For this reason, later use the "step-down strategy" simplification of the
fixed-e�ects structure. However, since the interaction e�ects model generally outperforms the fixed
e�ects only models (when considering all performance measurements) - the interaction model is our
preferred model.

This model was formulated as:
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with
Ákijt ≥ N (0, ‡
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Á) i.i.d., ’ k, i, j, t,

–k ≥ N (0, ‡
2
–) i.i.d., ’ k = 1, . . . , 35,

(4.25)

We also note that given the low within-cluster variance (ICCadj. = 0.23) suggests that additional
grouping structures (per (k, i, j, t)) may be required. To essentially capture a higher portion of variability
explained by the random e�ects structure. Later, after further exploring other potential and more
complex structures for random e�ects and the appropriate covariance structures of our model - we will
investigate if the number of fixed e�ects can be reduced (using statistical hypothesis tests, i.e. LRT, to
prevent over-fitting).

Models for Random Intercepts and Slopes, with Fixed Main and Interaction
E�ects

So far, in the previous sections, we have only analyzed the simplest and most type of LMMs; "simple
random e�ect per level", such that the random e�ect corresponded to only one specific grouping risk
level (i.e. the k-th client). Due to this study’s design of risk class groups and structure of longitudinal
data, we may have to account for the e�ects at di�erent hierarchical levels and, thus, allow for nested,
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clustered, or even crossed random e�ects.

For this reason, in the following sections, we explore multiple and more complex structures in the
random e�ects and then select the best suitable model (using statistical hypothesis tests and with
respect to the performance measures).

1. Specifying the Random E�ect Structure

Here, we first consider other common types of LMMs, including random intercepts and random slopes
that correlate or vary by the risk class groupings (k, i, j, t) Frees et al. (1999). Afterwards, we will
investigate more sophisticated residual covariance structures (later discussed in Section 4.7) to capture
more variability unexplained by the selected mixed model.

The random-e�ects structures analyzed in this study, respectively, are described by the following:

Multiple random e�ects per level: this model includes both random intercepts and random

slopes e�ects, which vary by a group of risk class levels (or factors). Here, the correlation
between the multiple random e�ects is generally assumed, implying that the covariance matrix,
say D, is not diagonal and is assumed to be unstructured.

Hence, for example, with random client intercepts and random g.treaty slopes, this model
(also given in Equation (4.17)) may be formulated as

Model lmm.RS.M1: (LMM with multiple random e�ects and fixed e�ects)
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(4.26)

whereas, for the random components, we have

Ákijt ≥ N (0, ‡
2

Á) i.i.d., ’ k, i, j, t,
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i.i.d., ’ k = 1, . . . , 35,

(4.27)

which implies that the random e�ects are independent for each k-th client, and i-th treaty -
across all the risk classes (k, i, j, t), and independent of the error terms Ákijt. Recall, the random
e�ects is now a bivariate vector with residual covariance matrix (as a diagonal) with homogeneous
variance ‡

2
Á .

Nested random e�ects: in this classification, the levels of one risk class factor can occur only within
certain levels of the first factor (hierarchical or multilevel). This type of random e�ects structure
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allows us to form a hierarchical structure with multiple grouping factors. The nested
structure of random e�ects accounts for model variation in the random intercepts, where intercepts
vary among two groups within a (nested) group. See Bates et al. (2014) for more examples.

For instance, consider the observations grouped by the i-th risk class level (level 2), g.treaty.
Since each i-th treaty group is a subset for k = 1, . . . , 35 (i.e. "nested"), we can then include
random intercepts varying among each client k and i-th treaty group - within each k-th client
risk class group - through this mixed model:

Model lmm.RS.N1:(LMM with nested random e�ects and fixed e�ects)
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(4.29)

where,

• the random errors Ákijt, with variance ‡
2
Á , structure the variability within all the risk classes

levels or groups (k, i, j, t),

• –
(1)

k
is the random client intercept for risk class level k, given by the grouping level (1) (i.e.

client) with zero mean and variance ‡
2
1,

• –
(12)

ki
is the random intercept e�ect varying among client k and treaty i (given at level (2)) -

within client k (grouping level (1)), with zero mean and variance ‡
2
12.

It is important to note that for this specification, we allow for two random intercepts - which
vary at di�erent risk class grouping levels.

Crossed random e�ects: a model specification with within-subject random e�ects, where multiple

(non-nested) observations of a risk class group are associated with multiple risk class levels (i.e.
grouping variables). This means that each group of a risk class can occur at each risk class level
(often expressed as a "special kind of interaction" between the groupings of risk class levels).

For example, consider a LMM with crossed random e�ects between the client k and treaty i.
Then, this model can be formulated as:
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Model lmm.RS.C1:(LMM with crossed random e�ects and fixed e�ects)
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where,
Ákijt ≥ N (0, ‡

2

Á) i.i.d., ’ k, i, j, t,

–ki ≥ N (0, ‡
2

–) i.i.d., ’ k = 1, . . . , 35, i œ {1k
, 2k}.

Therefore, in comparison to the nested e�ects random e�ects, we allow for only one random
intercept here - which varies among client k and treaty i (i.e. random e�ect for the interaction of
risk class level k and i) - with variance ‡

2
–. The random error terms are based on each observation

at risk class level t - corresponding to the combined risks at group levels k, i and j.

The di�erences between the crossed and nested random e�ects structures are shown in Equation 4.2.
It is important to note that while that the first specification (defined as the "Multiple random e�ects
per level") - allows us to include additional crossed and nested random e�ects - by specifying in the
random client intercept e�ects). For the remaining two specifications, in this study, we specify the
random intercept components either as nested random e�ects or as crossed random e�ects (i.e. in this
study, we choose between the random e�ects structures).

i = 1
1

Clients

k = {1, 2}

(Grouped) T reaties

i œ
�

1
k
, 2

k
 

Nested Random

Risk Class E�ects
Crossed Random

Risk Class E�ects

k = 1 k = 1 k = 2

i = 1
ki = 2

1

k = 2

i = 2
ki = 1

2
i = 2

2

Figure 4.7. Example of random risk class e�ects structure, based on clients k and treaties i, which may be crossed
or nested. Left Diagram: Nested random e�ects of clients k = 1, 2 (first level) with (grouped)
treaty i e�ects. This structure introduces nested levels of a random factor - unique to each client k

risk class level which are also nested. Right Diagram: examines every combination of risk class
level groups (k, i) for all k = 1, 2 and i œ {1k

, 2k}.

In this section, our model building strategy for LMMs is as follows:
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Step 1. Considering the fixed main and interaction e�ects included in model lmm.RI, compare and
fit the three structures of random e�ects: multiple random e�ects per level, nested and crossed
random e�ects, based on the grouping structure of the risk classes (k, i) only.

Step 2. Using statistical hypothesis tests for random e�ects to determine the preferred specification of
random e�ects structure. If comparing non-nested models, we will instead compare the models
based on the performance measures (previously outlined in Section 3.4).

Step 3. Continue model building (with the selected random e�ects specification) by allowing for more
significant random e�ects (or reduce if possible).

Step 4. Select and assess the best possible fit based on the model precision and complexity.

Table 4.14 shows the corresponding model formulas in R (based on the function lmer - available in the
R package lme4) - to model the respective random e�ects structures (as outlined above): lmm.RS.M1
(multiple random e�ects per level), lmm.RS.N1 (nested random e�ects), and lmm.RS.C1 (crossed random
e�ects).

.
Model
Name

Formula
(as given by the R package lme4) Random E�ects Structure and Description

lmm.RS.M1
ln.lr ≥ g.country + years + t.type + oci +
rate + cpi + years:oci + years:cpi +
t.type:oci + oci:cpi +
(1 + g.treaty|client)

Multiple random e�ects per risk class level:
random client intercepts for k = 1, . . . , 35 and
random g.treaty slopes for i œ {1k

, 2k} that vary
over all risk classes (k, i, j, t).

lmm.RS.N1
ln.lr ≥ g.country + years + t.type + oci +
rate + cpi + years:oci + years:cpi +
t.type:oci + oci:cpi +
(1|client/g.treaty)

Nested random e�ects:
random intercepts varying among client k and
g.treaty i groups - within the risk class level of
client k = 1, . . . , 35.

lmm.RS.C1
ln.lr ≥ g.country + years + t.type + oci +
rate + cpi +years:oci + years:cpi +
t.type:oci + oci:cpi +
(1|client:g.treaty)

Crossed random e�ects:
random intercept e�ects for the "interaction"
(or groupings) of the risk class levels client k

and g.treaty i.

Table 4.14. Model specifications with di�erent structures of the random e�ects, based on the risk class levels
client, k = 1, . . . , 35 and g.treaty, i œ {1k

, 2k}. Corresponding model formulas in R are given
(using the LMM syntax for R function lmer - provided by the package lme4), where the model
lmm.RS.M1 allows for multiple random e�ects per level ("M"), model lmm.RS.N1 allows for nested
random e�ects ("N"), and lmm.RS.N1 allows for crossed random e�ects ("C"). Note, fixed e�ects are
given in red, and random e�ects are given in blue.

87



Chapter 4. Natural Catastrophe Modeling

Step 1: Results of Random E�ects Structures

Recall that our goal here is select the best performing random e�ects structure that best represents
the underlying data. Once again, here, we consider both interaction and main fixed e�ects and, then
use the R function lmer to fit all three models (setting REML = FALSE, package lme4).

Model Results: lmm.RS.M1, lmm.RS.N1, and lmm.RS.C1

The summary of the model output of the three models (previously defined in Table 4.14) with respect
to the fixed e�ects and estimated variances of random components are shown in Table 4.15. Specifically,
the table first shows the estimates of the fixed regression parameters - with their corresponding standard
error, the 95% confidence intervals ("C.I") and p-values (found under ""fixed e�ects"). Whereas, for
the models’ random components, the estimated covariance ("Cov.") and variances ("Var.") are shown
under the corresponding "random E�ects". Note, the estimated variances for the random components
can also obtained using the R function VarCorr for all models (also provided by R package lme4).

From this output, we observe the following:

• At a 5% significance level, all three models indicate that the fixed (main and interaction) e�ects
of the following covariates are significant (p-value <0.05): years, t.type, rate, cpi, years:oci,
years:cpi, t.type:oci, oci:cpi. While g.country is not significant (across all three models).

• While oci is no longer significance when allowing for nested random e�ects(lmm.RS.N1 in the
model (with p-value = 0.09) or when allowing for crossed random client:g.treaty intercepts
(with p-value = 0.09).

• The models with only random intercepts (lmm.RS.N1 and lmm.RS.C1) estimate the regression
parameters (for fixed e�ects) and random error are equivalent (with —̂0 = 24.67 and ‡̂

2
Á = 9.53).

• However, for model lmm.RS.N1, the estimated variances of the nested intercept of the client and
g.treaty is ‡̂

2
12 = 1.51, and the estimated variance client intercept only is ‡̂

2
1 = 1.37. Meanwhile,

the estimated variance of the crossed random client and g.treaty intercept e�ects (model
lmm.RS.C1) is ‡

2
– = 2.88.

• In comparison, the model lmm.RS.M1 estimates the fixed intercept e�ects as —̂0 = 23.54 (and
‡̂

2
Á = 9.59). Recall, for this model, the random e�ects structure is now bivariate.

• Hence, the output also shows the estimated variances for the following random components:
the random client intercept e�ects Var(–̂0k) = ‡̂

2
0 = 0.31, the random g.treaty slope e�ects

Var(–̂1k) = ‡̂
2
1 = 6.94, and the estimated covariance of the random client intercept, –0k, and

random g.treaty slope, –1k, is given by Cov(–̂0k, –̂1k) = ‡̂01 = ≠1.13.

Based on these findings and the results of the fitted models, we now compare their performances to
find the most suitable structure for the random components.
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Chapter 4. Natural Catastrophe Modeling

Step 2: Comparison of Random E�ects Structures

Since we are comparing models with non-nested random e�ects; we evaluate the models in terms
of complexity, the goodness of fit, and predictive performances, given in Table 4.16 (based on the
performance measures discussed in Section 3.4).

Model p logLik AIC AICc BIC R
2
con. R

2
mar. ICCadj. ICCcon. RMSE RSE

lmm.RS.M1 64 -754.90 1637.79 1674.77 1872.66 0.88 0.88 0.03 0.00 3.01 3.10

lmm.RS.N1 63 -757.03 1640.07 1675.75 1871.27 0.88 0.84 0.23 0.04 2.97 3.09

lmm.RS.C1 62 -757.03 1638.07 1672.48 1865.60 0.88 0.84 0.23 0.04 2.97 3.09

Table 4.16. Comparison of random e�ects models, with di�erent random e�ects structures based on the risk
class levels client, k = 1, . . . , K, and g.treaty, i = 1, . . . , P

k.

Once again, here we compare the information criteria for all models, AIC, BIC and AICc (applicable
due to the sample size and the large number of parameters included in the models). In addition, to
assess the goodness-of-fit of the models - we look at the log-likelihood estimates, ICC, and LMM
coe�cient of determination R

2
con. (or marginal R

2
mar. ). While we evaluate the models’ predictive

performances based on the rooted mean squared error (RMSE) or the residual error standard deviation
(referred to as "RSE"). Additionally, we can also compare the corresponding prediction 95% intervals for
each model (not included in this paper). From these results, we note that the selected best-performing
model (in terms of the predictive power) with high accuracy - di�ers across the measures. For instance,
based on the three information criteria considered, lmm.RS.M1 attains the lowest AIC - but in terms
of the BIC and AICc values lmm.RS.C1 is the best fit. Meanwhile, lmm.RS.M1 accounts for highest
proportion of variability in the estimated log loss ratios - explained by the fixed e�ects (R2

mar. = 0.88).
However, here we are more interested in the variability also captured by the random e�ects structure.
Hence we are more motivated to consider the models that attain higher values which account for
both the fixed and random e�ects (for instance, such as the R

2
con. and ICCadj.). From our output,

we can also see that model lmm.RS.M1 results in the widest prediction intervals (indicating the most
estimated instability in comparison to the other two models). For this reason, the crossed e�ects model
lmm.RS.C1 attains higher AICc and BIC values, we statistical test (using LRT) if the model lmm.RS.M1
is preferred or improves our fit. Likewise, we can also test if the model with random g.treaty slope,
lmm.RS.M1, improves the random client intercept model too (given by lmm.RI.I). Both results are
obtained by the ANOVA table given in Table 4.17.

Model npar AIC BIC logLik deviance Chisq df Pr(>Chisq)

lmm.RS.C1 62.00 1638.07 1865.60 -757.03 1514.07

lmm.RS.M1 64.00 1637.79 1872.66 -754.90 1509.79 4.28 2 0.1179

lmm.RI.I 63.00 1640.00 1871.20 -757.00 1514.00

lmm.RS.M1 64.00 1637.79 1872.66 -754.90 1509.79 4.21 1 0.0403

Table 4.17. ANOVA tables, for LRTs (Likelihood ratio tests), comparing models lmm.RS.C1 and lmm.RS.M1 (top
rows) - test to check if g.treaty should be random intercept or random slope.

Clearly based on these results, we conclude that while considering g.treaty as a random e�ect improves
the model fit of model lmm.RI.I (with client random intercept e�ects only, p-value = 0.04) - it does
not improve the overall fit of the crossed random e�ects model (p-value = 0.11). For this reason, we
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Chapter 4. Natural Catastrophe Modeling

conclude that the crossed random e�ects structure is our preferred model specification (and hence
proceed further with these types of models), given by

Model lm.RS.C5: (crossed random e�ects model with all risk class levels)

ln.lrkijt = —0 + —1I
g.countryj
ki +

18X

t=2
—

t
2years

t
kij +

4X

q=2
—

q
3t.type

q
ki+—4ocikijt + —5rate

d
kijt + —6cpikijt

+
8X

t=2
—

t
7years

t
kij ◊ ocikijt+

18X

t=2
—

t
8years

t
kij ◊ cpikijt+

4X

q=2
—

q
9t.type

q
ki ◊ ocikijt

= —10ocikijt ◊ cpikijt +–ki +Ákijt,

(4.31)

where for the random components, we have

Ákijt ≥ N (0, ‡
2
Á) i.i.d., ’ k, i, j, t,

–ki ≥ N (0, ‡
2
–) i.i.d., ’ k = 1, . . . , 35, i œ {1k

, 2k}.
(4.32)

Step 3: Investing More Complex Crossed Random E�ects Structures

In this step, we allow for more complex specifications with respect to the crossed random e�ects
structures in our model. Specifically, we start by including the risk classes (k, i, j, t) respectively, based
on the hierarchical structure of data. The models investigated in this section are outlined in Table 4.18.
Here we denote the random e�ects in red and fixed e�ects in blue (for the model formulas).

.

Model Name Formula Random E�ects Structure and Description

lmm.RS.C2
ln.lr ≥ years + t.type + oci + rate + cpi +
years:oci + years:cpi + t.type:oci + oci:cpi +
(1|client:g.treaty:g.country)

Crossed random e�ects:
random intercept e�ects for the "interaction"

(or groupings) of the risk class levels client k

g.treaty, i and g.country j .

lmm.RS.C3
ln.lr ≥ years + t.type + oci + rate + cpi +
years:oci + years:cpi + t.type:oci + oci:cpi +
(1|client:g.treaty:g.country:years)

Crossed random e�ects:
random intercept e�ects for the "interaction"

(or groupings) of the risk class levels client k

g.treaty, i g.country j and years, t.

lmm.RS.C4
ln.lr ≥ years + t.type + oci + rate + cpi +
years:oci + years:cpi + t.type:oci + oci:cpi +
(1 + oci|client:g.treaty:g.country)

Crossed and Multiple random e�ects:
random intercept e�ects for the "interaction"

(or groupings) of the risk class levels client k

and g.treaty i. Also includes (multiple) random

oci slope e�ects varying for risk class levels (k, i, j, t).

lmm.RS.C5
ln.lr ≥ years + t.type + oci + rate + cpi +
years:oci + years:cpi + t.type:oci + oci:cpi +
(1 + oci|client:g.treaty:g.country:years)

Crossed and Multiple random e�ects:
random intercept e�ects for the "interaction"

(or groupings) of the risk class levels client k

g.treaty, i g.country j and years, t. Including

(multiple) random oci slope e�ects varying for

risk class levels (k, i, j, t).

Table 4.18. Model formulas of the di�erent specifications of the random e�ects, based on the crossed random e�ect

risk class levels client, k = 1, . . . , 35, g.treaty, i œ {1
k
, 2

k}, g.country, j œ {H
ki

, L
ki} and years,

t œ {2001
kij

, . . . , 2021
kij}. Corresponding model formulas in R are given (using the LMM syntax in package

lme4), extending the structure of selected model lmm.RS.C1. Recall, fixed e�ects are given in red, and

random e�ects are given in blue.
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Model Results: lmm.RS.C2, lmm.RS.C3, lmm.RS.C4, and lmm.RS.C5.

Here we focus on the estimate variance components of the random e�ects. The estimated variance
components of each model can be obtained (from the model results) using the R command VarCorr
(given in a list here, for all models). Note each model here is fitted using the ML method.

1 list(VarCorr(lmm.RS.C2),VarCorr(lmm.RS.C3),VarCorr(lmm.RS.C4),VarCorr(lmm.RS.C5))

[[1]] # VarCorr(lmm.RS.C2)
Groups Name Std.Dev.
client:g.treaty:g.country (Intercept) 1.76
Residual 3.49

[[2]] # VarCorr(lmm.RS.C3)
Groups Name Std.Dev.
client:g.treaty:g.country:years (Intercept) 2.83
Residual 2.86

[[3]] # VarCorr(lmm.RS.C4)
Groups Name Std.Dev. Corr
client:g.treaty:g.country (Intercept) 2.99

oci 3.12 -0.96
Residual 2.88

[[4]] # VarCorr(lmm.RS.C5)
Groups Name Std.Dev. Corr
client:g.treaty:g.country:years (Intercept) 4.78

oci 3.95 -0.96
Residual 2.22

From here we observe that model lmm.RS.C5 yields the smallest estimated residual variance, ‡̂
2
Á = 2.22,

for the random terms Ákijt given the risk class levels (k, i, j, t) (as crossed random intercept e�ects), in
comparison to all other models. This model also includes the oci as a random slope e�ect, varying for
all risk classes.

Step 4: Comparison of Crossed Random E�ects and Fixed E�ects Models

We now compare the results of fitted models, then further analyze the results of the selected best
model fit. Similar to previous sections, we once again assess based on the performance measures given
in Table 4.19. It is evident from the results that model lmm.RS.C5 is the best fit. We conclude this

Model p logLik AIC AICc BIC R
2
con. R

2
mar. ICCadj. ICCcon. RMSE RSE

lmm.RS.C1 62 -757.03 1638.07 1672.48 1865.60 0.88 0.84 0.23 0.04 2.97 3.09

lmm.RS.C2 61 -737.16 1596.33 1629.51 1820.19 0.85 0.81 0.20 0.04 2.99 3.49

lmm.RS.C3 62 -737.11 1598.22 1632.64 1825.75 0.90 0.80 0.49 0.10 2.05 2.86

lmm.RS.C4 49 -767.25 1632.50 1652.91 1812.32 0.90 0.68 0.70 0.22 2.50 2.88

lmm.RS.C5 63 -696.81 1519.62 1555.30 1750.82 0.95 0.66 0.85 0.29 1.61 2.22

Table 4.19. Model performance summary, for fitted models with crossed random e�ects structures: (1) lmm.RS.C1
(random intercept e�ect for the interaction of level k, i.e. clients, and i, i.e.g.treaty), (2) lmm.RS.C2
(random intercept e�ect for the interaction of levels: k, i and j, i.e.g.country), (3) lmm.RS.C3 (random
intercept e�ect for the interaction of levels: k, i, j and t, i.e. years), (4) lmm.RS.C4 (random intercept
e�ect for the interaction of levels k, i, j, with random oci slope e�ects), (5) lmm.RS.C5 (random
intercept e�ect for the interaction of levels k, i, j, t, with random oci slope e�ects).
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because it outperforms all other models based on all performance measures - while accounting for
both the random and fixed e�ects. This means that, for example, even though lmm.RS.C1 attains the
highest estimated coe�cient of R

2
mar. - since it only accounts for the fixed e�ects - we state lmm.RS.C5

is our preferred model.

Especially since, compared to all other considered models, it also captures the highest portion of
variability explained by the whole model, i.e. accounted for by both the fixed and random e�ects (at
conditional R

2
con. = 0.95). While the model’s random e�ects structure also explains the highest portion

of the variation (ICCadj. = 0.85) in the grouping of the risk class structure (k, i, j, t) - with crossed
levels in the random intercept (for all risk class levels) and random oci slope e�ects. The models’
results also suggest lmm.RS.C5 is the most suitable fit and preferable given the data, based on the
lowest RMSE (estimated as 1.81).

This model is given by:

Model lm.RS.C5: ln.lrkijt = —0 +
18X

t=2
—

t
1years

t
kij +

4X

q=2
—

q
2t.type

q
ki + —3ocikijt + —4rate

d
kijt

+—5cpikijt +
8X

t=2
—

t
6years

t
kij ◊ ocikijt+

18X

t=2
—

t
7years

t
kij ◊ cpikijt

+
4X

q=2
—

q
8t.type

q
ki ◊ ocikijt + —9ocikijt ◊ cpikijt

+ –0kijt+ –1kijtocikijt+Ákijt,

with random components,
Ákijt ≥ N (0, ‡

2
Á) i.i.d., ’ k, i, j, t,

ï
–0kijt

–1kijt

ò
≥ N2

Åï
0
0

ò
,

ï
‡

2
0 ‡01

‡01 ‡
2
1

òã
i.i.d., ’ k = 1, . . . , 35.

(4.33)

We fit this model using the following R command (using ML method, via the function lmer) to obtain
the following model summary (using the ML estimation).

1 lmm.RS.C4 <- lmer(ln.lr ~ years + t.type + oci + rate + cpi + years:oci + years:cpi + t.type:oci + oci:cpi +
(1+oci|client:g.treaty:g.country), na.action = na.omit, data = cat_data, REML = F)

Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite�s method [
lmerModLmerTest]
Formula: ln.lr ~ years + t.type + oci + rate + cpi + years:oci + years:cpi +

t.type:oci + oci:cpi + (1 + oci | client:g.treaty:g.country)
Data: cat_data

Control: lmerControl(check.nobs.vs.nRE = "ignore", check.nobs.vs.nlev = "ignore")

AIC BIC logLik deviance df.resid
1553 1784 -713 1427 227

Scaled residuals:
Min 1Q Median 3Q Max

-2.93 -0.52 0.06 0.61 2.61

@Random effects:@
Groups Name Variance Std.Dev. Corr
client:g.treaty:g.country (Intercept) 7 3

oci 8 3 -0.97
Residual 6 3
Number of obs: 290, groups: client:g.treaty:g.country, 43

@@Fixed effects:@@
Estimate Std. Error df t value Pr(>|t|)
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(Intercept) 38.33 13.14 243.80 2.9 0.004 **
years2003 20.74 58.47 169.12 0.4 0.723
years2004 -32.85 13.16 265.91 -2.5 0.013 *
years2005 -43.36 14.20 255.37 -3.1 0.002 **
......
t.typeCXL 3.20 1.67 189.46 1.9 0.057 .
t.typeQS -1.21 0.92 45.29 -1.3 0.194
t.typeSP 1.48 1.70 174.02 0.9 0.386
oci -18.39 4.86 226.57 -3.8 2e-04 ***
rate -0.38 0.12 83.47 -3.2 0.002 **
cpi -0.33 0.16 247.55 -2.0 0.047 *
years2003:oci 11.76 4.70 232.89 2.5 0.013 *
years2004:oci 8.56 2.79 258.73 3.1 0.002 **
years2005:oci 9.29 2.95 268.43 3.2 0.002 **
......
years2003:cpi -0.38 0.75 160.08 -0.5 0.613
years2004:cpi 0.32 0.17 266.24 1.9 0.062 .
years2005:cpi 0.42 0.18 262.13 2.3 0.020 *
......
t.typeCXL:oci -2.18 1.16 237.50 -1.9 0.061 .
t.typeQS:oci 0.23 0.47 270.18 0.5 0.630
t.typeSP:oci -2.03 1.30 237.74 -1.6 0.121
oci:cpi 0.05 0.03 232.90 1.5 0.127
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

For the fixed e�ects, the output states that the main and pairwise interaction e�ects of t.type are
no longer significant (at a 5% level). This means the interaction e�ects t.type:oci are no longer
significant, in addition to the pairwise e�ects of the term oci:cpi (at p-value = 0.13). However, we
will test if we can exclude any fixed e�ects from our model - after we analyze di�erent structures of the
residence covariance structure (in the next section).

While for the random e�ects, we can utilize the function ranova once again to test if the random slope
e�ects of oci (i.e. the number of historic of natural catastrophic unique events) - for all risk class
levels (k, i, j, t) - can be dropped from the model (to reduce the model). These results are shown in
Table 4.20.

Random components, Model: lmm.RS.C5 p logLik AIC LRT df Pr(>Chisq)

client:g.treaty:g.country:years 63.00 -720.87 1567.74

oci in (1 + oci | client:g.treaty:g.country:years) 61.00 -765.89 1653.77 90.03 2 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.20. ANOVA-like table with tests of random-e�ect terms in the model, for crossed random e�ects model -
with model lmm.RS.C5 (against the model with no random components "<none>")). Specifically, we
test if the random slope e�ects of oci is significant in our model.

Based on the output, we reject the null hypothesis (p-value < 0.05), namely:

H0 : ‡
2

1 = 0 versus H0 : ‡
2

1 > 0,

with estimated LRT static of 90.03), and conclude that the random oci slop e�ects cannot be dropped
from our model. Hence, the model specification given in Equation (4.33) with varying crossed intercepts
and varying slope is our preferred model. Specifically, these models allow for the risk class levels
(k, i, j, t) (grouping risk class factors) as varying random intercepts - with random slopes influenced by
the number of unique natural disasters (i.e. oci) they insure (for example, Hurricane Maria, Hurricane
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Katrina, etc.) - taking into account the hierarchical structure with respect to the estimated log loss
ratio.

2. The Residual Covariance Structure

In this section, we aim to briefly explore other appropriate structures of the variance-covariance matrix
of the residuals. Our goal here is to capture more variability that cannot be explained by fixed e�ects
or the multiple random varying e�ects (for instance, between the risk class levels (k, i, j)). Here, we
extend the selected LMM (lmm.RS.C5) to explore more sophisticated residual covariance structures.
Since, based on our previous findings, there still exists some heterogeneity between the risk classes
(k, i, j, t).

For this reason, in this study, we explore the following residual covariance structures: the compound
symmetry, defined as

Compound Symmetry: a covariance matrix where all variances and correlations are assumed to be
equal. Useful for within-subjects study designs observed under the same conditions (Bentler and
Bonett, 1980). The residual covariance matrix can be formulated as

� = ‡
2

2

6664

1 fl fl fl

fl 1 fl fl

fl fl 1 fl

fl fl fl 1

3

7775

Unstructured covariance matrix: unlike compound symmetry, no assumptions are made regarding
the variances’ values or covariance. Here we can allow for heterogeneity between the variances for
repeated measures. For example, for a five-parameter model, the general form (with symmetry)
can be given by:

� =

2

6664

‡
2
1 ‡21 ‡31 ‡41

‡21 ‡
2
2 ‡32 ‡42

‡31 ‡32 ‡
2
3 ‡43

‡41 ‡42 ‡43 ‡
2
4

3

7775

Further details on the derivations regarding more complex covariance structures are discussed in Frees
et al. (2014). Since the package lme4 has no option for dealing with heteroscedasticity (previously
utilized for LMM modelling). For this reason we utilize the package nlme, shown in Table 4.21. See
Ga≥ecki and Burzykowski (2013) for a detailed description of the di�erences between the packages
concerning fitting linear mixed models in R.

Name nlme function
Compound symmetry corCompSymm
AR1 corAR1
CAR1 corCAR1
Unstructured corSymm

Table 4.21. Example of functions available in nlme package - for defining di�erent residual covariance structures,
in R.
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Model Fitting and Results (with Di�erent Covariance Structures)

To model the compound symmetric covariance structure, allowing for heterogeneous and homogeneous
in the variance (for OCI), we use the following R functions: gls to model the LMM from the package
nlme, corCompSymm to define the compound symmetric covariance structure in correlation, and
weights is used to define if the model should allow for homogeneous in the variance (for the random
components).

We use the following R commands to fit the model lmm.RS.C5 - with compound symmetric covariance
structure with homogeneity.

1 ## Model lmm.RS.C5.Comp1: compound symmetry structure - with heterogeneous variance
2 lmm.RS.C5.Comp1 <- gls(model= ln.lr ~ years+ t.type + oci + rate + cpi + years:oci + years:cpi + t.type:oci +

oci:cpi, na.action = na.omit, dat = cat_data,
3 ## Covariance structure
4 correlation = corCompSymm(form = ~ 1 + as.numeric(oci) |client/g.treaty/oci),
5 ## Variance structure: heterogeneous
6 weights = varIdent(form = ~ 1 |oci)

The estimated marginal variance covariance of the model structure can be derived using inbuilt functions
in nlme; using the function getVarCov.

1 getVarCov(lmm.RS.C5.Comp1)

Marginal variance covariance matrix
[,1]

[1,] 16
Standard Deviations: 4

While estimated variance components (with respect to the correlation structure, and standard deviations
or standardized residuals) with respect to the random e�ects can be extracted by the model summary.

1 summary(lmm.RS.C5.Comp1)

Generalized least squares fit by REML
Model: ln.lr ~ years + t.type + oci + rate + cpi + years:oci + years:cpi + t.type:oci + oci:cpi
Data: cat_data

Correlation Structure: Compound symmetry
Formula: ~as.numeric(oci) | client:g.treaty:g.country:years
Parameter estimate(s):
Rho

0
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | oci
Parameter estimates:
1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1

Standardized residuals:
Min Q1 Med Q3 Max

-3.67 -0.48 -0.01 0.46 2.62

Residual standard error: 4
Degrees of freedom: 290 total; 225 residual

We note here that this model’s correlation coe�cient, denoted by fl, is estimated at fl̂ = 0. Similarly,
the model with this same compound symmetric covariance structure but without allowing for
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heterogeneous e�ects in the covariance - can be fitted by the following R commands - without weights,
labelled as model lmm.RS.C5.Comp2 (where the results of the estimated marginal compound covariance
matrix and the summary is also obtained).

1 ## Model lmm.RS.C5.Comp2: compound symmetry structure - with heterogeneous variance
2 lmm.RS.C5.Comp2<- gls(model= ln.lr ~ years+ t.type + oci + rate + cpi + years:oci + years:cpi + t.type:oci + oci:cpi,

na.action = na.exclude, data = cat_data,
3 ## Covariance structure: symmetry is the only restriction
4 correlation = corCompSymm(form = ~ as.numeric(oci)|client/g.treaty/g.country/years))
5 ## Variance structure: homoegenous
6 summary(lmm.RS.C5.Comp2)
7 getVarCov(lmm.RS.C5.Comp2)

Generalized least squares fit by REML
Model: ln.lr ~ years + t.type + oci + rate + cpi + years:oci + years:cpi + t.type:oci + oci:cpi
Data: cat_data

Correlation Structure: Compound symmetry
Formula: ~as.numeric(oci) | client/g.treaty/g.country/years
Parameter estimate(s):
Rho

0

Standardized residuals:
Min Q1 Med Q3 Max

-3.67 -0.48 -0.01 0.46 2.62

Residual standard error: 4
Degrees of freedom: 290 total; 225 residual

### Estimated Marginal Variance Covariance
Marginal variance covariance matrix

[,1]
[1,] 16

Standard Deviations: 4

From this output, we see that the estimated marginal variance-covariance matrix of lmm.RS.C5.Comp1
is the same as lmm.RS.C5.Comp2. Both results show that the estimated correlation parameter fl̂ is
0 within the residuals, with an estimated marginal variance-covariance matrix with respect to the
random intercept (crossed e�ects of risk classes) of ‡̂

2
– = 16.

Additionally, we also fit and specific an unstructured covariance matrix into our model (using both
functions gls and corSymm) - where here, the symmetry in the covariance structure is the only restriction.
We fit these models using the REML method, with a heterogeneous variance structure for the risk
classes (k, i, j, t).

1 ## Model lmm.RS.C5.Unstr1: Unstructured covariance matrix
2 lmm.RS.C5.Unstr1<- gls(model= ln.lr ~ years+ t.type + oci + rate + cpi + years:oci + years:cpi + t.type:oci +

oci:cpi,
3 na.action = na.exclude,
4 data = cat_data,
5 correlation = corSymm(form = ~ 1|client/g.treaty/g.country/years),
6 ## Variance structure: heterogeneous
7 weights = varIdent(form = ~ 1|oci), method = "REML")
8 summary(lmm.RS.C5.Unstr1)
9 getVarCov(lmm.RS.C5.Unstr1)

Generalized least squares fit by REML
Model: ln.lr ~ years + t.type + oci + rate + cpi + years:oci + years:cpi + t.type:oci + oci:cpi
Data: cat_data

Correlation Structure: General
Formula: ~1 | client/g.treaty/g.country/years
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Parameter estimate(s):
Correlation:
1 2 3 4 5

2 0
3 0 0
4 0 0 0
5 0 0 0 0
6 0 0 0 0 0

Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | oci
Parameter estimates:
1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1

Standardized residuals:
Min Q1 Med Q3 Max

-3.67 -0.48 -0.01 0.46 2.62

Residual standard error: 4
Degrees of freedom: 290 total; 225 residual

### Estimated Marginal Variance Covariance
Marginal variance covariance matrix

[,1]
[1,] 16
Standard Deviations: 4

We observe from these results that all models estimate that fl̂ = 0, with a marginal variance covariance
of ‡̂– = 16, and residual s.e. ‡̂Á = 4. We now compare these models based on the information criteria -
in addition to the model selected in the previous section, model lmm.RS.C5 (given by Equation 4.33).

Model Results: lmm.RS.C5,lmm.RS.C5.Comp1,lmm.RS.C5.Comp2 and lmm.RS.C5.Unstr1

First, using the statistical LRTs available from package lmerTest (for random e�ects variance structures);
we can test if each the model with the compound symmetric covariance structures with homogeneous
or heterogeneous variance or the unstructured, heterogeneous structure - at a 5% significance level
- statistically improves the model fits, sequentially. The ANOVA-like table for the results is given
in Table 4.22. From here, we observe that, at p-value = 1, we reject the null hypothesis and
conclude that both models lmm.RS.C5.Comp2 and lmm.RS.C5.Unstr1 does not improve the model fit
of lmm.RS.C5.Comp1. We can also compare the model performances - with the selected model in the
previous section. The performances of the above-fitted models, with di�erent residual covariance
structures, are shown in Table 4.23.
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Model Formula df AIC BIC logLik Test p-value

(1) lmm.RS.C5.
Comp1

gls(model = ln.lr≥ years + t.type + oci + rate +
cpi + years:oci + years:cpi + t.type:oci + oci:cpi,
correlation = corCompSymm(form =
≥as.numeric(oci) | client/g.treaty/g.country/years),
weights = varIdent(form = ≥1 |oci),

67 1603.45 1832.33 -734.73

(2) lmm.RS.C5.
Comp2

gls(model = ln.lr≥ years + t.type + oci + rate +
cpi + years:oci + years:cpi + t.type:oci + oci:cpi,
correlation = corCompSymm(form =
≥as.numeric(oci) | client/g.treaty/g.country/years)),

74 1617.45 1870.25 -734.73 1 vs 2 1.00

(3) lmm.RS.C5.
Unstr1

gls(model = ln.lr≥ years + t.type + oci + rate +
cpi + years:oci + years:cpi + t.type:oci + oci:cpi,
correlation = corSymm(form = ≥as.numeric(oci) |
client/g.treaty/g.country/years),
weights = varIdent(form = ≥1 |oci),

88 1645.45 1946.07 -734.73 2 vs 3 1.00

Table 4.22. ANOVA table for testing between di�erent residual covariance structures - based on the regression
results of the fitted models, using the generalized least squares (gls) in R.

These results suggest that a more complex covariance structure is not required. This is based on the
AIC, AICc and BIC values, where we see an increase across all criteria when we allow for more complex
covariance structures. As the previously selected model (lmm.RS.C5) attains the lowest values (at AIC
= 1568, AICc = 1603, BIC = 1799) and still results in the lowest RMSE and RSE (at 1.81 and 2.15
respectively). In addition, if we compare the standardized empirical residuals (scaled raw residuals)
per client k - in comparison to all models, model lmm.RS.C5 shows the least amount of variability (or,
is more homogeneous) estimated between each client k.

Hence, we proceed with our analysis with respect to the selected model - with the simplest covariance
structure - in Equation 4.33).

Name Model Function (in R) AIC AICc BIC RMSE RSE

1 lmm.RS.C5 lmer 1567.74 1603 1798.94 1.81 2.15
2 lmm.RS.C5.Comp1 gls 1617.45 1669 1870.25 3.48 3.95
3 lmm.RS.C5.Comp2 gls 1603.45 1644 1832.33 3.48 3.95
4 lmm.RS.C5.Unstr1 gls 1645.45 1723 1946.07 3.48 3.95

Table 4.23. Model performance summary of LMMs with di�erent residual covariance structures. Performance is
compared based on the AIC, AICc, BIC, RMSE and RSE. The first model lmm.RS.C5 is LMM with
crossed random e�ects, with unstructured residual covariance structure. Model (2) lmm.RS.C5.Comp1:
crossed random e�ects, with compound symmetric heterogeneous covariance structure. Model (3)
lmm.RS.C5.Comp2: crossed random e�ects, with compound symmetric homogeneous covariance struc-
ture. Model (4) lmm.RS.C5.Unstr1: crossed random e�ects, unstructured heterogeneous covariance
structure with symmetric restrictions.
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Model Reduction: for Full Selected Model lmm.RS.C5

Before we analyze the residuals and model diagnostics, due to the high number of interaction e�ects in
our model, we now attempt to reduce the number of regression parameters.

Model Results: lmm.RS.C5

We can use the function lmerTest::anova(lmm.RS.C5, type = 3) - to use Satterthwaite’s methods
for approximating degrees of freedom to conduct the t and F -tests. To get an idea of which main or
interaction terms can be possibly dropped from the full model, lmm.RS.C5. In other words, based on
the significance level of 5%, we perform single term deletions using the appropriate F -tests from
the full model (utilizing the R function drop1(), available in the package lmerTest). The summary
of the results are shown in a ANOVA-like table (Table 4.24). The corresponding p-values given in
bold are the significant fixed e�ects associated with the log loss ratio, given the risk classes (k, i, j, t).
Alternatively, we can also use Anova() to perform Type III Wald ‰

2 tests (suitable for fixed e�ects,

Fixed Covariate E�ects
(Main and Interaction E�ects) Sum Sq Mean Sq Num. df Den. df F -value Pr(> F )

years 98.45 5.47 18 180.02 1.19 0.28
t.type 45.78 15.26 3 196.36 3.31 0.02
oci 47.82 47.82 1 58.16 10.37 2.1e-3
rate 52.60 52.60 1 223.85 11.41 9.2e-3
cpi 4.17 4.17 1 96.72 0.90 0.34
years:oci 93.28 6.22 15 72.67 1.35 0.19
years:cpi 118.46 7.90 15 176.33 1.71 0.04
t.type:oci 37.01 12.34 3 137.36 2.68 0.03
oci:cpi 1.26 1.26 1 72.65 0.27 0.60

Table 4.24. Single term deletions, using approximate F -tests - based on the Satterthwaite’s method for the
fixed-e�ects, for LMMs. The ANOVA-like table is constructed, for Type III hypothesis tests. Recall
"Num. df" is the numerator degrees of freedom (number of groups minus one), and Den. df is the
denominator degrees of freedom (di�erence between the number of groups and observations).

with interactions). These results are shown in the Appendix, Table 1. For more details on hypothesis
testing fixed e�ects in LMMs, specifically for lmer model fits - see (Kuznetsova et al., 2017). We see
from both ANOVA tables that the interaction fixed e�ects: years:oci (p-value = 0.19) and oci:cpi
(p-value = 0.6) - is no longer significant (at a 5% significance level) on the estimated log loss ratios
when accounting for the crossed random e�ects of (k, i, j, t).

Hence, we now refit our model by removing these interaction fixed e�ects and compare this reduced
model (labelled as lmm.RS.C5.r) to our mixed-e�ects "full" model, to see if removing these pairwise
e�ects improves the model fit (using ML estimation and ‰

2 tests). The results are shown in Table 4.25.
The reduced model is the better model with lower AIC =1554.13 and BIC = 1554.13 ( where we fail to
reject the null hypothesis that the pairwise e�ects are associated with our response, with p-value = 0.3
and ‰

2
16).

This means, that we will continue our analysis with the reduced model lmm.RS.C5.r without having
the interaction fixed e�ects years:oci and oci:cpi. Thus, this is our final selected LMM model - with
crossed random e�ects and formulated as:

100



Chapter 4. Natural Catastrophe Modeling

p AIC BIC logLik deviance ‰
2 Df Pr(> ‰

2)

lmm.RS.C5.r 47.00 1554.13 1726.61 -730.06 1460.13
lmm.RS.C5 63.00 1567.74 1798.94 -720.87 1441.74 18.39 16 0.3

Table 4.25. ANOVA table, using ‰
2 tests to compare the refitted reduced model, lmm.RS.C5.r, and the full

model, lmm.RS.C5, with ML estimation (instead of REML). p here denotes the number of fixed
e�ects parameters in the model.

Model lm.RS.C5.r (final reduced LMM selected - with crossed random e�ects)

ln.lrkijt = —0 +
18X

t=2

—
t

1years
t

kij +
4X

q=2

—
q

2
t.typeq

ki
+ —3ocikijt + —4rate

d

kijt

+—5cpikijt+
18X

t=2

—
t

6years
t

kij ◊ cpikijt +
4X

q=2

—
q

7
t.typeq

ki
◊ ocikijt

+ –0kijt+ –1kijtocikijt+Ákijt,

(4.34)

such that for the random components, we have

Ákijt ≥ N (0, ‡
2

Á) i.i.d., ’ k, i, j, t,

ñ
–0kijt

–1kijt

ô
≥ N

Çñ
0
0

ô
,

ñ
‡

2
0 ‡01

‡01 ‡
2
1

ôå
i.i.d., ’ k = 1, . . . , 35.

(4.35)

The results of the corresponding final LMM selected are given in Table 5.2.

101



Chapter 4. Natural Catastrophe Modeling

Model lmm.RS.C5.r (Crossed Random E�ects, reduced model)
Fixed E�ects

Predictors Estimates CI p
(Intercept) 26.38 3.50 – 49.25 0.024
years [2003] 53.38 -39.41 – 146.18 0.258
years [2004] -23.01 -47.18 – 1.17 0.062
years [2005] -37.59 -67.43 – -7.75 0.014
. . . . . . . . . . . .

t type [CXL] 2.95 0.08 – 5.83 0.044
t type [QS] -0.83 -2.37 – 0.72 0.293
t type [SP] 1.07 -1.87 – 4.01 0.473
oci -6.25 -7.45 – -5.05 <0.001
rate -0.35 -0.55 – -0.14 0.001
cpi -0.29 -0.56 – -0.01 0.042
years [2003]:cpi -0.64 -1.77 – 0.49 0.264
years [2004]:cpi 0.31 0.02 – 0.61 0.038
years [2005]:cpi 0.46 0.10 – 0.81 0.012
. . . . . . . . . . . .

t.type [CXL]:oci -2.35 -4.37 – -0.33 0.023
t.type [QS]:oci 0.07 -0.71 – 0.86 0.854
t.type [SP]:oci -1.48 -3.75 – 0.79 0.200

Random E�ects

‡̂
2
Á 4.54

‡̂0 (Intercept, client:g.treaty:g.country:years) 18.59
‡̂1 (Slope, client:g.treaty:g.country:years:oci) 13.85
fl̂01 (Correlation, of client:g.treaty:g.country:years) -0.98

No. of risk class levels client k 35
No. of risk class levels g.treaty i 2
No. of risk class levels g.country j 2
No. of risk class levels years t 19
Total Observations 290
ICCadj. / Conditional ICCcon. 0.84 / 0.26
Marginal R

2
mar. / Conditional R

2
con. 0.690 / 0.951

Table 4.26. Model results of lmm.RS.C5.r, reduced final selected LMM to estimate the log loss ratio, ln.lrkijt

- with crossed random e�ects of risk class levels (k, i, j, t), and random oci slope e�ects. Results
also show the estimated correlation among the crossed random risk class levels, in the intercept fl̂01,
with the corresponding number of risk class groups for all levels considered in (k, i, j, t, ), and the
estimated coe�cients of the types of R

2, and the intraclass correlation coe�cient, ICC.
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4.2.1 Model Diagnostics and Residual Analysis

We now create residual diagnostic plots (using the lmer package in R, by the function resid_panel,
and the package redres). Recall, by analyzing these plots, we can evaluate the goodness of fit of the
reduced model to visually check if our reduced LMM, lmm.RS.C5.r, meets our statistical requirements.
Specifically, we check if "strong" indications exist against our normality or variance homogeneity
assumptions and potentially identify the outliers (similar to LMs).

In other words, we check the following assumptions of the LMM (by using the corresponding plots):

1. Linear relationship between the response and the explanatory variables

• plots: response versus predicted plots (see Figure 4.8).

2. Constant variance: variance of the model’s Pearson residuals are approximately constant (i.e.
variance homogeneity)

• plots: residual plot, Pearson residuals versus predicted values (shown in Figure 4.8).

3. Normality : normal distributional assumptions of the random e�ects and error term

• for the random errors only, we look at histograms for all types of residuals considered (see
Figure 4.9), while

• for both random errors and components - we look the normal Q-Q plots (for all residual
types, shown in Figure 4.10 and Figure 4.11).

In this study, we compute both the marginal and conditional residuals. Analyzing the conditional
residuals allows us to check the e�ects of the random components - while marginal residuals that do
not account for the random e�ects (i.e. considers only the fixed e�ects of the covariates - without the
e�ects of the risk class levels k, i, j for each client k).

Additionally, first consider the general formulation of the (k-th level) LMM given in Equation 3.21,

Y k = Xk— + Zk–k + Ák,

–k ≥ N(0, D),
Ák ≥ N (0, �k) ,

(4.36)

where generally we assume ñ
–

Ák

ô
≥ N

Çñ
0
0

ô
,

ñ
D 0
0 �k,

ôå
,

for the response vector Y , fixed components vector: Xk—, and random components Zk–k + Ák (where
Zk denotes the random covariates, with random slopes) - for all client k = 1, . . . , K.

Then, for this LMM (using the R package redres) we can compute the three types of residuals (for
both marginal and conditional) - to investigate our distributional assumptions:

Raw Residuals: measured by the di�erence between the values of the observed response, Yk, and the
predicted response, Ŷ k, for each client k.
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Lemma 4.1: Raw Residuals for LMMs

• marginal raw residuals (based on the fixed e�ects only)

r
m

k = Yk ≠ xÕ
k
b—, (4.37)

• conditional raw residuals (based on the mixed e�ects, i.e. accounts for both fixed
and random e�ects)

r
c

k = Yk ≠ Xk— ≠ zT

k –̂, (4.38)

Here, the conditional raw residual accounts for the random e�ects, while the marginal
version does not.

Studentized Residuals: is computed by dividing the raw residuals (given by the above equations)
square root of the estimated variance of the raw residuals.

Lemma 4.2: Studentized Residuals for LMMs

• marginal studentized residuals (based on the fixed e�ects only)

r
m,std.

k
= r

m

kq
‘V ar

⇥
r

m

k

⇤ , (4.39)

• conditional studentized residuals (based on both the random and fixed e�ects)

r
c,std.

k
= r

c

kq
‘V ar

⇥
r

c

k

⇤ , (4.40)

where ‘V ar [rm

k
] and ‘V ar [rc

k
] is the estimated variance of the marginal and conditional raw

residuals respectively. For more details on how this is derived, see Grégoire et al. (1995)
(also discussed in Section 3.4.1).

Pearson Residuals: calculated by the type of raw residuals divided by the square root of the estimated
variance of the response values, Yk.
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Lemma 4.3: Pearson Residuals for LMMs

• marginal Pearson residuals (estimated for fixed e�ects only)

r
m,per.

k
= r

m

kq
ÿ�Var [Yk]

,

• conditional Pearson residuals (estimated for random and fixed components)

r
c,per.

k
= r

c

k»
‘Var [Yk | –k]

,

where the estimated variance is based on random and fixed components, i.e. Var [Y k] = ZkDZ
Õ
k

+
�k. (see Section 3.4.1).

Based on these definitions, we now screen the corresponding residual plots and observe the following:

• From Figure 4.8, which shows the Pearson residuals versus the predicted values, first panel
(conditional, i.e. accounting for both the fixed and random components). We cannot visually
detect any structural dependency. Hence there are no indications that the assumption regarding
variance homogeneity is not fulfilled.

• Figure 4.8 (third panel, first row, third column) shows no indications against our linearity
assumptions between the observed response and predicted values (ln.lr).

• From the histograms in Figure 4.9 and Normal Q-Q plots in Figure 4.10, we check if our
assumptions regarding the random errors are normally distributed. From these results, we
detect deviations away from normal theoretical fit. Observations with high absolute studentized
residuals here can indicate violations against our model distributional assumptions or that the
corresponding observations are outliers.

• We detect outliers using the interquartile range (IQR) (by 1.5) to remove them from our data
set (16 outliers in total were removed) and then refit the model. The results of the normal Q-Q
plots with outliers removed are shown in Figure 4.10 (second Row). From here, the results show
after the outliers are removed, there are no longer any strong indications against our normal
distribution assumptions on the random errors.

• To check the distributional assumptions for the random e�ects, we look at the Normal Q-Q
plots shown in Figure 4.11. The plots show the studentized residuals of the empirical best linear
unbiased predictors (EBLUPs, see Section 3.2.2 with respect to the derivation). From here, we
detect a few more outliers towards the lower tail, but there exist no signs of any strong violations
against our normality assumptions on the random components.
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Figure 4.8. Residual plots based on model lmm.RS.C5.r (reduced model of crossed risk class levels (k, i, j, t) with
main and interaction e�ects). Plots was obtained by R resid_pane available in package lmer. Plots
include: (first plot, Row 1, Column 1) the Pearson residual plots for the estimated residuals versus
the predicted values of the response, ’ln.lrkijt, the Pearson residuals versus the observations (index
plot), the response versus the predicted values, the Normal Q-Q plot of the Pearson residuals, and
the corresponding histogram and boxplot of the calculated Pearson residuals of the model.

Figure 4.9. Histogram of estimated residuals (random errors), based on model lmm.RS.C5.r. Top Row: shows
the conditional residuals (which account for both the fixed and random e�ects in the model). Bottom
Row: shows the marginal distribution of the marginal residuals - which only accounts for the fixed
e�ects in the model. Histograms of the following residuals are shown: Pearson, raw, and studentized
residuals.
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Figure 4.10. Normal Q-Q plots, for conditional residuals (based on the random errors, accounting for both
fixed and random components in the model, lmm.RS.C5.r). Top Row shows the raw, studentized
and Pearson residuals, based on the raw (aggregated) data (labelled as cat_data). Bottom row:
shows the model’s estimated raw, studentized and Pearson residuals - with outliers removed (using
interquartile range (IQR) by 1.5).

copy.png
Figure 4.11. Normal Q-Q plots of the standardized (i.e. studentized) residuals of the empirical best linear

unbiased predictors (EBLUPs) of model lmm.RS.C5.r (based on the data with outliers removed).
Left panel: shows the Q-Q plot computed for the crossed random intercept e�ects, of the risk classes
(k, i, j, t). Right panel: shows the Q-Q plot of the standardized residuals based on the EBLUPs,
accounting for both the random intercepts and random slope oci - for the k-th client, i-th treaty,
j-th country during t years.
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4.3 Generalized Linear Models for Natural Catastrophic
Data

This section models the natural catastrophic data using generalized linear models (GLMs). GLMs have
many advantages over LMs and LMMs - since (in our case) the linear models are only applicable after
log transformations of the loss ratio LR. This means that interpretations of estimates and predictions
are not straightforward because back-transformation to the original scale is required for linear models.
Modelling on the original scale is no longer an issue for GLMs and GLMMs.

For this study, we consider the gamma GLM with the log link (often used in various insurance
applications, see Frees et al. (2014) for examples). A positive continuous response variable Y follows a
gamma probability density function of the form

f(y; µ, k) = (k/µ)k

�(k) e
≠ky

µ y
k≠1

, y > 0.

with mean parameter µ and shape parameters ‹ such that Y ≥ �(µ, ‹). See Ng et al. (2019) for
more examples of di�erent parameterizations. Since the gamma model with the log-link generates a
multiplicative model, the gamma GLM - with covariates xkijt and regression parameters — - for the loss
ratio LRkijt for a client k with a treaty i providing coverage in country j, during the year t becomes

µkijt = E[LRkijt|xkijt] = exp(xkijt—), (4.41)

where LRkijt ≥ �(µkijt, ‹) and µkijt is the estimated yearly loss ratio for the k-th client, with i œ P
k
g ,

j œ Mki

g given the years t œ T kij .

Our strategy here is once again to sequentially build a bigger and bigger model (similar to the model
building and comparison for LMs and LMMs) starting with the initial subset of risk factors (and
removing or adding variables accordingly). Specifically, here we analyze and compare the following
models in this section:

Model glm.M (main e�ects model) models the the main (fixed) risk factor e�ects on the loss ratio,
lr, which are given at di�erent risk class levels, i.e. at the k-th client level with treaty i for j-th
country in the t-th year. While not accounting for the nested or clustering e�ects between the
risk class levels (k, i, j, t) individually (i.e. complete pooling of risks). This gamma model (with
the log-link) can be formulated as

Model glm.M (main e�ects model with risk factors only)

E[lrkijt] = —0 +
4X

q=2

—
q

1
t.typeq

ki
+

3X

c=2

—
c

2cob
c

kij +
3X

d=2

—
d

3peril
d

kij (4.42)

+ —4ratekijt + —5cpikijt + —6ocikijt + Ákijt,

where the categorical predictor variables take on the values given in Equation 4.11. Recall, the
loss ratio is measured by the loss amount Xkijt (loss) per exposure volume vkijt (volume), for
each k-th client (i.e. LRkijt = Xkijt

vkijt
).
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For this reason we introduce the log of exposure as an o�set as a part of the linear predictor and
model the losses of the risk classes (i, j, t) for the k-th client directly as

ln(E[losskijt]) = —0, +
4X

q=2

—
q

1
t.typeq

ki
+

3X

c=2

—
c

2cob
c

kij +
3X

d=2

—
d

3peril
d

kij (4.43)

+ —4ratekijt + —5cpikijt + —6ocikijt + ln(volumekijt) + Ákijt,

where Xkijt ≥ �(µkijt, µkijt) is measured for each k-th client for risk class levels (k, i, j, t) i.i.d,
and the risk class levels take on the values given in Equation 4.4.

With expectation 1 and variance „, for the response random variable, this also implies that the
estimate of the expectation µkijt (in Equation 4.41) is given by µ̂kijt = exp

Ä
xkijt—̂

ä
.

Whereas, in this gamma regression model, for example, for all k = 1, . . . , K clients, the "total"
estimate of the dispersion parameter „ is given by

b„ = 1
k ≠ p

KX

k=1

Å
lossk ≠ bµk

bµk

ã2

, (4.44)

at the k-th client level and p regression parameters (including the intercept). Note, this holds for
all other gamma regression models considered in this section.

Model glm.G: models the ln.lr (or the loss amount Xkijt directly with the exposure volume as an
o�set vkijt (volume) - for each cluster group: k-th client with treaty i, and j-th country per t-th
year. Including the main (fixed) risk factor e�ects with clustering e�ects of (k, i, j, t) as variables
individually (i.e. no pooling of risks). This model can be formulated as

Model glm.G (main e�ects model with risk factors and risk class groups)

ln(E[losskijt]) = —0 +
35X
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g.treatyi
k

+ —3I
g.countryj

ki
+

18X

t=2

—
t

4years
t

kij

+
4X

q=2

—
q

5
t.typeq

ki
+

3X

c=2

—
c

6cob
c

kij +
3X

d=2

—
d

7peril
d

kij + —8ratekijt (4.45)

+ —9cpikijt + —10ocikijt + ln(volumekijt) + Ákijt,

where the is the loss amount for the k-th client for the i-th treaty of country j-th in year t. This
models allows for the heterogeneity (individually) between the risk classes for each client k, where
we treat the risk class levels as explanatory variables into our model.

Model glm.I based on the findings of main e�ects, from glm.M, we then explore if including interaction
e�ects improves our model - to estimate the loss ratio (i.e. the loss amount given the exposures)
for the k = 1, . . . , K, i œ Pk

G, j œ Mki

G given the years t œ T kij (i.e. accounting for individual
cluster e�ects).
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Model glm.M: Main Fixed E�ects - Without Clustering E�ects

We use the glm function in R, to fit the following gamma model (with main risk factors only) - with a
log link and the o�set of the log exposure (volume). Recall, volume is the total sum insured for the
respective loss amount, based on the risk given for each k-th client.

1 glm.M = glm(formula = loss ~ t.type + cob + peril + oci + rate + cpi, offset = log(volume),family = Gamma(link =
"log"),data = cat_data, na.action = na.omit)

Call:
glm(formula = loss ~ t.type + cob + peril + oci + cpi + rate,

family = Gamma(link = "log"), data = cat_data, na.action = na.omit,
offset = log(volume))

Deviance Residuals:
Min 1Q Median 3Q Max

-4.62 -2.53 -1.67 -0.24 4.99

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.1379 1.2618 -1.7 0.091 .
t.typeCXL 2.7597 0.5876 4.7 4e-06 ***
t.typeQS 0.1775 0.3956 0.4 0.654
t.typeSP 0.1469 0.5225 0.3 0.779
cobM -0.5244 0.5874 -0.9 0.373
cobR -0.8516 0.6543 -1.3 0.194
perilF 1.8606 0.5996 3.1 0.002 **
perilH 3.7045 0.4615 8.0 3e-14 ***
oci 0.0044 0.1184 0.0 0.970
cpi -0.0302 0.0076 -4.0 1e-04 ***
rate -0.2541 0.0830 -3.1 0.002 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for Gamma family taken to be 5)

Null deviance: 1751.7 on 289 degrees of freedom
Residual deviance: 1333.1 on 279 degrees of freedom
AIC: 4282

Number of Fisher Scoring iterations: 25

According to this R output —̂0 = e
≠2.13 = 0.12 (with s.e. 1.26). The residual deviance is 1333.1 on 279

degrees of freedom. Recall, the goodness of fit for this gamma GLM can be investigated using the
residual deviance statistical test (as defined in Definition 4.10). Note, for the gamma regression model,
it can be shown that the (scaled) deviance, for all losses at the k-th client level, can be defined as

D(y, bµ) = ≠2
KX

k=1

ï
ln
Å
lossk

bµk

ã
≠ lossk ≠ bµk

bµk

ò

Model assumptions are satisfied as confirmed by the residual deviance test as

D(y, bµ)
b„

= 1333.1
5 = 267 ⇧ ‰

2

279,0.95 = 319. (4.46)

In R, to e�ciently perform the residual test, we defined and constructed the R function
residual.deviance.test - which also provides us with the p-value of the corresponding test.
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1 residual.deviance.test <- function(model){
2 {
3 # dispersion
4 phi.main<- summary(model)$dispersion
5 # residual deviance
6 dev.main <-model$deviance
7 p.main <-length(model$coefficients)
8
9 ## Residual deviance test

10 resid.dev.test <- dev.main/phi.main > qchisq(1-0.05,nrow(cat_data)-p.main)
11 print(c(message(�Residual Deviance Test:�),resid.dev.test))
12
13 # p-value
14 p.value <- 1 - pchisq(dev.main/phi.main,nrow(cat_data) - p.main) }
15
16 return(c(message(�p-value:�),p.value))
17 }

Such that, using this function, for glm.M the p-value is given as
> residual.deviance.test(glm.M)
Residual Deviance Test:
[1] FALSE
p-value:
[1] 0.72

However, based on the model results it appears that both cob and oci may be possibly non-significant.
For this reason we perform a partial deviance test, where we refit the model without each risk factor
(reduced models) to test between the reduced and full models (glm.M). Table 4.27 compares the reduced
models glm.M.r1 (without cob) and glm.M.r2 (without cob and peril) with the full model glm.M
using a analysis of deviance table between the models (implemented via the R function anova with the
appropriate ‰

2 test).

Resid. Df Resid. Dev df Deviance Pr(>Chi)

glm.M.r1 (without cob) 280 1333.62

glm.M (full model) 279 1333.13 1 0.49 0.76

glm.M.r2 (without cob and oci) 282 1330.00

glm.M.r1 (without cob) 281 1329.37 1 0.63 0.74

Table 4.27. glm.M: Analysis of deviance table to compare the reduced models and the full gamma glm (with log
link) with respect to the main risk factors only. Model glm.M.r1 compares the full model without
cob, while Model glm.M.r2 compares the reduced model with oci)

Alternatively, we can also calculate the partial deviance test statistics based on the reduced model
(without cob and peril) with the full model.
> 1-pchisq((1330.0/5.8)-(1333/5),3)
[1] 1

With residual deviance 1330 (with estimated dispersion of 5.8) for the reduced model (without both
covariates) and residual deviance 1333 (with estimated dispersion of 5), we get a corresponding large
p-value of approximately 1. This means that both risk factors cob and oci, at the 5% level is not
required in the model.

Thus, we proceed our analysis with the our reduced model (denoted glm.M.r for simplicity) - without
the following risk factors included in the model - given by
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Model glm.M.r (reduced model main e�ects model with risk factors only)

ln(E[losskijt]) = —0 +
4X

q=2
—

q
1t.type

q
ki +

3X

d=2
—

d
2peril

d
kij + —3ratekijt + —4cpikijt + ln(volumekijt) + Ákijt,

where once again we have µkijt = E[LRkijt|xkijt] = exp(xkijt—) for the loss ratio ln.lrkijt = losskijt

volumekijt
,

following a gamma distribution and i.i.d for all client k with corresponding risk class groups (i, j, t).

Note, the reduced GLM only includes 4 risk factors as covariates: t.type, peril, rate and cpi. This
means in this model we ignore the risk class group e�ects in (k, i, j, t) - which may leave out essentially
information when modeling the ln.lr per k-th client and may also underfit the underlying data.
Additionally, the overall fit of this model is not very good since the residual deviance of 1329 is much
larger than residual degrees of freedom of 281. Additionally, when comparing the goodness of fits of
base models lm.M.r (log normal linear model with main fixed risk e�ects only) and lmm.M.r (LMM
with main e�ects only) with the selected model glm.M.r; this model yields a much higher AIC of 4275
(compare to lm.CP with AIC = 1783). With a higher BIC value of 4308, and thus a log-likelihood value
in comparison to model lmm.RS.C5.r. For this reason, we conclude that both the log normal model
and LMM is a better fit compared to the gamma GLM with the log link, with respect to the main
e�ects of the risk factors only.

However, it is important to note that when comparing goodness of fits of the linear models on the log
scale with the gamma regression models (with respect to the variability explained) - the bias in the
intercept of the log normal models (selected in previous sections) has to be corrected for. This is due
to the gamma model’s assumptions of constant coe�cient of variation.

Suppose that Yk denotes the response random variable, such that
»

Var [Yk]
E [Yk] © ‡ ’k = 1, . . . , K,

and
Var [Yk] = ‡

2
µ

2

k ’k = 1, . . . , K,

which implies a quadratic e�ect of the mean on the variance. If we stabilize the variance of the response
it’s log transformation, it can be shown that,

Var [ln(Yk )] ¥ ln (µk)2 + ‡
2 ≠ ln (µk)2 = ‡

2
.

This means that, for a small ‡, here we have E [ln(Yk)] ¥ ln (µk) ≠ ‡
2
/2 and Var [Yk] ¥ ‡

2 for all
k = 1, . . . , K.

Hence, for the log normal model, if we assume that ln(Yk) is normally distributed with mean x
€
i

— and
variance ‡

2, then Yk is log normally distributed with mean E [Yk] = exp
¶

x
€
i

— + ‡
2
/2
©

. Since, it can
be shown that the least squares estimates of the regression parameters is biased for the intercept, —0

with an approximate bias of ≠‡
2
/2. For this reason, the bias in the intercept of the log normal models

must be adjusted for, accordingly. Alternatively, we can also use the standard linear model on the log
scale - with a multiplicative error structure, which would allow us to deal with this variance structure.
More details and for a full derivation on this, see (McCullagh and Nelder, 1983).
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Model glm.G: Main Fixed E�ects - With Risk Group E�ects

Here we investigate the clustering e�ects of the risk classes in our model. Especially since: (1) glm.M
does not account for any heterogeneity between the risk class levels (k, i, j, t) and (2) ignores the
clustering e�ects at the k-th level, which is crucial in our case given the hierarchical structure of data.

We start by fitting the glm.G given by Model (4.46) in R and include the risk factors as covariates.
Specifically, we introduce client, g.treaty, g.country and years as covariates into the model.

1 glm.G = glm(formula = loss ~ client + g.treaty + g.country + years + t.type + cob + peril + oci + cpi + rate, offset
= log(volume),family = Gamma(link = "log"),data = cat_data, na.action = na.omit)

Call:
glm(formula = loss ~ client + g.treaty + g.country + years +

t.type + cob + peril + oci + cpi + rate, family = Gamma(link = "log"),
data = cat_data, na.action = na.omit, offset = log(volume))

Deviance Residuals:
Min 1Q Median 3Q Max

-3.92 -1.51 -0.46 0.38 2.83

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.912 1.703 -2.3 0.023 *
client6 -0.730 0.690 -1.1 0.292
client7 -2.062 0.713 -2.9 0.004 **
client8 -2.328 0.787 -3.0 0.003 **
client9 -1.623 0.757 -2.1 0.033 *
...
g.treaty2 2.675 1.595 1.7 0.095 .
g.countryL 0.426 0.372 1.1 0.253
years2003 3.533 1.161 3.0 0.003 **
years2004 2.705 1.024 2.6 0.009 **
years2005 1.568 1.037 1.5 0.132
years2007 1.405 1.050 1.3 0.182
...
t.typeCXL -0.335 0.500 -0.7 0.503
t.typeQS -0.434 0.400 -1.1 0.279
t.typeSP -1.170 0.511 -2.3 0.023 *
cobM 0.432 0.543 0.8 0.427
cobR -0.508 0.476 -1.1 0.287
perilF 1.815 0.420 4.3 2e-05 ***
perilH 2.957 0.385 7.7 5e-13 ***
oci -0.116 0.096 -1.2 0.228
cpi -0.025 0.010 -2.5 0.014 *
rate -0.218 0.078 -2.8 0.005 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for Gamma family taken to be 1.7)

Null deviance: 1751.73 on 289 degrees of freedom
Residual deviance: 635.92 on 226 degrees of freedom
AIC: 4094

Number of Fisher Scoring iterations: 25

The results show that the risk class levels of clients k and years t are statistically significant e�ects
at a 5% level, on the rate of the loss. Whereas, the e�ects of cob and oci can be dropped from the
model. However, even though the model attains a lower AIC value of 4094 compared to glm.M, the
model assumptions are not satisfied since based on the residual deviance test with deviance 635.92
with corresponding degrees of freedom 226 and p-value < 0.05.
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1 residual.deviance.test(glm.G)

Residual Deviance Test:
[1] TRUE
p-value:
[1] 8.7e-09

Since the model (glm.G) assumptions are not met when including the clustering e�ects of the risk class
levels (k, i, j, t) - we conclude that the first reduced gamma model glm.M.r is the preferred model.

However, as previously stated since the overall fit of this model is not very good (with residual deviance
of 1333.13 and degrees of freedom of 279), we now investigate if including interaction e�ects improves
the model accuracy and performance.

Model glm.I: Main and Interaction Fixed E�ects of Risk Factors

We investigate the following interaction (fixed) e�ects based on our findings from the previous sections.
Once again, through EDA using the function cat_plot from the interactions package in R, we can
select a subset of interaction e�ects to further investigate. The results were given in interaction plots
for GLMs (not shown in this publication, for confidentiality purposes). Note, for comparison and
analysis purposes, we also include risk class levels in our interaction plots.

From these results we conclude that there are indications of strong interaction e�ects between the
following risk factors: t.type and peril, the cob and t.type. For now we only analyze these two strong
interaction e�ects (to ensure model simplicity and add more variables using a bottom-up approach if
we see a significant increase in model performance). As stated, we do not include the e�ects of any risk
class levels, such as years in this model (based on our findings from Model 4.3).

This model is fitted using the following equation in R followed by the corresponding model results.

1 glm.I <- glm(formula = loss ~ t.type + cob + peril + oci + cpi + rate + t.type:peril + t.type:cob, family = Gamma(link
= "log"),

2 data = cat_data, na.action = na.omit, offset = log(volume))

Call:
glm(formula = loss ~ t.type + cob + peril + cpi + rate + t.type:peril +

t.type:peril + peril:cob + offset(log(volume)), family = Gamma(link = "log"),
data = cat_data, na.action = na.omit)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.162 -2.469 -1.610 0.086 5.328

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.74483 1.36109 -2.02 0.04472 *
t.typeCXL 2.92901 1.82383 1.61 0.10945
t.typeQS 0.39024 1.00464 0.39 0.69799
t.typeSP 0.30850 1.81891 0.17 0.86545
cobM -1.49543 1.27203 -1.18 0.24078
cobR -1.40209 1.14955 -1.22 0.22364
perilF -0.80528 1.80199 -0.45 0.65532
perilH 3.17113 1.07798 2.94 0.00355 **
cpi -0.01290 0.00713 -1.81 0.07167 .
Deviance Residuals:

Min 1Q Median 3Q Max
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-3.846 -2.414 -1.481 0.109 4.448

Coefficients: (2 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.39435 1.62865 -0.24 0.80893
t.typeCXL 6.72496 2.87511 2.34 0.02036 *
t.typeQS -2.29692 1.49860 -1.53 0.12699
t.typeSP -2.91153 2.86327 -1.02 0.31050
cobM -2.43796 1.57381 -1.55 0.12301
cobR -2.80104 1.32526 -2.11 0.03584 *
perilF -0.81445 1.92981 -0.42 0.67347
perilH 1.30721 1.31546 0.99 0.32160
oci -0.00229 0.11167 -0.02 0.98364
cpi -0.02079 0.00838 -2.48 0.01401 *
rate 1.40277 0.38673 3.63 0.00037 ***
.typeQS:perilF 1.28063 1.45429 0.88 0.3793
t.typeSP:perilF 5.30078 2.50420 2.12 0.0352 *
....
t.typeCXL:cobM -4.10982 2.27202 -1.81 0.07203 .
t.typeQS:cobM 2.58025 1.43892 1.79 0.07452 .
t.typeQS:cobR 3.22116 1.52575 2.11 0.03605 *
cobM:perilF 2.42991 2.27438 1.07 0.28669
cobR:perilF 2.47829 2.12917 1.16 0.24588
cobM:perilH 2.83010 1.65637 1.71 0.08914 .
....
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for Gamma family taken to be 4.47)

Null deviance: 1751.7 on 289 degrees of freedom
Residual deviance: 1209.6 on 269 degrees of freedom
AIC: 4261

Number of Fisher Scoring iterations: 25

Note, here we reintroduce the main e�ects of cob based on our EDA of possible pairwise e�ects. Based
on the results, the interaction e�ects of both t.type and cob, and t.type and peril are significant
at a 5%. Meanwhile, the pairwise interactions of the cob and peril is not significant on the average
loss per unit of volume (based on clients k = 1, . . . , 35). The model comparison of the (reduced) main
e�ects only model glm.M.r and interaction model is shown in Table 4.28.

Model Resid. Df Resid. Dev AIC BIC
glm.M.r 282 1330 4275 4308
glm.I 269 1210 4261 4342

Table 4.28. Model comparison of main reduced model glm.M.r and interaction e�ects model glm.I, with risk
factors only, based on the residual deviance with corresponding degrees of freedom, AIC and BIC.

It is evident that there is a significance decrease in the AIC values and a slight increase in BIC -
primarily due to the increase in model complexity. We also note that there is a large decrease in
the residual deviance, indicating a better fit in comparison to the main e�ects model (with residual
deviance 836 and residual df = 197).

From this analysis, we once again conclude that the pairwise e�ects of our main (fixed) e�ects of risk
factors provides us with a significantly better fit - to model the rate of loss (per unit of exposure).
Therefore, the preferred gamma GLM can be formulated as
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Model glm.I.r (reduced gamma model with main and interaction risk e�ects)

ln(E[losskijt]) = —0 +
4X

q=2

—
q

1
t.typeq

ki
+ —

c

2cob
c

kij +
3X

d=2

—
d

3peril
d

kij (4.47)

+ —4ratekijt + —5cpikijt + —6t.type
q

ki
◊ cobc

kij (4.48)
+ —7t.type

q

ki
◊ perild

kij + ln(volumekijt) + Ákijt,

for i.i.d loss observations, such that the response here follows a Based the results, we find that all main
e�ects of the risk model remain significant at the 5% significance level (i.e. should not be reduced any
further). While including the interaction e�ects of the i-th treaty type per k-th client and class of
business insured by the i-th treaty and the type of peril of the natural catastrophic resulting in the
corresponding loss for the k-th client under i-th treaty, in country j.
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4.3.1 Model Diagnostics

Prior to comparing the performance of all model classes, we briefly analyze model diagnostic plots to
confirm our gamma model assumptions. Similar to our residual analysis of LMs and LMMs, classical
model diagnostic plots for model glm.I are shown in Figure 4.12. However, for GLMs, we assess the
deviance residual plots. Additionally, we can also look at the corresponding model’s Pearson residuals.
For example, for the random variable, say Yk, is formulated as

‰
2(bµ, Y) =

nX

K=1

(Yk ≠ bµk)2

V (bµk) =
KX

k=1

Å
Yk ≠ bµk

bµk

ã2

,

at the k-th client level (for all k = 1, . . . , K). Corresponding Pearson residual plots are also shown in
Appendix C Figure 1.

Figure 4.12. Model Diagnostic plots of the selected gamma model glm.I, based on deviance (raw) residuals.
Note the corresponding plots have been adjusted for the gamma response (using values in the scale
of the fitted values, defined by using the option type available in the R function resid_panel, in
the library ggResidPanel).

Based on the deviance residual plot against the fitted values (Row 1, Column 1), we first observe
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random scatters around zero without any particular tendency in the scatter plots. Though, there are
generally more residuals lower in magnitude. This plot also shows few instances of very large residuals
for lower values (for very low fitted values).

This is also evident when we look at the location-scale residual plot which shows the square root of the
absolute value of adjusted deviance residuals (Row 3, Column 2) and the Pearson residual plots (in
Appendix C Figure 1). Additionally, the histogram of the (adjusted) deviance residuals also clearly
show that the standard normal is not appropriate in this study, as expected (with a highly skewed
histogram).

Additionally, the bottom panels provide us additional information regarding the outliers in our data
(which we are well aware of from our previous findings). Specifically, based on the Cook’s distance
plots, we see various instances of influential observations within our data-set. Whereas, though the
residual-leverage plots of standardized deviance residuals against leverage values show no high leverage
points. From the standardized Pearson residual plots versus leverage values - we observe three high
leverage points.

Overall, in comparison to the residual fit of the LMM selected model, our analysis of both model
residuals suggest that overall the log linear mixed model (lmm.RS.C5.r) provides us with an better
residual fit with respect to our natural catastrophic (training) data. Especially since the performance
measurements (shown in Table 4.29) also supports our findings. Such that, the LMM clearly outperforms
both the GLM and the LM with respect to the AIC, AICc and BIC values (while the gamma model
performs the worst, in terms of the information criteria values). Similarly, the results state that that,
on average, the LMM fit results in the highest prediction accuracy (with the lowest RMSE at 1.62).
Note, all results (up to this point) are based on the training data set. To further confirm these findings,
we now proceed with our model comparison and performance analysis of all models with respect to the
testing data.

Model
Name Model AIC AICc BIC R

2 RMSE
(in-sample)

lm.I.r
(LM)

ln.lr ≥ client + g.treaty + g.country +
years+ t.type + oci + rate + cpi +
years:oci + years:cpi + t.type:oci +
oci:cpi

1625 1685 1919 0.84 2.98

lmm.RS.C5.r
(LMM)

ln.lr ≥ years+ t.type + oci + rate + cpi +
years:cpi + t.type:oci +
(1+oci|client:g.treaty:g.country:years)

1556 1575 1729 0.95 1.62

glm.I.r
(GLM)

ln.lr ≥ t.type + peril + cob + cpi + rate +
t.type:peril + t.type:cob + offset(log(volume)

4254 4256 4330 0.85 3.30

Table 4.29. Model performance summary of all selected models - per model class (LM,LMM, and GLM) based
on the natural catastrophic data (training or "in-sample" data). Note, here the corresponding R

2

shown for LMMs is based on the conditional R
2
con..
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5 Out-of-Sample Testing and Perfor-
mance

In this section, we first assess the performance of the selected fitted models on the test data from each
respective model class: LMs, LMMs and GLMs. Then, we can conclude our findings by selecting the
overall best model - out of all classes - found in this study based on the underlying natural catastrophic
data. Recall that our goal is to find the best suitable model to predict the rate of loss or loss ratio -
given the unit of volume exposure (the total sum insured in this study).

5.1 Test Data

Recall, our test data contains incurred losses from k = 1, . . . , 24 clients, with 74k corresponding
(ungrouped) treaties - grouped by i œ {1k

, 2k} that provide coverage for j œ 21ki countries over the
years 2001-2021 (similar to our training data). Using this testing data set, we assess the fit of the
following selected best fitting models within each model class:

(LM) Model lm.I.r (Reduced log-normal model with fixed main & interaction e�ects)
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(5.1)

given independent losses observed for each client k = 1, . . . 35, (grouped) treaty i œ {1k
, 2k}, (grouped)

countries j œ {H
ki

, L
ki}, within treaty years t œ {2001kij

, . . . , 2021kij}.
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(LMM) Model lmm.RS.C5.r (Mixed log-normal model with crossed random & fixed e�ects)
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(5.2)

for clients k = 1 . . . , K, with (grouped) treaties i œ {1k
, 2k} for countries in j œ {L

ki
, H

ki} over all t

years. Recall, here the fixed e�ects, with regression parameters –0, –1 are given in red and the fixed
e�ects parameters —0, . . . , —q are given in blue. Such that for the random components, we have
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(5.3)

(GLM) Model glm.I (Gamma model with fixed main & interaction e�ects of risk factors only)
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(5.4)

for all loss observed for k = 1, . . . , 35 over all risk classes (i, j, t). Note this model does not take into
account the varying risks between each risk class level group (k, i, j, t).

In this section, we also look at the bias as a metric to assess how close our estimates are on average to
the true value of the response (based on Definition 4.13). This is calculated as

biaskijt = 1
nkijt

NkijtlX

nkijt=1

LRkijtl ≠ L̂Rkijtl, (5.5)

where nkijt = 1, . . . , Nkijtl denotes the independent loss l incurring for k = 1, . . . , 24 per risk class level
group (i, j, t). Recall, the negative bias implies that the true value is on average underestimated (while
positive values indicate overestimation). Since the positive and negative values will cancel out, we
may not get an accurate estimation of the prediction error. For this reason to compare the predictive
performances of these models - assessing the spread or variation in the estimates - using both the
RMSE (as defined in Definition 4.14) and the mean absolute error ("MAE", see Definition 4.15), given
at the most granular risk class level (k, i, j, t). Hence, in our case the MAE is given as

MAEkijt = 1
nkijt

NkijtlX

nkijt=1

|LRkijtl ≠ L̂Rkijtl|, (5.6)

for i.i.d loss observations l per risk classes levels (k, i, j, t). Recall, for both RMSE and MAE - the
smaller value the better the model because they measure errors.
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The corresponding results based on these model predictive performance measures are shown in Table 5.1.
First, it is evident from the results that the gamma GLM glm.I di�ers the most from the true model

Model
Class Name Model Formula

(as given in R) BIAS RMSE MAE

LM lm.I.r

ln.lr ≥ client + g.treaty + g.country +
years+ t.type + oci + rate + cpi + years:oci +
years:cpi + t.type:oci + oci:cpi

1.12 3.59 2.83

LMM lmm.RS.C5.r

ln.lr ≥ years+ t.type + oci + rate + cpi +
years:cpi + t.type:oci +
(1+oci|client:g.treaty:g.country:years)

-0.05 1.91 1.28

GLM glm.I.r
ln.lr ≥ t.type + peril + cob + cpi + rate +
t.type:peril + t.type:cob + offset(log(volume)

-4.30 5.12 4.31

Table 5.1. Results of model performance based on the test data - for selected models per model class. Measures
include the bias, the root square error RMSE, and the mean absolute error (MAE).

and also provides the worst results. In the sense that compared to the LM and LMM, it attains the
highest RMSE and MAE - indicating poor predictive abilities and the most variation in the estimates.
It is also evident that, on average, the gamma model glm.I clearly underestimates the rate of loss
given the volume units (with a negative bias of -4.3). The predicted values of our response versus the
observed values are shown in Figure 5.1. It is also clear from these results that (for the gamma GLM)
there is an obvious lack of fit.

Figure 5.1. Observed values of the response (ln.lr) versus predicted values, based on the test data set ("out-
sample" data) - per selected model in each model class: (1) LM with (fixed) interaction e�ects, (2)
LMM with crossed random e�ects (of all risk classes (k, i, j, t) and fixed e�ects (including pairwise
e�ects), (3) Gamma GLM with only main fixed e�ects of risk factors (no e�ects of rick classes).

However, this is somewhat expected and supports our previous findings (when we compared the AIC,
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AICc or BIC based on the training data). The large di�erence in bias and variation (for the GLM) -
compared to the selected LM and LMM - may be due to the fact that the model ignores the grouping
e�ects of all risk class levels (k, i, j, t). Specifically, as a result of the fact it does not reflect the
heterogeneous risk within any of the groups in the risk class levels (i.e. the losses incurred per client k

for treaty i in the country j within treaty year t) - crucial for underlying insurance data and in our
study. Since the clustering in groups within this data is ignored - this gamma GLM is not suitable for
the longitudinal nature of the data set.

Next, we compare the selected "standard" linear model and the linear mixed model. Clearly, on average,
the LMM outperforms the selected LM; in terms of the average prediction error (RMSE = 1.91 and
MSE = 1.28), lower bias (bias = -0.05) and the proportion explained by the model in the response
based on the test data (with R

2 = 0.75). We note here that the in-sample RMSE (1.62) is very close
to the out-sample RMSE (1.91). Though the selected "standard" LM accounts for the e�ects of the
risk class levels (k, i, j, t) - each risk class group in this model is analyzed separately. The "classical"
log-normal model - attributing to the higher bias = 0.29, compared to the LMM (because here, even
small clusters of (k, i, j, t) will have a corresponding regression parameter).

Hence, following our previous findings in Section 4.7, we once again conclude that the LMM
(lmm.RS.C5.r) with crossed random e�ects (i.e. with random intercepts with interactions e�ects
of all the risk class levels, and random oci slope e�ects) is our final and optimal performing model -
with the lowest variance and bias attained compared to all models considered in this study - given the
natural catastrophic data. In other words, it achieves the highest predictive accuracy for the rate of
loss per exposure volume unit.

This mixed or multi-level model is not only a compromise between the two extremes (of completing
ignoring the e�ects of the risk class levels, such as the GLM, or analyzing each class separately, such as
the LM) - but it also enables us to account for the heterogeneity risks - crucial in this study. Specifically,
since the model allows for the varying risks and e�ects at every risk class level: k, i, j and t, it is
suitable for the underlying longitudinal data with repeated measurements per k-th client.
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5.2 Final Model Interpretation

Once again, we provide the full model summary of our selected LMM model, in Table 5.2 from Section
4.7 (for easy readability purposes).

Model lmm.RS.C5.r (Crossed Random E�ects, reduced model)
Fixed E�ects

Predictors Estimates CI p
(Intercept) 26.38 3.50 – 49.25 0.024
years [2003] 53.38 -39.41 – 146.18 0.258

years [2004] -23.01 -47.18 – 1.17 0.062
years [2005] -37.59 -67.43 – -7.75 0.014
. . . . . . . . . . . .

t type [CXL] 2.95 0.08 – 5.83 0.044
t type [QS] -0.83 -2.37 – 0.72 0.293

t type [SP] 1.07 -1.87 – 4.01 0.473

oci -6.25 -7.45 – -5.05 <0.001
rate -0.35 -0.55 – -0.14 0.001
cpi -0.29 -0.56 – -0.01 0.042
years [2003]:cpi -0.64 -1.77 – 0.49 0.264
years [2004]:cpi 0.31 0.02 – 0.61 0.038
years [2005]:cpi 0.46 0.10 – 0.81 0.012
. . . . . . . . . . . .

t.type [CXL]:oci -2.35 -4.37 – -0.33 0.023
t.type [QS]:oci 0.07 -0.71 – 0.86 0.854

t.type [SP]:oci -1.48 -3.75 – 0.79 0.200

Random E�ects

‡̂
2
Á 4.54

‡̂0 (Intercept, client:g.treaty:g.country:years) 18.59

‡̂1 (Slope, client:g.treaty:g.country:years:oci) 13.85

fl̂01 (Correlation, of client:g.treaty:g.country:years) -0.98

No. of risk class levels client k 35

No. of risk class levels g.treaty i 2

No. of risk class levels g.country j 2

No. of risk class levels years t 19

Total Observations 290

ICCadj. / Conditional ICCcon. 0.84 / 0.26

Marginal R
2
mar. / Conditional R

2
con. 0.690 / 0.951

Table 5.2. Model summary and estimated regression parameters selected of the final and best performing model,
lmm.RS.C5.r (LMM), across all model classes - to estimate the average (log) loss ratio, ln.lrkijt.

The following recaps our key findings based on the selected model results:

• The average rate of loss per unit of exposure volume significantly varies per individual risk.
Specifically, with respect to the interaction or grouping e�ects of the risk class groups (k, i, j, t)
(i.e. the random intercepts, with estimated variance ‡̂

2
– = 18.59).

• In this model, the regression coe�cient for the number of unique natural catastrophic events
(oci) varies across the group of risk class levels (k, i, j, t). Here we assumed the varying regression
slopes for oci followed a normal distribution (with a estimated variance of ‡̂

2
– = 13.85).

• In our model, we found the (fixed) main e�ects of the i-th treaty type per k-th client (for
countries j within the t-th year) to be significant (at a 5% significance level) on the average loss
ratio. Such that, for instance, the rate of loss ratio on average, per exposure volume unit, is
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exponentially higher for a i-th treaty with type CXL in comparison to all other types of treaties
(i.e. increases the average loss ratio by a factor of e

2.95 = 19.10). This is somewhat expected as
these types of treaties are designed only to cover excess losses (over a defined loss limit) arising
from catastrophic events, significantly increasing the expected rate of loss per k-th client for that
treaty i.

• The fixed main e�ects of premium rates (rate) per k-th client (with groups in (i, j, t)) was
also significant on the average loss ratio, where for every one percent increase in the premium
rates decreases the average loss ratio by 29.5%. This intuitively makes sense because higher
premium rates indicate a higher amount of total coverage or sum insured (exposure volume units).
Similarly, we found that for every one-point increase in the change of the consumer price index
(cpi) - for the j-th country for time t per k-th client - on average decreases the estimated loss
ratio.

• Note, the multi-level model includes the marginal e�ects of the t-th treaty year both as random
and fixed e�ects due to its cross-level interaction e�ects with the (fixed) e�ects of the cpi.
Specifically, the results show how the t-th treaty year (per (k, i, t) facilitates the e�ects of the
cpi on the average loss ratio.

• The cross-level pairwise e�ects of the type of i-th treaty and the number of natural catastrophes
were also found to be significant (p-value < 100). The model indicates that the e�ects of oci on
the average loss ratio are moderated by the type of i-th treaty. For example, the e�ects of the
number of natural catastrophic events on the average loss ratio - per risk class groups (k, i, j, t) -
is significantly higher for a client k with quota-shares treaties (in comparison to all other treaties).
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6 Conclusion

Given the nature of natural catastrophic data -with low frequency and high severity - assessing an
individual risk in property underwriting can be extremely challenging. In actuarial statistics, a wide
variety of models are considered to measure the e�ects of risk factors - considering a set of corresponding
"tari�s" for di�erent risk class groups - on the average rate of loss (per exposure volume). This may
include considering predictive models from several model classes, such as LMs, LMMs, GLMs, and
GLMMs. The approaches to model the expected average loss ratio may also vastly di�er. Our modelling
approach in this study was to start with simple and standard familiar models (LMs) and then gradually
extend or add complexity demanded by the situations (LMMs and GLMs).

We first constructed a framework to directly model the average loss ratio (instead of the frequency-
severity approach) at every hierarchical risk class level (k, i, j, t). The grouping e�ects of all risk class
levels and risk factors were analyzed based on the natural catastrophic data (the training data or
"in-sample" data set) - for 24 countries or islands located in the Caribbeans from 2001-2021 (based
on the policy and treaty insurance data). The wide range of t years considered also meant that our
data set contained a large set of individual risk class levels per k-th client. For this reason, before
modelling, we also performed exploratory data analyses to screen the varying e�ects per risk class level
and aggregate our data based on suitable risk groups.

Then based on the aggregated data, our goal was to extensively study the di�erent possible models
and find the best suitable or fitting model for the underlying data. This included investigating various
model specifications per model class and discussing the appropriate measures to assess all the models.
As previously stated, due to the low frequency and high severity loss events, the distributions of the
loss ratios exhibited heavy skewness and long tails (as typically expected in the insurance context).
This meant that the large losses are more likely to occur than insinuated by the normal distribution
(Frees et al., 2014). For this reason, we focused on the two heavy-tailed regression techniques: the
log-normal and gamma models.

In addition, given our data insurance loss data (from the reinsurance perspective) had a longitudinal
data structure, we also needed to account for the e�ects of the risk factors on our response - while
still being able to account for the varying dynamics in the risk class groups appropriately. For this
reason, we first assessed the ordinary LM with and without the grouping e�ects of risk class levels
(k, i, j, t) individually (as covariates). Our LM results showed that ignoring the clustering e�ects of
(k, i, j, t) - provides a poor fit to the data. Meanwhile, accounting for specific pairwise e�ects improves
our overall model fit - in addition to the risk classes. For this reason, next, we extended our findings
from the selected LMs to the LMMs. Extending the LM class to LMMs allowed us to compare our
findings (from LMs models) on the e�ect of loss ratios - when we account for the mixed e�ects of the
client-related risk attributes.
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Based on our findings from the LMs, we compared a variety of di�erent model specifications. Here,
we found the LMM with fixed e�ects (including main and interaction e�ects) and random crossed
e�ects specification provided the best LMM fit. Allowing for random varying risk class intercept e�ects
and random slope e�ects of the number of natural catastrophic events (historical) - provided the best
suitable model fit. Following the same model-building process, lastly, we looked at GLMs. We fitted
the gamma regression model with a log-link function (instead of the canonical inverse link function)
so that the model regression parameters were comparable (to the LMs and LMMs) and, hence, more
interpretable. We compared and assessed each model’s performance during each model-building process,
based on the "in-sample" dataset, concerning the AIC, AICc, BIC and the appropriate estimates for
the coe�cient of determination (R2). We used the RMSE for both the training and testing data to
analyze the predictive performance across all models and looked at the MSE and bias concerning the
testing data ("out-sample" data).

In conclusion, we found that the LMM outperformed the standard LM and the GLM. The excellent
performance of this hierarchical linear mixed-e�ects model was confirmed by our model evaluation
results - based on the test data. As the respective LMM yielded the lowest bias and variance,
indicating that it is the most suitable model given the underlying data. By correcting and specifying
an appropriate variance structure corresponding to the hierarchical data structure, we were able to
include the clustering e�ects of the risk classes based on the k-th client into our model (crucial for
insurance rate making). This mixed-e�ects model enabled us to account for nested e�ects and allowed
for flexibility per risk class group, which allowed each group to have its unique regression relationship.
For this reason, we could capture the heterogeneity per k-th client treaty i for all countries j and years
t considered in this study. However, it will be interesting also to consider additional and more complex
multi-level random e�ects structures for future studies - with a larger set of loss data.

In contrast, our results (based on the testing data) showed that the standard LM, on average,
overestimated the actual values of the loss ratio. This is may be due to the model’s high degree of
complexity, where each risk class group e�ect was also analyzed separately (entering the model as
covariates). At the same time, the gamma model underestimated the actual values on average. As
this model did not account for any risk class level (due to the convergence issues) - underfitting, in
this case, may have resulted from an excessively simple model specification. It is essential to note
that this study was specifically based on the reinsurance data available for only countries located in
the Caribbean. For this reason, the risk factors considered in this study and loss data were limited
to the study design. Including additional risk factors or loss observations for the risk class groups
with di�erent underlying assumptions and model structures may lead to di�erent empirical results and
conclusions. However, in our case, the underestimation may be primarily because the GLM does not
account for the heterogeneity risk between the risk classes (per client).

For this reason, future studies should focus on one of GLMs’ popular extensions applicable to this study
- known as the Generalized Linear Mixed Models (GLMMs). These models are especially useful for
longitudinal data (with repeated measurements over time on a group of individuals) - while allowing for
more complex multi-level structures. Extending the GLM will allow us to include random e�ects in the
linear predictor - which also determines the correlation structure between the loss observations for a
client over the treaty years. In other words, it will allow us to account for unobserved heterogeneity risk
characteristics among our clients. Another key advantage of GLMMs is that it ensures our regression
models are not restricted to normal data - by considering other distributions from the exponential family.
However, since the modelling building processes of GLMMs are still in the statistical frontier - available
statistical software is often limited, unstable or too complex for practical solutions. Alternatively,
based on the recommendation of many previous studies (for example, see Bermúdez et al. (2014)),
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using copulas to model the dependencies over time or for treaty dependencies between the lines of
businesses (based on the insurance coverage in property insurance) may be interesting. Sun et al.
(2008) demonstrates the advantages of copulas to accommodate longitudinal data. They show how
copulas may be especially useful for modelling dependencies over time and for representing the marginal
distributions, where extreme values are highly likely to occur in longitudinal data. However, this may
be challenging given the low occurrence of high severity loss events. For this reason, it might also be
worth looking at other heavy-tailed distributions (such as Tweedie or Pareto).

The scope of this study and the methods employed here primarily focuses on the statistical modelling
with the available insurance-related measurements. This provides practical and valuable solutions in
insurance pricing. The findings from this study not only help researchers to assess di�erent predictive
models in the (re) insurance context - but also provide property underwriters and reinsurers with
practical and ready-to-use solutions. This allows them to precisely and directly estimate the average
loss ratio for insurance pricing with heterogeneity risks - in the natural catastrophic loss data.
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Appendix

A Model Results: LMMs

A.1 Model lm.I: Interaction E�ects (With Group E�ects of Risk Class)

Call:
lm(formula = ln.lr ~ client + g.treaty + g.country + years + t.type + oci + rate + cpi + g.country:oci + years:oci +

years:cpi + t.type:oci + oci:cpi, data = cat_data, na.action = na.omit)

Residuals:
Min 1Q Median 3Q Max
-13 -2 0 2 9

Coefficients: (7 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 32.33 18.65 1.7 0.085 .
client6 -3.31 2.20 -1.5 0.134
client7 0.46 2.55 0.2 0.858
client8 -7.67 2.77 -2.8 0.006 **
....
g.treaty2 0.85 4.37 0.2 0.847
g.countryL 0.01 1.54 0.0 0.992
years2003 134.00 95.76 1.4 0.163
years2004 -30.74 19.39 -1.6 0.115
years2005 -49.69 20.55 -2.4 0.017 *
t.typeCXL 4.54 2.60 1.7 0.083 .
t.typeQS -3.09 1.86 -1.7 0.099 .
t.typeSP 1.32 2.74 0.5 0.631
oci 3.89 4.91 0.8 0.430
rate -0.48 0.21 -2.3 0.021 *
cpi -0.32 0.24 -1.3 0.183
g.countryL:oci 0.58 0.54 1.1 0.288
years2003:oci 4.70 7.03 0.7 0.505
years2004:oci -2.23 3.20 -0.7 0.486
years2005:oci -1.81 3.44 -0.5 0.599
....
years2003:cpi -1.69 1.24 -1.4 0.174
years2004:cpi 0.41 0.25 1.6 0.108
years2005:cpi 0.63 0.26 2.5 0.015 *
....
t.typeCXL:oci -3.72 1.46 -2.5 0.012 *
t.typeQS:oci -0.01 0.69 0.0 0.989
t.typeSP:oci -3.44 1.65 -2.1 0.038 *
oci:cpi -0.09 0.03 -2.7 0.008 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.5 on 195 degrees of freedom
Multiple R-squared: 0.89, Adjusted R-squared: 0.84
F-statistic: 18 on 94 and 195 DF, p-value: <2e-16
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A.2 Model lmm.RS.C5: ANOVA table for Fixed and Interaction E�ects (With Crossed
E�ects of Risk Class) - using the Wald Chi-sq Tests (Type III)

Fixed Covariate E�ects
(Main and Interaction E�ects) ‰

2 Df Pr(>Chisq)

years 76.45 18.00 3.6e-09
t.type 4.72 3.00 0.02
oci 201.31 1.00 <2e-16
rate 11.41 1.00 7.3e-04
cpi 16.94 1.00 3.9e-05
years:oci 20.23 15.00 0.16
years:cpi 25.69 15.00 0.04
t.type:oci 8.03 3.00 0.05
oci:cpi 0.27 1.00 0.60

Table 1. Analysis of Deviance Table (Type III Wald chi-square tests).

B Model Results: GLMs

B.1 Model Diagnostic Plots (Pearson): for Gamma Interaction Model glm.I

Figure 1. Model Diagnostic plots of model glm.I.r, based on pearson residuals.
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